Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHOD FOR PRODUCING CRYSTALLINE DIAMOND PARTICLES
Document Type and Number:
WIPO Patent Application WO/2015/038031
Kind Code:
A1
Abstract:
The present method for producing crystalline diamond particles involves impregnating a detonation nanodiamond powder with a saturated acyclic hydrocarbon or a monobasic alcohol, and holding the resultant mixture at a static pressure of 5-8 GPa and a temperature of 1300-1800°C for 10-60 seconds.

Inventors:
SHAKHOV FEDOR MIKHAYLOVICH (RU)
KIDALOV SERGEY VIKTOROVICH (RU)
BARANOV PAVEL GEORGIEVICH (RU)
BABUNTS ROMAN ANDREEVICH (RU)
SAKSEEV DMITRY ANDREEVICH (RU)
ALEKSENSKY ALEKSANDR EVGRAFOVICH (RU)
BAIDAKOVA MARINA VLADIMIROVNA (RU)
VUL ALEKSANDR YAKOVLEVICH (RU)
Application Number:
PCT/RU2014/000516
Publication Date:
March 19, 2015
Filing Date:
July 15, 2014
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
FEDERAL NOE G BYUDZHETNOE UCHREZHDENIE NAUKI FIZ TEKHN INST IM A F IOFFE ROSSIYSKOY AKADEMII NAUK (RU)
International Classes:
B01J3/06; B82Y30/00; C04B41/46; C30B29/04
Domestic Patent References:
WO2011130023A22011-10-20
Foreign References:
RU2223220C22004-02-10
Attorney, Agent or Firm:
BELOV, Vladilen Ivanovich (RU)
БЕЛОВ, Владилен Иванович (RU)
Download PDF:
Claims:
ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Способ получения кристаллических алмазных частиц, включающий пропитку порошка наноалмазов, полученных детонационным синтезом, предельным ациклическим углеводородом или одноосновным спиртом, выдержку полученного состава при статическом давлении 5-8 ГПа и температуре 1300-1800 °С в течение 10-60 секунд.

2. Способ по п. 1, отличающийся тем, что в качестве ациклического углеводорода используют гексан.

3. Способ по п. 1, отличающийся тем, что в качестве одноосновного спирта используют спирт.

4. Способ по п. 3, отличающийся тем, что в качестве одноосновного спирта используют этиловый спирт.

5. Способ по п. 3, отличающийся тем, что в качестве одноосновного спирта используют изопропиловый спирт.

Description:
СПОСОБ ПОЛУЧЕНИЯ КРИСТАЛЛИЧЕСКИХ АЛМАЗНЫХ ЧАСТИЦ

ОБЛАСТЬ ТЕХНИКИ

Изобретение относится к нанотехнологии материалов, конкретно, к процессам получения кристаллических алмазных частиц с размерами в диапазоне 50-500 нм, и может быть использован в промышленности для синтеза алмазов, необходимых для финишной шлифовки и полировки различных изделий и для создания биометок.

ПРЕДШЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ

С начала 60-х годов прошлого века известен способ синтеза алмазов из графита при высоких давлениях и температурах, так называемый high-pressure- high temperature synthesis (НРНТ), в присутствии металла катализатора (например, патент US2947609, МПК B01J 3/06, опубликован 02.08.1960). Типичные значения давлений и температур составляют Р=5-8 ГПа, Т= 1300-1500 °С, исходным материалом является смесь графита и металла катализатора в соотношении, как правило, 50/50 или 70/30, а время синтеза варьируется от десятков секунд до десятков минут.

Известен способ получения микрокристаллических алмазов (см. патент RU2131763, МПК B01J3/06, С30В29/04, опубликован 20.06.1999), включающий воздействие на графит с фуллереном и катализатор из сплава никеля с марганцем давлением и нагревом в области стабильности алмаза с последующей выдержкой при давлении и температуре синтеза. Фуллерен вводят в количестве 10 ~2 - frlO "1 мае. % от массы графита, при этом фуллерен распределяют в массе графита.

