Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHOD FOR EARLY DETECTION OF VARIOUS CANCERS AND GASTROINTESTINAL DISEASE AND MONITORING OF TRANSPLANTED ORGANS.
Document Type and Number:
WIPO Patent Application WO/2007/053785
Kind Code:
A3
Abstract:
A method for the early diagnosis of breast, lung, pancreatic and colon growths and cancers as well as conditions associated with donor and recipient organ transplants, both before and after transplantation to identify and allow treatment of possible transplanted organ rejection and other disease conditions related and unrelated to the transplantation, compares the gene expression patterns from a patient's peripheral blood monocytes-lymphocyte's gene system with either the similar gene expression patterns of a normal person, or with the similar gene expression patterns of a person known to have the condition being screened for. Differences between the patient's gene expression patterns for particular genes and the normal patterns indicates the presence of the condition with the number of differences indicating the probability of the condition. Similarities between the patient's gene expression patterns for those particular genes and the patterns of a person known to have the condition indicates the presence of the condition with the number of similarities indicating the probability of the condition. For example, particular genes for use in identifying pancreatic cancer are disclosed.

Inventors:
BAUER ROBERT A JR (US)
Application Number:
PCT/US2006/043209
Publication Date:
October 18, 2007
Filing Date:
November 06, 2006
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
BAUER ROBERT A JR (US)
International Classes:
C12Q1/68
Foreign References:
US20050152908A12005-07-14
Attorney, Agent or Firm:
MALLINCKRODT, Robert, R. et al. (P.O. Box 1219Sandy, UT, US)
Download PDF:
Claims:

CLAIMS

I claim:

1. A method for detection of breast, lung, pancreatic and colon growths and cancers as well as conditions associated with donor and recipient organ transplants, both before ' and after transplantation to identify and allow treatment of possible transplanted organ rejection and other disease conditions related and unrelated to the transplantation in patients, comprising the steps of: obtaining a sample of peripheral blood monocyte-lymphocytes from the patient to be screened for a particular disease condition or other condition; processing the sample of peripheral blood monocyte-lymphocytes to allow determination of gene expression characteristics of genes from the sample peripheral blood monocyte-lymphocytes; determining gene expression characteristics from the genes from the sample peripheral blood monocyte-lymphocytes; obtaining a patient differential gene expression pattern for the patient from the gene expression characteristics from the sample peripheral blood monocyte- lymphocytes; comparing the patient differential gene expression pattern with one of either a normal differential gene expression pattern typical of a person known not to be suffering from the disease condition for which the patient is being screened, significant differences between the normal differential pattern and the patient differential pattern indicating a diseased condition in the patient or a condition differential gene expression pattern typical of a person known to be suffering from the disease condition for which the patient is being screened, significant similarities between the condition differential pattern and the patient differential pattern indicating a diseased condition in the patient.

2. A method for detection of breast, lung, pancreatic and colon growths and cancers as well as conditions associated with donor and recipient organ transplants, both before and after transplantation to identify and allow treatment of possible transplanted organ rejection and other disease conditions related and unrelated to the transplantation in patients, comprising the steps of: according to Claim 1, wherein the normal differential gene expression pattern is created from a comparison of gene expression characteristics from a sample of people known not to be suffering from the

disease condition for which the patient is being screened and gene expression characteristics from a sample of people known to be suffering from the disease condition for which the patient is being screened.

3. A method for detection of breast, lung, pancreatic and colon growths and cancers as well as conditions associated with donor and recipient organ transplants, both before and after transplantation to identify and allow treatment of possible transplanted organ rejection and other disease conditions related and unrelated to the transplantation in patients, according to Claim 2, wherein the normal differential gene expression pattern includes particular genes selected from the sample of people known not to be suffering from the disease condition for which the patient is being screened which were determined to be likely to have different gene expression characteristics than the same genes from the sample of people known to be suffering from the disease condition for which the patient is being screened. 4. A method for detection of breast, lung, pancreatic and colon growths and cancers as well as conditions associated with donor and recipient organ transplants, both before and after transplantation to identify and allow treatment of possible transplanted organ rejection and other disease conditions related and unrelated to the transplantation in patients, according to Claim 3, wherein the step of determining the genes from the sample of people known not to be suffering from the disease condition for which the patient is being screened that are likely to have different gene expression characteristics than the same genes from the sample of people known to be suffering from the disease condition for which the patient is being screened, determines the probability of a likelihood of difference and selects genes having at least a predetermined probability of difference.

5. A method for detection of breast, lung, pancreatic and colon growths and cancers as well as conditions associated with donor and recipient organ transplants, both before and after transplantation to identify and allow treatment of possible transplanted organ rejection and other disease conditions related and unrelated to the transplantation in patients, according to Claim 4, wherein the normal differential gene expression pattern is made up of gene expression characteristics for a limited number genes, at least the majority of which are genes from the sample of people known not to be suffering from the disease condition for which the patient is being screened

which were determined to be likely to be different from the same genes from the sample of people known to be suffering from the disease condition for which the patient is being screened.

6. A method for detection of breast, lung, pancreatic and colon growths and cancers as well as conditions associated with donor and recipient organ transplants, both before and after transplantation to identify and allow treatment of possible transplanted organ rejection and other disease conditions related and unrelated to the transplantation in patients, according to Claim 5, wherein the differential gene expression pattern for the patient is made up of the gene expression characteristics for the same limited number of genes as in the normal differential gene expression pattern.

7. A method for detection of breast, lung, pancreatic and colon growths and cancers as well as conditions associated with donor and recipient organ transplants, both before and after transplantation to identify and allow treatment of possible transplanted organ rejection and other disease conditions related and unrelated to the transplantation in patients, according to Claim 6, wherein the step of determining gene expression characteristics from the genes from the sample peripheral blood monocyte- lymphocytes determines the gene expression characteristics for a number of genes including all genes included in the normal differential gene expression pattern. 8. A method for detection of breast, lung, pancreatic and colon growths and cancers as well as conditions associated with donor and recipient organ transplants, both before and after transplantation to identify and allow treatment of possible transplanted organ rejection and other disease conditions related and unrelated to the transplantation, according to Claim 6, wherein the step of determining gene expression characteristics from the genes from the sample peripheral blood monocyte- lymphocytes determines the gene expression characteristics for only those genes included in the normal differential gene expression pattern.

9. A method for detection of breast, lung, pancreatic and colon growths and cancers as well as conditions associated with donor and recipient organ transplants, both before and after transplantation to identify and allow treatment of possible transplanted organ rejection and other disease conditions related and unrelated to the transplantation, according to Claim 1, wherein the step of processing the sample of peripheral blood monocyte-lymphocytes to allow determination of gene expression

characteristics of genes from the sample peripheral blood monocyte-lymphocytes includes the steps of processing the peripheral blood monocyte-lymphocytes to total RNA, and obtaining amplified aRNA or cDNA from the total RNA.

10. A method for detection of breast, lung, pancreatic and colon growths and cancers as well as conditions associated with donor and recipient organ transplants, both before and after transplantation to identify and allow treatment of possible transplanted organ rejection and other disease conditions related and unrelated to the transplantation, according to Claim 9, wherein the total RNA includes polyadenylated messenger RNA, and the step of obtaining amplified aRNA or cDNA from the total RNA obtains the amplified aRNA or cDNA from the polyadenylated messenger

RNA.

11. A method for detection of breast, lung, pancreatic and colon growths and cancers as well as conditions associated with donor and recipient organ transplants, both before and after transplantation to identify and allow treatment of possible transplanted organ rejection and other disease conditions related and unrelated to the transplantation, according to Claim 9, wherein the step of determining gene expression characteristics from the genes from the sample peripheral blood monocyte- lymphocytes obtains a gene expression pattern for the amplified anti-sense aRNA or cDNA. 12. A method for detection of breast, lung, pancreatic and colon growths and cancers as well as conditions associated with donor and recipient organ transplants, both before and after transplantation to identify and allow treatment of possible transplanted organ rejection and other disease conditions related and unrelated to the transplantation, according to Claim 11, wherein the step of determining gene expression characteristics from the genes from the sample peripheral blood monocyte- lymphocytes obtains a gene expression microarray pattern for the amplified anti-sense aRNA or cDNA.

13. A method for detection of breast, lung, pancreatic and colon growths and cancers as well as conditions associated with donor and recipient organ transplants, both before and after transplantation to identify and allow treatment of possible transplanted organ rejection and other disease conditions related and unrelated to the transplantation, according to Claim 1, wherein the step of determining gene

expression characteristics from the genes from the sample peripheral blood monocyte- lymphocytes obtains a gene expression microarray pattern for the genes.

