Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHOD FOR OPERATING A REACTOR MODULE FOR ENDOTHERMIC REACTIONS AND REACTOR HAVING A PLURALITY OF SUCH REACTOR MODULES
Document Type and Number:
WIPO Patent Application WO/2011/023177
Kind Code:
A1
Abstract:
The invention relates to a reactor module for endothermic reactions for producing one or more products, a reactor having a plurality of such reactor modules, and a method for operating a reactor module or a reactor. The reactor module comprises a reaction channel (2; 31; 71), which is enclosed by a tubular boundary wall (2a; 31a; 75, 76) and has a first end (3; 32; 72) and a second end (4; 33; 73), at least one first inlet element (3; 35; 72) for introducing at least one reactant into the reaction channel (2; 31; 71), wherein the first inlet element (3; 35; 72) is arranged at the first end (3; 32; 72) of the reaction channel (2; 31; 71), at least one first outlet element (4; 37; 73) for discharging at least one reaction product from the reaction channel (2; 31; 71), wherein the first outlet element (4; 37; 73) is arranged at the second end (4; 33; 73) of the reaction channel (2; 31; 71), and a heat supply device in the form of a porous burner arrangement (10; 50; 60; 80), which is arranged on the outside of the tubular boundary wall (2a; 31a; 75, 76) of the reaction channel (2; 31; 71). Because a porous burner arrangement is used instead of a heat source having catalytic combustion, high reactor performance can be realized at an economically reasonable price. This is a result of the porous burner itself being substantially less expensive than a combustion catalyst.

Inventors:
LUTZ PETER (DE)
Application Number:
PCT/DE2010/001005
Publication Date:
March 03, 2011
Filing Date:
August 27, 2010
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
BEKON ENERGY TECHNOLOGIES GMBH & CO KG (DE)
LUTZ PETER (DE)
International Classes:
C01B3/38; B01J8/06; B01J19/24; C01B3/32; F23D14/16
Domestic Patent References:
WO2008146052A12008-12-04
WO2000046548A12000-08-10
Foreign References:
DE19921420A12000-11-16
FR2914395A12008-10-03
US20060122446A12006-06-08
US5487876A1996-01-30
DE69835503T22007-04-05
US20080170975A12008-07-17
DE10213891A12003-10-09
DE9320711U11995-01-19
EP1187892B12004-12-29
DE102005056629B42007-08-02
DE10344979A12005-04-28
DE102004041815A12006-03-09
DE102006012168A12007-09-20
DE202005003843U12005-07-07
DE10114902A12002-10-24
DE10114903A12002-10-17
DE102006013445A12007-09-20
EP0995014B12002-01-02
Download PDF:
Claims:
Ansprüche

1. Reaktormodul (1 ; 30; 70) für endotherme Reaktionen zur Erzeugung von

mindestens einem Reaktionsprodukt, mit

- einem Reaktionskanal (2; 31 ; 71), der durch eine rohrförmige Begrenzungswand (2a; 31a; 75, 76) umschlossen ist und ein erstes Ende (3; 32; 72) und ein zweites Ende (4; 33; 73) aufweist;

- mindestens einem ersten Einlasselement (3; 35; 72) zum Einbringen von mindestens einem Reaktionsedukt in den Reaktionskanal (2; 31 ; 71), wobei das erste Einlasselement (3; 35; 72) an dem ersten Ende (3; 32; 72) des

Reaktionskanals (2; 31; 71) angeordnet ist;

- mindestens einem ersten Auslasselement (4; 37; 73) zum Ausbringen von mindestens einem Reaktionsprodukt aus dem Reaktionskanal (2; 31 ; 71), wobei das erste Auslasselement (4; 37; 73) an dem zweiten Ende (4; 33; 73) des Reaktionskanals (2; 31 ; 71) angeordnet ist, und

- einer Wärmezuführeinrichtung zum Einkoppeln der für die endotherme Reaktion notwendigen Wärme, dadurch gekennzeichnet,

dass die Wärmezuführeinrichtung als Porenbrenneranordnung (10; 50; 60; 80) ausgebildet ist, die außen an der rohrförmigen Begrenzungswand (2a; 31a; 75, 76) des Reaktionskanals (2; 31 ; 71) angeordnet ist.

2. Reaktormodul (1 ; 30; 70) nach Anspruch 1 , dadurch gekennzeichnet, dass die Porenbrenneranordnung (10; 50; 60; 80) den Reaktionskanal (2; 31 ;71) ringförmig umschließt.

3. Reaktormodul (1 ; 30; 70) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Porenbrenneranordnung (10; 50; 60; 80) nach außen thermisch isoliert ist.

4. Reaktormodul (30) nach einem der vorhergehenden Ansprüche, dadurch

gekennzeichnet, dass das erste Einlasselement als Einlassschleuse (35) und/oder das erste Auslasselement als Auslassschleuse (38) ausgebildet ist.

5. Reaktormodul (1 ; 30; 70) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Reaktionskanal (2; 31 ; 71) senkrecht angeordnet ist und das erste Ende (3; 32; 72) oben und ein das zweite Ende (4; 33; 73) unten angeordnet ist.

6. Reaktormodul (30) nach einem der vorhergehenden Ansprüche, dadurch

gekennzeichnet, dass ein zweites Einlasselement (40) zum Einbringen eines zweiten Reaktionseduktes in den Reaktionskanal (31) vorgesehen ist, und dass ein zweites Auslasselement (37) zum Ausbringen eines zweiten

Reaktionsprodukt aus dem Reaktionskanal (31) vorgesehen ist.

7. Reaktormodul (30) nach Anspruch 4 zur Erzeugung von Brenngas aus

kohlenstoffhaltigen, insbesondere biogenen Einsatzstoffen durch allotherme Wasserdampfvergasung, dadurch gekennzeichnet,

'dass die Einlassschleuse (35) zum Einbringen der kohlenstoffhaltigen

Einsatzstoffen in den Reaktionskanal (31) ausgebildet ist,

dass die Auslassschleuse (38) zum Ausbringen von kohlenstoffarmen

Produktstoffen aus dem Reaktionskanal (31) ausgebildet ist,

dass das zweite Einlasselement (40) zum Einbringen von überhitztem

Wasserdampf in den Reaktionskanal (31) ausgebildet ist, und

dass das zweite Auslasselement (37) zum Ausbringen des Brenngases aus dem

Reaktionskanal (31) ausgebildet ist.

