Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHOD OF MANUFACTURE OF POROUS SILICON
Document Type and Number:
WIPO Patent Application WO/2022/104143
Kind Code:
A1
Abstract:
A method for manufacturing porous silicon can include reducing unpurified silica in the presence of a reducing agent to prepare a porous silicon material. A porous silicon material can include primary, secondary, and/or tertiary characteristics that can include and/or cooperatively form pores.

Inventors:
IONESCU ROBERT C (US)
LIU CHUEH (US)
Application Number:
PCT/US2021/059248
Publication Date:
May 19, 2022
Filing Date:
November 12, 2021
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
IONOBELL INC (US)
International Classes:
H01M10/052; H01M10/058
Foreign References:
US6060680A2000-05-09
US8012676B22011-09-06
US20120244436A12012-09-27
US20190097222A12019-03-28
US7097939B22006-08-29
US7087346B22006-08-08
Attorney, Agent or Firm:
LIN, Diana (US)
Download PDF:
Claims:
CLAIMS

We Claim:

1. A method for manufacturing battery anode material, comprising:

• exposing fumed silica to a salt to form a mixture of the fumed silica and the salt;

• exposing the mixture of fumed silica and the salt to a reducing agent; and

• reducing the fumed silica to silicon by heating the fumed silica, salt, and reducing agent to a reducing temperature of the mixture, wherein the silicon comprises a porosity between 30 and 99%.

2. The method of Claim 1, wherein mixing the fumed silica with the salt comprises:

• dissolving the salt in a solvent; and

• evaporating the solvent to coat the fumed silica with the salt.

3. The method of Claim 2, wherein the salt comprises sodium chloride.

4. The method of Claim 1, further comprising removing a byproduct of the reduction by washing the silicon using an acidic solution.

5. The method of Claim 1, further comprising coating the silicon with an electrically conductive coating.

6. The method of Claim 5, wherein the electrically conductive coating comprises amorphous carbon.

7. The method of Claim 1, further comprising milling the mixture of the fumed silica and the salt before exposing the mixture to a reducing agent.

8. The method of Claim 1, wherein the reducing agent comprises magnesium.

9. The method of Claim 1, further comprising purifying the fumed silica before mixing the fumed silica with the salt.

10. A method comprising reducing unpurified silica in the presence of a metal reducing agent to prepare a porous silicon material comprising an interconnected network of silicon nanoparticles, wherein a size of the silicon nanoparticles is between about 2 nanometers (nm) and 500 nm.

11. The method of Claim 10, further comprising exposing the unpurified silica to a salt before reducing the unpurified silica.

59 of 67

12. The method of Claim 11, wherein the salt coats the unpurified silica.

13. The method of Claim 10, wherein the silicon nanoparticles comprise a substantially uniform particle size distribution.

14. The method of Claim 10, further comprising coating the silicon material with a carbonaceous material.

15. The method of Claim 14, wherein the silicon material is coated using chemical vapor deposition.

16. The method of Claim 14, wherein a carbon loading within the porous silicon material is between about 1 and 80%.

17. The method of Claim 14, wherein the carbonaceous material coats clusters of nanoparticles without coating individual nanoparticles.

18. The method of Claim 14, wherein the coating the silicon material comprises controlling a carbon source addition to maintain a target carbon to silicon ratio.

19. The method of Claim 10 wherein the unpurified silica comprises at most about 94% silicon oxide.

20. The method of Claim 10, wherein reducing the unpurified silica comprises heating the unpurified silica to between 600 and iooo°C.

21. The method of Claim 20, further comprising heating the unpurified silica to an initial temperature of between 3OO-5OO°C for between about 1-6 hours before heating the unpurified silica to between 600 and iooo°C.

22. The method of Claim 10, wherein the porous silicon material comprises substantially the same structure as the unpurified silica.

23. The method of Claim 10, wherein the porous silicon material comprises a surface area that is between 50 and 1500 m2/g.

24. A silicon material comprising:

• a primary structure comprising silicon nanoparticles with primary sizes between about 2 nanometers (nm) and about 150 nm;

• a secondary structure comprising clusters of the silicon nanoparticles, the clusters having a cluster size between about 100 and 1000 nm; and

6o of 67 • a tertiary structure comprising agglomers of the clusters, the agglomers having an agglomer size between about 2 micrometer (pm) and 50 pm;

• wherein the nanoparticles cooperatively form primary pores within the clusters.

25. The silicon material of Claim 24, wherein the silicon nanoparticles comprise a spheroidal morphology.

26. The silicon material of Claim 24, wherein a size distribution of the silicon nanoparticles is substantially uniform.

27. The silicon material of Claim 24, wherein the silicon nanoparticles form an interconnected network in the clusters.

28. The silicon material of Claim 27, wherein the silicon nanoparticles are sintered together.

29. The silicon material of Claim 24, further comprising a carbonaceous coating comprising at least one of amorphous carbon, polymer, or graphitic carbon.

30. The silicon material of Claim 29, wherein the carbonaceous coating coats at least one of the clusters or the agglomers.

31. The silicon material of Claim 30, wherein the carbonaceous coating is substantially outside the clusters.

32. The silicon material of Claim 24, wherein the silicon nanoparticles are made from fumed silica.

33. The silicon material of Claim 24, wherein a pore size of the primary pores is between 0.5 nm and 200 nm.

34. The silicon material of Claim 24, wherein an internal dimension within the agglomers change and an external dimension of the agglomers remains substantially constant during expansion.

35. A battery anode comprising a porous silicon material, the porous silicon material comprising a porosity between 30 and 99%, an average pore size between 0.5 nanometers (nm) and 200 nm, a surface area between 0.02 and 1500 m2/g, a percent oxygen content by mass between about 3% and 37%, and an external volume expansion that is at most 15%.

61 of 67

36. The battery anode of Claim 35, wherein the porous silicon material further comprises silicon nanoparticles with a characteristic size between about 2 nm and 150 nm.

37. The battery anode of Claim 36, wherein the silicon nanoparticles are spheroidal.

38. The battery anode of Claim 36, wherein the silicon nanoparticle is manufactured from fumed silica.

39. The battery anode of Claim 35, wherein the pores of the porous silicon material comprise a carbon loading between about 1% and 80%.

40. The battery anode of Claim 35, wherein the porous silicon material further comprises a surface coating that remains substantially outside of the pores.

41. The battery anode of Claim 40, wherein the surface coating comprises at least one of carbon, silicon dioxide, and lithium.

42. The battery anode of Claim 35, wherein the porous silicon material expands in response to loading with lithium.

43. The battery anode of Claim 35, wherein the porous silicon material further comprises a substantially isotropic tortuosity.

44. A porous silicon material comprising an external volume expansion that is at most 40%.

45. The porous silicon material of Claim 44, further comprising any features or characteristics of Claims 23-43.

46. A silicon material comprising:

• a primary structure comprising silicon nanoparticles; and

• a secondary structure comprising aggregates of the silicon nanoparticles, wherein the aggregates comprise a nonspherical morphology; wherein the silicon nanoparticles cooperatively define pores within the aggregates.

47. The silicon material of Claim 46, wherein the silicon nanoparticles are manufactured from fumed silica.

48. The silicon material of Claim 46, wherein the nonspherical morphology comprises a vermiform morphology.

62 of 67

49. The silicon material of Claim 46, wherein the aggregates comprise an aggregate size between about 300 and 1000 nm.

50. The silicon material of Claim 46, further comprising a tertiary structure comprising agglomerates of the aggregates of the silicon nanoparticles.

51. The silicon material of Claim 50, wherein during expansion, a pore size decreases and an external dimension of the tertiary structure changes by less than 40%.

52. The silicon material of 46, wherein a pore size of the pores is between about 0.2 nm and 500 nm.

53. The silicon material of Claim 46, further comprising a conductive coating.

54. The silicon material of Claim 53, wherein the conductive coating coats the silicon nanoparticles.

55. The silicon material of Claim 53, wherein the conductive coating comprises at least one of: polytetrafluoroethylene, polyvinylidene fluoride, polyacrylic acid, carboxymethyl cellulose, styrene-butadiene rubber, polyacrylonitrile, alginate, polyimide, polyamide, polyaniline, polypyrrole, poly(thiophene), poly(3,4- ethylenedioxythiophene), amorphous carbon, or graphitic carbon.

56. The silicon material of Claim 46, wherein the silicon nanoparticles are interconnected.

57. The silicon material of Claim 46, wherein the silicon nanoparticles comprises a nonspherical morphology.

58. A silicon material comprising porous silicon nanoparticles with a particle size between about 10 and 500 nm, wherein the porous silicon nanoparticles form aggregates with an aggregate size between about 300 nm and 10 pm, wherein the porous silicon nanoparticles cooperatively define pores within the aggregates.

59. The silicon material of Claim 58, wherein the porous silicon nanoparticles are manufactured from silica gel.

60. The silicon material of Claim 58, wherein a pore size of the cooperatively defined pores is between 0.5 and 200 nm.

61. The silicon material of Claim 60, wherein a pore size of the porous silicon nanoparticles is between about 1 nm and 30 nm.

63 of 67

62. The silicon material of Claim 58, wherein an external volume expansion of the aggregates is at most 40 %.

63. The silicon material of Claim 58, further comprising a coating that does not substantially penetrate the cooperatively defined pores.

64. The silicon material of Claim 63, wherein the coating is ionically conductive.

65. The silicon material of Claim 63, wherein a thickness of the coating is between about 1 and 10 nm.

66. The silicon material of Claim 58, wherein the porous silicon nanoparticles are spheroidal.

67. A method comprising reducing a silica gel comprising porous silica nanoparticles with a nanoparticle size between about 10 and 500 nm in the presence of a metal reducing agent to prepare a porous silicon material comprising a network of silicon nanoparticles.

68. The method of Claim 67, further comprising mixing the silica gel with a salt before reducing the silica gel.

69. The method of Claim 68, wherein mixing the silica gel with the salt comprises:

• dissolving the salt in a solvent; and

• evaporating the solvent to coat the silica nanoparticles with the salt.

70. The method of Claim 69, further comprising milling the mixture of the silica gel and the salt before exposing the mixture to a reducing agent.

71. The method of Claim 67, wherein the silicon nanoparticles are porous.

72. The method of Claim 71, wherein a pore distribution of the silicon nanoparticles is substantially the same as a pore distribution of the porous silica nanoparticles.

73. The method of Claim 67, wherein reducing the silica gel comprises heating the silica gel to a reducing temperature between about 600 and iooo°C, wherein the silica gel is maintained at the reducing temperature for between 2 and 10 hours.

74. The method of Claim 73, wherein a ramp rate for heating the silica gel is between 0.1 and 30 °C/min.

75. The method of Claim 74, further comprising heating the silica gel to an intermediate temperature between about 300 and 5OO°C before heating the silica gel to the reducing temperature, wherein the silica gel is maintained at the intermediate temperature for between about 1 and 6 hours.

76. The method of Claim 67, wherein the metal reducing agent comprises at least one of magnesium or aluminium.

77. The method of Claim 67, further comprising removing at least one of salt, magnesium, reduction byproducts, or silica from the porous silicon material.

78. A silicon material comprising:

• a primary structure comprising silicon nanoparticles with primary sizes between about 2 nanometers (nm) and about 150 nm;

• a secondary structure comprising clusters of the silicon nanoparticles, the clusters having a cluster size between about 100 and 1000 nm; and

• a composition of about 1-10% carbon, about 5-10% oxygen, and about 80-94% silicon.

79. The silicon material of Claim 78, wherein the silicon nanoparticles comprise a non-spheroidal morphology.

80. The silicon material of Claim 78, wherein a size distribution of the silicon nanoparticles is substantially uniform.

81. The silicon material of Claim 78, wherein the silicon nanoparticles form an interconnected network in the clusters.

82. The silicon material of Claim 78, wherein the carbon of the composition comprises graphite.

83. The silicon material of Claim 78, further comprising a carbonaceous coating comprising at least one of amorphous carbon, polymer, or graphitic carbon.

84. The silicon material of Claim 83, wherein the carbonaceous coating comprises PAN, wherein the PAN is cyclized.

85. The silicon material of Claim 78, wherein the silicon nanoparticles cooperatively form primary pores within the clusters, wherein a pore size of the primary pores is between 0.5 nm and 200 nm.

86. The silicon material of Claim 78, wherein the silicon nanoparticles are manufactured from silica fumes.

87. The silicon material of Claim 78, wherein the carbon composition is selected based on at least one of a target electrical conductivity or a target ionic conductivity of the silicon material.

88. A battery anode comprising a porous silicon material with a composition of at least 50% silicon and between 1-45% carbon, wherein an external volume expansion of the porous silicon material is at most 40%.

89. The battery anode of Claim 88, wherein the porous silicon material comprises an internal surface area between about 50-1500 m2/g.

90. The battery anode of Claim 89, wherein an external surface area of the porous silicon material is between about 1-50 m2/g.

91. The battery anode of Claim 88, wherein the porous silicon material further comprises at most about 5% oxygen.

92. The battery anode of Claim 91, wherein the silicon nanoparticles are non- spheroidal.

93. The battery anode of Claim 92, wherein the silicon nanoparticles are manufactured from fumed silica.

94. The battery anode of Claim 92, wherein the silicon nanoparticles cooperatively form clusters with a characteristic size between about 100-1000 nm.

95. The battery anode of Claim 88, wherein the porous silicon material comprises a carbonaceous coating.

96. The battery anode of Claim 95, wherein the carbonaceous coating comprises polyacrylonitrile.

97. The battery anode of Claim 95, wherein an elemental composition of the coated porous silicon material depends on a ratio of silicon to oxygen within the porous silicon material.

98. The battery anode of Claim 88, wherein the porous silicon material further comprises a substantially isotropic tortuosity.

99. A method for manufacturing a silicon material as disclosed in Claims 78-98.

66 of 67

Description:
METHOD OF MANUFACTURE OF POROUS SILICON

TECHNICAL FIELD

[0001] This invention relates generally to the silicon field, and more specifically to a new and useful system and method in the silicon field.

BACKGROUND

[0002] Silicon’s (Si) high specific capacity makes it an attractive battery electrode material. However, the large volume expansion and reactivity remain obstacles to developing Si electrodes. Porous silicon may overcome some of the existing challenges with using Si in the electrodes. Thus, there is a need in the silicon field for new and useful system and method. This invention provides such a new and useful system and method.

BRIEF DESCRIPTION OF THE FIGURES

[0003] FIGURE 1 is a schematic representation of the system.

[0004] FIGURE 2 is a schematic representation of the method.

[0005] FIGURES 3A, 3B, and 3C are top down scanning electron micrographs of examples of the silicon material.

[0006] FIGURE 4A is a schematic representation of an example of a silicon material including freestanding particles forming a cluster.

[0007] FIGURE 4B is a schematic representation of an example of a silicon material including interconnected particles forming a cluster.

[0008] FIGURE 4C is a schematic representation of an example of a silicon material including porous particles.

[0009] FIGURE 5 is a schematic representation of an example of a silicon material including clusters coming together to form agglomers.

[0010] FIGURES 6A, 6B, and 6C are schematic representations of examples of coated silicon material where the coating covers the tertiary, secondary, and primary structures respectively. i of 67 [0011] FIGURE 6D is a schematic representation of an example of a silicon material with a silicon oxide coating.

[0012] FIGURES 7A, 7B, and 7C are schematic representations of examples of characteristic size distributions of the silicon material.

[0013] FIGURES 8A and 8B are schematic representations of examples of a method of manufacturing the silicon material.

[0014] FIGURES 9A, 9B, and 9C are schematic representations of examples of coating a silicon material.

[0015] FIGURES 10A and 10B are schematic representations of examples of combining a salt and silica.

[0016] FIGURES 11A and 11B are top down scanning electron micrographs of examples of starting silica material and the resulting silicon material, respectively.

[0017] FIGURES 12A and 12B are top down scanning electron micrographs of examples of starting silica material and the resulting silicon material, respectively.

[0018] FIGURES 13A and 13B are top down scanning electron micrographs of examples of starting silica material and the resulting silicon material, respectively.

[0019] FIGURES 14A and 14B are top down scanning electron micrographs of examples of starting silica material and the resulting silicon material, respectively.

[0020] FIGURES 15A and 15B are top down scanning electron micrographs of examples of silica gel starting materials and resulting silicon materials, respectively.

[0021] FIGURES 16A and 16B are top down scanning electron micrographs of examples of silica gel starting materials and resulting silicon materials, respectively.

[0022] FIGURES 17A-17E are schematic representations of exemplary silicon particles.

[0023] FIGURES 18A-18D are schematic representations of exemplary silicon particles.

[0024] FIGURE 19 is a schematic representation of an example of a coated silicon particle. DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0025] The following description of the preferred embodiments of the invention is not intended to limit the invention to these preferred embodiments, but rather to enable any person skilled in the art to make and use this invention.

