Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
LUMINAIRE WITH ARTICULATED LEDS
Document Type and Number:
WIPO Patent Application WO/2017/165686
Kind Code:
A1
Abstract:
Described is a method for method for controlling the movement of LED devices in luminaires, specifically to a method relating to allowing both synchronized and independent pan and tilt movement of LED light modules in a light curtain. The LEDs may be mounted in a plurality of modules. The modules may be in a linear arrangement. The LEDs may be mounted in a plurality of modules that are arrayed in a two dimensional array. The modules in the linear arrangement or in the two dimensional array may be mounted in groups forming modular group assemblies where modular group assembly are independently articulated to pan and/or tilt the modules mounted thereon independent of other modular group assemblies.

Inventors:
JURIK PAVEL (US)
VALCHAR JOSEF (US)
Application Number:
PCT/US2017/023872
Publication Date:
September 28, 2017
Filing Date:
March 23, 2017
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
ROBE LIGHTING INC (US)
JURIK PAVEL (CZ)
VALCHAR JOSEF (CZ)
International Classes:
F21V21/30; F21W131/406; F21Y103/10; F21Y105/10; F21Y115/10
Foreign References:
US20080068839A12008-03-20
US20120307486A12012-12-06
US20150016106A12015-01-15
US20150062902A12015-03-05
CN204345517U2015-05-20
Other References:
None
Attorney, Agent or Firm:
GRETHER, Heinz (US)
Download PDF:
Claims:
WHAT IS CLAIMED IS:

1 . A luminaire comprising a plurality of LED modules into which are mounted at least one LED; a common carrier in which the plurality of LED modules are mounted; a global articulator which articulates a common rotational orientation of the LED Modules; a plurality of independent articulators which independently articulate an orientation of individual LED Modules in a rotational orientation orthogonal to the orientation articulated by the global articulator.

2. The luminaire of claim 1 where the global orientation is pan and the

independent articulators articulate tilt orientation(s).

3. The luminaire of claim 1 where the global orientation is tilt and the

independent articulators articulate pan orientation(s).

4. The luminaire of claim 1 where the LED modules are mounted in a linear arrangement.

5. The luminaire of claim 1 where the plurality of independent articulators

articulate a group of LED modules independently of other group(s) of LED modules.

6. The luminaire of claim 4 where the plurality of independent articulators

articulate a group of LED modules independently of other group(s) of LED modules.

7. A luminaire comprising a plurality of LED modules into which are mounted at least one LED; a common carrier in which the plurality of LED modules, with light homoginziers which tapper from an input port of cross sectional area larger than the cross sectional area of its ouput port, are mounted; a first plurality of independent articulators which independently articulate an orientation of individual LED Modules in a first rotational orientation orthogonal to the orientation articulated by the global articulator. a second plurality of independent articulators which independently articulate an orientation of individual LED Modules in a second rotational orientation which is orthogonal to the first rotational.

8. The luminaire of claim 7 which further comprising a carrier pan articulator which articulates a pan orientation of the common carrier.

9. The luminaire of claim 7 which further comprising a carrier tilt articulator which articulates a tilt orientation of the common carrier.

10. The luminaire of claim 9 which further comprising a carrier tilt articulator which articulates a tilt orientation of the common carrier.

1 1 . The luminaire of claim 7 where the LED modules are mounted in a linear arrangement.

12. The luminaire of claim 7 where the first and second plurality of independent articulators articulate independent group(s) of LED modules independently of other group(s) of LED modules.

13. The luminaire of claim 10 where the plurality of independent articulators articulate a group of LED modules independently of other group(s) of LED modules.

Description:
LUMINAIRE WITH ARTICULATED LEDS

RELATED APPLICATION

This application claims priority on and through the following:

US utility application 15078826 filed on 23 MAR 2016.

TECHNICAL FIELD OF THE INVENTION

[0001] The present invention generally relates to a method for controlling the movement of LED devices in luminaires, specifically to a method relating to allowing both synchronized and independent movement of LEDs in a light curtain.

