Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHOD FOR ISOMERISING DEHYDRATION OF NON-LINEAR PRIMARY MONOALCOHOLS ON AN ALKALI-DOPED ZEOLITIC CATALYST
Document Type and Number:
WIPO Patent Application WO/2018/087032
Kind Code:
A1
Abstract:
The invention relates to a method for isomerising dehydration of a feedstock comprising at least one primary monoalcohol of formula R-CH2-OH, R being is a non-linear alkyl radical of general formula CnH2n+1, wherein n is an integer from 3 to 20 (preferably isobutanol) operating in gas phase at a weighted mean temperature of 250°C to 400°C, at a pressure of 0.2 MPa to 1 MPa and with a WHSV of 1 h-1 to 18 h-1, in the presence of a catalyst comprising a substrate comprising at least one zeolite having at least one series of channels, the opening of which is defined by a ring with 8 oxygen atoms (8MR), and said zeolite not having been modified by an alkali solution, the catalyst likewise containing at least one binder and at least one alkali element selected among sodium, lithium, potassium, rubidium and caesium, the total content of alkali elements being from 0.03 wt% to 0.70 wt%.

Inventors:
MAURY SYLVIE (FR)
COUPARD VINCENT (FR)
BAZER-BACHI DELPHINE (FR)
ASSIE LAETITIA (FR)
DUPLAN GUILLAUME (FR)
LOPEZ JOSEPH (FR)
NESTERENKO NIKOLAI (BE)
Application Number:
PCT/EP2017/078306
Publication Date:
May 17, 2018
Filing Date:
November 06, 2017
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
IFP ENERGIES NOW (FR)
TOTAL RES & TECHNOLOGY FELUY (BE)
International Classes:
B01J29/65; B01J29/70; B01J35/10; C07C1/24; C07C5/27; B01J29/80
Domestic Patent References:
WO2009074798A12009-06-18
WO2011113834A12011-09-22
WO2016046296A12016-03-31
Foreign References:
US5510560A1996-04-23
FR2773144A11999-07-02
FR3026406A12016-04-01
FR2961202A12011-12-16
EP2547639A12013-01-23
US20070117709A12007-05-24
EP2348005A12011-07-27
Other References:
XU ET AL.: "n-Butene Skeletal Isomerization to Isobutylene on Shape Selective Catalysts: Ferrierite/ZSM-35J", PHYS. CHEM., vol. 99, no. 23, 1995, pages 9443 - 9451
CH. BAERLOCHER; L. B. MC CUSKER; D.H. OISON: "Atlas of Zeolite Structure Types", 2007, ELSEVIER, pages: 142
Attorney, Agent or Firm:
IFP ENERGIES NOUVELLES (FR)
Download PDF:
Claims:
REVENDICATIONS

1 . Procédé de déshydratation isomérisante d'une charge comprenant au moins un monoalcool primaire de formule R-CH2-OH, R étant un radical alkyl non linéaire de formule générale CnH2n+i où n est un entier compris entre 3 et 20, opérant en phase gaz à une température moyenne pondérée comprise entre 250 et 400°C, à une pression comprise entre 0,2 MPa et 2 MPa et à une PPH (débit massique de monoalcool primaire dans la charge en entrée de réacteur divisé par la masse de catalyseur dans ledit réacteur) comprise entre 1 et 18 h"1 , en présence d'un catalyseur comprenant un support comprenant au moins une zéolithe présentant au moins une série de canaux dont l'ouverture est définie par un anneau à 8 atomes d'oxygène (8MR), et ladite zéolithe n'ayant pas été modifiée par une solution alcaline, le catalyseur contenant également au moins un liant et au moins un élément alcalin choisi parmi le sodium, le lithium, le potassium, le rubidium et le césium, la teneur totale en élément alcalin étant comprise entre 0,03 et 0,70% poids par rapport au solide calciné final. 2. Procédé selon la revendication 1 dans lequel les éléments alcalins sont Na et/ou K.

3. Procédé selon l'une des revendications précédentes dans lequel la zéolithe est de type structural FER ou MFS, et est de préférence choisie dans le groupe formé par ferrierite, FU-9, ISI-6, NU-23, ZSM-35, ZSM-57.

4. Procédé selon l'une des revendications précédentes dans lequel la zéolithe est une ferrierite.

5. Procédé selon l'une des revendications précédentes dans lequel la zéolithe est une ferrierite présentant un rapport molaire Si/AI de 8 à 70, et de préférence de 10 à 50.