1. Overview.

[0026] As shown in FIG. 1, the silicon material 10 can include a primary structural characteristic no and a secondary structural characteristic 120. The silicon material can optionally include a tertiary structural characteristic 130, one or more coatings 140, and/or any suitable components.

[0027] As shown in FIG. 2, a method 20 for manufacturing a silicon material can include reducing the silica to silicon S250. The method of manufacture can optionally include purifying the silica S210, exposing the silica to reaction modifiers S220, purifying the mixture of silica and reaction modifier(s) S230, comminuting the silica S240, purifying the silicon S260, coating the silicon S270, post-processing the silicon S280, and/or any suitable steps.

[0028] In an illustrative example as shown in FIG. 5, the primary structural characteristic can correspond to a plurality of nanoparticles; the secondary structural characteristic can correspond to a plurality of clusters, each cluster including a set of nanoparticles; and the tertiary structural characteristic can correspond to a plurality of agglomers, each agglomer including a set of clusters.

[0029] In a first illustrative example, as shown in FIG. 8B, the method for manufacturing the silicon material can include exposing a silica starting material (e.g., silicon precursor, silica precursor, unpurified silica, purified silica, etc.) such as fumed silica to a reducing agent (e.g., Mg), reducing the silica starting material to silicon, and, optionally, washing the resultant silicon with a wash solution (e.g., an acidic solution, such as HF) to remove one or more reaction byproducts (e.g., MgO, MgSi, etc.). In this illustrative example, the silica is reduced to silicon by heating the silica and Mg to a reducing temperature (e.g., between 3OO-9OO°C). This illustrative example can include coating (and/ or loading) the silicon, for example with a carbonaceous coating such as using CVD, by carbonizing a polymer, and/or otherwise adding a conductive additive to the silicon.

[0030] In a second illustrative example, as shown in FIG. 8A, the method for manufacturing the silicon material can include washing the silica (e.g., using an acidic solution such as HC1; using solvents such as water, isopropyl alcohol, ethanol, etc.; etc.); milling the silica; exposing the silica to salt (e.g., NaCl) and a reducing agent (e.g., Mg); heating the silica, salt, and reducing agent to reduce the silica to silicon; and washing the resulting silicon (e.g., using an acidic solution such as HC1, HF, etc.; using a solvent such as water, IPA, acetone, etc.; etc.). In this illustrative example, the salt and reducing agent can be exposed to the silica at the same time (e.g., contemporaneously), the silica can be exposed to the salt before exposure to the reducing agent, and/ or the silica can be exposed to the reducing agent before the salt. In this illustrative example, the salt can coat the silica and/or the salt can be intermixed with the silica. This illustrative example can include coating the silicon for example using CVD, polymers, and/ or otherwise coating the silicon.

[0031] The silicon material is preferably used as an anode material (e.g., an anode slurry) in a battery (e.g., a Li-ion battery). However, the silicon material can additionally or alternatively be used as an absorbent material (e.g., for oil and oil-based media absorption such as to separate oil from water.), for photovoltaic applications (e.g., as a light absorber, as a charge separator, as a free carrier extractor, etc.), a thermal insulator (e.g., a thermal insulator that is operable under extreme conditions such as high temperatures, high pressures, ionizing environments, low temperatures, low pressures, etc.), for high sensitivity sensors (e.g., high gain, low noise, etc.), radar absorbing material, insulation (e.g., in buildings, windows, thermal loss and solar systems, etc.), for biomedical applications, for pharmaceutical applications (e.g., drug delivery), aerogels (e.g., silicon aerogels), and/ or for any suitable application. For some of these applications, including but not limited to the pharmaceutical applications, the resulting silicon material could be oxidized into silica (e.g., Si0 2 that retains a morphology substantially identical to that of the silicon material) and/ or used as silicon. The silicon can be oxidized, for example, by heating the silicon material (e.g., in an open environment, in an environment with a controlled oxygen content, etc.) to between 200 and iooo°C for 1-24 hours. However, the silicon could be oxidized using an oxidizing agent and/or otherwise be oxidized.

2. Benefits.

[0032] Variations of the technology can confer several benefits and/or advantages.

[0033] First, variants of the technology can be used as an anode in batteries to improve the storage and transport of energy and/ or to decrease the weight of the battery (e.g., with the same or similar properties as compared to a battery that does not include the silicon material). In specific examples, this benefit is enabled by the porous matrix which enables the silicon to expand internally, as opposed to expanding externally. By expanding internally, this silicon material provides the additional benefit of not breaking or damaging the solid electrolyte layer (SEI) layer between the Si anode and the battery. [0034] Second, variants of the technology can enable “green chemistry” approaches to the generation of the silicon materials. In specific examples, the process for manufacturing the silicon material can reuse waste materials (e.g., used silica, used salts, used reducing agents, etc.) thereby reducing the amount of waste used and/ or generated. [0035] Third, variants of the technology can use waste material from other processes, thereby decreasing overall material and manufacturing cost.

[0036] Fourth, variants of the technology can enable large internal surface area (e.g., porous interior, Brunauer-Emmett-Teller (BET) surface area of the internal surfaces that is greater than about 10 m 2 /kg, surface that is not directly exposed to the external environment, configured to achieve a low external silicon expansion such as less than 50% expansion, configured to enable expansion into a void space within the internal volume, etc.) and low external surface area (e.g., surface that is directly exposed to the external environment, BET surface area is less than about 150 m 2 /kg, measured BET for the particle is less than about 150 m 2 /kg, etc.) silicon material. In a specific example, the presence of carbon dopants within silica precursor can lead to local heating effects and/ or local hot spots which can melt and/ or fuse the silicon material which can influence the surface areas (e.g., internal and/ or external), morphology, and/ or other properties of the silicon material and/ or process of forming said material. [0037] Fifth, variants of the technology can include dopants (e.g., carbon dopants) which can impact (e.g., increase, decrease) a conductivity (e.g., electron conductivity, ion conductivity, etc.) of the silicon material.

[0038] Sixth, variants of the technology can include dopants (e.g., carbon dopants) that can modify (e.g., inhibit, promote, etc.) the formation of and/or extent of silicon crystallization (e.g., promote the formation of amorphous silicon, promote the formation of crystalline silicon, etc.).

[0039] Seventh, variants of the technology can increase a stability of the silicon material, which can enable the silicon material to be used for cycling a battery a predetermined number of times (e.g., a greater number of times than would be possible without the inclusion of or presence of dopants). For example, the silicon material can achieve a high cyclability (e.g., ability to charge and discharge between two voltages at least 100, 200, 300, 500, 1000, 2000, 5000, 10000, >10000 times; a capacity retention is substantially constant such as greater than about 70% over a predetermined number of cycles; a coulombic efficiency is substantially constant across cycles; lithium insertion into and lithium extracted from the anode during charging and discharging are substantially equal; etc.) when integrated in a battery (e.g., as an anode thereof). However, the silicon material can enable any suitable cyclability.

[0040] However, variants of the technology can confer any other suitable benefits and/or advantages.

[0041] As used herein, "substantially" or other words of approximation can be within a predetermined error threshold or tolerance of a metric, component, or other reference (e.g., within 0.001%, 0.01%, 0.1%, 1%, 5%, 10%, 20%, 30%, etc. of a reference), or be otherwise interpreted.

3. Silicon material.

[0042] The silicon material 10 can include a primary structural characteristic 110 and a secondary structural characteristic 120. The silicon material can optionally include a tertiary structural characteristic 130, one or more coating 140, and/or any suitable components. The silicon material can be provided as a powder, dust, slurry, colloid, suspension, solution, dispersion, and/or in any suitable form (e.g., in one or more steps of the process).

[0043] The silicon material is preferably characterized by material characteristics. However, the silicon material can additionally or alternatively be characterized by structural characteristics, and/or other properties. The characteristics can be measured (e.g., adsorption measurements, crystallography, etc.), inferred (e.g., based on images such as transmission electron micrograph images, scanning electron micrograph images, etc.), calculated, modelled, and/or otherwise be determined. The characteristics can be inherent properties (e.g., intrinsic properties, a result of the structure, a result of the materials present within the material, result from the process of manufacturing the silicon material, etc.) and/or extrinsic properties. Examples of material characteristics include: porosity, pore size, pore size distribution, surface area, tortuosity, crystallinity, elemental composition, expansion (e.g., internal expansion, external expansion, etc.), mass, volume, conductivity (e.g., electrical conductivity, thermal conductivity, etc.), mechanical properties (e.g., Young’s modulus), morphology (e.g., branching, stacking, etc.), and/or any suitable material characteristics.

[0044] The porosity (e.g., void fraction such as the fraction or percentage of the volume that voids occupy within the material) of the silicon material can function to provide space for the silicon to expand within. The pores are preferably gaps or spaces between primary structural characteristics, but can additionally or alternatively be gaps or spaces between primary and secondary structural characteristics, between secondary structural characteristics, between primary and tertiary structural characteristics, between secondary and tertiary structural characteristics, between tertiary characteristics, within primary structural characteristics, and/or other structural features of the silicon material. The porosity of the silicon material is preferably between about 25 and about 99.99%, such as 30 %, 35 %, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 97.5%, 98%, 99%, 99.5%, 99.9%, be between a range thereof, be less than 25%, be greater than 99.99%, and/or be any suitable porosity. The pore volume of the silicon material is preferably between about 0.01 and 5 cm^g 1 (e.g., 0.02, 0.05, 0.07, 0.1, 0.2, 0.5, 0.7, 1, 2 cmsg 1 , etc.), but can be less than 0.01 cmsg 1 or greater than 5 cmsg 1 . [0045] The pores can be nanopores, mesopores, micropores, and/ or macropores. The pore size of the silicon material is preferably a value and/ or range between about 0.1 nm and about 5 pm, such as 0.2 nm, 0.5 nm, 1 nm, 2 nm, 5 nm, 10 nm, 20 nm, 25 nm, 30 nm, 40 nm, 50 nm, 75 nm, 100 nm, 150 nm, 200 nm, 300 nm, 400 nm, 500 nm, 750 nm, 1 pm, 1.5 pm, 2 pm, 3 pm, 4 pm, and/or 5 pm. However, the pore size can be within a range above or below those values, be less than 1 nm or greater than 1 pm, and/or otherwise sized. The pore size is preferably distributed on a pore size distribution. However, the pore size can additionally or alternatively be substantially uniform (e.g., all pores are within ±1%, ±2%, ±5%, ±10%, ±20%, ±30%, etc. of a common pore size), the pore size can vary throughout the sample (e.g., engineered pore size gradient, accidental pore size variations, etc.), and/or the silicon material can have any suitable pore size.

[0046] The pore size distribution can be monomodal or unimodal, bimodal, polymodal, and/ or have any suitable number of modes. In specific examples, the pore size distribution can be represented by (e.g., approximated as) a gaussian distribution, a Lorentzian distribution, a Voigt distribution, a uniform distribution, a mollified uniform distribution, a triangle distribution, a Weibull distribution, power law distribution, lognormal distribution, log-hyperbolic distribution, skew log-Laplace distribution, asymmetric distribution, skewed distribution, and/or any suitable distribution.

[0047] In some variants, the silicon material can have a plurality of pore sizes and/or pore size distributions. In an illustrative example, the silicon material can include a first pore size distribution that can include pores that are approximately 1 - 100 nm (e.g., corresponding to gaps generated between primary structural characteristics) and a second pore size distribution that can include pores that are approximately 0.1 to 5 pm (e.g., corresponding to gaps generated between secondary structural characteristics). In an illustrative example, the primary structures can cooperatively form pores within the secondary structures. In a variant of the illustrative example, the primary structure can cooperatively form primary pores within the secondary structures and the secondary structures can cooperatively form secondary pores within the tertiary structure. In a second illustrative example, the primary structures can include primary pores and can cooperatively form secondary pores within the secondary particles. However, the silicon material can have any suitable pores and/or pore distribution.

[0048] The pore distribution throughout the silicon material can be: substantially uniform, random, engineered (e.g., form a gradient along one or more axes), or otherwise configured. The distribution of pore sizes throughout the silicon material can be: uniform, random, engineered (e.g., form a gradient along one or more axes), or otherwise configured.

[0049] The surface area (e.g., exposed surface area such as contactable with an external environment, external of the pores, inclusive of the pore area, etc.) is preferably between about 0.01 to 1500 m 2 /g (e.g., 0.1 m 2 /g, 0.5 m 2 /g, 1 m 2 /g, 2 m 2 /g, 3 m 2 /g, 5 m 2 /g, 10 m 2 /g, 15 m 2 /g, 20 m 2 /g, 25 m 2 /g, 30 m 2 /g, 50 m 2 /g, 75 m 2 /g, 100 m 2 /g, no m 2 /g, 125 m 2 /g, 150 m 2 /g, 175 m 2 /g, 200 m 2 /g, 300 m 2 /g, 400 m 2 /g, 500 m 2 /g, 750 m 2 /g, 1000 m 2 /g, 1250 m 2 /g, 1400 m 2 /g, between a range thereof, etc.). However, the surface area can be above or below the values above, or be less than 0.01 m 2 /g and/or greater than 1500 m 2 /g. In some variants, the surface area can refer to a Brunner-Emmett-Teller (BET) surface area. However, any definition, theory, and/or measurement of surface area can be used.

[0050] The tortuosity of the silicon material is preferably substantially isotropic (e.g., the tortuosity is the same to within 1%, 5%, 10%, 20%, 30%, etc. along different directions). However, the tortuosity can be substantially isotropic in a plane (e.g., tortuosity along two reference axes are substantially the same and different about a third reference axis), radially isotropic, anisotropic, and/or have any directionality. The tortuosity can be defined as and/or estimated from: arc-chord ratio, arc-chord ratio divided by a number of inflection points and/ or an integral of square of curvature, divided by a curve length; Euclidean distance sums of the centroids of a pore divided by the length of the pore; and/or otherwise be defined. The tortuosity can depend on the shape (e.g., primary structural characteristics, secondary structural characteristics, tertiary structural characteristics, etc.), porosity, and/or any other properties of the silicon material. The tortuosity (e.g., along one or more reference axes) is preferably greater than 1, such as 2, 3, 4, 5, 7-5, 8, 8.6, 10. However, the tortuosity can be less than 1 or greater than 10. [0051] The silicon material (and/or each primary, secondary, and/or tertiary structural unit thereof) can include amorphous silicon, polycrystalline silicon, and/or monocrystalline silicon. However, the silicon material can have any suitable crystallinity. [0052] The elemental composition of the silicon material is preferably at least 6o% silicon. For example, the elemental composition of the silicon material (e.g., purity percentage) can be 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.9%, 99.99%, and/or 99.999% silicon, a range defined therebetween, more, less, or otherwise related to the aforementioned values. However, the silicon material can have less than 60% silicon or greater than 99.999% silicon. The remainder of the elemental composition can include one or more of: alkali metals (e.g., Li, Na, K, Rb, Cs, Fr), alkaline earth metals (e.g., Be, Mg, Ca, Sr, Ba, Ra), transition metals (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Y, Zr, Nd, Mo, Tc, Ru, Rh, Pd, Ag, Hf, Ta, W, Re, Os, Ir, Pt, Au), post-transition metals (e.g., Al, Ga, In, Tl, Sn, Pb, Bi, Po, At, Zn, Cd, Hg), metalloids (e.g., B, Ge, As, Sb, Te), nonmetals (e.g., H, C, N, P, O, S, Se, F, Cl, Br, I, He, Ne, Ar, Kr, Xe, Rn), lanthanides (e.g., Ce, Pr, d, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu), actinides (e.g., Th, Pa, U, Np, Pu, Am, Cm, Bk, Cf, Es, Fm, Md, No, Lr), and/or any suitable combinations thereof. The remainder can be uniformly or nonuniformly distributed through the silicon material.

[0053] In a first illustrative example, the silicon material can include up to about 40% oxygen (e.g., by mass, by volume, by stoichiometry, etc.) such as between about 3- 37%. In this illustrative example, the oxygen can be incorporated as silicon oxide (SiO x for o<x<2), such as unreacted SiOx, an SiOx coating around a core of Si, and/ or otherwise be incorporated.

[0054] In a second illustrative example, particularly but not exclusively relating to coated silicon materials, the silicon material can include carbon. In the second illustrative example, the carbon to silicon ratio (e.g., stoichiometric ratio, mass ratio, volume ratio, etc.) is preferably approximately 1 to 9. However, the carbon to silicon ratio can be 10:1, 5:1, 2:1, 1:1, 1:2, 1:3, 1:4, 1:5, 1:7, 1:8, 1:9, 1:10, 1:20, 1:50, 1:100, and/or be any suitable ratio. In variants of the second illustrative example, the carbon content can refer to a content of organic material (e.g., polymers). The carbon content can coat the primary structures, the secondary structures, the tertiary structures, fill a portion of the pore volume, remain substantially outside the pores, enter the silicon matrix (e.g., form an alloy or silicon carbide), and/or be otherwise arranged. However, the carbon content can refer to inorganic carbon content and/ or combined organic and inorganic content.