BACKGROUND OF THE INVENTION

[0002] Luminaires with automated and remotely controllable functionality are well known in the entertainment and architectural lighting markets. Such products are commonly used in theatres, television studios, concerts, theme parks, night clubs and other venues. A typical product will provide control over the functions of the luminaire allowing the operator to control the intensity and color of the light beam from the luminaire that is shining on the stage or in the studio. Many products also provide control over other parameters such as the position, focus, beam size, beam shape and beam pattern. In such products that contain light emitting diodes (LEDs) to produce the light output it is common to use more than one color of LEDs and to be able to adjust the intensity of each color separately such that the output, which comprises the combined mixed output of all LEDs, can be adjusted in color. For example, such a product may use red, green, blue, and white LEDs with separate intensity controls for each of the four types of LED. This allows the user to mix almost limitless combinations and to produce nearly any color they desire. [0003] Figure 1 illustrates a typical multiparameter automated luminaire system 10. These systems typically include a plurality of multiparameter automated luminaires 12 which typically each contain on-board a light source (not shown), light modulation devices, electric motors coupled to mechanical drives systems and control electronics (not shown). In addition to being connected to mains power either directly or through a power distribution system (not shown), each luminaire is connected is series or in parallel to data link 14 to one or more control desks 15. The luminaire system 10 is typically controlled by an operator through the control desk 15.

[0004] A known arrangement for luminaires used in the entertainment or architectural market is that of a light curtain. A light curtain consists of a row or line of light emitters arranged so that they produce a plane of light, like a curtain thus the name. Prior art automated products have allowed the combined movement of all the light emitters together in tilting or rocking motion so as to be able to direct the curtain of light as desired. An example of such a prior art luminaire is the CycFX 8 from Robe Lighting. However, the prior art devices don't allow individual light emitters in the curtain to be adjusted from position(s) independently of each other. Such adjustment would be useful, as it would allow the user or lighting designer to produce converging or diverging curtains, and to direct the light more accurately where it is needed. It would also be useful with other shapes and types of luminaires, not just light curtains, to be able to individually adjust the position of individual light emitters.

[0005] There is a need for a method for controlling the movement of LED devices in luminaires, specifically to a method relating to allowing both synchronized and independent movement of LEDs in a light curtain or other luminaires. BRIEF DESCRIPTION OF THE DRAWINGS

[0006] For a more complete understanding of the present invention and the advantages thereof, reference is now made to the following description taken in conjunction with the accompanying drawings in which like reference numerals indicate like features and wherein:

[0007] FIGURE 1 illustrates a multiparameter automated luminaire lighting system;

[0008] FIGURE 2 illustrates an embodiment of a luminaire with a linear arrangement of plurality of light emitting modules;

[0009] FIGURE 3 illustrates the global tilting motion of the light emitting modules in an embodiment of the luminaire illustrated in Figure 2 where the modules are centrally oriented;

[0010] FIGURE 4 illustrates the global tilting motion of the light emitting modules in an embodiment of the luminaire illustrated in Figure 2 where the modules are tilted off of the central orientation illustrated in Figure

3;

[0011] FIGURE 5 illustrates the global tilting motion of the light emitting modules in an embodiment of the luminaire illustrated in Figure 2 where the modules are tilted off of the central orientation illustrated in Figure 3 but in the opposite direction as illustrated in Figure 4;

[0012] FIGURE 6 illustrates an embodiment with independent panning motion of the light emitting modules in an embodiment of the novel luminaire;

[0013] FIGURE 7 illustrates an embodiment of a light emitting module;

[0014] FIGURE 8 illustrates a further embodiment of independent panning and tilting motion of the light emitting modules; [0015] FIGURE 9 illustrates a further embodiment of independent panning and tilting motion of the light emitting modules;

[0016] FIGURE 10 illustrates a further embodiment of independent panning and tilting motion of the light emitting modules;

[0017] FIGURE 11 illustrates an embodiment using a gobo wheel;

[0018] FIGURE 12illustrates detail of a gobo wheel embodiment of Figure 11;

[0019] FIGURE 13 illustrates an alternative embodiment 200 substituting for light

emitting modules 20 in Figures 2-7 in a further novel luminaire; and [0020] FIGURE 14 illustrates the alternative embodiment 100 of an the light emitting module 100 of Figure 13 with the lens set 136 and 138 in a different beam angle position...

