Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHOD AND SYSTEM FOR INCREASING THE CALORIFIC VALUE OF A MATERIAL FLOW CONTAINING CARBON
Document Type and Number:
WIPO Patent Application WO/2013/189893
Kind Code:
A1
Abstract:
In the method according to the invention for increasing the calorific value of a material flow containing carbon, preferably a material flow of renewable raw materials, the material flow is brought in direct contact with at least one low-oxygen, inert hot gas flow in a reactor, wherein the hot gas flow is formed at least 50%, preferably at least 80%, by exhaust gas of a process for thermally processing cement raw meal and/or lime and/or an ore, wherein at least part of a preheater exhaust gas for preheating the cement raw meal and/or lime and/or ore is used as the hot gas flow.

Inventors:
LAMPE KARL (DE)
ERPELDING RICHARD (DE)
DENKER JUERGEN (DE)
DIETRICH MEIKE (DE)
SCHEFER DIRK (DE)
BROSOWSKI WERNER (DE)
Application Number:
PCT/EP2013/062534
Publication Date:
December 27, 2013
Filing Date:
June 17, 2013
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
THYSSENKRUPP RESOURCE TECHNOLOGIES GMBH (DE)
International Classes:
C10L9/08; F27B7/20; F27D17/00
Domestic Patent References:
WO2011161525A12011-12-29
WO2012007574A12012-01-19
Foreign References:
EP2039663A12009-03-25
US5199987A1993-04-06
DE102005046408A12006-04-20
DE102010036425A12012-01-19
US7434332B22008-10-14
US7461466B22008-12-09
DE102009053059A12011-05-19
Other References:
See also references of EP 2864454A1
Attorney, Agent or Firm:
TETZNER, Michael et al. (DE)
Download PDF:
Claims:
Patentansprüche

1. Verfahren zur Erhöhung des Brennwerts eines kohlenstoffhaltigen Stoffstroms (2), vorzugsweise eines Stoffstroms aus nachwachsenden Rohstoffen, wobei der Stoffstrom in einem Reaktor (1) mit wenigstens einem sauerstoffarmen, inerten Heißgasstrom (4) in direkten Kontakt gebracht wird, dadurch gekennzeichnet, dass der Heißgasstrom (4) zu wenigstens 50% durch Abgas eines Prozesses (7) zur thermischen Aufbereitung von Zementrohmehl und/oder Kalk und/oder eines Erzes gebildet wird, wobei als Heißgasstrom (4) wenigstens ein Teil eines Vorwärmerabgases zur Vorwärmung des Zementrohmehls und/oder Kalks und/oder Erzes verwendet wird.

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der im Reaktor (1) behandelte kohlenstoffhaltige Stoffstrom (2) als fester Brennstoff im thermischen Aufbereitungsprozess (7) genutzt wird und/oder ein Abgas (13) des Reaktors (1) dem thermischen Aufbereitungsprozess (7) als gasförmiger Brennstoff zugeführt wird.

3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Heißgasstrom (4) zur Trocknung und/oder Torrefizierung des Stoffstroms (2) im Reaktor (1) genutzt wird.

4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass ein bei der Trocknung entstehendes Abgas (4') zur Wasser-Gewinnung genutzt wird.

5. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass ein bei der Torrefizierung entstehendes Torrefikat (8) gekühlt wird und ein bei der Kühlung entstehendes Kühlerabgas (10) als Heißgasstrom zur Trocknung des Stoffstroms (2) verwendet wird.

6. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass ein bei der Torrefizierung entstehendes Torrefikat (8) heiß vermählen und/oder brikettiert wird.

7. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass ein bei der Torrefizierung entstehendes Torrefikat (8) heiß oder kalt vermählen einem Flugstrom- Vergaser oder unzerkleinert einem Wirbelschichtvergaser zur Erzeugung von brennbaren Gasen zugeführt wird.

8. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass bei der Torrefizierung Biokohle erzeugt wird, die als Reduktionsmittel in einem pyrometallurgischen Verfahren eingesetzt wird.

9. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Heißgasstrom (4) in den Reaktor (1) mit einer Temperatur von weniger als 450°C und einem Sauerstoffanteil von weniger als 8% eingeführt wird.

10. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass wenigstens ein Teil eines aus dem Reaktor (1) abgeleiteten Abgases zur Gewinnung einer organischen Säure genutzt wird, indem das Abgas einem Kondensator und/oder einer Rektifizierkolonne (14) zugeführt wird.

11. Anlage (70) zur thermischen Aufbereitung von Zementrohmaterial, Kalkstein oder Erz und zur Erhöhung des Brennwerts eines kohlenstoffhaltigen Stoffstroms mit einem Vorwärmer (700) zum Vorwärmen und/oder Calcinieren von Zementrohmaterial, Kalkstein oder Erz, sowie einem Reaktor (1) zur Durchführung des Verfahrens gemäß Anspruch 1, wobei der Vorwärmer (700) mit dem Reaktor (1) in Verbindung steht, um im Vorwärmer anfallende Vorwärmerabgase als Heißgasstrom (4) dem Reaktor (1) zuzuführen.

12. Anlage nach Anspruch 11, dadurch gekennzeichnet, dass der Reaktor (1) eine Trocknungszone (la) und eine Torrefizierungszone (lb) umfasst.

13. Anlage nach Anspruch 11, dadurch gekennzeichnet, dass der Reaktor (1) als Mehretagenofen mit wenigstens einem oberen und unteren Prozessraum ausgebildet ist.

14. Anlage nach Anspruch 11, dadurch gekennzeichnet, dass der Reaktor (1) zur Ableitung von im Reaktor (1) entstehender Abgase (13) eine Abgasleitung (16) aufweist, die an die Anlage (70) zur thermischen Aufbereitung angeschlossen ist.

15. Anlage nach Anspruch 11, dadurch gekennzeichnet, dass die Anlage (70) zur thermischen Aufbereitung durch eine Zementherstellungsanlage gebildet wird, die einen Drehrohrofen (701) zum anschließenden Brennen des vorgewärmten Zementrohmaterials zu Zementklinker umfasst.

Description:
Verfahren und Anlage zur Erhöhung des Brennwerts eines kohlenstoffhaltigen Stoffstroms

Die Erfindung betrifft ein Verfahren und eine Anlage zur Erhöhung des Brennwerts eines kohlenstoffhaltigen Stoffstroms, vorzugsweise eines Stoffstroms aus nachwachsenden Rohstoffen, wobei der Stoffstrom in einem Reaktor mit wenigstens einem sauerstoffarmen, inerten Heißgasstrom in direkten Kontakt gebracht wird.

Bei thermischen Aufbereitungsprozessen, wie Zementklinker- und/oder Kalkbrenn- Verfahren, pyrometallurgischen Verfahren und/oder Verfahren zur Stromerzeugung und/oder Ölgewinnung werden zum Teil große Mengen an Brennstoff benötigt, wobei meist fossile Brennstoffe zum Einsatz kommen. Zur Minderung von C0 2 - Emissionen und im Hinblick auf eine nachhaltige Nutzung von Ressourcen sind die Betreiber derartiger Anlagen bestrebt zumindest einen Teil der fossilen Brennstoffe durch Ersatzbrennstoffe insbesondere C0 2 -neutrale Biomasse zu ersetzen.

Aus der US 7,434,332 B2 ist der Einsatz von Biomasse als Brennstoff bei der Zementherstellung bekannt, wobei die feuchte Biomasse zur Trocknung mit Kühlerabluft in direkten Kontakt gebracht wird. Die US 7,461,466 B2 beschreibt hingegen ein indirektes Trocknungsverfahren von feuchter Biomasse mittels der Klinkerabluft, um die getrocknete Biomasse anschließend als Brennstoff im Zementherstellungsverfahren zu nutzen.

