Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHOD FOR ADHERING PROFILES TO SUBSTRATE SURFACES
Document Type and Number:
WIPO Patent Application WO/2018/130496
Kind Code:
A1
Abstract:
The invention relates to a method for adhering profiles (1) to LSE substrate surfaces (7), wherein a profile surface (2) and a first adhesive side (3) of an adhesive mass layer - containing a) 40 - 70 wt.% of at least one poly(meth)acrylate in relation to the total weight of the adhesive mass; b) 15 - 50 wt.% of at least one synthetic rubber in relation to the total weight of the adhesive mass; and c) at least one tackifier that is compatible with the poly(meth)acrylate/s - undergo a plasma treatment, and the profile surface (2) and the first adhesive side (3) are adhered to one another, a second adhesive side (4) of the adhesive mass layer undergoes a plasma treatment, and the plasma-treated second adhesive side (4) is adhered to the LSE substrate surface (7).

Inventors:
KOOPS ARNE (DE)
GEELINK MARTIN (DE)
Application Number:
PCT/EP2018/050379
Publication Date:
July 19, 2018
Filing Date:
January 08, 2018
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
TESA SE (DE)
International Classes:
B29C65/00; C09J5/02
Domestic Patent References:
WO2012152710A22012-11-15
Foreign References:
EP2832811A12015-02-04
EP0497996B11994-04-13
EP1978069A12008-10-08
DE102016224684A2016-12-12
Other References:
P. E. HINKAMP, POLYMER, vol. 8, 1967, pages 381
C. DONKER, PSTC ANNUAL TECHNICAL SEMINAR, PROCEEDINGS, May 2001 (2001-05-01), pages 149 - 164
Download PDF:
Claims:
Patentansprüche

Verfahren zur Verklebung von Profilen (1 ) auf Substratoberflächen (7), indem:

eine Profiloberfläche (2) und eine erste Klebseite (3) einer Haftklebmasseschicht enthaltend: a) 40 bis 70 Gew.-%, bezogen auf das Gesamtgewicht der Haftklebemasse, mindestens eines Poly(meth)acrylats;

b) 15 bis 50 Gew.-%, bezogen auf das Gesamtgewicht der Haftklebemasse, mindestens eines Synthesekautschuks und

c) mindestens einen mit dem/den Poly(meth)acrylat(en) verträglichen Tackifier jeweils plasmabehandelt werden und die Profiloberfläche (2) und die erste Klebseite (3) aufeinander geklebt werden,

eine zweite Klebseite (4) der Haftklebmasseschicht plasmabehandelt wird und die plasmabehandelte zweite Klebseite (4) auf die Substratoberfläche (7) geklebt wird.

Verfahren nach Anspruch 1 ,

dadurch gekennzeichnet, dass die Substratoberfläche als eine LSE Substratoberfläche (7) ausgebildet wird und die plasmabehandelte zweite Klebseite (4) auf die LSE Substratoberfläche (7) aufgeklebt wird.

Verfahren nach Anspruch 1 oder 2,

dadurch gekennzeichnet, dass als Haftklebmasseschicht ein Klebeband (6) verwendet wird.

Verfahren nach Anspruch 1 , 2 oder 3,

dadurch gekennzeichnet, dass die Profiloberfläche (2) und die erste Klebseite (3) simultan plasmabehandelt werden.

Verfahren nach einem der vorstehenden Ansprüche,

dadurch gekennzeichnet, dass die Substratoberfläche (7) nicht plasmabehandelt wird und die plasmabehandelte zweite Klebseite (4) auf die nicht plasmabehandelte

Substratoberfläche (7) geklebt wird.

Verfahren nach einem der vorstehenden Ansprüche,

dadurch gekennzeichnet, dass als ein Profil (1 ) eine Verbindung aus folgender Gruppe gewählt wird: PP, PE, ein Blend aus ABS und PVC oder ein thermoplastisches Elastomer TPV oder TPS.

Description:
Beschreibung

Verfahren zur Verklebung von Profilen auf Substratoberflächen

Die Erfindung betrifft ein Verfahren zur Verklebung von Profilen auf Substratoberflächen.

In vielen Technologiebereichen werden zunehmend Klebebänder zur Verbindung von Bauteilen eingesetzt. Gerade im Fall von Verklebungen auf Oberflächen von Autos tritt eine Schwierigkeit auf, die aus der unpolaren Natur von Automobilbauteiloberflächen resultiert. Die unpolaren Oberflächen sind hydrophob, um einen besonders starken schmutz- und wasserabweisenden Effekt zu erzeugen. Das hat jedoch auch den Nachteil, dass Klebmassen üblicherweise schlecht auf ihnen haften. Hohe Verklebungsfestigkeiten aufgrund von polaren Untergründen, beispielsweise auf Polyethylen- oder Polypropylenoberflächen, sind häufig gar nicht oder nur sehr schwer zu realisieren. Grundsätzlich besteht beim Aufeinanderkleben von Oberflächen mittels Klebmassen das Problem, diese dauerhaft und fest auf die Oberfläche des Substrates aufzubringen. Dafür ist eine besonders hohe Adhäsion der Haftklebemasse an der Oberfläche notwendig. Als Adhäsion wird üblicherweise der physikalische Effekt bezeichnet, der den Zusammenhalt zweier miteinander in Kontakt gebrachter Phasen an ihrer Grenzfläche aufgrund dort auftretender intermolekularer Wechselwirkungen bewirkt. Die Adhäsion bestimmt somit das Anhaften der Klebmasse an der Substratoberfläche, die als Anfassklebrigkeit (dem sogenannten„Tack") und als Klebkraft bestimmbar ist. Um die Adhäsion einer Klebemasse gezielt zu beeinflussen, werden der Klebmasse häufig Weichmacher und/oder klebkraft- steigernde Harze (sogenannte„Tackifier") zugesetzt.

Eine einfache Definition der Adhäsion kann„die Wechselwirkungsenergie pro Einheitsfläche" [in mN/m] sein, wobei diese aufgrund experimenteller Einschränkungen, wie Unkenntnis der wahren Kontaktflächen, nicht messbar ist. Weiterhin wird oft die Oberflächenenergie (OFE) mit „polaren" und„unpolaren" Komponenten beschrieben. Dieses vereinfachte Modell hat sich in der Praxis durchgesetzt. Gemessen werden diese Energie und ihre Komponenten oft mittels Messung der statischen Kontaktwinkel unterschiedlicher Testflüssigkeiten. Den Oberflächenspannungen dieser Flüssigkeiten werden polare und unpolare Anteile zugeordnet. Aus den beobachteten Kontaktwinkeln der Tropfen auf der Prüfoberfläche werden die polaren und unpolaren Anteile der Oberflächenenergie der Prüfoberfläche ermittelt. Dies kann zum Beispiel nach dem OWKR-Modell erfolgen. Eine industriell übliche alternative Methode ist die Bestimmung mittels Testtinten nach DIN ISO 8296.

Im Kontext solcher Diskussionen werden oft die Begriffe „polar" und „hochenergetisch" gleichgesetzt, ebenso die Begriffe „unpolar" und „niederenergetisch". Dahinter steht die Erkenntnis, dass polare Dipolkräfte vergleichsweise stark sind gegenüber sogenannten „dispersen" oder „unpolaren" Wechselwirkungen, die ohne Beteiligung permanenter molekularer Dipole aufgebaut werden. Die Grundlage dieses Modells der Grenzflächenenergie und Grenzflächenwechselwirkungen ist die Vorstellung, dass polare Komponenten nur mit polaren wechselwirken und unpolare nur mit unpolaren.

Jedoch kann eine Oberfläche auch kleine oder mittlere polare Anteile an der Oberflächenenergie aufweisen, ohne dass die Oberflächenenergie„hoch" ist. Ein Richtwert kann sein, dass, sobald der polare Anteil der OFE größer ist als 3 mN/m, die Oberfläche im Sinne dieser Erfindung als„polar" zu bezeichnen ist. Dies entspricht in etwa der praktischen unteren Nachweisgrenze. Grundsätzlich gibt es keine harten Grenzen für Begriffe wie hoch- und niederenergetisch. Für den Zweck der Diskussion wird die Grenze bei 38 mN/m beziehungsweise 38 dyn/cm (bei Raumtemperatur) gesetzt. Dies ist ein Wert, oberhalb dessen beispielsweise die Bedruckbarkeit einer Oberfläche meist hinreichend ist. Zum Vergleich kann man die Oberflächenspannung (= Oberflächenenergie) von reinem Wasser betrachten; diese liegt bei ca. 72 mN/m (unter anderem temperaturabhängig).

Insbesondere auf niederenergetischen Substraten wie PE, PP oder EPDM, aber auch auf vielen Lacken gibt es große Probleme bei der Erreichung zufriedenstellender Adhäsion sowohl bei Verwendung von Haftklebemassen als auch anderen Klebestoffen oder Beschichtungen.

Die physikalische Vorbehandlung von Untergründen zur Verbesserung von Verklebungsfestigkeiten ist vor allem bei flüssigen Reaktivkiebestoffen üblich. Eine Aufgabe der physikalischen Vorbehandlung kann dabei auch eine Reinigung des Untergrunds sein, beispielsweise von Ölen, oder ein Aufrauen zur Vergrößerung der effektiven Fläche.

Bei einer physikalischen Vorbehandlung spricht man meist von einer „Aktivierung" der Oberfläche. Dies impliziert meist eine unspezifische Wechselwirkung im Gegensatz zu beispielsweise einer chemischen Reaktion nach dem Schlüssel-Schloss-Prinzip. Eine Aktivierung impliziert meistens eine Verbesserung von Benetzbarkeit, Bedruckbarkeit oder Verankerung einer Beschichtung. Bei Selbstklebebändern ist ein Auftragen eines Haftvermittlers auf den Untergrund üblich. Dies ist aber oft ein fehleranfälliger, aufwändiger, manueller Schritt.

Der Erfolg bei der Verbesserung der Adhäsion von Haftklebemassen durch physikalische Vorbehandlung des Untergrunds, beispielsweise durch Flamme, Corona, Plasma, ist nicht universell, da unpolare Klebmassen, wie zum Beispiel Synthesekautschuk, typischerweise nicht davon profitieren.

Es ist daher Aufgabe der Erfindung, ein Verfahren zu Verfügung zu stellen, mit dem Profile besser an Bauteiloberflächen angeklebt werden können.

Das erfindungsgemäße Verfahren zeichnet sich dadurch aus, dass eine Haftklebmasseschicht, die weiter unten noch näher spezifiziert wird, auf einer ersten Klebseite plasmabehandelt wird und eine Profiloberfläche eines Profils ebenfalls plasmabehandelt wird und die erste Klebseite und die Profiloberfläche, die beide plasmabehandelt sind, aufeinander geklebt werden. Dann wird eine zweite Klebseite der Haftklebmasseschicht ebenfalls plasmabehandelt, dabei kann die Plasmabehandlung gleich oder andersgeartet zur Plasmabehandlung der ersten Klebseite erfolgen und die plasmabehandelte zweite Klebseite wird auf die Substratoberfläche geklebt. Eine Plasmabehandlung ist beispielsweise in der EP 0 497 996 B1 beschrieben. Dort wird eine Doppelstiftelektrode gewählt, wobei für jede Stiftelektrode ein eigener Kanal zur Druckbeaufschlagung vorhanden ist. Zwischen den beiden Spitzen der Elektroden entsteht eine Coronaentladung, die den durch die Kanäle strömenden Gasstrom ionisiert und in ein Plasma umwandelt.

Dieses Plasma gelangt dann an die zu behandelnde Oberfläche und führt dort insbesondere eine Oberflächenoxidation durch, welche die Benetzbarkeit der Oberfläche verbessert. Die Art der physikalischen Behandlung wird (hier) als indirekt bezeichnet, weil die Behandlung nicht am Erzeugungsort der elektrischen Entladung vorgenommen wird. Die Behandlung der Oberfläche findet bei oder nahe bei Atmosphärendruck statt, wobei jedoch der Druck im elektrischen Entladungsraum oder Gaskanal erhöht sein kann. Unter dem Plasma wird hier ein Atmosphärendruckplasma verstanden, das ein elektrisch aktiviertes homogenes reaktives Gas ist, das sich nicht im thermischen Equilibrium befindet, mit einem Druck nahe dem Umgebungsdruck im Wirkbereich. Im Allgemeinen beträgt der Druck 0,5 bar mehr als der Umgebungsdruck. Durch die elektrischen Entladungen und durch lonisierungsprozesse im elektrischen Feld wird das Gas aktiviert, und es werden hochangeregte Zustände in den Gasbestandteilen erzeugt. Das verwendete Gas und die Gasmischung werden als Prozessgas bezeichnet. Grundsätzlich können dem Prozessgas auch gasförmige Stoffe wie Siloxan, Acrylsäuren oder Lösungsmittel oder andere Bestandteile beigemischt werden. Bestandteile des Atmosphärendruckplasmas können hochangeregte atomare Zustände, hochangeregte molekulare Zustände, Ionen, Elektronen, unveränderte Bestandteile des Prozessgases sein. Das Atmosphärendruckplasma wird nicht in einem Vakuum erzeugt, sondern üblicherweise in Luftumgebung. Das bedeutet, dass das ausströmende Plasma, wenn das Prozessgas nicht selbst schon Luft ist, zumindest Bestandteile der umgebenden Luft enthält.

Bei einer Coronaentladung nach obiger Definition bilden sich durch die angelegte hohe Spannung filamentäre Entladungskanäle mit beschleunigten Elektronen und Ionen.

Insbesondere die leichten Elektronen treffen mit hoher Geschwindigkeit auf die Oberfläche mit

Energien, die ausreichen, um die meisten Molekülbindungen aufzubrechen. Die Reaktivität der außerdem entstehenden reaktiven Gasbestandteile ist meist ein untergeordneter Effekt.

