Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHOD AND DEVICE FOR SUPPLYING A LUBRICANT
Document Type and Number:
WIPO Patent Application WO/2012/098324
Kind Code:
A1
Abstract:
The invention relates to the field of supplying turbine engines with a lubricant, and in particular, to a method and device for supplying a turbine engine (1) with a lubricant, said turbine engine (1) comprising a first set of bearings (6L) and a second set of bearings (6H). Both the first and second set are supplied with lubricant, and the second set of bearings (6H) operates at a temperature that is substantially higher than that at which the first set operates. The second set of bearings (6H) is supplied with lubricant at a temperature that is substantially higher than that of the lubricant supplied to the first set.

Inventors:
AUGROS PHILIPPE ALAIN FRANCOIS (FR)
Application Number:
PCT/FR2012/050057
Publication Date:
July 26, 2012
Filing Date:
January 10, 2012
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
TURBOMECA (FR)
AUGROS PHILIPPE ALAIN FRANCOIS (FR)
International Classes:
F01M5/00
Foreign References:
US4917218A1990-04-17
EP1736650A22006-12-27
GB2086996A1982-05-19
JPS58183822A1983-10-27
Other References:
None
Attorney, Agent or Firm:
INTES, Didier et al. (FR)
Download PDF:
Claims:
REVENDICATIONS

1. Procédé d'alimentation d'une turbomachine (1) en lubrifiant, ladite turbomachine (1) comportant au moins un premier ensemble de paliers (6L) et un deuxième ensemble de paliers (6H), tant le premier comme le deuxième ensemble étant alimentés en lubrifiant, et le deuxième ensemble de paliers (6H) fonctionnant à température sensiblement supérieure au premier ensemble, le procédé étant caractérisé en ce que le deuxième ensemble de paliers (6H) est alimenté en lubrifiant à température sensiblement supérieure par rapport au premier ensemble.

2. Procédé d'alimentation suivant la revendication 1, dans lequel un débit de lubrifiant est refroidi dans un échangeur de chaleur (14) en amont du premier ensemble de paliers (6L).

3. Procédé d'alimentation suivant l'une quelconque des revendications 1 ou 2, dans lequel un débit de lubrifiant est chauffé en amont du deuxième ensemble de paliers (6H), ce réchauffement s'opérant par échange de chaleur avec un débit de retour de lubrifiant du deuxième ensemble de paliers (6H).

4. Procédé d'alimentation suivant une quelconque des revendications 1 à 3, dans lequel le premier ensemble de paliers (6L) est alimenté en lubrifiant par un premier circuit (12L), et le deuxième ensemble de paliers (6H) est alimenté en lubrifiant par un deuxième circuit (12H) en dérivation du premier circuit.

5. Dispositif (10) d'alimentation d'une turbomachine (1) en lubrifiant, ladite turbomachine (1) comportant un premier ensemble de paliers (6L) et un deuxième ensemble de paliers (6H), et ledit deuxième ensemble étant apte à fonctionner à une température sensiblement plus élevée que ledit premier ensemble, le dispositif (10) étant caractérisé en ce qu'il est configuré pour alimenter le deuxième ensemble en lubrifiant à température sensiblement plus élevée que le premier ensemble.

6. Dispositif (10) suivant la revendication 5, comportant un premier circuit (12L) pour alimenter en lubrifiant le premier ensemble de paliers (6L), et un deuxième circuit (12H) pour alimenter en lubrifiant le deuxième ensemble de paliers (6H), le premier circuit (12L) comprenant un point de dérivation (20) vers le deuxième circuit (12H).

7. Dispositif (10) suivant la revendication 6, dans lequel le premier circuit (12L) comprend, entre ledit point de dérivation (20) et le premier ensemble de paliers (6L), un échangeur de chaleur (14) pour le refroidissement d'un débit de lubrifiant destiné au premier ensemble de paliers (6L).

8. Dispositif (10) suivant l'une quelconque des revendications 6 ou 7, dans lequel le deuxième circuit (12H) comprend un échangeur de chaleur (30) pour transmettre de la chaleur d'au moins un débit de retour de lubrifiant du deuxième ensemble de paliers (6H) à un débit de lubrifiant destiné à alimenter le deuxième ensemble de paliers (6H).

