Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHOD FOR PRODUCING OLEFINIC HYDROCARBONS
Document Type and Number:
WIPO Patent Application WO/2019/182475
Kind Code:
A1
Abstract:
The invention relates to a method for producing olefinic hydrocarbons by dehydrogenating paraffinic hydrocarbons in a boiling layer of pulverised chromia-alumina catalyst circulating in a reactor-regenerator system, said method comprising evaporating paraffin-containing feedstock consisting of a mixture of fresh and recycled streams of paraffinic hydrocarbons, heating the resulting vapours via the heat of a contact gas in a condenser coil of the reactor, further superheating them in a furnace, and subsequently sending them for dehydrogenation, and also comprising cooling the contact gas of dehydrogenation in a heat recovery boiler to produce secondary steam by evaporation of water condensate, as well as, in a scrubber irrigated with water, compressing the cooled contact gas, and condensing and separating the resulting olefinic hydrocarbons and unreacted paraffinic hydrocarbons. The method is characterised in that the vapours of feedstock are heated in a heat-exchange apparatus (4) installed on the contact gas line downstream of the heat recovery boiler (23) to a temperature of 150-170 °C, then in the condenser coil (26) of the reactor (9) to a temperature of 195-215 °C, and further superheated in the furnace (21) to a temperature of 500-570 °C, wherein the temperature of the contact gas at the inlet to the scrubber (17) is reduced to 155-185 °C, while dehydrogenation is performed at a feedstock volumetric feed rate of 120-200 per hour and a temperature of 530-600 °C. Using the proposed method makes it possible to improve the energy balance of the paraffinic hydrocarbon dehydrogenation processes, more efficiently utilise the heat of the contact gas and increase the yield of olefinic hydrocarbons.

Inventors:
KOMAROV STANISLAV MIKHAILOVICH (RU)
KHARCHENKO ALEKSANDRA STANISLAVOVNA (RU)
KREYKER ALEKSEY ALEKSANDROVICH (RU)
Application Number:
PCT/RU2019/000107
Publication Date:
September 26, 2019
Filing Date:
February 21, 2019
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
JOINT STOCK COMPANY SPECIAL DESIGN AND ENG BUREAU KATALIZATOR (RU)
International Classes:
C07C5/333; C07C11/08; C07C11/10
Foreign References:
RU2643366C12018-02-01
RU2214383C12003-10-20
CN103449951A2013-12-18
Download PDF:
Claims:
ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Способ получения олефиновых углеводородов дегидрированием парафиновых углеводородов в кипящем слое пылевидного алюмохромового катализатора, циркулирующего в системе реактор-регенератор, включающий испарение парафинсодержащего сырья, состоящего из смеси свежего и рециклового потоков парафиновых углеводородов, нагрев полученных паров за счет теплоты контактного газа в закалочном змеевике реактора и их дальнейший перегрев в печи с последующим направлением на дегидрирование, включающий также охлаждение контактного газа дегидрирования в котле-утилизаторе с получением водяного пара за счет испарения водного конденсата, а также в скруббере, орошаемом водой, компримирование охлажденного контактного газа, конденсацию и выделение полученных олефиновых углеводородов и непрореагировавших парафиновых углеводородов, отличающийся тем, что пары сырья нагревают в теплообменном аппарате (4), установленном на линии контактного газа после котла-утилизатора (23), до температуры 150-170°С, затем в закалочном змеевике (26) реактора (9) до температуры 195-215°С и далее перегревают в печи (21) до температуры 500-570°С, при этом температуру контактного газа на входе в скруббер (17) снижают до 155- 185°С, а дегидрирование проводят при объемной скорости подачи сырья 120-200 час'1 и температуре 530-600°С.

2. Способ по п.1, отличающийся тем, что исходное сырье перед подачей в теплообменный аппарат (4) испаряют и подогревают до температуры 70-100°С.

3. Способ по п.1, отличающийся тем, что полученный в котле-утилизаторе (23) водяной пар с давлением 1300 кПа или 600 кПа перегревают соответственно до температуры 210°С или 170°С за счет теплоты дымового газа в змеевиках (13), расположенных на выходе дымовых газов из печи (21).

4. Способ по п.2, отличающийся тем, что полученный в котле-утилизаторе (23) водяной пар направляют на испарение парафинсодержащего сырья и/или в кипятильники колонн выделения олефиновых и непрореагировавших парафиновых углеводородов.

5. Способ по пп.1-4, отличающийся тем, что в качестве теплообменного аппарата (4) используют кожухотрубный теплообменник вертикального типа, при этом контактный газ подают в трубное пространство теплообменника (4).

Description:
СПОСОБ ПОЛУЧЕНИЯ ОЛЕФИНОВЫХ УГЛЕВОДОРОДОВ

Область техники

Изобретение относится к области нефтехимии, в частности к процессам получения олефиновых углеводородов, используемых в производствах синтетических каучуков, пластмасс, высокооктановых компонентов бензина и других важных органических продуктов.