Die aufgebrochenen Bindungsstellen reagieren dann mit Bestandteilen der Luft oder des Prozessgases weiter. Ein entscheidender Effekt ist die Bildung kurzkettiger Abbauprodukte durch Elektronenbeschuss. Bei Behandlungen höherer Intensität tritt auch ein signifikanter

Materialabtrag ein.

Durch die Reaktion eines Plasmas mit der Substratoberfläche werden verstärkt die Plasmabestandteile direkt„eingebaut". Alternativ können auf der Oberfläche ein angeregter Zustand oder eine offene Bindungsstelle und Radikale erzeugt werden, die dann sekundär weiterreagieren, zum Beispiel mit Luftsauerstoff aus der Umgebungsluft. Bei manchen Gasen wie Edelgasen ist keine chemische Bindung der Prozessgasatome oder Moleküle an das Substrat zu erwarten. Hier findet die Aktivierung des Substrats ausschließlich über Sekundärreaktionen statt.

Der wesentliche Unterschied ist also, dass bei der Plasmabehandlung keine direkte Einwirkung diskreter Entladungskanäle auf die Oberfläche stattfindet. Die Wirkung findet also homogen und schonend vor allem über reaktive Gasbestandteile statt. Bei einer indirekten Plasmabehandlung sind freie Elektronen möglicherweise vorhanden, aber nicht beschleunigt, da die Behandlung außerhalb des erzeugenden elektrischen Feldes stattfindet. Die Plasmabehandlung ist also weniger zerstörend und homogener als eine Coronabehandlung, da keine diskreten Entladungskanäle auf die Oberfläche treffen. Es entstehen weniger kurzkettige Abbauprodukte des behandelten Materials, die eine Schicht mit negativem Einfluss auf der Oberfläche bilden können. Deswegen können oft bessere Benetzbarkeiten nach Plasmabehandlung gegenüber Coronabehandlung erzielt werden bei längerer Beständigkeit des Effekts.

Der geringere Kettenabbau und die homogene Behandlung durch Verwendung einer Plasmabehandlung tragen wesentlich zur Robustheit und Effektivität des gelehrten Verfahrens bei.

Das Plasmagerät der EP 0 497 996 B1 weist recht hohe Gasströme im Bereich von 36 m 3 pro Stunde, bei 40 cm Elektrodenbreite pro Spalt auf. Aus den hohen Strömungsgeschwindigkeiten resultiert eine geringe Verweilzeit der aktivierten Bestandteile auf der Oberfläche des Substrates. Des Weiteren gelangen auch nur solche Bestandteile des Plasmas bis zum Substrat, die entsprechend langlebig sind und durch einen Gasstrom bewegt werden können. Elektronen beispielsweise können nicht durch einen Gasstrom bewegt werden und spielen dabei also keine Rolle.

Nachteilig bei der genannten Plasmabehandlung ist jedoch die Tatsache, dass das auf die Substratoberfläche treffende Plasma hohe Temperaturen von im günstigsten Fall wenigstens 120 °C aufweist. Häufig besitzt das entstehende Plasma jedoch hohe Temperaturen von einigen 100 °C. Die bekannten Plasmakanonen führen zu einem hohen thermischen Eintrag in die Substratoberfläche. Die hohen Temperaturen können zur Schädigung der Substratoberfläche führen, wodurch neben den aktivierenden ungewünschte Nebenprodukte entstehen, die als LMWOM, Low-Molecular-Weight-Oxidized-Materials, bekannt sind. Dieser hochoxidierte und wasserlösliche Polymerschrott, der mit dem Substrat nicht mehr kovalent verbunden ist, führt zu einer geringen Resistenz gegenüber feuchtwarmen Klimabedingungen.

Neben der Hochtemperatur-Plasmabehandlung ist es auch möglich, die Substratoberflächen in einer Niedertemperaturplasmabehandlung vorzubehandeln. So ist es möglich, die Substratoberfläche eines Substrates vor der Verklebung mit einer Niedertemperaturplasmabehandlung zu behandeln und dadurch eine Klebkraft zwischen der Substratoberfläche und der Klebmasseoberfläche einer Klebmasse zu vergrößern. Unter einer Niedertemperatur-Entladungskonfiguration wird beispielsweise eine Konfiguration verstanden, die allgemein Plasma niedriger Temperatur erzeugt. Dabei wird ein Prozessgas in ein elektrisches Feld, das beispielsweise durch ein Piezoelement erzeugt wird, geleitet und dabei zum Plasma angeregt. Ein Plasmaentladungsraum ist der Raum, in dem das Plasma angeregt wird. Das Plasma tritt aus einem Austritt aus dem Plasmaentladungsraum aus.

Unter einem Niedertemperatur-Plasma wird hier ein Plasma verstanden, das eine Temperatur beim Auftreffen auf die Oberfläche von höchstens 70 °C, vorzugsweise höchstens 60 °C, besonders bevorzugt jedoch höchstens 50 °C aufweist. Aufgrund der niedrigen Temperatur werden die Oberflächen weniger geschädigt, und es entstehen insbesondere keine ungewünschten Nebenprodukte, die sogenannten LMWOMs (Low-Molecular-Weight- Oxidized-Materials). Diese LMWOMs führen insbesondere bei feuchtwarmen Umgebungsbedingungen zu einer Verringerung der Klebkraft der Klebmasse auf der Substratoberfläche.

Die niedrige Temperatur des Plasmas hat darüber hinaus den Vorteil, dass eine Plasmadüse des Plasmagenerators in einem sehr geringem Abstand von weniger als 2 mm über die behandelnde Oberfläche gefahren werden kann und dieser Abstand konstant, unabhängig von den Eigenschaften der Oberfläche, aufrechterhalten werden kann. Insbesondere kann dadurch die Substratoberfläche im gleichen Abstand von der Plasmadüse aktiviert werden wie die Klebmasseoberfläche, was zu einer deutlichen Beschleunigung des Verfahrens führt. Bisher musste bei der Verwendung von Hochtemperatur-Plasmadüsen der Abstand des Plasmadüsenaustritts von der Oberfläche des Substrates auf jedes Material angepasst werden. Dieses geschieht gemäß dem Stand der Technik dadurch, dass die Behandlungsdistanz zur Materialoberfläche erhöht beziehungsweise verringert wird. Das ist jedoch mit einem erhöhten Zeitaufwand und einer Verkomplizierung des Aktivierungsverfahrens verbunden.

Das Niedertemperatur-Plasma wird günstigerweise durch eine Plasmadüse erzeugt, die auf einem piezoelektrischen Effekt beruht. Dabei wird ein Prozessgas in einem Plasmaentladungsraum an einem piezoelektrischen Material vorbeigeführt. Das piezoelektrische Material wird als Primärbereich über zwei Elektroden durch eine Niedervolt- Wechselspannung in Schwingungen versetzt. Die Schwingungen werden in den weiteren Sekundärbereich des piezoelektrischen Materials übertragen. Aufgrund der entgegengesetzten Polarisationsrichtungen der mehrschichtigen Piezokeramik werden elektrische Felder generiert. Die entstandenen Potentialdifferenzen ermöglichen die Erzeugung von Plasmen mit geringen Temperaturen von höchstens 70 °C, vorzugsweise 60 °C, besonders bevorzugt höchstens 50 °C. Geringe Wärmebildung kann nur durch die mechanische Arbeit in der Piezokeramik entstehen. Bei gängigen Plasmadüsen mit lichtbogenähnlichen Entladungen kann dies nicht erreicht werden, da die Entladungstemperatur bei über 900 °C zur Anregung des Prozessgases liegt.

Als Substratoberflächen werden erfindungsgemäß LSE-Substratoberflächen wie Apo 1.2 oder HighSolid verwendet.

Die LSE Oberflächen sind niederenergetische, das heißt unpolare Oberflächen im Gegensatz zu hochenergetischen, das heißt polaren Oberflächen. Grundsätzlich haftet Klebstoff auf hochenergetischen Oberflächen besser an. Erfindungsgemäß wird aber eine Klebverbindung zu niederenergetischen Oberflächen hergestellt. Niederenergetische Oberflächen haben aber den Vorteil, dass auch Schmutz, Wasser usw. weniger an ihnen haften. Sie sind daher als Lacke, insbesondere Autolacke, gut geeignet.

Die Benetzbarkeit einer Oberfläche wird mit der Oberflächenenergie beschrieben. Dabei wird ein Wassertropfen auf die Oberfläche aufgebracht, und der Randwinkel des Wassertropfens wird gemessen. Messmethoden sind dafür nach DIN 53364 oder ASTM D 2578-84 bekannt.

Unpolare Untergründe sind insbesondere durch eine Oberflächenenergie von weniger als 35 dyn/cm 2 gekennzeichnet. Zu den Materialien, die sich durch LSE-Oberflächen („low surface- energy") auszeichnen, gehören UV-härtende Lacke, Pulverbeschichtungen sowie Polyolefine wie Polypropylen (PP), Hochdruck-Polyethylen (LDPE), Niederdruck-Polyethylen (HDPE), ultrahochmolekulares Polyethylen (UHMWPE) und Polymere aus Ethylen-Propylen-Dien-

Monomer (EPDM).

Problematisch bei der bekannten Plasmabehandlung der Substratoberflächen ist die Tatsache, dass diese relativ aufwändig ist, da das gesamte Bauteil, dessen Oberfläche, selbst wenn sie nur partiell vorbehandelt werden muss, bewegt und einer exakten Bearbeitung zugeführt werden muss.

Es hat sich nun überraschend gezeigt, dass Klebkräfte sowohl zwischen Profiloberfläche und einer ersten Klebseite einer Haftklebemasseschicht bei einer beidseitigen Plasmabehandlung vergrößert werden als auch die Klebkräfte zwischen einer zweiten Klebseite der Haftklebmasseschicht und einer Substratoberfläche, insbesondere wenn es sich um eine LSE Substratoberfläche handelt und wenn vorzugsweise nur die andere Klebseite plasmabehandelt wird. Es hat sich gezeigt, dass bei bestimmten Haftklebmasseschichten die Klebkraft zwischen der Haftklebmasseschicht und der LSE Substratoberfläche erhöht werden kann, wenn die Oberfläche der Haftklebmasseschicht plasmabehandelt wird. Die Haftklebmasseschicht enthält

a) 40 bis 70 Gew.-% bezogen auf das Gesamtgewicht der Haftklebemasse mindestens eines Poly(meth)acrylats,

b) 15 bis 50 Gew.-% bezogen auf das Gesamtgewicht der Haftklebemasse mindestens eines Synthesekautschuks und

c) mindestens einen mit den Poly(meth)acrylaten verträglichen Tackifier. Zunächst zeigt eine derartige Haftklebemasse bereits eine sehr gute Klebkraft sowohl bei Raumtemperatur als auch bei -30 °C und bei +70 °C.

Unter einer Haftklebmasse bzw. einem Haftklebstoff wird erfindungsgemäß, wie im allgemeinen Sprachgebrauch üblich, ein Stoff verstanden, der zumindest bei Raumtemperatur dauerhaft klebrig sowie klebfähig ist. Charakteristisch für einen Haftklebstoff ist, dass er durch Druck auf ein Substrat aufgebracht werden kann und dort haften bleibt, wobei der aufzuwendende Druck und die Einwirkdauer dieses Drucks nicht näher definiert werden. Im allgemeinen, grundsätzlich jedoch abhängig von der genauen Art des Haftklebstoffs sowie des Substrats, der Temperatur und der Luftfeuchtigkeit, reicht die Einwirkung eines kurzfristigen, minimalen Drucks, der über eine leichte Berührung für einen kurzen Moment nicht hinausgeht, um den Haftungseffekt zu erzielen, in anderen Fällen kann auch eine längerfristige Einwirkdauer eines höheren Drucks notwendig sein. Haftklebmassen haben besondere, charakteristische viskoelastische Eigenschaften, die zu der dauerhaften Klebrigkeit und Klebfähigkeit führen. Kennzeichnend für sie ist, dass, wenn sie mechanisch deformiert werden, es sowohl zu viskosen Fließprozessen als auch zum Aufbau elastischer Rückstellkräfte kommt. Beide Prozesse stehen hinsichtlich ihres jeweiligen Anteils in einem bestimmten Verhältnis zueinander, abhängig sowohl von der genauen Zusammensetzung, der Struktur und dem Vernetzungsgrad der Haftklebemasse als auch von der Geschwindigkeit und Dauer der Deformation sowie von der Temperatur.

Der anteilige viskose Fluss ist zur Erzielung von Adhäsion notwendig. Nur die viskosen Anteile, häufig hervorgerufen durch Makromoleküle mit relativ großer Beweglichkeit, ermöglichen eine gute Benetzung und ein gutes Auffließen auf das zu verklebende Substrat. Ein hoher Anteil an viskosem Fluss führt zu einer hohen Haftklebrigkeit (auch als Tack oder Oberflächenklebrigkeit bezeichnet) und damit oft auch zu einer hohen Adhäsion. Stark vernetzte Systeme, kristalline oder glasartig erstarrte Polymere sind mangels fließfähiger Anteile in der Regel nicht oder zumindest nur wenig haftklebrig.

Die anteiligen elastischen Rückstellkräfte sind zur Erzielung von Kohäsion notwendig. Sie werden zum Beispiel durch sehr langkettige und stark verknäuelte sowie durch physikalisch oder chemisch vernetzte Makromoleküle hervorgerufen und ermöglichen die Übertragung der auf eine Klebverbindung angreifenden Kräfte. Sie führen dazu, dass eine Klebverbindung einer auf sie einwirkenden Dauerbelastung, zum Beispiel in Form einer dauerhaften Scherbelastung, in ausreichendem Maße über einen längeren Zeitraum standhalten kann. Zur genaueren Beschreibung und Quantifizierung des Maßes an elastischem und viskosem Anteil sowie des Verhältnisses der Anteile zueinander werden die mittels Dynamisch Mechanischer Analyse (DMA) ermittelbaren Größen Speichermodul (G') und Verlustmodul (G") herangezogen. G' ist ein Maß für den elastischen Anteil, G" ein Maß für den viskosen Anteil eines Stoffes. Beide Größen sind abhängig von der Deformationsfrequenz und der Temperatur.

