Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHOD FOR PRODUCING ASCORBIC ACID USING PECTOBACTER CYPRIPEDII
Document Type and Number:
WIPO Patent Application WO/2008/144792
Kind Code:
A1
Abstract:
The invention relates to a method for producing ascorbic acid, according to which in a first step a carbon source is converted by fermentation into 2,5-diketo-D-gluconic acid, which is then enzymatically reacted with 2,5-diketo-D-gluconic acid reductase from Corynebacterium glutamicum to produced 2-keto-L-gulonic acid. To produce higher product yields, the carbon source is glucose and the conversion from glucose into 2,5-diketo-D-gluconic acid is directly produced by the Pectobacter cypripedii strain HEPO1 (DSMZ 12393).

Inventors:
PACHER CLAUDIA (AT)
KULBE KLAUS D (AT)
STEINER EVA (AT)
REMBART GUENTER (AT)
Application Number:
PCT/AT2008/000185
Publication Date:
December 04, 2008
Filing Date:
May 29, 2008
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
VOGELBUSCH GMBH (AT)
PACHER CLAUDIA (AT)
KULBE KLAUS D (AT)
STEINER EVA (AT)
REMBART GUENTER (AT)
International Classes:
C12P17/04; C12P7/60
Foreign References:
US5234819A1993-08-10
Other References:
PACHER, C.: "Application of NADPH-dependent 2.5-diketo-gluconic acid reductase for production of L-ascorbic acid", JOURNAL OF BIOTECHNOLOGY, vol. 118, no. Suppl1, August 2005 (2005-08-01), pages S109 - S110, XP008097843
ANONYMOUS: "Eintrag zu DSMZ 12393: Erwinia pyrifoliae", INTERNET ARTIKEL, 2004, XP002501122, Retrieved from the Internet [retrieved on 20081024]
ANONYMOUS: "Eintrag zu DSMZ 30182: Pectobacterium cypripedii (Hori 1911)", INTERNET ARTIKEL, 2004, XP002501123, Retrieved from the Internet [retrieved on 20081024]
Attorney, Agent or Firm:
CASATI, Wilhelm et al. (Amerlingstrasse 8, Wien, AT)
Download PDF:
Claims:

Patentansprüche

1. Verfahren zum Herstellen von Ascorbinsäure, bei welchem in einem ersten Schritt eine Kohlenstoffquelle fermentativ in 2,5-Diketo-D-Gluconsäure umgewandelt wird, welche dann in einem zweiten Schritt enzymatisch mit 2,5-Diketo-D-Gluconsäure-Reduktase aus Corynebacterium glutamicum zu 2-Keto-L-Gulonsäure umgesetzt wird, dadurch gekennzeichnet, dass die Kohlenstoffquelle Glucose ist und die Umwandlung von Glucose in 2,5-Diketo-D-Gluconsäure durch den Pectobacter cypripedii Stamm HEPOl (DSMZ 12393) direkt erfolgt.

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass im ersten Schritt die Luftzufuhr bis zum Erreichen anaerober Bedingungen in der Nährlösung verringert bzw. eingestellt wird, wenn die Bildung der 2,5-Diketo-D-Gluconsäure aus dem Zwischenprodukt 2-Keto-D-Gluconsäure ausbleibt.

3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass die Luftzufuhr über eine Sauerstoffsonde gesteuert wird.

4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass während der Fermentation des ersten Schrittes der pH- Wert überwacht und/oder geregelt wird.

5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der erste Schritt des Verfahrens im Batch-Betrieb ausgeführt wird.

6. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der erste Schritt des Verfahrens im Fed-Batch Betrieb ausgeführt wird.

7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das im zweiten Schritt benötigte Coenzym NADPH durch die Glucose-Dehydro genäse, die

Glucose in Gluconsäure umwandelt, regeneriert wird, wobei die durch die Regenerierung entstehende Gluconsäure, und gegebenenfalls verbleibende Glucose und/oder 2,5-Diketo-D-Gluconsäure in den ersten Schritt zurückgeführt wird.

8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass im zweiten Schritt als Puffer

Na-Citrat oder Na-Acetat eingesetzt wird.

9. Verfahren nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass die Gluconsäure und gegebenenfalls Glucose und/oder 2,5-Diketo-D-Gluconsäure vor der Rückführung durch chromatographische Trennverfahren, wie Ionentauschchromatographie, von dem 2-Keto-L-Gulonsäure-Produktstrom getrennt wird.

10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die 2,5- Diketo-D-Gluconsäure-Reduktase aus Corynebacterium glutamicum unter Verwendung eines pET -Vektors in E. coli rekombinant hergestellt ist.

11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass zur Herstellung der Insert- DNA als Primer für die PCR CglakrPETF und CglakrPETR und das Plasmid pPCl als Matrize verwendet wird, wobei das amplifizierte Fragment in den Expressionsvektor pET-21d eingesetzt wird.

12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass der mit pET-21d transformierte E. coli BL21 (DE3) Stamm in einem Minimalmedium MPC-GIy, das in einem Liter 10g Pepton aus Casein

10g Glycerol 0,1 ml IM CaCl 2 1 M MgSO 4 *7H 2 O 200 ml MPC-GIy Salze enthält, gezüchtet wird, wobei die MPC-GIy Salzlösung in einem Liter Wasser

15 g KH 2 PO 4 2,5 g NaCl S g NH 4 Cl enthält. 13. Verfahren nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass es als Hybridverfahren geführt wird, wobei das Reaktionsgemisch in einen Produktstrom und einen Biokatalysatorstrom durch ein Membrantrennverfahren getrennt wird.

4. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass die Enzyme 2,5-Diketo-D- Gluconsäure-Reduktase und Glucose-Dehydrogenase sowie die Coenzyme NADPH und NADP + durch eine geladene Ultrafiltrationsmembran zurückgehalten werden.

Description:

VERFAHREN ZUR HERSTELLUNG VON ASCORBINSäURE UNTER VERWENDUNG VON PECTOBACTERIUM CYPRIPEDII

Die vorliegende Erfindung betrifft ein Verfahren zum Herstellen von Ascorbinsäure, bei welchem in einem ersten Schritt eine Kohlenstoffquelle fermentativ in 2,5-Diketo-D- Gluconsäure umgewandelt wird, welche dann in einem zweiten Schritt enzymatisch mit 2,5- Diketo-D-Gluconsäure-Reduktase aus Corynebacterium glutamicum zu 2-Keto-L- Gulonsäure umgesetzt wird.

Ascorbinsäure findet in der Pharma- und Nahrungsmittelindustrie als Vitamin und Antioxidanz Anwendung. L-Ascorbinsäure wird derzeit überwiegend nach dem von Reichstein (1934) entwickelten Verfahren hergestellt. Nach diesem Herstellungsverfahren von Reichstein erhält man Vitamin C aus D-Glucose in einem chemisch-biokatalytischen Verfahren. Die Glucose wird zunächst zu Sorbit reduziert und anschließend mit Sorbose- Bakterien zu dem Kohlenhydrat L-Sorbose oxidiert. Die Sorbose wird unter Zugabe von Aceton weiter oxidiert, wobei nach der anschließenden Abspaltung des Acetons und einer Wasserabspaltung das Vitamin C entsteht. Die Reichstein-Synthese erfordert neben hohem Energie- und Chemikalienaufwand auch eine anspruchsvolle Abwasseraufbereitung, um die Freisetzung Lindan-ähnlicher Nebenprodukte zu vermeiden. Ferner liefert dieses Verfahren nur eine Ausbeute von etwa 50%.

In den vergangenen Jahren wurden vermehrt Anstrengungen unternommen, um biotechnologische Verfahren zur Herstellung von Ascorbinsäure zu entwickeln. Der wirtschaftliche Durchbruch mit solchen Verfahren ist jedoch bei diesen Versuchen nicht gelungen. Die Mehrzahl der bekannten biotechnologischen Verfahren beschränkt sich auf die Herstellung von Zwischenprodukten des Ascorbinsäure- Synthesewegs. Insbesondere von Interesse sind die 2,5-Diketo-D-Gluconsäure (2,5-DKG) und die 2-Keto-L-Gulonsäure (2 -KLG). 2,5-DKG ist deswegen ein wichtiges Zwischenprodukt bei der Herstellung von Ascorbinsäure, da sie selektiv und stereospezifisch in die 2-KLG reduziert werden kann, welche ihrerseits ein Vorläufer der Ascorbinsäure ist. 2-KLG kann in weiterer Folge leicht durch eine Säure- oder Basen-katalysierte Reaktion in Ascorbinsäure umgewandelt werden.

Die Herstellung des Zwischenproduktes 2,5-Diketo-D-Gluconsäure (2,5-DKG) mittels aeroben Mikroorganismen, die ausschließlich der Gattungen Acetobacter, Acetomonas, Gluconoacetobacter und Pseudomonas angehören, ist beispielsweise im US Patent 4.316.960 (Pfizer Ine, 1982) beschrieben worden. Die Verwendung dieser Mikroorganismen ist jedoch von einem industriellen Gesichtspunkt ausgesehen wenig zufriedenstellend, da sie bei relativ langen Fermentationszeiten nur eine geringe Ausbeute an 2,5-DKG liefern. Das US Patent 3.790.444 (DAIICHI SEIYAKU CO, Japan, 1974) offenbart die Herstellung von 2,5-DKG mittels Acetobacter fragum (ATCC Nr. 21409) bei relativ guten Ausbeuten. Sonoyama et al. (US Patent 4.879.229; Shionogi & Co., Ltd., Japan, 1989) offenbaren die Verwendung von fakultativ anaeroben Stämmen der Gattung Pectobacter zur Herstellung von 2,5-DKG. Dabei wird ein 2,5-DKG erzeugender Mikroorganismus der Gattung Pectobacter oder irgendein Inhaltsstoff davon (wie z.B. Enzymextrakte) bzw. immobilisierte Zellen in Kontakt mit D-Glucose gebracht.

Auch nicht-fermentative, biokatalytische Verfahren zum Herstellen von Ascorbinsäure- Zwischenprodukten sind beschrieben worden. So beschreibt das EP 1141368Bl (Genencor International, Inc., Kalifornien, 2006) die biokatalytische Herstellung von 2-KLG aus einer Kohlenstoffquelle, wobei der für die Reaktion benötigte Co-Faktor regeneriert wird. Ein alternatives Verfahren ist beispielsweise im US Patent 4.757.012 (Genentech Inc. Kalifornien) offenbart, welches die Reinigung und die rekombinante Herstellung von 2,5- Diketo-Gluconsäure (2,5-DKG)-Reduktase und deren Verwendung zur reduktiven Umwandlung von 2,5-Diketo-Gluconsäure in 2-Keto-L-Gulonsäure (2 -KLG) beschreibt.