Предшествующий уровень техники

Известен способ дегидрирования н-бутана в бутилены в системе реактор- регенератор с кипящим слоем мелкодисперсного алюмохромового катализатора (И.И. Юкельсон, «Технология основного органического синтеза», М., Издательство «Химия», 1968, стр. 180). По этому способу сырье - бутановая фракция - поступает в жидком виде в межтрубное пространство кожухотрубного теплообменника- испарителя на испарение за счет теплоты контактного газа дегидрирования. Далее пары сырья подают в трубное пространство кожухотрубного теплообменника- подогревателя, где подогревают также теплом контактного газа до температуры 275°С и затем направляют в трубчатую печь, в которой перегревают до температуры 530- 550°С. Из печи перегретые пары н-бутана при давлении 0,15 мПа подают в реактор с кипящим слоем катализатора. Дегидрирование проводят при температуре 580°С. Контактный газ дегидрирования, выходящий из реактора, используют в качестве теплоносителя для испарения жидкого сырья и подогрева паров сырья. При этом контактный газ проходит противоточно парам сырья сначала в межтрубном пространстве теплообменника-подогревателя паров, а затем в трубном пространстве теплообменника-испарителя. Далее охлажденный контактный газ поступает в скруббер водной отмывки и охлаждения контактного газа и направляется на выделение бутиленов.

Недостатком известного способа является использование в теплообменнике- испарителе в качестве теплоносителя контактного газа, загрязненного катализаторной пылью, унесенной из кипящего слоя, а также склонными к конденсации в условиях работы испарителя высококипящими углеводородами, образующимися в процессе дегидрирования. Быстрое загрязнение теплопередающей поверхности теплообменника-испарителя отложениями катализатора и смол определяет ненадежность и неэффективность узла испарения сырья и, как следствие, нестабильность работы установки в известном способе. Требуется дублирующая система испарения сырья для возможности частой чистки теплообменников без останова производства. Подача загрязненного контактного газа в межтрубное пространство теплообменника-подогревателя приводит к ухудшению теплопередачи также и в теплообменнике-подогревателе при практической невозможности очистки от отложений межтрубного пространства теплообменника-подогревателя.

Наиболее близкими по технической сущности и достигаемому результату является способ получения бутиленов дегидрированием н-бутана, а также получения изоамиленов дегидрированием изопентана в кипящем слое мелкодисперсного алюмохромового катализатора, циркулирующего в системе реактор-регенератор, включающий приготовление исходного сырья смешением свежего и рециклового потоков соответствующих парафиновых углеводородов в жидком виде, испарение исходного сырья в испарителе, обогреваемом горячей технологической водой, нагрев полученных паров сырья в закалочных змеевиках, располагаемых в сепарационной зоне реактора, за счет теплоты контактного газа до температуры 150°С и их перегрев в змеевиках печи до температуры 500-550°С за счет теплоты сгорания подаваемого в печь газообразного топлива с последующим направлением перегретых паров сырья в реактор на дегидрирование, осуществляемое при температуре 530-590°С, давлении в реакторе 0,125 мПа и объемной скорости подачи сырья 120-180 час 1 , заключающийся также в выводе в регенератор охлажденного в результате эндотермической реакции дегидрирования, закоксованного и восстановленного катализатора для его нагревания путем сжигания топливного (природного) газа, восстановления активности путем выжига кокса, окисления при температуре 640-650°С и давлении 0,117 мПа в присутствии подаваемого воздуха и последующего восстановления катализатора подаваемым природным газом перед возвращением катализатора в реактор, включающий охлаждение контактного газа в котле-утилизаторе за счет испарения водного конденсата с получением вторичного водяного пара, а также в скруббере, орошаемом водой, компримирование охлажденного контактного газа, конденсацию парафин-олефиновой фракции и выделение полученных олефиновых углеводородов, а также непрореагировавших парафиновых углеводородов с направлением последних в рецикл на дегидрирование (И.Л. Кирпичников, В.В. Береснев, Л.М. Попов «Альбом технологических схем основных производств промышленности синтетического каучука», «Химия», Ленинград, 1986, стр. 8-14, 57-74).

К основным недостаткам известного способа относятся:

- низкая температура паров сырья на входе в печь (150°С) и, соответственно, большая мощность печи, форсированный режим работы печи, высокий расход топливного газа в форсунки печи и экологические проблемы, связанные с большим количеством дымовых газов, сбрасываемых в атмосферу;

- низкая температура перегрева паров сырья в печи (500-550°С), ограниченная необходимостью предотвращения термического крекинга сырья в змеевиках печи в условиях ее работы в форсированном режиме и, как следствие, недогрев нижней части кипящего слоя реактора и возникающая необходимость восполнения дефицита тепла в реакторе для осуществления эндотермической реакции дегидрирования за счет форсирования работы регенератора и циркуляции катализатора в системе реактор-регенератор, что приводит к снижению показателей дегидрирования;

- низкий коэффициент полезного действия печи, связанный со сбросом дымовых газов, содержащих значительное количество низкотемпературного тепла;

- ненадежность и неэффективность узла испарения сырья в известном способе, связанная с быстрым загрязнением теплопередающей поверхности теплообменника-испарителя при использовании в качестве теплоносителя горячей технологической воды, загрязненной катализаторной пылью и смолами, отбираемой из циркуляционного контура скруббера водной отмывки и охлаждения контактного газа;

