Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHOD AND DEVICE FOR SELECTING PTP LSP
Document Type and Number:
WIPO Patent Application WO/2012/174963
Kind Code:
A1
Abstract:
The present invention provides a method and a device for selecting a PTP LSP. In the method, the 1588 capability and the bandwidth reservation capability of each node are circulated, and a PTP LSP is selected according to a circulation result. The selected PTP LSP has the fewest nodes that do not support the 1588 capability or the bandwidth reservation capability. By means of the technical solution provided by the present invention, the clock recovery quality and the applicability and reliability of the synchronization service are further improved.

Inventors:
ZHANG JUNHUI (CN)
HE LI (CN)
Application Number:
PCT/CN2012/075664
Publication Date:
December 27, 2012
Filing Date:
May 17, 2012
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
ZTE CORP (CN)
ZHANG JUNHUI (CN)
HE LI (CN)
International Classes:
H04L12/56
Foreign References:
CN101547083A2009-09-30
CN102082652A2011-06-01
Other References:
J.ZHANG: "Reoptimization and Recovery draft-zhang-tictoc-pdv-lsp-00", PDV-BASED PTP LSP SETUP, 20 October 2011 (2011-10-20)
Attorney, Agent or Firm:
KANGXIN PARTNERS,P.C. (CN)
北京康信知识产权代理有限责任公司 (CN)
Download PDF:
Claims:
权 利 要 求 书

1. 一种精确定时协议 PTP标签交换路径 LSP的选取方法, 包括:

执行各个节点的 1588能力和带宽预留能力的通报;

根据通报结果选取 PTP LSP, 其中, 所述选取的 PTP LSP中不支持 1588 能力和带宽预留能力的节点个数最少。

2. 根据权利要求 1所述的方法, 其中, 所述选取的 PTP LSP支持 1588业务以及 电路仿真业务 CES。

3. 根据权利要求 1所述的方法,其中,根据通报结果选取 PTP LSP之后,还包括:

对于不支持 1588能力和带宽预留能力的节点, 开启拥塞检测机制。

4. 根据权利要求 3所述的方法,其中,对于不支持 1588能力和带宽预留能力的节 点, 开启拥塞检测机制包括:

PTP LSP中的头节点发送路径消息, 其中, 所述路径消息中携带有拥塞检 测请求;

所述 PTP LSP中不支持 1588能力和带宽预留能力的节点接收到所述路径 消息后, 开启拥塞检测机制。

5. 根据权利要求 4所述的方法,其中,所述不支持 1588能力和带宽预留能力的节 点开启拥塞检测机制之后, 还包括:

检测到拥塞的节点向所述头节点发送路径错误消息, 其中, 所述路径错误 消息携带有所述检测到拥塞的节点的标识信息。

6. 根据权利要求 5所述的方法, 其中, 检测到拥塞的节点向所述头节点发送路径 错误消息之后, 还包括:

按照预定策略触发头节点执行重优化操作;

所述头节点绕开所述检测到拥塞的节点, 重新选取 PTP LSP。

7. 根据权利要求 6所述的方法, 其中, 所述预定策略包括:

当端到端的 PDV性能劣化程度和 /或丢包率大于第一阈值时, 确定触发头 节点执行重优化操作。

8. 根据权利要求 7所述的方法,其中,触发头节点执行重优化操作包括以下之一: 所述 PTP LSP的尾节点通过检测确定所述 PDV性能劣化程度和 /或丢包率 大于所述第一阈值, 发送通知消息至所述头节点, 其中, 所述通知消息携带有 用于表示 PDV性能劣化和 /或丢包错误的错误代码。

9. 根据权利要求至 1至 8中任一项所述的方法, 其中, 在根据通报结果选取 PTP LSP并建立之后, 还包括: 在从设备或主设备上分析 PDV性能, 根据 PDV性 能劣化程度完成 PTP LSP或主时钟的保护切换。

10. 根据权利要求 9所述的方法,其中,对于多个从设备同步到单个主设备的场景, 根据 PDV性能劣化程度完成主设备的保护切换包括:

建立 1+1保护的 PTP LSP主备路径;

