Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHOD AND DEVICE FOR MONITORING SECURITY FEATURES IN SECURITY DOCUMENTS
Document Type and Number:
WIPO Patent Application WO/2012/143185
Kind Code:
A1
Abstract:
The invention relates to a method for examining a security feature in security documents or materials, which security feature turns electroluminescent in an excited state. For this purpose, the electroluminescence of the security feature is initially excited by means of a stimulator. Subsequently, the distance between stimulator and electroluminescent security feature, and the intensity of the emission generated by the electroluminescence are measured. Lastly, the measured intensity is adjusted on the basis of the measured distance in order to generate an intensity value that is scaled to a predetermined basic distance and is distance-adjusted. The invention further relates to a device for carrying out said method.

Inventors:
BARTEL GUSTAV MARTIN (DE)
KUEN JAKOB (DE)
Application Number:
PCT/EP2012/054473
Publication Date:
October 26, 2012
Filing Date:
March 14, 2012
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
BUNDESDRUCKEREI GMBH (DE)
BARTEL GUSTAV MARTIN (DE)
KUEN JAKOB (DE)
International Classes:
G07D7/12
Foreign References:
US20060115139A12006-06-01
DE102004014541B32005-05-04
GB2432661A2007-05-30
DE102005000698A12006-07-13
DE10326698A12004-12-30
DE102008047636A12010-03-25
Other References:
See also references of EP 2700056A1
Attorney, Agent or Firm:
ENGEL, Christoph K. (DE)
Download PDF:
Claims:
Patentansprüche

1. Verfahren zur Überprüfung eines bei einer Anregung elektro- lumineszierenden Sicherheitsmerkmals in Sicherheitsdokumenten oder -materialien, folgende Schritte umfassend:

- Anregen der Elektrolumineszenz des Sicherheitsmerkmals mit Hilfe eines Anregers;

- Messen des Abstandes zwischen Anreger und elektrolumines- zierendem Sicherheitsmerkmal;

- Messen der Intensität der durch die Elektrolumineszenz bewirkten Emission;

- Korrigieren der gemessenen Intensität in Abhängigkeit vom gemessenen Abstand, um einen auf einen vorgegebenen

Basisabstand normierten, abstandskorrigierten Intensitätswert zu bilden.

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Messen des Abstandes durch eine Triangulationsmessung erfolgt .

3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Anregung des elektrolumineszierenden Sicherheitsmerkmals zumindest bei einer Anregungsfrequenz in einem elektrischen Wechselfeld erfolgt, durch welches das Sicher¬ heitsdokument hindurch bewegt wird. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Bewertung der gemessenen Intensität mittels folgender Formel erfolgt:

π Γ T PD Intensitätgemessen offset korngiert * C* e~&*h

FD Intensitätkorrigiert = =

— d*e on

mit

s_mon gemessener Abstandswert

PD_Intensität gemessener/kompensierter Intensitätswert a, b, c, d Konstanten auf Basis empirischer Daten

Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass das Sicherheitsdokument mit einer Maximalgeschwindigkeit von 150 m/min durch das elektrische Wechselfeld bewegt wird.

Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass die Werte zur Abstandsmessung mit einer Messfrequenz von mindestens 1 KHz aufgenommen werden.

Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass ein Signal ausgegeben wird, wenn der

normierte Intensitätswert außerhalb vorgegebener Grenzwerte liegt .

8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass es in den Produktionsprozess eines Sicher¬ heitsdokuments integriert ist, wobei es nach dem Aufbringen eines elektrolumineszierenden Sicherheitsmerkmals abläuft.

9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass die Menge des aufzubringenden elektrolumineszierenden Sicherheitsmerkmals für im Produktionsprozess nachfolgende Sicher heitsdokumente angepasst wird, in Abhängigkeit vom normier¬ ten Intensitätswert, insbesondere wenn dieser außerhalb der vorgegebenen Grenzwerte liegt.

10. Verfahren nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass es sich bei dem Produktionsprozess um einen Siebdruck prozess handelt.