DETAILED DESCRIPTION OF THE INVENTION

[0021] Preferred embodiments of the novel luminaire are illustrated in the FIGURES, like numerals being used to refer to like and corresponding parts of the various drawings.

[0022] The present invention generally relates to a method for controlling the movement of LED devices in luminaires, specifically to a method relating to allowing both synchronized and independent movement of LED light modules in a light curtain or other LED luminaires.

[0023] Figure 2 illustrates an embodiment of a luminaire 30 with a linear arrangement of a plurality of light-emitting modules. In the embodiment illustrated eight light- emitting modules 20 a-h are mounted within luminaire body 32 which serves as a common carrier to carry the modules 20 a-h in a linear arrangement to form light curtain luminaire 30. Each light-emitting module 20 a-h emits collimated and controlled light 24 a-h. Each of these light beams 24 a-h may be individually adjusted for color, by adjusting the output mix of its LED emitters, and for beam angle, by adjusting each modules optical elements. In this configuration all the light-emitting modules are aligned to point in the same direction and same plane. The luminaire body 32 may be articulated to be capable of a global tilting motion through motor 33 and motor drive 34. Motor 33 may be controlled from data link 14 through communication link 36 and motor driver 35.

Though not shown in this figure the common carrier 32 may also be articulated to be capable of a global panning motion through motors and motor drivers which are controlled by an operator through the communications link 36.

[0024] Figures 3, 4, and 5 illustrate the global tilting motion of the light-emitting modules in an embodiment of the invention. The view in Figures 3, 4, and 5 is an elevation view of the luminaire 30 shown in Figure 2, viewed from the end of the luminaire, orthogonal to that shown in Figure 2. Luminaire body 32 may be pivotably mounted to frame 28 such that the luminaire body can rotate about pivot point 26. Figure 3 shows the luminaire body positioned such that the light-emitting modules are vertical and light beams 24 are emitted vertically. Figures 4 and 5 show the luminaire body rotated around pivot axis 26 such that the light-emitting modules, and thus the light beams 24, are tilted to the left and right respectively.

[0025] This tilting motion around pivot axis 26 is be controlled through a motor 33 and drive mechanism 34 actuation/articulation system. The actuation/articulation system may be a stepper motor, servo motor, linear actuator, solenoid, DC motor, or other mechanism many of which are well known in the art. This tilting motion may be controlled remotely as with other features of an automated luminaire, perhaps through an industry standard protocol such as DMX-512 through communications link 14, 36 and motor controller 35 on board the luminaire. In other embodiments, configurations are possible. This tilting motion imparts the same movement to each and every light-emitting module in luminaire 30 identically. They will all move in parallel and mechanical synchronization.

[0026] Figure 6 illustrates the independent panning motion of the light emitting modules in an embodiment of the invention. Figure 6 shows the same view of luminaire 30 as Figure 2. In this embodiment light-emitting modules 20 a-h are each individually and separately pivotably mounted to luminaire body 32 such that the light-emitting modules can individually rotate about respective pivot axes 25 a-h. The plane of rotation of pivot axes 25 a-h is orthogonal to pivot axis 26 shown in Figures 3, 4, and 5. Pivot axes 25 a-h allow each light-emitting module 20 a-h to pan from side to side individually and independent of the position of its neighboring light-emitting modules, thus allowing light beams 24 a-h to be individually and separately steered. These individual

independent tilt articulators tilting motion around pivot axes 25 a-h may be actuated through a stepper motor, servo motor, linear actuator, solenoid, DC motor, or other mechanism as well known in the art.