[0055] In a third illustrative example, the silicon materials can include lithium. In the third illustrative example, the lithium to silicon ratio (e.g., stoichiometric ratio, mass ratio, volume ratio, etc.) can be 15:4, 3:1, 2:1, 1:1, 1:2, 1:3, 1:5, 1:10, 1:100, 1:1000, 1:10000, and/or be any ratio.

[0056] In some variants of the invention, specific elements (e.g., chemical elements, impurities) can be added to identify the silicon material, for instance to be used as a means of tracing a manufacturing site, lot number, and/ or to be otherwise used. In these variants, the elements to be added are preferably below an amount that will introduce changes to the material properties or characteristics of the silicon material. However, additionally or alternatively, the identifier element(s) can be added in an amount that will introduce changes to the material properties or characteristics (e.g., change a color of the material, pore shape, primary structure, secondary structure, tertiary structure, refraction, etc.).

[0057] The expansion of the silicon material preferably refers to a volumetric expansion, but can additionally or alternatively refer to a dimensional expansion (e.g., expansion along one or more axes of the silicon material), and/or to any suitable expansion of the silicon material. The volumetric expansion can include inward volumetric expansion (e.g., to fill void space within the material such as to fill pores), external volume expansion (e.g., expanding into an environment proximal the material), combinations thereof, and/ or any suitable volumetric expansion. Examples of expansion include: thermal expansion, swelling (e.g., expansion due to absorption of solvent or electrolyte), atomic or ionic displacement, atomic or ionic intercalation (e.g., metalation, lithiation, sodiation, potassiation, etc.), electrostatic effects (e.g., electrostatic repulsion, electrostatic attraction, etc.), and/or any suitable expansion source. The expansion is preferably less than a critical expansion, because when the expansion (e.g., external ii of 67 expansion) exceeds the critical expansion, the silicon material, a coating thereof, an SEI layer, and/or other system or application component can break or crack.

[0058] The expansion can be a percentage change (e.g., relative to the unexpanded material, relative to maximal or minimal material parameters, etc.), an absolute change (e.g., an absolute volume change, an absolute dimension change, etc.), and/or be otherwise represented. A negative expansion can correspond to contraction of the material while a positive expansion can correspond to expansion of the material. However, negative or positive expansion can be otherwise defined.

[0059] The expansion can correspond to expansion of the primary, secondary, and/or tertiary structural characteristics. The expansion is preferably different for the primary structural characteristics than the secondary and/or tertiary structural characteristics, but can be the same and/ or the structural characteristics can expand in any suitable manner. For example, an internal dimension (or volume) within the clusters or the agglomers can change and an external dimension (or volume) of the clusters or agglomers can remains substantially constant (e.g., between about -40% and 40%) during expansion.

[0060] In a first specific example, the expansion is exclusively internal expansion (e.g., internal volumetric expansion), which can be beneficial, for instance, because then the silicon material produces little to no external force on adjacent materials (e.g., coatings, SEI layers, etc.) during expansion. The expansion can be in the primary structural characteristic, secondary structural characteristic, tertiary structural characteristic, a combination thereof, and/ or other portion of the material. In this specific example, the primary and/or secondary structural characteristics can expand while the tertiary structural characteristics remain substantially constant.

[0061] In a second specific example, the external expansion (e.g., external volumetric expansion) is at most 40% (e.g., at most 0.1%, 0.5%, 1%, 2%, 5%, 10%, 15%, 20%, 25%, 30%, -40%, -30%, -25%, -20%, -15%, -10%, -5%, -2%, -1%, -0.5%, -0.1%, etc., or within a range defined therein), with any other expansion being internal expansion (e.g., internal volumetric expansion). However, the external expansion can be the only expansion that occurs and/ or the external expansion can be any suitable amount. [0062] In some variants, the expansion can be correlated with and/or correspond to a decrease in the porosity, pore size, and/or pore size distribution. These variants can be particularly beneficial as the electrical conductivity of these variants can be increased while the silicon material is expanded. However, the expansion can be uncorrelated and/or negatively correlated with the porosity, pore size, pore size distribution, and/or other material characteristics.

[0063] The primary structural characteristics no of the silicon material preferably refer to the simplest unit (e.g., the simplest unit larger than individual atoms) where more complex structures can be generated and/or built from the primary structural characteristic. However, additionally or alternatively, the primary structural characteristic can refer to the most recognizable feature, the most common feature, the largest feature, the smallest feature, and/or other suitable features of the silicon material. [0064] The primary structural characteristics are preferably nanoparticles 115, but can additionally or alternatively include nanocrystals, mesoparticles, macroparticles, molecular clusters, grain sizes, atoms, and/or any suitable materials. The nanoparticles are preferably spheroidal (e.g., spherical, ellipsoidal, etc.), but can additionally or alternatively include rod; platelet; star; pillar; bar; chain; flower; reef; whisker; fiber; box; polyhedron (e.g., cube, rectangular prism, triangular prism, etc.); have a worm-like morphology; have a foam like morphology; have a morphology as shown for example in FIGs. 11B, 12B, 13B, 14B, 15B, and 16B; and/or other suitable structures. The nanoparticles can be porous or nonporous.

[0065] A characteristic size of the nanoparticles is preferably between about 1 nm to about 500 nm such as 2 nm, 5 nm, 10 nm, 20 nm, 25 nm, 30 nm, 50 nm, 75 nm, 100 nm, 125 nm, 150 nm, 175 nm, 200 nm, 250 nm, 300 nm, 400 nm. However, the characteristic size can additionally or alternatively be less than about 1 nm and/ or greater than about 500 nm. In specific examples, the characteristic size can include the radius, diameter, circumference, longest dimension, shortest dimension, length, width, height, pore size, and/ or any size or dimension of the nanoparticle. The characteristic size of the nanoparticles are preferably distributed on a size distribution. The size distribution is preferably a substantially uniform distribution (e.g., a box distribution, a mollified uniform distribution, as shown for example in FIG. 7A, etc.) such that the number of nanoparticles (or the number density of nanoparticles with) a given characteristic size is approximately constant (e.g., most common characteristic size differs from the lest common characteristic size by less than 5%, 10%, 20%, 30%, etc.). However, the size distribution can additionally or alternatively correspond to a Weibull distribution, normal distribution, log-normal distribution, Lorentzian distribution, Voigt distribution, log- hyperbolic distribution, triangular distribution, log-Laplace distribution, and/or any suitable distribution.

[0066] In a first illustrative example as shown in FIG. 4C, the primary structural characteristic can include porous nanoparticles with characteristic sizes ranging between about 10-500 nm. In a second illustrative example, the primary structural characteristic can include nanoparticles (e.g., porous or nonporous) with characteristic sizes ranging between about 2-150 nm. However, the primary structural characteristic can have any suitable morphology.

[0067] As shown for example in FIGs 4A and 4B, the secondary structural characteristics 120 preferably refer to structures including and/or made of primary structural characteristics. However, the secondary structural characteristics can additionally or alternatively refer to and/or include: a second most common feature (e.g., particle or coating with a characteristic size, material, property, etc.), a feature of a predetermined size range, a second highest frequency of occurrence feature, a second smallest feature, and/or any suitable structures or attributes of the material.

[0068] In a preferred embodiment, the secondary structural characteristics include clusters 125 (sometimes referred to as secondary particles or secondary structures) of primary structural characteristics (e.g., nanoparticles). Primary structural characteristics within a cluster can be reversibly and/or irreversibly linked. The nanoparticles can be free-standing (e.g., as shown in FIG. 4A, freestanding cluster 123 or freestanding spheroids), connected to adjacent primary structural characteristics (e.g., via chemical bonds, by a linking material, via physical bonds, etc.), partially or fully fused together (e.g., annealed together; melted into each other; sintered together; form a foam; interconnected cluster 126, as shown for example in FIGs. 3A, 3B, and 4B; etc.), and/or otherwise be coupled to each other within the cluster. The constituent units of the interconnected network (e.g., the primary structural characteristics) can be: permanently interconnected (e.g., annealed, sintered, covalently bonded, adhered, or otherwise mechanically connected), reversibly interconnected (e.g., bonded by ionic bonds, van der Waals bonds, etc.), adjoining (e.g., without an inter-particle bond), and/or otherwise connected together. In some variants, as shown for example in FIGs. 11A and 11B, the silicon structure can include a mixture free-standing and interconnected (e.g., spongelike) characteristics. However, the silicon structure can include any suitable morphology(s). The primary structural characteristics preferably cooperatively form pores (e.g., empty spaces) within the cluster. However, the nanoparticles can be densely packed (e.g., preventing or minimizing the amount of empty space within clusters) and/ or can be otherwise arranged.

[0069] The cluster size is preferably between about 300-5000 nm (e.g., larger, smaller, or equal to 300 nm, 400 nm, 500 nm, 600 nm, 700 nm, 800 nm, 900 nm, 1 pm, 1.5 pm, 2 pm, 3 pm, 4 pm, 5 pm, or a range defined therein, etc.). However, the cluster size can be less than 300 nm and/or greater than 5000 nm. The cluster size can be the extent of nanoparticles that are irreversibly connected, a correlation size, a cluster dimension (e.g., longest dimension, shortest dimension, etc.), and/or be any suitable size of the cluster. The cluster size is preferably distributed on a cluster size distribution. The cluster size distribution can be a normal distribution, Weibull distribution, log-normal distribution, Lorentzian distribution, Voigt distribution, log-hyperbolic distribution, triangular distribution, log-Laplace distribution, a substantially uniform distribution, and/or be any suitable distribution.

[0070] However, the secondary structural characteristics can include any suitable structures (e.g., depending on the primary structural characteristics).

[0071] As shown for example in FIG. 5, the tertiary structural characteristics preferably refer to structures including and/or made of secondary structural characteristics. However, the tertiary structural characteristics can additionally or alternatively refer to and/or include: a third most common feature, a feature of a predetermined size range, a third highest frequency of occurrence feature, a third smallest feature, structures made of a mix of primary and secondary structural characteristics, structures made of primary structural characteristics, and/ or any suitable structures or attributes of the material.

[0072] In a preferred embodiment, the tertiary structural characteristics 140 include agglomers 135 (sometimes referred to as tertiary particles or tertiary structures, as shown for example in FIG. 3C) of secondary structural characteristics (e.g., clusters) of primary structural characteristics (e.g., nanoparticles). Secondary structural characteristics within an agglomer can be reversibly and/or irreversible linked or connected. The secondary structural characteristics can be free-standing, connected to adjacent clusters (e.g., via chemical bonds, by a linking material, via physical bonds, etc.), partially or fully fused together (e.g., annealed together, melted into each other, sintered together, etc.), and/or otherwise be coupled to each other within the agglomer. The secondary structural characteristics preferably cooperatively form pores (e.g., empty spaces) within the agglomer. However, the secondary structural characteristics can be densely packed (e.g., preventing or minimizing the amount of empty space within agglomers) and/or can be otherwise arranged.

[0073] The agglomer size is preferably between about 1-100 pm (e.g., larger, smaller, or equal to 1 pm, 2 pm, 5 pm, 10 pm, 20 pm, 30 pm, 50 pm, 70 pm, 80 pm, 90 pm, 95 pm, 100 pm, or a range defined therein, etc.). However, the agglomer size can be less than 1 pm and/ or greater than 100 pm. The agglomer size can be the extent of clusters that are irreversibly connected, a correlation size, an agglomer dimension (e.g., longest dimension, shortest dimension, etc.), and/or be any suitable size of the agglomer. The agglomer size is preferably distributed on an agglomer size distribution. The agglomer size distribution can be a normal distribution, Weibull distribution, log-normal distribution, Lorentzian distribution, Voigt distribution, log-hyperbolic distribution, triangular distribution, log-Laplace distribution, a substantially uniform distribution, and/or be any suitable distribution.

[0074] However, the tertiary structural characteristics can include any suitable structures (e.g., depending on the primary structural characteristics, depend on the secondary structural characteristics, etc.). [0075] Although the primary, secondary, and tertiary structural characteristics are described separately, there maybe no distinction between a primary, secondary, and/or tertiary structural characteristic. For example, as shown in FIGs. 7B and 7C, the silicon material can include structures distributed across a probability distribution ranging from nanometers to millimeters. In a second specific example, the material can include a characteristic size spanning many decades of values (e.g., characteristic size ranges from 1 nm to 100 pm). However, the structural characteristics can additionally or alternatively be defined.

[0076] In some embodiments, a surface of the silicon material (e.g., between or on primary, secondary, and/or tertiary structural characteristics) can be partially or fully fused together (e.g., melted, forming a solid coextensive surface, etc.). The surface preferably refers to an external surface (e.g., a surface outside the porous network), but can refer to an internal surface (e.g., within the porous network), a surface coextensive with an internal and external surface, and/ or any suitable surface. The surface can include structures (e.g., islands, solidified pools of silicon or other material(s), amorphous structures, as shown for example in FIG. 12B, etc.), be smooth (e.g., have a surface roughness less than a threshold roughness), be rough (e.g., have a surface roughness exceeding a threshold roughness), and/or have any morphology. The thickness of the fused surface can be a value or range between about 1 nm to 1 pm (e.g., 1 nm, 2 nm, 5 nm, 10 nm, 20 nm, 30 nm, 50 nm, 100 nm, 200 nm, 300 nm, 500 nm, 1000 nm, etc.), less than 1 nm, and/or greater than 1 pm. Under the (fused) surface, the silicon material is preferably porous (e.g., has a structure as described above), but can have any suitable structure.

[0077] The optional additive(s) 140 can function to improve the electrical conductivity of the silicon material, provide mechanical stability for the silicon material (e.g., retain a secondary structural characteristic, retain a tertiary structural characteristic, hinder or prevent expansion of the silicon material, etc.), modify the reaction rate of the material during manufacturing, and/ or otherwise modify properties of the silicon material. The additive(s) can cover the entire exposed surface of the silicon material and/or underlying additives (e.g., be a coating), cover a subset of the exposed surface of the silicon (e.g., specific regions of the silicon material, be porous, perforated, etc.) and/or underlying additives, cover a predetermined extent of the silicon material and/or underlying coatings, fill some or all of the pore volume, enter the silicon lattice (e.g., form an alloy), and/or otherwise be interfaced with the silicon material and/or underlying coatings. In a preferred embodiment, the additive(s) (e.g., coatings) preferably do not enter the pores of the silicon material (e.g., the coatings blanket or coat the higher- level characteristics, such as the secondary and/or tertiary structural characteristics, without coating the lower-level characteristics, such as the primary structural characteristics, as shown for example in FIGs. 6A and 6B, etc.). In a specific example of this embodiment, the additive can coat the secondary particles (e.g., clusters) and/or tertiary particles (e.g., agglomers) without coating primary particles (e.g., nanoparticles). However, the additives can partially enter the pores (e.g., extend into, be anchored and/ or supported at the edges of the pore forming a catenary or catenary like shape into the pore, etc.), conformally coat or interact with the surface of the silicon material (e.g., coat the primary structural characteristics, as shown for example in FIG. 6C, etc.), and/or otherwise be interact with the silicon material. In embodiments where the additive enters the pores (e.g., coats the primary particles), the additive loading (e.g., the extent of internal volume filling) is preferably between about 1% and 80%. For instance, a void volume (e.g., pore volume) can be filled with between about 1% and 80% carbon. However, the additive loading can be less than i % or greater than 80%. The additive(s) can be anchored (e.g., bonded to, adhered to, connected, etc.), not anchored to, integrated in, and/or otherwise be coupled to the silicon material and/or other coatings.

[0078] At least one additive is preferably electrically conductive (e.g., electrical conductivity at least about 10,000 siemens/ meter (S'nr 1 ), resistivity at most about io _ 4 fl m, etc.). However, the additives(s) can additionally or alternatively be semiconducting, electrically insulating, dielectric, and/or have any electrical conductivity.

[0079] The additives(s) preferably conduct and/ or enable Li + diffusion. However, one or more additive can be impenetrable or poorly conduct or enable Li + diffusion.

[0080] In variants where the additives include a coating, the coating thickness is a value or range thereof preferably between about 1- 10 nm such as 1 nm, 2 nm, 2.5 nm, 3 nm, 4 nm, 5 nm, 6 nm, 7 nm, 8 nm, 9 nm. However, the coating thickness can be less than 1 nm or greater than 10 nm. The coating thickness can be substantially the same and/ or vary over the extent of the silicon material. The coating thickness is preferably chosen to allow ions (e.g., Li + ions) and/or other materials (e.g., electrolytes) to penetrate the coating. However, the coating can be impenetrable to ions, can include one or more pores and/or perforations to enable the materials to pass through (e.g., at predetermined locations), and/or electrolyte and/or otherwise be permeable to one or more substances. The coating thickness can depend on the coating material, the material of one or more other coatings, and/ or otherwise depend on the silicon material.

