Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHOD FOR THE PRODUCTION OF MONOHYDROXY-FUNCTIONALIZED DIALKYLPHOSPHINIC ACIDS, ESTERS, AND SALTS USING ETHYLENE OXIDE, AND USE THEREOF
Document Type and Number:
WIPO Patent Application WO/2010/069417
Kind Code:
A1
Abstract:
The invention relates to a method for producing monohydroxy-functionalized dialkylphosphinic acids, esters, and salts, characterized in that a) a phosphinic acid source (I) is reacted with olefins (IV) in the presence of a catalyst A to obtain an alkylphosphonous acid, the salt or ester (II) thereof, b) the obtained alkylphosphonous acid, the salt or ester (II) thereof is reacted with alkylene oxides of formula (V) in the presence of a catalyst B to obtain a monofunctionalized dialkylphosphinic acid derivative (III), wherein R1, R2, R3, R4, R5, R6, R7, R8 are identical or different from each other and independently represent, inter alia, H, C1-C18-alkyl, C6-C18-aryl, C6-C18-aralkyl, C6-C18- alkylaryl, and X represents H, C1-C18-alkyl, C6-C18-aryl, C6-C18-aralkyl,C6-C18-alkylaryl, Mg, Ca, AI, Sb, Sn, Ge, Ti, Fe, Zr, Zn, Ce, Bi, Sr, Mn, Cu, Ni, Li, Na, K and/or a protonated nitrogenous base, catalyst A represents transition metals and/or transition metal compounds and/or catalyst systems composed of a transition metal and/or a transition metal compound and at least one ligand, and catalyst B is a Lewis acid.

Inventors:
HILL MICHAEL (DE)
KRAUSE WERNER (DE)
SICKEN MARTIN (DE)
Application Number:
PCT/EP2009/007140
Publication Date:
June 24, 2010
Filing Date:
October 06, 2009
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
CLARIANT INT LTD (CH)
HILL MICHAEL (DE)
KRAUSE WERNER (DE)
SICKEN MARTIN (DE)
International Classes:
C07F9/48; C08K5/53; C09K21/12
Domestic Patent References:
WO2001042252A12001-06-14
Foreign References:
US20020187977A12002-12-12
EP1905776A12008-04-02
US5190934A1993-03-02
EP0319482A21989-06-07
Other References:
MONTCHAMP J L: "Recent advances in phosphorus-carbon bond formation: synthesis of H-phosphinic acid derivatives from hypophosphorous compounds", JOURNAL OF ORGANOMETALLIC CHEMISTRY, ELSEVIER-SEQUOIA S.A. LAUSANNE, CH, vol. 690, no. 10, 16 May 2005 (2005-05-16), pages 2388 - 2406, XP004877374, ISSN: 0022-328X
SYLVINE DEPRÈLE ET AL: "Palladium-Catalyzed Hydrophosphinylation of Alkenes and Alkynes", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, AMERICAN CHEMICAL SOCIETY, WASHINGTON, DC. US, vol. 124, no. 32, 1 January 2002 (2002-01-01), pages 9387, XP002500862, ISSN: 0002-7863
BRAVO-ALTAMIRANO ET AL: "A novel approach to phosphonic acids from hypophosphorous acid", TETRAHEDRON LETTERS, ELSEVIER, AMSTERDAM, NL, vol. 48, no. 33, 19 July 2007 (2007-07-19), pages 5755 - 5759, XP022163552, ISSN: 0040-4039
SYLVINE DEPRÈLE ET AL: "Environmentally Benign Synthesis of H-Phosphinic Acids Using a Water-Tolerant, Recyclable Polymer-Supported Catalyst", ORGANIC LETTERS, AMERICAN CHEMICAL SOCIETY, US, vol. 6, no. 21, 1 January 2004 (2004-01-01), pages 3805 - 3808, XP002500861, ISSN: 1523-7060, [retrieved on 20040918]
PATRICE RIBIÈRE ET AL: "NiCl2-Catalyzed Hydrophosphinylation", JOURNAL OF ORGANIC CHEMISTRY, AMERICAN CHEMICAL SOCIETY, EASTON.; US, vol. 70, no. 10, 1 January 2005 (2005-01-01), pages 4064 - 4072, XP002530191, ISSN: 0022-3263
FROESTL W ET AL: "PHOSPHINIC ACID ANALOGUES OF GABA. 2. SELECTIVE, ORALLY ACTIVE GABAB ANTAGONISTS", JOURNAL OF MEDICINAL CHEMISTRY, AMERICAN CHEMICAL SOCIETY, WASHINGTON, US, no. 17, 1 January 1995 (1995-01-01), pages 3313 - 3331, XP000999491, ISSN: 0022-2623
PIOTR MAJEWSKI: "A New Method for the Preparation of Bis(1-hydroxyalkyl)-phosphinic Acids", SYTHESIS,, vol. 6, 1 January 1987 (1987-01-01), pages 555 - 557, XP002558292
YAMAGISHI T ET AL: "Diastereoselective synthesis of beta-substituted alpha-hydroxyphosphinates through hydrophosphinylation of alpha-heteroatom-substituted aldehydes", TETRAHEDRON, ELSEVIER SCIENCE PUBLISHERS, AMSTERDAM, NL, vol. 59, no. 6, 3 February 2003 (2003-02-03), pages 767 - 772, XP004404933, ISSN: 0040-4020
J.L. MONTCHAMP, JOURNAL OF ORGANOMETALLIC CHEMISTRY, vol. 690, no. 10, 16 May 2005 (2005-05-16), pages 2388 - 2406
S. DEPRELE ET AL., J. AM. CHEM. SOC., vol. 124, no. 32, 1 January 2002 (2002-01-01), pages 9387
BRAVO-ALTAMIRANO, TETRAHEDRON LETT., vol. 48, no. 33, 19 July 2007 (2007-07-19), pages 5755 - 5759
S. DEPRELE ET AL., ORG. LETT., vol. 6, no. 21, 1 January 2004 (2004-01-01), pages 3805 - 3808
P. RIBIERE ET AL., J. ORG. CHEM., vol. 70, no. 10, 1 January 2005 (2005-01-01), pages 4064 - 4072
W. FROESTL ET AL., J. OF MED. CHEM., AM. CHEM. SOC., 1 January 1995 (1995-01-01), pages 3313 - 3331
Attorney, Agent or Firm:
MIKULECKY, Klaus et al. (DE)
Download PDF:
Claims:
4

Patentansprüche

1. Verfahren zur Herstellung von mono-hydroxyfunktionalisierten Dialkylphosphinsäuren, -estern und -salzen, dadurch gekennzeichnet, dass man a) eine Phosphinsäurequelle (I)

O

Il H-P-H

OX (D mit Olefinen (IV)

in Gegenwart eines Katalysators A zu einer Alkylphosphonigsäure, deren Salz oder Ester (II)

umsetzt, b) die so entstandene Alkylphosphonigsäure, deren Salz oder Ester (II) mit einem Alkyienoxid (V)

O

R5£ RT R R8 (V) in Gegenwart eines Katalysators B und einer Base zum mono-funktionalisierten Dialkylphosphinsäurederivat (III)

umsetzt, wobei R1, R2, R3, R4, R5, R6, R7, R8 gleich oder verschieden sind und unabhängig voneinander H, C-i-Cie-Alkyl, C6-Ci8-Aryl, C6-Ci8-Aralkyl, Cβ-Cis-Alkyl- Aryl, CN, CHO, OC(O)CH2CN, CH(OH)C2H5, CH2CH(OH)CH3, 9-Anthracen, 2-Pyrrolidon, (CH2)mOH, (CH2)mNH2, (CH2)mNCS, (CH2)mNC(S)NH2l (CH2)mSH, (CH2)mS-2-thiazolin, (CH2)mSiMe3, C(O)R9, (CH2)mC(O)R9, CH=CHR9 und/oder CH=CH-C(O)R9 bedeuten und wobei R9 für CrC8-Alkyl oder C6-C18-Aryl steht und m eine ganze Zahl von 0 bis 10 bedeutet und X für H, C1-C18-AIKyI, C6-C18-Aryl, C6-C18-Aralkyl, C6-C18-Alkyl-Aryl, (CH2)kOH, CH2-CHOH-CH2OH, (CH2)kO(CH2)kH, (CH2)k-CH(OH)-(CH2)kH, (CH2-CH2O)kH, (CH2-C[CH3]HO)kH, (CH2-C[CH3]HO^(CH2-CH2OKH1 (CH2-CH2O)K(CH2-C[CH3]HO)H1 (CH2-CH2O)K- alkyl, (CH2-C[CH3]HO)k-alkyl, (CH2-C[CH3]HO)k(CH2-CH2O)k-alkyl, (CH2-CH2O)k(CH2-C[CH3]HO)O-alkyl, (CH2)k-CH=CH(CH2)kH, (CH2)kNH2 und/oder (CH2)kN[(CH2)kH]2 steht, wobei k eine ganze Zahl von O bis 10 bedeutet und/oder für Mg, Ca, AI, Sb, Sn, Ge, Ti, Fe, Zr, Zn, Ce, Bi, Sr, Mn, Cu, Ni1 Li, Na, K, H und/oder eine protonierte Stickstoffbase steht und es sich bei dem Katalysator A um Übergangsmetalle und/oder Übergangsmetall-verbindungen und/oder Katalysatorsysteme handelt, die sich aus einem Übergangs-metall und/oder einer Übergangsmetallverbindung und mindestens einem Liganden zusammensetzen und es sich bei dem Katalysator B um Lewis-säuren handelt.

2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass man die nach Schritt b) erhaltene mono-hydroxyfunktionalisierten Dialkylphosphinsäure, deren Salz oder Ester (III) anschließend in einem Schritt c) mit Metallverbindungen von Mg, Ca, AI, Sb, Sn, Ge, Ti, Fe, Zr, Zn, Ce, Bi, Sr, Mn, Li, Na1 K und/oder einer protonierten Stickstoffbase zu den entsprechenden mono- hydroxyfunktionalisierten Dialkyl-phosphinsäuresaizen (III) dieser Metalle und/oder einer Stickstoffverbindung umsetzt.

3. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass man die nach Schritt a) erhaltene Alkylphosphonigsäure, deren Salz oder Ester (II) und/oder die nach Schritt b) erhaltene mono-hydroxyfunktionalisierte Dialkylphosphinsäure, deren Salz oder Ester (III) und/oder die jeweils resultierende Reaktionslösung davon mit einem Alkylenoxid oder einem Alkohol M-OH und/oder M'-OH verestert, und den jeweils entstandenen Alkylphosphonigsäureester (II) und/oder mono- hydroxyfunktionalisierten Dialkylphosphinsäureester (III) den weiteren Reaktionsschritten b) oder c) unterwirft.

4. Verfahren nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Gruppen Cθ-C-iβ-Aryl, Cβ-Ciβ-Aralkyl und C6-Ciβ-Alkyl- Aryl mit SO3X2, -C(O)CH3, OH, CH2OH, CH3SO3X2, PO3X2, NH2, NO2, OCH3, SH und/oder OC(O)CH3 substituiert sind.

5. Verfahren nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass R1, R2, R3, R4, R5, R6, R7, R8 gleich oder verschieden sind und, unabhängig voneinander H, Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl, Isobutyl, tert. Butyl und/oder Phenyl bedeuten.

6. Verfahren nach einem oder mehreren der Ansprüche 1 bis 5, dadurch gekenn-zeichnet, dass X H, Ca, Mg, AI, Zn, Ti, Fe, Ce, Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl, Isobutyl, tert. Butyl, Phenyl, Ethylenglykol, Propylglykol, Butylglykol, Pentylglykol, Hexylglykol, AIIyI und/oder Glycerin bedeutet.

7. Verfahren nach einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass es sich bei den Übergangsmetallen und/oder Übergangsmetallverbindungen um solche aus der ersten, siebten und achten Nebengruppe handelt.

8. Verfahren nach einem oder mehreren der Ansprüche 1 bis 7, dadurch gekenn-zeichnet, dass es sich bei den Übergangsmetallen und/oder Übergangsmetallverbindungen um Rhodium, Nickel, Palladium, Platin, Ruthenium handelt.

9. Verfahren nach einem oder mehreren der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass es sich bei dem Katalysator B um Lewis-Säuren handelt.

10. Verfahren nach einem oder mehreren der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass es sich bei den in Verfahrensschritt b) eingesetzten Basen um Metalle, Metallhydride, Organometallverbindungen und Metallalkoholate.

11. Verfahren nach einem oder mehreren der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass es sich bei den Alkylenoxiden (V) um Ethylenoxid, 1 ,2-Propylenoxid, 1 ,2-Epoxybutan, 1 ,2-Epoxyethylbenzol, (2,3-Epoxypropyl)benzol, 2,3-Epoxy-1-propanol und/oder 3,4-Epoxy-1-buten handelt.

12. Verfahren nach einem oder mehreren der Ansprüche 1 bis 11 , dadurch gekennzeichnet, dass es bei dem Alkohol der allgemeinen Formel M-OH um lineare oder verzweigte, gesättigte und ungesättigte, einwertige organische Alkohole mit einer Kohlenstoffkettenlänge von Ci-Ci8 und es bei dem Alkohol der allgemeinen Formel M'-OH um lineare oder verzweigte, gesättigte und ungesättigte, mehrwertige organische Alkohole mit einer Kohlenstoffkettenlänge von C1-C-18 handelt.

13. Verwendung von mono-hydroxyfunktionalisierten Dialkylphosphinsäuren, -estern und -salzen hergestellt nach einem oder mehreren der Ansprüche 1 bis 12 als Zwischenprodukt für weitere Synthesen, als Binder, als Vernetzer bzw. Beschleuniger beim Aushärten von Epoxyharzen, Polyurethanen und ungesättigten Polyesterharzen, als Polymerstabilisatoren, als Pflanzenschutzmittel, als Therapeutikum oder Additiv in Therapeutika für Menschen und Tiere, als Sequestrierungsmittel, als Mineralöl-Additiv, als Korrosionsschutzmittel, in Wasch- und Reinigungsmittelanwendungen und in Elektronikanwendungen.

14. Verwendung von mono-hydroxyfunktionalisierten Dialkylphosphinsäuren, -salzen und -estern, die nach einem oder mehreren der Ansprüche 1 bis 12 hergestellt wurden, als Flammschutzmittel, insbesondere Flammschutzmittel für Klarlacke und Intumeszenzbeschichtungen, Flammschutzmittel für Holz und andere cellulosehaltige Produkte, als reaktives und/oder nicht reaktives Flammschutzmittel für Polymere, zur Herstellung von flammgeschützten

Polymerformmassen, zur Herstellung von flammgeschützten Polymerformkörpern und/oder zum flammhemmend Ausrüsten von Polyester und Cellulose-Rein- und Mischgeweben durch Imprägnierung.

15. Flammgeschützte thermoplastische oder duroplastische Polymerformmasse, enthaltend 0,5 bis 45 Gew.-% mono-hydroxyfunktionalisierte Dialkylphosphinsäuren, -salze oder -ester, die nach einem oder mehreren der Ansprüche 1 bis 12 hergestellt wurden, 0,5 bis 99 Gew.-% thermoplastisches oder duroplastisches Polymer oder Mischungen derselben, 0 bis 55 Gew.-% Additive und 0 bis 55 Gew.-% Füllstoff bzw. Verstärkungsmaterialien, wobei die Summe der Komponenten 100 Gew.-% beträgt.