Die getrocknete Biomasse kann jedoch noch effizienter genutzt werden, wenn sie im torrefizierten Zustand eingesetzt wird. Unter der Torrefizierung versteht man die thermische Behandlung von Biomasse unter sauerstoffarmen Bedingungen bei niedrigen Temperaturen von 240 bis 320°C durch pyrolytische Zersetzung. Die WO 2012/007574 beschreibt ein solches Verfahren, bei dem ein kohlenstoffhaltiger Stoffstrom in einem Etagenofen getrocknet und torrefiziert wird, wobei eine mit einem ersten Heißgasstrom durchströmte Trocknungszone und eine mit einem zweiten Heißgasstrom durchströmte Torrefizierungszone vorgesehen sind. Ein über einen Auslass der Torrefizierungszone abgeführter Torrefizierungsgasstrom wird anschließend in einem Verbrennungsaggregat verbrannt und aufgeheizt. Das dabei entstehende Abgas wird in einem Wärmetauscher zum Aufheizen des Trocknungsgasstroms genutzt, wobei sich der heiße Abgasstrom des Verbrennungsaggregats auf die Torrefizierungstemperatur abkühlt und dann in die Torrefizierungszone zurückgeführt wird. Der Stoffstrom kommt dabei sowohl in der

Trocknungszone als auch in der Torrefizierungszone mit dem jeweiligen sauerstoffarmen, inerten Heißgasstrom in direkten Kontakt. Der direkte Kontakt gewährleistet gegenüber einer indirekten Erwärmung einen wesentlich effizienteren Wärmeübergang. Eine Torrefizierung ist darüber hinaus bevorzugt mit einem sauerstoffarmen und inerten Heißgasstrom möglich, da es ansonsten zu unerwünschten nicht kontrollierbaren exothermen Reaktionen in der Torrefizierungszone kommen würde.

Aus der DE 10 2009 053 059 AI ist eine Vorrichtung und ein Verfahren zur Erzeugung eines feinkörnigen Brennstoffs aus festen oder pastösen Energierohstoffen durch Torrefizierung und Zerkleinerung bekannt. Des Weiteren wird die Co-Vergasung von Biomasse und Kohle in einem Flugstromvergaser angestrebt, wobei das Abgas der Torrefizierung der Vergasung zugeführt wird und Abgas der Vergasung bei der Torrefizierung genutzt wird.

Der Erfindung liegt nun die Aufgabe zugrunde, das Verfahren und die Anlage zur Erhöhung des Brennwerts eines kohlenstoffhaltigen Stoffstroms, vorzugsweise eines

Stoffstroms aus nachwachsenden Rohstoffen, noch effizienter zu gestalten.

Erfindungsgemäß wird diese Aufgabe durch die Merkmale der Ansprüche 1 und 1 1 gelöst.

Beim erfindungsgemäßen Verfahren zur Erhöhung des Brennwerts eines kohlenstoffhaltigen Stoffstroms, vorzugsweise eines Stoffstroms aus nachwachsenden Rohstoffen, wird der Stoffstrom in einem Reaktor mit wenigstens einem sauerstoffarmen, inerten Heißgasstrom in direkten Kontakt gebracht, wobei der Heißgasstrom zu wenigstens 50%, vorzugsweise wenigstens 80%, durch Abgas eines Prozesses zur thermischen Aufbereitung von Zementrohmehl und/oder Kalk und/oder eines Erzes gebildet wird, wobei als Heißgasstrom wenigstens ein Teil eines Vorwärmerabgases zur Vorwärmung des Zementrohmehls und/oder Kalks und/oder Erzes verwendet wird.

Unter einem sauerstoffarmen, inerten Heißgasstrom im Sinne der Erfindung wird ein Heißgasstrom verstanden, der eine Sauerstoffkonzentration < 8%, bevorzugt < 6% aufweist. Damit wird die Sauerstoffgrenzkonzentration für Holz und andere Biomassen deutlich unterschritten und eine oxidierende Reaktion der biogenen Komponenten verhindert. Die thermische Behandlung von Biomasse führt unter diesen Bedingungen zu einer Freisetzung von flüchtigen Komponenten, die nicht weiter oxidieren können und somit keinen zusätzlichen Wärmeeintrag in die Prozesszone bedingen.

