Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHOD FOR PREPARING A SELECTIVE BIMETALLIC HYDROGENATION CATALYST MADE OF NICKEL AND COPPER
Document Type and Number:
WIPO Patent Application WO/2019/201617
Kind Code:
A1
Abstract:
The invention relates to a method for preparing a catalyst comprising a bimetallic active phase made of nickel and copper, and a support comprising a refractory oxide, comprising the following steps: a) a step of placing the support in contact with a solution containing a nickel precursor; b) a step of placing the support in contact with a solution containing a copper precursor; the steps a) and b) being carried out separately in any order; c) a step of drying the catalyst precursor at the end of step a) and b), or b) and a), at a temperature less than 250°C; d) supplying the catalyst precursor obtained at the end of step c), into a hydrogenation reactor, and carrying out a reduction step by placing said precursor in contact with a reducing gas at a temperature less than 200°C for a period greater than or equal to 5 minutes and less than 2 hours.

Inventors:
BOUALLEG MALIKA (FR)
QUOINEAUD ANNE-AGATHE (FR)
Application Number:
PCT/EP2019/058580
Publication Date:
October 24, 2019
Filing Date:
April 05, 2019
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
IFP ENERGIES NOW (FR)
International Classes:
B01J37/02; B01J21/04; B01J23/755; B01J23/89; B01J37/08; B01J37/18; B01J37/20; C10G45/00
Domestic Patent References:
WO2007084471A12007-07-26
Foreign References:
US20110160503A12011-06-30
US5948942A1999-09-07
US20160264882A12016-09-15
US5208405A1993-05-04
FR2949077A12011-02-18
FR2949078A12011-02-18
FR3011844A12015-04-17
Other References:
"CRC Handbook of Chemistry and Physics", 2000
THE JOURNAL OF AMERICAN SOCIETY, vol. 60, 1938, pages 309
JEAN CHARPIN; BERNARD RASNEUR, TECHNIQUES DE L'INGÉNIEUR, TRAITÉ ANALYSE ET CARACTÉRISATION, pages 1050 - 1055
F. ROUQUÉROL; J. ROUQUÉROL; K. SING: "Adsorption by powders and porous solids. Principles, methodology and applications", 1999, ACADEMIC PRESS
Download PDF:
Claims:
REVENDICATIONS

1 . Procédé de préparation d’un catalyseur d’hydrogénation sélective de coupes d'hydrocarbures polyinsaturés comprenant une phase active bimétallique à base d’un premier élément métallique de nickel, à raison de 1 et 30 % en poids en élément nickel par rapport au poids total du catalyseur, et d’un second élément métallique de cuivre, à raison de 0,5 à 15 % en poids en élément cuivre par rapport au poids total du catalyseur, le ratio molaire entre le cuivre et le nickel étant inférieur à 1 , et un support comprenant au moins un oxyde réfractaire choisi parmi la silice, l’alumine et la silice- alumine, lequel procédé comprenant les étapes suivantes : a) on réalise une étape de mise en contact du support avec au moins une solution contenant au moins un précurseur de nickel ; b) on réalise une étape de mise en contact du support avec au moins une solution contenant au moins un précurseur de cuivre ; les étapes a) et b) étant réalisées séparément dans un ordre indifférent ; c) on réalise au moins une étape de séchage du précurseur de catalyseur à l’issue de l’étape a) et b), ou b) et a), à une température inférieure à 250°C ; d) on approvisionne le précurseur de catalyseur obtenu à l’issue de l’étape c) dans un réacteur d’hydrogénation sélective de coupes d'hydrocarbures polyinsaturés, et on effectue une étape de réduction par mise en contact dudit précurseur avec un gaz réducteur à une température inférieure à 200°C pendant une période supérieure ou égale à 5 minutes et inférieure 2 heures.

2. Procédé selon la revendication 1 , dans lequel on réalise l’étape b) avant l’étape a).

3. Procédé selon l’une des revendications 1 ou 2, dans lequel l’étape d) est réalisée à une température comprise entre 130 et 190°C. 4. Procédé selon l’une quelconque des revendications 1 à 3, dans lequel l’étape d) est réalisée entre 10 minutes et 1 10 minutes.

5. Procédé selon l’une quelconque des revendications 1 à 4 comprenant en outre une étape e) de passivation par un composé soufré après l’étape de traitement réducteur d).

6. Procédé selon l’une quelconque des revendications 1 à 5 dans lequel on réalise entre l’étape a) et b) une étape de séchage du précurseur de catalyseur à une température inférieure à 250°C.

7. Procédé selon l’une quelconque des revendications 1 à 6, dans lequel la teneur en cuivre est comprise entre de 0,5 et 12 % poids en élément cuivre par rapport au poids total du catalyseur.

8. Procédé selon l’une quelconque des revendications 1 à 7, dans lequel le précurseur de cuivre est choisi parmi l’acétate de cuivre, l’acétylacétonate de cuivre, le nitrate de cuivre, le sulfate de cuivre, le chlorure de cuivre, le bromure de cuivre, l’iodure de cuivre ou le fluorure de cuivre.

9. Procédé selon la revendication 8, dans lequel le précurseur de cuivre est le nitrate de cuivre. 10. Procédé selon l’une quelconque des revendications 1 à 9, dans lequel le gaz réducteur de l’étape d) est le dihydrogène.

1 1. Procédé selon la revendication 10, dans lequel le débit d'hydrogène, exprimé en L/heure/gramme de précurseur de catalyseur est compris entre 0,01 et 100 L/heure/gramme de précurseur de catalyseur. 12. Procédé selon l’une quelconque des revendications 1 à 1 1 , dans lequel on réalise avant l’étape d) une étape de traitement thermique du précurseur de catalyseur séché obtenu à l’étape c) à une température comprise entre 250 et 1000°C.

13. Procédé selon l’une quelconque des revendications 1 à 12, dans lequel le support est une alumine.

14. Procédé d’hydrogénation sélective de composés polyinsaturés contenant au moins 2 atomes de carbone par molécule, tels que les dioléfines et/ou les acétyléniques et/ou les alcénylaromatiques, contenus dans une charge d’hydrocarbures ayant un point d'ébullition final inférieur ou égal à 300°C, lequel procédé étant réalisé à une température comprise entre 0 et 300°C, à une pression comprise entre 0,1 et 10 MPa, à un ratio molaire hydrogène/(composés polyinsaturés à hydrogéner) compris entre 0,1 et 10 et à une vitesse volumique horaire comprise entre 0,1 et 200 h 1 lorsque le procédé est réalisé en phase liquide, ou à un ratio molaire hydrogène/(composés polyinsaturés à hydrogéner) compris entre 0,5 et 1000 et à une vitesse volumique horaire entre 100 et 40000 h 1 lorsque le procédé est réalisé en phase gazeuse, en présence d’un catalyseur obtenu selon l’une quelconque des revendications 1 à 13.

Description:
PROCEDE DE PREPARATION D’UN CATALYSEUR BIMETALLIQUE

D’HYDROGENATION SELECTIVE A BASE DE NICKEL ET DE CUIVRE

Domaine technique La présente invention concerne un procédé de préparation d’un catalyseur métallique supporté, comprenant du nickel et du cuivre, destiné particulièrement à l’hydrogénation des hydrocarbures insaturés.

La présente invention porte également sur l’utilisation de ces catalyseurs dans des réactions d’hydrogénation d’hydrocarbures insaturés, et plus particulièrement, d’hydrogénation sélective de coupes oléfiniques.

Etat de la technique

Les catalyseurs d'hydrogénation sélective de composés polyinsaturés sont généralement à base de métaux du groupe VIII de la classification périodique des éléments, tel que le nickel. Le métal se présente sous la forme de particules métalliques nanométriques déposées sur un support qui peut être un oxyde réfractaire. La teneur en métal du groupe VIII, la présence éventuelle d'un deuxième élément métallique, la taille des particules de métal et la répartition de la phase active dans le support ainsi que la nature et distribution poreuse du support sont des paramètres qui peuvent avoir une importance sur les performances des catalyseurs.

La vitesse de la réaction d’hydrogénation est gouvernée par plusieurs critères, tels que la diffusion des réactifs vers la surface du catalyseur (limitations diffusionnelles externes), la diffusion des réactifs dans la porosité du support vers les sites actifs (limitations diffusionnelles internes) et les propriétés intrinsèques de la phase active telles que la taille des particules métalliques et la répartition de la phase active au sein du support.