- высокая температура циркуляционной воды в скруббере водной отмывки контактного газа (82-98°С), которая сопровождается большим уносом паров воды с контактным газом, что требует больших затрат на последующую конденсацию этой воды перед подачей контактного газа на компрессор;

- высокая температура контактного газа перед скруббером (температура на выходе из котла-утилизатора), которая достигает 300-400°С, что требует больших расходов на охлаждение воды, циркулирующей в контуре охлаждения скруббера. При этом относительно высокая температура контактного газа после скруббера (перед компрессором) не позволяет осуществить работу установок дегидрирования на высоких нагрузках по сырью, способствуют повышению давления в реакторе, снижают выход олефинов на разложенные парафины. Здесь необходимо отметить, что предложение снижения температуры контактного газа на входе в скруббер установки дегидрирования до 125°С (Патент RU 2247702, МПК С07С5/32, опубл. 10.03.2005) путем охлаждения контактного газа в котле-утилизаторе и установленным за ним теплообменнике с подачей в него водного конденсата приводит к конденсации высококипящих компонентов контактного газа в теплообменнике и трубопроводе контактного газа при указанной низкой температуре на входе в скруббер. Последующая забивка указанного оборудования отложениями катализаторной пыли и смол приводит к значительному увеличению гидравлического сопротивления тракта контактного газа и, как следствие, к увеличению давления в реакторе и, соответственно, к снижению выходов олефиновых углеводородов.

- ограниченное количество получаемого в котлах-утилизаторах установки дегидрирования водяного пара не обеспечивает в полной мере установку водяным паром необходимых параметров и требует дополнительного привлечения со стороны значительных количеств этого теплоносителя. Например, для типовой установки дегидрирования по прототипу мощностью 25-30 тонн сырья в час цеховая потребность в паре составляет 22-24 т/час с давлением 1300 кПа и 600 кПа, при этом в котлах-утилизаторах, установленных на линиях контактного газа и газа регенерации, вырабатывается около 16 т/час пара с давлением 1300 кПа. В тоже время, ситуация на многих установках такова, что имеется дефицит топливного газа для использования на установке дегидрирования (печь, регенератор и др.). В качестве топливного газа используется природный газ, легкие газы сдувок с колонн переработки контактного газа дегидрирования или их смеси. В связи со сказанным, представляется целесообразным пересмотреть подходы к рекуперации тепла на установках дегидрирования - например, рассмотреть возможности экономии дефицитного топливного газа при некотором снижении выработки водяного пара с соответствующим увеличением потребления более дешевого пара с ТЭЦ.

Раскрытие изобретения

Целью настоящего изобретения является улучшение энергетического баланса процессов дегидрирования парафиновых углеводородов, более рациональное использование теплоты контактного газа в соответствии с условиями энергообеспечения установки на конкретном производстве, а также повышение выходов олефиновых углеводородов.

Указанная цель достигается тем, что в известном способе получения олефиновых углеводородов дегидрированием парафиновых углеводородов в кипящем слое пылевидного алюмохромового катализатора, циркулирующего в системе реактор-регенератор, включающем испарение парафинсодержащего сырья, состоящего из смеси свежего и рециклового потоков парафиновых углеводородов, нагрев полученных паров за счет теплоты контактного газа в закалочном змеевике реактора и их дальнейший перегрев в печи с последующим направлением на дегидрирование, включающий также охлаждение контактного газа дегидрирования в котле-утилизаторе с получением вторичного водяного пара за счет испарения водного конденсата, а также в скруббере, орошаемом водой, компримирование охлажденного контактного газа, конденсацию и выделение полученных олефиновых углеводородов и непрореагировавших парафиновых углеводородов. Пары сырья нагревают в теплообменном аппарате 4, установленном на линии контактного газа после котла- утилизатора 23 до температуры 150-170°С, а затем в закалочном змеевике 26 реактора 9 до температуры 195-215°С и далее перегревают в печи 21 до температуры 500- 570°С, при этом температуру контактного газа на входе в скруббер 17 снижают до 155-185°С. Дегидрирование проводят при объемной скорости подачи сырья 120-200 час '1 и температуре 530-600°С.

Исходное сырье перед подачей в теплообменный аппарат 4 испаряют и подогревают до температуры 70-100°С.

Получаемый в котле-утилизаторе 23 насыщенный водяной пар с давлением 1300 или 600 кПа могут перегревать соответственно до температуры 210 или 170°С за счет теплоты дымового газа в змеевиках 13, расположенных на выходе дымовых газов из печи 21 и далее направлять на испарение парафинсодержащего сырья и/или в кипятильники колонн выделения олефиновых и непрореагировавших парафиновых углеводородов.

