Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHOD FOR PRODUCING A PRINTING STENCIL FOR TECHNICAL PRINTING, AND PRINTING STENCIL FOR TECHNICAL PRINTING
Document Type and Number:
WIPO Patent Application WO/2013/030273
Kind Code:
A1
Abstract:
The present invention relates to a method for producing a printing stencil for technical printing, for applying a printed pattern to a substrate, and to a printing stencil. The method comprises supplying a carrier layer (21) for the printing stencil, supplying a structure layer (22) for the printing stencil, this layer being located beneath the carrier layer (21), making an elongate printed‑image opening (22a), corresponding to at least part of the printed pattern, in the structure layer (22), and making carrier‑layer openings (21a) in the carrier layer (21) in the region of the printed‑image opening (22a). The method is characterized in that, for making the carrier‑layer openings (21a), use is made of a laser device which is designed to emit a laser beam in laser pulses, and the task of making the carrier‑layer openings (21) comprises making a row of carrier‑layer openings (21a) extending in the longitudinal direction of the printed‑image opening, wherein, for making each carrier‑layer opening (21) in the row, a focussing means of the laser device is positioned at a position of the respective carrier‑layer opening (21), and the respective carrier‑layer opening (21) is made by means of one or more laser pulses at this position (P1), and the focussing means of the laser device, once a carrier‑layer opening has been made, between two successive laser pulses, is displaced relative to the carrier layer, and in the longitudinal direction of the elongate printed‑image opening (22a), from the position (P1) of the carrier‑layer opening (21a) which has been made to the position (P2) of the carrier‑layer opening which is subsequently to be made.

Inventors:
KOENEN CHRISTIAN (DE)
Application Number:
PCT/EP2012/066855
Publication Date:
March 07, 2013
Filing Date:
August 30, 2012
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
CHRISTIAN KOENEN GMBH (DE)
KOENEN CHRISTIAN (DE)
International Classes:
B41N1/24; B41C1/14; H05K3/12
Foreign References:
EP2292440A12011-03-09
DE202008004821U12008-06-12
DE102007052679A12009-05-07
DE102011003287A12012-08-02
Attorney, Agent or Firm:
MERH-IP MATIAS ERNY REICHL HOFFMANN (DE)
Download PDF:
Claims:
Patentansprüche

1. Verfahren zum Herstellen einer Druckschablone für den technischen Druck zum Aufbringen eines Druckmusters auf ein Substrat, umfassend:

- Bereitstellen einer Trägerschicht (21) der Druckschablone,

- Bereitstellen einer unter der Trägerschicht (21) liegenden Strukturschicht (22) der

Druckschablone,

- Herausarbeiten einer sich in einer Längsrichtung erstreckenden, zumindest einem Teil des Druckmusters (101, 102) entsprechenden Druckbildöffnung (22a) in der Strukturschicht (22), und

- Herausarbeiten von Trägerschichtöffnungen (21a) in der Trägerschicht (21) im Bereich der Druckbildöffnung (22a) mittels eines in Abhängigkeit der Breite der herauszuarbeitenden

Trägerschichtöffnungen (21a) defokussierten Laserstrahls, derart, dass ein Druckmedium durch die Trägerschichtöffnungen (21a) und die Druckbildöffnung (22a) auf das Substrat (1) aufbringbar ist.

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass

bei dem Herausarbeiten der Trägerschichtöffnungen (21a) eine Laservorrichtung (10) verwendet wird, die eine Fokussiereinrichtung (12) umfasst und dazu eingerichtet ist, den

Laserstrahl in Laserpulsen abzugeben und mittels der Fokussiereinrichtung (12) derart einzustellen, dass der Laserstrahl auf Höhe der Oberfläche der Trägerschicht (21) in Abhängigkeit der Breite der herauszuarbeitenden Trägerschichtöffnungen (21a) defokussiert ist.

3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Laserstrahl derart defokussiert wird, dass die Breite des Querschnitts des Laserstrahls auf Höhe der Oberfläche der Trägerschicht (21) etwa 50% bis 95% der Breite der mittels eines oder mehrerer Laserpulse herauszuarbeitenden Trägerschichtöffnungen (21a) aufweist.

4. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das Herausarbeiten der Trägerschichtöffnungen das Herausarbeiten einer sich in

Längsrichtung der Druckbildöffnung (22a) erstreckenden Reihe von Trägerschichtöffnungen (21a) umfasst, wobei

die Position des Laserstrahls nach Herausarbeiten einer Trägerschichtöffnung (21a) zwischen zwei aufeinanderfolgenden Laserpulsen relativ zu der Trägerschicht (21) und in

Längsrichtung der Druckbildöffnung (22a) zu einer Position (P2; ... ; PN) der nachfolgend herauszuarbeitenden Trägerschichtöffnung (21a) verfahren wird.

5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass ·

bei dem Herausarbeiten einer jeweiligen Trägerschichtöffnung (21a) der Reihe die Position des Laserstrahls an einer Position (PI; P2; ... PN) der jeweiligen Trägerschichtöffnung (21a) positioniert wird und die jeweilige Trägerschichtöffnung (21a) mittels eines oder mehrerer Laserpulse an dieser Position herausgearbeitet wird.

6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass

die Position des Laserstrahls während dem Herausarbeiten der jeweiligen

Trägerschichtöffnung (21a) mittels eines oder mehrerer Laserpulse im Wesentlichen nicht verfahren wird.

7. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass

bei dem Herausarbeiten einer jeweiligen Trägerschichtöffnung (21a) der Reihe die Position des Laserstrahls an einer ersten Position (PI; P2; ... PN) der jeweiligen Trägerschichtöffnung (21a) positioniert wird und die jeweilige Trägerschichtöffnung (21a) mittels eines Laserpulses

herausgearbeitet wird, indem die Position des Laserstrahls während des einen Laserpulses von der ersten Position zu einer zweiten Position der jeweiligen Trägerschichtöffnung (21a) verfahren wird.

8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass

die Position des Laserstrahls während des einen Laserpulses von der ersten Position zu der zweiten Position der jeweiligen Trägerschichtöffnung (21a) in Längsrichtung der Druckbildöffnung (22a) verfahren wird.

9. Verfahren nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass

die Vorschubgeschwindigkeit bei dem Verfahren der Position des Laserstrahls relativ zu der Trägerschicht (21) von der ersten zur zweiten Position der herauszuarbeitenden

Trägerschichtöffnung (21a) und/oder die Pulsdauer des Laserpulses des Laserstrahls in

Abhängigkeit der Länge der herauszuarbeitenden Trägerschichtöffnung (21a) gewählt werden.

10. Verfahren nach einem der vorstehenden Ansprüche, gekennzeichnet durch

Einstellen einer Form und/oder Größe des Querschnitts des defokussierten Laserstrahls auf

Höhe der Oberfläche der Trägerschicht mittels einer Fokussiereinrichtung (12) der Laservorrichtung (10).

11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass

die Breite des Querschnitts des defokussierten Laserstrahls auf Höhe der Oberfläche der Trägerschicht (21) quer zur Längsausrichtung der Druckbildöffnung (22a) in Abhängigkeit der Breite der Druckbildöffnung (22a) eingestellt wird.

12. Verfahren nach Anspruch 10 oder 11, dadurch gekennzeichnet, dass

der Laserstrahl derart defokussiert ist, dass er auf Höhe der Oberfläche der Trägerschicht (21) einen im Wesentlichen kreisrunden Querschnitt aufweist.

13. Verfahren nach Anspruch 10 oder 11, dadurch gekennzeichnet, dass der Laserstrahl derart defokussiert ist, dass er auf Höhe der Oberfläche der Trägerschicht (21) einen im Wesentlichen elliptischen Querschnitt aufweist.

14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass

die elliptische Hauptachse des Laserquerschnitts quer, insbesondere senkrecht, zur Längsrichtung der Druckbildöffnung (22a) ausgerichtet ist.

15. Verfahren nach einem der vorhergehenden Ansprüche, gekennzeichnet durch Einstellen eines oder mehrerer der Parameter Frequenz bzw. Periodendauer des gepulsten

Laserstrahls, Pulsdauer der Laserpulse, Tastgrad des gepulsten Laserstrahls, Ein-Aus-Verhältnis des gepulsten Laserstrahls.

16. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass

bei dem Verfahren der Position des Laserstrahls relativ zu der Trägerschicht (21) zwischen zwei aufeinanderfolgenden Laserpulsen zwischen zwei benachbarten Trägerschichtöffnungen (21a) der Reihe von Trägerschichtöffnungen ein Steg (21b) in der Trägerschicht (21) ausgebildet wird.

17. Verfahren nach Anspruch 16, dadurch gekennzeichnet, dass

die Vorschubgeschwindigkeit bei dem Verfahren der Position des Laserstrahls relativ zu der Trägerschicht (21) von einer Position einer herausgearbeiteten Trägerschichtöffnung (21a) zu einer Position einer nachfolgend herauszuarbeitenden Trägerschichtöffnung (21a) in Abhängigkeit einer vorgegebenen Stegbreite gewählt wird.

18. Verfahren nach Anspruch 17, dadurch gekennzeichnet, dass

die Vorschubgeschwindigkeit bei dem Verfahren der Position des Laserstrahls relativ zu der Trägerschicht (21) von einer Position einer herausgearbeiteten Trägerschichtöffnung (21a) zu einer Position einer nachfolgend herauszuarbeitenden Trägerschichtöffnung (21a) des Weiteren in Abhängigkeit der Breite der Trägerschichtöffnungen (21a) in Längsrichtung der Druckbildöffnung (22a) gewählt wird.

19. Verfahren nach Anspruch 18, dadurch gekennzeichnet, dass

die Vorschubgeschwindigkeit bei dem Verfahren der Fokussiereinrichtung der

Laservorrichtung relativ zu der Trägerschicht (21) von der Position einer herausgearbeiteten Trägerschichtöffnung (21a) zu der Position einer nachfolgend herauszuarbeitenden

Trägerschichtöffnung (21a) kleiner oder im Wesentlichen gleich (BL + SB)/(T - τ) gewählt wird, wobei BL die Breite der Trägerschichtöffnungen (21a) in Längsrichtung der Druckbildöffnung (22a) bezeichnet, SB die vorgegebene Stegbreite bezeichnet, T die Periodendauer des gepulsten

Laserstrahls bezeichnet und τ die Pulsdauer der Laserpulse bezeichnet.

20. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass

bei dem Verfahren der Position des Laserstrahls relativ zu der Trägerschicht (21) eine Fokussiereinrichtung (12) der Laservorrichtung (10) und/oder die Trägerschicht (21) verfahren werden.

21. Verfahren nach einem der Ansprüche 4 bis 20, dadurch gekennzeichnet, dass das Herausarbeiten der Trägerschichtöffnungen (21a) das Herausarbeiten zumindest einer weiteren sich in Längsrichtung der Druckbildöffnung und parallel zur ersten Reihe von

Trägerschichtöffnungen (21a) erstreckenden zweiten Reihe von Trägerschichtöffnungen (21a) umfasst.

22. Verfahren nach Anspruch 21, dadurch gekennzeichnet, dass

sich jeweils eine Trägerschichtöffnung der ersten Reihe mit einer Trägerschichtöffnung der zumindest einen weiteren zweiten Reihe derart überdecken, dass jede Trägerschichtöffnung (21a) in der hergestellten Druckschablone aus zwei oder mehr Trägerschichtöffnungen der zumindest zwei Reihen ausgebildet wird, wobei zwischen in Längsrichtung der Druckbildöffnung (22a) benachbarten Trägerschichtöffnungen (21a) ein Steg (21b) ausgebildet ist.

23. Druckschablone für den technischen Druck zum Aufbringen eines Druckmusters auf ein Substrat, die hergestellt ist gemäß einem Verfahren nach einem der vorhergehenden Ansprüche, umfassend:

- eine Trägerschicht (21) der Druckschablone,

- eine unter der Trägerschicht (21) liegenden Strukturschicht (22) der Druckschablone, wobei die Strukturschicht (22) eine sich länglich erstreckende, zumindest einem Teil des

Druckmusters (101, 102) entsprechende Druckbildöffnung (22a) in der Strukturschicht (22) aufweist, und

wobei die Trägerschicht (21) im Bereich der Druckbildöffnung (22a) eine oder mehrere sich in Längsrichtung der Druckbildöffnung (22a) erstreckende Reihen von Trägerschichtöffnungen (21a) umfassen.