La promotion de catalyseur à base de nickel a fréquemment été proposée afin d’améliorer les performances en hydrogénation sélective. Par exemple, il est connu du brevet US 5,208,405 de mettre en oeuvre un catalyseur à base de nickel et d’argent pour l’hydrogénation sélective de dioléfines en C4-C10. D’autre part, il est connu de promouvoir le nickel, présent majoritairement, avec des métaux du groupe IB, en particulier l’or (FR 2,949,077) ou de l’étain (FR 2,949,078). Le document FR 3,01 1 ,844 divulgue un catalyseur pour la mise en oeuvre d’un procédé d’hydrogénation sélective comprenant un support et une phase métallique active déposée sur le support, la phase métallique active comprenant du cuivre et au moins un métal de nickel ou de cobalt dans un ratio molaire Cu : (Ni et/ou Co) supérieur à 1.

Par ailleurs, préalablement à l'utilisation de tels catalyseurs et leur mise en œuvre dans un procédé d’hydrogénation, une étape de traitement réducteur en présence d’un gaz réducteur est réalisée de manière à obtenir un catalyseur comprenant une phase active au moins partiellement sous forme métallique. Ce traitement permet d’activer le catalyseur et de former des particules métalliques. Ce traitement peut être réalisé in-situ ou ex-situ, c’est-à- dire après ou avant le chargement du catalyseur dans le réacteur d’hydrogénation.

Objets de l’invention

Poursuivant ses recherches dans le domaine des catalyseurs hydrogénants, la Demanderesse a maintenant découvert que l’on pouvait préparer des catalyseurs particulièrement actifs, et particulièrement sélectifs, en hydrogénation sélective de coupes d'hydrocarbures polyinsaturés, en mettant en contact sur un support poreux, successivement et non simultanément, deux précurseurs métalliques spécifiques, choisis parmi les précurseurs de nickel, et, les précurseurs de cuivre, dans un ratio Cu : Ni spécifique, et en réalisant postérieurement à ces étapes de mise en contact, une étape de réduction in-situ dans le réacteur catalytique en présence d’un gaz réducteur, à une température inférieure à 200°C. Sans vouloir être lié par une quelconque théorie, il a été constaté par la Demanderesse que lors de la préparation du catalyseur, la présence de cuivre améliore fortement la réductibilité du nickel sur le support, et cela quel que soit l’ordre d’ajout des précurseurs métalliques (nickel et cuivre), ce qui permet de réaliser une étape de réduction des éléments métalliques en présence d’un gaz réducteur à des températures plus basses et des temps de réaction plus court que ceux couramment utilisés dans l’art antérieur. Le recours à des conditions opératoires moins sévères que dans l’art antérieur permet de réaliser directement l’étape de réduction au sein du réacteur dans lequel on souhaite réaliser l’hydrogénation sélective de coupes polyinsaturés. Par ailleurs, la présence de cuivre dans le catalyseur permet de maintenir une bonne activité et une durée de vie plus longue du catalyseur lorsque ce dernier est mis en contact avec une charge hydrocarbonée comprenant du soufre, notamment les coupes d’hydrocarbures C3 de vapocraquage et/ou de craquage catalytique. En effet, par rapport au nickel, le cuivre présent dans le catalyseur capte plus facilement les composés soufrés compris dans la charge, ce qui évite donc d’empoisonner irréversiblement les sites actifs les plus virulents du nickel qui existent sur le catalyseur neuf. Enfin, le procédé de préparation selon l’invention permet notamment, par le fait de réaliser deux étapes distinctes d’imprégnation des précurseurs métalliques sur le support, d’éviter la formation d’alliages à base de nickel et de cuivre, qui ne sont pas souhaités dans le cadre de la présente invention. En effet un alliage de nickel-cuivre conduirait à une activité et/ou une sélectivité moins bonnes de celles du nickel seul.

La présente invention a pour objet un procédé de préparation d’un catalyseur d’hydrogénation sélective de coupes d'hydrocarbures polyinsaturés comprenant une phase active bimétallique à base d’un premier élément métallique de nickel, à raison de 1 et 30 % en poids en élément nickel par rapport au poids total du catalyseur, et d’un second élément métallique de cuivre, à raison de 0,5 à 15 % en poids en élément cuivre par rapport au poids total du catalyseur, le ratio molaire entre le cuivre et le nickel étant inférieur à 1 , et un support comprenant au moins un oxyde réfractaire choisi parmi la silice, l’alumine et la silice- alumine, lequel procédé comprenant les étapes suivantes :

a) on réalise une étape de mise en contact du support avec au moins une solution contenant au moins un précurseur de nickel ;

b) on réalise une étape de mise en contact du support avec au moins une solution contenant au moins un précurseur de cuivre ;

les étapes a) et b) étant réalisées séparément dans un ordre indifférent ;

c) on réalise au moins une étape de séchage du précurseur de catalyseur à l’issue de l’étape a) et b), ou b) et a), à une température inférieure à 250°C ;

d) on approvisionne le précurseur de catalyseur obtenu à l’issue de l’étape c) dans un réacteur d’hydrogénation sélective de coupes d'hydrocarbures polyinsaturés, et on effectue une étape de réduction par mise en contact dudit précurseur avec un gaz réducteur à une température inférieure à 200°C et pendant une période supérieure ou égale à 5 minutes et inférieure 2 heures.

De préférence, on réalise l’étape b) avant l’étape a).

Avantageusement, l’étape d) est réalisée à une température comprise entre 130 et 190°C.

Avantageusement, l’étape d) est réalisée entre 10 minutes et 1 10 minutes. Avantageusement, le procédé selon l’invention comprend en outre une étape e) de passivation par un composé soufré après l’étape de traitement réducteur d).

Avantageusement, on réalise entre l’étape a) et b) une étape de séchage du précurseur de catalyseur à une température inférieure à 250°C. De préférence, la teneur en cuivre est comprise entre de 0,5 et 12 % poids en élément cuivre par rapport au poids total du catalyseur.

Avantageusement, le précurseur de cuivre est choisi parmi l’acétate de cuivre, l’acétylacétonate de cuivre, le nitrate de cuivre, le sulfate de cuivre, le chlorure de cuivre, le bromure de cuivre, l’iodure de cuivre ou le fluorure de cuivre. Plus préférentiellement, le précurseur de cuivre est le nitrate de cuivre.

Avantageusement, le gaz réducteur de l’étape d) est le dihydrogène.

De préférence, le débit d'hydrogène, exprimé en L/heure/gramme de précurseur de catalyseur est compris entre 0,01 et 100 L/heure/gramme de précurseur de catalyseur.

De préférence, on réalise avant l’étape d) une étape de traitement thermique du précurseur de catalyseur séché obtenu à l’étape c) à une température comprise entre 250 et 1000°C.

Avantageusement, le support est une alumine.

Un autre objet selon l’invention concerne un procédé d’hydrogénation sélective de composés polyinsaturés contenant au moins 2 atomes de carbone par molécule, tels que les dioléfines et/ou les acétyléniques et/ou les alcénylaromatiques, contenus dans une charge d’hydrocarbures ayant un point d'ébullition final inférieur ou égal à 300°C, lequel procédé étant réalisé à une température comprise entre 0 et 300°C, à une pression comprise entre 0,1 et 10 MPa, à un ratio molaire hydrogène/(composés polyinsaturés à hydrogéner) compris entre 0,1 et 10 et à une vitesse volumique horaire comprise entre 0,1 et 200 h 1 lorsque le procédé est réalisé en phase liquide, ou à un ratio molaire hydrogène/(composés polyinsaturés à hydrogéner) compris entre 0,5 et 1000 et à une vitesse volumique horaire entre 100 et 40000 h 1 lorsque le procédé est réalisé en phase gazeuse, en présence d’un catalyseur obtenu selon le procédé de préparation selon l’invention. Description détaillée de l’invention

1. Définitions

Dans la suite, les groupes d'éléments chimiques sont donnés selon la classification CAS (CRC Handbook of Chemistry and Physics, éditeur CRC press, rédacteur en chef D.R. Lide, 81 ème édition, 2000-2001 ). Par exemple, le groupe VIII selon la classification CAS correspond aux métaux des colonnes 8, 9 et 10 selon la nouvelle classification IUPAC.