11. Vorrichtung zur Überprüfung eines elektrolumineszierenden Sicherheitsmerkmals in Sicherheitsdokumenten oder

-materialien, mit einem Anreger zum Erzeugen eines elektri sehen Wechselfeldes zur Anregung der Elektrolumineszenz de Sicherheitsmerkmals, einem Detektor zum Erfassen eines Intensitätswertes der durch die Elektrolumineszenz bewirkten Emission, dadurch gekennzeichnet, dass sie weiterhin einen Abstandssensor zum Erfassen des Abstands zwischen Anreger und elektrolumineszierendem Sicherheitsmerkmal sowie eine Verarbeitungseinheit aufweist, welche den erfassten Intensitätswert mit einem unter Berücksichtigung des erfassten Abstands gebildeten Korrekturfaktor beaufschlagt, um einen abstandskorrigierten Intensitätswert zu bilden .

Description:
Verfahren und Vorrichtung zur Überprüfung von

Sicherheitsmerkmalen in Sicherheitsdokumenten

Die Erfindung betrifft ein Verfahren sowie eine Vorrichtung zur Überprüfung von Sicherheitsmerkmalen in Sicherheitsdokumenten, wobei die Sicherheitsmerkmale zumindest ein elektrolu- mineszierendes Sicherheitsmerkmal umfassen.

Sicherheitsdokumente, wie beispielsweise Banknoten, Personal ¬ dokumente, Kreditkarten und dgl . werden üblicherweise mit bestimmten Echtheitsmerkmalen versehen, um ein Fälschen solcher Dokumente zu erschweren. Um den wachsenden technischen Fertigkeiten potenzieller Fälscher entgegen zu wirken, wurden in den letzten Jahren immer komplexere Echtheitsmerkmale entwickelt. Beispielsweise ist es bekannt, Fluoreszenzpigmente in strukturelle Merkmale des Banknotendrucks einzubinden. Des Weiteren kommen spezielle lumineszierende Substanzen, zum Beispiel mit Elektrolumineszenz, zum Einsatz. Derartige Echtheitsmerkmale lassen sich nur schwer hinsichtlich ihrer chemischen Zusammensetzung nachahmen. Außerdem lässt sich nicht ohne weiteres feststellen, was bei ihrer Verifizierung genau analysiert wird und in welcher Weise die Auswertung erfolgt.

Zur Herstellung von Sicherheitsdokumenten können verschiedenste Druckverfahren, wie beispielsweise Offsetdruck, Letterset ¬ druck, Offset-Coating, Flexodruck, Siebdruck, Thermosublima- tionsdruck, Tiefdruck sowie berührungslose Druckverfahren zum Einsatz kommen. Um sicherzustellen, dass die Sicherheitsmerkmale mit entsprechender Qualität auf die Sicherheitsdokumente aufgebracht wurden, ist es erforderlich bereits während des Produktionsprozesses entsprechende Qualitätskontrollen durch ¬ zuführen. Durch die Qualitätskontrollen sollen zeitnah Fehler erfasst werden, um möglichst kurzfristig Korrekturen durchfüh ¬ ren zu können und dadurch die Ausschussquote zu verringern. Nachfolgend werden unter Sicherheitsdokumenten daher auch Vorstufen solche Dokumente verstanden, wie sie beispielsweise als mit Sicherheitsmerkmalen versehene Materialien im Herstel- lungsprozess auftreten.

Die DE 10 2005 000 698 AI befasst sich mit einem Verfahren zur Prüfung eines Wertdokumentes. Bei diesem Verfahren wird der Abstand zwischen einer Detektoranordnung und einer Messstelle ermittelt, um den Messwert zu regeln, beispielsweise um den Messwert zu normieren. Der Sensor an der Messstelle kann ein Fluoreszenzsensor sein.

Aus der DE 103 26 698 AI ist ein Verfahren zur Prüfung der elektrischen Leitfähigkeit bzw. magnetischen Eigenschaften von Sicherheitselementen in Sicherheitsdokumenten bekannt. Die Prüfung erfolgt während des Herstellungsprozesses des

Sicherheitsdokuments. Die Prüfung kann stattfinden, wenn das Sicherheitselement mit dem Substrat des Sicherheitsdokuments verbunden wird oder im unmittelbaren Anschluss daran, bevor das Substrat weiterverarbeitet oder zwischengelagert wird. Durch diese sogenannte In-Line-Prüfung kann im Vergleich zu einer Off-Line-Prüfung eine wesentlich größere Prüfdichte des produzierten Materials erzielt werden.