24. Druckschablone nach Anspruch 23, dadurch gekennzeichnet, dass

die Trägerschichtöffnungen (21a) einer Reihe im Wesentlichen kreisrund ausgebildet sind.

25. Druckschablone nach Anspruch 23, dadurch gekennzeichnet, dass

die Trägerschichtöffnungen (21a) einer Reihe im Wesentlichen elliptisch ausgebildet sind.

26. Druckschablone nach Anspruch 25, dadurch gekennzeichnet, dass

die elliptische Hauptachse der Trägerschichtöffnungen (21a) einer Reihe quer, insbesondere senkrecht, zur Längsrichtung der Druckbildöffnung (22a) ausgerichtet sind.

27. Druckschablone nach Anspruch 23, dadurch gekennzeichnet, dass

die Trägerschichtöffnungen (21a) einer Reihe im Wesentlichen Langloch-förmig ausgebildet sind. 28. Druckschablone nach einem der Ansprüche 23 bis 27, dadurch gekennzeichnet, dass die Trägerschicht (21) im Bereich der Druckbildöffnung (22a) genau eine sich in

Längsrichtung der Druckbildöffnung (22a) erstreckende Reihe von Trägerschichtöffnungen (21a) aufweist, wobei zwischen benachbarten Trägerschichtöffnungen (21a) ein jeweiliger Steg (21b) ausgebildet ist, der strukturschichtseitig angeschmolzen ist und dadurch im Vergleich zu der Dicke der Trägerschicht (21) in seiner Höhe reduziert ist.

29. Druckschablone nach einem der Ansprüche 23 bis 28, dadurch gekennzeichnet, dass sich jeweils eine Trägerschichtöffnung (21a) einer ersten Reihe mit einer

Trägerschichtöffnung (21a) zumindest einer weiteren zweiten Reihe derart überdecken, dass jede Trägerschichtöffnung (21a) in der Druckschablone aus zwei oder mehr Trägerschichtöffnungen (21a) der zumindest zwei Reihen ausgebildet wird, wobei zwischen in Längsrichtung der Druckbildöffnung (22a) benachbarten Trägerschichtöffnungen (21a) ein jeweiliger Steg (21b) ausgebildet ist.

Description:
VERFAHREN ZUM HERSTELLEN EINER DRUCKSCHABLONE FÜR DEN TECHNISCHEN DRUCK UND DRUCKSCHABLONE FÜR DEN TECHNISCHEN DRUCK

Beschreibung Die vorliegende Erfindung betrifft ein Verfahren zum Herstellen einer Druckschablone für den technischen Druck, insbesondere für den Solarzellendruck, zum Aufbringen eines Druckmusters auf ein Substrat, insbesondere ein Substrat einer Solarzelle, zum Beispiel für das Drucken einer Frontoder Rückseitenkontaktierung der Solarzelle. Das Herstellungsverfahren umfasst Bereitstellen einer Trägerschicht der Druckschablone,

Bereitstellen einer unter der Trägerschicht liegenden Strukturschicht der Druckschablone, Herausarbeiten einer sich länglich erstreckenden, zumindest einem Teil des Druckmusters entsprechenden Druckbildöffnung in der Strukturschicht, und Herausarbeiten von Trägerschichtöffnungen in der Trägerschicht im Bereich der Druckbildöffnung mittels Laserschneiden, derart, dass ein Druckmedium durch die Trägerschichtöffnungen und die Druckbildöffnung auf das Substrat aufbringbar ist.

Des Weiteren betrifft die vorliegende Erfindung eine Druckschablone für den technischen Druck, insbesondere für den Solarzellendruck, zum Aufbringen eines Druckmusters auf ein Substrat, insbesondere ein Substrat einer Solarzelle, umfassend eine Trägerschicht der Druckschablone, eine unter der Trägerschicht liegenden Strukturschicht der Druckschablone, wobei die Strukturschicht eine sich länglich erstreckende, zumindest einem Teil des Druckmusters entsprechende Druckbildöffnung in der Strukturschicht aufweist, und wobei die Trägerschicht im Bereich der Druckbildöffnung Trägerschichtöffnungen umfasst.

Derartige Druckschablonen können z.B. für den Solarzellendruck vorgesehen sein, d.h. z.B. zum Aufbringen einer Kontaktierung, insbesondere Frontkontaktierung, einer Solarzelle. Bei für den Solarzellendruck vorgesehenen Druckschablonen können die sich länglich erstreckenden Druckbildöffnungen der Strukturschicht z.B. für den Druck von Kontaktfingern einer Frontkontaktierung der Solarzelle vorgesehen sein. Die vorliegende Erfindung ist jedoch nicht auf Druckschablonen für den Solarzellendruck beschränkt, sondern betrifft z.B. des Weiteren auch Sonder- bzw. Hybridschablonen mit zumindest einer Trägerschicht und zumindest einer Strukturschicht zum Aufbringen von Metallisierungen auf Substratoberflächen. Hintergrund der Erfindung

Aus dem Stand der Technik ist es im technischen Solarzellendruck herkömmlich bekannt, eine Kontaktierung auf ein Substrat einer Solarzelle mittels eines Drucksiebs aufzubringen. Insbesondere ist es herkömmlich bekannt, eine Metallisierung, Kontaktierung bzw. Leiterzüge einer Kontaktierung einer Solarzelle mit Drucksieben zu drucken, indem eine zumeist Silber umfassende Druckpaste mittels eines Rakels durch Druckbildöffnungen eines Drucksiebes auf ein Substrat der Solarzelle aufgebracht wird, wobei die Druckbildöffnungen des Drucksiebs im Wesentlichen dem Druckbild bzw. zumindest einem Teil des Druckbildes der zu druckenden Kontaktierung der Solarzelle entsprechen.

Derartige Drucksiebe weisen ein in einem Rahmen eingespanntes Drahtsiebgewebe auf, welches in einer Strukturschicht, wie z.B. einer dünnen Fotoemulsionsschicht, eingebettet ist (siehe z.B. ein Drucksieb gemäß DE 10 2007 052 679 AI) und welches die Strukturschicht trägt bzw. als Trägerschicht der Strukturschicht fungiert. Eine derartige Fotoemulsionsschicht weist die dem Druckbild der zu druckenden Kontaktierung entsprechende Druckbildöffnungen auf, wobei das die Fotoemulsionsschicht stabilisierende Siebgewebe auch im Bereich der Druckbildöffnungen der Strukturschicht verläuft. Bei der Herstellung derartiger Drucksiebe wird gewöhnlich das Drahtsiebgewebe auf einen Rahmen aufgespannt und dann mit einem fotosensitiven Material (z.B. eine Emulsionsschicht oder ein Film) beschichtet. Anschließend erfolgt die Strukturierung des Druckbildes z.B. mittels Belichtung des fotosensitiven Materials.

Jedoch ergeben sich bei der Verwendung von derartigen Drucksieben bei dem Aufbringen der Kontaktierung der Solarzelle auf das Solarzellensubstrat Nachteile, insbesondere im Hinblick auf das Drucken der sogenannten Kontaktfinger einer Frontkontaktierung der Solarzelle. Die Kontaktfinger sollen mit einer möglichst geringen Breite (z.B. im Bereich von etwa 20μιη bis ΙΟΟμιη) in möglichst gleichmäßiger Höhe auf das Substrat gedruckt werden, um einen möglichst gleichmäßigen Leitungsquerschnitt (Widerstand) zu ermöglichen und die Energieeffizienz der Solarzelle zu erhöhen. Gleichzeitig muss bezüglich der Energieeffizienz der Solarzelle durch die Kontaktfinger eine Stromleitung mit möglichst geringem elektrischen Widerstand ermöglicht werden, d.h. die Kontaktfinger müssen mit einem möglichst großem Aspektverhältnis ausgebildet werden, da der elektrische Widerstand der Kontaktfinger von dem Querschnitt der Kontaktfinger abhängt. Etwaige Einschnürungen des Kontaktfingers reduzieren die Leitungsfähigkeit des Fingers und reduzieren somit den Gesamtwirkungsgrad der Solarzelle. Das Aspektverhältnis der Kontaktfinger soll folglich insbesondere möglichst über die gesamte Länge der Kontaktfinger gleichmäßig ausgebildet sein. Bei der Verwendung von Drucksieben, insbesondere bei dem Aufbringen der Kontaktierung der Solarzelle auf das Solarzellensubstrat, ergeben sich die im Folgenden beschriebenen Nachteile. Das Siebgewebe und insbesondere Kreuzungspunkte des Siebgewebes im Bereich der Druckbildöffnungen der Fotoemulsionsschicht beeinträchtigen die Gleichmäßigkeit des Pastenauftrags auf das Substrat der Solarzelle beim Druck. Daraus entstehen nachteilige Einschnürungen im Leiterquerschnitt der Kontaktfinger und eine nachteilige wellige Kante des Druckbildes, speziell durch nahe an der Druckkante (Rand der Druckbildöffnung) anliegenden Kreuzungspunkten des Siebgewebes. Weiterhin wird die maximal erreichbare Pastenstärke, und dadurch die maximal erreichbare Höhe der gedruckten Kontaktfinger, zu der das Aspektverhältnis direkt proportional ist, durch die Siebgewebestruktur im Bereich der Druckbildöffnungen stark eingeschränkt.

Außerdem entsteht beim Drucken durch den Andruck und die Bewegung des Rakels aufgrund der elastischen Eigenschaften des Siebgewebes eine Dehnung des Gewebes, wodurch ein Verzug des Druckbildes resultieren kann. Bei einer mehrfachen Bedruckung des Substrats mit verschiedenen Drucksieben wird normalerweise ein Druckvorgang in mehreren Schritten mit verschiedenen Sieben durchgeführt, um in Schritten jeweils Teile der Kontaktierung zu drucken. In Übergangsbereichen des Gesamtdruckbilds, in denen Druckbilder verschiedener Drucksiebe aneinander angrenzen, können mit herkömmlichen Drucksieben aufgrund des vorstehend beschriebenen Verzugs der einzelnen Teildruckbilder Ungleichmäßigkeiten im Gesamtdruckbild entstehen.

Zudem wird bei der Verwendung von Drucksieben durch die angestrebt große offengestellte Fläche des Druckmusters der Siebe ein sehr feines Gewebe zur Stabilisierung des Drucksiebes benötigt, das jedoch sehr anfällig auf Beschädigungen ist und somit nur geringe Standzeiten zulässt.

Im Hinblick auf die vorstehend beschriebenen Nachteile der Verwendung von herkömmlich bekannten Drucksieben bei dem Bedrucken von Solarzellensubstraten zum Aufbringen einer Kontaktierung auf ein Substrat, insbesondere auf ein Substrat einer Solarzelle, wird in der Patentanmeldung DE 10 2011 003 287 eine Lösung für das Aufbringen einer Kontaktierung auf ein Substrat, insbesondere auf ein Substrat einer Solarzelle, vorgeschlagen.

Eine gemäß der DE 10 2011 003 287 vorgeschlagene Druckschablone umfasst eine Trägerschicht und eine unter der Trägerschicht liegende Strukturschicht der Druckschablone, wobei die Strukturschicht eine sich länglich erstreckende, zumindest einem Teil des Druckmusters entsprechende Druckbildöffnung in der Strukturschicht aufweist. Die sich länglich erstreckende Druckbildöffnung in der Strukturschicht entspricht hierbei z.B. dem Druckmuster eines Kontaktfingers einer Frontseitenkontaktierung einer Solarzelle. Die Trägerschicht umfasst im Bereich der Druckbildöffnung längliche, sich in Längsrichtung der Druckbildöffnung erstreckende, im Wesentlichen rechteckige bzw. an den Ecken gegebenenfalls leicht angerundete Trägerschichtöffnungen, die jeweils durch einen stabilisierenden Steg voneinander getrennt sind. Die Druckschablone ist dazu geeignet, ein Druckmedium wie z.B. Kontaktierungsmaterial durch zumindest eine Öffnung auf das Substrat aufzubringen, indem sich die Trägerschichtöffnungen in Draufsicht auf die Druckschablone mit der Druckbildöffnung derart überdecken, dass die Druckschablone eine aus der Druckbildöffnung und der Trägerschichtöffnungen gebildete Öffnung aufweist, durch die das Druckmedium wie z.B. Kontaktierungsmaterial auf das Substrat aufbringbar ist. Das Druckmedium verläuft unterhalb der Trägerschicht zu einer gleichmäßigen 3-dimensionalen Form.

