Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
MATERIAL SEPARATOR FOR A VERTICAL PNEUMATIC SYSTEM
Document Type and Number:
WIPO Patent Application WO/2015/126352
Kind Code:
A1
Abstract:
A delivery system (10) deposits granular material (3) being pneumatically conveyed within an entraining airflow to sequentially fill a storage silo (1) from bottom to top. The delivery system (10) has a series of vertical tubes (14, 101, 201) and separators (100, 200, 300), vertically suspended within the silo (1) by a support (11), for conveying the entrained material (6) upwardly from the bottom to the top of the silo (1). Each separator (100, 200, 300) automatically selectively either separates the entrained material (6), by choking the airflow entraining the material therewithin, and deposits the separated material (3); or else flows therethrough the entrained material (6) without separation. The support (11) has clamp assemblies (15, 16, 17, 18), each having clamp halves (32, 33) and clamp brackets (34, 35, 36, 37), wall brackets (19, 20, 21, 22), and sets (23, 24, 25, 26) of braces.

Inventors:
DOUGLAS PHILLIP (US)
Application Number:
PCT/US2014/000164
Publication Date:
August 27, 2015
Filing Date:
July 18, 2014
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
DOUGLAS PHILLIP (US)
International Classes:
B65G53/60
Foreign References:
US5163786A1992-11-17
US2010128A1935-08-06
US20070228078A12007-10-04
Attorney, Agent or Firm:
PIKE, Andrew, C. (Mount Vernon, OH, US)
Download PDF:
Claims:
I CLAIM:

Claim 1. A method of delivering material (3) being

transported by a conveyor (5) entraining the material within a flow of fluid, wherein said method comprises:

flowing the fluid flow entraining the material into a separator (150);

selectively separating the material (3)' from the fluid flow within the separator (150) ; and

depositing the material (3) , from said selectively separating, out of the separator (150).

Claim 2. The method of claim 1, wherein said selectively separating comprises automatically selectively separating the material (3) from the fluid flow within the separator (150) .

Claim 3. The method of claim 1, wherein said selectively separating comprises choking the fluid flow entraining the material within the separator (150) .

Claim 4. The method of claim 1, wherein said flowing comprises orienting the fluid flow entraining the material vertically upwardly into the separator (150).

Claim 5. The method of claim 1, wherein the separator

(150) is an upstream separator (100) and said depositing forms a mound of the material (3), and said method further comprises:

stopping said selectively separating and said depositing;

reestablishing the fluid flow entraining the material through the upstream separator (100) ;

flowing the fluid flow entraining the material into a downstream separator (200) that is downstream of the upstream separator (100);

selectively separating the material (3) from the fluid flow within the downstream separator (200) ; and

depositing the material (3), from said selectively separating within the downstream separator (200) , out of the downstream separator (200) onto the mound of the material (3) .

Claim 6. A system (10) for delivering material (3) being transported by a conveyor (5) entraining the material within a flow of fluid, wherein said system comprises:

a tube (149) for receiving the fluid flow entraining the material; and

a separator (150) connected to said tube (149) for selectively separating the material (3) from the fluid flow, wherein said separator (150) comprises an inlet (151) for the fluid flow entraining the material, means for depositing the material (3) from the selectively separating out of said

separator (150), and an outlet (153).

Claim 7. The system (10) of claim 6, wherein said

depositing means comprises means for automatically depositing the material (3) from the selectively separating out of said separator ( 150 ) .

Claim 8. The system (10) of claim 7, wherein said

automatically depositing means comprises another outlet (152) through which the material (3) from the selectively separating flows out of said separator (150), forming a mound of the material (3) having a surface (4), only until the surface (4) of the mound blocks said other outlet (152).

Claim 9. The system (10) of claim 6, wherein said

separator (150) further comprises means for choking the fluid flow entraining the material within said separator.

Claim 10. The system (10) of claim 9, wherein said choking means comprises said tube (149) and said separator (150) being vertically oriented with said outlet (153) being above said inlet (151) .

Claim 11. The system (10) of claim 10, wherein said choking means further comprises said outlet (153) being above said depositing means.

Claim 12. The system (10) of claim 11, wherein said separator (150) further comprises a wall (155), and said choking means further comprises said wall (155) tapering upwardly.

Claim 13. The system (10) of claim 6, wherein said

separator (150) is an upstream separator (100) and said system (10) further comprises a downstream separator (200) that is downstream from and connected to said outlet (153) for selectively separating the material (3) from the fluid flow when the selectively separating of said upstream separator (100) stops .

Claim 14. The system (10) of claim 13, wherein said downstream separator (200) comprises:

an inlet (151) for the fluid flow entraining the material;

means for depositing the material (3) , from the selectively separating of said downstream separator (200), out of said downstream separator (200) and onto the material (3) from the selectively separating of said upstream separator

(100); and

an outlet (153) .