Le taux de réduction (TR) d'un métal M contenu dans le catalyseur est défini comme étant le pourcentage dudit métal M réduit après l'étape de réduction dudit catalyseur. Le taux de réduction (TR) correspond au ratio entre la quantité de métal réduit (M1 ) et la quantité de métal théoriquement réductible présente sur le catalyseur mesurée par Fluorescence X (M2), soit TR (%) = (M1/M2)x100. Dans le cadre de la présente invention, le taux de réduction du nickel (Ni) a été mesuré par analyse diffraction de rayons X (DRX ou « X-ray diffraction » selon la terminologie anglo-saxonne). La description de la méthode de mesure de la quantité de métal réductible sur des catalyseurs oxydes est explicitée plus loin dans la description (cf. partie exemples).

On entend par la surface spécifique du catalyseur ou du support utilisé pour la préparation du catalyseur selon l'invention, la surface spécifique B.E.T. déterminée par adsorption d’azote conformément à la norme ASTM D 3663-78 établie à partir de la méthode BRUNAUER-EMMETT-TELLER décrite dans le périodique « The Journal of American Society », 60, 309, (1938).

Par « macropores », on entend des pores dont l’ouverture est supérieure à 50 nm.

Par « mésopores », on entend des pores dont l’ouverture est comprise entre 2 nm et 50 nm, bornes incluses.

Par « micropores », on entend des pores dont l’ouverture est inférieure à 2 nm.

On entend par volume poreux total du catalyseur ou du support utilisé pour la préparation du catalyseur selon l'invention le volume mesuré par intrusion au porosimètre à mercure selon la norme ASTM D4284-83 à une pression maximale de 4000 bar (400 MPa), utilisant une tension de surface de 484 dyne/cm et un angle de contact de 140°. L'angle de mouillage a été pris égal à 140° en suivant les recommandations de l'ouvrage « Techniques de l'ingénieur, traité analyse et caractérisation », pages 1050-1055, écrit par Jean Charpin et Bernard Rasneur. Afin d'obtenir une meilleure précision, la valeur du volume poreux total correspond à la valeur du volume poreux total mesuré par intrusion au porosimètre à mercure mesurée sur l'échantillon moins la valeur du volume poreux total mesuré par intrusion au porosimètre à mercure mesurée sur le même échantillon pour une pression correspondant à 30 psi (environ 0,2 MPa).

Le volume des macropores et des mésopores est mesuré par porosimétrie par intrusion de mercure selon la norme ASTM D4284-83 à une pression maximale de 4000 bar (400 MPa), utilisant une tension de surface de 484 dyne/cm et un angle de contact de 140°. On fixe à 0,2 MPa la valeur à partir de laquelle le mercure remplit tous les vides intergranulaires, et on considère qu'au-delà le mercure pénètre dans les pores de l'échantillon.

Le volume macroporeux du catalyseur ou du support utilisé pour la préparation du catalyseur selon l'invention est défini comme étant le volume cumulé de mercure introduit à une pression comprise entre 0,2 MPa et 30 MPa, correspondant au volume contenu dans les pores de diamètre apparent supérieur à 50 nm.

Le volume mésoporeux du catalyseur ou du support utilisé pour la préparation du catalyseur selon l'invention est défini comme étant le volume cumulé de mercure introduit à une pression comprise entre 30 MPa et 400 MPa, correspondant au volume contenu dans les pores de diamètre apparent compris entre 2 et 50 nm.

Le volume des micropores est mesuré par porosimétrie à l’azote. L'analyse quantitative de la microporosité est effectuée à partir de la méthode "t" (méthode de Lippens-De Boer, 1965) qui correspond à une transformée de l'isotherme d'adsorption de départ comme décrit dans l'ouvrage « Adsorption by powders and porous solids. Principles, methodology and applications » écrit par F. Rouquérol, J. Rouquérol et K. Sing, Academie Press, 1999.

On définit également le diamètre médian mésoporeux comme étant le diamètre tel que tous les pores, parmi l’ensemble des pores constituant le volume mésoporeux, de taille inférieure à ce diamètre constituent 50% du volume mésoporeux total déterminé par intrusion au porosimètre à mercure.

On définit également le diamètre médian macroporeux comme étant le diamètre tel que tous les pores, parmi l’ensemble des pores constituant le volume macroporeux, de taille inférieure à ce diamètre constituent 50% du volume macroporeux total déterminé par intrusion au porosimètre à mercure. 2. Description

Procédé de préparation du catalyseur

Le procédé de préparation du catalyseur, comprenant une phase active bimétallique à base de nickel et de cuivre, et un support comprenant au moins un oxyde réfractaire choisi parmi la silice, l’alumine et la silice-alumine, comprend au moins les étapes suivantes :

a) on réalise une étape de mise en contact du support avec au moins une solution contenant au moins un précurseur de nickel ;

b) on réalise une étape de mise en contact du support avec au moins une solution contenant au moins un précurseur de cuivre ;

les étapes a) et b) étant réalisées séparément dans un ordre indifférent ;

c) on réalise au moins une étape de séchage du précurseur de catalyseur à l’issue de l’étape a) et b), ou b) et a), à une température inférieure à 250°C ;

d) on approvisionne le précurseur de catalyseur obtenu à l’issue de l’étape c) dans un réacteur d’hydrogénation sélective de coupes d'hydrocarbures polyinsaturés ou d’hydrogénation de composés aromatiques ou polyaromatiques, et on effectue une étape de réduction par mise en contact dudit précurseur avec un gaz réducteur à une température inférieure à 200°C pendant une période supérieure ou égale à 5 minutes et inférieure 2 heures.

Les étapes du procédé de préparation du catalyseur sont explicitées en détail ci-après. Etape a) Mise en contact du précurseur de nickel

Le dépôt du nickel sur ledit support, conformément à la mise en oeuvre de l’étape a), peut être réalisé par imprégnation, à sec ou en excès, ou encore par dépôt - précipitation, selon des méthodes bien connues de l'Homme du métier.

Ladite étape a) est préférentiellement réalisée par imprégnation du support consistant par exemple en la mise en contact dudit support avec au moins une solution, aqueuse ou organique (par exemple le méthanol ou l'éthanol ou le phénol ou l’acétone ou le toluène ou le diméthylsulfoxyde (DMSO)) ou bien constituée d'un mélange d'eau et d'au moins un solvant organique, contenant au moins un précurseur de nickel au moins partiellement à l'état dissous, ou encore en la mise en contact dudit support avec au moins une solution colloïdale d'au moins un précurseur du nickel, sous forme oxydée (nanoparticules d’oxyde, d’oxy(hydroxyde) ou d’hydroxyde du nickel) ou sous forme réduite (nanoparticules métalliques du nickel à l'état réduit). De préférence, la solution est aqueuse. Le pH de cette solution pourra être modifié par l'ajout éventuel d'un acide ou d’une base. Selon une autre variante préférée, la solution aqueuse peut contenir de l’ammoniaque ou des ions ammonium NH 4 + .

De manière préférée, ladite étape a) est réalisée par imprégnation à sec, laquelle consiste à mettre en contact le support du catalyseur avec une solution, contenant au moins un précurseur du nickel, dont le volume de la solution est compris entre 0,25 et 1 ,5 fois le volume poreux du support à imprégner.

Lorsque le précurseur de nickel est introduit en solution aqueuse, on utilise avantageusement un précurseur de nickel sous forme de nitrate, de carbonate, d'acétate, de chlorure, d’hydroxyde, d’hydroxycarbonate, d'oxalate, de sulfate, de formiate, de complexes formés par un polyacide ou un acide-alcool et ses sels, de complexes formés avec les acétylacétonates, de complexes tétrammine ou hexammine, ou encore de tout autre dérivé inorganique soluble en solution aqueuse, laquelle est mise en contact avec ledit support.

De manière préférée, on utilise avantageusement comme précurseur de nickel, le nitrate de nickel, l’hydroxyde de nickel, le carbonate de nickel, le chlorure de nickel, ou le hydroxycarbonate de nickel. De manière très préférée, le précurseur de nickel est le nitrate de nickel, le carbonate de nickel ou le hydroxyde de nickel.

Les quantités du ou des précurseurs de nickel introduites dans la solution sont choisies de telle manière que la teneur totale en nickel est comprise entre 1 et 30 % poids, de préférence comprise entre 5 et 22 % poids, de manière préférée comprise entre 7 et 18% poids dudit élément par rapport au poids total du catalyseur.

Etape b) Mise en contact du précurseur de cuiyre

Le dépôt du cuivre sur ledit support, conformément à la mise en oeuvre de l’étape b), peut être réalisé par imprégnation, à sec ou en excès, ou encore par dépôt - précipitation, selon des méthodes bien connues de l'Homme du métier.