Nach einem Verfahren gemäß des Stands der Technik können die Trägerschichtöffnungen in der Trägerschicht mittels Laserschneiden herausgearbeitet werden. Hierbei ist es herkömmlich bekannt, einen Laserstrahl einer Laservorrichtung mittels einer Fokussiereinrichtung an einer Position am Rand (z.B. in einer Ecke) einer herauszuarbeitenden Trägerschichtöffnung zu positionieren und zu fokussieren. Hierbei wird der Laserstrahl im Wesentlichen direkt auf der Oberfläche der Trägerschicht fokussiert (d.h. im Wesentlichen in einem Fokuspunkt direkt auf der Oberfläche der Trägerschicht gebündelt), gegebenenfalls je nach Laserschneidverfahren einige μηη oberhalb bzw. unterhalb der Oberfläche der Trägerschicht. Nachdem eine Shuttereinrichtung der Laservorrichtung geöffnet wird, wird die Fokussiereinrichtung derart gesteuert, dass der Laserstrahl zum Herausschneiden der Trägerschichtöffnung entlang des Randes der herauszuarbeitenden Trägerschichtöffnung geführt wird, um die Trägerschichtöffnung entlang des Randes aus der Trägerschicht auszuschneiden (siehe z.B. Fig. 3A).

Hierbei ist es erforderlich, den Laserstrahl bei dem Herausarbeiten der Trägerschichtöffnungen mit einer sehr hohen Genauigkeit zu führen und außerdem muss der fokussierte Laserstrahl einmal um den gesamten Umfang jeder Trägerschichtöffnung geführt werden. Somit ist ein derartiges Herstellungsverfahren sehr zeitintensiv. Handelt es sich bei der Druckbildöffnung der Strukturschicht um eine Druckbildöffnung für einen Kontaktfinger einer Frontkontaktierung einer Solarzelle, ist es erforderlich für jeden der zahlreichen Kontaktfinger eine Vielzahl von einzelnen Trägerschichtöffnungen herauszuschneiden, so dass bei der Herstellung einer einzelnen Druckschablone sehr lange Zeiten für das Herausarbeiten der Trägerschichtöffnungen auftreten, für die zudem noch sehr kostenintensive Laserschneidvorrichtungen verwendet werden müssen. Zusammenfassung der Erfindung Im Hinblick auf die vorstehend beschriebene zeit- und kostenintensive Herstellung von

Druckschablonen, die eine Trägerschicht und eine Strukturschicht aufweisen, ist es eine Aufgabe der Erfindung, die Herstellung von eine Trägerschicht und eine Strukturschicht aufweisenden Druckschablonen zu verbessern, derart, dass die Herstellung einfacher, kostengünstiger und zeiteffizienter durchgeführt werden kann.

Zur Lösung der vorstehend beschriebenen Aufgabe der vorliegenden Erfindung wird ein Verfahren zum Herstellen einer Druckschablone und eine mit einem derartigen Verfahren hergestellte Druckschablone gemäß den unabhängigen Ansprüchen vorgeschlagen. Abhängige Ansprüche betreffen bevorzugte Ausführungsformen der vorliegenden Erfindung.

Der vorliegenden Erfindung liegt die Idee zugrunde, die Trägerschichtöffnungen der Trägerschicht nicht mittels eines fokussierten Laserstrahls umfänglich entlang des Randes der herauszuarbeitenden Trägerschichtöffnungen aus der Trägerschicht herauszuschneiden, wie es gemäß herkömmlichen Laserschneidverfahren bekannt ist, sondern mittels eines defokussierten Laserstrahls herauszuarbeiten bzw. „herauszuschießen", wobei der Laserstrahl nicht (wie üblich) fokussiert ist, sondern in Abhängigkeit der Breite der Trägerschichtöffnungen defokussiert ist.

Insbesondere kann eine Idee der Erfindung darin gesehen werden, dass der defokussierte Querschnitt des Laserstrahls auf Höhe der lasereintrittsseitigen Oberfläche der Trägerschicht eine in Abhängigkeit der Breite der Trägerschichtöffnungen gewählte Breite aufweist, und nicht im Wesentlichen zu einem Fokuspunkt gebündelt wird, wie es in herkömmlichen Verfahren der Fall ist.

Aufbauend auf dieser Grundidee der vorliegenden Erfindung kann vorteilhaft erreicht werden, dass bereits mittels eines oder ggf. mehrerer Laserpulse an einer Position der Trägerschicht eine Öffnung in der Trägerschicht entsprechend einer Breite der herauszuarbeitenden Trägerschichtöffnung herausgearbeitet bzw. „herausgeschossen" werden kann, deren Querschnittform im Wesentlichen der Querschnittform des defokussierten Laserstrahls entspricht. Die Herstellung einer Druckschablone kann somit einfacher, kostengünstiger und zeiteffizienter durchgeführt werden, da die Trägerschichtöffnungen nicht durch zeitintensives Verfahren eines fokussierten Laserstrahls entlang des Umfangs der herauszuarbeitenden Trägerschichtöffnungen herausgeschnitten werden müssen, sondern bereits mittels eines oder mehrerer Laserpulse Trägerschichtöffnungen mit Breiten im Bereich von 20 μιτι bis 100 μηι herausgearbeitet bzw. „herausgeschossen" werden können. Hierbei entsteht ein wesentlicher Zeitgewinn gegenüber den herkömmlichen Verfahren, der nicht im unteren Prozentbereich liegt, sondern vielmehr im Bereich einer zehn- bis achtzigfachen Beschleunigung der Herstellung der Druckschablonen bedeuten kann.

Es ist vorzugsweise zweckmäßig, eine Breite des Querschnitts des defokussierten Laserstrahls auf Höhe der lasereintrittsseitigen Oberfläche der Trägerschicht etwas kleiner zu bemessen als die gewünschte Breite der herauszuarbeitenden Trägerschichtöffnung (ca. 50% bis 95%, je nach Dicke und Material der Trägerschicht), da die mittels des Laserstrahls eingebrachte Wärmeenergie dazu führen kann, dass die herausgearbeitete Trägerschichtöffnung größer ist als der Querschnitt des verwendeten defokussierten Laserstrahls. Gemäß einem ersten Aspekt der vorliegenden Erfindung wird ein Verfahren zum Herstellen einer Druckschablone für den technischen Druck zum Aufbringen eines Druckmusters auf ein Substrat vorgeschlagen, mit den Schritten Bereitstellen einer Trägerschicht der Druckschablone, Bereitstellen einer unter der Trägerschicht liegenden Strukturschicht der Druckschablone, insbesondere mit einer Schichtdicke größer 5μηη, Herausarbeiten einer sich länglich erstreckenden bzw. in einer Längsrichtung erstreckenden, zumindest einem Teil des Druckmusters entsprechenden Druckbildöffnung in der Strukturschicht, und Herausarbeiten von Trägerschichtöffnungen in der Trägerschicht im Bereich der Druckbildöffnung, derart, dass ein Druckmedium durch die Trägerschichtöffnungen und die Druckbildöffnung auf das Substrat aufbringbar ist. Das erfindungsgemäße Verfahren ist dadurch gekennzeichnet, dass bei dem Herausarbeiten der Trägerschichtöffnungen ein in Abhängigkeit der Breite der herauszuarbeitenden Trägerschichtöffnungen defokussierter Laserstrahl verwendet wird, d.h. insbesondere ein Laserstrahl, der nicht in einem im Wesentlichen auf Höhe der Oberfläche der Trägerschicht liegenden oder leicht oberhalb bzw. unterhalb der Oberfläche der Trägerschicht liegenden Fokuspunkt gebündelt wird, wie in herkömmlichen Verfahren, sondern auf Höhe der Oberfläche der Trägerschicht substantiell defokussiert ist, und insbesondere auf Höhe der Oberfläche der Trägerschicht einen Querschnitt mit Breiten größer ΙΟμηι, bevorzugt über 20μηη aufweist. Wie bereits vorstehend erwähnt, kann die Herstellung einer Druckschablone somit einfacher, kostengünstiger und zeiteffizienter durchgeführt werden, da die Trägerschichtöffnungen nicht durch zeitintensives Verfahren eines fokussierten Laserstrahls entlang des Umfangs der herauszuarbeitenden Trägerschichtöffnungen herausgeschnitten werden müssen, sondern bereits mittels eines oder mehrerer Laserpulse breitere Trägerschichtöffnungen herausgearbeitet bzw. „herausgeschossen" werden können. Vorzugsweise wird bei dem Herausarbeiten der Trägerschichtöffnungen eine

Laservorrichtung verwendet, die eine Fokussiereinrichtung umfasst und dazu eingerichtet ist, den Laserstrahl in Laserpulsen abzugeben und mittels der Fokussiereinrichtung derart einzustellen, dass der Laserstrahl auf Höhe der Oberfläche der Trägerschicht in Abhängigkeit der Breite der herauszuarbeitenden Trägerschichtöffnungen defokussiert ist. Hierbei können sowohl Pulslaser- Vorrichtungen verwendet werden, die einen gepulsten Laserstrahl abgeben als auch Laservorrichtungen, die eine Laserquelle umfassen, die einen kontinuierlichen Laserstrahl abgeben, der mittels einer periodisch öffnenden bzw. schließenden Shuttereinrichtung beeinflusst wird, insbesondere mittels einer bei hoher Frequenz öffnenden bzw. schließenden Shuttereinrichtung.

Vorzugsweise wird der Laserstrahl derart defokussiert, dass die Breite des Querschnitts des Laserstrahls auf Höhe der Oberfläche der Trägerschicht etwa 50% bis 95% der Breite der mittels eines oder mehrerer Laserpulse herauszuarbeitenden Trägerschichtöffnungen aufweist. Wie bereits erwähnt, ist es nämlich vorzugsweise zweckmäßig, eine Breite des Querschnitts des defokussierten Laserstrahls auf Höhe der lasereintrittsseitigen Oberfläche der Trägerschicht etwas kleiner zu bemessen als die gewünschte Breite der herauszuarbeitenden Trägerschichtöffnung (ca. 50% bis 95%, je nach Dicke und Material der Trägerschicht), da die mittels des Laserstrahls eingebrachte Wärmeenergie dazu führen kann, dass die herausgearbeitete Trägerschichtöffnung größer ist als der Querschnitt des verwendeten defokussierten Laserstrahls.

Vorzugsweise umfasst das Herausarbeiten der Trägerschichtöffnungen das Herausarbeiten einer sich in Längsrichtung der Druckbildöffnung erstreckenden Reihe von Trägerschichtöffnungen, wobei die Position des Laserstrahls nach Herausarbeiten einer Trägerschichtöffnung zwischen zwei aufeinanderfolgenden Laserpulsen relativ zu der Trägerschicht und in Längsrichtung der Druckbildöffnung zu einer Position der nachfolgend herauszuarbeitenden Trägerschichtöffnung verfahren wird. Dies ermöglicht es, dass ein stabilisierender Steg zwischen Trägerschichtöffnungen zeiteffizient und auf einfache Weise dadurch in der Trägerschicht ausgebildet werden kann, dass die Position des Lasers von einer Trägerschichtöffnung zur nächsten herauszuarbeitenden Trägerschichtöffnung zwischen zwei Laserpulsen relativ zur Trägerschicht verfahren wird.

