Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
A METHOD AND APPARATUS FOR GENERATING ERASURE SEQUENCE IN WIRELESS COMMUNICATION SYSTEM
Document Type and Number:
WIPO Patent Application WO/2007/051042
Kind Code:
A2
Inventors:
KHANDEKAR AAMOD (US)
GOROKHOV ALEXEI (US)
AKKARAKARAN SONY JOHN (US)
Application Number:
PCT/US2006/042417
Publication Date:
May 03, 2007
Filing Date:
October 27, 2006
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
QUALCOMM INC (US)
KHANDEKAR AAMOD (US)
GOROKHOV ALEXEI (US)
AKKARAKARAN SONY JOHN (US)
International Classes:
H04L5/02; H04J13/00; H04L1/00; H04L27/26; H04W52/54
Other References:
No Search
Attorney, Agent or Firm:
WADSWORTH, Philip R. et al. (San Diego, California, US)
Download PDF:
Claims:
W

14 CLAIMS

We claim:

1. A method of generating erasure sequence in a wireless communication system, characterized in that: constructing a one bit packet, wherein the bit in the packet is set to '0'; initializing a port counter i to c 0'; initializing a frame counter /to O'; initializing an orthogonal frequency division multiplexing (OFDM) symbol counter y to '0'; arranging a set of usable hop-ports assigned to the packet in a f th physical (PHY) Frame of transmission in increasing order; and modulating the packet of the set of usable hop-ports assigned.

2. The method as claimed in claim 1, characterized in that determining if (kj,pj) is not a dedicated pilot channel (DPICH) hop-port and if n sc is not a pilot subcarrier, wherein n sc is the subcarrier index corresponding to a hop-port # in the j'th OFDM symbol in the PHY Frame, and if kj.pi) is not the dedicated pilot channel (DPICH) hop- port.and if n sc is not the pilot subcarrier, then modulating the packet using QPSK.

3. The method as claimed in claim 1, characterized in that determining if (kj,pi) is not a dedicated pilot channel (DPICH) hop-port and if (kj,pi) is not the dedicated pilot channel (DPICH) hop-port modulating a modulation symbol s with energy/? on hop- port (ki,pθ on the antenna with index 1 O', wherein p is the power density assigned to the erasure sequence.

4. The method as claimed in claim 1, characterized in that: incrementing i; and determining if i is equal to n.

5. The method as claimed in claim 4, characterized in that determining if i is equal to NMaxErasureHop P orts,F, wherein NMaxErasureHopports,F is the maximum number of hop-ports to be used for transmitting a single erasure sequence on the forward link.

6. The method as claimed in claim 5, characterized in that: incrementing^; setting z to 1 O'; and determining if/ is equal to NFRAME,F, wherein NFR AME , F is the number of OFDM symbols in a reverse link PHY Frame.

7. The method as claimed in claim 6, characterized in that: incrementing/ settingy to '0'; and determining if the last PHY Frame is transmitted.

8. A computer readable medium including instructions stored thereon, characterized in that: a set of instructions for constructing an one bit packet, wherein the bit in the packet is set to 1 O'; a set of instructions for initializing a port counter i to '0'; a set of instructions for initializing a frame counter /to 1 O'; a set of instructions for initializing an orthogonal frequency division multiplexing (OFDM) symbol counter/ to W; a set of instructions for arranging a set of usable hop-ports assigned to the packet in a f th physical (PHY) Frame of transmission in increasing order; and a set of instructions for modulating the packet of the set of usable hop-ports assigned.

9. An apparatus operable in a wireless communication system, characterized in that: means for constructing a one bit packet, wherein the bit in the packet is set to '0'; means for initializing a port counter i to O';

means for initializing a frame counter /to '#'; means for initializing an orthogonal frequency division multiplexing (OFDM) symbol counter/ to '0'; means for arranging a set of usable hop-ports assigned to the packet in a f th physical (PHY) Frame of transmission in increasing order; and means for modulating the packet of the set of usable hop-ports assigned.