Claim 15. The system (10) of claim 14, wherein said downstream separator (300) further comprises an open cap (311) at said outlet (303) thereof.

Claim 16. The system (10) of claim 15, wherein said cap (311) is mushroom shaped.

Claim 17. The system (10) of claim 6, further comprising a support (11) suspending said system (10);

wherein said support (11) comprises at least one clamp assembly (15) mounted on said tube (149), and a set (23) of braces (27, 29) for each respective said clamp assembly (15) suspending said tube (149).

Claim 18. The system (10) of claim 17, wherein each said clamp assembly (15) comprises:

two equal halves (32, 33) each having two ends and an outer side;

a bracket (34, 35) at adjacent said ends; and at least one bracket (36, 37) for each said side.

Claim 19. The system (10) of claim 6, wherein said system (10) delivers the material (3) to a storage (1) having a wall (2), said separator (150) is an upstream separator (100) and is within the storage (1), said depositing means comprises means for automatically depositing the material (3) from the selectively separating out of said upstream separator (100), the material (3) from the selectively separating out of said

upstream separator (100) forms a mound of the material (3) within the storage (1) having a surface (4), and said system

10 (10) further comprises:

a downstream separator (200) that is within the storage (1) and downstream from said outlet (153) for

selectively separating the material (3) from the fluid flow when the selectively separating of said upstream separator (100)

15 stops;

a tube (162) interconnecting said outlet (153) and said downstream separator (200) for flowing the fluid flow from the upstream separator (100) to the downstream separator (200); and

20 a support- (11) suspending said system (10) within the storage (1), said support (11) comprising a plurality of clamp assemblies (15, 16) each mounted on any one of said tubes (149, 162) and a set (23, 24) of braces (27, 29) for each respective said clamp assembly (15, 16) interconnecting said respective

25 clamp assembly (15, 16) and the storage wall (2);

wherein said tubes (149, 162) and said separators (100, 200) are vertically oriented within the storage (1) with said outlet (153) being above said inlet (151), and said support (11) vertically suspends said system (10) within the storage

Ϊ0 (1); and

wherein said system (10) automatically sequentially fills the storage (1) as initially said upstream separator (100) is selectively separating the material (3) onto the mound until the surface (4) of the mound blocks said automatically

55 depositing means and stops the selectively separating of the

upstream separator (100), and then subsequently said downstream separator (200) is selectively separating the material (3) onto the mound.

Claim 20. A separator (150) for separating material (3) from a flow of fluid being transported by a conveyor (5)

entraining the material within the fluid flow, wherein said separator (150) comprises:

an inlet (151) for the fluid flow entraining the material ;

means for selectively separating the material (3) from the fluid flow;

a first outlet (152) for depositing the material (3), from the selectively separating of said selectively separating means, out of said separator (150); and

a second outlet (153) .

Claim 21. The separator (150) of claim 20, wherein said selectively separating means comprises:

means for choking the fluid flow entraining the material within said separator (150) ; and

means for selectively flowing the material (3) , from the selectively separating of said selectively separating means, through said first outlet (152);

wherein said selectively separating means is selectively separating the material (3) from the fluid flow only when said selectively flowing means is selectively flowing the material (3) through said first outlet (152).

Claim 22. The separator (150) of claim 20, wherein said first outlet (152) comprises webs (158, 160) connected to said inlet (154) .

Claim 23. The separator (300) of claim 22, further

comprising an open cap (311) at said second outlet (303) ; and wherein said second outlet (303) comprises webs (313, 315) connected to said cap (311) .

Claim 24. The separator (150) of claim 20, further

comprising a wall (155) connected to said first outlet (152) and said second outlet (153), wherein said wall (155) tapers from said first outlet (152) to said second outlet (153).

Claim 25. The separator (150) of claim 20, wherein said separator (150), said inlet (151), said first outlet (152), and said second outlet (153) are coaxial.

Claim 26. A support (11) for an outlet (10) of a conveyor (5) depositing material (3) to a storage (1), wherein said support comprises:

at least one clamp assembly (15) mounted on the outlet

(10); and

a set (23) of braces (27, 29) for each respective said clamp assembly (15) suspending the outlet (10) within the storage (1) .

Claim 27. The support (11) of claim 26, further comprising wall brackets (19, 21) connected to said braces (27, 29) , respectively, for connecting to a wall (2) of the storage (1).

Claim 28. The support (11) of claim 26, wherein each said clamp assembly (15) comprises:

two equal halves (32, 33) each having two ends and an outer side;

a bracket (34, 35) at adjacent said ends;

a bracket (36, 37) for each said side;

a first connector (38) connecting one (34) of said braclcets at said adjacent ends and a first (27) of said braces (27, 28, 29, 30) thereof;

a second connector (40) connecting another (35) of said brackets at said adjacent ends and a second (29) of said braces (27, 28, 29, 30) thereof;

a third connector (39) connecting said bracket (36) of one said side and a third (28) of said braces (27, 28, 29, 30) thereof; and

a fourth connector (41) connecting said bracket (37) of another said side and a fourth (30) of said braces (27, 28, 29, 30) thereof.