Gemäß einem besonders zweckmäßigen bevorzugten Ausführungsbeispiel wird bei dem Herausarbeiten einer jeweiligen Trägerschichtöffnung der Reihe die Position des Laserstrahls an einer Position der jeweiligen Trägerschichtöffnung positioniert und vorzugsweise wird die jeweilige Trägerschichtöffnung mittels eines oder mehrerer Laserpulse an dieser Position herausgearbeitet, insbesondere mit bevorzugt einem oder zwei bis zehn Laserpulsen. Vorzugsweise wird gemäß dieses besonders zweckmäßigen bevorzugten Ausführungsbeispiels die Position des Laserstrahls während dem Herausarbeiten der jeweiligen Trägerschichtöffnung mittels eines oder mehrerer Laserpulse im Wesentlichen nicht verfahren. Dem vorstehend genannten besonders zweckmäßigen bevorzugten Ausführungsbeispiel liegt die Idee zugrunde, einzelne Trägerschichtöffnungen nicht wie in herkömmlich bekannten Laserschneid-Verfahren jeweils mittels eines fokussierten Laserstrahls aus der Trägerschicht herauszuschneiden, indem der Laserstrahl entlang des Randes der herauszuarbeitenden Trägerschichtöffnung geführt wird, sondern vielmehr ist es erfindungsgemäß vorgesehen, die einzelnen Trägerschichtöffnungen jeweils durch einmaliges Positionieren des Laserstrahls auf der Trägerschicht im Bereich der Druckbildöffnung der Strukturschicht an der Position der herauszuarbeitenden Trägerschichtöffnung mittels bevorzugt eines oder auch zwei bis mehrerer Laserpulse eines gepulsten Laserstrahls an im Wesentlichen der selben Position herauszuarbeiten. Der Abstand der Trägerschichtöffnungen kann hierbei mittels der Pulsfrequenz des Lasers und/oder durch den Vorschub gesteuert werden.

Nach Herausarbeiten der Trägerschichtöffnung ist es bei dem vorstehend beschriebenen besonders zweckmäßigen bevorzugten Ausführungsbeispiel weiterhin vorgesehen, die Position des Laserstrahls auf der Trägerschicht zwischen zwei Laserpulsen zur Position der nächsten herauszuarbeitenden Trägerschichtöffnung zu führen, um dort die nächste herauszuarbeitende Trägerschichtöffnung mit den nachfolgenden einen oder mehreren Laserpulsen herauszuarbeiten. Diese Schritte werden wiederholt, bis alle Trägerschichtöffnungen einer Reihe aus zwei oder mehreren Trägerschichtöffnungen im Bereich der Druckbildöffnung herausgearbeitet sind. Folglich kann gemäß dem Verfahren dieses Ausführungsbeispiels auf äußerst einfache und vorteilhafte Weise in kürzester Zeit eine ganze Reihe von Trägerschichtöffnungen entlang der Längsrichtung der Druckbildöffnung herausgearbeitet werden. Es ist hierfür nicht wesentlich, ob die Strukturschicht vor oder nach dem Herausarbeiten der Trägerschichtöffnungen bereitgestellt wird, insbesondere ob die Strukturschicht vor oder nach dem Herausarbeiten der Trägerschichtöffnungen auf die Trägerschicht oder eine Zwischenschicht aufgebracht wird.

Es ist somit im Vergleich zu herkömmlich bekannten Laserschneidverfahren auf besonders vorteilhafte Weise wesentlich zeiteffizienter und somit auch kostensparender möglich, im gesamten Bereich der länglichen Druckbildöffnung der Strukturschicht Trägerschichtöffnungen herauszuarbeiten. Für das Herausarbeiten der einzelnen Trägerschichtöffnungen werden bei Frequenzen von ca. 0,9 bis 3kHz, ggf. abhängig vom verwendeten Lasertyp, nur ein oder in seltenen Fällen bei sehr dicken Trägerschichten zwei bis mehrere kurze Laserpulse benötigt, und durch das Verfahren der Trägerschicht relativ zur Laserstrahlposition immer zwischen zwei Laserpulsen können somit in kürzester Zeit die Reihen von Trägerschichtöffnungen im Bereich der Druckbildöffnung herausgearbeitet werden.

Die einzelnen Trägerschichtöffnungen werden bei dem Verfahren gemäß des vorstehend beschriebenen besonders zweckmäßigen Ausführungsbeispiels in ihrer Form hauptsächlich durch die Form des Querschnitts des Laserstrahls auf Höhe der Trägerschicht (insbesondere die Form des Querschnitts des Laserstrahls auf Höhe der lasereintrittsseitigen Oberfläche der Trägerschicht) vorgegeben, da die jeweiligen Trägerschichtöffnungen durch einzelne Laserpulse an einer Position der Trägerschicht herausgearbeitet bzw.„herausgeschossen" werden, und nicht durch Führung eines fokussierten Laserstrahls entlang des Umfangs der Trägerschichtöffnung herausgeschnitten werden. Bei einem im Wesentlichen kreisrund defokussierten Laserstrahl werden die einzelnen Trägerschichtöffnungen hierbei somit zum Beispiel im Wesentlichen kreisrund herausgearbeitet, wenn die Trägerschicht relativ zur Fokussiereinrichtung bzw. zum Laserstrahl nicht bewegt wird. Wird die Trägerschicht bei dem Aufbringen des Laserpulses bewegt, entstehen entsprechend der Bewegung längliche, an den Enden abgerundete Trägerschichtöffnungen mit einer Form entsprechend eines Langlochs, d.h. es entstehen Langloch-förmige Trägerschichtöffnungen. Die Breite der Trägerschichtöffnungen wird im Wesentlichen durch die Größe des defokussierten Querschnitts des Laserstrahls auf der Oberfläche der Trägerschicht bestimmt, wobei es aufgrund der eingebrachten Wärmeenergie im Allgemeinen zu einer breiteren Trägerschichtöffnung kommen kann. So kann z.B. ein 20pm breiter Laserquerschnitt durch Ausstrahlung der Wärmeenergie zu den Seiten eine Trägerschichtöffnung mit einer Breite bis zu 25μηι herausarbeiten, ohne die Position des Laserstrahls zu verändern.

Da die Energiedichte des Laserstrahls absolut gesehen bei Vergrößerung des Querschnitts des auf der Trägerschicht defokussierten Laserstrahls abnimmt, ist die Größe der mit einem oder wenigen mehreren Laserpulsen erreichbaren Trägerschichtöffnungen nach oben begrenzt, jedoch können im praktischen Anwendungsbereich Trägerschichtöffnungsdurchmesser von bis zu 300μηη erreicht werden und insbesondere ist es bei üblichen Trägerschichtdicken von 20pm bis 800μηι möglich, mit bereits mit nur einem Laserpuls bei Frequenzen von 0.9 bis 3kHz Trägerschichtöffnungen mit Durchmessern im Bereich von unter 20μηη bis zu etwa 150μηη herauszuarbeiten. Dies entspricht zum Beispiel den gängigen Breiten von Druckbildöffnungen zum Drucken von Kontaktfingern einer Frontkontaktierung von Solarzellen im Bereich von etwa 20 bis ΙΟΟμηη, so dass es für derartige Druckbildöffnungen möglich ist, eine einzelne Reihe von jeweils bereits mit einzelnen Laserpulsen herausgearbeitete Trägerschichtöffnungen im Bereich der Druckbildöffnung auszubilden.

Zur Verbesserung der Stabilität der Schablone können hierbei zwischen zwei Trägerschichtöffnungen jeweilige Stege in der Trägerschicht bestehen bleiben. Die Breite der Stege kann je nach Anforderung beeinflusst werden durch die Zeit zwischen zwei Laserpulsen (d.h. z.B. durch die Differenz aus Periodendauer T und Pulsdauer τ bei beliebigem Tastverhältnis des gepulsten Lasers, bzw. bei ein 50% Tastverhältnis durch die Hälfte der Periodendauer T bzw. den Kehrwert aus der zweifachen Frequenz) und durch die Vorschubgeschwindigkeit der Trägerschicht relativ zu der Positionierung des Laserstrahls zwischen zwei Laserpulsen. Hierbei entstehen bei dem vorstehend beschriebenen Verfahren der besonders zweckmäßigen Ausführungsform mehr Stege für eine längliche Druckbildöffnung im Vergleich zum herkömmlichen Laserschneidverfahren, da die Länge der Trägerschichtöffnungen verfahrensbedingt in etwa der Breite der Trägerschichtöffnungen entspricht (z.B. bei im Wesentlichen kreisrund bzw. elliptisch ausgebildeten Trägerschichtöffnungen), wenn der Laserstrahl während des Herausarbeitens der Trägerschichtöffnungen im Wesentlichen nicht verfahren wird, im Gegensatz zu den stark länglich bzw. rechteckig ausgebildeten Trägerschichtöffnungen bei herkömmlichen Laserschneidverfahren. Die gleiche Stabilität bzw. eine sogar wesentlich bessere Stabilität kann somit selbst dann erreicht werden, wenn die Stegbreiten signifikant reduziert werden bis auf etwa ΙΟμηι bis 20pm. Bei herkömmlichen Laserschneidverfahren sind aus Stabilitätsgründen Stegbreiten von mindestens 30μιη oder höher erforderlich. Im Allgemeinen reicht es aus, wenn die Stegbreite im Wesentlichen der Dicke der Trägerschicht entspricht, um eine gute Stabilität zu gewährleisten.

Zudem ergibt sich durch die geringere Längserstreckung der Trägerschichtöffnungen und die höhere Zahl von Stegen im Bereich der Druckbildöffnung ein signifikant verbessertes Rakelverhalten im Vergleich zu Drucksieben und auch Druckschablonen, bei denen die Trägerschichtöffnungen mittels eines herkömmlichen Laserschneidverfahrens ausgebildet werden, da ein Rakel bei dem Druckvorgang aufgrund der näher beieinanderliegenden Stegen gleichmäßiger aufliegt und nicht an den Kanten der Trägerschichtöffnungen hängenbleiben kann. Somit kann auch der Verschleiß der Schablone als auch des verwendeten Rakels bei Mehrfachverwendung erheblich reduziert werden.

Überraschenderweise führt eine derartige Erhöhung der Zahl der Stege im Bereich der Druckbildöffnung auch nicht zu einer Verschlechterung des Druckbilds, wie es von der Verwendung von Drucksieben mit enger Maschenweite bekannt ist und auf den ersten Blick zu erwarten wäre, sondern es kann besonders vorteilhaft dennoch ein ausgezeichnetes Druckbild erreicht werden, da die Stege in der Trägerschicht verfahrensbedingt auf der Lasereintrittsseite bzw. auf der Seite der Strukturschicht insbesondere bei Stegbreiten von etwa lOpm bis 20μηη angeschmolzen werden und somit in der Höhenausdehnung reduziert werden. Somit kann eine eingebrachte Druckpaste unter den abgeschmolzenen Stegen hervorragend zusammenlaufen und ergibt ein sauberes Druckbild über die gesamte Länge der Druckbildöffnung. Insbesondere kann überraschenderweise trotz einer hohen Anzahl von Stegen im gesamten Bereich der Druckbildöffnung eine gleichmäßige Höhe des Druckmediums erreicht werden. Dies ist insbesondere für den Druck von Kontaktfingern einer Frontkontaktierung einer Solarzelle von Vorteil, da über den gesamten Bereich des Kontaktfingers eine ausreichende Fingerhöhe erzielt werden kann, so dass der elektrische Widerstand des Kontaktfingers gering gehalten werden kann aufgrund eines hohen gleichmäßigen Aspektverhältnisses. Das Druckbild beim Druck von Kontaktfingern einer Frontkontaktierung einer Solarzelle kann demnach im Vergleich zu dem Druckbild von Drucksieben und auch Druckschablonen, bei denen die Trägerschichtöffnungen mittels eines herkömmlichen Laserschneidverfahrens ausgebildet werden, signifikant verbessert werden.

Falls es dennoch gewünscht ist, die Anzahl der Stege im Bereich der Druckbildöffnung der Strukturschicht zu reduzieren, indem die Anzahl der Trägerschichtöffnungen reduziert werden und gleichzeitig die Längsausdehnung der Trägerschichtöffnungen vergrößert werden soll, kann die hervorragende Zeitersparnis mittels des erfindungsgemäßen Verfahrens dennoch bereitgestellt werden. Hierfür wird im Folgenden ein alternatives aber ebenfalls besonders zweckmäßiges Ausführungsbeispiel beschrieben. Bei dem alternativen besonders zweckmäßigen Ausführungsbeispiel ist der Unterschied zu dem vorstehend beschriebenen Ausführungsbeispiel derjenige, dass die Position des Laserstrahls relativ zu der Trägerschicht auch während den Laserpulsen und nicht nur zwischen den Laserpulsen des Laserstrahls verfahren wird.

