Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
MAGNETIC LEVITATION DEVICE
Document Type and Number:
WIPO Patent Application WO/2006/079658
Kind Code:
A1
Abstract:
The invention relates to the fields of magnetic and superconductive materials and to a magnetic levitation device of the type that is used in superconductive contactless transport means or linear or radial levitation bearings. The aim of the invention is to provide a magnetic levitation device, which ensures an improved tracking rigidity, even during the loading and unloading of magnetic levitation devices or a stable guiding of the bearing. This is achieved by a magnetic levitation device consisting of at least two superconductive moulded bodies, with a stored magnetic field configuration, lying above a magnetic guide track. According to the invention, the two or more superconductive moulded bodies have a stored magnetic field configuration, holding them at different vertical distances from the guide track and/or a stored magnetic field configuration holding them at different horizontal positions in relation to the guide track. Said bodies are mechanically held above the guide track in a position that deviates from the stored position and are interconnected.

Inventors:
BEYER CHRISTOPH (DE)
DE HAAS OLIVER (DE)
RIEDERICH TORSTEN (DE)
SCHULTZ LUDWIG (DE)
Application Number:
PCT/EP2006/050499
Publication Date:
August 03, 2006
Filing Date:
January 29, 2006
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
LEIBNIZ INST FUER FESTKOERPER (DE)
BEYER CHRISTOPH (DE)
DE HAAS OLIVER (DE)
RIEDERICH TORSTEN (DE)
SCHULTZ LUDWIG (DE)
International Classes:
B60L13/06
Foreign References:
DE2511641A11976-09-23
US5809897A1998-09-22
US4979445A1990-12-25
US5433149A1995-07-18
US5602430A1997-02-11
US5094173A1992-03-10
Other References:
See also references of EP 1843913A1
Attorney, Agent or Firm:
Rauschenbach, Marion (Dresden, DE)
Download PDF:
Claims:
Patentansprüche
1. Magnetschwebevorrichtung, bestehend aus mindestens zwei Supraleiterformkörper mit gespeicherten Magnetfeldkonfigurationen über einem magnetischen Führweg, wobei die mindestens zwei Supraleiterformkörper eine bei unterschiedlichem vertikalen Abstand zum Führweg und/oder eine bei unterschiedlicher horizontaler Lage gegenüber dem Führweg gespeicherte Magnetfeldkonfiguration aufweisen und in einer von ihrer Speicherposition abweichenden Position über dem Führweg mechanisch gehalten und miteinander verbunden sind.
2. Vorrichtung nach Anspruch 1 , bei der jeweils zwei oder drei Supraleiterformkörper die gleiche gespeicherte Magnetfeldkonfiguration aufweisen.
3. Vorrichtung nach Anspruch 1 , bei der die Supraleiterformkörper massive Körper sind.
4. Vorrichtung nach Anspruch 1 , bei der die Supraleiterformkörper harte Supraleiter 2. Art sind.
5. Vorrichtung nach Anspruch 1 , bei der mindestens ein Supraleiterformkörper eine unterhalb der Position, an der die mindestens zwei Supraleiterformkörper mechanisch gehalten werden, verankerte Magnetfeldkonfiguration aufweist und der mindestens andere Supraleiterformkörper ein oberhalb der Position, an der die mindestens zwei Supraleiterformkörper mechanisch gehalten werden, verankerte Magnetfeldkonfiguration aufweist.
6. Vorrichtung nach Anspruch 5, bei der die Abstände der Positionen ober und unterhalb der Position, an der die mindestens zwei Supraleiterformkörper mechanisch gehalten werden, gegenüber dieser Position gleich groß sind.
7. Vorrichtung nach Anspruch 1 , bei der mindestens ein Supraleiter eine unterhalb und seitlich in Bewegungsrichtung der Magnetschwebevorrichtung nach rechts verschobenen Position, an der die mindestens zwei Supraleiterformkörper mechanisch gehalten werden, verankerte Magnetfeldkonfiguration aufweist und der mindestens andere Supraleiterformkörper ein oberhalb und seitlich in Bewegungsrichtung der Magnetschwebevorrichtung nach links verschobenen Position, an der die mindestens zwei Supraleiterformkörper mechanisch gehalten werden, verankerte Magnetfeldkonfiguration aufweist.
8. Vorrichtung nach Anspruch 7, bei der die Abstände der Positionen ober und unterhalb und rechts und links der Position, an der die mindestens zwei Supraleiterformkörper mechanisch gehalten werden, gegenüber dieser Position bezüglich ober und unterhalb und bezüglich rechts und links gleich jeweils groß sind.
Description:
Magnetschwebevorrichtung

Die Erfindung bezieht sich auf die Gebiete der Magnet- und Supraleiterwerkstoffe und betrifft eine Magnetschwebevorrichtung, wie sie beispielsweise bei supraleitenden kontaktfreien Transportvorrichtungen oder linearen oder radialen Schwebelagern zum Einsatz kommen kann.

