Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
A METHOD FOR MODULATING INSULIN-INDEPENDENT GLUCOSE TRANSPORT USING TENEURIN C-TERMINAL ASSOCIATED PEPTIDE (TCAP)
Document Type and Number:
WIPO Patent Application WO/2016/008034
Kind Code:
A1
Abstract:
This invention relates to a method of increasing energy available to skeletal muscle cells comprising administering to the cells an effective amount of Tenurin C-terminal Associated Peptide (TCAP). The invention provides the use of TCAP to enhance muscle performance or recovery after injury as well as to prevent and/or treat a number of conditions including insulin resistance, type II diabetes, hypoxia and glycogen storage diseases.

Inventors:
LOVEJOY DAVID (CA)
Application Number:
PCT/CA2015/000437
Publication Date:
January 21, 2016
Filing Date:
July 21, 2015
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
LOVEJOY DAVID (CA)
CHEN YANI (CA)
International Classes:
A61K38/17; A61P3/10; A61P21/00; C07K14/47; C07K14/575
Other References:
CHEN ET AL.: "Teneurin C-terminal associated peptides (TCAP): modulators oj corticotropin-releasing factor (CRF) physiology and behavior''.", FRONT. NEUROSCI., vol. 7, no. 166, 17 September 2013 (2013-09-17), pages 1 - 6, ISSN: 1662-453X, Retrieved from the Internet [retrieved on 20151109]
CHEN ET AL.: "Insulin-independant transport of glucose into the brain with prolonged reduction of plasma glucose by teneurin C-terminal associated peptide (TCAP)-l: A potential new approach to the treatment of type II diabetes''.", ENDOCRINE SOCIETY'S 97TH ANNUAL MEETING AND EXPO, MARCH 5-8, 2015, 7 March 2015 (2015-03-07), San Diego, Retrieved from the Internet [retrieved on 20151109]
Attorney, Agent or Firm:
NADOR, Anita (Suite 16001 First Canadian Place,,100 King Street West, Toronto Ontario M5X 1G5, CA)
Download PDF:
Claims:
CLAIMS

What is claimed is:

1. A method of increasing energy available to skeletal muscle cells, the method comprising administering to a patient in need thereof an effective amount of an isolated teneurin c^erminal associated peptide (TCAP peptide), or a pharmaceutically acceptable salt thereof, wherein the amino acid sequence of said TCAP peptide consists essentially of:

(i) an amino acid sequence ha in at least 95% identity to an amino acid sequence selected from the group consisting of SEQ ID NOs: 13, 14, 21,22, 29, 30,37, 38,45, 46, 53, 54, 61, 62, 9, 70, 77, 78, 85, 86, 93, 94, and 101; or

(ii) a 38 amino acid sequence from the carboxy terminal end of a peptide having at least 95% identity to an amino acid sequence selected from the group consisting of SEQ ID NOs: 13, 14, 21, 22, 29, 30, 37, 38, 45, 46, 53, 54, 61, 62, 69, 70, 77, 783 85, 86, 3, 94, and 101; optionally wherein:

(a) the carboxy terminal end of said TCAP peptide is amidated or comprises an amidation signal sequence; or

(b) when the amino terminal amino acid of said TCAP peptide is glutamine, it is in the form of pyroglutamic acid.

2. The method of claim 1 , wherein increasing energy available to skeletal muscle cells comprises increasing glucose uptake by skeletal muscle cells under conditions where increased intracellular glucose in skeletal muscle cells is advantageous.

3. The method of claim 1 , for increasing energy available tg skeletal muscle cells under conditions where increased energy available to skeletal muscle cells is advantageous.

4. The method of claim 3 , wherein the conditions where increased energy available to muscle cells is advantageous is a condition in which the skeletal muscle cells exhibit insulin resistance.

5. The method of claim 3, wherein the conditions where increased energy available to muscle cells is advantageous is type 2 diabetes.

6. The raefhod of claim 3 , wherein the conditions where increased energy available to muscle cells is advantageous are immediately before, during, or immediately after exercise.

7. The method of claim 3, wherein the conditions where increased energy available to muscle cells is advantageous is selected from the group consisting of: hypoxia, injury, a glycogen storage disorder, and a myopathy.

8. The method of claim 1 , wherein the increased energy is available for at least one day.

9. The method of claim 1 , wherein me increased energy is available for at least three days.

10. The method of claim 1, wherein the increased energy is available for at least five days.

11. The method of claim 1 , wherein the increased energy is available for at least seven days,

12. Use of an effective amount of an isolated teneurin c-tenninal associated peptide (TCAP peptide), or a pharmaceutically acceptable salt thereof, wherein the amino acid sequence of said TCAP peptide consists essentially of:

(i) an amino acid sequence having at least 95% identity to an amino acid sequence selected from the group consisting ofSEQ ID NOs: 13, 14, 21, 2¾ 29, 30, 37, 38, 45, 46, 53, 54, 61, 62, 69, 7Q, 77, 78, 85, 86, 3, 4, and 101; or (ii) a 38 amino acid sequence from the carboxy teroainal end of a peptide having at least 95% identity to an amino acid sequence selected from the group consisting of SEQ IDNOs: 13. 14, 21, 22,29, 30, 37, 38, 45, 6, 53, 54, 61, 62, 69, 70, 77, 78, 85, 86, 93, 4, and 101; optionally wherein:

(a) the carboxy terminal end of said TCAP peptide is amidated or comprises an amidation signal sequence; or

(b) when the amino ΐ^ηϊααΐ amino acid, of said TCAP peptide is glutamine, it is in the form of pyroghrtamic acid.

13- Use according to claim 12, wherein increasing energy available to skeletal muscle cells comprises increasing glucose uptake by skeletal muscle cells under conditions where increased intracellular glucose in skeletal muscle cells is advantageous.

14. Use according to claim 12, for increasing energy available to skeletal muscle cells under conditions where increased energy available to skeletal muscle cells is advantageous.

15. Use according to claim 14, wherein the conditions where increased energy available to muscle cells is advantageous is a condition in which the skeletal muscle cells exhibit insulin resistance.

16. Use according to claim 14, wherein the conditions where increased energy available to muscle cells is advantageous is type 2 diabetes.

17. Use according to claim 14, wherein the conditions where increased energy available to muscle cells is advantageous are immediately before, during, or immediately after exercise.

18. Use according to claim 14, wherein the conditions where increased energy available to muscle cells is advantageous is selected from the group consisting of: hypoxia, injury, a glycogen storage disorder, and a myopathy.

19. Use according to claim 12, wherein the increased energy is available for at least one day.

20. Use according to claim 12, wherein the increased energy is available for at least three days.

21. Use accordiug to claim 12, wherein the increased energy is available for at least five days.

22. Use according to claim 12, wherein the increased energy is available for at least seven days.

23. Use of TCAP-1 in the prevention and/or treatment of Type-2 diabetes,

24. Use of TCAP-1 in the treatment of Type-1 diabetes.

Description:
Title: A Method for Modulating Insulin-Independent Glucose Transport Using Teneurin C-Terminsd Associated Peptide (TCAP)

RELATED APPLICATIONS

This patent application claims priority from United States Provisional Patent AppiicationNo. 62/026,346, filed July 18, 2014, entitled, "METHOD FOR MODULATING GLUCOSE TRANSPORT USING TENEURIN C-TE MINAL ASSOCIATED PEPTIDE (TCAP)", whjch is incorporated herein by reference in its entirety.

FIELD OF THE INVENTION

[0001] This invention relates to amethod for modulating insulin-independent glucose transport using Teneiirin C-Terminal Associated Peptide (TCAP). In one aspect, the invention provides a method to increase energy available to skeletal muscle cells. In some embodiments, itfurther relates to methods and uses and compositions of Teneurin C- Terminal Associated Peptide (TCAP) as an agent to increase glucose uptake by skeletal muscle cells under conditions where increased intracellular glucose in skeletal muscle cells is advantageous. In other embodiments it relates to methodS j Uses and compositions of TCAP for modulating, in one aspect lowering plasma glucose levels.

INCORPORATION BY REFERENCE STATEMENT

[0002] All references noted herein are incorporated by reference. The paper copy and computer-readable form (CRF) are identical- Further the sequence listing is being submitted through EFS-Web compliant with ASCII text and is also herein incorporated by reference. The name of the text file is T8476302WO_ST25.txt, created on My 20, 2015 and the size of the text file is 128 kilobytes.

BACKGROUND OF THE INVENTION

[0003] The teneurins are a family of four vertebrate type II transmembrane proteins preferentially expressed in the central nervous system (Baumgartner et al., 1994). The teneurins are about 2800 amino acids long and possess a short membrane spanning region. The extracellular face consists of a number of structurally distinct domains suggesting that the protein may possess a number of mstmct functions (Minet and Crdquet-Ehrismaiin, 2000; Minet et al., 1999; Oohashi et al., 1999), The gene was originally discovered in Drosopbila as a pair rule gene and -was named tenascia-major (Ten-M) or Odz (Baumgartner et al., 1994; Levine et al., 1994). It is expressed in the Drosopbila nervous system and targeted disruption of the genes leads to embryonic lerhality (Baumgartner et al., 1994). In immortalized mouse cells, expression of the teneurin protein led to increased neurite outgrc/wth (Rubin et al., 1999),

10004] The extracellular C-terminal region of each teneurin is characterized by a 40 or 41 amino acid sequence flanked by enzymatic cleavage sites, which predicts the presence of an amidated cleaved peptide (Qian et al., 2004; Wang et al. , 2004). A synthetic version of this peptide was named teneurin C-terininus associated peptide (TCAP) and is active in vivo and in vitro. The mouse TCAP from teneurin- 1 (TCAP-1) can modulate cAMP concentrations and proliferation in mouse hypothalamic cell lines as well as regulate the teneurin protein in a dose-dependent manner (Wang et al, 2004). mtraceirebroventricular injection of TCAP- 1 into rats can induce changes in the acoustic startle response three weeks after administration (Wang et al,, 2004). [Also see, PCT/CA2003/000622, filed May 2, 2003, herein incorporated by reference; PCT/CA200300621, filed May 2, 2003, herein incorporated by reference; US 11 /706.376, filed February 15, 2007, which claims the benefit and priority of provisional application No. 60 773,309, filed on February 15, 2006, and provisional applicaticn No. 60/783,821, filed on March 21, 2006, all of which are incorporated in their entirety by reference,]

[0005] Skeletal muscle is a critical regulator of glucose homeostasis. Skeletal muscle comprises the bulk of the body's insulin-sensitive tissue and is where insulin-iaduced glucose uptake is quantitatively most important (Wasserman et al., 2010; Abdul-Ghani and DeFronzo, 2010). Impairment in the response to insulin in skeletal muscle (i.e. an "insulin- resistant" state) leads to a marked reduction in glucose uptake (Brozinick et al., 1992; •Wasserman et al., 2010; Abdul-Ghani and DeFronzo, 2010). Skeletal muscle insulin resistance is considered to be the initiating or primary defect for development of type 2 diabetes, sometimes evident years before failure of pancreatic β cells and onset of overt hyperglycemia (DeFronzo and Tripathy, 2009; Petersen et al., 2007; Wasserman et al., 2011). [0006] Further, Type 1 diabetes is characterised by the absence of circulating insulin due to the autoimmune destruction of beta-cells in the pancreas. Patients are traditionally treated with multiple daily injections of exogenous insulin analogues. However, although these therapies improve quality of life, they are associated with the risk of hypoglycemic episodes and do not prevent the development of debilitating secondary complications. For these reasons, there is increasing demand for new therapies and preventions. Mann et al. (Curr Pharm Des. 2010;16(8): 1.002-20 - http://www.ncbi.nlm.nih.gov/r)ubmed 2004l826 ) describe one approach, which is to the use of viral or non-viral gene therapy to modify skeletal muscle to produce and secrete insulin into the circulation and/or to increase muscle glucose uptake. Skeletal muscle is a desirable target tissue for the treatment of diabetes, including Type 1 diabetes) not only for its central role in whole body metabolism and glucose homeostasis, but also for its accessibility and amenability to many potential gene therapy technologies. However, gene therapy is quite complex, expensive and not optimal route.

[0007J Some glycogen storage diseases are also associated with improper glucose homeostasis in skeletal muscle cells. For example, glycogen storage disease type V ( cArdle disease) results from a deficiency of the muscle isoform of the enzyme glycogen phosphorylase, which catalyzes glycogen to glucose for use in muscle (Robertshaw et al., 2007). In another example, glycogen storage disease type ΠΙ is characterized by a deficiency in glycogen debt-mdiing ercymes which results in excess amounts of abnormal glycogen to be deposited in the liver and muscles (Preisler et al., 2013).

[00OS] Skeletal muscle is also the p mary site of glucose uptake during exercise

(Wassennan et al., 2010; Richter and Hargreaves, 2013). Carbohydrate in the form of glucose becomes an increasingly important energy substrate with rising exercise intensity (Jensen and Richter, 2012; Holloszy and Kohrt, 1996). Blood glucose uptake into skeletal muscle cells can account for up to 40% of oxidative metabolism during exercise, and enhancing the availability of glucose delays muscle fatigue and increases performance (Richter and Hargreaves, 2013; Coyle et al., 1983). [0009] In light of the above, there is a need to develop methods and compounds to stimulate glucose uptake by skeletal muscle cells and thereby increase the energy available to skeletal muscle cells in diseased and normal states.

SUMMARY OF THE INVENTION

[0010] In one aspect the invention provides a method for increasing energy available to a skeletal muscle cells. The inventors have surprisingly found that TCAP induces muscle cells to take up glucose.

[0011] As such, in one aspect the invention provides a method for increasing energy available to skeletal muscle cells by to a patient in need thereof an effective amount of TCAP, pharmaceutically acceptable salt or ester thereof or obvious chemical equivalent thereof. In another embodiment, adnumstration of TCAP to the cells is a<≤ttninistration of TCAP to a patient in need thereof comprising said cells. In one aspect the patient in need thereof is a patient with skeletal muscle cells exhibiting insulin resistance. In one aspect, a pharmaceutical composition comprising TCAP, pharmaceutically acceptable salt or ester or obvious chemical equivalent thereof and aphannaceutically acceptable carrier is administered.

[0012] In one aspect, the invention provides a method of increasing energy available to skeletal muscle cells, the method comprising administering to a patient in need thereof an effecti ve amount of an isolated teneurin c erminal associated peptide (TCAP peptide), or a pharm ceutically acceptable salt thereof, wherein the amino add sequence of said TCAP peptide consists essentially of: (i) an amino acid sequence liv n at least 95% identity to an amino acid sequence selected from the group corisisting of SEQ ID NOs: 13, 14, 21, 22, 29, 30, 37, 38.45, 46, 3, 54, 61, 62, 69, 70, 77, 78, 85, 86, 93, 4, and 101; or (ii) a 38 arriino acid sequence from the carboxy terminal end of a peptide having at least 95% identity to an amino acid sequence selected from the group consisting of SEQ ID NOs: 13, 14, 21, 22, 29, 30, 37, 38,45, 46, 53, 54, 61, 62, 69, 0, 77, 78, 85, 86, 3, 4, and 101; optionally wherein: (a) the carboxy terminal end of said TCAP peptide is amidated or comprises an amidation signal sequence; or (b) when the amino terminal amino acid of said TCAP peptide is glutamine, it is in the form of pyrogmtarnic acid. {0013] In one embodiment, increasing energy available to a muscle cell comprises increasin glucose uptake by the cell under conditions where increased energy is advantageous, such as to protect against, mhibit prevent, and/or treat muscle trauma or muscle fatigue.

[00141 In one embodiment, a condition where increased energy is advantageous is the increased rate of muscle fiber contractions associated with exercise. As such in one aspect the invention provides a method of increasing energy available to a skeletal muscle cell before, during, or following exercise by administering to the cell an effective amount of TCAP, a pharmaceutically acceptable salt or ester thereof or obvious chemical equivalent thereof. .

[0015] In another embodiment, a condition where increased energy is advantageous is selected from the group consisting of: injury, hypoxia, a glycogen storage disease, and a myopathy.

[0016] In another embodiment, the invention provides a method of increasing energy available to a muscle cell over a long term. In various aspects, the long term is at least one day, at least three days, at least five days, or at least seven days.

[0017] In one embodiment, the invention provides a method for using TCAP, for instance TCAP-1 (human or mouse 3 or preferably human), to prevent or treat diabetes. In another embodiment the diabetes is Type 1 diabetes. In another embodiment the diabetes is Type 2 diabetes,

[0018] In one embodiment of the aforementioned methods of the invention, the muscle cell is a mouse myocyte.

[0019J In one embodiment the findings show that TCAP-1 results in a 20-30% decrease in plasma glucose levels in rats one week after adrriinistratiori. In another ernbodiment there was an increases in 18 F-2-deoxyglucose uptake into the cortex of TCAP-1 treated rats. In vitro, TCAP-1 also induces 3H-deoxyglucose transport into hypothalamic neurons via an insulin-iadependent manner. This is correlated with an increase in membrane levels of GLUT3 protein and immunoreactivity. la one embodiment a deduced pathway by which TCAP-1 signals in vitro was used to establish a link between the ME -ERK1/2 pathway and glucose uptake as well as a connection between the ME -EFK1/2 and AMP pathways. In another embodiment, the immunoreactiveity studies herein indicate that the TCAP-1 system exists in muscle and plays a part in skeletal muscle metabolism and physiology.

[0020] In another aspect, the invention relates to a method for modulating insulin- independent glucose transport using Teneurin C-Terminal Associated Peptide (TCAP) as defined herein. In one aspect, the invention provides amethod to increase energy available to skeletal muscle cells. In one embodiment, itfurther relates to methods and uses and compositions of Teneurin C-Terminal Associated Peptide (TCAP) as an agent to increase glucose uptake by skeletal muscle cells under conditions where increased intracellular glucose in skeletal muscle cells is advantageous such as to protect against, inhibit prevent, and/or treat insulin resistance or muscle fatigue.

[0021] In other embodiments the invention provides a method for controllmg plasma glucose levels. In one embodiment, the invention provides a method for decreasing plasma glucose levels using and/or adininistering an effective amount of TCAP (as defined herein) or a composition comprising TCAP or a salt thereof and a pharmaceutically acceptable carrier. In some embodiments, the invention provides a composition comprising TCAP, in other embodiments TCAP-1 or a salt or amide or pyroglutamic acid derviative thereof as described herein for use in the embodiments of this invention. In one embodiment the use is for contoling plasma glucose levels, in one aspect, lowering plasma glucose levels in patients in need thereof, such as diabetics, in one embodiment Type 2 diabetics.

[0022] Additional aspects and advantages of the present invention will be apparent in view of the description which follows, It should be understood, however, that the detailed description and the specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description. BRIEF DESCRIPTION OF THE FIGURES

[0023] The invention will now be described in relation to the drawings, in which:

FIG 1 depictsTCAP-1 action in plasma and brain. A. IV administered TCAP-ί is rapidly cleared from plasma with a peak occurring with 1 rain, B, SC administered TCAP-1 shows a peak plasma concentration at 30 to 30 min with a 50% loss occ-uxing within about 90 min.

C. IV administered 125 I-TCAP-1 showed concentration in a number of regions of the brain.

D, Control animal with SC-administered lS Fluro~2-deoxyglucose (F2DG) after positron emission tomography (PET) imaging. E. Saline control of rat showing F2DG activity. F. Control animal with scrambled TCAP-1 showing F2DG activity. G. TCAP-1 administered animal showing F2DG activity. H. Comparative uptake of TCAP-l and controls in total brain region. I, Comparative uptake of TCAP-1 and controls to cortical regions, J. Comparative uptake of TCAP-1 and controls in subcortical regions. ** p<0.01, *p<0.05.AcbSh,iiucleus accunibens, shell; Amyg, amygdala; CB, cerebellum; CPu, caudate putaraen; Hi- hippocampus; IC, inferior colliculus; mGN, medial geniculate nucleus; MN, m-unmillary nucleus; PAG, periaqueductal grey; SC, superior colliculus; SN, substantia nigra.

[0024] FIG. 2. Subcutaneous TCAP-1 injections decrease plasma glucose levels in normal Wistar rats (A, B) and Type II diabetic GK rats (C) after one week. Male Wistar rats were given a single injection of saline, 1 nmole kg TCAP-1, 1 wnote/kg TCAP-1, or 10 nmole kg TCAP- 1. Plasma glucose levels were measured using the OneTouch Ultra 2 Blood Glucose Monitoring System (accurate to 0.1 mM) during the first week and second week after administration. The level of significance was determined by a one-way A OVA and Bonferonni's post hoc test (A-B) and student's t-test (C).

[0025] FIG.3 TCAP- 1 induced changes in plasma glucose, insulin and glucagon. A,

Normal rats with acute SC TCAP-1 adnunistration showing the decrease in plasma glucose after 1 week. B, Decrease in plasma insulin after 1 week in normal Wistar animals. C. Increase in plasma glucagon after 1 week in normal Wistar rats. D. Decrease in plasma glucose after 1 week in Goto-Kakazaki (GK.) rats. E. Decrease in plasma insulin in GK rats. F. Increase in plasma glucagon in GK rats after 1 week of treatment. *p<0.05 as determined by a one-way ANOVA (Figs 23A-C) and Students T-test (Figs 23D-F). [0026] FIG. 4 Liver glycogen content in extracted liver of TCAP-1 treated Wistar rats. Wistar rats were given injections of 0 nmole/kg (n=6), 1 nmole kg (n=7), or 10 nmole/kg (n=7) of TCAP-1. During the second week, liver tissue was extracted and glycogen content was analyzed using a colorimetric glycogen assay. There is no significant change in liver glycogen content as a result of TCAP-1 treatment p>0.05. (Meani SEM; * p<0.Q5, ** p<0.01, *** pO.001; 1-way ANOVA and Boriferonni's post hoc test).

[0027] FIG, 5 Muscle glycogen content in extracted gastrocnemius muscle of TCAP-

1 treated Wistar rats. Wistar rats were given injections of 0 nmole kg (n=6), 1 nmole/kg ( ^, or 10 nmole/kg (n-7) of TCAP-1. During the second week, muscle tissue was extracted and glycogen content was analyzed using a colorimetric glycogen assay. There is no significant change in muscle glycogen content as a result of TCAP-1 treatment p >0.05. (Mean ± SEM; * p<0.05, ** pO.Ol, *** p 0,001; 1-way ANOVA and Eonferonni's post hoc test).

[0028] FIG, 6A to 6L are results of assays illustrating the lack of effect on various immune factors and blood characteristics in vivo. FIG. 6A Haemoglobin concentrations in vivo. Hemoglobin concentrations were generated using plasma collected from male Wistar rats given a single injection of saline (n=≤), 1 nmole/kg TCAP-1 (n= ), or 10 nmole kg TCAP-1 (n=4), and no injection (Control; n=2). Mo significant results were observed in haemoglobin concentrations following TCAP-1 administration. (Mean ± SEM; 1-way ANOVA and Bonferonni's post hoc test.) FIG. 6B Hematocrit of rats in vivo. Hematocrit counts were generated using plasma collected from male Wistar rats given a single injection of saline (n=5). 1 nmole/kg TCAP-1 (n=4), or 10 nmole/kg TCAP-1 (n=4), and no injection (Control; n=2), No significant results were observed in the hematocrit counts following TCAP-1 adnimistration- (Mean ± SEM; 1-way ANOVA and Bonferonni's post hoc test) FIG. 6C Platelet counts of rats in vivo. Platelet thrombocyte counts were generated using plasma collected from male Wistar rats given a single injection of saline (n=5), 1 nmole kg TCAP-1 (n=4), or 10 nmole kg TCAP-1 (n=4), and no injection (Control; n^Z). No significant results were observed in platelet counts following TCAP- 1 administration. (Mean ± SEM; 1-way ANfOVA and Bonferoimi's post hoc test.) FIG, 6D Red blood cell counts of rats in vivo. Red blood cell counts were generated using plasma collected from male Wistar rats given a single injection of saline (n=5), 1 nmole/kg TCAP-1 (n=4), or 10 nmole kg TCAP-1 (n=4) and no injection (Control; n=2). No significant results were observed in red blood cell counts following TCAP-1 administration. (Mean ± SEM; 1-way ANOVA and Bonferonrd's post hoc test) FIG. 6E White blood cells (WBC), neutrophils (HE), or lymphocytes (LY) in vivo. Levels of immune factors were generated using plasma collected from male Wistar rate given a single injection of saline (n-5), 1 nmole/kg TCAP-1 (n=4) 3 or 10 nmole kg TCAP-1 (n=4) and no injection (Control; n=2). No significant results were observed in. the levels of white blood cells, neutrophils or lymphocytes following TCAP-1 administration. (Mean ± SEM; 1-way ANOVA and Bonferonni's post hoc test). FIG. 6F Monocytes (MO), basophils (BA), or eosinophils (EO) in vivo. Levels of irnmune factors were generated using plasma collected from male Wistar rats given a single injection of saline (n=5), I nmole/kg TCAP-1 (n=4), or 10 nmole/kg TCAP-1 (vrA) and no injection (Control; n=2). No significant results were observed in monocytes, basophils or eosinophils following TCAP-1 adinmistration. (Mean ± SEM; 1-way ANOVA and Boiueroiini's post hoc test.) FIG. 6G Haemoglobin concentration in spontaneously diabetic Gogo-Kakizaki (GK) rats in vivo. Hemoglobin concentrations were generated using plasma collected from male GK Wistar rats given a single injection of saline (n=l 0), or 10 nmole/kg TCAP- 1 (n=8). No significant results were observed in haemoglobin concentrations following TCAP-1 administration. (Mean ± SEM; 1-way ANOVA and Bonferormi's post hoc test.) FIG, 6H Hematocrit in spontaneously diabetic Goto-Kakizaki (GK) rats in vivo. Hematocrit counts were generated using plasma collected from male GK Wistar rats given a single injection of saline (n=10), or 10 nmole kg TCAP-1 (n=8). No significant results were observed in hematocrit counts following TCAP-1 administration. (Mean ± SEM; 1-way ANOVA and Boirferon i's post hoc test) FIG.61 Platelet counts of spontaneously diabetic Goto-Kakizaki (GK) rats in vivo. Platelet thrombocyte counts were generated using plasma collected from male GK Wistar rats given a single injection of saline (n=10), or 10 nmole kg TCAP-1 (n=8). No significant results were observed in platelet counts following TCAP-1 adrnimsrration. (Mean ± SEM; 1-way ANOVA and Bonferonni's post hoc test) FIG. 6J Red blood cell counts of spontaneously diabetic Goto-Kakizaki (GK) rats in vivo. Red blood cell counts were generated using plasma collected from male GK Wistar rats given a single injection of saline (n=10), or 10 nmole kg TCAP-1 (n=8). No significant results were observed in red blood cell counts following TCAP-1 adramistration. (Mean ± SEM; 1-way ANOVA and Bonferonni's post hoc test.) FIG. 6 White blood cells (WBC), neutrophils ( E), or lymphocytes (LY) m spontaneously diabetic Goto-Kakizaki (GK) rats in vivo. Levels of immune factors were generated using plasma collected from male GK Wistar rats given a single mjection of saline (n=l0), or lO nmole/kgTCAP-1 (n=S). No significant results were observed in the levels of white blood cells, neutrophils or lymphocytes following TCAP-1 adrninistration. (Mean ± SEM; 1-way ANQVA and Bonferonni's post hoc test.) FIG. 6L Monocytes (MO), basophils (BA), or eosinophils (EO) in spontaneously diabetic Goto- Kakjzaki (GK) rats in vivo. Levels of immune factors were generated using plasma collected from male GK Wistar rats given a single injection of saline (n=10), or 10 nmole kg TCAP-1 (n=8). No significant results were observed in monocytes, basophils or eosinophils following TCAP-1 adrninistration. (Mean ± SEM; I -way ANOVA and Bonferonni's post hoc test.)

[0029] FIG. 7. Inmunolaistochemistry of β-dystroglycan φ-DG; red) and FITC- TCAP-l/FITC-SC-TCAP-1 (green) co-staining on 5 urn sections of skeletal mouse muscle. A) FiTC-TCAP-1 binding is seen ubiquitously at low concentrations and on s.mx)lemmas in high concentrations; B+D) β-DG expression localized to the sarcolemma C) FITC-SC- TCAP-1 binding shows non-specific localization. Images were obtained using a WaveFX spinning-disk confocal microscope (Quorum Technologies, Canada). Images were taken using a 20K confocal. Scale bar: 110 μιχι

[0030] FIG. 8. 1 mrounohistochemistry of co-staining of 0-dystroglycan (β-DG; red) and TCAP-1 (green) on 5 um sections of skeletal mouse muscle showing high sarcolemma localization of β-DG and TCAP-1. A) TCAP-1 is localized to the sarcolemma of muscle tissue; B) β-DG localization mainly on sarcolemma; Q A merge of TCAP-1 and p- DG localizations shows strong co-localization. Images were obtained using a WaveFX spirming-disk confocal microscope (Quorum Technologies, Canada), Images were taken using a 20x confocal. Scale bar: 110 μτη.

[0031] FIG. 9. Iinmuuoh ochemistry of co-staining of rapsyn (red) and TCAP-1

(green) on 5 μπι sections of skeletal mouse muscle shows patch distributions. A) DIC; B) TCAP-1; C) Rapsyn; D) Merge of TCAP-1 and Rapsyn. Images were obtained using a WaveFX spm ing-disk confocal microscope (Quorum Technologies, Canada). Magnification of 40x. Scale bar: 15 um. [0032] FIG. 10. Defining the Hypo e-38 Cells as a Model immortalized Cell Line:

A. Expression of Teneurin (Ten), TCAP and Latrophilin-1 (Lphn) in Hypo E-38 cells and whole mouse brain. B. Co-localization of FITC-TCAP-1 (green) with Lphn (red) in two representative Hypo E-38 cells. Yellow regions indicate regions of overlap.