Claim 29. A clamp assembly (15) for clamping around a tube (149) , said clamp assembly (15) comprising:

two equal halves (32; 33) each having two ends and an outer side;

a flange (46, 47; 50, 51) for each said end, wherein said flanges (46, 51; 47, 50) of adjacent said ends form end braclcets (34; 35), respectively; and

at least one bracket (36; 37) for each said side, each said bracket (36; 37) for said sides comprising a connection point for interconnecting the tube (149) with another object, respectively.

Claim 30. The clamp assembly (15) of claim 29, wherein each said end bracket (34; 35) comprises a connection point for interconnecting the tube (149) with another object,

respectively.

Description:
Title of Invention

MATERIAL SEPARATOR FOR A VERTICAL PNEUMATIC SYSTEM

Technical Field

The present invention relates to the delivery of material being transported by a conveyor entraining the material within a flow of fluid, and in particular to the depositing of granular material by a pneumatic conveyor into a storage silo.

Background Art

Fluid flow conveyors, particularly pneumatic conveyor systems, have become a popular alternative to augers and belt conveyors for the movement of granular materials. Pneumatic conveyor systems are especially suitable for farm grains for the following reasons: grain is carried within a stream of air for less grain damage; a pneumatic conveyor is more economical to install; a pneumatic conveyor is more versatile for multiple silos and multiple silo types at a storage facility; pneumatic conveyors are sealed against water and pest infiltration between receiving point to delivery of the grain; one pneumatic conveyor system can be utilized to move a variety of grain types without cross contamination, simply by turning a valve distributor between silos; and pneumatic conveyor systems are easier to maintain .

Prior art pneumatic conveyor systems delivering grain to the top of storage silos introduce problems for these systems: a cyclone separator is required for the top of each silo; the entire system is exterior of the silo, exposing the machinery to weather-related damage; supports that may be expensive must be used to support the pneumatic conveyor tubing; much of the pneumatic conveyor system is high above ground and not easily serviced; grain-to-grain damage occurs due to the falling of grain from the silo top to the bottom of the silo, which only increases with the height of the silo; and mixed granular materials experience product separation when dropped from the top of a silo. Furthermore, an efficiency loss of approximately ten percent for every seven and one-half meters (twenty-five feet) of vertical rise is common to all pneumatic conveyor systems. For example, a pneumatic conveyor system used to fill a silo thirty meters (one hundred feet) tall would operate at 40% less than full efficiency (30 m x (10%/7.5 m) = 40% loss; 100 ft x (10%/25 ft) = 40% loss) .

U. S. Patent Number 4,082,364, April 4, 1978, to Krambrock describes a method for sequentially filling silos.

U. S. Patent Number 6,632,063, October 14, 2003, to Karlsen et al. describes a system for reducing material separation in a top-filled silo.

U. S. Patent Number 4,603,769, August 5, 1986, to Bach et al. describes a vertical chute for reducing grain damage in a top-filled silo.

The article Pneumatic Conveying Systems, course No. M05- 010, no date, by A. Bhatia of Continuing Education and

Development, Inc. discusses pneumatic conveyors, and describes "choking" as a problem in vertically installed pneumatic tubing that is the settling out downwardly of the entrained material from the entraining airflow.

Summary of Invention

An objective of the present invention is to remove a major source of contamination into storage silos due to pneumatic conveyor systems by eliminating roof top delivery of the

material by the pneumatic conveyor.

Another objective is to reduce the expense of pneumatic conveyor systems by eliminating the components for roof top delivery such as a cyclone separator and exterior supports for the pneumatic tubes.

Another objective is to increase the ease of maintenance of pneumatic conveyor systems by routing the pneumatic tubes connected to a storage silo near ground level.

Another objective is to protect the delivery system for a storage silo connected to a pneumatic conveyor from weather- related damage by locating and supporting the delivery system within the silo.

Another objective is to reduce grain-to-grain damage, and also product separation of mixed granular materials, by reducing the height through which the materials drop when deposited within a storage silo.

The system of the present invention delivers material being transported by a conveyor entraining the material within a flow of fluid. The system comprises a tube for receiving the fluid ' flow entraining the material, separators for selectively

separating the material from the fluid flow, and a support for vertically suspending the system within a storage silo. The tube, the separators, and the support are all within the silo.

Each separator functions selectively in either one of two modes of operation: either separating the material from the fluid flow, or else flowing the fluid flow entraining the material through the separator without separating. Each

separator comprises an inlet, means for selectively separating the material from the fluid flow, a first outlet for depositing the material from the selectively separating means, a second outlet, and a wall. For each separator, the separator, the inlet, the first outlet, and the second outlet are coaxial.

