Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
MATERIAL CONTAINING THERMOELECTRIC GENERATORS
Document Type and Number:
WIPO Patent Application WO/2022/147096
Kind Code:
A1
Abstract:
Some implementations of the current subject matter can include systems for capturing heat emitted from a heat source. The systems can include a substrate material, such as an insulative or insulating material which can be in proximity or in contact with a heat source. The substrate material can include a plurality of thermoelectric generators (TEGs) which can convert heat into electrical energy. The TEGs can generate electrical energy as a result of temperature gradients that form within the TEGs. The current subject matter can result in electrical power generation from heat sources via an insulating material that is easily applied, formed on or within, or surrounding a heat source. In some implementations, the current subject matter can allow for electrical power to be generated from heat sources in a wide variety of industrial, automotive, manufacturing and thermal processing environments. Related apparatus, systems, techniques, and articles are also described.

Inventors:
JAFFREY KAMAL (US)
Application Number:
PCT/US2021/065479
Publication Date:
July 07, 2022
Filing Date:
December 29, 2021
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
BREAKTHROUGH TECH LLG (US)
JAFFREY KAMAL (US)
International Classes:
H01L35/32; H01L35/30
Foreign References:
US20090000309A12009-01-01
US20120227778A12012-09-13
US20140174496A12014-06-26
Attorney, Agent or Firm:
KINGSLAND, Elissa M. et al. (US)
Download PDF:
Claims:
WHAT ISCLAIMED IS:

1. Ailsystem comprising: asubstratematerial;and athermoelectricgenerator(TEG)configuredwithinthesubstratematerial,

2. Thesystem ofclaim 1,furthercomprisingaheatgeneratingarticle,whereinthesubstrate materialispositionedinproximityoftheheatgeneratingarticleandtheTEG receives heatgeneratedbytheheatgeneratingarticle,

3. 'Filesystem ofclaim 2,whereintheheatgeneratingarticleisincludedinatleastoneofan industrialenvironment,amanufacturingenvironment,athermalprocessingenvironment, anautomobile,anairplane,aheatexchanger,oranHVAC system,

4. Thesystem ofanyoneoftheprecedingclaims,comprisingafirstpluralityofTEGsare coupledinparallelwithinthesubstratematerial,

5. Thesystem ofanyoneoftheprecedingclaims,comprisingasecondpluralityofTEGs arecoupledinserieswithinthesubstratematerial.

6. Thesystem ofanyoneoftheprecedingclaims,furthercomprisingatleastone piezoelectricsensorcoupledtotheTEG,

7. Thesystem ofanyoneoftheprecedingclaims,whereinthesubstratematerialincludesa pluralityofvoidsformedbetweenapluralityofstructuralelementsincludedinthe substratematerialandtheTEG isconfiguredwithinatleastonevoidofthepluralityof voids,

8. Thesystem ofanyoneoftheprecedingclaims,whereinthesubstratematerialisan insulativematerial.

9. Thesystem ofclaim 8,whereintheinsulativematerialincludesatleastoneofrockwool, slagwoolcellulose,glasswool,polystyrene,urethanefoam,ceramic,vermiculite,perlite, woolliber,plantfiber,fiberglass,gypsum,afire-retardantinsulativematerial,avaporretardantinsulativematerial.

10. The system of any one of the preceding claims, w herein tire substrate material is in the form of a fabric.

11. The system of claim 10, wherein the fabric is inc hided as a portion of an article of clothing.

12. An system comprising: a substrate material; an electrically conductive material coupled to the substrate material; and a plurality of thermoelectric generators (TEGs) coupled to the electrically conductive material.

13. The system of claim 12, further comprising a heat source, wherein the substrate material is positioned in proximity of the heat source and the TEG recei ves heat generated by the heat source.

14. The system of claim 13, wherein the heat source is a human body or an animal body.

15. The system of any one of claims 12-14, further comprising a ceramic material coupled to the electrically conductive material.

16. The system of any one of claims 12-15, wherein the substrate material and the electrically conductive material are coupled so as to form a fabric.

17. The system of claim 16, wherein the plurality of TEGs are positioned within the fabric in a matrix configuration, a Linear configuration, a radial configuration, or a configuration in which a first portion of the plurality of TEGs at a first location are arranged di fferently from a second portion of the plurality of TEGs at a second location.

18. The system of claim 17, wherein a first plurality of TEGs are coupled .in parallel to the electrically conductive material.

19. The system of claim 17, wherein a second plurality of TEGs are coupled in series to the electrically conductive material.

20. The system of claim 16, wherein the fabric is included as a portion of an article of clothing.

21 . The system of any one of claims 12-20, further comprising at least one piezoelectric sensor coupled to at least one thermoelectric generator (TEG) included in the plurality of TEGs.

22. The system of any one of clai ms 12-21 , wherein the electrically conductive material includes at least one of silver, aluminum, copper, graphite, and intrinsically conducting polymer.

Description:
MATERIAL CONTAINING THERMOELECTRIC GENERATORS

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] 'ThisapplicationclaimsprioritytoU.S.ProvisionalApplicationNo .63/132,027filedon December30,2020,thedisclosureofwhichisherebyincorporatedbyre ferenceinitsentirety.

TECHNICAL FIELD

[0002] Thecurrentsubjectmatterisgenerallyrelatedtothermoelectricgen erators.

BACKGROUND

[0003] A thermoelectricgenerator(TEG)isasolidstatedevicethatcangenera teelectrical energywhenexposedtotemperaturedifferences.TEGscanbeutilizedi navarietyof applicationstogenerateelectricityfrom heatwhichmayotherwisebedissipatedtothe atmosphereorlocalenvironment.

[0004] Insulativematerialcanretainheatgeneratedbyorradiatingfrom aheatsourcesothat theheatmaybepreventedfrom dissipatingintotheatmosphere,localenvironment,or surroundingobjects.Insulativematerialscanbeappliedtoheatsour cessuchasaperson, equipment,and/orcomponentsofequipment.

SUMMARY

[0005] Inanaspect,asystem includesasubstratematerialandathermoelectricgenerator (TEG)configuredwithinthesubstratematerial.

[0006] Oneormoreofthefollowingfeaturescanbeincludedinthesystem inanyfeasible combination.Forexample,thesystem canincludeaheatgeneratingarticle.Thesubstrate materialcanbepositionedinproximityoftheheatgeneratingarticle .TheTEG canreceiveheat generatedbytheheatgeneratingarticle.Theheatgeneratingarticle canbeincludedinatleast oneofanindustrialenvironment,amanufacturingenvironment,ather malprocessing environment,anautomobile,anairplane,aheatexchanger,oranHVAC system. [0007] Thesystem canincludeafirstpluralityofTEGsthatcanbecoupledinparallelwit hin thesubstratematerial.Thesystem canincludeasecondpluralityofTEGsthatcanbecoupledin serieswithinthesubstratematerial.Thesystem canincludeatleastonepiezoelectricsensor coupledtotheTEG,Thesubstratematerialcanincludeapluralityofvo idsformedbetweena pluralityofstructuralelementsincludedinthesubstratematerial. TheTEG canbeconfigured withinatleastonevoidofthepluralityofvoids.Thesubstratemateri alcanincludeaninsulative material.Theinsulativematerialcanincludeatleastoneofrockwool ,slagwoolcellulose,glass wool,polystyrene,urethanefoam,ceramic,vermiculite,perlite,wo olfiber,plantfiber, fiberglass,gypsum,afire-retardantinsulativematerial,avapor-r etardantinsulativematerial. Thesubstratematerialcanbeintheform ofafabric.Thefabriccanbeincludedasaportionof anarticleofclothing.

