Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHOD FOR DETECTING CORNEAL ASTIGMATISM USING OPTICAL COHERENCE TOMOGRAPHY
Document Type and Number:
WIPO Patent Application WO/2015/044364
Kind Code:
A1
Abstract:
The invention relates to a method for detecting refractive errors in the eye, said errors being attributable to a suboptimal surface shape of the front surface and/or rear surface of the cornea of an eye. In the method according to the invention for determining refractive errors in the eye, an OCT volume scan and/or one or more OCT line scans of the front eye section are carried out; using the measured values, the front and rear surface of the cornea are detected by means of an edge detection process; the topography of the front and rear surface of the cornea are ascertained; and refractive errors are determined from said topographies. The proposed method is used to determine refractive errors in the eye, said errors being attributable to a suboptimal surface shape of the front and/or rear side of the cornea. Because the method according to the invention is based on OCT scans, the field of application of pure standard OCT systems and integrated OCT systems is thus expanded on the condition that the applied OCT systems are designed for examining the front eye segments.

Inventors:
ANDREWS PETER DELBERT (DE)
RILL MICHAEL STEFAN (DE)
Application Number:
PCT/EP2014/070642
Publication Date:
April 02, 2015
Filing Date:
September 26, 2014
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
ZEISS CARL MEDITEC AG (DE)
ZEISS CARL AG (DE)
International Classes:
A61B3/10; A61B3/103
Domestic Patent References:
WO2010117386A12010-10-14
Foreign References:
US20120140174A12012-06-07
Other References:
MAOLONG TANG ET AL: "Corneal power measurement with Fourier-domain optical coherence tomography", JOURNAL CATARACT AND REFRACTIVE SURGERY, SURGERY, FAIRFAX, VA, US, vol. 36, no. 12, 9 July 2010 (2010-07-09), pages 2115 - 2122, XP028170034, ISSN: 0886-3350, [retrieved on 20100927], DOI: 10.1016/J.JCRS.2010.07.018
YOUNG HOON HWANG ET AL: "Astigmatism and optical coherence tomography measurements", GRAEFE'S ARCHIVE FOR CLINICAL AND EXPERIMENTAL OPHTHALMOLOGY, vol. 250, no. 2, 1 February 2012 (2012-02-01), pages 247 - 254, XP055162431, ISSN: 0721-832X, DOI: 10.1007/s00417-011-1788-4
Attorney, Agent or Firm:
BECK, BERNARD (DE)
Download PDF:
Claims:
Patentansprüche

1 . Verfahren zur Bestimmung refraktiver Fehler im Auge, welche auf eine suboptimale Oberflächenform der Vorder- und/oder Rückfläche der Hornhaut zurück zu führen sind, dadurch gekennzeichnet, dass ein OCT-Volumen- scan und/oder ein oder mehrere Linienscans des vorderen Augenabschnittes durchgeführt, dass aus den Messwerten durch Kantendetektion Vorder- und Rückfläche der Hornhaut detektiert, dass die Topographie von Vorder- und Rückfläche der Hornhaut ermittelt und aus diesen Topographien refrak- tive Fehler bestimmt werden.

2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass zusätzlich zu den Topographien von Vorder- und Rückfläche die Dicke der Hornhaut ermittelt wird.

3. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass bei astigmatischen Augen ein OCT-Ringscan des vorderen Augenabschnittes durchgeführt und aus den Messwerten des aufgefalteten Ringscan durch Kantendetektion die Extremwerte des Verlaufes der Hornhaut detektiert werden.

4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass die Bestimmung der Minima und Maxima des OCT-Ringscans manuell oder automatisch erfolgt.

5. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass der OCT- Ringscan konzentrisch zum Augenapex erfolgt.

6. Verfahren nach den Ansprüchen 3 und 4, dadurch gekennzeichnet, dass entlang dieser Meridianachsen B-Scans realisiert, aus den Messwerten durch Kantendetektion Vorder- und Rückfläche der Hornhaut detektiert, deren Topographie ermittelt und die Zylinderbrechkräfte bestimmt werden.

7. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass zur Bestimmung der Zylinderbrechkräfte an die Hornhautkrümmungen Kreise angefit- tet werden um die maximale und minimale Brechkraft der Hornhaut zu ermitteln.

8. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass zur intraoperativen Bestimmung der Achslage einer implantierten torischen IOL aus dem aufgefalteten OCT-Ringscan des vorderen Augenabschnittes durch Kan- tendetektion die Extremwerte der Verläufe der Hornhaut und der implantierten torischen IOL detektiert und deren relativer Phasenunterschied berechnet werden.