16. Flammgeschützte thermoplastische oder duroplastische Polymer- Formkörper, -Filme, -Fäden und -Fasern, enthaltend 0,5 bis 45 Gew.-% mono- hydroxyfunktionalisierte Dialkylphosphinsäuren, -salze oder -ester, die nach einem oder mehreren der Ansprüche 1 bis 12 hergestellt wurden, 0,5 bis 99 Gew.-% thermoplastisches oder duroplastisches Polymer oder Mischungen derselben, 0 bis 55 Gew.-% Additive und 0 bis 55 Gew.-% Füllstoff bzw.

Verstärkungsmaterialien, wobei die Summe der Komponenten 100 Gew.-% beträgt.

Description:
Verfahren zur Herstellung von mono-hydroxyfunktionalisierten Dialkylphosphinsäuren, -estern und -salzen mittels Ethylenoxid und ihre Verwendung

Die Erfindung betrifft ein Verfahren zur Herstellung von mono- hydroxyfunktionalisierten Dialkylphosphinsäuren, -estern und -salzen mittels Ethylenoxid und ihre Verwendung.

Bisher fehlt es an Verfahren zur Herstellung von mono-hydroxyfunktionalisierten Dialkylphosphinsäuren, -estern und -salzen, die wirtschaftlich und großtechnisch zugänglich sind und die insbesondere eine hohe Raum-/Zeitausbeute ermöglichen. Auch fehlt es an Verfahren, die ohne störende Halogenverbindungen als Edukte ausreichend effektiv sind und zudem an solchen, bei denen die Endprodukte leicht erhalten bzw. isoliert werden können und unter gezielten Reaktionsbedingungen (z. B. Umesterung) gezielt und gewünscht hergestellt werden können.

Diese Aufgabe wird gelöst durch ein Verfahren zur Herstellung von mono- hydroxyfunktionalisierten Dialkylphosphin.säuren, -estern und -salzen, dadurch gekennzeichnet, dass man a) eine Phosphinsäurequelle (I)

O

Il H-P-H

OX (l) mit Olefinen (IV)

in Gegenwart eines Katalysators A zu einer Alkylphosphonigsäure, deren Salz oder Ester (II) umsetzt, b) die so entstandene Alkylphosphonigsäure, deren Salz oder Ester (II) mit einem Alkylenoxid (V)

in Gegenwart eines Katalysators B und einer Base zum mono- hydroxyfunktionalisierten Dialkylphosphinsäurederivat (III)

umsetzt, wobei R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 gleich oder verschieden sind und unabhängig voneinander H, Ci-Ci 8 -Alkyl, C 6 -C 18 -Aryl, C 6 -Ci 8 -Aralkyl, C 6 -Ci 8 -Alkyl- Aryl, CN, CHO, OC(O)CH 2 CN, CH(OH)C 2 H 5 , CH 2 CH(OH)CH 3 , 9=Anthraceπ, 2-Pyrrolidon, (CH 2 ) m OH, (CH 2 ) m NH 2 , (CH 2 ) m NCS, (CH 2 ) m NC(S)NH 2 , (CH 2 ) m SH, (CH 2 ) m S-2-thiazolin. (CH 2 USiMe 3 , C(O)R 9 , (CH 2 ) m C(O)R 9 , CH=CHR 9 und/oder CH=CH-C(O)R 9 bedeuten und wobei R 9 für Ci-C 8 -Alkyl oder C 6 -Ci 8 -Aryl steht und m eine ganze Zahl von O bis 10 bedeutet und X für H, Ci-Ciβ-Alkyl, C 6 -Ci 8 -ArVl, C 6 -C 1 8-Aralkyl, C 6 -Ci8-Alkyl-Aryl, (CH 2 ) k OH, CH 2 -CHOH-CH 2 OH, (CH 2 ) k O(CH 2 ) k H, (CH 2 ) k -CH(OH)-(CH 2 ) k H, (CH 2 -CH 2 O) k H, (CH 2 -C[CH 3 ]HO) k H, (CH2-C[CH3]HO)k(CH2-CH 2 O)kH, (CH 2 -CH 2 O)H(CH 2 -C[CH 3 ]HO)H 1 (CH 2 -CH 2 O)Ir alkyl, (CH 2 -C[CH 3 ]HO) k -alkyl, (CH 2 -C[CH 3 ]HO) k (CH 2 -CH 2 O) k -alkyl, (CH 2 -CH 2 O) k (CH 2 -C[CH 3 ]HO)O-alkyl, (CH 2 ) k -CH=CH(CH 2 ) k H, (CH 2 ) k NH 2 und/oder (CH 2 ) k N[(CH 2 ) k H] 2 steht, wobei k eine ganze Zahl von O bis 10 bedeutet und/oder für Mg, Ca, AI, Sb, Sn 1 Ge, Ti, Fe, Zr, Zn, Ce, Bi, Sr, Mn, Cu, Ni, Li, Na, K, H und/oder eine protonierte Stickstoffbase steht und es sich bei dem Katalysatoren A um Übergangsmetalle und/oder Übergangsmetallverbindungen und/oder Katalysatorsysteme handelt, die sich aus einem Übergangs-metall und/oder einer Übergangsmetallverbindung und mindestens einem Liganden zusammensetzen und es sich bei dem Katalysator B um Lewis-Säuren handelt.

Bevorzugt wird die nach Schritt b) erhaltene mono-hydroxyfunktionalisierte Dialkylphosphinsäure, deren Salz oder Ester (III) anschließend in einem Schritt c) mit Metallverbindungen von Mg, Ca, AI, Sb, Sn 1 Ge, Ti, Fe, Zr, Zn, Ce, Bi, Sr, Mn, Li, Na, K und/oder einer protonierte Stickstoffbase zu den entsprechenden mono- hydroxyfunktionalisierten Dialkylphosphinsäuresalzen (Ml) dieser Metalle und/oder einer Stickstoffverbindung umgesetzt.

Bevorzugt wird die nach Schritt a) erhaltene Alkylphosphonigsäure, deren Salz oder Ester (II) und/oder die nach Schritt b) erhaltene mono- hydroxyfunktionalisierte Dialkylphosphinsäure, deren Salz oder Ester (III) und/oder die jeweils resultierende Reaktionslösung davon mit einem Alkylenoxid oder einem Alkohol M-OH und/oder M'-OH verestert, und der jeweils entstandene Alkylphosphonigsäureester (II) und/oder mono-hydroxyfunktionalisierte Dialkylphosphinsäureester (III) den weiteren Reaktionsschritten b) oder c) unterworfen.

Bevorzugt sind die Gruppen C θ -C-is-Aryl, Cβ-C-is-Aralkyl und Cβ-Ciβ-Alkyl-Aryl mit SO 3 X 2 , G(O)CH 3 , OH, CH 2 OH, CH 3 SO 3 X 2 , PO 3 X 2 , NH 2; NO 2; OCH 3: SH und/oder OC(O)CH 3 substituiert.

Bevorzugt sind R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 gleich oder verschieden und bedeuten, unabhängig voneinander H, Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl, Isobutyl, tert. Butyl und/oder Phenyl.

Bevorzugt ist X H, Ca, Mg, AI, Zn, Ti, Fe, Ce, Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl, Isobutyl, tert.-Butyl, Phenyl, Ethylenglykol, Propylglykol, Butylglykol, Pentylglykol, Hexylglykol, AIIyI und/oder Glycerin.

Bevorzugt ist m = 1 bis 10 und k = 2 bis 10. Bevorzugt wird das Katalysatorsystem A jeweils durch Umsetzung von einem Übergangsmetall und/oder einer Übergangsmetallverbindung und mindestens einem Liganden gebildet.

Bevorzugt handelt es sich bei den Übergangsmetallen und/oder

Übergangsmetallverbindungen um solche aus der siebten und achten Nebengruppe.

Bevorzugt handelt es sich bei den Übergangsmetallen und/oder Übergangsmetallverbindungen um Rhodium, Nickel, Palladium, Platin, Ruthenium.

Bevorzugt handelt es sich bei dem Katalysator B um Lewis-Säuren.

Bevorzugt handelt es sich bei den in Verfahrensschritt b) eingesetzten Basen um Metalle, Metallhydride, Organometallverbindungen und Metallalkoholate.

Bevorzugt handelt es sich bei den Alkylenoxiden (V) um Ethylenoxid, 1 ,2-Propylenoxid, 1 ,2-Epoxybutan, 1 ,2-Epoxyethylbenzol, (2.3-Epoxypropyl)benzol. 2.3-Epoxy-1-propanol und/oder 3,4-Epoxy-1-buten.

Bevorzugt handelt es bei dem Alkohol der allgemeinen Formel M-OH um lineare oder verzweigte, gesättigte und ungesättigte, einwertige organische Alkohole mit einer Kohlenstoffkettenlänge von C-ι-Ci 8 und bei dem Alkohol der allgemeinen Formel M'-OH um lineare oder verzweigte, gesättigte und ungesättigte, mehrwertige organische Alkohole mit einer Kohlenstoffkettenlänge von C- I -Ci 8 .

Die Erfindung betrifft auch die Verwendung von mono-hydroxyfunktionalisierten Dialkylphosphinsäuren, -estern und -salzen (III) hergestellt nach einem oder mehreren der Ansprüche 1 bis 12 als Zwischenprodukt für weitere Synthesen, als Binder, als Vernetzer bzw. Beschleuniger beim Aushärten von Epoxyharzen, Polyurethanen, ungesättigten Polyesterharzen, als Polymerstabilisatoren, als Pflanzenschutzmittel, als Therapeutikum oder Additiv in Therapeutika für Menschen und Tiere, als Sequestrierungsmittel, als Mineralöl-Additiv, als Korrosionsschutzmittel, in Wasch- und Reinigungsmittelanwendungen, in Elektronikanwendungen.

Die Erfindung betrifft ebenfalls die Verwendung von mono- hydroxyfunktionalisierten Dialkylphosphinsäuren, -salzen und -estern, die nach einem oder mehreren der Ansprüche 1 bis 12 hergestellt wurden, als Flammschutzmittel, insbesondere Flammschutzmittel für Klarlacke und Intumeszenzbeschichtungen, Flammschutzmittel für Holz und andere cellulosehaltige Produkte, als reaktives und/oder nicht reaktives Flammschutzmittel für Polymere, zur Herstellung von flammgeschützten

Polymerformmassen, zur Herstellung von flammgeschützten Polymerformkörpern und/oder zum flammhemmend Ausrüsten von Polyester und Cellulose-Rein- und Mischgeweben durch Imprägnierung.

Die Erfindung betrifft zudem eine flammgeschützte thermoplastische oder duroplastische Polymerformmasse, enthaltend 0,5 bis 45 Gew.-% mono- hydroxyfunktionalisierte Dialkylphosphinsäuren, -salze oder -ester, die nach einem oder mehreren der Ansprüche 1 bis 12 hergestellt wurden, 0,5 bis 99 Gew.-% thermoplastisches oder duroplastisches Polymer oder Mischungen derselben, 0 bis 55 Gew.-% Additive und 0 bis 55 Gew.-% Füllstoff bzw.

Verstärkungsmaterialien, wobei die Summe der Komponenten 100 Gew.-% beträgt.

Schließlich betrifft die Erfindung zudem flammgeschützte thermoplastische oder duroplastische Polymer-Formkörper, -Filme,- Fäden und -Fasern, enthaltend 0,5 bis 45 Gew.-% mono-hydroxyfunktionalisierte Dialkylphosphinsäuren, -salze oder -ester (III), die nach einem oder mehreren der Ansprüche 1 bis 12 hergestellt wurden, 0,5 bis 99 Gew.-% thermoplastisches oder duroplastisches Polymer oder Mischungen derselben, 0 bis 55 Gew.-% Additive und 0 bis 55 Gew.-% Füllstoff bzw. Verstärkungsmaterialien, wobei die Summe der Komponenten 100 Gew.-% beträgt. Alle vorgenannten Umsetzungen können auch stufenweise ausgeführt werden; ebenso können in den verschiedenen Verfahrensschritten auch die jeweiligen resultierenden Reaktionslösungen eingesetzt werden.

Bevorzugt handelt es sich bei der mono-hydroxyfunktionalisierten Dialkylphosphinsäure um 2-(Ethylhydroxyphosphinyl)-1 -hydroxyethan, 2-(Propylhydroxyphosphinyl)-1 -hydroxyethan, 2-(i-Propylhydroxyphosphinyl)-1 - hydroxyethan, 2-(Butylhydroxy-phosphinyl)-1 -hydroxyethan, 2-(sec-Butylhydroxy- phosphinyl)-1 -hydroxyethan, 2-(i-Butylhydroxy-phosphinyl)-1 -hydroxyethan, 2-(2-Phenylethylhydroxyphosphinyl)-1 -hydroxyethan, 2-(Ethylhydroxyphosphinyl)- 1-methyl-1 -hydroxyethan, 2-(Propylhydroxy-phosphinyl)-1-methyl-1 -hydroxyethan, 2-(i-Propylhydroxyphosphinyl)-1 -methyl-1 -hydroxyethan, 2-(Butylhydroxyphosphinyl)-1 -methyl-1 -hydroxyethan, 2-(sec-Butyl-hydroxy- phosphinyl)-1 -methyl-1 -hydroxyethan, 2-(i-Butylhydroxy-phosphinyl)-1 -methyl-1 - hydroxyethan, 2-(2-Phenylethylhydroxyphosphinyl)-1 -methyl-1 -hydroxyethan.

Bevorzugt handelt es sich bei dem mono-hydroxyfunktionalisierten Dialkylphos- phinsäureester um Methyl-, Ethyl-; i-Propyl-; Butyl-; Phenyl-, 2-Hydroxyethyl-, 2-Hydroxypropyl-, 3-Hydroxypropyl-, 4-Hydroxybutyl- und/oder 2,3-Dihydroxypropylester der vorgenannten mono-hydroxyfunktionalisierten Dialkylphosphinsäuren.

Bevorzugt handelt es sich bei dem mono-hydroxyfunktionalisierten Dialkylphosphin-säure-Salz um ein Aluminium(lll)-, Calcium(ll)-, Magnesium (II)-, Cer(lll)-, Ti(IV)- und/oder Zink(ll)salz der vorgenannten mono- hydroxyfunktionalisierten Dialkylphosphinsäuren.