Supraleitende Magnetschwebevorrichtungen benötigen einen Führweg oder festes Widerlager, die ein magnetisches Feld zur Verfügung stellen, welches entlang der Bewegungsrichtung konstant ist, senkrecht zu diesem aber einen starken Feldgradienten aufweist. Die im beweglichen Teil (Transportwagen) angebrachten Supraleiter können in diesem Magnetfeld eine stabile Position einnehmen, wenn es sich um harte Supraleiter 2. Art handelt.

Magnetfelder können Supraleiter 2. Art in Form von quantisierten Flussschläuchen durchdringen, die durch nanoskalige Ausscheidungen oder Baufehler in der supraleitenden Matrix festgehalten werden können. Dadurch ist es möglich, externe Magnetfeldkonfigurationen in einem solchen Supraleiter fest zu verankern. Wird das vom Führweg erzeugte Magnetfeld durch Abkühlen des Supraleiters in einem festen Abstand zum Führweg vom normal leitenden in den supraleitenden Zustand im Supraleiter verankert, so beantwortet der Supraleiter eine Auslenkung aus der Kühlposition mit Rückstellkräften, die ihn in diese zurückziehen. Die Rückstellkräfte sind abhängig von der Änderung des Magnetfeldes und damit auch von der Größe

der Auslenkung. Je größer die Änderung des Magnetfeldes ist, desto größer ist auch die Rückstellkraft.

Bei supraleitenden Magnetschwebevorrichtungen in kontaktfreien Transportvorrichtungen und linearen oder gekrümmten Schwebelagern ist neben der Tragkraft auch die Stabilität einer bestimmten Position sowohl in vertikaler als auch in horizontaler Richtung von großer Bedeutung. Ein Maß für die Stabilität ist die Steifigkeit in einer ausgezeichneten Richtung. Diese wird in N/mm angegeben, und beschreibt welche Kraft notwendig ist, um den beweglichen Teil der Magnetschwebevorrichtung um 1 mm zu verschieben. Da die Kräfte aber gerade von der Auslenkung um die Abkühlposition abhängen, sind hohe Anforderungen an die Steifigkeit einer Position bei großem Lastwechsel nicht realisierbar.

Bei Auslenkungen von der Kühlposition wächst die rücktreibende Kraft überproportional, so dass für größere Auslenkungen größere Kräfte und Steifigkeiten erreicht werden können. Um eine höhere Steifigkeit für eine Transportvorrichtung zu erreichen, wird die Schwebevorrichtung „vorgespannt". Dies wird nach dem Stand der Technik durch ein hohes Eigengewicht der Transportvorrichtung im Verhältnis zur Nutzlast erreicht. Dies führt jedoch zu einem hohen Energieverbrauch der Antriebseinheit.

Ein genereller Überblick zur Anwendung harter Supraleiter 2. Art in Magnetschwebesystemen und Radiallagern wird von L. Schultz et al. (Z. Metallkd. 93 (10) 1057-1064 (2002)) gegeben. Von J. HuII et al. (J. Appl. Phys. 86 (11) 6396 (1999)) wird analytisch gezeigt, dass die für eine bestimmte Kühlposition vorliegende Steifigkeit in lateraler Richtung immer die Hälfte derer in vertikaler Richtung beträgt. J. Wang et al. (Physica C 378-381 (1 ) 809-814 (2002)) beschreiben den Aufbau eines neuen Schwebesystemes auf Basis des supraleitenden Schwebens, wobei sie auch angeben (Physica C 386, 431-437 (2003)), dass die Seitensteifigkeit des Fahrzeuges mit steigender Masse zunimmt. C. Navau et al. (Supercond. Sei. Technol. 17 (2004) 828-832) beschreiben ein Modell zur Berechnung von Gleichgewichtslagen in Abhängigkeit von der Kühlposition. Z. Ren et al. (Physica C 378-381 (1 ) 873-876 (2002)) beschreiben ein Verfahren zur Erhöhung der vertikalen und lateralen Steifigkeit für ein lineares Transportsystem durch Zusammenwirken von

Supraleitern und Permanentmagneten im Fahrzeug. Dabei werden die starken abstoßenden Kräfte zwischen zwei gleichen Magnetpolen ausgenutzt.