Durch die Kopplung des Torrefizierungs- Verfahrens zur Erhöhung des Brennwerts eines kohlenstoffhaltigen Stoffstroms mit einem thermischen Aufbereitungsprozess kann überschüssige Abwärme des Aufbereitungsprozesses als Heißgasstrom für die Trocknung und Torrefizierung genutzt werden. Auf diese Weise kann Heißgas ohne oder zumindest mit relativ geringer zusätzlicher Energie bereitgestellt werden.

Weitere Ausgestaltungen der Erfindung sind Gegenstand der Unter anspräche.

Eine weitere Effizienzsteigerung ergibt sich dann, wenn das Verfahren zur Erhöhung des Brennwerts eines kohlenstoffhaltigen Stoffstroms mit dem thermischen Aufbereitungsprozess nicht nur hinsichtlich der Bereitstellung des Heißgases, sondern auch in umgekehrter Richtung gekoppelt ist, indem der im Reaktor behandelte kohlenstoffhaltige Stoffstrom als fester Brennstoff im thermischen Aufbereitungsprozess genutzt wird und/oder ein Abgas des Reaktors dem thermischen Aufbereitungsprozess als gasförmiger Brennstoff zugeführt wird.

Heißgase im Sinne der Anmeldung sind Abgase aus dem Prozess zur thermischen Aufbereitung von Zementrohmehl und/oder Kalk und/oder Erz , die mindestens eine Temperatur > 200 °C und eine maximale Sauerstoffkonzentration von 8%, bevorzugt kleiner 6% aufweisen. Abgase aus diesen thermischen Prozessen mit Temperaturen oberhalb von 400 °C können mit kälteren sauerstoffarmen Abgasströmen, die ggf. auch den Kreisläufen des Torrefizierungsprozesses entstammen können, auf die erforderliche Temperatur abgekühlt werden.

Der Heißgasstrom wird vorzugsweise in den Reaktor mit einer Temperatur von weniger als 400°C und einem Sauerstoffanteil von weniger als 8% eingeführt. Gemäß einer bevorzugten Ausgestaltung wird der Heißgasstrom zur Trocknung und/oder Torrefizierung des Stoffstroms im Reaktor genutzt. Dabei kann ein bei der Trocknung entstehendes Abgas aus dem Trocknungsbereich zur Wasser-Gewinnung genutzt werden. Weiterhin kann ein bei der Torrefizierung entstehendes Torrefikat gekühlt werden und eine bei der Kühlung entstehendes Kühlerabgas als Heißgasstrom zur Trocknung des Stoffstroms verwendet werden.

Ein bei der Torrefizierung entstehendes Torrefikat kann heiß vermählen und/oder brikettiert werden, um dann als fester Brennstoff eingesetzt zu werden. Weiterhin ist es denkbar, dass bei der Torrefizierung Biokohle erzeugt wird, die als Reduktionsmittel in einem pyrometallurgischen Prozess eingesetzt wird. Außerdem kann wenigstens ein Teil eines aus dem Reaktor abgeleiteten Abgases zur Gewinnung einer organischen Säure genutzt werden, indem das Abgas einem Kondensator und/oder einer Rektifizierkolonne zugeführt wird. Ferner ist denkbar, dass ein bei der Torrefizierung entstehendes Torrefikat heiß oder kalt vermählen einem Flugstrom- Vergaser oder unzerkleinert einem Wirbelschichtvergaser zur Erzeugung von brennbaren Gasen zugeführt wird.

Die Erfindung betrifft weiterhin eine Anlage zur thermischen Aufbereitung von Zementrohmaterial, Kalkstein oder Erz und zur Erhöhung des Brennwerts eines kohlenstoffhaltigen Stoffstroms mit einem Vorwärmer zum Vorwärmen und/oder Calcinieren von Zementrohmaterial, Kalkstein oder Erz, sowie einem Reaktor, in dem der Stoffstrom mit wenigstens einem sauerstoffarmen, inerten Heißgasstrom in direkten Kontakt gebracht wird, wobei der Vorwärmer mit dem Reaktor in Verbindung steht, um im Vorwärmer anfallende Vorwärmerabgase als Heißgasstrom dem Reaktor zuzuführen. Der Reaktor kann insbesondere eine Trocknungszone und eine Torrefizierungszone umfasst, wobei der Reaktor beispielsweise als Mehretagenofen ausgebildet ist. Gemäß einer weiteren Ausgestaltung weist der Reaktor zur Ableitung von im Reaktor entstehenden Abgasen eine Abgasleitung auf, die an die Anlage zur thermischen Aufbereitung angeschlossen ist.