9. Turbomachine (1) comportant un premier ensemble de paliers (6L), un deuxième ensemble de paliers (6H) apte à fonctionner à une température sensiblement plus élevée que ledit premier ensemble, et un dispositif (10) d'alimentation en lubrifiant suivant une quelconque des revendications 5 à 8. 10. Ensemble turbomoteur, en particulier aéronautique, comprenant une turbomachine (1) suivant la revendication 9.

Description:
PROCEDE ET DISPOSITIF D'ALIMENTATION EN LUBRIFIANT

Le présent exposé concerne le domaine des procédés, systèmes et dispositifs d'alimentation en lubrifiant, en particulier pour des turbomachines.

Dans un grand nombre de turbomachines, en particulier parmi les turbomoteurs, turboréacteurs, turbopropulseurs, turbopompes ou turbocompresseurs, on peut distinguer deux zones aux températures clairement différentes. Ainsi, dans les turbomoteurs, turboréacteurs et turbopropulseurs aéronautiques on peut normalement distinguer une zone relativement froide comprenant le compresseur, et une zone relativement chaude comprenant la chambre de combustion et la turbine. Des telles turbomachines comportent aussi normalement des paliers, tant dans la zone froide comme dans la zone chaude, pour soutenir les pièces tournantes, et en particulier l'arbre moteur. Ainsi, dans une même turbomachine, un premier ensemble de paliers fonctionnera à relativement basse température, tandis qu'un deuxième ensemble de paliers fonctionnera à relativement haute température. Par « ensemble de paliers » on n'entend pas nécessairement une pluralité de paliers, mais aussi éventuellement un ensemble d'une seule unité.

Conventionnellement, un même circuit d'alimentation est utilisé pour alimenter en lubrifiant tant le premier que le deuxième ensemble de paliers. Afin d'évacuer la chaleur transmise au lubrifiant dans les paliers, et ainsi maintenir la température du lubrifiant pendant le fonctionnement de la turbomachine, ce circuit d'alimentation comprend normalement un échangeur de chaleur et le lubrifiant est fourni aux paliers après son refroidissement dans cet échangeur, qui peut être, par exemple, un échangeur de chaleur air/lubrifiant ou un échangeur de chaleur carburant/lubrifiant, évacuant donc la chaleur du lubrifiant respectivement vers l'air ambiant ou vers un circuit de carburant.

Un tel échangeur de chaleur est une pièce comparativement complexe, lourde et volumineuse. Or, dans les applications aéronautiques en particulier, il est désirable de minimiser ces inconvénients et en particulier le poids.

En conséquence, on vise à proposer un procédé d'alimentation d'une turbomachine en lubrifiant qui permette de réduire les nécessités de refroidissement du lubrifiant, et ainsi le poids, volume et complexité de l'échangeur ou échangeurs de chaleur y associés.

Dans au moins un premier mode de réalisation, ce but est atteint grâce au fait que, dans une turbomachine comportant un premier ensemble de paliers et un deuxième ensemble de paliers fonctionnant à température sensiblement supérieure au premier ensemble, le deuxième ensemble de paliers est alimenté en lubrifiant à température sensiblement supérieure au premier ensemble.

Grâce à ces dispositions, on peut diminuer la différence de température entre les paliers du deuxième ensemble et le lubrifiant qui leur est fourni. Comme le transfert de chaleur du deuxième ensemble au lubrifiant dépend de cette différence de température, ce transfert est aussi sensiblement diminué, et de cette manière les exigences globales de refroidissement du lubrifiant.