Die Größen können mit Hilfe eines Rheometers ermittelt werden. Das zu untersuchende Material wird dabei zum Beispiel in einer Platte-Platte-Anordnung einer sinusförmig oszillierenden Scherbeanspruchung ausgesetzt. Bei schubspannungsgesteuerten Geräten werden die Deformation als Funktion der Zeit und der zeitliche Versatz dieser Deformation gegenüber dem Einbringen der Schubspannung gemessen. Dieser zeitliche Versatz wird als Phasenwinkel δ bezeichnet.

Der Speichermodul G' ist wie folgt definiert: G' = (τ/γ) « cos(ö) (τ = Schubspannung, γ = Deformation, δ = Phasenwinkel = Phasenverschiebung zwischen Schubspannungs- und Deformationsvektor). Die Definition des Verlustmoduls G" lautet: G" = (τ/γ) · sin(5) (τ = Schubspannung, γ = Deformation, δ = Phasenwinkel = Phasenverschiebung zwischen Schubspannungs- und Deformationsvektor).

Eine Masse gilt insbesondere dann als Haftklebmasse und wird im Sinne der Erfindung insbesondere dann als solche definiert, wenn bei 23 °C im Deformationsfrequenzbereich von

100 bis 101 rad/sec sowohl G' als auch G" zumindest zum Teil im Bereich von 103 bis 107 Pa liegen.„Zum Teil" heißt, dass zumindest ein Abschnitt der G'-Kurve innerhalb des Fensters liegt, das durch den Deformationsfrequenzbereich von einschließlich 100 bis einschließlich

101 rad/sec (Abszisse) sowie den Bereich der G'-Werte von einschließlich 103 bis einschließlich 107 Pa (Ordinate) aufgespannt wird, und wenn zumindest ein Abschnitt der G"- Kurve ebenfalls innerhalb des entsprechenden Fensters liegt.

Unter einem „Poly(meth)acrylat" wird ein Polymer verstanden, dessen Monomerbasis zu mindestens 50 Gew.-% aus Acrylsäure, Methacrylsäure, Acrylsäureestern und/oder Methacrylsäureestern besteht, wobei Acrylsäureester und/oder Methacrylsäureester zumindest anteilig, bevorzugt zu mindestens 50 Gew.-%, bezogen auf die gesamte Monomerbasis des betreffenden Polymers, enthalten sind. Insbesondere wird unter einem „Poly(meth)acrylat" ein Polymerisat verstanden, welches durch radikalische Polymerisation von Acryl- und/oder Methacrylmonomeren sowie gegebenenfalls weiteren copolymerisierbaren Monomeren erhältlich ist.

Erfindungsgemäß ist das Poly(meth)acrylat beziehungsweise sind Poly(meth)acrylate zu 40 bis 70 Gew.-%, bezogen auf das Gesamtgewicht der Haftklebemasse, enthalten. Bevorzugt enthält die Haftklebemasse 45 bis 60 Gew.-%, bezogen auf das Gesamtgewicht der Haftklebemasse, mindestens eines Poly(meth)acrylats.

Die Glasübergangstemperatur der erfindungsgemäß einsetzbaren Poly(meth)acrylate beträgt bevorzugt < 0 °C, stärker bevorzugt zwischen -20 und -50 °C. Die Glasübergangstemperatur von Polymeren oder von Polymerblöcken in Blockcopolymeren wird im Rahmen dieser Erfindung mittels dynamischer Scanning Kalorimetrie (DSC) bestimmt. Dazu werden ca. 5 mg einer unbehandelten Polymerprobe in ein Aluminiumtiegelchen (Volumen 25 μΙ_) eingewogen und mit einem gelochten Deckel verschlossen. Zur Messung wird eine DSC 204 F1 der Firma Netzsch verwendet. Es wird zwecks Inertisierung unter Stickstoff gearbeitet. Die Probe wird zunächst auf -150 °C abgekühlt, dann mit einer Heizrate von 10 K/min bis +150 °C aufgeheizt und erneut auf -150 °C abgekühlt. Die sich anschließende zweite Heizkurve wird erneut bei 10 K/min gefahren und die Änderung der Wärmekapazität aufgenommen. Glasübergänge werden als Stufen im Thermogramm erkannt. Die Glasübergangstemperatur wird folgendermaßen erhalten (siehe Figur 1 ):

Der jeweils linear verlaufende Bereich der Messkurve vor und nach der Stufe wird in Richtung steigender (Bereich vor der Stufe) beziehungsweise fallender (Bereich nach der Stufe) Temperaturen verlängert. Im Bereich der Stufe wird eine Ausgleichsgerade 5 parallel zur Ordinate so gelegt, dass sie die beiden Verlängerungslinien schneidet, und zwar so, dass zwei Flächen 3 und 4 (zwischen der jeweils einen Verlängerungslinie, der Ausgleichsgeraden und der Messkurve) gleichen Inhalts entstehen. Der Schnittpunkt der so positionierten Ausgleichsgeraden mit der Messkurve ergibt die Glasübergangstemperatur.

Vorzugsweise sind die Poly(meth)acrylate der Haftklebemasse erhältlich durch zumindest anteiliges Einpolymerisieren von funktionellen, bevorzugt mit Epoxidgruppen vernetzungsfähigen Monomeren. Besonders bevorzugt handelt es sich dabei um Monomere mit Säuregruppen (besonders Carbonsäure-, Sulfonsäure oder Phosphonsäuregruppen) und/oder Hydroxygruppen und/oder Säureanhydridgruppen und/oder Epoxidgruppen und/oder Amingruppen; insbesondere bevorzugt sind carbonsäuregruppenhaltige Monomere. Es ist ganz besonders vorteilhaft, wenn das Polyacrylat einpolymerisierte Acrylsäure und/oder Methacrylsäure aufweist. All diese Gruppen weisen eine Vernetzungsfähigkeit mit Epoxidgruppen auf, wodurch das Polyacrylat vorteilhaft einer thermischen Vernetzung mit eingebrachten Epoxiden zugänglich wird.

Weitere Monomere, die als Comonomere für die Poly(meth)acrylate verwendet werden können, sind neben Acrylsäure- und/oder Methacrylsäureestern mit bis zu 30 C-Atomen pro Molekül beispielsweise Vinylester von bis zu 20 C-Atome enthaltenden Carbonsäuren, Vinylaromate mit bis zu 20 C-Atomen, ethylenisch ungesättigte Nitrile, Vinylhalogenide, Vinylether von 1 bis 10 C-Atome enthaltenden Alkoholen, aliphatische Kohlenwasserstoffe mit 2 bis 8 C-Atomen und mit einer oder zwei Doppelbindungen oder Mischungen dieser Monomere.

Die Eigenschaften des betreffenden Poly(meth)acrylats lassen sich insbesondere über eine Variation der Glasübergangstemperatur des Polymers durch unterschiedliche Gewichtsanteile der einzelnen Monomere beeinflussen. Das beziehungsweise die Poly(meth)acrylat(e) der Erfindung können vorzugsweise auf die folgende Monomerzusammensetzung zurückgeführt werden: a) Acrylsäureester und/oder Methacrylsäureester der folgenden Formel

CH 2 = C(R')(COOR")

wobei R 1 = H oder CH 3 und R" ein Alkylrest mit 4 bis 14 C-Atomen ist, b) olefinisch ungesättigte Monomere mit funktionellen Gruppen der für eine Reaktivität mit bevorzugt Epoxidgruppen bereits definierten Art, c) optional weitere Acrylate und/oder Methacrylate und/oder olefinisch ungesättigte Monomere, die mit der Komponente (a) copolymerisierbar sind.

Die Anteile der entsprechenden Komponenten (a), (b), und (c) werden bevorzugt derart gewählt, dass das Polymerisationsprodukt eine Glasübergangstemperatur von < 0 °C, stärker bevorzugt zwischen -20 und -50 °C (DSC) aufweist. Es ist besonders vorteilhaft, die Monomere der Komponente (a) mit einem Anteil von 45 bis 99 Gew.-%, die Monomere der Komponente (b) mit einem Anteil von 1 bis 15 Gew.-% und die Monomere der Komponente (c) mit einem Anteil von 0 bis 40 Gew.-% zu wählen (die Angaben sind bezogen auf die Monomermischung für das„Basispolymer", also ohne Zusätze eventueller Additive zu dem fertigen Polymer, wie Harze etc).

Die Monomere der Komponente (a) sind insbesondere weichmachende und/oder unpolare Monomere. Vorzugsweise werden als Monomere (a) Acryl- und Methacrylsäureester mit Alkylgruppen bestehend aus 4 bis 14 C-Atomen, besonders bevorzugt 4 bis 9 C-Atomen, eingesetzt. Beispiele für derartige Monomere sind n-Butylacrylat, n-Butylmethacrylat, n- Pentylacrylat, n-Pentylmethacrylat, n-Amylacrylat, n-Hexylacrylat, n-Hexylmethacrylat, n- Heptylacrylat, n-Octylacrylat, n-Octylmethacrylat, n-Nonylacrylat und deren verzweigte Isomere wie zum Beispiel Isobutylacrylat, Isooctylacrylat, Isooctylmethacrylat, 2-Ethylhexylacrylat oder 2-Ethylhexylmethacrylat.

Die Monomere der Komponente (b) sind insbesondere olefinisch ungesättigte Monomere mit funktionellen Gruppen, insbesondere mit funktionellen Gruppen, die eine Reaktion mit Epoxidgruppen eingehen können.

Bevorzugt werden für die Komponente (b) Monomere mit funktionellen Gruppen eingesetzt, die ausgewählt sind aus der Gruppe umfassend: Hydroxy-, Carboxy-, Sulfonsäure- oder Phosphonsäuregruppen, Säureanhydride, Epoxide, Amine.

Besonders bevorzugte Beispiele für Monomere der Komponente (b) sind Acrylsäure, Methacrylsäure, Itaconsäure, Maleinsäure, Fumarsäure, Crotonsäure, Aconitsäure, Dimethylacrylsäure, ß-Acryloyloxypropionsäure, Trichloracrylsäure, Vinylessigsäure, Vinylphosphonsäure, Maleinsäureanhydrid, Hydroxyethylacrylat, insbesondere 2- Hydroxyethylacrylat, Hydroxypropylacrylat, insbesondere 3-Hydroxypropylacrylat, Hydroxybutylacrylat, insbesondere 4-Hydroxybutylacrylat, Hydroxyhexylacrylat, insbesondere 6-Hydroxyhexylacrylat, Hydroxyethylmethacrylat, insbesondere 2-Hydroxyethylmethacrylat, Hydroxypropylmethacrylat, insbesondere 3-Hydroxypropylmethacrylat,

Hydroxybutylmethacrylat, insbesondere 4-Hydroxybutylmethacrylat,

Hydroxyhexylmethacrylat, insbesondere 6-Hydroxyhexylmethacrylat, Allylalkohol, Glycidylacrylat, Glycidylmethacrylat.

Prinzipiell können als Komponente (c) alle vinylisch funktionalisierten Verbindungen eingesetzt werden, die mit der Komponente (a) und/oder der Komponente (b) copolymerisierbar sind. Die Monomere der Komponente (c) können zur Einstellung der Eigenschaften der resultierenden Haftklebemasse dienen.

Beispielhafte Monomere der Komponente (c) sind: Methylacrylat, Ethylacrylat, Propylacrylat, Methyl methacrylat, Ethylmethacrylat, Benzylacrylat, Benzylmethacrylat, sec-Butylacrylat, ie/f-Butylacrylat, Phenylacrylat, Phenylmethacrylat, Isobornylacrylat, Isobornylmethacrylat, ie/f-Butylphenylacrylat, ie/f-Butylaphenylmethacrylat, Dodecylmethacrylat, Isodecylacrylat, Laurylacrylat, n-Undecylacrylat, Stearylacrylat, Tridecylacrylat, Behenylacrylat, Cyclohexylmethacrylat, Cyclopentylmethacrylat, Phenoxyethylacrlylat, Phenoxyethylmethacrylat, 2-Butoxyethylmethacrylat, 2- Butoxyethylacrylat, 3,3,5-Trimethylcyclohexylacrylat, 3,5-Dimethyladamantylacrylat, 4- Cumylphenylmethacrylat, Cyanoethylacrylat, Cyanoethylmethacrylat, 4-Biphenylacrylat, 4- Biphenylmethacrylat, 2-Naphthylacrylat, 2-Naphthylmethacrylat, Tetrahydrofufurylacrylat, Diethylaminoethylacrylat, Diethylaminoethylmethacrylat, Dimethylaminoethylacrylat, Dimethylaminoethylmethacrylat, 2-Butoxyethylacrylat, 2-Butoxyethylmethacrylat, 3- Methoxyacrylsäuremethylester, 3-Methoxybutylacrylat, Phenoxyethylacrlylat,

Phenoxyethylmethacrylat, 2-Phenoxyethylmethacrylat, Butyldiglykolmethacrylat,

Ethylenglycolacrylat, Ethylenglycolmonomethylacrylat, Methoxy Polyethylenglykolmethacrylat 350, Methoxy Polyethylenglykolmethacrylat 500, Propylenglycolmonomethacrylat, Butoxydiethylenglykolmethacrylat, Ethoxytriethylenglykolmethacrylat, Octafluoropentylacrylat, Octafluoropentylmethacrylat, 2,2,2-Trifluoroethylmethacrylat, 1 ,1 ,1 ,3,3,3-

Hexafluoroisopropylacrylat, 1 ,1 ,1 ,3,3,3-Hexafluoroisopropylmethacrylat, 2,2,3,3,3- Pentafluoropropylmethacrylat, 2,2,3,4,4,4-Hexafluorobutylmethacrylat, 2,2,3,3,4,4,4- Heptafluorobutylacrylat, 2,2,3,3,4,4,4-Heptafluorobutylmethacrylat, 2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-Pentadecafluorooctylmethacryla t, Dimethyl- aminopropylacrylamid, Dimethylaminopropylmethacrylamid, Λ/-(1 -Methylundecyl)acrylamid, /V-(n-Butoxymethyl)acrylamid, /V-(Butoxymethyl)methacrylamid, /V-(Ethoxymethyl)acrylamid, /V-(n-Octadecyl)acrylamid, weiterhin Λ/,/V-Dialkyl-substituierte Amide, wie beispielsweise N,N- Dimethylacrylamid, Λ/,/V-Dimethylmethacrylamid, /V-Benzylacrylamide, /V-Isopropylacrylamid, /V-ie f-Butylacrylamid, /V-ie f-Octylacrylamid, /V-Methylolacrylamid, /V-Methylolmethacrylamid, Acrylnitril, Methacrylnitril, Vinylether, wie Vinylmethylether, Ethylvinylether, Vinylisobutylether, Vinylester, wie Vinylacetat, Vinylchlorid, Vinylhalogenide, Vinylidenchlorid, Vinylidenhalogenide, Vinylpyridin, 4-Vinylpyridin, /V-Vinylphthalimid, /V-Vinyllactam, N- Vinylpyrrolidon, Styrol, a- und p-Methylstyrol, a-Butylstyrol, 4-n-Butylstyrol, 4-n-Decylstyrol, 3,4-Dimethoxystyrol. Makromonomere wie 2-Polystyrolethylmethacrylat (gewichtsmittleres Molekulargewicht M w , bestimmt mittels GPC, von 4000 bis 13000 g/mol), Poly(methylmethacrylat)ethylmethacrylat (Mw von 2000 bis 8000 g/mol).