[0027] Figure 7 illustrates the light-emitting module 20 of an embodiment of the invention. LED emitters 22 may be mounted to or be otherwise in thermal contact with a heat sink 27. The optics of light-emitting module 20 may comprise total internal reflection (TIR) optical systems or standard reflectors such as are well known in the art so as to provide a collimated light beam 24 along the optical axis 21. Light-emitting module 20 may further contain optical elements 40 such that the focal length and thus the beam angle of the emitted light may be adjusted. Such focal length adjusting optical elements 40 is mechanically driven 44 by a motor 43 such that the beam angle change can be remotely controlled. This actuation system may be a stepper motor, servo motor, linear actuator, solenoid, DC motor, or other mechanism many of which are well known in the art.

[0028] In various embodiments of the invention each LED emitter 22 may comprise a single LED die of a single color or a group of LED dies of the same or differing colors. For example in one embodiment LED emitter 22 may comprise one each of a Red, Green, Blue and White LED die. In further embodiments LED emitter 22 may comprise LED chip or package while in yet further embodiments LED emitter 22 may comprise multiple LED chips or packages either under a single primary optic or each package with its own primary optic. In some embodiments these LED die(s) may be paired with optical lens element(s) as part of the LED light-emitting module. [0029] The two orthogonal movements described herein about pivot axes 25 a-h, and 26 are commonly referred to as pan and tilt directions. In operation the user or lighting designer may rotate entire luminaire 30 around the tilt pivot axis 26, and individually pan each light-emitting module 20 a-h in order to achieve the desired effect from the luminaire light curtain. Figure 7 illustrates a independent pan articulator employing a direct motor drive 53, 54 of the actuation system for panning an individual light module 20. This actuation system may be a stepper motor, servo motor, linear actuator, solenoid, DC motor, or other mechanism many of which are well known in the art.

[0030] Figure 8 illustrates a further embodiment of the invention. In this embodiment 9 light-emitting modules 20a - 20i are mounted in a luminaire 40. Each light-emitting module 20a - 20i emits collimated and controlled light. Each of the light beams from the light-emitting modules may be individually adjusted for color, by adjusting the output mix of its LED emitters, and for beam angle, by adjusting each modules optical elements as previously described. Further, each light-emitting module 20a - 20i may be individually articulated to adjusted for both pan and tilt. This differs from the prior embodiment where each light-emitting module had a single independent axis of tilt movement, and a global movement of the luminaire provided pan. In the embodiment illustrated in Figure 8 each light-emitting module is capable of both independent pan and independent tilt. Further, luminaire 40 may also have global pan and global tilt available. Independent pan and tilt of each light-emitting module 20a - 20i provide the ability to widen and narrow the combined beam produced by the modules, while the global pan and tilt of luminaire 40 provides the ability, as usually provided by automated luminaire, to steer the resultant combined beam as desired. [0031] Figure 9 illustrates a further embodiment of the invention. In this embodiment 37 light-emitting modules are mounted in the head 56 of luminaire 50. The light-emitting modules are mounted in groups to form seven module group assemblies, 60a - 60g. For example, module group assembly 60a contains five light-emitting modules 62a - 62e. Each of the 37 light-emitting modules emits collimated and controlled light. Each of the light beams from the light-emitting modules may be individually adjusted for color, by adjusting the output mix of its LED emitters, and for beam angle, by adjusting each modules optical elements as previously described. In the embodiment illustrated in

Figure 9 each module group assembly 60a - 60g is capable of both independent pan and independent tilt.

[0032] Head 56 may be mounted in a yoke assembly 54 that, in turn, is mounted on base 52. Yoke assembly 54 is rotatably mounted on base 52 so as to provide global pan rotation 53 and head 56 is rotatably mounted in yoke assembly 54 so as to provide global tilt rotation 55.