[0081] When the additive is carbonaceous (e.g., a carbon coating), the carbon to silicon material ratio (e.g., the ratio of the coating material to the silicon material inclusive of any carbon that may be present in the silicon material such as in dopants or additives, the ratio of carbon to silicon within the silicon material, the ratio of carbon to other elements within the silicon material, etc. such as mass ratio, stoichiometric ratio, volumetric ratio, ) can be approximately 1:8, 1:7, 1:6, 1:5, 1:4, 1:3, 1:2, 2:1, 3:1, 4:1, 5:1, 6:1, 7:1, 8:1, and/or any other ratio. However, any carbon to silicon ratio can be used. The carbon to silicon ratio (e.g., controlled based on coating thickness, coating uniformity, etc.) can depend on a stabilizing agent concentration (e.g., an oxygen concentration within the silicon material), a target capacity, a dopant concentration, a particle size (e.g., characteristic size), a cluster size, an agglomer size, a surface area (e.g., external surface area, etc.), and/or depend on any suitable property.

[0082] In some embodiments, the coating(s) can include one or more structures such as nanostrucutres, mesostructures, microstructures, and/or macrostructures. The structures can be selected (e.g., engineered) to modify one or more coating and/ or silicon material property such as optical appearance of the silicon material (e.g., reflection, transmission, absorption, and/or scattering of light), a substance diffusion or permeability through the coating, and/or other properties. Examples of structures include pores, grooves, paths, perforations, and/or other structures.

[0083] The additive material is preferably carbonaceous, but can additionally or alternatively include metal (e.g., lithium, magnesium, etc.), oxides (e.g., SiO x ), inorganic polymers (e.g., polysiloxane), metallopolymers, and/or any suitable materials. Examples of carbonaceous materials include: organic molecules, polymers (e.g., polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), polystyrene (PS), polyurethane (PU), polyamide, polyacrylonitrile (PAN), polyacrylamide, polylactic acid, polyethylene terephthalate (PET), phenolic resin, polypyrrole, polyphenylene vinylene, polyacetylenes, polyfluorene, polyphenylene, polypyrene, polyazulene, polynapthalene, polycarbazole, polyindole, polyazepine, polyaniline, polythiophene, polyphenylene sulphide, poly(3,4- ethylenedioxythiophene), recycled polymers, etc.); inorganic carbon (e.g., amorphous carbon, charcoal, diamond, graphite, graphene, nanorods, etc.), and/or any suitable carbonaceous materials. When the additive is carbonaceous, the carbon to silicon ratio can be approximately 1:8, 1:7, 1:6, 1:5, 1:4, 1:3, 1:2, 2:1, 3:1, 4:1, 5:1, 6:1, and/or any other ratio. However, any carbon to silicon ratio can be used.

[0084] In a first illustrative example, the silicon material can be coated with an approximately 1-5 nm thick carbon coating. The carbon coating can coat the secondary and/or tertiary structural characteristics of the silicon material (e.g., with or without coating the primary structural characteristics of the silicon material).

[0085] In second illustrative example as shown in FIG. 6D, a silicon material can include a silicon oxide coating. In this illustrative example, the silicon material can include a silicon core and a silicon oxide shell. In this illustrative example, the shell can be between about 1-5 nm thick. The shell can include a gradient of SiO x (e.g., radial gradient, having a higher oxygen concentration closer to the external environment and a lower oxygen content closer to the center of the material), uniform SiOx, and/or any suitable distribution of SiO x .

[0086] The silicon material is preferably majority silicon (e.g., at least about 50% Si such as 60%, 65%, 70%, 75%, 80%, 90%, 95%, 97.5%, 99%, 99-9%, 85-93%, 50’95%, 80-95%, values or ranges therebetween, etc.). The silicon concentration (e.g., as a percentage) of the silicon material can refer to a mass percent, purity percent, volume percent, stoichiometric ratio (e.g., stoichiometric percent), and/or any suitable percentage. However, the silicon material can be a plurality silicon (e.g., more silicon than any other constituent but not greater than 50% silicon), and/or have any suitable silicon concentration.

[0087] The silicon material (and/or free silicon thereof) can be amorphous, crystalline (e.g., polycrystalline, monocrystalline, pseudocrystalline, etc.), and/or have any suitable structure. In a specific example, the silicon material (or particles thereof) can include regions that are amorphous and crystalline regions. In related examples, the crystallinity can be influenced (e.g., controlled by) the presence (and/or absence) of, the identity of (e.g., type), the concentration of (e.g., local concentration, average concentration, etc.), and/or any suitable property of the dopants, stabilizing agents, impurities, and/or other constituents. As an illustrative example, the inclusion of carbonaceous dopants can lead to regions of and/or a greater degree of amorphous silicon.

[0088] The dopant(s) 200 can function to modify a crystallinity of, modify (e.g., increase, decrease) a conductivity and/or transport (e.g., thermal, electrical, ionic, atomic, etc. conductivity) of, modify (e.g., increase, decrease) a stability (e.g., thermal stability, mechanical stability, etc.) of the silicon material (e.g., by absorbing stress or strain during expansion and/or contraction of the silicon material, etc.), modify (e.g., increase, decrease, etc.) an ability of the silicon material to form an SEI (solid electrolyte interphase) layer (e.g., before and/or during battery operation), modify a quality (e.g., stability, uniformity, tensile stress accommodation, compressive stress accommodation, etc.) of an SEI layer, modify (e.g., enhance, decrease, homogenize, etc.) coating growth on the silicon material, and/or can otherwise modify a property of the silicon material. For example, a dopant (such as carbon, carbonaceous dopant, etc.) can absorb stress, which can help or enable the silicon material (e.g., particles) to stay more intact, accommodate expansion stress (e.g., without substantially breaking an SEI layer, without substantially degrading the particles, etc.), and/or can otherwise influence the silicon material. In another example, a dopant can improve a conductivity and/ or transport (e.g., of an ion, of electricity, etc.) through a silicon material. For instance, the dopant can increase the conductivity and/or transport by less than 0.01%, about 0.01%, about 0.05%, about 0.1%, about 0.5%, about 1%, about 5%, about 10%, about 50%, about 100%, about 500%, values therebetween greater than 500% and/or by any suitable amount relative to undoped silicon material. The amount or extent of impact that the dopants have on properties of the silicon material and/or its applications (e.g., in a battery anode formed from the silicon material) can depend on the dopant distribution, dopant material, dopant concentration, and/or any suitable dopant properties.

[0089] The silicon material preferably includes at most about 45% of dopant (e.g., (e.g., 45%, 40%, 30%, 25%, 20%, 15%, 10%, 5%, 2%, 1%, 0.5%, 0.1%, 2-10%, etc.). However, the silicon material can additionally or alternatively include greater than 45% dopant. The dopant concentration can refer to a total dopant concentration (e.g., for all dopants when more than one dopant is included), a dopant concentration for a particular dopant, and/or any suitable concentration. The dopant concentration can depend on a target conductivity (e.g., a target electrical conductivity, a target ionic conductivity, etc.), a characteristic particle size, a stabilizing agent concentration, a target mechanical property of the silicon material (e.g., a target mechanical compliance, a target resilience to mechanical stress and/or strain during expansion and/or contraction, etc.), a target capacity (which can be estimated by a linear interpolation between the capacity of silicon and the capacity of the dopant), a function of the dopant, and/or any suitable property. The concentration can be a mass concentration, purity, atomic, stoichiometric, volumetric, and/ or any suitable concentration.

[0090] The dopant(s) are preferably crystallogens (also referred to as a Group 14 elements, adamantogens, Group IV elements, etc. such as carbon, germanium, tin, lead, etc.). However, the dopant(s) can additionally or alternatively include: chalcogens (e.g., oxygen, sulfur, selenium, tellurium, etc.), pnictogens (e.g., nitrogen, phosphorous, arsenic, antimony, bismuth, etc.), Group 13 elements (also referred to as Group HI elements such as boron, aluminium, gallium, indium, thallium, etc.), halogens (e.g., fluorine, chlorine, bromine, iodine, etc.), alkali metals (e.g., lithium, sodium, potassium, rubidium, caesium, etc.), alkaline earth metals, transition metals, lanthanides, actinides, and/or any suitable materials.

[0091] The dopants can be interstitial dopants (e.g., occupy interstitial sites), substitutional dopants (e.g., replace an atom within a lattice or other structure), surface dopants (e.g., occupy surface locations), grains, particles (e.g., with a particle size smaller than a particle of the silicon material, fitting within void space between particles, with a characteristic size between about 1 nm to 1 pm, etc.), and/or any suitable dopants. The dopants can additionally or alternatively form regions (e.g., grains, islands, etc.) with particles where the regions can be phase segregated, can form bonds (e.g., chemical bonds such as to form an alloy) with the silicon material, occupy void space within the particle, and/or can otherwise be present in the silicon material. For example, when the dopant is carbonaceous, the carbon can be present as graphite, graphene, nanotubes, nanoribbons, nanodots, graphene oxide, reduced graphene oxide, graphite oxide, polymer, amorphous carbon, diamond, fullerene, and/or have any suitable structure and/or allotrope. Variations of this example where the carbon is present as graphite (and potentially nanocarbon allotropes) can be beneficial for contributing to the capacity of the silicon material and therefore preferably represents at least about 90% of the dopant percentage (e.g., where the remaining 10% can be any form of carbon). For instance, if 1 gram of carbonaceous material were present, at least 0.9 g is preferably graphitic (or other forms of nanocarbon). In other variations, particularly but not exclusively when the carbonaceous material does not contribute to the capacity of the silicon material, the total concentration of the carbonaceous material within the silicon material is preferably less than about 10% (e.g., by mass, by volume, by elemental composition, etc.).

[0092] The dopants can be homogeneously distributed (e.g., as shown for example in FIGs. 17A-17E or 18D) and/or heterogeneously distributed (e.g., as shown for example in FIGs. 18A-18C). Examples of heterogeneous distributions can include: greater dopant concentrations proximal an external surface of the silicon material, great dopant concentrations distal an external surface of the silicon material (e.g., greater concentration within the center or central region of the silicon material), a patterned dopant distribution (e.g., a radial distribution, a an azimuthal distribution, with a distribution that depends on a particle shape and/ or a target particle shape, etc.), islands (e.g., regions of dopant and/or high dopant concentration), and/or any suitable inhomogeneous distribution. In variants, the dopants can be distributed in the same (e.g., collocated with, have a similar distribution profile as, etc.) or different (e.g., have a different distribution profile from) manner as stabilizing agents.

[0093] In a first illustrative example, a particle of the silicon material can include one or more grains (e.g., with a grain size between about 10 nm and 10 pm; with a grain size that depends on a size of the particle, cluster, agglomer, etc.; etc.) that include dopants and one or more grains (e.g., with a grain size between about 10 nm and 10 pm; with a grain size that depends on a size of the particle, cluster, agglomer, etc.; etc.) that are devoid of (e.g., include less than a threshold amount such as less than 1%, 5%, etc. of; have no detectable; etc.) the dopants. In a second illustrative example, a first particle of the silicon material can include dopants and a second particle of the silicon material can be substantially devoid of (e.g., include less than a threshold amount such as less than 1%, 5%, etc. of; have no detectable; etc.) dopants. In a third illustrative example, the dopants can have a greater concentration proximal (e.g., within a threshold distance such as 0.1, 0.5, 1, 2, 5, 10, 20, 50, etc. nanometers of) an exposed (e.g., to an external environment, to an internal void space, etc.) surface of the silicon material than proximal a central region (e.g., a region greater than a threshold distance from the exposed surface) of the silicon material (such as no dopants beyond the threshold distance). In a variation of the third illustrative example, a gradient of dopants can be present, for instance with a decreasing dopant concentration as the distance from an exposed surface of the silicon material increases. In a fourth illustrative example (as shown for example in FIGs. 18A- 18D), any or all of the first through third illustrative examples can be combined. However, the dopant(s) can be distributed in any manner.

[0094] The silicon material can include one or more dopant type (e.g., two dopants, three dopants, four dopants, five dopants, ten dopants, etc.) and/or any suitable dopants. [0095] The dopant(s) can be intentionally added to the silicon material, be incidentally present in the silicon material (e.g., dopants that are present in a silica precursor that remain present in the resulting silicon), and/or can otherwise be introduced or present in the silicon material.

[0096] The stabilizing agent(s) 300 preferably function to increase a stability (e.g., chemical stability to resist chemical wear; mechanical stability to resist mechanical wear; cyclability of the silicon material to expansion/ contraction, charging/ discharging, and/ or other cyclable processes; etc.) of the silicon material. The stabilizing agent(s) can additionally or alternatively modify an electrical (e.g., capacity) or other property of the silicon material, and/or can otherwise function. The stabilizing agent is typically different from the dopant, but can be the same as the dopant.

[0097] The stabilizing agent is preferably oxygen (e.g., forming silicon oxides within the silicon material), but can additionally or alternatively include other chalcogens (e.g., sulfur, selenium, tellurium, polonium, etc.), pnictogens (e.g., nitrogen, phosphorous, arsenic, antimony, bismuth, etc.), and/or any suitable elements and/or molecules (e.g., one or more dopants materials). The stabilizing agent can additionally or alternatively include carbon (e.g., as a carbon coating; such as monolayer graphene, multilayer graphene, graphite, carbon black, amorphous carbon, etc.), germanium, tin, lead, and/or other suitable elements, molecules, and/or materials. Carbon used as a stabilizing agent can be pure carbon and/or can form doped or functionalized species. Examples of doped and/ or functionalized carbon include: oxides of carbon (e.g., graphene oxide, graphite oxide, etc.), organochalcogens (e.g., organochalcogen materials; carbon materials including sulfur, selenium, polonium, etc.; etc.), organopnictogens (e.g., organopnictogen materials; carbon material including nitrogen, phosphorous, arsenic, antimony, bismuth, etc.), and/or other suitable elements and/or molecules (e.g., one or more dopant materials) to form doped and/ or functionalized carbon materials.

[0098] The stabilizing agent can be native (e.g., a native oxide that forms on the silicon material when the silicon material is exposed to an environment that includes oxygen), controlled (e.g., introduced in a predetermined amount and/ or manner), and/ or can otherwise be introduced or present (e.g., present as unreacted silica from the silica precursor, present in the silica precursor, etc.).

[0099] The stabilizing agent concentration (e.g., mass concentration, volume concentration, stoichiometric concentration, etc.) in the silicon material is preferably at most 50% (e.g., 0%, 1%, 2%, 5%, 10%, 20%, 25%, 30%, 40%, 50%, values therebetween, etc.), but can be greater than 50%. The stabilizing agent concentration can refer to a total stabilizing agent concentration (e.g., for all stabilizing agents when more than one stabilizing agent is present), a specific stabilizing agent concentration (e.g., for a particular stabilizing agent), and/or any suitable concentration.

[00100] The stabilizing agents are typically inhomogeneously distributed within the silicon material, but can be homogeneously distributed and/ or distributed in any manner. In a first illustrative example, a particle of the silicon material can include one or more grains (e.g., with a grain size between about 10 nm and 10 pm; with a grain size that depends on a size of the particle, cluster, agglomer, etc.; etc.) that include stabilizing agent and one or more grains (e.g., with a grain size between about 10 nm and 10 pm; with a grain size that depends on a size of the particle, cluster, agglomer, etc.; etc.) that are devoid of (e.g., include less than a threshold amount such as less than 1%, 5%, etc. of; have no detectable; etc.) the stabilizing agent. In a second illustrative example, a first particle of the silicon material can include stabilizing agent and a second particle of the silicon material can be substantially devoid of (e.g., include less than a threshold amount such as less than 1%, 5%, etc. of; have no detectable; etc.) stabilizing agent. In a third illustrative example, the stabilizing agent can have a greater concentration proximal (e.g., within a threshold distance such as 0.1, 0.5, 1, 2, 5, 10, 20, 50, etc. nanometers of) an exposed (e.g., to an external environment, to an internal void space, etc.) surface of the silicon material than proximal a central region (e.g., a region greater than a threshold distance from the exposed surface) of the silicon material. In a variation of the third illustrative example, a gradient of stabilizing agent can be present, for instance with a decreasing stabilizing agent concentration as the distance from an exposed surface of the silicon material increases. In a fourth illustrative example (as shown for example in FIGs. 18A-18D), any or all of the first through third illustrative examples can be combined. However, the stabilizing agent can be distributed in any manner.