Monomere der Komponente (c) können vorteilhaft auch derart gewählt werden, dass sie funktionelle Gruppen enthalten, die eine nachfolgende strahlenchemische Vernetzung (beispielsweise durch Elektronenstrahlen, UV) unterstützen. Geeignete copolymerisierbare Photoinitiatoren sind zum Beispiel Benzoinacrylat und acrylatfunktionalisierte Benzophenonderivate. Monomere, die eine Vernetzung durch Elektronenbestrahlung unterstützen, sind zum Beispiel Tetrahydrofurfurylacrylat, N-ie/f-Butylacrylamid und Allylacrylat.

Die Herstellung der Polyacrylate („Polyacrylate" wird im Rahmen der Erfindung als synonym mit „Poly(meth)acrylate" verstanden) kann nach dem Fachmann geläufigen Verfahren geschehen, insbesondere vorteilhaft durch konventionelle radikalische Polymerisationen oder kontrollierte radikalische Polymerisationen. Die Polyacrylate können durch Copolymerisation der monomeren Komponenten unter Verwendung der üblichen Polymerisationsinitiatoren sowie gegebenenfalls von Reglern hergestellt werden, wobei bei den üblichen Temperaturen in Substanz, in Emulsion, zum Beispiel in Wasser oder flüssigen Kohlenwasserstoffen, oder in Lösung polymerisiert wird. Vorzugsweise werden die Polyacrylate durch Polymerisation der Monomere in Lösungsmitteln, insbesondere in Lösungsmitteln mit einem Siedebereich von 50 bis 150 °C, bevorzugt von 60 bis 120 °C, unter Verwendung der üblichen Mengen an Polymerisationsinitiatoren, die im allgemeinen bei 0,01 bis 5 Gew.-%, insbesondere bei 0,1 bis 2 Gew.-% (bezogen auf das Gesamtgewicht der Monomeren) liegen, hergestellt.

Prinzipiell eignen sich alle dem Fachmann geläufigen, üblichen Initiatoren. Beispiele für Radikalquellen sind Peroxide, Hydroperoxide und Azoverbindungen, zum Beispiel Dibenzoylperoxid, Cumolhydroperoxid, Cyclohexanonperoxid, Di-i-butylperoxid, Cyclohexylsulfonylacetylperoxid, Diisopropylpercarbonat, ί-Butylperoktoat, Benzpinacol. In einer sehr bevorzugten Vorgehensweise wird als radikalischer Initiator 2,2'-Azobis(2- methylbutyronitril) (Vazo® 67™ der Firma DuPont) oder 2,2'-Azobis(2-methylpropionitril) (2,2 - Azobisisobutyronitril; AIBN; Vazo® 64™ der Firma DuPont) verwendet.

Als Lösungsmittel für die Herstellung der Poly(meth)acrylate kommen Alkohole wie Methanol, Ethanol, n- und iso-Propanol, n- und iso-Butanol, vorzugsweise Isopropanol und/oder Isobutanol, sowie Kohlenwasserstoffe wie Toluol und insbesondere Benzine eines Siedebereichs von 60 bis 120 °C in Frage. Ferner können Ketone wie vorzugsweise Aceton, Methylethylketon, Methylisobutylketon und Ester wie Essigsäureethylester sowie Gemische von Lösungsmitteln der genannten Art eingesetzt werden, wobei Gemische, die Isopropanol, insbesondere in Mengen von 2 bis 15 Gew.-%, bevorzugt 3 bis 10 Gew.-%, bezogen auf das eingesetzte Lösungsmittelgemisch, enthalten, vorgezogen werden. Bevorzugt erfolgt nach der Herstellung (Polymerisation) der Polyacrylate eine Aufkonzentration, und die weitere Verarbeitung der Polyacrylate erfolgt im Wesentlichen lösemittelfrei. Die Aufkonzentration des Polymerisats kann in Abwesenheit von Vernetzer- und Beschleunigersubstanzen geschehen. Es ist aber auch möglich, eine dieser Verbindungsklassen dem Polymerisat bereits vor der Aufkonzentration zuzusetzen, so dass die Aufkonzentration dann in Gegenwart dieser Substanz(en) erfolgt.

Die Polymerisate können nach dem Aufkonzentrationsschritt in einen Compounder überführt werden. Gegebenenfalls können die Aufkonzentration und die Compoundierung auch im selben Reaktor stattfinden.

Die gewichtsmittleren Molekulargewichte M w der Polyacrylate liegen bevorzugt in einem Bereich von 20.000 bis 2.000.000 g/mol, sehr bevorzugt in einem Bereich von 100.000 bis 1 .500.000 g/mol, äußerst bevorzugt in einem Bereich von 150.000 bis 1 .000.000 g/mol. Die Angaben des mittleren Molekulargewichtes Mw und der Polydispersität PD in dieser Schrift beziehen sich auf die Bestimmung per Gelpermeationschromatographie. Dazu kann es vorteilhaft sein, die Polymerisation in Gegenwart geeigneter Polymerisationsregler wie Thiole, Halogenverbindungen und/oder Alkohole durchzuführen, um das gewünschte mittlere Molekulargewicht einzustellen.

Die Angaben der zahlenmittleren Molmasse M n und der gewichtsmittleren Molmasse M w in dieser Schrift beziehen sich auf die Bestimmung per Gelpermeationschromatographie (GPC). Die Bestimmung erfolgt an 100 μΙ klarfiltrierter Probe (Probenkonzentration 4 g/l). Als Eluent wird Tetrahydrofuran mit 0,1 Vol.-% Trifluoressigsäure eingesetzt. Die Messung erfolgt bei 25 °C.

Als Vorsäule wird eine Säule Typ PSS-SDV, 5 μηη, 10 3 Ä, 8,0 mm * 50 mm (Angaben hier und im Folgenden in der Reihenfolge: Typ, Partikelgrösse, Porosität, Innendurchmesser * Länge; 1 Ä = 10 "10 m) verwendet. Zur Auftrennung wird eine Kombination der Säulen des Typs PSS- SDV, 5 μηι, 10 3 Ä sowie 10 5 Ä und 10 6 Ä mit jeweils 8,0 mm * 300 mm eingesetzt (Säulen der Firma Polymer Standards Service; Detektion mittels Differentialrefraktometer Shodex RI71 ). Die Durchflussmenge beträgt 1 ,0 ml pro Minute. Die Kalibrierung erfolgt bei Polyacrylaten gegen PMMA-Standards (Polymethylmethacrylat-Kalibrierung) und sonst (Harze, Elastomere) gegen PS-Standards (Polystyrol-Kalibrierung). Die Polyacrylate haben vorzugsweise einen K-Wert von 30 bis 90, besonders bevorzugt von 40 bis 70, gemessen in Toluol (1 %ige Lösung, 21 °C). Der K-Wert nach Fikentscher ist ein Maß für das Molekulargewicht und die Viskosität des Polymerisats. Das Prinzip der Methode beruht auf der kapillarviskosimetrischen Bestimmung der relativen Lösungsviskosität. Hierzu wird die Testsubstanz in Toluol durch dreißigminütiges Schütteln aufgelöst, so dass man eine 1 %-ige Lösung erhält. In einem Vogel-Ossag-Viskosimeter wird bei 25 °C die Auslaufzeit gemessen und daraus in Bezug auf die Viskosität des reinen Lösungsmittels die relative Viskosität der Probenlösung bestimmt. Aus Tabellen kann nach Fikentscher [P. E. Hinkamp, Polymer, 1967, 8, 381 ] der K-Wert abgelesen werden (K = 1000 k). Erfindungsgemäß besonders geeignet sind Polyacrylate, die eine enge Molekulargewichtsverteilung (Polydispersität PD < 4) haben. Diese Massen haben trotz eines relativ niedrigen Molekulargewichts nach dem Vernetzen eine besonders gute Scherfestigkeit. Zudem ermöglicht die niedrigere Polydispersität eine leichtere Verarbeitung aus der Schmelze, da die Fließviskosität gegenüber einem breiter verteilten Polyacrylat bei weitgehend gleichen Anwendungseigenschaften geringer ist. Eng verteilte Poly(meth)acrylate können vorteilhaft durch anionische Polymerisation oder durch kontrollierte radikalische Polymerisationsmethoden hergestellt werden, wobei letzteres besonders gut geeignet ist. Auch über /V-Oxyle lassen sich entsprechende Polyacrylate herstellen. Ferner lässt sich in vorteilhafter Weise die Atom Transfer Radical Polymerization (ATRP) zur Synthese eng verteilter Polyacrylate einsetzen, wobei als Initiator bevorzugt monofunktionelle oder difunktionelle sekundäre oder tertiäre Halogenide und zur Abstraktion des(r) Halogenids(e) Cu-, Ni-, Fe-, Pd-, Pt-, Ru-, Os-, Rh-, Co-, Ir-, Ag- oder Au-Komplexe eingesetzt werden.

Die Monomere zur Herstellung der Poly(meth)acrylate enthalten bevorzugt anteilig funktionelle Gruppen, die geeignet sind, mit Epoxidgruppen Verknüpfungsreaktionen einzugehen. Dies ermöglicht vorteilhaft eine thermische Vernetzung der Polyacrylate durch Reaktion mit Epoxiden. Unter Verknüpfungsreaktionen werden insbesondere Additions- und Substitutionsreaktionen verstanden. Bevorzugt kommt es also zu einer Verknüpfung der die funktionellen Gruppen tragenden Bausteine mit Epoxidgruppen tragenden Bausteinen, insbesondere im Sinne einer Vernetzung der die funktionellen Gruppen tragenden Polymerbausteine über Epoxidgruppen tragende Vernetzermoleküle als Verknüpfungsbrücken. Bei den epoxidgruppenhaltigen Substanzen handelt es sich bevorzugt um multifunktionelle Epoxide, also solche mit mindestens zwei Epoxidgruppen; entsprechend kommt es bevorzugt insgesamt zu einer mittelbaren Verknüpfung der die funktionellen Gruppen tragenden Bausteine. Die Poly(meth)acrylate der Haftklebemasse sind bevorzugt durch Verknüpfungsreaktionen - insbesondere im Sinne von Additions- oder Substitutionsreaktionen - von in ihnen enthaltenen funktionellen Gruppen mit thermischen Vernetzern vernetzt. Es können alle thermischen Vernetzer verwendet werden, die sowohl eine ausreichend lange Verarbeitungszeit gewährleisten, so dass es nicht zu einer Vergelung während des Verarbeitungsprozesses, insbesondere des Extrusionsprozesses, kommt, als auch zu einer schnellen Nachvernetzung des Polymers auf den gewünschten Vernetzungsgrad bei niedrigeren Temperaturen als der Verarbeitungstemperatur, insbesondere bei Raumtemperatur, führen. Möglich ist beispielsweise eine Kombination aus Carboxyl-, Amin- und/oder Hydroxygruppen enthaltenden Polymeren und Isocyanaten, insbesondere aliphatischen oder mit Aminen deaktivierten trimerisierten Isocyanaten, als Vernetzer.

Geeignete Isocyanate sind insbesondere trimerisierte Derivate von MDI [4,4-Methylen- di(phenylisocyanat)], HDI [Hexamethylendiisocyanat, 1 ,6-Hexylendiisocyanat] und/oder IPDI [Isophorondiisocyanat, 5-lsocyanato-1 -isocyanatomethyl-1 ,3,3-trimethylcyclohexan], beispielsweise die Typen Desmodur® N3600 und XP2410 (jeweils BAYER AG: Aliphatische Polyisocyanate, niedrigviskose HDI-Trimerisate). Ebenfalls geeignet ist die oberflächendeaktivierte Dispersion von mikronisiertem trimerisiertem IPDI BUEJ 339®, jetzt HF9 ® (BAYER AG).

Grundsätzlich zur Vernetzung geeignet sind aber auch andere Isocyanate wie Desmodur VL 50 (Polyisocyanate am MDI-Basis, Bayer AG), Basonat F200WD (aliphatisches Polyisocyanat, BASF AG), Basonat HW100 (wasseremulgierbares polyfunktionelles Isocyanat auf HDI-Basis, BASF AG), Basonat HA 300 (allophanatmodifiziert.es Polyisocyanat auf Isocyanurat. HDI- Basis, BASF) oder Bayhydur VPLS2150/1 (hydrophil modifiziertes IPDI, Bayer AG).