8. Reaktormodul (30) nach Anspruch 7, dadurch gekennzeichnet, dass dem zweiten Auslasselement (37) ein Kondensator nachgeschaltet ist, um aus dem Brenngas Wasserdampf abzuscheiden.

9. Reaktormodul (1 ; 30; 70) nach einem der vorherigen Ansprüche, dadurch

gekennzeichnet, dass die Porenbrenneranordnung (10; 50; 60; 80) eine Mehrzahl von Porenbrennerelementen (11 , 21 ; 41 ; 51 ; 82, 83, 84, 85) aufweist.

10. Reaktormodul (30; 70) nach Anspruch 9, dadurch gekennzeichnet, dass die

Porenbrennerelemente (41 ; 51 ; 81 , 91 , 92) entlang des Reaktionskanals (31 ; 71) mit Abstand zueinander angeordnet sind.

1 1. Reaktormodul (70) nach einem der vorherigen Ansprüche 9 bis 10, dadurch

gekennzeichnet,

dass der Reaktionskanal (71) wenigstens abschnittsweise ring-schlauchförmig ausgebildet ist und eine innere rohrförmige Begrenzungswand (75) und eine äußere rohrförmige Begrenzungswand (76) aufweist, dass wenigstens ein erstes Porenbrennerelement (82, 83) auf der Innenseite der inneren Begrenzungswand (75) außen an dem Reaktionskanal (71 ) angeordnet ist, und

dass wenigstens ein zweites Porenbrennerelement (84, 85) auf der Außenseite der äußeren Begrenzungswand (76) des ring-schlauchförmigen Reaktionskanals

(71) angeordnet ist.

12. Reaktormodul (70) nach Anspruch 11 , dadurch gekennzeichnet, dass die innere und die äußere rohrförmige Begrenzungswand (75, 76) einen kreisförmigen Querschnitt aufweisen und konzentrisch zueinander angeordnet sind.

13. Reaktormodul zur Erzeugung von Brenngas nach einem der Ansprüche 7 bis 12, dadurch gekennzeichnet,

dass der Reaktionskanal (31 ; 71) senkrecht angeordnet ist und das erste Ende

(32; 72) oben und ein das zweite Ende (33; 73) unten angeordnet ist,

dass das Einlasselement (40) für überhitzten Wasserdampf zwischen der

Porenbrenneranordnung (50; 60) und der Auslassschleuse (38) ausgebildet ist, und

dass das Auslasselement (37) für Brenngas zwischen der

Porenbrenneranordnung (50; 60) und der Einlassschleuse (35) angeordnet ist.

14. Reaktormodul nach Anspruch 13, dadurch gekennzeichnet, dass die

Einlassschleuse zur Einbringung und die Auslassschleuse zum Ausbringen von Feststoffen aus gelegt ist.

15. Reaktor mit einer Mehrzahl von Reaktormodulen (1 ; 30; 70) nach einem der

vorhergehenden Ansprüche.

16. Reaktor nach Anspruch 15, dadurch gekennzeichnet, dass die einzelnen

Reaktormodule (1 ; 30; 70) parallel geschaltet sind.

17. Verfahren zum Betreiben eines Reaktormoduls (30) nach einem der vorherigen Ansprüche 7 bis 14 oder eines Reaktors nach den Ansprüchen 15 bis 16, dadurch gekennzeichnet, dass das in dem Reaktormodul (30) erzeugte Brenngas der Porenbrenneranordnung (50; 60) als Brennstoff zugeführt wird.

Description:
VERFAHREN ZUM BETREIBEN EINES REAKTORMODUL FÜR ENDOTHERME REAKTIONEN SOWIE REAKTOR MIT EINER MEHRZAHL VON SOLCHEN REAKTORMODULEN

Beschreibung

Die Erfindung betrifft ein Reaktormodul für endotherme Reaktionen zur Erzeugung von einem oder mehreren Produkten nach Anspruch 1 , einen Reaktor mit einer Mehrzahl von solchen Reaktormodulen nach Anspruch 15 sowie ein Verfahren zum Betreiben eines Reaktormoduls oder eines Reaktors nach Anspruch 17.

Aus der US 2006/0122446 A1 ist ein zylindrisches Reaktormodul bekannt, das einen Reaktionskanal mit einem ersten und einem zweiten Ende sowie einer Außenseite und einer Innenseite umfasst. Über ein erstes Einlasselement am ersten Ende und ein zweites Einlasselement am zweiten Ende können zwei Reaktionsedukte in den

Reaktionskanal eingebracht werden. Über ein erstes Auslasselement am zweiten Ende und ein zweites Auslasselement am ersten Ende werden Reaktionsprodukte aus dem Rektionskanal abgezogen. Über einen Wärmetauscher wird die für eine endotherme chemische Reaktion notwendige Reaktionswärme in den Reaktionskanal eingekoppelt. Die für die allotherme Wasserdampfvergasung notwendigen hohen Wärmeströme lassen sich mit diesem bekannten Reaktormodul nicht erreichen.

Ein ähnliches Reaktormodul ist auch aus der US 5,487,876 B1 bekannt.

Aus der DE 698 35 503 T2 ist ein Reaktormodul zur Wasserdampfreformierung von Methanol bekannt. Das Reaktormodul umfasst ein Einlasselement zur Zuführung von Methanol und Wasserdampf, einen ring-rohrförmigen Reaktionskanal und ein

Auslasselement für Kohlendioxid und Wasserstoff. An der Außenseite des

Reaktionskanals ist ein poröser Verbrennungskatalysator angeordnet, der einen Teil des erzeugten Wasserstoffs verbrennt und auf diese Weise Wärme an den endothermen Reformierungsprozess in dem ring-rohrförmigen Reaktionskanal abgibt. Im innersten Rohr findet eine exotherme Methanisierungsreaktion statt, die ebenfalls Wärme in den ring-rohrförmigen Reaktionskanal abgibt. Auch aus der WO 2008/146052 A1 , der US 2008/0170975 A1 , der DE 102 13 891 A1 und dem deutschen Gebrauchsmuster G 93 20 711.5 sind katalytische

Reformierungsreaktoren zur Erzeugung von Wasserstoff und Methan bekannt.