[00101] The distribution of the stabilizing agents can depend on and/or be independent of the dopant distribution. For example, regions of high dopant concentration (e.g., local dopant concentration) can have high stabilizing concentration. In another example, the dopants can be uniformly distributed through a particle and stabilizing agents can be concentrated in grains, near a surface (e.g., a surface proximal an external environment, exposed surface, etc.), and/or can otherwise be distributed. [00102] An external expansion (e.g., volumetric expansion, areal expansion, linear expansion along one more directions, etc. such as resulting from lithiation, thermal expansion, metalation, etc.) of the silicon material (and/or particles thereof) is preferably less than about 50% (e.g., compression such as a negative expansion, 0%, 5%, 10%, 20%, 30%, 40%, 50%, values or ranges therebetween, etc.), but can be greater than 50%. The external expansion can be achieved, for instance, by enabling internal expansion (e.g., an internal void space) within the silicon material where the silicon material can expand internally (e.g., before, in addition to, in the alternative to, etc. expanding externally such as into an external environment proximal the silicon material). However, the external expansion can otherwise be achieved (e.g., by modifying a lattice constant, density, or other properties of the silicon material, by accommodating stress such as using a dopant or dopant particles to accommodate expansion stress, etc.). In some variants, a greater external expansion can be accommodated. For example, the presence of dopants within a particle can enable a larger external expansion to be accommodated.

[00103] The surface area of the exterior surface of the silicon material (e.g., an exterior surface of the particles, an exterior surface of a cluster of particles, an exterior surface of an agglomer of particles and/or clusters, etc.) is preferably small (e.g., less than about 0.01, 0.5 m 2 /g, 1 m 2 /g, 2 m 2 /g, 3 m 2 /g, 5 m 2 /g, 10 m 2 /g, 15 m 2 /g, 20 m 2 /g, 25 m 2 /g, 30 m 2 /g, 50 m 2 /g, values or between a range thereof), but can be large (e.g., greater than 10 m 2 /g, 15 m 2 /g, 20 m 2 /g, 25 m 2 /g, 30 m 2 /g, 50 m 2 /g, 75 m 2 /g, 100 m 2 /g, no m 2 /g, 125 m 2 /g, 150 m 2 /g, 175 m 2 /g, 200 m 2 /g, 300 m 2 /g, 400 m 2 /g, 500 m 2 /g, 750 m 2 /g, 1000 m 2 /g, 1250 m 2 /g, 1400 m 2 /g, ranges or values therebetween, >1400 m 2 /g) and/or any suitable value.

[00104] The surface area of the interior of the silicon material (e.g., a surface exposed to an internal environment that is separated from with an external environment by the exterior surface, a surface exposed to an internal environment that is in fluid communication with an external environment across the exterior surface, interior surface, etc. such as within a particle, cooperatively defined between particles, between clusters of particles, between agglomers, etc.) is preferably large (e.g., greater than 10 m 2 /g, 15 m 2 /g, 20 m 2 /g, 25 m 2 /g, 30 m 2 /g, 50 m 2 /g, 75 m 2 /g, 100 m 2 /g, no m 2 /g, 125 m 2 /g, 150 m 2 /g, 175 m 2 /g, 200 m 2 /g, 300 m 2 /g, 400 m 2 /g, 500 m 2 /g, 750 m 2 /g, 1000 m 2 /g, 1250 m 2 /g, 1400 m 2 /g, ranges or values therebetween, >1400 m 2 /g), but can be small (e.g., less than about 0.01, 0.5 m 2 /g, 1 m 2 /g, 2 m 2 /g, 3 m 2 /g, 5 m 2 /g, 10 m 2 /g, 15 m 2 /g, 20 m 2 /g, 25 m 2 /g, 30 m 2 /g, 50 m 2 /g, values or between a range thereof). However, the surface area of the interior can be above or below the values above, and/or be any suitable value.

[00105] The shape of the particles can additionally or alternatively be spheroidal (e.g., spherical, ellipsoidal, as shown for example in FIG. 17A or 17C, etc.); rod; platelet; star; pillar; bar; chain; flower; reef; whisker; fiber; box; polyhedron (e.g., cube, rectangular prism, triangular prism, as shown for example in FIG. 17E, etc.); have a worm-like morphology (as shown for example in FIG. 17B, vermiform, etc.); have a foam like morphology; have an egg-shell morphology; have a shard-like morphology (e.g., as shown for example in FIG. 17D); and/or have any suitable morphology.

[00106] The particles 100 can be nanoparticles, microparticles, mesoparticles, macroparticles, and/or any suitable particles. The particles can be discrete and/or connected. In variations, the particles can form clusters, aggregates, agglomers, and/or any suitable structures (e.g., higher order structures). A characteristic size of the particles is preferably between about 1 nm to about 2000 nm such as 2 nm, 5 nm, 10 nm, 20 nm, 25 nm, 30 nm, 50 nm, 75 nm, 100 nm, 125 nm, 150 nm, 175 nm, 200 nm, 250 nm, 300 nm, 400 nm, 500 nm, 1000 nm, or 1500 nm. However, the characteristic size can additionally or alternatively be less than about 1 nm and/or greater than about 2000 nm. In specific examples, the characteristic size can include the radius, diameter, circumference, longest dimension, shortest dimension, length, width, height, pore size, a shell thickness, and/or any size or dimension of the particle. The characteristic size of the particles is preferably distributed on a size distribution. The size distribution can be a substantially uniform distribution (e.g., a box distribution, a mollified uniform distribution, etc. such that the number of particles or the number density of particles with a given characteristic size is approximately constant), a Weibull distribution, a normal distribution, a log-normal distribution, a Lorentzian distribution, a Voigt distribution, a log-hyperbolic distribution, a triangular distribution, a log-Laplace distribution, and/ or any suitable distribution.

[00107] The particles can be freestanding, clustered, aggregated, agglomerated, interconnected, and/or have any suitable relation or connection(s). For example, the particles (e.g., primary structures) can cooperatively form secondary structures (e.g., clusters) which can cooperatively form tertiary structures (e.g., agglomers). A characteristic size (e.g., radius, diameter, smallest dimension, largest dimension, circumference, longitudinal extent, lateral extent, height, etc.) of the primary structures can be between about 2-150 nm. A characteristic size of the secondary structures can be 100 nm - 2pm. A characteristic size of the tertiary structures can be between about 1 pm and 10 pm. However, the primary, secondary, and/ or tertiary structures can have any suitable extent.

[00108] The particles can additionally or alternatively be solid, hollow, porous, as shown for example in FIGs. 17A-17E, and/or have any structure. In some embodiments, particles can cooperatively form pores (e.g., an open internal volume, void space, etc.) within a cluster. For example, the pores can result from void space that remains after particle packing, because of imperfect packing efficiency (e.g., packing efficiency that is less than an optimal packing efficiency), because of a characteristic size distribution of the particles (e.g., distribution shape, distribution size, etc.), and/or can otherwise result. In a related example, a silicon material can include porous particles and the porous particles can cooperatively form pores. The pore distribution within the particles can be substantially the same as and/or different from (e.g., different sizes, different size distribution, different shape, etc.) the pores cooperatively defined between particles. The pore distribution (e.g., within a porous particle, cooperatively defined between pores, etc.) can have pore size (e.g., average size, mean size, etc.) between about 0.1 nm and about 5 pm, such as 0.2 nm, 0.5 nm, 1 nm, 2 nm, 5 nm, 10 nm, 20 nm, 25 nm, 30 nm, 40 nm, 50 nm, 75 nm, 100 nm, 150 nm, 200 nm, 300 nm, 400 nm, 500 nm, 750 nm, 1 pm, 1.5 pm, 2 pm, 3 pm, 4 pm, and/or 5 pm. However, the pore size can be less than 0.1 nm and/or greater than 5 pm. The pore size distribution can be monomodal or unimodal, bimodal, polymodal, and/ or have any suitable number of modes. In specific examples, the pore size distribution can be represented by (e.g., approximated as) a gaussian distribution, a Lorentzian distribution, a Voigt distribution, a uniform distribution (e.g., all pores are within ±1%, ±2%, ±5%, ±io%, ±20%, ±30%, etc. of a common pore size), a mollified uniform distribution, a triangle distribution, a Weibull distribution, power law distribution, log-normal distribution, log-hyperbolic distribution, skew log-Laplace distribution, asymmetric distribution, skewed distribution, and/or any suitable distribution. However, the pores can be described by any suitable distribution.

[00109] Each particle can be the same (e.g., identical properties, properties that are lie on a common property distribution, etc.) and/ or different (e.g., include a first plurality of particles defined by a first property distribution and a second plurality of particles defined by a second property distribution where the first and second distributions can be different such as different characteristic values) from other particles. Exemplary property distributions include: size distribution (e.g., characteristic size, average size, etc.), morphologies (e.g., shapes), composition (e.g., percentage of silicon, dopant, stabilizing agent, etc.), surface area, external expansion, and/or any suitable properties.

[00110] The silicon material can optionally include a coating 400, which can function to modify (e.g., tune, improve, change, decrease, etc.) a physical, chemical, electrical, and/or other properties of the silicon material. The coating is preferably disposed on the external surface of the silicon material, but can additionally or alternatively be formed on an internal surface of the silicon material. The coating is preferably homogeneous (e.g., substantially uniform surface coverage; substantially uniform thickness such as varies by at most 1%, 2%, 5%, 10%, 20%, etc. across the silicon material; as shown for example in FIG. 19; etc.), but can be inhomogeneous (e.g., patterned, on a given particle, between particles, on a given cluster, between clusters, on an agglomer, between different agglomers, etc.).

[00111] In some variations, dopants of the silicon material can lead to (e.g., promote) a more homogeneous coating. In an illustrative example, carbon dopants (particularly dopants near the particle surface) can act as coating growth sites (where the coating growth can then propagate from the growth sites). In another illustrative example, an inhomogeneous dopant distribution can lead to an inhomogeneous coating (e.g., where the coating can be partially matched to the dopant distribution). In another illustrative example, carbon dopants can diffuse to (e.g., proximal to, within a threshold distance of, etc.) a surface of the silicon material, which can promote a conformal carbon coating (e.g., with graphene, graphite, amorphous carbon, etc.).

[00112] The coating thickness is preferably a value or range thereof preferably between about 0.3- 10 nm such as 0.3 nm, 0.345 nm, 0.7 nm, 1 nm, 2 nm, 2.5 nm, 3 nm, 4 nm, 5 nm, 6 nm, 7 nm, 8 nm, 9 nm, 10 nm, and/ or values therebetween. However, the coating thickness can be less than 1 nm or greater than 10 nm. The coating thickness can be substantially the same and/or vary over the extent of the silicon material. The coating thickness can be chosen to allow ions (e.g., Li + ions) and/or other materials (e.g., electrolytes) to penetrate the coating, to be impenetrable to ions, can include one or more pores and/or perforations to enable the materials to pass through (e.g., at predetermined locations), and/or electrolyte and/or otherwise be permeable to one or more substances. The coating thickness can depend on the coating material, the silicon material (e.g., the dopant concentration, the stabilizing material concentration, the dopant material, the stabilizing agent material, thickness of a stabilizing agent layer or layer that includes stabilizing agent, etc.), a target anode property of the silicon material (e.g., capacity), a target application of the silicon material, and/ or otherwise depend on the silicon material. [00113] The coating material is preferably carbonaceous, but can additionally or alternatively include metal (e.g., lithium, sodium, magnesium, etc.), oxides (e.g., SiO x ), inorganic polymers (e.g., polysiloxane), metallopolymers, and/ or any suitable materials. Examples of carbonaceous materials include: organic molecules, polymers (e.g., polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), polystyrene (PS), polyurethane (PU), polyamide, polyacrylonitrile (PAN), polyacrylamide, polylactic acid, polyethylene terephthalate (PET), phenolic resin, polypyrrole, polyphenylene vinylene, polyacetylenes, polyfluorene, polyphenylene, polypyrene, polyazulene, polynapthalene, polycarbazole, polyindole, polyazepine, polyaniline, polythiophene, polyphenylene sulphide, poly(3,4-ethylenedioxythiophene), recycled polymers, etc.); inorganic carbon (e.g., amorphous carbon, charcoal, diamond, graphite, graphene, nanorods, etc.), and/or any suitable carbonaceous materials. [00114] The coating material can optionally be cyclized (e.g., crosslinked) which can function to improve a stability of the coating, form a carbon fiber, and/or can otherwise function. For example, when the coating material includes PAN, the PAN can be cyclized (e.g., thermally cyclized such as at a temperature between about ioo°C-5OO°C for a duration between about 0.5 hr and 24 hrs). However, any suitable coating material can be cyclized.

[00115] In some embodiments, the silicon material can have a structure (particularly but not exclusively an interior structure) that is substantially the same as that described for a silicon material disclosed in US Patent Application number 17/322,487 titled ‘POROUS SILICON AND METHOD OF MANUFACTURE’ and filed 17- MAY-2021, which is incorporated in its entirety by this reference. However, the silicon material can have any suitable structure.

[00116] In an illustrative example, a particle can include a majority of silicon (e.g., at least 50% Si by mass, by volume, by stoichiometry, by number of atoms, etc.), a carbon dopant (e.g., where the particle can have a carbon concentration between about 0% and 45% by mass, by volume, by stoichiometry, by number of atoms, etc.), and oxygen stabilizing agent (e.g., where the particle can have a stabilizing agent concentration between about 5% and 50% by mass, by volume, by stoichiometry, by number of atoms, etc.). However, the particle can include any suitable constituents (e.g., impurities, additional or alternative dopants, etc.) in any suitable concentration, and can serve any suitable purpose (e.g., a stabilizing agent can function as an additive such as to stabilize a particle or dispersion; function to modify a mechanical, electrical, or other property of the particle; etc.).

[00117] In a second illustrative example, the silicon material can be or include porous carbon infused silicon, porous carbon decorated silicon structure, porous silicon carbon hybrid, a porous silicon carbon alloy, a porous silicon carbon composite, silicon carbon alloy, silicon carbon composite, carbon decorated silicon structure, carbon infused silicon, carborundum, silicon carbide, and/ or any suitable allotrope or mixture of silicon, carbon, and/or oxygen. For instance, the elemental composition of the silicon material can include SiOC, SiC, Si x O x C, Si x O x C y , SiO x C y , Si x C y , SiO x , Si x O y , SiO 2 C, SiO 2 C x , SiOCZ, SiCZ, SixOyCZ, SixOxCxZx, Si x C x Zy, SiO x Zx, Si x O x Zy, SiO 2 CZ, SiO 2 C x Z y , and/or have any suitable composition (e.g., include additional element(s)), where Z can refer to any suitable element of the periodic table and x and/ or y can be the same or different and can each be between about 0.001 and 2 (e.g., 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 2, 0.001 - 0.05, 0.01-0.5, 0.01-0.1, 0.001-0.01, 0.005-0.1, 0.5-1, 1-2, values or ranges therebetween etc.), less than 0.001, or greater than 2.

4. Method.

[00118] A method 20 for manufacturing a silicon material can include reducing the silica to silicon S250. The method of manufacture can optionally include purifying the silica S210, exposing the silica to reaction modifiers S220, purifying the mixture of silica and reaction modifier(s) S230, comminuting the silica S240, purifying the silicon S260, coating the silicon S270, and/or any suitable steps. The method of manufacture preferably functions to manufacture a porous silicon material (e.g., a spongey silicon material) such as the silicon material described above. However, the method of manufacture can be used to generate any suitable material.

[00119] The method of manufacture preferably uses impure silica (e.g., silica with an Si0 2 content less than about 99%) as the starting material. However, the method of manufacture can use purified silica (e.g., silica with an Si0 2 content greater than about 99%) and/or any suitable silicon oxide starting material. The starting material is preferably a waste material leftover from a different process. However, the starting material can be mined, pre-processed silica, recycled silica, acquired silica, and/ or any suitable starting material. The silica starting material can be provided as a powder, dust, slurry, colloid, suspension, solution, dispersion, and/ or in any suitable form (e.g., in one or more steps of the process). Examples of starting materials include: fumed silica, cab- o-sil® fumed silica, silica dispersions (e.g., fumed silica dispersed in a solvent such as water; cab-o-sperse® fumed silica; etc.), aerosil® fumed silica, sipernat® silica, silica fumes, precipitated silica, silica gels, XYSIL® fumed silica, Orisil fumed silica, Konasil® fumed silica, Reolosil® fumed silica, Zandosil fumed silica, pyrogenic silica, silica aerogels, decomposed silica gels, silica beads, silica sand, fiberglass, and/ or any suitable silica source. [00120] The silica starting material preferably includes (e.g., is received with) nanoparticles. However, the silica starting material can be converted into nanoparticles, include mesoparticles, microparticles, macroparticles, and/ or have any morphology. A feature size (e.g., characteristic size) of the silica starting material is preferably between i and 500 nm, but can be less than 1 nm or greater than 500 nm. The method of manufacture preferably converts the silica (e.g., silica nanoparticles) into silicon (e.g., silicon nanoparticles). The conversion from silica to silicon can substantially preserve the structure of the original starting material (e.g., a silicon material characteristic, such as the primary structural characteristics, can have substantially the same shape, size, and/ or interconnectivity as the silica starting material) and/ or can change the structure of the original starting material (e.g., the silicon nanoparticles can be fused whereas the initial silica nanoparticles can be free standing). However, the conversion can otherwise convert the silica to silicon (e.g., the silica structure can evaporate, dissolve, and/or otherwise disintegrate and reform into a silicon structure).