В качестве теплообменного аппарата 4 могут использовать кожухотрубный теплообменник вертикального типа с подачей контактного газа в трубное пространство теплообменника. Основными отличиями предлагаемого способа от известного являются:

- двухступенчатый нагрев паров сырья: сначала в дополнительном теплообменнике за счет низкотемпературного тепла контактного газа после котла- утилизатора до температуры 150-170°С и далее - в закалочных змеевиках реактора с увеличением температуры паров сырья после змеевиков до 195-215°С;

- снижение мощности печи для перегрева паров сырья на входе в реактор за счет более высокой по сравнению с прототипом температуры паров сырья на входе в печь;

- увеличение предельной температуры перегрева паров сырья в печи (до 570°С);

- перегрев полученного в котле-утилизаторе водяного пара с давлением 1300 или 600 кПа до температуры соответственно 210 или 170°С за счет теплоты дымового газа;

- использование получаемого в котле-утилизаторе водяного пара для испарения парафинсодержащего сырья с исключением использования горячей воды из скруббера;

Организация с помощью дополнительного теплообменника «мягкого» нагрева паров сырья низкотемпературным теплом контактного газа после котла-утилизатора с сокращением доли перегрева паров сырья в печи при «жестком» режиме подвода тепла открывает возможность или снизить температуру стенки змеевиков печи, или уменьшить поверхность змеевиков и, соответственно, время пребывания паров сырья в змеевиках печи при их огневом обогреве. Это позволяет повысить верхний предел температуры перегрева паров сырья перед их подачей в реактор при недопущении термического крекинга парафинсодержащего сырья в предлагаемой системе нагрева и последующего перегрева сырья и, соответственно, улучшить условия подвода тепла в реактор и тем самым повысить показатели дегидрирования (выходы олефинов на пропущенные и разложенные парафины).

Перегрев получаемого в котле-утилизаторе насыщенного водяного пара с давлением 1300 или 600 кПа соответственно до температуры 210 или 170°С с использованием низкотемпературного тепла дымовых газов после печи обеспечивает дополнительный тепловой потенциал водяного пара, создает условия недопущения конденсации водяного пара за счет теплопотерь при его транспортировании к потребителям (испаритель сырья, кипятильники колонн выделения получаемых олефиновых и непрореагровавших парафиновых углеводородов и др.).

Диапазон увеличения температуры паров сырья после закалочного змеевика и, соответственно, на входе в печь (195-215°С) ограничивается условиями экономической целесообразности в условиях конкретного производства: с одной стороны - выработки в котле-утилизаторе необходимого количества водяного пара, а с другой стороны - приемлемый уровень энергетических затрат при перегреве паров сырья в печи.

При перегреве паров сырья в печи ниже 500°С снижаются выходы олефиновых углеводородов в связи с возникающим дефицитом тепла в нижней части кипящего слоя реактора дегидрирования, а при перегреве паров сырья выше 570°С начинается ощутимое разложение парафиновых углеводородов в змеевиках печи.

Замена теплоносителя в испарителе сырья (горячей воды из скруббера на получаемый в котле-утилизаторе водяной пар), увеличивает стабильность работы установки дегидрирования и открывает возможности для увеличения мощности установок.

Кожухотрубный теплообменник-нагреватель вертикального типа при подаче контактного газа в трубное пространство обеспечивает высокую эффективность теплопередачи, обладает компактностью при монтаже оборудования установки дегидрирования и удобством при чистке труб от загрязнений.

Предлагаемое техническое решение обладает преимуществами перед прототипом в указанном диапазоне изменения основных параметров осуществления процессов дегидрирования парафиновых углеводородов (объемной скорости подачи сырья в реактор, температуры дегидрирования).

Краткое описание фигур чертежей

На фиг.1 изображена схема установки для дегидрирования парафиновых углеводородов С3-С5, иллюстрирующая предлагаемое изобретение.