Известный способ обеспечивает высокий выход алмаза при пониженных давлениях, не превышающих 5,5 ГПа, однако ему присущи и серьезные недостатки. Размер получаемых известным способом частиц алмаза доходит до нескольких сотен мкм, поэтому необходимо проводить их очистку от катализатора и остатков графита и затем осуществлять дробление до необходимого размера 50-500 нм, что значительно усложняет технологический процесс.

Известен способ получения кристаллических алмазных частиц (см. заявка RU94040324, МПК С01В31/06, опубликована 20.09.1996) путем ударного сжатия углеродсодержащего материала посредством передающего импульс давления элемента, разгоняемого продуктами взрыва расчетной порции взрывчатого вещества. В качестве элемента, передающего импульс давления, используют металлический ударник, выполненный в виде цилиндра, которому сообщают скорости в диапазоне от скорости, соответствующей амплитуде давления, создаваемого в массе формуемого алмазного порошка на нижней границе области стабильности алмаза на фазовой диаграмме углерода, до скорости, соответствующей амплитуде давления на нижней границе жидкой фазы углерода. В качестве углеродсодержащего материала используют ультрадисперсную фракцию алмазного порошка, а выбор скоростей ударника и расчет массы взрывчатого вещества в источнике импульса производят с учетом показаний фотоприемника, регистрирующего момент появления интенсивного неравновесного излучения на спектральной линии люминесценции алмаза.

Известный способ позволяет получать частицы алмаза размерами от 1 до 600 мкм, поэтому их необходимо дополнительно дробить до размера 50-500 нм, который требуется для финишной полировки, а также использования в качестве биометок.

Наиболее близким по совокупности существенных признаков к настоящему изобретению является способ получения кристаллических алмазных частиц, принятый за прототип (см. патент RU2223220, МПК С01В31/06, B01J3/06, С30В28/00, С30В29/04, С30В29/60, B24D3/10, опубликован 10.02.2004). В способе-прототипе смешивают частицы очищенных нанодисперсных алмазов с частицами графита нанометричных размеров, перемешивают в течение 2-3 часов, а обработку полученной шихты осуществляют при давлении от 0,133'Ю "10 до 2,0 ГПа и температуре от 20 до 1200 °С с выдержкой от 10 секунд до б часов при следующем соотношении составных частей, мае. %:

порошок нанодисперсных алмазов с размерами кристаллитов 2-10 нм -

10-50,

порошок нанодисперсных алмазов, на поверхность которых нанесен графит или углерод - остальное.

Частицы графита можно наносить на поверхность частиц алмаза путем термической обработки очищенного порошка нанодисперсных алмазов с графитизацией их поверхностного слоя, нагревая их в вакууме при температуре от 1000 до 1500 °С. Возможен вариант, когда поверхность исходных частиц алмаза смачивают углеродсодержащей жидкостью или осаждают на поверхность этих частиц углеродсодержащие группы из углеродсодержащего газа, нагревая газ до температуры от 300 °С и поддерживая температуру частиц алмаза не более 300 °С.

Нанесение на поверхность частиц алмаза нанометричных частиц графита или углерода позволяет, во-первых, производить перекристаллизацию 5 нанесенного графита или углерода в плотные углеродные модификации в области давлений и температур, которая традиционно считается областью термодинамической стабильности "рыхлых" углеродных модификаций (графит, сажа). Во-вторых, способствует росту размеров частиц нанодисперсного алмаза.

Известным способом получают алмазные частицы в диапазоне от 1 до 500 ю мкм с содержанием несгораемых примесей не более 2 мае. %, в то время как для финишной полировки, а также использования в качестве биометок требуются микрокристаллические алмазные частицы размером 50-500 нм. Поэтому полученные известным способом-прототипом алмазные частицы необходимо подвергать дополнительному измельчению до требуемого размера, 15 что ведет к усложнению технологии и применяемого оборудования, а также увеличивает продолжительность технологического процесса получения микрокристаллических алмазных частиц требуемого размера.

РАСКРЫТИЕ ИЗОБРЕТЕНИЯ

Задачей настоящего изобретения являлась разработка такого способа

20 получения кристаллических алмазных частиц, который бы позволял получать непосредственно алмазные частицы размером 50-500 нм, и тем самым исключить необходимость дополнительного их измельчения.