Nachteilig bei den katalytischen Reformierungsreaktoren ist, dass sie aufgrund der teuren Katalysatormaterialien für Reaktoren mit hoher Leistung nicht geeignet sind.

Aus der EP 1 187 892 B1 ist ein sogenannter Heat-Pipe-Reformer bekannt, der eine Wirbelschichtfeuerung und eine Wirbelschichtvergasungskammer umfasst. In der Wirbelschichtvergasungskammer wird durch allotherme Wasserdampfvergasung

Brenngas aus kohlenstoffhaltigen Einsatzstoffen hergestellt. Die hierfür notwendige Wärme wird in der Wirbelschichtfeuerung mittels Verbrennung erzeugt und über

Heat-Pipes bzw. Wärmerohre in die Wirbelschichtvergasungskammer eingekoppelt. Nachteilig bei einem Reaktor gemäß der EP 1 187892 B1 ist, dass die Reaktionsenergie der Wirbelschichtvergasungskammer über Wärmeleitrohre zugeführt wird. Dies führt zu komplizierten Aufbauten und zu einer Vielzahl an Teilen im Inneren der

Wirbelschichtvergasungskammer, die von der Wirbelschicht umströmt werden, und folglich zu einem hohen Verschleiß. Daher muss ein solcher Reaktor in regelmäßigen Abständen gewartet werden. Darüber hinaus ist die über die Wärmeleitrohre geführte Wärmemenge begrenzt und somit auch die Reaktionsenergie für die allotherme

Wasserdampfvergasung.

Sogenannte Porenbrenner bestehen aus einem temperaturbeständigen porösen Material, das mit einem Einlass und einem Auslass verbunden ist. In den Einlass wird ein vorgemischtes Brennstoff-Luft-Gemisch eingeleitet, das in einer flammenlosen, volumetrischen Verbrennung exotherm reagiert, die sich in vielen kleinen Reaktoren, den Poren, stabilisiert. Durch die entstehende Verbrennungswärme beginnt der Porenkörper zu glühen. Ein solcher Porenbrenner ist beispielesweise aus„Gaswärme International (54), 872005" bekannt.

Weitere Porenbrenner für unterschiedliche Anwendungen und unterschiedlicher Ausgestaltung sind in der DE 10 2005 056 629 B4, der DE 103 44 979 A1 , der DE 10 2004 041 815 A1 , der DE 10 2006 012 168 A1 , der DE 20 2005 003 843 U1 , der WO 00/46548, der DE 101 14 902 A1 , DE 101 14903 A1 , der DE 102006 013445 A1 und der EP O 995 014 B1 offenbart.

Ausgehend von der US 2006/0122446 A1 oder der DE 698 35 503 T2 ist es daher Aufgabe der Erfindung ein Reaktormodul für endotherme Reaktionen anzugeben, das einen einfachen Aufbau aufweist und insbesondere zur Erzeugung von Brenngas aus kohlenstoffhaltigen Einsatzstoffen mittels allothermer Wasserdampfvergasung geeignet ist. Weiter ist es Aufgabe der Erfindung einen Reaktor anzugeben, der aus einer

Mehrzahl von solchen Reaktormodulen besteht sowie ein Verfahren zum Betreiben eines solchen Reaktors oder Reaktormoduls anzugeben.

Diese Aufgabe wird mit einem Reaktormodul nach Anspruch 1 , mit einem Reaktor nach Anspruch 15 und einem Verfahren 17 gelöst.

Dadurch, dass anstelle einer Wärmequelle mit katalytischer Verbrennnug eine Porenbrenneranordnung eingesetzt wird, sind hohe Reaktorleistungen zu eine

wirtschaftlich vernünftigen Preis realisierbar. Dies ist darauf urückzufühen, dass die Porenbrenneranordnung selbst ist wesentlich preisgünstiger als ein

Verbrennungskatalysator ist. Dadurch, dass die Porenbrenneranordnung an der

Außenseite des Reaktionskanals angeordnet ist, gelangt die für die endotherme Reaktion notwendige Wärme von dem Ort ihrer Erzeugung im Porenkörper direkt mittels

Wärmeleitung und Wärmestrahlung durch die Außenhülle des Reaktorkanals hindurch in den Reaktionskanal. Dadurch, dass die Porenbrenneranordnung um den Reaktionskanal herum angeordnet ist, kann die Wärme aus dem Reaktionskanal nicht mehr entweichen. Die Dimensionierung des Reaktionskanals und der Porenbrenneranordnung in axialer und radialer Richtung wird dabei so gewählt, dass in der Porenbrenneranordnung ausreichend Wärmeenergie erzeugte und in den Reaktionskanal übertragen wird, um eine endotherme chemische Reaktion im Inneren des Reaktionskanal durchzuführen. Der Querschnitt bzw. der Durchmesser des Reaktionskanals wird dabei so dimensioniert, dass über den Querschnitt eine möglichst gleichmäßige Temperaturverteilung erreicht wird. In Abhängigkeit von der Wärmeleistung der Porenbrenneranordnung ergibt sich damit ein Durchmesserbereich, der diese gleichmäßige Temperaturverteilung über den Querschnitt des Reaktionskanals noch ermöglicht. Der Querschnitt des Reaktionskanals kann kreisförmig oder auch als regelmäßiges Vieleck ausgebildet sein. Bei jeder möglichen Ausführungsform steht die

Porenbrenneranordnung in direktem Kontakt mit einem möglichst großen Anteil der Außenseite des Reaktionskanals, so dass eine möglichst große

Wärmeübertragungsfläche zwischen Porenbrenneranordnung Reaktionskanals gegeben ist.

Durch die vorteilhafte Ausgestaltung nach Anspruch 2 und 3 wird die thermische Abschirmung und Isolierung des Reaktionskanals zusätzlich verbessert.