The selectively separating means comprises means for choking the fluid flow entraining the material within the separator thereof, and means for selectively flowing the

separated material through the first outlet thereof. The choking means comprises the tube and the separator being

vertically oriented with the second outlet thereof being above the inlet and the first outlet thereof, and the wall thereof tapering upwardly. The selectively separating means selectively separates the material from the fluid flow within the separator thereof only when the selectively flowing means is selectively flowing the material through the first outlet thereof,

depositing the separated material into the silo, creating a mound of the separated material having a surface. The material selectively flows through the first outlet until the mound surface blocks the first outlet thereof, stopping the

selectively flowing and thus stopping the selectively separating of the separator thereof automatically. The fluid flow

entraining the material is thus reestablished to go through the separator without separating the material.

The support suspends the system vertically within the silo from bottom to top, wherein the next separator that is

downstream is located above the preceding separator that is upstream thereof, respectively. The support comprises clamp assemblies, a set of braces for each respective clamp assembly, and wall brackets connected to the respective braces for

connecting to a wall of the storage silo. Each clamp assembly comprises two equal halves each having two ends and an outer side, a flange for each end wherein the flanges of adjacent ends form end brackets, at least one bracket for each side, and connectors connecting the brackets to the braces, respectively.

The method of the present invention comprises flowing the fluid flow entraining the material into a separator, selectively separating the material from the fluid flow within the

separator, and depositing the selectively separated material out of the separator. The selectively separating comprises choking the fluid flow entraining the material within the separator. The depositing forms a mound of the material. The method further comprises stopping the selectively separating and the depositing, reestablishing the fluid flow entraining the

material through the separator, flowing the fluid flow

entraining the material into a downstream separator that is downstream of the separator, selectively separating the material from the fluid flow within the downstream separator, and

depositing that selectively separated material out of the downstream separator onto the mound of the material.

Thus, the present invention automatically sequentially fills a storage silo as initially an upstream separator

selectively separates the material onto the mound of separated material that is being formed within the silo until the surface of the mound blocks the first outlet thereof and stops the selectively separating of that upstream separator, and then subsequently a separator that is downstream of that upstream separator selectively separates the material onto the mound, and so continues for all of the separators until the silo is filled. 5 The present invention reduces the average drop height of the separated material. This reduces grain-to-grain damage and also product separation of mixed granular materials. The reduction in average drop height of the separated material also increases the efficiency of the pneumatic conveyor system.

L0 Whereas a prior art pneumatic conveyor system having roof top delivery of the material typically would have, for example, for a thirty-meter (one-hundred-foot) high silo a 40% loss of efficiency (as hereinbefore stated) , the present invention with four separators bottom to top for the same silo would have a

L5 calculated loss of only 25% ((10% + 20% + 30% + 40%) /4) = 25%).

This is an increase of delivery efficiency by fifteen percentage points, or 25% (((100%-25%) - ( 100%- 0% ) ) / ( 100%- 0% ) = 125%).

An additional advantage of the present invention over the prior art is the simplicity of operation, with the separators 0 acting automatically and with no moving parts being required for the delivery system.

Brief Description of Drawings

FIG. 1 is a schematic side view of one embodiment of the present invention supported within a storage silo comprising an 25 upstream separator, a downstream separator, a top separator, and four clamp assemblies.

FIG. 2 is a schematic bottom view of the embodiment of the present invention, as shown in FIG. 1, showing a clamp assembly.

FIG. 3 is a cross-sectional view, partly broken, taken on 30 line 3-3 in FIG. 4 of one embodiment of a separator that is not a top separator.

FIG. 4 is a cross-sectional view taken on line 4-4 in FIG.

3.

FIG. 5 is a cross-sectional view, partly broken, taken on 35 line 5-5 in FIG. 6 of one embodiment of a top separator. FIG. 6 is a cross-sectional view taken on line 6-6 in FIG.

5.

FIG. 7 is a side view, partly broken, of one embodiment of a clamp assembly and braces of the support of the present invention.

FIG. 8 is a cross-sectional view taken on line 8-8 in FIG.

7.

FIG. 9 is a cross-sectional view, partly broken, taken on line 9-9 in FIG. 8.

FIG. 10 is a front view, partly broken, of one embodiment of a wall bracket and a brace of the support of the present invention .

FIG. 11 is a cross-sectional view, partly broken, taken on line 11-11 in FIG. 10.

FIG. 12 is a schematic view of the embodiment of the present invention, as shown in FIG. 1, showing the upstream separator- separating the material from the airflow during the sequential filling of the silo.

FIG. 13 is a schematic view of the sequential . filling of the silo, as shown in FIG. 12, showing the upstream separator stopping the separation thereof and reestablishing the flowing of the airflow entraining the material therethrough, without separating, onto the downstream separator for separating the material .