Bevorzugt handelt es sich bei den Übergangsmetallen für den Katalysator A um Elemente der siebten und achten Nebengruppe (nach moderner Nomenklatur ein Metall der Gruppe 7, 8, 9 oder 10), wie etwa Rhenium, Ruthenium, Cobalt, Rhodium, Iridium, Nickel, Palladium, Platin. Bevorzugt werden als Quelle der Übergangsmetalle und Übergangsmetallverbindungen deren Metallsalze verwendet. Geeignete Salze sind solche von Mineralsäuren, die die Anionen Fluorid, Chlorid, Bromid, lodid, Fluorat, Chlorat, Bromat, lodat, Fluorit, Chlorit, Bromit, lodit, Hypofluorit, Hypochlorit, Hypobromit, Hypoiodit, Perfluorat, Perchlorat, Perbromat, Periodat, Cyanid, Cyanat, Nitrat, Nitrid, Nitrit, Oxid, Hydroxid, Borat, Sulfat, Sulfit, Sulfid, Persulfat, Thiosulfat, Sulfamat, Phosphat, Phosphit, Hypophosphit, Phosphid, Carbonat und Sulfonat, wie etwa Methansulfonat, Chlorosulfonat, Fluorosulfonat, Trifluoromethansulfonat, Benzolsulfonat, Naphthylsulfonat, Toluolsulfonat, t-Butylsulfonat, 2-Hydroxypropansulfonat und sulfonierte lonentauscherharze; und/oder organische Salze, wie etwa Acetyl-acetonate und Salze einer Carbonsäure mit bis zu 20 Kohlenstoffatomen, wie etwa Formiat, Acetat, Propionat, Butyrat, Oxalat, Stearat und Zitrat einschließlich halogenierter Carbonsäuren mit bis zu 20 Kohlenstoffatomen, wie etwa Trifluoracetat, Trichloracetat, enthalten.

Eine weitere Quelle der Übergangsmetalle und Übergangsmetallverbindungen stellen Salze der Übergangsmetalle mit Tetraphenylborat- und halogenierten Tetraphenylboratanionen, wie etwa Perfluorophenylborat, dar.

Geeignete Salze beeinhalten ebenso Doppelsalze und Komplexsalze bestehend aus einem oder mehreren Übergangsmetallionen und unabhängig voneinander ein oder mehrere Alkalimetall-, Erdalkalimetall-, Ammonium-, organische Ammonium-, Phosphonium- und organische Phosphoniumionen und unabhängig voneinander ein oder mehrere oben genannter Anionen. Geeignete Doppelsalze stellen z. B. Ammoniumhexachloropalladat und Ammoniumtetrachloropalladat dar.

Bevorzugt ist eine Quelle der Übergangsmetalle das Übergangsmetall als Element und/oder eine Übergangsmetallverbindung in dessen null-wertigem Zustand.

Bevorzugt wird das Übergangsmetall metallisch eingesetzt oder als Legierung mit weiteren Metallen verwendet, wobei hier Bor, Zirconium, Tantal, Wolfram, Rhenium, Kobalt, Iridium, Nickel, Palladium, Platin und/oder Gold bevorzugt ist. Dabei ist der Übergangsmetallgehalt in der eingesetzten Legierung bevorzugt 45 - 99,95 Gew.-%.

Bevorzugt wird das Übergangsmetall mikrodispers (Teilchengröße 0,1 mm - 100 μm) eingesetzt.

Bevorzugt wird das Übergangsmetall auf einem Metalloxid wie etwa Aluminiumoxid, Siliciumdioxid, Titandioxid, Zirkoniumdioxid, Zinkoxid, Nickeloxid, Vanadiumoxid, Chromoxid, Magnesiumoxid, Celite ® , Kieselgur, auf einem Metallcarbonat wie etwa Bariumcarbonat, Calciumcarbonat, Strontiumcarbonat, auf einem Metallsulfat wie etwa Bariumsulfat, Calciumsulfat, Strontiumsulfat, auf einem Metallphosphat wie etwa Aluminiumphosphat, Vanadiumphosphat, auf einem Metallcarbid wie etwa Siliconcarbid, auf einem Metallaluminat wie etwa Calciumaluminat, auf einem Metallsilikat wie etwa Aluminiumsilikat, Kreiden, Zeolithe, Bentonit, Montmorillonit, Hectorit, auf funktionalisierten Silikaten, funktionalisierten Silikagelen wie etwa SiliaBond ® , QuadraSil™, auf funktionalisierten Polysiloxanen wie etwa Deloxan ® , auf einem Metallnitrid, auf Kohle, Aktivkohle, Mullite, Bauxite, Antimonite, Scheelite, Perovskite, Hydrotalcite, Heteropolyanion.ep., auf funktionaüsierter und unfunktionalisierter Ceüulose, Chitosan, Keratin, Heteropolyanionen, auf lonentauschern wie etwa Amberlite™, Amberjet™, Ambersep™, Dowex ® , Lewatit ® , ScavNet ® , auf funktionalisierten Polymeren wie etwa Chelex ® , QuadraPure™, Smopex ® , PolyOrgs ® , auf polymergebundenen Phosphanen, Phosphanoxiden, Phosphinaten, Phosphonaten, Phosphaten, Aminen, Ammoniumsalzen, Amiden, Thioamiden, Harnstoffen, Thioharnstoffen, Triazinen, Imidazolen, Pyrazolen, Pyridinen, Pyrimidinen, Pyrazinen, Thiolen, Thiolether, Thiolester, Alkoholen, Alkoxiden, Ether, Ester, Carbonsäuren, Acetaten, Acetalen, Peptiden, Hetarenen, Polyethylenimin/Siliciumdioxid und/oder Dendrimeren geträgert verwendet.

Geeignete Quellen der Metallsalze und/oder Übergangsmetalle stellen bevorzugt ebenfalls deren Komplexverbindungen dar. Komplexverbindungen der Metallsalze und/oder Übergangsmetalle setzen sich aus den Metallsalzen bzw. Übergangsmetallen und einem oder mehreren Komplexbildnern zusammen. Geeignete Komplexbildner sind z. B. Olefine, Diolefine, Nitrile, Dinitrile, Kohlenmonoxid, Phosphine, Diphosphine, Phosphite, Diphosphite, Dibenzylidenaceton, Cyclopentadienyl, Indenyl oder Styrol. Geeignete Komplexverbindungen der Metallsalze und/oder Übergangsmetalle können auf den oben genannten Trägermaterialien geträgert sein.

Bevorzugt ist der Gehalt an den genannten geträgerten Übergangsmetallen 0,01 bis 20 Gew.-%, vorzugsweise 0,1 bis 10 Gew.-%, insbesondere 0,2 bis 5 Gew.-%, bezogen auf die Gesamtmasse des Trägermaterials.

Geeignete Quellen von Übergangsmetallen und Übergangsmetallverbindungen sind beispielsweise Palladium, Platin, Nickel, Rhodium; Palladium, Platin, Nickel oder Rhodium auf Alumina, auf Silika, auf Bariumcarbonat, auf Bariumsulfat, auf Calciumcarbonat, auf Strontiumcarbonat, auf Kohle, auf Aktivkohle; Platin- Palladium-Gold-, Aluminum-Nickel-, Eisen-Nickel-, Lanthanoid-Nickel, Zirconium- Nickel-, Platin-Iridium-, Platin-Rhodium-Legierung; Raney ® -Nickel, Nickel-Zink- Eisen-Oxid; Palladium(ll)-, Nickel(ll)- ,Platin(ll)-, Rhodiumchlorid, -bromid, -iodid, -fluorid, -hydrid, -oxid, -peroxid, -cyanid, -sulfat, -nitrat, -phosphid, -borid, -chromoxid, -cobaltoxid, -carbonathydroxid, -cyclohexanbutyrat, -hydroxid, -molybdat, -octanoat, -Oxalat, -Perchlorat, -phthalocyanin, -5,9,14,18,23,27,32,36- octabυtoχy-2,3-nanhthalocyanin, -sulfamat, -perchlorat -thiocyanat, -bis(2, 2,6,6- tetramethyl-3,5-heptanedionat), -propionat, -acetat, -stearat, -2-ethylhexanoat, -acetylacetonat, -hexafluoroacetyl-acetonat, -tetrafluoroborat, -thiosulfat, -trifluoroacetat, -phthalocyanintetrasulfonsäure Tetranatriumsalz, -methyl, -cyclopentadienyl, -methylcyclopentadienyl, -ethylcyclopenta-dienyl,

-pentamethylcyclopentadienyl, -2,3,7,8,12,13,17,18-octaethyl-21 H,23H-porphin, -5,10,15,20-tetraphenyl-21 H,23H-porphin, -bis(5-[[4-(dimethylamino)phenyl]imino]- 8(5H)-quinolinon), -2,11 , 20,29-tetra-tert-butyl-2,3-naphthalocyanin, -2,9,16,23- tetraphenoxy-29H,31 H-phthalocyanin, -5,10,15,20-tetrakis(pentafluorophenyl)- 21 H,23H-porphin und deren 1 ,4-Bis(diphenylphosphin)butan-,

1 ,3-Bis(diphenylphos-phino)propan-, 2-(2'-Di-tert-butylphosphin)biphenyl-,

Acetonitril-, Benzonitril-, Ethylendiamin-, Chloroform-,

1 ,2-Bis(phenylsulfinyl)ethan-, 1 ,3-Bis(2,6-diisopropylphenyl)imidazoliden)(3- chloropyridyl)-, 2'-(Dimethylamino)-2-biphenylyl-, Dinorbomylphosphin-, 2-(Dimethylamino-methyl)ferrocen-, AIIyI-, Bis(Diphenylphos-phino)butan-, (N-succinimidyl)bis-(triphenylphosphin)-, Dimethylphenylphosphin-, Methyldiphenylphosphin-, 1 ,10-Phenanthrolin-, 1 ,5-Cyclooctadien-, N,N,N',N'-Tetra-methylethylendiamin-, Triphenyl-phosphin-, Tri-o-tolylphosphin-, Tricyclohexylphosphin-, Tributylphosphin-, Triethylphosphin-, 2,2'-Bis(diphenylphosphino)-1 ,1'-binaphthyl-, 1 ,3-Bis(2,6- diisopropylphenyl)imidazol-2-yliden-, 1 ,3-Bis(mesityl)imidazol-2-yliden-, 1 ,1'-Bis(di- phenylphosphino)ferrocen-, 1 ,2-Bis(diphenylphosphino)ethan-, N-Methylimidazol-, 2,2'-Bipyridin-, (Bicyclo[2.2.1]-hepta-2,5-dien)-, Bis(di-tert-butyl(4- dimethylaminophenyl)phosphin)-, Bis(tert.-butylisocyanid)-, 2-Methoxyethylether-, Ethylenglycoldimethylether-, 1 ,2-Dimethoxyethan-, Bis(1 ,3-diamino-2-propanol)-, Bis(N,N-diethylethylendiamin)-, 1 ,2-Diaminocyclohexan-, Pyridin-, 2,2':6',2"- terpyridin-, Diethylsulfid-, Ethylen-.Amin-Komplexe; Kalium-, Natrium-, Ammoniumhexachloro-palladat(IV), Kalium-, Natrium-, Ammonium- tetrachloropalladat(ll), Bromo(tri-tert-butylphosphin)palladium(l) Dimer, (2-Methyl- allyl)palladium(ll)chlorid Dimer, Bis(dibenzylidenaceton)palladium(0), Tris(di- benzylidenaceton)dipalladium(O), Tetrakis(triphenylphosphin)palladium(0), Tetrakis-(tricyc!ohexy!phosphin)pa!!adium (0), Bis[1 ,2- bis(diphenylphosphin)ethan]-palladium(0), BisCS.δ.S'.δ'-dirnethoxydibenzyliden- aceton)palladium(O). Bis(tri-tert-butylphosphin)palladium(0). meso- Tetraphenyltetra-benzoporphin Palladium,

Tetrakis(methyldipheπylphosphin)palladium(0), Tris(3,3',3"-phophinidyn- tris(beπzolsulfonato)palladium(0) Nonaπatriumsalz, 1 ,3-Bis(2,4,6-trimethylprienyl)- imidazol-2-yliden(1 ,4-naphthoquinon)palladium(0), 1 ,3-Bis(2,6-diisopropylphenyl)- imidazol-2-yliden(1 ,4-naphthoquinon)palladium(0), und deren Chloroform- Komplex;

Allylnickel(ll)chlorid Dimer, Ammoniumnickel(ll)sulfat, Bis(1 ,5-cyclooctadien)nickel(0), Bis(triphenylphosphin)dicarbonylnickel(0), Tetrakis(triphenylphosphin)nickel(θj, Tetrakis(triphenylphosphit)nickel(0), Kaliumhexafluoronickelat(IV), Kaliumtetracyanonickelat(ll), Kaliumnickel(IV)paraperiodat, Dilithiumtetrabromonickelat(ll), Kaliumtetracyanonickelat(ll); Piatin(IV)chlorid, -oxid, -sulfid, Kalium-, Natrium-,

Ammoniumhexachloroplatinat(IV), Kalium-, Ammoniumtetrachloroplatinat(ll), Kaliumtetracyanoplatinat(ll), Trimethyl(methylcyclopentadienyl)platin(IV), cis-Diammintetrachloroplatin(IV), Kaliumtrichloro(ethylen)platinat(ll), Natriumhexahydroxyplatinat(IV), Tetraaminplatin(ll)tetrachloroplatinat(ll), Tetrabutylammoniumhexachloroplatinat(IV), Ethylenbis(triphenylphosphiπ)platin(0), Platin(0)-1 ,3-divinyl-1 ,1 ,3,3- tetramethyldisiloxan, Platin(0)-2,4,6,8-tetramethyl-2,4,6,8- tetravinylcyclotetrasiloxan, Tetrakis(triphenylphos-phin)platin(0), Platinoctaethylporphyrin, Chloroplatinsäure, Carboplatin;

Chlorobis(ethylen)rhodium Dimer, Hexarhodiumhexadecacarbonyl, Chloro(1 ,5- cyclooctadien)rhodium Dimer, Chloro(norbomadien)-rhodium Dimer, Chloro(1 ,5- hexadien)rhodium Dimer.