6. Procédé selon l'une des revendications précédentes dans lequel le liant est choisi dans le groupe formé par un liant silicique, un AIP04, une argile, une zircone, un oxyde de titane, et de préférence un liant silicique.

7. Procédé selon l'une des revendications précédentes dans lequel la teneur en zéolite est de 50-90%pds et de préférence de 60-80%.

8. Procédé selon l'une des revendications précédentes dans lequel le support est constitué de la zéolite et du liant.

9. Procédé selon l'une des revendications précédentes dans lequel ledit monoalcool est l'isobutanol.

10. Procédé selon l'une des revendications précédentes dans lequel ledit monoalcool est le 2-methyl-1 -butanol. 1 1 . Procédé selon l'une des revendications précédentes dans lequel la teneur en élément alcalin est de 0,03% à 0,7% poids, de préférence de 0,03 à 0,6% poids ou de 0,04% à 0,6% poids, par rapport au solide calciné final.

12. Procédé selon l'une des revendications précédentes 1 à 10, dans lequel la teneur en élément alcalin est de 0,03% à 0,45% poids ou de 0,04 à 0,45% poids, par rapport au solide calciné final.

13. Catalyseur comprenant un support comprenant au moins une zéolithe présentant au moins une série de canaux dont l'ouverture est définie par un anneau à 8 atomes d'oxygène (8MR), et ladite zéolite n'ayant pas été modifiée par une solution alcaline, le catalyseur contenant également au moins un liant et au moins un élément alcalin choisi parmi le sodium, le lithium, le potassium, le rubidium et le césium, la teneur totale en élément alcalin étant comprise entre 0,03 et 0,70% poids par rapport au solide calciné final.

14. Procédé de préparation du catalyseur selon la revendication 13 comprenant au moins les étapes suivantes :

1 ) une étape de mélange d'au moins une poudre de zéolithe sous forme protonique ou ammonium avec au moins un liant,

2) une étape de malaxage en présence d'ajout de solvant, et éventuellement d'agent peptisant, la durée du malaxage est inférieure à 1 h et la quantité totale de solvant est telle que la PAF (perte au feu) est comprise entre 28 et 40% pds,

3) une étape de mise en forme du mélange pâteux obtenu à l'issue de l'étape 2),

4) au moins une étape de traitement thermique entre 50 et 800°C du matériau mis en forme obtenu à l'issue de l'étape 3), comportant un séchage et une calcination , et avantageusement sous air.

ledit procédé de préparation comportant une étape d'introduction d'élément alcalin, de préférence Na et/ou K, qui a lieu a) - lors de l'étape 1 ) de mélange de la zéolite avec le liant et/ou

b) - lors de l'étape 2) avec l'ajout de solvant seul ou en combinaison avec l'agent peptisant et/ou

c) - après l'étape 4) de calcination, le procédé comportant alors une étape supplémentaire de traitement thermique.

Procédé selon la revendication 14 dans lequel le liant est un liant silicique, le solvant est l'eau, et l'étape de séchage est réalisée à une température comprise entre 50 et 200°C, préférentiellement entre 80 et 150°C, avantageusement pendant une durée comprise entre 1 et 24 h, et avantageusement sous air.

Description:
PROCÉDÉ DE DÉSHYDRATATION ISOMÉRISANTE DE MONOALCOOLS PRIMAIRES NON LINÉAIRES SUR CATALYSEUR ZÉOLITHIQUE DOPÉ

D'ALCALIN

DOMAINE TECHNIQUE DE L'INVENTION

La présente invention concerne un procédé amélioré de production d'alcènes à partir d'une charge comprenant un monoalcool primaire seul ou en mélange , de formule R-CH 2 -OH, dans lequel R est un radical alkyl non linéaire de formule générale C n H 2 n + i où n est un entier compris entre 3 et 20 (tel que l'isobutanol).

Cette charge peut être obtenue par des procédés chimiques ou par des procédés fermentaires. Ce procédé met en œuvre un catalyseur mis en forme à base d'une zéolithe comprenant au moins une série de canaux dont l'ouverture est définie par un anneau à 8 atomes d'oxygène (8MR).

La présente invention concerne également un catalyseur comprenant une teneur déterminée en élément alcalin, et en particulier en sodium et/ou potassium, lui conférant de meilleures performances , notamment en terme de sélectivité en butènes linéaires.