Aus dem bekannten Stand der Technik sind somit Ansatzpunkte erkennbar, dass einerseits das Problem der Steifigkeit für praktische Anwendungen erkannt worden ist, andererseits aber weder ausreichende Überlegungen noch tatsächliche Lösungen des Problems aufgezeigt worden sind.

Die Aufgabe der Erfindung besteht in der Angabe einer Magnetschwebevorrichtung, durch die eine verbesserte Steifigkeit der Spurführung auch beim Be- und Entladen der Magnetschwebevorrichtungen oder eine stabile Lagerführung erreicht wird.

Die Aufgabe wird durch die in den Ansprüchen angegeben Erfindung gelöst. Vorteilhafte Ausgestaltungen sind Gegenstand der Unteransprüche.

Die erfindungsgemäße Magnetschwebevorrichtung besteht aus mindestens zwei Supraleiterformkörper mit gespeicherten Magnetfeldkonfigurationen über einem magnetischen Führweg. Dabei weisen die mindestens zwei Supraleiterformkörper eine bei unterschiedlichem vertikalen Abstand zum Führweg und/oder eine bei unterschiedlicher horizontaler Lage gegenüber dem Führweg gespeicherte Magnetfeldkonfiguration auf und sie sind in einer von ihrer Speicherposition abweichenden Position über dem Führweg mechanisch gehalten und miteinander verbunden.

Vorteilhafterweise weisen jeweils zwei oder drei Supraleiterformkörper die gleiche gespeicherte Magnetfeldkonfiguration auf.

Ebenfalls vorteilhafterweise sind die Supraleiterformkörper massive Körper.

Weiterhin vorteilhafterweise sind die Supraleiterformkörper harte Supraleiter 2. Art.

Von Vorteil ist es auch, wenn mindestens ein Supraleiterformkörper eine unterhalb der Position, an der die mindestens zwei Supraleiterformkörper mechanisch gehalten werden, verankerte Magnetfeldkonfiguration aufweist und der mindestens andere

Supraleiterformkörper ein oberhalb der Position, an der die mindestens zwei Supraleiterformkörper mechanisch gehalten werden, verankerte Magnetfeldkonfiguration aufweist, wobei es besonders vorteilhaft ist, wenn die Abstände der Positionen ober- und unterhalb der Position, an der die mindestens zwei Supraleiterformkörper mechanisch gehalten werden, gegenüber dieser Position gleich groß sind.

Und auch von Vorteil ist es, wenn mindestens ein Supraleiter eine unterhalb und seitlich in Bewegungsrichtung der Magnetschwebevorrichtung nach rechts verschobenen Position, an der die mindestens zwei Supraleiterformkörper mechanisch gehalten werden, verankerte Magnetfeldkonfiguration aufweist und der mindestens andere Supraleiterformkörper ein oberhalb und seitlich in Bewegungsrichtung der Magnetschwebevorrichtung nach links verschobenen Position, an der die mindestens zwei Supraleiterformkörper mechanisch gehalten werden, verankerte Magnetfeldkonfiguration aufweist, wobei es wiederum besonders vorteilhaft ist, wenn die Abstände der Positionen ober- und unterhalb und rechts und links der Position, an der die mindestens zwei Supraleiterformkörper mechanisch gehalten werden, gegenüber dieser Position bezüglich ober- und unterhalb und bezüglich rechts und links gleich jeweils groß sind.

Durch die erfindungsgemäße Lösung wird eine neue Möglichkeit des „Vorspannens" einer Magnetschwebevorrichtung oder eines Schwebelagers realisiert.