[0008] Inanotheraspect,asystem isprovided.Thesystem canincludeasubstratematerial,an electricallyconductivematerialcoupledtothesubstratematerial, andapluralityof thermoelectricgenerators(TEGs)coupledtotheelectricallyconduc tivematerial.

[0009] Oneormoreofthefollowingfeaturescanbeincludedinthesystem inanyfeasible combination.Forexample,thesystem canincludeaheatsource.Thesubstratematerialcanbe positionedinproximityoftheheatsourceandtheTEG receivesheatgeneratedbytheheat source.Theheatsourcecanincludeahumanbodyoranimalbody.Thesyst em canincludea ceramicmaterialcoupledtotheelectricallyconductivematerial.Th esubstratematerialandthe electricallyconductivematerialcanbecoupledsoastoform afabric.

[0010] ThepluralityofTEGscanbepositionedwithinthefabricinamatrixcon figuration,a linearconfiguration,aradialconfiguration,oraconfigurationinw hichafirstportionofthe pluralityofTEGsatafirstlocationarearrangeddifferentlyfrom asecondportionoftheplurality ofTEGsatasecondlocation.ThefirstpluralityofTEGscanbecoupledi nparalleltothe electricallyconductivematerial.TiresecondpluralityofTEGscanb ecoupledinseriestothe electricallyconductivematerial.

[0011] Thesystem caninchideatleastonepiezoelectricsensorcoupledtoatleastone thermoelectricgenerator(TEG)includedinthepluralityofTEGs.The fabriccanbeinchidedas aportionofanarticleofclothing.Theelectricallyconductivemater ialcanincludeatleastone ofsilver,aluminum,copper,graphite,andanintrinsicallyconducti ngpolymer.

[0012] Non-transitorycomputerprogram products(i.e.,physicallyembodiedcomputer program products)arealsodescribedthatstoreinstructions,whichwhenexec utedbyoneor moredataprocessorsofoneormorecomputingsystems,causesatleasto nedataprocessorto perform operationsherein.Similarly,computersystemsarealsodescribedth atmayincludeone ormoredataprocessorsandmemorycoupledtotheoneormoredataproces sors.Thememory maytemporarilyorpermanentlystoreinstructionsthatcauseatleast oneprocessortoperform oneormoreoftheoperationsdescribedherein.Inaddition,methodsca nbeimplementedbyone ormoredataprocessorseitherwithinasinglecomputingsystem ordistributedamongtwoor morecomputingsystems.Suchcomputingsystemscanbeconnectedandca nexchangedata andorcommandsorotherinstructionsorthelikeviaoneormoreconnect ions,includinga connectionoveranetwork(e.g.theInternet,awirelesswideareanetw ork,alocalareanetwork, awideareanetwork,awirednetwork,orthelike),viaadirectconnecti onbetweenoneormore ofthemultiplecomputingsystems,etc.

[0013] Thedetailsofoneormorevariationsofthesubjectmatterdescribedhe reinaresetforth intheaccompanyingdrawingsandthedescriptionbelow.Otherfeature sandadvantagesofthe subjectmatterdescribedhereinwillbeapparentfrom thedescriptionanddrawings,andfrom the claims.

DESCRIPTION OFDRAWINGS

[0014] FIG.1isadiagram ofanembodimentofasystem forgeneratingelectricalpowerfrom heatcollectedfrom aheatsource;

[0015] FIG.2isadiagram ofanembodimentofaTEG includedinthesystem ofFIG.1;

[0016] FIG.3isadiagram ofanadditionalembodimentofasystem forgeneratingelectrical powerfrom heatcollectedfrom aheatsource;

[0017] FIG.4isadiagram ofacross-sectionalview ofanembodimentofasystem for generatingelectricalpowerfrom heatcollectedfrom aheatsource; [0018] FIG.5isadiagram ofacross-sectionalview ofanadditionalembodimentofasystem forgeneratingelectricalpowerfrom heatcollectedfrom aheatsource;

[0019] FIG.6isadiagram ofanembodimentofaconfigurationofTEGsincludedinthe system forgeneratingelectricalpowershowninFIGS.1,4,and5;

[0020] FIG.7isadiagram ofanadditionalembodimentofaconfigurationofTEGsincluded thesystem forgeneratingelectricalpowershowninFIGS.1,4,and5;

[0021] FIG.8isadiagram ofanadditionalembodimentofaconfigurationofTEGsincluded thesystem forgeneratingelectricalpowershowninFIGS,1,4,and5;

[0022] FIG.9isacross-sectionalview illustratingan examplecementkilnsystem thatmay perform thisprocess;

[0023] FIG.10isacross-sectionalview illustratingan exemplaryimplementationofawaste heatrecoverysystem usingwasteheatfrom cementkilns;

[0024] FIG.11showsanexampleoftheTEG modulethatmayincludeaTEG;

[0025] FIG.12isacross-sectionaldiagram .illustratinganotherexemplaryimplementationofa wasteheatrecoverysystem usingwasteheatfrom cementkilns;

[0026] FIGS.13A to13D illustrateexamplesoftheelectricpowergenerationsystem installed aroundacementkiln;

[0027] FIG.14isadiagram illustratingelectricalconnectionsaccordingtoanexemplary implementationofthepresentdisclosure;and

[0028] FIG.15isaflow chartillustratingamethodofcontrollingmodesofoperatingawaste heatrecoverysystem accordingtoanexemplaryimplementationofthepresentdisclosure.

DETAILED DESCRIPTION

[0029] Certainexemplaryembodimentswillnow bedescribedtoprovideanoverall understandingoftheprinciplesofthestructure,function,manufact ure,anduseofthesystems, devices,andmethodsdisclosedherein.Oneormoreexamplesoftheseem bodimentsare illustratedintheaccompanyingdrawings.Thoseskilledintheartwil lunderstandthatthe systems,devices,andmethodsspecificallydescribedhereinandillu stratedintheaccompanying drawingsarenon-limitingexemplaryembodimentsandthatthescopeof thepresentinventionis definedsolelybytheclaims.Thefeaturesillustratedordescribedin connectionwithone exemplaryembodimentmaybecombinedwiththefeaturesofotherembodi ments.Such modificationsandvariationsareintendedtobeincludedwithinthesc opeofthepresent invention.Further,inthepresentdisclosure,like-namedcomponent softheembodiments generallyhavesimilarfeatures,andthuswithinaparticularembodim enteachfeatureofeach like-namedcomponentisnotnecessarilyfullyelaboratedupon.

[0030] Heatemittedfrom heatsourcesisoftenreleasedintotheenvironment.A heatsource canincludeanyobject,equipment,humanbody,oranimalbodythatcanr adiateheat.Therate ofheattransferbetweenaheatsourceandtheenvironmentinwhichtheh eatsourceislocated candependonthematerialoftheheatsource,environmentalcondition s,aswellasthepresence ofanyinsulativematerialwhichmaybepresentonthesurfaceofthehea tsource.Insulative materialcanbeusedtoenveloporsurroundaheatsourcesothattheamou ntofheatreleasedinto theenvironmentbytheheatsourceisreduced.