Weitere Vorteile und Ausgestaltungen der Erfindung werden anhand der nachfolgenden Beschreibung und der Zeichnung näher erläutert.

In der Zeichnung zeigen

Fig. 1 ein Blockschaltbild zur Erläuterung des erfindungsgemäßen Verfahrens und

Fig. 2 ein Blockschaltbild einer Anlage zur thermischen Aufbereitung von Zementrohmaterial, Kalkstein oder Erz und einer Anlage zur Erhöhung des Brennwerts eines kohlenstoffhaltigen Stoffstroms.

In Fig.l ist mit dem Bezugszeichen 1 ein Reaktor zur Erhöhung des Brennwerts eines kohlenstoffhaltigen Stoffstroms 2, vorzugsweise eines Stoffstroms aus nachwachsenden Rohstoffen, bezeichnet. Dieser Reaktor ist beispielsweise als Mehretagenofen mit wenigstens einem oberen und einem unteren Prozessraum ausgebildet, wobei der obere als Trocknungszone la und der untere als Torrefizierungszone lb ausgeführt ist.

Gemäß einer bevorzugten Ausgestaltung der Erfindung besteht die Trocknungszone la und/oder die Torrefizierungszone lb jeweils aus mehreren, übereinander angeordneten Herden. Als Transportmittel kommen beispielsweise Krählarme und Krählzähne zur Anwendung, die um eine Zentralwelle rotieren. Zwischen den beiden Zonen kann weiterhin eine mechanische Übergabeeinrichtung für die Übergabe des getrockneten, kohlenstoffhaltigen Stoffstroms vorgesehen werden, die vorzugsweise gasdicht ausgebildet ist, um eine Vermischung der beiden Atmosphären zu verhindern. Der kohlenstoffhaltige Stoffstrom 2 wird der Trocknungszone la zugeführt und ggf. zuvor in einer Mühle oder Presse 3 vorbehandelt. In der Trocknungszone kommt der kohlenstoffhaltige Stoffstrom 2 mit einem sauerstoffarmen, inerten ersten Heißgasstrom 4 in direkten Kontakt und wird dabei getrocknet. Die Temperatur des Heißgasstroms 4 liegt zweckmäßiger Weise im Bereich von 150° bis 400°C, vorzugsweise im Bereich von 200°C bis 300°C. Der Sauerstoffgehalt beträgt vorzugsweise weniger als 8%. Der Heißgastrom 4 nimmt die Feuchtigkeit des Stoffstroms 2 auf und wird als Abluft 4' aus der Trocknungszone la ausgeschleust und kann dann beispielsweise einem Kondensator 5 zur Gewinnung von Wasser zu- oder zum thermischen Aufbereitungsprozess 7 zurück- oder direkt über einen Kamin 19 abgeführt werden.

Der Heißgasstrom 4 wird durch ein Abgas eines thermischen Aufbereitungsprozesses 7 gebildet, der dort an einer Stelle entnommen wird, welche die gewünschten Eigenschaften hinsichtlich Sauerstoffgehalt und Temperatur erfüllt. Zudem ist es möglich dem Heißgasstrom 4 einen Teilstrom des Trocknerabgases 4' beizumischen, um die gewünschten Eigenschaften des Heißgases einzustellen. Bei dem thermischen Aufbereitungsprozess 7 kann es sich beispielsweise um ein Zementklinker- und/oder Kalkbrenn- Verfahren, ein pyrometallurgisches Verfahren und/oder ein Verfahren zur Stromerzeugung und/oder Oelgewinnung handeln.