Die DE 10 2008 047 636 AI zeigt eine Vorrichtung zur Echtheitsüberprüfung eines Sicherheitsdokuments, das zumindest ein bei einer Anregungsfrequenz in einem Hochspannungs-Wechselfeld elektrolumineszierendes Sicherheitsmerkmal aufweist. Die

Vorrichtung umfasst eine Sensoreinheit, die ein Anregungs ¬ modul, ein Kondensorsystem und eine Detektoreinheit beinhal ¬ tet. Das Sicherheitsdokument wird durch die Sensoreinheit bewegt, das Lumineszenzlicht vom Kondensorsystem gesammelt und auf die Detektoreinheit gerichtet, die das Lumineszenzlicht erfasst und spektral auswertet. Das Anregungsmodul weist eine spaltförmige Öffnung auf, die den Bewegungspfad des zu über ¬ prüfenden Sicherheitsdokuments mit ihren gegenüberliegenden Begrenzungsflächen übergreift.

Problematisch bei der Überprüfung eines bei einer Anregungsfrequenz in einem Hochspannungs-Wechselfeld elektrolumineszie- renden Sicherheitsmerkmals ist, dass in Abhängigkeit vom

Abstand des Sicherheitsmerkmals vom Anreger unterschiedliche Intensitäten des Emissionssignals gemessen werden. Auch bei an sich gleicher Intensität wird bei einem großen Abstand des Sicherheitsmerkmals vom Anreger ein kleinerer Intensitätswert des Emissionssignals gemessen als bei einem kleineren Abstand. Bei den bislang bekannten Lösungen erfolgt keine Berücksichti ¬ gung des Abstandes des Sicherheitsmerkmals vom Anreger. Aus diesem Grund kann es bei der Messung zu starken Intensitätsschwankungen kommen, was zu Problemen bei der Auswertung führt. In einer Serienfertigung schwankt der Abstand zwischen dem Anreger und der zu untersuchenden Fläche, die das Sicherheitsmerkmal enthält, teils so erheblich, dass die Messwerte zur Intensität der Emission um bis zu 400% variieren. Wenn solche abstandsbedingten Störgrößen ignoriert werden, führt dies u.a. dazu, dass die tatsächlich intensitätsbeeinflussen- den Fehler unter Umständen nicht erkannt werden bzw. fehlerfreie Produkte werden irrtümlich als fehlerhaft identifiziert.

Die Aufgabe der vorliegenden Erfindung besteht somit darin, ein Verfahren und eine Vorrichtung zur Verfügung zu stellen, mit welchen die Überprüfung eines bei einer Anregungsfrequenz in einem Hochspannungs-Wechselfeld elektrolumineszierenden Sicherheitsmerkmals zuverlässiger als bei den bislang bekann- ten Lösungen erfolgen kann. Insbesondere soll auch ein Verfahren zur Verfügung gestellt werden, welches in den Herstel- lungsprozess eines Sicherheitsdokuments integriert werden kann, um zeitnah fehlerhafte Dokumente aussondern zu können bzw. entsprechende Korrekturmaßnahmen zur Fehlerbeseitigung einleiten zu können.

Zur Lösung der erfindungsgemäßen Aufgabe dienen ein Verfahren gemäß dem beigefügten Anspruch 1 und eine Vorrichtung gemäß dem beigefügten Anspruch 10.

Das erfindungsgemäße Verfahren zur Überprüfung von elektrolu- mineszierenden Sicherheitsmerkmalen in Sicherheitsdokumenten umfasst vorzugsweise folgende Schritte: Zunächst wird ein elektrisches Wechselfeld mit Hilfe eines Anregers erzeugt. Durch das elektrische Wechselfeld wird ein Sicherheitsdokument hindurchbewegt. Der zwischen Anreger und elektrolumineszieren- dem Sicherheitsmerkmal bestehende Abstand wird gemessen.

Weiterhin wird die durch die Elektrolumineszenz bewirkte Emission gemessen. Der Intensitätswert der gemessenen Emission wird in Abhängigkeit vom gemessenen Abstand korrigiert, beispielsweise durch Anwendung eines vorbestimmten Korrela ¬ tionsfaktors oder durch Rückgriff auf in einer Wertetabelle abgelegte abstandskorrigierte Werte, die empirisch ermittelt wurden. Der abstandskorrigierte Intensitätswert der Emission stellt damit einen auf einen vorgegebenen Basisabstand

normierten Wert dar.