[00121] The particles of silica starting material are preferably between about 1 nm and 10 pm, but can include particles that are smaller than 1 nm or larger than 10 pm. The size distribution of the silica particles can be any size distribution as described for the primary characteristic size distribution of the silicon above and/ or any size distribution. The particles can be spheroidal (e.g., spherical, ellipsoidal, etc.), irregular, plates, wormlike, sponge-like, foam-like, interconnected spheroids, have a shape as described for the silicon particles, have a morphology as shown for example in FIGs 11A, 12A, 13A, 14A, 15A, and 16A, and/or have any shape. In some variants, silica particles having different morphologies can be combined (e.g., mixed) together to provide a hybrid or combined structure (as shown for example in FIGs. 11A and 11B) in either the silica starting material or the resulting silicon.

[00122] In variants, the silica particles can be aggregated into clusters, agglomers, secondary particles, and/ or tertiary particles. The silica aggregates can have an aggregate size between about 20 nm and 100 pm, but the aggregate size can be less than 20 nm or greater than 100 pm. The aggregate size distribution can be a size distribution as described above for the secondary and/ or tertiary structural characteristics and/ or have any aggregate size distribution. When the silica particles are aggregated into aggregates larger than a predetermined size, the method can optionally include comminuting the aggregates (e.g., using the methods described in S240) to generate smaller starting material.

[00123] The purity of the starting silica is preferably between about 80% to 95 % silica and/or silicon oxide (e.g., more than, less than, or equal to 80%, 82%, 85%, 87%, 90%, 92%, 94%, 95%, or range therebetween, etc.). However, the purity of the starting silica can be less than 80% and/or greater than 95%. The remainder of the starting material can include alkali metals, alkaline earth metals, transition metals, posttransition metals, metalloids, lanthanides, actinides, nonmetals, combinations thereof, and/or any suitable impurities. Specific examples of impurities (e.g., the remainder) can include: oxides (e.g., sulfur oxides such as SO, S0 2 , SO 3 , S 7 O 2 , S6O 2 , S 2 0 2 , etc.; sodium oxide; potassium oxide; aluminium oxide; iron oxides such as FeO, Fe 3 O 4 , Fe 2 O 3 , etc.; magnesium oxide; water; nitrogen oxides such as NO, N0 2 , NO 3 , N 2 O, N 2 0 2 , N 2 O 3 , N 2 O 4 , N 2 O 5 , etc.; etc.), chlorides (e.g., sodium chloride, potassium chloride, chlorine, etc.), carbonaceous material (e.g., organic carbon, inorganic carbon, amorphous carbon, etc.), silicon, and/or other impurities. The purity level of the silica starting material can affect the resultant silicon product (e.g., a feature size such as a primary, secondary, and/ or tertiary characteristic size; morphology; etc.). For example, the melting point of the starting material can depend on an impurity type (e.g., specific elements) and/or amount. In an illustrative example, the melting points (eutectic points) of a Mg-Si alloy is 637 °C when the silicon atomic percent is 1.45% and is 946.5°C when the silicon atomic percent is 54.12%. When one or more impurities are incorporated in the starting material, various eutectic points can further decrease (or increase) the melting points of the starting material (e.g., spatially or locally varying melting points such based on an alloy spatial distribution; modify the melting point of the entire starting material; etc.). Accordingly, in some variants, one or more impurities could be introduced (and/or not removed) to control (e.g., lower, increase) the processing temperature, control (e.g., decrease or increase) the processing time, modify the porous structure, and/ or otherwise impact the resulting silicon. [00124] The silica starting materials can have a low surface area (e.g., less than about i, 2, 5, io, 25, 50 n^g 1 , etc.) or a high surface area (e.g., greater than about 25, 30, 50, 75, 100, 150, 200, 500, 750, 1000, 1500, 2000 m 2 g - 1 , etc.). In some variants, starting material with low surface area can provide the benefit of requiring less stringent control over processing parameters (e.g., temperature, pressure, etc.). In some variants, starting materials with high surface area can provide the benefit of a finished material with greater surface area. In variants, starting materials with a high surface area can produce better processed materials by tight control over processing parameters (e.g., temperature, temperature gradient, pressure, reaction completion, reaction vessel design, degree of mixing of materials, etc.). However, the finished material can have suitable properties with any processing parameters.

[00125] A porosity of the silica starting material is preferably between about 5% and 90%, but can be less than 5% or greater than 90%. The porosity can depend on the silica morphology (e.g., particle size, characteristic size, shape, etc.), silica source, impurities in the silica, and/or any suitable properties. A pore volume of the silica starting material is preferably between about 0.02 and 2 cm'^g’ 1 , but can be less than 0.02 cm'^g- 1 or greater than 2 cmsg- 1 . The pore size of the silica starting material is preferably between about 0.5 and 200 nm, but the pore size can be smaller than 0.5 nm or greater than 200 nm. The pore size distribution can be similar to and/or the same as described for the silicon material above and/ or any suitable pore size distribution.

[00126] A tap density of the silica starting material is preferably between about 0.01 and 5 g cm-3 (e.g., 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, g cm 3 etc.), but the tap density can be less than 0.01 g cm~3 O r greater than 5 g cm 3.

[00127] The method can be performed as a batch process, continuous process, roll- to-roll process, barrel process, bench scale, and/or at any suitable scale and/ or processing methodology. The method is preferably performed in a reaction vessel (e.g., a container that separates the reaction occurring inside from an external environment proximal the reaction vessel; a container that maintains substantially uniform reaction conditions such as temperature, pressure, reagent concentrations, etc. within the container; etc.). However, the method can be performed exposed to atmosphere and/or in any suitable container. The reaction vessel is preferably, but does not have to be, configured to enable heat dissipation during the reaction. The reaction vessel can include a stirring or agitation mechanisms that functions to move one or more reactants (e.g., silica, reaction modifiers, etc.) during the reduction. Examples of stirring or agitation mechanisms include: blowers, fans, blades, paddles, stirbars (e.g., magntic stirrers), shakers, speakers, and/or any suitable mechanisms. In a first illustrative example, the method and/or steps thereof can be performed in a 600 liter or greater barrel (e.g., stainless steel barrel), wherein the barrel can be open or sealed. In a second illustrative example, the method and/or steps thereof can be performed in trays within a furnace (e.g., tube furnace), where a depth of the trays can be between about 1 mm to about 5 inches. In a third illustrative example, the method and/or steps thereof can be performed using a belt furnace (e.g., wherein the material is spread over the belt). In a fourth illustrative example, the method and/or steps thereof can be performed in an oven (e.g., furnace), where silica starting material can be added to the oven from an opening (e.g., in the top of the oven, in a side of the oven) and one or more reaction modifiers (e.g., reducing agent such as magnesium or aluminium) can be provided as a vapor within the oven chamber. In this illustrative example, the silica can be moved (e.g., stirred, blown, etc.) during the reaction. However, the method can be performed at any suitable scale and/ or in any manner.

[00128] Optionally purifying the silica starting material S210 functions to remove one or more impurities from the silica starting material. Impurities can include molecular impurities (e.g., non-silicon derived materials, organic materials, etc.), dust, oil, solvents, metals, dirt, processing chemicals (e.g., from upstream processes), and/ or any suitable materials. Purifying the silica starting material can include washing the starting material, etching the starting material (e.g., selectively etching impurities), using a phase change (e.g., melting, freezing, evaporating, sublimating, condensing, desubmlimating, etc. the starting material and/or the impurities), centrifuging the starting material, and/or otherwise purifying the starting material.

[00129] Purifying the starting material can be performed at a purification temperature. The purification temperature is preferably between about o°C and ioo°C, but can be less than o°C or greater than ioo°C. The purification temperature is preferably less than a critical temperature of silica (e.g., melting temperature, annealing temperature, phase transition temperature, etc.), but can be greater than the critical temperature.

[00130] The purifying process can be performed for a purification time between about 1 minute to about 72 hours. However, the purifying process can be performed for less than a minute or more than 72 hours.

[00131] The purifying process can be repeated (e.g., 2x, 3x, 5X, lox, etc.), which can function to further improve the purity of the starting material, remove additional impurities, and/or otherwise function. The repeated purifying processes can be identical (e.g., same process, same temperature, same duration, same solvent, etc.) and/or different (e.g., performed at different temperatures, for different durations, using different processes, different solvents, etc.).

[00132] In a preferred embodiment, purifying the starting material can include washing (e.g., rinsing, soaking, etc.) the starting material with a solvent. Examples of solvents that can be used include: water, alcohols (e.g., methanol, ethanol, 1-propanol, 2- propanol, i-butanol, 2-butanol, isobutanol, t-butanol, diols, triols, sugar alcohols, etc.), ethers (e.g., dimethyl ether, diethyl ether, methylethyl ether, etc.), esters, aldehydes, ketones (e.g., acetone), halogenated solvents (e.g., chloromethane, dichloromethane, chloroform, carbon tetrachloride, bromomethane, dibromomethane, bromoform, carbon tetrabromide, iodomethane, diiodomethane, iodoform, carbon tetra iodide, dichloroethane, dibromoethane, etc.), and/or any suitable solvents.

[00133] In some variants of this embodiment, the starting material can be washed with acidic and/or basic solutions (e.g., in addition to or instead of using solvent). Examples of acids that can be used include: hydrofluoric acid, hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid, nitric acid, nitrous acid, acetic acid, carbonic acid, oxalic acid, phosphoric acid, citric acid, trifluoracetic acid, perchloric acid, perbromic acid, periodic acid, acid piranha (e.g., a mixture of sulfuric acid and hydrogen peroxide), and/or any suitable acids. Examples of basic solutions can include: lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, cesium hydroxide, beryllium hydroxide, magnesium hydroxide, calcium hydroxide, strontium hydroxide, barium hydroxide, ammonium hydroxide, basic piranha (e.g., a mixture of hydroxide and hydrogen peroxide), and/or any suitable bases. The acid or base solutions preferably have a concentration that is between about i M and 12 M. However, the solutions can have a concentration less than 1M, greater than 12 M, be fully concentrated (e.g., sulfuric acid with a concentration of 18.4 M, sodium hydroxide dissolved in water to a concentration of 17.6 M, etc.), and/or have any suitable concentration. In these variants, washing the starting material can include neutralizing the starting material. The neutralization can include adding acid (e.g., a weak acid such as citric acid, a low concentration acid, etc.), adding base (e.g., a weak base such as sodium hydroxide, a low concentration base, etc.), diluting the starting material (e.g., serial dilutions with a solvent such as water), and/or otherwise neutralizing the starting material.

[00134] In some variants, S210 can include drying the starting material, which functions to remove residual solvent from the starting material. Drying the starting material can include heating the starting material (e.g., above a solvent boiling point, within 5O°C of a solvent boiling point, etc.), decreasing an atmospheric pressure proximal the starting material (e.g., applying a vacuum), blowing air or another gas over the starting material (e.g., dry air), rinsing with a solvent with lower vapor pressure (e.g., a second solvent that is miscible with the first solvent and has a lower vapour pressure than the first solvent), and/or otherwise drying the starting material. In an illustrative example, the starting material can be dried in a vacuum (e.g., pressure between about w 10 mBar to about 1000 mBar) at 8o°C for between about 1 and 24 hours. However, the starting material can be dried at a temperature between about o°C and ioo°C, less than o°C, and/or greater than ioo°C. However, the starting material can be dried in any manner.

[00135] In a first illustrative example of S210, the starting material can be washed with a hydrochloric acid solution with concentration between about 6 and 12 M at a temperature between about 20° and 75°C.

[00136] In a second illustrative example of S210, the starting material can be washed with solvents such as water, ethanol, isopropyl alcohol, and/or acetone. The starting material can be washed with the solvents sequentially (e.g., in an order of increasing and/or decreasing polarity) and/or at the same time (e.g., using a solvent mixture). In this specific example, the starting material can be dried in an oven at a temperature between about 6o°C and ioo°C for between 1-24 hours.

[00137] However, the starting material can be purified in any manner.

[00138] Exposing the silica to one or more reaction modifiers S220 functions to introduce one or more reaction modifier that influences and/or directs the reduction of the silica to silicon. Reaction modifiers can change the reaction kinetics, change the reaction thermodynamics, enhance a uniformity of the reaction, change a reaction temperature, modify a reaction product or byproduct, change a reaction pressure, and/ or otherwise modify the reaction. Exposing the silica can include: mixing, combining, depositing (e.g., drop casting, spin coating, chemical vapor deposition (CVD), sputter deposition, etc.), and/ or otherwise exposing the silica to the reaction modifier. Unpurified silica (e.g., silica starting material) and/or purified silica (e.g., silica processed by S210) can be exposed to the reaction modifier. S220 is preferably performed after S210, but S220 can be performed before and/or at the same time as S210. Examples of reaction modifiers include salt(s), catalysts, reducing agents, oxidizing agents, polymers, conductive additives, and/ or other substances.

[00139] The reaction modifier and silica can be homogeneously mixed, or inhomogeneously mixed. The reaction modifier can partially or fully coat some or all of the silica, fill a predetermined proportion of the silica pores (e.g., of the silica primary, secondary, and/or tertiary structure), remain outside of the silica structure(s), and/or otherwise interface with the silica. However, the reaction modifier and silica can be otherwise exposed and/ or interface with one another. An inhomogeneous mixture can be provided by incomplete mixing, layering materials, and/ or otherwise be achieved. In an illustrative example, a layered reaction material can include a reducing agent layer, with a salt layer on the reducing agent layer, with a silica layer above the salt layer. However, the different materials can be provided in any order. A homogeneous mixture can be promoted using smaller reducing agent particle size, more complete mixing (e.g., longer mixing times), and/ or be otherwise provided. [00140] The reaction modifier and silica can be mixed dry (e.g., vortex, ball milling, etc.) or wet (e.g., dissolved and/or suspended in water or another suitable solvent). The relative amount of and/or the degree of mixing of the reaction modifier and the silica can influence the final silicon product (e.g., morphology, uniformity, structure, etc.). In a first illustrative example, when a larger mesh reducing agent and/ or not salt coating is used, the resulting silicon material can include a more interconnected particle network and/ or larger silicon particle size (e.g., larger characteristic sizes) than when a smaller mesh reducing agent and/or a salt coating is used (e.g., a smaller mesh can result in more freestanding silicon particles). In a related example, when a larger mesh reducing agent and/or larger particle size reducing agent is used, the yield of silicon and/or the reduction efficiency can be less than when a smaller mesh and/or smaller reducing agent particle size is used. In a second illustrative example, when a salt coats the silica, the resulting silicon particles can include more free standing particles and/or smaller silicon particles than when no salt and/ or a solid mixture of salt and silica is used. In a related example, when a smaller salt particle (e.g., salt coating, comminuted salt, etc.) is used, the silicon yield and/or reaction efficiency can be greater than when a larger salt particle (e.g., as received salt, no salt) is used. However, the final silicon product and/or reaction yield can be independent of the relative amount of and/ or the degree of mixing of the reaction modifier and silica.

[00141] The ratio of silica to the reaction modifiers (e.g., mass ratio, volume ratio stoichiometric ratio, etc.) can be any value or range thereof between about 1000:1 to about O.OO1:1, such as 100:1, 10:1, 5:1, 4:1, 3:1, 2:1, 1:0.7, 1:1, 1:1-2, 0.9:1, 0.8:1, 0.75:1, 0.7:1, 0.6:1 0.5:1, 0.4:1, 0.3:1, 0.25:1, 0.2:1, 0.1:1, 0.01:1, and/or any range therebetween. The ratio can be of the silica to: each reaction modifier, all reaction modifiers, a particular reaction modifier, or be otherwise defined. However, one or more reaction modifier can have a ratio to silica that is greater than about 1000:1 or less than about 1:1000. However, the ratio of silica to reaction modifier can be any suitable ratio.