Les alcènes obtenus, en particulier l'isobutène, le butène-1 et les butènes-2, présentent un intérêt important dans le domaine de l'industrie pétrochimique et de la synthèse organique.

ART ANTÉRIEUR

L'isobutène est une molécule clé en pétrochimie et pour la synthèse d'additifs essence tels que ΙΈΤΒΕ et le MTBE. La grande majorité des publications porte sur la production d'isobutène à partir de butanols linéaires, ceux-ci étant plus facilement produits par voies fermentaires classiques (ABE) que l'isobutanol. De récents développements ont cependant permis d'améliorer fortement les rendements fermentaires en isobutanol, rendant cette charge accessible et disponible à coût attractif. Le document WO2009/074798 décrit l'enchaînement de réactions incluant une étape de déshydratation sur n-butanol afin de former au moins 20%pds d'isobutène dans l'effluent. Parmi les zéolithes efficaces pour cette réaction la ferrierite est citée, mais aucun moyen d'adapter le taux d'isomérie n'est décrit. Xu et al (n-Butene Skeletal Isomerization to Isobutylene on Shape Sélective Catalysts: Ferrierite/ZSM-35J Phys. Chem., 1995, 99 (23), pp 9443-9451 ) indique que la présence de sodium a un effet négatif sur les réactions d'isomérisation squelettale car elle entraîne un blocage des pores accentué par les phénomènes de cokage ayant lieu pendant la réaction d'isomérisation de l'isobutène en butènes, ceci entraînant une désactivation quasi-totale de la ferrierite.

Le document EP 2348 005 décrit la déshydratation d'alcools contenant de 2 à 10 atomes de carbone en l'oléfine correspondante sur un catalyseur zéolithique FER de ratio atomique Si/AI inférieur à 100. La vitesse spatiale horaire massique (Weight Hourly Space Velocity selon la dénomination anglaise, ou WHSV) par rapport à l'alcool est d'au moins 4 h "1 et la température de 320 à 600°C. Le dépassement de l'équilibre de l'isomérisation des oléfines formées ne fait pas partie du problème technique abordé par cette invention. La méthode de préparation du solide décrite dans la demande ne décrit pas la présence de sodium dans le solide.

Le document WO 201 1/1 13834 décrit la déshydratation et l'isomérisation squelettale simultanée de l'isobutanol en présence de catalyseurs silicates cristallins, à taille de canaux moyenne (10MR) désaluminés ou non, modifiés au phosphore ou non, du groupe FER, MWW, EUO, MFS, ZSM-48, MTT, MFI, MEL ou TON ayant un ratio Si/AI supérieur à 10, tamis moléculaires silicoaluminophosphates du groupe AEL, ou silice-, zircone-, titane- ou fluor-alumine sur catalyseurs zéolithiques. La WHSV par rapport à l'alcool est d'au moins 1 h "1 et la température de 200 à 600°C. La proportion maximale atteinte en n-butènes dans les butènes (isobutène plus butènes linéaires) est de 58.4% à 375°C à forte WHSV (12.6 h "1 ) sur une zéolithe FER en poudre de Si/AI 33, valeur supérieure à celle attendue lors de l'isomérisation de l'isobutène à l'équilibre thermodynamique des butènes. Le seul autre catalyseur exemplifié est l'alumine gamma. D'autre part, ce brevet indique qu'il faut éliminer par échange ionique les métaux alcalins ou alcalino-terreux qui auraient pu être introduits lors de la préparation du catalyseur.

Au contraire, la demande de brevet WO-2016/046296 préconise un traitement de modification de la zéolite notamment par une solution alcaline afin d'empoisonner sélectivement les sites acides de la zéolite FER. La zéolite contient au moins 0.5% de sodium de préférence au moins 1 % (valeur exemplifiée), ou encore au moins 5%de sodium. La déshydratation d'alcools en C 4 sur solides acides s'accompagne généralement de l'isomérisation de position de l'alcène formé. Ces deux réactions sont en effet concomitantes, puisque l'isomérisation de position de la double liaison de l'alcène est aussi rapide que la réaction de déshydratation du monoalcool en C 4 . Dans le cas de l'isobutanol, l'isobutène formé initialement se protonne facilement (formation d'un carbocation tertiaire) et peut ensuite subir des réactions secondaires.