[0033] FIG. 11. Increased glucose uptake and glucose transporter translocation in immortalized neurons. A. Glucose uptake in Hypo-E38 cells. B. Glucose-6-phosphate conversion in Hypo E3S cells following TCAP-1 treatment. TCAP-1 at lOnmoles shows a significant increase in G6P. C. Uptake of 3HDG following insulin administration to the cell. Significant increases were noted between 30-60 min. D. Uptake of 3HDG following scrambled TCAP administration to the cell. There were no significant differences. E. Uptake of3HDG following TCAP-1 administration to the cells. TCAP-1 shows a sigmficant uptake in 3H-deoxyglucose in immortalized neurons with an uptake profile distinct from insulin peaking at 60 min. F. TCAP-1 associated glucose uptake is independent from potassium which is required for insulin uptake. H. TCAP-1 induces GLUT3 translocation to the membrane H-ABC, micrograph images over 3h; H-DEF, GLUT3 immunofluoiescent images over 3h. H-GHI : combined images with DAPI. I. Increase in cytosolic GLUT3 Lmmunoreactivity over 3 hours. J. Increase m GLUT3 immunoreactivit in membrane regions over 3 hours. K. Examination of GLUT3 in neurites and growth cones. K-ABC; wheat-germ agglutinin immunoreactivity changes over 2 hours. K-DEF; changes in GLUT3 immunoieactivity over 2 hours. K-GHI, combined images for K-Ato F. L. Quantification of GLUT3 in neurites and growth cones over 2 hours.

[0034] FIG. 12A. Insulin treatment causes an increase in 3 H-2-deoxyglucose transport after 30 minutes in mHypoE-38 neurons. Cells were treated with 100 nM insulin- exposed to 0.5 uCi/well 3H-2-deoxyglucose and 40 mM KCl, and subsequently lysed with 50 mMNaOH. Radioactivity in cell lysates was counted using a liquid scintillation counter. The level of significance was determined by two-way A OVA using BotferonrrT s post hoc test,

[0035) FIG. 12B. TCAP-1 treatment results in an initial decrease in 3 H-2- deoxyglucose uptake but an increase with an increased treatment time of 60 minutes in mHypoE-38 neurons. Cells were treated with 100 nM TCAP-1, 100 nM SC-TCAP-l, or saline, exposed to 0.5 μΟίΛνβΙΙ 3H-2-deoxyglucose and 40 mM KCI, and subsequently lysed with 50 mM NaOH. Radioactivity in cell lysates was counted using a liquid sctatillation counter. The level of significance was determined by two-way ANOVA using Bonferonni's post hoc test.

[0036] FIG. 13. Insulin mediates KCl-dependent increases in 3H-2*-deoxyglucose and TCAP-l mediates KCl-independent transport of 3H~2-deoxyglucose in mHypoE-38 neurons, Cells were treated with 100 nM insulin, 100 nM TCAP-l or saline, exposed to 5.6 mM or 40 mM KCI and 0.5 μϋϊΛνβΙΙ 3H-2-deoxyglucose, and subsequently lysed with 50 mM NaOH. Radioactivity in cell lysates was counted using a liquid scintillation counter. The level of significance was deteimined by two-way ANOVA using Bonf erouni' S post hoc test

[0037] FIG. 14.Loc£di2atio ofTOM20 (red)andhex

duration of TCAP-l treatment in mouse immortalized N38 hypothalamic cells.

[0038] FIG. 15. Intracellular lactate levels show no significant change following an acute 100 nM TCAP-l treatment in mHypoE-38 neurons. Immortalized hypothalamic neurons were given acute treatments of 100 nM TCAP-l or vehicle (saline), (Mean ± SEM; n=3, *p<0.05, **p 0.01, ***p<0.001; 2-way ANOVA and Bonferonni's post hoc test).

[00391 FIG- 1^- Intracellular pyruvate levels decrease following an acute 100 nM

TCAP-l treatment in mHypoE-38 neurons. Immortalized hypothalamic neurons were given acute treatments of 100 nM TCAP-l, insulin or vehicle (saline). The level of significance was determined by two-way ANOVA using Bonferonni's post hoc test.

[0040] FIG. 17. Addition of 10 μΜ of ME inhibitor for 60 minutes prioi to farther treatment resulted in a decrease in 3H-2-deoxy glucose transport in insulin and TCAP-l treated mHypoE-38 neurons. MEK inhibitor did not alter vehicle glucose uptake significantly. Cells were pretreated with 10 uM MEK inhibitor (UQ126, New England Biolabs) for 1 hour prior to treatment with insulin, TCAP, or saline, exposed to 40 mM KCI and 0.5 Ο βΙΙ 3H-2-deoxyghicose, and subsequently lysed with 50 mM NaOH. Radioactivity in cell lysates was counted using a liquid scintillation counter. (Mean ± SEM; n=3; *p<0.05, **p<0.01, ***p<0.001; 2-way ANOVA and Bonferonni's post hoc test). 10041] FIG. 18. TCAP-1 signaUmgtbrough the MEK/ERK1-2 pathway is upstream of AMPK signalling in niHypoE-38 neurons. AMPK phosphorylation is enhanced by 1 nM treatment of TCAP-1 for 1 minute to mHypoE-38 cells. Phosphorylation of AMPK is inhibited by application of 10 μΜ MEK inhibitor (U0126) suggesting a MEK/ERKi-2 dependent signalling.

10042} FIG. 19. TCAP-1 induces MEK-dependent AMPK phosphorylation in mHyp0E~38 neurons. Analyses of western blots from Figure 3.15 for vehicle and 1 nM TCAP-1 treated cells at 1 rninute (n=3 for each group). Each p-AMPK band intensity was normalized to total AMPK at each corresponding treatment point. There was a significant (pO.01) inhibition of AMPK phosphorylation in the presence of 10 μΜ MEK inhibitor (U0126) with TCAP-1 treatment Values are mean d SEM, two-way ANOVA and Bor^eroro-i's post hoc test. Band intensity was measured by quantifying the integrated optical intensity using Lab Works (UVP Bio-imaging systems v4.0.0.8).

[0043] FIG. 20. msulin and TCAP-1 treatments cause an increase in 3 H-2- deoxyglucose transport in QiQn myocytes over the course of two hours. Cells were treated with 100 nM it-sulin, 100 nM TCAP-1, 100 nM SOTCAP-1, or saline then exposed to 0.5 Ci/well 3H-2-deoxyglucose 5 and subsequently lysed with 50 mM NaOH. Radioactivity in cell lysates was counted using a liquid scintillation counter. The level of significance was deterrnined by two-way ANOVA and Bonferonni's post hoc test

[0044] FIG. 21. TCAJP-1 treatment does not significantly change levels of p-ERK expression in C2C12 myocytes. C2CJ2 cells were treated with InM or 100 nM TCAP-1 for 1 rninute and levels of p-ERK and total ERK was compared, Representative western blots show that TCAP-1 treatment did not significantly change p-ERK levels suggesting that TCAP-1 acts via an alternate signalling pathway. Phosphorylation of ERK is inhibited by application of MEK inhibitor (positive control).

[0045] FIG. 22. 100 nM TCAP-I treatment onpERK levels in C2C12 myocytes is not altered across 15 minutes. C2C12 cells were treated with 100 nM TCAP-I for 0 (Vehicle), 1, 5, 10 and 15 minutes and levels of p-ERK and total ERK was compared. Representative western blots show that TCAP-1 treatment did not significantly change p- ERK levels suggesting that TCAP-1 acts via an alternate signalling pathway. Phosphorylation of ERK is irihibited by application of 10 μΜ MEK inhibitor (positive control; U0126).

[0046] FIG.23. Westemblot analyses quantification of TCAP-1 treatment on ERK phosphorylation in C2C12 myocytes. Analyses of western blots from Figure 15 for vehicle and 100 nM TCAP-1 treated cells at 0, 1, 5 5 10 » and 15 minutes (n=3 for each group). Each ρ-ERK band intensity was normalized to total ERK at each corresponding treatment time. There was no significant change in ERK phosphorylation in response to TCAP- 1 at any time points. There was significant inhibition of ERK phosphorylation in the presence of 10 uM MEK inhibitor (UO 126). (Values are mean ± SEM, two-way ANOVA and Bonferonrd's post hoc test). Band intensity was measured by quantifying the integrated optical intensity using Lab Works (UVP Bio-imaging systems V4.0.0.8).

DETAILED DESCRIPTION OF THE INVENTION

[0047] As described herein, teneuriu C-teirninus associated peptide (TCAP) increases energy available to muscles, such as to protect against, inhibit/prevent, and/or treat muscle fatigue or insulin resistance. In another aspect, TCAP treatment produces a significant decrease in blood glucose after one week. In the examples described herein, treatment with TCAP-1 induced glucose uptake in two distinct cell types: amouse myocyte cell line (C2C12) and an inmiortalized hypomalamic mouse cell line (N38). Upregulated glucose uptake is associated with other metabolic changes induding mitochondrial activation and glucose transporter translocation to membranes and regions of cellular growth. Further, TCAP is found on saicolemma of skeletal muscle and localizes to neuromuscular junctions. As such, TCAP can be used to increase energy available to muscles where increased energy is advantageous, such as to protect against, irdubit/prevent, and or treat muscle trauma or muscle fatigue,

[ ^). ' ΐ V ;¾¾,The present inventors are the first to show that the teneurin proteins play a significant role in the regulation of energy metabolism in mammals and in plasma glucose specifically in a recognized diabetes Type Π animal model. Specifically, the C-terminal peptide region, termed teneurin C-terminal associated peptide (TCAP)- 1 as defined herein or compositions comprising same can carry out these actions. It has been shown herein that single administrations of TCAP-1 at nanomolar concentrations can taken up in the blood stream and brain. Further, a single injection results in significant uptake in brain glucose after 3 days and decreased plasma glucose occurs after one week in rats. This is corroborated by decreased plasma levels of insulin and increased levels of glucagon. Using an arcuate nucleus neuronal cell model, our studies indicate that the increased uptake of glucose into brain tissues is associated in part by increased glucose transporters into the plasma membrane in a manner distinct from insulin. This increased glucose results in increased aerobic activity leading to increased mitochondrial ATP production. The actions of TCAP-1 are effected via the Iatrophihn and dystroglycan complex to stimulate a ME -EPJO/2 pathway leading to the phorphorylation of AMP and A T to regulate glucose transporter residency time in the plasma. The increase energy in the animal by TCAP-1 is reflected by behavioural studies that indicate an excess of energy production and usage. The teneurhi TCAP-latrophilin system is one of the oldest known in multicellular organisms and may reflect one of the first mechanisms that evolved to regulate glucose and nutrient uptake. Moreover, TCAP-1 regulates the behavioural actions of energy usage in rats mdicating that it may play a significant role in the treatment of major depression.

[0049] The present inventors) have also shown that TCAP can lower plasma glucose levels in an insulin independent manner in a diabetic mouse model. Thus TCAP can be used in the treatment of diabetes. In another aspect it can be used in the prevention and or treatment of hypoglcemia, such as common in diabetics, such as insulin dependent Type I diabetics.

Definitions

[0050] "Administering to the cell(s)" as used herein means both in vitro and in vivo administration to the cells and can be direct or indirect adnunistration, as long as the cells are at some point exposed to the substance being a<mnnistered.

[0051] "Effective Amount" and "Therapeutically Effective Amount" as used herein means an amount effective, at dosages and for periods of time necessary to achieve the desired results. For example, an effective amount of a substance may vary according to factors such as the disease state, age, sex, and weight of the individual, and the ability of the substance to elicit a desired response in the individual. Dosage regimes may be adj sted to provide the optimum therapeutic response. For example, several divided doses may be administered daily or the dose may be proportionally reduced as indicated by the exigencies of the therapeutic situation,

[0052] "Homeostasis" as used herein means the inherent tendency in an organism ot cell toward maintenance of physiological stability and making automatic adjustments in relation to its environment. Otherwise knovwi as normal stability of the interaal environment (Sapolsky, 1992).

[0053] 'Insulin Resistance" as used herein means a reduced response of skeletal muscle cells to insulin as compared with skeletal muscle cells of a subject with normal glucose tolerance.

[0054] "Muscle Fatigue" as used herein means the decline in the ability of a muscle fiber to generate force as a result of depletion of energy substrates within the fiber.

[0055] "Muscle Trauma" as used herein means any injury to one or more skeletal muscle cells.

[0056] "Neuronal Cells" as used herein includes, but is not limited to, immortalized mouse hypothalamic neurons.

[0057] "Obvious Chemical Equivalents" as used herein means , in the case of TCAP, any variant that does not have a material effect upon the way the invention works and would be known to a person skilled in the art. For instance, this could include but not necessarily .be limited to any salts, esters, conjugated molecules comprising TCAP, truncations or additions to TCAP.

[0058] 'Tharmaceutically Acceptable Carrier" as used herein means any medium which does not interfere with the effectiveness or activity of an active ingredient and which israot toxic to the hosts to which it is administered. It includes any carrier, excipient, or vehicle, which further includes diluents, binders, adhesives, lubricants, disintegrates, bulking agents, wetting or emulsifying agents, pH buffering agents, and miscellaneous materials such as absorbants that may be needed in order to prepare a particular composition. Examples of carriers, excipient or vehicles include but are not limited to saline, buffered saline, dextrose, water, glycerol, ethanol, and combinations thereof. The use of such media and agents for an active substance is well known in the art (e.g. , "Remington: The Sciences and Practice of Pharmacy, 21 st Edition", (University of tfie Sciences in Phfladelphia , 2005).

[0059J "Skeletal Muscle Cells" as used herein includes, but is not limited to, C2C12 myocytes.

[0060] "TCAP" as used herein means a 38-41 amino acid sequence, or in one embodiment a 40-41 amino acid sequence, from the C-terminal end of ateneurin peptide and all analogs, homologs, fragments, derivatives : , salts, esters of the TCAP peptide which have the desired activity, and obvious chemical equivalents thereto, as described in PCT/CA2003/000622, filed May 2, 2003, published November 13, 2003, and which is herein incorporated by reference. For instance, in one embodiment, TCAP includes human or mouse TCAP, such as TCAP-Ϊ, such as SEQ. ID. NOs. 37-44 (mouse) or 69-76 (human) of PCT/CA2O03/000622 and analogs, homologs, fragments, derivatives, salts, esters and obvious chemical equivalents thereof. In one embodiment the TCAP is mouse TCAP-1 having the amino acid sequence:

QQLLGTGRVQGYDGYTAT-SVEQYLE^

nm 011855 (SEQ. ID.NO. 38)). In another embodiment the TCAP is human TCAP- l. hi another embodiment the "Q" at the C-terminal of the TCAP, for instance in TCAP-1 can be a glutamic acid or a pyroglutamic add. in another embodiment the TCAP peptide consists essentially of:

(i) an amino acid sequence having at least 95% identity to an amino acid sequence selected fi-oj the group consisting of SEQ ID NOs: 13, 14, 21, 22, 29, 30, 37, 38, 45, 46, 53, 54, 61, 62, 69, 70, 77, 78, 85, 86, 93, 94, and 101; or

(ii) a 38 amino acid sequence from the carboxy terminal end of a peptide having at least 95% identity to an amino acid sequence selected from the group consisting of SEQ ID NOs: 13, 14,21, 22, 29, 30, 37, 38,45, 6, 53, 54, 1, 62, 69, 70, 77, 78, 85, 86, 3, 4, and 101; optionally wherein: (a) the carboxy terminal end of said TCAP peptide is auudated or comprises a amidation signal sequence; or

(b) when the amino terminal amino acid of said TCAP peptide is glutamine, it is in the form of pyroglutamic acid.

[0061] In one embodiment the TCAP is TCAP-1, in another mouse or human

TCAP-1, or a sequence with 95% identiy to an amino acid sequence of mouse or human TCAP-1(SEQ. ID NO. 37, 38, 69 or 70 or in other embodiments SEQ. ID. NO. 38 or 70), optionally wherein,:

(a) the carboxy terniinal end of said TCAP peptide is amidated or comprises an amidation signal sequence; or

(b) when the amino terrninal amino acid of said TCAP peptide is glutamine, it is in the form of pyroglutamic acid.

[0062] In one emboiiraent TCAP is prepared by solid phase synthesis and stored as a lyoptalized powder at -80°C reconstituted by -dkalrmzirtg with ammonium hydroxide and dissolved into physiological saline at lO '4 M stock solution. In one embodiment the TCAP-1 is expressed in separate transcript from the teneurms, such as i adults.

[0063] "A nucleotide encoding TCAP" as used herein means a nucleotide sequence that encodes TCAP, including DNA and R A. Such suitable sequences are described in PCT/CA2003/000622, which is herein incorporated by reference.

Applications: The use of TCAP to Increase ^Energy Available to Skeletal Muscle Cells

[0064] The invention broadly contemplates the use of TCAP, including an isolated

TCAP. and a nucleotide encoding TCAP, to increase energy available to skeletal muscle cells.

fa) Applications of Increasing Glucose Uptake in Skeletal Muscle Cells

[0065] Uptake of glucose into skeletal muscle cells is critical for carbohydrate storage and to provide energy for muscle contractions (e.g. during exercise) (Wassermau et al. s 2011). During exercise, higher skeletal muscle glucose uptake and carbohydrate oxidation delays muscle fatigue by enabling carbohydrate oxidation from sources other than glycogen (Coyle et al., 1986; McConell et al., 1999, 2000). As a regulator of glucose homeostasis, skeletal muscle comprises the bulk of insulin-sensitive tissue. In insulin resistance states, such as type 2 diabetes and obesity, insulm-stiraulated glucose disposal in skeletal muscle is markedly impaired (DeFronzo and Tripathy } 2009; Petersen et al., 2007; Wasserman et al., 2011). Insulin resistance in skeletal muscle can precede development of hyperglycemia and type 2 diabetes, and in the event that these states develop, skeletal muscle continues to exhibit insulin resistance (DeFronzo and Tripathy, 2009; Petersen et al, 3 2007). Insulin resistance in skeletal muscle is associated with a variety of conditions, including obesity, hypertension^ heart disease, dysUpidemia, and ageing, as well as many disease states including type 2 diabetes, polycystic ovary syndrome, chronic kidney failure, heart failure, myotonic dystrophy, and lipodystrophy (Abdul-Ghani and DeFronzo, 2010).

[0066] Further, skeletal muscle is a desirable target tissue for the treatment of diabetes, mcluding Type 1 diabetes) not only for its central role in whole body metabolism and glucose homeostasis. (Mann et al. ( Curr Pharm Des. 2010;16(8):1002-20 - http://www.pcbi.r m.riih.eov/pubmed/20041826 .

[0067] As a result, the ability to enhance glucose uptake in skeletal muscle cells and correspondingly lower blood plasma glucose levels has potential applications to enhance performance during exercise (e.g. by delaying onset of muscle fatigue), to counteract skeletal muscle insulin resistance, and as a treatment for a variety of disorders associated with insulin resistance, including type 1 and type 2 diabetes, The present inventors herein describe a method of increasing energy available to skeletal muscle cells using TCAP.

[0068] A method for increasing glucose uptake ra muscle cells also has potential applications for promoting recovery from muscle trauma or exercise-induced injury, and/or as a treatment for glycogen storage disorders or hypoxia.

[0069] Glycogen storage disease type V (McArdle's disease) results from a deficiency of the muscle isofonn of glycogen phosphorylase, which is responsible for glycogenolysis. At the protein level, skeletal muscle adaptations suggest an augmented glucose transport and glycolytic flux as a compensatory metabolic strategy to a chronic absence of the enzyme ( obertshaw et al., 2007), Due to virtually absent myoce ar glycogenolysis, patients with the disorder rely heavily on blood-borne fuels, and increased availability of glucose during exercise has a marked and prolonged effect on exercise tolerance in patients with cArdle's disease (Vissing et al., 1992; Aadersea et al., 2008).

[0070] Glycogen storage disease type ΠΙ results from a deficiency in glycogen branching enzymes resulting in deposition of abnormal glycogen in muscle cells. Although myopathic symptoms in this disorder are often ascribed to the muscle wasting these patients suffer in adult life, a recent study suggests that the inability to debranch glycogen also has an impact on muscle energy metabolism. In particular s patients experience exercise-related symptoms of muscle fatigue likely related to insufficient energy production in muscle (Preisler et al. 3 2013). Patients may therefore benefit from increased availability of glucose to muscle cells.

[0071] Exercise-induced skeletal muscle injury also impairs glucose uptake, likely via disturbance of the insulin signaling pathway (Aoi et al., 2012). Increased glucose uptake in skeletal muscle tissue is also a hallmark of hypoxia (Zierath et al., 1998). These results suggest that increased availability of glucose to skeletal muscle cells after injury or during hypoxia may be beneficial.

[0072] Further in some embodiments one can control glucose uptake by skeletal muscle cells by varying amount of TCAP administered and timing.

Qa\ Effect of TCAP in Increasing Energy Available to Skeletal Muscle Cells

[0073] The potential fornatural peptides to regulate skeletal muscle glucose uptake is an important paradigm in the search for novel ways of normalizing energy homeostasis, enhancing muscle fiber performance and recovery from injury, and coping with disorders of skeletal muscle carbohydrate metabolism. The TCAP peptides increase the energy available to skeletal muscle cells by increasing intracellular glucose concentrations and reducing plasma glucose levels. The present inventors herein describe a method of treatment or use of TCAP in increasing available energy to skeletal muscle cells to address and treat such concerns.

Pharmaceutical Compositions and odes of Administration

[0074J TCAP, pharmaceutically acceptable salts or esters thereof or obvious chemical equivalents thereof as defined herein can be used in the methods and use of the invention described herein. In some embodiments it can be administered by any means that produce contact of said active agent with the agent's sites of action in the body of a subject or patient to produce a therapeutic effect, in particular a beneficial effect, in particular a sustained beneficial effect. The active ingredients can be administered simultaneously or sequentially and in any order at different points in time to provide the desired beneficial effects. A compound and composition of the invention can be formulated for. sustained release, for delivery locally or systemically. It lies with the capability of a skilled physician or veterinarian to select a form and route of adirdnistration that optmiizes the effects of the compositions and treatments of the present invention to provide therapeutic effects } in particular beneficial effects, more particularly sustained beneficial effects.

[0075] In one embodiment, administration of TCAP includes any mode that produce contact of S£dd active agent with the agent' s sites of action in vitro or in the body of a subj ect or patient to produce the desired or therapeutic effect, as the case may be. As such it includes aa^ninistration of me peptide to the site of action - directly or through a mode of delivery (e.g. sustained release formulations, delivery vehicles that result in site directed delivery of the peptide to a particular cell or site in the body. It also includes administration of a substance that enhances TCAP expression and leads to delivery of TCAP to a desired cell or site in the body. This would include but is not limited to the use of a nucleotide encoding TCAP, e.g. via gene therapy or through a TCAP expression system in vitro or in vivo, as the case may be that results in enhanced expression of TCAP. It can also include administration of a substance to the cell or body that enhances TCAP levels at the desired site.

[0076] The above described substances including TCAP and nucleic acids encoding

TCAP or other substances that enhance TCAP expression may be formulated into pharmaceutical compositions for administration to subjects in abiologically compatible fbrm suitable for administration in vivo. By "biologically compatible form suitable for adrniriistxation in vivo" is meant a form of the substance to be administered in which any toxic effects are outweighed by the therapeutic effects. The substances may be administered to living organisms including humans, and animals. [0077] Thus in one embodiment, the invention provides the use of TCAP or modulator thereof in the preparation of a medicament for the inhibition of neuronal cell death and/or the treatment of related conditions. In one embodiment, a therapeutically effective amount of TCAP or a pharmaceutical composition as described herein is administered to a patient in need thereof. A patient in need thereof is any animal, in one embodiment a human, that may benefit from TCAP and its effect on inhibition of neuronal cell death.

[0078] An active substance may be administered in a convenient manner such as by injection (subcutaneous, intravenous, etc.), oral administration, inhalation, transdermal application, or rectal ad^ninistiation. Depending on the route of administration, the active substance may be coated in a material to protect the compound from the action of enzymes, acids and other natural conditions that may inactivate the compound. In one embodiment, TCAP is adrninistered directly t or proximate to the desired site of action, by injection or by intavenous. If the active substance is a nucleic acid encoding, for example, a TCAP peptide it may be delivered using tei-bmques known in the art,

[0079] The compositions described herein can be prepared by per se known methods for the preparation of pharmaceutical acceptable compositions which can be administered to subjects, such that an effective quantity of the active substance is combined in a mixture with a pharmaceutical acceptable vehicle or carrier. Suitable vehicles or carriers are described, for example, in Remington's Pharroaceutical Sciences (Remington's Pharmaceutical Sciences, Mack Publishing Company, Easton, Pa. , USA 1 85 or Remington's The Sciences and Practice of Pharmacy, 2l 8t Edition", (University of the Sciences in Philadelphia, 2005) or Handbook of Pharmaceutical Additive* (compiled by Michael and Irene Ash, Gower Publishing Limited, Aldershot, England (1 95) ), On this basis, the compositions include, albeit not exclusively, solutions of the substances in association with one or more phamaceutical acceptable vehicles, carriers or diluents, and may be contained in buffered solutions with a suitable pH and/or be iso-osmotic with physiological fluids. In this regard, reference can be made to U. S. Patent No. 5,843, 56.

[0080] As will also be appreciated by those skilled, administration of substances described herein may be by an inactive viral carrier. In one embodiment TCAP can be administered in a vehicle comprising saline and acetic acid. [0081] Further, in one embodiment, TCAP may be administered in a form that is conjugated to another peptide to facilitate delivery to a desired site, or in a vehicle, eg. a liposome or other vehicle or carrier for delivery.

[0082] The present invention is described in the following Examples, which are set forth to aid in the understanding of the invention, and should not be construed to limit in any way the scope of the invention as defined in the claims which follow thereafter.

EXAMPLES

EXAMPLE 1 - Peptide Synthesis

[0083] Mouse TCAP-1 (such as SEQ, ID, NO.. 8) was prepared by solid phase synthesis as previously described (Qian et al., 2004), The peptide was solubilized in phosphate buffered saline (PBS) at a concentration of 2xl0 '7 M before being diluted in the appropriate medium.

[0084] The sequence of the mouse TCAP-1 (SEQ,; ID NO. 38) was deterniined by examining the carboxy terminal exon region of mouse teneurin-1 (accession number: NM011855). A mouse paralogue of the putative peptide sequence from teneurin-1 was synthesized on an automated peptide synthesizer, Model Novayn Crystal (NovaBiochem, UK Ltd., Nottingham, UK) on PEG-PS resin using continuous flow Fmoc chemistry (Calbiochem-Novabiochem Group, San Diego, CA). Eight tunes excess diisopropyl ethyl amine (Sigma-Aldrich Canada Ltd.) and four times excess Fmoc-amino acid activated with HATU (0-(7-azabenzotria2X>l)-l-3, 3-tetramethyluronium hexfiuorophosphate; Applied Biosystems, Foster City, CA) at a 1:1 (mol/mol) ratio were used during the coupling reaction. The reaction time was 1 h, A solution of 20% piperidine (Sigma-Aldrich Canada Ltd.) m s N-dimeithylformide (DMF; Caledon Laboratories Ltd., Canada) was used for the deprotection step in the synthesis cycle. The DMF was purified in-house and used fresh each time as a solvent for the synthesis. The cleavage/deprotection of the final peptide was carried out with trifiuoroacetic acid (TFA), thioanisole, 1, 2 ethandithiol, m-cresole, triisopropylsilane, and bromotrimethyl silane (Sigma-Aldrich Canada Ltd.) at a ratio of 00437

24

40 : 10:5 : 1: 1 :5. Finally, it was desalted on a Sephadex G- 10 column using aqueous 0.1% TFA solution and lyopbjJUzed.

[0085] Synthetic rat 37-ΟΓ rTCAF-1 (TCAP with an R to K substitution at position 37 or position 8) was synthesized by the University of Toronto as previously described [2]; Briefly, K 37 -TCAP-1 was dissolved in PBS at 2 mg/ml and K37-TCAP-I was biotinylated using the EZ-Link Sulfo-NHFS-LC Biotinylation kit (Pierce, Rockford, IL) and purified with a D-salt polyacrilamide desalting column (ThermoFisher, Toronto, ON).

I008(fl For use as a control, a scrambled TCAP (scTCAP) was made that was nonfunctional in every test relative to TCAP-1 where each residue in mouse TCAPl was assigned a random number from 1 to 41 using excells random number function. Then the sequence was reconstructed except that a pyroglutamic acid was placed in the first position. Hence the scTCAP has the same amino acid composition but a different order. The scTCAP used in the experiments noted herein had the amino acid sequence: pETHSLELRVSLIGEVQQFIGYE QSDQ YGLLAYFDRVGMS- H2, wherein the pE is pyroglutamic acid.