Dans certains modes de réalisation, un débit de lubrifiant est refroidi dans un échangeur de chaleur en amont du premier ensemble de paliers. Ainsi, au moins une partie de la chaleur absorbée par le lubrifiant peut être évacuée, de manière à stabiliser sa température, sans nécessairement refroidir le débit de lubrifiant destiné au deuxième ensemble de paliers. Dans certains modes de réalisation, un débit de lubrifiant est chauffé en amont du deuxième ensemble de paliers, ce réchauffement s'opérant par échange de chaleur avec un débit de retour de lubrifiant du deuxième ensemble de paliers. Il est ainsi possible d'augmenter la température du lubrifiant fourni au deuxième ensemble de paliers, tout en refroidissant le lubrifiant récupéré au deuxième ensemble de paliers, ce qui contribue à réduire le transfert global de chaleur du deuxième ensemble de paliers au lubrifiant.

Dans certains modes de réalisation, le premier ensemble de paliers est alimenté en lubrifiant par un premier circuit, et le deuxième ensemble de paliers est alimenté en lubrifiant par un deuxième circuit en dérivation du premier circuit, ce qui permet de traiter différemment le lubrifiant destiné à chaque ensemble de paliers, et en particulier de refroidir spécifiquement du lubrifiant fourni au premier ensemble par le premier circuit, et/ou de chauffer spécifiquement du lubrifiant fourni au deuxième ensemble, par exemple par échange de chaleur avec un débit de retour de lubrifiant du deuxième ensemble.

Le présent exposé concerne également un dispositif d'alimentation d'une turbomachine en lubrifiant, ladite turbomachine comportant un premier ensemble de paliers et un deuxième ensemble de paliers, et ledit deuxième ensemble étant apte à fonctionner à une température sensiblement plus élevée que ledit premier ensemble. Selon au moins un mode de réalisation, le dispositif est configuré pour alimenter le deuxième ensemble en lubrifiant à température sensiblement plus élevée que le premier ensemble. Ainsi, le transfert de chaleur entre le deuxième ensemble de paliers, plus chaud, et le lubrifiant peut être diminué, réduisant de cette manière les nécessités globales de refroidissement du lubrifiant.

Dans certains modes de réalisation, le dispositif comporte un premier circuit pour alimenter en lubrifiant le premier ensemble de paliers, et un deuxième circuit pour alimenter en lubrifiant le deuxième ensemble de paliers, le premier circuit comprenant un point de dérivation vers le deuxième circuit. Il est ainsi possible de séparer, à ce point de dérivation, deux débits distincts de lubrifiant, un premier débit étant fourni au premier ensemble de paliers par le premier circuit, et un deuxième débit, plus chaud, étant fourni au deuxième ensemble par le deuxième circuit. En particulier, le premier circuit peut comprendre, entre ledit point de dérivation et le premier ensemble de paliers, un échangeur de chaleur pour le refroidissement de lubrifiant destiné à alimenter le premier ensemble de paliers, de manière à refroidir séparément le lubrifiant destiné à alimenter le premier ensemble de paliers sans affecter la température du lubrifiant destiné à alimenter le deuxième ensemble de paliers, plus chaud. Le deuxième circuit peut aussi comprendre un échangeur de chaleur pour transmettre de la chaleur d'un débit de retour de lubrifiant du deuxième ensemble de paliers à un débit de lubrifiant destiné à alimenter le deuxième ensemble de paliers, augmentant ainsi la température du lubrifiant fourni au deuxième ensemble de paliers tout en réduisant la température du lubrifiant du retour du deuxième ensemble de paliers.

Toutefois, dans certains exemples de réalisation, d'autres configurations de circuits et d'échangeurs de chaleur peuvent être considérées. Par exemple, le deuxième circuit pourrait être entièrement séparé du premier circuit, et non pas dérivé de celui-ci. Les échangeurs de chaleur du premier et du deuxième circuit peuvent aussi être intégrés dans le dispositif indépendamment l'un de l'autre. Il est même envisageable d'intégrer un échangeur de chaleur pour le refroidissement du lubrifiant en amont du point de dérivation du premier au deuxième circuit, de manière à refroidir même au moins une partie du débit de lubrifiant destiné au deuxième ensemble de paliers.