Der Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren der eingangs genannten Art zu schaffen, welches einerseits eine wirtschaftliche Alternative zu den bisher beschriebenen biotechnologischen Verfahren darstellt und andererseits die Nachteile des Reichstein- Prozesses überwindet.

Erfindungsgemäß wird die Erfindung dadurch gelöst, dass die Kohlenstoffquelle Glucose ist und die Umwandlung von Glucose in 2,5-Diketo-D-Gluconsäure durch den Pectobacter cypripedii Stamm HEPOl (DSMZ 12393) direkt erfolgt.

Der Vorteil der vorliegenden Erfindung liegt darin, dass der erfindungsgemäße Pectobacter cypripedii Stamm HEPOl Glucose direkt in 2,5-Diketo-D-Gluconsäure (2,5 DKG) umwandeln kann und stellt somit eine Weiterentwicklung des Standes der Technik dar. Bisher war es mittels Pectobacter spp. nur möglich, Gluconsäure, die wesentlich aufwändiger ist als Glucose (Gluconsäure kostet etwa das Doppelte von Glucose), in das Zwischenprodukt 2,5-DKG zu fermentieren. Der neue Pectobacter Stamm HEPOl unterscheidet sich aufgrund von physiologischen und biochemischen Merkmalen vom bisherigen, im Stand der Technik beschrieben Stamm (DSMZ 30182) insofern, als er zur Nitratreduktion, zum Wachstum auf Malonsäure bzw. zur Säurebildung aus L-Rhamnose und D-Maltose fähig ist und ferner eine Urease-Aktivität aufweist. Hingegen weist der Stamm HEPOl (DSMZ 12393) Stärkehydrolyse Aktivität nicht auf.

In einer bevorzugten Ausführungsform der Erfindung kann im ersten Schritt die Luftzufuhr bis zum Erreichen anaerober Bedingungen in der Nährlösung verringert bzw. eingestellt werden, wenn die Bildung der 2,5-Diketo-D-Gluconsäure aus dem Zwischenprodukt 2- Keto-D-Gluconsäure ausbleibt. Dadurch wird sichergestellt, dass im Wesentlichen die gesamte 2-Keto-D-Gluconsäure in 2,5-Diketo-D-Gluconsäure umgewandelt wird, welche das Ausgangssubstrat für die nachfolgende Reduzierung zu 2-Keto-L-Gulonsäure ist, wodurch insgesamt eine höhere Produktausbeute erzielt werden kann.

In einer weiteren Ausführungsform der Erfindung kann die Luftzufuhr über eine Sauerstoffsonde gesteuert werden. Durch die überwachung des Sauerstoffgehalts in der Nährlösung mittels Sauerstoffsonde wird erreicht, dass einerseits der Sauerstoffgehalt in der Nährlösung dem jeweiligen Optimum des verwendeten Mikroorganismus entspricht und andererseits werden die für die vollständige Umwandlung von 2-Keto-D-Gluconsäure in 2,5-Diketo-D-Gluconsäure notwendigen anaeroben Bedingungen gesteuert.

In einer noch weiteren Ausführungsform der Erfindung kann während der Fermentation des ersten Schrittes der pH-Wert überwacht und/oder geregelt werden. Die Bildung der Gluconsäure fuhrt zu einem Absenken des pH-Wertes, wodurch das Wachstum der Mikroorganismen unterbunden wird. Durch Regeln des pH- Wertes wird sichergestellt, dass der pH- Wert der Nährlösung immer innerhalb des optimalen Bereichs für das Wachstum der

Mikroorganismen liegt und somit das gesunde Wachstum der Mikroorganismen aufrechterhalten wird.

In einer alternativen Ausfuhrungsform der Erfindung kann der erste Schritt des Verfahrens im Batch-Betrieb ausgeführt werden. Dabei werden alle Zutaten in den Fermenter eingebracht und in herkömmlicher Weise durch die Mikroorganismen fermentiert.

In bevorzugter Weise kann jedoch der erste Schritt des Verfahrens im Fed-Batch Betrieb ausgeführt werden. Beim Fed-Batch Betrieb wird durch eine gesteuerte Substratzuführung eine zu starke Absenkung der Eduktkonzentration vermieden, sodass sich die Mikroorganismen immer in der exponentiellen Wachstumsphase befinden. Ferner ist eine Steuerung der Wachstumsrate der Mikroorganismen in Abhängigkeit der gewählten Zufuhr- Strategie möglich. Dies unterbindet die Bildung von mit Wachstum-assoziierten sekundären Metaboliten.

In einer Weiterbildung der vorliegenden Erfindung kann vorgesehen werden, dass das im zweiten Schritt benötigte Coenzym NADPH durch die Glucose-Dehydrogenase (GDH), die Glucose in Gluconsäure umwandelt, regeneriert wird, wobei die durch die Regenerierung entstehende Gluconsäure, und gegebenenfalls verbleibende Glucose und/oder 2,5-Diketo-D- Gluconsäure des erfindungsgemäßen Verfahrens in den ersten Schritt zurückgeführt wird. Durch die fortlaufende Regenerierung des Coenzyms NADPH kann mit einer geringeren Coenzym-Konzentration gearbeitet werden, als für die vollständige Umwandlung von 2,5- DKG in 2-KLG ohne Coenzym-Regeneration notwendig wäre.

