Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHOD FOR PRODUCING INGOTS OF LOW-CARBON FERROCHROME AND DEVICE FOR THE IMPLEMENTATION THEREOF
Document Type and Number:
WIPO Patent Application WO/2021/221530
Kind Code:
A1
Abstract:
Subject matter of the invention: A method for producing ingots of low-carbon ferrochrome and a device for the implementation thereof. Field of use: The group of inventions relates to metallurgy and foundry engineering and can be used in processes for producing ingots of low-carbon ferrochrome having a predetermined composition. Essence of the invention: A high-carbon ferrochrome melt is blown with a high-temperature plasma jet. After processing in off-gas purification and recovery systems and in systems for isolating, cooling and compressing carbon dioxide gas, part of the off-gas from the treatment process is fed into the apparatus for the plasma treatment of the high-carbon ferrochrome in order to generate a plasma jet. The ferrochrome melt blowing parameters are linked to changes in the concentration of the components of the melt, which are monitored until predetermined values are reached in the low-carbon ferrochrome produced. The presence of two melting furnaces and two ladles provides for the continuous production of low-carbon ferrochrome ingots. Technical result: The method and device make it possible to produce ingots of high-quality low-carbon ferrochrome free of carbon and other impurities and also to increase scavenging efficiency and reduce the environmental impact by means of off-gas recovery.

Inventors:
VIGDORCHIKOV OLEG VALENTINOVICH (RU)
NEKLESA ANATOLIJ TIMOFEEVICH (UA)
STAROSTIN SEREJ VLADIMIROVICH (RU)
SHABALOV OLEG VLADIMIROVICH (RU)
Application Number:
PCT/RU2020/000231
Publication Date:
November 04, 2021
Filing Date:
April 29, 2020
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
VIGDORCHIKOV OLEG VALENTINOVICH (RU)
NEKLESA ANATOLIJ TIMOFEEVICH (UA)
STAROSTIN SEREJ VLADIMIROVICH (RU)
SHABALOV OLEG VLADIMIROVICH (RU)
International Classes:
B22D7/00; B22D9/00
Foreign References:
SU1084105A11984-04-07
RU2325968C22008-06-10
RU2295421C22007-03-20
JPH1099962A1998-04-21
CA2431136A12002-06-20
Attorney, Agent or Firm:
VIGDORCHIKOV, Oleg Valentinovich (RU)
Download PDF:
Claims:
Формула изобретения

1. Способ получения слитков низкоуглеродистого феррохрома, включающий обработку расплава металла углеводородсодержащей плазменной струей с заданным соотношением окислительно-восстановительных компонентов, разливку металла в изложницу, отличающийся тем, что в качестве расплава металла используют расплав высокоуглеродистого феррохрома с содержанием углерода от 8 до 9%, причем на начальном этапе обработки расплава феррохрома в качестве плазмообразующего газа используют смесь природного газа и воздуха, при этом отходящий газ направляют на очистку и утилизацию, после утилизации из отходящего газа выделяют СОг, охлаждают и компримируют его до заданных значений температуры и давления и подают в плазмообразующий газ для генерирования плазменной струи, а, в зависимости от контролируемого состава расплава феррохрома, в плазмообразующий газ дополнительно вводят регулируемое количество кислорода, причем в процессе обработки расплава определяют содержание углерода в феррохроме и, при достижении значения углерода 0,05% и менее, обработку завершают, расплав подают на отстаивание, шлак после отстаивания скачивают и расплав разливают в изложницы.