Le présent exposé concerne aussi une turbomachine comprenant un premier ensemble de paliers, un deuxième ensemble de paliers apte à fonctionner à une température sensiblement plus élevée que ledit premier ensemble, et un dispositif configuré pour alimenter le deuxième ensemble en lubrifiant à température sensiblement plus élevée que le premier ensemble, ainsi qu'un ensemble turbomoteur, en particulier aéronautique, comprenant une telle turbomachine. Comme « ensemble turbomoteur », on entend aussi un turbopropulseur ou un turboréacteur à simple ou double flux.

Grâce à ces arrangements, il est possible de réduire le poids, encombrement, coût et complexité d'une telle turbomachine et ensemble turbomoteur. L'invention sera bien comprise et ses avantages apparaîtront mieux, à la lecture de la description détaillée qui suit, de plusieurs modes de réalisation représentés à titre d'exemples non limitatifs. La description se réfère aux dessins annexés sur lesquels :

- la figure 1 est une section longitudinale d'une turbomachine ;

- la figure 2 illustre schématiquement un dispositif d'alimentation en lubrifiant de l'art antérieur ;

- les figures 3A, 3B, 3C et 3D illustrent schématiquement des dispositifs d'alimentation en lubrifiant suivant, respectivement, un premier, un deuxième, un troisième et un quatrième mode de réalisation ;

- la figure 4 illustre schématiquement un échangeur de chaleur régénératif.

Une turbomachine 1, spécifiquement une turbomachine d'un ensemble turbomoteur d'un aéronef à voilure tournante, est présentée à titre illustratif sur la figure 1. Cette turbomachine 1 comprend une section froide L, incluant le compresseur 2, et une section chaude H, incluant la chambre de combustion 3 et la turbine 4. La turbine 4 et le compresseur 2 sont reliés par l'arbre moteur 5, qui est soutenu par une pluralité de paliers comprenant un premier ensemble de paliers 6L dans la section froide L et un deuxième ensemble de paliers 6H dans la section chaude H. Par leur position, les paliers 6H de la section chaude H sont à une température sensiblement supérieure à celle des paliers 6L de la section froide L.

Pour assurer la lubrification des paliers 6L et 6H, une telle turbomachine comprend normalement aussi un dispositif d'alimentation des paliers en lubrifiant. Un tel dispositif de l'art antérieur est illustré sur la figure 2. Ce dispositif 110 d'alimentation en lubrifiant comporte un réservoir 111, et un même circuit 112 de lubrifiant pour l'alimentation des paliers 6L de la section froide et des paliers 6H de la section chaude H, ainsi qu'un circuit 113 pour le retour du lubrifiant des paliers 6L et 6H au réservoir 111. Tant le circuit 112 d'alimentation en lubrifiant que le circuit 113 de retour de lubrifiant peuvent comprendre des moyens conventionnels (non illustrés) pour assurer la circulation du lubrifiant et différents moyens de contrôle (pression, température, présence de particules) à travers ces circuits 112, 113, tels que des pompes, vannes, clapets et/ou filtres. En outre, le circuit 112 d'alimentation comprend un échangeur de chaleur 114 pour refroidir le lubrifiant et ainsi évacuer la chaleur absorbée aux paliers 6L et 6H. Cet échangeur de chaleur 114 peut être, par exemple, un échangeur de chaleur lubrifiant/air, pour évacuer la chaleur du lubrifiant vers l'air ambiant, un échangeur de chaleur lubrifiant/carburant, pour évacuer la chaleur du lubrifiant vers un circuit de carburant de la turbomachine, ou une combinaison des deux.

Avec ce dispositif 110 d'alimentation en lubrifiant de l'art antérieur, le lubrifiant est donc fourni aux paliers 6L et 6H à sensiblement la même température. Toutefois, comme les paliers 6H dans la section chaude H ont une température sensiblement supérieure que les paliers 6L de la section froide L, le réchauffement du lubrifiant sera plus intense aux paliers 6H qu'aux paliers 6L.