Bei einer vorteilhaften Ausgestaltung gemäß Anspruch 4 ist ermöglicht, während des Betriebs des Reaktormoduls mindestens ein Reaktionsedukt und/oder mindesten ein Reaktionsprodukt über eine Einlass- und/oder Auslassschleuse in den Reaktionskanal einzuschleusen bzw. aus dem Reaktionskanal auszuschleusen. Hierdurch wird ein kontinuierlicher Betrieb des Reaktormoduls ermöglicht.

Bei einer weiteren vorteilhaften Ausgestaltung gemäß Anspruch 5 ist der

Reaktionskanal senkrecht angeordnet. Dies ermöglicht, die Schwerkraft oder

thermodynamische Effekte - wie z.B. warmes Gas dehnt sich aus und steigt nach oben - auszunutzen, um mindestens ein Reaktionsedukt und/oder mindestens ein

Reaktionsprodukt durch den Reaktionskanal zu fördern. Hierdurch kann beispielsweise die Trennung von Reaktionsprodukten, z.B. Gasen und Flüssigkeiten bzw. Feststoffen, vereinfacht werden.

Gemäß einer vorteilhaften Ausgestaltung nach Anspruch 6 wird über eine

Einlassschleuse ein erstes Reaktionsedukt in den Reaktionskanal eingeschleust und über eine Auslassschleuse ein erstes Reaktionsprodukt aus dem Reaktionskanal ausgeschleust. Über ein zweites Einlasselement wird ein zweites Reaktionsedukt in den Reaktionskanal eingebracht und ein zweites Reaktionsprodukt wird über ein zweites Auslasselement aus dem Reaktionskanal ausgebracht. Dabei ist das zweite

Einlasselement zwischen der Einlassschleuse und der Porenbrenneranordnung oder zwischen der Auslassschleuse und der Porenbrenneranordnung angeordnet. Ebenso kann das zweite Auslasselement zwischen der Einlassschleuse und der

Porenbrenneranordnung oder zwischen der Auslassschleuse und der

Porenbrenneranordnung angeordnet sein. Darüber hinaus können diese beiden Ein- und Auslasselemente auch im Bereich der Porenbrenneranordnung aus dem Reaktionskanal heraus bzw. in den Reaktionskanal hinein führen. Die Variabilität eines solchen

Reaktormoduls ermöglicht die Durchführung einer Vielzahl an endothermen chemischen Reaktionen.

Außerdem ermöglicht die Ausgestaltung der Erfindung nach Anspruch 6 auch unterschiedliche Reaktionsedukte im Gegenstrom durch den Reaktionskanal zu führen Die eingeleiteten Mengen der Reaktionsedukte können dabei in vorteilhafter weise so gesteuert werden, dass eine optimale Umsetzung der Reaktionsedukte in

Reaktionsprodukte erzielt wird.

Gemäß einer vorteilhaften Ausgestaltung nach Anspruch 7 werden in dem

Reaktormodul Brenngase aus kohlenstoffhaltigen Einsatzstoffen und überhitztem

Wasserdampf durch allotherme Wasserdampfvergasung erzeugt. Als kohlenstoffhaltige Einsatzstoffe können z.B. Kohle, Teer, Teersand, Kunststoffabfälle, Reste aus Papier- und Zellstoffherstellung, Reste aus der petrochemischen Industrie, Elektronikschrott und Schredderleichtfraktion, und insbesondere biogene Einsatzstoffen, wie z.B. Ernteabfälle, Energiepflanzen (Miskantus) oder Holzhackschnitzel oder ein Gemisch davon verwendet werden. Der Aufbau des Reaktormoduls ermöglicht in vorteilhafter weise, dass die kohlenstoffhaltigen Einsatzstoffe von oben durch die Einlassschleuse und der überhitzte Wasserdampf von unten durch den Einlass so in den Reaktionskanal eingebracht werden, dass die kohlenstoffhaltigen Einsatzstoffe und der überhitzte Wasserdampf in

entgegengesetzten Richtungen durch den Reaktionskanal strömen. Die für die

Erzeugung von Brenngasen notwendige Reaktionsenergie wird dem Reaktionskanal durch die Porenbrenneranordnung zugeführt, wobei die kohlenstoffhaltigen Einsatzstoffe und der überhitzte Wasserdampf in Brenngas und kohlenstoffarme Einsatzstoffe, im Weiteren Asche genannt, umgesetzt werden. Die eingebrachten Mengen können dabei in vorteilhafter Weise so dosiert werden, dass eine optimale Umsetzung der

kohlenstoffhaltigen Einsatzstoffe und des überhitzten Wasserdampfes in Brenngas und Asche im Reaktionskanal erzielt wird. Nach der chemischen Reaktion sammelt sich das Brenngas im oberen Teil des Reaktionskanals und kann über den Auslass aus dem Reaktionskanal ausgebracht werden. Die Asche sammelt sich im unteren Teil des Reaktionskanals und kann über die Auslassschleuse aus dem Reaktionskanal ausgebracht werden.

Gemäß einer vorteilhaften Ausgestaltung nach Anspruch 8 wird ein Kondensator dem zweiten Auslasselement nachgeschaltet. Durch diesen Kondensator wird in dem austretenden Brenngas enthaltener Wasserdampf kondensiert und damit aus dem Brenngas entfernt.