Bevorzugt werden thermische Vernetzer zu 0,1 bis 5 Gew.-%, insbesondere zu 0,2 bis 1 Gew.-%, bezogen auf die Gesamtmenge des zu vernetzenden Polymers, eingesetzt. Bevorzugt sind die Poly(meth)acrylate der Haftklebemasse mittels Epoxid(en) beziehungsweise mittels einer oder mehrerer epoxidgruppenhaltigen Substanz(en) vernetzt. Bei den epoxidgruppenhaltigen Substanzen handelt es sich insbesondere um multifunktionelle Epoxide, also solche mit zumindest zwei Epoxidgruppen; entsprechend kommt es insgesamt zu einer mittelbaren Verknüpfung der die funktionellen Gruppen tragenden Bausteine der Poly(meth)acrylate. Die epoxidgruppenhaltigen Substanzen können sowohl aromatische als auch aliphatische Verbindungen sein. Hervorragend geeignete multifunktionelle Epoxide sind Oligomere des Epichlorhydrins, Epoxyether mehrwertiger Alkohole (insbesondere Ethylen-, Propylen-, und Butylenglycole, Polyglycole, Thiodiglycole, Glycerin, Pentaerythrit, Sorbit, Polyvinylalkohol, Polyallylalkohol und ähnliche), Epoxyether mehrwertiger Phenole [insbesondere Resorcin, Hydrochinon, Bis- (4-hydroxyphenyl)-methan, Bis-(4-hydroxy-3-methylphenyl)-methan, Bis-(4-hydroxy-3,5- dibromphenyl)-methan, Bis-(4-hydroxy-3,5-difluorphenyl)-methan, 1 ,1 -Bis-(4- hydroxyphenyl)ethan, 2,2-Bis-(4-hydroxyphenyl)propan, 2,2-Bis-(4-hydroxy-3-methylphenyl)- propan, 2,2-Bis-(4-hydroxy-3-chlorphenyl)-propan, 2,2-Bis-(4-hydroxy-3,5-dichlorphenyl)- propan, 2,2-Bis-(4-hydroxy-3,5-dichlorphenyl)-propan, Bis-(4-hydroxyphenyl)-phenylmethan, Bis-(4-hydroxyphenyl)-phenylmethan, Bis-(4-hydroxyphenyl)diphenylmethan, Bis (4- hydroxyphenyl)-4'-methylphenylmethan, 1 ,1 -Bis-(4-hydroxyphenyl)-2,2,2-trichlorethan, Bis-(4- hydroxyphenyl)-(4-chlorphenyl)-methan, 1 ,1 -Bis-(4-hydroxyphenyl)-cyclohexan, Bis-(4- hydroxyphenyl)-cyclohexylmethan, 4,4'-Dihydroxydiphenyl, 2,2'-Dihydroxydiphenyl, 4,4'- Dihydroxydiphenylsulfon] sowie deren Hydroxyethylether, Phenol-Formaldehyd- Kondensationsprodukte, wie Phenolalkohole, Phenolaldehydharze und ähnliche, S- und N- haltige Epoxide (zum Beispiel Ν,Ν-Diglycidylanillin, N,N'-Dimethyldiglycidyl-4,4- Diaminodiphenylmethan) sowie Epoxide, welche nach üblichen Verfahren aus mehrfach ungesättigten Carbonsäuren oder einfach ungesättigten Carbonsäureresten ungesättigter Alkohole hergestellt worden sind, Glycidylester, Polyglycidylester, die durch Polymerisation oder Mischpolymerisation von Glycidylestern ungesättigter Säuren gewonnen werden können oder aus anderen sauren Verbindungen (Cyanursäure, Diglycidylsulfid, cyclischem Trimethylentrisulfon beziehungsweise dessen Derivaten und anderen) erhältlich sind.

Sehr geeignete Ether sind beispielsweise 1 ,4-Butandioldiglycidether, Polyglycerol-3- glycidether, Cyclohexandimethanoldiglycidether, Glycerintriglycidether, Neopentylglykol- diglycidether, Pentaerythrittetraglycidether, 1 ,6-Hexandioldiglycidether), Polypropylen- glykoldiglycidether, Trimethylolpropantriglycidether, Pentaerythrittetraglycidether, Bisphenol- A-diglycidether und Bisphenol-F-diglycidether.

Besonders bevorzugt für die Poly(meth)acrylate als zu vernetzende Polymere ist die Verwendung eines beispielsweise in der EP 1 978 069 A1 beschriebenen Vernetzer- Beschleuniger-Systems („Vernetzungssystem"), um eine bessere Kontrolle sowohl über die Verarbeitungszeit, Vernetzungskinetik sowie den Vernetzungsgrad zu erhalten. Das Vernetzer-Beschleuniger-System umfasst zumindest eine epoxidgruppenhaltige Substanz als Vernetzer und zumindest eine bei einer Temperatur unterhalb der Schmelztemperatur des zu vernetzenden Polymers für Vernetzungsreaktionen mittels epoxidgruppenhaltigen Verbindungen beschleunigend wirkende Substanz als Beschleuniger. Als Beschleuniger werden erfindungsgemäß besonders bevorzugt Amine (formell als Substitutionsprodukte des Ammoniaks aufzufassen; in den folgenden Formeln sind diese Substituenten durch "R" dargestellt und umfassen insbesondere Alkyl- und/oder Arylreste und/oder andere organische Reste) eingesetzt, insbesondere bevorzugt solche Amine, die mit den Bausteinen der zu vernetzenden Polymere keine oder nur geringfügige Reaktionen eingehen.

Prinzipiell können als Beschleuniger sowohl primäre (NRh ), sekundäre (NR2H) als auch tertiäre Amine (NR3) gewählt werden, selbstverständlich auch solche, die mehrere primäre und/oder sekundäre und/oder tertiäre Amingruppen aufweisen. Besonders bevorzugte Beschleuniger sind aber tertiäre Amine wie beispielweise Triethylamin, Triethylendiamin, Benzyldimethylamin, Dimethylamino-methylphenol, 2,4,6-Tris-(N,N-dimethylaminomethyl)- phenol, N,N'-Bis(3-(dimethyl-amino)propyl)harnstoff. Als Beschleuniger können vorteilhaft auch multifunktionelle Amine wie Diamine, Triamine und/oder Tetramine eingesetzt werden. Hervorragend geeignet sind zum Beispiel Diethylentriamin, Triethylentetramin, Trimethylhexamethylendiamin.

Als Beschleuniger werden darüber hinaus bevorzugt Aminoalkohole verwendet. Besonders bevorzugt werden sekundäre und/oder tertiäre Aminoalkohole eingesetzt, wobei im Falle mehrerer Aminfunktionalitäten pro Molekül bevorzugt mindestens eine, bevorzugt alle Aminfunktionalitäten sekundär und/oder tertiär sind. Als bevorzugte Aminoalkohol- Beschleuniger können Triethanolamin, N,N-Bis(2-hydroxypropyl)ethanolamin, N- Methyldiethanolamin, N-Ethyldiethanolamin, 2-Aminocyclohexanol, Bis(2- hydroxycyclohexyl)methylamin, 2-(Diisopropylamino)ethanol, 2-(Dibutylamino)ethanol, N- Butyldiethanolamin, N-Butylethanolamin, 2-[Bis(2-hydroxyethyl)amino]-2-(hydroxymethyl)- 1 ,3-propandiol, 1 -[Bis(2-hydroxyethyl)amino]-2-propanol, Triisopropanolamin, 2- (Dimethylamino)ethanol, 2-(Diethylamino)ethanol, 2-(2-Dimethylaminoethoxy)ethanol, Ν,Ν,Ν'- Trimethyl-N'-hydroxyethylbisaminoethylether, Ν,Ν,Ν'-Trimethylaminoethylethanolamin und/oder Ν,Ν,Ν'-Trimethylaminopropylethanolamin eingesetzt werden.

Weitere geeignete Beschleuniger sind Pyridin, Imidazole (wie beispielsweise 2- Methylimidazol) und 1 ,8-Diazabicyclo[5.4.0]undec-7-en. Auch cycloaliphatische Polyamine können als Beschleuniger eingesetzt werden. Geeignet sind auch Beschleuniger auf Phosphatbasis wie Phosphine und/oder Phosphoniumverbindungen wie beispielsweise Triphenylphosphin oder Tetraphenylphosphoniumtetraphenylborat. Die Haftklebemasse enthält ferner mindestens einen Synthesekautschuk. Erfindungsgemäß ist der Synthesekautschuk beziehungsweise sind Synthesekautschuke in der Haftklebemasse zu 15 bis 50 Gew.-%, bezogen auf das Gesamtgewicht der Haftklebemasse, enthalten. Bevorzugt enthält die Haftklebemasse 20 bis 40 Gew.-%, bezogen auf das Gesamtgewicht der Haftklebemasse, mindestens eines Synthesekautschuks.

Bevorzugt ist mindestens ein Synthesekautschuk der Haftklebemasse ein Blockcopolymer mit einem Aufbau A-B, A-B-A, (A-B) n , (A-B) n X oder (A-B-A) n X,

worin

- die Blöcke A unabhängig voneinander für ein Polymer, gebildet durch Polymerisation mindestens eines Vinylaromaten;

die Blöcke B unabhängig voneinander für ein Polymer, gebildet durch Polymerisation von konjugierten Dienen mit 4 bis 18 C-Atomen und/oder Isobutylen, oder für ein teil- oder vollhydriertes Derivat eines solchen Polymers;

- X für den Rest eines Kopplungsreagenzes oder Initiators und

n für eine ganze Zahl > 2

stehen.

Insbesondere sind alle Synthesekautschuke der Haftklebemasse Blockcopolymere mit einem Aufbau wie vorstehend dargelegt. Die Haftklebemasse kann somit auch Gemische verschiedener Blockcopolymere mit einem Aufbau wie vorstehend enthalten.

Geeignete Blockcopolymere (Vinylaromatenblockcopolymere) umfassen also einen oder mehrere gummiartige Blöcke B (Weichblöcke) und einen oder mehrere glasartige Blöcke A (Hartblöcke). Besonders bevorzugt ist mindestens ein Synthesekautschuk der Haftklebemasse ein Blockcopolymer mit einem Aufbau A-B, A-B-A, (A-B)sX oder (A-B) 4 X, wobei für A, B und X die vorstehenden Bedeutungen gelten. Ganz besonders bevorzugt sind alle Synthesekautschuke der Haftklebemasse Blockcopolymere mit einem Aufbau A-B, A-B- A, (A-B)3X oder (A-B) 4 X, wobei für A, B und X die vorstehenden Bedeutungen gelten. Insbesondere ist der Synthesekautschuk der Haftklebemasse ein Gemisch aus Blockcopolymeren mit einem Aufbau A-B, A-B-A, (A-B)sX oder (A-B) 4 X, das bevorzugt mindestens Diblockcopolymere A-B und/oder Triblockcopolymere A-B-A enthält.

Der Block A ist generell ein glasartiger Block mit einer bevorzugten Glasübergangstemperatur (Tg, DSC), die oberhalb der Raumtemperatur liegt. Besonders bevorzugt liegt die Tg des glasartigen Blockes bei mindestens 40 °C, insbesondere bei mindestens 60 °C, ganz besonders bevorzugt bei mindestens 80 °C und äußerst bevorzugt bei mindestens 100 °C. Der Anteil an Vinylaromatenblöcken A an den gesamten Blockcopolymeren beträgt bevorzugt 10 bis 40 Gew.-%, besonders bevorzugt 20 bis 33 Gew.-%. Vinylaromaten zum Aufbau des Blocks A umfassen bevorzugt Styrol, α-Methylstyrol und/oder andere Styrol-Derivate. Der Block A kann somit als Homo- oder Copolymer vorliegen. Besonders bevorzugt ist der Block A ein Polystyrol.

Das Vinylaromatenblockcopolymer weist weiterhin generell einen gummiartigen Block B beziehungsweise Weichblock mit einer bevorzugten Tg von kleiner als Raumtemperatur auf. Die Tg des Weichblocks ist besonders bevorzugt kleiner als 0 °C, insbesondere kleiner als - 10 °C, beispielsweise kleiner als -40 °C und ganz besonders bevorzugt kleiner als -60 °C.

Bevorzugte konjugierte Diene als Monomere für den Weichblock B sind insbesondere ausgewählt aus der Gruppe bestehend aus Butadien, Isopren, Ethylbutadien, Phenylbutadien, Piperylen, Pentadien, Hexadien, Ethylhexadien, Dimethylbutadien und den Farnesen- Isomeren sowie beliebigen Mischungen dieser Monomere. Auch der Block B kann als Homopolymer oder als Copolymer vorliegen.

Besonders bevorzugt sind die konjugierten Diene als Monomere für den Weichblock B ausgewählt aus Butadien und Isopren. Beispielsweise ist der Weichblock B ein Polyisopren, ein Polybutadien oder ein teil- oder vollhydriertes Derivat eines dieser beiden Polymere wie insbesondere Polybutylenbutadien; oder ein Polymer aus einem Gemisch aus Butadien und Isopren. Ganz besonders bevorzugt ist der Block B ein Polybutadien.

Die Haftklebemasse enthält darüber hinaus mindestens einen mit dem/den Poly(meth)acrylaten verträglichen Tackifier, der auch als Klebkraftverstärker oder Klebharz bezeichnet werden kann. Unter einem „Tackifier" wird entsprechend dem allgemeinem Fachmannverständnis ein oligomeres oder polymeres Harz verstanden, das die Autohäsion (den Tack, die Eigenklebrigkeit) der Haftklebemasse im Vergleich zu der keinen Tackifier enthaltenden, ansonsten aber identischen Haftklebemasse erhöht.