In einer noch weiteren Ausführungsform der Erfindung kann im zweiten Schritt als Puffer Na-Citrat oder Na-Acetat eingesetzt werden. Durch die Verwendung des Na-Citrat- bzw. Na-Acetat-Puffers konnten nicht nur die Kosten für das Puffersystem gesenkt werden, sondern auch die Enzymaktivität im Vergleich zu dem in der Literatur beschriebenen Bis- Tris- Systems erhöht werden.

In Weiterbildung der vorliegenden Erfindung kann vorgesehen sein, dass die Gluconsäure und gegebenenfalls Glucose und/oder 2,5-Diketo-D-Gluconsäure vor der Rückführung durch chromatographische Trennverfahren, wie Ionentauschchromatographie, von dem 2-

Keto-L-Gulonsäure-Produktstrom getrennt werden. Durch die Abtrennung von 2-Keto-L- Gulonsäure aus dem Produktstrom können restliche Glucose bzw. Gluconsäure in den ersten Schritt des Verfahrens zurückgeführt werden, um somit eine höhere Substratverwertung zu erreichen.

In einer weiteren Ausfuhrungsform der Erfindung kann die 2,5-Diketo-D-Gluconsäure- Reduktase aus Corynebacterium glutamicum unter Verwendung eines pET- Vektors in E. coli rekombinant hergestellt werden.

In einer noch weiteren Ausführungsform der Erfindung können zur Herstellung der Insert- DNA als Primer für die PCR CglakrPETF und CglakrPETR und das Plasmid pPCl als Matrize verwendet werden, wobei das amplifizierte Fragment in den Expressionsvektor pET-21d eingesetzt wird. In einer noch weiteren Ausführungsform der Erfindung kann der mit pET-21d transformierte E. coli BL21 (DE3) Stamm in einem Minimalmedium MPC- GIy, das in einem Liter 10g Pepton aus Casein, 10 g Glycerol, 0,1 ml IM CaCl 2 , 1 M MgSO 4 *7H 2 O und 200 ml MPC-GIy Salze enthält, gezüchtet werden, wobei die MPC-GIy Salzlösung in einem Liter Wasser 15 g KH 2 PO 4 , 2,5 g NaCl und 5 g NH 4 Cl enthält.

In Weiterführung der vorliegenden Erfindung kann es als Hybridverfahren geführt werden, wobei das Reaktionsgemisch in einen Produktstrom und einen Biokatalysatorstrom durch ein Membrantrennverfahren getrennt wird. Dadurch wird erreicht, dass die Enzyme im Verfahrenskreislauf ohne größere Verluste geführt werden können.

In einer Ausführungsform der Erfindung können schließlich die Enzyme 2,5-Diketo- Gluconsäure-Reduktase und Glucose-Dehydrogenase sowie die Coenzyme NADPH und

NADP + durch eine geladene Ultrafütrationsmembran zurückgehalten werden. Das Trennen des Produktstromes und des Biokatalysatorstromes durch eine Ultrafütrationsmembran führt dazu, dass die Enzyme bzw. Cofaktoren während des gesamten Verfahrens im

Enzymreaktor vorhanden sind, und nicht ständig durch neue Enzyme oder Cofaktoren ersetzt werden müssen.

Der Gegenstand der Erfindung wird nachstehend anhand eines bevorzugten Ausführungsbeispiels beschrieben.

Wie oben erwähnt, erfolgt die Herstellung von Ascorbinsäure mit dem Verfahren der vorliegenden Erfindung in einem zweistufigen Prozess. In einem ersten Schritt wird Glucose fermentativ in 2,5-Diketo-D-Gluconsäure (2,5-DKG) umgewandelt. Dazu wurde ein Pectobacter cypripedii-Stamm (HEPOl) aus Heidelbeeren isoliert und bei der Deutschen Sammlung von Mikroorganismen und Zellkulturen GmbH gemäß dem Budapester Vertrag hinterlegt und erhielt die Hinterlegungsnummer DMSZ 12393. Ausgehend von einer Stichagarkultur des Organismus Pectobacter cypripedii wird eine entsprechende Anzahl von Trypton-Soya-Agar (TSA)-Platten beimpft, die bei 28°C für 24 bis 48 Stunden inkubiert werden. Zur Plattenbereitung wurde handelsüblicher TSA verwendet, wie beispielsweise Oxoid CM 131 und entsprechend den Herstellerangaben zubereitet. Die TSA-Platten wurden dann verwendet, um eine Vorkultur zuzubereiten. Dazu wurden 12,17 g Maisquellwasser, 2,76 g Glucosemonohydrat, 0,27g KH 2 PO 4 , 0,06 g MgSO 4 *7H 2 O und 0,27 g NaCl mit Leitungswasser zu einem Gesamtvolumen von ca. 200 ml aufgeschlämmt. Der pH- Wert des Mediums wurde unter Verwendung von Natronlauge (100 g/l) auf 7,02 eingestellt. Dann wurde das Medium mit Leitungswasser auf ein Gesamtvolumen von 250 ml gebracht. In 300 ml Erlenmeyerkolben wurden jeweils 1,25 g CaCO 3 eingewogen und jeweils 50 ml des oben beschriebenen Mediums hinzugefügt und für 20 Minuten bei 121 0 C sterilisiert. Nach dem Abkühlen wurden die Erlenmeyerkolben jeweils mittels Impföse mit dem Pectobacter cypripedii Stamm der TSA-Platten beimpft. Die Erlenmeyerkolben wurden dann für 16 Stunden auf einem Schüttelinkubator bei 200 U/min bei 28 °C inkubiert. Die so erhaltende Vorkultur wird für die anschließende Fermentation verwendet. Die Fermentation selbst wurde in einem Rührkesselfermenter mit einem Gesamtvolumen von 10 Litern, der mit einer pH-, ρθ 2 -, Temperatur- und Gärölelektorde und dazugehöriger Mess- und Regelelektronik ausgerüstet ist, durchgeführt. Weiters wurde der CO 2 und O 2 -Gehalt in der Abluft des Fermenters überwacht.