OBJET ET INTERET DE L'INVENTION

L'invention concerne un procédé de transformation en alcènes d'une charge comprenant un monoalcool primaire de formule R-CH2-OH, dans laquelle R est un radical alkyl non linéaire de formule générale C n H 2 n + i où n est un entier compris entre 3 et 20, en présence d'un catalyseur comprenant un liant et une zéolithe présentant au moins une série de canaux dont l'ouverture est définie par un anneau à 8 atomes d'oxygène (8MR) mise en forme dans un liant. Le catalyseur selon l'invention comprend une quantité déterminée d'élément alcalin.

Le procédé selon l'invention permet de produire un mélange d'alcènes riches en alcènes linéaires. En effet, par le choix des conditions opératoires et du catalyseur zéolithique, il est obtenu une proportion en alcènes linéaires dans la fraction alcènes bien supérieure à la valeur attendue à l'équilibre thermodynamique, une conversion substantiellement totale du monoalcool et une sélectivité en alcènes totaux supérieure à 97%.

DESCRIPTION DÉTAILLÉE DE L'INVENTION

Plus précisément, l'invention concerne un procédé de déshydratation isomérisante d'une charge comprenant au moins un monoalcool primaire de formule R-CH2-OH, R étant un radical alkyl non linéaire de formule générale C n H 2 n + i où n est un entier compris entre 3 et 20, opérant en phase gaz à une température moyenne pondérée comprise entre 250 et 400°C, à une pression comprise entre 0,2 MPa et 2 MPa et à une PPH comprise entre 1 et 18 h "1 , en présence d'un catalyseur comprenant au moins une zéolithe présentant au moins une série de canaux dont l'ouverture est définie par un anneau à 8 atomes d'oxygène (8MR), et ladite zéolite n'ayant pas été modifiée par une solution alcaline, le catalyseur contenant également au moins un liant et au moins un élément alcalin choisi parmi le sodium, le lithium, le potassium, le rubidium et le césium, la teneur totale en élément alcalin étant comprise entre 0.03 et 0.70%.

De préférence, l'alcalin est le sodium ou le potassium ou encore le sodium et le potassium. Le fait que l'élément alcalin soit introduit non pas directement dans la zéolite mais par le liant ou l'agent peptisant au cours de la mise en forme permet de s'assurer que les sites acides de la zéolite ne sont pas complètement neutralisés par les cations alcalins via un processus d'échange ionique. En effet, le choix fait de la durée de l'étape de malaxage pendant la mise en forme ainsi que de la faible quantité de solvant utilisé dans cette étape ne pas des conditions d'échange ionique. Les cations alcalins sont principalement localisés dans le liant.

Il en résulte une amélioration des performances du catalyseur présentant une teneur en alcalin spécifique, et qui a été avantageusement préparé de façon particulière. Charge

Conformément à l'invention, la charge traitée dans le procédé selon l'invention est une charge comprenant au moins un monoalcool primaire tel que défini ci-après.

Dans la suite de l'exposé, R est un radical alkyl non linéaire de formule générale C n H 2 n + i où n est un entier compris entre 3 et 20, de préférence entre 3 et 10, de manière préférée entre 3 et 7 ou encore 3 et 5.

De préférence, la charge comprend de 40 à 100% poids dudit monoalcool primaire.

On peut citer les monoalcools primaires isobutanol ; 3-methylbutan-1 -ol ; 2-methylbutan-1 - ol ; 2,2-dimethylpropan-1 -ol ; 2-methylpentan-1 -ol ; 3-methylpentan-1 -ol ; 4-methylpentan-1 - ol ; 2,2-dimethylbutan-1 -ol ; 2,3-dimethylbutan-1 -ol ; 3,3-dimethylbutan-1 -ol ; 2-ethylbutan-1 - ol. Ils peuvent être seuls ou en mélange.

On peut citer les monoalcools primaires isobutanol; 2-methylbutan-1 -ol ; 2,2-dimethylpropan- 1 -ol ; 2-methylpentan-1 -ol ; 2,2-dimethylbutan-1 -ol ; 2-ethylbutan-1 -ol. Ils peuvent être seuls ou en mélange.

Ledit monoalcool primaire est préférentiellement l'isobutanol ou le 2-methyl-1 -butanol, pris seul ou en mélange. Très préférentiellement, c'est essentiellement de l'isobutanol, de préférence le seul monoalcool primaire est l'isobutanol.

Ladite charge peut provenir de procédés chimiques ou biochimiques, par exemple fermentaires. En particulier, cette charge peut être issue de procédés de fermentation de biomasse notamment lignocellulosique. La charge peut également contenir de l'eau et jusqu'à 60% d'eau.