2. Устройство для получения слитков низкоуглеродистого феррохрома, содержащее рельсовые пути с составом изложниц в месте разливки металла, самодвижущуюся тележку, привод фиксированного вертикального перемещения, футерованную водоохлаждаемую металлическую крышку с патрубками для отходящего газа, а также со сквозным отверстием, в котором установлен плазмотрон косвенного действия, электрические шкафы, силовые трансформаторы, компрессор, насос, газоводяной пульт, пульт управления, блок разливки расплава в изложницы, отличающееся тем, что устройство содержит две плавильные печи, установку плазменной обработки расплава, блок отстаивания и скачивания шлака и блок разливки расплава в изложницы, последовательно соединенные между собой рельсовыми путями, на которых установлена самодвижущаяся тележка с ковшом, снабженным шиберным затвором, при этом установка плазменной обработки расплава содержит платформу, снабженную рельсовым полотном, продольные оси которого совпадают с продольными осями рельсовых путей, и приводом ее фиксированного вертикального перемещения совместно с тележкой и ковшом, с возможностью соединения ковша с неподвижно закрепленной на краю стенда футерованной водоохлаждаемой металлической крышкой, в сквозном отверстии которой установлен плазмотрон косвенного действия, причем срез сопла плазмотрона выступает из крышки вниз с возможностью погружения в расплав феррохрома в ковше на глубину 2- 4 диаметров сопла плазмотрона, на стенде также установлены электрические шкафы, силовые трансформаторы, компрессор, насос, газоводяной пульт, пульт управления, устройство экспресс-анализа состава расплава и футерованная металлическая крышка с возможностью установки и снятия ее на/с ковша, при этом установленные на футерованной водоохлаждаемой металлической крышке патрубки отходящего газа последовательно соединены трубопроводами с системами очистки и утилизации отходящего газа, системами выделения СО2, охлаждения СО2 и системой компримирования СО2, подключенной к газоводяному пульту плазмотрона.

Description:
Способ получения слитков низкоуглеродистого феррохрома и устройство для его осуществления.

Взаимосвязанная группа изобретений относится к черной металлургии, в частности к способу получения слитков низкоуглеродистого феррохрома с помощью плазменной технологии, а также к устройству для осуществления данного способа.

Известен способ получения низкоуглеродистого феррохрома, включающий выплавку рудноизвесткового расплава и заливку его в ковши, подачу в первый ковш в заданных количествах хромсодержащих рудных материалов и кремнистого восстановителя, а во второй ковш - кремнистого восстановителя и твердой добавки, состоящей из хромитовой руды и извести, смешивание содержимого двух ковшей. Смесь шлакометаллического расплава подвергают дополнительным переливам из ковша в ковш от 2 до 5 раз (Патент России 2424342, С 22 С 33/04, заявл. 06.08.2009, опубл. Бюл. N°5, 2011).

Недостатком данного способа является низкая эффективность процесса смешения, что не позволяет получить качественный низкоуглеродистый феррохром. Кроме того, многостадийность способа получения феррохрома и связанные с ним повышенные материало- и энергозатраты увеличивают себестоимость конечного продукта.

Известен способ производства низкоуглеродистого феррохрома, в котором полученный в печи феррохром при температуре 1720°С с содержанием углерода 0,08- 0,20% выпускают в ковш, который помещают в вакуумную камеру. Сверху расплав поэтапно продувают кислородом. Обезуглероживание осуществляют при заданной температуре и постепенном снижении давления. При достижении содержания углерода менее 0,05-0,06% продувку кислородом прекращают и дальнейшее окисление углерода идет за счет кислорода, растворенного в металле и шлаке. Процесс сопровождается непрерывным перемешиванием плавки аргоном (Патент России N°2590742, С 22 С 33/04, С 21 С 7/00, заявл. 26.11.2014, опубл. Бюл. N°19, 2016).

Продувка холодным аргоном и холодным кислородом понижает температуру расплава металла, что ухудшает параметры процесса, повышает его энергоемкость и снижает эффективность продувки. Кроме того, инертный аргон не взаимодействует с включениями расплава, а только осуществляет функцию перемешивания массы расплава металла. При продувке кислородом происходит окисление основных компонентов расплава с образованием оксидов хрома и оксидов железа, что снижает качество конечного продукта. Высокая стоимость аргона увеличивает себестоимость продукции.