[0031] Insulativeorinsulatingmaterialsplacedincontactwithorinproxim ityioheatsources canreceiveheatgeneratedbytheheatsourceandcanstoretheheatfrom theheatsource.The capturedheatisoftenheldwithintheinsulativematerialand/orcanb egraduallyreleasedintothe environment.Thus,theheatcapturedbytheinsulativematerialisoft enwastedandnotmade availableforotherpurposes.Itcanbedesirabletoutilizeaninsulat ivematerialtocollectheat from theheatsourcesothattheheatcanberedirectedforotherusesorrepur posed.Insulative materialscanenablecollectionofheatfrom aheatsourcebutarelimitedintheirabilityto redirectorrepurposetheheatforotherpurposes,

[0032] Animprovedinsulativematerialcanutilizeheatemittedfrom aheatsourceto generate electricalpower.Temperaturegradientscanexistbetweenaheatsour ceandanenvironment into whichtheheatsourceisemittingheat.Heatcanpassfrom theheatsource,throughthe insulativematerial,andberadiatedintotheenvironmentasaresulto fthetemperaturegradient, Animprovedinsulatingmaterialcancapturetheheatpassingfrom theheatsourcetothe environmentandcangenerateelectricalpowerusingoneormorethermo electricgenerator (TEG)s.Theelectricalpowercanbeutilizedfurtherinavarietyofapp lications. Inanaspect, thecurrentsubjectmattercanincludesystemsforcapturingheatemit tedfrom aheatsource. Thesystemscanincludeasubstratematerial,suchasaninsulativeori nsulatingmaterialwhich canbeinproximityorincontactwithaheatsource.Thesubstratemater ialcanincludea pluralityofthermoelectricgeneratorswhichcanconvertheatintoel ectricalenergy.TheTEGs cangenerateelectricalenergyasaresultoftemperaturegradientsth atform withintheTEGs. Thecurrentsubjectmattercanresultinelectricalpowergenerationf rom heatsourcesviaan insulatingmaterialthatiseasilyapplied,formedonorwithin,orsur roundingaheatsource.In someimplementations,thecurrentsubjectmattercanallow forelectricalpowertobegenerated from heatsourcesinawidevarietyofindustrial,automotive,manufacturi ngandthermal processingenvironments.Insomeimplementations,thecurrentsubje ctmattercanfurther provideelectricalpowergenerationfrom ahumanoranimalheatsource.Forexample,the substratematerialincludingapluralityofTEGscanbeformedintoafa bricandincorporatedinto clothingorwearableitemscapableofgeneratingelectricalpower.

[0033] Insomeimplementations,thesubstratematerialcanincludeoneormor elibersthatare woventogether,knittedtogether,orbonded(e.g.,chemicallybonded )together.Thaiis,insome implementations,thesubstratematerialcanbeintheform ofafabric.Insomeimplementations, theoneormorefiberscanbemonofilamentfibers,whereasinotherimpl ementations,theoneor moreliberscanbemultifilamentfibers.Insomeimplementations,atl eastonefiberoftheoneor morefiberscanbeamonofilamentliberandanotheratleastoneUberoft heoneormorefibers canbeamultifilamentfiber.Asusedherein,theterm “monofilamentfibers”hasitsown ordinaryandcustomarymeaningandcanincludefibersformedofasingl efilament.Asused herein,theterm “multifilamentfibers”hasitsownordinaryandcustomarymeanin gandcan includefibersformedoftwoormorefilamentsthatareassociatedwith oneanothertoform a unitarystructure.

[0034] FIG.1showsadiagram showingoneembodimentofasystem 100generatingelectrical powerfrom heatcollectedfrom aheatsource115.AsshowninFIG.1,asubstratematerial105 cansurroundorotherwisebeappliedtoaheatsource115.Insomeembodi ments,thesubstrate materialcanbeaninsulativeoraninsulatingmaterial.Theinsulativ ematerialcanincluderock wool,slagwoolcellulose,glasswool,polystyrene,urethanefoam,ce ramic,vermiculite,perlite, woolfiber,plantfiber,fiberglass,gypsum,afire-retardantinsula tivematerial,avapor-retardant insulativematerial,andthelike.Insomeembodiments,thesubstrate materialcanbeanoninsulatingmaterial,suchasafabric,mesh,orthe like.Theheatsource115canbecovered, wrapped,enveloped,orotherwisesurroundedbythesubstratemateria l105.

[0035] Thesubstratematerial105canincludeapluralityofinsulatingstruc tures110,The insulatingstructures110canincludestructuralelementswhichcanp rovidesupporttothe substratematerial105.Forexample,aninsulatingstructure110cani ncludeoneormorefibers. Thesubstratematerial105canalsoincludeapluralityofvoidspaces1 35,Thevoidspaces135 canincludespacesorvoidswithinthesubstratematerial105whichdon otincludeinsulating structures110orsimilarlyconfiguredsupportstructures.Insomeem bodiments,thevoidspaces 135canincludeair.Insomeembodiments,thevoidspacescanincludeat hermaltransmission medium,suchasafluid,agel,agas,orthelike.

[0036] Thesubstratematerial105canincludeavarietyofconfigurationsoft heinsulating structures110andthevoidspaces135,AsshowninFIG.1,thesubstrate material105is configuredwitharepeatingpatternofaninsulationstructure110fol lowedbyavoidspace135, Insomeembodiments,theconfigurationofinsulationstructures110a ndvoidspaces135canbe non-repeatingandcanincludeapluralityofinsulationstructures11 0followedbyapluralityof voidspaces135.Thesubstratematerial105canincludeavarietyofnon -limitingconfigurations ofinsulationstructures110andvoidspaces135.

[0037] Thesubstratematerial105cancoverorsurroundaheatsource115.Inso me embodiments,thesubstratematerial105canbeinproximitywiththehe atsource115.Insome embodiments,thesubstratematerial105canbeinthermalcontactwith theheatsource115.The heatsource115canincludeanyarticle,object,structure,orbeingca pableofgeneratingheat. Forexample,insomeembodiments,theheatsource115canincludeequip mentassociatedwith anindustrialenvironment,amanufacturingenvironment,athermalpr ocessingenvironment,an automobile,anairplane,aheatexchanger,aheating,ventilation,an dair-conditioning(HVAC) system,orthelike.Insomeembodiments,theheatsource115caninclud eacomponentofan industrialenvironment,amanufacturingenvironment,athermalproc essingenvironment,an automobile,anairplane,aheatexchanger,aHVAC system,suchasakiln,amotor,ahose,a heatercore,aradiator,orthelike.Insomeembodiments,theheatsour ce115canincludea humanbodyorananimalbody.

[0038] Thesubstratematerial105canincludeoneormorethermoelectricgene rators(TEGs) 120.Forexample,asshowninFIG.1,thesubstratematerial105include sapluralityofTEGs 120,e.g.,TEG 120A,120B,and120C.EachTEG 120canbeconfiguredwithinavoidspace 135.Whenthesubstratematerial105ispositionedinproximityoftheh eatsource115,the TEGs120canbereceiveheatgeneratedbytheheatsource115,TheTEG 120cangenerate electricalpowerfrom temperaturegradientassociatedwiththeheatsource115andthe environmentincludingtheheatsource115.TheTEGs120canbecoupledv iaanelectrical conduit125,suchasawire.Insomeembodiments,theTEGs120canbecoup ledviathe electricalconduit125inseries.Insomeembodiments,theTEGs120can becoupledviathe electricalconduit125inparallel.