Ladite charge peut également comprendre des impuretés minérales (telles que Na, Ca, P, Al, Si, K, S0 4 ) et organiques (telles que du méthanol, de l'éthanol, du n-butanol, des aldéhydes, des cétones, et les acides carboxyliques correspondant, par exemple l'acide furanique, acétique, isobutyrique).

Procédé

Le procédé (réacteur) est opéré en phase gaz, à une température moyenne pondérée comprise entre 250 et 400°C, voire 250-375°C, à une pression comprise entre 0,2 MPa et 2MPa, de préférence entre 0,2 MPa et 1 MPa, à une PPH comprise entre 1 et 18 h "1 , en présence du catalyseur selon l'invention. Ledit catalyseur est disposé dans un ou plusieurs lits fixes, lesquels peuvent être opérés en écoulement ascendant, descendant ou radial.

Par PPH, on entend « Poids par Poids par Heure », c'est-à-dire le débit massique de monoalcool primaire dans la charge en entrée de réacteur divisé par la masse de catalyseur dans ledit réacteur. Cette notion est également parfois désignée sous son acronyme anglais de WHSV, ou « Weight Hourly Space Velocity ».

Par température moyenne pondérée (noté TMP), on entend la moyenne de la température dans le lit catalytique, le lit étant l'ensemble des lits présents dans le réacteur, lits dans lesquels se déroule la réaction catalytique, calculée le long de l'axe de l'écoulement dans ledit lit. Soit un lit de longueur L et de surface S, le mélange réactif s'écoulant le long de l'axe longitudinal x de ce lit, l'entrée dans le lit catalytique formant l'origine de l'axe (x=0), la température moyenne pondérée, not TMP, s'exprime selon la formule suivante :

La réaction étant endothermique et le réacteur opérant soit en mode isotherme, soit en mode adiabatique, la température moyenne pondérée sera représentative de la température de réaction.

La réaction se déroule dans un ou plusieurs réacteurs et chaque réacteur est opéré dans des conditions identiques. La TMP de chacun des réacteurs est ajustée à une valeur comprise entre 275°C et 400°C. Ainsi, dans la suite de l'exposé, le terme « le réacteur » désigne aussi bien le réacteur de cette étape lorsque celle-ci ne comprend qu'un réacteur, que chacun des réacteurs de cette étape, lorsque celle-ci comprend plus d'un réacteur.

Ledit catalyseur est disposé dans un ou plusieurs lits fixes, lesquels peuvent être opérés en écoulement ascendant, descendant ou radial. Catalyseur

Conformément à l'invention, le catalyseur mis en œuvre comprend une zéolithe présentant au moins une série de canaux dont l'ouverture est définie par un anneau à 8 atomes d'oxygène (8MR) telle que définie dans la classification "Atlas of Zeolite Structure Types, Ch. Baerlocher, L. B. Me Cusker, D.H. Oison, 6ème Edition, Elsevier, 2007, Elsevier, p142". Cette zéolithe est mise en forme dans un liant.

Selon un mode de réalisation particulier, la zéolithe peut également avantageusement contenir au moins une série de canaux dont l'ouverture de pores est définie par un anneau contenant 10 atomes d'oxygène (10 MR).

Ladite zéolithe est avantageusement choisie parmi les zéolithes ayant des canaux 8 et 10MR telles que les zéolithes de type structural FER et MFS, prises seules ou en mélange. La zéolite est plus avantageusement choisie dans le type FER parmi les zéolithes ferrierite, FU-9, ISI-6, NU-23, ZSM-35 et pour le type MFS, c'est la zéolite ZSM-57, prises seules ou en mélange. Ladite zéolithe est très avantageusement de type FER et de préférence c'est la ferrierite. De préférence, ladite zéolite est constituée de ferrierite. De façon préférée, la ferrierite a un rapport molaire Si/AI de 8 à 70, de préférence choisi entre 10 et 50.

La zéolite utilisée n'a pas été modifiée par traitement avec une solution alcaline. Néanmoins la zéolite peut contenir de façon intrinsèque jusqu'à 200ppm pds d'élément alcalin, qui résulte du procédé de préparation de la zéolite, en-dehors de tout traitement ultérieur (désalumination...).