在从设备上分析所述 PTP LSP主备路径的 PDV抖动描述, 选择所述 PTP

LSP主备路径中的一条路径进行同步;

如果当前 PTP LSP的 PDV性能劣化程度大于第二阈值时, 则该从设备切 换至 PTP LSP主备路径中的另一路径;

对所述当前 PTP LSP执行重优化操作, 建立新的 PTP LSP以及 PDV抖动 描述。

11. 根据权利要求 9所述的方法,其中,对于单个从设备同步到多个主设备的场景, 根据 PDV性能劣化程度完成主设备的保护切换包括:

在从设备和各个主设备之间均建立一条 PTP LSP;

如果在从设备上分析 PDV性能,该从设备比较所述建立的 PTP LSP的 PDV 抖动描述, 选择一条 PDV性能最优的 PTP LSP进行同步;

如果在主设备上分析 PDV性能, 在当前 PTP LSP的 PDV性能劣化程度大 于第三阈值时, 该主设备向所述单个从设备发送劣化通知消息并对当前 PTP路 径执行重优化操作, 所述单个从设备接收到所述劣化通知消息后, 判断是否切 换至所述多个主设备中的其他主设备上。

12. 根据权利要求 1所述的方法,其中,在执行各个节点的 1588能力和带宽预留能 力的通报之前, 还包括: 在 IGP路由协议中扩展字段, 其中, 所述扩展的字段 用于指示执行带宽预留能力的通报。

13. 一种 PTP LSP的选取装置, 包括: 能力通报模块, 设置为执行各个节点的 1588能力和带宽预留能力的通报; 选路模块,设置为根据通报结果选取 PTP LSP,其中,所述选取的 PTP LSP 中不支持 1588能力和带宽预留能力的节点个数最少。

14. 根据权利要求 13所述的装置, 其中, 还包括:

拥塞检测开启模块, 设置为对于不支持 1588能力和带宽预留能力的节点, 开启拥塞检测机制。

15. 根据权利要求 13或 14所述的装置, 其中, 还包括:

PDV性能分析模块, 设置为在从设备或主设备上分析 PDV性能; 保护切换模块, 设置为根据 PDV性能劣化程度完成 PTP LSP或主时钟的 保护切换。

Description:
PTP LSP的选取方法及装置 技术领域 本发明涉及通信领域, 具体而言, 涉及一种精确定时协议 (Precision Time Protocol , 简称为 PTP) 标签交换路径 (Label Switched Path, 简称为 LSP) 的选取方 法及装置。 背景技术 随着 3G网络的高速发展, 1588时间同步协议在通讯网络中得到越来越多 重视 和广泛的应用。国内外运营商不断的使用 1588协议进行时间同步,逐步替换使用 GPS 进行时间同步的方式。 在 IEEE 1588v2标准中, 规定了精确定时协议 (PTP) 报文的组播和单播两种传 送方式。 随着 1588网络的逐步应用, 需要穿越第三方网络实现频率同步和相位同步 , 但由于中间网络设备可能不支持 PTP, 导致 PTP分组报文穿越第三方网络时存在延迟 变化, 即分组延迟变化 (PDV); 如果 PDV过大, 将影响 Slave设备的时钟恢复性能; 另夕卜, 对电路仿真业务(Circuit Emulation Service, 简称为 CES) 自适应时钟恢复, 中 间网络产生的 PDV如果超过一定范围, 将严重影响自适应时钟恢复 (ACR) 的性能。 因此, 如果中间网络设备能建立一条优化的 PTP路径, 在网络两端的时钟同步设备分 析网络设备引入的 PDV, 选择出一条优化的 PTP路径, 并能在 PDV劣化时切换到备 用的 PTP路径上, 将能大幅度提高时钟恢复的质量和同步业务的 可靠性。 随着多协议标志交换 (Multi protocol label Switching, 简称为 MPLS) 网络的广泛 部署, 穿越第三方 MPLS网络实现频率同步和相位同步是不可避免 , 穿越第三方网 络实现 PTP同步具体可以参见图 1。在 IETF标准组织中, TICTOC工作组关注在纯 IP 网络和 MPLS网络的高精度频率和时间同步, draft-ietf-tictoc-1588overmpls这篇草案描 述了 1588 over MPLS的应用场景及实现技术, 它提出扩展开放式最短路径优先协议 (Open Shortest-Path First, 简称为 OSPF), 协议进行 1588能力通告, 并建立 PTP专 用的 LSP实现同步业务的传送。 但对非 1588设备, 如果不支持带宽预留能力, 则可 能导致 PTP流量拥塞, 从而导致网络两端的 PDV性能劣化。 由于第三方网络流量的复杂性和不可确定性, 先前建立的 PTP LSP可能存在拥塞, 从而影响时钟恢复。 因此需要某种机制来选择或切换到新的 PTP LSP上, 防止关键的 时钟同步业务的 PDV性能劣化或不可用。 RFC4872扩展了 RSVP-TE协议, 允许建立 端至 lj端的 MPLS TE LSP, 并进行保护切换。 此外, 网络维护过程中, 可能需要添加或 删除相应的节点而导致网络拓扑发生变化, 这时可能存在新的更优化的 PTP路径, 头 节点 LSR触发重新评估并发现一条更优的 LSP; RFC4736描述了一种重优化机制来 发现并建立一条更优的 TE LSP。 发明内容 本发明提供了一种 PTP LSP的选取方法及装置, 以至少解决相关技术中由于第三 方网络流量的复杂性和不可确定性, 先前建立的 PTP LSP可能存在拥塞, 从而影响时 钟恢复的问题。 根据本发明的一个方面, 提供了一种 PTP LSP的选取方法。 根据本发明的 PTP LSP的选取方法包括: 执行各个节点的 1588能力和带宽预留 能力的通报; 根据通报结果选取 PTP LSP, 其中, 选取的 PTP LSP中不支持 1588能力 和带宽预留能力的节点个数最少。 上述选取的 PTP LSP支持 1588业务以及电路仿真业务 (CES)。 根据通报结果选取 PTP LSP之后, 还包括: 对于不支持 1588能力和带宽预留能 力的节点, 开启拥塞检测机制。 对于不支持 1588能力和带宽预留能力的节点, 开启拥塞检测机制包括: PTP LSP 中的头节点发送路径消息, 其中, 路径消息中携带有拥塞检测请求; PTP LSP中不支 持 1588能力和带宽预留能力的节点接收到路径消 后, 开启拥塞检测机制。 上述不支持 1588能力和带宽预留能力的节点开启拥塞检测 制之后,还包括: 检 测到拥塞的节点向头节点发送路径错误消息, 其中, 路径错误消息携带有检测到拥塞 的节点的标识信息。 检测到拥塞的节点向头节点发送路径错误消息 之后, 还包括: 按照预定策略触发 头节点执行重优化操作; 头节点绕开检测到拥塞的节点, 重新选取 PTP LSP。 上述预定策略包括: 当端到端的 PDV性能劣化程度和 /或丢包率大于第一阈值时, 确定触发头节点执行重优化操作。 触发头节点执行重优化操作包括以下之一: PTP LSP的尾节点通过检测确定 PDV 性能劣化程度和 /或丢包率大于第一阈值, 发送通知消息至头节点, 其中, 通知消息携 带有用于表示 PDV性能劣化和 /或丢包错误的错误代码。 在根据通报结果选取 PTP LSP并建立之后,还包括:在从设备或主设备上 析 PDV 性能, 根据 PDV性能劣化程度完成 PTP LSP或主时钟的保护切换。 对于多个从设备同步到单个主设备的场景,根 据 PDV性能劣化程度完成主设备的 保护切换包括: 建立 1+1保护的 PTP LSP主备路径; 在从设备上分析 PTP LSP主备路 径的 PDV抖动描述,选择 PTP LSP主备路径中的一条路径进行同步;如果当前 PTP LSP 的 PDV性能劣化程度大于第二阈值时, 则该从设备切换至 PTP LSP主备路径中的另 一路径; 对当前 PTP LSP执行重优化操作, 建立新的 PTP LSP以及 PDV抖动描述。 对于单个从设备同步到多个主设备的场景,根 据 PDV性能劣化程度完成主设备的 保护切换包括: 在从设备和各个主设备之间均建立一条 PTP LSP; 如果在从设备上分 析 PDV性能, 该从设备比较建立的 PTP LSP的 PDV抖动描述, 选择一条 PDV性能 最优的 PTP LSP进行同步; 如果在主设备上分析 PDV性能, 在当前 PTP LSP的 PDV 性能劣化程度大于第三阈值时, 该主设备向单个从设备发送劣化通知消息并对 当前 PTP路径执行重优化操作, 单个从设备接收到劣化通知消息后, 判断是否切换至多个 主设备中的其他主设备上。 在执行各个节点的 1588能力和带宽预留能力的通报之前, 还包括: 在 IGP路由 协议中扩展字段, 其中, 扩展的字段用于指示执行带宽预留能力的通报 。 根据本发明的另一方面, 提供了一种 PTP LSP的选取装置。 根据本发明的 PTP LSP的选取装置包括: 能力通报模块, 设置为执行各个节点的 1588能力和带宽预留能力的通报; 选路模块, 设置为根据通报结果选取 PTP LSP, 其 中, 选取的 PTP LSP中不支持 1588能力和带宽预留能力的节点个数最少。 上述装置还包括: 拥塞检测开启模块, 设置为对于不支持 1588能力和带宽预留 能力的节点, 开启拥塞检测机制。 上述装置还包括: PDV性能分析模块, 设置为在从设备或主设备上分析 PDV性 能; 保护切换模块, 设置为根据 PDV性能劣化程度完成 PTP LSP或主时钟的保护切 换。 通过本发明,执行各个节点的 1588能力和带宽预留能力的通报; 根据通报结果选 取 PTP LSP,其中,选取的 PTP LSP中不支持 1588能力和带宽预留能力的节点个数最 少, 解决了相关技术中第三方网络流量的复杂性和 不可确定性, 先前建立的 PTP LSP 可能存在拥塞, 从而影响时钟恢复的问题, 进而可以更好地提高时钟恢复质量和同步 业务的可用性和可靠性。 附图说明 此处所说明的附图用来提供对本发明的进一步 理解, 构成本申请的一部分, 本发 明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图 中: 图 1是穿越第三方网络实现 PTP同步的示意图; 图 2是根据本发明实施例的 PTP LSP的选取方法的流程图; 图 3是根据本发明优选实施例的基于拥塞通知的 PTP路径重优化的示意图; 图 4是根据本发明优选实施例的单个 Master的 PTP路径保护的示意图; 图 5是根据本发明优选实施例的多个 Master的 PTP路径保护的示意图; 图 6是根据本发明实施例的 PTP路径的选取装置的结构框图; 以及 图 7是根据本发明优选实施例的 PTP路径的选取装置的结构框图。 具体实施方式 下文中将参考附图并结合实施例来详细说明本 发明。 需要说明的是, 在不冲突的 情况下, 本申请中的实施例及实施例中的特征可以相互 组合。 图 2是根据本发明实施例的 PTP LSP的选取方法的流程图。 如图 2所示, 该 PTP