Vorzugsweise wird hierbei bei dem Herausarbeiten einer jeweiligen Trägerschichtöffnung der Reihe die Position des Laserstrahls an einer ersten Position der jeweiligen herauszuarbeitenden Trägerschichtöffnung positioniert und die jeweilige Trägerschichtöffnung mittels eines Laserpulses herausgearbeitet, indem die Position des Laserstrahls während des einen Laserpulses von der ersten Position zu einer zweiten Position der jeweiligen Trägerschichtöffnung verfahren wird. Vorzugsweise wird die Position des Laserstrahls während des einen Laserpulses von der ersten Position zu der zweiten Position der jeweiligen Trägerschichtöffnung in Längsrichtung der Druckbildöffnung verfahren. Somit entsteht nicht eine Trägerschichtöffnung mit einer Querschnittform entsprechend der Querschnittform des defokussierten Laserstrahls auf der Oberfläche der Trägerschicht, sondern eine Langloch-förmige Trägerschichtöffnung, deren Enden eine Form aufweisen, die durch die Querschnittform des defokussierten Laserstrahls bedingt sind (z.B. halbkreisförmige Enden bei einem kreisrunden Querschnitt des defokussierten Laserstrahls oder halbelliptische Enden bei einemelliptischen Querschnitt des defokussierten Laserstrahls).

Vorzugsweise werden die Vorschubgeschwindigkeit bei dem Verfahren der Position des Laserstrahls relativ zu der Trägerschicht von der ersten zur zweiten Position der herauszuarbeitenden Trägerschichtöffnung und/oder die Pulsdauer des Laserpulses des Laserstrahls in Abhängigkeit der Länge der herauszuarbeitenden Trägerschichtöffnung gewählt.

Unabhängig von der konkreten Ausführungsform umfasst das Verfahren gemäß des ersten Aspekts vorzugsweise weiterhin einen Schritt Einstellen einer Form und/oder Größe des Querschnitts des defokussierten Laserstrahls auf Höhe der Oberfläche der Trägerschicht mittels der Fokussiervorrichtung der Laservorrichtung. Vorzugsweise wird hierbei die Breite des Querschnitts des Laserstrahls auf Höhe der Oberfläche der Trägerschicht quer zur Längsausrichtung der Druckbildöffnung in Abhängigkeit der Breite der Druckbildöffnung eingestellt. Wie bereits vorstehend beschrieben, ermöglicht dies den Vorteil, die Größe und/oder Form der herausgearbeiteten Trägerschichtöffnungen den Anforderungen entsprechend zu beeinflussen.

Insbesondere kann die Breite der Trägerschichtöffnungen an die Breite der Druckbildöffnung der Strukturschicht durch Einstellungen an der Fokussiereinrichtung der Laservorrichtung angepasst werden. Vorzugsweise wird der Laserstrahl mittels der Fokussiereinrichtung mit einem im Wesentlichen kreisrunden Querschnitt auf Höhe der Oberfläche der Trägerschicht defokussiert. Gemäß einem alternativen bevorzugten Ausführungsbeispiel wird der Laserstrahl mittels der Fokussiereinrichtung mit einem im Wesentlichen elliptischen Querschnitt auf Höhe der Oberfläche der Trägerschicht defokussiert. Vorzugsweise sind die elliptischen Hauptachsen der Trägerschichtöffnungen hierbei quer, insbesondere senkrecht, zur Längsrichtung der Druckbildöffnung ausgerichtet. Dies ermöglicht es vorteilhaft, die resultierende Form der Stege aufgrund der Ellipsenform der Trägerschichtöffnungen in Querrichtung der Druckbildöffnung gleichmäßiger, insbesondere mit gleichmäßigerer Breite, auszubilden.

Vorzugsweise umfasst das Verfahren weiterhin einen Schritt Einstellen eines oder mehrerer der Parameter Frequenz bzw. Periodendauer des gepulsten Laserstrahls, Pulsdauer der Laserpulse, Tastgrad des gepulsten Laserstrahls, Ein-Aus-Verhältnis des gepulsten Laserstrahls. Dies ermöglicht es zum Beispiel die Stegbreite zwischen benachbarten herausgearbeiteten Trägerschichtöffnungen in Abhängigkeit der eingestellten Vorschubgeschwindigkeit beim Verfahren der Trägerschicht relativ zu der Fokussiereinrichtung der Laservorrichtung zu beeinflussen bzw. einzustellen. Hierbei sind die genannten Parameter voneinander abhängig und bereits durch Einstellen von zwei der genannten Parameter sind die anderen Parameter im Allgemeinen ebenfalls bestimmt. Vorzugsweise wird bei dem Verfahren die Position des Laserstrahls relativ zu der

Trägerschicht zwischen zwei aufeinanderfolgenden Laserpulsen zwischen zwei benachbarten Trägerschichtöffnungen der Reihe von Trägerschichtöffnungen ein Steg in der Trägerschicht ausgebildet. Wie bereits vorstehend beschrieben, kann somit eine vorteilhaft höhere Stabilität der Druckschablone erreicht werden, insbesondere bei stark länglich ausgeprägten Druckbildöffnungen, wie sie zum Beispiel für den Druck von Kontaktfingern einer Frontkontaktierung einer Solarzelle erforderlich ist.

Vorzugsweise wird die Vorschubgeschwindigkeit bei dem Verfahren der Position des Laserstrahls relativ zu der Trägerschicht von einer Position einer herausgearbeiteten Trägerschichtöffnung zu einer Position einer nachfolgend herauszuarbeitenden Trägerschichtöffnung in Abhängigkeit einer vorgegebenen Stegbreite gewählt. Vorzugsweise wird die Vorschubgeschwindigkeit bei dem Verfahren der Position des Laserstrahls relativ zu der Trägerschicht von einer Position einer herausgearbeiteten Trägerschichtöffnung zu einer Position einer nachfolgend herauszuarbeitenden Trägerschichtöffnung des Weiteren in Abhängigkeit der Breite der Trägerschichtöffnungen in Längsrichtung der Druckbildöffnung oder in Abhängigkeit der Breite des Querschnitts des defokussierten Laserstrahls auf Höhe der Oberfläche der Trägerschicht gewählt. Vorzugsweise wird die Vorschubgeschwindigkeit bei dem Verfahren der Position des Lasers relativ zu der Trägerschicht von der Position einer herausgearbeiteten Trägerschichtöffnung zu der Position einer nachfolgend herauszuarbeitenden Trägerschichtöffnung insbesondere kleiner oder im Wesentlichen gleich (BL + SB)/(T - τ) gewählt, wobei BL die Breite der Trägerschichtöffnungen in Längsrichtung der Druckbildöffnung bezeichnet (dies gilt für eine Ausführungsform, bei der die Position des Laserstrahls bei dem Herausarbeiten einer Trägerschichtöffnung nicht verfahren wird; bei Verfahren, bei denen die Position des Laserstrahls auch bei dem Herausarbeiten einer Trägerschichtöffnung verfahren wird, ist BL in Abhängigkeit der Breite des Querschnitts des defokussierten Lasers zu wählen, wobei BL jedoch etwas größer zu wählen ist), SB die vorgegebene Stegbreite bezeichnet, T die Periodendauer des gepulsten Laserstrahls bezeichnet und τ die Pulsdauer der Laserpulse bezeichnet. Somit kann die Trägerschicht relativ zur Fokussiereinrichtung der Laservorrichtung im Zeitraum zwischen zwei Laserpulsen (z.B. gegeben als T - τ) vorteilhaft zumindest um eine Strecke entsprechend der Summe aus der Breite der Trägerschichtöffnungen in Längsrichtung der Druckbildöffnung und der vorgegebenen Stegbreite verfahren werden, um eine Steg der vorbestimmten Breite in der Trägerschicht stehen zu lassen.

Vorzugsweise wird bei dem Verfahren der Position des Laserstrahls relativ zu der Trägerschicht die Fokussiereinrichtung verfahren. Alternativ oder zusätzlich kann bei dem Verfahren der Fokussiereinrichtung der Laservorrichtung relativ zu der Trägerschicht auch die Trägerschicht verfahren werden. Hierbei kann das Verfahren während dem Herausarbeiten einer Reihe von Trägerschichtöffnungen kontinuierlich durchgeführt werden, wenn die Trägerschichtöffnungen jeweils mit nur bereits einem Laserpuls herausgearbeitet bzw. „herausgeschossen" werden. Alternativ kann das Verfahren während dem Herausarbeiten einer Reihe von Trägerschichtöffnungen auch gestuft durchgeführt werden, indem zwischen zwei Pulsen im Wesentlichen eine Strecke entsprechend der Summe aus der Breite der Trägerschichtöffnungen in Längsrichtung der Druckbildöffnung und der vorgegebenen Stegbreite verfahren wird, um an der Position der nächsten herauszuarbeitenden Trägerschichtöffnung gestoppt zu werden, bis die Trägerschichtöffnung nach einer vorgegebenen Anzahl von einem oder mehreren Laserpulsen herausgearbeitet ist, um dann wieder zwischen zwei aufeinanderfolgenden Pulsen im Wesentlichen eine Strecke entsprechend der Summe aus der Breite der Trägerschichtöffnungen in Längsrichtung der Druckbildöffnung und der vorgegebenen Stegbreite zur Position der nächsten herauszuarbeitenden Trägerschichtöffnung verfahren zu werden.

Vorzugsweise umfasst dass das Material der Trägerschicht Metall, insbesondere Edelstahl oder Nickel, und/oder Kunststoff.

Vorzugsweise umfasst die Strukturschicht ein lichtempfindliches Material, insbesondere eine lichtempfindliche Emulsion oder einen Film. Hierbei umfasst das Herausarbeiten der Druckbildöffnung vorzugsweise die Schritte Belichten der Strukturschicht mittels elektromagnetischer Strahlung einer vorgegebenen Wellenlänge oder eines vorgegebenen Wellenlängenbereichs, insbesondere mittels infrarotem, sichtbaren und/oder ultravioletten Licht, mit einem Druckbild des Druckmusters, und Entwickeln des lichtempfindlichen Materials der Strukturschicht.

Vorzugsweise ist die Strukturschicht direkt auf die Trägerschicht aufgebracht oder auf eine zwischen der Trägerschicht und der Strukturschicht aufgebrachte Zwischenschicht aufgebracht.

Vorzugsweise umfasst das Herausarbeiten der Trägerschichtöffnungen weiterhin das Herausarbeiten zumindest einer weiteren sich in Längsrichtung der Druckbildöffnung und parallel zur ersten Reihe von Trägerschichtöffnungen erstreckenden zweiten Reihe von Trägerschichtöffnungen. Hierbei kann bei dem Herausarbeiten einer jeweiligen Trägerschichtöffnung der zweiten Reihe eine Fokussiereinrichtung der Laservorrichtung vorzugsweise an einer Position der jeweiligen Trägerschichtöffnung positioniert werden und vorzugsweise wird die jeweilige Trägerschichtöffnung mittels eines oder mehrerer Laserpulse an dieser Position herausgearbeitet. Vorzugsweise wird die Fokussiereinrichtung der Laservorrichtung nach Herausarbeiten einer Trägerschichtöffnung zwischen zwei aufeinanderfolgenden Laserpulsen von der Position der herausgearbeiteten Trägerschichtöffnung relativ zu der Trägerschicht und in Längsrichtung der länglichen Druckbildöffnung zu der Position der nachfolgend herauszuarbeitenden Trägerschichtöffnung verfahren.