La teneur en zéolite dans le catalyseur est de 50-90%pds, de préférence entre 60 et 80%pds. La zéolithe est mise en forme avec ledit liant inerte (pour la préparation du catalyseur). En effet, la zéolithe ne peut être utilisée industriellement sous forme de poudre, car donne lieu à une perte de charge dans les réacteurs en lit fixe trop élevée.

Le liant est un liant silicique, un AIP04, une argile, une zircone, un oxyde de Ti. de préférence, c'est un liant silicique. Généralement le liant silicique est à base de silice, en particulier de silice amorphe.

La teneur en liant dans le catalyseur est comprise entre 10 et 50% pds, de préférence entre 20 et 40%. Il contient éventuellement des impuretés en faible quantité n'ayant pas d'effet technique sur la conversion /sélectivité du catalyseur. De manière très avantageuse, le catalyseur est constitué d'au moins une zéolite ayant au moins une série de canaux dont l'ouverture est à 8 atomes d'oxygène (8MR) et un liant, en particulier un liant silicique. De préférence, ledit catalyseur est constitué de zéolithe ferrierite et de liant silicique. De préférence, le liant silicique est constitué de silice (aux impuretés près, celles-ci n'ayant pas d'effet catalytique). Ledit catalyseur est mis en forme (extrudé). Le ou les éléments alcalins sont apportés de préférence lors du mélange entre la zéolite et le liant. De préférence, ils sont apportés par le liant et/ou par un ou des sels dissous dans le solvant (eau le plus souvent) et/ou par l'agent peptisant. Le ou les éléments alcalins peuvent aussi être introduits après l'étape de calcination, dès lors une étape supplémentaire de traitement thermique est effectuée. Le catalyseur selon l'invention contient au moins un des éléments alcalins précités (sodium, le lithium, le potassium, le rubidium et le césium) et de préférence le sodium et/ou le potassium. La teneur totale en élément alcalin est de 0.03% à 0.7%pds, de façon encore plus préférée de 0.04% à 0.7%, de préférence de 0.03 à 0.6% ou de 0.04% à 0.6%.Très avantageusement, la teneur est de 0.03% à 0.45% ou de 0.04 à 0.45%. De préférence, la teneur est de 0.2% à 0.7% ou 0.6% ou 0.45%. Le % est exprimé par rapport au solide calciné final.

Le catalyseur objet de l'invention est le catalyseur neuf (ou catalyseur frais) chargé dans le réacteur. Le catalyseur neuf est un catalyseur qui n'a jamais été utilisé dans le procédé selon l'invention. Procédé de préparation

Ledit catalyseur utilisé dans le procédé selon l'invention est avantageusement préparé selon un procédé de préparation comprenant au moins les étapes suivantes :

1 ) une étape de mélange d'au moins une poudre de zéolithe , de préférence sous forme protonique ou ammonium, avec au moins un liant, de préférence un liant silicique, par exemple une poudre de silice amorphe ;

2) une étape de malaxage en présence d'ajout de solvant, avantageusement de l'eau, et éventuellement d'agent peptisant ; de préférence un agent peptisant est utilisé ; la durée du malaxage est inférieure à 1 h et la quantité totale de solvant (y compris le solvant de l'agent peptisant) est telle que la PAF (perte au feu) est comprise entre 28 et 40% pds, de préférence entre 28 et 30% pds et préférentiellement de 30 à 35% ;

3) une étape de mise en forme du mélange pâteux obtenu à l'issue de l'étape 2), par exemple par extrusion en utilisant une filière de géométrie adaptée ;

4) au moins une étape de traitement thermique entre 50 et 800°C du matériau mis en forme obtenu à l'issue de l'étape 3), comportant un séchage réalisé à une température comprise entre 50 et 200°C, préférentiellement entre 80 et 150°C, avantageusement pendant une durée comprise entre 1 et 24 h, et une calcination , et avantageusement sous air.

Le procédé de préparation comporte une étape d'introduction d'élément alcalin (de préférence Na et/ou K) qui a lieu

a) -lors de l'étape 1 ) de mélange de la zéolite avec le liant et/ou

b) -lors de l'étape 2) avec l'ajout de solvant seul ou en combinaison avec l'agent peptisant et/ou

c) -après l'étape 4) de calcination, le procédé comportant alors une étape supplémentaire de traitement thermique.

La durée de malaxage est de préférence inférieure à 30mn, et avantageusement comprise entre 10 et 20mn.