In einer vorteilhaften Ausgestaltung gemäß Anspruch 9 umfasst die

Porenbrenneranordnung eine Mehrzahl von Porenbrennerelementen. Ein

Porenbrennerelement besteht dabei aus einem Brennstoffeinlass zum Einbringen von Sauerstoff und Brennstoff, einem Porenkörper und einem Brennstoffauslass zum

Auslassen des verbrannten Sauerstoff-Brennstoff-Gemisches. Der Brennstoff kann dabei in flüssiger oder gasförmiger Form oder in einem Gemisch davon in den Porenkörper eingebracht werden. Ein einzelnes Porenbrennerelement ist dabei so konstruiert und dimensioniert, dass sich die volumetrische Verbrennung über einen Großteil des

Porenkörpers erstreckt. Bei der Porenbrenneranordnung um den Reaktionskanal kann jedes einzelne Porenbrennerelement den Reaktionskanal in einer ersten Bauform ringförmig umschließen. Die Porenbrenneranordnung kann auch entlang des Umfangs in eine Mehrzahl an Porenbrennerelemente unterteilt sein, wobei alle

Porenbrennerelemente gemeinsam den Reaktionskanal in einer zweiten Bauform ringförmig umschließen. Darüber hinaus kann die Porenbrenneranordnung auch aus einer Kombination dieser beiden Bauformen ausgebildet sein. Eine Unterteilung der Porenbrenneranordnung in eine Mehrzahl von Porenbrennerelementen ermöglicht, beispielsweise einen Temperaturgradienten innerhalb des Reaktionskanals auszubilden. Darüber hinaus werden Wartungs- und Reparaturarbeiten vereinfacht, da einzelne Porenbrennerelemente leicht austauschbar sind.

In einer vorteilhaften Ausgestaltung gemäß Anspruch 10 sind bei einem

Reaktormodul die Porenbrennerelemente entlang des Reaktionskanals mit Abstand zueinander angeordnet. Durch eine solche Anordnung wird in vorteilhafter weise die Variabilität eines Reaktormoduls erhöht. Da zwischen zwei benachbarten

Porenbrennerelementen Abstände entlang des Reaktionskanals vorhanden sind, kann in diesen Abständen an dem Reaktionskanal mindestens ein Einlasselement und/oder Auslasselement angeordnet sein, wodurch mindestens ein Reaktionsedukt und/oder Reaktionsprodukt in den Reaktionskanal eingebracht bzw. aus dem Reaktionskanal ausgebracht werden kann. Dadurch wird die Umsetzung einer mehrstufigen chemischen Reaktion in diesem Reaktormodul ermöglicht. Außerdem wird dadurch Platz zur

Verfügung gestellt, um Versorgungsleitungen für die einzelnen Porenbrennerelemente leichter zugänglich bereitzustellen, wodurch auch Wartungs- und Reparaturarbeiten vereinfacht werden.

In einer weiteren vorteilhaften Ausgestaltung gemäß Anspruch 11 ist der

Reaktionskanal ring-schlauchförmig ausgebildet. Indem wenigstens ein erstes

Porenbrennerelement die äußere Außenseite des ring-schlauchförmigen

Reaktionskanals umschließt und wenigstens ein zweites Porenbrennerelement an der Innenseite der inneren Begrenzungswand außen an dem ring-schlauchförmigen

Reaktionskanals angeordnet ist, wird der Reaktionskanal von zwei Seiten von einer Wärmequelle eingefasst und es strömt daher Wärme von zwei Seiten in den

Reaktionskanal ein. Durch diese Ausgestaltung kann die Querschnittsfläche des

Reaktionskanals vergrößert werden, ohne dass hierzu die die Gleichmäßigkeit der Temperaturverteilung beeinflussende„Dicke" des Reaktionskanals vergrößert werden muss. Auch ermöglicht diese Ausgestaltung auf Grund der größeren

Wärmeübertragungsfläche zwischen Porenbrenneranordnung und Reaktionskanal bei gegebenen Abmessungen größere Wärmestromdichten.

Durch die vorteilhafte Ausgestaltung nach Anspruch 12 ist die Gleichmäßigkeit des Wärmeeintrags und der Wärmeverteilung in den Reaktionskanal verbessert.

Die vorteilhafte Ausgestaltung der Erfindung nach Anspruch 13 und 14 ermöglicht die Erzeugung von Brenngas aus festen Einsatzstoffen. Die festen Einsatzstoffe werden portioniert, z. B. in Form von Pellets, oben über die Einlassschleuse zugeführt, wandern aufgrund der Schwerkraft im Reaktionskanal nach unten und die kohlenstoffarmen festen Reststoffe werden am unteren Ende über die Auslassschleuse in Intervallen abgezogen. Die Pellets können beispielsweise durch eine der Einlassschleuse vor geschaltete oder in die Einlassschleuse integrierte Pelletiereinrichtung bereitgestellt werden."

In einer vorteilhaften Ausgestaltung gemäß Anspruch 15 bildet eine Mehrzahl von Reaktormodulen einen Reaktor aus. Hierdurch und insbesondere durch die

Parallelschaltung der einzelnen Reaktormodule nach Anspruch 16 wird eine Anlage bereitgestellt, die eine großtechnische Erzeugung mindestens eines Reaktionsproduktes ermöglicht.

Durch das Betriebsverfahren nach Anspruch 17 wird ein Teil des erzeugten Brenngases als Brennstoff für die Porenbrenneranordnung genutzt. Daher muss lediglich in der Anfahrphase zusätzlicher Brennstoff für die Porenbrennanordnung zugeführt werden.

Weitere Einzelheiten, Merkmale und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung von beispielhaften Ausführungsformen.

Fig. 1 zeigt einen Längsschnitt einer ersten Ausführungsform der Erfindung.

Fig. 2 zeigt einen Querschnitt einer ersten Ausführungsform der Erfindung entlang der Linie A -A in Fig. 1.

Fig. 3 zeigt einen Längsschnitt einer zweiten Ausführungsform der Erfindung. Fig. 4 zeigt einen Längsschnitt einer dritten Ausführungsform der Erfindung.

Fig. 5 zeigt einen Querschnitt senkrecht zum Reaktionskanal durch die

Porenbrenneranordnung einer vierten Ausführungsform der Erfindung entlang der Linie B - B in Fig. 6.