[0039] AsshowninFIG.1,thesubstratematerial105canincludeapiezoelectr icgenerator 130.Thepiezoelectricgenerator130canbecoupledtoaTEG 120,suchasTEG 120C shownin FIG.1.Thepiezoelectricgenerator130can generateelectricalenergyasaresultofchangesin pressure,acceleration,temperature,sixain,andorforce.

[0040] FIG.2showsanexampleofanexampleconfiguration200ofaTEG 120.TheTEG 120canbecoupledtoaload215.TheTEG 120canincludeafirstthermallyconductiveelement 205,whichcanbereferredtoasa "hotmember"onafirstendoftheTEG 120,andasecond thermallyconductiveelement210,whichcanbereferredtoasa "coldmember"onasecondend oftheTEG 120.TheTEG 120canincludeatleastonen-typesemiconductor220andatleast onep-typesemiconductor225thatcanbepositionedbetweenthefirstt hermallyconductive element205andthesecondthermallyconductiveelement210andcanbec oupledinseriesbya numberofconductivemembers.Theillustratedembodimentshowsfirst ,secondandthird conductivemembers230,235,240.Thefirstconductivemember230isco upledtoafirstendof thep-typesemiconductor225,thethirdconductivemember240iscoupl edtoafirstendthen- typesemiconductor220,andthesecondconductivemember235iscouple dtosecondendsofthe p-typeandn-typesemiconductors225,220suchthatthep-typesemicon ductor225andthen- typesemiconductor220arecoupledinseries.Thefirstandthirdcondu ctivemembers230,240 canbeelectricallycoupledtoaload215suchthatpowercanbedelivere dtotheload215from theTEG 120.

[0041] Inoperation,thefirstthermallyconductiveelement205canreceiveh eatfrom an externalheatsourcesuchthatitcanbeatatemperatureT2a,andthesec ondthermally conductiveelement210canbeatatemperatureT2b,whereT2a> T2b.Insomeembodiments, heatcanbeextractedfrom thesecondthermallyconductiveelement210toensurethatT2a> T2b.Thefirstthermallyconductiveelement205andthesecondthermal lyconductiveelement 210cancreatethermalgradientsacrossthep-typesemiconductor225a ndthen-type semiconductor220,whichcancausemajoritychargecarriersinthep-t ypesemiconductor225 andthen-typesemiconductor220tomoveawayfrom thefirstthermallyconductiveelement205 andtowardthesecondthermallyconductiveelement210,andcancausem inoritychargecarriers tomoveintheoppositedirection.Accordingly,electronsinthen-typ esemiconductor220can movetowardthesecondthermallyconductiveelement210,andpositive lycharge "holes"inthe p-typesemiconductor225canmovetowardthesecondthermallyconduct iveelement210.This chargemotioncancreateavoltagepotentialacrosseachsemiconducto r220,225,Sincethe semiconductors220,225arecoupledinserieswithinacircuit,curren tcanflow.Therefore, electronscan{ravelfrom then-typesemiconductor220,throughthethirdconductivemember 240,throughtheload215,tothefirstconductivemember230,throught hep-typesemiconductor 225,tothesecondconductivemember235,andbacktothen-typesemicon ductor220to completethecircuit.Therefore,theTEG 120cangenerateelectricpower,whichcanbe deliveredfrom theTEG 120totheload215,Bycontrollinghow muchheatisdeliveredtothe firstthermallyconductiveelement205and/orhow muchheatisextractedfrom thesecond thermallyconductiveelement210.thetemperaturegradientsacrosst he.semiconductors220,225 canbecontrolled,efficiencyoftheTEG canbeoptimized,andpowergenerationcanbe controlled.

[0042] FIG.3showsanadditionalembodimentofasystem forgeneratingelectricalpower from heatcollectedfrom aheatsource.Asshown in.FIG,3,theheatsource305canincludea humanbody.Insomeembodiments,theheatsource305can includeananimalbody.A system 310canbeconfiguredinproximityorappliedtotheheatsource305andh eatgeneratedbythe heatsource305canbecollectedbythesystem 310andusedtogenerateelectricalpower.In someembodiments,thesystem 310canincludefabric,clothing,orarticleswhichcanbeapplied toorwornonahumanorananimalbody,

[0043] FIG.4showsadiagram ofacross-sectionalview 400ofanembodimentofasystem 310forgeneratingelectricalpowerfrom heatcollectedfrom aheatsource.Thecross-sectional view 400canrepresentacross-sectionalview ofthesystem 310asembodiedinafabric,which maybeusedforexampleintheconstructionofanarticleofclothing.Th esystem 310includes similarcomponentsasthesystem 100shownanddescribedinrelationtoFIG.1.

[0044] Thesystem 310canincludeaheatsource305.Theheatsourcecanbeinthermal contactwithasubstratematerial105. Insomeembodiments,thesubstratematerial105canbe aninsulativeoraninsulatingmaterial.Theinsulativematerialcani ncluderockwool,slagwool cellulose,glasswool,polystyrene,urethanefoam,ceramic,vermicu lite,perlite,woolfiber,plant fiber,fiberglass,gypsum,afire-retardantinsulativematerial,av apor-retardantinsulative material.Insomeembodiments,thesubstratematerialcanbeanon-ins ulatingmaterial,suchas afabric,amesh,orthelike.Thesubstratematerial105canincludeone ormoreTEGs120 coupledviaanelectricalconduit125.Insomeembodiments,oneormore oftheTEGscanbe coupledwithapiezoelectricgenerator130.Thesystem 310alsoincludesanelectrically conductivematerial405.Theelectricallyconductivematerial405ca nincludesilver,aluminum, copper,graphite,anintrinsicallyconductingpolymer,and/oracomb inationthereof.The electricallyconductivematerial405andthesubstratematerial105c anbecoupledsoastoform a fabric.TheTEGs120canbecoupledinparalleltotheelectricallycond uctivematerial405.In someembodiments,theTEGs120canbecoupledinseriestotheelectrica llyconductivematerial 405.

[0045] Thesystem 310canalsoincludeaceramicmaterial410couplestotheelectrically conductivematerial405.

[0046] FIG.5showsadiagram 500ofacross-sectionalview ofanadditionalembodimentofa system 310forgeneratingelectricalpowerfrom heatcollectedfrom aheatsource.The componentsoftheadditionalembodimentofsystem 310showninFIG.5aresimilartothose shownanddescribedinrelationtoFIG.4.Forexample,thesystem 310shownindiagram 500 canincludeasubstratematerial105,whichcanfurtherincludeaplura lityofTEGs120coupled viaanelectricalconduit125.OneormoreoftheTEGs120canbecoupledt oapiezoelectric generator130,

[0047] AsshowninFIG.5,thesystem 310canapluralityofelectricallyconductivematerials 405andapluralityofceramicmaterials410. Forexample,asshowninFIG.5,afirstceramic material4I0A canbeinterfacedwiththeheatsource305.A firstelectricallyconductive material405A canbeconfiguredbetweenthefirstceramicmaterial410A andthesubstrate material105.A secondelectricallyconductivematerial405B canbealsocoupledtothe substratematerial105.A secondceramicmaterial410B canbecoupledtothesecond electricallyconductivematerial405B,Additionalnon-limitingplu ralitiesofelectrically conductivematerials405andadditionalnon-limitingpluralitiesof ceramicmaterials410canbe includedinthesystem 310.