Bevorzugt handelt es sich bei den Liganden um Phosphine der Formel (VI)

PR 10 3 (VI) in der die Reste R 10 unabhängig voneinander für Wasserstoff, geradkettiges, verzweigtes oder cyclisches CrC 2 o-Alkyl, C 6 -C 2 o-Alkylaryl, C 2 -C 2O -AI kenyl, C 2 -C 20 - Alkinyl, CrC 20 -Carboxy!at, C 1 -C 2O -AIkOXy, C 2 -C 20 -A! kenyloxy, C 2 -C- 2 o-A!kiny!oxy, C 2 -C 20 -Alkoxy-carbonyl, C r C 2 o-Alkylthio, C r C 20 -Alkylsulfonyl, CrC^-Alkylsulfinyl, SiIyI und/oder deren Derivative und/oder durch wenigstens ein R 11 substituiertes Phenyl- oder durch wenigstens ein R 11 substituiertes Naphtyl stehen. R 11 steht unabhängig voneinander für Wasserstoff, Fluor, Chlor, Brom, lod, NH 2 , Nitro, Hydroxy, Cyano, Formyl, geradkettiges, verzweigtes oder cyclisches CrC 20 -Alkyl, C 1 -C 20 -AIkOXy, HN(C 1 -C 20 -Alkyl), N (C 1 -C 20 -Al kyl) 2 , -CO 2 -(C r C 20 -Alkyl),

-CONtCrC^-Alkylk, -OCO(C r C 20 -Alkyl), NHCOfCrCzo-Alkyl), C 1 -C 20 -ACyI, -SO 3 M, -SO 2 N(R 12 )M, -CO 2 M, -PO 3 M 2 , -AsO 3 M 2 , -SiO 2 M, -C(CF 3 ) 2 OM (M = H, Li, Na oder K), wobei R 12 Wasserstoff, Fluor, Chlor, Brom, lod, geradkettiges, verzweigtes oder cyclisches C-i-C 20 -Alkyl, C 2 -C 20 -Alkenyl, C 2 -C 20 -Al kinyl, C 1 -C 20 - Carboxylat, CrC 20 -Alkoxy, C 2 -C 20 -Alkenyloxy, C 2 -C 20 -Alkinyloxy, C 2 -C 20 -

Alkoxycarbonyl, CrC 20 -Alkylthio, CrC^-Alkylsulfonyl, C 1 -C 2 o-Alkylsulfinyl, SiIyI und/oder deren Derivative, Aryl, C 6 -C 20 -Arylalkyl, C 6 -C 20 -Alkylaryl, Phenyl und/oder Biphenyl bedeutet. Vorzugsweise sind alle Gruppen R 10 identisch. Geeignete Phosphine (VI) sind beispielsweise Trimethyl-, Triethyl-, Tripropyl-, Triisopropyl-, Tributyl-, Triisobutyl-, Triisopentyl-, Trihexyl-, Tricyclohexyl-, Trioctyl-, Tridecyl-, Triphenyl-, Diphenylmethyl-, Phenyldimethyl-, Tri(o-tolyl)-, Tri(p-tolyl)-, Ethyldiphenyl-, Dicyclohexylphenyl-, 2-Pyridyldiphenyl-, Bis(6-methyl-2pyridyl)- phenyl-, Tri-(p-chlorophenyl)-, Tri-(p-methoxyphenyl)-, Diphenyl(2- sulfonatophenyl)phosphin; Kalium-, Natrium- und Ammoniumsalze von Diphenyl(3-sulfonatophenyl)phosphin, Bis(4,6-dimethyl-3-sulfonatophenyl)(2,4- dimethylphenyl)phosphin, Bis(3-sulfonato-phenyl)phenylphosphinen, Tris(4,6- dimethyl-3-sulfonatophenyl)phosphinen, Tris(2-sulfonatophenyl)phosphinen, Tris(3-sulfonatophenyl)phosphinen;

2-Bis(diphenylphosphinoethyl)trimethylammoniumiodid, 2'-Dicyclohexylphosphino- 2,6-dimethoxy-3-sulfonato-1 ,1'-biphenyl Natriumsalz, Trimethylphosphit und/oder Triphenylphosphit.

Besonders bevorzugt handelt es sich bei den Liganden um bidentate Liganden der allgemeinen Formel

R 10 2M"-Z-M"R 10 2 (VII). jn CÜΘSΘΓ Forme! rθ n c θπtiθr o r! M 11 v r * r ϊ°i nQnr ^ or ^ ^ ^ c Λ H QΓ Q K Bevorzugt sind die beiden M" gleich und besonders bevorzugt steht M" für ein Phosphoratom.

Jede Gruppe R 10 repräsentiert unabhängig voneinander die unter Formel (VI) beschrieben Reste. Vorzugsweise sind alle Gruppen R 10 identisch.

Z stellt bevorzugt eine bivalente Überbrückungsgruppe dar, die wenigstens 1 Brückenatom enthält, wobei bevorzugt 2 bis 6 Brückenatome enthalten sind.

Brückenatome können ausgewählt werden aus C-, N-, O-, Si- und S-Atomen. Bevorzugt ist Z eine organische Überbrückungsgruppe, die wenigstens ein

Kohlenstoffatom enthält. Bevorzugt ist Z eine organische Überbrückungsgruppe, die 1 bis 6 Brückenatome enthält, wovon wenigstens zwei Kohlenstoffatome sind, unsubstituiert oder substituiert sein können. Bevorzugte Gruppen Z sind -CH 2 -, -CH 2 -CH 2 -, -CH 2 -CH 2 -CH 2 -, -CH 2 -CH(CHs)-CH 2 -, -CH 2 -C(CHs) 2 -CH 2 -, -CH 2 -C(C 2 Hs)-CH 2 -, -CH 2 -Si(CHs) 2 -CH 2 -, -CH 2 -O-CH 2 -, -CH 2 -CH 2 -CH 2 -CH 2 -, -CH 2 -CH(C 2 Hs)-CH 2 -, -CH 2 -CH(n-Pr)-CH und -CH 2 -CH(n-Bu)-CH 2 -, unsubstϊtuierte oder substituierte 1 ,2-Phenyl-, 1 ,2-Cyclohexyl-, 1 ,1'- oder 1 ,2-Ferrocenyl-Reste, 2,2 ' -(1 ,1 ' -Biphenyl)-, 4,5-Xanthen- und/oder Oxydi-2,1-phenylen-Reste.

Geeignete bidentate Phosphinliganden (VII) sind beispielsweise 1 ,2-Bis(dimethyl-), 1 ,2-Bis(diethyl-), 1 ,2-Bis(dipropyl-), 1 ,2-Bis(diisopropyl-), 1 ,2-Bis(dibutyl-), 1 ,2-Bis(di-tert.-butyl-), 1 ,2-Bis(dicyclohexyl-) und 1 ,2-Bis(diphenylphosphino)ethan; 1 ,3-Bis(di-cyclohexyl-), 1 ,3-Bis(diisopropyl-), 1 ,3-Bis(di-tert.-butyl-) und 1 ,3-Bis(diphenylphos-phino)propan; 1 ,4-Bis-(diisopropyl-) und 1 ,4-Bis(diphenyl-phosphino)butan; 1 ,5-Bis(dicyclohexylphosphino)pentan; 1 ,2-Bis(di-tert.-butyl-), 1 ,2-Bis(di-phenyl-), 1 ,2-Bis(di-cyclohexyl-), 1 ,2-Bis(dicyclo-pentyl-), 1 ,3-Bis(di-tert.-butyl-), 1 ,3-Bis(diphenyl-), 1 ,3 Bis(di-cyclohexyl-) und 1 ,3-Bis(dicyclopentylphosphino)benzol; 9,9-Dimethyl-4,5- b!s(dipheny!phosph!no)xanthen, 9,9-Dimethy!-4,5-bis(dipheny!phosphino)-2,7-di- tert.-butylxanthen, 9,9-Dimethyl-4,5-bis(di-tert.-butylphosphino)xanthen,

1.1'-Bis(diphenyl-phosphino)-ferrocen. 2.2'-Bis(diphenylphosphino)-1.1'-binaphthyl. 2,2'-Bis(di-p-tolylphosphino)-1 ,1'-binaphthyl, (Oxydi-2,1- phenylen)bis(diphenylphosphin), 2,5-(Di-isopropylphospholano)benzol, 2,3-O-lsopropropyliden-2,3-dihydroxy-1 ,4-bis(diphenyl-phosphino)butan, 2,2'-Bis(di-tert.-butylphosphino)-1 ,1'-biphenyl, 2,2'-Bis(dicyclohexyl-phosphino)- 1 ,1'-biphenyl, 2,2 l -Bis(diphenylphosphino)-1 ,1 l -biphenyl, 2-(Di-tert.- butylphosphino)-2'-(N,N-dimethylamino)biphenyl I 2-(Dicyclohexylphosphino)-2'- (N,N-dimethylamino)biphenyl, 2-(Diphenylphosphino)-2'-(N,N- dimethylamino)biphenyl, 2-(Diphenylphosphino)ethyl-amin, 2-[2-(Diphenylphosphino)ethyl]pyridin; Kalium-, Natrium- und Ammoniumsalze von 1 ,2-Bis(di-4-sulfonatophenylphosphino)-benzol, (2,2'-Bis [[bis(3-sulfonato- phenyljphosphinojmethy^^^'.y.y-tetrasulfonato-i .i'-binapthyl, (2,2'-Bis[[bis(3- sulfonatophenyl)phosphino]methyl]-5,5'-tetrasulfonato-1 ,1'-biphenyl, (2,2'-Bis [[bis(3-sulfonatophenyl)phosphino]methyl]-1 ,r-binapthyl, (2,2 I -Bis[[bis(3- sulfonatophenyl)-phosphino]-methyl]-1 ,1'-biphenyl, 9,9-Dimethyl-4,5- bis(diphenylphosphino)-2,7-sulfonatoxanthen, 9,9-Dimethyl-4,5-bis(di-tert.- butylphosphino)-2,7-sulfonatoxanthen, 1 ,2-Bis(di-4-sulfonatophenylphosphino)- benzol, Meso-tetrakis(4-sulfonato-phenyl)porphin, Meso-tetrakis(2,6-dichloro-3- sulfonato-phenyl)porphin, Meso-tetrakis(3-sulfonatomesityl)porphin, Tetrakis(4- carboxyphenyl)porphin und 5,11 ,17,23^^810-25,26,27,28- tetrahydroxycalix[4]aren.

Zudem können die Liganden der Formel (VI) und (VII) durch die Reste R 10 und/oder die Überbrückungsgruppe an ein geeignetes Polymer oder anorganisches Substrat gebunden sein.

Das Katalysatorsystem hat ein Übergangsmetall-Ligand-Molverhältnis von 1 :0,01 bis 1 :100, bevorzugt von 1 :0,05 bis 1 :10 und insbesondere von 1 :1 bis 1 :4.

Bevorzugt erfolgen die Umsetzungen in den Verfahrensstufen a), b) und c) wahlweise in einer Atmosphäre, die weitere gasförmige Bestandteile wie zum Beispiel Stickstoff, Sauerstoff, Argon, Kohlendioxid enthält; die Temperatur beträgt -20 bis 340 0 C, insbesondere 20 bis 180 0 C und der Gesamtdruck von 1 bis 100 bar.

Die Isolierung der Produkte, des Übergangsmetalls, der

Übergangsmetallverbindung, des Katalysatorsystems, des Liganden und/oder der Edukte nach den Verfahrensstufen a), b) und c) erfolgt wahlweise durch

Destillation oder Rektifikation, durch Kristallisation oder Fällen, durch Filtration oder Zentrifugieren, durch Adsorption oder Chromato-graphie oder anderen bekannten Methoden.

Erfindungsgemäß werden Lösungsmittel, Hilfsmittel und ggf. andere flüchtige Bestandteile durch z.B. Destillation, Filtration und/oder Extraktion abgetrennt. Bevorzugt erfolgt die Umsetzungen in den Verfahrensstufen a), b) und c) wahlweise in Absorptionskolonnen, Sprühtürmen, Blasensäulen, Rührkesseln, Rieselbettreaktoren, Strömumgsrohren, Schlaufenreaktoren und/oder Knetern.

Geeignete Mischorgane sind z. B. Anker-, Blatt-, MIG-, Propeller-, Impeller-, Turbinen-, Kreuz-Rührer, Dispergierscheiben, Hohl-(Begasungs-)-Rührer, Rotor- Stator-Mischer, statische Mischer, Venturi-Düsen und/oder Mammutpumpen.

Die Reaktionslösungen/-mischungen erfahren dabei eine Mischintensität, die einer Rotations-Reynolds-Zahl von 1 bis 1.000.000, bevorzugt von 100 bis 100.000 entspricht.

Bevorzugt erfolgt eine intensive Durchmischung der jeweiligen Reaktionspartner etc. unter einem Energieeintrag von 0,080 bis 10 kW/m 3 , bevorzugt 0,30 - 1 ,65 kW/m 3 .

Bevorzugt wirkt der jeweilige Katalysator A oder B während der Umsetzung homogen und/oder heterogen. Daher wirkt der jeweils heterogen wirkende Katalysator während der Umsetzung als Suspension oder an eine feste Phase gebunden.

Bevorzugt wird der jeweilige Katalysator A oder B vor der Umsetzung und/oder zu Beginn der Umsetzung und/oder während der Umsetzung in situ generiert.

Bevorzugt erfolgt die jeweilige Umsetzung in einem Lösungsmittel als Ein-Phasen- System in homogener oder heterogener Mischung und/oder in der Gasphase.

Wird ein Mehr-Phasen-System verwendet kann zusätzlich ein Phasentransferkatalysor eingesetzt werden.

Die erfindungsgemäßen Reaktionen können in flüssiger Phase, in der Gasphase oder auch in überkritischer Phase durchgeführt werden. Dabei wird der jeweilige Katalysator A oder B bei Flüssigkeiten vorzugsweise homogen oder als Suspension eingesetzt, während bei Gasphasen- oder überkritischer Fahrweise eine Festbettanordnung von Vorteil ist.

Geeignete Lösungsmittel sind Wasser, Alkohole, wie z. B. Methanol, Ethanol, i-Propanol, n-Propanol, n-Butanol, i-Butanol, t-Butanol, n-Amylalkohol, i-Amylalkohol, t-Amylalkohol, n-Hexanol, n-Octanol, i-Octanol, n-Tridecanol, Benzylalkohol etc. Bevorzugt sind weiterhin Glycole wie z. B. Ethylenglycol, 1,2-Propandiol, 1 ,3-Propandiol, 1 ,3-Butandiol, 1,4-Butandiol, Diethylenglycol etc.; aliphatische Kohlen-wasserstoffe wie Pentan, Hexan, Heptan, Octan und Petrolether, Petroleumbenzin, Kerosin, Petroleum, Paraffinöl etc.; aromatische Kohlenwasserstoffe wie Benzol, Toluol, XyIoI, Mesitylen, Ethylbenzol, Diethylbenzol etc.; Halogenkohlenwasserstoffe wie Methylenchlorid, Chloroform, 1 ,2-Dichloroethan, Chlorobenzol, Tetrachlorkohlenstoff, Tetrabromoethylen etc.; alicyclische Kohlenwasserstoffe wie Cyclopentan, Cyclohexan, und Methylcyclohexan etc.; Ether wie Anisol (Methylphenylether), t-Butylmethylether, Dibenzylether, Diethylether, Dioxan, Diphenylether, Methylvinylether, Tetrahydrofuran, Triisopropylether etc.; Glycolether wie Diethylenglycoldiethylether, Diethylenglycoldi-methylether (Diglyme), Diethylenglycolmonobutylether, Diethylenglycolmonomethyl-ether, 1 ,2-Dimethoxyethan (DME Monoglyme), Ethylenglycolmonobutylether,

Triethylenglycoldimethylether (Triglyme), Triethylenglycolmonomethylether etc.; Ketone wie Aceton, Diisobutylketon, Methyl-n-propylketon; Methylethylketon, Methyl-i-butylketon etc; Ester wie Methylformiat, Methylacetat, Ethylacetat, n-Propylacetat und n-Butylacetat etc.; Carbonsäuren wie Ameisensäure, Essigsäure, Propionsäure, Buttersäure etc.; einzeln oder in Kombination miteinander.

Geeignete Lösungsmittel sind auch die eingesetzten Olefine und Phosphinsäure- quellen. Diese bieten Vorteile in Form einer höheren Raum-Zeit-Ausbeute.

Bevorzugt wird die Umsetzung unter dem eigenen Dampfdruck des Olefins und/oder des Lösungsmittels durchgeführt. Bevorzugt sind R 1 , R 2 , R 3 , R 4 des Olefins (IV) gleich oder verschieden und bedeuten, unabhängig voneinander, H, Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl, Isobutyl, tert.-Butyl und/oder Phenyl.