Ainsi, avec un débit global de lubrifiant D g de, par exemple, 450 l/h, partagé entre un débit D L de, par exemple, 300 l/h, et un débit D H de, par exemple, 150 l/h, destinés respectivement aux paliers 6L et 6H, et fourni aux deux ensembles de paliers à une même température T, de, par exemple, 111°C, le débit D L reçoit aux paliers 6L une puissance calorique P L de, par exemple, 1,7 kW, se réchauffant jusqu'à une température T 0 ,L de, par exemple, 121°C, tandis que le débit D H reçoit aux paliers 6H une puissance calorifique P H de, par exemple, 4,9 kW, se réchauffant jusqu'à une température T 0 ,H de, par exemple, 171°C. Les deux débits partiels D L et D H se mélangeant à nouveau au réservoir 111, dans lequel le lubrifiant présente donc une température intermédiaire T R de, par exemple, 138°C. Afin de refroidir le débit global D g jusqu'à la température initiale T,, l'échangeur 114 devra donc en évacuer une puissance calorique P T approximativement équivalente à l'addition des puissances caloriques P L et P H , c'est-à-dire 6,6 kW pour les valeurs citées à titre d'exemple. Pour évacuer le flux de chaleur transféré au lubrifiant en particulier par les paliers 6H, et éviter ainsi une surchauffe et éventuelle cokéfaction et/ou vieillissement accéléré de l'huile, l'échangeur 114 devra donc avoir des dimensions conséquentes.

La figure 3A illustre un premier mode de réalisation d'un dispositif 10 d'alimentation en lubrifiant permettant de réduire les besoins de refroidissement du lubrifiant par rapport à l'art antérieur. Ce dispositif 10 d'alimentation en lubrifiant comporte un réservoir 11, un premier circuit d'alimentation 12L pour l'alimentation en lubrifiant de l'ensemble de paliers 6L de la section froide L, un deuxième circuit d'alimentation 12H pour l'alimentation en lubrifiant de l'ensemble de paliers 6H de la section chaude H, un premier circuit de retour 13L pour le retour de lubrifiant de l'ensemble de paliers 6L vers le réservoir 11, et un deuxième circuit de retour 13H pour le retour de lubrifiant de l'ensemble de paliers 6H vers le réservoir 11. Le deuxième circuit d'alimentation 12H est dérivé du premier circuit d'alimentation 12L à un point de dérivation 20. Comme dans le dispositif de l'art antérieur, chaque circuit 12H,12L,13H et 13L peut être équipé de moyens conventionnels (non illustrés) pour impulser et commander la circulation du lubrifiant à travers ces circuits 12H,12L,13H et 13L, tels que des pompes, vannes, clapets et/ou filtres.

Dans ce premier mode de réalisation, le premier circuit d'alimentation 12L comprend, en amont du point de dérivation 20, un échangeur de chaleur 14 pour refroidir le lubrifiant destiné aux deux ensembles de paliers 6H et 6L. Cet échangeur de chaleur 14 peut être, par exemple, un échangeur de chaleur lubrifiant/air, pour évacuer la chaleur du lubrifiant vers l'air ambiant, un échangeur de chaleur lubrifiant/carburant, pour évacuer la chaleur du lubrifiant vers un circuit de carburant de la turbomachine, ou une combinaison des deux. Un autre échangeur de chaleur 30 est interposé entre le circuit d'alimentation 12H et le circuit de retour 13H, pour chauffer le lubrifiant destiné à alimenter les paliers 6H avec la chaleur du lubrifiant de retour des paliers 6H. Un tel échangeur de chaleur régénératif 30 peut être réalisé de manière particulièrement simple avec des conduits concentriques 31,32 servant, respectivement, à l'aller et au retour du lubrifiant, comme illustré sur la figure 4. Avec ce dispositif 10, les paliers 6H de la section chaude H de la turbomachine 1 et les paliers 6L de la section froide L peuvent être alimentés en lubrifiant à températures sensiblement différentes. Plus spécifiquement, le lubrifiant fourni par le circuit 12H aux paliers 6H sera sensiblement plus chaud que le lubrifiant fourni par le circuit 12L aux paliers 6L. En conséquence, la différence de température entre les paliers 6H et le lubrifiant qui leur est fourni en fonctionnement par le circuit 12H sera moindre qu'avec le dispositif 110 de l'art antérieur, ce qui réduira le transfert de chaleur des paliers 6H au lubrifiant, réduisant ainsi les besoins globaux de refroidissement du lubrifiant. L'échangeur de chaleur 14 pourra donc être dimensionné plus petit que l'échangeur de chaleur 114 du dispositif 110 de l'art antérieur. Dans une turbomachine équivalente à celle dont le dispositif 110 a été précédemment décrit à titre comparatif, l'ensemble de paliers 6L de la section froide L et l'ensemble de paliers 6H de la section chaude H recevraient aussi des débits respectifs D L et D H de, par exemple, 300 l/h et 150 l/h de lubrifiant. La puissance calorique Ρτ à évacuer par l'échangeur de chaleur 14 pourrait toutefois être diminuée à, par exemple, 5,8 kW, avec donc une réduction de 12 % par rapport à l'échangeur de chaleur 114 du dispositif 110 de l'art antérieur. Avec la même température T R du lubrifiant au réservoir 11 (138°C, dans cet exemple), le débit global D g ne serait refroidi à l'échangeur 14 que jusqu'à une température T i L supérieure à la température T, du dispositif comparatif 110, par exemple une température Ti, L de 115°C. Le débit D L fourni aux paliers 6L le serait à cette température T i(L , et, recevant aux paliers 6L une puissance calorique P L qui peut aussi être de 1,7 kW de chaleur des paliers 6L, serait retourné vers le réservoir 11 à une température T 0 , L plus élevée que dans l'exemple comparatif de l'art antérieur, comme par exemple une température T 0 ,L de 125 °C.