14. A method for detection of breast, lung, pancreatic and colon growths and cancers as well as conditions associated with donor and recipient organ transplants, both before and after transplantation to identify and allow treatment of possible transplanted organ rejection and other disease conditions related and unrelated to the transplantation, according to Claim 13, wherein the step of obtaining a sample of peripheral blood monocyte-lymphocytes from the patient includes the step of obtaining a sample of peripheral blood from the patient and the step of separating and obtaining a sample of sets of CD8, CD4, and CD4-CD25 T lymphocytes and B lymphocytes.

15. A method for detection of breast, lung, pancreatic and colon growths and cancers as well as conditions associated with donor and recipient organ transplants, both before and after transplantation to identify and allow treatment of possible transplanted organ rejection and other disease conditions related and unrelated to the transplantation, according to Claim 14, wherein the step of separating and obtaining a sample of sets of CD8, CD4, and CD4-CD25 T lymphocytes and B lymphocytes obtains the sets of CD8, CD4, and CD4- CD25 T lymphocytes and B lymphocytes through negative selection of the cells to total KNA with amplification of polyadenylated messenger RNA to amplified anti-sense aRNA or to cDNA.

16. A method for detection of breast, lung, pancreatic and colon growths and cancers as well as conditions associated with donor and recipient organ transplants, both before and after transplantation to identify and allow treatment of possible transplanted organ rejection and other disease conditions related and unrelated to the transplantation, according to Claim 15, wherein the step of determining gene expression characteristics from the genes from the sample peripheral blood monocyte- lymphocytes obtains a gene expression pattern for the amplified anti-sense aRNA or cDNA.

17. A method for detection of breast, lung, pancreatic and colon growths and cancers as well as conditions associated with donor and recipient organ transplants, both before and after transplantation to identify and allow treatment of possible transplanted organ rejection and other disease conditions related and unrelated to the transplantation, according to Claim 16, wherein the step of determining gene

expression characteristics from the genes from the sample peripheral blood monocyte- lymphocytes obtains a gene expression microarray pattern for the amplified anti-sense aRNA or cDNA.

18 A method for detection of breast, lung, pancreatic and colon growths and cancers as well as conditions associated with donor and recipient organ transplants, both before and after transplantation to identify and allow treatment of possible transplanted organ rejection and other disease conditions related and unrelated to the transplantation in patients, comprising the steps of: obtaining a sample of peripheral blood from the patient; separating and obtaining a sample of peripheral blood monocyte-lymphocytes from the patient; obtaining amplified anti-sense aRNA or cDNA from the peripheral blood monocyte-lymphocytes; obtaining a gene expression microarray pattern for the amplified anti-sense aRNA or cDNA; obtaining a patient differential gene expression pattern for the patient from the gene expression microarray pattern; comparing the patient differential gene expression pattern with one of either a normal differential gene expression pattern typical of a person known not to be suffering from the disease condition for which the patient is being screened, significant differences between the normal differential pattern and the patient differential pattern indicating a diseased condition in the patient or a condition differential gene expression pattern typical of a person known to be suffering from the disease condition for which the patient is being screened, significant similarities between the condition differential pattern and the patient differential pattern indicating a diseased condition in the patient.

Description:

METHOD FOR EARLY DETECTION OF VARIOUS CANCERS AND GASTROINTESTINAL DISEASE AND MONITORING OF TRANSPLANTED

ORGANS.

BACKGROUND OF THE INVENTION

Field: This invention is in the field of methods for diagnosis and appraisal of treatment of disease conditions.

State of the Art: Breast cancer, lung cancer, colon cancers, pancreatic cancers and related pre-cancer growths are a very serious concern for the citizens of the United States and the world. The morbidity and mortality from these conditions is source of considerable physical and economic distress to the populations of this country and countries of the world. Jemal A et al. Cancer Statistics 2004, CA Cancer J Clin, 2005 54(1): 118-129. The treatment of growths, cancers and other disease conditions of organs often requires their replacement with a transplanted organ from another person or mammalian creature. The pre-transplantation evaluation of the donor and the recipient of the transplanted organ as well as the post transplant evaluation of the recipient for rejection of the transplant and the development of other diseases related and unrelated to the transplantation treatment is also a daunting task. There is clearly a need for better markers to indicate the state of disease and growing tumors, as well as the pre and post transplant clinical status of donor and recipient. If growths of the breast, lung, pancreas and colon are detected sooner with better markers the chances of successful cure are greatly improved.

[Since the dividing time of the cells in most growths are several days, the growth usually has been present for many months or years before it is detectable by present imaging and other diagnostic methods. Pathway markers have not as yet proved successful in the early diagnosis of most of these growths with a high degree of specificity or sensitivity.

With the development of tumors, dendritic cells or macrophages note new growth, whether of genetic or epigenetic origin, by recognizing the altered proteins, often presented on the cancer cell's surface through their receptor channels. The dendritic cells convey these altered protein changes to the lymphocytes with the addition of major histocompatibility complexes. This includes T. lymphocytes CD8

with HCS I and CD4 with HCS II. The B lymphocytes are subsequently programmed by the recognizing T lymphocyte. Zeng, G., MHC Class II-Restricted Tumor Antigens Recognized by CD4+ T Cells: New Strategies for Cancer Vaccine Design. J Immunother, 2001. 24(3): p. 195-204; Jonuleit, H., et al., Identification and functional characterization of human CD4(+)CD25(+) T cells with regulatory properties isolated from peripheral blood. J Exp Med, 2001. 193(11): p. 1285-94; Serbina N. V., Pamer E. G. Giving Credit Where Credit Is Due. Science, 2003, 301:1856-1857; and Baxevanis, C.N., et al., Tumor-specific CD4+ T lymphocytes fi'om cancer patients are required for optimal inductioit of cytotoxic T cells against the autologous tumor. J Immunol, 2000. 164(7): p. 3902-12. Through this mechanism, the lymphocytes specifically recognize the new growth and program specifically against it, sending tumor infiltrating lymphocytes or TIL cells to the new growth. These TIL cells may decrease in the area of the tumor as tolerance for the tumor develops. Ryschich, E., et al., Transformation of the microvascular system during multistage tumorigenesis. Int J Cancer, 2002. 97(6): p. 719-25. It has been shown that the CD4-CD25 T lymphocytes contribute to tolerance of developing cancer. Liyanage, U.K., et al., Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J Immunol, 2002. 169(5): p. 2756-61. The use of peripheral blood lymphocytes for diagnosis of certain diseases have been proposed and described in

Hong MH, X.X., Mai HQ,Cao SM Min HQ, Analysis of gene expression patterns of periphery lymphocytes inpatients with nasopharyngeal carcinoma. Ai Zheng, 2002. 21(1): p. 21-4; Xu T et al Microarray analysis reveals differences in gene expression of circulating CD8+ T cells in melanoma patients and healthy donors. Cancer Res. 2004 May 15;64(10):3661-7; Thomas AM et al. Mesothelin-specific CD8(+) T cell responses provide evidence of in vivo cross-priming by antigen-presenting cells in vaccinated pancreatic cancer patients. J Exp Med. 2004 Aug 2;200(3): 297-306; and McLaren PJ et al Antigen-specific gene expression profiles of peripheral blood mononuclear cells do not reflect those ofT-lymphocyte subsets. Clin Diagn Lab Immunol. 2004 Sep; ll(5):977-82. Twine & Burczynski. Twine NC, et al .Disease- associated expression profiles in peripheral blood mononuclear cells from patients with advanced renal cell carcinoma. Cancer Res. 2003 Sept.l5;63(18):6069-75. Burczynski ME, Twine NC et al. Transcriptional profiles in peripheral blood

mononuclear cells prognostic of clinical outcomes inpatients with advanced renal cell carcinoma. Clinical Cancer Res. 2005 Feb 1;11(3):1181-9.