FIG. 14 is a schematic view of the sequential filling of the silo, as shown in FIG. 13, showing the downstream separator separating the material from the airflow onto the material that had been separated by the upstream separator.

Best Mode for Carrying Out the Invention The best mode contemplated for carrying out the present invention is vertically supported within a vertical storage silo 1 having a wall 2 as shown schematically in FIG. 1·. The silo 1 is for the storage of granular material 3, for example grain, that, when so stored, has a material surface 4 as shown in FIG. 12, FIG. 13, and FIG. 14. Although the present invention is contemplated primarily for grain, the intent of the claimed invention is to be construed to include all manner of granular material. Pelletized food products, fuels, coal, animal feeds, plastics, and fiber products are a few of the other items suitable for pneumatic conveying for storage.

The present invention delivers the material 3 to the silo 1 when the material is transported by a conveyor entraining the material within a flow of fluid. One embodiment of the present invention is contemplated to be used with a conventional

pneumatic conveyor system that entrains the material within a flow of air for depositing the material 3 into the silo 1.

A conventional pneumatic charging system is shown generally in FIG. 1 as prior art pneumatic conveyor 5. Typically, a blower (not shown) supplies a flow of air to a rotary airlock (not shown) . The rotary airlock entrains the material 3 to be conveyed into the airflow creating a pneumatic material flow 6 that is a mixture of the airflow entraining the conveyed

material to be propelled toward the silo 1. The pneumatic conveyor 5 connects to a tube 7 for conveying of the pneumatic material flow 6. The tube 7 is a pneumatic transfer tube of prior art.

One embodiment of the present invention is shown

schematically in FIG. 1 and FIG. 2 as, generally, a delivery system 10. The delivery system 10 comprises a series of tubes and separators within the silo 1. A support 11 of the delivery system 10 suspends and centers the delivery system 10 within the silo 1. The tube 7 connects to a horizontal tube 12 of the delivery system 10 for conveying the pneumatic material flow 6 into the silo 1. The horizontal tube 12 enters the silo 1 through a lower portion of the silo wall 2. An elbow 13

interconnects the horizontal tube 12 and a vertical tube 14 for conveying the pneumatic material flow 6 upwardly within the silo 1. The vertical tube 14 is located at and along the vertical center of the silo 1 as shown in FIG. 2. A clamp assembly 15 of the support 11 is positioned on the vertical tube 14 near the elbow 13. The support 11 includes a plurality of clamp assemblies, and in particular, for the embodiment shown in FIG. 1, the clamp assembly 15 and also clamp assemblies 16, 17, and 18. As shown in FIG. 2, the support 11 further includes wall brackets 19, 20, 21, and 22 on the silo wall 2, and a set 23 of braces 27, 28, 29, and 30 interconnecting the clamp assembly 15 with the wall brackets 19, 20, 21, and 22 on the silo wall 2, respectively, thereby suspending and centering the vertical tube 14 within the silo 1. Sets 24, 25, and 26 of braces also interconnect the clamps assemblies 16, 17, and 18, respectively, with wall brackets .

The clamp assembly 15 includes a clamp 31. As shown schematically in FIG. 2, clamp 31 has two equal half clamps 32 and 33 mounted on and clamping around the vertical tube 14. The clamp 31 has end brackets 34 and 35, each at adjacent ends of the half clamps 32 and 33, and one or more side brackets 36 and 37 on each side of the half clamps 32 and 33.

The braces 27, 28, 29, and 30 are evenly spaced around the vertical tube 14; and are connected at one end thereof to the end bracket 34, the side bracket 36, the end bracket 35, and the side bracket 37, respectively, by fasteners or bolts 38, 39, 40, and 41, respectively, as connectors. The wall brackets 19, 20, 21, and 22 are evenly spaced on, and connected to, the inner surface of the silo wall 2 on a horizontal plane above the height of the clamp assembly 15. Opposite ends of the braces 27, 28, 29, and 30 are connected to the wall brackets 19, 20, 21, and 22, respectively, by fasteners or bolts 42, 43, 44, and 45, respectively, thereby equally connecting the brackets of the clamp 31 to the silo wall 2. The braces 27, 28, 29, and 30 each has a length equal to or greater than the radius of the silo 1, and extend radially upwardly and outwardly from the clamp assembly 15 to the wall brackets 19, 20, 21, and 22.

The vertical tube 14 slips into an upstream separator 100 of the delivery system 10. The clamp assembly 16 of the support 11 is positioned, in the embodiment shown in FIG. 1, on the vertical tube 14 near the upstream separator 100 for suspending and centering the vertical tube 14 within the silo 1. The upstream separator 100 comprises a vertical tube 101 for

conveying the pneumatic material flow 6 upwardly from the upstream separator 100. The upstream separator 100 selectively either separates the material from the airflow and deposits the separated material 3 into the silo 1; or else flows the

pneumatic material flow 6 through the upstream separator 100, without separating the material from the airflow, and into the vertical tube 101.