[0087] OTHER MATERIALS AND METHODS

[0088] TCAP-1 antisera productio : The sequences used as haptens were LH- pEQLLGTGRVQGYDGYFVLSVEQYLE-OH (pE: pyroglutamic acid) and LH- VLS VEQYLELSDSA NIHFMRQSEI-NH2. The purity of fragments was measured by high performance liquid tbxomatography (HPLC) at over 80% using a Vydac CI B reverse-phase column. Two un-conjugated peptide sequences ofN-TGAP-1 and C-TCAP-1 weieusedfor antisera specificity studies. Two rabbits were each immunized with one of the conjugated peptides- The pre-immune sera were collected to assess the background immunoreactivity before immunisation The conjugated peptides were emulsified with Freund's complete adjuvant (FCA) in 1 : 1 ratio (V7V) at a final peptide concentration of 100 ^ηιΐ. Four weeks after the injection, the rabbits received a booster injection of peptides with Frennd's incomplete adjuvant. Periodic blood samples were collected to assess antibody titer. Booster injections were repeated until antibody titers were sufficient as determined by dot and western blotting. [0089] The binding specificity of the antisera was deteamined by an enzyme-lioked immunosorbent assay (ELISA). Nunc Maxisorp flat-bottom plates were coated with goat anti-rabbit IgG Fc fragment (Pierce Biotechnology) at 10 μg/πlI overnight at 4 °C. The remaining binding sites were blocked with 1% bovine serum albumin (BSA) in PBS 0.05% Tween-20 (PBS-T) for 2-16 h and the wells then washed with PBS-T. TCAP-specific antisera, at 1 :1000 dilution in PBS-T with 1% BSA, were bound to the goat anti-rabbit IgG Fc fragment-coated plates for 2 h. The wells were washed 3 x with PBS-T, [K£- and [ 37> TCAP-1 variants were labeled with biotin using EZ-Link Sulfo»NHS-LC-Biotinylation Kit (Pierce Biotechnology). Serial dilutions of unlabelled TCAP and 10 ng ml bionnylated TCAP in PBS-T 1% BSA were incubated for 4 h at room temperature (RT). The wells were washed 4 * with PBS-T and incubated with streptavidiii-44 HRP (Pierce Boitechnology) at 0.1 ugfail in PBS-T 1% BSA for 25 min. After 3 washes with PBS-T, the substrate Super Signal TMB (Pierce Biotechnology) was added for 10-30 min, the reaction was stopped with sulfuric acid, and HRP activity measured at 450 nm. The competition curves and 50% binding values were calculated with GxaphPad Prism 4 (San Diego, CA) software using variable slope sigraoidal regression and F test to compare the 50% binding values.

10090] FITC-TCAP-1 Conjugation: The [ gJ-TCAP-l peptide was labeled with fluorescein isothiocyanate (FITC) according to the EZ-label TITC Protein labeling kit (Pierce Biotechnology, Rockford IL), FITC was dissolved in dimethylforraamide, mixed with the [Kg]-TCAP-1 at a 24: 1 excess molar ratio and incubated for 2h at RT in the dark to allow for the conjugation of the primary amine of the lysine group. A dextran column was used to remove the unconj ugaled FITC and the absorbance of each fraction was measured at 280 nm to determine the elution point of the conjugated peptide in phosphate buffered saline (PBS; 0.1M phosphate, 0.15 MNaCl, pH7.2). The four fractions with the highest protein absorbance readings were combined and sterili2e-filtered using an Acrodisc Syringe 0.2 urn Supor low protein binding filter (Pall Life Sciences, Ann Arbor, Ml). The filtrate was concentrated using a Microsep I Omega centrafuge (Pall Life Sciences) at 4C . The samples were stored at 4C. To confirm the size of the FTTC-[K 8 ]-TCAP-1, 5 and 10 ul aliquots of the concentrated filtrate were run on a 10-20% gradient Tris-Tricjne gel. The amount of the FITC required to be injected as a control was determined by applying different PBS-diluted preparations of FITC on a nitrocelluose merabrate. The level of fluorescence was directly compared to that of a spot of the FITC-[K S ]-TCA_?-1 conjugate to be administered and that dilution was used for the administration after steiilize-flltratration indicated above. Fluorescence was measured using an EP Chemi H Darkroom system (UVP, Upland CA) with the sequential integration function of LabWorks Image acquisition and analysis software.

[0091] Uptake of TCAP-1 in Plasma: Male Wistar rats weighing 400-450 g were obtained from Charles River Laboratories (Montreal, Canada). Rats were singly-housed in standard Plexiglas shoebox cages under standard laboratory conditions, (12 h lightdark cycle, lights on at 0700) with food and water available ad libitum. Testing took place between 0900 and 1200 hours. Rats were given one week to acclimatize to the laboratory before surgery.Rats were anesthetized with isofjurane (2-3% m 100% <½) and a catheter was implanted into the jugular vein.

[0092] TCAP biotmylation: The 37 biotinylated TCAP was diluted into 200ul physiological saline to contain 10.5ug for 5u /kg dose and 52.5ug for 25nMkg dose. The rats weighed 400-450g. 200ul of peptide containing solution was delivered through the cannula, different syringe containing saline was connected and 200ul of saline was delivered to push the peptide into the bloodstream. The third syringe containing the heparin solution was used to fill the line with the lock, 15Q-200ul. After 5 min, the lock solution was aspirated into the syringe, and also about 150ul of the blood were aspirated and disposed off in case of the local contamination with high peptide concentrations, 200ul of the blood was sampled in a fresh syringe, line flushed with saline first (200ul) and heparin saline next (15Q-200ul).

[0093] Intravenous Studies; Rats were gently restrained, cannula clamped and unplugged, 1ml syringe with blunt needle attached to the end of the polyethylene 50 line and the lock solution containing heparin 50-lOOU/ml was removed. The line was clamped and a new syringe with a blunt needle attached for withdrawing about 200ul blood. The line was clamped and syringe removed to recover the blood. This blood sample was used to determine a baseline level of activity, All blood samples were incubated at a room temperature for 10- 20min and at 3000rpin for 5min to recover the serum. The serum was frozen on dry ice and kept at -80°C until the assay. [0094] Subcutaneous Studies: 37 TCAP was biotin labeled according to the biotinylation method above. Rats were gently restrained, cannula clamped and unplugged, lml syringe with blunt needle attached to the end of the polyethylene 50 line and the lock solution containing heparin 50-lOOU/ml was removed. The line was clamped and a new syringe with a blunt needle attached for withdrawing about 200ul blood. The line was clamped and syringe removed to recover the blood. This blood sample was used to determine a baseline level of activity. All blood samples were incubated at a room temperature for 10- 20rnin and centrifuged at 3000rpm for 5min to recover the serum. The serum was frozen on dry ice and kept at -80°C until the assay.

[0095] For IV administration, rats were gently restrained during the injection procedure. The IV cannula was unplugged and the lock solution (150-200 μΐ of 50-100 U/ml of heparin, Sigma Scientific) was removed. To obtain a baseline level of activity, 200 μΐ of blood was withdrawn prior to injection. 200 μΐ of TCAP-containing solution was delivered through the cannula. Mowed by 200 μΐ of saline to push the TCAP solution through the cannula. 150-200 μΐ of lock solution was injected to fill the catheter. For subcutaneous (SQ adii- stetion, rats were gently restrained and injected under the skin with 200 μΐ of TCAP- 1 -containing solution with a 23 gauge needle

[0096] Blood sampling procedures: Blood samples were obtained from the jugular catheter. Rats were gentiy restrained, and the IV cannula was unplugged. The lock solution was aspirated along with 150 μΐ of blood. This mixture was discarded in case of local contamination with high peptide concentrations. Asample o 200 μΐ ofblood was obtained in a fresh syringe. The catheter was then flushed with 200 μΐ of saline and then filled with 150-200 μΐ of lock solution. Lateral tail vein blood samples were obtained from lightly restrained rats whereby 200 μΐ ofblood was obtained using a 23 -gauge needle. A final hleed was achieved via cardiac puncture. All collected blood samples were allowed to clot for 15 mm at room temperature and centrifuged for 5 rain at 3000 rpm to recover the serum. The serum was frozen on dry ice and stored at -80°C until the assay.

[0097] TCAP enzyme-linked immunosorbent assay (ELISA): Nunc Maxisorp Flat bottom plates (VWR, Mississauga, ON) were coated with 100 μΐ of goat anti-rabbit IgG Fc fragment (Pierce 3 Rockford, IL) at 10 /m^ in PBS overnight at 4 C. The remaining binding sites were blocked with 1% bovine serum albumen (BSA; Sigma) withthimerosal (Sigma) in PBS with 0.05% Tween-20 (PBS-T) for 2-24 h. TCAP-l-specific antiseia (1 :1000; [3]) in PBS T with 1 % BSA was bound to the goat anti-iabbit IgG Fc fragment-coated plates for 2 h. Serial dilutions of uulabelled TCAP (0.1-100 ng/ml) and 20% blood serum were incubated for 4 h. Each blood serum sample was run in triplicate, Streptavid -HRP (1:10000) in PBS-T with 1% BSA was added to the wells and incubated for 25 rain. Substrate Super Signal TMB (Pierce, Rockfoid, IL) was added and incubated for 10-30 min, and the reaction was stopped with 2 sulfuric acid. HRP absorbance was read at 450 nm in a Molecular Devices UV-Vis spectrophotometer.

[0098] Autoradiography: For the TCAP- 1 radioiodination, 5 μΐ iodogen was added to 50 ul dichloromethane and allowed to dry. 30 ul of ammonium bicarbonate buffer was added, followed by 15 μ of TCAP. The solution was incubated with 1.5 mCi Na 115 I in 4QuI phosphate buffer, pH 7,8 for 15 min at RT. The reaction was stopped with 2 μΐ TFA and purified by HPLC. A radioactive peak eluting between 13.8-15 min was collected and 870 yCi of radiolabeled peptide was obtained. 12S I-TCAP- 1 was stored in the mobile phase with 1% BSA and 0.1% mercaptoethanol. Prior to injection, li5 I-TCAP-l was dried under nitrogen:, redissolved in 0.1% TFA and loaded onto a C-18 Seppak cartridge. Following washing, the peptide was eluted with 50% acetonilrile with 0.1% TFA, evaporated to dryness and redissolved in 0.1 ml of ammonium bicarbonate and diluted in 0.5 ml dd¾0. For the intranasal preparation, the peptide was redissolved in 20 ul ammonium bicarbonate solution with 20 ul water and 1 μΐ enhancer (10% DDM in water, total concentration 0.25%).Male Sprague-Dawley rats (fl-3) (160-2S0g; Charles River) were weighed and injected with 0.2 ml 0-9% sodium iodide (IP) prior to tail vein injection with 125 I-TCAP-1 radiotracer. The dose (80-174 μ^) was proportional to the rat weight. Rats were sacrificed 30 min after radiotracer injection. Following sacrifice, brains were dissected out and weighed, Brains were cooled in ice-cold saline and sectioned in 300- μτη slices on a vibtatome. Sections were dried on a slide warmer and exposed to a phosphor screen for 7-15 days for the IV- administered animals and 6 days for the intranasally-ad-uinistered animal and scanned. Areas of l25 I-mTCAP-l binding were analyzed according to the atlas of Paxinos and Watson.

[0099] Functional Positronic Emission Tomography Studies: TCAP-1 and scrambled TCAP-1 were stored at -80°C and protected from the light. On the day of adtniinistration, just prior to m ecfo , one vial of either TCAP-1 or scrambled TCAP-1 was removed from the freezer and placed on wet ice to thaw. Once the vial was thawed, it was warmed to room temperature by hand and vortexed for approximately 20s. Each injection consisted of 1 OOul (3000 pmol) or either the TCAP-1 or scrambled TCAP-1. A new aliquot was used for per injection per rat.

[00100] Male Harlan istar rats (Hsd:WI) were used in this study. They were approximately 325g on Day 1 of the experiment. The rats were fediiratfatedHadan2918.15 Rodent Diet and water ad libitum. Rats were housed in static cages with Bed-O'Cobs™ bedding inside Biobubble® Clean Rooms that provide H.E.P.A filtered air into the bubble environment at 100 complete air changes per hour. Ail treatments, body weight deterrrrinatiODS, and tumor measurements were carried out in the bubble environment. The environment was controlled to a temperature range of 70¾2°F and a humidity range of 30- 70%. The rats were randomized into treatment groups based on body weight on Day 0. All rats weighed >333g. Mean group body weights at the start of treatment were well matched (range of group means, 348-356g). Each rat was given a fixed volume subcutaneous injection of 0.1 ml of either saline, TCAP-1, or scrambled TCAP-1 as indicated.

[00101] PET Image Acquisition and Anarysi:; Positron emission tomography (PET) was performed using a Siemens Inveon microPET small animal PET scanner, and [18F] fluorodeoxyglucose (FDG) radiotracer (IBA Molecular). PET scans were acquired on all of Hie animals 4.5hrs post dosing and 3 days post dosing. The animals were not fasted before the start of imaging as per the protocol. The animals were injected intravenously with approximately lmCi of FDG. The FDGuptake occurred under anesthesia for 90 minutes. All the animals were imaged in the prone position. Body temperature was maintained with a therm ostat-regulated recirculating water heated pad. Individual body weights were recorded before each imaging session. Static emission data was acquired for 20 minutes.

[00102] The PET list mode data was converted to 2-dimensional (2D) sinograms, corrected for random coincidences, and normalized for scanner uniformity. PET images were reconstructed using an iterative 3D ordered subsets expectation maximization followed by a maximum a posteriori reconstruction (OSEM3D/MAP). PET image analysis was performed using the Amira 5.5.0 analysis software package. For whole body ROIs, a lowthreshold was set to delineate specific signals in the whole body while eliminating background. Regions of interest (ROIs) were drawn in three orthogonal planes on the whole body, cerebral cortex, rostral cortex, scapular region, lower and upper right/left forearm, heart, ganglion, upper and lower Ihittd limbs, testes, bladder and hypothalamic region., and then interpolated by the software. The total PET counts were calculated from all voxels within the segmented volumes of interest Percent injected dose (%ID) was calculated by normalizing the total counts in each tissue of interest at each time point, to the whole body total counts calculated over 1 minute from the whole body max uptake time point, for each animal, during the first 90 minutes post 18F-FDG adiiiinistration.

100103] All animals were observed for clinical signs at least once daily. The rats were weighed on each day of treatment and at least twice .weekly thereafter. Treatment-related weight loss in excess of 20% is generally considered unacceptably toxic. In this report, a dosage level is described as tolerated if treatment-related weight loss (during and two weeks after treatment) is <20% and mortality during this period in the absence of potentially lethal tumor burdens is <10%.

[00104] RT-PCR: RNA extraction: After serum-depriving a 6-weil plate of EH and N38 cells for 3 hours, Trizol reagent was added to the plate to maintain RNA integrity. Once at room temperature, chloroform was added and each sample was centrifuged at 12,000 rpm for 15 rnin. at 4°C Then, the supernatant containing RNA was trausferred to new sample tubes, 2-propanol was added, and each sample was centrifuged at maximum rpm (14000) for 10 rain, at 4°C. The supernatant was then discarded, pellets were washed with 75% ethanol, and samples were centrifuged at 7400 rpm for 5 min. at 4 e C, This process was repeated. Once the ethanol was removed, pellets were resuspended in diethylpyrocarbonate (DEPC) ¾0 S incubated in a 60*C water bath and mcubated to room temperature. RNA concentration was assessed using a Thermo Scientific Nanodrop 2000 Spectrophotometer.

[00105] Reverse Transcription andPCR: Total RNA (0.49 μ ) from mouse E14 and N38 cells was reverse transcribed into complementary DNA (cDNA). NA-free ¾0, random primers, and dNTP were added to sample RNA and the mix was heated to 65 °C for 5 min, put on ice for 1 min., then 5X first strand buffer and 0. IM DTT was added. Then, the following protocol was performed: samples were cooled to 25 C C for 2 min., Superscript II Reverse Transcriptase CRT) was added, heated at 25°C for 10 min., 42 <5 C for 50 min., and 70°C for 15 min. Polymerase Chain Reaction (PGR) for cDNAs of interest was carried out in the following conditions: denaturation for 7 min. at 95°C, 1 rain, at 95°C, then annealing at 60 e C for lmin. 30s. The extension phase occurred at 72 e C for 35 s and 5 rnin. at 72°C. Primer pairs used in the PCRs are found in Table 1. Gel electrophoresis was done using a 3% agarose gel. A gel doc system (BioRad Molecular Image Gel Doc XR+) was used to image teneurin-1 and TCAP-1 mRNA expression.

100106] Signal Transduction Studies: EK-ERK-AMPK Phosphorylation: Following TCAP-1 treatments, mHypoE-38 immortalized hypothalamic neurons were lysed with 500 of RIP A buffer. Cells were harvested using a cell scraper and rentrifuged at 14 000 rpm for 20 minutes at 4°C. The pellet was discarded and supernatant aliquoted into two tubes, 30 uL for protein quantification and the remainder ~450 uL for western blot analysis, and stored in -20°C. A Pierce BCA protein assay (Thermo Fischer Scientific, Cat. No. 23225) was performed to quantify protein concentrations for standardizing dilutions of respective supernatant samples. Samples (15 μg) were resuspended in sample buffer and size fractioned by SDS-PAGE (10%) at 100V for approximately 1 hour. Proteins were then electro-transferred to Hybond-ECL nitrocellulose membranes (Amersham, Cat No. RPN303D) for approximately 2 hours at 100 V. Membranes were washed with PBS and blocked in 5% milk-PBST (5% w/v nonfat milk powder in PBS with 0.2% Tween®20) at room temperature for 1 hour on a lab rotator (Thermo Scientific). Afterwards, membranes with incubated with rabbit primary antibodies in 1% milk-PBST overnight at 4°C with gentle agitation. Following 24 hours, the membranes were given three 5-minute washes in fresh PBST at room temperature and 42 incubated with anti-rabbit horseradish peroxidase (HRP)-conjugated secondary antibody (VWR, Cat. No, RPN2135 or Amersham, Cat. No. NIF824) diluted to 1 7500 in 1% milk-PBST for 1 hour at room temperature with gentle agitation. The membranes underwent three more 5-minute washes in fresh PBST at room temperature,

Subsequently, proteins were detected by adding chemiluminescence detection reagent (ECL Aniersham, Cat. No. RPN2232) to the membranes and exposing onto ECL Hyperfilm (VWR, Cat. No. 95017-653L) for 10-60 minutes. For analysis of AMPK phosphorylation signals, cells were pre-treated with either DMSO or MEK inhibitor (New England Biolabs, Cat No. U0126) for 1 hour followed by saline or 100 nM TCAP- 1 for a further 1 hour. Cells were harvested and western blot analyses were performed using a AMPK Rabbit mAb and p-AMPK Rabbit mAb. Antibody optimizations were achieved to maximize the band intensity while ensuring the absence of nonspecific bands. The primary antibodies for AMPK, p-AMPK, ERK, and p-ERK gave the best results at a. dilution of 1 : 1000. The experimental band for AMPK and p-AMPK is 62 kDa, consistent with results. However, p-AMPK was difficult to detect. The experimental bands for ERK and p-ERK are 44 ka and 42 kDa, consistent with experimental results.

[00107] DAG IP3 Assays: Bicinchoninic Acid β(2Λ) Assay: To determine the protein concentration in the lysed samples, 1 used the Pierce BCA Protein assay kit (Thermo Fischer Scientific, Cat. No. 23225). Diluted bovine serum albumin (BSA) standards were prepared according to kit instructions, and both the diluted standards and the supernatant were added in 25 uL duplicates to a 96 well plate. Then 200 uL of working reagent was added to each well. The plate was incubated for 30 min. at 37°C. Absorbance levels were measured at λ= 562 tun using a Spectramax Plus (Molecular Devices, USA).

[00108] Enzyme-linked Immunosorb nt Assays (ELISAs); Treatment was performed as described above, except that E14 and N38 cells were treated with either lOOnM of TCAP-1 or vehicle (distilled water) for 0, 5, 15, 30, 60 or 120 min. To quantify the protein concentration in E14 and N38 cell Iysates, a Pierce BCA Protein Assay was performed as described above. Lysates were then diluted in RIPA buffer so that each sample had equal protein concentration.

[00109] Diacylglycerol (DAG) Assay: The protocol for the Mouse DAG ELISA kit (MyBioSource.com, Cat No. MBS029616) was followed, in which an antibody-antigen- antibody-enzyme complex was formed. 50 uL of each sample was added in quadruplicate to a 96-well plate, and then incubated with an HRP-linked antibody. The plate was then washed and 3, 3', 5, S'-tetramethylbenzidme (TMB) was added creating a blue solution indicating a HRP enzyme-catalyzed reaction. Once TMB was added, the plate was incubated for 15 mm. at 37 °C. The reaction was temiinated with a sulphuric acid solution and colour was measured at λ= 50 nm using a Spectramax Plus 384 (Molecular devices, USA). DAG standards of 0.625, 1.25, 2.5, 5, 10, and 20 umol/well were prepared, as per kit instractions, and added in SO uL duplicates allowing a standard curve to be generated.

[00110] Inositol Triphosphate (IP3) Assay: The protocol for the Mouse IP3 ELISA kit (MyBioSource.com, Cat No. MBS744522) was performed as described jn the above DAG assay section. However, 100 uL of each sample was added in quadruplicate to a 96- well plate, and IP3 standards of 2.5, 5, 10, 25, and 50 ng mL were prepared to create a standard curve. Colour was also measured at λ= 50 nm using a Spectramax Plus 384 (Molecular devices, USA).

[001111 Fluo-4 fluorescence measurements for [Ca 2+ ]i ; For fluorescence experiments, N38 cells were grown on Poly-D-lysine coated 25 mm round No. I glass coverslips (Warner Iristruments, Hamden, CT, USA) and placed in a flow-through bath chamber (RC-40HP, Warner Instruments, Hamden, CT, USA) of an inverted microscope (Axio Observer Zl , Zeiss, Toronto, ON, Canada) equipped with a Zeiss 40* oil immersion objective. Dyes were imaged using a FITC filter set (Semrock, Rochester, NY, USA) and a X-Cite 120 fluorescence iUumination system (Excelitas Technologies, Mississauga, ON, Canada), controlled by Volocity imaging software (Quorum

Technologies Inc., Guelph, ON, Canada). Fluorescence emissions were detected with an Orca-ER Hamamatsu B/W CCD digital camera (Hamamatsu, Middlesex, NJ, USA). Neurons were excited for 100 ms every 1 min to prevent bleaching of the dye and permit experiments of up to an hour in length. To assess whether endogenous fluorescence of cortical sheets affects fluorescence measurements, control cortical sheets were exposed to each treatment in the absence of fluorophores. The background fluorescence was minimal and. remained constant with each treatment; therefore, background fluorescence was not subtracted from fluorescent data. For statistical analysis, 10 neurons per coverslip were chosen at random and the average change in regions of interest from the center of the cell body was used as a single replicate. Brightly fluorescing cells were avoided. Traces were drift corrected to a linear regression line fit to the normoxic portion of the trace to enable comparison and produce average traces EXAMPLE 2 - In-Vivo Experiments

[00112] Animals: All animal studies performed in Canada followed the requirements set out by the .Canadian Council for Animal Care (CCAC). The University of Toronto is a CCAC accredited facility. For studies performed in United States, all procedures were conducted in compliance with all me laws. regulations and guidelines of the National Institutes of Health (ΝΙ1Γ) and with the approval of Molecular Imaging lnc.'s Animal Care and Use Committee. Molecular Imagine. Inc. is an AAALAC accredited facility.

EXAMPLE 2A -TCAP uptake In plasma and brain and glucose uptake

{00113] The first goal of establishing the in vivo actions of teneurin C-tenninal associated peptide (TCAP)- 1 was to determine its longevity in plasma and ability to be taken up into key regions of the brain associated with glucose and behavioural regulation. In the first set of studies, synthetic TCAP- 1 was administered by either intravenous (TV, Fig 1A) or subcutaneous (SC, Fig IB) injection. Both approaches showed a significant uptake of TCAP- 1 into the systemic plasma, as measured by an in-dwelling canula, however the rate of uptake and clearance differed markedly. In IV-treated animals, TCAP-1 was cleared from plasma within about 100 min, whereas, the SC treated .uiimals showed clearance within about 170 min for the highest dose of 125 ng kg. The plasma clearance half-life for IV-administeied TCAP was ranged from 4 ± 1 min for the lowest dose, 7 ± 2 for the mid dose and 16 ± 4 for the highest dose. In comparison, the clearance time in the SC-treated rats was prolonged due to the absorbance time required for the peptide to enter the blood stream and ranged from 40 ± 4 for the lowest dose, 50 =fc 11 for the middose and 36± 20 for the highest dose. There were no significant differences among the doses, Despite the differences in the plasma clearance half-life between the IV and SC-treated animals, the area under the curve (AUC) was similar with values of 1867± 58 and 1355 ± 374 at the low dose for IV and SC-treated ammals, 5529 ± 1002 and 5445 ± 482 respectively for the middle dose and 12805 ±1691 and 19633 ± 4354 respectively for the highest dose. Although the IV-treated animals at the lowest dose of 5 ng kg was significantly (p<0.05, t-test) greater than the SC results, there were no significant differences between the AUC for IV and' SC at the middle and high doses. On the basis of these studies, SC doses near the middle and higher concentrations were used for the physiological studies (see below). 100114] EXAMPLE 2B- 12 I TCAP-1 uptake into the brain

[00115] Having established that high concentrations of TCAP- 1 could be detected in the bloodstream, a second study utilizing 125 I-labelled TCAP-1 was injected IV to ctetemiine the uptake into the brain (Fig 1C). An rV-adrainistration protocol was utilized for direct comparison with a previous study (AI Chawaf et al., 2007) using FITC-labeled TCAP, and also to maximize the amount of material that could gain entry into the brain, Strong concentration of the label was found in a number of limbic regions including the nucleus accumbens, amygdala, and hippocampus. A strong signal was also shown in the arcuate nucleus, consistent with the concept of TCAP playing a role in energy metabolism. Uptake was also observed in the periaqueductal grey and substantia nigra indicating potential interaction with 5-HT and dopaminergic regulation (see discussion). These data are consistent with previous studies on IV administered FlTC-labelled TCAP-1 showing uptake into the brain.In another fPET scan, 2-deoxyglucose allows for an accurate depiction of the levels of glucose uptake as the missing hydroxyl group at the position renders the molecule unusable by tissues. fPET scans offer high-resolution images showing distinct uptake into regions of the rat with the magnitude of uptake (image not shown). Adult male Wistar rats injected with a single dose (vehicle, 10 nmole/kg TCAP-1 or 10 nmole kg scTCAP- 1) subcutaneously into the interscapular region showed no significant effect in the mean differences among lSF-2-deoxyglucose uptake in any tissues at 3 hours. However, TCAP-1 treated animals showed a high variability in the uptake into the cortical regions of the brain (data not shown). At three days after treatment, the trends were apparent. In the cortex,, TCAP-1 induced a 42% increase (P=0.0374; two-tailed t-test) over the vehicle response, and a 65% increase (P=0.0243; two-tailed t-test) over the scTCAP-1 -induced uptake . Using a two-tailed one-way ANOVA, the effect of treatment was P=0.0348. The data was analyzed both by t-test and ANOVA because of the potential difference in effect due to a specific receptor for TCAP- 1 and the possibility of an oligopeptide transporter effect of the scTCAP-1. Regardless however, a two-tailed, two way ANOVA using all three regions of the brain yielded a significant effect of treatment (P=0.0008) indicating a strong effect of TCAP-1 to increase glucose uptake into these regions. Moreover, there was no significant effect of regions or interaction as shown by the ANOVA analysis . Taken together, these data indicated that with respect to an acute adnu^stratioii, the brain showed the most enhanced uptake of glucose relative to the other tissue regions ( such as be pectoral region, intercostal muscles, heart, sympathetic ganglia, bladder, pelvic region and testes, which showed no significant effect.

Functional Positron Emission Tomography (fPET)

{00116] fPET studies discussed above were conducted through a collaboration with Molecular Imaging, Inc. (Ann Arbor Ml, USA). Normal adult male Wistar rats (approximately 350g) were acclimated for one week, then injected with vehicle (saline), 10 nmole/kg TCAP-1 or 10 nmole kg scrambled (SC)-TCAP-1 subcutaneously in the interscapular region. The anixuals were allowed to equilibrate for 3 hours and 3 days when they were injected with 200 μθι of 18F-2-deoxyghicose under halothane anesthesia 30 minutes before imaging. Animals were imaged with a Siemens microPET scanner. Positron emission was determined using the bundled software and the regions of uptake were detennined as a percentage of local emission relative to total body emission. Data was analyzed by two-tailed t-tests, one and two-way ANOVAs where necessary

EXAMPLE 2C - Glucose Uptake into the brain

[00117] Given the prolonged residency time of TCAP-1 in the plasma, an SC- adirdnistrarion was used to investigate whether the increase in TCAP-1 into the brain induced increased neurological activity. Using positron emission tomography (PET), neurological activity was assessed using lS Fluorine-2-deoxyglucose (F2DG) uptake into the brain and exarnined at 3 hours post TCAP injection and 3 days post injection. A Single SC -tdministration of 3000 pmoVkg of TCAP-1 induced a significant uptake of F2DG into the forebrain in comparison to the saline control or the scrambled TCAP- 1 analogue (Fig 1 , D- G). Overall uptake showed about a 35% uptake (p<0.01) in F2DG over the controls (Fig 1H). Separate exarnination of cortical (Fig II) and subcortical (Pig 1J) regions showed increases of about 25% in each region. Uptake after 3 hours, in comparison, was not significant but showed similar trends (data not shown). Although there was maj or uptake of F2DG in the sympathetic ganglia, heart and bladder, there were no significant differences in these regions between the vehicle, scrambled TCAP or TCAP adrrunistered groups.