Vorzugsweise überdecken sich jeweils eine Trägerschichtöffnung der ersten Reihe mit einer Trägerschichtöffnung der zumindest einen weiteren zweiten Reihe derart, dass jede Trägerschichtöffnung in der hergestellten Druckschablone aus zwei oder mehr Trägerschichtöffnungen der zumindest zwei Reihen ausgebildet wird, wobei zwischen in Längsrichtung der Druckbildöffnung benachbarten Trägerschichtöffnungen vorzugsweise ein Steg ausgebildet ist. Dies hat den Vorteil, dass selbst breitere Trägerschichtöffnungen mit Breiten größer dem effektiven Querschnitt des Lasers auf der Trägerschicht, d.h. dem Querschnitt mit einer ausreichenden Energiedichte, einfach und zeiteffizient nach dem erfindungsgemäßen Verfahren herausgearbeitet werden, indem zwei oder mehrere im Wesentlichen parallel angeordnete Reihen von Trägerschichtöffnungen herausgearbeitet werden, wobei in Querrichtung zur Druckbildöffnung benachbarte Trägerschichtöffnungen der verschiedenen parallel zueinander angeordneten Reihen sich überdecken und somit in der fertigen Druckschablone jeweils eine breitere Trägerschichtöffnung ausbilden, wobei weiterhin zwischen Trägerschichtöffnungen, die in Längsrichtung der Druckbildöffnung benachbart sind, wieder jeweilige Stege ausgebildet sein können.

Gemäß einem zweiten Aspekt der vorliegenden Erfindung wird eine Druckschablone für den technischen Druck zum Aufbringen eines Druckmusters auf ein Substrat vorgeschlagen, die hergestellt ist gemäß einem Verfahren nach dem vorstehend genannten ersten Aspekt, wobei die Druckschablone eine Trägerschicht der Druckschablone, und eine unter der Trägerschicht liegenden Strukturschicht der Druckschablone umfasst. Hierbei sei betreffend die Vorteile der Druckschablone auf Vorteile verwiesen, die bereits vorstehend im Zusammenhang mit dem erfindungsgemäßen Verfahren und dessen bevorzugten Ausgestaltungen beschrieben sind.

Erfindungsgemäß weist die Strukturschicht eine sich länglich erstreckende, zumindest einem Teil des Druckmusters entsprechende Druckbildoffnung in der Strukturschicht auf, und die Trägerschicht umfasst im Bereich der Druckbildoffnung eine oder mehrere sich in Längsrichtung der Druckbildoffnung erstreckende Reihen von Trägerschichtöffnungen, die jedoch im Gegensatz zu nach herkömmlichen Laserschneidverfahren herausgearbeiteten Trägerschichtöffnungen nicht im Wesentlichen rechteckig ausgebildet sind, sondern entweder entsprechend einem effektiven Querschnitt des Lasers einen runden Randverlauf aufweisen. Gegebenenfalls weisen sie eine Breite quer zur Längsrichtung der Druckbildoffnung auf, die etwa der Länge in Längsrichtung der Druckbildoffnung entspricht, oder sie sind aus zwei oder mehreren in Querrichtung zur Längsrichtung der Druckbildoffnung überlappenden Trägerschichtöffnungen ausgebildet, die jeweils entsprechend einem effektiven Querschnitt des Lasers einen runden Randverlauf aufweisen und gegebenenfalls eine Breite quer zur Längsrichtung der Druckbildoffnung aufweisen, die etwa der Länge in Längsrichtung der Druckbildoffnung entspricht. Vorzugsweise sind die Trägerschichtöffnungen einer Reihe im Wesentlichen kreisrund ausgebildet. Alternativ sind die Trägerschichtöffnungen einer Reihe vorzugsweise im Wesentlichen elliptisch ausgebildet. Hierbei sind die elliptischen Hauptachsen der Trägerschichtöffnungen einer Reihe quer, insbesondere senkrecht, zur Längsrichtung der Druckbildoffnung ausgerichtet. Alternativ sind die Trägerschichtöffnungen einer Reihe im Wesentlichen Langloch-förmig ausgebildet, d.h. länglich aber mit abgerundeten Enden, die entweder im Wesentlichen halbreisförmig oder halbelliptisch ausgebildet sind.

Vorzugsweise umfasst das Material der Trägerschicht Metall, insbesondere Edelstahl oder Nickel, und/oder Kunststoff. Vorzugsweise umfasst die Strukturschicht ein lichtempfindliches Material, insbesondere eine lichtempfindliche Emulsion oder einen Film.

Vorzugsweise ist die Strukturschicht direkt auf die Trägerschicht aufgebracht oder auf eine zwischen der Trägerschicht und der Strukturschicht aufgebrachte Zwischenschicht aufgebracht. Vorzugsweise weist die Trägerschicht im Bereich der Druckbildoffnung genau eine sich in

Längsrichtung der Druckbildoffnung erstreckende Reihe von Trägerschichtöffnungen auf, wobei zwischen benachbarten Trägerschichtöffnungen vorzugsweise ein jeweiliger Steg ausgebildet ist. Vorzugsweise ist der jeweilige Steg auf der der Strukturschicht zugewandten Seite angeschmolzen und somit in der Höhe reduziert im Vergleich zur Höhe der Trägerschicht. Wie vorstehend beschrieben kann dies erfindungsgemäß erreicht, indem die der Strukturschicht zugewandte Seite der Trägerschicht die Lasereintrittsseite ist, d.h. wenn der Laserstrahl auf der der Strukturschicht zugewandten Seite der Trägerschicht auftrifft und schnell weitergeführt wird, entstehen durch thermische Effekte diese erwünschten Höhendifferenzen.

Gemäß einer weiteren zweckmäßigen Ausführung überdecken sich jeweils eine Trägerschichtöffnung einer ersten Reihe mit einer Trägerschichtöffnung zumindest einer weiteren zweiten Reihe derart, dass jede Trägerschichtöffnung in der Druckschablone aus zwei oder mehr Trägerschichtöffnungen der zumindest zwei Reihen ausgebildet wird, wobei zwischen in Längsrichtung der Druckbildöffnung benachbarten Trägerschichtöffnungen vorzugsweise ein jeweiliger Steg ausgebildet ist.

Zusammenfassend kann erfindungsgemäß ein Herstellungsverfahren für eine Druckschablone bereitgestellt werden, bei dem jeweilige Trägerschichtöffnungen in der Trägerschicht der Druckschablone im Bereich der Druckbildöffnung jeweils durch Anwendung eines oder mehrerer Laserpulse an einer Position herausgearbeitet werden bzw.„herausgeschossen" werden, welches im Vergleich zu Herstellungsverfahren, bei denen Trägerschichtöffnungen herkömmlich mittels eines stark fokussierten Laserstrahls umfänglich aus der Trägerschicht herausgeschnitten werden, einfacher und effizienter und mit einem erheblichen Zeitgewinn ausgefüh t werden kann.

Da insbesondere das Herausarbeiten der Trägerschichtöffnung an einer kosten intensiven Laserschneidvorrichtung signifikant verkürzt werden kann, bedeutet diese verbesserte Zeiteffizienz zudem eine erheblich verbesserte Kosteneffizienz bei der Herstellung der Druckschablone. Weiterhin weist eine erfindungsgemäß hergestellte Druckschablone verfahrensbedingt strukturelle Verbesserungen gegenüber Drucksieben als auch Druckschablonen, bei denen Trägerschichtöffnungen herkömmlich mittels eines stark fokussierten Laserstrahls umfänglich aus der Trägerschicht herausgeschnitten werden, auf, da eine erheblich verbesserte Stabilität der Trägerschicht und ein verbessertes Rakelverhalten erreicht wird, und dennoch ein ausgezeichnetes Druckbild erzielt werden kann, insbesondere bei dem Druck von Kontaktfingern einer Frontkontaktierung einer Solarzelle.

Bevorzugte Einsatzgebiete für Druckschablonen gemäß der Erfindung können insbesondere die Folgenden sein: Dickschichtanwendungen, Drucken von Leitpasten, Drucken von Widerstandspasten, Drucken von Wärmeleitpasten bzw. -kleber, Kleber, Silikone, Acryle, höherviskose (entsprechend der Nassschichtstärke) Pasten und Emulsionen, nichtleitende Pasten und Emulsionen. Kurzbeschreibung der Figuren

Fig. 1 zeigt eine Draufsicht auf eine aus dem Stand der Technik bekannte Solarzelle. Fig. 2A zeigt eine Draufsicht auf einen Ausschnitt eines aus dem Stand der Technik bekannten Drucksiebs und Fig. 2B zeigt einen Querschnitt des Ausschnitts des aus dem Stand der Technik bekannten Drucksiebs aus Fig. 2B.

Fig. 3A zeigt eine schematische, strukturschichtseitige Draufsicht auf einen Ausschnitt einer Druckschablone, bei der die Trägerschichtöffnungen herkömmlich mittels eines stark fokussierten Laserstrahls umfänglich aus der Trägerschicht herausgeschnitten sind. Fig. 3B zeigt eine schematische Schnittansicht entlang der Schnittlinie A - A aus Fig. 3A.

Fig. 4A zeigt eine schematische, strukturschichtseitige Draufsicht auf einen Ausschnitt einer Druckschablone, bei der die Trägerschichtöffnungen gemäß einem Verfahren nach einem ersten Ausführungsbeispiel der vorliegenden Erfindung herausgearbeitet sind. Fig. 4B zeigt eine schematische Schnittansicht entlang der Schnittlinie A - A aus Fig. 4A.

Figs. 5A bis 5D illustrieren Schritte eines Verfahrens nach einem Ausführungsbeispiel der vorliegenden Erfindung.

Fig. 6 zeigt eine schematische, strukturschichtseitige Draufsicht auf einen Ausschnitt einer Druckschablone, bei der die Trägerschichtöffnungen gemäß einem Verfahren nach einem zweiten Ausführungsbeispiel der vorliegenden Erfindung herausgearbeitet sind.

Fig. 7 zeigt eine schematische, strukturschichtseitige Draufsicht auf einen Ausschnitt einer Druckschablone, bei der die Trägerschichtöffnungen gemäß einem Verfahren nach einem dritten Ausführungsbeispiel der vorliegenden Erfindung herausgearbeitet sind. Fig. 8 zeigt eine schematische, strukturschichtseitige Draufsicht auf einen Ausschnitt einer

Druckschablone, bei der die Trägerschichtöffnungen gemäß einem Verfahren nach einem vierten Ausführungsbeispiel der vorliegenden Erfindung herausgearbeitet sind.

Fig. 9 zeigt eine schematische, strukturschichtseitige Draufsicht auf einen Ausschnitt einer Druckschablone, bei der die Trägerschichtöffnungen gemäß einem Verfahren nach einem fünften Ausführungsbeispiel der vorliegenden Erfindung herausgearbeitet sind.

Fig. 10 zeigt beispielhaft einen zeitlichen Pulsverlauf eines gepulsten Lasers für die

Verwendung in einem Verfahren nach einem Ausführungsbeispiel der vorliegenden Erfindung. Detaillierte Beschreibung der Figuren und

Bevorzugter Ausführungsbeispiele der Erfindung

Im Folgenden werden verschiedene Ausführungsbeispiele der vorliegenden Erfindung detailliert unter Bezugnahme auf die Figuren beschrieben. Gleiche bzw. ähnliche Elemente in den Figuren werden hierbei mit gleichen Bezugszeichen bezeichnet. Die vorliegende Erfindung ist jedoch nicht auf die beschriebenen Ausführungsmerkmale begrenzt, sondern umfasst weiterhin Modifikationen von Merkmalen der beschriebenen Ausführungsbeispiele und Kombination von Merkmalen verschiedener Ausführungsbeispiele im Rahmen des Schutzumfangs der unabhängigen Ansprüche.