Fig. 6 zeigt einen Längsschnitt einer vierten Ausführungsform der Erfindung. [erste Ausführungsform]

Fig. 1 und 2 zeigen eine erste Ausführungsform der Erfindung. Ein Reaktormodul 1 umfasst einen Reaktionskanal 2, der durch eine rohrförmige Begrenzungswand 2a umschlossen wird, und ein erstes Ende 3, ein zweites Ende 4 und einen mittleren

Abschnitt 5 zwischen dem ersten Ende 3 und dem zweiten Ende 4 aufweist. An dem ersten Ende 3 wird mindestens ein Reaktionsedukt in den Reaktionskanal 2 eingebracht und an dem zweiten Ende 4 wird mindestens ein Reaktionsprodukt aus dem

Reaktionskanal 2 ausgebracht. An dem mittleren Abschnitt 5 umschließt eine

Porenbrenneranordnung 10 den Reaktionskanal 2 ringförmig. Wie aus der

Schnittdarstellung in Fig. 2 entlang A - A in Fig. 1 zu ersehen ist besteht die

Porenbrenneranordnung 10 aus einem ersten Porenbrennerelement 11 und einem zweiten Porenbrennerelement 21 , wobei die beiden Porenbrennerelemente 11 , 21 jeweils die Hälfte eines entlang der Längsachse geteilten zylindrischen Hohlkörpers ausbilden. Jedes Porenbrennerelement 11 , 21 besteht aus einem Porenkörper 12, 22, der eine innere Mantelfläche 13, 23, eine äußere Mantelfläche 14, 24, eine erste

Grundfläche 15, 25 und eine zweite Grundfläche 16, 26 aufweist, sowie einen

Brennstoffeinlass 17, 27 und einen Brennstoffauslass 18, 28. In der ersten

Ausführungsform ist die erste Grundfläche 15, 25 jedes Porenkörpers 12, 22 mit dem Brennstoffeinlass 17, 27 zum Einbringen von Sauerstoff und eines flüssigen oder gasförmigen Brennstoffes versehen, und die zweite Grundfläche 16, 26 jedes

Porenkörpers 12, 22 ist mit einem Brennstoffauslass 18, 28 zum Auslass des

verbrannten Brennstoff-Sauerstoff-Gemisches versehen. Jedoch können in einem oder beiden Porenbrennerelementen 11 , 21 die Brennstoffeinlässe 17, 27 eines oder beider Porenkörper 12, 22 auch an der zweiten Grundfläche 16, 26 des Porenkörpers 12, 22 bzw. der Brennstoffauslass 18, 28 an der ersten Grundfläche 15, 25 des Porenkörpers 12, 22 angeordnet sein.

Der Innendurchmesser jedes Porenbrennerelementes 11 , 21 ist dabei so gewählt, dass die innere Mantelfläche 13, 23 jedes Porenkörpers 12, 22 die Begrenzungswand 2a des Reaktionskanals 2 fest umschließen. Indem jeder Porenkörper 12, 22 direkt an der Begrenzungswand 2a des Reaktionskanals 2 anliegen, wird die in den Porenkörpern 12, 22 erzeugte Wärmeenergie direkt an den Reaktionskanal 2 abgegeben. Somit wird eine direkte Wärmeübertragung von den Porenbrennerelementen 11 , 21 auf den Reaktionskanal 2 erreicht. Durch die übertragene Wärmeenergie wird in dem

Reaktionskanal 2 in einer endothermen chemischen Reaktion mindestens ein

Reaktionsprodukt erzeugt.

[zweite Ausführungsform]

Fig. 3 zeigt eine zweite Ausführungsform der Erfindung. In einem Reaktormodul 30 werden kohlenstoffhaltige Einsatzstoffe und überhitzter Wasserdampf in einer

endothermen chemischen Reaktion zu Brenngas und Asche umgesetzt - durch allotherme Wasserdampfvergasung. Das Reaktormodul 30 umfasst dabei einen

Reaktionskanal 31 , der durch eine rohrförmige Begrenzungswand 31a umschlossen wird und senkrecht angeordnet ist. Der Reaktionskanal 31 weist ein oberes Ende 32, ein unteres Ende 33 und einen mittleren Abschnitt 34 zwischen dem oberen Ende 32 und dem .unteren Ende 33 auf. Am oberen Ende 32 ist eine Einlassschleuse 35 angeordnet, von der in Fig. 3 nur ein Schleusenventil 36 gezeigt ist. Zwischen der Einlassschleuse 35 und dem mittleren Abschnitt 34 ist eine Rohrleitung 37 zum Ausbringen des Brenngases angeordnet, die von dem Reaktionskanal 31 abzweigt. Am unteren Ende 33 ist eine Auslassschleuse 38 angeordnet, von der in Fig. 3 nur ein Schleusenventil 39 gezeigt ist. Zwischen dem mittleren Abschnitt 34 und der Auslassschleuse 38 ist eine Rohrleitung 40 zum Einbringen des für die allotherme Wasserdampfvergasung notwendigen überhitzten Wasserdampfes angeordnet. Dabei ist die Rohrleitung 40 so ausgebildet, das deren Endstück 41 in radialer Richtung in die Mitte des Reaktionskanals 31 hineinragt und so gebogen ist, dass die Querschnittsfläche des Auslasses 42 der Rohrleitung 40 senkrecht zur Achslinie des Reaktionskanals 41 ausgerichtet ist und sich der Auslass 42 nach oben hin öffnet.

An dem mittleren Abschnitt 34 umschließt eine Porenbrenneranordnung 50 den Reaktionskanal 31 ringförmig, die aus vier Porenbrennerelementen 51 besteht. Jedes einzelne Porenbrennerelement 51 besteht aus einem Porenkörper 52, der in Form eines zylindrischen Hohlkörpers mit einer inneren Mantelfläche 53, einer äußeren Mantelfläche 54, einer ersten Grundfläche 55 und einer zweiten Grundfläche 56 ausgebildet ist, sowie einen Brennstoffeinlass 57 und einen Brennstoffauslass 58 ausweist. In der vorliegenden Ausführungsform ist in jedem Porenbrennerelement 51 der Brennstoffeinlass 57 an der ersten Grundfläche 55 des Porenkörpers 52 und der Brennstoffauslass 58 an der zweiten Grundfläche 56 des Porenkörpers 52 angeordnet, wobei der Brennstoff in jedem

Porenbrennerelement 51 von unten nach oben strömt, wie durch die Pfeile angedeutet. Jedoch kann in einem Porenbrennerelement 51 der Brennstoffeinlass 57 auch an der zweiten Grundfläche 56 des Porenkörpers 52 und der Brennstoffauslass 58 an der ersten Grundfläche 55 des Porenkörpers 52 angeordnet sein, wobei der Brennstoff in dem Porenbrennerelement 51 von oben nach unten strömt (nicht gezeigt). Darüber hinaus können in einer Porenbrenneranordnung 50 auch Porenbrennerelemente 51 , in denen der Brennstoff in unterschiedlichen Richtungen strömt, angeordnet sein.