Bevorzugt werden auch funktionalisierte Olefine wie Allylisothiocyanat, Allylmethacrylat, 2-Allylphenol, N-Allylthioharnstoff, 2-(Allylthio)-2-thiazolin, Allyltrimethylsillan, Allylacetat, Allylacetoacetat, Allylalkohol, Allylamin, Allylbenzol, Allylcyanid, Allyl-(cyanacetat), Allylanisol, trans-2-Pentenal, cis-2-Pentennitril, 1-Penten-3-ol, 4-Penten-1-ol, 4-Penten-2-ol, trans-2-Hexenal, trans-2-Hexen-1-ol, cis-3-Hexen-1-ol, 5-Hexen-1-ol, Styrol, -Methylstyrol, 4-Methylstyrol, Vinylacetat, 9-Vinylanthracen, 2-Vinylpyridin, 4-Vinyl-pyridin und 1 -Vinyl-2-pyrrolidon eingesetzt.

Bevorzugt erfolgt die Umsetzung bei einem Partialdruck des Olefins von 0,01 - 100 bar, besonders bevorzugt bei einem Partialdruck des Olefins von 0,1 - 10 bar.

Bevorzugt erfolgt die Umsetzung in einem Phosphinsäure-Olefin-Molverhältnis von 1 :10.000 bis 1 :0,001 , besonders bevorzugt im Verhältnis von 1 :30 bis 1 :0,01.

Bevorzugt erfolgt die Umsetzung in einem Phosphinsäure-Katalysator-

Molverhältnis von 1 :1 bis 1 :0.00000001 , besonders bevorzugt bei 1:0.01 bis 1 :0,000001.

Bevorzugt erfolgt die Umsetzung in einem Phosphinsäure-Lösungsmittel- Molverhältnis von 1 :10.000 bis 1 :0, besonders bevorzugt bei 1 :50 bis 1 :1.

Ein erfindungsgemäßes Verfahren zur Herstellung von Verbindungen der Formel (II) ist dadurch gekennzeichnet, dass man eine Phosphinsäurequelle mit Olefinen in Gegenwart eines Katalysators umsetzt und das Produkt (II) (Alkylphosphonigsäure bzw. -salze, -ester) von Katalysator, Übergangsmetall bzw. Übergangsmetallverbindung, Ligand, Komplexbildner, Salzen und Nebenprodukten befreit wird. Erfindungsgemäß wird der Katalysator, das Katalysatorsystem, das Übergangsmetall und/oder die Übergangsmetallverbindung abgetrennt durch Zugabe eines Hilfsmittels 1 und Entfernen des Katalysators, des Katalysatorsystems, des Übergangsmetalls und/oder der Übergangsmetallverbindung durch Extraktion und/oder Filtration.

Erfindungsgemäß wird der Ligand und/oder Komplexbildner durch Extraktion mit Hilfsmittel 2 und/oder Destillation mit Hilfsmittel 2 abgetrennt.

Hilfsmittel 1 ist bevorzugt Wasser und/oder mindestens ein Vertreter der Familie der Metallfänger (Metal Scavenger). Bevorzugte Metallfänger sind Metalloxide wie etwa Aluminiumoxid, Siliciumdioxid, Titandioxid, Zirkoniumdioxid, Zinkoxid, Nickeloxid, Vanadiumoxid, Chromoxid, Magnesiumoxid, Celite ® , Kieselgur, Metallcarbonate wie etwa Bariumcarbonat, Calciumcarbonat, Strontiumcarbonat, Metallsulfate wie etwa, Bariumsulfat, Calciumsulfat, Strontiumsulfat,

Metallphosphate wie etwa Aluminiumphosphat, Vanadiumphosphat, Metallcarbide wie etwa Siliconcarbid, Metallaluminate wie etwa Calciumaluminat, Metallsilikate wie etwa Aluminiumsilikat, Kreiden, Zeolithe, Bentonit, Montmorillonit, Hectorit, funktionaüsierte -Silikate, funktionaüsierte Siükagele wie etwa SiliaBond ® , QuadraSil™, funktionaüsierte Polysiloxane wie etwa Deloxan ® , Metallnitride,

Kohle, Aktivkohle, Mullite, Bauxite, Ant j monite, Scheelite, Perovskite, Hydrotalcite, funktionaüsierte und unfunktionalisierte Cellulose, Chitosan, Keratin, Heteropolyanionen, lonentauscher wie etwa Amberlite™, Amberjet™, Ambersep™, Dowex ® , Lewatit ® , ScavNet ® , funktionaüsierte Polymere wie etwa Chelex ® , QuadraPure™, Smopex ® , PolyOrgs ® , polymergebundene Phosphane, Phosphanoxide, Phosphinate, Phosphonate, Phosphate, Amine, Ammoniumsalze, Amide, Thioamide, Harnstoffe, Thiohamstoffe, Triazine, Imidazole, Pyrazole, Pyridine, Pyrimidine, Pyrazine, Thiole, Thiolether, Thiolester, Alkohole, Alkoxide, Ether, Ester, Carbonsäuren, Acetate, Acetale, Peptide, Hetarene, Polyethylenimin/Siliciumdioxid und/oder Dendrimere.

Bevorzugt wird Hilfsmittel 1 in Mengen zugesetzt, die einer 0,1 - 40 gew.-%igen Beladung des Metalls auf dem Hilfsmittel 1 entsprechen. Bevorzugt wird Hilfsmittel 1 bei Temperaturen von 20 - 90 0 C eingesetzt.

Bevorzugt beträgt die Verweilzeit von Hilfsmittel 1 0,5 - 360 Minuten.

Hilfsmittel 2 ist bevorzugt das vorgenannte, erfindungsgemäße Lösungsmittel, wie sie bevorzugt in der Verfahrensstufe a) eingesetzt werden.

Die Veresterung der mono-hydroxyfunktionalisierten Dialkylphosphinsäure (III) bzw. der Alkylphosphonigsäuredrivate (II) sowie der Phosphinsäurequelle (I) zu den entsprechenden Estern kann beispielsweise durch Umsetzung mit höhersiedenden Alkoholen unter Entfernung des gebildeten Wassers durch Azeotropdestillation oder durch Umsetzung mit Epoxiden (Alkylenoxiden) erreicht werden.

Bevorzugt wird hierbei nach Schritt a) die Alkylphosphonigsäure (II) mit einem Alkohol der allgemeinen Formel M-OH und/oder M'-OH oder durch Umsetzung mit Alkylenoxiden, wie nachfolgend angeführt, direkt verestert.

Bevorzugt sind M-OH primäre, sekundäre oder tertiäre Alkohole mit einer

Kohlenstoffkettenlänge von C-I-C-I S . Besonders bevorzugt sind Methanol, Ethanol, Propanol, Isopropanol, n-Butanol, 2-Butanol, tert.-Butanol, Amylalkohol und/oder Hexanol.

Bevorzugt sind M'-OH Ethylenglykol, 1 ,2-Propylenglykol, 1 ,3-Propylenglykol, 1 ,4-Butandiol, 2,2-Dimethylpropan-1 ,3-diol, Neopentylglykol, 1 ,6-Hexandiol, 1 ,4-Cyclohexandimethanol, Glycerin, Trishydroxymethylethan, Trishydroxymethylpropan, Pentaerythrit, Sorbit, Mannit, α-Naphthol, Polyethylenglykole, Polypropylenglykole und/oder EO-PO-Blockpolymere.

Geeignet sind als M-OH und M'-OH auch ein- oder mehrwertige, ungesättigte Alkohole mit einer Kohlenstoffkettenlänge von Ci-Ci 8 , etwa n-Buten-2-ol-1 , 1 ,4-Butendiol und Allylalkohol. Geeignet sind als M-OH und M'-OH auch Umsetzungsprodukte von einwertigen Alkoholen mit einem oder mehreren Molekülen von Alkylenoxiden, besonders bevorzugt sind Ethylenoxid und 1 ,2-Propylenoxid. Bevorzugt sind 2-Methoxyethanol, 2-Ethoxy-ethanol, 2-n-Butoxyethanol, 2-(2'-Ethyl-hexyloxy)- ethanol, 2-n-Dodecoxyethanol, Methyldiglykol, Ethyldiglykol, Isopropyldiglykol, Fettalkoholpolyglykolether und Arylpolyglykolether.

Bevorzugt sind M-OH und M'-OH auch Umsetzungsprodukte von mehrwertigen Alkoholen mit einem oder mehreren Molekülen Alkylenoxid, insbesondere Diglykol und Triglykol sowie Addukte von 1 bis 6 Molekülen Ethylenoxid oder Propylenoxid an Glycerin, Trishydroxymethylpropan oder Pentaerythrit.

Als M-OH und M'-OH können auch Umsetzungsprodukte von Wasser mit einem oder mehreren Molekülen Alkylenoxid eingesetzt werden. Bevorzugt sind

Polyethylenglykole und Poly-1 ,2-propylenglykole verschiedener Molekulargrößen mit einem mittleren Molgewicht von 100-1.000 g/mol, besonders bevorzugt von 150-350 g/mol.

Bevorzugt sind als M-OH und M'-OH auch Umsetzungsprodukte von Ethylenoxid mit Poly-1.2-propylenglykolen oder Fettalkoholpropylenglykole; ebenso Umsetzungs-produkte von 1 ,2-Propylenoxid mit Polyethylenglykolen oder Fettalkoholethoxylaten. Bevorzugt sind solche Umsetzungsprodukte mit einem mittleren Molgewicht von 100-1.000 g/mol, besonders bevorzugt von 150- 450 g/mol.

Einsetzbar sind als M-OH und M'-OH auch Umsetzungsprodukte von Alkylenoxiden mit Ammoniak, primären oder sekundären Aminen, Schwefelwasserstoff, Merkaptanen, Sauerstoffsäuren des Phosphors und C 2 -C 6 - Dicarbonsäuren. Geeignete Umsetzungs-produkte von Ethylenoxid mit Stickstoffverbindungen sind Triethanolamin, Methyldi-ethanolamin, n-Butyldiethanolamin, n-Dodecyldiethanolamin, Dimethylethanolamin, n-Butylmethylethanolamin, Di-n-butylethanolamin, n-Dodecylmethylethanolamin, Tetrahydroxyethylethylendiamin oder Pentahydroxyethyldiethylentriamin.

Bevorzugte Alkylenoxide sind Ethylenoxid, 1 ,2-Propylenoxid, 1 ,2-Epoxybutan, 1 ,2-Epoxyethylbenzol, (2,3-Epoxypropyl)benzol, 2,3-Epoxy-i-propanol und 3,4-Epoxy-1-buten.

Geeignete Lösungsmittel sind die in Verfahrensschritt a) genannten Lösungsmittel und auch die eingesetzten Alkohole M-OH und M'-OH und Alkylenoxide. Diese bieten Vorteile in Form einer höheren Raum-Zeit-Ausbeute.

Bevorzugt wird die Umsetzung unter dem eigenen Dampfdruck des eingesetzten Alkohols M-OH und M'-OH und Alkylenoxids und/oder des Lösungsmittels durchgeführt.

Bevorzugt erfolgt die Umsetzung bei einem Partialdruck des eingesetzten Alkohols M-OH und M'-OH und Alkylenoxids von 0,01 - 100 bar, besonders bevorzugt bei einem Partialdruck des Olefins von 0,1 - 10 bar.

Bevorzugt wird die Umsetzung bei einer Temperatur von -20 bis 340 C C durchgeführt, besonders bevorzugt bei einer Temperatur von 20 bis 180 0 C.

Bevorzugt erfolgt die Umsetzung bei einem Gesamtdruck von 1 bis 100 bar.

Bevorzugt erfolgt die Umsetzung in einem Molverhältnis der Alkohol- bzw. Alkylenoxidkomponente zu der Phosphinsäurequelle (I) bzw. Alkylphosphonigsäure (II) bzw. mono-hydroxyfunktionalisierte Dialkylphosphinsäure (III) von 10.000:1 bis 0,001 :1 , besonders bevorzugt im Verhältnis von 1.000:1 bis 0,01 :1.

Bevorzugt erfolgt die Umsetzung in einem Molverhältnis der Phosphinsäurequelle (I) bzw. Alkylphosphonigsäure (II) bzw. mono-hydroxyfunktionalisierte Dialkylphosphinsäure (III) zum Lösungsmittel von 1 :10.000 bis 1 :0, besonders bevorzugt in einem Phosphinsäure-Lösungsmittel-Molverhältnis von 1 :50 bis 1 :1.

Bevorzugte Katalysatoren B, wie sie für den Verfahrensschritt b) für die Umsetzung der Alkylphosphonigsäure, deren Salze oder Ester (II) mit einem Alkylenoxid (V) zur mono-hydroxyfunktionalisierten Dialkylphosphinsäure, deren Salze und Ester (III) eingesetzt werden, sind Lewis-Säuren.

Als bevorzugte Lewis-Säuren kommen insbesondere Metallsalze, bevorzugt Metallhalogenide, wie Fluoride, Chloride, Bromide, lodide; und Sulfate, Sulfonate, Haloalkylsulfonate, Perhaloalkylsulfonate, wie beispielsweise Fluoroalkylsulfonate oder Perfluoroalkylsulfonate; Haloacetate, Perhaloacetate, Carboxylate und Phosphate wie zum Beispiel PO 4 3' , HPO 4 2" , H 2 PO 4 ' ; CF 3 COO " , C 7 H 15 OSO 2 " oder SO 4 2" in Betracht.

Als Lewis-Säure kommen dabei bevorzugt anorganische oder organische Metall- Verbindungen in Betracht, in denen das Kation ausgewählt ist aus der Gruppe bestehend aus Scandium, Titan, Vanadium, Chrom, Mangan, Eisen, Kobalt, Kupfer. Zink. Bor. Aluminium. Yttrium. Zirkonium. Niob. Molybdän. Cadmium. Rhenium Beryllium, Gallium, Indium, Thallium, Hafnium, Erbium, Germanium, Wolfram, Palladium, Thorium, und Zinn. Beispiele umfassen ZnBr 2 , ZnI 2 , ZnCI 2 . ZnSO 4 , CuCI 2 , CuCI, CU(O 3 SCF 3 ) 2> CoCI 2 , CoI 2 , FeI 2 , FeCI 3 , FeCI 2 , FeCI 2 (THF) 2 , TiCI 4 (THF) 2 , TiCI 4 , TiCI 3 , CITi(O-i-Propyl) 3 , Ti(OMe) 4 , Ti(OEt) 4 , Ti(O-I-Pr) 4 , Ti(O-n- Pr) 4 , MnCI 2 , ScCI 3 , AICI 3 , (C 8 H 17 )AICI 2 , (C 8 H 17 ) 2 AICI, (i -C 4 Hg) 2 AICI, (C 6 Hs) 2 AICI, (C 6 H 5 )AICI 2 , AI(OMe)3, AI(OEt) 3 , AI(O-i-Pr) 3 , AI(O-S-Bu) 3 , ReCI 5 , ZrCI 4 , NbCI 5 ,

VCI 3 , CrCI 2 , MoCI 5 , YCI 3 , CdCI 2 , LaCI 3 , Er(O 3 SCF 3 ) 3 , Yb(O 2 CCF 3 J 3 , SmCI 3 , TaCI 5 .