10. The apparatus as claimed in claim 9, characterized in that means for determining if (kj,pi) is not a dedicated pilot channel (DPICH) hop-port.and if n sc is not a pilot subcarrier, wherein n sc is the subcarrier index corresponding to a hop-port/?; in the j'th OFDM symbol in the PHY Frame, and if kj,pi) is not the dedicated pilot channel (DPICH) hop-port.and if n sc is not the pilot subcarrier, then modulating the packet using QPSK.

11. The apparatus as claimed in claim 9, characterized in that means for determining if (kj,pi) is not a dedicated pilot channel (DPICH) hop-port and if (kj.pi) is not the dedicated pilot channel (DPICH) hop-port modulating a modulation symbol s with energy/* on hop-port (kj,pi) on the antenna with index '0', wherein/? is the power density assigned to the erasure sequence.

12. The apparatus as claimed in claim 9, characterized in that: means for incrementing i; and means for determining if i is equal to n.

13. The apparatus as claimed in claim 12, characterized in that means for determining if z is equal to NMaxErasureHo P ports,F, wherein NMaxErasureHop P orts,F is the maximum number of hop-ports to be used for transmitting a single erasure sequence on the forward link.

14. The apparatus as claimed in claim 13, characterized in that: means for incrementing/; means for setting i to 1 O'; and

means for determining if/ is equal to N FRAME,F , wherein N FRAME , F is the number of OFDM symbols in a reverse link PHY Frame.

15. The apparatus as claimed in claim 14, characterized in that: means for incrementing/- means for setting / to 1 O'; and means for determining if the last PHY Frame is transmitted.

Description:

A METHOD AND APPARATUS FOR GENERATING ERASURE SEQUENCE IN WIRELESS COMMUNICATION SYSTEM

CLAIM OF PRIORITY UNDER 35 U.S.C. § 119

[0001] The present Application for Patent claims priority to Provisional Application Ser. No. 60/731,128, entitled "WIRELESS COMMUNICATION", filed 10/27/2005, assigned to the assignee hereof, and expressly incorporated herein by reference.

BACKGROUND Field

[0002] The present disclosure relates generally to wireless communication and more particularly to methods and apparatus for generating erasure sequence.

Background

[0003] Wireless communication systems have become a prevalent means by which a majority of people worldwide have come to communicate. Wireless communication devices have become smaller and more powerful in order to meet consumer needs and to improve portability and convenience. The increase in processing power in mobile devices such as cellular telephones has lead to an increase in demands on wireless network transmission systems. Such systems typically are not as easily updated as the cellular devices that communicate there over. As mobile device capabilities expand, it can be difficult to maintain an older wireless network system in a manner that facilitates fully exploiting new and improved wireless device capabilities. [0004] Wireless communication systems generally utilize different approaches to generate transmission resources in the form of channels. These systems may be code division multiplexing (CDM) systems, frequency division multiplexing (FDM) systems, and time division multiplexing (TDM) systems. One commonly utilized variant of FDM is orthogonal frequency division multiplexing (OFDM) that effectively partitions the overall system bandwidth into multiple orthogonal subcarriers. These subcarriers may also be referred to as tones, bins, and frequency channels. Each subcarrier can be modulated with data. With time division based techniques, each subcarrier can comprise a portion of sequential time slices or time slots. Each user may be provided with a one or more time slot and subcarrier combinations for transmitting and receiving

information in a defined burst period or frame. The hopping schemes may generally be a symbol rate hopping scheme or a block hopping scheme.