Наиболее близким по технической сущности и достигаемому результату (прототип) принят способ получения стального слитка, включающий разливку металла в изложницу, периодический подогрев головной части слитка струей низкотемпературной плазмы через заданный интервал времени с момента наполнения изложницы, отличающийся тем, что подогрев начинают углеводородсодержащей плазменной струей с массовым соотношением кислорода к восстановителю =0, 8-0,9 по истечении времени j , составляющего (0,05-0,06)у к , где у к - длительность времени кристаллизации слитка в естественных условиях, а продолжительность времени действия плазменного подогрева составляет у =(0,03-0,04)у к , затем подогрев прекращают, выдерживают паузу с временным интервалом у =(0,05-0,06)у к и повторно ведут подогрев головной части слитка плазмой в течение у =(0,06-0,08)у к , при этом осевую плотность теплового потока q 0 устанавливают с учетом зависимости

Ч о = 0.375q s (T) 1 (Вт/м 2 ), где 0,375 - эмпирический коэффициент, учитывающий тепломассоперенос при воздействии плазменной струи; q s - средняя плотность теплового потока на срезе сопла плазмотрона, Вт/м 2 ; у - приведенная длина плазменной струи, а среднюю плотность теплового потока q s на срезе сопла плазмотрона определяют по формуле q s =Gh S /FCA (ВТ/М 2 ), где G - расход плазмообразующего газа, кг/с; h s - среднемассовая энтальпия плазменной струи, Дж/кг;

FCA - площадь выходного сопла плазмотрона, м 2 (Патент России N°2295421, В 22 D 7/00, заявл. 01.06.2005, опубл. Бюл. N°8, 2007).

Периодический подогрев расплава в известном способе начинают по истечении заданного времени, что снижает производительность процесса. Низкий расход плазмообразующего газа и его состав, а также невозможность повторного использования отходящего газа для образования плазменной струи не могут обеспечить высокую степень удаления кислорода, углерода и других примесей из расплава металла. В известном способе отходящий газ не утилизируется, что снижает экологические показатели процесса.

Известно устройство для обработки расплава металла, рабочее тело которого содержит реагенты, закреплено на вертикальной опоре и расположено в ковше с возможностью вращения в горизонтальной плоскости, отличающееся тем, что его рабочее тело выполнено полностью из реагентов, например алюминия и рафинирующих и/или легирующих и/или модифицирующих добавок, имеет форму кольца с лопастями, расположенными вдоль горизонтальной линии симметрии на внешней и внутренней поверхностях кольца, причем внешние лопасти предназначены для формирования нисходящих потоков расплава, а внутренние - для образования восходящих. Рабочее тело выполнено разъемным по горизонтальной оси симметрии методом литья. Полости рабочего тела имеют ячеистую структуру. Лопасти рабочего тела выполнены в форме клиньев (Патент России N°2247156, F 27 D 23/04, заявл. 22.04.2002, опубл. Бюл. N°6, 2005).

Т.к. рабочее тело устройства выполнено в виде материалов, полностью расходуемых в процессе обработки расплава, то для последующей обработки необходимо изготовить и установить новое рабочее тело, что увеличивает материальные затраты производства, повышает энергоемкость и снижает эффективность устройства. Выполнение рабочего тела из добавок-реагентов загрязняет расплав оксидами и шлаками, при этом в устройстве отсутствуют системы утилизации и очистки отходящего газа, что в совокупности повышает вредное воздействие на окружающую среду.