Der Innendurchmesser jedes Porenbrennerelementes 51 ist dabei so ausgebildet dass die innere Mantelfläche 53 des Porenkörpers 52 die rohrförmige Begrenzungswand 31 a des Reaktionskanals 31 fest umschließt. Indem jeder Porenkörper 52 direkt an dem Reaktionskanal 31 anliegt, wird die in jedem Porenkörper 52 erzeugte Wärmeenergie direkt an den Reaktionskanal 31 abgegeben. Somit wird eine direkte Wärmeübertragung von jedem Porenbrennerelement 51 an den Reaktionskanal 31 erreicht.

In der vorliegenden Ausführungsform haben, wie in Fig. 3 gezeigt, alle

Porenbrennerelemente 51 gleiche Höhe und gleichen Durchmesser. Jedoch können sich die Porenbrennerelemente 51 auch in Höhe und Durchmesser voneinander

unterscheiden, wobei der Durchmesser des Reaktionskanals 31 jeweils dem

Durchmesser des jeweiligen Porenbrennerelementes 51 angepasst ist.

Zur Erzeugung des Brenngases werden die kohlenstoffhaltigen Einsatzstoffe über die Einlassschleuse 35 in den Reaktionskanal 31 eingeführt und der überhitzte

Wasserdampf durch die Rohrleitung 40 in den Reaktionskanal 31 eingeleitet. Der Reaktionskanal 31 kann dabei bis in Höhe der ersten Grundfläche 55 des obersten Porenbrennerelementes 51 angefüllt werden. Dabei wird die von allen

Porenbrennerelementen 51 erzeugte Wärmeenergie dem Reaktionskanal 31 zugeführt. Ebenso kann der Reaktionskanal 31 nur bis zur ersten Grundfläche 55 eines beliebigen Porenbrennerelementes 51 mit den kohlenstoffhaltigen Einsatzstoffen angefüllt werden, wobei in vorteilhafter weise nur diejenigen Porenbrennerelemente 51 zur Zuführung von Wärmeenergie an den Reaktionskanal 31 verwendet werden, bis zu deren ersten Grundfläche 55 der Reaktionskanal 31 mit den kohlenstoffhaltigen Einsatzstoffen angefüllt ist.

Darüber hinaus können zur Erzeugung des Brenngases die kohlenstoffhaltigen Einsatzstoffe durch die Einlassschleuse 35 und der überhitzte Wasserdampf durch die Rohrleitung 40 in den Reaktionskanal 31 so eingeleitet werden, dass die

kohlenstoffhaltigen Einsatzstoffe und der überhitzte Wasserdampf im Gegenstrom durch den Reaktionskanal 31 strömen. Die eingeleiteten Mengen können dabei so gesteuert werden, dass eine optimale Umsetzung der kohlenstoffhaltigen Einsatzstoffe und des überhitzten Wasserdampfes in Brenngas und Asche im Reaktionskanal 31 erzielt wird. Über die Auslassschleuse 38 kann die sich am unteren Ende 33 des Reaktioήskanals 31 befindliche Asche nach der chemischen Reaktion ausgeschleust werden.

[dritte Ausführungsform]

Im Folgenden wird anhand von Fig. 4 eine dritte Ausführungsform der Erfindung beschrieben. Hierbei sind die gleichen Teile wie in der vorhergehenden zweiten

Ausführungsform mit den gleichen Bezugszeichen versehen, wobei auf eine erneute Beschreibung dieser Teile mit Verweis auf die zweite Ausführungsform verzichtet wird.

Wie aus Fig. 4 zu ersehen ist, besteht das Reaktormodul 30 aus einem

Reaktionskanal 31 , dessen mittlerer Abschnitt 34 von einer Porenbrenneranordnung 60 ringförmig umschlossen wird. Die Porenbrenneranordnung 60 besteht aus einer

Mehrzahl, in der vorliegenden Ausführungsform vier, von Porenbrennerelementen 61. Die Porenbrennerelemente 61 sind dabei, wie in der zweiten Ausführungsform beschrieben, um die rohrförmige Begrenzungswand 31a des Reaktionskanals 31 angeordnet.

Jedes einzelne Porenbrennerelement 61 besteht aus einem Porenkörper 62, der in Form eines zylindrischen Hohlkörpers mit einer inneren Mantelfläche 63, einer äußeren Mantelfläche 64, einer ersten Grundfläche 65, einer zweiten Grundfläche 66 und einem zylindrischen Mittelabschnitt 67 ausgebildet ist, sowie einen Brennstoffeinlass 68 und einen Brennstoffauslass 69 aufweist. In der vorliegenden Ausführungsform ist in jedem Porenbrennerelement 61 der Brennstoffeinlass 68 an dem zylindrischen Mittelabschnitt 67 des Porenkörpers 62 und der Brennstoffauslass 69 an der ersten Grundfläche 65 sowie der zweiten Grundfläche 66 des Porenkörpers 62 angeordnet, wobei der

Brennstoff wie durch die Pfeile angegeben durch jedes Porenbrennerelement 61 strömt. Jedoch kann in einem Porenbrennerelement 61 der Brennstoffeinlass 68 auch mit der ersten Grundfläche 65 und der zweiten Grundfläche 66 des Porenkörper 62 und der Brennstoffauslass 69 mit dem zylindrischen Mittelabschnitt 67 des Porenkörpers 62 verbunden sein. Darüber hinaus können in einer Porenbrenneranordnung 60 auch Porenbrennerelemente 61 , in denen der Brennstoff in unterschiedlichen Richtungen strömt, angeordnet sein.

[vierte Ausführungsform]

Figuren 5 und 6 zeigen eine vierte Ausführungsform der vorliegenden Erfindung. Fig. 6 zeigt einen Längsschnitt eines Reaktormoduls 70 und Fig. 5 zeigt einen Querschnitt entlang B - B in Fig. 6.