Исходное сырье, представляющее собой смесь свежих парафиновых углеводородов и парафиновых углеводородов-рецикла, направляют в жидком виде по трубопроводу 1 под давлением 500-900 кПа в испаритель 2, где испаряют и подогревают до температуры 70-100°С (во избежание конденсации в тракте испаритель— теплообменник-подогреватель (на фиг. 1 не показан)) подаваемым водяным паром с давлением 1300 или 600 кПа. Далее пары сырья направляют по трубопроводу 3 на нагрев в межтрубное пространство кожухотрубного теплообменника-нагревателя 4, где обогревают теплом контактного газа, поступающего по трубопроводу 5 в трубное пространство теплообменника 4. Нагретые пары сырья выводят из теплообменника 4 при температуре 150-170°С и давлении 250-450 кПа и по трубопроводу 6 направляют на дальнейший нагрев в закалочные змеевики 26 реактора 9 после чего по трубопроводу 15 подают в змеевики 13, расположенные в нижней части печи 21, где перегревают до температуры 500- 570°С за счет сжигания в печи газообразного топлива, подаваемого по трубопроводу 8, после чего направляют в распределитель 22 реактора 9 под кипящий слой алюмохромового катализатора на дегидрирование, осуществляемое при объемной скорости подачи сырья 120-200 час '1 и температуре 530-600°С. Кипящий слой в реакторе разделен по высоте на секции горизонтальными провальными секционирующими решетками 27, обеспечивающими противоточное движение катализатора и газа в отверстиях решеток и режим вытеснения при движении катализатора и газа вдоль кипящего слоя (патент RU 2625880, МПК В01 J8/04, опубл. 19.07.2017). Катализатор циркулирует в системе реактор-регенератор с выводом закоксованного и охлажденного в ходе эндотермической реакции дегидрирования катализатора из реактора в регенератор (на фиг.1 не показан) через зону десорбции захваченных циркулирующим катализатором углеводородов в нижней части кипящего слоя реактора 9. Десорбция осуществляется азотом, подаваемым в нижнюю часть зоны десорбции по трубопроводу 12. В регенераторе происходит выжиг кокса, нагрев за счет сжигания подаваемого топливного газа и восстановление активности катализатора в присутствии воздуха при температуре 640-660°С и давлении 0,117 мПа с дальнейшим возвратом отрегенерированного и нагретого катализатора из регенератора в реактор 9. Циркуляция осуществляется по катализаторопроводу 10 из реактора 9 в регенератор с помощью воздуха, подаваемого на пневмотранспорт, и по катализаторопроводу 11 из регенератора в реактор 9 с помощью подаваемых на пневмотранспорт паров сырья или топливного газа. Катализатор и транспортный газ выпускают в верхнюю часть кипящего слоя реактора 9 под уровень кипящего слоя 20 с помощью показанного условно распределительного устройства 19. В ходе осуществления процесса дегидрирования вдоль кипящего слоя реактора 9 формируется температурный профиль с максимальной температурой в верхней части кипящего слоя над верхней секционирующей решеткой (так называемая температура дегидрирования) и пониженной температурой в нижней части кипящего слоя под нижней секционирующей решеткой. Полученный контактный газ дегидрирования содержит, кроме продуктов разложения подаваемого сырья, вспомогательные потоки, такие, например, как азот, подаваемый в зону десорбции реактора 9, газовые потоки, подаваемые на транспорт циркулирующего в системе реактор-регенератор катализатора и др. Контактный газ охлаждается, обтекая закалочный змеевик 26, расположенный над уровнем кипящего слоя катализатора 20, очищается от катализаторной пыли в циклонах, расположенных в сепарационной зоне реактора 9 (на фиг.1 не показано). Затем контактный газ выводят из реактора 9 по трубопроводу 5 и при температуре 520-590°С подают в качестве теплоносителя в котел-утилизатор 23, питаемый водяным конденсатом по трубопроводу 16. Полученный в котле- утилизаторе водяной пар с давлением 1300 кПа через паросборник 14 направляют на перегрев по трубопроводу 18 в змеевик 13, расположенный в верхней части печи 21 на выходе из нее дымовых газов, после чего по трубопроводу 7 непосредственно или через заводскую сеть подают в испаритель 2 на испарение исходного сырья. Излишки получаемого и перегретого водяного пара направляют по трубопроводу 24 на другие потребители установки дегидрирования, такие, например, как узлы выделения фракции парафиновых и олефиновых углеводородов из углеводородного конденсата ректификацией и/или узел абсорбции несконденсировавшихся углеводородов с последующим выделением углеводородов десорбцией из абсорбента в колонне с кипятильником, обогреваемым получаемым в котле-утилизаторе 23 и перегретом в змеевике 13 печи 21 водяным паром с давлением 1300 кПа и температурой 210°С. В котле-утилизаторе 23 может также вырабатываться водяной пар с другим давлением (например, 600 кПа) в зависимости от требований потребителей, предпочтительных для конкретного производства. В этом случае пар перегревается в печи 21 до температуры 170°С. Предпочтительная температура дымовых газов после печи 21 составляет 200-250°С - выше точки росы для компонентов дымового газа. Контактный газ охлаждается, пройдя последовательно котел-утилизатор 23 и теплообменник 4. Затем контактный газ направляют при температуре 155-185°С в скруббер водной отмывки и охлаждения 17 и по трубопроводу 25 подают в продуктовый компрессор, а далее - в узел конденсации и выделения получаемых олефиновых углеводородов (на фиг.1 не показаны). Выделенные непрореагировавпше парафиновые углеводороды возвращают в рецикл на приготовление исходного сырья.

Техническим результатом предлагаемого изобретения является улучшение энергетического баланса процессов дегидрирования парафиновых углеводородов, более рациональное использование теплоты контактного газа в соответствии с условиями энергообеспечения установки на конкретном производстве, а также повышение выходов олефиновых углеводородов.

Лучший вариант осуществления изобретения

Способ иллюстрируют следующие примеры.

Дегидрирование осуществляют с использованием алюмохромового микросферического катализатора АОК-73-24 с массовой долей шестивалентного хрома 0, 8-3, 5% в свежем катализаторе. Дегидрирование может осуществляться на смеси катализатора АОК-73-24 с другими промышленными алюмохромовыми катализаторами дегидрирования парафиновых углеводородов, такими, например, как ИМ-2201.

Диаметр реактора и регенератора составляет 4,6-5, 1 м.

Поверхность закалочных змеевиков в сепарационной зоне реактора составляет 112-128 м 2 .

Типовая технологическая схема блока дегидрирования по известному способу предусматривает использование двух, расположенных последовательно на линии контактного газа, котлов-утилизаторов с поверхностью теплопередачи 460-495 м каждый.

При осуществлении предлагаемого способа с использованием оборудования типовой установки дегидрирования второй по ходу контактного газа котел- утилизатор используется в качестве теплообменника-нагревателя паров сырья.

В ходе осуществления процессов дегидрирования производится очистка оборудования на линии контактного газа (котлов-утилизаторов и теплообменника- нагревателя паров сырья) от отложений катализаторной пыли на теплопередающих поверхностях известными способами, например, периодическая - один раз в 7-10 дней - продувка теплообменных труб газовзвесью равновесного катализатора из пневмотранспортной системы циркуляции катализатора.