Наиболее близким по технической сущности и достигаемому результату (прототип) является установка для обработки головной части слитков в составе с изложницами, содержащая несущую часть и самоходную путевую тележку, продольная ось которой параллельна рельсовым путям состава с изложницами в месте разливки металла, отличающаяся тем, что состав с изложницами содержит поддоны с сифонными проводками, установленные на них изложницы с прибыльными надставками, центровые для заливки металла, несущая конструкция содержит стойки с закрепленными на двух уровнях горизонтальными консольными балками, расположенную на консольных балках нижнего уровня опорную плиту с рельсовым полотном, на котором установлена путевая тележка, при этом путевая тележка снабжена электрическими шкафами, силовыми трансформаторами, компрессором, насосом, газоводяным пультом, пультом управления и закрепленными у бокового борта тележки, со стороны состава с изложницами, стационарными колоннами с поперечинами, свободные концы которых снабжены роликами, установленными с возможностью перемещения вдоль горизонтальной направляющей, закрепленной на нижней плоскости консольных балок верхнего уровня, прижимной рамой, смонтированной в плоскости, нормальной к осям стационарных колонн, кинематически связанной с приводом ее фиксированного вертикального перемещения и содержащей две независимые секции, установленные с возможностью перемещения в горизонтальной плоскости, при этом установка снабжена футерованными водоохлаждаемой металлическими крышками со сквозным центральным отверстием каждая, установленными по две в направляющих независимых секций, плазмотронами косвенного действия, установленными в центральном отверстии металлических крышек, желобом для охлаждения крышек водой, закрепленным на верхней плоскости балок верхнего уровня, и длина которого определена максимальной величиной пути перемещения тележки. Желоб для охлаждения крышек водой снабжен крышкой с продольной щелью, дугообразными трубами для забора воды и ее слива, расположенными в продольной щели крышки, жестко соединенными с путевой тележкой и гидравлически связанными с насосом, газоводяным пультом, плазмотронами и с каналами охлаждения крышки. В футерованной водоохлаждаемой металлической крышке выполнен коллектор, состоящий из сквозных продольных щелей, параллельных боковым сторонам крышки, имеющих длину, ограниченную длиной внутренних граней прибыльной надставки, и закрытых сверху общим коробчатым кожухом с патрубками для выхода горячих газов (Патент России N°2325968, В 22 D 9/00, заявл. 06.07.2006, опубл. Бюл. N°16, 2008).

Данное устройство не содержит системы утилизации отходящего газа, очистки, выделения СОг и его повторного использования, что снижает экологические параметры установки. Металлическая крышка с плазмотроном выполнена подвижной, с возможностью установки на ковш, а это не позволяет подсоединить патрубки отходящего высокотемпературного газа с системой его очистки и утилизации. Конструкция установки не предусматривает ввод сопла плазмотрона в расплав для его перемешивания плазменной струей и эффективного протекания химических процессов.

В основу первого из группы изобретений поставлена задача усовершенствования способа получения слитков низкоуглеродистого феррохрома продувкой плазменной струей расплава высокоуглеродистого феррохрома с повышенным содержанием примесей, при обеспечении регулировки компонентов плазменной струи и контроля состава расплава, при этом удаляют углерод и примеси, снижая значение углерода до 0,05% и ниже, а отходящий газ после утилизации частично направляют на рекуперацию путем замещения части расхода исходного плазмообразующего газа, и за счет этих приемов достигается удаление углерода, обеспечивается сокращение энергетических и материальных затрат, увеличивается производительность процесса, уменьшаются выбросы в атмосферу, улучшается качество металла и снижается его себестоимость.

В основу второго из группы изобретений поставлена задача усовершенствования установки для обработки расплава металла плазменной струей, в которой путем компоновки конструкции и дополнительного оборудования, включающего две плавильные печи, фиксированную крышку с плазмотроном, установленным с возможностью погружения в расплав в режиме обработки, системы очистки и утилизации отходящего газа, системы выделения, охлаждения и компримирования СОг, который направляется для замены части плазмообразующего газа, и за счет этого обеспечивается получение низкоуглеродистого феррохрома с низким содержанием примесей, высокая производительность устройства, утилизация и рециркуляция СОг, экономия природных ресурсов, а также снижение выбросов парникового газа в атмосферу.

Первая поставленная задача решается тем, что в способе получения слитков низкоуглеродистого феррохрома, включающем обработку расплава металла углеводородсодержащей плазменной струей с заданным соотношением окислительно- восстановительных компонентов, разливку металла в изложницу, согласно изобретению, в качестве расплава металла используют расплав высокоуглеродистого феррохрома с содержанием углерода от 8 до 9%, причем на начальном этапе обработки расплава феррохрома в качестве плазмообразующего газа используют смесь природного газа и воздуха, при этом отходящий газ направляют на очистку и утилизацию, после утилизации из отходящего газа выделяют СОг, охлаждают и компримируют его до заданных значений температуры и давления и подают в плазмообразующий газ для генерирования плазменной струи, а, в зависимости от контролируемого состава расплава феррохрома, в плазмообразующий газ дополнительно вводят регулируемое количество кислорода, причем в процессе обработки расплава определяют содержание углерода в феррохроме и, при достижении значения углерода 0,05% и менее, обработку завершают, расплав подают на отстаивание, шлак после отстаивания скачивают и расплав разливают в изложницы. Заявленный способ обеспечивает заданное извлечение углерода из расплава высокоуглеродистого феррохрома с минимальным содержанием примесей в конечном продукте.