9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass der berechnete relative Phasenunterschied dazu benutzt wird, die implantierte torische IOL relative zur Hornhaut auszurichten, wobei eine ideale Ausrichtung vorliegt wenn der relative Phasenunterschied 180° beträgt.

10. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass die Detektion der Meridianachsen der implantierten torischen IOL entfallen kann, wenn deren aktuelle Lage bekannt ist.

1 1 . Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass die Meridianachsen der torischen IOL vor dem Implantieren entsprechend markiert werden, um deren aktuelle Lage zu erkennen.

Description:
Verfahren zur Bestimmung des Hornhaut-Astigmatismus mittels Optischer Kohärenztomographie

Die vorliegende Erfindung betrifft ein Verfahren zur Bestimmung refraktiver Fehler im Auge, welche auf eine suboptimale Oberflächenform der Vorderfläche und/oder Rückfläche der Hornhaut eines Auges zurückzuführen sind. Insbesondere dient das Verfahren der Bestimmung des Hornhaut-Astigmatismus mittels Optischer Kohärenztomographie.

Refraktive Fehler im Auge können unter anderem auf refraktive Fehler in der Augenlinse oder auf eine suboptimale Oberflächenform der Vorder- und Rückseite der Hornhaut zurückgeführt werden. Der refraktive Fehler der Augenlinse wird in der Regel aus dem subjektiv bestimmten Gesamtsehfehler des Auges und den refraktiven Eigenschaften der Hornhaut berechnet.

Nach dem bekannten Stand der Technik existieren unterschiedliche Verfahren, um die beiden Oberflächenformen und die Dicke der Hornhaut zu bestimmen.

Mit einem Spaltlampenmikroskop, einem der wichtigsten Untersuchungsgeräte der Augenheilkunde kann die Hornhaut in der Regel lediglich einer qualitativen Untersuchung durch einen Augenarzt oder Augenoptikermeister unterzogen werden. Der auf die Hornhaut projizierte Lichtspalt legt einen optischen Schnitt durch die Hornhaut, welcher mit verschiedenen Vergrößerungsstufen betrachtet wird. Durch verschiedene Belichtungsmethoden (diffus, direkt, fokal, indirekt, regredient, seitlich usw.) und variable Lichtspaltbreiten ist es möglich, neben den vorderen auch die mittleren und hinteren Abschnitte des Auges zu inspizieren. Eine Bestimmung der Oberflächenformen und der Dicke der Hornhaut sind jedoch nicht möglich.

Zur Bestimmung der Oberflächenformen und/oder der Dicke der Hornhaut verwenden aktuelle Systeme aufwendige Mess- und Auswerteverfahren. Einige Systeme sind dabei ausschließlich für derartige Aufgaben geeignet. So dient beispielsweise ein Pachymeter ausschließlich der Messung der Hornhautdicke am menschlichen Auge. Die Bestimmung der Hornhautdicke ist zum einen relevant für die korrekte Bestimmung des Augeninnendruckes mittels To- nometrie. Zum anderen kommt der Pachymetrie bei der Vorbereitung auf verschiedene Augenoperationen eine weitere wichtige Rolle zu.

Dabei kommen in der Regel folgende zwei unterschiedliche Verfahren zum Einsatz:

• die kontaktfreie optische Messung (Optisches Kohärenz-Pachymeter, englisch OCP) sowie

• die Bestimmung mittels Ultraschall, bei der ein kleiner Ultraschallkopf auf die Hornhaut aufgesetzt wird.

Im Gegensatz dazu ist das Ophthalmometer (oder auch Keratometer) ein Instrument zur Messung der Oberflächenkrümmung der Hornhaut des Auges, sowie zur Bestimmung der Hornhautverläufe (Keratometrie). Das Messgerät erlaubt das Vermessen des virtuellen Bildes und somit einen Rückschluss auf die Krümmung der spiegelnden Fläche. Dabei wird ein beleuchtetes Objekt in einem bekannten Abstand aufgestellt und die Reflexion der Hornhaut beobachtet. Diese Messmethode findet gegenwärtig vorrangig in der Augenoptik bei der Anpassung von Kontaktlinsen Anwendung, wobei das Ophthalmometer vermehrt durch seine Weiterentwicklung, dem Videokeratometer ersetzt wird.