LSP的选取方法主要包括以下处理: 步骤 S202: 执行各个节点的 1588能力和带宽预留能力的通报; 步骤 S204: 根据通报结果选取 PTP LSP, 其中, 选取的 PTP LSP中不支持 1588 能力和带宽预留能力的节点个数最少。 相关技术中, 当 PTP穿越第三方网络时, 同步性能的质量很大程度上取决于中间 网络设备引起的 PDV, 而引起 PDV的主要因素是网络节点的流量拥塞。 RSVP-TE支 持建立 DS-TE隧道, 即可以建立最高优先级并为此隧道保留一定的 带宽, 如果此隧道 只用来承载 PTP业务, 优先级最高, 且没有超过配置的预留带宽, 则网络节点可以认 为不存在拥塞; 但实际上, 由于硬件实现的复杂性和成本因素, 中间网络设备可能不 支持预留带宽能力,这时除了通告 1588能力,还需要通告设备是否支持带宽预留 力, 在建立 TE隧道时, 如果此节点既不支持 1588也不支持预留带宽能力, 则应该尽量绕 开这个节点, 避免引入 PDV。 采用图 1所示的方法, 根据通报结果选取 PTP LSP, 可 以更好地提高时钟恢复质量和同步业务的可用 性和可靠性。 其中, 上述选取的 PTP LSP, 除了承载 1588业务用于频率或时间恢复外, 也可以 承载 CES业务用于频率恢复。 优选地, 如果选取的 PTP LSP中存在不支持 1588能力和带宽预留能力的节点, 则可以对不支持 1588能力和带宽预留能力的节点, 开启拥塞检测机制。 其中,可以通过以下方式对不支持 1588能力和带宽预留能力的节点, 开启拥塞检 测机制:

( 1 ) PTP LSP中的头节点发送路径消息,其中,路径消息 中携带有拥塞检测请求;

(2) PTP LSP中不支持 1588能力和带宽预留能力的节点接收到路径消 后, 开 启拥塞检测机制。 在优选实施过程中, 为了保证建立的 PTP LSP的 PDV最优, MPLS TE信令需要 支持 1588能力和带宽预留能力的通告和选路, 并支持拥塞检测请求; 另外, LSP穿越 的非 1588的设备跳数也要最少;影响 MPLS网络的端到端的 PDV的主要因素有:(1 ) MPLS隧道的 QoS调度策略及节点的拥塞情况; (2) 是否支持 1588能力; (3 ) 经过 的设备跳数; (4) 是否支持带宽预留能力; (5 ) 网络流量的变化。

CSPF选路时, 优选支持 1588能力的路径, 其次选择支持带宽预留能力的节点, 如果网络节点即不支持 1588能力,也不支持带宽预留能力,则需要开 拥塞检测机制。 由于分组延迟变化 (PDV) 产生的主要原因是网络节点的拥塞导致的, 所以, 如 果能检测出隧道上哪个节点出现拥塞, 并通告给隧道 (即上述 PTP LSP) 的头节点, 请求头节点重新计算 LSP路径, 可以绕开拥塞的节点。 具体地, 可以采用 RFC4736定义的流程, 头节点发送 Path消息, 在 Path消息中 携带扩展的拥塞检测请求; 这时 LSP上所有不支持 1588能力和带宽预留能力的节点 将开启拥塞检测功能; 即根据 tunnel 的参数配置和 QoS 配置信息, 可以判断出这个 tunnel的出端口和对应的 Qos调度队列,然后 LSP上节点使能端口和队列的拥塞检测。 优选地, 上述不支持 1588能力和带宽预留能力的节点开启拥塞检测 制之后,还 可以包括以下处理: 检测到拥塞的节点向头节点发送路径错误消息 , 其中, 上述路径 错误消息携带有该检测到拥塞的节点的标识信 息。 优选地, 检测到拥塞的节点向头节点发送路径错误消息 之后, 还可以包括以下处 理: 按照预定策略触发头节点执行重优化操作; 头节点绕开检测到拥塞的节点, 重新 选取 PTP LSP。 在优选实施过程中, 当出现拥塞后,转发层通知 MPLS TE协议层,根据 RFC4736 定义的流程, 拥塞节点发送通告消息, 告知头节点出现拥塞; 头节点采用预定策略进 行重优化路径计算, 即在以前的隧道 (tunnel) 路径节点上, 排除掉拥塞的节点。 优选地, 上述预定策略包括但不限于: 当端到端的 PDV性能劣化程度和 /或丢包 率大于第一阈值时, 确定触发头节点执行重优化操作。 其中, 触发头节点重优化的预定策略, 由于中间网络的重优化和切换也会导致 PDV劣化, 所以, 在端到端 PDV指标符合要求的情况下, 需要确保中间网络 PTP路 径的稳定性; 因此, 只有当端到端 PDV性能劣化到一定程度后, 才触发头节点重优化 和切换; 另外, 由于丢包率也反映了网络的拥塞程度, 所以也可以作为触发头节点重 优化和切换的一个考虑因素。 在优选实施过程中, PTP LSP的尾节点通过检测确定 PDV性能劣化程度和 /或丢 包率大于第一阈值, 发送通知消息至头节点, 其中, 通知消息携带有用于表示 PDV性 能劣化或丢包错误的错误代码。 以下结合图 3描述上述优选实施方式。 图 3是根据本发明优选实施例的基于拥塞通知的 PTP路径重优化的示意图。如图