[0048] FIG,6isadiagram 600ofanembodimentofaconfigurationofTEGsincludedinthe system iOO,310forgeneratingelectricalpowerasshowninFIGS.1,4,and5.As shownin FIG,6,thesystem 100.310includeapluralityofTEGs120arrangedinamatrixconfigurat ion. TheTEGs120canbecoupledviaoneormoreelectricalconduits125.Assh owninFIG.6,a firstelectricalconduit125A couplesafirstpluralityofTEGs120,asecondelectricalconduit 125B couplesasecondpluralityofTEGs120,andathirdelectricalconduit1 25C couplesathird pluralityofTEGs120.Althoughtheelectricalconduits125areshownc ouplingtheTEGs120 inahorizontalarrangement,theelectricalconduits125cancoupleth eTEGs120inaverticalor adiagonalarrangementaswell.

[0049] FIG.7isadiagram 700ofanadditionalembodimentofaconfigurationofTEGs includedthesystem 100,310forgeneratingelectricalpowershowninFIGS.1,4,and5.As showninFIG.7,thesystem 100,310includesapluralityofTEGs120arrangedinaradial configuration.Theradialconfigurationcanincludeacentrallyorie ntedTEG 120A anda pluralityofTEGs12013locatedradiallyfrom thecentrallyorientedTEG 120A.TheTEGs120 shownintheradialconfigurationofFIG.7canbecoupledviatheelectr icalconduit125. [0050] FIG.8isadiagram 800ofanadditionalembodimentofaconfigurationofTEGs includedthesystem 100,310forgeneratingelectricalpowershowninFIGS.1,4,and5.As showninFIG.8,thesystem 100,310includesmultipleconfigurationsofTEGs120,For example,afirstconfiguration805canincludeTEGs120arrangedinari ngorradial configuration.A secondconfiguration810canincludeTEGs120arrangesinamatrix configuration.Thefirstconfiguration805ofTEGs120canbeconfigur edinafirstlocationof thesystem 100,310andthesecondconfiguration810ofTEGs120canbeconfiguredi na second,differentlocationofthesystem 100,310.

[0051] Someimplementationsofthecurrentsubjectmatercanbeusedforrecov eringwaste heatfrom industrialfacilitiesthatgeneratelargeamountsofheat.Forexampl e,thefollowing descriptionincludesanimplementationoftheenergyrecoverysystem togenerateelectricpower usingwasteheatfrom cementkilns.

[0052] Cementkilnscanbeusedforthepyroprocessingstageofmanufacturing varioustypes ofcements,inwhichcalcium carbonatereactswithsilica-bearingmineralstoform amixtureof calcium silicate.Duringthepyroprocessingstate,cementkilnsdissipateas ubstantialamountof heatthroughthekilnwalls,whichisrejectedtooutsideambientair.A ccordingly,thereis energythatisventedaswasteheat.

[0053] Anaspectofthepresentdisclosureprovidesasystem thatmayrecuperateheat dissipatingfrom akilntogenerateelectricalpowerusingthermoelectricgenerators( TEGs), whichmayconvertheatintoelectricalenergy.TheTEGsmaygenerateel ectricalenergyasa resultoftemperaturegradientswithintheTEGs.A portionoftheheatfrom thekilnmaybe deliveredtooneormoreTEGs,therebycreatingthetemperaturegradie nt,andtheTEGsmay generateelectricalenergy.Toimprovethepoweroutputand/ortheeff iciencyoftheTEGs,one ormorecoolingelements,suchasaliquidcoolant(sometimesreferred toasablackhole),or anothertypeofcoolingelement,suchasthermoelectriccoolers(TECs )maybeincludedto managethetemperaturegradientswithintheTEGs.Byrecuperatingthe dissipatingheat,which wouldotherwisebewasted,andconvertingittoelectricalenergy,ove rallenergyconsumption canbereduce.Thegeneratedelectricitymaybeputbacktothekilnsyst em tooperatevarious electricalsystems,storedinvariousenergyelectricitystoragesys tems,e.g.,bateries,and/or suppliedtoconventionalgridelectricity.Inanotheraspectofthepr esentdisclosure,thesystem canprovideatemperaturemonitoringofthekilnsurface.Elymonitori ngthekilnsurface temperature,operationsafetycanbeimproved.Further,theTEGsmayb eoperatedtoprovidea coolingtothekilnsurface.Forexample,coolingofthekilnsurfacema ybeactivatedwhenthe kilnsurfaceisoverheated,andtherebyimprovingthesafety.Cooling tirekilnsurfacebythe TEGsmay reducerequiredtimetocooldowntirekilnformaintenancepurposes,o perational purposes,ordueioamalfunction.

[0054] Insomeimplementations,ratherthanusingTEGstomanagetemperature gradients withintheTEGs,otherheatremovaldevicesmaybeused.Forexample,ac ombinationoffans andheatsinks,oralayerofliquidcoolantcirculatingadjacenttheTE G units,maybeusedto providecontrolledforcedconvectioniomanagethetemperaturegradi entswithintheTEGs.

[0055] A typicalprocessofmanufacturingcementincludesgrindingamixtureo flimestone andclayorshaletomakeafine "rawmix,"heatingtherawmixtosinteringtemperature(upto about1450°C)inacementkiln,andgrindingtheresultingclinkertom akecement.Inthe heatingstage,therawmixisfedintoakilnandgraduallyheatedbycont actwiththehotgasses from combustionofthekilnfuel.'Typically,apeaktemperatureof1400-14 50°C isrequiredto completethereaction.Thepartialmeltingcausesthematerialtoaggr egateintolumpsor nodules,typicallyofdiameterof1-10mm,whichiscalled'’clinker ,'’Thehotclinkernextfalls into acooler,whichrecoversmostofitsheat,andcoolstheclinkertoaroun d100°C,atwhich temperatureitcanbeconvenientlyconveyedtostorage.

[0056] Somecementkilnsystemsaredesignedtoaccomplishtheseprocesses.T hecement kilnscanhave(e.g.,include)acircularcylindricalshapeandcattbe rotatedaboutthecentralaxis ofthecylindricalshapetofacilitatemixingofthereactants.Thisty peofkilncanalsobe referredtoasarotarykiln.FIG.9isacross-sectionalview illustratinganexamplecementkiln system thatmayperform thisprocess.

[0057] Insomeimplementations,anexamplewasteheatrecoverysystem mayincludeatleast onethermoelectricgenerator(TEG),andatleastcoolingelementorla yer.TEGs,whichmay alsobereferredtoasSeebeckgenerators,maybesolidstatedevicesth atconvertaheatflux (temperaturedifference)intoelectricalenergybytakingadvantage oftheSeebeckeffect.One sideofaTEG maybecoupledtoahotsurface,andtheothersidemaybecoupledtoacold surface.TECs,whichmaybereferredtoasPeltierdevices,Peltierhea tpumps,andsolidstate refrigerators, may receive a DC electric current, and may utilize energy in the electric current to transfer heat from one side of the device to the other side of the device. TEGs may be used to convert heat to electric power. However, the efficiency of TEGs may be sensitive to thermal gradients across semiconductors used within the TEGs. Therefore, TECs may be used to manage temperature gradients across semiconductors in the TECs.