Данная технология не предусматривает применение твердых добавок, так как они не полностью реагируют с расплавом и частично остаются в расплаве в виде шлаков.

Для обработки расплава используют высокотемпературную плазменную струю, обогащенную кислородом до концентрации, обеспечивающей заданный массовый баланс с углеродом в расплаве металла.

В условиях повышенной по отношению к расплаву температуры плазменной струи, возрастает эффективность взаимодействия соединений углерода с кислородом плазменной струи с образованием газообразного оксида углерода, который удаляется в виде отходящего газа.

Так как температура плазменной струи значительно выше температуры расплава, то и кислород, входящий в состав струи, активно взаимодействует с углеродсодержащими компонентами расплава.

Эффективность заявленного способа значительно выше традиционных технологий обработки расплава, в том числе и кислородом.

Способ предусматривает выделение двуокиси углерода из очищенного и утилизированного отходящего газа для замещения части воздуха в составе плазмообразующего газа, который применяют в процессе обработки расплава металла, сокращая т.о. вредное воздействие на окружающую среду.

Вдувание двуокиси углерода не снижает эффективность окисления углерода в расплаве, так как окислительный потенциал струи поддерживается в пределах, обеспечивающих удаление из расплава углерода и других примесей.

За счет перечисленных действий повышается активность плазменной струи, вследствие чего снижается количество примесей (S, Si, Р, С) в готовом металле и его химический состав имеет значение Сг=72,5%, Fe=27,5%.

Вторая поставленная задача решается тем, что в устройстве для получения слитков низкоуглеродистого феррохрома, содержащем рельсовые пути с составом изложниц в месте разливки металла, самодвижущуюся тележку, привод фиксированного вертикального перемещения, футерованную водоохлаждаемую металлическую крышку с патрубками для отходящего газа, а также со сквозным отверстием, в котором установлен плазмотрон косвенного действия, электрические шкафы, силовые трансформаторы, компрессор, насос, газоводяной пульт, пульт управления, блок разливки расплава в изложницы, согласно изобретению, устройство содержит две плавильные печи, установку плазменной обработки расплава, блок отстаивания и скачивания шлака и блок разливки расплава в изложницы, последовательно соединенные между собой рельсовыми путями, на которых установлена самодвижущаяся тележка с ковшом, снабженным шиберным затвором, при этом установка плазменной обработки расплава содержит платформу, снабженную рельсовым полотном, продольные оси которого совпадают с продольными осями рельсовых путей, и приводом ее фиксированного вертикального перемещения совместно с тележкой и ковшом, с возможностью соединения ковша с неподвижно закрепленной на краю стенда футерованной водоохлаждаемой металлической крышкой, в сквозном отверстии которой установлен плазмотрон косвенного действия, причем срез сопла плазмотрона выступает из крышки вниз с возможностью погружения в расплав феррохрома в ковше на глубину 2-4 диаметров сопла плазмотрона, на стенде также установлены электрические шкафы, силовые трансформаторы, компрессор, насос, газоводяной пульт, пульт управления, устройство экспресс-анализа состава расплава и футерованная металлической крышка с возможностью установки и снятия ее на/с ковша, при этом установленные на футерованной водоохлаждаемой металлической крышке патрубки отходящего газа последовательно соединены трубопроводами с системами очистки и утилизации отходящего газа, системами выделения СОг, охлаждения СО2 и системой компримирования СОг, подключенной к газоводяному пульту плазмотрона.

Устройство, в соответствии с настоящим изобретением, содержит рельсовые пути с изложницами в месте разливки металла, самодвижущуюся тележку, привод фиксированного вертикального перемещения, футерованную водоохлаждаемую металлическую крышку с патрубками для отходящего газа и плазмотроном косвенного действия.