[0005] Code division based techniques typically transmit data over a number of frequencies available at any time in a range. In general, data is digitized and spread over available bandwidth, wherein multiple users can be overlaid on the channel and respective users can be assigned a unique sequence code. Users can transmit in the same wide-band chunk of spectrum, wherein each user's signal is spread over the entire bandwidth by its respective unique spreading code. This technique can provide for sharing, wherein one or more users can concurrently transmit and receive. Such sharing can be achieved through spread spectrum digital modulation, wherein a user's stream of bits is encoded and spread across a very wide channel in a pseudo-random fashion. The receiver is designed to recognize the associated unique sequence code and undo the randomization in order to collect the bits for a particular user in a coherent manner. [0006] A typical wireless communication network {e.g., employing frequency, time, and/or code division techniques) includes one or more base stations that provide a coverage area and one or more mobile {e.g., wireless) terminals that can transmit and receive data within the coverage area. A typical base station can simultaneously transmit multiple data streams for broadcast, multicast, and/or unicast services, wherein a data stream is a stream of data that can be of independent reception interest to a mobile terminal. A mobile terminal within the coverage area of that base station can be interested in receiving one, more than one or all the data streams transmitted from the base station. Likewise, a mobile terminal can transmit data to the base station or another mobile terminal. In these systems the bandwidth and other system resources are assigned utilizing a scheduler.

[0007] The signals, signal formats, signal exchanges, methods, processes, and techniques disclosed herein provide several advantages over known approaches. These include, for example, reduced signaling overhead, improved system throughput, increased signaling flexibility, reduced information processing, reduced transmission bandwidth, reduced bit processing, increased robustness, improved efficiency, and reduced transmission power.

SUMMARY

[0008] The following presents a simplified summary of one or more aspects in order to provide a basic understanding of such aspects. This summary is not an extensive overview of all contemplated aspects, and is intended to neither identify key or critical elements of all aspects nor delineate the scope of any or all aspects. Its sole purpose is to present some concepts of one or more aspects in a simplified form as a prelude to the more detailed description that is presented later.

[0009] According to one embodiment, a method is provided for generating erasure sequence in a wireless communication system, the method comprising constructing a one bit packet, wherein the bit in the packet is set to '0', initializing a port counter i to '0', initializing a frame counter /to '0', initializing an orthogonal frequency division multiplexing (OFDM) symbol counter/ to '0', arranging a set of usable hop-ports assigned to the packet in a f th physical (PHY) Frame of transmission in increasing order; and modulating the packet of the set of usable hop-ports assigned. [0010] According to another embodiment, a computer readable medium is described having a set of instructions for constructing an one bit packet, wherein the bit in the packet is set to '0% a set of instructions for initializing a port counter i to '0 ', a set of instructions for initializing a frame counter/ to C 0', a set of instructions for initializing an orthogonal frequency division multiplexing (OFDM) symbol counter j to '0', a set of instructions for arranging a set of usable hop-ports assigned to the packet in a f th physical (PHY) Frame of transmission in increasing order and a set of instructions for modulating the packet of the set of usable hop-ports assigned. [0011] According to yet another embodiment, an apparatus operable in a wireless communication system is described which includes means for constructing a one bit packet, wherein the bit in the packet is set to '0', means for initializing a port counter i to '0', means for initializing a frame counter /to 1 O', means for initializing an orthogonal frequency division multiplexing (OFDM) symbol counter/ to '0', means for arranging a set of usable hop-ports assigned to the packet in a f th physical (PHY) Frame of transmission in increasing order and means for modulating the packet of the set of usable hop-ports assigned.

[0012] To the accomplishment of the foregoing and related ends, the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims. The following description and the annexed drawings set forth in detail

Docket No. 070186WO

of usable hop-ports assigned to the packet in a f th physical (PHY) Frame of transmission in increasing order and means for modulating the packet of the set of usable hop-ports assigned.

[0012] To the accomplishment of the foregoing and related ends, the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims. The following description and the annexed drawings set forth in detail certain illustrative aspects of the one or more aspects. These aspects are indicative, however, of but a few of the various ways in which the principles of various aspects maybe employed and the described aspects are intended to include all such aspects and their equivalents.