3所示, 头节点为 Rl, 尾节点为 R7。 根据各个节点的 1588能力和带宽预留能力的通 报结果, 建立的 PTP LSP为 1 1一> R3— > R4— > R7。头节点发送路径消息, 对不支持 1588能力和带宽预留能力的节点开启拥塞检测 能。 中间节点 R4检测到拥塞, 向头 节点发送路径错误消息(即拥塞通告)。 在尾节点确定 PDV性能劣化程度和 /或丢包率 大于预定的阈值时, 经由上述路径向头节点 R1返回通知 (notify) 消息, 其中, 该通 知消息携带有用于表示 PDV性能劣化和 /或丢包错误的错误代码。之后, 头节点 R1绕 开检测到拥塞的节点 R4, 重新选取 PTP LSP。选取的?1? 1^?为1 1 > 1 3—> 1 9 R7 优选地, 在根据通报结果选取 PTP LSP并建立之后, 还可以包括以下处理: 在从 设备或主设备上分析 PDV性能, 根据 PDV性能劣化程度完成 PTP LSP或主时钟的保 护切换。 由于第三方网络的其它复杂因素导致的从设备 (Slave) 的 PDV性能劣化并影响 到时钟同步业务不可用, 这时需要能基于 PDV劣化进行 PTP路径的保护和切换。 对于多个从设备同步到单个主设备的场景,上 述根据 PDV性能劣化程度完成主设 备的保护切换可以包括以下处理:

( 1 ) 建立 1+1保护的 PTP LSP主备路径;

( 2 )在从设备上分析 PTP LSP主备路径的 PDV抖动描述, 选择 PTP LSP主备路 径中的一条路径进行同步; ( 3 ) 如果当前 PTP LSP的 PDV性能劣化程度大于第二阈值时, 则该从设备切换 至 PTP LSP主备路径中的另一路径;

( 4 ) 对当前 PTP LSP执行重优化操作, 建立新的 PTP LSP以及 PDV抖动描述。 以下结合图 4描述上述优选实施方式。 图 4是根据本发明优选实施例的单个 Master的 PTP路径保护的示意图。 在每对 Master-Slave之间建立单条 PTP路径, 根据实际组网情况, PDV性能分析可以在 Slave 完成, 也可以在 Master完成; 然后基于 PDV劣化完成 Master的保护切换。 具体采用 的方法如下: 步骤 1: 从 Master到 Slave建立 1+1保护模式的双向 PTP隧道; 步骤 2: Master和 Slave两端发送 Announce报文, 建立 M/S关系, 这时只需要 接收并处理一条路径的通告报文; 然后 Master设备和 Slave设备发起 PTP流程; 步骤 3 : Slave节点同时从两条 PTP LSP接收并处理 PTP报文, 分析 PTP报文中 时间戳, 建立两条 PTP路径的 PDV抖动描述; 步骤 4: Slave比较两条 PTP路径的 PDV抖动描述, 选择一条更好的 PTP路径进 行同步; 步骤 5: 如果当前 PTP路径的 PDV劣化超过一定门限, 则 Slave先切换到另外 一条 PTP路径上, 然后发送通告报文, 请求 Master重优化 PDV劣化的 PTP路径, 建 立新的 PTP LSP及 PDV抖动描述, 然后拆除旧的 PDV劣化的 PTP路径; 重优化后, 要保证两条 PTP路径的 PDV都符合要求。 对于单个从设备同步到多个主设备的场景,上 述根据 PDV性能劣化程度完成主设 备的保护切换可以包括以下处理:

( 1 ) 在从设备和各个主设备之间均建立一条 PTP LSP; (2) 如果在从设备上分析 PDV性能, 该从设备比较建立的 PTP LSP的 PDV抖 动描述, 选择一条 PDV性能最优的 PTP LSP进行同步;