SUMMARY OF THE INVENTION As indicated above, dendritic cells in a body convey altered protein changes resulting from a change in a body's condition to the lymphocytes with the addition of major histocompatibility complexes. This includes T. lymphocytes CD8 with HCS I and CD4 with HCS II. The B lymphocytes are subsequently programmed by the recognizing T lymphocyte. Because of this, a body's peripheral blood monocyte- lymphocyte's gene system should recognize and continue to react to changes in a body's condition, such as a developing neoplasm. According to the invention, it has been found that this recognition and reaction to changes in a body's condition changes the body's peripheral blood monocyte-lymphocyte's gene system. The state of the body's peripheral blood monocyte-lymphocyte's gene system can be determined by determining the gene expression characteristics of genes of the body's peripheral blood monocyte-lymphocytes. The term "gene expression characteristics" in the sense of this application means the qualities in the highly statistically significant over and under expression of genes, or the highly statistically significant over and under expressed genes in the peripheral blood monocyte-lymphocytes of the patient. This includes increases in mRNA and other regulatory elements which affect the degree of expression of the gene. By comparing the monocyte-lymphocyte gene expression characteristics of the monocyte-lymphocyte genes from a group of bodies having a certain known condition with the monocyte-lymphocyte gene expression characteristics of similar peripheral blood monocyte-lymphocytes from a group of bodies known not to have the certain condition, a number of specific genes likely to show different gene expressions between the group known to have the certain condition and the group known not to have the certain condition can be identified. While it may not be possible to pick out one or more particular genes which will always be expressed differently between a body with the certain condition and one without the certain condition, and errors can occur in the determination of individual gene expression characteristics, where the expression characteristics of a number of genes are found likely to be different between the monocyte-lymphocyte genes of a body with the certain condition and a body without the certain condition, an indication

is given by a difference in the expression of one or more of the identified genes. The number of identified genes showing a different expression as well as the particular genes showing a different expression provides an indication of the degree of probability of the existence of the condition. By comparing the monocyte-lymphocyte gene expression characteristics of the monocyte-lymphocyte genes from the group of bodies having the certain known condition with the monocyte-lymphocyte gene expression characteristics of similar peripheral blood monocyte-lymphocytes from the group of bodies known not to have the certain condition, a "normal differential gene expression pattern" typical of a person known not to have the certain condition is developed. This normal differential gene expression pattern will include the gene expression characteristics for a number of the genes likely to have different gene expression characteristics from the expression characteristics of those same genes from a body having the certain condition. Other particular genes that can provide other desired information regarding a body may also be included in the normal differential gene expression pattern, if desired. Once this normal differential gene expression pattern is developed, it can be used to screen or diagnose a patient to determine if the patient has the certain condition. To do this, a "patient differential gene expression pattern" is developed for the patient to be screened for the certain condition. The patient differential gene expression pattern will show the gene expression characteristics for the same genes as included in the normal differential gene expression pattern so that those gene expression characteristics can be compared. Significant differences between the patient differential gene expression pattern and the normal differential gene expression pattern indicates that the body from which the patient differential gene pattern was obtained is suffering from the certain condition. It has been found that the peripheral blood monocyte-lymphocytes gene system will begin to change as the condition in the body develops, thereby allowing much earlier diagnosis of the developing condition than with prior art methods of diagnosis. For example, with a developing neoplasm in a patient, such as a pancreatic tumor leading to ductal pancreatic adenocarcinoma, the patient's peripheral blood monocyte-lymphocyte 's gene system recognizes and continues to react to the developing neoplasm. The developing changes in the tumor growth will be reflected in statistically significant differences in the peripheral blood monocyte-lymphocyte 's gene expression patterns

compared to normal peripheral blood monocyte-lymphocyte gene expression patterns in people known not to have the developing neoplasm. The normal differential gene expression pattern is generated from a group of people known not to be suffering from a developing neoplasm. Such group of people may be similar in age and gender, and/or other features, to the patient being screened, although matching age, gender, or other features appears not to be necessary. The comparison of the patient differential gene expression pattern with the normal differential gene expression pattern allows the early diagnosis of the developing neoplasm or disease.

By comparing the monocyte-lymphocyte gene expression characteristics of the monocyte-lymphocytes genes from the group of bodies having the certain known condition with the monocyte-lymphocyte gene expression characteristics of similar peripheral blood monocyte-lymphocytes from the group of bodies known not to have the certain condition, not only is the normal differential gene expression pattern typical of a person known not to be suffering from the certain condition developed, but a "condition differential gene expression pattern" typical of a person known to have the certain condition is also developed. Thus, although it is currently preferred to compare the patient differential gene expression pattern with the normal differential gene expression pattern to determine differences with the differences indicating the existence of the certain condition in the patient being screened, the patient differential gene expression pattern can be compared with the condition differential gene expression pattern to determine similarities between the patterns with the similarities between the patterns, rather than differences between the patterns, indicating the existence of the certain condition in the patient.

In developing the "normal differential gene expression pattern," the "condition differential gene expression pattern," and the "patient differential gene expression pattern," the gene expression characteristics determined for each pattern should be the same gene expression characteristics and such gene expression characteristics should be determined in a similar manner. A currently preferred method of determining the gene expression characteristics is with a gene expression microarray pattern. Such an array provides an indication of whether a gene is expressed neutrally, or whether the gene is over expressed or under expressed. In such case, it is the characteristics of over expression or under expression that are determined and compared.

While there are various ways of preparing the monocyte-lymphocyte genes for determination of the gene expression characteristics, a currently preferred method processes peripheral blood monocyte-lymphocytes isolated from blood drawn from a patient or other body to total RNA, and obtains amplified aRNA or cDNA from the total RNA. The separation of the monocyte-lymphocytes from the blood is preferably begun rapidly, within about two hours of drawing the blood, and more preferably within about twenty to thirty minutes of drawing the blood. The separated mononuclear cells are then preserved before storage or freezing. To determine the gene expressions, the aRNA or cDNA is hybridized to the microarray. The data obtained from the microarray is analyzed with available computer software for that purpose, such as Gene Sight software, with mean paired ratios using Universal Human Reference RNA as a standard, usually with a p value of 0.0001 or 0.00001 of over expressed or under expressed genes.

The separation of the monocyte-lymphocytes from the blood may involve separating and isolating subsets of CD8, CD4, and CD4-CD25 T lymphocytes and B lymphocytes from the blood. The subsets of CDS, CD4, and CD4- CD25 T lymphocytes and B lymphocytes can be obtained through negative selection of the cells which are then processed to total RNA with amplification of polyadenylated messenger RNA to amplified anti-sense aRNA or to cDNA. Use of negatively selected CD8, CD4, CD4-CD25 T lymphocytes and B lymphocytes isolated from the peripheral blood of persons with breast, lung, colon and pancreatic cancer and other disease conditions, as well a monitoring organ transplant donor and recipients before and after the transplant may provide a specific and more focused early diagnosis of the growth or patient's disease or transplant condition. This invention will provide the identification of a number of particular genes of which the over expression or under expression thereof to a high degree of probability indicate the presence of breast, lung, colon and pancreatic growths and cancers, as well as monitoring donor and recipient organ transplant subjects for transplant rejection or the development of transplant related and unrelated conditions and diseases.

In a preferred method of preparing the monocyte-lymphocyte genes for determination of the gene expression characteristics, venous blood is drawn from a peripheral vein, usually an anti-cubital arm vein. The blood is drawn into an RNase

free, heparinized vacuum tube with a Ficoll gradient. The blood specimens are immediately processed with centrifugation and aspiration of the mononuclear cell layer with sterile RNase free pipettes and RNase free laboratory equipment. This process is started within two hours of the drawing of the blood, and preferably within 20 to 30 minutes of the drawing of the blood. This mononuclear cell layer is then washed and preserved according to a careful and consistent protocol method. Further processing can be continued immediately or the preserved specimen can be stored at - 80° C for later processing. In the further processing, total RNA is extracted from the preserved cells and polyA messenger RNA from the total RNA is amplified to antisense aRNA or cDNA for subsequent hybridization to microarray human slides.

Universal Human Reference RNA is similarly processed at that time for use as a reference standard.

The results of these microarray hybridization studies can be analyzed with the Gene Sight software using a Student's Test method. The individual genes are initially matched to the control specimen genes with a pair Mean ratio difference of p 0.00001 or p 0.0001. The patterns of selection are noted with the Hierarchical Cluster method. The individual genes over expressed and under-expressed in this comparison are recorded. Other methods of analysis can also be used, including the SAM method, a different linear ANOVA test method and other methods, including the ROC/ AUC method.

BRIEF DESCRIPTION OF THE DRAWINGS

In the accompanying drawings, which show the best mode currently contemplated for carrying out the invention: Fig. 1 is a showing of the results of microarray determination of gene expression characteristics of three patients with known ductal pancreatic adenocarcinoma and seven persons without ductal pancreatic adenocarcinoma used as controls or normals;

Fig. 2, a showing similar to that of Fig. 1 of the results of microarray determination of gene expression characteristics of three patients with known ductal pancreatic adenocarcinoma and seven persons without ductal pancreatic adenocarcinoma used as controls, but to a higher probability of certainty than shown in Fig. 1;

Fig. 3, a showing of the results of microarray determination of gene expression characteristics of four patients with known ductal pancreatic adenocarcinoma and eight persons without ductal pancreatic adenocarcinoma used as controls or normals;

Fig. 4, a showing of the results of microarray determination of gene expression characteristics of two patients with known ductal mucinous pancreatic neoplasm and two persons with ductal pancreatic adenocarcinoma;

DETAILED DESCRIPTION OF THE INVENTION

The invention, in part, involves obtaining gene expression characteristics of the gene system of monocyte-lymphocytes of the peripheral blood from a body or patient to be tested. This usually includes obtaining peripheral blood from the body or patient to be tested, separating or isolating the monocyte-lymphocytes from the blood, processing the monocyte-lymphocytes to allow determination of gene expression characteristics of the genes, and determining the gene expression characteristics of the genes. In a preferred method of obtaining and processing the monocyte-lymphocytes, a peripheral blood sample is obtained from the patient in the usual manner of obtaining venous blood from a peripheral vein, such as the anti- cubital vein of the arm. Usually 16 ml in two 8 ml tubes is drawn into sterile RNase free vacuum tubes with a Ficon type gradient and heparin. (Such as the BD Vacutainer CPT tubes with heparin.) Although not the preferred method, other anticoagulants such as potassium ethylene-diamine tetra-acetic acid (EDTA) or sodium citrate may be used. These tubes are centrifuged at a centrifugal force of about 1500 xg, using, for example, the top of the tubes 17 cm from the center of the center post of the centrifuge, for 20 minutes at 2800 rpm at room temperature. The resulting 'snow storm' of monocyte-lymphocytes sits on top of the Ficoll gradient and below the clear plasma layer. Approximately 2 ml of this monocyte-lymphocyte layer is aspirated with a sterile RNase free plastic Pasteur bulb tube and placed in a sterile RNase free 15 ml plastic tube with a screw top.