[00142] In a first embodiment of S220, the silica can be exposed to one or more salts. The salt can function to produce a more uniform reducing environment (e.g., during S250; such as uniform temperature, uniform pressure, uniform reagent concentration, etc.). The salt can include any suitable cation and anion. Examples of cations include: metal ions, ammonium, quaternary ammonium, pyridinium, histidinium, and/or any suitable cation. Examples of anions include: halides, acetate, carbonate, citrate, cyanide, nitrate, nitrite, sulphate, sulphite, phosphate, hydroxides, chalcogenides, pnictogenides, and/or any suitable anions. Specific examples of salts include but are not limited to: LiCl, LiBr, Lil, NaCl, NaBr, Nal, KC1, KBr, KI, RbCl, RbBr, Rbl, CsCl, CsBr, CsI, BeCl 2 , BeBr 2 , Bel 2 , MgCl 2 , MgBr 2 , Mgl 2 , CaCl 2 , CaBr 2 , Cal 2 , SrCl 2 , SrBr 2 , Srl 2 , BaCl 2 , BaBr 2 , Bal 2 , and/ or combinations thereof.

[00143] In a first variant of the first embodiment, as shown for example in FIG. 10A, the salt and the silica can be mixed (e.g., in the solid state) to form a substantially homogenous solid mixture of salt and silica. In a related variant, the salt and silica can be mixed in a solvent, where the salt and silica are substantially insoluble (e.g., greater than about 1000 mass parts of solvent required to dissolve i mass part of salt or silica); and the solvent can be removed (e.g., by decanting, centrifugation, evaporation, etc.).

[00144] In a second variant of the first embodiment, as shown for example in FIG. 10B, the salt can coat the silica, which can have the benefit of providing a more uniform reducing environment for the silica (e.g., more uniform than a reducing environment without salt, more uniform than a solid state mixture of the salt and silica, etc.). In a specific example, salt coated silica can be prepared by mixing the salt and silica in a solvent where the silica is substantially insoluble and the salt is soluble (e.g., less than about IOOO mass parts of solvent required to dissolve i mass part of salt) and evaporating the solvent. However, the salt can additionally or alternatively be coated using a deposition (e.g., sputtering, CVD, ALD, etc.) and/or any coating method.

[00145] In a third variant of the first embodiment of S220, the sample can include a mixture of salt coated silica and free salt (e.g., a combination of the first and second variant of the first embodiment of S220). However, the silica can be exposed to one or more salt in any manner.

[00146] In a second embodiment of S220, the silica can be exposed to one or more reducing agent. The reducing agent can function to reduce the silica to silicon. Examples of reducing agents include: alkali metals, alkaline earth metals, metalloids, transition metals, hydrides (e.g., LiH, NaH, KH, LiAlH 4 , NaBH 4 , N 2 H 2 , etc.), carboxylic acids (e.g., oxalic acid, formic acid, ascorbic acid, etc.), pnictogens (e.g., nitrogen, phosphorous, arsenic, antimony, bismuth, phosphite, hypophosphite, phosphorous acid, etc.), combinations thereof, and./or any suitable reducing agent. The reducing agent is preferably homogeneously mixed (e.g., in the solid state) with the silica, but can be inhomogeneously mixed with the silica, coat the silica, and/or otherwise be exposed to the silica. The reducing agent is preferably a powder, but can additionally or alternatively be a sheet, nanomaterial, solid (e.g., grid, surface, etc.), liquid, gas, and/or have any suitable morphology and/or phase. For example, the reducing agent can include magnesium, aluminium, calcium, lithium, and/ or titanium. The reducing agent can be provided as particles having any suitable size between about 20 pm and 400 pm (corresponding to meshes of 635 to 40 respectively). However, the particles can be smaller than 20 pm, greater than 400 pm, and/or have any suitable size and/or size distribution. The size of the reducing agent particles (and/or any reducing material) can be used to modify and/ or influence the final silicon material (e.g., the product of S250). For instance, when a smaller mesh reducing agents is used, the resulting silicon particles can include more free standing particles than when a larger mesh reducing agent is used (e.g., a larger mesh can result in a more interconnected silicon material). However, the size of the reducing agent can have any suitable outcome on the resulting silicon material. However, any suitable reducing agent can be used.

[00147] In a third embodiment of S220, the silica can be coated with and/ or include a protective additive. The protective additive can function to inhibit or slow the reducing agent diffusion to the silica surface. Examples of protective additives can include: sodium, carbonaceous materials (e.g., amorphous carbon, porous carbon, nanocarbon, etc.), polymers (e.g., polypyrrole, polyacrylonitrile, resin, etc.), and/or any suitable materials. The protective additive can be applied and/or generated using CVD, spray coating, dip coating, spin coating, coating processes as described in S270, and/or in any manner.

[00148] In a fourth embodiment of S220, the silica can be exposed to an additive or additive precursor. Exposing the silica to the additive and/or additive precursor can function to provide one or more species that can undergo a reduction (e.g., during any of steps S230 through S280) to provide a coating and/or other additive to the silicon material. Examples of additive precursors include carbon sources (e.g., polymers, carbonaceous material, etc.), lithium sources (e.g., lithium salts), oxygen sources (e.g., oxidizing agents), and/or any suitable additive source. The additive and/or additive precursor can be mixed with, coat, be in contact with, be adjacent to, and/or otherwise couple to the silica.

[00149] In a fifth embodiment of S220, the silica can be exposed to a salt, a reducing agent, a protective additive, and/or an additive precursor (e.g., the first, second, third, and fourth embodiments of S220 are not mutually exclusive).

[00150] However, the silica can be exposed to any suitable reaction modifier.

[00151] Purifying the silica and reaction modifier(s) S230 can function to remove one or more impurities from the silica and reaction modifier mixture from S220 and/or S240. S230 can be performed in any manner as described in S210 and/or in any manner. [00152] Comminuting the silica S240 functions to modify the size and/or size distribution of the silica and/or the reaction modifier(s). S240 can additionally or alternatively function to mix the silica and reaction modifier, separate secondary and/ or tertiary particles (e.g., defined in a similar manner as that for silicon above) of the silica into primary silica particles, and/or perform any suitable function. S240 can be performed before, during, and/or after S210, S220, and/or S230. In an illustrative example, S240 can be performed after the silica has been exposed to salt, for instance, to comminute both the silica and the salt. In a second illustrative example, S240 can be performed before the silica has been exposed to a reducing agent. However, S240 can be performed at any time relative to S220. Examples of comminuting the silica include: grinding, cutting, crushing, vibrating, milling, and/or other processes to modify the size of the silica and/or reaction modifier.

[00153] Variants of S240 can include ball milling (e.g., Rod mill, isamill, planetary ball mill, etc.), grinding, crushing (e.g., AG mil, SAG mill, Pebble mill, etc.), sonicating, stamp milling, using an arrastra, and/or other milling techniques. In an illustrative example, the silica can be ball milled with a bead size between about 0.25 mm and about 20 mm for a duration between about 1 and 12 hours at a speed between about 100 and 600 rpm. However, the silica can be ball milled with a bead size less than 0.25 mm or greater than a bead size greater than 20 mm; the silica can be ball milled for a duration less than 1 hour or greater than 12 hours; and/or the silica can be ball milled at a speed less than 100 rpm or greater than 600 rpm. In a second illustrative example, the silica (with or without reaction modifiers) can be sonicated (e.g., using an ultrasonic bath, a horn sonicator, etc.) with a sonication power between about 1 and 3000W. The second illustrative example can provide the benefit of homogeneously dispersing the silica and/or breaking aggregates (e.g., cluseters, agglomers, etc.) in the silica starting material. However, S240 can include any suitable process(es).

[00154] Reducing the silica functions S250 functions to reduce the silica to silicon. S250 can additionally or alternatively function to oxidize and/or reduce a reaction modifier (e.g., reducing a polymer to form carbon), other components of the starting material (e.g., impurities, additives, etc.), and/ or perform another function. The resultant silicon preferably substantially retains a morphology of the silica and/or starting material (e.g., the silicon has substantially the same dimensions, sphericity, roundness, porosity, etc. as the silica), but can alternatively have a different morphology (e.g., adjacent particles merged into an interconnected network; different porosity; etc.), or be otherwise related.

[00155] In variants where silica and a reaction modifier are reduced, the reducing conditions are preferably the same to reduce the silica and reaction modifier, but the reducing conditions can be different to reduce the silica and the reaction modifier. The silica is preferably reduced in the presence of a reducing agent, but can be reduced without a reducing agent. S250 can include reducing purified silica (e.g., from S210 or S230), unpurified silica, silica exposed to salt(s), silica exposed to reducing agent(s), silica starting material, and/or any suitable silica. In variants of the method 20 including S220, S250 is preferably performed after S220 (e.g., after S230 or S240), but can be performed at the same time as S220. S250 is preferably performed in a reaction vessel, but can be performed in any suitable container and/or exposed to ambient environment.

[00156] The reduction can go to any degree of completion (e.g., fraction of initial silica material converted to silicon) between about 50% and 100% such as 60%, 70%, 75%, 80%, 85%, 90%, 95%, 97.5%, 98%, 99%, 99.5%, 99.9%, or 99.99%. However, the degree of completion can be less than 50%. A residual oxygen content (e.g., such as molar content, mass content, volume content, etc.; as SiO x ; as free oxygen; as an oxide byproduct such as MgO, Na 2 0, etc.; etc.) can be between 0% and 50%. However, the residual oxygen content can be greater than 50%. The silicon yield (e.g., mass percentage) can be between 5% and 80% (e.g., between 9% and 79.4%, 17% and 58.2%, 23% and 46.7%., etc.). However, the silicon yield can be less than 5% or greater than 80%.

[00157] During the reduction, the environment proximal the silica is preferably inert (e.g., the environment within the reaction vessel is inert, a gas curtain adjacent the silica maintains an inert atmosphere, etc.). Examples of inert atmospheres include nitrogen, carbon dioxide, helium, neon, argon, krypton, xenon, radon, combinations thereof, a vacuum environment (e.g,. a v pressure less than about 1 atm such as io 10 mBar, 10’9 mBar, w 8 mBar, w mBar, 1O’ 6 mBar, 10’S mBar, 10’4 mBar, 1O’ 3 mBar, 1O’ 2 mBar, 10 1 mBar, 1 mBar, 10 mBar, 100 mBar, 1000 mBar, etc.), and/or any suitable inert gases or environments. However, the environment can additionally or alternatively be a reducing environment (e.g., include reducing gases such as hydrogen, sulphur dioxide, carbon monoxide, diborane, vaporized metals, etc.), an oxidizing environment (e.g., include one or more oxidizing agents such as to regenerate one or more reducing agents), and/or have any suitable atmosphere.

[00158] The pressure within the reaction vessel can be less than atmospheric pressure (e.g., less than 1 atm such as io 10 mBar, io _ 9 mBar, io -8 mBar, io mBar, io -6 mBar, io _ 5 mBar, io _ 4 mBar, 10 3 mBar, io -2 mBar, 10 1 mBar, 1 mBar, 10 mBar, 100 mBar, 1000 mBar, etc.), greater than atmospheric pressure (e.g., greater than 1 atm such as 3000 mBar, 5000 mBar, 10 Bar, 30 Bar, 50 Bar, 100 Bar, 300 Bar, 500 Bar, 1000 Bar, etc.), and/or equal to atmospheric pressure. In some variants, the pressure can be cycled and/or changed. In these variants, the pressure can gradually (e.g., continuously, semicontinuously) and/or suddenly (e.g., discontinuously) change. For example, the pressure can start above atmospheric pressure (e.g., have one or more gas introduced) and as the reduction proceeds be dropped below atmospheric pressure (e.g., by pulling a vacuum) or vice versa. In another example, the release of gaseous products can cause a change in the pressure within the reaction vessel. However, the pressure in the reaction vessel can be any suitable pressure.

[00159] In some variants, the pressure can include a pressure of reducing agents (e.g., magnesium vapor, aluminium vapor, etc.), wherein the reducing agents are provided in gaseous form. In these variants, the reducing agent pressure is preferably between about 0.001 to o.i mBar (e.g., 0.002 mBar, 0.005 mBar, 0.007 mBar, 0. 0.01 mBar. 0.02 mBar, 0.05 mBar, 0.07 mBar, etc.). However, the reducing agent pressure can be less than 0.001 mBar and/or greater than 0.1 mBar. The reducing agent pressure can depend on the total pressure, the temperature, the reaction vessel design, and/ or any suitable parameters. In these variants, the silica mixture being reduced can exclude or include reducing agents.

[00160] The reducing conditions and/or reducing environment are preferably maintained for between about 0.5 hours and 24 hours (e.g., 1 hour, 1.5 hours, 2 hours, 3 hours, 4 hours, 5 hours, 6 hours, 7 hours, 8 hours, 9 hours, 10 hours, 12 hours, 15 hours, 18 hours, 20 hours, 22 hours, etc.), but can be maintain for less than 0.5 hours or longer than 24 hours.

[00161] In a preferred embodiment, reducing the silica preferably includes heating the silica. However, reducing the silica can additionally or alternatively include: electrolytic reduction (e.g., applying a threshold electrical voltage), chemical reduction (e.g., addition of an acid, base, reducing agent, catalyst, etc. to promote or drive the reduction), a change in pressure, illuminating the silica (e.g., performing a photo-driven reaction), and/or otherwise reducing the silica. Heating the silica can include annealing or sintering silica or silicon particles (e.g., primary particles, secondary particles, tertiary particles) to form interconnected structures and/or any suitable steps.

[00162] The silica can be heated using thermal elements, infrared elements, laser heating, and/or any suitable heating source. The heat can be transferred to the silica conductively, convectively, and/ or radiatively.

[00163] The silica is preferably heated to at least a reducing temperature. However, the silica can be heated to a temperature below the reducing temperature (e.g., to drive a second reaction to release heat to drive the reduction, to control the reduction kinetics, etc.) and/or to any suitable temperature. The reducing temperature is preferably between about 3OO°C and 12OO°C (e.g., 4OO°C, 5OO°C, 6oo°C, 650 °C, 700 °C, 750 °C, 800 °C, 850 °C, 900 °C, 1000 °C, 1100 °C, 1200 °C, etc.). However, the reducing temperature can be less than 600 °C or greater than 1200 °C. In an illustrative example, a lower temperature (e.g., 3OO-5OO°C) can be beneficial for slowing the reaction rate and avoiding local heating effects. This lower temperature can refer to an initial treatment step and can be maintained for between about 1-6 hours and/or for any suitable amount of time. After the initial treatment step, the reaction temperature can be increase to a final reduction temperature (e.g., 6oo-iooo°C), where the final reduction temperature can be maintained for between 1-18 hours and/ or any suitable amount of time. The ramp rate to the initial treatment step and the final reduction temperature can be the same or different. However, the reduction can be performed at a single temperature, in more steps, and/or in any manner.

[00164] The silica is preferably heated substantially uniformly (e.g., without producing hot spots; the temperature throughout the reaction vessel is maintained within ±1°C, ±5°C, ±io°C, ±20°C, ±5O°C, etc. of a target temperature such as the reducing temperature; temperature difference or gradient of less than about i°C, 2°C, 5°C, io°C, 20°C, 5O°C, ioo°C, 200°C, etc. between any two locations within the reaction vessel; etc.). However, the silica can be heated nonuniformly (e.g., patterned heating, uncontrolled heating, etc.). In some variants, the uniformity of heating can depend on the morphology of the reactants. For example, using spherical silica and interconnected silica (e.g., silica with a worm-like morphology) can result in different hot spots and/or local heating effects which can impact the resulting silicon structure. However, the uniformity of the heating can be independent of the reactant morphology.

[00165] In a first variant, the inclusion of salt within the reducing environment (e.g., mixed with the silica, coating the silica, etc.) can promote more uniform heating of the silica and/ or the reaction vessel, for example by decreasing reducing or slowing reducing agent diffusion proximal the silica material. In a second variant, a uniform temperature profile can be enabled by slowly ramping the temperature of the reaction vessel. For example, the ramp rate is preferably between about 0.01 °C/min and 10 °C/min (e.g., o.oi °C/min, o.i °C/min, 0.5 °C/min, i°C/min, 5°C/min, io°C/min, etc.). However, the ramp rate can be greater than io°C/min (e.g., 2O°C/min, 25°C/min, 3O°C/min, 5O°C/min, ioo°C/min, etc.), be within a range thereof, and/or less than 0.01 °C/min. In an example of the second variant, the ramp rate can vary (e.g., across time, across ramping steps, etc.). For example, a fast ramp rate can be used to initially heat the sample (e.g., until the sample reaches a temperature threshold) and a slower ramp rate can be used when the sample is above the temperature threshold (e.g., until the sample reaches the reducing temperature). However, the ramp rate can be constant and/or follow any ramp rate curve. In a third variant, planarizing and/or otherwise ensuring a substantially uniform silica thickness and/or ensuring that the silica thickness does not exceed a threshold thickness can promote uniform heating of the sample. In a fourth variant, the relative ratio of silica to reaction modifiers (e.g., salts, reducing agents) can promote uniform heating and/or otherwise influence the reduction of the silica. In a first embodiment of the fourth variant, a size and/ or size distribution of the reaction modifiers can promote uniformity of the temperature (and/or otherwise influence the silica reduction). In a fifth variant, the reaction vessel can include one or more radiators or insulators arranged to control a thermal profile within the reaction vessel. In a sixth variant, a mixture of reducing agents can be provided to help control and/or limit the presence of hot spots. In an embodiment of the sixth variant, the reducing agent can include magnesium and aluminium. The ratio of magnesium to aluminium can be determined based on a target reducing time, a target temperature, a target uniformity, and/or otherwise be determined. Examples of ratios of magnesium to aluminium include 10:1, 5:1, 4:1, 2:1, 1.1:1, 1:1, 0.9:1, , 0.75:1, 0.5:1, 0.2:1, 0.1:1, any ratio therebetween, greater than 10:1, or less than 0.1:1. In a seventh variant, heating the silica can include any combination of the preceding six variants to promote uniform heating. Similarly, any combination of the as described, converse, inverse, or contrapositive situations for the preceding seven variants can be used to promote and/or control a nonuniform temperature profile within the reaction vessel.