La PAF du mélange solvant + poudres sèches est de 28-40% pds. La masse des poudres sèches est déterminée lors d'un traitement thermique à 550°C pendant 2h, sous air et à pression atmosphérique Le liant peut par ailleurs contenir un ou des éléments alcalins (de préférence Na et /ou K).

Le liant (et notamment le liant silicique) utilisé dans l'étape 1 est bien connu de l'Homme du métier, il est choisi pour son caractère inerte vis-à-vis des conditions opératoires et vis-à-vis notamment de la présence d'eau dans le procédé. Avantageusement, on pourra utiliser un liant contenant au moins un élément alcalin, tel que du sodium ou du potassium. Il peut être utilisé un liant ne contenant pas ledit élément alcalin (tel que de sodium et/ou de potassium), ledit élément (Na et/ou K) étant alors introduit ultérieurement. On peut également utiliser un mélange de liant contenant un élément alcalin avec un liant n'en contenant pas ou en comprenant une teneur différente. Une source de liant silicique peut être une silice de précipitation ou une silice issue de sous- produits comme les cendres volantes, par exemple les particules silico-alumineuses ou silico-calciques, et les fumées de silice. On pourra avantageusement utiliser une silice colloïdale, se présentant par exemple sous la forme d'une suspension stabilisée. Une poudre de silice amorphe peut avantageusement être utilisée dans l'étape 1 ). La poudre de zéolite et le liant (tel que silicique), de préférence sous forme de poudre, sont avantageusement malaxés en présence d'un solvant (étape 2), de préférence de l'eau dans lequel un agent peptisant peut avantageusement être dissous afin d'obtenir une meilleure dispersion du liant. La consistance de la pâte est ajustée par le biais de la quantité de solvant. L'agent peptisant utilisé lors de cette étape peut avantageusement être un acide, une base organique ou inorganique tel que l'acide acétique, l'acide chlorhydrique, l'acide sulfurique, l'acide formique, l'acide citrique et l'acide nitrique, seul ou en mélange, l'ammoniaque, une aminé, un composé à ammonium quaternaire, choisi parmi les alkyl-éthanol aminés ou les alkyl- aminés éthoxylées, l'hydroxyde de tétraéthylammonium et le tétraméthylammonium. L'agent peptisant peut avantageusement être choisi parmi les bases minérales telles que la soude ou la potasse afin de permettre l'apport d'élément alcalin, en particulier de Na ou de K.

Le solvant de l'étape 2) est avantageusement de l'eau. On peut aussi également incorporer le ou les éléments alcalins par l'intermédiaire de sels dissous du solvant. Le liant peut avantageusement être un mélange de liants dont un seul ou plusieurs contiennent un ou des élément alcalin ( groupe IA).

Lors de l'étape 3 de mise en forme, la pâte malaxée est extrudée au travers d'une filière dont la géométrie va imposer la forme du catalyseur. La teneur en sodium et en potassium est mesurée par Spectrométrie d'émission atomique à torche à plasma après minéralisation du catalyseur par une attaque avec un mélange HCI/HF, puis une mise en solution dans de l'acide chlorhydrique dissous.

EXEMPLES

Exemple 1 (selon l'invention)

Le catalyseur A est préparé par mélange de 70% de poudre de ferrierite commerciale sous forme ammonium présentant un ratio atomique Si/AI de 20 contenant 100ppm de Na et de 21 % d'une source de silice contenant 703ppm de Na, et 9% d'une source de silice contenant 1340 ppm de Na. Les fractions massiques sont calculées par rapport à la masse sèche totale des poudres. Une solution aqueuse de triethylammonium, TEAOH, (2,5% massiques par rapport à la masse sèche des poudres) est ensuite ajoutée afin d'obtenir une pâte par malaxage. Le solide a été extrudé, séché puis calciné.

Exemple 2 (avec soude ajoutée) conforme à l'invention

Le catalyseur B est préparé par mélange de 70% de poudre de ferrierite commerciale sous forme ammonium présentant un ratio atomique Si/AI de 20 contenant 100ppm de Na et de 30% de liant silicique contenant 703ppm de Na, Les fractions sont calculées par rapport à la masse sèche totale des poudres. Une solution aqueuse de soude, NaOH, (0,5% massiques par rapport à la masse sèche des poudres) est ensuite ajoutée afin d'obtenir une pâte par malaxage Le solide a été extrudé, séché puis calciné.