The cells in the aspirated sample are then washed one time. Approximately 13 ml of IX PBS (phosphate buffered saline) solution made with RNase free water, is added to the plastic tube, and centrifuged at 1300 rpm for 15 minutes. The same distance is used for the centrifuge as previously, 17cm from the center of the center post of the centrifuge. This is done at room temperature. A small white pellet is

found at the bottom of the centrifuged 15ml plastic tube. The supernatant is gently poured from the tube without disturbing the pellet. The small remaining part of the supernatant is very gently aspirated from the tube, again not disturbing the pellet.

The cells in the pellet are now preserved in one of three ways. In method A, two tubes with the pellets are used and 350 μl added of a B-ME (B-Mercapthanol) preservative. (Such as 10 μl of B-ME inlml of Buffer RLT from the Quiagen RNeasy Mini Protect Kit.) Mild vortexing of the lysate with the pellets in the tube is gently done, holding the tube to the side of the rim of the vortexing machine. Allow the cells to be lysated for five or more minutes and draw back and forth through a sterile Rnase free #18 needle and 1 ml sterile Rnase free syringe five times gently. This amount from the two pellets in the two tubes is then transferred to one 1.5 ml Eppendorff sterile RNase free tube. This may then be stored at -8O 0 C or continued to be processed to total RNA (tRNA). In method B, the sample may instead be placed in a DMSO (dimethyl sulphoxide) solution made up of 500 μl of DMSO, 500 μl of the patient's own serum and 4ml of RPMI 1640 which is mixed and then 1 ml added to the pellet at the bottom of the 15 ml plastic tube and gently vortex. This may then be slowly frozen to -8O 0 C for storage or immediately processed to total RNA (tRNA). If it is stored at -8O 0 C, it should be melted rapidly to 37 0 C before processing to total RNA. This procedure allows the cells to be negatively selected to lymphocyte subsets of CDS, CD4, CD4-CD25 and B lymphocytes which are then processed to aRNA or to cDNA as described below for microarray pattern recognition. In method C, 100 μl of RNlater (from Qiagen RNeasy Mini Protect Kit) may instead be added to the washed pellet as a preservative to stop enzyme degradation. This is thought to be a high salt solution and the cells in this solution may not be effectively negatively selected for subset analysis. The patterns in this method (Method C) are of the total monocyte-lymphocyte gene expression reaction to the neoplasm.

If the B-ME buffered method of lysate of two tubes of pellets (Method A) is used for further processing to total RNA, an equal amount of 70% ethanol made from pure absolute alcohol with 30% of RNase free non-DEPCA treated sterile water added to the alcohol, is added to the cell containing lysate in the Eppendorff tube. This is gently mixed and then in 700 μl amounts added to a silica gel column. (Such as that supplied by Qiagen in their Mini Protect Kit.) This is then centrifuged at 10,000 rpm (approximately 9,000 g.) for one minute and the flow through discarded. The ethanol

bounded total RNA with higher amount of messenger RNA (mRNA) is bound to the silica gel membrane which is then washed and eluted in sterile RNase free water. In more detail, the remaining lysate in the Eppendorff tube is transferred in 700 μl or less volume to the silica column and centrifuged in a microcentrifuge again for one minute at the same speed, 10,000 rpm. The flow through is discarded and 350 μl of a wash solution. (Such as that from the Qiagen RNeasy Mini Protect Kit). Is placed on the column and again centrifuged for one minute at 10,000 rpm. Following this add 10 ui of DNasel stock solution from an RNase Free DNAse Set (Introvirogen) to 70 μl RDD buffer. This eliminates the remaining small amount of DNA leaving the enriched mRNA. Mix gently by inverting and add gently to the silica gel column.

Let stand for 15 minutes then wash again with 350 μl of a wash solution, microcentrifuging for one minute at 10,000 rpm. Discard the flow through. Pipette 500 μl of Buffer RPE from the Qiagen Kit to the column and centrifuge for one minute at 10,000 rpm using the same collection tube. Discard the flow through. Pipette another 500 μl of RPE Buffer solution (again to wash the column with ethanol) to the column with a new collection tube and centrifuge again for one minute at 10,000 rpm in a microcentrifuge. If the column is not totally dry, discard the flow through and recentrifuge at 16,000 rpm for one minute. Do not do this last step, if the column is dry. Transfer the dry silica gel column to a new 1.5m RNase free collection tube and pipette 30 μl of RNase free sterile water directly onto the silica gel membrane, holding the pipette only one or two millimeters above the membrane. Microcentrifuge the column at 10,000 rpm for one minute. This gives 30 μl of total RNA (tRNA). One may then OD (optical density with UV spectrophotometry) one μl of this, with or without dilution, to determine the concentration or quantity of total

RNA (tRNA). One may also run a gel to be sure the bands indicate no degradation of the total RNA.

After the total RNA ( tRNA) is measured for concentration by OD, amplification to aRNA or cDNA is carried out After the specimen is successfully bio- analyzed, hybridization to microarray is done to evaluate over and under expression of the genes

The gene expression patterns will then be analyzed with advanced software to determine the statistically significant expression of the cancer or other disease

conditions compared to the normal expected patterns of non-diseased control samples.

'Gene Sight' software with hierarchical clusters, statistical analysis of microarray 'SAM', a linear ANOVA method and other methods, including the ROC/AUC method, were used to analyze the microarray data in this determination of the significantly over expressed and under expressed genes distinguishing the cancers and other disease conditions from age and gender approximated controls without known disease. This method may also be used to monitor transplant donors and recipients before and after organ transplantation for organ rejection or other disease conditions related and unrelated to transplantation. This method may be modified to increase the availability and reduce the laboratory time and cost of the test with the use of direct linear amplification of smaller amounts of total RNA to cDNA for direct attachment of dyes for microarray with different or hybrid promoters and primers (such as with the NuGene method). Also, this method may be enhanced by use with newer microfluid chips. Even more focused gene patterns may be evaluated with negatively selected combinations of subsets of the T and B lymphocytes for patterns of gene expression of early developing tumors or disease conditions, allowing early resection or destruction of the tumor before metastatic spread of the subsequent cancer and other methods of earlier control of the disease condition, as well as better control to the tolerance of the transplanted organ..

This method gives the patterns needed for the early diagnosis of the altered disease state and transplantation condition. This method describes one useful method of accomplishing the invention claimed in this patent of using the peripheral blood monocyte-lymphocytes for the early diagnosis of breast, lung, colon and pancreatic growths and cancers and other disease conditions, as well as the condition of donor and recipient organ transplants.

One hypothesis of this invention is that the peripheral blood lymphocyte microarray gene expression patterns will show a specific and unique identification of a breast, lung, colon or pancreatic cancer patient compared to the microarray gene expression patterns of informed volunteer age and gender approximated controls without this disease. To test this hypothesis, peripheral blood mononuclear cells were isolated from the peripheral blood specimens of patients and controls. The isolated mononuclear cells were estimated to consist of about 80% to about 95% lymphocytes.

The venous blood was drawn from a peripheral vein, usually an anti-cubital arm vein, of informed and consenting patients with subsequent pathology proven tissue diagnosis of the studied disease. These specimens were from intraductal pancreatic adenocarcinoma patients who did not have treatment with radiation or chemotherapy prior to the obtaining of the blood specimens. The gene expressions from the processed blood specimens were analyzed and compared to similar drawn and processed specimens from age and gender approximated informed volunteer controls without the disease.