(3 ) 如果在主设备上分析 PDV性能, 在当前 PTP LSP的 PDV性能劣化程度大 于第三阈值时, 该主设备向单个从设备发送劣化通知消息并对 当前 PTP路径执行重优 化操作, 单个从设备接收到劣化通知消息后, 判断是否切换至多个主设备中的其他主 设备上。 以下结合图 5描述上述优选实施方式。 图 5是根据本发明优选实施例的多个 Master的 PTP路径保护的示意图。 在每对 Master-Slave之间建立单条 PTP路径,可以根据实际组网和 PDV计算负载的影响, PDV 性能分析可以在 Slave完成, 也可以在 Master完成; 然后基于 PDV劣化完成 Master 的保护切换。 具体采用的方法如下: 步骤 1: Slave到各个 Master之间建立一条双向 PTP隧道; 步骤 2: Master和 Slave两端发送 Announce报文, 建立 M/S关系; 然后 Master 设备和 Slave设备发起 PTP流程; 步骤 3 : 如果 PDV分析在 Slave进行, 贝 U Slave节点同时从多个 Master接收并处 理 PTP报文, 分析 PTP报文中时间戳, 并建立它们的 PDV抖动描述, Slave比较这些 PDV抖动描述, 选择一条更好的 PTP路径进行同步; 步骤 4:如果 PDV分析在 Master进行,则 Master采用 IEEE 1588v2机制获得 PTP 路径的抖动描述, 如果发现 PDV性能劣化, 则通知 Slave, 并开始重优化当前 PTP路 径, 然后重新计算 PDV性能; Slave收到 PDV劣化通告消息后, 结合时钟源信息和 PDV性能劣化情况, 采用一定的策略决定是否切换到另外的 Masters 需要注意的是, 在优选实施过程中, 需要对协议进行扩展。

( 1 ) 拥塞检测会话属性标志扩展 可以在 RSVP-TE协议中的 SESSION—ATTRIBUTE对象中,增加一个新的标志位 即在建立 PTP LSP时, 请求 LSP上所有不支持 1588能力和带宽预留能力的节点开启 拥塞检测功能, 即上面提到的在路径 (path) 消息中携带扩展的拥塞检测请求。 并且 当节点出现拥塞情况下通告给头节点, 头节点重优化 PTP路径, 以绕开该拥塞节点; 当此标志位等于 0时, 则关闭节点拥塞检测和拥塞通告功能; 如果中间节点不支持此 能力, 则不处理此标志位。

(2) 带宽预留能力通告

RSVP-TE协议层支持预留带宽能力, 但实际上, 由于硬件实现上的复杂性和成本 考虑, 中间网络设备转发层并不一定都支持这个能力 ; 另外, 对 PTP业务, 虽然协议 层上能建立 PTP 隧道, 并为此隧道预留了足够带宽, 但如果转发层并不能预留足够带 宽, 这时如果节点出现拥塞, 引起的 PDV将会降低同步性能甚至 PTP业务失效。 因 此, 如果网络节点能在整网中通告本节点是否支持 带宽预留能力, 则可以建立 PDV性 能更好的 PTP路径。 优选地,在执行各个节点的 1588能力和带宽预留能力的通报之前,还可以 括以 下处理: 在 IGP路由协议中扩展字段, 其中, 扩展的字段用于指示执行带宽预留能力 的通报。

( 3 ) RSVP-TE Notify消息扩展 当尾节点检测到 PDV性能劣化程度或丢包统计超过一定门限, 发送 Notify消息 给头节点触发重优化流程; Notify消息中的 ERROR_SPEC对象携带了错误代码,用来 表示 PDV性能劣化或丢包错误。 以下结合实例进一步描述上述优选实施方式。 根据本发明实例的 PTP LSP的选取方法包括以下步骤: 步骤 A. PTP路径建立 ( 1 ) 通过 IGP路由协议进行 1588能力和带宽预留能力的通告, 对不支持 1588 能力和带宽预留能力的节点, 则请求开启拥塞检测功能;

(2) 然后运行 CSPF算法, 计算出一条尽量绕开可能产生拥塞节点的 PTP路径;