Fig. 1 zeigt beispielhaft eine Draufsicht auf eine aus dem Stand der Technik bekannte Solarzelle 100. Die Solarzelle 100 umfasst eine im Wesentlichen rechteckige lichtaktive Halbleiter- Photovoltaik-Substratschicht, im Folgenden kurz Substrat 1 bezeichnet, auf der vorderseitig eine Frontkontaktierung mit zwei (gegebenenfalls auch mehreren) elektrisch leitenden, parallel zueinander verlaufenden Busbars 102 zum Abführen der elektrischen Energie und zum Verbinden der Solarzelle 100 mit anderen Solarzellen zu einem Solarzellenmodul. Senkrecht zu den Busbars 102 sind eine Vielzahl von ebenfalls parallel zueinander, jedoch quer zu den Busbars 102 verlaufenden Kontaktfingern 101 als Bestandteil der Frontkontaktierung vorgesehen. Diese leiten die bei Lichteinfall in dem Substrat 1 erzeugte elektrische Energie zu den Busbars 102. Um eine hohe Energieeffizienz Solarzelle durch niedrige elektrische Widerstände der Leiterbahnen und eine gleichzeitig möglichst niedrige Abschattung zu ermöglichen, sollen die Kontaktfinger 101 mit einem möglichst großem und über die gesamte Länge der Kontaktfinger 101 gleichmäßigem Aspektverhältnis, d.h. großer Höhe und minimaler Breite, aufgebracht werden.

Fig. 2A zeigt beispielhaft eine Draufsicht auf einen Ausschnitt eines aus dem Stand der Technik bekannten Drucksiebs 200 und Fig. 2B zeigt beispielhaft einen Querschnitt des Ausschnitts des aus dem Stand der Technik bekannten Drucksiebs 200 aus Fig. 2B. Das Drucksieb 200 umfasst eine Fotoemulsionsschicht 201, welches eine Druckbildöffnung 203 zum Drucken der Frontseitenkontaktierung aufweist. Die Fotoemulsionsschicht wird stabilisiert durch ein Siebgewebe 202, welches in der Fotoemulsionsschicht 201 eingebracht ist. Hierbei ergibt sich insbesondere der Nachteil, dass das Siebgewebe 202 auch den freien Druckbereich der Druckbildöffnung ausfüllt und somit zu einem ungleichmäßigen Pastenaufdruck beim Drucken der Frontseitenkontaktierung führen kann, insbesondere im Bereich der Maschenknoten des Siebgewebes 202, speziell, wenn die Maschenknoten des Siebgewebes 202 im Randbereich der Drucklinie (Druckbildöffnung 203) angeordnet sind. Fig. 3A zeigt eine schematische, strukturschichtseitige Draufsicht auf einen Ausschnitt einer Druckschablone, bei der die Trägerschichtöffnungen herkömmlich mittels eines fokussierten Laserstrahls umfänglich aus der Trägerschicht herausgeschnitten sind. Fig. 3B zeigt eine schematische Schnittansicht entlang der Schnittlinie A - A aus Fig. 3A.

Fig. 3A zeigt insbesondere beispielhaft eine Draufsicht auf eine Druckschablone von der Seite der Strukturschicht 22 aus, wobei die Druckschablone mittels eines herkömmlich bekannten Laserschneidverfahrens hergestellt ist." Die Trägerschichtöffnungen 21a werden mittels des fokussierten Lasers entlang des Randes der herauszuarbeitenden Trägerschichtöffnungen 21a aus der Trägerschicht 21 herausgeschnitten. Im Bereich der sich länglich erstreckenden Druckbildöffnung 22a in der Strukturschicht 22 sind drei im Wesentlichen rechteckig geformte Trägerschichtöffnungen 21a in der Trägerschicht 21 ausgebildet, die jeweils durch einen Steg 21b voneinander getrennt sind. Hierbei wird zum Ausschneiden der Trägerschichtöffnungen 21a der Laserstrahl zuerst in einer Ecke positioniert, z.B. bei Position PI in Fig. 3A, und wird dann nach Öffnen der Shuttereinrichtung der Laservorrichtung entlang des Randes der Trägerschichtöffnung 21a zu den Positionen P2, P3 und P4 in den jeweiligen weiteren Ecken geführt und dann zurück zu der Position PI, bis die Trägerschichtöffnung 21a vollständig aus der Trägerschicht 21 herausgeschnitten ist. Nachdem die Shuttereinrichtung der Laservorrichtung geschlossen wurde, kann der fokussierte Laserstrahl in den Bereich der nächsten herauszuarbeitenden Trägerschichtöffnung 21a geführt werden, um diese nächste herauszuarbeitende Trägerschichtöffnung 21a aus der Trägerschicht 21 herauszuschneiden. Fig. 4A zeigt eine schematische, strukturschichtseitige Draufsicht auf einen Ausschnitt einer

Druckschablone, bei der die Trägerschichtöffnungen 21a gemäß einem Verfahren nach einem ersten Ausführungsbeispiel der vorliegenden Erfindung herausgearbeitet sind. Fig. 4B zeigt eine schematische Schnittansicht entlang der Schnittlinie A - A aus Fig. 4A. In der Strukturschicht 22 ist eine durchgängige längliche rechteckige Druckbildöffnung 22a

(zum Beispiel für den Druck eines Kontaktfingers einer Frontkontaktierung einer Solarzelle) herausgebildet. In der über der Strukturschicht 22 liegenden Trägerschicht 21 ist im Bereich der Druckbildöffnung 22a eine Reihe von kreisrunden Trägerschichtöffnungen 21a herausgearbeitet, zwischen denen jeweils ein Steg 21b in der Trägerschicht 21 ausgebildet ist. Der Durchmesser der Trägerschichtöffnungen 21a ist an die Breite der Druckbildöffnung 22a in Querrichtung der Druckbildöffnung 22a angepasst, bzw. entspricht in Fig. 4A im Wesentlichen der Breite der Druckbildöffnung 22a.

Für den Druck eines Kontaktfingers einer Frontkontaktierung einer Solarzelle könnten die Dimensionen in der Praxis zum Beispiel derart beschaffen sein, dass die Breite der Druckbildöffnung 22a bzw. der Durchmesser der Trägerschichtöffnungen 21a im Bereich von etwa 20 bis 100 pm liegt und die Stegbreite der Stege 21b (gemessen etwa im dünnen Mittelbereich des Stegs) im Bereich 10 μηη bis 50 μιτι bzw. vorzugsweise etwa 15pm bis 30μιη liegt.

Ab Stegbreiten unter etwa 30μηη, insbesondere ab etwa 20μιη, ist ein überraschender Effekt einer Höhenreduzierung durch Anschmelzen an der Lasereintrittsseite beobachtbar, wie sie in Fig. 4B an den Stegen 21b illustriert ist. Derartig schmale Stegbreiten können bei herkömmlichen Laserschneidverfahren wie z.B. in Fig. 3A dargestellt aus Stabilitätsgründen nicht erreicht werden, Die Höhenreduzierung der Stege 21b durch Anschmelzen an der Lasereintrittsseite führt zu dem vorteilhaften Effekt, dass eine Druckpaste unter den Stegen 21b auf der Seite des zu bedruckenden Substrats 1 besser zusammenlaufen kann und über die gesamte Länge der Druckbildöffnung ein verbessertes gleichmäßiges Druckbild ermöglicht. Die Trägerschichtöffnungen werden an Positionen PI, P2, ... bis PN erfindungsgemäß mittels eines oder mehrerer Laserpulse eines defokussierten Laserstrahls herausgearbeitet. Hierfür werden die Trägerschicht 21 und die Laservorrichtung von der Position PI bis zur Position PN relativ zueinander in Längsrichtung der des Bereichs der Druckbildöffnung 22a (siehe Pfeil in Fig. 4A) verfahren. Das Verfahren kann hierbei kontinuierlich erfolgen (insbesondere bei sehr kurzen Laserpulsen), wenn die Trägerschichtöffnungen 21a mittels jeweils eines Laserpulses herausgearbeitet werden, oder auch bevorzugt stufenweise, wie im Folgenden unter Bezugnahme auf die Figs. 5a bis 5D illustriert, wenn die Trägerschichtöffnungen 21a mittels jeweils eines oder mehrerer Laserpulses herausgearbeitet werden. In beiden Fällen wird die Verfahrbewegung von einer Position (z.B. PI) zur benachbarten Position (z.B. P2) insbesondere zwischen zwei Laserpulsen durchgeführt.

Figs. 5A bis 5D illustrieren Schritte eines Verfahrens nach einem Ausführungsbeispiel der vorliegenden Erfindung. Gemäß Fig. 5A wird die Laservorrichtung 10 umfassend eine Laserquelle 11 und eine Fokussiereinrichtung 12, die eine Fokussieroptik umfasst, an einer Position PI einer ersten herauszuarbeitenden Trägerschichtöffnung 21a in der Trägerschicht 21 positioniert. Der Laserstrahl wird ist auf die Trägerschicht 21 ausgerichtet und mittels der Fokussieroptik der Fokussiereinrichtung 12 auf der Höhe der Oberfläche bzw. in der Trägerschicht 21 defokussiert, so dass er einen Laserquerschnitt QL aufweist mit einer Größe abhängig von der vorgegebenen Größe QT der herauszuarbeitenden Trägerschichtöffnung 21a (ca. 50% bis 90% der vorgegebenen Größe QT). Im Bereich des Laserquerschnitts QL weist der Laserstrahl eine Energiedichte auf, die ausreichend ist, in Abhängigkeit der Trägerschichtdicke mittels einem oder mehreren Laserpulsen einer vorgegebenen Anzahl n eine Trägerschichtöffnung herauszuarbeiten. Der Laserquerschnitt QL ist hierbei im Allgemeinen etwas kleiner zu wählen als die vorgegebenen Größe QT, da die Wärmeenergie in der Trägerschicht seitlich ausstrahlt und eine Trägerschichtöffnung herausarbeitet, deren Querschnitt größer ist als der Querschnitt QL des defokussierten Laserstrahls.

Nach Positionierung der Laservorrichtung 10 an der Position PI verbleibt die Laservorrichtung 10 für einen vorgegebenen Zeitraum an der Position PI bis die vorgegebene Anzahl n von Laserpulsen abgegeben wurde, d.h. für einen vorgegebenen Zeitraum entsprechend dem n- fachen der Periodendauer T bzw. dem n-fachen des Querwerts der Frequenz des gepulsten Lasers der Laservorrichtung 10 (vorzugsweise genau für die Dauer eines Laserpulses, d.h. vorzugsweise n=l). Danach ist die Trägerschichtöffnung 21a an der Position PI herausgearbeitet bzw. „herausgeschossen" wie es in Fig. 5B schematisch dargestellt ist. Nach dem n-ten Laserpuls wird die Laservorrichtung 10 relativ zur Trägerschicht 21 zur Position P2 der nächsten herauszuarbeitenden Trägerschichtöffnung 21a verfahren und an der Position P2 positioniert, wie es in Fig. 5C schematisch dargestellt ist. Die Verfahrbewegung wird zwischen dem n-ten und dem darauffolgenden (n+l)-ten Laserpuls durchgeführt. Es ist für die Erfindung jedoch nicht wesentlich, ob tatsächlich die Laservorrichtung 10 als Ganzes, die Fokussiervorrichtung 12 und/oder die Trägerschicht 21 verfahren wird.

Nach Positionierung der Laservorrichtung 10 an der Position P2 verbleibt die Laservorrichtung 10 für einen vorgegebenen Zeitraum an der Position P2 bis eine vorgegebene Anzahl m von Laserpulsen abgegeben wurde (vorzugsweise mit m=n, insbesondere vorzugsweise m=l), d.h. für einen vorgegebenen Zeitraum entsprechend dem m-fachen der Periodendauer T bzw. dem m-fachen des Querwerts der Frequenz des gepulsten Lasers der Laservorrichtung 10. Danach ist die Trägerschichtöffnung 21a an der Position P2 herausgearbeitet bzw.„herausgeschossen" wie es in Fig. 5D schematisch dargestellt ist. Hierbei tritt bei Stegbreiten unter etwa 30μηι, insbesondere bei etwa 20μιτι und weniger, wie vorstehend beschrieben der überraschende und vorteilhafte Effekt der Höhenreduzierung des Stegs 21b durch Anschmelzen auf der Lasereintrittsseite der Trägerschicht 21 auf. Nach dem m-ten Laserpuls kann die Laservorrichtung 10 relativ zur Trägerschicht 21 zur Position der nächsten herauszuarbeitenden Trägerschichtöffnung 21a verfahren werden und die Schritte können wiederholt werden, bis die letzte Position PN in der Reihe von Trägerschichtöffnungen 21a erreicht ist und die letzte Trägerschichtöffnung der Reihe herausgearbeitet ist.