EXAMPLE 3 - Effect of TCAP on Blood Glucose Levels [001181 A series of three in vivo experiments were performed in which male rats (Rattus norvegicus) were given a single injection of saline, 1 nmole/kg TCAP-1, 1 nmole/kg TCAP-1, or 10 nmole kg TCAP-1. Plasma glucose levels were measured using the OneTouch Ultra 2 Blood Glucose Monitoring System (accurate to 0.1 mM) during the first week and second week after admmistratioiL

In vivo TCAP-1 administration

[00119] Male Wistar rats pre-catheterized in the jugular vein were obtained from Charles River Laboratories (n=30; 6-8 weeks old) and were divided into three treatment groups: saline (n=10), 1 nmol kg TCAP-1 (uHO) and 10 nmol/kg TCAP-1 (n=10). Rats were housed in Plexiglass shoebox cages under standard laboratory conditions (12: 12 h light: dark cycle, lights on at 0700 h, temperature 21 ± 1 °C) with unrestricted access to food and water. Upon arrivalj the rats underwent one week of handling- All procedures were approved by the University of Toronto Animal Care Committee in accordance with the Canadian Council on Animal Care.

[00120] In Experiment 1 (An in vivo adnunistralion of TCAP-1 in male Wi star rats to measure acute changes in blood glucose and glycogen stores), after acclimation, three animaJls from each group were injected subcutaneously with TCAP-1 in the scapular region with 100 uLs of vehicle (saline) or the appropriate dose of TCAP-1. Blood was collected and glucose was analyzed at 0, 1, 2, and 4 hours on day 1 of experimenting. On day 2, the next set of 3 aiiirnals from each group were treated and blood collected and analyzed in the same manner. On day 3, the final 4 animals from each group were processed in the same manner. For the next week, the blood collection procedure was repeated again. However, at the end of the final 4 hour blood collection, the animals were anesthetized with isoflurane, blood collected by cardiac puncture, then euthanized with carbon dioxide. Tissues (brain, testes, heart, skeletal muscle from gastrocnemius, adipose and liver) were collected, flash frozen, and stored in -80*0. In objective 1 ; Experiment 2 (An in vivo admimstration of TCAP-1 in male Wistar rats to measure the long term changes in blood glucose), after acclimation, all animals from each group were injected subcutaneously with TCAP-1 as above, Blood was collected and glucose was analyzed everyday at 10am for 10 days. On the last day, the Emimals were sacrificed and tissues were collected as above. Experiment 3 (An in vivo adroinistxation of TCAP-1 in male GK rats to measure changes in blood glucose) was performed the same way as Experiment 2.

Glucose level determination

100121] Blood collected from each sample was immediately assayed using the ONE TOUCH Ultra®2 Blood Glucose Monitoring System (ONE TOUCH). The precision of this test was accurate to 0.1 rnmol/L and intra-assay variation was determined to be 3.32%.

Serum processing and haematology analysis

[00122] Whole blood samples were collected into plastic microrantrifuge tubes with EDTA-coated capillary tubes. A rninimum sample volume of 20 uL was required for the analyses by the Toronto Centre for Phenogenomics (Mount Sinai Hospital, Toronto) using the Hemavet 950Fs Hematology Analyzer. From the whole blood samples, serum was separated from the cells and fibrin by cehtrifuging the collection tubes for five minutes at 7000g at 25 "C. Afterwards, immediately following collection of serum, the samples were stored and maintained at a freezing temperature of -80 °C.

Muscle, and liver tissue processing and glycogen assays

[00123] Gastrocnemius muscle and liver samples were immediately extracted following cessation of life. The muscle tissue was washed in 0.1M PBS, pH 7.4 and flash frozen in liquid nitrogen before being sealed in aluminum foil and stored at -SO *C.

[00124] A portion of the frozen tissue was separated and ground up in liquid nitrogen to a powder form. Ground up tissue was dissolved in radio-rmmunoprecipitation assay ( IPA) buffer, containing 1% Triton X~100, 50mMTRIS-HCl(pH 7.4), 150 MNaCl,0.1% SDS, 0.5% Sodium deoxycholate, lmM EDTA, 1% Protease Inhibitor Cocktail Set III (Calbiochem, Cat. No. 539134), and 25 mM DTT. Tissues was dissolved at a 1-5 mg ml ratio at 4°C for 2 hours on a lab rotator (Thermo Scientific). The solution was subsequently centrifuged for 15 minutes at 13 000 rpm to remove the indigestable tissue. The colorimetric protocol for the Glycogen Assay Kit (Biovision, Cat. No. K646-100) was followed. Briefly, the enzyme mix included in the assay contains a gmcoamylase enzyme that breaks down glycogen into glucose which is then specifically oxidized to react with a probe in the mix to produce a measurable colour at λ=570 nm.

Results

[00125] Analysis revealed a significant decrease in blood glucose (p < 0.05) between week 1 and week 2 for rats injected with both a low and high dose of TCAP-1 (1 nmole kg and 10 nmoie/kg, respectively) (Fig.2A). Hourly results indicate that blood glucose is not significantly affected by TCAP-1 administration v thia 4 hours (data not shown). Fig 2A shows thatl nmole kg TCAP-1 treated rats (n-7) exhibited a significant decrease in blood glucose relative to vehicle (n-6) (* jX 0.05). 10 nmole/kg TCAP-1 treated rats (n=7) exhibited a significant decrease in blood glucose levels relative to vehicle (* p< 0,05)

[00126] To confirm the results from the first experiment, a second repeat of the same experimental design was performed. Again, male rats (Rattits norvegicus) were given injection(s) of varying doses of TCAP-1 and blood glucose levels were monitored daily for one week and once the second week. Daily glucose levels showed no significant changes during week 1 (data not shown). A comparison of the tenxdaal glucose levels during week 2 relative to the vehicle shows a significant lowering of blood glucose in the 10 tunole/kg TCAP- -injected rats (p <0.05; Fig.2B). Fig.2B shows that 1 ronole kg TCAP-1 treated rats (n=4) exhibited no significant change, 10 nmole/kg TCAP-1 treated rats (right, n=3) exhibited a significant decrease in blood glucose levels compared to vehicle (* p< 0.05)

100127] To determine the effect of TCAP-1 on blood glucose in the pathological model of diabetic GK male rats, rats were given a weekly injection for two weeks of saline or 10 nmole/kg TCAP- 1. Blood glucose was monitored daily for one week. Results indicate that TCAP-1 significantly decreases plasma glucose levels by day 4 of week 1 (p <0.001; Figure 2Q, Fig- 2C shows that 10 nmole/kg TCAP-1 treated rats (n=7) exhibited a significant decrease in blood glucose levels relative to vehicle (*** p< 0.001). The study was tenninated after day 4 of week 1 due to cauterization issues. (For all studies values were normalized as a percentage relative to the vehicle of each experiment. Mean ± SEM; * p<0.05; ** p<0.01, *** pO.001; A+B) 1-way A OVA and Bonferonni's post hoc test C) Student's t-test).

(00128] EXAMPLE 4 - Glucose Insulin and Glucagon changes in blood.

[00129] The previous experiments confirmed that IV and SC TCAP-1 uptake was into plasma was equivalent and that plasma TCAP can be taken up into the brain inducing glucose uptake into the brain. These f dings suggested that increased transport of glucose via TCAP-1 into tissues may result in decreased plasma glucose. Therefore, the acute effect of TCAP- 1 on plasma glucose changes was investigated in normal " Wistar and diabetic Goto- Kaki2a rats. The first set of studies using normal Wistar rats showed that upon a single SC injection of TCAP-1, both concentrations of the peptide (1 nmole and 10 nmols/kg) reduced plasma glucose levels by about 40% (p<0.Q5; 1 nmole; one-way ANOVA, Dunnett's Multiple Comparison Test) one week after the TCAP-1 injection (Fig 3 A). An examination of insulin showed that in normal wistar rats plasma insulin was reduced by 45- 50% (p<0.05, one-way ANOVA) in low and high cxDnceiirrations respectively (Fig 3B). Glucagon concentrations showed the opposite trend with the 10 nmol dose of TCAP inducing at 100% increase in in normal animals at the highest dose (p<0.05, one-way ANOVA) (Fig. 3C). Similarly, in Goto-Kaldzaki rats, plasma glucose was reduced about 35% after one week (p<0.05; Student's T-test) (Fig. 3D). Plasma insulin and glucagon changes reflected that of the normal Wistar rats with insulin concentrations decreasing about 40% (Fig 3E) and glucagon levels increasing about 38% over the vehicle administered animals (p 0.05; Student's T-test) (Fig. 3F).

EXAMPLE 5 - Liver and Muscle Glycogen Content In Extraced Liver Of TCAP-1 Treated Wistar Rats.

100130] Glycogen content in excised gastrocnemius muscle and liver was measured and results indicate no significant change between TCAP-1 treated rats and control rats (p >0.05) (Figure 3.2 and 3.3). Average muscle glycogen levels in the vehicle, 1 nmole/kg TCAP-1, and 10 nmole/kg TCAP-I groups were 0.03836 ±0009150 g/ug rotein, 0.02634 ±0.003573 protein, 0.03854 ±0.01146 g protein, respectively. Average liver glycogen levels in the vehicle, 1 nmole/kg TCAP-1, and 10 nmole kg TCAP-1 groups were 0.02233 ±0.002131 μ&¼ protein, 0.02318 ±0.0001932 ug/jig protei , 0.0.01674 ±0.0.001783 ug i protein, respectively.

[00131] Fig.4 illustrates the liver glycogen content in extracted liver of TCAP-1 treated Wistar rats. As noted above, Wistar rats were given injections of 0 Dmole/kg (n=6), I nmole kg (n=7), or 10 nmole kg (n==7) of TCAP-1. During the second week, liver tissue was extracted and glycogen content was analyzed using a colorknetric glycogen assay. There is no significant change in liver glycogen content as a result of TCAP-1 treatment p>0.05. (Mean ± SEM; * pO.05, ** p<0.01, *** p<0.00l; 1-way ANOVA and Bonferonni's post hoc test).

[00132] Fig, 5 illustrates muscle glycogen content in extracted gash-ocnernius muscle of TCAP-1 treated Wistar rats. Wistar rats were given injections of 0 nmole/kg (n=6) } 1 nmole kg (n=7), or 10 nmole/kg (n=7) of TCAP-1. During the second week, muscle tissue was extracted and glycogen content was analyzed using a colorimetric glycogen assay. There is no significant change in muscle glycogen content as a result of TCAP-1 treatment p >0.05. (Mean ± SEM; * p<0.05, ** pO.Ol, *** p<0.001; l-way ANOVA and Bonferonni's post hoc test).

[00133] EXAMPLE€ - Haeraatology Assays [00134] Haernatdlogy assays were performed on physiological normal rat serum and from Type II Diabetic GK rats obtained at the end of the in vivo studies noted herein in which TCAP-1 was administered to the normal rats and plasma glucose levels were monitored over the course of 1 -2 weeks. The assays were performed to determine whetehr TCAP-1 had an effect on immune factors and blood characteristics: Hemoglobinconcenrration, hematocrit, as well as platelet, red blood cell, white blood cell, netrophiL, lymphocyte, monocyte, basophi and eosinophil counts. Results are illustrated in Figures 6A to 6L. As can be seen by the figures, TCAP-1 did not have affect a change in these imm ne factors and blood characteristics.

.EXAMPLE 7 - Localization of TCAP in Muscle Tissue

[00135] Previous binding assays on brain tissue slices and embryonic hippocampal cells showed that FITC-TCAP-1 bound and co-localized with β-DG on cell membranes (Chand et al., 2012). The dystroglycan complex is implicated in muscle development and maintenance and is expressed ubiquitously on skeletal muscle fibers (Hughes et al., 2006). To determine whether the TCAP-1 system was present in skeletal muscle, mouse gastrocnemius muscle were sectioned into 5 urn slices and a fluorescent immunohistochemistry study for β-DG was performed together with a FITC-TCAP-1 binding assay.

Results

[00136] FITC-labelled TCAP-1 preferentially binds to the membranes of individual skeletal mouse muscle fibers and also exhibited a weaker, patchy localization across a slice of tissue (Fig. 7A). Consistent wim the known localization of β-DG on muscle, β-DG showed strong localization to the sarcolemma as well (Fig. 7B and D). A parallel FITC- labelled scrambied-TCAP-1 binding assay was performed and results indicate weak, nonspecific binding (Fig. 7C).

EXAMPLE 8 - Localisation of TCAP-1 Relative to B-Dystroglvcan in Skeletal Cells

[00137J TCAP-1 can be expressed as part of the entire teneurin-1 gene or as a separate transcript independent of the teneurin-1 gene (Chand et aL, 2012). Since FITC-TCAP-1 shows binding on skeletal muscle tissue with Hie dystroglycan complex, endogenous TCAP- 1 may also be localized similarly on skeletal muscle. To determine if endogenous TCAP-1 existed on skeletal muscle, mouse gastrocnemius muscle was sectioned into 5 μπι slices and a fluorescent mimuno stochemistr study was performed with TCAP-1 TNIR308 antiserum and P-DG.

Results

[00138] TCAP- 1 localized to the sarcolemma of muscle tissue (Figure 8A) as did β- DG (Figure 8B); there was strong co-localization of both TCAP-1 and β-DO (Figure 8C).

EXAMPLE 9 - Localization of TCAP-1 Relative to Rapsvn in Skeletal Cells

[00139] β-DG plays an integral role in the signalling at the neuromuscular junction of skeletal muscle (Hughes et al., 2006). Given that TCAP-1 upregulates β-DG gene expression in the brain and appears to be present in the skeletal muscle system, TCAP- 1 may be playing a role in neuromuscular signaling. The first step in determining whether mis is the case was to perform a preliminary immunoreactivity co-staining of TCAP-1 and the neuromuscular junction marker rapsyn.

Resnfts

[00140] This experiment shows TCAP-1 immunoreactivity on the sarcolemma and in specific regions of the sarcolemma (Fig. 9B). JRapsyn localized to distinct regions of the sarcolemma (Fig. 9C). Co-localization of TCAP-1 and rapsyn occurred in a patchy distribution where TCAP-1 is consistently localized adjacent to rapsyn (Fig. 9D). Fig.9 A is DIC.

[00141] EXAMPLE 10 - Defining the Hypo e-38 Cells as a Model

[00142] As noted herein it was established that 125 1-TCAP-1 can betaken up into the arcuate nucleus of the brain (see above), confirming previous studies that TCAP-1 can cross the blood-brain barrier (Al Chawaf et al., 2007). Because the hypo-E38 cell is derived from the mouse arcuate nucleus and we have previously established that this cell line is responsive to TCAP treatment, it was chosen as a model to investigate glucose metabolism. To further characterize this cell line, the expression of teneurins, TCAP and its putative receptor, latxopl j_o.-l was investigated (Fig, 10 A^). PCR-based expression showed that teneurins 3 and 4, and TCAPs 3 and 4 were highly expressed in the hypo-E38 cells whereas teneurin and TCAP-2 were less expressed. Unequivocal expression of either teneurin-1 or TCAP-1 could not be ascertained. These studies were compared to mouse brain that showed that all components of teneurins and TCAP's were present. With respect to the putative receptors, latropnilins, only latrophilin 1 and 3 could be detected in this cell line or in the intact mouse brain. Thus these findings suggested that the Hypo-E38 cell line was particularly appropriate for treatments of TCAP-1 as it did not express the peptide or proprotein endogenously. To confir previously published studies that the TCAP region of teneurins could bind with latrophilm-lj the co-localization ofFTTC-TCAP-l wimlata>pbilin-l im mioreactivlt was escamined (Fig. 1 OB). This showed a strong co-localization between the labelled TCAP-1 and the 1-faopMlin- 1 jrnmunoreactivity consistent with the previous studies that TCAP binds with latropbilm,

[00143] Figure 10: Defining the Hypo e-38 Cells as a Model immortalized Cell Line: A. Expression of Teneurin (Ten), TCAP and Latrophilin-1 (Lphn) in Hypo E-38 cells and whole mouse brain. B. Co-localization of FTTC-TCAP-1 (green) with Lphn-1 (red) in two representative Hypo E-38 cells. Yellow regions indicate regions of overlap.

[00144] Glucose uptake in cells'. Having established thatthe Hypo-E38 cells possess the key components of the teneurm-TCAP -latrophilin interactive complex, they were used to examine glucose uptake. These studies indicated that TCAP-1 had the potential to increase glucose transport into neurons. Initially, The amount of glucose uptake was examined (Fig 11A) however, there were no significant differences However, because glucose is rapidly converted to glucose-6-phosphate (G6P) by hexokinase Π, intracellular G6P was subsequently examined (Fig 11B). A 10 nM concentration increased intracellular G6P concentrations by 150% (p<0.05, one-way AN OVA). Given these findings, the study was repeated using 3H-deoxyglucose (3HDG), which is not hydrolyzed by hexokinase II and, therefore, provides a more accurate indication of glucose uptake into cells,

[00145] In these studies, 3HDGglucose uptake was measured in whole cells after TCAP-1, insulin or control aortiimstration. Insulin, used as the positive control showed a significant (p=0.0363; one-way ANOVA) uptake in 3HDGlucose within 30 min and remained high until after 60 min (p<0.Q5 Dunnett's Multiple Comparison Test) (Fig 11C). TCAP-1 also showed a significant effect of treatment (pMX0005, one-way ANOVA) showed a significant uptake at 60 mm (pO.Ol , Dunnett's Test) (Fig HE). The scTCAP-1 showed no significant glucose uptake (Fig, 11D). Moreover, because insuli¾ has been established to be potassium ( .-) dependent, the study was repeated potassium-free media. Although the lack of potassium decreased insulin-dependent glucose uptake to baseline levels, the decreased potassium concentration in the medium had no effect of TCAP- 1 stimulated glucose uptake (p<Q.00l; Fig HF,G).

[00146] Glucose entry into cells is passive and is dependent on the number of glucose transporters resident in the cell membrane. Therefore, it was likely that the ability of TCAP-1 to increase the amount of glucose into the cell could be due in part to increased glucose transporter insertion into the plasma membrane. The glucose transporter, GLUT3 is the maj or transporter of glucose in neurons and therefore was examined in the Hypo E38 cells (Fig 11H). In untreated cells, most of the GLUT3 immunoreaetivity was found around the nucleus, however after lh. following TCAP-1 treatment, there was a significant (p<0.05) increase (25%) in the amount of mmiunoreactivity in the cytoplasm (Fig.Ul), and by 3h s a 40% increase (p 0.001) could be detected in the cytosol. Further examination showed increased (p<0.05) presence in the membrane regions (Fig.llJ), A further study was performed to establish whether TCAP-1 could also induce glucose transporters in the growing neurites, as previous studies (Chand et al., 2012, Al Chawaf et al-, 2007) showed that TCAP-1 has a major effect on neuronal process formation (Fig- UK). In the current experiment, TCAP-1 induced a significant (pO.Ol) uptake of GLUT3 immunoreactivitly in growth cones of extending neurites (Fig 11L).

[00147] Figure 11 : Increased glucose uptake and glucose transporter translocation in immortalized neurons. A. Glucose uptake in Hypo-E38 cells. B. Glucose-6-phosphate conversion in Hypo E38 cells following TCAP-1 treatment. TCAP-1 at lOnmoles shows a significant increase in G6P, C. Uptake of 3HDG following insulin adininistration to the cell. Significant increases were noted between 30-60 min. P. Uptake of 3HDG following scrambled TCAP administration to the cell. There were no significant differences. E, Uptake of 3HDG following TCAP-1 administration to the cells, TCAP-1 shows a significant uptake in 3H-deoxyglucose in immortalized neurons with an uptake profile distinct from insulin peaking at 60 min. F. TCAP-1 associated glucose uptake is independent from potassium which is required for insulin uptake. H. TCAP-1 induces GLUT3 translocation to the membrane H-ABC, micrograph images over 3h; H-DEF, GLUT3 immunofluorescent images over 3L H-GHl, combined images with DAPI. L Increase in cytosolic GLUT3 immuiioreactivit over 3 hours. I Increase in GLUT3 imm noreactivity in membrane regions over 3 hours. K. Examination of GLUT3 in neurites and growth cones. -ABC; wheat-germ agglutinin immunoreactivity changes over 2 hours. -DEF; changes in GLUT3 immunoreactivity over 2 hours. K-GHI, combined images for -A to F. L. Quantification of GLUT3 in neurites and growth cones over 2 hours.

[00148] EXAMPLE 11 - Effect of TCAF on CeUalar Glucose Uptake in Brain Cells

[00149] The effect of TCAP-1 on glucose uptake in brain cells was examined in immortalized N38 hypothalamic cells. Immortalized mHypoE-38 hypothalamic embryonic mouse neurons (gift from Dr. Denise Belsham, University of Toronto) were grown in Dulbecco's Modified Eagle Medium (DMEM) containing 4500 mg/L D-glucose, L- glutamine, and 25 m HEFES buffer, without sodium pyruvate or phenol red (Gibco, Cat No.21063029), supplemented with 5% heat-inactivated fetal bovine serum (FBS) f 100U/ml penicillin and 100 ^πϋ streptomycin. Cells were maintained at 60-70% confluency at 37°C in a humidified CQ 2 incubator. To passage cells were washed once in sterile PBS, trypsmized and seeded at a density of 100,000 cells per 3.5cm plate and allowed to grow for 2-3 days. 24 hours prior to experimentation, medium was changed. mHypoE-38 hypothalamic cells were grown in 6-well tissue culture dishes (Owning Incorporated- Cat. No. 3516) at a seeding density of 200000 cells/9.5 cm 2 well iu a37 °C normoxic incubator. Cultures were grown for 36 hours to ~85% confluence prior to experimentation.

[00150] At day 3 post-plating, cells were washed twice with Locke' s buffer (154 mM NaCl, 5.6 mM KCl, 23 mM CaCl2, 3.6 mM NaHC03, 5 mM HEPES) without serum and glucose. The culture was incubated in the Locke's buffer for 1 hour at 37°C followed by exposure to lOOnMinsuUn, 100 nM TCAP-1, 100i-M SC-TCAP-l, ors-ilme. KCl (40mM) and 3 -2-deoxyglucose (0.5 μθ/ιηΐ) were added to culture 5 minutes before terminatioa of treatment exposure. Uptake of 3 H-2-deoxyglucose was stopped immediately after 5 minutes with three washes of ice-cold 0.9% NaCl solution. Parallel experiments with 5 Μ of cytochalasin B were performed to ensure that glucose uptake was of transporter-inhibitable transport. The cells were digested with 1 ml of 0.05 N NaOH at 0, 15, 30, 45, 60, 90 and 120 minutes after treatment. Cell lysates were used for determination of radioactivity by a beta liquid scintillation counter. Experiments were repeated three times with 3 wells per condition, per replication.

Results

[00151] For immortalized N38 hypothalamic cells, results indicate a significant signal for positive control insulin treatments (p <0.001) (Fig. 12A), a ^gnificant signal for TCAP-1 treatment (p O.OO 1) and a lack of a sigmficant signal for scrambled-TCAP-1 (SC-TCAF-1) treatments (p >0.05) (Fig. 12B). All results in Figure 12A and 12B were obtained from cells stimulated with 40 mM of KC1 for 5 minutes. Insulin treated mHypoE-38 hypothalamic cells exhibited an increase in 3 H-2-deoxyglucose uptake compared to control after 30 minutes with gradual decreases in glucose uptake at time points leading up to 2 hours. The maximal glucose uptake for insidk-treated cells was at 45 minutes resulting in an uptake value of 253 ± 21.38% relative to baselme (vehicle at 5 rninutes - 98.27 ± 14.828%). TCAP-1 Ireatment of mHypoE-38 hypothalamic cells resulted in an initial decrease in 3 H-2-deoxyglucose transport after 30 minutes and then a significant increase over the vehicle after 60 minutes (Figurel2B). The maximal glucose uptake for TCAP-1 treated cells was at 60 minutes resulting in an uptake value of 150.553 ±3.609% relative to baseline (p <Q.001; vehicle at 60 rninutes = 72.247 ± 19-677%; SC-TCAP-1 at 60 ninutes=61.523 ± 7.545%).This enhanced uptake persists until 90 minutes when, there is an increased glucose uptake up to 137.511 ±10.893% relative to baseline (p<0.00l) (vehicle at 90 minutes = 62.813 ± 12.728%; SC- TCAP-1 at 90 minutes = 68.020 ± 4.812 %). (Mean ± SEM; n^3; *p<0-05, **p<0.01, •**p<0,001; 2-way ANOVA and Bonferonni's test).

EXAMPLE 12 - Effect at TCAP on KCl-Indei. enfant Glucose Transport

(00152] N38 hypothalamic cells were cultured as above and treated with 100 nM insulin, 100 nM TCAP-1 or saline, exposed to 5.6 mM or 40 mM KCl and 0.5

2-deoxyglucose, and subsequently lysed with 50 mM NaOH. Radioactivity in cell lysates was counted using a liquid scintillation counter.

Results [00153] Results are shown in Figure 13 where Insulin-treated cells exposed to low KCl concentrations did not show significantly increased 3 H-2-deoxyglucose uptake (91.423 ± 5.226% vs. 99.964 ± 10.340%; p >0 5). However, 40 mM KCl exposure and 100 nM insulin together caused a significant increase in 3 H-2-deox glucose uptake both compared to insulin-treatment alone (288-572 ± 24.527% vs. 1.423 ± 5.226%) and 40 mM KCl exposure in the vehicle (288.572 ± 24.527% vs. 161.565 ± 14.238%; FigureD). This significant potentiation by KCl was not seen in TCAP-1 treated cells (300.601 ± 20.753% for 40 mM KCl vs, 246.261 ± 11.387% for 5.6 mM KCl). (Mean ± SEM; n=3; *p<0.05, **p<0.01, ***p<0.001; 2-way ANOVA and Bonferonni's post hoc test).

[00154] Therefore insulin treatment of 30 minutes alone does not cause an increase in glucose transport in mHypoE-38cells. KCl potentiates the insulin effect confirmmg the dependence of insulin on KCl to stimulate glucose uptake in neurons. Exposure to high KCl concentrations does not potentiate the TCAP-1 effect. Results demonstrate that unlike insulin, TCAP-1 increases 3 H-2-deox glucose uptake in a KCl-independent manner, likely through a different pathway.

EXAMPLE 13 - Effect of TCAP on Mitochondrial Activation

[00IS5] A key component of energy production in cells is the activation of mitochondria. TOM20, an outer membrane R A transporter in mitochondria, was used as a marker for mitochondrial activation. The effect of TCAP-1 treatment on mitochondrial activity in mouse immortalized N38 hypothalamic cells was assessed using antibodies specific for TOM20 (red). An antibody specific for hexokinase (green) was also used.

Results

[00156] TO 20 was upregulated after 3 hours of TCAP-1 treatment (Fig. 14).

EXAMPLE 14 - Effect of TCAP on Intracellular Lactate and Pyruvate Concentrations in raHypoE-38 Cells.

Effect of TCAF-I Treatments of 0 nM (vehicle) and 100 nM on intracellular lactate concentrations in mHypoE-38 immortalized embryonic hypothalamic neurons. [00157] Lactate is required to generate NAD+ from NADH as a result of sustained glycolysis (f olev et al., 2008). Thus, a decrease in lactate would suggest that there is a metabolic shift favouring non-glycolytic metabolism. Chronic 100 n TCAP-1 treatment of mHypoE-38 neurons for 3-12 hours decreased intracellular lactate in a dose-dependent fashion (Xu, 2012). Results are shown in Figure 15. These acute studies showed no significant changes in the intracellular lactate concentrations between TCAP-1 and vehicle (p=0, 1877; Figure 15). Immortalized hypothalamic neurons were given acute treatments of 100 nM TCAP-1 or vehicle (saline). (Mean± SEM; n=3, *p<0.05 3 **p<0.01. ***p<0.00l; 2- way ANOVA and Boiiferormi's post hoc test).

Effect of TCAP-1 treatments of 0 nM (vehicle) and 100 nM on intracellular pyruvate concentrations in ypoE-38 immortalized embryonic hypothalamic neurons.

100158]

[00159'] To comply with the supply and demand principle for glucose as cellular energy, an increase in glucose uptake into the cell could result in acute changes in the metabolism of pyruvate. Pyruvate is actively converted from glucose through glycolysis and provides cells with energy through 1he rebs cycle during aerobic metabolism (Pelicano et al,, 2001). Thus, a decrease in pyruvate levels would indicate decreased glycolysis or increased oxidative phosphorylation by virtue of the Krebs cycle.

[00160] mHypoE-38 cells were cultured as above except that, 24 hours prior to experimentation the medium was changed and cells ere grown in 10 cm tissue culture treated polystyrene plates (Corning Incorporated, Cat No.430293) at a seeding density of 400000 cells/55 cm2 dish in a 37 °C normoxic incubator. Cultures were grown for 36 hours to 85% confluence and subsequently synchronized for 3 hours, in serum-free media with penicillin and streptomycin antibiotics, prior to acute TCAP-1 treatments.