BRIEF DESCRIPTION OF THE DRAWINGS

[0013] Fig. 1 illustrates aspects of a multiple access wireless communication system;

[0014] Fig. 2 illustrates aspects of a transmitter and receiver in a multiple access wireless communication system;

[0015] Figs. 3 A and 3B illustrate aspects of superframe structures for a multiple access wireless communication system;

[0016] Fig. 4 illustrates aspect of a communication between an access terminal and an access network;

[0017] Figs. 5 A and 5B illustrates a flow diagram of a process used by an access network; and

[0018] Figs. 5C and 5D illustrates one or more processors configured for generating a erasure sequence.

DETAILED DESCRIPTION

[0019] Various aspects are now described with reference to the drawings, wherein like reference numerals are used to refer to like elements throughout. In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of one or more aspects. It may be evident, however, that such aspect(s) may be practiced without these specific details. In other instances, well-

groups 118, 120, and 122 each correspond to a different sector. In cell 106, antenna groups 124, 126, and 128 each correspond to a different sector.

[0021] Each cell includes several access terminals which are in communication with one or more sectors of each access point. For example, access terminals 130 and 132 are in communication base 142, access terminals 134 and 136 are in communication with access point 144, and access terminals 138 and 140 are in communication with access point 146.

[0022] Controller 130 is coupled to each of the cells 102, 104, and 106. Controller 130 may contain one or more connections to multiple networks, e.g. the Internet, other packet based networks, or circuit switched voice networks that provide information to, and from, the access terminals in communication with the cells of the multiple access wireless communication system 100. The controller 130 includes, or is coupled with, a scheduler that schedules transmission from and to access terminals. Li other aspects, the scheduler may reside in each individual cell, each sector of a cell, or a combination thereof.

[0023] As used herein, an access point may be a fixed station used for communicating with the terminals and may also be referred to as, and include some or all the functionality of, a base station, a Node B, or some other terminology. An access terminal may also be referred to as, and include some or all the functionality of, a user equipment (UE), a wireless communication device, terminal, a mobile station or some other terminology.

[0024] It should be noted that while Fig. 1, depicts physical sectors, i.e. having different antenna groups for different sectors, other approaches may be utilized. For example, utilizing multiple fixed "beams" that each cover different areas of the cell in frequency space may be utilized in lieu of, or in combination with physical sectors. Such an approach is depicted and disclosed in co-pending US Patent Application Serial No. 11/260,895, entitled "Adaptive Sectorization in Cellular System." [0025] Referring to Fig.2, a block diagram of an aspect of a transmitter system 210 and a receiver system 250 in a MIMO system 200 is illustrated. At transmitter system 210, traffic data for a number of data streams is provided from a data source 212 to transmit (TX) data processor 214. In an aspect, each data stream is transmitted over a respective transmit antenna. TX data processor 214 formats, codes, and interleaves the

traffic data for each data stream based on a particular coding scheme selected for that data stream to provide coded data.

[0026] The coded data for each data stream may be multiplexed with pilot data using OFDM, or other orthogonalization or non-orthogonalization techniques. The pilot data is typically a known data pattern that is processed in a known manner and may be used at the receiver system to estimate the channel response. The multiplexed pilot and coded data for each data stream is then modulated (i.e., symbol mapped) based on one or more particular modulation schemes (e.g., BPSK, QSPK, M-PSK, or M-QAM) selected for that data stream to provide modulation symbols. The data rate, coding, and modulation for each data stream may be determined by instructions performed on provided by processor 230.

[0027] The modulation symbols for all data streams are then provided to a TX processor 220, which may further process the modulation symbols (e.g., for OFDM). TX processor 220 then provides N T modulation symbol streams to TVr transmitters (TMTR) 222a through 222t. Each transmitter 222 receives and processes a respective symbol stream to provide one or more analog signals, and further conditions (e.g., amplifies, filters, and upconverts) the analog signals to provide a modulated signal suitable for transmission over the MDVIO channel. N T modulated signals from transmitters 222a through 222t are then transmitted from N T antennas 224a through 224t, respectively.