The blood was drawn into an RNase free, heparinized vacuum tube with a Ficoll gradient. The blood specimens were immediately processed with centrifugation and aspiration of the mononuclear cell layer with sterile RNase free pipettes and RNase free laboratory equipment. This process was started usually within 20 to 30 minutes of the drawing of the blood and certainly within 2 hours. This mononuclear cell layer was then washed and preserved according to a careful and consistent protocol described above. Further processing could be continued immediately or the preserved specimen could be stored at -8O 0 C for later processing.

As described above, total RNA was extracted from the preserved cells and polyA messenger RNA from the total RNA was amplified to antisense aRNA or cDNA for subsequent hybridization to microarray human slides. Universal Human Reference RNA was similarly processed at that time for use as a reference standard.

The antisense aRNA or cDNA from the preserved cells from a specimen and the Universal Human Reference RNA antisense aRNA or cDNA was hybridized to microarray human microarray slides and the slides processed to show the gene expression characteristics of the genes from the respective blood specimens of patients with the studied cancer and controls without the studied cancer. The results of these microarray hybridization studies were analyzed with the Gene Sight software using a Student's Test method. As stated above, other methods of analysis were also used, including the SAM method, a different linear ANOVA method and other methods. The results from all methods were compared and the results from different patient's specimens were compared. The individual genes were often matched to the control specimen genes with a pair Mean ratio difference of p 0.00001 (one chance in 10,000 that the indicated over expression, neutral expression, or under expression was random) or p 0.0001 (one chance in 1,000 that the indicated over expression, neutral

expression, or under expression was random) for selection with Gene Sight software.

The patterns of selection were noted with the Hierarchical Cluster method and the individual genes over and under-expressed in this comparison were recorded. Cross- expression of these genes between methods and specimens are noted and recorded The Gene Sight or other software is then used to indicate the results in selected manners, such as in hierarchical clusters. The results obtained in this manner are colored charts showing the expression for individual genes in red if the gene is significantly over expressed, green if the gene is significantly under expressed, and black if there is no significant expression, referred to herein as neutral expression. These gene expression indications and charts for indicating gene expression are well known to those skilled in the art.

Fig. 1 shows the results of microarray determination of gene expression characteristics of three patients with known ductal pancreatic adenocarcinoma and seven persons without ductal pancreatic adenocarcinoma used as controls, and showing only gene expressions that have been determined to be different between patients with ductal pancreatic adenocarcinoma and controls without ductal pancreatic adenocarcinoma, at a p of 0.0001. Fig. 1 shows the results of a human slide A comparison, evaluating 9600 genes in duplicate. The first three columns from the left in Fig. 1, labeled at the bottom of each column as PA, show the gene expressions for the particular genes labeled for each row at the right side of the Fig. 1. The gene labels shown in Fig. 1 are the Image ID Numbers for the genes. Each column labeled PA represents a "patient differential gene expression pattern" as described earlier where the pattern is made up of the particular genes labeled on the right. The seven columns labeled C show the gene expressions for the particular indicated genes for the controls. Each column represents a differential gene expression pattern for a particular control. To generate a "normal differential gene expression pattern," a combination of all seven individual control column patterns would be generated. Similarly, to generate a "condition differential gene expression pattern," an average or other combination of all three individual patient column patterns would be generated. When printed in color, the greens and reds of some individual patterns sometimes vary in shade or intensity indicating the measured intensity of the over or under expression. However, in the black and white drawings of Figs. 1-3, the red is indicated by diagonal lines sloping downwardly to the right and the green is indicated

by diagonal lines sloping downwardly to the left. No indications are made to indicate intensity. The black indicates neutral intensity while the white or blank spaces indicate no measurement for that particular gene for that particular sample.

Fig. 1 shows particular genes that exhibit different expression between the patients with ductal pancreatic adenocarcinoma and the controls without ductal pancreatic adenocarcinoma. This data shows distinct patterns of gene expression microarrays on human slides A separating ductal pancreatic adenocarcinoma patients prior to treatment compared to age and gender approximated controls.

Fig. 2 shows the results of microarray determination of gene expression characteristics for the same three patients with known ductal pancreatic adenocarcinoma and the same seven persons without ductal pancreatic adenocarcinoma used as controls, as shown in Fig. 1. However, Fig. 2 shows only gene expressions that have been determined for particular genes to be different between patients with ductal pancreatic adenocarcinoma and controls without ductal pancreatic adenocarcinoma, at a p of 0.00001 rather than 0.0001 (only one chance in

10,000 that the indicated over expression, neutral expression, or under expression was random as opposed to one chance in 1,000). Thus, the difference of these particular genes, which are also included in the genes shown in Fig. 1, between a patient and a normal have a higher degree of indicating the presence of ductal pancreatic adenocarcinoma than the other genes shown on Fig. 1.

Fig. 3 shows the results of microarray determination of gene expression characteristics of four patients with known ductal pancreatic adenocarcinoma and eight persons without ductal pancreatic adenocarcinoma used as controls, and showing only gene expressions that have been determined to be different between patients with ductal pancreatic adenocarcinoma and controls without ductal pancreatic adenocarcinoma, at a p of 0.00001, similar to the p of Fig. 2. Fig. 3 shows the results of a human slide B comparison of 9600 different genes in duplicate. The first four columns from the left in Fig. 3, labeled at the bottom of each column as PA, show the gene expressions for the particular genes labeled for each row at the right side of the Fig. 1. The eight columns labeled C show the gene expressions for the particular indicated genes for the controls. Fig. 3, shows distinct patterns of gene expression microarrays with human slide B separating ductal pancreatic adenocarcinoma patients prior to treatment compared to age and gender approximated controls.

The genes identified by Image ID Numbers in Figs. 1-3 were further identified using the Oncogenomics and NCBI data reference sources listed as follows: A. Oncogenomics, Pediatric Oncology Branch, CCR, NCI, NIH, DHHS. http://liome.ccr.cancer.gov/oncologv/oncogenomics/ B. National Center for Biotechnology Information (NCBI)

National Library of Medicine (NLM) National Institutes of Health (NIH) http://www.ncbi.nlm.nih.gov

Sequence listing for the particular genes, where available, may be found on one of these sites using the identification for the gene provided here. Information regarding the identified genes available on these web sites is incorporated herein by reference. For example, the first four genes listed below were found to be significantly over expressed and the next two genes under expressed in the ductal pancreatic adenocarcinoma patients peripheral blood mononuclear cells, when compared to age and gender approximated controls, constituting a pattern of recognition of pancreatic cancer as compared to the gene expression patterns in those without pancreatic cancer Gene Symbol Gene Name Gene # Unigene

Cluster

Image ID # (Locus Link) 1. SOC Socius G# 91544

Hsl45061

ID#121239

2. Clorf38: Chromosome 1 open reading frame 38 G#9473

HslO649 ID#307255

3. BCL6 B cell CLL lymphoma 6 (zinc finger protein 51) G#8067

Hsl55024

ID#201727

4. LTBR lymphotoxin beta receptor (TNFR superfamily, member 3) G#4055 HsI 116

ID#811900

5, HomoSapians p38 beta 2 MAP kinase mRNA, completeCDS

ID#84148

6. SLC9A3R2: solute carrier family 9(sodium hydrogen exchanger), isoform 3 regulater 2.

Hs 440896

ID#178569

For example, when several of the fourteen genes listed below, are over-expressed in the peripheral blood mononuclear cells, they are most likely to express a pattern diagnostic of intraductal pancreatic adenocarcinoma. If two or more of the first 9 genes listed below are found to be over-expressed in the peripheral blood mononuclear cells, one should consider careful evaluation of the patient for the presence of a pancreatic tumor. If three or more of these first listed 14 genes are found to be expressed in an elevated state one should very carefully evaluate the patient for the presence of intraductal pancreatic adenocarcinoma. Gene Symbol Gene Name Gene # Unigene

Cluster Image ID # (Locus Link)

1. SOC Socius G# 91544 Hsl45061

ID#121239

2. Clorf38: Chromosome 1 open reading frame 38 G#9473 HslO649

ID#307255

3. LIMD 1 : LIM domain containing 1 G#8994 Hsl93370

ID#795770(757350) 4. ESTs

Hs47868

ID#244350

5. UBAP2L(NICE4) Ubiquitin associated protein 2-Like. G#9898

Hs8127

(NICE4 protein) ID#245015 6. NUP93 Nucleoporin 93 IcDA G# 9688

Hs 295014

ID#51918

7. BCL6 B cell CLL lymphoma 6 (zinc finger protein 51) G#8067

Hs 155024

ID#201727

8. EST ID#564126

(Hs6716)

9. LTBR lymphotoxin beta receptor (TNFR superfamily, member 3) G#4055 HsI 116

ID#811900

10. MYC V-myc myctocytomatosis viral oncogene homolog (avain)G#4609 Hs202453 ID#812965 (417226)

11. RB 1 CC 1 RB 1 -inducible coiled - coil 1 (Homo Sapiens) G#9821 Hs 151202

ID#23431

12. SELL selrctin L (lymphocyte adhesion molecule 1) G#6402 Hs82848

ID#149910

13. LCP2 (SLP-76) lymphocyte cytosolic protein 2 G#3937 Hs2488

ID#415127(283715)

14. PRGl Proteoglycan 1, secretin granule G#5552 Hsl908

ID#415021(703581)

For example, the following 7 genes numbered 15 through 21 are most likely to form an under-expressed pattern in the diagnosis of intraductal pancreatic adenocarcinoma, as illustrated on the hierarchical cluster illustration examples of Figs. 1-3. When one or more of these under-expressed genes is combined with the patterns of the first listed 14 over-expressed genes listed above the patient should be clinically very carefully evaluated for intraductal pancreatic adenocarcinoma. 15. HomoSapians p38 beta 2 MAP kinase mRNA, completeCDS

ID#84148

16. Prostacyclin-stimulating factor ] human, cultured diplid fibroblast co HsI 19206

ID#302482 17. SLC9A3R2: solute carrier family 9(sodium hydrogen exchanger), isoform 3 regulater 2.