Unter einem „mit dem/den Poly(meth)acrylaten verträglichen Tackifier" wird ein Tackifier verstanden, der die Glasübergangstemperatur des nach gründlichem Mischen von Poly(meth)acrylat und Tackifier erhaltenen Systems im Vergleich zum reinen Poly(meth)acrylat verändert, wobei auch der Mischung aus Poly(meth)acrylat und Tackifier nur eine Tg zugeordnet werden kann. Ein nicht mit dem/den Poly(meth)acrylat(en) verträglicher Tackifier würde in dem nach gründlichem Mischen von Poly(meth)acrylat und Tackifier erhaltenen System zu zwei Tg führen, von denen eine dem Poly(meth)acrylat und die andere den Harz-Domänen zuzuordnen wäre. Die Bestimmung der Tg erfolgt in diesem Zusammenhang kalorimetrisch mittels DSC (differential scanning calorimetry).

Die Poly(meth)acrylat verträglichen Harze der Zusammensetzung weisen bevorzugt einen DACP-Wert von weniger als 0 °C, sehr bevorzugt von höchstens -20 °C, und/oder bevorzugt einen MMAP-Wert von weniger als 40 °C, sehr bevorzugt von höchstens 20 °C, auf. Zur Bestimmung von DACP- und MMAP-Werten wird auf C. Donker, PSTC Annual Technical Seminar, Proceedings, Seiten 149 bis 164, Mai 2001 verwiesen. MMAP ist der gemischte-Methylcyclohexan-Anilin-Trübungspunkt.

In ein trockenes Probenglas werden 5,0 g Testsubstanz (das zu untersuchende Klebharzmuster) eingewogen und mit 10 ml_ trockenem Anilin (CAS [62-53-3], > 99,5%, Sigma-Aldrich #51788 oder vergleichbar) und 5 ml_ trockenem Methylcyclohexan (CAS [108- 87-2], > 99%, Sigma-Aldrich #300306 oder vergleichbar) versetzt. Das Probenglas wird geschüttelt, bis sich die Testsubstanz komplett aufgelöst hat. Hierzu wird die Lösung auf 100 °C aufgeheizt. Das Probenglas mit der Harzlösung wird anschließend in ein Trübungspunktmessgerät Chemotronic Cool der Firma Novomatics eingebracht und dort auf 1 10 °C temperiert. Mit einer Kühlrate von 1 ,0 K/min wird abgekühlt. Der Trübungspunkt wird optisch detektiert. Dazu wird diejenige Temperatur registriert, bei der die Trübung der Lösung 70 % beträgt. Das Ergebnis wird in °C angegeben. Je geringer der MMAP-Wert desto höher ist die Aromatizität der Testsubstanz.

DACP ist der Diaceton-Trübungspunkt.

In ein trockenes Probenglas werden 5,0 g Testsubstanz (das zu untersuchende Klebharzmuster) eingewogen und mit 5,0 g Xylol (Isomerengemisch, CAS [1330-20-7], > 98,5%, Sigma-Aldrich #320579 oder vergleichbar) versetzt. Bei 130 °C wird die Testsubstanz gelöst und sodann auf 80 °C abgekühlt. Etwaig entwichenes Xylol wird durch weiteres Xylol aufgefüllt, so dass wieder 5,0 g Xylol vorhanden sind. Anschließend werden 5,0 g Diacetonalkohol (4-Hydroxy-4-methyl-2-pentanon, CAS [123-42-2], 99%, Aldrich #H41544 oder vergleichbar) zugegeben. Das Probenglas wird geschüttelt, bis sich die Testsubstanz komplett aufgelöst hat. Hierzu wird die Lösung auf 100 °C aufgeheizt. Das Probenglas mit der Harzlösung wird anschließend in ein Trübungspunktmessgerät Chemotronic Cool der Firma Novomatics eingebracht und dort auf 1 10 °C temperiert. Mit einer Kühlrate von 1 ,0 K/min wird abgekühlt. Der Trübungspunkt wird optisch detektiert. Dazu wird diejenige Temperatur registriert, bei der die Trübung der Lösung 70 % beträgt. Das Ergebnis wird in °C angegeben. Je geringer der DACP-Wert desto höher ist die Polarität der Testsubstanz. Erfindungsgemäß bevorzugt ist der mit den Poly(meth)acrylaten verträgliche Tackifier ein Terpenphenolharz oder ein Kolophoniumderivat, besonders bevorzugt ein Terpenphenolharz. Die Haftklebemasse kann auch Mischungen mehrerer Tackifier enthalten. Unter den Kolophoniumderivaten sind Kolophoniumester bevorzugt.

Die Haftklebemasse enthält bevorzugt 7 bis 25 Gew.-%, bezogen auf das Gesamtgewicht der Haftklebemasse, mindestens eines mit den Poly(meth)acrylaten verträglichen Tackifiers. Besonders bevorzugt ist der mit den Poly(meth)acrylaten verträgliche Tackifier beziehungsweise sind mit den Poly(meth)acrylaten verträgliche Tackifier zu 12 bis 20 Gew.- %, bezogen auf das Gesamtgewicht der Haftklebemasse, enthalten.

Bevorzugt ist/sind der beziehungsweise die mit den Poly(meth)acrylaten verträgliche(n) Tackifier der Haftklebemasse auch mit dem Synthesekautschuk, insbesondere mit dessen Weichblock B, verträglich oder zumindest teilverträglich, wobei die vorstehende Definition des Begriffs „verträglich" entsprechend gilt. Polymer/Harz-Verträglichkeit ist u. a. von der Molmasse der Polymere beziehungsweise Harze abhängig. Die Verträglichkeit ist besser, wenn die Molmasse(n) niedriger liegen. Für ein gegebenes Polymer kann es möglich sein, dass die niedermolekularen Bestandteile der Harzmolmassenverteilung mit dem Polymer verträglich sind, die höhermolekularen aber nicht. Dies ist ein Beispiel für Teilverträglichkeit.

Das Gewichtsverhältnis von Poly(meth)acrylaten zu Synthesekautschuken in der Haftklebemasse beträgt bevorzugt von 1 :1 bis 3:1 , insbesondere von 1 ,8:1 bis 2,2:1 .

Das Gewichtsverhältnis von mit den Poly(meth)acrylaten verträglichen Tackifieren zu Synthesekautschuken in der Haftklebemasse beträgt bevorzugt maximal 2:1 , insbesondere maximal 1 :1. Mindestens beträgt dieses Gewichtsverhältnis bevorzugt 1 :4.

Erfindungsgemäß liegt der Synthesekautschuk in der Haftklebmasse im Poly(meth)acrylat dispergiert vor.

Bevorzugt liegt der Synthesekautschuk in der Haftklebemasse im Poly(meth)acrylat dispergiert vor. Poly(meth)acrylat und Synthesekautschuk sind dementsprechend bevorzugt für sich jeweils homogene Phasen. Die in der Haftklebemasse enthaltenen Poly(meth)acrylate und Synthesekautschuke sind vorzugsweise so gewählt, dass sie bei 23 °C nicht bis zur Homogenität miteinander mischbar sind. Die Haftklebemasse liegt somit zumindest mikroskopisch und zumindest bei Raumtemperatur bevorzugt in mindestens zweiphasiger Morphologie vor. Besonders bevorzugt sind Poly(meth)acrylat(e) und Synthesekautschuk(e) in einem Temperaturbereich von 0 °C bis 50 °C, insbesondere von -30 °C bis 80 °C, nicht homogen miteinander mischbar, so dass die Haftklebemasse in diesen Temperaturbereichen zumindest mikroskopisch mindestens zweiphasig vorliegt. Komponenten sind im Sinne dieser Schrift als dann„nicht homogen miteinander mischbar" definiert, wenn sich auch nach intensivem Vermischen die Ausbildung zumindest zweier stabiler Phasen physikalisch und/oder chemisch zumindest mikroskopisch nachweisen lässt, wobei die eine Phase reich an der einen Komponente und die zweite Phase reich an der anderen Komponente ist. Ein Vorliegen vernachlässigbar geringer Mengen der einen Komponente in der anderen, das einer Ausbildung der Mehrphasigkeit nicht entgegensteht, wird dabei als unbeachtlich angesehen. So können in der Poly(meth)acrylatphase geringe Mengen an Synthesekautschuk und/oder in der Synthesekautschukphase geringe Mengen an Poly(meth)acrylat-Komponenten vorliegen, sofern es sich nicht um wesentliche Mengen handelt, welche die Phasenseparation beeinflussen.

Die Phasentrennung kann insbesondere derart realisiert sein, dass diskrete Bereiche („Domänen"), die reich an Synthesekautschuk sind - also im Wesentlichen aus Synthesekautschuk gebildet sind -, in einer kontinuierlichen Matrix, die reich an Poly(meth)acrylat ist - also im Wesentlichen aus Poly(meth)acrylat gebildet ist -, vorliegen. Ein geeignetes Analysesystem für eine Phasentrennung ist beispielweise die Raster- Elektronenmikroskopie. Phasenseparation kann sich aber beispielweise auch dadurch erkennen lassen, dass die unterschiedlichen Phasen zwei voneinander unabhängige Glasübergangstemperaturen bei der dynamischen Differenzkalorimetrie (DDK, DSC) aufweisen. Phasentrennung liegt erfindungsgemäß dann vor, wenn sie sich durch mindestens eine der Analysenmethoden eindeutig zeigen lässt.

Innerhalb der synthesekautschukreichen Domänen kann als Feinstruktur zudem zusätzliche Mehrphasigkeit vorliegen, wobei die A-Blöcke eine Phase und die B-Blöcke eine zweite Phase bilden.

Die verwendete Haftklebmasseschicht ist vorzugsweise als Klebeband ausgebildet.

Unter einen Klebeband wird hier eine äußere Gestalt verstanden, deren eine Dimension, die Dicke deutlich kleiner als die beiden anderen Dimensionen, die Breite und Länge sind.

Als Profil wird hier insbesondere ein als Extrusionsverfahren gezogener Kunststoffstrang verstanden. Es können in dem Kunststoffstrang verschiedene Träger, wie beispielsweise haftlackierte Metallbänder oder Glasfäden, von dem schmelzflüssigen Kunststoff ummantelt sein. Vorzugsweise werden Polypropylen (PP), Polyethylen (PE), ein Blend aus Acrylnitril- Butadien-Styrol (ABS) und Polyvinylchlorid (PVC) und diverse thermoplastische Elastomere wie TPV (PP und EPDM) und TPS (SEBSplusPP) als Profilmaterialien verwendet.

Bei den verwendeten PP/EPDM-Profilen kann bei zu hohen Oberflächenspannungen, die durch Plasmabehandlung erzielt werden, eine Verschlechterung des Bruchbildes nach Wärme, insbesondere nach Feucht-/Wärmebearbeitung festgestellt werden. Das an sich bekannte Phänomen ist auf eine Überbehandlung der PP/EPDM-Profiloberfläche zurückzuführen, durch die Überbehandlung werden auf der PP/EPDM-Oberfläche sogenannte ,Low-Molecular-Weight-Oxidized-Materials', LMWOMs, produziert, die auf der Profiloberfläche aufliegen und nicht mehr kovalent mit der übrigen Profilmatrix verbunden sind. LMWOMs sind gut wasserlöslich und fördern dadurch die Feuchteunterwanderung in der Grenzfläche nach dem Verkleben. Es hat sich gezeigt, dass bei PP/EPDM-Profiloberflächen eine Oberflächenspannung von 44 bis 56 mN/m, insbesondere nach Feucht-/Wärmelagerung günstigere, das heißt höhere Klebkräfte auf der oben beschriebenen ersten Klebseite des Klebebandes erzeugen, als geringere, das heißt unterbehandelte oder aber auch stärkere, das heißt überbehandelte Profiloberflächen. Besonders günstig ist eine Plasmabehandlung, wenn die Oberflächenspannung der PP/EPDM-Profiloberfläche zwischen 50 bis 56 mN/m beträgt.

Bevorzugt ist die Haftklebemasse geschäumt. Die Schäumung kann mittels beliebiger chemischer und/oder physikalischer Methoden erfolgen. Bevorzugt wird eine geschäumte Haftklebemasse jedoch durch das Einbringen und nachfolgende Expandieren von Mikroballons erhalten. Unter „Mikroballons" werden elastische und somit in ihrem Grundzustand expandierbare Mikrohohlkugeln verstanden, die eine thermoplastische Polymerhülle aufweisen. Diese Kugeln sind mit niedrigsiedenden Flüssigkeiten oder verflüssigtem Gas gefüllt. Als Hüllenmaterial finden insbesondere Polyacrylnitril, PVDC, PVC oder Polyacrylate Verwendung. Als niedrigsiedende Flüssigkeit sind insbesondere Kohlenwasserstoffe der niederen Alkane, beispielsweise Isobutan oder Isopentan geeignet, die als verflüssigtes Gas unter Druck in der Polymerhülle eingeschlossen sind.

Durch ein physikalisches Einwirken auf die Mikroballons, beispielsweise durch eine Wärmeeinwirkung - insbesondere durch Wärmezufuhr oder -erzeugung, hervorgerufen zum Beispiel durch Ultraschall oder Mikrowellenstrahlung - erweicht einerseits die äußere Polymerhülle, gleichzeitig geht das in der Hülle befindliche flüssige Treibgas in seinen gasförmigen Zustand über. Bei einer bestimmten Paarung von Druck und Temperatur - auch als kritische Paarung bezeichnet - dehnen sich die Mikroballons irreversibel aus und expandieren dreidimensional. Die Expansion ist beendet, wenn sich der Innen- und der Außendruck ausgleichen. Da die polymere Hülle erhalten bleibt, erzielt man so einen geschlossenzelligen Schaum. Wird mittels Mikroballons geschäumt, dann können die Mikroballons als Batch, Paste oder als unverschnittenes oder verschnittenes Pulver der Formulierung zugeführt werden. Dosierpunkte sind beispielsweise vor oder nach dem Zugabepunkt des Poly(meth)acrylats denkbar, etwa gemeinsam als Pulver mit dem Synthesekautschuk oder als Paste zu einem späteren Zeitpunkt.