Ein weiteres, computerunterstütztes Messsystem für die exakte Vermessung der Hornhautoberfläche stellt der Keratograph dar. Hier wird die Krümmung der Hornhaut, also der Augenvorderfläche, großflächig erfasst, was etwa einer Zahl von ca. 22.000 Messpunkten entspricht. Dazu werden Testmarken in Form von Ringen auf die Hornhaut projiziert und deren Spiegelbild zur Berechnung der Hornhautkrümmung herangezogen. Aus der Abweichung dieser Ringbilder von der idealen Kreisform kann nun die Krümmungsverteilung berechnet und durch Umsetzung der Messdaten eine dreidimensionale "Landkarte" der Hornhaut bestimmt werden.

Moderne, bildgebende Hornhaut-Tomographie-Systeme basieren beispielsweise auf rotierenden Scheimpflugkameras oder scannenden Spalt-Systemen. Durch die Kombination mit Placidoscheiben kann der Bereich der Bildgebung, insbesondere der vorderen Augensegmente erheblich verbessert werden. Diese neuen Tomographen schaffen dreidimensionale Modelle der Hornhaut und ermöglichen die direkte Messung beider Hornhautoberflächen.

Die aktuell verfügbaren Systeme haben die gemeinsamen Nachteile, dass sie zum einen grundsätzlich nur den Vorderabschnitt des Auges charakterisieren können und dass sie dabei ausschließlich für derartige Aufgaben geeignet sind.

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, vorhandene ophthalmologische Geräte so weiter zu entwickeln bzw. zu ergänzen, dass mit diesen neben den bisherigen Messaufgaben eine Bestimmung der auf eine suboptimale Vorder- und/oder Rückflächenform der Hornhaut zurückzuführende refrakti- ven Fehler im Auge möglich wird.

Diese Aufgabe wird mit dem erfindungsgemäßen Verfahren zur Bestimmung refraktiver Fehler im Auge, welche auf eine suboptimale Oberflächenform der Vorder- und/oder Rückfläche der Hornhaut zurück zu führen sind, dadurch gelöst, dass ein OCT-Volumenscan und/oder OCT-Linienscan des vorderen Augenabschnittes durchgeführt, dass aus den Messwerten durch Kantendetektion Vorder- und Rückfläche der Hornhaut erkannt und aus diesen Topographien refraktive Fehler bestimmt werden.

Erfindungsgemäß wird die Aufgabe durch die Merkmale der unabhängigen Ansprüche gelöst. Bevorzugte Weiterbildungen und Ausgestaltungen sind Gegenstand der abhängigen Ansprüche. Das vorgeschlagene Verfahren dient zur Bestimmung refraktiver Fehler im Auge, welche auf eine suboptimale Oberflächenform der Vorder- und/oder Rückseite deren Hornhaut zurückzuführen sind. Da das erfindungsgemäße Verfahren auf OCT-Scans basiert, erweitert es damit den Anwendungsbereich reiner Standard-OCT-Systeme und integrierter OCT-Systeme. Voraussetzung dafür ist, dass die verwendeten OCT-Systeme für die Untersuchung der vorderen Augensegmente ausgelegt sind, was allerdings bei den in der Ophthalmologie verwendeten Systemen in der Regel auch der Fall ist. Weiterhin sollten die OCT-Systeme über verschiedene Scanmodi verfügen, deren Scanrichtungen individuell anpassbar sind. Die OCT-Systeme können dabei sowohl auf„Time- Domain"- als auch auf„Frequency-Domain"-Verfahren und insbesondere auch auf einem„Swept-Source"- System basieren.

Die Erfindung wird nachfolgend anhand von Ausführungsbeispielen näher beschrieben. Dazu zeigen

Figur 1 : das OCT-Signal eines aufgefalteten Ringscan des zu untersuchendes Auges mit den durch Kantendetektion erkannten Verläufen der Hornhaut,

Figur 2: das zu untersuchendes Auge mit eingezeichnetem Ringscan und den daraus ermittelten Meridianachsen des Auges und

Figur 3: die aus einem B-Scan entlang einer der Meridianachse rekonstruierte Hornhaut mit Kreisfits an deren Vorder- und Rückseite.

Bei dem erfindungsgemäßen Verfahren zur Bestimmung refraktiver Fehler im Auge, welche auf eine suboptimale Oberflächenform der Vorder- und/oder Rückfläche der Hornhaut zurück zu führen sind, werden ein OCT-Volumenscan und/oder ein oder mehrere OCT-Linienscans des vorderen Augenabschnittes durchgeführt, aus den Messwerten durch Kantendetektion Vorder- und Rückflä- che der Hornhaut detektiert, die Topographie von Vorder- und Rückfläche der Hornhaut ermittelt und aus diesen Topographien refraktive Fehler bestimmt.