(3 ) LSR头节点运行 RSVP-TE, 建立一条 PTP路径, 用于承载 PTP协议; (4) 头尾节点运行 PTP协议, 建立主从关系, 并建立端到端的 PDV抖动描述; 步骤 B. PTP路径的重优化

( 1 )在 PTP路径的不支持 1588能力和带宽预留能力的节点开启拥塞检测 如果 节点出现拥塞, 则通知本节点的 RSVP-TE协议层;

(2) RSVP-TE协议发送路径错误 (PathErr) 消息给头节点, 通告本节点存在拥 塞;

(3 ) 头节点检测到 PDV劣化到一定程度后, 发起重优化流程, 建立一条尽量绕 开拥塞节点的 PTP路径; 步骤 C. PTP路径的保护 由于第三方网络的其它复杂因素导致的 Slave节点的 PDV性能劣化并影响到时钟 同步业务不可用, 这时需要能基于 PDV劣化进行 PTP路径的保护和切换; 为了提高 同步性能,可以根据实际组网需要采用合适的 实现方式进行 PTP路径的切换和重优化, 以保证时钟同步业务的可用性。 对一个 Slave同步到多个 Master的场景, 当前 Master 对应的 PTP路径 PDV劣化时, 则切换到另外的 Master对应的 PTP路径上, 并通告 Master重优化 PTP路径; 步骤 D. PTP协议运行

Master和 Slave设备根据 1588协议的标准规定,相互发送 PTP协议报文完成频率 同步和时间同步; 另外, 通过 PTP流程, 建立 PDV抖动描述。 通过上述实施例可知, 在现有设备的基础上, 通过扩展现有标准协议, 发现并建 立 PDV符合要求的 PTP路径, 并基于 PDV进行 PTP路径的保护, 保证了 1588业务 的可靠性和可用性。 图 6是根据本发明实施例的 PTP路径的选取装置的结构框图。如图 6所示,该 PTP 路径的选取装置包括: 能力通报模块 10, 设置为执行各个节点的 1588能力和带宽预 留能力的通报; 选路模块 20, 设置为根据通报结果选取 PTP LSP, 其中, 选取的 PTP LSP中不支持 1588能力和带宽预留能力的节点个数最少。 图 6所示的装置中,选路模块 20根据能力通报模块 10的通报结果选取 PTP LSP, 可以更好地提高时钟恢复质量和同步业务的可 用性和可靠性。 其中, 上述选取的 PTP LSP, 除了承载 1588业务用于频率或时间恢复外, 也可以 承载 CES业务用于频率恢复。 优选地, 如图 7所示, 上述装置还可以包括: 拥塞检测开启模块 30, 设置为对于 不支持 1588能力和带宽预留能力的节点, 开启拥塞检测机制。 优选地, 如图 7所示, 上述装置还可以包括: PDV性能分析模块 40, 设置为在从 设备或主设备上分析 PDV性能; 保护切换模块 50, 设置为根据 PDV性能劣化程度完 成 PTP LSP或主时钟的保护切换。 需要注意的是, 上述装置中的各模块相互结合的优选实施方式 具体可以参见图 2 至图 5的描述, 此处不再赘述。 综上所述,借助本发明提供的上述实施例,提 出一种 PTP穿越第三方 MPLS网络, 在 MPLS网络内部建立一条优化的 PTP LSP,并通过分析主从时钟设备两端的 PDV性 能, 进行 PTP路径的重优化和 PTP路径切换; 另外, 还提出了在多个 Master场景下, 在 Slave或 Master完成 PDV性能分析, Slave基于 PDV性能切换 Master的方法; 通 过上述实施例, 可以更好地提高时钟恢复质量和同步业务的可 用性和可靠性。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可以用通用 的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布在多个计算装置所 组成的网络上, 可选地, 它们可以用计算装置可执行的程序代码来实现 , 从而可以将 它们存储在存储装置中由计算装置来执行,或 者将它们分别制作成各个集成电路模块, 或者将它们中的多个模块或步骤制作成单个集 成电路模块来实现。 这样, 本发明不限 制于任何特定的硬件和软件结合。 以上仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技术人 员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的任何 修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。