Sowohl die Batch- als auch die Fed-Batch-Fermentation wurde mittels herkömmlicher Verfahren analysiert. Zu diesen zählen die Bestimmung der optischen Dichte, die enzymatische Glucose- und Gluconsäurebestimmung und HPLC. Für die Bestimmung der optischen Dichte wurde 1 ml Probe mit 8 ml Zitronensäuremonohydrat-Lösung (40 g/l) versetzt und auf 10 ml aufgefüllt. Die optische Dichte wurde bei 600 nm gemessen. Die Glucose bzw. Gluconsäure wurden jeweils mit einen kommerziell erhältlichen Enzymtest

bei 340 nm photometrisch bestimmt (Boehringer, Bestellnummern 716251 bzw. 428191). Für die HPLC wurde ein LC 10-System (Shimadzu LC 10) mit einer Biorad HPX87H (300x7,8 mm) Trennsäule verwendet, wobei zwecks besserer Trennleistung zwei Säulen in Serie geschaltet sind. Die Säule (4O 0 C) wurde mit 0,005 N H 2 SO 4 eluiert und die einzelnen Fraktionen (Peaks) mit UV- (Shimadzu SPD-IOA) und RI- (Shimadzu RID-IOA)- Detektoren, die hintereinander geschaltet sind, gemessen. Das besagte HPLC-Verfahren wurde zur Analyse der Glucose/Gluconsäure, 2,5-DKG, 2-Keto-D-Gluconsäure, Milchsäure bzw. Essigsäure verwendet.

Die Fermentation kann sowohl als Batch- (Anstellfermentation) als auch als Fed-Batch- Fermentation (Zulauffermentation) durchgeführt werden. Als erstes Beispiel wird eine Batch-Fermentation beschrieben.

Der Fermenter wird dazu zur Hälfte mit Wasser befüllt und bei 101 °C für 30 Minuten sterilisiert. Anschließend wurde der Fermenter leer gepumpt und abgekühlt. Für das Reaktormedium wurden drei unterschiedliche Lösungen (Glucoselösung, Minerallösungen A und B) hergestellt und einzeln sterilisiert. Zur Herstellung der Glucoselösung wurden 1759,8 g Dextrodyn (= Markenname der Fa. Agrana für Glucosemonohydrat) in 1,611 kg deionisiertem Wasser gelöst und bei 121 0 C für 20 Minuten sterilisiert. Für die Minerallösung A wurden 192,2 g CSL (Com Steep Liquor), 1,35 g MgSO 4 *7H 2 O und 8,96 g K 2 HPO 4 in 2503 g Leitungswasser gelöst und bei 121 °C für 20 Minuten sterilisiert. Die Bereitung der Minerallösung B erfolgte durch Aufschlämmung von 182,0 g CaCO 3 in 1499,8 g Leitungswasser und anschließender Sterilisation bei 121 0 C für 20 Minuten. Die sterilen Medien (Glucoselösung, Minerallösungen A und B) wurden über einen sterilen Trichter in den Fermenter eingeführt und das Gewicht durch Rückwägung bestimmt. Der pH-Wert des Mediums im Fermenter wurde durch die Zugabe einer NaOH-Lösung (300 g/l) auf pH 7,0 eingestellt. Anschließend wurde der Fermenter mit dem Inhalt zweier wie oben beschrieben erhaltenen Vorkultur-Erlenmeyerkolben inokuliert. Die folgenden Parameter wurden eingestellt und während der gesamten Fermentationsdauer möglichst konstant gehalten, mit Ausnahme der Luftmenge, wie später beschrieben ist:

• Luftmenge: 3 l/min

• pH: pH 7,0 für die ersten acht Fermentationsstunden,

dann pH 5,6 bis zum Fermentationsende (mittels NaOH gesteuert)

• Temperatur: 28°C

• Gelöstsauerstoff: 10% Sättigung (über Rührerdrehzahl geregelt)

Nachdem keine Umsetzung von 2-Keto-D-Gluconsäure zu 2,5-Diketo-D-Gluconsäure in der oben beschriebenen Fermentation mehr erfolgt ist, wird die Luftzufuhr abgedreht, bis anaerobe Bedingungen im Fermenter herrschen. Nach Ablauf einer Zeitperiode von 2 bis 10 Stunden wurde die Luftzufuhr wieder aufgedreht. Diese Maßnahme führte dazu, dass die vollständige Umsetzung von 2-Keto-D-Gluconsäure zu 2,5-Diketo-D-Gluconsäure erfolgte. Mit dem oben beschriebenen Verfahren konnten 137 g 2,5-Diketo-D-Gluconsäure/l erzielt werden, was einer Ausbeute von 71% (Gew./Gew.) entspricht.