Ladite étape b) est préférentiellement réalisée par imprégnation du support consistant par exemple en la mise en contact dudit support avec au moins une solution, aqueuse ou organique (par exemple le méthanol ou l'éthanol ou le phénol ou l’acétone ou le toluène ou le diméthylsulfoxyde (DMSO)) ou bien constituée d'un mélange d'eau et d'au moins un solvant organique, contenant au moins un précurseur de cuivre au moins partiellement à l'état dissous, ou encore en la mise en contact dudit support avec au moins une solution colloïdale d'au moins un précurseur cuivre, sous forme oxydée (nanoparticules d’oxyde, d’oxy(hydroxyde) ou d’hydroxyde de cuivre) ou sous forme réduite (nanoparticules métalliques de cuivre à l'état réduit). De préférence, la solution est aqueuse. Le pH de cette solution pourra être modifié par l'ajout éventuel d'un acide ou d’une base.

De manière préférée, ladite étape b) est réalisée par imprégnation à sec, laquelle consiste à mettre en contact le support du catalyseur avec une solution, contenant au moins un précurseur de cuivre, dont le volume de la solution est compris entre 0,25 et 1 ,5 fois le volume poreux du support à imprégner.

Lorsque le précurseur de cuivre est introduit en solution aqueuse, on utilise avantageusement un précurseur de cuivre sous forme minérale ou organique. Sous forme minérale, le précurseur de cuivre peut être choisi parmi l’acétate de cuivre, l’acétylacétonate de cuivre, le nitrate de cuivre, le sulfate de cuivre, le chlorure de cuivre, le bromure de cuivre, l’iodure de cuivre ou le fluorure de cuivre. De manière très préférée, le sel précurseur du cuivre est le nitrate de cuivre.

Les quantités du ou des précurseurs de cuivre introduites dans la solution sont choisies de telle manière que la teneur totale en cuivre est comprise entre 0,5 et 15 % en poids en élément cuivre par rapport au poids total du catalyseur, de préférence comprise entre 0,5 et 12 % poids, de manière préférée comprise entre 0,75 et 10 % poids, et encore plus préférentiellement entre 1 et 9% en poids.

Les étapes a) et b) sont réalisées séparément, dans un ordre indifférent. L’imprégnation du précurseur de nickel n’est pas réalisée en même temps que l’imprégnation du précurseur de cuivre, de manière à ne pas former d’alliage à base de nickel-cuivre, qui n’est pas souhaitable dans le cadre de la présente invention car cela conduirait à une activité et/ou une sélectivité moins bonnes que celles du nickel seul.

De manière préférée, on réalise l’étape b) avant l’étape a), c’est-à-dire qu’on réalise une première étape d’imprégnation du support avec un précurseur de cuivre, puis on réalise une seconde étape d’imprégnation du support avec un précurseur de nickel (pré-imprégnation). La Demanderesse a découvert que la pré-imprégnation (vis-à-vis de l’imprégnation du précurseur de nickel) d’un précurseur de cuivre sur le support permet d’obtenir des meilleurs résultats en terme de réductibilité du nickel par rapport à une post-imprégnation du précurseur de cuivre (vis-à-vis de l’imprégnation du précurseur de nickel), c’est-à-dire qu’on réalise une première étape d’imprégnation du support avec un précurseur de nickel, puis on réalise une seconde étape d’imprégnation du support avec un précurseur de cuivre, et cela pour des conditions opératoires de réduction du catalyseur identiques (température, temps, gaz réducteur).

Optionnellement, entre les deux étapes d’imprégnation successives, on réalise une étape de séchage du précurseur de catalyseur effectuée à une température inférieure à 250°C, de préférence comprise entre 15 et 240°C, plus préférentiellement entre 30 et 220°C, encore plus préférentiellement entre 50 et 200°C, et de manière encore plus préférentielle entre 70 et 180°C, pendant une durée typiquement comprise entre 10 minutes et 24 heures.

Etape c) Séchage du support imprégné

L’étape c) de séchage du support imprégné est effectuée à une température inférieure à 250°C, de préférence comprise entre 15 et 180°C, plus préférentiellement entre 30 et 160°C, encore plus préférentiellement entre 50 et 150°C, et de manière encore plus préférentielle entre 70 et 140°C, pendant une durée typiquement comprise entre 10 minutes et 24 heures. Des durées plus longues ne sont pas exclues, mais n’apportent pas nécessairement d’amélioration.

L’étape de séchage peut être effectuée par toute technique connue de l’Homme du métier. Elle est avantageusement effectuée sous une atmosphère inerte ou sous une atmosphère contenant de l’oxygène ou sous un mélange de gaz inerte et d’oxygène. Elle est avantageusement effectuée à pression atmosphérique ou à pression réduite. De manière préférée, cette étape est réalisée à pression atmosphérique et en présence d’air ou d’azote.

Traitement thermiaue du catalyseur séché (étape optionnelle)

Le précurseur de catalyseur séché peut subir une étape complémentaire de traitement thermique d) à une température comprise entre 250 et 1000°C et de préférence entre 250 et 750°C, pendant une durée typiquement comprise entre 15 minutes et 10 heures, sous une atmosphère inerte ou sous une atmosphère contenant de l’oxygène, en présence d’eau ou non. Des durées de traitement plus longues ne sont pas exclues, mais n’apportent pas nécessairement d’amélioration. On entend par « traitement thermique » le traitement en température respectivement sans présence ou en présence d'eau. Dans ce dernier cas, le contact avec la vapeur d'eau peut se dérouler à pression atmosphérique ou en pression autogène. Plusieurs cycles combinés sans présence ou avec présence d'eau peuvent être réalisés. Après ce ou ces traitement(s), le précurseur de catalyseur comprend du nickel sous forme oxyde, c’est-à-dire sous forme NiO.

En cas de présence d’eau, la teneur en eau est de préférence comprise entre 150 et 900 grammes par kilogramme d'air sec, et de manière encore plus préférée, entre 250 et 650 grammes par kilogramme d'air sec. Etape d) Réduction par un gaz réducteur

Préalablement à l’utilisation du catalyseur dans le réacteur catalytique et la mise en œuvre d’un procédé d'hydrogénation, on effectue une étape de traitement réducteur d) en présence d’un gaz réducteur de manière à obtenir un catalyseur comprenant du nickel au moins partiellement sous forme métallique. Cette étape est réalisée in-situ c'est-à-dire après le chargement du catalyseur dans un réacteur d'hydrogénation sélective de composés polyinsaturés. Ce traitement permet d'activer ledit catalyseur et de former des particules métalliques, en particulier du nickel à l'état zéro valent. La réalisation in-situ du traitement réducteur du catalyseur permet de s’affranchir d’une étape supplémentaire de passivation du catalyseur par un composé oxygéné ou par le C0 2 , ce qui est nécessairement le cas lorsque le catalyseur est préparé en réalisant un traitement réducteur ex-situ, c’est-à-dire en dehors du réacteur utilisé pour l’hydrogénation sélective. En effet, lorsque le traitement réducteur est réalisé ex-situ, il est nécessaire de réaliser une étape de passivation afin de préserver la phase métallique du catalyseur en présence d’air (lors des opérations de transport et de chargement du catalyseur dans le réacteur d’hydrogénation), puis de réaliser une étape nouvelle étape de réduction du catalyseur.

Le gaz réducteur est de préférence l'hydrogène. L'hydrogène peut être utilisé pur ou en mélange (par exemple un mélange hydrogène/azote, hydrogène/argon, hydrogène/méthane). Dans le cas où l'hydrogène est utilisé en mélange, toutes les proportions sont envisageables. Selon un aspect essentiel du procédé de préparation selon l’invention, ledit traitement réducteur est réalisé à une température inférieure à 200°C, de préférence comprise entre 130 et 190°C, et plus préférentiellement entre 145 et 175°C. La durée du traitement réducteur est réalisé pendant une période supérieure ou égale à 5 minutes et inférieure 2 heures, de préférence entre 10 minutes et 1 10 minutes. Le recours à des conditions opératoires moins sévères que dans l’art antérieur permet de réaliser directement l’étape de réduction au sein du réacteur dans lequel on souhaite réaliser l’hydrogénation sélective de coupes polyinsaturés. Par ailleurs, la présence de cuivre dans le catalyseur permet de conserver une bonne activité du catalyseur et une bonne durée de vie du catalyseur lorsque ce dernier est mis en contact avec une charge hydrocarbonée comprenant du soufre, notamment les coupes d’hydrocarbures C3 de vapocraquage et/ou de craquage catalytique. En effet, par rapport au nickel, le cuivre présent dans le catalyseur capte plus facilement les composés soufrés compris dans la charge, ce qui évite donc d’empoisonner irréversiblement les sites actifs les plus virulents du nickel qui existent sur le catalyseur neuf. La montée en température jusqu'à la température de réduction désirée est généralement lente, par exemple fixée entre 0,1 et 10°C/min, de préférence entre 0,3 et 7°C/min.