Weiterhin kommen in Betracht organometallische Verbindungen, wie (C 6 Hs) 3 SnX, mit X gleich CF 3 SO 3 , CH 3 C 6 H 4 SO 3 und RAICI 2 , R 2 AICI, R 3 AI, (RO) 3 AI, R 3 TiCI, (RO) 4 Ti, RSnO 3 SCF 3 , R 3 B und B(OR) 3 , wobei R ausgewählt ist aus H, C 1 -C 12 -

Alkyl, C 6 -C 18 -Aryl, C 6 -C 18 -Alkyl-Aryl, mit d-Cr-Alkyl-substituierte Aryl-Radikale und mit Cyano-substituierten Alkyl-Gruppen mit 1 bis 7 Kohlenstoff-Atomen substituierte Aryl-Radikale ist, wie beispielsweise PhAICI 2 , Cu(O 3 SCF 3 ) 3 . Bevorzugte Basen der Verfahrensstufe b) sind Metalle, Metallhydride, Organometallverbindungen und Metallalkoholate wie zum Beispiel Lithium, Lithiumhydrid, Lithiumaluminiumhydrid, Methyllithium, Butyllithium, t-Butyllithium, Lithiumdi-isopropylamid, Natrium, Natriumhydrid, Natriummethanolat,

Natriumethanolat oder Natriumbutylat, Kaliummethanolat, Kaliumethanolat oder Kaliumbutylat.

Bevorzugt wird der Katalysator B in Mengen von 0,05 bis 110 mol-% bezüglich des jeweiligen Alkylenoxids (V) eingesetzt.

Besonders bevorzugt wird der Katalysator B in Mengen von 0,5 bis 50 mol-% bezüglich des jeweiligen Alkylenoxids (V) eingesetzt.

Bevorzugt wird der Katalysator B in Mengen von 0,001 bis 110 mol-%, bezogen auf die phosphorhaltige Verbindung, eingesetzt.

Besonders bevorzugt wird der Katalysator B in Mengen von 0,1 bis 50 mol-%, bezogen auf die phosphorhaltige Verbindung, eingesetzt.

Bevorzugt wird die Base in Mengen von 0,05 bis 150 mol-% bezüglich des jeweiligen Alkylenoxids (V) eingesetzt.

Bevorzugt wird die Base in Mengen von 0,001 bis 150 mol-%, bezogen auf die phosphorhaltige Verbindung, eingesetzt.

Bevorzugt wird die Base mit einer Geschwindigkeit von 0,01 bis 500 mol-% Katalysator pro Stunde, bezogen auf die phosphorhaltige Verbindung, zudosiert.

Geeignete Lösungsmittel sind die, wie sie weiter vorne in Verfahrensschritt a) eingesetzt werden. Bevorzugt erfolgt die Umsetzung der Alkylphosphonigsäuren (II) mit mit einem Alkylenoxid (V) bei einer Temperatur von -100 bis 250 0 C, besonders bevorzugt bei -78 bis 100 0 C.

Bevorzugt besteht die Atmosphäre bei der Umsetzung mit einem Alkylenoxid (V) zu 50 bis 99,9 Gew.-% aus Bestandteilen des Lösungsmittels und Alkylenoxid (V), bevorzugt 70-95 %.

Bevorzugt erfolgt die Umsetzung während des Zusatz des Alkylenoxid (V) bei einem Druck von 1 -20 bar.

In einer weiteren Ausführungsform des Verfahrens wird das nach Verfahrensstufe a) und/oder b) erhaltene Produktgemisch aufgearbeitet.

Die mono-hydroxyfunktionalisierten Dialkylphosphinsäure oder deren Salz (III) kann im Folgenden zu weiteren Metallsalzen umgesetzt werden.

Bevorzugt handelt es sich bei den eingesetzten Metallverbindungen der Verfahrensstufe c) um Verbindungen der Metalle Mg, Ca, AI, Sb, Sn, Ge. Ti. Fe, Zr, Zn, Ce, Bi, Sr, Mn, Li, Na, K, besonders bevorzugt Mg, Ca, AI, Ti, Zn, Sn, Ce, Fe.

Geeignete Lösungsmittel für Verfahrensstufe c) sind die, wie sie weiter vorne in Verfahrensstufe a) eingesetzt werden.

Bevorzugt erfolgt die Umsetzung der in Verfahrensstufe c) in wässrigem Medium.

Bevorzugt setzt man in Verfahrensstufe c) die nach Verfahrensstufe b) erhaltenen erhaltene mono-hydroxyfunktionalisierten Dialkylphosphinsäuren, deren Ester und/oder Alkalisalze (III) mit Metallverbindungen von Mg, Ca, AI, Zn, Ti, Sn, Zr, Ce oder Fe zu den mono-hydroxyfunktionalisierten Dialkylphosphinsäuresalzen (III) dieser Metalle um. Die Umsetzung erfolgt dabei in einem Molverhältnis von mono- hydroxyfunktionalisierter Dialkylphosphinsäure/-ester/-salz (IM) zu Metall von 8 zu 1 bis 1 zu 3 (für vierwertige Metallionen oder Metalle mit stabiler vierwertiger Oxidationsstufe), von 6 zu 1 bis 1 zu 3 (für dreiwertige Metallionen oder Metalle mit stabiler dreiwertiger Oxidationsstufe), von 4 zu 1 bis 1 zu 3 (für zweiwertige Metallionen oder Metalle mit stabiler zweiwertiger Oxidationsstufe) und von 3 zu 1 bis 1 zu 4 (für einwertige Metallionen oder Metalle mit stabiler einwertiger Oxidationsstufe).

Bevorzugt führt man in Verfahrenstufe b) erhaltenes mono- hydroxyfunktionalisiertes Dialkylphosphinsäureester/-salz (III) in die entsprechende Dialkylphosphinsäure über und setzt in Verfahrensstufe d) diese mit Metallverbindungen von Mg, Ca, AI, Zn, Ti, Sn, Zr, Ce oder Fe zu den mono- hydroxyfunktionalisierten Dialkylphosphinsäuresalzen (IM) dieser Metalle um.

Bevorzugt wandelt man in Verfahrenstufe b) erhaltene mono- hydroxyfunktionalisierte Dialkylphosphinsäure/-ester (III) in ein Dialkylphosphinsäure-Alkalisalz um und setzt in Verfahrensstufe d) dieses mit Metallverbindungen von Mg : Ca : Al 7 Zn : TL Sn : Zr. Ce oder Fe zu den mono- hydroxyfunktionalisierten Dialkylphosphinsäuresalzen (III) dieser Metalle um.

Bevorzugt handelt es sich bei den Metallverbindungen von Mg, Ca, AI, Zn, Ti, Sn, Zr, Ce oder Fe für Verfahrenstufe c) um Metalle, Metalloxide, -hydroxide, -oxid-hydroxide, -borate, -carbonate, -hydroxocarbonate, -hydroxocarbonathydrate, gemischte -hydroxocarbonate, - gemischte hydroxocarbonathydrate, -phosphate, -sulfate, -sulfat-hydrate, -hydroxosulfathydrate, gemischte -hydroxosulfathydrate, -oxysulfate, -acetate, -nitrate, fluoride, -fluoridhydrate, -Chloride, chloridhydrate, -oxychloride, -bromide, -iodide, -iodidhydrate, -carbonsäurederivate und/oder -alkoxide.

Bevorzugt handelt es sich bei den Metallverbindungen um Aluminiumchlorid, Aluminiumhydroxid, Aluminiumnitrat, Aluminiumsulfat, Titanylsulfat, Zinknitrat, Zinkoxid, Zinkhydroxid und/oder Zinksulfat. Geeignet sind auch metallisches Aluminium, -fluorid, -hydroxychlorid, -bromid, -iodid, -sulfid, -selenid; -phosphid, -hypophosphit.-antimonid, -nitrid; -carbid, -hexafluorosilicat; -hydrid, -calciumhydrid, -borhydrid; -chlorat; Natrium- Aluminiumsulfat, Aluminium-Kaliumsulfat, Aluminiumammoniumsulfat, -nitrat, -metaphosphat, -phosphat, -silicat, -magnesiumsilicat, -carbonat, -hydrotalcit, -natriumcarbonat, -borat; -thiocyanat; -oxid, -oxidhydroxid, ihre entsprechenden Hydrate und/oder Polyaluminiumhydroxy-verbindungen, die vorzugsweise einen Aluminiumgehalt von 9 bis 40 Gew.-% besitzen.

Geeignet sind auch Aluminiumsalze von Mono-, Di-, Oligo-, Polycarbonsäuren wie z. B. Aluminiumdiacetat, -acetotartrat, -formiat, -lactat, -Oxalat, -tartrat, -oleat, -palmitat, -stearat, -trifluoromethansulfonat, -benzoat, -salicylat, -8-oxychinolat.

Geeignet sind ebenfalls elementares, metallisches Zink sowie Zinksalze wie z. B. Zinkhalogenide (Zinkfluorid, Zinkchloride, Zinkbromid, Zinkiodid).

Geeignet ist auchZinkborat, -carbonat, -hydroxidcarbonat, -silicat, -hexafluorosilicat. -stannat -hydroxidstannat. -Magnesium-Aluminium- Hydroxidcarbonat; -nitrat, -nitrit, -phosphat, -pyrophosphat; -sulfat, -phosphid, -selenid, -tellurid und Zinksalze der Oxosäuren der siebten Hauptgruppe (Hypohalogenite, Halogenite, Halogenate, z. B. Zinkiodat, Perhalogenate, z. B. Zinkperchlorat); Zinksalze der Pseudohalogenide (Zinkthiocyanat, -cyanat, -cyanid); Zinkoxide, -peroxide, -hydroxide oder gemischte Zinkoxidhydroxide.

Bevorzugt sind Zinksalze der Oxosäuren der Übergangsmetalle (bspw. Zinkchromat(VI)hydroxyd, -chromit, -molybdat, -permanganat).

Geeignet sind auch Zinksalze von Mono-, Di-, Oligo-, Polycarbonsäuren, wie z. B. Zinkformiat, -acetat, -trifluoracetat, -propionat, -butyrat, -valerat, -caprylat, -oleat, -stearat, -Oxalat, -tartrat, -citrat, -benzoat, -salicylat, -lactat, -acrylat, -maleat, -succinat, Salze von Aminosäuren (Glyzin), von sauren Hydroxyfunktionen (Zinkphenolat etc.), Zink-p-phenolsulfonat, -acetylacetonat, -stannat, -dimethyldithiocarbamat, -trifluor-methansulfonat.

Bei den Titan-Verbindungen ist metallisches Titan ebenso wie Titan(lll) und/oder (IV) -Chlorid, -nitrat, -sulfat, -formiat, -acetat, -bromid, -fluorid, -oxychlorid,

-oxysulfat, -oxid, -n-propoxid, -n-butoxid, -isopropoxid, -ethoxid, -2-ethylhexyloxid geeignet.

Geeignet ist auch metallisches Zinn sowie Zinnsalze (Zinn(ll) und /oder (IV)- chlorid); Zinnoxide und Zinn-Alkoxid wie z. B. Zinn-(IV)-tert-butoxid.

Geeignet sind auch Cer(lll)fluorid, -chlorid, -nitrat.

Bei den Zirkonium-Verbindungen ist metallisches Zirkonium sowie Zirkoniumsalze wie Zirkoniumchlorid, -sulfat, Zirconylacetat, Zirconylchlorid bevorzugt. Weiterhin bevorzugt sind Zirkonoxide sowie Zirkon-(IV)-tert-butoxid.

Bevorzugt erfolgt die Umsetzung in Verfahrensstufe c) bei einem Feststoffgehalt der mono-hydroxyfunktionalisierten Dialkylphosphinsäuresalze von 0.1 bis 70 Gew.-%, bevorzugt 5 bis 40 Gew.-%.

Bevorzugt erfolgt die Umsetzung in Verfahrensstufe d) bei einer Temperatur von 20 bis 250 0 C, bevorzugt bei einer Temperatur von 80 bis 120 0 C.

Bevorzugt erfolgt die Umsetzung in Verfahrensstufe c) bei einem Druck zwischen 0,01 und 1.000 bar, bevorzugt 0,1 bis 100 bar.

Bevorzugt erfolgt die Umsetzung in Verfahrensstufe c) während einer Reaktionszeit von 1*10 7 bis 1.000 h.

Bevorzugt wird das nach der Verfahrensstufe c) durch Filtrieren und/oder Zentrifugieren aus dem Reaktionsgemisch abgetrennte mono- hydroxyfunktionalisierten Dialkylphos-phinsäuresalz (III) getrocknet. Bevorzugt wird das nach Verfahrensstufe b) erhaltene Produktgemisch ohne weitere Reinigung mit den Metallverbindungen umgesetzt.

Bevorzugte Lösungsmittel sind die in Verfahrensschritt a) genannten Lösungsmittel.

Bevorzugt ist die Umsetzung in Verfahrensstufe b) und/oder c) im durch Stufe a) gegebenen Lösungsmittelsystem.

Bevorzugt ist die Umsetzung in Verfahrensstufe c) in einem modifizierten Lösungsmittelsystem. Hierfür werden acide Komponenten, Lösevermittler, Schauminhibitoren etc. zugegeben.

In einer weiteren Ausführungsform des Verfahrens wird das nach Verfahrensstufe a) und/oder b) erhaltene Produktgemisch aufgearbeitet.

In einer weiteren Ausführungsform des Verfahrens wird das nach Verfahrensstufe b) erhaltene Produktgemisch aufgearbeitet und danach die nach Verfahrensstufe b) erhaltenen mono-hydroxyfunktionalisierten Dialkylphosphinsäuren und/oder deren Salze oder Ester (III) in Verfahrensstufe c) mit den Metallverbindungen umgesetzt.

Bevorzugt wird das Produktgemisch nach Verfahrensstufe b) aufgearbeitet, indem die mono-hydroxyfunktionalisierten Dialkylphosphinsäuren und/oder deren Salze oder Ester (III) durch Entfernen des Lösungsmittelsystems isoliert werden, z. B. durch Eindampfen.

Bevorzugt weist das mono-hydroxyfunktionalisierte Dialkylphosphinsäuresalz (III) der Metalle Mg, Ca, AI, Zn, Ti, Sn, Zr, Ce oder Fe wahlweise eine Restfeuchte von 0,01 bis 10 Gew.-%, bevorzugt von 0,1 bis 1 Gew.-%, eine mittlere Teilchengröße von 0,1 bis 2.000 μm, bevorzugt von 10 bis 500 μm, eine Schüttdichte von 80 bis 800 g/l, bevorzugt von 200 bis 700 g/l, eine Rieselfähigkeit nach Pfrengle von 0,5 bis 10, bevorzugt von 1 bis 5, auf.

Besonders bevorzugt enthalten die Formkörper, -Filme, -Fäden und -Fasern 5 bis 30 Gew.-% der mono-hydroxyfunktionalisierte Dialkylphosphinsäure/-ester/-salze, hergestellt nach einem oder mehreren der Ansprüche 1 bis 12, 5 bis 80 Gew.-% Polymer oder Mischungen derselben, 5 bis 40 Gew.-% Additive und 5 bis 40 Gew.-% Füllstoff, wobei die Summe der Komponenten immer 100 Gew.-% beträgt.

Bevorzugt handelt es sich bei den Additiven um Antioxidantien, Antistatica, Treibmittel, weitere Flammschutzmittel, Hitzestabilisatoren, Schlagzähmodifikatoren, Prozesshilfsmittel, Gleitmittel, Lichtschutzmittel, Antidrippingmittel, Compatibilizer, Verstärkungsstoffe, Füllstoffe, Keimbildungsmittel, Nukleierungsmittel, Additive zur Lasermarkierung, Hydrolysestabilisatoren, Kettenverlängerer, Farbpigmente, Weichmacher und/oder Plastifizierungsmittel.