[0028] At receiver system 250, the transmitted modulated signals are received by N R antennas 252a through 252r and the received signal from each antenna 252 is provided to a respective receiver (RCVR) 254. Each receiver 254 conditions (e.g., filters, amplifies, and downconverts) a respective received signal, digitizes the conditioned signal to provide samples, and further processes the samples to provide a corresponding "received" symbol stream.

[0029] An RX data processor 260 then receives and processes the N R received symbol streams from NR receivers 254 based on a particular receiver processing technique to provide N T "detected" symbol streams. The processing by RX data processor 260 is described in further detail below. Each detected symbol stream includes symbols that are estimates of the modulation symbols transmitted for the corresponding data stream. RX data processor 260 then demodulates, deinterleaves, and decodes each detected symbol stream to recover the traffic data for the data stream. The

processing by RX data processor 218 is complementary to that performed by TX processor 220 and TX data processor 214 at transmitter system 210. [0030] RX data processor 260 may be limited in the number of subcarriers that it may simultaneously demodulate, e.g. 512 subcarriers or 5 MHz, and such a receiver should be scheduled on a single carrier. This limitation may be a function of its FFT range, e.g. sample rates at which the processor 260 may operate, the memory available for FFT, or other functions available for demodulation. Further, the greater the number of subcarriers utilized, the greater the expense of the access terminal. [0031] The channel response estimate generated by RX processor 260 may be used to perform space, space/time processing at the receiver, adjust power levels, change modulation rates or schemes, or other actions. RX processor 260 may further estimate the signal-to-noise-and-interference ratios (SNRs) of the detected symbol streams, and possibly other channel characteristics, and provides these quantities to a processor 270. RX data processor 260 or processor 270 may further derive an estimate of the "operating" SNR for the system. Processor 270 then provides channel state information (CSI), which may comprise various types of information regarding the communication link and/or the received data stream. For example, the CSI may comprise only the operating SNR. In other aspects, the CSI may comprise a channel quality indicator (CQI), which may be a numerical value indicative of one or more channel conditions. The CSI is then processed by a TX data processor 278, modulated by a modulator 280, conditioned by transmitters 254a through 254r, and transmitted back to transmitter system 210.

[0032] At transmitter system 210, the modulated signals from receiver system 250 are received by antennas 224, conditioned by receivers 222, demodulated by a demodulator 240, and processed by a RX data processor 242 to recover the CSI reported by the receiver system. The reported CSI is then provided to processor 230 and used to (1) determine the data rates and coding and modulation schemes to be used for the data streams and (2) generate various controls for TX data processor 214 and TX processor 220. Alternatively, the CSI may be utilized by processor 270 to determine modulation schemes and/or coding rates for transmission, along with other information. This may then be provided to the transmitter which uses this information, which may be quantized, to provide later transmissions to the receiver.

[0033] Processors 230 and 270 direct the operation at the transmitter and receiver systems, respectively. Memories 232 and 272 provide storage for program codes and data used by processors 230 and 270, respectively.

[0034] At the receiver, various processing techniques may be used to process the N R received signals to detect the NT transmitted symbol streams. These receiver processing techniques may be grouped into two primary categories (i) spatial and space-time receiver processing techniques (which are also referred to as equalization techniques); and (ii) "successive nulling/equalization and interference cancellation" receiver processing technique (which is also referred to as "successive interference cancellation" or "successive cancellation" receiver processing technique).

[0035] While Fig. 2 discusses a MDVIO system, the same system may be applied to a multi-input single-output system where multiple transmit antennas, e.g. those on a base station, transmit one or more symbol streams to a single antenna device, e.g. a mobile station. Also, a single output to single input antenna system may be utilized in the same manner as described with respect to Fig. 2.