Le débit d'hydrogène, exprimé en L/heure/gramme de précurseur de catalyseur est compris entre 0,01 et 100 L/heure/gramme de catalyseur, de préférence entre 0,05 et 10 L/heure/gramme de précurseur de catalyseur, de façon encore plus préférée entre 0,1 et 5 L/heure/gramme de précurseur de catalyseur.

Etape e) Passivation ( étape optionnelle)

Le catalyseur préparé selon le procédé selon l'invention peut éventuellement subir une étape de passivation par un composé soufré qui permet d'améliorer la sélectivité des catalyseurs et d'éviter les emballements thermiques lors des démarrages de catalyseurs neufs (« run away » selon la terminologie anglo-saxonne). La passivation consiste généralement à empoisonner irréversiblement par le composé soufré les sites actifs les plus virulents du nickel qui existent sur le catalyseur neuf et donc à atténuer l’activité du catalyseur en faveur de sa sélectivité. L'étape de passivation est réalisée par la mise en œuvre de méthodes connues de l'Homme du métier L'étape de passivation par un composé soufré est généralement effectuée à une température comprise entre 20 et 350°C, de préférence entre 40 et 200°C, pendant 10 à 240 minutes. Le composé soufré est par exemple choisi parmi les composés suivants: thiophène, thiophane, alkylmonosulfures tels que diméthylsulfure, diéthylsulfure, dipropylsulfure et propylméthylsulfure ou encore un disulfure organique de formule HO-R I -S-S-R 2 -OH tel que le di-thio-di-éthanol de formule HO-C2H4-S-S-C2H4-OH (appelé souvent DEODS). La teneur en soufre est généralement comprise entre 0, 1 et 2 % poids dudit élément par rapport au poids total du catalyseur.

Le catalyseur susceptible d’être obtenu par le procédé de préparation selon l’invention comprend une phase active à base de nickel et de cuivre, et un support contenant un oxyde réfractaire choisi parmi la silice, l’alumine, la silice-alumine.

Les quantités du ou des précurseurs de cuivre introduites dans la solution sont choisies de telle manière que la teneur totale en cuivre est comprise entre 0,5 et 15 % en poids en élément cuivre par rapport au poids total du catalyseur, de préférence comprise entre 0,5 et 12 % poids, de manière préférée comprise entre 0,75 et 10 % poids, et encore plus préférentiellement entre 1 et 9 % en poids. La présence de cuivre améliore fortement la réductibilité du nickel sur le support, et cela quel que soit l’ordre d’ajout des précurseurs métalliques (nickel et cuivre), ce qui permet de réaliser une étape de réduction des éléments métalliques en présence d’un gaz réducteur à des températures plus basses et des temps de réaction plus court que ceux couramment utilisés dans l’art antérieur.

Les quantités du ou des précurseurs de nickel introduites dans la solution sont choisies de telle manière que la teneur totale en nickel est comprise entre 1 et 30 % poids, de préférence comprise entre 5 et 22 % poids, de manière préférée comprise entre 7 et 18% poids dudit élément par rapport au poids total du catalyseur.

Le ratio molaire entre le cuivre et le nickel doit être inférieur à 1 , de préférence inférieur à 0,8, plus préférentiellement inférieur à 0,7, encore plus préférentiellement inférieur à 0,6, de manière préférée inférieur à 0,5, et de manière encore plus préférée inférieur à 0,4.

Le support poreux est choisi parmi le groupe constitué par la silice, l'alumine et la silice- alumine. De façon encore plus préférée, le support est de l'alumine. L’alumine peut être présente sous toutes les formes cristallographiques possibles : alpha, delta, thêta, chi, rho, eta, kappa, gamma, etc., prises seules ou en mélange. De manière préférée le support est choisi parmi l’alumine alpha, delta, thêta, gamma.

La surface spécifique du support poreux est généralement supérieure à 5 m 2 /g, de préférence comprise entre 30 et 400 m 2 /g, de manière préférée entre 50 et 350 m 2 /g.

Le volume total poreux du support est généralement compris entre 0,1 et 1 ,5 cm 3 /g, de préférence compris entre 0,35 et 1 ,2 cm 3 /g, et encore plus préférentiellement compris entre 0,4 et 1 ,0 cm 3 /g, et encore plus préférentiellement entre 0,45 et 0,9 cm 3 /g.

Ledit catalyseur est généralement présenté sous toutes les formes connues de l'Homme du métier, par exemple sous forme de billes (ayant généralement un diamètre compris entre 1 et 8 mm), d’extrudés, de tablettes, de cylindres creux. De préférence, il est constitué d'extrudés de diamètre généralement compris entre 0,5 et 10 mm, de préférence entre 0,8 et 3,2 mm et de manière très préférée entre 1 ,0 et 2,5 mm et de longueur moyenne comprise entre 0,5 et 20 mm. On entend par « diamètre moyen » des extrudés le diamètre moyen du cercle circonscrit à la section droite de ces extrudés. Le catalyseur peut être avantageusement présenté sous la forme d'extrudés cylindriques, multilobés, trilobés ou quadrilobés. De préférence sa forme sera trilobée ou quadrilobée. La forme des lobes pourra être ajustée selon toutes les méthodes connues de l'art antérieur.

La surface spécifique du catalyseur est généralement supérieure à 5 m 2 /g, de préférence comprise entre 30 et 400 m 2 /g, de manière préférée entre 50 et 350 m 2 /g.

Le volume total poreux du catalyseur est généralement compris entre 0,1 et 1 ,5 cm 3 /g, de préférence compris entre 0,35 et 1 ,2 cm 3 /g, et encore plus préférentiellement compris entre 0,4 et 1 ,0 cm 3 /g, et encore plus préférentiellement entre 0,45 et 0,9 cm 3 /g.

Le catalyseur présente avantageusement un volume macroporeux inférieur ou égal à 0,6 mL/g, de préférence inférieur ou égal à 0,5 mL/g, plus préférentiellement inférieur ou égal à 0,4 mL/g, et encore plus préférentiellement inférieur ou égal à 0,3 mL/g.

Le volume mésoporeux du catalyseur est généralement d'au moins 0,10 mL/g, de préférence d’au moins 0,20 mL/g, de manière préférée compris entre 0,25 mL/g et 0,80 mL/g, de manière plus préférée entre 0,30 et 0,65 mL/g.

Le diamètre médian mésoporeux peut être compris entre 3 nm et 25 nm, et de préférence entre 6 et 20 nm, et de manière particulièrement préférée compris entre 8 et 18 nm. Le catalyseur présente avantageusement un diamètre médian macroporeux compris entre 50 et 1500 nm, de préférence entre 80 et 1000 nm, de manière encore plus préférée compris entre 250 et 800 nm.

De préférence, le catalyseur présente une faible microporosité, de manière très préférée il ne présente aucune microporosité.

Procédé d’hydrogénation sélective

La présente invention a également pour objet un procédé d’hydrogénation sélective de composés polyinsaturés contenant au moins 2 atomes de carbone par molécule, tels que les dioléfines et/ou les acétyléniques et/ou les alcénylaromatiques, aussi appelés styréniques, contenus dans une charge d’hydrocarbures ayant un point d'ébullition final inférieur ou égal à 300°C, lequel procédé étant réalisé à une température comprise entre 0 et 300°C, à une pression comprise entre 0,1 et 10 MPa, à un ratio molaire hydrogène/(composés polyinsaturés à hydrogéner) compris entre 0,1 et 10 et à une vitesse volumique horaire comprise entre 0,1 et 200 h 1 lorsque le procédé est réalisé en phase liquide, ou à un ratio molaire hydrogène/(composés polyinsaturés à hydrogéner) compris entre 0,5 et 1000 et à une vitesse volumique horaire entre 100 et 40000 h 1 lorsque le procédé est réalisé en phase gazeuse, en présence d’un catalyseur obtenu par le procédé de préparation tel que décrit ci- avant dans la description.