Hs 440896

ID#178569 18. EST Transcribed sequence

Hs480744

ID#757160

19. Transcribed sequences with moderate similarity to protein vet: NP_115737.1 homo sapiens hypothetical protein MGC 5469 Hs 509207

ID#950395 20. EP400: ElA binding protein p400 (CAGH32)

Hs507307

ID377000

21. IQSECl :IQ motif and Sec7 domain 1 Hs475506 ID#767879

For example, the 68 genes listed in Table 2 are the specific activated over- expressed and under-expressed genes in the peripheral blood mononuclear cells, consisting mostly of lymphocytes, in a specific response to intraductal pancreatic adenocarcinoma. The patterns of expression of these activated genes recorded on microarray will allow the diagnosis of intraductal pancreatic adenocarcinoma.

The patterns of difference as seen in the Hierarchal Clusters (Figs.1-3) between the pancreatic carcinoma patients and the controls reinforces the concept of a unique specific reaction of the various types of lymphocytes in the peripheral blood to the developing tumor, as one would expect from the TIL cell reaction with infiltration of specific lymphocytes to the tumor site. With one questionable exception *, these genes are not the genes noted in the peripheral blood mononuclear cells by Twine &

Burczynski.

Twine NC, et al .Disease-associated expression profiles in peripheral blood mononuclear cells from patients with advanced renal cell carcinoma. Cancer Res. 2003 Sept.15;63(18):6069-75. Burczynski ME, Twine NC et al. Transcriptional profiles in peripheral blood mononuclear cells prognostic of clinical outcomes inpatients with advanced renal cell carcinoma. Clinical Cancer Res. 2005 Feb 1;11(3):1181-9., with

melanoma by Xu. Xu T et al Microarray analysis reveals differences in gene expression of circulating CD8+ T cells in melanoma patients and healthy donors. Cancer Res. 2004

May 15;64(10):3661-7 or by Hong . Hong MH, X.X., Mai HQ,Cao SM Min HQ, Analysis of gene expression patterns of periphery lymphocytes inpatients with nasopharyngeal carcinoma. Ai Zheng, 2002. 21(1): p. 21-4. with naso-pharyngeal carcinoma; mitigating against a universal common generic gene expression reaction of the lymphocytes to all cancers and reinforcing the hypothesis of a specific recognition of the intraductal pancreatic adenocarcinoma by these lymphocytes. This method and concept can be applied to breast, lung, colon growths and cancers as well as to other pancreatic tumors and diseases. It also may be applied to the evaluation and treatment of the condition and conditions of donor and recipient organ transplants both before and after the organ transplantation. The evaluation of negatively selected subsets of peripheral blood lymphocytes such as CD8, CD4, CD4CD25 T lymphocytes and B lymphocytes may give a more precise and specific reacting gene expression pattern to the growing and changing tumor as it progresses. The use of pattern recognition rather than individual gene expression as a marker offers the advantage of countering the inherent variability in biological samples. Pattern recognition by combining the results of other tests, including proteomic SELDI- TOF patterns. Bhattacharyya S. Siegel ER, Peteresen GM, Chari

ST 5

Suva LJ, Haun RS. Diagnosis of pancreatic cancer using serum proteomic profiling Neoplasia. 2004 Sep-Oct. 6(5): 674-86 and the use of specific methylation markers

Herman JG, Baylin SB Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med. 2003 Nov 20: 349(21): 2042-54. together, will further

focus and elucidate the presence of a developing tumor and its response to modes of therapy.

(* Pyridoxal (pyridoxine, vitamin B6) kinase - noted on the original paper of Twine, et al. and on the linear ANOVA test of intraductal pancreatic adenocarcinoma only, but with different Hs. Identification.)

TABLE 1

31 LISTED GENES Gene Symbol Gene Name Gene # Unigene

Cluster

Image ID # (Locus Link)

1. SOC Socius G# 91544 Hsl45061 ID#121239

2. Clorf38: Chromosome 1 open reading frame 38 G#9473 Hs 10649

ID#307255

3. LIMDl : LIM domain containing 1 G#8994 Hsl93370

ID#795770(757350)

4. ESTs Hs47868

ID#244350 5. UBAP2L(NICE4) Ubiquitin associated protein 2-Like. G#9898

Hs8127

(NICE4 protein) ID#245015

6. NUP93 Nucleoporin 93 kDA G# 9688 Hs 295014

ID#51918

7. ZNF313 Zinc finger protein 313 G# 55905 Hs 144949

ID#487165

8. PRUNE Prune Homolog (Drosphila, Homo Sapiens) G# 149428 Hs78524 (HTCD37 TcD37 homolog 58497)

(Hs78524)

ID#364324

9. FLJ12584 Hypothetical protein FLJ12584 G# 80210 Hs471610

ID#269293

* 10. PDXK pyrdoxal (pyridoxine, vitamin B 6) G#8566

Hs284491

(C21orfl24 chromosome 21 open reading frame 124)

ID#590640

11. MYC V-myc myctocytomatosis viral oncogene homolog (avain)G#4609 Hs202453

ID#812965 (417226)

12. RBlCCl RBl -inducible coiled - coil 1 (Homo Sapiens) G#9821 Hsl51202

ID#23431

13. NKG7 natural killer cell group 7 sequence G#4818 Hsl0306

ID#71606

14. SELL selectin L (lymphocyte adhesion molecule 1) G#6402 Hs82848

ID#149910

15. LCP2 (SLP-76) lymphocyte cytosolic protein 2 G#3937 Hs2488

ID#415127(283715)

16. BCL6 B cell CLL lymphoma 6 (zinc finger protein 51) G#8067 Hsl55024

ID#201727

17. EST ID#564126

(Hs6716)

18. LTBR lymphotoxin beta receptor (TNFR superfamily, member 3) G#4055 HsI 116

ID#811900

19. PRGl Hematopoetic proteoglycan 1, secretory granule G#5675 Hsl908

ID#415021 (703581)

20. Serpine 1: (PALl):Plasminogen - activation inhibitor type 1 G# 24617 Hs82085

ID#589458

21. EDNl: Endothelin G#1906

Hs2271

ID#549409 22. (Homo sapiens chromosome associated protein - ECLAP-E mRNA complete c)

ID#66638

23. PBEFl: Human pre-B cell enhancing factor (PBEF) mRNA, complete cds 10135 Hs 154968

ID#488548 24. FPRl : formyl peptide receptor 1 G#2357

Hs753

ID#773236

25. FLJ 31978: hypothetical protein FLJ 31978 G# 144423 Hs 12381

ID#809504

26. BNC2 basonuclin 2 G#54796 Hsl03853

ID#344036

27. MAST3 (KIAA0561) microtubule associated serine/threonine kinase 3

G#23031 Hs 173864 ID#203350

28. LOCI 13330 hypothetical gene supported by NM 005631

ID#113330

29. (LOC487647 similar to hypothetical protein FLJ21128)

ID#487647

30. EST (ZGC86904) ZGC86904 (dario revio) (ZDB-GENE-040625) Hs64906

ID#415186

31. EST moderately similar to WW domain binding protein 1 (M.musculus) (cbp A curved DNA binding protein)

Hs7709 . ID998681

TABLE 2

The 68 genes in this table are the specific activated over-expressed and under- expressed genes in the peripheral blood mononuclear cells, consisting mostly of lymphocytes, in a specific response to intraductal pancreatic adenocarcinoma. The patterns of expression of these activated genes recorded on microarray will allow the diagnosis of intraductal pancreatic adenocarcinoma.