In the embodiment shown in FIG. 1, the vertical tube 101 slips into a downstream separator 200 of the delivery system 10 that is vertically above the upstream separator 100 and

downstream of the upstream separator 100. The clamp assembly 17 of the support 11 is positioned on the vertical tube 101 near the downstream separator 200 for suspending and centering the vertical tube 101 and the upstream separator 100 within the silo 1. The downstream separator 200 comprises a vertical tube 201 for conveying the pneumatic material flow 6 upwardly from the downstream separator 200. The downstream separator 200

selectively either separates the material from the airflow and deposits the separated material 3 into the silo 1 onto the separated material 3 deposited by the upstream separator 100; or else flows the pneumatic material flow 6 through the downstream separator 200, without separating the material from the airflow, and into the vertical tube 201.

The vertical tube 201, in the embodiment shown in FIG. 1, connects to a top separator 300 of the delivery system 10 that is vertically above both the upstream separator 100 and the downstream separator 200 and that is downstream of the

downstream separator 200. The clamp assembly 18 of the support 11 is positioned on the vertical tube 201 for suspending and centering the vertical tube 201 and the downstream separator 200 within the silo 1. The top separator 300 comprises an open cap 311 on the top of the top separator 300. The top separator 300 selectively either separates the material from the airflow and deposits the separated material 3 into the silo 1 onto the separated material 3 deposited by both the upstream separator 100 and the downstream separator 200; or else flows the

pneumatic material flow 6 through the top separator 300, without separating the material from the airflow, toward the cap 311. 5 One embodiment of a material separator 150 of the present invention that is not a top separator, that, for the embodiment shown in FIG. 1, can be any separator of the delivery system 10 that is not the top separator 300, is shown in FIG. 3 and FIG. 4. A vertical tube 149 conveys the pneumatic material flow 6

L0 upwardly, from upstream of the material separator 150,

downstream into the material separator 150. For the embodiment shown in FIG. 1, the vertical tube 149 'can be any of the

vertical tube 14 or the vertical tube that any of the separators of the delivery system 10, that is not the top separator 300,

L5 comprises.

The material separator 150 has an inlet 151, a first outlet 152 below the inlet 151, and a second outlet 153 above the inlet

151. The material separator 150 includes an inlet tube 154 forming the inlet 151 at the upper end of the inlet tube 154.

10 The lower end of the inlet tube 154 is below the first outlet

152. The inside diameter of the inlet tube 154 is greater than the outside diameter of the vertical tube 149. The vertical tube 149 thus slips into the inlet tube 154 of the material separator 150.

15 The material separator 150 has a metal wall 155. The wall

155 forms a cylindrical base 156 and a forcing cone 157 above the cylindrical base 156. The inside diameter of the

cylindrical base 156 is greater than the outside diameter of the inlet tube 154, forming the first outlet 152 at the lower end of

50 the cylindrical base 156. A plurality of webs 158, 159, 160, and 161 structurally interconnect and space apart the

cylindrical base 156 and the inlet tube 154. The forcing cone 157 tapers upwardly and inwardly to a cylindrical outlet tube 162, forming the second outlet 153. The outlet tube 162 has the

55 same outside diameter as the outside diameter of the vertical tube 149. For the embodiment shown in FIG. 1, the outlet tube 162 can be any of the vertical tube that any of the separators of the delivery system 10, that is not the top separator 300, comprises .

The material separator 150, the inlet 151, the first outlet 152, and the second outlet 153 are coaxial. The cylindrical base 156 has an inside diameter about three times the outside diameter of the inlet tube 154. The overall height of the material separator 150 is approximately six times the diameter of the inlet 151.

One embodiment of the top separator 300 of the present invention is shown in FIG. 5 and FIG. 6. A vertical tube 201 conveys the pneumatic material flow 6 upwardly, from upstream of the top separator 300, downstream into the top separator 300. The vertical tube 201 shown in FIG. 5 and FIG. 6 conveys the pneumatic material flow 6 from the uppermost material separator 150 of the delivery system 10 that is not the top separator 300. For the embodiment shown in FIG. 1, the vertical tube 201 shown in FIG. 5 and FIG. 6 is the vertical tube 201 shown in FIG. 1 that the downstream separator 200 (which is the uppermost separator that is not the top separator 300) of the delivery system 10 comprises.

The top separator 300 has an inlet 301, a first outlet 302 below the inlet 301, and a second outlet 303 above the inlet 301. The vertical tube 201 extends into and terminates within the top separator 300 forming the inlet 301 at the upper end of the vertical tube 201.