D'autre part, le débit D H fourni aux paliers 6H serait réchauffé, dans l'échangeur 30, par le retour de lubrifiant des mêmes paliers 6H, jusqu'à une température T i(H plus élevée que la température T i/L . Par exemple, la température T i(H pourrait être de 135°C. Fourni à cette température T i/H plus élevée aux paliers 6H, le débit D H absorberait une puissance calorique P L sensiblement moindre, à cause du différentiel thermique moins prononcé. Avec les valeurs citées à titre d'exemple, cette puissance calorique P L serait d'uniquement 4,1 kW. Toutefois, le lubrifiant atteindra aussi, en sortie des paliers 6H, une température T 0/H plus élevée que dans l'exemple comparatif de l'art antérieur. Dans ce mode de réalisation, la température T 0 ,H pourrait être par exemple de 185°C. Toutefois, comme une partie de la chaleur du retour de lubrifiant des paliers 6H est ensuite transmise vers l'arrivée de lubrifiant dans l'échangeur 30, la température T R ,H de ce débit D H à son retour au réservoir pourra être moins élevée que la température T 0 ,H de l'exemple comparatif de l'art antérieur. Par exemple, la température T r , H pourrait être de 165 °C.

Le lubrifiant atteignant donc des températures plus élevées aux paliers 6H pour diminuer la puissance calorique absorbée, le principal facteur limitatif à l'heure de diminuer la puissance calorique absorbée sera la température maximale pouvant être atteinte par le lubrifiant. Comme les lubrifiants aéronautiques ont typiquement une température de cokéfaction située dans une plage entre 180°C et 210°C, la température T 0 ,H sera aussi normalement dans cette plage, juste en dessous de la température de cokéfaction du lubrifiant utilisé. Comme, à part le risque de cokéfaction du lubrifiant, l'autre facteur limitant la température maximale du lubrifiant aux paliers 6H est la résistance thermique des paliers 6H eux-mêmes, ceux-ci pourraient être produits avec des matériaux particulièrement résistants à la chaleur, tels que, par exemple des aciers à basse teneur en carbone, comme les aciers M50 et M50NÏL, des aciers de nitruration comme l'acier 32 CDV 13 tel que défini par la norme aéronautique française AIR 9160, ou les céramiques. La figure 3B illustre un mode de réalisation alternatif ne reprenant pas l'échangeur de chaleur 30 en amont et aval des paliers 6H, mais dans lequel l'échangeur 14 est placé dans le circuit 12L en aval du point de dérivation 20. Dans ce deuxième mode de réalisation, l'échangeur 14 ne refroidit donc que le débit de lubrifiant fourni aux seuls paliers 6L. Ainsi, même sans l'échangeur de chaleur supplémentaire du premier mode de réalisation, le lubrifiant fourni aux paliers 6H est plus chaud que le lubrifiant fourni aux paliers 6L, puisque seulement ce dernier est refroidi par l'échangeur 14. Les besoins de refroidissement du lubrifiant resteront donc plus modérés. Dans une turbomachine équivalente à celle dont le dispositif 110 a été précédemment décrit à titre comparatif, l'ensemble de paliers 6L de la section froide L et l'ensemble de paliers 6H de la section chaude H recevront aussi des débits respectifs D L et D H qui pourraient aussi par exemple être de 300 l/h et 150 l/h. La puissance calorique P T à évacuer par l'échangeur de chaleur 14 pourrait dans