[00161] Cells were lysed with 200 uL of Pyruvate assay buffer containing a proprietary protease inhibitor cocktail. Cells were harvested using a cell scraper and cenrriiuged at 14000 rpm for 20 minutes at 4°C. The pellet was discarded and supernatant aliquoted into two tubes, 30 uL for protein quantification and the remainder for the lactate assay kit A Pierce BCA Protein Assay (Thermo Fischer Scientific, Cat No. 23225) was performed to quantify protein concentrations for stanikrdizing dilutions of respective supernatant samples. Diluted samples were deproteinized using disposable ultrafiltration 10 Kd spin columns (Biovision, Cat No 1997-25) at 10000 g for 10 rmnutes at 4°C. The colorimetric protocol for the Pyruvate assay kit (Biovision, Cat. No. K609- 100-1) was followed, in which an enzyme mix reacts with pyruvate and the product then interacts with a probe to generate a measurable color measurable at λ=570 nm. Briefly, 50 uL of each deproteinized sample was added in triplicates to a 96-well plate. Pyruvate standards of 0, 2, 4, 6, 8, and 10 nmol/well were prepared, as per kit instructions, and added in 50 uL triplicates to generate a standard curve. A pyruvate reaction mix, containing 46 uL of the assay buffer, 2 uL of the probe and 2 uL of the enzyme, was prepared and 50 uL mixed to each sample or standard for a total volume of 100 uIJwell. The reaction was incubated for 30 minutes at room temperature, protected from light. An absorbance reading was obtained at λ=570 nm using a SpectramaxPlus 384 (Molecular devices, USA).

Results

[00162] Results showthat 100 nMTCAP-1 treatment in mHypoE-38 cells result in a general decrease in intracellular pyruvate levels that was significant at 30 rninutes (0.536 ± 0.012 nmole/well vs. 0.706 ± 0.050 nmole well; Figure 16). It should be noted that a nonsignificant decrease in pyruvate levels can be observed at 1 minute with TCAP- 1 treatment This stays constant across 30 minutes. The effect of insulin appears nearing 15-30 minutes of treatment The decrease in intracellular pyruvate may suggest that oxidative phosphorylation is enhanced, causing a depletion of pyruvate, Main effect of TCAP-1 significant p=0.0012 (**). TCAP-1 treatment significant at 30 minutes (p~G.030425 *)„ (Mean ± SEM; n=3, *p<0.05, **p<0.01, ***p<0.001; 2-way ANOVA and Bonferoirni's post hoc test).

[00163] TCAP 1 treatment of N38 cells increased ATP production in a dose dependent manner with 1 nmole concentration increasing ATP production by 18% (p<0.01) , 10 nmoles by 25% (p<0.01) and 100 nmoles by about 40% (p<0.01) (Fig 4). If an anaerobic pathway was utilized this should translate into increased lactate production. In fact, TCAP-1 admnistration decreased lactate production in a dose-dependent manner with 1 nmole decreasing lactate by about 20% (pO.05)., 10 nmoles by 25% (p<0.001) and 100 nmoles by 40% (pO.0001), As such, the lack of lactate production has many benefits for instance in one aspect it can be used to protect against, inhibit/prevent and or treatmuscle fatigue or assist in muscle recovery.

[00164] l¾perimental design for the determination of intracellularpyruvate and lactate concentrations upon TCAP treatment on mHypoE-38 immortalized embryonic hypothalamic neurons: Cells were grown to ~80% confluence and serum deprived for 3 hours to synchronize. TCAP- 1 treatment of 0 nM (vehicle) and 100 oM were administered at Omin and cultures Iysed at 1, 5, 10, 15, 30, 45, and 60 minutes. Colorimetric assays were subsequently conducted

Lactate assays

[00165] The mHypoE-38 cultures were iysed with 200 uL of Lactate assay buffer containing a protease inhibitor cocktail. Cells were harvested using a cell scraper and centrifuged at 14000 rpm for 20 minutes at 4°C. The pellet was discarded and supernatant aliquoted into two tubes, 30 uL for protein quantification and the remainder for the lactate assay kit A Pierce BCA Protein Assay (Thermo Fischer Scientific, Cat No. 23225) was performed to quantify protein concentrations for standardizing dilutions of respective supernatant samples. Diluted samples were deproteini-jed using disposable ulteEtfiltration 10 Kd spin columns (Biovision, Cat. No 1997-25) at 10000 g for 10 minutes at 4°C. The colorimetric protocol for the Lactate Assay Kit (Biovision, Cat. No. K607-100) was followed, in which an enzyme mix reacts with lactate and the product then interacts with a probe to generate a measurable color. Briefly, 50 uL of each deproteinized sample was added in triplicates to a 96-well plate. Lactate standards of 0, 2, 4, 6, 8, and 10 nmol well were prepared, as per kit instructions, and added in 50 uL triplicates to generate a standard curve. A lactate reaction mix, containing 46 oL of the assay buffer, 2 uL of the probe and 2 uL of the enzyme mix, was prepared and 50 uL mixed to each sample or standard for a total volume of 100 uL/well. The reaction was incubated for 30 minutes at room temperature, protected from light. An absorbance reading was obtained at λ=570 nrn using a SpectramaxPlus 384 (Molecular devices, USA).

2.2.6 Pynrvate assays [00166] The previous protocol was also utilized for the colorimetric Pyruvate assay kit (Biovision, Cat. No. K609-100-1), in which an enzyme inix reacts with pyruvate and the product then interacts with a probe to generate a measurable color measurable at λ-570 run, A pyruvate assay buffer containing a proprietary protease inhibitor cocktail, was used. Additionally, the pyruvate reaction mix contained 46 of the assay buffer, 2 uL of the probe and 2 μΐ, of the enzyme.

EXAMPLE 15 Effect of MEK inhibition on TCAP-1 -induced increases on 3H-2- deoxyglucose uptake in mHypoE-38 immortalized embryonic hypothalamic neurons,

[00167J The MEK-ERKl/2 pathway has been established to be downstream of TCAP- 1 and β-DG in hippocampal cells (Cband et al, 5 2012). MEK inhibition has also been shown to inhibit glucose uptake increases in adipocytes and regulate expressions of genes critical for organismal metabolism and homeostasis in mHypoE-46 hypothalamic neurons (Harmon et al, 2004; Mayer and Belsham, 2009). Insulin signaling normally downregulates NPY and AgRP gene expressions. In mHypoE-46 neurons, the addition of MEK inhibitor resulted in a prevention of the repression of NPY and AgRP transcription suggesting that the MEK- ERK112 pathway may play a direct role in metabolic signaling in hypothalamic cells (Mayer and Belsham, 2009). Results suggest that insulin signals for increases in glucose uptake into mHypoE-38 neurons through MEK as MEK inhibition resulted in a decrease in 3H-2- deoxyghicose uptake compared to insulin, non-MEK-inhibited cells that was significant (p=0.0438; 108.069±13.671 vs. 162.846±i .8I3;Figure 3.14).TheeffectofTCAP-l was not significant in these experiments (p=0.1499; 124.809*26.063 vs.67.770±1.151). However, a decrease can be seen in the glucose uptake amount following treatment with MEK inhibitor, suggesting the possibility of a strong dependence on the MEK/ERK1 -2 pathway.

[00168] Figure 17: Addition of 10 μΜ of MEK inhibitor for 60 minutes prior to further treatment resulted in a decrease in 3H-2-deoxy glucose transport in insulin and TCAP-1 treated mHypoE-38 neurons, MEK inhibitor did not alter vehicle glucose uptake significantly.Cells were pretreated with 10 μΜ MEK inhibitor (U0126, New England Biolabs) for 1 hour prior to treatment with insulin, TCAP, or saline, exposed to 40 mM KCl and 0.5 μθΛ εΙΙ 3H-2-deoxygmcose, and subsequently lysed with 50 mM NaOH. Radioactivity in cell lysates was counted using a liquid scintillation counter. (Mean ± SEM; n=3; *p<0.05, **pO.01 s ***p<0.001; 2-way ANOVA and Boru½onni's post hoc test).

Effect of TCAP-1 treatments of 0 nM (vehicle) and 1 nM on MEK-dependent AMPK phosphorylation in mHypoE-38 immortalised embryonic hypothalamic neurons.

[00169] Previous unpublished results indicate that TCAP-1 induces increased phosphorylation of AMPK (AMP activated kinase). AMPK phosphorylation activates the metabolic regulator and promotes ATP-generating processes such as glucose uptake and fatty acid oxidation (Mihaylova and Shaw, 2011). Western blot analyses indicate that TCAP-1- induced AMPK-phosphoiylation is inhibited upon the addition of MEK inhibitor, suggesting a link between the two in the TCAP-1 signalling mechanism (Figure 3.15). These results also confirm that TCAP-1 induces AMPK-phosphorylation.

[00170] FigurelS: TCAP-1 signalling through the MEK/ERK1-2 pathway is upstream of AMPK signalling in mHypoE-38 neurons. AMPK phosphorylation is enhanced by 1 nM treatment of TCAP for 1 minute to mHypoE-38 cells. Phosphorylation of AMPK is inhibited by application of 10 μ MEK inhibitor (U0126) suggesting a MEK/ERK1-2 dependent signalling.

[00171] Figure 19: TCAP-1 induces MEK-dependent AMPK phosphorylation in mHypoE-3S neurons. Analyses of western blots from Figure 3.15 for vehicle and 1 nM TCAP-1 treated cells at 1 minute (n-3 for each group). Each p-AMPK band intensity was normalized to total AMPK at each corresponding treatment point. There was a significant (p<0.0l) inhibition of AMPK phosphorylation in the presence of 10 uM MEK inhibitor (U0126) with TCAP-1 treatment Values are mean ± SEM, two-way ANOVA and Bonferonm's post hoc test. Band intensity was measured by quantifying the integrated optical intensity using Lab Works (UVP Bio-imaging systems v4,0.Q.8).

EXAMPLE 16 - Effect of TCAP on Cellalar Glucose Uptake in Muscle Cells

[00172] The effect of TCAP-1 on glucose uptake in muscle cells was examined in a C2C12 mouse myocyte cell line. C 2 Cia myocytes were cultured in Dulbecco's Modified Eagle Medium (DMEM) containing 4500 mg/L D-glucose, L-glutaroine, and 25 mM HEPES buffer, without sodium pyruvate or phenol red (Gibco, Cat No. 21063029), supplemented with 20% heat-inactivated fetal bovine serum (FBS), 100 U/ml penicillin and 100 ^ωΐ streptomycin. Cells were maintained at 80% confluency at 37 e C in a humidified C0 2 incubator. To initiate differentiation, myocytes were further cultured ra DMEM supplemented with 10% heat-inactivated horse serum (HS), transferrin, 100 U/ml penicillin and 100 pg/ml streptomycin. Myocytes were allowed to differentiate into multi-nucleated myotubes for 5 days before experimentation.24 hours prior to experimentation, medium -was changed.

[00173] At day 5. of differentiation, cells were deprived of serum and incubated in Minimal Essential Medium containing 1000 mg L D-ghicose, L-glutamine s without nucleosides (Gibco, Cat No, 12561049) for 5 hours at 37°C prior to incubation with insulin, TCAP-1, or saline. Cells were washed twice in glucose-free HEPES-buffered solution (BBS), containing 140 mM NaCl, 20 mM HEPES, 5 mM C1, 2.5 mM MgS04 and 1 mM CaCl2, followed by detenninations of transport of 3H-2-deoxyglucose for 10 minutes ait 0.5 μθ/ιχιΐ at room temperature. Uptake of 3 H-2-deoxyglucose was stopped immediately after 10 minutes with three washes of ice-cold 0.9% NaCl solution. Parallel experiments with 5 uM of cytochalasin B were done to ensure that glucose uptake was of trerasporter-inhibitable transport. The cells were digested with 1 ml of 0.05 N NaOH. Cell lysates were used for determination of radioactivity by a beta liquid scintillation counter. Experiments were repeated three times with 3 wells per condition per replication.

C lt ring of the C2C12 cell line

(00174] C2C12 myocytes were cultured in Dulbecco's Modified Eagle Medium (DMEM) containing 4500 mg/L D-glucose, L-gtutamine, and 25 mM HEPES buffer, without sodium pyruvate or phenol red (Gibco, Cat. No. 21063029), supplemented with 20% heat- inactivated fetal bovine serum (FBS), 100 U/ml penicillin and 100 μ^ι η ΐ streptomycin. Cells were maintained at 80% confluency at 37°C in a humidified C02 incubator. Protocol for cell passage described above. Protocols for the seeding of cells for various experimental purposes were followed as in section 2.2. J. To initiate differentiation, myocytes were farther cultured in DMEM supplemented with 10% heat-inactivated horse serum (HS), tiansfenrin, 100 U/ml penicillin and 100 μ^ιηΐ streptomycin. Myocytes were allowed to differentiate into multi- nucleated myotubes for 5 days before experimentation, 24 hours prior to experimentation, medium was changed.

2.2.4 2-Deoxy-D-Gl eose Upta Assays in C2CI2 myocytes

[00175] At day 5 of differentiation, cells were deprived of serum and incubated in Minimal Essential Medium conlairiing 1000 mg/L D-glucose, L-glutamine, without nucleosides (Gibco, Cat, No. 12561049) for 5 hours at 37°C priorto incubation with insulin, TCAP-1, or saline. Cells were washed twice in glucose-free HEPES-buffered solution (HBS), containing 140 mM NaCl, 20 mM HEPES, 5 m CL 2,5 mM MgS04 and 1 mM CaC12, followed by determinations of transport of 3H-2-deoxyglucose for 10 minutes at 0,5 pCi/ml at room temperature. Uptake of 3H-2-deoxyglucose was stopped immediately after 10 minutes with three washes of ice-cold 0.9% NaCl solution. Parallel experiments with 5 uM of cytochalasin B were done to ensure that glucose uptake was of liansrwrter-inhibitable transport. The cells were digested with 1 ml of 0.05 N NaOH, Cell Iysates were used for determination of radioactivity by a beta liquid scintillation counter. Experiments were repeated three times with 3 wells per condition per replication,

100176]

Results

100177 " ] For C2C 12 myocytes, results indicate a positive signal for positive control insulin treatments, a significant signal for TCAP- 1 treatment and a lack of positive signal for scrambled-TCAP-1 (SC-TCAP-1) treatments (Fig. 20). Insulin treated C 2 C 12 myocytes exhibited an increase in 3 H-2-deoxyglucose uptake compared to control after 30 minutes (284.520 ± 47.129% vs. 61,518 ± 8.637; p<0.000l) that is sustained until 90 minutes (332321 ± 87.296% vs. 84.050 ± 4.480%; pO.0001). TCAP-1 treatment of C 2 C 12 myocytes resulted in a significant increase in 3 H-2-deoxyglucose transport after 30 minutes compared to the vehicle (329.124 ± 10.817% vs.61.518 ± 7.545%; pO.0001). This significant increase is sustained until 90 minutes compared to vehicle (209.702 ± 40.436% vs. 84.050 ± 4.480%; p<0.05). (Mean ± SEM; n=3; *p<0.05, **p<0.0l 5 ***pO-001; 2-way ANOVA and Bonferormi's post hoc test). EXAMPLE 17 - Elucidating candidate signalling proteins downstream of TCAP-1 in C2C12 myocytes.

Effect of TCAP-1 treatments ofO M (vehicle), 1 nM, and 100 nMon ERK phosphorylation in C2C12 myocytes.

[00178] TCAP activates the ME -ERK1/2 pathway in neurons (Chand et al., 2012). In skeletal muscle, exercise has been associated with an increase in ERK1/2 phosphorylation and activation of the AP pathway, leading to upregulation of GLUT4 expression (Aionson et al., 1997; Widgren et al., 1998). If TCAP-1 treatment results in increased levels of ERK in vitro in C2C12 myocytes, it would suggest that TCAP-1 plays a role in activating the MEK-ERK1/2 pathway in muscle and further experiments centered on this pathway can be pertbmied to elucidate further details. Initial results indicated that TCAP-1 does 1 not activate the EK-ERK1/2 pathway after 1 minute of TCAP-1 treatment at both 1 nM and 100 nM concentrations (Figure 21). Further repeats with 1, 5, 10 and 15 minute treatment times revealed similar results indicating no effect of TCAP-1 on the activation of ERK in C2C12 myocytes (Figure 22).

[00179] Figure 21 : TCAP-1 treatment does not significantly change levels of p- ERK expression in C2C12 myocytes. C2C12 cells were treated with lnM or 100 nM TCAP-1 for 1 minute and levels of p-ERK and total ERK was compared. Representative western blots show that TCAP-1 treatment did not significantly change p-ERK levels suggesting that TCAP-1 acts via an alternate signalling pathway. Phosphorylation of ERK is mhibited by application of MEK inhibitor (positive control).

[00180] Figure 22: 100 nM TCAP-1 treatment on ER levels in C2C12 myocytes is aot altered across 15 minutes. C2C12 cells were treated with 100 nM TCAP-1 for 0 (Vehicle), 1, 5, 10 and 15 minutes and levels of p-ERK and total ERK was compared. Representative western blots show that TCAP-1 treatment did not significantly change p- ERK levels suggesting that TCAP-1 acts via an alternate signalling pathway. Phosphorylation of ERK is inhibited by application of 10 μΜ MEK inhibitor (positive control; U0126).

[001S1] Figure23: Western blot analyses quantification of TCAP-1 treatment on ERK phosphorylation in C2C12 myocytes. Analyses of western blots from Figure 15 for vehicle and 100 nM TCAP-1 treated cells at 0, 1, 5, 10, and 15 minutes (n=3 for each group). Each p-ERK band intensity was normalized to total ERK at each corresponding treatment time. There -was no significant change in ERK phosphorylation in response to TCAP- 1 at any time points. There w s significant inhibition of ERK phosphorylation in the presence of 10 μ MEK inhibitor (U0126). (Values are mean ± SEM, two-way ANOVA and Bonferonni's post hoc test). Band intensity was measured by quantifying the integrated optical intensity using Lab Works (UVP Bio-imaging systems v4.0.0,8).

[00182] EXAMPLE 18■ Energy Associated Behaviour m Rats

[00183] Having established that TCAP-1 increases glucose uptake and energy production, behavourial studies were conducted to see if it translate to energy associated behaviour in animals.

[00184] The forced swim test was used as a model because of the energy demands this test places on the animal. Although this behavioural model has been utilized as a standard test for the incidence of depressive-like symptoms (REFS) , in fact the behaviour of the animal in the test reflects its energy reserves. Herein it is utilized asa homeostatic model of low energy. In this interpretation, animals displaying low energy metabolism will act to increase intake of high energy compounds, whereas active animals at high levels of energy metabolism are less likely to take in high energy nutrients because of the high level of activity.If the animal has a high energy reserve, it is likely to increase escape behaviour, on the other band, with low energy reserves, it is likely to conserve energy until an escape situation occurs. A number of other studies have discussed this aspect of the forced swim test.

[00185] Two behavioural tests were conducted: sucrose preference and forced swim test. Mature male rats treated with TCAP- 1 showed that in the low sucrose preference group that TCAP- 1 induced a significant increase in sucrose preference, whereas those that showed high sucrose preference showed not significant change in sucrose preference. With respect to the forced swim test, TCAP-1 increased sv mming and climbing behaviour, while decreasing immobility time. Discussion of Results

[00186] In summary, in one aspect, the findings of this study indicate that there is a glucose-lowering effect of TCAP-1 administration in vivo. This is observed both in physiologically normal Wistai rats as well as spontaneously Type Π diabetic Gotc-Kakizaki rats one week after the initial peptide admimstration. 18F-DG uptake into rats 3 days after TCAP- 1 treatment was enhanced in the brain, corroboratin g the glucose data. The in vitro glucose uptake into hypothalamic neurons and skeletal myocytes increased in response to TCAP-1 treatment. In hypomdamic neurons, the enhanced glucose uptake in response to TCAP-1 occurs in the absence of potassium stimulating, differentiating the TCAP-1 mechanism from that of insu-ini- The increase in glucose uptake is corroborated with an increase in GLUT3 expression in the membranes of hypomalaraic neurons. TCAP-1 treatment further decreased pyruvate levels in hypothalamic neurons and did not change lactate levels, MEK inhibition prevented the enhanced glucose uptake into hypolnalarnic neurons as well as the phosphorylation of AMPK. In skeletal muscle, FlTC-TCAP-1 ubiquitously bound to muscle fibers but is strongly localized to the sarcolemma where it co- localizes with β-DG. Endogenous TCAP-1 localized exclusively to the sarcolemma and showed similar co-localizations. Im uncTeactivity studies with rapsyn shows that TCAP- 1 localizes near rapsyn at the neuromuscular junctions.

[00187] TCAP-1 is also shown herein to increase mitochondrial activity, as depicted by an increase in Hexokinase II immunoreactivity following 1-2 hours of TCAP-I treatment m mHypoE-38 neurons (Lovejoy et al., unpublished findings). These findings suggest that TCAP-1 is able to achieve metabolic optimization both through an increasing the intake of energy substrates into cells as well as shifting metabolic machinery to upregulate the more efficient energy production pathways. The commonality amongst this evidence comes down to increasing glucose uptake into cells and maximizing the efficiency of glucose utilization.

[001881 Skeletal muscle is the largest organ of the body and is the most important site for glucose uptake by insulin stimulation (DeFronzo et al., 1981; Hegarty et al., 2009; Alberts et al., 2008). Skeletal muscle acts as one of two main storage sites of glycogen; the other being the liver. Most of the imported glucose in skeletal muscle is then stored as glycogen and the rest is metabolized to meet energy demands (Alberts et al., 2008). Skeletal muscle glucose transport is largely mediated by GLUTl and GLUT4 (Barnard and Youngren, 1 92). Like in neurons, GLUTl is responsible for glucose transport under basal conditions in muscle. Under insulin stimulation, GLUT4 transporters will translocate out of T-tubtdes and onto the sarcolemma to increase glucose transport (Barnard and Youngren, 1992). Insulin stimulation will also activate insulin-sensitive kinases that mediate a response to activate glycogen synthase (Kruszynska et al., 2001).

[00189] There aie primarily two mechanisms by which skeletal muscle fibers uptake, glucose; 1) through an insulin-dependent mechanism or 2) through an insulin-independent contraction-stimulated mechanism involving the AMP pathway (lessen and Goodyear, 2005; Nobuharu et al., 2006). Contraction-stimulated glucose uptake is dependent on the intensity of exercise and duration (Richter and Hargreaves, 2013). In the contracting muscle, glucose uptake occurs through facilitated difiusion through GLUT4. The rate of this diffusion can be regulated through glucose delivery from sunOundmg blood vessels, the level of GLUT activity, and by the level of metabolic activity. Through increased blood flow of up to 20-fold during exercise as well as capillary recruitment, glucose uptake can be increased. During rest, GLUTl is the most abundantly expressed transporter in skeletal muscle as GLUT4 remains in higher abundance in intracellular vesicles, ready to be transported to me sarcolemma and T-tubules. There has been debate as to the translocation of GLUT4 is the major contributor of contraction-stimulated glucose transport or whether an increase in GLUT4 intrinsic activity is also significant. Nevertheless, GLUT4 translocation to the sarcolemma is regulated by exocytosis and endocytosis of the transporter vesicles and guided by interaction between SNARE proteins (soluble factor- attachment protein receptors). After recruitment of GLUT4 vesicles during intense exercise, the rate limiting step in glucose uptake into skeletal muscle is the phosphorylation of glucose into glucose-6-phosphate (G6P). Glucose transport into skeletal muscle is then regulated by the activity of Hexokinase II and other mitochondria enzymes (Figure 1.8; Richter and Hargreaves, 2013). Studies with AMPK activator amko½uda.∞]e-carboxarru -£- ribouucleoside (AICAR) suggest that targeting AMPK in skeletal muscle counteracts aspects of type 2 diabetes such as insulin resistance (Taylor and Goodyear, 2007). Thus, proteins ur^egdatmg AMPK in skeletal muscle could be potential candidates for treating pathologies associated with type 2 diabetes. AMPK is known to be involved in the docking of GLUT4 vesicles during translocation to the sarcolemma and T-tubules; its role in glucose metabolism is for the most part, insulk-kdependent (Hegarty et al. s 2009). Preliminary in vitro studies show that TCAP-1 administration increased A PK activation in hypothalamic cells. Another preliminary in vivo experiment showed that TCAP-1 administration resulted in changes in skeletal muscle morphology hypertrophy.

[00190] Based on experimental evidence that support the role of the dystroglycan complex in neuron morphology and cellular activity, testing whether TCAP-1 is present and physiologically active with the dystroglycan complex in muscle may yield novel data that can improve our understanding of the physiology of this hormone system in skeletal muscle. The MEK-ERK 1/2 pathway is activated in response to TCAP- 1 treatment in vitro, as such it may also have a role in muscle physiology by activating the ERK-dependent mechanical stress signalling cascade in skeletal muscle.

[00191] The purpose of this study was to exainine the roles of TCAP-1 on glucose metabolism in vivo and the associated mechanism by which TCAP-1 regulates cellular metabolism in vitro using the mHypoE-38 hypothalamic cells as a model for the brain and the C2C12 myocytes as a model for skeletal muscle. The chief goals and findings for each project objective are as follows:

[00192] The first objective was to determine whether TCAP-1 affects glucose levels in vivo. Through a series of TCAP-1 in vivo administration experiments, a significant decrease in plasma glucose that was dose dependent on TCAP-1 treatment in adult male Wistar rats was observed. As per this finding, the same ejcperiment was done on a pathological modeL, the type II diabetic Goto-Kakizaki (GK) rats. Similar results were seen in that TCAP-1 treatment relieved hyperglycemia in diabetic rats during the first week of treatment To corroborate this with changes in glucose uptake into tissues, another in vivo study was performed where TCAP- 1 was administered to male Wistar rats and the 1 SF-DG uptake into tissues was quantified. Results show that TCAP- 1 significantly increased glucose uptake into the brain.

[00193] The second objective was to determine the mechanism by which TCAP-1 affected glucose metabolism and in particular, uptake into the brain. In vitro glucose uptake studies were performed using 3H-2-deoxyglucose in both the mHypoE-38 and C2C12 cell lines as representative neuron and skeletal muscle cell models, respectively. TCAP-1 treatment was shown to increase cellular glucose uptake as measured by the increase in radioactivity in cell lysates post-treatment The glucose uptake profile in response to TCAP-1 exhibited a different time course than that of insulin treatment in both cell lines. In the case of neurons, insulin requires a depolarizing boost of KC1 in order to exhibit its actions on increasing glucose transporter activity and glucose uptake into the cells (Uemura and Greenlee, 2006). However, TCAP-1 treatment did not depend on Cl to exhibit this increase in cellular glucose uptake into neurons, suggesting for the first time an insulin-independent mechanism by which TCAP-1 acts to enhance metabolism. Further immunocytochemistry studies on rnHypoE-38 cells show that TCAP-1 treatment increases membrane expression of GLUT3 after 2 hours. Colorimetric data indicate that TCAP-1 decreases intracellular pyruvate levels while keeping intracellular lactate levels constant. Western blot analyses show that TCAP- 1 treatment of mHypoE-38 neurons increases AMPK phosphorylation. This is also dependent on the MEK-ER pathway; a glucose uptake assay with E inhibitor further confirmed this result.

[00194] The third and fourth goals of this study were to characterise the presence and understanding the roles of TCAP-1 on skeletal muscle physiology. The first of these two goals was to determine whether the TCAP-1 system existed in skeletal muscle and the latter was to delineate a potential pathway by which TCAP-1 signals in skeletal muscle to induce its effects. IaununoMstochemical studies were performed on sectioned mice gastrocnemius muscle using TCAP-1 antisera. TCAP-1 localizes to the saicolemma of skeletal muscle and shows co-localization with the β-DG receptor. FITC-TCAP-1 bmding studies also showed increased uptake into skeletal muscle, indicative of the presence of TCAP-1 in this muscle system. However, results from in vitro analysis revealed inconclusive results on whether TCAP-1 enhances metabolism via the MEK-E K1/2 pathway.

100195] TCAP-1 has been found to enhance survivability both at the in vitro level by inducing stress coping mechanisms such as activation of the MEK/ERK 1-2 pathway (Chand et al., 2012) as well as at the in vivo level such as the modulation of stress behaviours and enhancement of the male reproduction system in rats (Tan et al., 2011 ; Chand et al., 2013), The brain is heavily reliant on glucose as its primary energy source and is responsible for 20% of the body's glucose metabolism (Baker and Tamopolsky, 2003; Duelli and Kuschinsky, 2001). Thus, an increased level of glucose uptake into the brain could cause a decrease in plasma glucose levels of the animal. The in vivo data obtained for plasma glucose levels following a single acute dose of 1 nmole/kg and 10 nmole fcg TCAP-1 treatment yielded a significant decrease of ~20%(p < 0.05) in blood glucose levels one week after the initial administration. In the first in vivo study performed, blood glucose was also monitored vrithin the first few hours after TCAP-1 administration to monitor for acute changes. It was observed that TCAP-1 resulted in no significant acute changes to blood glucose. However, the effective lowering of blood glucose one week after the initial adnnmstration corroborates previous studies showing that the behaviour attenuating effects of TCAP-1 are likely slow and chronic, sometimes persisting up to 21 days after peptide injection (W ang et al , 2005). It also suggests that the effects of TCAP-1 on regulating blood glucose is to ultimately lower circulating glucose, possibly to divert glucose to tissues in need for storage as a way of preparing the animal for future energetically-demanding activities. This same in vivo study was repeated once again to confirm the result and a similar trend was observed for this second study in which a significant decrease in blood glucose of ~20% (p < 0.05) was observed one week after the initial injection for rats injected with TCAP-1 compared with the vehicle rats.