Es ist eine Vielzahl an Mikroballontypen kommerziell erhältlich, welche sich im Wesentlichen über ihre Größe (6 bis 45 μηη Durchmesser im unexpandierten Zustand) und ihre zur Expansion benötigten Starttemperaturen (75 bis 220 °C) differenzieren. Ein Beispiel für kommerziell erhältliche Mikroballons sind die Expancel ® DU-Typen (DU = dry unexpanded) von der Firma Akzo Nobel.

Unexpandierte Mikroballontypen sind auch als wässrige Dispersion mit einem Feststoffbeziehungsweise Mikroballonanteil von ca. 40 bis 45 Gew.-% erhältlich, weiterhin auch als polymergebundende Mikroballons (Masterbatche), zum Beispiel in Ethylvinylacetat mit einer Mikroballonkonzentration von ca. 65 Gew.-%.

Ferner sind sogenannte Mikroballon-Slurry-Systeme erhältlich, bei denen die Mikroballons mit einem Feststoffanteil von 60 bis 80 Gew.-% als wässrige Dispersion vorliegen.

Sowohl die Mikroballon-Dispersionen, die Mikroballon-Slurrys als auch die Masterbatche sind wie die DU-Typen zur Herstellung einer geschäumten Haftklebemasse geeignet.

Eine geschäumte Haftklebemasse kann auch mit sogenannten vorexpandierten Mikroballons erzeugt werden. Bei dieser Gruppe findet die Expansion schon vor der Einmischung in die Polymermatrix statt. Vorexpandierte Mikroballons sind beispielsweise unter der Bezeichnung Dualite ® oder mit der Typenbezeichnung DE (Dry Expanded) kommerziell erhältlich.

Die Dichte einer geschäumten Haftklebemasse beträgt bevorzugt 200 bis 1000 kg/m 3 , stärker bevorzugt 300 bis 900 kg/m 3 , insbesondere 400 bis 800 kg/m 3 . Besonders bevorzugt enthält der Polymerschaum Mikroballons, die im nicht expandierten Zustand bei 25 °C einen Durchmesser von 3 μηη bis 40 μηη, insbesondere von 5 μηη bis 20 μηη, und/oder nach Expansion einen Durchmesser von 10 μηη bis 200 μηη, insbesondere von 15 μηη bis 90 μηι, aufweisen.

Bevorzugt enthält der Polymerschaum bis zu 30 Gew.-% Mikroballons, insbesondere zwischen 0,5 Gew.-% und 10 Gew.-%, jeweils bezogen auf die Gesamtmasse des Polymerschaums.

Unter„expandierbaren" Mikroballons werden sowohl noch gar nicht expandierte Mikroballons als auch zwar schon teilweise expandierte, aber noch weiter expandierbare Mikroballons verstanden.

Der Anteil der Mikroballons an einem gegebenen Volumen der Haftklebmasse wird mittels Computertomographie (CT) bestimmt. Es wurde insbesondere mit einem hochauflösenden Röntgen-Mikrotomograph gearbeitet. Die Computertomographie ermöglicht eine eindeutige Unterscheidbarkeit von Gas (durch die Mikroballons erzeugte Poren) und Festkörper (Klebmassematrix), die sich überdies hervorragend graphisch darstellen lässt. Durch Auswertung mit einer geeigneten Analyse- und Visualisierungssoftware lässt sich der Volumenanteil der Mikroballons im betrachteten Volumen exakt bestimmen.

Bei den Klebebändern handelt es sich insbesondere um solche des ^CX^-Sortiments der Firma tesa SE, zurzeit beispielsweise unter der Marke„ACX plus 7812" erhältlich.

Derartige Klebebänder umfassen eine Trägerschicht, die auch als Hartphase bezeichnet wird. Die Polymerbasis der Hartphase ist bevorzugt ausgewählt aus der Gruppe bestehend aus Polyvinylchloriden (PVC), Polyethylenterephthalaten (PET), Polyurethanen, Polyolefinen, Polybutylenterephthalaten (PBT), Polycarbonaten, Polymethylmethacrylaten (PMMA), Polyvinylbutyralen (PVB), lonomeren und Mischungen aus zwei oder mehreren der vorstehend aufgeführten Polymere. Besonders bevorzugt ist die Polymerbasis der Hartphase ausgewählt aus der Gruppe bestehend aus Polyvinylchloriden, Polyethylenterephthalaten, Polyurethanen, Polyolefinen und Mischungen aus zwei oder mehreren der vorstehend aufgeführten Polymere. Die Hartphase ist im Wesentlichen eine Polymerfolie, deren Polymerbasis aus den vorstehenden Materialien ausgewählt ist. Unter einer„Polymerfolie" wird eine dünne, flächige, flexible, aufwickelbare Bahn verstanden, deren Materialbasis im Wesentlichen von einem oder mehreren Polymer(en) gebildet wird. Unter„Polyurethanen" werden in weitgefasstem Sinne polymere Substanzen verstanden, in denen sich wiederholende Einheiten durch Urethan-Gruppierungen -NH-CO-O- miteinander verknüpft sind. Unter„Polyolefinen" werden Polymere verstanden, die stoffmengenbezogen zu mindestens 50% Wiederholungseinheiten der allgemeinen Struktur -[-CH2-CR1 R2-]n- enthalten, worin R1 für ein Wasserstoffatom und R2 für ein Wasserstoffatom oder für eine lineare oder verzweigte, gesättigte aliphatische oder cycloaliphatische Gruppe steht. Soweit die Polymerbasis der Hartphase Polyolefine umfasst, handelt es sich bei diesen besonders bevorzugt um Polyethylene, insbesondere um Polyethylene mit ultrahoher Molmasse (UHMWPE).

Unter der „Polymerbasis" wird das Polymer beziehungsweise werden die Polymere verstanden, das/die den größten Gewichtsanteil aller in der betreffenden Schicht beziehungsweise Phase enthaltenen Polymere ausmacht/ausmachen.

Die Dicke der Hartphase beträgt insbesondere < 150 μηη. Bevorzugt beträgt die Dicke der Hartphase 10 bis 150 μηη, besonders bevorzugt 30 bis 120 μηη und insbesondere 50 bis 100 μηη, beispielsweise 70 bis 85 μηη. Unter der„Dicke" wird die Ausdehnung der betreffenden Schicht beziehungsweise Phase entlang der z-Ordinate eines gedachten Koordinatensystems verstanden, bei dem die durch die Maschinenrichtung und die Querrichtung zur Maschinenrichtung aufgespannte Ebene die x-y-Ebene bildet. Die Dicke wird durch Messung an mindestens fünf verschiedenen Stellen der betreffenden Schicht beziehungsweise Phase und anschließende Bildung des arithmetischen Mittels aus den erhaltenen Messergebnissen ermittelt. Die Dickenmessung der Hartphase erfolgt dabei in Einklang mit DIN EN ISO 4593.

Derartige Klebebänder können weiterhin eine Weichphase aufweisen, die einen Polymerschaum, eine viskoelastische Masse und/oder eine elastomere Masse umfassen. Die Polymerbasis der Weichphase ist bevorzugt ausgewählt aus Polyolefinen, Polyacrylaten, Polyurethanen und Mischungen aus zwei oder mehreren der vorstehend aufgeführten Polymere.

In der einfachsten Variante besteht das Klebeband nur aus einer Weichphase. Unter einem„Polymerschaum" wird ein Gebilde aus gasgefüllten kugel- oder polyederförmigen Zellen verstanden, welche durch flüssige, halbflüssige, hochviskose oder feste Zellstege begrenzt werden; ferner ist der Hauptbestandteil der Zellstege ein Polymer oder ein Gemisch mehrerer Polymere. Unter einer„viskoelastischen Masse" wird ein Material verstanden, das neben Merkmalen der reinen Elastizität (Zurückkehren in den Ausgangszustand nach äußerer mechanischer Einwirkung) auch Merkmale einer viskosen Flüssigkeit zeigt, beispielsweise das Auftraten innerer Reibung bei Deformation. Insbesondere werden Haftklebemassen auf Polymerbasis als viskoelastische Massen angesehen.

Unter einer „elastomeren Masse" wird ein Material verstanden, das gummielastisches Verhalten aufweist und bei 20°C wiederholt auf mindestens das Zweifache seiner Länge gedehnt werden kann und nach Aufhebung des für die Dehnung erforderlichen Zwanges sofort wieder annähernd seine Ausgangsdimension einnimmt.

Bezüglich des Verständnisses der Begriffe„Polymerbasis",„Polyurethane" und„Polyolefine" gilt das oben Gesagte.

Besonders bevorzugt ist die Polymerbasis der Weichphase ausgewählt aus Polyolefinen, Polyacrylaten und Mischungen aus zwei oder mehreren der vorstehend aufgeführten Polymere. Sofern Polyolefine zu der Polymerbasis der Weichphase gehören, sind diese bevorzugt ausgewählt aus Polyethylenen, Ethylen-Vinylacetat-Copolymeren (EVA) und Gemischen aus Polyethylenen und Ethylen-Vinylacetat-Copolymeren (PE/EVA-Blends). Die Polyethylene können dabei verschiedene Polyethylen-Typen sein, beispielsweise HDPE, LDPE, LLDPE, Blends aus diesen Polyethylen-Typen und/oder Gemische davon. In einer Ausführungsform umfasst die Weichphase einen Schaum und jeweils eine ober- und unterhalb der geschäumten Schicht angeordnete Haftklebeschicht aus der erfindungsgemäßen Haftklebemasse, wobei die Polymerbasis des Schaums aus einem oder mehreren Polyolefin(en) besteht. Besonders bevorzugt besteht die Polymerbasis des Schaums dabei aus einem oder mehreren Polyethylen(en), Ethylen-Vinylacetat- Copolymer(en) und Gemischen aus einem oder mehreren Polyethylen(en) und/oder Ethylen- Vinylacetat-Copolymer(en). Ganz besonders bevorzugt besteht die Polymerbasis des Schaums dabei aus einem oder mehreren Polyethylen(en).

Der Polyolefin basierte Schaum selbst ist nicht oder nur sehr wenig haftklebrig. Der Verbund mit der Hartphase beziehungsweise dem Substrat wird daher vorteilhaft durch die Haftklebeschichten bewirkt. Die Schäumung des Polyolefin basierten Ausgangsmaterials des Schaums wird bevorzugt durch zugesetztes Treibgas im Sinne einer physikalischen Schäumung und/oder durch ein chemisches Schäumungsmittel, beispielsweise durch Azodicarbonsäurediamin, hervorgerufen.

In einer weiteren Ausführungsform ist die Weichphase ein haftklebriger Polymerschaum aus der erfindungsgemäßen Haftklebemasse.„Haftklebriger Schaum" bedeutet, dass der Schaum selbst eine Haftklebemasse ist und somit ein Auftrag einer zusätzlichen Haftklebeschicht nicht erforderlich ist. Dies ist vorteilhaft, weil im Herstellungsprozess weniger Schichten zusammengefügt werden müssen und das Risiko von Ablösungserscheinungen und anderen unerwünschten Phänomenen an den Schichtgrenzen sinkt.

Weiterhin kann es vorgesehen sein, dass der an sich haftklebrige Polymerschaum ober- und/oder unterseitig mit einer Haftklebemasse beschichtet ist, wobei die Polymerbasis dieser Haftklebemasse bevorzugt aus Polyacrylaten besteht. Es können alternativ andere beziehungsweise anders vorbehandelte Klebeschichten, also beispielsweise Haftklebeschichten und/oder hitzeaktivierbare Schichten auf der Basis anderer Polymere als Poly(meth)acrylate zu der geschäumten Schicht kaschiert werden. Geeignete Basispolymere sind Naturkautschuke, Synthesekautschuke, Acrylatblockcopolymere,

Vinylaromatenblockcopolymere, insbesondere Styrolblockcopolymere, EVA, Polyolefine, Polyurethane, Polyvinylether und Silikone. Bevorzugt enthalten diese Schichten keine nennenswerten Anteile an migrierfähigen Bestandteilen, die mit dem Material der geschäumten Schicht so gut verträglich sich, dass sie in signifikanter Menge in die geschäumte Schicht diffundieren und dort die Eigenschaften verändern.

Die Weichphase des Klebebandes kann einen oder mehrere Füllstoffe enthalten. Der oder die Füllstoff(e) kann/können in einer oder in mehreren Schichten der Weichphase vorliegen.

Bevorzugt umfasst die Weichphase einen Polymerschaum, und der Polymerschaum enthält teil- oder vollexpandierte Mikroballons.

Der Polymerschaum der Weichphase des Klebebandes - sofern diese einen Polymerschaum umfasst - ist bevorzugt gekennzeichnet durch die weitgehende Abwesenheit von offenzelligen Hohlräumen. Besonders bevorzugt weist der Polymerschaum einen Anteil von Hohlräumen ohne eigene Polymerhülle, also von offenzelligen Kavernen, von nicht mehr als 2 Vol-% auf, insbesondere von nicht mehr als 0,5 Vol.-%. Der Polymerschaum ist somit bevorzugt ein geschlossenzelliger Schaum.

Optional kann die Weichphase des Klebebandes auch pulver- und/oder granulatförmige Füllstoffe, Farbstoffe und Pigmente, insbesondere auch abrasive und verstärkende Füllstoffe wie zum Beispiel Kreiden (CaC03), Titandioxide, Zinkoxide und Ruße auch zu hohen Anteilen, das heißt von 0,1 bis 50 Gew.-%, bezogen auf die Gesamtmasse der Weichphase, enthalten.