Основными отличительными особенностями устройства является наличие неподвижно закрепленной на стенде футерованной водоохлаждаемой металлической крышки, фиксированное положение которой позволяет подсоединить патрубки отходящего газа, расположенные в крышке, к последовательно расположенным системам очистки и утилизации отходящего газа, к системам выделения и охлаждения углекислого газа, к системе компримирования охлажденного углекислого газа, которая подключена к газоводяному пульту плазмотрона. Использование указанной совокупности признаков позволяет замещать часть воздуха, используемого для генерирования плазменной струи, на углекислый газ, полученный из утилизированного отходящего газа в процессе обработки расплава феррохрома, что улучшает экологические показатели устройства и повышает качество получаемого металла.

Благодаря погружению сопла плазмотрона в расплав в процессе его продувки на глубину от 2 до 4 диаметров сопла плазмотрона осуществляется эффективное перемешивание расплава. Газодинамика процесса продувки на глубине менее 2 диаметров сопла плазмотрона недостаточна для перемешивание нижних слоев расплава. Увеличение глубины погружения сопла плазмотрона свыше 4 его диаметров, с одной стороны, ведет к повышению теплопотерь в плазмотрон, а с другой стороны, возрастают теплопотери расплава. Оптимальная глубина погружения плазмотрона в расплав обеспечивает эффективное удаление углерода и примесей из расплава феррохрома при соблюдении заданных параметров расхода и состава плазмообразующего газа.

Наличие двух плавильных печей с разнесенными во времени циклами каждой печи от загрузки слитков высокоуглеродистого феррохрома, получения расплава и до сливания его в ковш, в целом повышает производительность установки, т.к. цикл работы одной печи соизмерим с длительностью процессов получения расплава низкоуглеродистого феррохрома, отстаивания расплава феррохрома, удаления шлака и слива низкоуглеродистого феррохрома в изложницы.

Сущность изобретения поясняется чертежами, где на фиг. 1 - график изменения концентрации основных компонентов расплава в зависимости от температуры; на фиг. 2 - схема устройства получения слитков низкоуглеродистого феррохрома.

Заявленный способ реализуется следующим образом.

Слитки высокоуглеродистого феррохрома загружают и плавят в плавильной печи. Полученный расплав феррохрома переливают в ковш.

В ковше расплав высокоуглеродистого феррохрома продувают высокотемпературной плазменной струей, образованной смесью природного газа и воздуха. На протяжении продувки проводят контроль расхода плазмообразующего газа и состав расплава феррохрома. Газ, отходящий в процессе продувки, направляют на очистку и утилизацию, из отходящего после утилизации газа выделяют СО2, который охлаждают и компримируют до заданных значений и подают для генерирования плазменной струи. На основании данных контроля состава расплава феррохрома в смесь природного газа, воздуха и СОг дополнительно вводят регулируемое количество кислорода. Обработку расплава плазменной струей осуществляют до достижения значения углерода 0,05% и менее. По окончании обработки расплав отстаивают, а поскольку плотность шлака S1O2 в 2-4 раза меньше плотности расплава феррохрома, то весь шлак за время отстаивания всплывает и концентрируется на поверхности расплава. Затем шлак скачивают, а расплав низкоуглеродистого феррохрома разливают в изложницы.

Пример конкретного выполнения способа.

В плавильную индукционную печь загружают в виде слитков 8т высокоуглеродистого феррохрома марки ФХ850 с содержанием следующих компонентов, %: Сг-65; С - 8,5; Si -2; S- 0,065; Р - 0,05. В результате плавления получают расплав высокоуглеродистого феррохрома. Полученный расплав переливают из индукционной печи в ковш, который подают на плазменную обработку. Расплав высокоуглеродистого феррохрома продувают плазменной струей, содержащей смесь воздуха и природного газа. Расход воздуха и природного газа соответственно составляет 0,12 кг/сек и 0,01кг/сек. На протяжении всего времени обработки контролируют расход компонентов плазмообразующего газа и состав расплава феррохрома. Отходящий газ очищают, утилизируют, далее выделяют двуокись углерода СОг, охлаждают, компримируют ее и в количестве 0,1 кг/сек подают в плазменную струю, одновременно туда же добавляют кислород для повышения эффективности удаления углерода из расплава. При достижении концентрации углерода в расплаве 0,05% обработку расплава плазменной струей прекращают. Затем расплав отстаивают в течение около 20 мин. Поскольку плотность шлака в несколько раз меньше плотности расплава феррохрома, то шлак за время отстаивания всплывает. Образовавшийся на поверхности расплава слой шлака в виде двуокиси кремния скачивают. В итоге получили 7,2т низкоуглеродистого расплава феррохрома марки ФХ005 состава Cr=72,5%; Fe=27,5%, без примесей, которые в газообразном состоянии ушли на утилизацию, а кремний перешел в оксид кремния и был удален в виде шлака. Далее полученный расплав низкоуглеродистого феррохрома разливают в изложницы для кристаллизации и получения слитков. На фиг.1 изображено изменение состояния основных компонентов расплава (кроме СО) которые имеют преимущественные массовые значения, а остальные компоненты с малыми концентрациями переходят в газообразное состояние и удаляются в виде отходящего газа.