The top separator 300 has a metal wall 304. The wall 304 forms a cylindrical base 305 and a cone 306 above the

cylindrical base 305. The inside diameter of the cylindrical base 305 is greater than the outside diameter of the vertical tube 201, forming the first outlet 302 at the lower end of the cylindrical base 305. A plurality of webs 307, 308, 309, and 310 structurally interconnect and space apart the cylindrical base 305 and the vertical tube 201. The cone 306 tapers

upwardly and inwardly to a diameter about two times the diameter of the inlet 301 at the second outlet 303. An open cap 311 is at the second outlet 303 and has a stem 312. A plurality of webs 313, 314, 315, and 316 interconnect and space apart the stem 312 and the cone 306 at the second outlet 303, centering the stem 312 into the second outlet 303. The open cap 311 is mushroom shaped, blocking continued vertical flow, and redirects any flow through the second outlet 303 downwardly and out of the top separator 300.

The top separator 300, the inlet 301, the first outlet 302, and the second outlet 303 are coaxial. The cylindrical base 305 has an inside diameter about three times the outside diameter of the vertical tube 201. The overall height of the top separator 300 is about six times the diameter of the inlet 301.

The clamp assemblies of the support 11 are identical with each other; and, as such, the clamp assembly 15 is typical. The clamp assembly 15 is shown in greater detail in FIG. 7, FIG. 8, and FIG. 9.

The clamp 31 of the clamp assembly 15 has an inside

circumference less than the outside circumference of the

vertical tube 14. The clamp 31 is composed of metal plate or metal casting. The clamp 31 is a union of the two equal half clamps 32 and 33.

The half clamp 32 has an outward radiating end flange 46 on one end for forming the end bracket 34, and an outward radiating end flange 47 on the other end for forming the end bracket 35. The half clamp 32 has one or more of the side brackets 36 evenly spaced between the ends of the half clamp 32. Each side bracket 36 has two flanges 48 and 49 closely spaced to, and parallel with, each other. Each side bracket 36 has one aligning through hole formed by aligned holes in the flanges 48 and 49 thereof.

The half clamp 33 has an outward radiating end flange 50 on one end for forming the end bracket 35, and an outward radiating end flange 51 on the other end for forming the end bracket 34. The half clamp 33 has one or more of the side brackets 37 evenly spaced between the ends of the half clamp 33. Each side bracket 37 has two flanges 52 and 53 closely spaced to, and parallel with, each other. Each side bracket 37 has one aligning through hole formed by aligned holes in the flanges 52 and 53 thereof.

When the half clamps 32 and 33 are mounted onto the

vertical tube 14, as shown in FIG. 8, the end flange 46 of the half clamp 32 and the end flange 51 of the half clamp 33 are adjacent to each other, forming the end bracket 34; and the end flange 47 of the half clamp 32 and the end flange 50 of the half clamp 33 are adjacent to each other, forming the end bracket 35. An aligning through hole of the end bracket 34 is formed by aligned holes in the end flanges 46 and 51, respectively. An aligning through hole of the end bracket 35 is formed by aligned holes in the end flanges 47 and 50, respectively.

The wall brackets of the support 11 are identical with each other; and the wall bracket 19, as typical thereof / is shown in greater detail in FIG. 10 and FIG. 11. The wall bracket 19 is a metal or metal casting fixture. The wall bracket 19 has a base 54 and two parallel flanges 55 and 56. Each of the flanges 55 and 56 have aligned holes, forming an aligning through hole.

The base 54 of wall bracket 19 has two or more holes. The wall bracket 19 is mechanically fastened or bolted to the silo wall 2.

The sets of the braces of the support 11 are identical with each other. The brace 27, being typical of the braces, is shown in greater detail in FIG. 7 through FIG. 11. The brace 27 is a metal rod or cable having two end holes, one each for the inner end 57 and the outer end 58 thereof, for receiving the fasteners or bolts 38 and 42. The clamp end bracket 34 receives the inner end 57 of the brace 27 and retains the inner end 57 therein by the bolt 38 passing through the aligning through hole of the clamp end bracket 34 and the inner end hole of the brace 27. The wall bracket 19 receives the outer end 58 of the brace 27 and retains the outer end 58 therein by the bolt 42 passing through the aligning through hole of the wall bracket 19 and the outer end hole of the brace 27.

Operation of Invention

operation, the delivery system 10 of the present invention automatically sequentially fills the storage silo 1, as shown in FIG. 12, FIG. 13, and FIG. 14, with the material 3 when the material is transported to the silo 1 by a conveyor entraining the material within a flow of fluid. In the

embodiment of the present invention shown in FIG. 1, that is also shown in FIG. 12, FIG. 13, and FIG. 14, that conveyor is the conventional pneumatic conveyor 5 that entrains the material within a flow of air for depositing the material 3 into the silo 1.