[0033] Figure 10 illustrates a further embodiment of the invention. In this

embodiment 36 light-emitting modules are mounted in the head 76 of luminaire 70. The light-emitting modules are mounted in groups to form nine module group assemblies, 80a - 80i. For example, module group assembly 80a contains four light-emitting modules 82a - 82d. Each of the 36 light-emitting modules emits collimated and controlled light. Each of the light beams from the light-emitting modules may be individually adjusted for color, by adjusting the output mix of its LED emitters, and for beam angle, by adjusting each modules optical elements as previously described. In the embodiment illustrated in Figure 10 each module group assembly 80a - 80i is capable of both independent pan and independent tilt. [0034] Head 76 may be mounted in a yoke assembly 74 that, in turn, is mounted on base 72. Yoke assembly 74 is rotatably mounted on base 72 so as to provide global pan rotation 73 and head 76 is rotatably mounted in yoke assembly 74 so as to provide global tilt rotation 75.

[0035] Although the embodiments illustrated herein show specific numbers of light- emitting modules mounted in specific numbers of module assemblies in practice the invention is not so limited and any number of light-emitting modules may be mounted in any number of module assemblies to form a luminaire. In any of the possible

arrangements, each of the light-emitting modules and/or each of the module assemblies may be capable of independent pan and independent tilt movement in one or more axes. Further, the light-emitting modules and/or module assemblies may be arranged in any shape or layout. Embodiments herein illustrate linear, round and square arrangements, but any arrangement shape may be used.

[0036] Figure 11 illustrates a further embodiment of the light-emitting module 100 of the invention. LED 60, which may include a primary optic, is mounted on substrate 62. LED 60 may contain a single color die or may contain multiple dies, each of which may be of differing colors. The light output from the dies in LED 60 enters collimating and mixing optic 80 at light entry port 82. Collimating and mixing optic 80 may be a solid optic using total internal reflection (TIR) to direct the light or may be a hollow reflective surface. Collimating and mixing optic 80 may have four sides 86, each of which may be curved with cornered sides 92. The combination square sided shape with curved sides provides excellent mixing of the light from the dies in LED 60. A further feature of collimating and mixing optic 80 is that it directs the reflected light to an external focal point that is comparatively close to its output port 84 of the collimating and mixing optic 80. In the embodiment shown in Figure 11, the reflected light exits collimating and mixing optic 80 at port 84 and enters light integrator optic 102 at its entry port 106. Light integrator 102 is a device utilizing internal reflection so as to collect, homogenize and constrain and conduct the light from collimating and mixing optic 80. Light integrator 102 may be a hollow tube with a reflective inner surface such that light impinging into the entry port may be reflected multiple times along the tube before leaving at the exit port 108. Light integrator 102 may be a square tube, a hexagonal tube, a heptagonal tube, an octagonal tube, a circular tube, or a tube of any other cross section. In a further embodiment light integrator 102 may be a solid rod constructed of glass, transparent plastic or other optically transparent material where the reflection of the incident light beam within the rod is due to total internal reflection (TIR) from the interface between the material of the rod and the surrounding air. The integrating rod may be a square rod, a hexagonal rod, a heptagonal rod, an octagonal rod, a circular rod, or a rod of any other cross section. Integrator embodiments with a polygonal cross section have reflective sides 110 and corners 112 between the reflective sides as seen in Figure 11 which includes a side cross sectional view of the integrator 102.

[0037] A feature of a light integrator 102 which comprises a hollow or tube or solid rod where the sides of the rod or tube are essentially parallel and the entrance aperture 106 and exit aperture 108 are of the same size is that the divergence angle of light exiting the integrator 102 at exit port 108 will be the same as the divergence angle for light entering the integrator 102 at entry port 106. Thus a parallel sided integrator 102 has no effect on the beam divergence and will transfer the position of the focal point of collimating and mixing optic 80 at its exit aperture 84 to the integrator's 102 exit aperture 108. The light exiting integrator 102 will be well homogenized with all the colors of LED 60 mixed together into a single colored light beam and may be used as our output, or may be further modified by downstream optical systems.