Ein Vorteil der erfindungsgemäßen Lösung besteht darin, dass die bislang durch den Einfluss des Abstandes zwischen Anreger und elektrolumineszierendem Sicherheitsmerkmal auftretenden Intensitätsschwankungen des gemessenen Emissionssignals kompensiert bzw. korrigiert werden können. Im Vergleich mit bekannten Prüf erfahren verbessert sich die Zuverlässigkeit des Messsignals. Beim Einbinden des Verfahrens in den Produk- tionsprozess eines Sicherheitsdokuments stehen somit zeitnah zuverlässige Daten zur Verfügung, anhand derer bereits eine Aussortierung fehlerhafter Produkte erfolgen kann. Eventuelle Schwankungen im Produktionsprozess können unverzüglich ausgeglichen werden. Hierdurch minimiert sich auch der Aufwand einer abschließenden Qualitätskontrolle.

Nach einer besonders bevorzugten Aus führungs form erfolgt das Messen des Abstandes durch eine Triangulationsmessung mittels LED. Für die Realisierung des Abstandssensors hat sich insbe ¬ sondere eine LED mit großem Lichtpunkt, beispielsweise von etwa 2 mm, als zweckmäßig erwiesen. Durch eine Triangulations messung kann der Abstand zu dem zu prüfenden Sicherheitsdoku ¬ ment sehr genau bestimmt werden. Damit ist auch der Abstand zwischen Anreger und Oberfläche des Sicherheitsdokuments bekannt, da die Position des Abstandssensors und des Anregers in der PrüfVorrichtung fest stehen. Der für die Messung vorzugsweise eingesetzte Triangulationssensor arbeitet mit einer Infrarot LED in einem nicht sichtbaren Wellenlängenbereich von etwa 890 nm.

Bei einer vorteilhaften Aus führungs form wird das elektrische Wechselfeld von mindestens einem Elektrodenpaar erzeugt. Die Art der Anregung bleibt während des erfindungsgemäßen Verfahrens konstant, d. h. es erfolgt kein Nachstellen der Anre ¬ gungsstärke. Grundsätzlich sind dem Fachmann unterschiedliche Anregungsarten und Vorrichtungen zur Realisierung bekannt, di er je nach Einsatzfall auswählen kann.

In typischen Anregungsanordnungen besteht aufgrund der Elektrodenkonfiguration im Anreger und der Elektrolumineszenz, die typische Sicherheitsdokumenten-Leuchtstoffe zeigen, eine mathematisch beschreibbare Korrelation zwischen dem Abstand Sicherheitsmerkmal-Anreger und der gemessenen Intensität der Lumineszenz. Diese Korrelation kann durch eine Exponentialfunktion mit negativem Koeffizienten beschrieben werden. Als zweckmäßig hat es sich erwiesen, wenn die Bewertung der gemes senen Emission mittels nachfolgend angegebener Formel erfolgt

. PD Intensitätgemessen _ offset _ korrigiert * C * Q

FD Intensitätkorrigiert = =

d * e ~a s - mit

s_mon gemessener Abstandswert

PD_Intensität gemessene/korrigierte Intensitätswert

a, b, c, d Konstanten auf Basis empirischer Daten

(mit verschiedenen Proben bestimmt)

Vorzugsweise wird für jeden Intensitätsmesswert ein zugehöri ¬ ger Abstandswert erfasst. Dabei kann es sich um einen absolu ¬ ten Wert handeln oder eine relative Angabe in Bezug auf einen Basisabstand, der unter optimalen Bedingungen zwischen dem zu prüfenden Sicherheitsdokument bzw. -material und der Anre ¬ gungsquelle eingestellt ist. Bei Praxistests hat es sich gezeigt, dass durch die oben angegebene Formel eine besonders gute Kompensation der durch einen unterschiedlichen Abstand hervorgerufenen Intensitätsschwankungen erreicht werden kann. Auf diese Weise stehen aussagekräftige Messwerte zur Verfügung anhand derer mit hoher Zuverlässigkeit geprüft werden kann, ob das Sicherheitsmerkmal die entsprechenden Eigenschaften aufweist .

Von Vorteil ist es, wenn das Sicherheitsdokument mit einer Maximalgeschwindigkeit von 150 m/min durch das elektrische Wechselfeld bewegt wird. Bis zu einer solchen Geschwindigkeit lassen sich die Messungen besonders gut realisieren. Es soll jedoch keine Einschränkung auf eine derartige Maximalgeschwindigkeit erfolgen.

Nach einer weiteren vorteilhaften Aus führungs form werden di Werte zur Abstandsmessung mit einer Messfrequenz von mindes tens 1 KHz aufgenommen.