As the pneumatic conveyor 5 begins to convey the pneumatic material flow 6 into the delivery system 10, filling of the storage silo 1 commences. The horizontal tube 12 of the

delivery system 10 receives the pneumatic material flow 6 from the pneumatic conveyor 5 and conveys the pneumatic material flow 6 into the silo 1. The elbow 13 directs the pneumatic material flow 6 from the horizontal tube 12 vertically into the vertical tube 14 that conveys the pneumatic material flow 6 upwardly and downstream within the silo 1.

The vertical tube 14 conveys the pneumatic material flow 6 upwardly and downstream into the first material separator 150 of the delivery system 10, which in the embodiment shown in FIG. 12 is the upstream separator 100. The pneumatic material flow 6 expands from the inlet tube 154 into the increased diametric volume of the forcing cone 157 within the material separator 150. Insufficient air pressure results in a choking action within the material separator 150, separating the material 3 from the airflow. A flow of the separated material 3 is

automatically deposited downwardly by gravity out of the

material separator 150 through the first outlet 152 and into the silo 1, forming a mound of the separated material 3 having a material surface 4. The airflow is rapidly released upwardly through the second outlet 153 and also downwardly through the first outlet 152.

As the material separator 150, specifically the upstream separator 100, continues to separate the material 3, the flow of the separated material 3 raises the level of the material surface 4 within the silo 1 to eventually meet with and block the first outlet 152 as shown in FIG. 13. This blocking of the first outlet 152 automatically stops the flow of the separated material 3 being deposited out of the material separator 150 5 through the first outlet 152 into the silo 1. The pneumatic

material flow 6 is reestablished within the material separator 150.

The outlet tube 162, which in the embodiment shown in FIG. 1 is the vertical tube 101, conveys the reestablished pneumatic

L0 material flow 6 upwardly and downstream into the material

separator 150 of the delivery system 10 that is the next

material separator 150 that is downstream of the first material separator 150. In the embodiment shown in FIG. 13, that next material separator 150 is the downstream separator 200. The

L5 downstream separator 200, which is that next material separator 150, then separates the material 3 from the airflow in the identical operation as that of the previous material separator 150 (the upstream separator 100 in the embodiment shown in FIG. 12). As shown in FIG. 14, the flow of the separated material 3

10 is deposited out of the downstream separator 200 onto the mound of the material 3 that had been deposited out of the upstream separator 100, the separated material 3 falling at most only as far as the previous material separator 150 (the upstream

separator 100 in the embodiment shown in FIG. 13) , again raising

15 the level of the material surface 4.

This operation of separating the material, flowing the material, depositing the material, then stopping the flowing and the depositing of the material by blocking the first outlet, and then reestablishing the pneumatic material flow 6 to convey

10 upwardly the pneumatic material flow 6 into the next material separator 150 that is downstream is repeated for each of the material separators 150 of the delivery system 10 in sequence from the bottom of the silo 1 to the top of the silo 1. The final separator in this sequence is the top separator 300, which

55 operates similarly as all the other material separators 150

operate. The cap 311 redirects any flow through the second outlet 303 of the top separator 300 downwardly and out of the top separator 300 into the silo 1.

Thus, for each separator, the separator functions

selectively in either one of two modes of operation. In one mode of operation, the separator separates the material from the airflow entraining the material and flows the separated material through the first outlet thereof. In another mode of operation, the airflow entraining the material flows through the separator without separating the material therefrom and without flowing separated material through the first outlet thereof. The selection between the two modes of operation is automatic, based on whether the surface of the mound of the deposited material does or does not block the first outlet of the separator through which the separated material is deposited onto the mound. The selectively separating and selectively flowing requires no moving parts. Thus, for each separator, the separator

selectively separates the material and selectively flows the separated material into the silo to sequentially fill the silo up to the height that the separator is located within the silo.

Further, the support 11 has a plurality of the clamp assemblies to suspend and center the series of the tubes and the separators of the delivery system 10. The clamp assemblies are structurally attached to the silo wall 2 through a plurality of brackets to distribute pressure. The distribution of the wall brackets throughout the silo 1 provides even weight transfer to the silo wall 2. The two equal half clamps of the clamps of the clamp assemblies simplify construction. The clamps of the clamp assemblies provide for even load transfer and stabilization through the application of opposing clamp brackets.

Suspension of the delivery system 10 of the present

invention within the silo 1 provides an unobstructed floor area for mechanical sweeping.

It is also possible to charge the delivery system 10 of the present invention through the silo floor as an alternative to through the silo wall 2.

This description of the present invention is not intended to be limited to only metal materials. Plastic and rubber may also be substituted for any or all parts. The present invention also lends itself to colorful displays including confectionaries through the use of clear glass or clear plastic materials.




 
Previous Patent: WOOD CHIPPER HOOK

Next Patent: PLENUM CHAMBER FOR EXHAUST SYSTEM