Les composés organiques mono-insaturés tels que par exemple l’éthylène et le propylène, sont à la source de la fabrication de polymères, de matières plastiques et d'autres produits chimiques à valeur ajoutée. Ces composés sont obtenus à partir du gaz naturel, du naphta ou du gazole qui ont été traités par des procédés de vapocraquage ou de craquage catalytique. Ces procédés sont opérés à haute température et produisent, en plus des composés mono-insaturés recherchés, des composés organiques polyinsaturés tels que l'acétylène, le propadiène et le méthylacétylène (ou propyne), le 1 -2-butadiène et le 1 -3- butadiène, le vinylacétylène et l'éthylacétylène, et d’autres composés polyinsaturés dont le point d’ébullition correspond à la coupe C5+ (composés hydrocarbonés ayant au moins 5 atomes de carbone), en particulier des composés dioléfiniques ou styréniques ou indéniques. Ces composés polyinsaturés sont très réactifs et conduisent à des réactions parasites dans les unités de polymérisation. Il est donc nécessaire de les éliminer avant de valoriser ces coupes. L'hydrogénation sélective est le principal traitement développé pour éliminer spécifiquement les composés polyinsaturés indésirables de ces charges d'hydrocarbures. Elle permet la conversion des composés polyinsaturés vers les alcènes ou aromatiques correspondants en évitant leur saturation totale et donc la formation des alcanes ou naphtènes correspondants. Dans le cas d'essences de vapocraquage utilisées comme charge, l'hydrogénation sélective permet également d'hydrogéner sélectivement les alcénylaromatiques en aromatiques en évitant l’hydrogénation des noyaux aromatiques.

La charge d'hydrocarbures traitée dans le procédé d’hydrogénation sélective a un point d'ébullition final inférieur ou égal à 300°C et contient au moins 2 atomes de carbone par molécule et comprend au moins un composé polyinsaturé. On entend par « composés polyinsaturés » des composés comportant au moins une fonction acétylénique et/ou au moins une fonction diénique et/ou au moins une fonction alcénylaromatique.

Plus particulièrement, la charge est sélectionnée dans le groupe constitué par une coupe C2 de vapocraquage, une coupe C2-C3 de vapocraquage, une coupe C3 de vapocraquage, une coupe C4 de vapocraquage, une coupe C5 de vapocraquage et une essence de vapocraquage encore appelée essence de pyrolyse ou coupe C5+.

La coupe C2 de vapocraquage, avantageusement utilisée pour la mise en oeuvre du procédé d'hydrogénation sélective selon l'invention, présente par exemple la composition suivante : entre 40 et 95 % poids d'éthylène, de l'ordre de 0,1 à 5 % poids d'acétylène, le reste étant essentiellement de l'éthane et du méthane. Dans certaines coupes C2 de vapocraquage, entre 0,1 et 1 % poids de composés en C3 peut aussi être présent.

La coupe C3 de vapocraquage, avantageusement utilisée pour la mise en oeuvre du procédé d'hydrogénation sélective selon l'invention, présente par exemple la composition moyenne suivante : de l’ordre de 90 % poids de propylène, de l’ordre de 1 à 8 % poids de propadiène et de méthylacétylène, le reste étant essentiellement du propane. Dans certaines coupes C3, entre 0,1 et 2 % poids de composés en C2 et de composés en C4 peut aussi être présent.

Une coupe C2 - C3 peut aussi être avantageusement utilisée pour la mise en oeuvre du procédé d'hydrogénation sélective selon l'invention. Elle présente par exemple la composition suivante : de l'ordre de 0,1 à 5 % poids d'acétylène, de l’ordre de 0,1 à 3 % poids de propadiène et de méthylacétylène, de l’ordre de 30 % poids d'éthylène, de l’ordre de 5 % poids de propylène, le reste étant essentiellement du méthane, de l’éthane et du propane. Cette charge peut aussi contenir entre 0,1 et 2 % poids de composés en C4. La coupe C4 de vapocraquage, avantageusement utilisée pour la mise en oeuvre du procédé d'hydrogénation sélective selon l'invention, présente par exemple la composition massique moyenne suivante : 1 % poids de butane, 46,5 % poids de butène, 51 % poids de butadiène, 1 ,3 % poids de vinylacétylène et 0,2 % poids de butyne. Dans certaines coupes C4, entre 0,1 et 2 % poids de composés en C3 et de composés en C5 peut aussi être présent.

La coupe C5 de vapocraquage, avantageusement utilisée pour la mise en oeuvre du procédé d'hydrogénation sélective selon l'invention, présente par exemple la composition suivante : 21 % poids de pentanes, 45 % poids de pentènes, 34 % poids de pentadiènes.

L'essence de vapocraquage ou essence de pyrolyse, avantageusement utilisée pour la mise en oeuvre du procédé d'hydrogénation sélective selon l'invention, correspond à une coupe hydrocarbonée dont la température d'ébullition est généralement comprise entre 0 et 300°C, de préférence entre 10 et 250°C. Les hydrocarbures polyinsaturés à hydrogéner présents dans ladite essence de vapocraquage sont en particulier des composés dioléfiniques (butadiène, isoprène, cyclopentadiène...), des composés styréniques (styrène, alpha- méthylstyrène...) et des composés indéniques (indène...). L'essence de vapocraquage comprend généralement la coupe C5-C12 avec des traces de C3, C4, C13, C14, C15 (par exemple entre 0,1 et 3% poids pour chacune de ces coupes). Par exemple, une charge formée d'essence de pyrolyse a généralement une composition suivante: 5 à 30 % poids de composés saturés (paraffines et naphtènes), 40 à 80 % poids de composés aromatiques, 5 à 20 % poids de mono-oléfines, 5 à 40 % poids de dioléfines, 1 à 20 % poids de composés alcénylaromatiques, l'ensemble des composés formant 100 %. Elle contient également de 0 à 1000 ppm poids de soufre, de préférence de 0 à 500 ppm poids de soufre.

De manière préférée, la charge d'hydrocarbures polyinsaturés traitée conformément au procédé d'hydrogénation sélective selon l'invention est une coupe C2 de vapocraquage, ou une coupe C2-C3 de vapocraquage, ou une essence de vapocraquage.

Le procédé d'hydrogénation sélective selon l'invention vise à éliminer lesdits hydrocarbures polyinsaturés présents dans ladite charge à hydrogéner sans hydrogéner les hydrocarbures monoinsaturés. Par exemple, lorsque ladite charge est une coupe C2, le procédé d'hydrogénation sélective vise à hydrogéner sélectivement l'acétylène. Lorsque ladite charge est une coupe C3, le procédé d'hydrogénation sélective vise à hydrogéner sélectivement le propadiène et le méthylacétylène. Dans le cas d'une coupe C4, on vise à éliminer le butadiène, le vinylacétylène (VAC) et le butyne, dans le cas d'une coupe C5, on vise à éliminer les pentadiènes. Lorsque ladite charge est une essence de vapocraquage, le procédé d'hydrogénation sélective vise à hydrogéner sélectivement lesdits hydrocarbures polyinsaturés présents dans ladite charge à traiter de manière à ce que les composés dioléfiniques soient partiellement hydrogénés en mono-oléfines et que les composés styréniques et indéniques soient partiellement hydrogénés en composés aromatiques correspondants en évitant l’hydrogénation des noyaux aromatiques.

La mise en oeuvre technologique du procédé d’hydrogénation sélective est par exemple réalisée par injection, en courant ascendant ou descendant, de la charge d'hydrocarbures polyinsaturés et de l’hydrogène dans au moins un réacteur à lit fixe. Ledit réacteur peut être de type isotherme ou de type adiabatique. Un réacteur adiabatique est préféré. La charge d'hydrocarbures polyinsaturés peut avantageusement être diluée par une ou plusieurs ré injections) de l'effluent, issu dudit réacteur où se produit la réaction d'hydrogénation sélective, en divers points du réacteur, situés entre l'entrée et la sortie du réacteur afin de limiter le gradient de température dans le réacteur. La mise en œuvre technologique du procédé d’hydrogénation sélective selon l'invention peut également être avantageusement réalisée par l'implantation d’au moins dudit catalyseur supporté dans une colonne de distillation réactive ou dans des réacteurs - échangeurs ou dans un réacteur de type slurry. Le flux d'hydrogène peut être introduit en même temps que la charge à hydrogéner et/ou en un ou plusieurs points différents du réacteur.