ce cas aussi être diminuée, par exemple à 5,5 kW, avec donc une réduction de 16 % par rapport à l'échangeur de chaleur 114 du dispositif 110 de l'art antérieur. Avec la même température T R du lubrifiant au réservoir 11 (138°C, dans cet exemple), l'échangeur 14, refroidissant uniquement le débit D L , même en évacuant moins de chaleur, peut toutefois en faire descendre la température T IJL en dessous de la température T, de l'art antérieur, par exemple jusqu'à 104°C. Avec sensiblement la même puissance calorique P L absorbée aux paliers 6L, ce débit de lubrifiant D L retourne vers le réservoir 11 à une température T 0 ,L sensiblement inférieure à celle de l'art antérieur. Par exemple, la température T 0(L du débit D L au retour au réservoir 11 dans ce mode de réalisation pourrait être de 114°C.

D'autre part, même avec des légères pertes de chaleur dans le circuit 6H, le débit de lubrifiant D H est fourni aux paliers 6H à une température T IJH à peine moindre que la température T R du lubrifiant au réservoir 11, et donc sensiblement supérieure à la température T - Par exemple, la température T I(H dans ce mode de réalisation pourrait être de 135°C. Même avec une température T 0(H sensiblement plus élevée à la sortie des paliers 6H, par exemple de 185°C, le débit D H n'absorbera donc aux paliers 6H qu'une puissance calorique P L relativement limitée. Ainsi, avec les valeurs citées à titre d'exemple, la puissance PL . se limiterait à 4,2 kW.

La figure 3C présente un troisième mode de réalisation combinant les caractéristiques des premier et deuxième modes de réalisation. Ainsi, l'échangeur de chaleur 14 est situé en amont du point de dérivation 20, comme dans le deuxième mode de réalisation, mais le dispositif 10 comporte aussi un échangeur 30 interposé entre le circuit d'alimentation 12H et le circuit de retour 13H, comme dans le premier mode de réalisation. Il refroidit donc tant le lubrifiant destiné aux paliers 6L que celui destiné aux paliers 6H. Ce troisième mode de réalisation sera plus avantageux pour des dispositifs présentant un rapport plus élevé entre le débit de lubrifiant fourni aux paliers 6H et le débit de lubrifiant fourni aux paliers 6L.

Finalement, la figure 3D présente un quatrième mode de réalisation similaire au premier mode de réalisation, mais avec l'échangeur de chaleur 14 situé entre les premier et deuxième circuits de retour 13L et 13H et le réservoir 11. Le lubrifiant est donc refroidi en amont plutôt qu'en aval du réservoir, ce qui, selon les caractéristiques thermiques du réservoir 11, sa capacité et le débit de lubrifiant en circulation peut être plus ou moins efficace que l'arrangement du premier mode de réalisation.

Quoique la présente invention ait été décrite en se référant à des exemples de réalisation spécifiques, il est évident que des différentes modifications et changements peuvent être effectués sur ces exemples sans sortir de la portée générale de l'invention telle que définie par les revendications. En particulier, des caractéristiques individuelles des différents modes de réalisation illustrés peuvent être combinées dans des modes de réalisation additionnels. Par conséquent, la description et les dessins doivent être considérés dans un sens illustratif plutôt que restrictif.