[00196] As part of the role of TCAP-1 in attenuating the CRF stress response, it can be expected that TCAP-1 may have an effect on behaviour in vivo. Previous studies have shown that acute administration of TCAP-1 decreases the acoustic startle response in high- anxiety rats (Wang et al, 2005). Also, a CRF and TCAP-1 co-administration resulted in an attenuation of the CRF stress response, suggesting a neuromodulatory role of TCAP-1 (Al Chawaf et al, 2007). In addition to the changes in glucose seen between the treatment groups, a modulated stress-response to the injections in the TCAP-1 treated rats was observed (data not shown). Themodulation of the stress response by TCAP-1. is dose dependent and can be observed as a smaller change in plasma glucose levels within. the initial hour of injection during week 2. For rats treated with the higher dose of 10 nmole/kg of TCAP-1, the injection stress was nearly absent following the second injection, suggesting a behavioural habituation that supports previous studies on the modulation of CRF activity in rats (Al Chawaf et al, 2007; Tan et al., 2009; Tan et al, 2008; upferschmidt et al, 2010), The second in vivo study was a repeat of the first experiment to confinn our results of the long-term changes observed in plasma glucose. Because no significant changes in blood glucose were observed within the first 4 hours post-injection from the first in vivo study, acute effects of TCAP-1 on. plasm glucose were not made,

[00197] Stress has been long known to suppress immune function and contribute to the aging of the immune system (Bauer et al., 2009). Thus, if TCAP-1 modulates the CRP stress response, it may also be contributing to haematological changes in the rat plasma. This in turn, may be related to the significant changes in blood glucose observed in these studies. To rule out the possibility of an irnraune effect, haematology assays were done on blood samples of the rats (see Appendix 1). Levels of red blood cells, white blood cells, platelets, neutrophils, lymphocytes, monocytes, basophils, and eosinophils showed no significant changes between the TCAP-1 and vehicle groups. The haemoglobin concentration, hematocrit, mean platelet volume and red cell volumes were also similar between the two groups. The haematology assays were performed on blood samples that did not experience clotting. When possible, the clots were removed although the platelet counts were significantly altered. These samples were noted and omitted from the statistical analysis. An observation made from these data was that clots formed more frequently in the blood samples of TCAP-1 treated rats. On average, the size of the clots were also larger for TCAP- 1 treated rats suggesting a possible immune effect that is represented by changes in parameters other than the ones tested. For future analysis, clotting time should be tested and compared.

[00198] Glycogen is a readily utilized form of glucose that is stored mainly in the skeletal muscle and liver (Berg et al, 2002). Since TCAP-1 admimsrration resulted in significant changes in plasma glucose levels, it is important to consider other forms of glucose and changes associated with stored energy reserves. From the first TCAP-1 in vivo administration study, it can be concluded that TCAP-1 does not significantly change glycogen levels of rats given a single acute dose of the peptide. Previous in vivo data show that repeated TCAP-1 administration daily for 9 days resulted in an increase in adipocyte density associated with decreasing adipocyte size (Xu, 2012). In addition, muscle hypertrophy was observed with a repeated TCAP-1 -tdmi istraiion study, perhaps due to an increase in glycogen reserves (Lovejoy et d, unpublished tradings). Thus, the insignificance in changes in stored glycogen levels of this study could be attributed to the relatively infrequent TCAP-1 administrations. As well, because glycogen is broken down into glucose more readily than fatty acids, it serves as a better buffer for maintaining plasma and cerebral glucose levels. Taken together, it is likely that the actions of TCAP-1 on metabolism are to decrease obesity while maintaining a balance with decreased plasma glucose levels.

[001991 From the first two in vivo studies, it is apparent that TCAP-1 induces a lowering of blood glucose and could serve as therapeutic usages in cases of hyperglycemia related, to metabolic syndrome or diabetes. Thus for the third in vivo experiment- spontaneously diabetic Goto-Kakizaki (GK) rats that are hyperglycaemic were treated with TCAI . The Goto-Kakizaki (GK) rats were chosen for this study as they are spontaneously diabetic and exhibit hyperglycemia in the absence of obesity. From the culmination of previous in vivo studies, it was decided that a high dose of TCAP-1 (10 ntnole kg) would serve as a suitable dosage over the low dose of 1 nmole/kg. It was expected that a sustained lowering of plasma glucose would ensue with TCAP-1 administration, Following four days post-injection, it was observed that TCAP-1 induced a significant decrease in plasma glucose levels, supporting the hypothesis. The glucose levels were observed for a week following, during which time the plasma glucose levels returned to initial values, suggesting that multiple doses of TCAP- 1 may be required for a long term effect on relieving hyperglycemia in diabetic animals. GK rats begin exhibiting diabetic symptoms after 28 days from birth when hepatic glucose production increases, and defects begin developing in the p-ceU$ of the pancreas leading to impdredmsuh¾settetion(Po 2012). Around 65 days, the rats experience peripheral insulin resistance, attributing to the further complications that follow a few months after, Due to the increase in peripheral insulin resistance over time, glucose uptake by the whole body (GUR) in these rats is significantly decreased compared with age- matched wild type Wistar rats. Although the GK rats are considered a non-obese Type II Diabetic (T2D) model, adipose accumulation does increase through the progression of insulin resistance (Portha et al., 2012). The progressively decreasing GUR in these rats may account for the short-lived decrease in plasma glucose levels upon TCAP-1 administration. A longer term study with chronic treatments of TCAP-1 daily or weekly may yield more significant long lasting suppressions in plasma glucose levels. Nonetheless, this experiment show for the first time the therapeutic potential of TCAP-1 in managing hyperglycemia in diabetic animals. [00200] The G rats also exhibited no significant changes in blood parameters following TCAP-1 administration (see Appendix 1). Unlike the normal Wistar rats, there appears to be a decrease in white blood cells, neutrophils and lymphocytes in TCAP-1 administered GK rats. However, due to the complications of increased blood clotting (mainly in the TCAP-1 a<m-inistered group), results are variable and thus inconclusive.

[00201] To understand the physiology behind the apparent decrease in plasma glucose after TCAP-1 admmistration. a fPET study was performed on male Wistar rats injected with either TCAP-1, SC-TCAP-1 or saline. In this study, 18F-DG was used as a marker for glucose and uptake into the tissues was measured as a function of the radioactivity. The functional positron emission tomography studies indicated that the brain was the only region that showed enhanced glucose uptake after a single acute a ministration of TCAP-1. There was consistent glucose uptake across the three regions measured: cortex, frontal cortex and subcortical regions. Although the resolution of the fPET instrumentation was limited to 1.5 to 2 nun, this study confrxrns previous experiments showing the sites of TCAP-1 action in the brain. Al Chawaf and associates (2007) showed that FITC labelled TCAP-1 could cross the blood-brain-barrier and could discern labelled material crossing the endothelial layer of capillaries in the subcortical regions, ventral to the hippocampus in rats. A second study using 1251-labelled TCAP-1 showed uptake in a number of subcortical regions including the nucleus accumbens, arcuate nucleus and the ventral midbrain regions (Tan, 2011). Interestingly, the nucleus accumbens is a major region for the integration of the hedonic actions of glucose, whereas the arcuate nucleus is one of the key regions of the hypothalamus associated with the regulation of energy metabolism in the organism (Rorabaugh et al., 2014; Goldstone era/., 2014; Carey etal, 2013; Sohnefa/., 2013). The neural perception of blood glucose concentrations are found in a number of subcortical regions mcluding the dentate gyrus and CAfields of the hippocampus (Ren etal, 2009; Boubaker etal, 2012). The fPET studies of enhanced glucose uptake in the forebraiu and subcortical regions is consistent with these previous studies. These findings provide a hypothesis to explain the long term actions of TCAP-1 on blood glucose concentrations after a single acute adrninistration. It is possible that TCAP-1 increases the transport of glucose into these critical regions of the brain indicating a greater need for neurological activity and hence a greater need for glucose. Consequently, horaeostatic regulation in the form of modifications to neuronal communication results in increased uptake of glucose from the blood until negative feedback to these regions of the brain f om the result of lower than normal blood glucose, decreased insulin and perhaps increased glucagon. Although the exact mechanism has not been ascertained, TCAP-1 interacts with a number of cell adhesion systems associated with synaptic plasticity in the form of dystroglycans (Chand et al, 2012), ktrophilins (Boucard et al, 2014) .md teneurins iMosca eifl/., 2012).

[00202] The in vivo of this study utilized ~10 week old, male Wistar rats to examine effects of TCAP-1 on whole-body glucose metabolism and utilization. Wistar rats are a strain of albino rats that were originally bred out of the Wistar institute (Portha et al, 2012). The particular colony used for this study was selected as it had a low incidence of hydronephrosis. For the first two in vivo studies, normal Wistar rats were chosen as no previous studies were done on rats for the purpose of measuring metabolic parameters and plasma glucose levels. Thus, the use of this strain of normal Wistar rats allowed for pre minary studies to be conducted in the most ideal manner. The initial findings of the in vivo studies done on nonnal Wistar rats prompted experiments done on pathological models to further the investigation. Thus, the Goto-Kakizalri (GK) Wistar rats were chosen as our next in vivo model. The GK rats are an inbred strain of Wistar rats that exhibit non-obese Type ΪΙ diabetes with mild hyperglycemia, hyperinsulinemia and insulin resistance. Because previous results suggests an effect of TCAP-1 on lowering of plasma glucose levels, the GK rats were the next logical step in furthering this investigation. Due to the uncertain kinetics of TCAP-1 actions on metabolic parameters, the milder degree of hyperglycemia experienced by the GK rats allowed for an initial test of whether the dosage given to Type II diabetic rats in these experiments was appropriate and effective. Previous studies with mice showed that TCAP- 1 inj ections decreases serum leptin and insulin levels iu, 2012). The GK rats' innate high levels of insulin coupled with insulb resistance allows for a convenient corroboration of the previous data. As these in vivo studies indicate that TCAP-1 plays an active role in enhancing whole-body metabolism through a global lowering of plasma glucose levels in both normal and non-obese diabetic rats, exarruning the roles of TCAP-1 on obesity in the obese Zucket Diabetic (Type ΙΓ) Fatty (ZDF) rats may unveil further functions of TCAP-1.

[00203] For all in vivo studies, the animals were handled as consistently with previous studies performed as possible. A recent study shows that male researchers induces a stress response in lab rodents that results in stressed-induced analgesia (Sorge et al., 2014). This stress response is male specific and is not reproduced with female experimenters. The conditions of the animal facility were kept as consistent as possible in terms of personnel. However, exposure to unfamiliar males was inevitable and should be taken into consideration for data analysis, particularly for any conclusions to be drawn regarding the rats' stress response, or stress-mediated changes in glucose levels. The recent studies did however, mention that the phenomenon they discovered appeared to be olfactory in nature and were not significantly affected by the personnel responsible for husbandry, i.e. the technicians (Sorge et al., 2014). For all three in vivo studies in which blood glucose measurements were taken, all experimenters during the handling procedures were female.

[00204] The first three in vivo experiments employed usage of the jugular vein catheter for repeated blood sampling of plasma glucose. A study examining the eflficacy of using the jugular vein catheter for experimentation outlines the striking benefits of the technique as it is minimally invasive for the rats, convenient for researchers, and there is also no compromise of blood volumes (Thxivikraman et al., 2002). This was especially optimal as it ensured the lowest levels of stress for the rats. However, usage of the catheters was only suggested for a limited length of time due to the gradual attrition of jugular vein catheters. For the purposes of this study, the rats were kept and blood was drawn from the catheters at least once a day for two weeks. With increased catheter usage, there is always a risk of infection, thrombosis, or mechanical damage to the catheter with increased usage (Galloway and Bodenham, 2004). The gradual attrition of the catheters was observed one catheter a day was blocked throughout the three in vivo studies, rendering lower than intended sample sizes for statisticEd analysis. Future studies should look into the feasibility of using the saphenous vein as a site of collection (Parasuraman et al,, 2010). The saphenous vein is a reasonable aitemative that does not require anesthesia while still allowing for repeated sampling of small amounts of blood (Beeto et al., 2007; Parasuraman et al., 2010). However, collecting from the saphenous vein involves resttainirig the rat, thus possibly producing .immobilization stress. A way of avoiding this confounding factor could be to habituate the rats to this stressor. A second confounding factor in using the saphenous vein as a collection site is the possibility of wound healing affecting the experimental data. Thus, haematology assays would need to be performed to ensure no changes in blood parameters for consistency with the previous in vivo experiments.

[00205] Glucose is the primary source of energy for the brain. Neuroprotection in vitro entails increasing glucose uptake into the brain for metabolism or for storage as glycogen in astrocytes to prepare neurons for stress. The actions of TCAP-1 for the purposes of neuroprotection all aim in the direction of metabolic optimization (Trubiani etal, 2007; Xu et al, 2012). Changes associated with metabolic optimization include the acquisition of glucose and therefore, TCAP-1 may induce increased glucose uptake into neurons as a method of protecting the brain from a future insult. Using 3H-2-deoxyglucose (2DG) uptake as a measure of glucose uptake ensures an accurate profile of glucose currents in cultured cells since 2DG is not metabolized after being taken up in the cell. Because TCAP-1 modulates cytoskeletal activity through the activation of the MEK ERK.1 -2 pathway within the first hour of treatment in vitro, it was expected that a single acute administration of TCAP-1 would effectively alter cellular metabolism wthinlhe same time frame. The uptake studies on rnHypoE-38 cells suggest that TCAP- 1 mediates a significant increase in neuronal glucose uptake in an insulin-independent manner. The increase is most prominent 30 minutes into TCAP-1 treatment and gradually decreases to baseline levels after 2 hours. The half-life of TCAP-1 suggests that its effects are likely acute, as observed in several previous studies (Chand et al-, 2012). This increase in cellular glucose uptake into cells as a result ofTCAJ administration supports lhe tn vivo studies in. that TCAP-1 is lowering plasma glucose levels of an organism by effectively increasing cellular glucose uptake. In particular, the increase in FDG uptake into the brain corroborates evidence supporting the roles of TCAP-1 in neuroprotection. Although results indicate clear significant increases in 2DG uptake at various time points of treatment, there was a decrease, though insignificant, of uptake into neuronal cells during the first half hour of treatment. This is possibly due to the effect of peptide adrrimistration to the cultured cells.

[00206] Insulin mediates increases in glucose transport via GLUT3 upon stimulation with potassium depolarization in neurons (Uemura and Greenlee, 2006). This study confirms that insulin-mediated increases in 2DG uptake are potassium-dependent unlike TCAP-1, which shows an independence of potassium-mediated depolarization in stimulating glucose uptake into neurons, Insulin treatment alone resulted in no changes in 2DG uptake into mHypoE-38 neurons whereas a pre-treatment with high potassium buffer resulted in a significant increase in 2DG uptake. TCAP-1 treatment resulted in a significant increase in 2DG uptake in the presence or absence of the buffer containing a high potassium concentration. Considering the sole effect of 40 mM of KG, it can be observed that the depolarization resulting from potassium ion stimulation causes a roughly 50% increase in 2DG uptake in saline treated cells (Vehicle). A similar, though smaller, effect of KCl is observed in the TCAP-1 treated cells suggesting that the mechanism by which depolarization stimulates release of GLUT3 from the intracellular vesicles is likely exclusive from the mechanism by which TCAP-1 increases glucose transport. These studies indicate for the first time that TCAP-I may be acting in an insulin-independent mechanism. A study shows that leptin infusion into the brain of an uncontrolled diabetes mellitus model of rat results in a lowering of plasma glucose levels via insulin-independent mechanisms (German et al, 2011). The circuity by which leptin relieves hyperglycemia is likely through the PDK pathway by targeting nuclei of the hypothalamic POMC cells of the arcuate nucleus. Insulin also activates the PI3 pathway to increase metabolism and glucose transport; however insulin and leptin appear to be targeting different nuclei within the arcuate nucleus (German et al, 2011). Chronic in vivo TCAP-1 administration resulted in a lowering of leptin levels Pin, 2012), suggesting that TCAP-1 and leptin may have complimentary actions on glucose metabolism irrespective of insulin signalling. As well, the mHypoE-38 hypothalamic neurons used in these studies were derived from the acruate nucleus (Pick and Belsham, 2010). However, unpublished results suggest that TCAP-1 does not significantly alter the activation of PI3K in mHypoE-38 hypothalamic neurons and the exact mechanism of TCAP- 1 increases in glucose uptake has yet to be elucidated.

[00207] Imported cellular glucose has multiple fates; one of which includes the conversion into pyruvate and then into lactate. Lactate is a metabolite used as currency for exchange of energy between cells and is linked to neuronal metabolism through pyruvate and the redox enzyme lactate dehydrogenase (LDH) (Barros, 2013). LDH controls the ratio of pyruvate to lactate in cells and ensures a near equilibrium at all times. During times of high neural activity, the lactate levels spike, sigmfying a misbalance between glycolytic activity and mitochondrial activity (Barros, 2013). Studies show that upon neuron excitation, lactate transients increase to -150% that of baseline levels between 1-5 minutes (Hu and Wilson, 1997; Bairos, 2013). Acute TCAP-1 treatment ofmHypoE-381-ypomdamic neurons resulted in no significant changes in intracellular levels of lactate. This could potentially be due to the relatively low levels of neuronal excitation during treatment and adequate LDH activity. As well, the majority of neuronal intracellular lactate is controlled through the ANLS and increases with glycogenolysis in astrocytes (Dringen et ί, 1993; DieneL 2012). Thus, the contribution of TCAP- 1 treatment to neuronal lactate stores should be considered in a model representing the glial-neuronal network that exists in vivo. Results obtained from the lactate assays resulted in highly variable numbers with no clear trend. Further experiments may look into the roles of TCAP-1 in regulating LDH activity.

[00208] Evidence exists supporting the role of pyruvate in neuroprotection from hypoglycaemia through changes in glycogen synthesis (Shetry et al., 2012; AmaraL 2013). Lactate in neurons can be converted back into pyruvate by LDH, which also catalyzes the reverse reaction (Gjedde et d., 2002). Pyruvate has two potential fates once in the cytoplasm; it may be transported to the mitochondria where it is converted into malate to enter the tricarboxylic acid (TCA) cycle or be transported out of the cell through MCTs (Hassel, 2001 ; Gjedde et at, 2002). The carboxylation of pyruvate is thought to mainly be due to need for compensation of alpha-ketoglutarates that occur through the release of the signalling molecule glutamate during neuronal activity (Hassel, 2001). TCAP-1 treatment of cells resulted in a significant, although weak, decrease in intracellulax pyruvate levels. A possible explanation for this decrease could be due to the neuroprotective effects of TCAP- 1 bypassing the need for neuroprotection against hypoglycaemia since TCAP-1 administration both in vitro and in vivo appear to increase the amount of glucose available for brain metabolism. As well, the decrease in pyruvate levels could be an indication of increases in oxidative phosphorylation. This would corroborate iiumunoreactivity studies showing an increase in mitochondrial activity following an acute TCAP-1 treatment in mHypoE-38 neurons (Xu, unpublished). In addition, a quicker decrease in pyruvate levels was observed in response to TCAP- 1 treatment compared to the vehicle and insulin treatments. This may be attributable to the independent mechanisms mat TCAP-1 relies on to regulate cellular metabolism. As well, this may indicate that TCAP-1 regulates pyruvate levels and thus oxidative phosphorylation quicker than insulin. [00209] GLUT3 is the main isoform of glucose transporters present in the brain ( uelli and Kuschinsky, 2004), TCAP-1 was previously shown to induce an increase in total cell GLUT3 fluorescence following 3 hours of TCAP-1 treatment (Xu, 2012). A similar trend was observed for GLUT! fluorescence at 1 hour of TCAP-1 treatment; however the total cell fluorescence decreased back to baseline at 3 hours. Compared with GLUTl, which regulates basal glucose input under resting conditions, GLUT3 has a much higher affinity for glucose. This suggests that its roles in augmenting glucose homeostasis may be more prominent due to stress or when exposed to inducing peptides like TCAP-1. Therefore, GLUT3 was the main candidate of focus for this present study. In this study, GLUT3 shows a significantly increased level of membrane fluorescence following 1 and 2 hours of TCAP-1 treatment, corroborating the increases in cellular 2DG uptake into mHypoE-38 neurons and increased FDG uptake into brain tissue of Wistar rats. As per the Astrocyte-Neuron-Lactate Shuttle (A LS) model of glucose transport in the brain, GLUT3 is mainly expressed in neurons compared with glial in a co-culture while GLUT 1 is more heavily expressed in glial cells compared with neurons (Maher, 1995; Yu et aL, 2005). The finding that TCAP-1 targets GLUT3 more significantly than GLUTl gives clues on the possible mechanism of action. If TCAP-1 preferentially targeted GLUT3, it would suggest that TCAP-1 may act as a direct signalling peptide targeted towards neurons of the arcuate nucleus and not through the ANLS. Further experiments exarniningthe mHypoE-38 membrane expressions of GLUTl should be done to provide more insight on this speculation.

[002HD] TCAP-1 regulates cytoskeletal changes by activating the MEK/ERKl-2 pathway {Chand et aL, 2012). Therefore, it was intuitively the first candidate under consideration, for the elucidation of the mechanism for TCAP-1 mediated metabolic optimization in neurons. A 2DG uptake assay with the application of 10 μΜ of MEK inhibitor (U0126, New England Biolabs) inhibited TCAP-1 -mediated increases in glucose uptake. Due to the high variances in repeats, the TCAP- 1 effect was not significant, however, the trend shows that TCAP- 1 is likely to signal for an increase in GLUT3 transporter activity and thereby increases in glucose uptake through a MEK/ERK1-2 dependent mechanism. A parallel experiment with insulin treatment resulted in significantly lower levels of 2DG uptake with the addition of MEK inhibitor. This is consistent with the roles of insulin in activating both the PI3 Akt and MEK/ERK1-2 pathways to induce metabolic effects and promote cell growth (Biddinger and ahn, 2006; Dominici et ., 2005; Taniguchi et al, 2006; Xu and Messina, 2009). The similar trend between insulin and TCAP-1 suggests that TCAP-1 may play a complimentary role to insulin in signalling for increases in glucose uptake and may serve as a potential alternative to insulin.

[00211J The AMPK pathway is crucial in the regulation of lipid and glucose metabolism (Hegarty et al, 2009), In skeletal muscle, it plays a role in the regulation bf contraction-mediated increases in glucose uptake. Previous unpublished results show that 1 minute of 1 nM treatment of TCAP-1 to mHypoE-38 neurons resulted in an increase in AMPK phosphorylation, suggesting that TCAP-1 likely mediates changes in cellular metabolism through the AMPK pathway. Western blot analyses show that with the addition of MEK inhibitor to mHypoE-38 neurons, TCAP-1 mediated increases in AMPK phosphorylation is inhibited. This suggests for the first time that TCAP-1 activation of the AMPK pathway is likely dependent on the MEK/E K1-2 pathway.

[00212] These studies utilized immortalized embryonic mouse hypothalamic skeletal muscle cell models to examine the mechanism by which TCAP-1 enhances neuronal and muscular metabolism. Due to the complex interactions of cells, tissues, organs and organ systems in vivo, individual cell lines representing a homogenous collection of cells lepresentative of tissues of interest were used to understand the physiological mechanisms of TCAP-1. The mHypoE-38 hypothalamic cell line was used as a model for neurons. These neurons were developed from primary cell cultures of fetal mouse hypothalamus derived during a period of neurogenesis (Belsham et al, 2004). These hypothalamic cultures were transformed with a vector containing SV40 T-Ag as an immortalization factor. Of the total 38 cell lines that were generated from further subcloning, the rnHypoE-38 cell line was used for further dtaracterization. These mHypoE-38 neurons express neuronal markers and have demonstrated ability to respond to neuropeptides, particularly those involved in the regulation of metabolism. This was particularly important as the mHypoE-38 neurons are a representative cell line that exhibits the normal neuroendocrine functions of cells of the hypothalamus in mouse, such as Ieptin sensing. This cell line was used as previous experiments established its ability to respond to neuroprotective actions of TCAP-1 treatment in vitro (Trubiani et al., 2007). As well, unpublished results supporting the hypothesis of TCAP-l's role in optimizing neuron metabolism were also generated through in vitro experiments done on the mHypoE-38 cell line (Xu, 2012). For all in vitro studies involving the mHypoE-38 neurons, the cells were cultured and treated in the same fashion as previously by Trubiani et at (2007), Ng (2010), and Xu (2012).

[00213] The C2C12 is a line of immortalized mouse myoblasts. The C2C12 cells represent myogenic muscle cells and were originally derived by Yaffe and Saxel from a heterogeneous cell population in adult dystrophic mouse thigh muscle (Yaffe and Saxel, 1977). For in vitro studies involving the C2C12 myocytes, the cells were cultured, differentiated, and treated in the same fashion as previously by Klip and amlal (1987). This way of culturing the C2C12 myocytes had been used for assessing glucose uptake kinetics using 3H-2-deoxyghicose by Klip and RarolaL Since glucose uptake experiments were the first of experiments to be conducted in this study on the C2C12 myocytes, the rest of the work done on these cells employed the same culturing and treatment technique.

100214} TCAP-1 treatment to C2C12 myocytes resulted in a similar trend of glucose uptake compared to that for the mHypoE-38 neurons. The magnitude of increase in uptake was 2-3 fold compared to the uptake in neurons, as expected by the muscle's increased capacity for glucose transport Unlike the glucose uptake study on mHypoE-38 cells, results for the C2C12 myocytes were more variable, resulting in larger standard errors as well as a break in the glucose uptake trend by TCAP-1 at 60 minutes f during which time the glucose uptake level returned to baseline. A potential cause for the increased variability of these data is the significantly higher level of glucose in the culturing medium of the C2C12 myocytes compared to that oftheraHypoE-38 neurons. The C2C12 myocytes were synchronized for 5 hours in Minimum Essential Medium containing 1000 mg dL before experimentation whereas the mHypoE-38 neurons were deprived of serum in a buffer containing 0 mg/dL of glucose as per the protocol in Ue ura and Greenlee (2006). This high level of surrounding glucose is higher than the physiological range of 70-180 mg/dL. Due to this inconsistency, the C2C 12 myocytes may have experienced insmm-insensitivity, leading to variable results. Usingthe C2C12 myocytes as a model for skeletal muscle, the mechanism by which TCAP- 1 stimulates glucose transport can either be by activating an insulin-dependent mechanism or by stimulating a contraction-mediated signal to increase glucose uptake (Richter and Hargreaves, 2013). [00215] FITC-TCAP-1 binding studies on sectioned mouse gastrocnemius muscle indicate that binding sites exist primarily in regions around the sarcolemma. Binding sites are also weakly and ubiquitously spread across the entire section of muscle. This is consistent with the FlTC-TCAP- 1 binding studies performed on hippocampal El 4 cells in which FITC- TCAP-1 bound to cell membranes (Chand et d., 2012). A co-staining with β-DG shows strong co-localization in regions where FITC-TCAP-1 bind.

[00216] Immunoreactivit studies show that endogenous TCAP-1 is expressed mainly on the sarcolemma and less so within each myocyte. So far this suggests that the TCAP-1 signalling system exists in mice muscle, at least in part. TCAP-1 has been shown to be an independently functioning peptide after cleavage from the teneurin-1 protein (Chand et at, 2013). However, " in the case of skeletal muscle, the absence of endogenous TCAP-1 ia skeletal muscle in areas outside of the sarcolemma suggests that TCAP- 1 may be dependent on its transmembrane component, teneurin-1. Thus, distmgxusbing the presence of all teneurin proteins on skeletal muscle may provide insight for delineating the TCAP-1 signalling pathway in muscle. As well, its effects in skeletal muscle may be extended to other systems in which the TCAP-teneurin system exists. Immunoreactivity studies also show a strong association between TCAP-1 and the neuromuscular junction marker, rapsyn. The localization of TCAP-1 relative to rapsyn suggests that TCAP-1 is adjacent to rapsyn at the neuromuscular junctions. This supports the potential role of TCAP-1 in the modulation of neuromuscular signalling and not necessarily in the maintenance or integrity of the neuromuscular junction.

100217] The EK-ERK.I/2 pathway, as part of the RAS RAP MEK/ERK pathway, signals to prevent or induce apoptosis or cell cycle progression by regulating the transcription of cell cycle and apoptotic genes (Chang et al., 2003). Western blot analyses performed with TCAP-1 treatment of C2C12 myocytes revealed no significant changes in the activation of ERK1/2. The results of these studies were not in accordance with similar studies done on E14 hippocampal cells (Chand et al„ 2012). The co-localization of TCAP-1 and the β-DG complex on the sarcolemma of muscle tissue suggested that TCAP-1 may signal through the same receptor complex to possibly activate the EK/ERK1-2 pathway. The MAP signalling pathways are expressed in all mammalian muscle cell types (i.e. skeletal, cardiac, and smooth) (Yamazaki et al, 1995; Goodyear et al, 1996; Force and Bonventre, 1998; Widgren et al, 2002). However, the data onhand suggests that perhaps the complexity of the E ERK1 -2 signalling pathway lenders this study insufficient. During exercise or muscle contraction, itogen-activated protein kinase (MAFK) activation activates three main further downstream signalling molecules; I) ERKl/2; 2) JNK/P38; and 3) ERK5 (Brunet and Pouyssegur, 1997; Widmann et al, 1999; Widgren etal, 2002). Thus if the role of TCAP-1 is to mediate exercise-like effects on skeletal muscle, further investigation in the other components of the RAS/RAPME /ERK pathway may provide more insight on the mechanism by which TCAP-1 mediates increases in glucose uptake in C2C12 myocytes. As well, it is important to consider the overall complexity of metabolic regulation of skeletal muscle. As the largest contributor of glucose uptake in mammals, skeletal muscle relies on numerous interdependent factors to regulate the molecular responses to stress and increased activity (Widgren et al, 2002). These factors include cues of fatigue, ATP depletion, reduced calcium cycling, pH changes associated with lactate accumulation and glycogen depletion (Shoubridge etal, 2005; Hermansen and Osnes, 1972; Bergstrom et al, 1967). All of these factors alter the signalling of the ME ERK1 -2 pathway in vivo during exercise and therefore ER l/2 has only been shown to be activated during exercise in vivo and not in in vitro models (Aronson etal., 1 97; Widgren et al, 1998). Thus, the implications of in vitro experiments on the effects of TCAP-1 on cultured skeletal myocytes may be limited.