Gene Symbol Gene Name Gene # Unigene

Cluster

Image ID # (Locus Link)

1. BCL6 B-cell CLL/lymphoma-6 (Zinc finger protein 51) G#604 HsI 55024

ID# 201727 •

2. SOC Sociυs G# 91544 Hs 145061

ID#121239

3. Clorf38: Chromosome 1 open reading frame 38 G#9473 HslO649

ID#307255

4. LIMDl : LIM domain containing 1 G#8994 Hsl93370

ID#757350

5. ESTs Hs47868 ID#244350

6. UBAP2L(NICE4) Ubiquitin associated protein 2-Like. G#9898 Hs8127

(NICE4 protein) ID#245015

7. IGA9 Integrin, alpha 9 G#3680 Hs222

(weakly similar to CCAAT Box -BINDing transcript factor 1) ID#898288

8. NR6A1 Nuclear receptor subfamily 6, group A, number 1 G#2649 Hs 195161

ID#743582

9. LMCDl LIM and cysteine-rich domain 1 G#29995 Hs279943

ID#786550

10. SYN2 Synapsin II G#6854 Hs445503

ID#51254

11. FGD4 FYVE, Rho GEF and PH domain containing 4 G# 121512 Hs409311

ID#730270

12. Transcribed sequences G#23283

Hsl2700

ID#30959

13.ESTs (Moderately similar to Munc 13 [H. Sapiens] ) HsI 12921

ID#1055608

14. AP1S2 Adaptor-related protein complex 1, Sigma 1 subunit 2 G#8905 Hs40368

ID#813756

15. PB 1 Polybromo 1 G#55193 Hs 173220

ID#813644

16. PARD3 Par-3 partitioning defective 3 homolog (C. elegans) G#56288 Hs98872

(Transcribed sequence) ID#753026

17. CDNA FLJ20913F13cloneADSEOO630 Hs7063

ID#49110

18.EST Transcribed locus Hs21169 ID&30102

19. ZD73D05 Full length insert cDNA clone ZD73D05 Hsl34314

ID#346281

20. KIAA0789: KIAA0789 gene product. G# 9671 Hsl58319

ID#33621

21. E2IG4 hypothetical protein estradiol-induced G#25987

Hs8361

ID27098

22. C18orfll Chromosome 18 open reading frame 11 G#64762 Hsl2727

ID#37671

23. ESTs transcribed locus. Hs 537583 ID#626765

24. RAMP: RA-regulated nuclear matrix associated protein G#51514 Hsl26774

ID#41815O

25. CLDNl: claudin 1 G#9076 Hs7327

ID#664975

26. FAM38B: Family with sequence similarly 38 member B. G#63895

Hs293907 ID#302766

27.CDNA FLJl 44273 fis, clone TOVAR 2001281 G#389011 Hsl42074

ID#241900

28. ESTs Hs28501

ID#139883

29. VNN3 vanin 3 G#55350

Hsl83656

ID#120544

■ 30. EST Hs 45033

ID#485827

31. SLCl A7 Solute carrier family 1 (glutamate transporter) member 7 G#6512 HsI 04637

ID#276515

32. ALCAM: Activated leukocyte cell adhesion molecule (G#214?) HslO247[Hsl 50693?] ID#686180

33. SLC22A3: solute carrier family 22 (extraneuronal monamine transporter, member

3

G#6581 HS242721 ID#127120

34. CD44? Hsl69610

ID#530788

35. EST

Hs6716

ID#564126

36.LTBR: lymphotoxin beta receptor (TNFR superfamily, member 3) G#4055 HsI 116

ID#811900

37. MRNA cDNA DKFZp434D0818 (from cloneDKFZp434D0818) Hs 5855 ID#308478

38. CD59: antigen pl8-20 (antigen identification by monoclonal antibodies 16.3A5, EJ16, EJ30, EL32 andG344)

G#966 Hs 278573 ID#208001

39. BBX: Bobby sox homolog (Drosophila) G#56987 Hs35380

ID#503691

40.NR6A1 : Nuclear receptor subfamily 6, group A, memberl G#2649

Hsl95161

ID#258666

41. HomoSapians p38 beta 2 MAP kinase mRNA, completeCDS

ID#84148

42. HsI 19206 Prostacyclin-stimulating factor ] human, cultured diplid fibroblast co

ID#502482

43. SLC9A3R2: solute carrier family 9(sodium hydrogen exchanger), isoform 3 regulater 2.

G#9351 Hs 440896

ID#178569

44. EST Transcribed sequence

Hs480744

ID#757160

45. Transcribed sequences " with moderate similarity to protein vet: NP_115737.1 homo sapiens hypothetical protein MGC 5469

Hs 509207

ID#950395

46. EP400: ElA binding protein p400 G#57634 Hs507307 (CAGH32) protein EP400: ElA binding protein p400

AA427519

ID#377000

47. IQSEC 1:IQ motif and Sec7 domain 1G# 9922 Hs475506 IQSECl : IQmotif and Sec7 domain 1.

ID#767879 AA418726

48 LPHN2: Lactrophilin 2

G#23266 Hs24212

ID#346583

49.PHFlO: PHD finger protein 10 Homo Sapiens G#55274 Hs435933

ID#138589

50. ZCCHCl 1: Zinc finger, CCHC domain containing 11 G#23318 Hs528341

ID#785963

51. FLJ14775: Hypothetical protein FLJ14775 G#84923 HslO3555

IDl 94023

52. TRIM37: Tripartite motif-containing 37 Homo Sapiens G#4591 Hs80667

ϊD#305520

53. DHX34: DEAH (Asp-Glu-Ala-His) box polypeptide 34 G#9704 HsI 51706

ID#739990

54. EST Hs22031

ID#129624

55.EST Transcribed sequence Hs226284

ID#124052

56. FLJ00133 FLJ00133 protein G#25992

Hs471834

ID#341641

57. MGC15407 similar to RIKEN cDNA4931428D14 G#l 12942

Hs23128

ID#364873

58. SPTAI: spectrin, alpha, erthrocytic 1 (elliptocytosis 2) G#6078 Hs418378

ID#204774

59. SLC26A2: solute carrier family 26 (sulfate transporter) member 2 G#1836 Hs302738 ID#322537

60. NVP160 nucleoporin 16OkDa G#23279

Hs22559

ID#33299]

61. ID#48772]

62. FPRl : formyl peptide receptor 1 G#2357 Hs753

ID#773236

63. Serpine 1: (PALI) Plasminogen - activation inhibitor type 1 G#24617 Hs82085 ID#589458

64. EDNl: Endothelin G#1906

Hs2271

ID#549409

65. FLJ 31978: hypothetical protein FLJ 31978 G#144423 Hs 12381 '

ID#809504

66. PRGI: Hematopoetic protoglycan core protein G#5552 Hsl909 ID#415021(703581)

67. SMC2L1: structural maintaince of chromosome 2 G#10592 HsI 19023

(Homo sapiens chromosome associataed protein - ECLAP-E mRNA complete c) ID#66638

68. PBEFl: Human pre-B cell enhancing factor (PBEF) mRNA, complete cds G# 10135 Hsl54968

ID#488548

Once particular genes are identified to look at for particular conditions, i.e., the particular genes are identified for a normal differential gene expression pattern for a paticular condition or for a condition differential gene expression pattern for a particular condition which identifies the particular genes to be looked at for either differences or similarities to determine if a person is suffering from the particular condition, microarrays can be configured to provide only information on the particularly identified genes, i.e., to create the patient differential gene expression pattern. Thus, for screening for pancreatic cancer, a microarray could be configured to determine the expression for the patient to be screened of the particular genes identified in Table 1 or in Table 2 and a patient could be screened by looking at the expression for only those particular genes. The patient differential gene expression pattern would be generated by the microarray and then compared with either the

normal differential gene expression for differences or the condition differential gene expression pattern for similarities to determine if the patient was likely to be suffering from the condition. The selected genes may be identified by a polymerase chain reaction (PCR) platform or specific gene chip, including a micro-fluid gene chip, without the use of the microarray platform.

For example, to show that different conditions, even when similar, can be identified, patient differential gene expression patterns were obtained for two patients having known intraductal mucinous pancreatic neoplasm. The patient differential gene expression patterns for these two patients are shown in Fig. 4 in the last two columns labeled IMPN. The gene expression patterns of the two patients known to have ductal pancreatic adenocarcinoma are labeled PA. These two intraductal pancreatic adenocarcinoma patients with intraductal mucinous pancreatic neoplasms were analyzed with a consistent method on human slide B with 9600 genes with Significant Analysis of Microarray (SAM) with the Students T Test and a p value of 0.0001 using Gene Sight software. The consistent patterns of over and under expression of the eleven identified genes allow the establishment of significant patterns characteristic of this intraductal pancreatic cancer state as compared to the other pancreatic conditions. This indicates that the method of the invention can be used to distinguish between different pancreatic conditions, so could be used to distinguish between pancreatic disease conditions including islet cell tumors, other growths, and inflammatory states. This method may be used with breast, lung and colon growths and cancers as well as with donor and recipient organ transplants, both before and after transplantation to identify and allow treatment of possible transplanted organ rejection and other disease conditions related and unrelated to the transplantation.