Die Fermentation zur Herstellung von 2,5-DKG wurde in einem anderen Versuch als Fed- Batch-Prozess geführt, der im Wesentlichen dem oben beschriebenen Batch-Prozess entspricht, jedoch mit folgenden änderungen. Das Fermentationsmedium enthält nicht 200 g/l Glucose sondern nur 100 g/l Glucose. Der sterilisierte Rührkessel wurde mit 5,5 Litern (ohne Inokulum) Medium, wie oben beschrieben, befüllt und mit Pectobacter cypripedii (2 Vorkultur-Erlenmeyerkolben) beimpft. Der Zulauf (Feed, 50%-ige Glucoselösung) wurde gestartet, wenn der CO 2 -Gehalt in der Abluft über 1 Vol.-% liegt. Die Zulaufmenge der Feedlösung wird über den CO 2 -Gehalt in der Abluft gesteuert, wobei nur soviel Glucoselösung zugeführt wird, dass der CO 2 -Gehalt nicht wesentlich unter 1% absinkt. Nach einer Fermentationsdauer von 121 Stunden wurden 116 g/l 2,5-Diketo-L-Gluconsäure im Fermentationsmedium bestimmt, was einer Ausbeute von 70% (Gew./Gew.) entspricht. Die in der oben beschriebenen Fermentation hergestellte 2,5-Diketo-Gluconsäure (2,5- DKG) wurde durch zweimaliges Fällen mit Ethanol sowie einmaligem Fällen mit Methanol gereinigt. Die ausgefällten 2,5-DKG-Kristalle wurden im Exsikkator über P 2 O 5 getrocknet. Anschließend erfolgte die weitere Reinigung über einen Chromatographie-Schritt mit einer Amberlite CG 120-11 (Ca 2+ -Form)-Säule, welche eine Kombination zwischen einer Gelfiltration sowie einer Ionenaustauschchromatographie darstellt. Dazu wurden die Kristalle in 1-2 CV (Column Volumes) 1 M CaCl 2 resuspendiert und auf die mit Puffer A (entgastes Wasser) äquilibrierte Säule (Amberlite CG 120-11 (Ca 2+ -Form) aufgetragen. Aus

11 Fermentationsüberstand erhält man 114 g 2,5-DKG, das entspricht einer Ausbeute von 98,3% (Gew. /Gew.).

Im zweiten Verfahrensschritt des Verfahrens der vorliegenden Erfindung wird die gereinigte 2,5-DKG mittels 2,5-Diketo-D-Gluconsäure-Reduktase enzymatisch in 2-KLG umgewandelt. Dazu wurde die 2,5-Diketo-D-Gluconsäure-Reduktase aus Corynebacterium glutamicum (DMSZ 20301) isoliert und mittels PCR amplifiziert. Für die PCR Reaktion wurden alle relevanten Komponenten in einem Mastermix für die Amplifizierungsreaktion, dessen Zusammensetzung in Tabelle 1 gezeigt ist, vereinigt und anschließend in PCR- Röhrchen aliquotiert. Die für die PCR verwendeten Primer weisen folgende Sequenzen auf:

Primer 1 (CglakrPETF)

5' GAT AAG TGG ATC CAA TCT CTG ATG GAT C 3' (SEQ ID NO: 1)

Primer 2 (CglakrPETR)

5' CAG GGC CTT ACC TTA CTC GAG GTT CAG ATC 3' (SEQ ID NO: 2)

Tabelle 1

Reagenz Volumen für 50 μl steriles Wasser auf 50 μl auffüllen

1Ox PCR Puffer ohne MgCl 2 5

25 mM MgCl 2 3

10 mM dNTPs 1

10 pmol/μl Primer 1 5

10 pmol/μl Primer 2 5

Matrizen DNA 1

Taq DNA Polymerase (5 U/μl) 0,25

Die PCR Röhrchen wurden in einem Thermozykler (T3, Biometra (Göttingen, Deutschland)) eingesetzt und unter den folgenden Bedingungen (Tabelle 2) amplifiziert.

Tabelle 2

Das amplifizierte PCR Produkt wurde unter Verwendung von im Stand der Technik bekannten Verfahren gereinigt. Nach der Reinigung wurde das DNA Insert mittels den Restriktionsenzymen BamHI und Xhol verdaut und in den entsprechend vorbehandelten pET-21d-Vektor (Novagen, Darmstadt, Deutschland) mittels des Topo TA Cloning Kits (Invitrogen) kloniert. Die pET-Vektoren basieren auf dem T7-Expressionssystem, das sich durch eine sehr hohe Transkriptionseffizienz auszeichnet. Das System stammt aus dem Bakteriophagen T7, der durch seine starken Promotoren, die von der phageneigenen T7-