[0038] Integrator 102 may advantageously have an aspect ratio where its length is much greater than its diameter. The greater the ratio between length and diameter, the better the resultant mixing and homogenization will be. Integrator 66 may be enclosed in a tube or sleeve 104 that provides mechanical protection against damage, scratches, and dust.

[0039] In the embodiment illustrated in Figure 11, the optical system is further fitted with a gobo wheel 113. A gobo wheel contains patterns or images that will controllably mask the light exiting through port 108. These images will then be projected by downstream optical elements to create a pattern projecting light beam. The lens system after the gobo wheel may be a zoom lens system 40 such as shown in Figure 7 or any other projecting lens system as well known in the art. Gobo wheel 113 may be rotated through motor 114 in order to select different gobo patterns in front of exit aperture 108. A rotating gobo wheel, 115, may additionally or alternatively be utilized in the system. Rotating gobo wheel 115 may be rotated through motor 116 in order to select different gobo patterns 118 in front of exit aperture 108. Gobo patterns 118 may then be rotated about the optical axis of the system through motor 117.

[0040] Figure 12 shows gobo wheel 113 in more detail in a further embodiment of the invention. Gobo wheel 113 contains a plurality of patterns 115 that may be moved across and in front of light-emitting module 20a by rotation about motor 114 and will move with it as it is panned and tilted. In other embodiments every light-emitting module as illustrated in Figures 7, 8, 9 or 10 may be fitted with a gobo wheel, all or any of which may be individually or cooperatively controlled. In further embodiments the gobo wheel may not be a complete circular disc as shown in Figure 12, but may be a portion of a disc, or a flag so as to save space and provide a more limited number of gobo options 115. The gobo patterns 115 may be of any shape and may include colored images or transparencies. In yet further embodiments individual gobo patterns 115 may be further rotated about their axes by supplementary motors in order to provide a moving rotating image. Such rotating gobo wheels are well known in the art.

[0041] Figures 13 and 14 illustrate an alternative embodiment of the light emitting and optical module 200 of the invention. These modules would replace the modules 20 in the previously illustrated luminaires. A light-emitting module 200 of the system comprises an LED 142, which may or may not include a primary optic, mounted on substrate 143. LED 142 may contain a single color die or may contain multiple dies, each of which may be of differing colors. The light output from the dies in LED 142 enters light integrator optic 144 contained within protective sleeve 140. Light integrator 144 may be a device utilizing internal reflection so as to collect, homogenize and constrain and conduct the light to exit port 146. Light integrator 144 may be a hollow tube with a reflective inner surface such that light impinging into the entry port may be reflected multiple times along the tube before leaving at the exit port 146. Light integrator 144 may be a square tube, a hexagonal tube, a heptagonal tube, an octagonal tube, a circular tube, or a tube of any other cross section. In a further embodiment light integrator 144 may be a solid rod constructed of glass, transparent plastic or other optically transparent material where the reflection of the incident light beam within the rod is due to total internal reflection (TIR) from the interface between the material of the rod and the surrounding air. The integrating rod may a square rod, a hexagonal rod, a heptagonal rod, an octagonal rod, a circular rod, or a rod of any other cross section. [0042] The light exiting integrator 144 will be elongated enough to well homogenize all the colors of LED 142 mixed together into a single colored light beam. In various embodiments of the invention each LED emitter 142 may comprise a single LED die of a single color or a group of LED dies of the same or differing colors. For example in one embodiment LED emitter 142 may comprise one each of a Red, Green, Blue and White LED die. In further embodiments LED emitter 142 may comprise a single LED chip or package while in yet further embodiments LED emitter 142 may comprise multiple LED chips or packages either under a single primary optic or each package with its own primary optic. In some embodiments these LED die(s) may be paired with optical lens element(s) as part of the LED light-emitting module. In a further embodiment LED emitter 142 may comprise more than four colors of LEDs. For example seven colors may be used, one each of a Red, Green, Blue, White, Amber, Cyan, and Deep Blue/UV LED die.