Bevorzugt ist ein Flammschutzmittel, enthaltend 0,1 bis 90 Gew.-% der mono- carboxyfunktionalisierten Dialkylphosphinsäure, -ester und -salze (IM) und 0,1 bis 50 Gew.-% weitere Additive, besonders bevorzugt Diole.

Bevorzugte Additive sind auch Aluminiumtrihydrat, Antimonoxid, bromierte aromatische oder cycloaliphatische Kohlenwasserstoffe, Phenole, Ether, Chlorparaffin, Hexachloro-cyclopentadien-Addukte, Roter Phosphor, Melaminderivate, Melamincyanurate, Ammoniumpolyphosphate und

Magnesiumhydroxid. Bevorzugte Additive sind auch weitere Flammschutzmittel, insbesondere Salze von Dialkylphosphinsäuren.

Insbesondere betrifft die Erfindung die Verwendung der erfindungsgemäßen mono-hydroxyfunktionalisierten Dialkylphosphinsäure, -ester und -salze (III) als Flammschutzmittel bzw. als Zwischenstufe zur Herstellung von Flammschutzmitteln für thermoplastische Polymere wie Polyester, Polystyrol oder Polyamid und für duroplastische Polymere wie ungesättigte Polyesterharze, Epoxidharze, Polyurethane oder Acrylate.

Geeignete Polyester leiten sich von Dicarbonsäuren und deren Ester und Diolen und/oder von Hydroxycarbonsäuren oder den entsprechenden Lactonen ab.

Besonders bevorzugt wird Terephthalsäure und Ethylenglykol, Propan-1 ,3-diol und Butan-1 ,3-diol eingesetzt.

Geeignete Polyester sind u.a. Polyethylenterephthalat, Polybutylenterephthalat (Celanex ® 2500, Celanex ® 2002, Fa Celanese; Ultradur ® , Fa. BASF), Poly-1 ,4- dimethylolcyclohexanterephthalat, Polyhydroxybenzoate, sowie Block- Polyetherester, die sich von Polyethern mit Hydroxylendgruppen ableiten; ferner mit Polycarbonaten oder MBS modifizierte Polyester.

Synthetische lineare Polyester mit permanentem Flammschutz setzen sich aus Dicarbonsäure-Komponenten, Diol-Komponenten der erfindungsgemäßen mono- hydroxyfunktionalisierten Dialkylphosphinsäuren und -ester oder aus der nach dem erfindungsgemäßen Verfahren hergestellten mono-hydroxyfunktionalisierten Dialkylphosphinsäuren und -ester als Phosphor-enthaltende Kettenglieder zusammen. Die Phosphor enthaltenden Kettenglieder machen 2-20 Gew.-% der Dicarbonsäure-Komponente des Polyesters aus. Bevorzugt beträgt der resultierende Phosphorgehalt im Polyester 0,1-5 Gew.-%, besonders bevorzugt 0,5-3 Gew.-%.

Die folgenden Schritte können mit oder unter Zugabe der erfindungsgemäß hergestellten Verbindungen ausgeführt werden.

Bevorzugt wird zur Herstellung der Formmasse ausgehend von den freien Dicarbonsäure und Diolen zunächst direkt verestert und dann polykondensiert.

Bevorzugt wird ausgehend von Dicarbonsäureestem, insbesondere Dimethylestern, zunächst umgeestert und dann unter Verwendung der hierfür üblichen Katalysatoren polykondensiert. Bevorzugt können bei der Polyesterherstellung neben den gängigen Katalysatoren auch übliche Additive (Vernetzungsmittel, Mattierungs- und Stabilisierungsmittel, Nukleierungsmittel, Färb- und Füllstoffe etc.) zugesetzt werden.

Bevorzugt findet die Veresterung und/oder Umesterung bei der Polyesterherstellung bei Temperaturen von 100 - 300 0 C statt, besonders bevorzugt bei 150 - 250 0 C.

Bevorzugt findet die Polykondensation bei der Polyesterherstellung bei Drücken zwischen 0,1 bis 1 ,5 mbar und Temperaturen von 150 - 450 0 C statt, besonders bevorzugt bei 200 - 300 0 C.

Die erfindungsgemäß hergestellten flammgeschützten Polyester-Formmassen werden bevorzugt in Polyester-Formkörpern eingesetzt.

Bevorzugte Polyester-Formkörper sind Fäden, Fasern, Folien und Formkörper, die als Dicarbonsäure-Komponente hauptsächlich Terephthalsäure und als Diolkomponente hauptsächlich Ethylenglykol enthalten.

Bevorzugt beträgt der resultierende Phosphorgehalt in aus flammgeschützten Polyester hergestellten Fäden und Fasern 0,1 - 18, bevorzugt 0,5 - 15 und bei Folien 0,2 - 15, bevorzugt 0,9 - 12 Gew.-%.

Geeignete Polystyrole sind Polystyrol, Poly-(p-methylstyrol) und/oder Poly-(alpha- methylstyrol).

Bevorzugt handelt es sich bei den geeigneten Polystyrolen um Copolymere von Styrol oder alpha-Methylstyrol mit Dienen oder Acrylderivaten, wie z. B. Styrol- Butadien, Styrol-Acrylnitril, Styrol-Alkylmethacrylat, Styrol-Butadien-Alkylacrylat und -methacrylat, Styrol-Maleinsäureanhydrid, Styrol-Acrylnitril-Methylacrylat; Mischungen von hoher Schlagzähigkeit aus Styrol-Copolymeren und einem anderen Polymer, wie z. B. einem Polyacrylat, einem Dien-Polymeren oder einem Ethylen-Propylen-Dien-i erpolymeren; sowie Block-Copolymere des Styrols, wie z. B. Styrol-Butadien-Styrol, Styrol-Isopren-Styrol, Styrol-Ethylen/Butylen-Styrol oder Styrol-Ethylen/Propylen-Styrol.

Bevorzugt handelt es sich bei den geeeigneten Polystyrolen auch um Pfropfcopolymere von Styrol oder alpha-Methylstyrol, wie z. B. Styrol auf Polybutadien, Styrol auf Polybutadien-Styrol- oder Polybutadien-Acrylnitril- Copolymere, Styrol und Acrylnitril (bzw. Methacrylnitril) auf Polybutadien; Styrol, Acrylnitril und Methylmethacrylat auf Polybutadien; Styrol und Maleinsäureanhydrid auf Polybutadien; Styrol, Acrylnitril und Maleinsäureanhydrid oder Maleinsäureimid auf Polybutadien; Styrol und Maleinsäureimid auf Polybutadien, Styrol und Alkylacrylate bzw. Alkylmethacrylate auf Polybutadien, Styrol und Acrylnitril auf Ethylen-Propylen-Dien-Terpolymeren, Styrol und Acrylnitril auf Polyalkylacrylaten oder Polyalkylmethacrylaten, Styrol und Acrylnitril auf Acrylat-Butadien-Copolymeren, sowie deren Mischungen, wie sie z. B. als so genannte ABS-, MBS-, ASA- oder AES-Polymere bekannt sind.

Bevorzugt handelt es sich bei den Polymeren um Polyamide und Copolyamide, die sich von Diaminen und Dicarbonsäuren und/oder von Aminocarbonsäuren oder den entsprechenden Lactamen ableiten, wie Polyamid 2,12, Polyamid 4, Polyamid 4,6, Polyamid 6, Polyamid 6,6, Polyamid 6,9, Polyamid 6,10, Polyamid 6,12, Polyamid 6,66, Polyamid 7,7, Polyamid 8,8, Polyamid 9,9, Polyamid 10,9, Polyamid 10,10 , Polyamid 11 , Polyamid 12, usw. Solche Polyamide sind z. B unter den Handelsnamen Nylon ® , Fa. DuPont, Ultramid ® , Fa. BASF, Akulon ® K122, Fa. DSM, Zytel ® 7301 , Fa. DuPont; Durethan ® B 29, Fa. Bayer und Grillamid ® , Fa. Ems Chemie bekannt.

Geeignet sind auch aromatische Polyamide ausgehend von m-Xylol, Diamin und Adipinsäure; Polyamide, hergestellt aus Hexamethylendiamin und Iso- und/oder Terephthalsäure und gegebenenfalls einem Elastomer als Modifikator, z. B. PoIy- 2,4,4-trimethylhexamethylen-terephthalamid oder Poly-m-phenylenisophthalamid, Blockcopolymere der vorstehend genannten Polyamide mit Polyolefinen, Olefin- Copolymeren, lonomeren oder chemisch gebundenen oder gepfropften Elastomeren, oder mit Polyethern, wie z. B. mit Polyethylenglykol, Polypropylenglykol oder Polytetramethylenglykol. Ferner mit EPDM oder ABS modifizierte Polyamide oder Copolyamide; sowie während der Verarbeitung kondensierte Polyamide ("RIM-Polyamidsysteme").

Die mono-hydroxyfunktionalisierte Dialkylphosphinsäure/-ester/-salze, hergestellt nach einem oder mehreren der Ansprüche 1 bis 12 werden bevorzugt in Formmassen angewendet, die weiter zur Erzeugung von Polymer-Formkörpern eingesetzt werden.

Besonders bevorzugt enthält die flammgeschützte Formmasse 5 bis 30 Gew.-% mono-hydroxyfunktionalisierte Dialkylphosphinsäuren, -salze oder -ester, die nach einem oder mehreren der Ansprüche 1 bis 12 hergestellt wurden, 5 bis 80 Gew.-% Polymer oder Mischungen derselben, 5 bis 40 Gew.-% Additive und 5 bis 40 Gew.-% Füllstoff, wobei die Summe der Komponenten immer 100 Gew.-% beträgt.

Die Erfindung betrifft auch Flammschutzmittel, die die mono- hydroxyfijnktiπnalisierte Dialkylphosphinsäuren. -salze oder -ester. die nach einem oder mehreren der Ansprüche 1 bis 12 hergestellt wurden enthalten.

Außerdem betrifft die Erfindung Polymer-Formmassen sowie Polymer-Formkörper, -Filme, -Fäden und -Fasern, enthaltend die erfindungsgemäß hergestellten mono- hydroxyfunktionalisierten Dialkylphosphinsäuresalze (III) der Metalle Mg, Ca, AI, Zn, Ti, Sn, Zr, Ce oder Fe.

Die Erfindung wird durch die nachstehenden Beispiele erläutert.

Herstellung, Verarbeitung und Prüfung von flammgeschützten Polymerformmassen und flammgeschützten Polymerformkörpern

Die Flammschutzkomponenten werden mit dem Polymergranulat und evtl. Additiven vermischt und auf einem Doppelschnecken-Extruder (Typ Leistritz LSM ® 30/34) bei Temperaturen von 230 bis 260 0 C (PBT-GV) bzw. von 260 bis 280 0 C (PA 66-GV) eingearbeitet. Der homogenisierte Polymerstrang wurde abgezogen, im Wasserbad gekühlt und anschließend granuliert.

Nach ausreichender Trocknung wurden die Formmassen auf einer

Spritzgießmaschine (Typ Aarburg Allrounder) bei Massetemperaturen von 240 bis 270 0 C (PBT-GV) bzw. von 260 bis 290 0 C (PA 66-GV) zu Prüfkörpern verarbeitet. Die Prüfkörper werden anhand des UL 94-Tests (Underwriter Laboratories) auf Flammwidrigkeit (Flammschutz) geprüft und klassifiziert.

An Prüfkörpern aus jeder Mischung wurden die Brandklasse UL 94 (Underwriter Laboratories) an Probekörpem der Dicke 1 ,5 mm bestimmt.

Nach UL 94 ergeben sich folgende Brandklassen: V-O kein Nachbrennen länger als 10 sec, Summe der Nachbrennzeiten bei 10

Beflammungen nicht größer als 50 sec, kein brennendes Abtropfen, kein vollständiges Abbrennen der Probe, kein Nachglühen der Proben länger als 30 sec nach Beflammungsende

V-I kein Nachbrennen länger als 30 sec nach Beflammungsende. Summe der Nachbrennzeiten bei 10 Beflammungen nicht größer als 250 sec, kein Nachglühen der Proben länger als 60 sec nach Beflammungsende, übrige Kriterien wie bei V-O

V-2 Zündung der Watte durch brennendes Abtropfen, übrige Kriterien wie bei V-1 nicht klassifizierbar (nkl) erfüllt nicht die Brandklasse V-2.

Bei einigen untersuchten Proben wurde außerdem der LOI-Wert gemessen. Der LOI-Wert (Limiting Oxygen Index) wird nach ISO 4589 bestimmt. Nach ISO 4589 entspricht der LOI der geringsten Sauerstoffkonzentration in Volumen-prozent, die' in einer Mischung von Sauerstoff und Stickstoff gerade noch die Verbrennung des Kunststoffs unterhält. Je höher der LOI-Wert, desto schwerer entflammbar ist das geprüfte Material.

LOI 23 brennbar

LOI 24-28 bedingt brennbar

LOI 29-35 flammwidrig OO

LOI >36 besonders flammwidrig

Eingesetzte Chemikalien und Abkürzungen VE-Wasser voll-entsalztes Wasser AIBN Azo-bis-(isobutyronitril), (Fa. WAKO Chemicals GmbH)

WakoV65 2,2 1 -Azobis(2,4-dimethyl-valeronitril) I

(Fa. WAKO Chemicals GmbH) Deloxan ® THP Il Metallfänger (Fa. Evonik Industries AG)

Beispiel 1

Bei Raumtemperatur werden in einem Dreihalskolben mit Rührer und Intensivkühler 188 g Wasser vorgelegt und unter Rühren und Durchleiten von Stickstoff entgast. Dann werden unter Stickstoff 0,2 mg Palladium(ll)sulfat und 2,3 mg Tris(3-sulfo-phenyl)phosphin Trinatriumsalz hinzugegeben und gerührt, dann 66 g Phosphinsäure in 66 g Wasser zugegeben. Die Reaktionslösung wird in einen 2 I-Büchi-Reaktor überführt und unter Rühren und unter Druck mit Ethylen beschickt und das Reaktionsgemisch auf 80 0 C geheizt. Nach einer Ethylenaufnahme von 28 g wird abgekühlt und freies Ethylen abgelassen. Das Reaktionsgemisch wird am Rotationsverdampfer vom Lösungsmittel befreit. Der Rückstand wird mit 100 g VE-Wasser versetzt, dann filtriert und das Filtrat mit Toluol extrahiert, danach wird am Rotationsverdampfer vom Lösungsmittel befreit und die erhaltene Ethylphosphonigsäure (92 g (98 % der Theorie)) aufgefangen.