Bei einer bevorzugten Ausführungsform wird ein Signal ausgege- ben, wenn die abstandskompensierte Emission außerhalb vorgege- bener Werte liegt. Hierdurch wird das Bedienpersonal darauf hingewiesen, dass das Sicherheitsmerkmal nicht mehr die erfor- derlichen Eigenschaften, die es zur Verifikation des Sicherheitsdokuments zwingend aufweisen muss, besitzt. In diesem Zusammenhang hat es sich auch als zweckmäßig erwiesen, wenn das Sicherheitsdokument mit einer entsprechenden Markierung versehen wird, anhand derer es bei einer späteren Qualitäts- kontrolle sofort als fehlerhaft erkannt und aussortiert werden kann .

Weiterhin ist es vorteilhaft, wenn das erfindungsgemäße Ver ¬ fahren in den Produktionsprozess eines Sicherheitsdokuments integriert ist, wobei es nach dem Aufbringen des elektrolumi- neszierenden Sicherheitsmerkmals abläuft. Der Produktionspro ¬ zess kann beispielsweise ein Siebdruckprozess sein. Ein gängi ¬ ger Anwendungsfall des erfindungsgemäßen Verfahrens sind die in Papierfabriken hergestellten Spezialpapiere, welche für die Banknotenproduktion hergestellt werden. Auf diese Papiere werden entsprechende Sicherheitskennzeichen verdruckt. Die Verdruckung erfolgt denominationsabhängig. Dabei werden in der Regel 4, 5 oder 6 Spuren gleichzeitig verdruckt. Die Verdruc ¬ kung erfolgt vorzugsweise im Endlossiebdruck. Nach erfolgtem Druck und Überprüfung des Sicherheitsmerkmals werden die

Papierbahnen auf Banknotenbogengröße geschnitten.

Die erfindungsgemäße Vorrichtung zur Überprüfung von Sicherheitsmerkmalen, die zumindest ein elektrolumineszierendes Sicherheitsmerkmal umfassen, beinhaltet einen Anreger zum Erzeugen eines elektrischen Wechselfeldes, einen Detektor zum Erfassen und Bewerten der durch die Elektrolumineszenz bewirkten Emission. Die erfindungsgemäße Vorrichtung zeichnet sich dadurch aus, dass sie zusätzlich noch einen Abstandssensor zum Erfassen des Abstands zwischen Anreger und elektrolumineszie- renden Sicherheitsmerkmal aufweist. Der Abstandssensor ist vorzugsweise als Triangulationssensor ausgeführt. Des Weiteren umfasst die Vorrichtung noch eine Verarbeitungseinheit zum Verarbeiten der von dem Detektor und dem Abstandsensor erfas- sten Daten zur Erzeugung eines abstandskompensierten Signals.

Ein gängiger Einsatzfall für die erfindungsgemäße Vorrichtung ist die Siebdruckapplikation von elektrolumineszierenden

Sicherheitsmerkmalen. Die erfindungsgemäße Vorrichtung befindet sich hierbei vorzugweise hinter den Trocknungsstrecken.

Beim beschriebenen Einsatzfall werden in der Regel bis zu sechs Druckspuren gleichzeitig verdruckt. Um diese Druckspuren gleichzeitig und unabhängig voneinander prüfen zu können, werden vorzugsweise jeweils sechs Anreger, Detektoren sowie Abstandssensoren eingesetzt. Die von den Detektoren erfassten Emissionswerte werden gemeinsam mit dem jeweiligen Abstand von der Verarbeitungseinheit erfasst. Aus den erfassten Daten wird durch die Verarbeitungseinheit mit Hilfe der bereits im Zusam ¬ menhang mit der Verfahrensbeschreibung angegebenen Kompensationsformel die abstandskompensierte Emission ermittelt. Weitere Vorteile, Einzelheiten und Weiterbildungen der Erfindung ergeben sich aus der nachfolgenden Beschreibung einer bevorzugten Aus führungs form, unter Bezugnahme auf die Zeichnung .

Die einzige Fig. zeigt die Abhängigkeit der Intensität der durch die Elektrolumineszenz bewirkten Emission vom Abstand zwischen Anreger und elektrolumineszierendem Sicherheitsmerkmal. Zur Ermittlung dieses Zusammenhangs wurde im gezeigten Beispiel eine konstante Probe mindestens 10-mal vermessen. Eine Kalibrierung des Systems fand im gewählten Beispiel auf einen Nominalabstand von 1,5 mm statt (entspricht 100%) . Es wurde mit Abständen von 1,0 mm, 1,25 mm, 1,5 mm, 1,75 mm und 2,0 mm gemessen. Dies entspricht in etwa den gängigen

Abstandsschwankungen, wie sie bei dem oben beschriebenen Anwendungsfall, der Verarbeitung der in Papierfabriken hergestellten Spezialpapiere für den Banknotendruck, auftreten.