An alternate method of processing the peripheral blood to allow determination of the gene expressions when using microfiuidics is as follows:

Use RNase free conditions with gloves without powder, Rnase free sterile collection tubes etc. RNases are ubiquitous enzymes on our hands etc, which will destroy the RNA being processed.

COLLECTION AND SEPARATION:

STEP 1.

Collect peripheral vein blood in a heparin tube. Gently turn the tubes 8 times to mix with the heparin. Start the processing within 20 to 30 minutes from collection, no longer than 2 hours.

STEP 2.

Place a small amount of the whole blood in the microfluidic system. FILTER out the mononuclear cells.

(This step will involve the separating of the plasma with its platelets and the red blood cells with the neutrophils (larger white blood cells) from the mononuclear cells. The mononuclear cells are larger than the red blood cells (RBCs) and smaller than the neutrophils. The platelets are very small. This can possibly be handled by the diameter of the small tubes in the microfluidic system or by some other filtering method. In the original system a Ficoll gradient and centrifuge was used.)

STEP 3.

WASH the filtered mononuclear cell with IX PBS (IX PBS is one part phosphate buffered saline prepared from fresh 1 OX PBS with 9 parts sterile RNase free non DEPCA treated water)

STEP 4.

Filter and save mononuclear cells. Discard wash material.

PRESERVATION AND LYSIS:

STEP 5.

Add BME (Beta -2 mercaptoethanol) mixed with RLT Buffer (from Qiagen RNeasy Kit) to the mononuclear cells, gently mix over a minute or more.

(This lyses the cells and preserves the RNA from destruction by the enzymes in and outside the cells. In the first protocol method, the solution with the cells was gently aspirated back and forth through a sterile #18 needle with a sterile ImI syringe.)

PRECIPITATION AND SEPARATION OF TOTAL RNA:

STEP 6.

Add 70% alcohol to precipitate (ppt) the resulting protein from the previous step, containing the total RNA (tRNA).

(Make the 70% alcohol from fresh 100% alcohol diluted with RNase free non DEPCA treated water in RNase free containers.)

STEP 7.

Filter and attach precipitate (Ppt) to small silica gel beads and allow the 70% alcohol solution to be discarded. (In the initial method described, the precipitate is attached to a silica gel column, such as that provided by the Qiagen RNeasy Kit. The small beads used here could be made of the same type silica gel, or a ground up silica gel column, or even other designed beads for the attachment of the precipitate. The beads size and density of accumulation would perhaps influence the catching and attaching of the precipitate.)

STEP 8.

WASH the precipitate attached to the beads with Qiagen RWl wash solution and discard the solution, saving the precipitate on the beads.

STEP 9:

Add mixture of DNase stock solution with Qiagen RDD to precipitate on beads and let stand for 15 minutes. Filter and keep the precipitate on the beads, discarding the flow through.

(This gets rid of DNA in the precipitated protein mixture and leaves the total RNA (tRNA) in the precipitate on the beads.)

STEP 9.

WASH with RWl again and discard the flow through.

STEP 10.

Mix alcohol buffer (Qiagen Buffer RPE) with precipitate beads. Filter and discard flow through. Repeat this procedure.

Allow beads and precipitate to DRY. (No alcohol on beads- not wet with alcohol.)

ELUTION:

STEPI l.

Add RNase free water to the beads with the precipitate on them and wait two minutes. Filter and keep the flow through. This flow through has the wanted total RNA (tRNA) (The amount of fluid in the flow through and fluids during the above process can be calculated according to the desired outcome and concentration desired of total RNA. With the use of smaller nano-quantities in the processing, the quantities needed and used would be much smaller than those used in the initial method described.)

One now has the TOTAL RNA (tRNA) containing the messenger RNA which will identify the over and under expressed genes from the MONONUCLEAR CELLS of the peripheral blood specimen.

This application to a microfluidic system may now be divided into two directions:

A. If one has the known genes and gene patterns of a disease or condition precisely reflected in the peripheral blood mononuclear cells with their lymphocytes or from a subset of lymphocytes such as the CD8, CD4, CD4CD25 T lymphocytes or B lymphocytes and obtained the total RNA; then using the appropriate primers, one can proceed to a PCR evaluation with a microfluidic system to see if the designated genes are over and under expressed in the expected pattern to diagnose the disease or condition which one wishes to evaluate. This, of course, would allow the rapid and easily accessible diagnosis of the suspected disease or condition in the clinic with the microfluidic device from a small peripheral blood sample. Also, perhaps other body fluid, such as sputum, urine etc could be used with this method.

The total RNA (tRNA) is processed with a thermal device to cDNA and then with the primers processed in a real time quantitative RT PCR (polymerase chain reaction) in the microfluidic device for the results.

B. If one is seeking the diagnosis of a new or unknown disease or condition from the peripheral blood, then one would want to find the genes and gene patterns of statistically significantly over and under expressed genes of one or ones suffering from the disease or condition from their peripheral blood mononuclear cells or subset lymphocytes, compared to similar persons not suffering from the condition. In this situation one would want a microfluidic system which would carry the total RNA (tRNA) through to the microarray gene expression analysis for the initial evaluations to obtain the genes diagnostic to the disease or condition. Outlined below is the method used to do this with a microfluidic system. (Starting with STEP 12).

The Qiagen and Arcturus solutions, at least at the start, may be used since their solutions and buffers are fixed to have the best combination of chemicals, pH etc.

DENATURE - TOTAL RNA:

STEP 12.

Thaw and Mix 1 st Strand Primer with tRNA specimen from step 11 apply the following heat to the mixed specimen: 65 C for 5 minutes, then cool to 4 C. Mix.

Using Arcturus Kit for primer and solutions.

STEP 13.

Thawed, mix and add 1 st Std. Solution to specimen and heat the mixed solution: 42 C for 60 minutes and cool to 4C.Mix.

STEP 14.

Add Nuclease Mix and heat: 37C for 20 minutes, to 95C for 5 minutes and cool to 4C for 2 or more minutes. This process leaves only the messenger RNA from the total RNA

STEP 15.

Thawed, mix and add 2 nd Strand Primer and heat: 95 C for 5 minutes and cool to 4C.

Mix.

STEP 16.

Thaw, mix and add 2 nd Std. Solutions and heat: 25C for 10 minutes, then 37C for 20 minutes, 7OC for 5 minutes and cool to 4C for at least one minute.

PURIFICATION:

STEP 17.

Prepare BEADS (Arcturus DNA/RNA column beads (constructed as above with

Qiagen column beads) with Arcturus DNA Binding Buffer.

Add mixed DNA Binding Buffer with specimen from STEP 16 to BEADS for attachment to beads.

STEP 18.

WASH with DNA Wash Buffer and DRY the beads with attached specimen, at Room Temperature.

ELUTE:

STEP 19.

Add Elution Buffer solution to beads for two minutes. Flow through is cDNA

REVERSE TRANSCRIPTION:

STEP 20.

Add in that order IVT Buffer, Master Mix, Enzymes to cDNA specimen from STEP 19. Mix. Heat to 42C for 4 hours. Cool to 4C.

STEP 21.

Gently mix and add DNA Nuclease to specimen and heat: 37C for 15 minutes. Cool to 4C. This now leaves only good aRNA from the messenger RNA and destroys the DNA not reverse transecribed.

PURIFICATION:

STEP 22.

Prepare DNA/RNA Column BEADS with RNA Buffer

Combine specimen from STEP 21 with RNA Buffer Solution for attachment to beads.

STEP 23.

WASH X 2 with RNA Wash Buffer. Discard wash buffer follow through.

ELUTE:

Add Elution Solution to beads and wait two minutes. Filter beads and save follow through, which contains wanted anti-sense aRNA for preparation for hybridization to microarray.

This flow through contains the wanted aRNA for preparation for hybridization to microarray chip.

(May 'Check' with OD, gel and bio-analyzer before going to hybridization)

While the invention has been described with specific reference to pancreatic disease conditions, and expression patterns for specific genes have been identified for use in screening patients for pancreatic disease conditions, the method of the invention can be used for screening various other bodily conditions and in generating patterns for specific genes for use with other bodily conditions, including breast, lung and colon growths and cancers as well as with, donor and recipient organ transplants,

both before and after transplantation to identify and treat possible transplanted organ rejection and other disease conditions related and unrelated to the transplantation Whereas the invention is here illustrated and described with reference to embodiments thereof presently contemplated as the best mode of carrying out the invention in actual practice, it is to be understood that various changes may be made in adapting the invention to different embodiments without departing from the broader inventive concepts disclosed herein and comprehended by the claims that follow.