Vorzugsweise kann zusätzlich zu der Topographie von Vorder- und Rückfläche die Dicke der Hornhaut ermittelt wird.

Mit Hilfe eines OCT-Scans des vorderen Augenabschnitts ist die Oberfläche und Dicke der Hornhaut an jedem beliebigen Punkt durch Bildanalyse, insbesondere durch Kantendetektion bestimmbar. Analog zu Scheimpflug- oder Placido-Ring-Systemen lassen sich daraus Oberflächen- und Krümmungsradienkarten ableiten, aus denen sich wiederum refraktive Bildfehler im Auge bestimmen lassen.

Hierbei können sowohl die als "normal" bezeichneten Abbildungsfehler (Kurzsichtigkeit, Weitsichtigkeit und Astigmatismus), als auch die sogenannten Abbildungsfehler höherer Ordnung bestimmt werden. Die "normalen Abbildungsfehler" des Auges lassen sich durch sphärische oder zylindrische Korrektur mit einer Brille ausgleichen. Im Gegensatz dazu kann man sich die Abbildungsfehler höherer Ordnung vereinfacht als winzige Unregelmäßigkeiten vorstellen, die verhindern, dass sich alle einfallenden Lichtstrahlen exakt auf der Stelle des schärfsten Sehens fokussiert werden. Eine Korrektur ist somit kaum möglich.

Gemäß einer ersten vorteilhaften Ausgestaltung des erfindungsgemäßen Verfahrens werden bei astigmatischen Augen ein OCT-Ringscan des vorderen Augenabschnittes durchgeführt und aus den Messwerten des aufgefalteten Ringscans die Extremwerte durch Kantendetektion detektiert, wobei die Minima die steile Meridianachse und die Maxima die flache Meridianachse des Astigmatismus darstellen. Dabei kann die Bestimmung der Minima und Maxima des OCT- Ringscans manuell oder automatisch erfolgen. Erfindungsgemäß erfolgt der OCT-Ringscan konzentrisch zum Augenapex. Erfindungsgemäß ist die Charakterisierung eines astigmatischen Auges besonders einfach. Hierzu wird der Querschnitt der Hornhaut entlang eines Rings gemessen, der konzentrisch zum Augenapex liegt.

Hierzu zeigt die Figur 1 den aufgefalteten Ringscan eines zu untersuchendes Auges mit den durch Kantendetektion detektierten Verläufen der Hornhaut. Der OCT-Ringscan (360°) wird entlang einer Linie RS realisiert, die konzentrisch zum Apex AP des Auges A liegt (siehe auch Figur 2). Wie der Figur 1 zu entnehmen ist, variieren die Vorderfläche VF H H und Rückfläche RF H H der Hornhaut HH des Auges A nach dem„Auffalten" des OCT-Signales im Falle eines (astigmatischen) Auges A sinusförmig. Dabei charakterisieren die Minima die steile Meridianachse MAs und die Maxima die flache Meridianachse MAF des astigmatischen Auges. Somit lassen sich aus dem OCT-Ringscan die Meridianachsen des astigmatischen Auges direkt ablesen.

Die Figur 2 zeigt das zu untersuchende Auge mit eingezeichnetem OCT- Ringscan und den daraus ermittelten Meridianachsen des astigmatischen Auges. In Übereinstimmung mit der Figur 1 zeigt die Figur 2 sowohl die konzentrisch zum Apex AP des Auges A liegende Linie RS des OCT-Ringscans, als auch die die beiden Meridianachsen MA S und MA F des astigmatischen Auges. Den Gradzahlen kann entnommen werden, wo der Beginn und das Ende des OCT-Ringscans liegen.

Gemäß einer weiteren vorteilhaften Ausgestaltung des erfindungsgemäßen Verfahrens werden entlang dieser Meridianachse B-Scans realisiert, aus den Messwerten durch Kantendetektion Vorder- und Rückfläche der Hornhaut de- tektiert, deren Topographie ermittelt und die Zylinderbrechkräfte bestimmt. Zur Bestimmung der Zylinderbrechkräfte werden an die Hornhautkrümmungen Kreise angefittet um die maximale und minimale Brechkraft der Hornhaut zu ermitteln. Hierzu zeigt die Figur 3 die aus einem B-Scan entlang einer der Meridianachse rekonstruierte Hornhaut mit Kreisfits an deren Vorder- und Rückseite. Die Figur 3 zeigt folgende, aus dem B-Scan detektierten vorderen Augensegmente:

Hornhaut HH mit Apex AP, Iris I und Augenlinse L. An die Vorderfläche VFHH und die Rückfläche RF H H der Hornhaut HH sind zur Bestimmung der Zylinderbrechkräfte entsprechende Kreise KFi und KF 2 angefittet.