Weiterhin können schwerentflammbare Füllstoffe wie beispielsweise Ammoniumpolyphosphat; elektrisch leitfähige Füllstoffe wie beispielsweise Leitruß, Kohlenstofffasern und/oder silberbeschichtete Kugeln; thermisch leitfähige Materialien wie beispielsweise Bornitrid, Aluminiumoxid, Siliciumcarbid; ferromagnetische Additive wie beispielsweise Eisen- (lll)-oxide; weitere Additive zur Volumenerhöhung, wie beispielsweise Blähmittel, Glasvollkugeln, Glashohlkugeln, carbonisierte Mikrokugeln, phenolische Mikrohohlkugeln, Mikrokugeln aus anderen Materialien; Kieselsäure, Silicate, organisch nachwachsende Rohstoffe wie beispielsweise Holzmehl, organische und/oder anorganische Nanopartikel, Fasern; Alterungsschutzmittel, Lichtschutzmittel, Ozonschutzmittel und/oder Compoundierungsmittel in der Weichphase enthalten sein. Als Alterungsschutzmittel können bevorzugt sowohl primäre, z.B. 4-Methoxyphenol oder Irganox® 1076, als auch sekundäre Alterungsschutzmittel, z.B. Irgafos® TNPP oder Irgafos® 168 der Firma BASF, gegebenenfalls auch in Kombination miteinander, eingesetzt werden. Als weitere Alterungsschutzmittel können Phenothiazin (C-Radikalfänger) sowie Hydrochinonmethylether in Gegenwart von Sauerstoff sowie Sauerstoff selbst eingesetzt werden. Die Dicke der Weichphase beträgt vorzugsweise 200 bis 1800 μηη, besonders bevorzugt 300 bis 1500 μηι, insbesondere 400 bis 1000 μηι. Die Dicke der Weichphase wird nach ISO 1923 bestimmt.

Die Verbindung von Hart- und Weichphase beziehungsweise auch von in der Hart- und/oder Weichphase vorgesehenen Schichten untereinander zum Klebeband kann beispielsweise durch Laminieren, Kaschieren oder Coextrusion erfolgen. Es ist möglich, dass Hart- und Weichphase direkt, das heißt unmittelbar, miteinander verbunden sind. Ebenso ist es möglich, dass zwischen Hart- und Weichphase eine oder mehrere haftvermittelnde Schicht(en) angeordnet ist/sind. Das Klebeband kann darüber hinaus weitere Schichten enthalten.

Bevorzugt ist mindestens eine der miteinander zu verbindenden Schichten, stärker bevorzugt sind mehrere der miteinander zu verbindenden Schichten und ganz besonders bevorzugt sind alle der miteinander zu verbindenden Schichten mit Corona- (mit Luft oder Stickstoff), Plasma- (Luft, Stickstoff oder andere reaktive Gase beziehungsweise reaktive, als Aerosol einsetzbare Verbindungen) oder Flammenvorbehandlungsmethoden vorbehandelt.

Auf der Rückseite, das heißt auf der vom Substrat abgewandten Seite der Hartphase, ist bevorzugt eine Funktionsschicht aufgebracht, die beispielsweise Trenneigenschaften oder UV-stabilisierende Eigenschaften aufweist. Diese Funktionsschicht besteht bevorzugt aus einer Folie mit einer Dicke von < 20 μηη, besonders bevorzugt von < 10 μηη, insbesondere von < 8 μηη, beispielsweise von < 5 μηη oder einem Lack mit einer Dicke von < 10 μηη, besonders bevorzugt von < 6 μηη, insbesondere von < 3 μηη, beispielsweise von < 1 ,5 μηη. Sowohl die Folie als auch der Lack enthalten bevorzugt einen UV-Absorber, und/oder die Polymerbasis der Folie beziehungsweise des Lacks enthält UV-absorbierende und/oder UV-abweisende Gruppen. Folien können durch Laminieren, Kaschieren oder Coextrusion auf die Rückseite der Hartphase aufgebracht werden. Bei der Folie handelt es sich bevorzugt um eine metallisierte Folie. Die Polymerbasis der Folie ist bevorzugt ausgewählt aus der Gruppe bestehend aus Polyarylenen, Polyvinylchloriden (PVC), Polyethylenterephthalaten (PET), Polyurethanen, Polyolefinen, Polyutylenterephthalaten (PBT), Polycarbonaten, Polymethylmethacrylaten (PMMA), Polyvinylbutyralen (PVB), lonomeren und Mischungen aus zwei oder mehreren der vorstehend aufgeführten Polymere. „Hauptbestandteil" bedeutet hier„Bestandteil mit dem größten Gewichtsanteil, bezogen auf das Gesamtgewicht der Folie". Mit Ausnahme der Polyarylene weisen alle aufgeführten Materialien der Folie bevorzugt einen hohen Gehalt an UV-Stabilisatoren auf.

In einer speziellen Ausführungsform besteht das Klebeband in auf das Substrat gerichteter Reihenfolge aus einer Funktionsschicht (wie vorstehend beschrieben); einer Hartphase und einer Weichphase bestehend aus einer Haftklebeschicht aus der erfindungsgemäßen Haftklebemasse, einem Polymerschaum, dessen Polymerbasis aus einem oder mehreren Polyolefinen besteht, und einer weiteren Haftklebeschicht aus der erfindungsgemäßen Haftklebemasse. Die untere Haftklebeschicht kann mit einem Releaseliner abgedeckt sein, dieser wird jedoch nicht zum Klebeband gerechnet.

Bevorzugt handelt es sich bei den Klebebändern um geschäumte Massen insbesondere der oben beschriebenen Art, die zusätzlich einen (oder mehrere) Zwischenträger haben können.

Die Erfindung wird anhand von drei Ausführungsbeispielen beschrieben, dabei zeigen:

Fig. 1 eine Wärmefluss-/Temperaturgraphik zur Ermittlung der

Glasübergangstemperatur,

Fig. 2 ein schematischer Produktaufbau aus Profil, ACX plus 7812 Klebeband und LSE

Substratoberfläche, Fig. 3a, 3b PP/EPDM Profiloberfläche mit LMWOMs nach einer Plasma-Überbehandlung. tesa® ACXplus 7812 ist ein Acrylatschaum-Klebeband für die Verklebung von Anbauteilen im Aussenbereich. tesa® ACXplus 7812 weist typischerweise die folgende Zusammensetzung auf:

Polymethacylat 49 Gew.-%

Kraton D 1 1 18 * 29 Gew.-%

Mikroballons 920 DU40 4 Gew.-%

Dertophene DT 105 ** 18 Gew.-%

* Kraton D 1 1 18 Styrol-Butadien-Styrol, 76 Gew.-% Zweiblock,

Blockpolystyrolgehalt: 31 Gew.-%, Kraton Polymers

(Molekulargewicht Mw des 3-Blockanteils von 150.000 g/mol) ** Dertophene DT 105 Terpenphenolharz

Für die Plasmabehandlung einer Profiloberfläche 2 eines Profiles 1 sowie einer ersten und zweiten Klebseite 3, 4 eines Klebebandes 6 kam ein Plasmagerät des Herstellers Plasmatreat mit der Bezeichnung„Openair-Plasma" zum Einsatz.

Mit dem Plasmagerät wurden in einer simultanen Plasmabehandlung der Profiloberfläche 2 aus PP und EPDM und der ersten Klebseite 3 des ACX plus 7812 Klebebandes 6 vier Versuche durchgeführt, um die Klebkraftvergrößerung bei simultaner Behandlung beider Grenzflächen gegenüber der Nichtbehandlung beziehungsweise Behandlung nur einer der beiden Grenzflächen darzulegen. Die Ergebnisse der Messungen sind in der Figur 4 dargestellt, wobei jeweils die Klebkraft nach 20 Minuten und 24 Stunden bestimmt wurde.

Es zeigt sich deutlich, dass eine Klebkraftvergrößerung zwischen der Profiloberfläche 2 und der ersten Klebseite 3 des ACX plus 7812 Klebebandes 6 gegenüber der Referenzverklebung auftritt, wenn beide Grenzflächen plasmabehandelt werden. Bei der Referenzverklebung wird keine der beiden Referenzflächen plasmabehandelt.

Eine Klebkraftvergrößerung findet tatsächlich nicht nur bei PP und EPDM Profilen, sondern bei fast allen Kunststoffprofilen gegenüber dem ACX plus 7812 Klebeband 6 statt, wenn beide Grenzflächen plasmabehandelt sind. Daneben wurden Versuche unternommen, um Empfehlungen von Herstellern für die Plasmaaktivierung der PP/EPDM-Profiloberflächen 2 zu prüfen, dabei hat sich gezeigt, dass die von Herstellern häufig an den Verwender abgegebenen Plasmaparameter nicht geeignet sind, da fast durchgängig auf den Profilen 1 die höchstmögliche Oberflächenspannung angestrebt wird, da diese mit der zu erwartenden Klebkraftverbesserung in Verbindung gebracht wird. Dieses hat sich jedoch so als nicht richtig herausgestellt.

Der nachfolgend beschriebene Fertigungsversuch wurde mit einer OPENAIR Plasmarotationsanlage (System: RD1004, FG5001 ) der Firma Plasmatreat, Steinhagen/Germany durchgeführt. Der verwendete Düsenaufsatz besitzt einen Durchmesser von 10 mm und einen Austrittswinkel von 5° (Art. PTF 2646).

Bei dem Versuch wurde eine Behandlungsgeschwindigkeit von 6 m/min gewählt, der Düsenabstand wurde in vier Schritten von 20 auf 14 mm reduziert (siehe Tab. 1 ). Nach der Behandlung wurde die Oberflächenspannung mit Testtinten gemessen.

Tab. 1 : Messung der Oberflächenspannung bei verschiedenen Plasmaparametern

Die hergestellten Profile 1 wurden zu 150 mm großen Prüfstücken zugeschnitten und an einer Zwick-Zugprüfmaschine auf ihre Schälfestigkeit (90°-T-Peel) bestimmt.

Die mit ACX plus Klebeband 6 ausgerüsteten und vorbehandelten PP/EPDM (Moplen EP1006, Firma LyondellBasell)-Profile wurden nach der Volkswagen-Konzernnorm TL 52018-E „Schaumstoff-Klebeband, beidseitig klebend" nach

• Anlieferzustand (-> 3d RT),

· Wärmelagerung (— > Lagerung 240 h bei +90 °C; 24 h Akklimatisieren im Normalklima) und

• Feuchtwärmelagerung (— > Lagerung 240 h bei +40 °C und 100% rel. Luftfeuchte; nach beendeter Lagerung erfolgt Trocknung bei +70 °C im Umlufttrockenschrank mit Frischluftzufuhr - Dauer 8 h; 24 h Akklimatisieren im Normalklima). auf ihre Bruchart untersucht (siehe Tab. 2).

Tab. 2: Brucharten nach der Lagerung (VW TL 52018) Aus dieser Ergebnislage wird ersichtlich, dass bei den hohen Oberflächenspannungen eine Verschlechterung des Bruchbildes nach Wärme- und besonders nach Feucht-Wärme Lagerung festzustellen ist.

Das bekannte Phänomen ist auf eine Überbehandlung der PP/EPDM-Profiloberfläche 2 zurückzuführen. Der durch ungünstige Parameter produzierte hochoxidierte„Polymerschrott" LMWOM liegt auf der Polymeroberfläche und ist nicht mehr kovalent mit dem Bulk der Polymermatrix verbunden. LMWOM ist gut wasserlöslich und fördert somit die Feuchtehinterwanderung in die Grenzflächen. Wie das Bruchbild nach Tabelle 2 zeigt, können überbehandelte Profiloberflächen 2 die Feucht-/Wärmebeständigkeit dramatisch verschlechtern. Die Wärmebeständigkeit kann in der oben beschriebenen Materialkombination durch Überbehandlung beeinflusst werden und Feucht-/Wärmelagerung kann auch Verklebungen, die unter Normalbedingungen in den Adhäsionsbruch gehen, auf einen Kohäsionsbruch heben.

Selbst nach der oben genannten Rekonditionierung kann die Schädigung der Klebeverbindung nicht mehr„geheilt" werden.

Die LMWOMs wirken besonders stark auf die hydrophilen Testflüssigkeiten, so dass die Messung der Oberflächenspannung verfälscht wird. Funktionelle Gruppen, die kovalent gebunden sind an der vorbehandelten Polymermatrix, werden nicht in Lösung gebracht und ergeben zudem andere Kontaktwinkel gegenüber überbehandelte Oberflächen. Analytisch ist die Funktionalisierung an der Profiloberfläche 2 mit den funktionalisierten LMWOMs identisch (siehe Fig. 3a, 3b). Eine Unterscheidung ist nur aufwändig möglich. Es hat sich nun gezeigt, dass bei der Plasmabehandlung der gegenüberliegenden zweiten Klebseite 4 des Klebebandes 6, das als Haftklebeband ausgebildet ist, eine deutliche Klebkrafterhöhung auf LSE Untergründen als LSE Substratoberflächen 7 stattfindet, auch dann, wenn nur die zweite Klebseite 4 des Klebebandes 6 plasmabehandelt wird und nicht die LSE Substratoberfläche 7. Dieses führt natürlich zu einer erheblichen Erleichterung des Klebvorganges, da die sperrige LSE Substratoberfläche 7, beispielsweise die LSE Substratoberfläche 7 eines Substrates 8 wie beispielsweise eine Fahrzeugtür, eines Teils eines Fahrzeugbleches usw. nicht mehr mit einem Plasmagerät vorbehandelt werden müssen. Hinsichtlich der Verklebung von plasmabehandelten Haftklebmasseschichten, wie beispielsweise ACX plus 7812 und einer LSE Substratoberfläche 7, wird auch auf die DE 10 2016 224 684 A1 verwiesen, in der entsprechende Versuchsreihen durchgeführt wurden. Erfindungsgemäß hat sich aber nunmehr gezeigt, dass sich durch die Verwendung des ACX plus 7812 Klebebandes 6, also eines Acrylatklebebandes, die Verklebung von beinahe allen Profilen 1 auf LSE Substratoberflächen 7 möglich ist, wobei die LSE Substratoberfläche 7 nicht plasmabehandelt werden braucht, sondern lediglich die zweite Klebschicht 4 des ACX plus 7812 Klebebandes 6, das jedoch als Vermittler als eine Art Haftvermittler zwischen der LSE Substratoberfläche 7 und der Profiloberfläche 2 fungiert.

Bezugszeichenliste

1 Profil

2 Profiloberfläche

3 erste Klebseite

4 zweite Klebseite

6 Klebeband

7 LSE Substratoberfläche

8 Substrat