[0043] Integrator 144 may advantageously have an aspect ratio where its length is much greater than its diameter. The greater the ratio between length and diameter, the better the resultant mixing and homogenization will be. The precise length is dependent on the placement of LED color dies in the LED array served by the Integrator 144 to get Homogenization. One configuration may require a greater ratio of length to diameter to another and different configurations may require different input cross-sectional areas, and thus more length to get well mixed output, the shape of the cross sections and changes in the cross section also effect the length of integrator required. Integrator 144 may be enclosed in a tube or sleeve 140 that provides mechanical protection against damage, scratches, and dust. [0044] In further embodiments the light integrator 144, whether solid or hollow, and with any number of sides, may have entry ports and exit ports that differ in shape. For example, a square entry port and an octagonal exit port 146. Further light integrator 144 may have sides which are tapered so that the entrance aperture is smaller than the exit aperture. The advantage of such a structure is that the divergence angle of light exiting the integrator 144 at exit port 146 will be smaller than the divergence angle for light entering the integrator 144. The combination of a smaller divergence angle from a larger aperture serves to conserve the etendue of the system. Thus a tapered integrator 144 may provide similar functionality to a condensing optical system.

[0045] Light exiting integrator 144 is directed towards and through first lens 136 and second lens 138 that serve to further control the angle of the emitted light beam. First lens 136 and second lens 138 may be moved as a pair towards and away from light integrator 144 as described above in the direction along the optical axis of the system as shown by arrow 132. In the position shown in Figure 13 where first lens 136 and second lens 138 are at their furthest separation from the light-emitting module and the exit 146 of integrator 144 the emitted light beam will have a narrow beam angle. In the position shown in Figure 14 where first lens 136 and second lens 138 are at their closest distance to the light-emitting module and the exit 146 of integrator 144 the emitted light beam will have a wide beam angle. Intermediate positions of the lenses 136 and 138 with respect to exit 146 of integrator 144 will provide intermediate beam angles. In one embodiment of the invention, the range of beam angles from the system may be adjusted from 4° to 50°.

[0046] Lenses 136 and 138 may be mechanically driven 244 by a motor 243 such that the beam angle change can be remotely controlled. This actuation system may be a stepper motor, servo motor, linear actuator, solenoid, DC motor, or other mechanism many of which are well known in the art.

[0047] Figures 13 and 14 further illustrate an independent pan articulator employing a direct motor drive 253, 254 of the actuation system for panning an individual light module 200. This actuation system may be a stepper motor, servo motor, linear actuator, solenoid, DC motor, or other mechanism many of which are well known in the art.

[0048]

[0049] In further embodiments lenses 136 and 138 may move separately and independently to provide varying beam angle or focus adjustment of the light beam.

[0050] Lenses 136 and 138 may be meniscus lenses, piano convex lenses, bi-convex lenses, holographic lenses, or other lenses as well known in the art. Lenses 136 and 138 may be manufactured from glass, acrylic, polycarbonate, or any other material known to be used for optical lenses. Lenses 136 and 138 may be single elements or may each be lenses comprising a plurality of elements. Such elements may be cemented together or air spaced as is well known in the art. Lenses 136 and 138 may be constructed so as to form an achromatic combination. Such a configuration may be desirable such that the differing wavelengths of light from the associated LED light emitting module do not diverge or converge from each other and remain mixed. The design of such achromatic lenses or lens assemblies is well known in the art.

[0051] While the disclosure has been described with respect to a limited number of embodiments, those skilled in the art, having benefit of this disclosure, will appreciate that other embodiments may be devised which do not depart from the scope of the disclosure as disclosed herein. The disclosure has been described in detail, it should be understood that various changes, substitutions and alterations can be made hereto without departing from the spirit and scope of the disclosure.