[0036] The transmission techniques described herein may be implemented by various means. For example, these techniques may be implemented in hardware, firmware, software, or a combination thereof. For a hardware implementation, the processing units at a transmitter may be implemented within one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), processors, controllers, micro-controllers, microprocessors, electronic devices, other electrom ' c units designed to perform the functions described herein, or a combination thereof. The processing units at a receiver may also be implemented within one or more ASICs, DSPs, processors, and so on.

[0037] For a software implementation, the transmission techniques may be implemented with modules (e.g., procedures, functions, and so on) that perform the functions described herein. The software codes may be stored in a memory (e.g., memory 230, 272x or 272y in FIG. 2) and executed by a processor (e.g., processor 232, 27Ox or 27Oy). The memory may be implemented within the processor or external to the processor.

[0038] It should be noted that the concept of channels herein refers to information or transmission types that may be transmitted by the access point or access terminal. It

does not require or utilize fixed or predetermined blocks of subcarriers, time periods, or other resources dedicated to such transmissions.

[0039] Referring to Figs. 3 A and 3B, aspects of superframe structures for a multiple access wireless communication system are illustrated. Fig. 3 A illustrates aspects of superframe structures for a frequency division duplexed (FDD) multiple access wireless communication system, while Fig. 3B illustrates aspects of superframe structures for a time division duplexed (TDD) multiple access wireless communication system. The superframe preamble may be transmitted separately for each carrier or may span all of the carriers of the sector.

[0040] In both Figs. 3A and 3B, the forward link transmission is divided into units of superfϊames. A superframe may consist of a superframe preamble followed by a series of frames. In an FDD system, the reverse link and the forward link transmission may occupy different frequency bandwidths so that transmissions on the links do not, or for the most part do not, overlap on any frequency subcarriers. In a TDD system,. N forward link frames and M reverse link frames define the number of sequential forward link and reverse link frames that may be continuously transmitted prior to allowing transmission of the opposite type of frame. It should be noted that the number of N and M may be vary within a given superframe or between superframes.

[0041] In both FDD and TDD systems each superframe may comprise a superframe preamble. In certain aspects, the superframe preamble includes a pilot channel that includes pilots that may be used for channel estimation by access terminals, a broadcast channel that includes configuration information that the access terminal may utilize to demodulate the information contained in the forward link frame. Further acquisition information such as timing and other information sufficient for an access terminal to communicate on one of the carriers and basic power control or offset information may also be included in the superframe preamble. In other cases, only some of the above and/or other information may be included in this superframe preamble. [0042] As shown in Figs. 3A and 3B, the superframe preamble is followed by a sequence of frames. Each frame may consist of a same or a different number of OFDM symbols, which may constitute a number of subcarriers that may simultaneously utilized for transmission over some defined period. Further, each frame may operate according to a symbol rate hopping mode, where one or more non-contiguous OFDM symbols are assigned to a user on a forward link or reverse link, or a block hopping mode, where

users hop within a block of OFDM symbols. The actual blocks or OFDM symbols may or may not hop between frames.

[0043] Fig. 4 illustrates communication between an access terminal 402 and an access network 404. The access network 404 generates a erasure sequence, which spans one or more consecutive forward link physical (FL PHY) frames of transmission on a set of hop-ports determined by the forward traffic channel medium access control (FTC MAC) protocol. The communication link 406 may be implemented using communication protocols/standards such as World Interoperability for Microwave Access (WiMAX), infrared protocols such as Infrared Data Association (IrDA), short- range wireless protocols/technologies, Bluetooth® technology, ZigBee® protocol, ultra wide band (UWB) protocol, home radio frequency (HomeRF), shared wireless access protocol (SWAP), wideband technology such as a wireless Ethernet compatibility alliance (WECA), wireless fidelity alliance (Wi-Fi Alliance), 802.11 network technology, public switched telephone network technology, public heterogeneous communications network technology such as the Internet, private wireless communications network, land mobile radio network, code division multiple access (CDMA), wideband code division multiple access (WCDMA), universal mobile telecommunications system (UMTS), advanced mobile phone service (AMPS), time division multiple access (TDMA), frequency division multiple access (FDMA), orthogonal frequency division multiple (OFDM), orthogonal frequency division multiple access (OFDMA), orthogonal frequency division multiple FLASH (OFDM- FLASH), global system for mobile communications (GSM), single carrier (IX) radio transmission technology (RTT), evolution data only (EV-DO) technology, general packet radio service (GPRS), enhanced data GSM environment (EDGE), high speed downlink data packet access (HSPDA), analog and digital satellite systems, and any other technologies/protocols that maybe used in at least one of a wireless communications network and a data communications network. [0044] Figs.5A and 5B illustrates a flow diagram of process 500, according to an embodiment. At 502, a one bit packet is constructed, wherein the bit in the packet is set to '0\ At 506, a port counter i is initialized to '0', at 508, a frame counter/is initialized to '0' and at 510 an orthogonal frequency division multiplexing (OFDM) symbol counter ; is initialized to '0'. At 512, a set of usable hop-ports assigned to the packet in the f th physical (PHY) Frame of transmission are arranged in increasing order. At 514,