Поставленная задача решается тем, что способ получения кристаллических алмазных частиц включает пропитку порошка наноалмазов,

25 полученных детонационным синтезом, предельным ациклическим углеводородом или одноосновным спиртом, выдержку полученного состава при статическом давлении 5-8 ГПа и температуре 1300-1800 °С в течение 10-60 секунд и отделение полученных кристаллических алмазных частиц от графита седиментацией в жидкости. Новым в способе является пропитка детонационных

30 наноалмазов предельным ациклическим углеводородом или одноосновным спиртом, выдержка полученного состава при величине статического давления и температуры, отличных от способа-прототипа, и отделение полученных кристаллических алмазных частиц от графита седиментацией в жидкости.

В качестве предельного ациклического углеводорода может быть

35 использован гексан. В качестве одноосновного спирта может быть использован этиловый спирт или изопропиловый спирт.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Настоящий способ получения кристаллических алмазных частиц поясняется чертежом, где приведено распределение по размерам кристаллических алмазных частиц, полученных настоящим способом.

ЛУЧШИЙ ВАРИАНТ ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ

Настоящий способ осуществляют следующим образом. Подготавливают порцию наноалмазов, полученных детонационным синтезом (так называемые детонационные наноалмазы), размер которых обычно лежит в интервале 2- 40 нм. Пропитывают порошок детонационных наноалмазов ациклическим углеводородом или одноосновным спиртом в количестве 35-50 мае. % от веса детонационных алмазов. Помещают полученный состав в графитовую втулку контейнера высокого давления на основе литографского камня и выдерживают его при статическом давлении 5-8 ГПа и температуре 1300-1800 °С в течение 10- 60 секунд. Полученный порошок обрабатывает соляной кислотой для удаления попавших в него частиц литографского камня контейнера и затем промывают его в деионизованной воде. После чего порошок помещают в жидкость бромоформ (СНВг 3 ), имеющую плотность 2,89 г/см 3 , для разделения графита и кристаллических алмазных частиц. Кристаллические алмазные частицы отфильтровывают и промывают в деионизованной воде. Размер кристаллических алмазных частиц, полученных настоящим способом (см. график на чертеже), лежит в интервале 30-250 нм с максимумом в области 60-80 нм.

Выбор интервалов давления, температуры и времени выдержки определяется следующими обстоятельствами. При давлении менее 5 ГПа создаются условия термодинамической стабильности графита, и алмазные частицы превращаются в графит, так как условия синтеза не стабильны, а при давлении более 8 ГПа происходит интенсивное разрушение стандартной технологической оснастки для создания высокого давления. При температуре выдержки менее 1300 °С не происходит реакции между углеводородом и наноалмазами и не происходит укрупнения детонационных наноалмазов, их размер не превышает 12 нм. При выдержке при температуре более 1800 °С создаются условия термодинамической стабильности графита, и алмазные частицы переходят в графит. При длительности выдержки менее 10 секунд не достигается равномерного распределения температуры в камере высокого давления и возможен лишь частичный переход детонационного наноалмаза в кристаллические алмазные частицы, а при длительности выдержки более 60 секунд происходит интенсивное разрушение твердого сплава камеры высокого давления.