Fig. 6 zeigt eine schematische, strukturschichtseitige Draufsicht auf einen Ausschnitt einer Druckschablone, bei der die Trägerschichtöffnungen 21a gemäß einem Verfahren nach einem zweiten Ausführungsbeispiel der vorliegenden Erfindung herausgearbeitet sind. Hierbei ist der Unterschied zu dem Ausführungsbeispiel gemäß Figs. 4A und 4B, dass die Trägerschichtöffnungen 21a nicht kreisförmig sondern ellipsenförmig ausgeprägt sind. Dies kann erreicht werden, indem der Querschnitt QT des Lasers mittels der Fokussiereinrichtung 12 nicht kreisförmig sondern ellipsenförmig auf der Trägerschicht defokussiert wird bzw. entsteht das automatisch besonders auch in Vorschubrichtung durch die Geschwindigkeit beim Schneiden (durchschießen). In der Strukturschicht 22 ist eine durchgängige längliche rechteckige Druckbildöffnung 22a (zum Beispiel für den Druck eines Kontaktfingers einer Frontkontaktierung einer Solarzelle) herausgebildet. In der über der Strukturschicht 22 liegenden Trägerschicht 21 ist im Bereich der Druckbildöffnung 22a eine Reihe von elliptischer Trägerschichtöffnungen 21a herausgearbeitet, zwischen denen jeweils ein Steg 21b in der Trägerschicht 21 ausgebildet ist. Die Hauptachse der elliptischen Trägerschichtöffnungen ist 21a ist quer zur Längsrichtung der Druckbildöffnung 22a ausgerichtet und an die Breite der Druckbildöffnung 22a in Querrichtung der Druckbildöffnung 22a angepasst, bzw. entspricht in Fig. 6 im Wesentlichen der Breite der Druckbildöffnung 22a.

Für den Druck eines Kontaktfingers einer Frontkontaktierung einer Solarzelle könnten die Dimensionen in der Praxis zum Beispiel derart beschaffen sein, dass die Breite der Druckbildöffnung 22a bzw. die Länge der Hauptachsen der elliptischen Trägerschichtöffnungen 21a im Bereich von etwa 25 bis 80 μιη liegt und die Stegbreite der Stege 21b (gemessen etwa im dünnen Mittelbereich des Stegs) im Bereich 5 μηη bis 20 μιτι bzw. vorzugsweise etwa ΙΟμιη bis 15μιη liegt. Auch tritt der vorstehend beschriebene vorteilhafte Effekt der Höhenreduzierung der Stege 21b durch Anschmelzen an der Lasereintrittsseite ab Stegbreiten von etwa unter 30μιτι, insbesondere etwa bei 20μιη ein. Gemäß diesem Ausführungsbeispiel können einerseits breitere Trägerschichtöffnungen 21a herausgearbeitet werden, indem die breiteren Hauptachsen der Ellipsenform quer zur Längsrichtung der Druckbildöffnung 22a ausgerichtet werden. Zudem und insbesondere vorteilhaft können die Stege 21b aufgrund der Ellipsenform bei quer zur Längsrichtung der Druckbildöffnung 22a ausgerichteten Hauptachsen mit in Querrichtung gleichmäßigerer verlaufender Breite ausgebildet werden.

Fig. 7 zeigt eine schematische, st ukturschichtseitige Draufsicht auf einen Ausschnitt einer Druckschablone, bei der die Trägerschichtöffnungen 21a gemäß einem Verfahren nach einem dritten Ausführungsbeispiel der vorliegenden Erfindung herausgearbeitet sind. Hierbei ist der Unterschied zu dem Ausführungsbeispiel gemäß Figs. 4A und 4B, dass die Trägerschichtöffnungen 21a nicht kreisförmig ausgeprägt sind, sondern aus jeweils kreisförmigen Trägerschichtöffnungen gebildet werden, die in einer quer zur Längsrichtung der Druckbildöffnung verlaufenden Reihe angeordnet sind und sich dabei derart überlappen, dass eine einzige Trägerschichtöffnung 21a gebildet wird. Dies kann erreicht werden, indem analog zu Figs. 4A und 4B zuerst gemäß der Vorgehensweise nach Figs. 5A bis 5D eine in Längsrichtung der Druckbildöffnung 22a verlaufende Reihe von kreisrunden (oder in einem anderen Ausführungsbeispiel auch elliptischen) Trägerschichtöffnungen entsprechend der Form und in Abhängigkeit der Größe des Laserquerschnitts QT des defokussierten Lasers herausgearbeitet wird, wobei die Fokussiervorrichtung relativ zu der Trägerschicht von der Position Pll zu der Position PIN verfahren wird und danach analog weitere in Längsrichtung der Druckbildöffnung 22a parallel verlaufende Reihen von Trägerschichtöffnungen herausgearbeitet werden, d.h. beispielhaft eine zweite Reihe von der Position P21 bis zur Position P2N, eine dritte Reihe von der Position P31 bis zur Position P3N und eine vierte Reihe von der Position P41 bis zur Position P4N.

Gemäß diesem Ausführungsbeispiel können selbst breitere Trägerschichtöffnungen 21a herausgearbeitet werden, die eine Breite aufweisen, die deutlich größer ist als die Breite des Querschnitts QT des Lasers, wie in Fig. 7 illustriert. Auch hier ist der vorstehend beschriebene vorteilhafte Effekt der Höhenreduzierung der Stege 21b durch Anschmelzen an der Lasereintrittsseite ab Stegbreiten von etwa unter 30μηη, insbesondere bei etwa 20μηη, beobachtbar. Ist die Öffnung sehr groß, kann aus Festigkeitsgründen zwischen P21 und P31 ein parallel verlaufender Steg zu P2N bzw. P3N vorgesehen sein.

Fig. 8 zeigt eine schematische, strukturschichtseitige Draufsicht auf einen Ausschnitt einer Druckschablone, bei der die Trägerschichtöffnungen 21a gemäß einem Verfahren nach einem vierten Ausführungsbeispiel der vorliegenden Erfindung herausgearbeitet sind. Hierbei werden die Trägerschichtöffnungen 21a jeweils mittels eines Laserpulses herausgearbeitet, wobei der Laserquerschnitt des defokussierten Laserstrahls beispielhaft kreisrund gewählt ist. Im Unterschied zu dem Verfahren nach dem ersten Ausführungsbeispiel der vorliegenden Erfindung gemäß Figs. 4A bis 5D wird die Position des defokussierten Laserstrahls jedoch auch während des Laserpulses, d.h. während des Herausarbeitens der Trägerschichtöffnungen 21a relativ zur Trägerschicht 21 in Längsrichtung der Druckbildöffnung 22a der Strukturschicht 22 verfahren, so dass anstatt kreisrunden Trägerschichtöffnungen 21a Langloch-förmige Trägerschichtöffnungen herausgearbeitet werden. Ein Langloch ist ein längliches Loch, dessen Querschnitt sich zusammensetzt aus einer länglichen Rechteckform an dessen Längsenden jeweils eine halbrunde Form anschließt (z.B. Halbkreise wie in Fig. 8 oder aber auch Halbellipsen, wenn ein elliptischer Querschnitt des defokussierten Lasers gewählt wird).

Speziell wird die Laservorrichtung 10 zuerst an eine Position PI der ersten Trägerschichtöffnung verfahren. Während eines Laserpulses des gepulsten Lasers wird die Position des defokussierten Laserstrahls, dessen defokussierter Querschnitt in diesem Ausführungsbeispiel beispielhaft kreisrund gewählt wurde, von der ersten Position PI zu der zweiten Position P2 der Trägerschichtöffnung verfahren, wobei die Vorschubgeschwindigkeit hierbei im Wesentlichen so gewählt wird, dass sie dem Quotienten aus der Pulsdauer des gepulsten Lasers und dem Abstand der Positionen PI und P2 entspricht. Die Länge der dann herausgearbeiteten Trägerschichtöffnung 21a ist jedoch aufgrund des Querschnitts des defokussierten Laserstrahls größer als der Abstand der Positionen PI und P2 (siehe Fig. 8). Analog zu den vorstehenden Ausführungsbeispielen wird die Position des Laserstrahls zwischen zwei Laserpulsen von der zweiten Position P2 der Trägerschichtöffnung zu einer Position P3 der nachfolgend herauszuarbeitenden Trägerschichtöffnung 21a verfahren. Die Schritte werden wiederholt, bis die Position PN am Ende der Druckbildöffnung erreicht wird. Auch bei diesem Ausführungsbeispiel ist es möglich, statt kreisrunden Laserquerschnitten elliptische Laserquerschnitte einzustellen oder auch weitere Reihen von Trägerschichtöffnungen herauszuarbeiten, die sich mit den Trägerschichtöffnungen der ersten Reihe überdecken, um noch breitere Trägerschichtöffnungen bereitstellen zu können.

Fig. 9 zeigt eine schematische, strukturschichtseitige Draufsicht auf einen Ausschnitt einer Druckschablone, bei der die Trägerschichtöffnungen gemäß einem Verfahren nach einem fünften Ausführungsbeispiel der vorliegenden Erfindung herausgearbeitet sind. Hierbei sind die Trägerschichtöffnungen 21a oval bzw. elliptisch ausgebildet, wobei die Längsrichtung der Trägerschichtöffnungen 21a sich in Längsrichtung der Druckbildöffnung 22 erstreckt. Dies kann z.B. dadurch erreicht werden, dass die Schablone bereits bewegt wird, wenn der Laserimpuls noch nicht abgeschaltet ist, d.h. durch ein„Verwischen" beim Herausarbeiten der Trägerschichtöffnungen 21a.

Fig. 10 zeigt beispielhaft einen zeitlichen Pulsverlauf eines gepulsten Lasers, der geeignet ist für die Verwendung in einem Verfahren nach einem Ausführungsbeispiel der vorliegenden Erfindung. Es ist hierbei nicht für die Erfindung wesentlich, ob ein gepulster Laserstrahl verwendet wird, oder ob ein kontinuierlicher Laserstrahl verwendet wird, der mittels einer mechanischen Shuttervorrichtung durch periodisches Öffnen bzw. Schließen eines Shutters„gepulst" wird. Gemäß einer Pulsfrequenz des Lasers treten Laserpulse wie in Fig. 10 illustriert periodisch nach einer Periodendauer T auf und weisen jeweils eine Pulsdauer τ auf. Es ergeben sich folgende Zusammenhänge. Die Periodendauer entspricht dem Kehrwert der Frequenz, der Tastgrad ist gegeben durch τ/Τ und das Ein-Ausverhältnis ergibt sich aus x/(T - x). Zusammenfassend kann erfindungsgemäß ein Herstellungsverfahren für eine

Druckschablone bereitgestellt werden, bei dem jeweilige Trägerschichtöffnungen in der Trägerschicht der Druckschablone im Bereich der Druckbildöffnung jeweils durch Anwendung eines oder mehrerer Laserpulse an einer Position herausgearbeitet werden bzw.„herausgeschossen" werden, welches im Vergleich zu Herstellungsverfahren, bei denen Trägerschichtöffnungen herkömmlich mittels eines stark fokussierten Laserstrahls umfänglich aus der Trägerschicht herausgeschnitten werden, einfacher und effizienter und mit einem erheblichen Zeitgewinn ausgeführt werden kann. Da insbesondere das Herausarbeiten der Trägerschichtöffnung an einer kostenintensiven Laserschneidvorrichtung signifikant verkürzt werden kann, bedeutet diese verbesserte Zeiteffizienz zudem eine erheblich verbesserte Kosteneffizienz bei der Herstellung der Druckschablone. Weiterhin weist eine erfindungsgemäß hergestellte Druckschablone verfahrensbedingt strukturelle Verbesserungen gegenüber Drucksieben als auch Druckschablonen, bei denen Trägerschichtöffnungen herkömmlich mittels eines stark fokussierten Laserstrahls umfänglich aus der Trägerschicht herausgeschnitten werden, auf, da eine erheblich verbesserte Stabilität der Trägerschicht und ein verbessertes Rakelverhalten erreicht wird, und dennoch ein ausgezeichnetes Druckbild erzielt werden kann, insbesondere bei dem Druck von Kontaktfingern Frontkontaktierung einer Solarzelle.