Пример 1 (прототип).

Дегидрирование н-бутана в бутилены осуществляют по известному способу при загрузке в реактор 9 свежего алюмохромового микросферического катализатора АОК-73-24 с содержанием шестивалентного хрома 1,5 мас.%. Установка содержит реактор 9 и регенератор диаметром 4,6 м. На линии контактного газа расположены 2 котла-утилизатора с поверхностью 495 м 2 каждый. Поверхность закалочного змеевика реактора составляет 112 м 2 . Дегидрирование ведут при объемной скорости подачи исходного сырья 200 час '1 при температуре 600°С и давлении в реакторе 0,150 МПа (0,50 ати). Регенерацию катализатора проводят при температуре 650°С и давлении 0,145 МПа (0,45 ати). Подача сырья в реактор составляет 22 т/час. Расход воздуха в регенератор выдерживают 19500 нм /час. Содержание шестивалентного хрома в катализаторе после его окисления в регенераторе составляет 0,5 мас.%. Расход паров сырья на пневмотранспорт катализатора из регенератора в реактор - 910 кг/час. Расход воздуха на пневмотранспорт катализатора из реактора в регенератор - 860 кг/час. В качестве исходного сырья используют смесь свежего и рециклового потоков бутановой фракции с содержанием: н-бутан - 92,5 мас.%, изобутан - 3,5 мас.%, бутилены - 3,0 мас.%, углеводороды С 3 - 0,6 мас.%. Жидкое сырье в количестве 22 т/час испаряется и подогревается до 70°С. Затем пары сырья нагреваются теплом контактного газа в закалочном змеевике 26 реактора 9, далее перегреваются в печи 21 и подаются на дегидрирование. Контактный газ охлаждают в закалочном змеевике 26 реактора 9, затем в котлах-утилизаторах и далее в скруббере 17, орошаемом водой.

Пример 2.

Дегидрирование н-бутана в бутилены осуществляют по предлагаемому способу при загрузке в реактор 9 свежего алюмохромового микросферического катализатора АОК-73-24 с содержанием шестивалентного хрома 1,5 мас.%. Установка содержит реактор 9 и регенератор диаметром 4,6 м. На линии контактного газа расположен котел-утилизатор 23 и далее теплообменник-нагреватель 4 с поверхностью 495 м 2 каждый. Поверхность закалочного змеевика 26 реактора 9 составляет 112 м 2 . Дегидрирование ведут при объемной скорости подачи исходного сырья 200 час '1 при температуре 600°С и давлении в реакторе 0,150 МПа (0,50 ати). Регенерацию катализатора проводят при температуре 650°С и давлении 0,145 МПа (0,45 ати). Расход воздуха в регенератор - 19500 нм 3 /час. Содержание шестивалентного хрома в катализаторе после его окисления в регенераторе составляет 0,5 мас.%. Расход паров сырья на пневмотранспорт катализатора из регенератора в реактор - 910 кг/час. Расход воздуха на пневмотранспорт катализатора из реактора в регенератор - 860 кг/час. В качестве исходного сырья используют смесь свежего и рециклового потоков бутановой фракции с содержанием: н-бутан - 92,5 мас.%, изобутан - 3,5 мас.%, бутилены - 3,0 мас.%, углеводороды С 3 - 0,6 мас.%. Жидкое сырье в количестве 22 т/час испаряется и подогревается в теплообменнике- подогревателе (на фиг.1 не показан) до 70°С путем подачи в испаритель 2 и теплообменник-подогреватель водяного пара. Пары сырья нагреваются теплом контактного газа в теплообменнике-нагревателе 4 до 150°С, а затем в закалочном змеевике 26 реактора 9 до 215°С, далее перегреваются в печи 21 и подаются на дегидрирование. Контактный газ охлаждают в закалочном змеевике 26 реактора 9, затем в котле-утилизаторе 23 и далее в теплообменнике-нагревателе 4 и в скруббере 17, орошаемом водой.

Пример 3 (прототип).

Дегидрирование изобутана в изобутилен осуществляют по известному способу при загрузке в реактор 9 свежего алюмохромового микросферического катализатора АОК-73-24 с содержанием шестивалентного хрома 0,8 мас.%. Установка содержит реактор 9 и регенератор диаметром 4,6 м. На линии контактного газа расположены два котла-утилизатора с поверхностью 460 м каждый. Поверхность закалочного змеевика 26 реактора 9 составляет 112 м 2 . Дегидрирование ведут при объемной скорости подачи исходного сырья 165 час '1 , при температуре 575°С и давлении в реакторе 0,150 МПа (0,50 ати). Регенерацию катализатора проводят при температуре 650°С и давлении 0,145 МПа (0,45 ати). Расход воздуха в регенератор - 22500 нм 3 /час. Содержание шестивалентного хрома в катализаторе после его окисления в регенераторе составляет 0,3 мас.%. Расход паров сырья на пневмотранспорт катализатора из регенератора в реактор - 1100 кг/час. Расход воздуха на пневмотранспорт катализатора из реактора в регенератор - 970 кг/час. В качестве исходного сырья используют смесь свежего и рециклового потоков изобутановой фракции следующего состава, мас.%: изобутан - 95,8, изобутилен— 1,8, н-бутан и углеводороды С 3 - 2,4. Жидкое сырье в количестве 27 т/час испаряется и подогревается до 70°С. Затем пары сырья нагреваются теплом контактного газа в закалочном змеевике 26 реактора 9, далее перегреваются в печи 21 и подаются на дегидрирование. Контактный газ охлаждают в закалочном змеевике 26 реактора 9, затем в котлах-утилизаторах и далее в скруббере 17, орошаемом водой.