Exemple 3 (ajout de potasse) conforme à l'invention

Le catalyseur C est préparé par mélange de 70% de poudre de ferrierite commerciale sous forme ammonium présentant un ratio atomique Si/AI de 20 contenant 100ppm de Na et de 30% de liant silicique contenant 703ppm de Na. Les fractions sont calculées par rapport à la masse sèche totale des poudres. Une solution aqueuse de potasse KOH (0,5% massique par rapport à la masse sèche des poudres) est ensuite ajoutée afin d'obtenir une pâte par malaxage. Le solide a été extrudé, séché puis calciné. Exemple 4 (conforme à l'invention)

Le catalyseur D est préparé par mélange de 70% de poudre de ferrierite commerciale sous forme ammonium présentant un ratio atomique Si/AI de 20 contenant 100ppm de Na et de 30% de liant silicique contenant 703ppm de Na. Les fractions sont calculées par rapport à la masse sèche totale des poudres. Une solution aqueuse de soude, NaOH, (1 % massique par rapport à la masse sèche des poudres est ensuite ajoutée afin d'obtenir une pâte par malaxage Le solide a été extrudé, séché puis calciné.

Exemple 5 (comparatif) (trop de K, 2% et Na apporté par les deux sources de silice)

Le catalyseur E est préparé par mélange de 70% de poudre de ferrierite commerciale sous forme ammonium présentant un ratio atomique Si/AI de 20, contenant 100ppm de Na et de 21 % de liant silicique contenant 709ppm de Na et de 9% de liant silicique contenant 1340ppm de Na. Les fractions sont calculées par rapport à la masse sèche totale des poudres. Une solution aqueuse de potasse, KOH, (2% massique par rapport à la masse sèche des poudres) est ensuite ajoutée afin d'obtenir une pâte par malaxage. Le solide a été extrudé, séché puis calciné.

Exemple 6 (comparatif)

Le catalyseur F est préparé par comalaxage de 70% de poudre de ferrierite commerciale sous forme ammonium présentant un ratio atomique Si/AI de 20 contenant 100ppm de Na et de 30% de liant silicique contenant 703ppm de Na. Les fractions sont calculées par rapport à la masse sèche totale des poudres. Une solution aqueuse de triethylammonium, TEAOH, (2,5% massiques par rapport à la masse sèche des poudres) est ensuite ajoutée afin d'obtenir une pâte par malaxage. Le solide a été extrudé , séché puis calciné.

Test catalvtique utilisé pour évaluer les performances des catalyseurs des exemples.

L'étape de déshydratation est réalisé sur une unité de test catalytique comprenant un lit fixe fonctionnant en mode « down flow », c'est-à-dire en écoulement descendant. Le catalyseur est chargé sous forme d'extrudés de longueur 2 à 4mm dans un réacteur inox 316L de diamètre interne de 13mm. Le catalyseur est ensuite activé à 450°C sous 6l/h d'air pendant un palier d'une heure, après une montée en température de 10°C/min, la température est ensuite abaissée à la température de test sous 6l/h d'azote afin d'éliminer l'air présent dans le système avant injection de la charge alcool. La charge est un mélange isobutanol/eau monophasique. Elle est vaporisée dans les lignes chauffées à 150-180°C en amont du réacteur puis injectée dans le réacteur catalytique. Les conditions opératoires sont les suivantes : pression de 2 bars (0,2 MPa), température fixe de 300°C, pph (poids de charge par poids de catalyseur par gramme) de 7h ~1 pendant 24h, puis de 20h "1 pendant 48h, puis de nouveau à pph 7h ~1 pendant 24h (point retour).

L'analyse de l'effluent total est effectuée en sortie de réacteur sur un chromatographe en phase gazeuse en ligne équipée de deux colonnes, ce qui permet de déterminer la conversion de l'isobutanol, les sélectivités en différents produits et notamment la fraction de butènes linéaires dans la coupe butènes, fraction que l'on cherche à maximiser, et la sélectivité en oxygénés co-produit, réactions parasites que l'on souhaite minimiser. La mesure de la conversion moyenne atteinte pendant les 24h du point retour est comparée à la conversion moyenne atteinte pendant les 24 premières heures à pph 7h ~1 et permet d'évaluer la perte d'activité au cours du test.

Les catalyseurs A-D contenant une teneur en K ou Na ou K+Na supérieure à 0.030 et inférieure ou égale à 0.600% présentent une fraction en n-butènes dans les butènes totaux substantiellement accrue.