[00218] Prelirmnary studies (data not shown) suggest that TCAP- 1 does not activate the AMPK pathway in C2C12 myocytes (Chen et al, unpublished). The negative results of the western blot analyses of both ERKl 2 and AMPK phosphorylation suggest that TCAP-1 may act through a different receptor s stem in skeletal muscle than in neurons. This may also suggest that TCAP-1 may be mediating glucose uptake into skeletal muscle via an insulin- dependent mechanism; this is contrary to what is observed in neurons. Future immunoreactivity studies on C2C12 myocytes using TCAP- 1 antisera may give further insight on whether TCAP-1 is consistently present in mammalian skeletal muscle models. Subsequent pull-down assays may also provide more infonnation on the receptor system that TCAP-1 relies on for signalling in the in vitro model of skeletal muscle.

[00219] This invention demonstrated that TCAP- 1 impacts the glucose homeostasis in vivo by decreasing plasma glucose and increasing uptake of the glucose into key organs of interest, particularly the brain. Additionally, " the in vitro data suggest that TCAP-1 mediates these in vivo augmentations in glucose metabolism through an iiisulto-iiidjspendent increased cellular uptake of glucose both in neurons and skeletal myocytes.

[00220] Over 300 million people in the world suffer from Type II diabetes (World Health Organization, 2009). A risk factor in the development of Type II diabetes (T2D) is insulin resistance, resulting in hyperglycemia. Thus, newest therapeutic treatments are gearing towards pancreatic treatments to alleviate the body's lack of insulin signal. Recent studies show that roughly 50% of glucose disposal occurs through msmm-indepeudent mechanisms; these mechanisms are highly reliant on the brain-centered glucoregulatory system (BCGS) (Schwartz et al. , 2013). With the prevailing evidence suggesting that TCAP- 1 decreases plasma glucose levels in normal animals and returning plasma glucose to near ormal levels in spontaneously diabetic non-obese rats. This study examines whether this impact is present in obese T2D rats. Both msToJm-independent and insulin-dependent mechanisms of glucose homeostasis may be compromised in diabetics. Although deficits in one may be compensated by the other, the two mechanisms of glucose homeostasis do not exist in exclusion of one another in vivo. Thus, tile study also explores the role of TCAP-1 in vivo and long-term analyses of pancreatic islet cell morphology, insulin responsiveness, and adipocyte changes.

[00221] It was previously thought that neurons were the main regulators of brain metabolism and that surrounding glial cells perform other housekeeping functions (Tarczyluck et al., 2013). More recent evidence suggests that a cohort of glial cells, astrocytes, are regulators of neuronal energy supply by sensing levels of neuronal activity and have a symbiotic relationship with neurons to maintain neural activity (Stobart and Anderson, 2013; Turner and Adamson : 2011; Hertz et aL, 2007; Sokoloff L, 1999; Verkhrastky and Toescu, 2006). Astrocytes sense neuron activity through increases in extracellular glutamate at synapses during excitation. Much of the brain's glucose metabolism goes towards synaptic tiansniission and maintaining basal connections between neurons. Adjustments to the metabolism as a result of increased neurotransmission must then be carefully monitored so as to ensure the proper amount of energy intake (Stobart and Anderson, 2013; Pellerin andMagistretti, 1994; Cholet et aL, 2001). Certain glial cells, like astrocytes are sensors that ensheath synapses to detect the occurrence of synaptic activity. In response to an increase in synaptic glutamate, astrocytes respond with an increase in glycolysis and glucose utilization, thereby activating GLUTl. GLUT1 transports glucose molecules from the cerebral blood flow into astrocytes, making up the first step of the Astrocyte-Neuron-Lactate Shuttle (A LS) (Figure 4.1; Stobart and Anderson, 2013). Astrocytes metabolize the imported glucose into pyruvate, which can then be stored as glycogen, used as a source of energy by the mitochondria, or converted into lactate. Lactate is shuttled out of astrocytes by monocarboxylate transporters MCT- 1 and MCT-4, It is taken up by neighbouring neurons through MCT2 (high-affinity for lactate) and is converted back into pyruvate by lactate dehydrogenase (LDH)-1 to be metabolized as a source of energy. Oxygen transported through the blood is used up during oxidative phosphorylation (Stobart and Anderson, 2013).

[Q0222J The regulation of glucose metabolism in skeletal muscle accounts for the majority of physiological glucose usage of an animal. Increased glucose uptake is increased with exercise and during times of muscle growth. TCAP-1 administration shows no significant changes in glycogen storage after two weeks. As suchjt may affect the acute contraction strength of skeletal muscle as a consequence of the increases in glucose intake. This can be examined using an appropriate in vivo set up to measure the strength of contraction before and after TCAP- 1 administration. As well, an appropriate muscle recovery assay can be performed to determine whether TCAP-1 has any immediate or long-terra effects on recovery from muscle injury. Duchenne's Muscular Dystrophy (DMD) is an X- linked disease resulting in the loss of dystrophin and consequently, muscle integrity. Muscle atrophy is significantly increased in the mdx mouse models of DMD than wild-type mice (Partridge, 2013). Should TCAP-1 have a role in muscle growth and the prevention of atrophy, the phenotype of mdx mice may be alleviated to a certain extent.

[00223] In conclusion, the findings of this study show that the effect of TCAP- 1 to decrease plasma glucose and consequently increase glucose uptake into tissues is mediated by mechanisms that act to increase cellular metabolism and glucose intake (Figure 4.2). At the cellular level, TCAP-1 activates the MEK/ERKl-2-dependent AMP pathway. This then signalE to increase GLUT3 expression in the cell membrane; this increased glucose transporter activity is sustained for over two hours. With increased GLUT3 expression in neurons, there is an increase in cellular glucose uptake in an msulm-juodependent manner that is evident in both the distinct glucose uptake profile as well as the independence of po^sium-mediated increases in glucose uptake. TCAP-1 adiriirdstra-ion in vitro yielded a decrease in acute levels of pyruvate and no changes in the acute levels of lactate. This is consistent with findings of TCAP-1 neuroprotection studies (Xu, 2012) as it is likely that TCAP-1 mediates a stronger chronic effect that is only visible after 3 hours.

[00224] In skeletal muscle, similar increases in glucose uptake can be observed though to a much larger degree.. The glucose uptake profile also suggests a differential mechanism than that of insulin. In the brain, all findings suggest that TCAP-1 optimizes neuron metabolism by increasing glucose uptake coupled with increased mitochondrial activity and a shift from anaerobic glycolysis to oxidative phosphorylation. This overall increase in energy for the brain would increase the likelihood of the animal to survive oxidative stress and future energy deficits. The increased glucose uptake into skeletal muscle indicates the roles of TCAP-1 in growth and mobility. This is consistent with previous unpublished observations of increased muscle hypertrophy in vivo and represents a beneficial augmentation of the animal's metabolism.

[00225] TCAP-1 is shown herein to play a role in the augmentation of muscle metabolism. Understanding the in vitro mechanisms of action could serve for uses in clinical cases of metabolic syndrome and diabetes where TCAP-1 may serve as an alternative to insulhi. As well, owing to the role of TCAP-1 in enhancing brain vitality through its neuroprotective capabilities, the usages of TCAP-1 for neurodegenerative diseases will also be beneficial. The discovery of the existence of the TCAP-1 system in skeletal muscle also may have applications in the treatment of muscular diseases and neurodegenerative diseases associated with impaired muscle function.

[00226] While the foregoing invention has been described in some detail for purposes of clarity and understanding, it will be appreciated by one skilled in the art, from a reading of the disclosure, that various changes in form and detail can be made without departing from the true scope of the invention in the appended claims.

[00227] All publications, patents, and patent applications are herein incorporated by reference in their entirety to the same extent as if each individual publication patent or patent application was specifically and individually indicated to be incorporated by reference in its entirety.

SO

REFERENCES

Abdul-Ghani, M and DeFronzo, RA. Pathogenesis of insulin resistance in skeletal muscle. J. Biomed. Biotechnol. 2010 (2010): 1-19.

Andersen, S.T., Haller, R.G, and Vissing, J. Effect of oral sucrose shortly before exercise on work capacity in McAidle disease. Arch Neurol.65 (2008): 786-789.

Aoi, W. s Naito, Y. 3 Tokuda, H., Tanimura. Y., Oya-Ito, T. and Yoshikawa, T. Exercise- induced muscle damage impairs insulin signaling pathway associated with IRS-1 oxidative modification. Physiol. Res. 61 (2012): 81-88.

Baumgartner, S. s Martin, D., Hagios, C. and Chiquet-Ehrismann, R. Tenm, aDrosophila gene related to tenascin, is a new pair rule gene. EMBO J. 13 (1 94): 3728-3740. Brozinick, J.T., Etgen, GJ., Yaspelkis, B.B. and Ivy, J.L. Contraction-activated glucose uptake is normal in insulin-resistant muscle of the obese Zucker rat. J. Appl. Physiol.73 (1985): 382-387.

Chand, D., Song, L., Delannoy, L., Barsyte-Lovejoy, D., Ackloo, S., Boutros, P.C., Evans, K., Belsbam, D.D. and Lovejoy, D.A. C-tenninal region of teneurin-1 co- localizes with dystroglycan and modulates cytoskeletal organization through an extracellular signal-related kinase-dependent stathmin- and filamin A-mediated mechanism in hippocampal cells. Neuroscience 219(2012):255-270.

Coyle, E.F., Hagberg, J.M., Hurley, B.F., Martin, W.H., Ehsani, A.A. andHolloszy, J.O. Carbohydrate feeding during prolonged strenuous exercise can delay fatigue. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 55 (1983): 230-235.

DeFronzo, R Λ. and Tripathy, D. Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care 32(2009): S157-S163.

Holloszy, J.O, and Kohrt. W.M.„ Regulation of carbohydrate and fat metabolism during and after exercise. Annu. Rev. Nutr. 16(1996): 121-138.

Hughes, B.W., Kusner, L.L., Kamfoski,H.J. Molecular arcMtecture of the neuromuscular junction. Muscle & Nerve 33(2006): 445-461,

Jensen, T.E, and Richter, E.A. Regulation of glucose and glycogen metabolism during and after exercise. J. Physiol. 590.5(2012): 1069-1076.

Kang Y.S., Bickel, U. andPardiidge, W,M. Phannacokinetics and saturable blood brain barrier transport of biotin bound to a conjugate of avidin and a monoclonal antibody to the transferring receptor Drug Metab. Dispos.22 (1994): 99-105.

Levine, A., Bashau-Ahrend, O., Budai-Hadrian, Gartenberg, S., Menasherow, R and Wides, R. Odd Oz: a novel Drosophila pair rule gene. Cell 77 (1994); 587-598.

Mtaet, A. and C quet-Ehrismann, R. Phylogenetic analysis of teneurin genes and comparison to the rearrangement hot spot elements of K coli. Gene 257(2000): 87-89. Minet, A., Rubin, B. } Tucker, R., Baumgartner, S. and Chiquet-Enrismann, R Teneurin- 1, a vertebrate hornologue of the Drosophflapair-rule gene Ten-m, is a neuronal protein with a novel type of heparin-bind g domain. Journal of Cell Science 112 (1999): 201 - 2032.

Oohashi, ΊΛ, Zhou, K, s Feng, B,, Richter, M., Morgelin, M, 5 Perez, W. s Su, R., Chiquet " Ehrismann, R„ Rauch, U. and Fassler, R. Mouse ten-m/Odz is a new family of dimeric type Π transmembrane proteins expressed in many tissues. J. Cell Biol. 1 5 (1999): 563- 577.

Pelicano, K, Martin, D.S Xu, R.H. and Huang, P. Glycolysis inhibition for anticancer treatment. Oncogene 25(2006): 4633-4646. Petersen, .F., Dufour, S„ Savage, D.B., BOz, S., Solomon, G., Yonemitsu, S. Cline, G.W., Befroy, D., Zemany, L., Kahn, B.B., Papademetris, X., othman, D.L. and Siwlroan, G.L The role of skeletal muscle insulin resistance in the pathogenesis of the metabolic syndrome. PNAS 104 (2007): 12587-12594.

Preisler, N., Pradel, A., Bnsu, E, 5 Madsen, .L., Becquemin, M.H., Mollet, A. 3 Labrone, P., Petit, F., Hogrel, J.Y., Jardel, C. } Maillot, F., Vissing, J. and Laforet, P. Exercise intolerance in glycogen storage disease type ΙΠ: weakness or energy deficiency? Mol. Genet. Metab. 109(2013); 14-20.

Qian, X., Barsyte-Lovejoy, D., Wang, L., Chewpoy, B., Gautam,N., Al Chawaf, A. and Lovejoy, D.A. Cloning and characterization of teneurin C-terrninus associated peptide (TCAP)-3 from the hypothalamus of an adult rainbow trout (Oncorhynchus mykiss). Gen Comp Endocrinol. 137 (2004): 205-16.

ichter, E.A. and Hargreaves, M. Exercise, GLUT4 and skeletal muscle glucose uptake. Physiol. Rev. 93 (2013)-. 993-1017.

Robertshaw, H. A, Raha, S., Kaczor, JJ. and Tamopolsky, MA. Increased PFK activity and GLUT protein content in McArdle' s disease. Muscle & Nerve 37 (2008): 431-437. Rubin, B., Tucker, P., Martin, D. and Chiquet-Enrismann, R. Teneurins: a novel lamily of neuronal cell surface proteins in vertebrates, homologous to the DrosophUa pair-rule gene product, Ten-m, Dev Biol. 216 (1999): 195-209.

Sapolsky, R.M. (1992) Stress, the aging brain and the mechanisms of neuronal death. ΜΓΓ Press. Cambridge Mass. 428 pages,

Vissing, J. and Haller, R.G. The effect of oral sucrose on exercise tolerance in patients with McArdle's disease. New England Journal of Medicine 349 (2003): 2503-2509. Vuisser, C.C., Stevanovic, S., Voorwindem, L., GaUlard, P.J., Conninelin, D.J., Danhof, M. and DeBoer A.G- Validation of the receptor for drug targeting to brain capillary endothelial cells in vitro. J. Drug Target 12 (2004): 145-150.

Wang, L., Rotzinger, S., Al Chawaf, A., Elias, C.F., Barsyte-Lovejoy, D., Qian, X., Wan, N-C, De Cristofaro, A., Belsham, Bittencourt, J.C., Vaccarino, F. and Lovejoy, D.A Teneurin proteins possess a carboxy terminal sequence with neuromodul tor activity. Mol. Brain Res. 133 (2005): 253-265.

Wasserman, D.H., ang, L., Ayala, J.E., Fueger, P.T., and Lee- Young, R.S. The physiological regulation of glucose flux into muscle in vivo. J. Exp. Biol. 214 (2011): 254-262.

Zhang Y. and Pardridge, W.M. Conjugation of brain-derived neurotrophic factor to a blood-brain barrier drug targeting system enables neuroprotection in regional brain ischemia foUowingmtraveiioaismj 889(2001): 49- 56.

Zierath, J.R., Tsao, T.S., Steoobit, A.E., Ryder, J.W., Gahiska, D. and Charron, MJ. Restoration of hypoxia-stimulated glucose uptake in GLUT4-deficieiit muscles by muscle-specific GLUT4 transge -ic complementation. J. Biol. Chem.273 (1998): 20910- 20915.

Xu, M. A novel pathway for enhanced metabolic capacities underlies the AbirSaab WM, Maggs DG, Jones T, Jacob R, Sriliari V, Thojnpson J, Rerr D, Leone P, Siystal J¾ Spencer DD, Doling MI. Sherwin RS. (2002). Striking differences in glucose and lactate levels between biain extracellular ili d and plasma in conscious human subjects: effects of hyperglycemia and Jiypogtycaeniia, J Cereb Blood Flaw M ab 22:271-279.

Al C awaf A, St Atnant K, Bdsham ? Lovejoy DA. {2007.0. Regulation of neurite outgrowth in immortalized moose hypothalamic neurons and xat hippocampal primary cultures by teneurin C ena -aI-assoriated pepttde-L Neurasd&tce 144:1241-1254.

Al Cliawaf A, Xu K, Tan L. Vaccidno H. Lovejoy DA, Eotainger S, (2007b). Corticotropin- reteasaig factor (C F)-iiiduced behaviors are modulated by intravenous administration of teti tiria C-terminal associated peptide-1 (TCAP^-). Peptides 28:1406-1415.

Alberts d al. (2008). Molecular Biology of Ehe CelL Garland Science, New York NY iBO.

Alqui r T, Leloup C, Lorsignri A, PenieaudL. (2006). Translocable Glucose Transporters in ihe Brain. Where are we in 2006? Diabetes 55:S131-S138.

Airley RE, Mobasheri A. (2007). Hypoxic regitiatioa of glucose, transport, ana robic floetabolism and angiogen sis in cancer: novel pathways and targets for anticancer therapeutics. Chemotherapy 55(4): 233-256.

Andeisspn JO. (2005). Lateral gene transfer in eukar otes. Ceil Mol Life Sci 62: 1182-1197.

Araviad L, Anantbiitiman V, Zhang D, de Souza RF, Iyer LM. (2012). Gene flow and biological conflict systems in the origin and evolution of eukaryotes. Fivnt Cell Infect Microbial 2:89.

Aronson D, Violan MA, D fresse SD, Zangea D, FieWia EA, Goodyear. (1997). Exercise stimulates the niitogen-activated protein kinase pathway in human skeletal irmscle. JC n Invest 99:1251-1257.

Bady r, Marty N, Daliaporfa M, Emery M, Oyger J, Tanissio D, Foreiz , Thwecs B. (ZQ06).

Evidence from gkit2-null mice that glucose is a critical physiological regulator of feeding. Diabetes 55:988-95.

Eajor ¾ί, Kaczmarek L. (2013). Proteolytic Remodeling of tiie Synaptic Cell Adhesion Molecules (CAMS) by Mefe-adas in Synaptic Plasticity. Neurockem Res 38:1113-1121.

Barnard J 5 Youagren IF. (1992). Regulation of. glucose transport m skeletal muscle. The FASEB Journal <5(l4):*23S-3244.

Barnes K, Ingram JC, Porras OH, Barras LF 3 Hudson ER, Fryer LG, Foufelle F, Carting D, Hardie DG, Baldwin SA. (2002). Activation of GLUTl by inetabciic and osmotic stress: potential iavo_ven_e.it of AMP-activated protein kinase (AMPK). / Cell S 115:2433- 2442. Burros LF. C2013). Metabolic shoaling by lactate the brain. Trends Neurosci 36:396^104.

Barsyte D„ Tippiag Dfc, Smart Conloa JM, Baker BI, Lovejoy DA. (1999). Rainbow trout (Oncorkynchusmykiss) ur teu≤in-t structural differences between urotensin≤-I and OTOCortias. Gen Comp Endocrinol 115:169-177.

Baumgartner S, Martin D, Hiigios C, Oriquet-Elirisinann R. (1994). Team, a DrosopMa gene related to taaacin is a new pair-rule gene. EMBO J 13.37ZS-3740.

Bur el R, Tborens B. (2001). Evidence ttiat extr pnucreatic GlXTTC-depeudent gluc se sensors control glucagon secretion. Diabetes 50: 1232-9.

Carey M, ehlenbriufc S, Hawidns . (2013). Evidence for Central Regtilation of Glucose MetaboHsai, Jwzna! of Biological Chsmishy 288:34981-34938.

Cband D, Casatti CA, de Laonoy L, Song L, Kollara A, Barsyta-Lcivejoy T a Brown TJ, Lovejoy DA. (2013a). C-tmijiijal processing of the teneunn protesas: laaepentfeDi actions of a teaeurin C-terinks. associated peptide in Mppocanipal cells. Mol Cell Neurosci 52:38-50,

Chand D, de Lanooy L, Tucker R, Lovejoy DA.(2013b). Origin of chordate peptides by horizaatal protozoan gene transfer in early nletazoaas and protists: Evolution of the tene rmC eiminal associated peptides (TCAP). Gen Comp Endocrinol 188:144-150.

Chand D a Song L, DeLannoy L, Barsyte-Love oy D, Ackioo S, Botftros PC, Evans K, Belsham.

DD, Lovejoy DA. (2012). C-tetmiaal region of teneurin-1 co-localizes with dystroglycan and modulates cyfoskelefel organization through an extracellular signal-related kiasse- depeadent stafhtrt n^ aod ftlamin A-mediated aiecbaiiism in iappo aojpal cells. fteitroscimce 219255-270.

Chang CL, H¾ SY. (2004). Ancient evolution of stress-regulating peptides in vertebrates. eptides 25:1681-1688.

Chea Y, Xu , De Aimeida R, Lovejoy DA. (Soi3). Teneorin C-Traninal associated peptides (TCAP); Modulators f cot irotropin-releasiiig factor (CRT) physiology and behavior. Frontiers in Neitroscience 1: 1-5.

Chung , Campanelli JT. (1999). WW and EF hand domains of dy$iropitiil-family proteins mediate dysiroglycan binding. Mol Cell EinlRes Cmmun 2:162-171.

Colin, ED. (2004). Dystroglycan: important player in skeletal muscle and beyond Neuromus ular iAso dws 15:Z07-217.

Gondeelis J. (1995) Eiongetton factor 1 alpha, and the cytoskektan. Trends ioch Sci 5:169-70.

De Γ τοπζο EA, Jacot E, Jequier E, aeder E, " alaai J, Felb r JP. (I9S1). The effect of insulin on the disposal of intravenous glucose. Results from indir ct c orinietry and hepatic and femoral venoms cafaeterizatioa. Diabetes 30:1000-1007.

Denver R3. (2009). Structural and fractional evolution of ertebrate neuroendocrine stress systems Am N YAcat} Sci 1163 ; 1-16.

DeysJ KA, Bowe MA, Leszyks JD, F-dloo JR. (1995). The a-Dystrogl caa-p-Dystioglycaa Complex: Membrane organization and relationship to an agrin receptor. J Biological Cheat 270(43):25956-23959.

Undtt R ^uschinsky W. (2001). Braia glucose traiispori!as: relfittonship to local energy demand. News P ysfol. Set, 16:71-76.

Ervasti JM, Ohlendieek K, Kabl SD, Gaver G, Campbell P. (1990). Deficiency of a glycoprotein corrjponeat of the dystrophin, cornpteK. m dystrophic muscle. Nature 345:315-319.

Fick U, Belsham DP. (201 ). Nirfrieni sensing and insulin signaling iu neuropeptide-expressiiig unwortalized, l-ypothalarnic neurons: A cellular model of insulin resistance. Ceil Cycle 9:3186-3193.

GalefS F, Fos¾C KA, Sadgrove MP, Beaver CT„ Turner DA. (2007), Lactate uptake contributes to the NAD(PJH biphase response and tissue oxygen response during synaptic stimulation in am CA1 of rat hippoeaijjpal slkes. JN arochem 103:2449-2461,

GcddenSeld N, Woese C. (2O07). Biology's n st re olutions. j iriws 445:369.

Gnillnm MT, Humul er E, Schaerer E, YeSi JI, Birnbaran MJ > Beermaan F, Sclimidt A, D&riaz N, Thorens B, Wu 3Y. (1997). Early diabetes md abnormal postnatal pancreatic islet development in mice lacking Glut-2. Nat Genet.17:327-30.

Haidie DG, Ross FA, Hirft'ley S A. (2012). AMP-activated protein kinase: a target for drugs both ancient and modem. Ch&m Biol 1P:.ZZ2-1236.

Harmon AW, Paul DS, Patel YM. (2004). MEK inhibitors impair ir inm-stirnwlated glucose uptake in 3 3-L1 adipocytes. American J Physio 287:758-766.

Hegarty BD, Turner N, Cooaey 3J 5 Kraegen BW. (2009). Insulin resistance and fuel homeostasis: the role of AMP-aciivated protein kinase. Acta Physiol 19'6 129Ί45.

Hertz L, Peng L, Dienel GA (2007). Energy nwt¾boJistu in astrocytes: high rate of oxidative metabolism aud spatiofeniporal dependence on giycolysis/glycogefflolysis. JCereb Blood Flow Metab 27219-249,

Hu Y, Wilson GS. (1997). A temporary local energy pool coupled to neuronal activity:

fhit-tuatkMis of estraceEulflr lactate levels in rat brain monitored with rapid-response enzyme-based sensor. JNearoch&n 69:148 -14P0. Hughes BW, Kusner H,, Kmniaski BX (2006). Molecular arciiitect re of flue aeurojauscular junction. Muscle &Nwe 33:445-461.

I ragfeimov-BeslaO m a Q, Brvssfi J , Leveille CJ, Slau^rter CA, Serasti

Id-ijo ¾ Nishidii E, Irie K, tea Dijke P, Saitoh ΪΜ, Morig elii T, Tflkagt M, Matsumoto , Mijfazotjo , Gofoh Y. (1997). Induction of apoptosis by ASK1, a o-amoia a MAPK K that acf-vates SAP OKK and p38 signaling pathways. Science 275 :90-94.

Jessen N, Qoodyear 1J. (2005). Contraction signaling to glucose transport in skeletal muscle. J Appl Physiol 99:330-337.

Joels M, arsf H, Knigers HJ, LucasseQ PJ. (2007). Chronic stress: implications &r neuronal morphology, fonetion and neurogenesis. Front Heuroendocm t 28:72-96.

-¾iea.car£i HI, Soitaa M, IJiditer D, Bo kers T. (2002). Interaction of G-protein-CDnpled receptors -with synaptic scaffolding proteins. Bioc em So Trans 30:464-468.

Kroszynska YT, Ciaraldt I , Heary RR. Kegulatioa of glucose metabolism ia skeletal inuscl?. In The endoaiiie pancreas and regulation of metabolism. Cherringtan A, Goodman HM Eds.; Oxford University press: London, 2001, 2(236):579-607.

Slip A, ¾-unlalT. (1987). Protein kinase C is aot reqairtd for insofiii sftraulatioji of liexose uptake in muscle cells in culture. JEwdiem 242:131-136.

-Klip A, SehertzerJD, Bilaii PJ, Thong F, Antonescu C. (2009). Bje¾Bktio of glucose transporter 4 traffic by energy d€priv&tion:rxorn nuto^ 196:27-35.

Kyiiaias JM, Baner e* P 5 Nitolalcaki E, Dai T, Ru le EA„ Ahmad MF, Avrodi J, oodgett JR.

(1994), The stress-activated protein kinase subfamily of OJTBI kinases. Nature 369:156- 160.

Langenhas T, Rnss AP. (2010). LateqphilliQ signalling in tissue polarity and morphogenesis. Adv Exp Med Biol 706:37-43.

Langonhan T, Proaiel S = Mestelc L, Esmaelli B, idter-Evans H. Hennig C, Sahara Y 7 Avery L, Vakonakis L Sc nahei B_ Rnss AP. (2009), Latrophilijn sigaallij¾ links anterior-pgrferior tissue polarity and oriented cell divisions in the C elegans embryo. Dev Cell 17:494-504.

Levins A, Bashan-Ahread A, Badai-Hadrian O Gartetiberg D, enasherow Z y Wides R. (1994).

Odd Oz: a novel DrosopMki pair-mfe gene. Cell 77:587-598. Lovejoy DA, Al Chawaf A, Cadinoucije M (200ΰ). Teneuiin C-tenninal associated peptides; An eoigTDfltie family of neuropeptides witn stcnctaral similarity to the cofticotrophiu- refeasing factor and calcitonin iamilits of peptides. Gen Camp Endocrinol 148:299-305.

Lovejoy DA, Baimeiit RJ. (1999), Evolution and physiology off foe coitkotropin-releasing factor (C F) fauiily of neuropeptides invertebrates. Gen C p Endocrinol 155:1-22.

Lovejoy DA, Jahaa 5. (200d). Phytogeny and evolution of the cortricotropia releasing factor feiaily of peptides. G&t Comp Endocrinol 145:1-8.

Lovejoy DA, Sotzinger S, Baisj-te-Lovejoy D. pG09). Evolution of Complenientaiy Peptide Systems: Teneuria C-tsrninal-assodated Peptides and Corticotropiii-releasing Factor Sapet adb,^s. AmNTAca S i 116i;215-220.

Magijod S s Ghrsoiii L, Locatelli M, Caiini M, Colombo A, Valenani V, Stoccheta N. (2003), Lack of improvement in cerebral metabolism after hypei xig in severe head injury, a -aki dialysis study. Jffeurosiirg 98:952-958.

Matsumura K, Ervasti JM, Olilendieck , KaM SD, Campbell KP. {1999). Association of dysfiopbin-reiated protein wit tfystxOpbin-aisc-ciated proteins in mdx iaou.se muscle. Nature 360:588-591.

Mayer CM, BeJsbaju DD. (2009). Ταειύία directly regulates NFY and AgRP gene expression via the APK MEICE K signal transduction pathway in mHypoE-46 hypothalamic neurons. Mo! Cell Enda 3O7(l>:9S-.i08,

McE en BS, Magarines AM. {1997). Stress effects on morphology and ftmdion of the hippotampws. Aim N YAwd Set 821:271-284.