Der in der Trocknungszone la durch den Heißgastrom 4 getrocknete Stoffstrom 2 gelangt anschließend in die Torrefizierungszone lb, in der er mit einem sauerstoffarmen, inerten zweiten Heißgasstrom 6 in direkten Kontakt gebracht wird. Die Temperatur des zweiten Heißgasstroms 6 ist üblicherweise höher und liegt vorzugsweise im Bereich von 250° bis 400°C und bewirkt die Torrefizierung des kohlenstoffhaltigen, getrockneten Stoffstroms 2. Auch der zweite Heißgasstrom 6 wird dem thermischen Aufbereitungsprozess 7 entnommen und kann durch Beimischung anderer Abgasströme, z.B. aus dem Torrefizierungsprozess selbst, auf die erforderlichen Eigenschaften angepasst werden. Erfindungsgemäß werden die beiden Heißgasströme 4, 6 für den Reaktor 1 zu wenigstens 50%, vorzugsweise wenigstens 80%, durch ein Abgas des thermischen Aufbereitungsprozesses 7 gebildet.

In der Torrefizierungszone lb wird der kohlenstoffhaltige Stoffstrom in ein Torrefikat 8 umgewandelt, das als fester Brennstoff im thermischen Aufbereitungsprozess 7 genutzt werden kann. Zuvor kann das Torrefikat 8 in einem Kühler 9 gekühlt werden, wobei eine dabei entstehendes Kühlerabgas 10 zumindest teilweise als erster Heißgasstrom 4 in der Trocknungszone la zur Trocknung des Stoffstroms 2 genutzt werden kann. Das Torrefikat 8 könnte aber auch ohne Kühlung in einer Mühle oder Presse 11 heiß vermählen und/oder brikettiert werden, bevor es im thermischen Aufbereitungsprozesses 7 genutzt wird. Außerdem besteht die Möglichkeit, das Torrefikat 8 im gekühlten, gemahlenen oder brikettierten Zustand in einem Silo 12 zwischenzulagern.

Neben dem Torrefikat 8 entsteht in der Torrefikationszone lb noch ein Abgas 13 das als gasförmiger Brennstoff im thermischen Aufbereitungsprozess 7 genutzt werden kann. Das brennbare Torrefizierungsgas 13 wird dem thermischen Aufbereitungsprozess 7 entweder direkt zugeführt oder vorab mittels eines Brenners 18 nachverbrannt und als heißes Abgas in den Aufbereitungsprozess 7 eingespeist. Alternativ kann zumindest ein Teil des Abgases 13 einem Kondensator 14 zur Gewinnung von Säure und/oder Salz zugeführt werden.

Fig. 2 zeigt ein Ausführungsbeispiel bei dem der thermische Aufbereitungsprozesses in einer Anlage 70 zur Aufbereitung von Zementrohmaterial, Kalkstein oder Erz erfolgt, die zumindest einen Vorwärmer 700 umfasst, der mit dem Reaktor 1 über eine Heißgasleitung 15 in Verbindung steht, um im Vorwärmer anfallende Vorwärmerabgase als Heißgasstrom 4 dem Reaktor 1 zuzuführen. Eine Heißgasleitung 17 verbindet den Vorwärmer 700 außerdem mit der Torrefizierungszone lb zur Zuführung des zweiten Heißgasstroms 6. Der Reaktor 1 ist ferner zur Ableitung des im Reaktor entstehenden Abgases 13 mit einer Abgasleitung 16 an die Anlage 70, beispielsweise an einen Drehrohrofen 701, angeschlossen. Ist die Anlage 70 als Zementherstellungsanlage ausgebildet, dient der Drehrohrofen 701 zum Brennen des im Vorwärmer 700 und einem ggf. vorhandenen Calcinator vorgewärmten bzw. vorcalcinierten Zementrohmaterials zu Zementklinker. Der Vorwärmer wird dabei üblicherweise mit dem Abgas des Drehrohrofens betrieben, welches hinsichtlich des Sauerstoffgehalts und der inerten Eigenschaften das ideale Heißgas für den Reaktor 1 darstellt. Die benötigten

Temperaturen der beiden Heißgase 4, 6 werden dadurch eingestellt, dass das Vorwärmerabgas an genau der Stelle des Vorwärmers 700 abgezogen wird, an der das Vorwärmerabgas die gewünschte Temperatur hat oder das abgezogene Vorwärmerabgas wird noch mit einem anderen Gasstrom vermischt.