[0058] FIG, 10 is a cross-sectional view illustrating an exemplary implementation of a waste heat recovery system 1000 using waste heat from cement kilns. The waste heat recovery system 1000 may surround a heat source 1010. In implementations, the heat source 1010 may have a substantially cylindrical shape. The heat source 1010 may include a cement kiln. The waste heat recovery system 1000 may include a base block 1020 disposed around the heat source 1010. The base block 1020 may include (e.g., be made of) anodized aluminum, aluminum, aluminum alloys, copper, copper alloys, or the like. The material for the base block 1020 is not limited thereto, but may include other materials that generally have a high thermal conductivity, a high temperature operability, a corrosion resistance, and the like. A thermoelectric generator (TEG) module 1030 having a first end and a second end, in which the first end of the TEG module 1030 is thermally coupled to the base block 1020 and configured io receive at least a portion of the heat dissipated from the heat source 1010. A cooling layer 1040 can include a third end and a fourth end, in which the third end of the cooling 1040 is thermally coupled to the second end of the TEG module 1030. The cooling layer 1040 may including circulating liquid, such as a coolant, that absorbs heat from the TEG module 1030 and rejects the heat into the environment at another location. In some implementations, the cooling layer 1040 can include thermoelectric coolers (TECs) for actively cooling a side of die TEG module 1030.

[0059] FIG. 1 1 shows an example of the TEG module 1030 that may include a TEG 1108. The TEG module 1030 may include the TEG 1 108, and a load 1 106. The TEG 1108 may include a first thermally conductive element 1 102. which may be referred to as a ’’hot member" on a first end of the TEG 1 108, and a second thermally conductive element 1104. which may be referred to as a "cold member" on a second end of die TEG 1108. The TEG 1108 may include at least one n-type semiconductor 1110 and at least one p-type semiconductor 1112 that may be disposed between the first thermally conductive element 1102 and the second thermally conductive element 1104 and may be coupled in series by a number of conductive members. The illustrated implementation shows first, second, and third conductive members 1114, 1116, 1118.Thefirstconductivemember1114maybecoupledtoafirstendofth ep-type semiconductor354,thethirdconductivemember1118maybecoupledtoa firstendofthen- typesemiconductor,andthesecondconductivemember1116maybecoupl edtosecondendsof thep-typeandn-typesemiconductors1112,1110suchthatthep-typese miconductor1112and then-typesemiconductor1110maybecoupledinseries.Thefirstandth irdconductive members1114,1118maybeelectricallycoupledtoaload1106suchthatp owermaybe deliveredtotheload 1106from theTEG 1108,Theload 1106mayincludeanelectricalcircuit, device,orsystem tosupplythegeneratedelectricpowerbacktothekilnsystem tooperate variouselectricalcomponents,variousenergy/electricitystorage systemssuchasbatteries, andoranelectricalcircuitorsystem tosupplythegeneratedelectricitytoconventionalgrid electricity.However,theload1106isnotlimitedthereto,andtheloa d 1106mayincludeany deviceorsystem thatcanutilizethegeneratedelectricity.

[0060] Inoperation,thefirstthermallyconductiveelement1102mayreceive heatfrom an externalheatsourcesuchthatitmaybeatatemperatureTIla,andthese condthermally conductiveelement1104maybeatatemperatureTllb,whereTlla>TI lb.Insome embodiments,heatmaybeextractedfrom thesecondthermallyconductiveelement1104to ensurethatTl1a> Tllb.ThefirstthermallyconductiveelementI102andthesecondtherm ally conductiveelement1104maycreatethermalgradientsacrossthep-typ esemiconductor1112and then-typesemiconductor1110,whichmaycausemajoritychargecarrie rsinthep-type semiconductor1112andthen-typesemiconductor1110tomoveawayfrom thefirstthermally conductiveelement1102andtowardthesecondthermallyconductiveel ement1104,andmay causeminoritychargecarrierstomoveintheoppositedirection.Acco rdingly,electronsintheretypesemiconductor1110maymovetowardth esecondthermallyconductiveelement1104,and positivelycharged "holes"inthep-typesemiconductor1112maymovetowardthesecond thermallyconductiveelement1104.Thischargemotionmaycreateavol tagepotentialacross eachsemiconductor1110,1112.Sincethesemiconductors1110,1112ar ecoupledinseries withinacircuit,currentmayflow.Therefore,electronsmaytravelfr om then-type semiconductor1110,throughthethirdconductivemember1118,throug htheload1106,tothe firstconductivemember1114,throughthep-typesemiconductor1112, tothesecondconductive member1116,andbacktothen-typesemiconductor1110tocompletethec ircuit.Therefore,the TEG 1108maygenerateelectricpower,whichmaybedeliveredfrom theTEG 1108totheload 1106.Byadjustingtheamountofheatthatisdeliveredtothefirstther mallyconductiveelement 1102andortheamountofheatthatisextractedfrom thesecondthermallyconductiveelement 1104,thetemperaturegradientsacrossthesemiconductors1110,1112 maybeadjusted, efficiencyand/oroutputpoweroftheTEG maybeoptimized,andpowergenerationmaybe adjusted,

[0061] FIG,12isacross-sectionaldiagram illustratinganexemplaryimplementationofa wasteheatrecoverysystem 1200usingwasteheatfrom cementkilns.Thewasteheatrecovery system 1200maysurroundaheatsource1210.Inimplementations,theheatsour ce1210may haveasubstantiallycylindricalshape.Theheatsource1210mayinclu deacementkiln.The wasteheatrecoverysystem 1200mayincludeaTEG layer1220disposedaroundtheheatsource 1210.TheTEG layer1220canincludeabaselayerformedofoneormorebaseblocksthat can include(e.g.,bemadeof}anodizedaluminum,aluminum,aluminum alloys,copper,copper alloys,orthelike.Thematerialforthebaseblockisnotlimitedthere to,butmayincludeother materialsthatgenerallyhaveahighthermalconductivity,ahightemp eratureoperability,a corrosionresistance,andthelike.Oneormorethermoelectricgenera tor(TEG)modulescanbe includedinTEG layer1220eachhavingafirstendandasecondend,inwhichthefirstend of theTEG layer1220isthermallycoupledtothebaseblockandconfiguredtorece iveatleasta portionoftheheatdissipatedfrom theheatsource1210.Insomeimplementations,multiple TEG modulescanbeintegratedvertically(e.g.,withrespecttothecenter oftheheatsource 1210)toimproveefficiency.A coolinglayer1230canincludeathirdendandafourthend,in whichthethirdendofthecoolinglayer1230isthermallycoupledtothe secondendoftheTEG layer1220.Thecoolinglayer1230mayincludingcirculatingliquid,s uchasacoolant,that absorbsheatfrom theTEG layer1220andrejectstheheatintotheenvironmentatanother location.Insomeimplementations,TECscanbeincludedin thecoolinglayer1230.

[0062] Inoperation,theTEG module1030maygenerateelectricpowerfrom theheatthat dissipatesfrom theheatsource1010,andcoolinglayer1030canprovecoolingfortheco ld memberoftheTEG module1030.Therefore,theoutputpowerand/orefficiencyofthewast e heatrecoverysystem maybeincreased.