Der in der Fig. abgebildeten a-Kurve können die doch beträcht liehen Intensitätsschwankungen entnommen werden. Bei einem Abstand von 1,0 mm beträgt der Intensitätswert etwa 225 %. Be einem Abstand von 2,0 mm werden gerade noch 40 % gemessen. Durch diese starken Schwankungen kann es zu Problemen bei der Überprüfung des Sicherheitsmerkmals kommen, da in Abhängigkei von der Intensität der Emission, welche eine Mindestschwelle im relevanten Farbbereich überschreiten muss, entschieden wird, ob das Sicherheitsmerkmal mit der erforderlichen Quali ¬ tät auf das Sicherheitsdokument bzw. dessen Vorläufer aufge ¬ bracht wurde. Hierdurch kann es dazu kommen, dass aufgrund eines größeren Abstands zwischen Sicherheitsmerkmal und Anre ¬ ger eine zu geringe Intensität gemessen wird und infolge dessen die Qualität des Sicherheitsmerkmals als nicht ausrei ¬ chend bewertet und somit irrtümlich als fehlerhaft aussortier wird. Im entgegen gesetzten Fall kann es dazu kommen, dass bei kleinerem Abstand ein sonst fehlerhaftes Sicherheitsmerkmal als ausreichend bewertet wird, da die Intensität durch den kleineren Abstand die erforderliche Mindestschwelle über ¬ schreitet. Fehlerhafte Sicherheitsdokumente können somit nicht zeitnah, bereits während des Produktionsprozesses, erkannt werden und müssen unter höherem Aufwand von einer, der Produktion nachgelagerten Qualitätskontrolle ermittelt werden.

Die Messungen wurden mit eingeschalteter erfindungsgemäßer Abstandskompensation wiederholt. Durch die Abstandskompensa ¬ tion wird ein gemessener kleiner Intensitätswert bei großem Abstand - im Beispiel 1,75 und 2 mm - vergrößert, bei nomina ¬ lem Abstand (1,5 mm) durch 1 dividiert und bei geringem

Abstand - im Beispiel 1,25 mm und 1,0 mm -verkleinert. Das Ergebnis dieser Messungen kann der b-Kurve in der Fig. entnommen werden. Die bislang ohne Abstandskompensation auftretenden Intensitätsschwankungen können weitestgehend kompensiert werden. Der Intensitätswert schwankt lediglich noch im Bereich zwischen 90 und 100%. Somit steht ein Signal mit hoher Güte zur Verfügung, anhand dessen eine zuverlässige Überprüfung der Qualität des Sicherheitsmerkmals erfolgen kann.

Für den Fall, dass die abstandskompensierte Intensität der Emission außerhalb der vorgegebenen Werte liegt, kann ein akustisches oder visuelles Warnsignal ausgegeben werden. Die als fehlerhaft identifizierten Sicherheitsdokumente können mit einer entsprechenden Markierung versehen werden, um sie im Anschluss als Ausschuss aussortieren zu können. Das Bedien ¬ personal kann in Reaktion auf das Warnsignal entsprechende Korrekturmaßnahmen einleiten, beispielsweise die Zudosierung der elektrolumineszierenden Pigmente anpassen. In der Praxis erfolgt derzeit in der Regel ein manueller Eingriff in den Druckprozess , beispielsweise wird der Füllstand des Siebes kontrolliert, das Sieb gereinigt bzw. eventuelle Schieflagen bei der Verdruckung korrigiert. Ebenso ist aber eine automati ¬ sierte Korrektur möglich, sodass in Abhängigkeit von dem fest ¬ gestellten Messwert - insbesondere wenn dieser außerhalb vorgegebener Grenzwerte liegt - die im Produktionsprozess auf nachfolgende Sicherheitsdokumente aufzubringende Menge des Sicherheitsmerkmals angepasst wird.

Der Fachmann wird erkennen, dass es für die Realisierung auf die Einzelheiten der Anregungsquelle zur Anregung der Lumineszenz nicht ankommt. Ebenso ist die Art der zu prüfenden

Sicherheitsdokumente bzw. -materialien von untergeordneter Bedeutung .