Пример 4.

Дегидрирование изобутана в изобутилен осуществляют по предлагаемому способу при загрузке в реактор 9 свежего алюмохромового микросферического катализатора АОК-73-24 с содержанием шестивалентного хрома 0,8 мас.%. Установка содержит реактор 9 и регенератор диаметром 4,6 м. На линии контактного газа расположен котел-утилизатор 23 и далее теплообменник-нагреватель 4 с поверхностью 460 м 2 каждый. Поверхность закалочного змеевика 26 реактора 9 составляет 112 м 2 . Дегидрирование ведут при объемной скорости подачи исходного сырья 165 час '1 при температуре 575°С и давлении в реакторе 0,150 МПа (0,50 ати). Регенерацию катализатора проводят при температуре 650°С и давлении 0,145 МПа (0,45 ати). Расход воздуха в регенератор - 21000 нм /час. Содержание шестивалентного хрома в катализаторе после его окисления в регенераторе составляет 0,3 мас.%. Расход паров сырья на пневмотранспорт катализатора из регенератора в реактор - 1000 кг/час. Расход воздуха на пневмотранспорт катализатора из реактора 9 в регенератор - 910 кг/час. В качестве исходного сырья используют смесь свежего и рециклового потоков изобутановой фракции следующего состава, мас.%: изобутан - 95,8, изобутилен— 1,8, н-бутана и углеводородов С 3 - 2,4. Жидкое сырье в количестве 27 т/час испаряется и подогревается в теплообменнике- подогревателе (на фиг.1 не показан) до 70°С путем подачи в испаритель 2 и теплообменник-подогреватель водяного пара. Затем пары сырья нагреваются теплом контактного газа в теплообменнике-нагревателе 4 до 156°С, а затем в закалочном змеевике 26 реактора 9 до 206°С, далее перегреваются в печи 21 и подаются на дегидрирование. Контактный газ охлаждают в закалочном змеевике 26 реактора 9, затем в котле-утилизаторе 23 и далее в теплообменнике-нагревателе 4 и в скруббере 17, орошаемом водой.

Пример 5 (прототип). Дегидрирование изопентана в изоамилены осуществляют по известному способу при загрузке в реактор 9 свежего алюмохромового микросферического катализатора АОК-73-24 с содержанием шестивалентного хрома 3,5 мас.%. Установка содержит реактор 9 и регенератор диаметром 5,1 м. На линии контактного газа расположены 2 котла-утилизатора с поверхностью 495 м 2 каждый. Поверхность закалочного змеевика 26 реактора 9 составляет 128 м 2 . Дегидрирование ведут при объемной скорости подачи исходного сырья 120 час '1 , при температуре 530°С и давлении в реакторе 0,1450 МПа (0,450 ати). Регенерацию катализатора проводят при температуре 660°С и давлении 0,14 МПа (0,4 ати). Расход воздуха в регенератор - 23500 нм 3 /час. Содержание шестивалентного хрома в катализаторе после его окисления в регенераторе составляет 1,0 мас.%. Расход паров сырья на пневмотранспорт катализатора из регенератора в реактор - 1150 кг/час. Расход воздуха на пневмотранспорт катализатора из реактора в регенератор - 1050 кг/час. В качестве исходного сырья используют смесь свежего и рециклового потоков изопентановой фракции следующего состава, мас.%: изопентан - 97,0, изоамилены - 1,8, углеводороды С 4 - 1,0, углеводороды С 6 и выше - 0,2. Жидкое сырье в количестве 44 т/час испаряется и подогревается до 100°С. Затем пары сырья нагреваются теплом контактного газа в закалочном змеевике 26 реактора 9, далее перегреваются в печи 21 и подаются на дегидрирование. Контактный газ охлаждают в закалочном змеевике 26 реактора 9, затем в котлах-утилизаторах и далее в скруббере 17, орошаемом водой.

Пример 6.