the packet of the set of usable hop-ports assigned is modulated. At 516, determining if (kj,pj) is not a dedicated pilot channel (DPICH) hop-port and if n sc is not a pilot subcarrier, wherein n sc is the subcarrier index corresponding to a hop-port p { in the j'th OFDM symbol in the PHY Frame, and if (kj,pj) is not the dedicated pilot channel (DPICH) hop-port.and if n sc is not the pilot subcarrier, then in an embodiment at 518, the packet is modulated using QPSK.

[0045] At 520, it is determined if (kj,pθ is not a dedicated pilot channel (DPICH) hop-port and if (kj,pj) is not the dedicated pilot channel (DPICH) hop-port, in an embodiment, optionally at 522, modulating a modulation symbol s with energy p on hop-port (kj,pi) on the antenna with index c 0\ wherein/* is the power density assigned to the erasure sequence. In another embodiment, optionally at 524, i is incremented and at 526, it is determined if z is equal to n. fri an embodiment, optionally at 528, it is determined if i is equal to NMaxErasureHo P ports,F, wherein NMaχErasureHop P orts,F is the maximum number of hop-ports to be used for transmitting a single erasure sequence on the forward link.

[0046] In an embodiment, optionally at 530,/ is incremented and at 532, i is set to '0 '. At 534, it is determined if/ is equal to NF M M E, F, wherein N FR A ME,F is the number of OFDM symbols in a reverse link PHY Frame. In an embodiment, optionally at 536, f is incremented and at 538,/ is set to W. At 540, it is determined if the last PHY Frame is transmitted.

[0047] Figs. 5C and 5D illustrates a processor 550 for generating a erasure sequence. The processor referred to may be electronic devices and may comprise one or more processors configured to generate the erasure sequence. Processor 552 is configured to construct a one bit packet, wherein the bit in the packet is set to '0'. Processor 556 is configured to initialize a port counter i to 1 O', processor 558 is configured to initialize a frame counter /to '0' and processor 560 is configured to initialize an orthogonal frequency division multiplexing (OFDM) symbol counter/ to 1 O'. Processor 562 is configured to arrange a set of usable hop-ports assigned to the packet in the f th physical (PHY) Frame of transmission in increasing order. Processor 564 is configured to modulate the packet of the set of usable hop-ports assigned. Processor 566 is configured to determine if (kj,pj) is not a dedicated pilot channel (DPICH) hop-port and if n sc is not a pilot subcarrier, wherein n sc is the subcarrier index corresponding to a hop-port /»,• in the j'th OFDM symbol in the PHY Frame, and if ki,pj) is not the dedicated pilot channel

(DPICH) hop-port.and if n sc is not the pilot subcarrier, then in an embodiment, processor 568 is configured to modulate the packet using QPSK. [0048] Processor 570 is configured to determine if (kj,pθ is not a dedicated pilot channel (DPICH) hop-port and if (kj,p;) is not the dedicated pilot channel (DPICH) hop- port, in an embodiment, optionally processor 572 is configured to modulate a modulation symbol s with energy/? on hop-port (ki,pθ on the antenna with index '0', wherein/? is the power density assigned to the erasure sequence. In another embodiment, optionally, processor 574 is configured to increment i and processor 576 is configured to determine if i is equal to n. In an embodiment, optionally, processor 578 is configured to determine if i is equal to N Ma χErasureHopports,F, wherein N M axEra S ureHopports,F is the maximum number of hop-ports to be used for transmitting a single erasure sequence on the forward link.