При обработке высокоуглеродистого феррохрома согласно изобретению, в расплаве при температуре 1300°К образуется оксид углерода СО (на фиг.1 не показано). С повышением температуры расплава концентрация СО постепенно увеличивается от 1,11 моль/кг до 6,5моль/кг и он полностью удаляется из расплава в газообразном состоянии.

Также за время продувки расплава, согласно данным экспресс-анализа, установлено, что разлагаются следующие соединения и примеси.

Азот N 2 В газообразном виде удаляется из расплава. Его концентрация при температуре 1300°К составляет 0,14 моль/кг и увеличивается до 1,27моль/кг при температуре 2200°К.

Одно из соединений, имеющих ничтожно малое количество, Сг 2 Сз образуется при температуре 1500°К с концентрацией 0,5моль/кг, а при температуре 1900°К распадается. Углерод окисляется до оксида углерода СО и в газообразном состоянии удаляется, а при температуре 2000°К образуется чистый хром Сг с концентрацией 10,1 моль/кг.

Концентрация соединений серы в виде H 2 S в диапазоне температур от 1200°К до 2200°К составляет 0,002моль/кг.

Конденсированный углерод существует при температуре 700°К с концентрацией 0,15моль/кг, а при температуре 1600°К газифицируется, соединяется с кислородом и, в виде оксида углерода СО, удаляется из расплава в газообразном состоянии.

Устройство для получения слитков низкоуглеродистого феррохрома включает две плавильные печи 1, установку 2 плазменной обработки расплава высокоуглеродистого феррохрома, блок 3 отстаивания и скачивания шлака и блок 4 разливки расплава низкоуглеродистого феррохрома в изложницы, при этом плавильные печи 1, установка 2, блок 3 и блок 4 последовательно соединены между собой рельсовыми путями 5. На рельсовых путях 5 установлены две самодвижущиеся тележки 6 с ковшами 7, снабженными шиберным затвором (вторая тележка, второй ковш и шиберные затворы на фиг.2 не показаны). Установка 2 плазменной обработки расплава содержит платформу 8 с рельсовым полотном 9, при этом продольные оси рельсового полотна 9 совпадают с продольными осями рельсовых путей 5. Платформа 8 оборудована приводом 10, предназначенным для ее фиксированного вертикального перемещения совместно с тележкой 6 и установленным на ней ковшом 7.

Установка 2 плазменной обработки расплава также включает стенд 11, на краю которого неподвижно закреплена футерованная водоохлаждаемая металлическая крышка 12. В сквозном отверстии крышки 12 установлен плазмотрон 13 косвенного действия таким образом, что срез его сопла выступает из крышки 12 вниз с возможностью погружения в расплав феррохрома в ковше 7 на глубину 2-4 диаметров сопла плазмотрона 13. Стенд 11 также содержит оборудование 14 для обеспечения эксплуатации плазмотрона 13 в заданных режимах, включающее электрические шкафы, силовые трансформаторы, компрессор, насос, пульт управления, устройство экспресс-анализа состава расплава и газоводяной пульт 15. На стенде 11 имеется футерованная металлическая крышка 16 и средство (не показано) ее установки и снятия с ковша 7.