Дегидрирование изопентана в изоамилены осуществляют по предлагаемому способу при загрузке в реактор свежего алюмохромового микросферического катализатора АОК-73-24 с содержанием шестивалентного хрома 3,5 мас.%. Установка содержит реактор 9 и регенератор диаметром 5,1 м. На линии контактного газа расположен котел-утилизатор 23 и далее теплообменник-нагреватель 4 с поверхностью 495 м каждый. Поверхность закалочного змеевика 26 реактора 9 составляет 128 м . Дегидрирование ведут при объемной скорости подачи исходного сырья 120 час '1 при температуре 530°С и давлении в реакторе 0,145 МПа (0,45 ати). Регенерацию катализатора проводят при температуре 660°С и давлении 0,14 МПа (0,4 ати). Расход воздуха в регенератор - 22000 нм 3 /час. Содержание шестивалентного хрома в катализаторе после его окисления в регенераторе составляет 1,0 мас.%. Расход паров сырья на пневмотранспорт катализатора из регенератора в реактор - 1050 кг/час. Расход воздуха на пневмотранспорт катализатора из реактора 9 в регенератор - 980 кг/час. В качестве исходного сырья используют смесь свежего и рециклового потоков изопентановой фракции следующего состава, мас.%: изопентан - 97,0, изоамилены - 1,8, углеводороды С 4 - 1,0, углеводороды С 6 и выше - 0,2. Жидкое сырье в количестве 44 т/час испаряется и подогревается в теплообменнике- подогревателе (на фиг.1 не показан) до 100°С путем подачи в испаритель 2 и теплообменник-подогреватель водяного пара. Затем пары сырья нагреваются теплом контактного газа в теплообменнике-нагревателе 4 до 170°С, а затем в закалочном змеевике 26 реактора 9 до 195°С, далее перегреваются в печи 21 и подаются на дегидрирование. Контактный газ охлаждают в закалочном змеевике 26 реактора 9, затем в котле-утилизаторе 23 и далее в теплообменнике-нагревателе 4 и в скруббере 17, орошаемом водой.

Основные условия осуществления процессов и достигаемые показатели дегидрирования представлены в таблице 1 и фиг.2.

Как видно из таблицы, предлагаемый способ получения олефиновых углеводородов позволяет существенно улучшить энергетический баланс процессов дегидрирования парафиновых углеводородов, открывает возможности более рационального использования теплоты контактного газа с учетом возможных ограничений энергообеспечения установок на конкретных производствах. Предлагаемый способ позволяет стабилизировать работу установок дегидрирования парафиновых углеводородов, увеличить их производительность при одновременном увеличении выходов олефиновых углеводородов.

Представленные на фиг.2 графики распределения температуры вдоль кипящего слоя реактора относятся к условиям осуществления процесса дегидрирования изобутана по примерам 3 (кривая 1) и 4 (кривая 2). Как видно из фиг.2, при недогреве паров сырья в печи в прототипе (480°С) наблюдается значительный дефицит тепла в нижней части кипящего слоя. При этом нижняя часть кипящего слоя катализатора в реакторе (секции 1-3 или, возможно, 1-5) работают в режиме подогрева потока паров сырья до температуры, при которой начинаются достаточно ощутимые превращения изобутана в эндотермической реакции дегидрирования. Недоиспользование части катализатора в нижней части кипящего слоя реактора для осуществления процесса дегидрирования определяет низкие показатели дегидрирования в прототипе. Увеличение температуры перегрева паров сырья в печи до 560°С существенно изменяет тепловой режим реактора в варианте осуществления процесса по изобретению (см. фиг.2, кривая 2). При этом реакция дегидрирования начинается уже в первой секции кипящего слоя, а среднеинтегральная температура в кипящем слое реактора увеличивается приблизительно на 6°С, что приводит к увеличению показателей дегидрирования по сравнению с прототипом.

В примерах также показано, что типовые установки дегидрирования, базирующиеся на технологии прототипа с использованием двух расположенных последовательно котлов-утилизаторов (котел-утилизатор 1 и котел-утилизатор 2, см. таблицу 1), легко реконструируются на переход к предлагаемой технологии путем использования второго по ходу контактного газа котла-утилизатора (котел-утилизатор 2) в качестве теплообменника для нагрева паров сырья (теплообменник «газ-газ», см. таблицу 1). Как видно из таблицы 1, при осуществлении известного способа во втором по ходу контактного газа котле-утилизаторе вырабатывается сравнительно малое количество водяного пара, что подтверждает целесообразность использования этого котла в качестве теплообменника-нагревателя паров сырья при переводе типовой установки на предлагаемый способ осуществления процессов дегидрирования. Показано, что на базе имеющегося оборудования типовой установки возможен переход к использованию предлагаемой технологии с существенным наращением мощности установки при улучшении показателей дегидрирования, включая также значительное уменьшение потребления топливного газа и количества отбросных дымовых газов печи для перегрева паров сырья. Возникающий при реконструкции установки запас по мощности печи увеличивает возможности работы установки в широком диапазоне нагрузок по сырью без форсирования теплового режима печи. Значительное снижение температуры контактного газа на входе в скруббер по сравнению с прототипом позволяет стабилизировать работу скруббера в узком температурном интервале со снижением энергетических расходов на охлаждение контактного газа. Конденсация смол и забивка тракта контактного газа на входе в скруббер отсутствует. Изменение в условиях осуществления предлагаемого способа режима работы закалочного змеевика реактора не приводит к нежелательным превращениям контактного газа в сепарационной зоне реактора. При этом образование термополимеров и забивка межтрубного пространства теплообменника-нагревателя паров сырья, а также проточной части закалочного змеевика реактора и змеевиков печи не наблюдается.

Промышленная применимость

Способ может применяться для производства синтетических каучуков, пластмасс, высокооктановых компонентов бензина и других важных органических продуктов.

Таблица 1.

о

О

00

С/1

О

о о о о о

Продолжение таблицы 1.

о

О

ос

С/1

О

о о о о о

Продолжение таблицы 1.

о ю