[0049] In an embodiment, optionally, processor 580 is configured to increment / and processor 582 is configured to set i to 1 O'. Processor 584 is configured to determine if/ is equal to N FR AME,F, wherein N F RA M E,F is the number of OFDM symbols in a reverse link PHY Frame. In an embodiment, optionally, processor 586 is configured to increment/and processor 588 is configured to sety to '0'. Processor 590 is configured to determine if the last PHY Frame is transmitted. The functionality of the discrete processors 552 to 590 depicted in the figure may be combined into a single processor 592. A memory 594 is also coupled to the processor 592.

[0050] In an embodiment, an apparatus is described which comprises means for constructing a one bit packet, wherein the bit in the packet is set to 1 O' , means for initializing a port counter i to '0 ', means for initializing a frame counter/ to '0', means for initializing an orthogonal frequency division multiplexing (OFDM) symbol counter y to '0', means for arranging a set of usable hop-ports assigned to the packet in a f th physical (PHY) Frame of transmission in increasing order and means for modulating the packet of the set of usable hop-ports assigned. In an embodiment, the apparatus comprises means for determining if (kj,pj) is not a dedicated pilot channel (DPICH) hop- port.and if n sc is not a pilot subcarrier, wherein n sc is the subcarrier index corresponding to a hop-port p t in the j 'th OFDM symbol in the PHY Frame, and if ki,p;) is not the dedicated pilot channel (DPICH) hop-port.and if n sc is not the pilot subcarrier, then modulating the packet using QPSK. In another embodiment, the apparatus comprises means for determining if (kj,p;) is not a dedicated pilot channel (DPICH) hop-port and if

(ki,pi) is not the dedicated pilot channel (DPICH) hop-port, modulating a modulation symbol s with energy/? on hop-port (kj,pj) on the antenna with index O', wherein/? is the power density assigned to the erasure sequence. In an embodiment, the apparatus comprises means for incrementing i and determining if/ is equal to n. The apparatus comprises means for determining if/ is equal to NM a xErasureHσpports,F, wherein N M axEra su re H opp o rt s , F is the maximum number of hop-ports to be used for transmitting a single erasure sequence on the forward link. Further means are also provided for incrementing^ and setting i to '0\ The apparatus also comprises means for determining if / is equal to NFRAME,F, wherein NFRAME.F is the number of OFDM symbols in a reverse link PHY Frame, means for incrementing^ means for settingy to '0' and means for determining if the last PHY Frame is transmitted. The means described herein may comprise one or more processors.

[0051] Furthermore, embodiments may be implemented by hardware, software, firmware, middleware, microcode, or any combination thereof. When implemented in software, firmware, middleware or microcode, the program code or code segments to perform the necessary tasks may be stored in a machine readable medium such as a separate storage(s) not shown. A processor may perform the necessary tasks. A code segment may represent a procedure, a function, a subprogram, a program, a routine, a subroutine, a module, a software package, a class, or any combination of instructions, data structures, or program statements. A code segment may be coupled to another code segment or a hardware circuit by passing and/or receiving information, data, arguments, parameters, or memory contents. Information, arguments, parameters, data, etc. may be passed, forwarded, or transmitted via any suitable means including memory sharing, message passing, token passing, network transmission, etc. [0052] Various modifications to these aspects will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other aspects. Thus, the description is not intended to be limited to the aspects shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.