[0063] ReferringagaintoFIG.10,insomeimplementations,thebaseblock 1020mayinclude aheatexchanger1050disposedonasidethatfacestheheatsource1010. Theheatexchanger 1050mayfacilitatemoreefficientheattransferbetweentheheatsour ce1010(e.g.,kilnsurface) andthebaseblock 1020viaconvectiveandradiativeheattransfer.Theheatexchanger10 50 mayinclude(e.g..bemadeof)anodizedaluminum,aluminum,aluminum alloys,copper,copper alloys,orthelike.Thematerialfortheheatexchanger1050isnotlimi tedthereto,butmay includeothermaterialsthatgenerallyhaveahighthermalconductivi ty,ahightemperature operability,acorrosionresistance,andthelike.Insomeimplementa tions,atemperaturesensor 1070maybeincludedtomeasureatemperatureofasurfaceoftheheatsou rce1010.The temperaturesensor1070maybeathermocouple,aresistancetemperatu redetector(RTD),an infraredsensor,orthelike.Whenthetemperatureofthesurfaceofthe heatsource 1010is greaterthanamaximum operationtemperatureoftheTEG,theelectricloadmaybe disconnectedfrom theTEG ioprotecttheTEG from beingdamagedbythehightemperature. Thewasteheatrecoverysystem 1000mayalsoincludeaheatsink 1060disposedonthesecond endoftheTEC module1040.Theheatsink 1060mayfacilitateheatrejectionfrom thehot surfaceoftheTEC.'module1040.

[0064] Inoperation,theheatsource(e.g.,cementkiln)maysometimesrequir eacool-downfor maintenancepurposes,operationalpurposes,orduetoamalfunction. Whentheheatsource requirescooling,anelectricpowermaybeprovidedtotheTEG suchthatthefirstendofthe TEG iscooledandthesecondendoftheTEG isheated.Accordingly,thesurfaceoftheheat sourcemayreceiveanactivecoolingbytheinverseoperationoftheTEG ,andtheheatsource maybecooledmorequickly,

[0065] Inimplementations,apluralityofthewasteheatrecoveryapparatusm aybedisposed adjacentto(e.g.,around;proximateto)theheatsource(e.g.,cement kiln)tosurroundtheentire outersurfaceoftheheatsourcetomaximizetheportionofthescavenge dheat.Cementkilns mayprovideathermalinputtothebaseblockandmaintainthetemperatu reoftheTEG hot membertemperatureatabout350°C.Thecoolinglayermaymaintainthe TEG coldmember temperatureatabout30°C.However,theoperationtemperaturesofth esystem isnotlimited theretoandmayvarybasedontheamountofheatdissipationfrom theheatsource,ambient conditions,orthelike.

[0066] FIGS,13A to 13D illustrateexamplesoftheelectricpowergenerationsystem installed aroundacementkiln.FIG,13A illustratesanexampleofacementkiln 1300withnoelectric powergenerationsystem installed.FIG.13B illustratesanexampleofacementkiln 1300with anexemplaryimplementationofanelectricpowergenerationsystem 1302installedaroundthe kiln 1300.FIG.13C illustratestheelectricpowergenerationsystem 1302inanopen configurationfordemonstrationpurposes.FIG.13D illustratesaninnersideconfigurationofthe electricpowergenerationsystem 1302viewedfrom thebaseblockside(e.g.,correspondingto baseblock 1020).

[0067] FIG.14isadiagram illustratingelectricalconnectionsincludedinasystem 1400 accordingioanexemplaryimplementationofthepresentdisclosure.A sshowninFIG.14,the electricitygeneratedbyaTEG 1430maybecollectedataTEG driver1450.Inimplementations inwhichTECsareutilizedinthecoolinglayer,aportionoftheinputpo wermaybesuppliedtoa TEC.'driver1460.TheTEC driver1460maysupplyelectricalpowertoaTEC?1440basedona TEC controlsignalgeneratedbyacontroller1470.Inimplementationsinw hichTECsarenot utilizedinthecoolinglayer,thecontroller1470mayprovideacontro lsignaltoacoolinglayer tocontrolcirculationofthecoolantliquid.TheTEG driver1450maysupplypoweroutputtoan externalload1420,therebyachievinganetpowergeneration.

[0068] Thecontroller1470mayreceivedatafrom environmentalsensors1490,andgenerate controlsignalsbasedontheenvironmentaldata.Theenvironmentalda tamayincludeambient temperature,ambienthumidity,windspeed,winddirection,precipit ationdata,orthelike.The controller1470mayalsoreceiveakilnsurfacetemperaturedatafrom atemperaturesensor1480. Whenthetemperaturedataisaboveafirstpresettemperature,thecont roller1470maydelivera controlsignaltotheTEG driver1450tocausetheTEG drivertoelectricallydisconnecttheTEG 1430andstopextractingpowerfrom theTEG 1430.Whenthetemperaturedataisabovea secondpresettemperature,thecontroller1470maydeliveracontrols ignaltotheTEG driver 1450tocausetheTEG drivertosupplyelectricitytotheTEG 1430suchthattheTEG 1430 operatesinacoolingmodeandisusedtocoolthekilnsurface.Thesecon dpresettemperature maybegreaterthanthefirstpresettemperature.Insomeimplementati ons,thesecondpreset temperaturemaybelessthanthefirstpresettemperature.

[0069] FIG.15isaflow chartillustratingamethodof1500forcontrollingmodesofoperating awasteheatrecoverysystem accordingtoanexemplaryimplementationofthepresent disclosure.Instep 1510,thewasteheatrecoverysystem mayreceiveheatfrom aheatsource.In step 1520,electricitymaybegeneratedinaTEG usingthereceivedheat.Instep 1530,aportion ofthegeneratedelectricitymaybesuppliedtoaTEC tocausetheTEC tocoolthecoldmember oftheTEG,Inimplementationsinwhichthecoolinglayerdoesnotinclu deaTEC (e.g.,where thecoolinglayerincludesacirculatingcoolantliquid),step 1530canbeomitted.Steps1510, 1520,and 1530maybereferredtoasapowergenerationmode.Instep 1540,atemperatureof theheatsourcemaybemonitored.Whenthemeasuredtemperatureislowe rthanafirstpreset temperature,thecyclemayberepeatedandthesystem maymaintainthepowergenerationmode. Whenthemeasuretemperatureisgreaterthanorequaltothefirstprese ttemperature,the controllermaysubsequentlyevaluatewhetherthetemperatureishigh erthanasecondpreset temperature(1550).Whenthemeasuredtemperatureislessthanthesec ondpresettemperature, thecontrollermaycausetoelectricallydisconnecttheTEG suchthatnopowerisgeneratedfrom theTEG (1560),Whenthemeasuredtemperatureisgreaterthanorequaltothese condpreset temperature,thecontrollermayactivateacoolingmode,inwhichthec ontrollermaycauseto supplyelectricitytotheTEG tooperateitsuchthattheTEG coolsthesurfaceoftheheatsource (1570).Thetemperaturemonitoringloop(1540,1550,1560,and1570)m ayberepeateduntil themeasuredtemperaturebecomeslessthanthefirstpresettemperatu re,inwhichcasethe controllermaycausethewasteheatrecoverysystem tooperateinthepowergenerationmode. Alarmsmaybegeneratedwhendetectingthatthemeasuredtemperaturei shigherthanthefirst presettemperatureorthesecondpresettemperature.Thealarmsmaybe visibleand/oraudible, andarenotlimitedtoanyparticularmeans.Anyalarmsknownintheartm aybeused.