L'hydrogénation sélective des coupes C2, C2-C3, C3, C4, C5 et C5+ de vapocraquage peut être réalisée en phase gazeuse ou en phase liquide, de préférence en phase liquide pour les coupes C3, C4, C5 et C5+ et en phase gazeuse pour les coupes C2 et C2-C3. Une réaction en phase liquide permet d’abaisser le coût énergétique et d’augmenter la durée de cycle du catalyseur.

D'une manière générale, l'hydrogénation sélective d’une charge d'hydrocarbures contenant des composés polyinsaturés contenant au moins 2 atomes de carbone par molécule et ayant un point d'ébullition final inférieur ou égal à 300°C s'effectue à une température comprise entre 0 et 300°C, à une pression comprise entre 0,1 et 10 MPa, à un ratio molaire hydrogène/(composés polyinsaturés à hydrogéner) compris entre 0,1 et 10 et à une vitesse volumique horaire V.V.H. (définie comme le rapport du débit volumique de charge sur le volume du catalyseur) comprise entre 0,1 et 200 h 1 pour un procédé réalisé en phase liquide, ou à un ratio molaire hydrogène/(composés polyinsaturés à hydrogéner) compris entre 0,5 et 1000 et à une vitesse volumique horaire V.V.H. comprise entre 100 et 40000 h 1 pour un procédé réalisé en phase gazeuse.

Dans un mode de réalisation selon l’invention, lorsqu’on effectue un procédé d'hydrogénation sélective dans lequel la charge est une essence de vapocraquage comportant des composés polyinsaturés, le ratio molaire (hydrogène)/(composés polyinsaturés à hydrogéner) est généralement compris entre 0,5 et 10, de préférence entre 0,7 et 5,0 et de manière encore plus préférée entre 1 ,0 et 2,0, la température est comprise entre 0 et 200°C, de préférence entre 20 et 200 °C et de manière encore plus préférée entre 30 et 180°C, la vitesse volumique horaire (V.V.H.) est comprise généralement entre 0,5 et 100 h 1 , de préférence entre 1 et 50 h 1 et la pression est généralement comprise entre 0,3 et 8,0 MPa, de préférence entre 1 ,0 et 7,0 MPa et de manière encore plus préférée entre 1 ,5 et 4,0 MPa.

Plus préférentiellement, on effectue un procédé d’hydrogénation sélective dans lequel la charge est une essence de vapocraquage comportant des composés polyinsaturés, le ratio molaire hydrogène/(composés polyinsaturés à hydrogéner) est compris entre 0,7 et 5,0, la température est comprise entre 20 et 200 °C, la vitesse volumique horaire (V.V.H.) est comprise généralement entre 1 et 50 h 1 et la pression est comprise entre 1 ,0 et 7,0 MPa.

Encore plus préférentiellement, on effectue un procédé d’hydrogénation sélective dans lequel la charge est une essence de vapocraquage comportant des composés polyinsaturés, le ratio molaire hydrogène/(composés polyinsaturés à hydrogéner) est compris entre 1 ,0 et 2,0, la température est comprise entre 30 et 180°C, la vitesse volumique horaire (V.V.H.) est comprise généralement entre 1 et 50 h 1 et la pression est comprise entre 1 ,5 et 4,0 MPa.

Le débit d’hydrogène est ajusté afin d’en disposer en quantité suffisante pour hydrogéner théoriquement l’ensemble des composés polyinsaturés et de maintenir un excès d’hydrogène en sortie de réacteur.

Dans un autre mode de réalisation selon l’invention, lorsqu’on effectue un procédé d'hydrogénation sélective dans lequel la charge est une coupe C2 de vapocraquage et/ou une coupe C2-C3 de vapocraquage comportant des composés polyinsaturés, le ratio molaire (hydrogène)/(composés polyinsaturés à hydrogéner) est généralement compris entre 0,5 et 1000, de préférence entre 0,7 et 800, la température est comprise entre 0 et 300°C, de préférence entre 15 et 280 °C, la vitesse volumique horaire (V.V.H.) est comprise généralement entre 100 et 40000 h 1 , de préférence entre 500 et 30000 h 1 et la pression est généralement comprise entre 0,1 et 6,0 MPa, de préférence entre 0,2 et 5,0 MPa.

L’invention va maintenant être illustrée via les exemples ci-après qui ne sont nullement limitatifs. Exemples

Pour tous les catalyseurs mentionnés dans les exemples mentionnées ci-après, le support est une alumine A présentant une surface spécifique de 80 m 2 /g, un volume poreux de 0,7 mL/g et un diamètre poreux médian de 12 nm.

Exemple 1 : Préparation d’une solution aqueuse de précurseurs de Ni La solution aqueuse de précurseurs de Ni (solution S) utilisée pour la préparation des catalyseurs A à G est préparée en dissolvant 43,5 g de nitrate de nickel Ni(N0 3 ) 2 -6H 2 0 (fournisseur Strem Chemicals®) dans un volume de 13 mL d’eau distillée. On obtient la solution S dont la concentration en Ni est de 350 g de Ni par litre de solution.

Exemple 2 : Catalyseur A - 15% en poids de Ni (comparatif) La solution S préparée à l’exemple 1 est imprégnée à sec sur 10 g d'alumine A. Le solide ainsi obtenu est ensuite séché en étuve pendant une nuit à 120°C, puis calciné sous un flux d’air de 1 L/h/g de catalyseur à 450°C pendant 2 heures. Le catalyseur calciné ainsi préparé contient 15 % en poids de l'élément nickel par rapport au poids total du catalyseur supporté sur alumine. Exemple 3 : Catalyseur B - 15% en poids de Ni + 0,1 % de Cu en pré-imprégnation (comparatif)

Imprégnation n° 1

Une solution de nitrate de cuivre préparée de sorte à obtenir au final 0,1 % pds de Cu sur le catalyseur final est imprégnée à sec sur l’alumine A. Le solide ainsi obtenu est ensuite séché en étuve pendant une nuit à 120°C. Imprégnation n° 2

La solution S préparée à l’exemple 1 est ensuite imprégnée à sec sur 10 g de précurseur de catalyseur précédemment préparé lors de la première imprégnation. Le solide ainsi obtenu est ensuite séché en étuve pendant une nuit à 120°C, puis calciné sous un flux d’air de 1 L/h/g de catalyseur à 450°C pendant 2 heures.

Exemple 4 : Catalyseur C - 15% en poids de Ni +1 % en poids de Cu en pré-imprégnation (selon l’invention)

Le protocole utilisé dans cet exemple est identique à celui de l’exemple 3 ci-avant, à l’exception qu’on prépare une solution de nitrate de cuivre permettant de mettre 1 % pds de Cu sur l’alumine.

Exemple 5 : Catalyseur D - 15% en poids de Ni + 1% en poids de Cu en co-impréanation (comparatif)

Une solution de nitrate de cuivre est préparée de sorte à obtenir au final 1 % poids en élément cuivre sur le catalyseur final. On ajoute en même temps la solution de cuivre et la solution S sur l’alumine (co-imprégnation).

Le solide ainsi obtenu est ensuite séché en étuve pendant 12h à 120°C, puis calciné sous un flux d’air de 1 L/h/g de catalyseur à 450°C pendant 2 heures.

Exemple 6 : Catalyseur F - 15% en poids de Ni + 2% en poids de Cu en post-imprégnation (selon l’invention) - Imprégnation n° 1

La solution S préparée à l’exemple 1 est imprégnée à sec sur 10 g de l’alumine A. Le solide ainsi obtenu est ensuite séché en étuve pendant 12h à 120°C.

Imprégnation n° 2

Une solution de nitrate de cuivre est préparée de sorte à obtenir au final 2% poids en élément cuivre sur la catalyseur final puis est imprégnée à sec sur le précurseur de catalyseur précédemment préparé de la première imprégnation. Le solide ainsi obtenu est ensuite séché en étuve pendant 12h à 120°C, puis calciné sous un flux d’air de 1 L/h/g de catalyseur à 450°C pendant 2 heures.

Exemple 7 : Catalyseur E - 15% en poids de Ni + 2% en poids de Cu en pré-imprégnation (selon l’invention) Le protocole utilisé dans cet exemple est identique à celui de l’exemple 3 ci-avant, à l’exception qu’on prépare une solution de nitrate de cuivre permettant de mettre 2% pds de Cu sur l’alumine A.

Exemple 8 : Catalyseur G - 15% en poids de Ni +5% en poids de Cu en pré-impréanation (selon l’invention) Le protocole utilisé dans cet exemple est identique à celui de l’exemple 3 ci-avant, à l’exception qu’on prépare une solution de nitrate de cuivre permettant de mettre 5% pds de Cu sur l’alumine A.