[00166] In an illustrative example, when a characteristic size (or size distribution) of the silica and/or reactants is small, when the silica has a large surface area, and/or the silica is aggregated, heating the silica and/or reactants can leads to local hot spots within the reaction environment and/or the silica. The localized hot spots can cause melting proximal to the hot spots leading to nonuniform and/or sponge-like (e.g., interconnected) structures. However, a nonuniform and/or sponge-like structure can be otherwise obtained and/or localized hot spots can otherwise impact the resulting silicon structure. [00167] Purifying the silicon S260 preferably functions to purify the silicon generated in S250. S260 can additionally or alternatively function to remove residual (e.g., unreacted) silica; change a particle size (e.g., characteristic size of a primary, secondary, and/or tertiary particle of silicon); remove residual salts, residual reducing agents, and/or byproducts of the reduction; and/or otherwise function. S260 be performed in any manner as described in S210 or S230 and/or in any manner. In a first specific example of S260, the silicon can be washed with HC1 (e.g., 1-12 M HC1), which can have the benefit of removing residual salts and/or other byproducts (e.g., Mg, MgSi, salt, MgO, etc.) from the reduction. In variants of the first example, the salts and/or byproducts can be collected, for example to reuse in step S220 (e.g., with or without further processing and/or purification). However, the salts and/or byproducts can be disposed of and/or otherwise used. In a second specific example, the silicon can be washed with HF (e.g., 2-20% HF solution in water), which can have the benefit of removing unreacted or partially reacted silica. The second specific example can have the added benefit of reducing a particle size of the silicon.

[00168] Coating the silicon S270 functions to provide one or more coatings on the silicon (e.g., from S250 or S260). S270 can additionally or alternatively include loading the silicon (e.g., loading the pores of the silicon material). The coating(s) preferably coat the secondary and/or tertiary particles of silicon (e.g., without directly coating every primary particle), but can additionally or alternatively coat the primary silicon particles. The silicon can be coated in the same reaction vessel as the reduction occurs in and/or in a different reaction vessel. The silicon can be coated immediately after formation (e.g., immediately upon completion of S250, as silicon is formed during S250, etc.) and/or any time after the silicon is formed. [00169] The coating process preferably occurs at a coating temperature. The coating temperature can refer to an autocombustion temperature of a material (e.g., a coating precursor), a dehydration temperature, a system operation temperature, a vaporization temperature, a melting temperature, and/or any suitable temperature that promotes coating the silicon sample. The coating temperature can be between about o°C and 14OO°C (e.g., o°C, 2O°C, 5O°C, 8o°C, ioo°C, 15O°C, 2OO°C, 3OO°C, 4OO°C, soo°C, 600 °C, 700 °C, 800 °C, 900 °C, 1000 °C, 1100 °C, 1200 °C, 1300 °C, etc.). However, the coating temperature can be less than o°C or greater than 14OO°C.

[00170] The coating process is preferably performed for a predetermined time duration. The coating time duration is preferably between 5 and 120 minutes, but can be less than 5 minutes or greater than 120 minutes. In some variants, the coating process proceeds until a predetermined coating parameter (e.g., coating thickness, coating mechanical property, coating electrical property, lithium diffusion, coating to silicon ratio, coating composition, etc.) is achieved. In these variants, the predetermined coating parameter can be monitored. Once the predetermined coating parameter is achieved, the coating process can be stopped. In a specific example, the target coating thickness can be between about 3 and 5 nm. However, the coating process can proceed for any amount of time.

[00171] S270 can include coating the silicon using one or more of: chemical vapor deposition (CVD), sputter coating, atomic layer deposition, polymerization, carbonization, mixing, growth, precursor reduction, chemical or physical interactions, and/or other coating methods can be used. The coating process preferably maintains a concentration and/or quantity of reagents (e.g., carbon source, lithium source, oxidizing agent, etc.) to maintain a predetermined or target coating parameter. Examples of coating parameters include coating to silicon ratio, coating thickness, coating uniformity, coating material, electrical conductivity, mechanical properties, and/or any suitable coating parameters. For example, the target carbon to silicon ratio, for a carbonaceous coating, is preferably about 1:8, but can be any ratio. The predetermined or target coating parameter can be controlled and/or monitored using a closed feedback loop (e.g., a coating sensor, such as a carbon sensor, can measure the coating parameter(s) as the silicon material is coated and update the coating process to achieve the target coating parameter), based on a predetermined recipe (e.g., a known procedure for preparing a target coating parameter), based on a user input, and/ or otherwise control and/ or monitor that the target coating parameter is achieved.

[00172] In some variants, S270 can include reducing an additive and/or additive precursor (e.g., during S250, separately from S250, before S250, after S250) to coat and/or load the silicon. In an illustrative example, when the silica is exposed to a carbon source (such as a polymer), the polymer can be reduced substantially simultaneously with the silica reduction (e.g., at any time or timing during S250; before during or after the silica reduction reaction; etc.).

[00173] In a first variant as shown for example in FIG. 9A, S270 can include growing a carbonaceous coating using CVD with a gas phase carbon source such as methane, ethane, ethene, ethyne and/or any suitable carbon source. In an illustrative example of the first variant, the silicon heated to between about 700 °C and 950 °C under argon with a flow rate between 50 standard cubic centimeters per minute (SCCM) - 500 SCCM and hydrogen (H2) with a flow rate between 20 SCCM - 100 SCCM. The pressure can be maintained between about 300-700 torr. The silicon can then be heated above 900 °C and C2H2 or CH 4 at flow rate between 20 SCCM -200 SCCM can be introduced for between 5 minutes and 2 hours to carbon coat (or carbon load) the silicon. However, a carbon coating can be otherwise formed using a CVD process.

[00174] In a second variant as shown for example in FIG. 9B, S270 can include depositing and/or forming polymer on the silicon (e.g., silicon surface). The polymer is preferably a conductive polymer, but can be any suitable polymer. In some variations of this variant, the polymer can be partially or fully carbonized (e.g., by heating the polymer to a predetermined temperature such as a polymer degradation temperature).

[00175] In a third variant, S270 can include combining (e.g., mixing, depositing, etc.) a growth catalyst (e.g., iron chloride, cobalt, molybdenum, iron, iron chloride, etc.) with the silicon and growing a carbon coating on the silicon (e.g., mediated by and/or collocated with the growth catalyst). These variants can have the benefit of providing controlled structures (e.g., nanostructures, mesostructures, microstructures, macrostructures, etc.) to the coating (e.g., regions with varying thickness, electrical properties, mechanical properties, lithium diffusion, etc.).

[00176] In a fourth variant as shown for example in FIG. 9C, S270 can include partially oxidizing the silicon to generate a coating of SiOx on the outer surface (e.g., environmentally exposed surface) of the silicon. The silicon can be oxidized by introducing an oxidizing agent (e.g., 0 2 ) and heating the silicon. However, the silicon can be otherwise oxidized. The extent of oxidation (e.g., coating thickness, oxide formed such as value of x, oxide gradient, etc.) can be determined based on the temperature, the oxidizing agent, the concentration or partial pressure of oxidizing agent, a reaction time, and/or can be otherwise controlled.

[00177] In a fifth variant, S270 can include exposing the silicon to one or more carbon source and/ or lithium source and reacting the carbon and/ or lithium source(s) with an acid (e.g., HC1, Hf, etc.) at the silicon. Examples of carbon sources include alcohols, saccharides (e.g., glucose, sucrose, fructose, galactose, lactose, etc.), monomers (e.g., aniline), polymers (e.g., PE, PP, PET, phenolic resin, etc.), combinations thereof, and/or any suitable carbon source (e.g., organic or inorganic carbon source). Examples of lithium sources include: Li metal, LiOH, LiNO3, LiCl, LiF, LiBr, Lil, Li2CO3, LiHCOs, lithium silicates (e.g., Li2Si20s, Li2SiO3, Li2SiO4, etc.), combinations thereof, and/or any suitable lithium salts.

[00178] In a sixth variant, two or more coating can be formed by performing any combination of the first through fifth variants of S270 (including repeating the same variant with the same or different conditions).

[00179] However, S270 can include any suitable steps.

[00180] Post-processing the silicon for use S280 preferably functions to prepare the silicon for use in an application, for shipping, for further reactions, and/or otherwise prepare the silicon. S280 is preferably performed after S270, but can be performed before or during S270 and/or at any suitable time. Examples of S280 can include: forming a slurry of the silicon material (e.g., by mixing the silicon material with a solvent such as water to a predetermined concentration), adding one or more additive (e.g., binder, electrolyte, etc.), packaging the silicon material, comminuting the silicon (e.g., in a manner analogous to that in S240), and/or any suitable post processing steps.

5. Specific examples

[00181] In a first specific example, a porous silicon material can include nonporous primary structures with a characteristic size between about 2 nm and about 150 nm, secondary structures with a characteristic size between about 100 and 1000 nm, and tertiary structures with a characteristic size between about 2 micrometer (pm) and 50 pm. [00182] In a variant of the first specific example, the primary structures can be interconnected (e.g., the secondary structures can include interconnected primary structures). In a second variant of the first specific example, the primary structures can be free standing (e.g., the secondary structures can include freestanding primary structures).

[00183] In a second specific example, a porous silicon material can include nonporous primary structures with a characteristic size between about 2 nm and about 150 nm, secondary structures with a characteristic size between about 100 and 1000 nm, and tertiary structures with a characteristic size between about 2 micrometer (pm) and 50 pm; where at least one of the secondary structures and the tertiary structures is coated with a carbonaceous material (e.g., amorphous carbon, conductive carbon, polymer, etc.). [00184] In a third specific example, a porous silicon material can include nonporous primary structures with a characteristic size between about 2 nm and about 150 nm, secondary structures with a characteristic size between about 100 and 1000 nm, and tertiary structures with a characteristic size between about 2 micrometer (pm) and 50 pm; where between 1 and 80% of the pore volume is loaded with carbon.

[00185] In a fourth specific example, a porous silicon material can include a silicon dioxide and/or lithium coating.

[00186] In a fifth specific example, a porous silicon material can include porous primary structures with a characteristic size between about 1 nm and about 500 nm. The porous silicon material can include secondary structures of aggregates of the primary structures. [00187] In a variant of the fifth specific example, the primary structures can be free standing. In a second variant of the fifth specific example, the primary structures can be interconnected.

[00188] In a sixth specific example, a porous silicon material can include porous primary structures with a characteristic size between about 1 nm and about 500 nm. The porous silicon material can include secondary structures of aggregates of the primary structures. The porous silicon material can include a coating (e.g., carbon coating, polymer coating, silica coating, lithium coating, etc.) where the coating does not enter the pores.

[00189] In a seventh specific example, a porous silicon material can include porous primary structures with a characteristic size between about 1 nm and about 500 nm. The porous silicon material can include secondary structures of aggregates of the primary structures. The porous silicon material can include a coating (e.g., carbon coating, polymer coating, silica coating, lithium coating, etc.) where the coating enters the pores. [00190] In an eighth specific example, the porous silicon material can have a porosity between 30 and 99%, an average pore size between 0.5 nanometers (nm) and 200 nm, a surface area between 0.02 and 1500 m 2 /g, a percent oxygen content by mass between about 3% and 37%, and an external volume expansion that is at most 40%.

[00191] In a ninth specific example, a porous silicon material can include porous primary structures with a characteristic size between about 10 nm and about 500 nm, where a pore diameter (e.g., average pore diameter) of the porous primary structures is between about 2 and 20 nm. The porous primary structures can be aggregated into secondary structures (e.g., clusters with a characteristic size between about 100 and 1000 nm) and/or tertiary structures (e.g., aggregates with a characteristic size between about 2 micrometer pm and 50 pm). The porous silicon material can include a second pore distribution defined between the primary structures within secondary or tertiary structures, where an average pore size for the second distribution can be between about 0.5 and 200 nm.

[00192] In a variant of the ninth specific example, the primary structures can be interconnected (e.g., the secondary structures can include interconnected primary structures). In a second variant of the first specific example, the primary structures can be free standing (e.g., the secondary structures can include freestanding primary structures).

[00193] In a first specific example, the method of manufacture can include reducing a silica starting material (e.g., unpurified silica starting material, fumed silica, silica fumes, silica gel, recycled silica starting material, waste silica, etc.) in the presence of a metal reducing agent to prepare a porous silicon material.

[00194] In a second specific example, the method of manufacture can include coating a silica starting material with a salt (e.g., NaCl) and reducing the unpurified silica starting material (e.g., the material within the coating) in the presence of a metal reducing agent to prepare a porous silicon material.

[00195] In a third specific example, the method of manufacture can include reducing a silica starting material in the presence of a metal reducing agent to prepare a porous silicon material and washing the resulting silicon with an acidic solution comprising hydrofluoric acid.

[00196] In a fourth specific example, the method of manufacture can include coating a silica starting material with a salt (e.g., NaCl), reducing the silica starting material (e.g., the material within the coating) in the presence of a metal reducing agent to prepare a porous silicon material, and washing the resulting silicon with an acidic solution comprising hydrofluoric acid.

[00197] In a fifth specific example, the method of manufacture can include reducing a silica starting material in the presence of a metal reducing agent to prepare a porous silicon material and coating the porous silicon material (e.g., with a carbonaceous coating).

[00198] In a sixth specific example, the method of manufacture can include coating a silica starting material with a salt (e.g., NaCl), reducing the silica starting material (e.g., the material within the coating) in the presence of a metal reducing agent to prepare a porous silicon material, and coating the porous silicon material (e.g., with a carbonaceous coating). [00199] In a seventh specific example, the method of manufacture can include reducing a silica starting material in the presence of a metal reducing agent to prepare a porous silicon material, washing the resulting silicon with an acidic solution (e.g., including hydrofluoric acid), and coating the washed silicon (e.g., with a carbonaceous coating).

[00200] In an eighth specific example, the method of manufacture can include coating a silica starting material with a salt (e.g., NaCl), reducing the silica starting material (e.g., the material within the coating) in the presence of a metal reducing agent to prepare a porous silicon material, washing the resulting silicon with an acidic solution (e.g., including hydrofluoric acid), and coating the washed silicon material (e.g., with a carbonaceous coating).

[00201] In a ninth specific example, the method of manufacture can include exposing (e.g., coating) a silica starting material with a carbon source (e.g., a polymer), reducing the silica starting material and the carbon source in the presence of a metal reducing agent to prepare a porous silicon material with a carbonaceous coating. The carbon coated silicon can optionally be washed with an acidic solution (e.g., including hydrofluoric acid).

[00202] In a tenth specific example, the method of manufacture can include exposing (e.g., coating) a silica starting material with a carbon source (e.g., a polymer), reducing the silica starting material in the presence of a metal reducing agent to prepare a porous silicon material with a carbon coating. In this specific example, the carbon source can be reduced, be partially reduced, and/ or not be reduced. This specific example can optionally include washing the carbon coated silica (e.g., with an acidic solution) which could reduce the carbon source (e.g., convert the carbon source to carbon).

[00203] In an eleventh specific example, the method of manufacture can include reducing fumed silica in the presence of a metal reducing agent to prepare a porous silicon material.

[00204] In an eleventh specific example, the method of manufacture can include reducing silica gel in the presence of a metal reducing agent to prepare a porous silicon material. [00205] Embodiments of the system and/ or method can include every combination and permutation of the various system components and the various method processes, wherein one or more instances of the method and/or processes described herein can be performed asynchronously (e.g., sequentially), concurrently (e.g., in parallel), or in any other suitable order by and/or using one or more instances of the systems, elements, and/or entities described herein.

[00206] As a person skilled in the art will recognize from the previous detailed description and from the figures and claims, modifications and changes can be made to the preferred embodiments of the invention without departing from the scope of this invention defined in the following claims.