Dazu ist eine Magnetschwebevorrichtung vorhanden, die aus mindestens zwei Suparleiterformkörper über einem magnetischen Führweg besteht. Die mindestens zwei Supraleiterformkörper sind dabei in einem unterschiedlichen Abstand über dem Führweg positioniert und werden dort unter ihre kritische Temperatur abgekühlt. Dadurch wird die an der jeweiligen Position vorhandene Magnetfeldkonfiguration im jeweiligen Supraleiterformkörper verankert. Anschließend werden diese Supraleiterformkörper durch eine mechanische Vorrichtung auf eine gemeinsame Position über dem magnetischen Führweg gebracht, wobei diese Position abweicht von den jeweiligen Positionen über dem Führweg, an der die Supraleiterformkörper abgekühlt worden sind und an der sie die dortige Magnetfeldkonfiguration verankert haben. Durch die mechanische Halterung in einer von der Kühlposition

abweichenden Position wirken die Rückstellkräfte der Supraleiterformkörper. Diese Rückstellkräfte bewirken einen bestimmte Positionierung der gesamten Magnetschwebevorrichtung in einer Gleichgewichtsposition über dem Führweg, an der die Summe der Rückstellkräfte gleich Null ist, d.h. an der ein Ausgleich der Beträge der wirkenden Kräfte auf die Magnetschwebevorrichtung über dem magnetischen Führweg erreicht ist.

Damit ist eine Zone einer größeren Steifigkeit um die Supraleiterformkörper realisiert, die auch zu einer größeren Steifigkeit der gesamten Magnetschwebevorrichtung führt.

Eine besonders vorteilhafte Ausgestaltung der Erfindung besteht darin, dass mindestens zwei Supraleiterformkörper vorhanden sind, wobei mindestens ein Supraleiterformkörper eine unterhalb der Position, an der die mindestens zwei Supraleiterformkörper mechanisch gehalten werden, gespeicherte Magnetfeldkonfiguration aufweist und der mindestens andere Supraleiterformkörper ein oberhalb der Position, an der die mindestens zwei Supraleiterformkörper mechanisch gehalten werden, gespeicherte Magnetfeldkonfiguration aufweist. Durch die nachfolgende Positionierung in einer Höhe zwischen diesen beiden Speicherpositionen und dortige mechanische Halterung der mindestens zwei Supraleiterformkörper wird der eine Supraleiterformkörper aus seiner Speicherposition in eine örtlich höhere Position und der andere Supraleiterformkörper aus seiner Speicherposition in eine örtlich tiefere Position jeweils über dem magnetischen Führweg gezwungen. Aufgrund dieser Auslenkung aus der Speicherposition wirken die jeweiligen Rückstellkräfte gegenüber dem Führweg durch den nach oben gezwungenen Supraleiterformkörper anziehend und durch den nach unten gezwungenen Supraleiterformkörper abstoßend. Sofern die Beträge dieser gegensätzlich wirkenden Kräfte nicht gleich groß sind, wird die gesamte Magnetschwebevorrichtung in Richtung der Kraft mit dem größeren Betrag bewegt, bis ein Ausgleich der Beträge der wirkenden Kräfte gegenüber dem Führweg erreicht ist.

Eine weitere Möglichkeit zur Erhöhung der Steifigkeit ist nicht nur die Realisierung der Speicherpositionen in unterschiedlichen Höhen über dem Führweg, sondern auch die Realisierung der Speicherposition in verschiedenen Positionen in

Querrichtung zur Bewegungsrichtung der Magnetschwebevorrichtung über dem Führweg. Dabei kann sowohl die Positionierung während der Speicherung der Magnetfeldkonfiguration nur in unterschiedlichen Höhen oder nur in unterschiedlichen Querpositionen erfolgen, vorteilhafterweise aber als Mischung beider Möglichkeiten sowohl in unterschiedlichen Höhen als auch gleichzeitig in unterschiedlichen Querpositionen gegenüber dem Führweg.

Der zusätzliche Vorteil der unterschiedlichen Speicherpositionen in Querrichtung liegt nicht nur in einer weiteren Verbesserung der Steifigkeit der gesamten Magnetschwebevorrichtung, sondern auch in einer Erhöhung der Schwebekraft der Magnetschwebevorrichtung über dem Führweg.