ПРОМЫШЛЕННАЯ ПРИМЕНИМОСТЬ

Пример 1. Подготавливали порцию детонационных наноалмазов, пропитанных гексаном, взятом в количестве 27 мае. % от веса детонационных наноалмазов. В пресс-форме изготавливали контейнер высокого давления высотой 9 мм и его торцовые шайбы прессованием при 700 ГПа из смеси порошков графита и литографского камня с добавлением водного раствора поливинилового спирта. Из графитового стержня диаметром 6 мм изготавливали цилиндрическую втулку с внешним диаметром 6 мм, внутренним диаметром 4 мм и высотой б мм. Устанавливали в контейнер высокого давления нижнюю торцовую шайбу и графитовую втулку. В графитовую втулку помещали пропитанный гексаном порошок детонационных наноалмазов, который затем придавливали пуансоном с диаметром 4 мм до плотности 0,87 г/см 3 . Затем контейнер высокого давления закрывали верхней торцовой шайбой и помещали между двух матриц высокого давления, центр которых был выполнен из твердого сплава. Матрицы высокого давления с контейнером высокого давления устанавливали в гидравлический пресс с усилием 1000 т.е. Состав в графитовой втулке контейнера высокого давления выдерживали при статическом давлении 7 ГПа и температуре 1510 °С в течение 15 секунд. Полученный порошок обрабатывали соляной кислотой для удаления попавших в него частиц литографского камня контейнера высокого давления и затем промывали его в деионизованной воде. После чего порошок помещали в жидкость бромоформ, имеющую плотность 2,89 г/см 3 , для разделения графита и кристаллических алмазных частиц. Кристаллические алмазные частицы отфильтровывали и промывали в деионизованной воде. Размер полученных кристаллических алмазных частиц лежал в интервале 30-250 нм с максимумом 60-80 нм (см. график на чертеже).

Пример 2. Получали кристаллические алмазные частицы так же, как в примере 1, за исключением того, что порошок детонационных наноалмазов пропитывали этиловым спиртом, взятым в количестве 37 мае. % от веса детонационных наноалмазов, пропитанный этиловым спиртом порошок детонационных наноалмазов придавливали пуансоном с диаметром 4 мм до плотности 0,93 г/см 3 , выдержку состава проводили при температуре 1500 °С в течение 15 секунд. Размер полученных кристаллических алмазных частиц лежал в интервале 30-250 нм с максимумом 60-80 нм.

Пример 3. Получали кристаллические алмазные частицы так же, как в примере 1, за исключением того, что порошок детонационных наноалмазов пропитывали изопропиловым спиртом, взятым в количестве в количестве 32 мае. % от веса детонационных наноалмазов, пропитанный изопропиловым спиртом порошок детонационных наноалмазов придавливали пуансоном до плотности 0,90 г/см 3 . Выдержку состава проводили при температуре 1640 °С в течение 15 секунд. Размер полученных кристаллических алмазных частиц лежал в интервале 30-250 нм с максимумом 60-80 нм.

Пример 4. Получали кристаллические алмазные частицы так же, как в примере 1, за исключением того, что к порошку детонационных наноалмазов добавили этиловый спирт, взятым в количестве 20 мае. % от веса детонационных наноалмазов, которое не обеспечило однородную пропитку наноалмазов. После синтеза образец содержал две части: одна часть - прореагировавшая, представляла собой белые кристаллические алмазные частицы, а вторая часть состояла из черных частиц детонационного наноалмаза, который не был полностью смочен этиловым спиртом.

Пример 5. Получали кристаллические алмазные частицы так же, как в примере 1, за исключением того, что к порошку детонационных наноалмазов добавили этиловый спирт, взятым в количестве 60 мае. % от веса детонационных наноалмазов, которое было избыточным для пропитки наноалмазов. В процессе синтеза происходил разрыв контейнера высокого давления, что свидетельствует об избыточной концентрации водорода.

Пример 6. Получали кристаллические алмазные частицы так же, как в примере 2, за исключением того, что состав выдерживали при статическом давлении 4,8 ГПа. После синтеза образец содержал две части: одна часть - прореагировавшая, состояла из белых алмазных кристаллических частиц, а вторая часть образца состояла из черных частиц графитоподобного углерода, который образовался в области термодинамической стабильности графита. Имел место неустойчивый процесс, происходящий с частичной или полной графитизацией алмазов.

Пример 7. Получали кристаллические алмазные частицы так же, как в примере 2, за исключением того, что состав выдерживали в течение 9 секунд. После синтеза наблюдалась цветовая неоднородность образца, что свидетельствует о неоднородности нагрева образца. Можно заключить, что процесс такой длительности является неустойчивым с точки зрения однородности получаемого образца.

5 Пример 8. Получали кристаллические алмазные частицы так же, как в примере 2, за исключением того, что состав выдерживали в течение 62 секунд. В результате синтеза получены кристаллические алмазные частицы, однако процесс синтеза такой длительности приводит к интенсивному разогреву камеры высокого давления, что ведет к уменьшению возможного количества циклов ю синтеза до ее разрушения.