Das Reaktormodul 70 besteht dabei aus einem Reaktionskanal 71 , der ein oberes Ende 72, ein unteres Ende 73 und einen mittleren Abschnitt 74 zwischen dem oberen Ende 72 und dem unteren Ende 73 aufweist. Am oberen Ende 72 und am unteren Ende 73 ist der Reaktionskanal 71 in Form eines kreiszylindrischen Rohres und im mittleren Abschnitt 74 ring-schlauchförmig ausgebildet. Im mittleren Abschnitt 74 wird der ring-schlauchförmige Reaktionskanal 71 durch eine innere und eine äußere rohrförmige Begrenzungswand 75 und 76 mit kreisförmigem Querschnitt begrenzt. Die beiden rohrförmigen Begrenzungswände 75 und 76 weisen einen kreisförmigen Querschnitt auf und sind konzentrisch zueinander angeordnet. In den Übergangsbereichen 77 und 78 zwischen dem oberen Ende 72 und dem mittleren Abschnitt 74 und dem unteren Ende 73 und dem mittleren Abschnitt 74 ist der Reaktionskanal 71 kegelförmig ausgebildet.

Im mittleren Abschnitt ist in direktem Kontakt zu der inneren und der äußeren Begrenzungswand 75 und 76 eine Porenbrenneranordnung 80 angeordnet, die ein erstes und ein zweites äußeres Porenbrennerelement 82 und 83 und ein erstes und ein zweites inneres Porenbrennerelement 84 und 85 umfasst. Jeweils das erste äußere und das erste innere Porenbrennerelement 82 und 84 und das zweite äußere und das zweite innere Porenbrennerelement 83 und 85 sind einander zugeordnet und schließen den ring-schlauchförmigen mittleren Abschnitt 74 des Reaktionskanal 71 sandwichartig ein. Die beiden äußeren Porenbrennerelemente 82 und 83 weisen die Form eines oben und unten offenen Hohlzylinders mit einer bestimmten Wandstärke und kreisförmigem Querschnitt auf. Die beiden inneren Porenbrennerelemente 84 und 85 sind als

Vollzylinder mit kreisförmigem Querschnitt ausgebildet. Alternativ können auch die beiden inneren Porenbrennerelemente 84 und 85 als zylindrischer Höhlkörper ausgebildet sein (nicht gezeigt). Die beiden inneren und äußeren Porenbrennerelemente 84, 85 und 82, 83 sind mit Abstand zueinander an dem mittleren Abschnitt 74 des Reaktionskanals 71 angeordnet.

Die beiden äußeren Porenbrennerelemente 82 und 83 sind wie in der zweiten oder dritten Ausführungsform beschrieben mit einem Brennstoffeinlass und einem

Brennstoffauslass verbunden (nicht gezeigt). Wie in Fig. 6 gezeigt, sind das erste und das zweite innere Porenbrennerelement 84 und 85 mit einem Brennstoffeinlass 90 verbunden, der im Bereich zwischen den ersten und zweiten Porenbrennerelementen den mittleren Abschnitt 74 des Reaktionskanals 71 durchsetzt. Ebenfalls aus diesem Bereich führt ein Brennstoffauslass 92 nach außen.

Bei der vierten Ausführungsform wird durch die inneren und äußeren

Porenbrennerelement mit dem ring-schlauchförmige Reaktionskanal dazwischen eine gleichmäßige Temperatur- und Wärmeenergieverteilung im Inneren des Reaktionskanals 71 erreicht und gleichzeitig kann dabei auf Grund der größeren Kontaktfläche zwischen den vier Porenbrennerelementen 82, 83, 84, 85 und dem mittleren Abschnitt 74 des Reaktionskanals 71 mehr Wärmeenergie von den vier Porenbrennerelementen 82, 83, 84, 85 an den Reaktionskanal 71 übertragen werden. Reaktormodul Reaktionskanal

Begrenzungswand

erstes Ende von 2

zweites Ende von 2

mittlerer Abschnitt von 2 Porenbrenneranordnung erstes Porenbrennerelement Porenkörper von 11

innere Mantelfläche von 11 äußere Mantelfläche von 11 erste Grundfläche von 11 zweite Grundfläche von 11 Brennstoffeinlass von 1 1 Brennstoffauslass von 11 zweites Porenbrennerelement Porenkörper von 21

innere Mantelfläche von 21 äußere Mantelfläche von 21 erste Grundfläche von 21 zweite Grundfläche von 21 Brennstoffeinlass von 21 Brennstoffauslass von 21 Reaktormodul

Reaktionskanal

a Begrenzungswand von 31 oberes Ende von 31 unteres Ende von 31 mittleren Abschnitt von 31 Einlassschleuse

Schleusenventil

Rohrleitung Auslassschleus

Schleusenventil

Rohrleitung

Endstück von 40

Auslass von 40

Porenbrenneranordnung

Porenbrennerelementen

Porenkörper von 51

innere Mantelfläche von 51

äußere Mantelfläche von 51

erste Grundfläche von 51

zweite Grundfläche von 51

Brennstoffeinlass von 51

Brennstoffauslass von 51

Porenbrenneranordnung

Porenbrennerelementen

Porenkörper

innere Mantelfläche von 61

äußere Mantelfläche von 61

erste Grundfläche von 61

zweite Grundfläche von 61

zylindrischer Mittelabschnitt von 61

Brennstoffeinlass von 61

Brennstoffauslass von 61

Reaktormodul

Reaktionskanal

oberes Ende von 71

unteres Ende von 71

mittlerer Abschnitt von 71

innere rohrförmige Begrenzungswand von 71 äußere rohrförmige Begrenzungswand von 71 oberer Übergangsbereich

unterer Übergangsbereich 80 Porenbrenneranordnung

82 erstes äußeres Porenbrennerelement

83 zweites äußeres Porenbrennerelement

84 erstes inneres Porenbrennerelement

85 zweites inneres Porenbrennerelement

90 Brennstoffeinlass von 84 und 85

92 Brennstoffauslass von 84 und 84