Durch die erfindungsgemäße Lösung wird eine hohe Steifigkeit von Magnetschwebevorrichtungen auch bei hohen Anforderungen erreicht. Dies betrifft beispielsweise die Beibehaltung der Steifigkeit einer Transportvorrichtung über dem Führweg auch beim Be- und Entladen oder die Einhaltung einer hohen Präzision eines Linearschweblagers oder Radialschweblagers. Dabei bleiben die wesentlichen Merkmale einer supraleitenden Magnetschwebevorrichtung, die Reibungsfreiheit, die Abriebfreiheit und eine nichtmechanische Lagerung erhalten. Die erfindungsgemäße Lösung eignet sich besonders für kleine Transportvorrichtungen in sauberer Umgebung, wobei ein nahezu geräuschfreies Arbeiten ohne Verunreinigung durch Partikel realisiert werden kann.

Im weiteren wird die Erfindung an mehreren Ausführungsbeispielen näher erläutert.

Beispiel 1

Bei einem linearen Magnetschwebevorrichtungsaufbau ist als magnetischer Führweg eine magnetische Schiene aus 2 NdFeB-Permanentmagneten (Höhe 50 mm, Breite 40 mm), die in ein Joch aus weichmagnetischen Platten aus Automatenstahl (Dicke: Mitte 12 mm, Rand 3mm) so eingebaut werden, dass sich gleichnamige Magnetpole gegenüberstehen, vorhanden. Dadurch ist die Richtung der Bewegung der Magnetschwebevorrichtung über der Schiene vorgegeben. Daraus ergibt sich eine Breite der Schiene von 98 mm und einer Höhe von 50 mm. Die Länge der Schiene

beträgt 150 mm. Das weichmagnetische Material wirkt als Sammler und Verstärker für das Magnetfeld der Permanentmagneten. Über der Schiene entsteht so ein homogenes Magnetfeld in Bewegungsrichtung entlang des Führweges (Längsrichtung). In die beiden anderen Raumrichtungen über dem Führweg (in Richtung Breite und Höhe) ist das jeweilige Magnetfeld stark inhomogen. Der maximale Betrag der vertikalen Komponente des Magnetfeldes liegt genau über der Mitte der Breite der magnetischen Schiene entlang des Führweges und beträgt 0,5 mm über der Schienenoberfläche 1 ,1 T und 10 mm über der Schienenoberfläche 0,5 T.

Als Supraleiter werden zwei 90x35x15 mm 3 YBaCuO-Blöcke (harte Supraleiter 2. Art) verwendet, die im Verfahren der Schmelztexturierung mit jeweils 3 Keimkristallen hergestellt wurden.

Die beiden Supraleiter werden im Fahrzeug der Magnetschwebevorrichtung montiert. Dieses Fahrzeug ist ein Kryostat mit den Innenmaßen 110x80x60 mm 3 . Die Supraleiter können nun durch eine mechanische Vorrichtung im Kryostaten bewegt werden, um eine gewünschte Position einzustellen. Nun wird ein Supraleiterblock an der mechanischen Vorrichtung in einer Höhe von 10 mm über der Mitte der Schienenoberfläche positioniert und der andere Supraleiterblock in einer Höhe von 20 mm über der Mitte der Schienenoberfläche. In diesen Positionen werden die Supraleiter im Kryostaten auf eine Temperatur von 77 K (-196 0 C) abgekühlt und auf dieser Temperatur gehalten. Bei diesen beiden Speicherpositionen wird die durch das Magnetfeld der Schiene vorgegebenen Magnetfeldkonfiguration in den Supraleitern verankert. Anschließend werden beide Supraleiterblöcke durch die mechanische Vorrichtung in eine gemeinsame Position gebracht und dort permanent befestigt. Aufgrund des Kräfteausgleichs ist die permanente Höhe des Fahrzeuges über der Schienenoberfläche 13 mm. Die Messung der lateralen Steifigkeit ergab einen Wert von 16,7 N/mm.

Beispiel 2 (Stand der Technik)

Eine Vorrichtung gemäß Beispiel 1 enthält ebenfalls zwei Supraleiterblöcke deren Speicherpositionen für die Magnetfeldkonfiguration des Magnetfeldes der Schiene jeweils 20 mm über der Schienenoberfläche ist.

Aufgrund des Gewichtes des Fahrzeuges werden die beiden Supraleiter auf einer

Höhe von 15 mm über der Schiene positioniert.

Die Messung der lateralen Steifigkeit ergab einen Wert von 12,7 N/mm.