На футерованной водоохлаждаемой металлической крышке 12 смонтированы патрубки 17 отходящего газа, последовательно соединенные трубопроводами 18 с системой 19 очистки отходящего газа, системой 20 утилизации очищенного отходящего газа, системой 21 выделения СО2, системой 22 охлаждения СОг и системой 23 компримирования охлажденного СО2, подключенной трубопроводом 24 к газоводяному пульту 15.

Устройство также содержит дополнительную тележку с ковшом, аналогичную тележке 6 с ковшом 7 (не показано).

Устройство работает следующим образом.

В одну из плавильных печей 1 загружают в виде слитков высокоуглеродистый феррохром. Загруженный материал плавят с образованием расплава высокоуглеродистого феррохрома, который переливают в ковш 7, закрепленный на само движущейся тележке 6.

Одновременно с началом плавки слитков в первой плавильной печи, начинают загрузку второй плавильной печи. А после слива расплава из первой печи начинают ее повторную загрузку и плавление слитков феррохрома, одновременно контролируют получение расплава во второй печи. Плавильные печи постоянно работают со смещенными относительно друг друга временными режимами загрузки, плавления и слива расплава в ковш.

По рельсовым путям 5 тележку 6 с ковшом 7 перемещают на рельсовое полотно 9, размещенное на платформе 8. С помощью привода 10 платформу 8 поднимают вертикально вверх до момента стыковки ковша 7 с футерованной водоохлаждаемой металлической крышкой 12. Включают оборудование 14, запускают плазмотрон 13 и начинают продувку расплава высокоуглеродистого феррохрома плазменной струей, состоящей из смеси воздуха и природного газа. В процессе обработки расплава сопло плазмотрона 13 находится ниже крышки 12 и погружено в расплав на расстояние, составляющее 2-4 диаметров сопла плазмотрона 13. Образующийся при продувке отходящий газ через патрубки 17 направляют по трубопроводу 18 в систему 19 очистки и систему 20 утилизации отходящего газа, систему 21 выделения углекислого газа из очищенного и утилизированного отходящего газа, систему 22 охлаждения СОг, систему 23 компримирования охлажденного СО2. Компримированный углекислый газ с заданными значениями температуры и давления по трубопроводу 24 направляют в газоводяной пульт 15 в качестве плазмообразующего газа для генерирования плазменной струи.

На протяжении всего времени обработки расплава феррохрома плазменной струей осуществляют контроль его состава с помощью устройства экспресс-анализа. Для достижения компонентов расплава феррохрома заданных значений, в плазмообразующий газ дополнительно вводят регулируемое количество кислорода. А при достижении концентрации углерода в расплаве 0,05% и менее, плазмотрон 13 выключают.

Платформу 8 с ковшом 7 приводом 10 опускают вниз. На ковш 7 с помощью специального механизма устанавливают футерованную металлическую крышку 16 и тележку 6 с ковшом 7 по рельсовым путям 5 перемещают в блок 3 отстаивания и скачивания шлака. После отстаивания шлак скачивают, а тележку 6 с ковшом 7 расплава низкоуглеродистого феррохрома перемещают по рельсовым путям 5 в блок 4, в котором расплав разливают в изложницы.

С ковша 7, освободившегося после разливки расплава в изложницы, снимают крышку 16 и возвращают ее на стенд 11, а ковш 7 с помощью подъемного крана переставляют на рельсовые пути 5 под вторую плавильную печь для последующего наполнения расплавом высокоуглеродистого феррохрома, полученного в ней за время цикла обработки высокоуглеродистого расплава феррохрома, полученного в первой печи, и разливки расплава низкоуглеродистого феррохрома в изложницы. Далее процесс повторяется.

Реализация изобретения обеспечивает получение высококачественного низкоуглеродистого феррохрома марки ФХ005 состава Cr=72,5%; Fe=27,5%, без примесей, повышение экономических и экологических составляющих процесса в результате применения плазменной технологии с использованием части подготовленного отходящего газа для генерирования плазменной струи, а также за счет эксплуатации двух плавильных печей гарантирует непрерывность технологических режимов и высокий уровень к.п.д. устройства.