Exemple 9 : Caractérisation

Tous les catalyseurs contiennent les teneurs visées lors de l’imprégnation c'est-à-dire 15% en élément nickel (caractérisé par Fluorescence X) par rapport au poids total du catalyseur, et le % de Cuivre ajouté (caractérisé par Fluorescence X).

La quantité de nickel sous forme métallique obtenue après l’étape de réduction a été déterminée par analyse par diffraction des rayons X (DRX) sur des échantillons de catalyseur sous forme de poudre. Entre l’étape de réduction, et, pendant toute la durée de la caractérisation par DRX les catalyseurs ne sont jamais remis à l’air libre. Les diagrammes de diffraction sont obtenus par analyse radiocristallographique au moyen d'un diffractomètre en utilisant la méthode classique des poudres avec le rayonnement Ka1 du cuivre (l = 1 ,5406

À).

Le taux de réduction a été calculé en calculant l’aire de la raie de Ni 0 située vers 52°20, sur l’ensemble des diffractogrammes de chaque échantillon de catalyseur analysé, puis en soustrayant le signal présent dès la température ambiante sous la raie à 52° et qui est dû à l’alumine. A température ambiante sur tous les catalyseurs, après calcination, contenant du cuivre et du nickel, de l’alumine sous forme delta et thêta, du CuO (tenorite) et du NiO ont été détectés. Le tableau 1 ci-après rassemble les taux de réduction (exprimée en % poids par rapport au poids total de Ni) pour tous les catalyseurs A à G caractérisés par DRX après une étape de réduction à 170°C pendant 90 minutes sous flux d’hydrogène. Ces valeurs ont également été comparées avec le taux de réduction obtenu pour le catalyseur A (Ni seul) après une étape de réduction classique (c’est-à-dire à une température de 400C° pendant 15 heures sous flux d’hydrogène).

Pour le catalyseur G (5%Cu/15%Ni/alumine) après 90 minutes à 170 °C sous flux d’hydrogène (H 2 ), le taux de réductibilité de nickel est de 100% et le taux de réductibilité de Cu° également. Pour le catalyseur A (15%Ni seul/alumine), le taux de réductibilité de nickel est de 0% après exactement le même traitement de réduction sous hydrogène. Le cuivre permet bien de réduire tout le nickel oxyde présent sur le support en nickel réduit (Ni°).

Par ailleurs, les catalyseurs contenant à la fois du cuivre et du nickel ont été traités sous flux de sulfure d’hydrogène avec une montée en température jusqu’à 300°C. Les spectres DRX ont été enregistrés et analysés en fonction du temps et de la température. Il a été analysé que la phase NiO se sulfure en Ni 3 S 4 et NiS et la phase de CuO s’oxyde en Cui 75 S. Par ailleurs l’oxyde de cuivre est l’espèce qui se sulfure la première. Cela montre que les catalyseurs préparés le procédé selon l’invention seront plus résistants aux charges soufrées, telles que les essences de craquage, par rapport à des catalyseurs préparés de manière connue, sans présence de cuivre. En effet le cuivre captera en priorité le soufre, le Ni° restant disponible pour l’hydrogénation des différents composés de la charge à traiter.

Le Tableau 1 ci-dessous récapitule les taux de réductibilité ou encore la teneur en Ni° pour tous les catalyseurs caractérisés par DRX après réduction à 170°C pendant 90 minutes sous flux d’hydrogène. Pour comparaison avec une réduction classique il a été également ajouté le taux de réductibilité de nickel après réduction classique 15 h à 400°C sous flux d’hydrogène pour le Ni seul/alumine. Dès l’ajout de 1% cuivre en pré-imprégnation le taux de réductibilité de nickel est de 50% alors que pour le même traitement sous H 2 pour le catalyser de Ni seul, le taux de réductibilité de nickel est nul. Par ailleurs, avec une même quantité de cuivre ajoutée et un même traitement sous H 2 , l’ajout de cuivre en pré imprégnation (catalyseur C, 50% de Ni°) est plus efficace que l’ajout de cuivre en post imprégnation (catalyseur E, 40% de Ni°), qui lui-même est plus performant que l’ajout de cuivre en co-imprégnation (catalyseur D, 30% de Ni°). Par ailleurs, l’ajout de 2% de cuivre (Catalyseur F, 80% de Ni°) conduit à la même teneur de Ni réduit que le catalyseur A qui a subi un traitement à plus haute température (400°C) et pour une durée plus longue (15h). Au final avec l’ajout de 5% de cuivre (catalyseur G) on atteint 100% de Ni° pour un traitement sous H 2 à 170°C pendant 90 minutes.

Tableau 1 : Teneur en Ni° après réduction à 170°C pendant 90 minutes pour l’ensemble des catalyseurs et également à 400°C pendant 15 heures pour le catalyseur Ni seul/alumine

Exemple 10 : Test catalytiques : performances en sélective d'un mélange contenant du styrène et de l'isoprène (A HY m)

Les catalyseurs A à G décrits dans les exemples ci-dessus sont testés vis-à-vis de la réaction d'hydrogénation sélective d'un mélange contenant du styrène et de l’isoprène.

La composition de la charge à hydrogéner sélectivement est la suivante : 8 % pds styrène (fournisseur Sigma Aldrich®, pureté 99%), 8 % pds isoprène (fournisseur Sigma Aldrich®, pureté 99%), 84 % pds n-heptane (solvant) (fournisseur VWR®, pureté > 99% chromanorm HPLC). Cette composition correspond à la composition initiale du mélange réactionnel. Ce mélange de molécules modèles est représentatif d’une essence de pyrolyse.

La réaction d'hydrogénation sélective est opérée dans un autoclave de 500 mL en acier inoxydable, muni d’une agitation mécanique à entraînement magnétique et pouvant fonctionner sous une pression maximale de 100 bar (10 MPa) et des températures comprises entre 5°C et 200°C.

Dans un autoclave sont ajoutés 214 mL de n-heptane (fournisseur VWR®, pureté > 99% chromanorm HPLC) et une quantité de 3 mL de catalyseur. L’autoclave est fermé et purgé. Ensuite l’autoclave est pressurisé sous 35 bar (3,5 MPa) d’hydrogène. Le catalyseur est d’abord réduit in situ, à 170 °C pendant 90 minutes (rampe de montée en température de 1 °C/min) pour les catalyseurs A à G. Ensuite l’autoclave est porté à la température du test égale à 30°C. Au temps t=0, environ 30 g d'un mélange contenant du styrène, de l’isoprène, du n-heptane, du pentanethiol et du thiophène sont introduits dans l’autoclave. Le mélange réactionnel a alors la composition décrite ci-dessus et l’agitation est mise en route à 1600 tr/min. La pression est maintenue constante à 35 bar (3,5 MPa) dans l’autoclave à l’aide d’une bouteille réservoir située en amont du réacteur.

Un autre test a été effectué pour le catalyseur A, mais avec une température de réduction du catalyseur de 400°C pendant 15 heures.

L’avancement de la réaction est suivi par prélèvement d’échantillons du milieu réactionnel à intervalles de temps réguliers : le styrène est hydrogéné en éthylbenzène, sans hydrogénation du cycle aromatique, et l’isoprène est hydrogéné en méthyl-butènes. Si la réaction est prolongée plus longtemps que nécessaire, les méthyl-butènes sont à leur tour hydrogénés en isopentane. La consommation d'hydrogène est également suivie au cours du temps par la diminution de pression dans une bouteille réservoir située en amont du réacteur. L’activité catalytique est exprimée en moles de H 2 consommées par minute et par gramme de Ni.

Les activités catalytiques mesurées pour les catalyseurs A à G sont reportées dans le tableau 2 ci-après. Elles sont rapportées à l’activité catalytique (A H YDI ) mesurée pour le catalyseur A préparé dans les conditions classiques de réduction (à une température de 400C° pendant 15 heures sous flux d’hydrogène).

Tableau 2 : Comparaison des performances en hydrogénation sélective d'un mélange contenant du styrène et de l'isoprène (AHYD1)

Ceci montre bien les performances améliorées des catalyseurs C, E, F et G selon l’invention, par rapport au catalyseur Ni seul sur alumine réduit à 170°C pendant 90 min, qui est complètement inactif et en particulier l’impact de l’addition d’un précurseur de cuivre avant ou après l’addition d’un précurseur de nickel au sein du précurseur de catalyseur lors de son procédé de préparation.