Beispiel 3

Eine Vorrichtung gemäß Beispiel 1 enthält 3 Supraleiterblöcke gemäß Beispiel 1 , die in einer Dreiergruppe entlang des Führweges angeordnet sind. Die Speicherposition der Supraleiter für die Magnetfeldkonfiguration des Magnetfeldes der Schiene in der Dreiergruppe ist so, dass der mittlere Supraleiterblock in einer Höhe von 5 mm und die beiden äußeren Supraleiterblöcke in einer Höhe von 20 mm über der Schienenoberfläche die Magnetfeldkonfiguration des Magnetfeldes der Schiene verankert haben. Anschließend werden alle drei Supraleiterblöcke durch die mechanische Vorrichtung in eine gemeinsame Position gebracht und dort permanent befestigt. Aufgrund des Kräfteausgleichs ist die permanente Höhe des Fahrzeuges über der Schienenoberfläche 15 mm. Die Messung der lateralen Steifigkeit ergab einen Wert von 16,9 N/mm.

Beispiel 4

Bei einer Vorrichtung gemäß Beispiel 1 mit 2 Supraleiterblöcken wird eine Speicherposition eines der Supraleiterblöcke für die Magnetfeldkonfiguration des Magnetfeldes der Schiene in einer Höhe von 20 mm und die des anderen Supraleiterblockes in einer Höhe von 5 mm über der Schienenoberfläche realisiert. Anschließend werden die Supraleiterblöcke durch die mechanische Vorrichtung in eine gemeinsame Position gebracht und dort permanent befestigt. Aufgrund des Kräfteausgleichs ist die permanente Höhe des Fahrzeuges über der Schienenoberfläche 10 mm. Die Messung der lateralen Steifigkeit ergab einen Wert von 19,9 N/mm.

Beispiel 5 (Stand der Technik)

Für ein radiales Schwebelager wird ein supraleitender Hohlzylinder aus 8 YbaCuO- Blöcken zusammengesetzt, welcher einen Außendurchmesser von 55 mm, einen

Innendurchmesser von 41 mm und eine Länge von 50 mm aufweist. In den Innenraum des Hohlzylinders wird das Lager mit einem Durchmessers von 40 mm und einer Länge von 50 mm eingebracht. Der Rotor des Lagers besteht aus einem Stapel aus Permanentmagneten und Eisenscheiben, wobei benachbarte Magneten eine entgegengesetzte Polarität aufweisen. Die Eisenscheiben wirken als Sammler für das Magnetfeld. Es entsteht dadurch ein homogenes Magnetfeld in der Drehrichtung. In die beiden anderen Raumrichtungen (radial und axial) ist das jeweilige Magnetfeld stark inhomogen. Vor dem Abkühlen der Vorrichtung wird in den Spalt zwischen Hohlzylfnder und Rotor ein Abstandshalter so eingebracht, dass um den gesamten Rotorumfang ein Abstand von 0,5 mm zum Hohlzylinder realisiert ist. Beim Abkühlen der gesamten Anordnung auf eine Temperatur von 77 K (-196 0 C) wird das Magnetfeld in den Supraleiterblöcken in dieser Position verankert. Die Vorrichtung wird bei dieser Temperatur gehalten. Nach Entfernen der Abstandshalter bleibt zwischen Hohlzylinder und Rotor ein Spalt von 0,5 mm bestehen. Die Messung der lateralen Steifigkeit ergab einen Wert von 160 N/mm in radialer Richtung.

Beispiel 6

Bei einem radialen Schwebelager gemäß Beispiel 5 wird der Rotor ebenfalls in einem radialen Abstand von jeweils 0,5 mm vom Hohlzylinder und in einer um 1 mm in axialer Richtung der hinsichtlich ihrer Längen übereinstimmenden Lage verschobenen Position gemeinsam mit dem Hohlzylinder, aber nur die Hälfte der

Supraleiter hinsichtlich der Länge auf eine Temperatur von 77 K (-196 0 C) abgekühlt und dort gehalten. Danach wird der Rotor um -1 mm der hinsichtlich ihrer Längen übereinstimmenden Lage verschoben und der Rest des Hohlzylinders auf eine

Temperatur von 77 K (-196 0 C) abgekühlt und dort gehalten.

Die nach Kräfteausgleich resultierende Position ist die hinsichtlich der Längen übereinstimmenden Lage des Hohlzylinders und des Rotors und auch die

Idealposition.

Die Messung der lateralen Steifigkeit ergab einen Wert von 240 N/mm in radialer

Richtung.