[0070] Exemplarytechnicaleffectsofthesubjectmatterdescribedhereinin cludetheabilityto collectandconvertheatemittedfrom aheatsourceintoelectricalpowerusingasubstrate materialthatcanbereadilyandeasilyappliedtoaheatsource.Inthis way,electricalpowercan begeneratedfrom heatwhichmayotherwisebelosttotheenvironment,therebyincreasin g overallenergyutilizationinvariousindustrialprocesses,suchasi ncementmanufacturing processes.Althoughafew variationshavebeendescribedindetailabove,othermodificationso r additionsarepossible.Forexample,thesubjectmatterdescribedher einisnotlimitedto applicationwithincementkilns,andmayalsobeappliedtoarticlesin proximityofheat generatingobjectsinordertoscavengeandrecuperatewasteheat.For example,thesubject matterdescribedhereincanbeincludedin,butisnotlimitedto,insul ativematerialsand wearablearticles.Thesubjectmatterdescribedhereincanbeapplied toothermaterialsor articleswhichinterfacewithaheatsourcetoscavengeandrecuperate wasteheatforthepurpose ofgeneratingelectricalpower.

[0071] Oneormoreaspectsorfeaturesofthesubjectmatterdescribedhereinc anberealizedin digitalelectroniccircuitry,integratedcircuitry,speciallydesi gnedapplicationspecificintegrated circuits(ASICs),fieldprogrammablegatearrays(FPGAs)computerha rdware,firmware, software,and/orcombinationsthereof.Thesevariousaspectsorfeat urescaninclude implementationinoneormorecomputerprogramsthatareexecutablean dorinterpretableona programmablesystem includingatleastoneprogrammableprocessor,whichcanbespecialor generalpurpose,coupledtoreceivedataandinstructionsfrom,andto transmitdataand instructionsto.astoragesystem,atleastoneinputdevice,andatlea stoneoutputdevice.The programmablesystem orcomputingsystem mayinchideclientsandservers.A clientandserver aregenerallyremotefrom eachotherandtypicallyinteractthroughacommunicationnetwork. Therelationshipofclientandserverarisesbyvirtueofcomputerprog ramsrunningonthe respectivecomputersandhavingaclient-serverrelationshiptoeach other.

[0072] Thesecomputerprograms,whichcanalsobereferredtoasprograms,sof tware, softwareapplications,applications,components,orcode,includem achineinstructionsfora programmableprocessor,andcanbeimplementedinahigh-levelproced urallanguage,an object-orientedprogramminglanguage,afunctionalprogramminglan guage,alogical programminglanguage,and'orinassembly/niachinelanguage.Asused herein,theterm "machine-readablemedium"referstoanycomputerprogram product,apparatusand/ordevice, suchasforexamplemagneticdiscs,opticaldisks,memory,andProgram mableLogicDevices (PLDs),usedtoprovidemachineinstructionsand/ordatatoaprogramm ableprocessor, includingamachine-readablemedium thatreceivesmachine.instructionsasamachine-readable signal.Theterm "machine-readablesignal"referstoanysignalusedtoprovidemachin e instructionsand/ordatatoaprogrammableprocessor.Themachine-re adablemedium canstore suchmachineinstructionsnon-transitorily,suchasforexampleaswo uldanon-transienisolid- statememory'oramagneticharddriveoranyequivalentstoragemedium .Themachine-readable medium canalternativelyoradditionallystoresuchmachineinstructionsin atransientmanner, suchasforexampleaswouldaprocessorcacheorotherrandom accessmemoryassociatedwith oneormore physicalprocessorcores. [0073] Toprovideforinteractionwithauser,oneormoreaspectsorfeatureso fthesubject matterdescribedhereincanbeimplementedonacomputerhavingadispl aydevice,suchasfor exampleacathoderaytube(CRT)oraliquidcrystaldisplay(LCD)orali ghtemittingdiode (LED)monitorfordisplayinginformationtotheuserandakeyboardand apointingdevice,such asforexampleamouseoratrackball,bywhichtheusermayprovideinput tothecomputer. Otherkindsofdevicescanbeusedtoprovideforinteractionwithauser aswell.Forexample, feedbackprovidedtotheusercanbeanyform ofsensoryfeedback,suchasforexamplevisual feedback,auditoryfeedback,ortactilefeedback;andinputfrom theusermaybereceivedinany form,includingacoustic,speech,ortactileinput.Otherpossiblein putdevicesincludetouch screensorothertouch-sensitivedevicessuchassingleormulti-poin tresistiveorcapacitive trackpads,voicerecognitionhardwareandsoftware,opticalscanner s,opticalpointers,digital imagecapturedevicesandassociatedinterpretationsoftware,andth elike.

[0074] Inthedescriptionsaboveandintheclaims,phrasessuchas "atleastoneor 1 or "oneor moreof mayoccurfollowedbyaconjunctivelistofelementsorfeatures.Thete rm "and/or" mayalsooccurinalistoftwoormoreelementsorfeatures.Unlessother wiseimplicitlyor explicitlycontradictedbythecontextinwhichitisused,suchaphras eisintendediomeanany ofthelistedelementsorfeaturesindividuallyoranyoftherecitedel ementsorfeaturesin combinationwithanyoftheotherrecitedelementsorfeatures.Forexa mple,thephrases "at leastoneofA andB;" "oneormoreofA andB;"and "A and/orB"areeachintendedtomean "A alone,B alone,orA andB together," A similar.interpretationisalsointendedforlistsincluding threeormoreitems.Forexample,thephrases "atleastoneofA,B,andC;" "oneormoreofA, B,andC;"and "A,B.and/orC"areeachintendedtomean "A alone,B alone,Cialone,A andB together.A andC together,B andC together,orA andB andC together," Inaddition,useofthe term "basedon,"aboveandintheclaimsisintendedto mean, "basedatleastinparton,”such thatanunrecitedfeatureorelementisalsopermissible.

[0075] Thesubjectmatterdescribedhereincanbeembodiedinsystems,appara tus,methods, and/orarticlesdependingonthedesiredconfiguration.Theimplemen tationssetforthinthe foregoingdescriptiondonotrepresentallimplementationsconsiste ntwiththesubjectmatter describedherein.Instead,theyaremerelysomeexamplesconsistentw ithaspectsrelatedtothe describedsubjectmatter.Althoughafew variationshavebeendescribedindetailabove,other modificationsoradditionsarepossible.Inparticular,furtherfeat uresand/orvariationscanbe providedinadditiontothosesetforthherein.Forexample,theimplem entationsdescribedabove canbedirectedtovariouscombinationsandsubcombinationsofthedis closedfeaturesandor combinationsandsubcombinationsofseveralfurtherfeaturesdisclo sedabove.Tnaddition,the logicflowsdepictedintheaccompanyingfiguresand/ordescribedher eindonotnecessarily requiretheparticularordershown,orsequentialorder,toachievede sirableresults.Other implementationsmaybewithinthescopeofthefollowingclaims.