Gemäß einer besonders vorteilhaften Ausgestaltung des erfindungsgemäßen Verfahrens werden zur intraoperativen Bestimmung der Achslage einer implantierten torischen Intraokularlinse (kurz: IOL) aus dem aufgefalteten OCT-Ring- scan des vorderen Augenabschnittes durch Kantendetektion die Extremwerte der Verläufe der Hornhaut und der implantierten torischen IOL detektiert und deren relativer Phasenunterschied berechnet.

Der berechnete relative Phasenunterschied wird dazu benutzt, die implantierte torische IOL gegen die Hornhaut auszurichten, wobei eine ideale Ausrichtung vorliegt wenn der relative Phasenunterschied 180° beträgt.

Für den Fall, dass die aktuelle Lage der implantierten torischen IOL bekannt ist, kann die Detektion der Meridianachsen der IOL entfallen. Um die aktuelle Ausrichtung der torischen IOL einfacher erkennen zu können, ist es zweckmäßig, die Meridianachsen der IOL vor deren Implantation zu markieren.

Mit der erfindungsgemäßen Lösung wird ein Verfahren zur Verfügung gestellt, mit dem sich refraktive Fehler im Auge, welche auf eine suboptimale Oberflächenform der Vorder- und/oder Rückfläche der Hornhaut zurück zu führen sind, bestimmen lassen. Hierzu wird ein OCT-Volumenscan und/oder ein oder mehrere OCT-Linienscans des vorderen Augenabschnittes durchgeführt, aus den Messwerten durch Kantendetektion Vorder- und Rückfläche der Hornhaut detektiert, die Topographie von Vorder- und Rückfläche der Hornhaut ermittelt und aus diesen Topographien refraktive Fehler bestimmt. Da das erfindungsgemäße Verfahren auf OCT-Scans basiert, erweitert es damit den Anwendungsbereich reiner Standard-OCT-Systeme und integrierter OCT- Systeme. Voraussetzung dafür ist, dass die verwendeten OCT-Systeme für die Untersuchung der vorderen Augensegmente ausgelegt sind. Die in der Ophthalmologie verwendeten OCT-Systeme sind in der Regel grundsätzlich in der Lage, alle optischen Komponenten des Auges in einem Messvorgang abzubilden; sei es durch Aneinanderreihen einzelner Scans oder durch Verwendung des Swept-Source-Ansatzes, der einen Gesamtaugen-Scan realisieren kann.

Weiterhin sollten die OCT-Systeme über verschiedene Scanmodi verfügen, deren Scanrichtungen individuell anpassbar sind. Die OCT-Systeme können dabei sowohl auf„Time-Domain"- als auch auf„Frequency-Domain"-Verfahren und insbesondere auch auf einem„Swept-Source"- Systems basieren.

Somit werden mit dem vorgeschlagene Verfahren ophthalmologische Geräte so weiterentwickelt bzw. ergänzt, dass mit diesen neben den bisherigen Messaufgaben eine Bestimmung der auf eine suboptimale Vorder- und/oder Rückflächenform der Hornhaut zurückzuführende refraktiven Fehler im Auge möglich wird.

Die erfindungsgemäße Lösung stellt eine schnelle und einfache Methode zur Bestimmung refraktiver Fehler im Auge mittels OCT dar. Zusammen mit einer OCT-Pachymetrie-Messungen (Bestimmung der Hornhautdicke) kann die Methode für eine Astigmatismus-Korrektur durch Einschnitte nahe des Augenlim- bus benutzt werden, z. B. limbale Relaxationsschnitte mittels fs-Laser.

Ein besonderer Vorteil des vorgeschlagenen Verfahrens zur Bestimmung refraktiver Fehler im Auge, welche auf eine suboptimale Oberflächenform der Vorder- und/oder Rückfläche der Hornhaut zurück zu führen sind, ist darin zu sehen, dass sich aus dem OCT-Ringscan die Meridianachsen eines astigmatischen Auges direkt ablesen lassen.