McKay DE, Brian on N, Kok eva MV, Maratos-FKer E, Flier JS. (2012) Remodeling of the aicuaie nucleus eneigy-bgkncc circuit is inhibited in obese mice. J Clin Invest 122(1): 142-52.

Micliahik P, Kolodziej L, Mioduszewska B, Wilczynsld GM, Dzwoaek J, Jaworslri J, Gorecki DC, Ottei¾¾ OP, Karemarek L. (2007) Beta-dystroglycan as a target for MMP-P, in response to eoh-J-ced neuronal activity. JBiol Chem 2S2(22):16036-ie041.

Moore SA, Saito F, Chen J, ¾Gehale DE, Heniy MO, Messing A, Co ll RD, Ross-Barta SE, Westra S, WilH-jason RA, Hoshi T, Campbell KP. (2002) Deletion of brain dystoglycan recajaiulates aspects of congenital muscular dystrophy. NOterc 418(6895): 422-425 ,

Ng TSJ. (2010). Tib? Effect of Teneorio C-tenninal Associated Peptide-l (TCAP-1): Protection Against Hypoxic-stress and Regn oa of Brain-derived Neurotrophic Factor (BSDl^F) in immortalized Hypothalamic, N38 celts. M. St Thesis. Dept. Cell and Systems Biology. University of Toronto.

Ng T, Cband D, Song L, " Watson 3D, Boutros PC, Baisyte-Lovejoy D, Belsham DD, Lovejoy DA. (2011). Jdeaitific-ition of a novel Brain Derived Nenrotrophic- Factor (BDNF)-

inhibitory factor. egalatoa of ΒΠΝΡ by Teneurin C-tenninal Associated Peptide (TCAP)-1 in immortalized embryonic mouse hypoilialaciic cells Regul Pept 174:79-89. .

Nobahaiu F, lessen N ? Goodyear LJ. (ZOOS). AMP-activated proteia kinase and ¾e regulation of glucose transport. Am J Physio! Endocrinol Metab 29l:ES67-E867.

Nock, TG. (2010). Development of aa enzyme -tnmutioassay and cdlvdar function assays to io e the function, of Teneufin C-Tenainal Associated Peptide (TCAP). M.Sc. Thesis. Dept. C«U and Systems Biology. University of Toronto.

Ohno S. (1998). The notion of tne Cambrian panammalia genome and a genomic difference thai separated vertebrates froi nvertebrates. ProgMol Subcell Biol 21:97-117.

Pages G, Lenormaod„ L'AHemam G, Chatnbard JC, eloclie S, Potjyssegur J. (1¾>3). Mitogen- activated proteia kinases p 2-MAPK md p44MAP are required for fibroblast proliferation. Proc Nat! Acad S i 90:8319-8323.

Pelferin L, Bouzier-Sore A, Ai&ert A, Serres S, Merle M ( Cosialat R, Magistretti PJ. (2007).

Activity-Dependent Regulation of Energy Metabolism by Astrocytes: An Update. Gli 55:1251-1262.

Peng HB, Xie H, Rossi SG, Rofctndo RL. (1999). AceiylcholiBesiei¾¾ CJnsfering at ike I^ewomuscular Junction aiToi es Petiftcaa and. Dysrroglycan.7 C¾/J -5M 145(4) :911-921.

Qian ¾, Baisyte-Lovejoy T Wang L, C ewpoy B 7 Gautam N, Al Cha af A, Lowjoy DA.

(2004). Cloning and cl^aracterizatioa of teneurin C-tenainal associated peptide cjcAP 3 from the hypothalamus of an adult rainbow troHt (Qncorhync us mykiss). Gen Comp Endomttol 137(2):205-216.

RezoiczejE QA » Koaieczny P, Nikolic Β » Reipsai S, S linella D, Abra amsbeig C, Davies E, "Winder SJ, ichs G. (2007). Plechn If staffoldiag af tbe sarcolemaia of dystrophic (mds) incscle fibers tb Aigfr flwltip-β interactioiis with p-dystrogiycaii, J C«tf Bio Π6(7):£>55-977.

Richter EA, Hargreaves . (2013) Exercise, GLUT4, and skeletal muscle glucose uptake.

Physiological Revie s 93:£>93-1017.

Ra in

Sakamoto , Holman GD- (2008). Eaiergiiig role for ASI60 TBC1D and TBCIDI in titue regolatian of GLUT4 ttt c.AmJPkysial Endocrinol Meiab 295.;E29-E37. Soha IW, Elmquist JK, ilii-oos W. £2013). Nearaal eirraiits that regalate feeding behaviour and metabolism. Trends in Neurosd&tce 36:504-512.

Sokoloff L. (1999). Energetics of functional acthtatkw in neural tissues. Ne rocbs Res 24:321- 9.

Stearns SC. Hoekstra RE. (2005). Ero tirai: An inrnKtoctiqn (2* J ed.). Oxford NY: Oxfeid tTmi- Press pp.38-04.

Stobart JL and Andeson CM. (2013). Multifimctioaal role of arfrcwyfes as gatskeepeis of neuronal energy sup ly- Frai a's ist Cellular Nearosa&i e 7: 1 -21.

Tan LA, Al Chawaf A, Vaccitfino FJ, Bo tros PC, Lovejoy DA. (20H). T«neuri¾ C-MnBinal associated peptide (TCAP)-1 modulates dendritic morphology in Mppocaropal neurons 3nd decreases anxiety-like behaviors is rats. Physiology & Behavior 104: 199-204.

Tan LA, Xu K, Vaccarino FJ, Lovejoy DA, Rofcinger S. (200S). Repeated intracerebral teneurin C-tsrminal associated peptide (TCAP}-1 injections produce enduring changes in behavioural responses to corficoCropm-releasjng factor (C F) in i¾t models of anxiety. Behavioural Brain Res atr 188:195-200.

Tsurzyhifc MA, Nage! DA, O' eil JD, Peni HR, Tse EHY, Cotereta MD, H2I EJ. (2013).

Functional astrocyte-nenroB, lactate shuttle ia a human stem cell-derived n uroaai network Journal of Cerebral 8loodFl<nv &Mmbolism 33:1386-1393.

Taylor EB, Goodyear Ljr. (2007). Targeting skeletal muscle AMP-actrvatwl protein kinase to treat type 2 diaoetes, CmrDiab 2¾p 7:399^K>I.

Tni ieni G, Al Chawaf A, Bell-ham D, Barsyte-Lovejoy D, Lovejoy DA. (2007).

Teneurincar oxy (C)-tenuiosl associated peptide- 1 inhibits alkalosis-assotiafed necrotic ae-uronal death by stimulating superoxide djsiuutase and eatalase activity in mimortal zed moose h pothalamic cells. Brain Re∑eai-ch 1176:27-36.

Tsigos C, Chroasos GP. (2002). Hypotfedamic-pitmiary-adrenal asis, neuroendocrine factors and steess-JPsychostmRes 53:865-871.

Tucker RP. (2013). Horizontal geue irajisfea- in cuoaaoflagellates. J Exp Zoo S Ucl Dev Evol ?20:l-9.

Tucker BP, BeftTffliarm. J, Leechman NT, Sender J, Clriqaet-EJuisraaim R. (2011\ Phylogenetic analysis of the teneuiias: conserved features and preinetRzoau ancestry. MolBiolEvol 29:1019-1029.

Tocfcear RP, Chiquet-Ehrismann ft. (2006). Tensurins: a conserved family of fcsnsfftenibrane proteins involved in intercellular signaling during development. DBV Biol 290:237-245.

Tucker RP,. Kenzelmaaa D, ^ebiatowska A, Chi j et-Et-danana R. (2007), Teneurins:

Transmembrane proteins with fiindamental roles in development Int J Bioc em & Cell Bio 39:292-297. Turner DA, Adamson DC. #011). NeBronai-Astrocyte Metabolic inieracti wis: Understanding the Transition intg Abnormal AstEocytoiBa Metabolism. J Nmropaihol Exp Neurol 70:167-176.

Uemura E, Greeiee HW. (2006). Insulin regulates neuronal glucose u take by promoting translocation of gfeicose transporter GLUT?. Expe imm il TTewdlagy 198:48-53.

Ulricli-La. YM, Herman JP. (2009), "Nearal regulation of endocrine and aHtonomic stress responses. Nat Rev Neiirosci 10; 397-409.

Valentine JW. 0994). Late Prec- liJjriaii iiateriaiis: grades and clades. i¾¾S 91:6751-6757.

Vamiucci SJ. (1994). Developmental expression of GLUTl and GLUTS glucose transporters k the brain. JNetirochem 11240-246.

Veddaasticy A, Toescu EC. (2006). Near jial-glial networks as substrates for CNS integration. J CetiMolMed 10:826-836.

Waag L, Rotaiiger S, Al C&¾waf A, Ettas CF, Barsyte-Laveioy D, Qian. X, Wang N, de Crisiofaro A, Bislsaain. D, Bitteiicosit JC, Vaecarina F, Lovejoy 3 A. (2005). Teneuri-i proieiiK possess a csrboxy terminal sequence: -wit ii m m duktory activity. Mol Brain Res 133(2):253-:WS.

Weisova P, Cooaiinon CO, Devocelle M, Prehn J, Ward M. (2009). Regulation of glucose transporter 3 surface expression by APM-activated protein kinase mediates tolerance to gintttEuate excitation in neurons, JNenroscf; 29(9): 2P 7-3O08,

Widgren U, Jiang 3£J, Kiook A, dubaiin AV, Bjomholia M, Telly M, Roth RA, Henriksson J, Wallberg-Heorikssoii H, Zierath JR. (1998). Divergent effects of exercise m metabolic and lnitogsni;

Widgren U, Ryder JW, Zierath JR. (2002). Mitogen activated protein kinase signal transduction in skeletal inas le". effects of exercise Bfld muscle contraction. Acta P ysiol Sc nd 172:227-238.

Winder SJ. (1996). Structore-f actiaa rektioBsbi s in dystrophin ssxt utrophi-i r Bioc em Soc Trans 24:497-501.

Winder SJ, Hemntiags L„ Macrver SK, Bolton SJ, Tiasley JM, Da ids, (1995). t/tropbin actin binding domain: analysis of acfcia iiuliag and crflu targeting. J Cell Sri 108:S3-71.

Woese CR. (2002). On (be evolution of cells. PKAS 99:«742-8747.

Xu M. (2012). A Novel Pathway for Enhanced Metabolic Capacities O daHes me euro rotective Actions of Tenearin C-Tenmaal Associated Peptide (TCAP)-L M. Sc Thesis. Dept. Cell and Systems Biology, Ujaivereity of Toronto. Yamazaki T s Kotnum L, Kud&b. S, Zou Y„ Sbio irna I, izsno T, Tafeao ¾ Hiroi Y Uefci. , T be K, ef at. (1995). Mechanical stress activates protein kinase cascade of p&ospliorylattwi in Beoaafal rat cardiac myocytes. / Clin Invest 95:438-446.

Yamazafci T,. Tobe K, Holi ¾ Maetaara K, Kaida T, oaiuio J, Tametnoto H, Kadowaki T, Nagai R, Yazaki Y. (1993). Mechanical loading activates luitogea-nctivated protein kinase and S6 peptide kinase in ctdhwed rat cardiac iffyDcytes. JSiol Ckem 265:12026?- 12076.

Young TR, Leaoiey CA_ (2009), Teneurins: Important reguSfrtgrs of neural circ tory. M J Biochem & Ce Bio 41:990-993.

Zaid K, Talioi-Vobdafsky Aatonescn C, KEp A. (2009). GAPDH binds GLU 4 reciprocally to rtexokinase-II andnegniates g wose transport activity. BiochemJ 415:475-484.

Zhang ϊλ, deSouza F = Aoaflffaaranraa V, Iyer L , Aiavind L, (2012). Polymorpiiic toxin systems: compreheas e c aracferizaticO of trail eking modes, mechanism of action, iitmnnaty and ecolo y- nsing comparative ganoaiics. Si lag}' Direct 7: IS.

Zhao FQ, Keating AF. (2007). Functional properties and genomics of glucose transporters. Can Genomics 8:113-128.

Airley RE, obasheriA. (2007). Hypoxic regulation of glucose transport, aoaerobie metabolism and aagiogsiiesis i cancer: aovel pathways and targets for anticancer therapeutics. Chemotherapy 53(4): 233-256.

Al Cliawaf A, Xu K, Vaccariflo FJ, Lovejoy DA, Rotziager S (2007). Corbcotropin-releasiag factor (CRF)- induced behaviours are xaodulated by intravenous adinimstration of feaeuria C-tm-un-dfl5-a)ciafe<ip¾)tjde-i (TCAP-1). Peptides 28:1406-1415.

Aroiisoa , Violaa MA. Dufiesae SD, Zai¾ea D T Fielding A, Goodyear. (1997). Esterase stimulates the mitagen-activated protein kinase pathway in hwa$R skeletal muscle. J Clin /warf99:125M257.

Carey M, K bknbnnli S, Hawkins M. (2013). Evidence for Cetttrai Regolatioa of Glucose Metabolism. J&uma) of Biological Chemistry 288:34981-34988.

Hanaon AW T Pawl DS, Patel YM. (2004). MEK inhibitors impair jb-ttlk--tiinuiared glucose uptake B_ 3T3-LI adipocytes. American JPh sio2B7:75&-766.

Hughes B , Ussier LL. amkski HI (2006). Molecular architecture of the oewromuscniar jfl&et-oa Mus h &Nerve 33:445-461.

Kol v Y> Uetake ft. Takagi Y, Sagifcara K. (2008). Lactate dehydtogeaase-5 (LDH-5) expression in huiaaa gastric caa er: association "wife hypoxia-inducible factor (HIF- 1 alpha) pathway, autogenic factors ptododiort and poor prognosis. Am SitFg Oncol 15:2336^344.

Mayer C , Belsham DD r (2009). Insulin directly regulates N?Y and AgRP gene expression via the MAPK MEK ERK signal (ransductioa pathway in mHypoE-46 hypothalamic nsorons. Aft»i Cdl&ido 307(1):9MQ®.

Mihaylova MM, Shaw RJ. (20Π). The AMPK signalling pathway coordinates cell growth, autopbageand metabolism. Nat Cell Biol 13:1016-1023.

Ng TSJ. (2010). The Effect of Teneurin C ertttu.al Associated Peptide- 1 (TCAP-1): Protection Against Hypo-C-c-stress find Regulation of Brain-derived Neurotrophic Factor (BDNF) in Immortalized Hypothalamic 2*38 ceils. M. Sc. Thesis. Dept. Cell sod Systems Biology. Ujaveisxty of Toronto.

Pelicano H, Martin DS, In RH, Huang P. (2006). Glycolysis inhibition for anticancer treatment.

Oncogene 25:4633-1646. Soto JW, ELmquist JK, William*. KW. (2015). Netn aal circmts that regulate feeding behaviour and metabolism. Trends w Ne rosdence 36:504-512.

Tan LA, Al Chawsf A, Vaccarino H, Βο\ϊίπ¾ PC, Lovejoy DA. (2011). Teneutiii C-tetminal associated peptide (TCAP)-l modulates dendritic mor hology in hippocampal neurons and decreases anxiety-lite e avior in rats. siotogy & Behavior 104; 199-204.

Tan LA, X , V&ccariao, Ώ, Lovejoy DA, Rofcinger S (2009Q. Tenewin C^ennina- associated peptide (TCAP)-1 attenuates ooiticotrop]iin-releasm¾ factor (CRF ndTiced c-Pos expression in the l mbic system, end luoduHfes anxiety behaviour in male Wister rate. Be av. Brain Res. 201:1 8-206.

Uemura E, Greeks HW. (2006). Insulin regulates oeBronal lucose uptake ¾y promoting translocation of glucose transporter GLUTS. Experimental Neurology 198;4S-53.

Wick AN, Druty DR, Nafcsda 3¾ Wolfe JB. (1957). Localizaiioii. of fee prinjaiy metabolic block produced by 2-d«Jxyg-ocose. J Biol C e 224:963-969 *

Widgien U, Jiang XJ, Krook A, Clii alia AV, Bjornnolm M, Tally M, Roth RA, Henriksson I, WaUbere-Hearifcssoii H, Ziejutli JR. (1998). Divergent effects of exercise on metabolic and autogenic signalling peihways in lroaian skelelal muscle. FASEB J 12:1379-1389.

Xo M. (2012). A Novel Pafli ay for Enhanced Metabolic Capacities Underiie. the Neuroprotective Actions of Teneurin C-Tenmnal Associated Peptide (TCAP)-L M. Sc. Thesis. Dept. Cell and Systems Biology, Umveistty of Toronto.

Al Chawaf A, Xv K, Vaccarino FJ, Lovejoy DA, otziager S (2007). Coriicob»¾«tt-releasiog factor (CRT)- induced behaviours are modulated by intravenous adrainistfirticrn of tenesjirin C-tenninal associated peptide-1 (TGAP-1). Pe tides 28:1406-1415.

Amac-J. AL (2013). Effects of hypoglycaemia on neuronal metabolism in the adoit brain: role of alternative substrates to g&reose. J Inherit Meiab Dis 36:621-634.

AiBttSDQ Ώ, Vioiaa MA = u&csne SD, Zangeai D, Fielding KA : Goodyear. (1997). Exercise stiorolaiss the mitogeo-activat d protein kinase pailiway m human skeletal muscle. J Clin

Barros LF. (2013). Metabolic signalling by lactate in ft* braia. Cell Press 3«-3!«404.

Bauer ME, Jecfcel CMM, Luz C. (2009). Hie Role of Stress Factors during Aging of the Immune System. Neurarnitntmomodiil on 1153:139-152.

Beetoa C, Garcia A, Ciandy K.Q. (2007). Drawing Blood from Rats through the SajSheuoHs Vein and by Cardiac Pwuctare. J }¾y Exp, 7:266,

Generation of a Study Complex

Bwg JM, Tymoczko IL, Stryer L. (3D02) Siocneniisiiy.5* edition. WJH. Freeman. New YcrSi

Bergstrom J, Hwinansen. L, Huitmaa E, Saltin B. (1967). Diet, muscle glycogen and hysical p^fornwe ce. Acta Physiol Sctmd 71:140-150.

Biddmgef SB & aha CR. (2006). From mice to men: iosigkte info insulin resistance syndromes. Amu Rev Pfyviol 6"B:123-158.

Boubaker J, Val-Laillet D, Gueria S, Malbert CH. (2.012). Brain Processing of Duodenal and Portal Glucose Sensing. Journal o N&o-omdocnitohgf 24; 1056-1103.

Boucard AA, exeineF S, Sudhof TC. (2014). Γ-atrophiiins fraction as heterophil.. ceU-adhesioa molecules by bjading fo teneurins: regulation by alternative splica¾. J Biol Caem 2S9-.3S7^ 02.

Brunei A, Pouyssegur J. (1997). M-amnaliaii MAP kinase modules: how io transducer specific signals. Bssays Biocbem 32:1-16.

Carey , eM abiink S, Hawkins M (2015). Evidence for Central Regulation of Glucose Metabolism. Journal ofSiologlcal C mas^' 288:3^8 l-34£8S.

Chfsid D, Casatti CA, de Laanoy∑ ¾ Song L, Kollsra A, Beasyte-Lovejoy D, Brown TJ, Lovcjoy DA. (2013). C-tenaktal processing of the teaeunn proteins; Independent actions of a teaerain C-tenninal associated peptide in hippocsmpal ceils. Mol Celf Netavs i 52:38-50.

Chang F, Steskaaii LS, Sfaerton JO, Lee JT, Navolanic P , Bialock WL, Franklin R, McCohrey JA. (2003). Regulation of cell cycle progression and apoptasis byflie Ra iRaKME l-KK pathway. MJOnaji 22:4^9-480,

Oiolef N, PeHain L> TVelker E, Lacotnbe P, Seylaz J, Magistretn " PJ, Bonvento G. (2001) Locai injection of antiserise oligonucleotides targeted to fiie glial gluramaie transporter GLAST decreases the metabolic response to somatosensory activation. J. Cereb. Blood Flaw Meiab, 21:404412.

Die j ad OA. (2012). Braia lactate metabolism: the discOTieries and tiie controversies. Journal of Gereorai Shod Flew & Metabolism 32: 107-113S.

!> mn-ici FP, Argeatmo DP, Mwaoz MC 7 Miqiiet >, Sotelo A¾ Turya D. (2005). Influence of the crosstalk between grtrwtii hormone and insulin signalling oa the modulation of insulin sensitivity. GnrmhHorm. IGF Has. 15:324-336.

Dringen R. Gebaardi R, Hasipreciii B. (1993). Glycogen in astrocytes; possible function as lactate supply for nHfih onsg cells. Srain Res 6 " 23:208-214.

Duelli R & Kuschinsky W. (2001). Brain glucose transporters,- relattcjiship to local energy d iuand.- fewf pfysiaf Sci; 16:11-76.

Fick Lf, Belsiani DD. (20 i 0). tiffwat sensing and insulin signalling in neiso ptio^ex Tessin immortaEsed, hypothalamic neurons: A eflulat model of insulin resistance. Cell Cycle 9:3186-3193.

Force T, Boiiventrs JV. (1998). Growth factors and uniogeivactivated protein kinases.

Hypertension 31: 152 61,

Gaikrway S, Bodenham A. (2004). Long-teim, central venous access. British Journal f Anasfi ssia 92:722-734.

German IP, Tlialer JP, Wisse BE, oh-I S, Sanuf DA, atsen ME, Fisclier JB, Taborsky OX, Schwartz MW, Morton. GJ. (2011). Leptin Activates a Novel CNS Mecliaoisai for Insulin-Independent Norrnalkation of Severe Diabetic Hyperglycemia. Endocrinology 152:394-404.

Gjedde A, arxett S, Vafaee JvL (2002) Oxidafive and Nonojddaiive Metabolism of Excited Neurons and Astrocytes. Journal of Cembrai Blood Flaw & Metabolkm 22:1-14,

Goo yeai U, Chang PY, Sherwood DJ, Daftesne SD, Mailer DE. (1996)- Effects of exercise and insulin, mitogen activated protein kinase signalling pathways in rat skeletal muscle. Ant J Physiol 27i:E403-E408. Hass l, B. (2001). Pyruvate tarbojt latioa in neurons. JNeiirosd i¾s 66:755-762.

Kegarty BD, Turner ft, Cooney GJ, Kraegen E , (2009). Insuim resistance and fuel homeDSt-Bi-.: flie rote of AMP-activated protein kinase. Acta Physiol 196:129-145.

Hennassen Laad Osaes JB. (1972). Blood and muscle pH after maximal esercise in maji. JAppl Physiol 32:304-303.

Hu Y, " Wilson QS. (1997). A. temporal local energy pool coupled to neuronal activity: fluctuations of extracelialar lactate levels in rat braia monitored -with rapid-response enzyme-based senses, J. Neurockem 69:1484-1490.

Klip A, Raialal T. (1957). Protein kinase C is not required ibr insulin si-ninlanon of hexose uptake in muscle cells in culture. Biochem 242:131-136'-

ahw F. (1995). linoiuaoco!ocali-Htion of GLUT! and GLUT3 glucose transporters in primary culture neurons and glial JNewosti Res 42459-469.

Mosca TJ, H " W, Dani VS., Favalxwo , Luo L. (2012). Trans-synaptic Teneurin signalling in neuromuscular synapse Organization and ferget choice. Nature 4B4J243.

Pgxasuraniim S, Raveendran R, Kesavaa R_ (2010). Blood sampli.- collection in smalt laboratory animals. J Pharmacol Pharmacother. 1 :fl7-93.

Partridge TA. (2013) The lndx mouse model as a surrogate for Duchenne muscular dystrophy FEBS journal 2S0;4177^186.

Pdlerin. L, agistretti PJ, (1994) Gluiamate uptake into astrocytes stimulates aerobic glycolysis: a raecfianisai coupling neuronal activity to glucose utilization. Pr c N<ftl Acad. ScL 91:10625-10629.

Ren X, Zhou L, Ter illiger R, Newton SS, de Axsttjo IE. (2009). Sweet teste agnaling fimctions as a hypotfiid&niic glucose sensor. From Iniegr ifanrosa 3;doi: ln,3389/-ifiuro.07.Q12-2009

Ricfeter EA, Hargreaves M. (2013) Exercise, GLUT4, and skeletal muscle glucose uptake.

Physiological Renews 93:993-1017.

Rorabaugh JM, Stratford JiA, Zluiiser NR. (3.014). A Rnktfonsaip between Reduced Nucleus Acormbens SbeE sad Enhanced Lateral Hypothalamic Orexin Neuronal Activation in Long-Term Fructose BingwngBe&avior. PLoSONE 9:e95019.

Schwartz W, Seeley RJ, Tschop H, Woods SQ, Morion Myers UG, D'Alessio D.

(2013). Cooperation, between brain and islet in glucose homeostasis and diabetes. Nature 503:59-66. S&stty P , Sadgrove MP, GeME F, Turner Ϊ>Α, (2012). Pyruvate irffiubation enhances glyoogen stores aid sustains neuronal function during subsequent glucose deprivation. Neitrobioi Dis 45.I77-1S7.

Shcrabridge HA, Challiss RA, Hayes DJ, Raddi GK. (1985). Biochemical adaptation m fee s-csetsl muscle of rats depleted of creatine with the sabstiate analog e bete- giianjdiaopEOfdonic acid. bck in J. 232;125-131.

Sofm JW, Elmquist J , Williams KW. (2013). Neuronal circuits that regulate feeding beJwviocr and metabolisin. Trends in Neuroidmce 36:504-512.

Sorge RE, Martin XJ, Isbester KA, Sotodnal SG, Rosen S, Turtle AH. Wiesfcopf fS, Adatid EL, Dokova A, Kadoura B, Leger P, Mapplebeck ICS, Mcpiiail M, Delaney A, Wigerblad G s Sdi roaan AP, Quinn T, Frasnelii J, Sveftsstm CI, Sternberg WF, ogil 7S, (2014). Olfactory exposure to males, including men, causes stress and related analgesia in rodents. Nature Methods ύοίι I0.i938/ninetli2935.

Sto art JL, Anderson CM. (201,3) ultiftinctian-il role of astrocytes as gatekeepers of nenronal energy supply, frontiers: in Cgl iktrNeurosia&ice 7:1-21.

Tan LA. (2011), The Role of Teaeuiin. C-Termiaal Associated Peptide (TCAP)-1 in tie Regulation of Stress-Related Behaviours. M. Sc Thesis, Dept. Cell and Systems Biology, University of Toronto.

Tan LA, Xn K, Vaccaiino, F?, Lovejoy DA, Rjoteinger S (2008). Repeated ra cerebralteneurxfl C-tenninsl associated peptide (TCA_?)-1 injections produce enduring changes in behavioural responses to corticotrop1nn-releasi-ig fader (CRF) in rat sxodels of anxiety. Behav. 3mm R.es. 188:195-200.

Tan LA, Xtt , Vacciain , FJ, Lovejoy DA, Rcteinger S (2009). Teneurin C^e rniaal associated peptide (TCAP)-l attenuates corti∞tropiim-releftsing factor (CEF)-rnduced e-Eos exprssion in the limbic system and modulates anxiety behaviour in male istar rats. Bebav. Brain Res. 201:198-20$.

Taxiignc CM 7 Emannel-i B, Kaitn C . (2006). Ciilical nodes in signalling pathways: Insights into iiisnlia action. NaL Rw. MoL Cell Biol 7:85-96.

Thrivskraman K , Huot EL, Plotsky PM. (2002). Jngnlar vera C-tfheterkat n for repeated blood sampling in the unrestrained conscious rat Brain Research Protocols 10:84-94.

Tsacopoutos , agistostti PJ. (1996) Metabolic coupling between g ia and neuron.. J.

NewoscL 16877-885. Uaaura E, GreeJee HW. (2006). Insulin regulates neuronal glucose uptake by promoting traastocaliaiiof glucose transporter ' GLUT3. Experimental Neurology 19S:48-53.

Widgrea U, Jiaag XI, rook A. Chibalin AV, Bjomholm M, Tally R Rath RA, HeDiikssoai J,

idgren U, Ryder JW, zieratb. JR. [2002). Mitogen activated protein kinase signal transduction in sfcdetai muscle: effects of exercise and muscle coiitra tioiL Acta Pfysial Scand I72:227^3S.

World Health Oi¾¾_izsiian, (2009). Global Risks. Mortality and burden of diseaae attributable to selected major risks. Geneva. htf wvw-^wiit m acentre i-Hitshtet^feS iUeaJ

Xu J f Messina JL. (2009). Crosstalk between giwtli hormone and insulin signalling. Vitamins and Hormones 80:125-153.

3iu M (2012). A No el PaSiway for Enliaaeed Metabolic Capacities Underlies the Neuroprotective Actions of Teamrin C-Tenninal Associated Peptide CTCAP 1. M. Sc Thesis. Dept. Cell and Systems Bioiogy, University of Toronto.

Yaffe D and Saxel O. (1977). Serial passaging and differentiation of royogenk tells isolated from dystrophic mouse muscle. Natum 270:725-727.

Ysmazafci T, Kornuro I, udoh S, Ζοη Y, Shiojima I, Mizuao T, Takano HL. Hiroi Y, UeJri K, Tobe K, et al (19£>5). Mechanical stress activates protein kinase cascade of phosphorylation in neonatal rat cardiac myocytes. JClm Invesi 96:438-446.

Yu S ? Tw anui I, Ding WG, Kitasato H, Kimura H. (1995). localization of ghjeose transporters (GLUTl and GLUT3) in fhs rat hypothalamus. Ob s Res Suppi 5.753S-757S.