RNA-Polymerase erkannt werden, erfolgreich mit der Transkriptionsmaschinerie des Wirtes in Konkurrenz tritt. Der hergestellte Vektor (pET-21d) wurde mittels Hitzeschocktransformation in E. coli BL21(DE3)-Zellen (Invitrogen Carlsbad, USA) transformiert. Der E. coli Stamm BL21(DE3) eignet sich besonders für die Expression rekombinanter Proteine in pET-Systemen. Unter der Kontrolle des lacUV-5- Promotors wird die T7-RNA-Polymerase nach EPTG Zugabe exprimiert und anschließend werden die unter der Kontrolle des T7-Promotors liegenden Gene transkribiert. Das pET-System wurde deshalb ausgewählt, da dadurch ein C-terminaler His-tag an das gewünschte DNA-Insert angefügt und somit eine sehr einfache Reinigung des DNA-Inserts mittels Nickelchelat- Affinitätschromatographie möglich wird. Die rekombinanten Zellen werden dann in einem modifizierten Minimalmedium (MPC-Gly-Medium), welches in einem Liter 10 g Pepton aus Casein, 10 g Glycerol, 0,1 ml IM CaCl 2 , 1 M MgSO 4 *7H 2 O, und 200 ml MPC-GIy Salze enthält, gezüchtet, wobei die MPC-GIy Salzlösung in einem Liter Wasser 15 g KH 2 PO 4 , 2,5 g NaCl und 5 g NH 4 Cl enthält. Nachdem die rekombinanten Zellen im besagten Medium bei 37 0 C bis zu einer optischen Dichte von 0,6-0,8 gezüchtet wurden, wird die Expression des heterologen Gens durch die Zugabe von 5 g/l Laktose induziert und den Zellen ermöglicht, bei 25 0 C, pH 7,0 und pθ 2 20% zu wachsen, bis eine optische Dichte von 8,0 erreicht wurde. Die rekombinanten Zellen wurden durch Zentrifugation (15000 g) für 20 Minuten pelletiert und anschließend mittels Homogenisator (Homogenizer Invensis APV-2000, 1000 bar) oder French Pressure Cell (70 bar) mechanisch zerstört. Wie oben erwähnt, wird die rekombinante 2,5-Diketo-D-Gluconsäure-Reduktase unter Verwendung der immobilisierten Metallionen-Affinitätschromatographie (IMAC) gereinigt. Bei dieser Technik wird das Medium zuerst mit einem übergangsmetallion (Ni 2+ ) geladen, um einen Chelat vor der Verwendung zu bilden. Die Proteine binden an das Medium, in Abhängigkeit der Gegenwart von Oberflächen-Histindinresten, die eine Affinität für die chelatierten Metallionen besitzen. Die Bindungsstärke wird dabei grundsätzlich durch das Metallion und den pH- Wert des Puffers bestimmt. Das gebundene Protein kann durch kompetitive Elution mit Imidazol eluiert werden. Der Iminodiessigsäureligand wird an die chelatierende Sepharose gekoppelt und ermöglicht somit den Austausch der immobilisierten Metallionen. Die so hergestellte 2,5-Diketo-D-Gluconsäure-Reduktase (DKR) weist eine Aktivität von etwa 200 U/l Kultur auf. Für die enzymatische Umsetzung von 2,5-DKG in 2-KLG wird die DKR in löslicher Form eingesetzt. Dazu wird zu einem 21 Reaktionsgefäß 250 mM (58 g/l) 2,5-DKG, 2 U/ml DKR, 250 mM (45 g/l) Glucose, 2 U/ml Glucose-Dehydrogenase (GDH)

und 0,26 mM (0,21 g/l) NADP + hinzugefugt. Das Volumen im Batchreaktor betrug 500 bzw. 1000 mL. Die Umwandlung von 2,5-DKG in 2-KLG erfordert das Coenzym NADPH, welches durch die gleichzeitige Oxidation von Glucose zu Gluconsäure (GA) mittels Glucose-Dehydrogenase (GDH: EC 1.1.1.47 aus Bacillus cereus, Amano, Japan) regeneriert wird. Die Umwandlungsreaktion findet bei 25 0 C, pH- Wert 7,0, der mit Ammoniak konstant gehalten wird, unter kontinuierlichem Rühren statt. Diese Reaktion liefert bei den genannten Bedingungen 56,0 g 2-Keto-L-Gulonsäure/l Reaktionslösung (d.h. Puffer, entweder Na- Acetat oder Na-Citrat oder Bis-Tris) (Ausbeute 96,7%) und 42,1 g Gluconsäure/1 Reaktionslösung (d.h. Puffer, entweder Na-Acetat oder Na-Citrat oder Bis-Tris) (Ausbeute 93,5%). Die 2-Keto-L-Gulonsäure wird in weiterer Folge von der Gluconsäure, Glucose und 2,5-DKG durch einen Ionentauscher abgetrennt und für die weitere Umsetzung in Ascorbinsäure verwendet. Die Gluconsäure, Glucose und 2,5-DKG werden in den ersten Reaktionsschritt (Fermentation von Pectobacter cypripedii) rückgeführt.

In einer alternativen Ausführungsform kann das oben beschriebene zweistufige Verfahren, welches in zwei räumlich getrennten und nicht miteinander verbundenen Reaktionsgefäßen abläuft, zu einem sogenannten Hybridverfahren kombiniert werden. Dazu werden der Rührkessel, in welchem die Fermentation von Pectobacter cypripedii HEPOl und die damit verbundene Umwandlung von Glucose in 2,5-Diketo-D-Gluconsäure (Schritte 1 des obigen Verfahrens) abläuft, und der Enzymreaktor, in welchem die durch die 2,5-Diketo-D- Gluconsäure-Reduktase katalysierte Reaktion stattfindet, über Verbindungsleitungen direkt miteinander verbunden. Ein Vorteil des erfindungsgemäßen Hybridverfahrens liegt darin, dass im Fermenter kontinuierlich 2,5-DKG gebildet wird, welche, nachdem die Mikroorganismen aus dem Flüssigkeitsstrom des Fermenters durch Filtration abgetrennt wurden, in den Enzymreaktor geleitet wird. Hierfür ist es notwendig das Reaktionsgemisch des Enzymreaktors in einen Produkt- und einen Biokatalysatorstrom zu trennen, wobei die Trennung mittels einer geladenen Ultrafiltrationsmembran bewerkstelligt wird. Die für eine kontinuierliche Prozessführung notwendigen Enzyme, DKR und GDH, sowie die Coenzyme NADPH und NAPD + werden im Enzymreaktor zurückgehalten, während die unverbrauchten Substrate 2,5-Diketo-D-Glucose und Glucose sowie die Produkte Gluconsäure und 2-Keto-L-Gulonsäure die Membran ungehindert passieren können. Die Enzyme (DKR und GDH) werden durch die Ultrafiltrationsmembran aufgrund ihrer Größe zurückgehalten, wohingegen die Coenzyme (NADPH und NADP + ) aufgrund ihrer