Beispiel 2 Wie in Beispiel 1 werden 99 g Phosphinsäure, 396 g Butanol, 42 g Ethylen, 6,9 mg Tris(dibenzylidenaceton)dipalladium und 9,5 mg 4,5-Bis(diphenylphosphino)-9,9- dimethylxanthen umgesetzt, zur Reinigung über eine mit Deloxan ® THP Il beschickte Säule gegeben und nochmal n-Butanol zugegeben. Bei einer Reaktionstemperatur von 80 - 110 0 C wird das gebildete Wasser durch Azeotropdestillation entfernt. Das Produkt (Ethylphosphonigsäurebutylester) wird durch Destillation bei vermindertem Druck gereinigt. Ausbeute: 189 g (84 % der Theorie). Beispiel 3

Wie in Beispiel 1 werden 198 g Phosphinsäure, 198 g Wasser, 84 g Ethylen, 6,1 mg Palladium(ll)sulfat und 25,8 mg 9,9-Dimethyl-4,5-bis(diphenylphosphino)- 2,7-sulfonato-xanthen Dinatriumsalz umgesetzt, zur Reinigung über eine mit Deloxan ® THP Il beschickte Säule gegeben und n-Butanol zugegeben. Bei einer Reaktionstemperatur von 80 - 110 0 C wird das gebildete Wasser durch Azeotropdestillation entfernt. Das Produkt (Ethylphosphonigsäurebutylester) wird durch Destillation bei vermindertem Druck gereinigt. Ausbeute: 374 g (83 % der Theorie).

Beispiel 4

In einem 500 ml-Fünfhalskolben mit Gaseinleitungsrohr, Thermometer, Intensivrührer und Rückflusskühler mit Gasverbrennung werden 94 g (1 mol) Ethylphosphonigsäure (hergestellt wie in Beispiel 1) vorgelegt. Bei Raumtemperatur wird Ethylenoxid eingeleitet. Unter Kühlung wird eine

Reaktionstemperatur von 70 0 C eingestellt und noch eine Stunde bei 80 0 C nachreagiert. Die Ethylenoxidaufnahme beträgt 65,7 g. Die Säurezahl des Produktes ist kleiner 1 mg KOH/g. Es werden 129 g (94 % der Theorie) (Ethylphosphonigsäure-2-hydroxyethylester) als farbloses, wasserklares Produkt erhalten.

Beispiel 5

4,5 g (30 mmol) Ethylphosphonigsäurebutylester (hergestellt wie in Beispiel 3) werden in 30 ml Toluol gelöst und bei -78 0 C mit 12 ml (30 mmol) einer 2,5 molaren Lösung von Butyllithium in Hexan versetzt. Nach 15-minütigem

Rühren werden 5,68 g (40 mmol) Bortrifluoridetherat hinzugefügt und Ethylenoxid eingeleitet und noch zwei Stunden nachreagiert. Dann wird wässrige Ammoniumchloridlösung zugesetzt und auf Raumtemperatur erwärmt. Dann wird im Vakuum eingeengt, in Diethylether aufgenommen, unlösliche Salze abfiltriert und erneut eingeengt. Nach chromato-graphischer Reinigung werden 4,2 g (73 % der Theorie) Ethyl-(2-hydroxyethyl)-phosphinsäurebutylester als Öl erhalten. Beispiel 6

4,5 g (30 mmol) Ethylphosphonigsäurebutylester (hergestellt wie in Beispiel 2) werden in 30 ml Toluol gelöst und bei 0 0 C mit 0,72 g (30 mmol) Natriumhydrid versetzt. Nach einstündigem Rühren werden 5,68 g (40 mmol) Bortrifluoridetherat hinzugefügt, Ethylenoxid eingeleitet und noch zwei Stunden nachreagiert. Dann wird wässrige Ammoniumchloridlösung zugesetzt und auf Raumtemperatur erwärmt. Anschliessend wird im Vakuum eingeengt, in Diethylether aufgenommen, unlösliche Salze abfiltriert und erneut eingeengt. Nach chromatographischer Reinigung werden 4,5 g (78 % der Theorie) Ethyl-(2-hydroxyethyl)- phosphinsäurebutylester als Öl erhalten.

Beispiel 7

In einer Rührapparatur werden 194 g (1 mol) Ethyl-(2-hydroxyethyl)- phosphinsäure-butylester (hergestellt wie in Beispiel 5) in 200 ml (2 mol) konzentierter Salzsäure gelöst. Das Gemisch wird unter guter Rührung auf ca. 90 0 C erwärmt und bei dieser Temperatur etwa 8 Stunden reagieren gelassen. Anschließend wird das Wasser im Vakuum vollständig abdestilliert. Der Rückstand wird in Essigsäure aufgenommen und extrahiert. Das Lösungsmittel des Filtrats wird im Vakuum abgetrennt. Es werden 143 g (94 % der Theorie) Ethyl-(2- hydroxyethyl)-phosphinsäure als Öl erhalten.

Beispiel 8

In einer Rührapparatur legt man 150 g Butanol, 65 g Wasser, 150 g (3,75 mol)

Natriumhydroxid und 242,5 g (1 ,25 mol) Ethyl-(2-hydroxyethyl)- phosphinsäurebutylester (hergestellt wie in Beispiel 6) vor. Das Gemisch wird unter Rührung auf ca. 120 0 C erwärmt und 6 Stunden reagieren gelassen. Dann werden 250 ml Wasser zugegeben und das Butanol abdestilliert. Nach Zugabe von 500 ml Wasser wird das Gemisch durch Zugabe von etwa 184 g (1 ,88 mol) konzentrierter Schwefelsäure neutralisiert. Anschließend wird das Wasser im Vakuum abdestilliert. Der Rückstand wird in Tetrahydrofuran aufgenommen, extrahiert und die unlöslichen Salze abfiltriert. Das Lösungsmittel des Filtrats wird im Vakuum abdestilliert. Es werden 220 g (98 % der Theorie) Ethyl-(2- hydroxyethyl)-phosphinsäure als Öl erhalten. Beispiel 9

828 g (6 mol) Ethyl-(2-hydroxyethyl)-phosphinsäure (hergestellt wie in Beispiel 8) werden in 860 g Wasser gelöst und in einem 5 I- Fünfhalskolben mit Thermometer, Rückflusskühler, Intensivrührer und Tropftrichter vorgelegt und mit ca. 480 g (6 mol) 50 %ige Natriumhydroxid-Lösung neutralisiert. Bei 85 0 C wird eine Mischung von 1291 g einer 46 %igen wässrigen Lösung von Al 2 (SO 4 ) 3 -14 H 2 O zugefügt. Anschließend wird der erhaltene Feststoff abfiltriert, mit heißem Wasser gewaschen und bei 130 °C im Vakuum getrocknet. Ausbeute: 803 g (91 % der Theorie) Ethyl-(2-hydroxyethyl)-phosphinsäure Aluminium(lll)salz als farbloses Salz.

Beispiel 10

138 g (1 mol) Ethyl-(2-hydroxyethyl)-phosphinsäure (hergestellt wie in Beispiel 7) und 85 g Titantetrabutylat werden in 500 ml Toluol 40 Stunden unter Rückfluss erhitzt. Dabei entstehendes Butanol wird mit Anteilen an Toluol von Zeit zu Zeit abdestilliert. Die entstandene Lösung wird anschließend vom Lösungsmittel befreit. Man erhält 136 g (91 % der Theorie) Ethyl-(2-hydroxyethyl)-phosphinsäure

Titansalz.

Beispiel 11

414 g (3 mol) Ethyl-(2-hydroxyethyl)-phosphinsäure (hergestellt wie in Beispiel 8) werden bei 85 0 C in 400 ml Toluol gelöst und mit 888 g (12 mol) Butanol versetzt.

Bei einer Reaktionstemperatur von ca. 100 0 C wird das gebildete Wasser durch Azeotropdestillation entfernt. Man erhält 500 g (86 % der Theorie) Ethyl-(2- hydroxyethyl)-phosphinsäurebutylester .

Beispiel 12

414 g (3,0 mol) Ethyl-(2-hydroxyethyl)-phosphinsäure (hergestellt wie in Beispiel 7) werden bei 80 0 C in 400 ml Toluol gelöst und mit 594 g (6,6 mol) 1 ,4-Butandiol versetzt und in einer Destillationsapparatur mit Wasserabscheider bei ca. 100 0 C während 4 h verestert. Nach beendeter Veresterung wird das Toluol im Vakuum abgetrennt. Es werden 504 g (80 % der Theorie) Ethyl-(2-hydroxyethyl)- phosphinsäure-4-hydroxybutylester als farbloses Öl erhalten.

Beispiel 13 Zu 388 g (2 mol) Ethyl-(2-hydroxyethyl)-phosphinsäurebutylester (hergestellt wie in Beispiel 5) werden 155 g (2,5 mol) Ethylenglycol und 0,4 g Kaliumtitanyloxalat hinzugegeben und 2 h bei 200 0 C gerührt. Durch langsames Evakuieren werden leicht flüchtige Anteile abdestilliert. Es werden 315 g (96 % der Theorie) Ethyl-(2- hydroxyethyl)-phosphinsäure-2-hydroxyethylester erhalten.

Beispiel 14

In einem 500 ml-Fünfhalskolben mit Gaseinleitungsrohr, Thermometer, Intensivrührer und Rückflußkühler mit Gasverbrennung werden 138 g (1 mol) Ethyl-(2-hydroxyethyl)-phosphinsäure (hergestellt wie in Beispiel 8) vorgelegt und Ethylenoxid eingeleitet. Es wird eine Reaktionstemperatur von 70 0 C eingestellt und 1 h nachreagiert. Die Ethylenoxidaufnahme beträgt 64,8 g. Die Säurezahl des Produktes ist kleiner 1 mg KOH/g. Es werden 173 g (95 % der Theorie) Ethyl-(2- hydroxyethyl)-phosphinsäure-2-hydroxyethylester als farblose, wasserklare Flüssigkeit erhalten.

Beispiel 15

Es werden zu 18,2 g Ethyl-(2-hydroxyethyl)-phosphinsäure-2-hydroxyethylester (hergestellt wie in Beispiel 14) 290 g Terephthalsäure, 188 g Ethylenglycol und 0,34 g Zinkacetat gegeben und 2 h auf 200 0 C erhitzt. Dann werden 0,29 g Trinatrium-phosphatanhydrat und 0,14 g Antimon(lll)oxid hinzugegeben, auf 280 0 C erhitzt und danach evakuiert.

Aus der erhaltenen Schmelze (349 g, Phosphorgehalt 0,9 %) werden Probekörper der Dicke 1 ,6 mm für die Messung des Sauerstoffindexes (LOI) nach ISO 4589-2 als auch für den Brandtest UL 94 gespritzt. Die so hergestellten Probekörper ergaben einen LOI von 40 und erfüllten nach UL 94 die Brandklasse V-O. Entsprechende Probekörper ohne Ethyl-(2-hydroxyethyl)-phosphinsäure-2- hydroxyethylester ergaben einen LOI von nur 31 und erfüllten nach UL 94 nur die Brandklasse V-2. Der Ethyl-(2-hydroxyethyl)-phosphinsäure-2-hydroxyethylester enthaltende Polyester-Formkörper zeigt damit eindeutig flammschützende Eigenschaften.

Beispiel 16

Zu 11 ,6 g Ethyl-(2-hydroxyethyl)-phosphinsäure (hergestellt wie in Beispiel 7) werden 12,9 g 1 ,3-Propylenglycol zugegeben und bei 160 0 C das bei der Veresterung gebildete Wasser abgezogen. Dann werden 378 g Dimethylterephthalat, 152 g 1 ,3-Propandiol, 0,22 g Tetrabutyltitanat und 0,05 g Lithiumacetat zugegeben und die Mischung zunächst 2 h unter Rühren auf 130 bis 180 0 C erhitzt, danach auf 270 0 C. Das Polymer (431 g) enthält 0,6 % Phosphor, der LOI beträgt 34.

Beispiel 17 Zu 11 ,6 g Ethyl-(2-hydroxyethyl)-phosphinsäure (hergestellt wie in Beispiel 8) werden 367 g Dimethylterephthalat, 170 g 1 ,4-Butandiol, 0,22 g Tetrabutyltitanat und 0,05 g Lithiumacetat zugegeben und die Mischung zunächst 2 h lang unter Rühren auf 130 bis 180 0 C erhitzt, danach auf 270 0 C. Das Polymer (424 g) enthält 0.6 % Phosphor, der LOI beträgt 34. der von unbehandeltem Polybutylenterephthalat 23.

Beispiel 18

In einem 250 ml-Fünfhalskolben mit Rückflusskühler, Rührer, Thermometer und

Stickstoffeinleitung werden 100 g eines Bisphenol-A-bisglycidethers mit einem Epoxidwert von 0,55 mol/100 g (Beckopox EP 140, Fa. Solutia) und 17,9 g

(0,13 mol) Ethyl-(2-hydroxyethyl)-phosphinsäure (hergestellt analog Beispiel 8) unter Rühren auf maximal 150 0 C erhitzt. Nach 30 min ergibt sich eine klare Schmelze. Nach einer weiteren Stunde Rühren bei 150 0 C wird die Schmelze abgekühlt und gemörsert. Man erhält 116,4 g eines weißen Pulvers mit einem Phosphorgehalt von 3,3 Gew.-%. Beispiel 19

In einem 2 I-Kolben mit Rührer, Wasserabscheider, Thermometer, Rückflusskühler und Stickstoffeinleitung werden 29,4 g Phthalsäureanhydrid, 19,6 g Maleinsäureanhydrid, 24,8 g Propylenglycol, 14,4 g Ethyl-(2-hydroxyethyl)- phosphinsäure-2-hydroxyethylester (hergestellt wie in Beispiel 14) 20 g XyIoI und 50 mg Hydrochinon unter Rühren und Durchleiten von Stickstoff auf 100 0 C erhitzt. Bei Einsetzen der exothermen Reaktionwird die Heizung entfernt. Nach Abklingen der Reaktion wird weiter bei ca. 190 0 C gerührt. Nachdem 14 g Wasser abgeschieden sind, wird das XyIoI abdestilliert und die Polymerschmelze abgekühlt. Man erhält 89,6 g eines weißen Pulvers mit einem Phosphorgehalt von 2,3 Gew.-%.

Beispiel 20

Eine Mischung von 50 Gew.-% Polybutylenterephthalat, 20 Gew.-% Ethyl-(2- hydroxyethyl)-phosphinsäure Aluminium(lll)salz (hergestellt wie in Beispiel 9) und 30 Gew.-% Glasfasern werden auf einem Doppelschnecken-Extruder (Typ Leistritz LSM 30/34) bei Temperaturen von 230 bis 260 0 C zu einer Polymerformmasse compoundiert. Der homogenisierte Polymerstrang wurde abgezogen, im Wasserbad gekühlt und anschließend granuliert. Nach Trocknung werden die Formmassen auf einer Spritzgießmaschine (Typ Aarburg Allrounder) bei 240 bis 270 0 C zu Polymerformkörper verarbeitet und eine UL-94 Klassifizierung von V-O bestimmt.

Beispiel 21 Eine Mischung von 53 Gew.-% Polyamid 6.6, 30 Gew.-% Glasfasern, 17 Gew.-% Ethyl-(2-hydroxyethyl)-phosphinsäure Titansalz (hergestellt wie in Beispiel 10) werden auf einem Doppelschnecken-Extruder (Typ Leistritz LSM 30/34) zu Polymerformmassen compoundiert. Der homogenisierte Polymerstrang wurde abgezogen, im Wasserbad gekühlt und anschließend granuliert. Nach Trocknung werden die Formmassen auf einer Spritzgießmaschine (Typ Aarburg Allrounder) bei 260 bis 290 0 C zu Polymerformkörpern verarbeitet und eine UL-94 Klassifizierung von V-O erhalten.