negativen Ladung am Durchgang gehindert werden. Bezüglich der Rückführung von unverbrauchter Glucose (Ausgangsmaterial der GDH-Reaktion) und von Gluconsäure, welche einerseits das Produkt der GDH-Katalyse ist und andererseits das Ausgangsmaterial für die Fermentation von Pectobacter cypripedii darstellt, muss das Produkt des erfindungsgemäßen Verfahrens 2-Keto-L-Gulonsäure aus dem Produktstrom abgetrennt werden. Hierzu wurde die Ionenaustauschchromatographie (stark-basischer AIEX) eingesetzt, um die 2-Keto-L-Gulonsäure von der Glucose bzw. Gluconsäure zu trennen. Das Biokatalysator-System (DKR, GDH und NADPH) bleibt durch die Ultrafiltrationsmembran im Enzymreaktor.

Die für das erfindungsgemäße Hybridverfahren verwendeten Gefäße sind im Stand der Technik bekannt und sind einerseits ein herkömmlicher Rührkessel, der die notwendige Mess- und Steuerelektronik wie beispielsweise pH-Elektrode, pO 2 -Elektrode etc. aufweist, und andererseits ein Enzymreaktor, der eine semipermeable Membran aufweist. Die verwendete semipermeable Membran ist eine geladene Ultrafiltrationsmembran (NTR- 7430, Nitto Electric Industrial Co. (Japan)). In dem Rührkessel findet die fermentative Umsetzung von Gluconsäure in 2,5-DKG mittels Pectobacter cypripedii HEPOl statt, während in dem Enzymreaktor die biokatalytische Umsetzung von 2,5-DKG in 2-KLG unter gleichzeitiger Regenerierung des Coenzyms NADPH abläuft. Der sterile Rührkessel mit einem Reaktorvolumen von 10 Litern wurde mit Medium, welches oben für die Fed- Batch Fermentation beschrieben ist, befüllt und der Rührkessel mit dem Inhalt zweier Vorkultur-Erlenmeyerkolben des Pectobacter cypripedii HEPOl Stammes inokuliert. Der Pectobacter cypripedii-Stamm (HEPOl) wurde bei 28 0 C, pH 7 bzw. 5,6, wie oben beschrieben, bei einer Gelöstsauerstoff-Konzentration von 10% fermentiert und ergab 137 g/l Produkt. Ein Teil der Kultursuspension wird von dem Rührkessel abzogen, filtriert, und der überstand wird in den Enzymreaktor eingeleitet. Die Umsetzungsreaktion in dem Enzymreaktor findet bei 25°C (da wie oben erwähnt nach wie vor zwei Reaktoren verwendet werden, die miteinander verbunden sind, können unterschiedliche Temperaturen verwendet werden) und einem pH Wert von 6,4 statt, welcher mit Ammoniak konstant gehalten wird. Das Produkt dieser Fermentation, 2,5-Diketo-D-Gluconsäure, wurde unter Zugabe von 2 U/ml DKR, 2 U/ml und 106 g Glucose/1 Puffer (entweder Na-Acetat oder Na- Citrat) in dem Enzymreaktor in die unmittelbare Vorstufe der Ascorbinsäure, 2-Keto-L- Gluonsäure mit einer Ausbeute von 132 g/l umgewandelt. Das Volumen im Enzymreaktor

beträgt ebenfalls 10 L. Die Enzyme (DKR und GDH) sowie die Coenzyme werden durch die Ultrafiltrationsmembran in dem Enzymreaktor zurückgehalten, während der Produktstrom (Glucose, Gluconsäure und 2-Keto-L-Gulonsäure) aus dem Enzymreaktor abgezogen, über eine Ionenaustauschchromatographie-Säule (Säulenmaterial Amberlite FPA90, Rohm and Haas) geleitet und mit verschiedenen Eluenten (H 2 O, Methanol und H 2 SO 4 ) eluiert wird, um den Produktstrom in seine Einzelkomponenten zu trennen, wodurch es möglich wird, Glucose und Gluconsäure von der 2-Keto-L-Gulonsäure zu trennen, wobei die 2-Keto-L-Gulonsäure als Methylester-KLG eluiert wird. Die Ausbeute an 2-Keto-L- Gulonsäure betrug 132 g/l. Die Glucose bzw. Gluconsäure (99 g/l) werden in den Rührkessel zurückgeführt und dort durch den Pectobacter cypripedii Stamm HEPOl metabolisiert, um weitere 2,5-Diketo-D-Gluconsäure zu bilden. Somit bildet das beschriebene Hybridverfahren einen geschlossen Kreislauf, um möglichst hohe Produktausbeuten (2-Keto-L-Gulonsäure) bei gleichzeitiger Verwendung der ursprünglich zugesetzten Enzyme bzw. Coenzyme zu erreichen.