Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHODS AND COMPOSITIONS FOR THE EXTRACELLULAR TRANSPORT OF BIOSYNTHETIC HYDROCARBONS AND OTHER MOLECULES
Document Type and Number:
WIPO Patent Application WO/2012/037288
Kind Code:
A9
Abstract:
The present disclosure identifies methods and compositions for modifying photoautotrophic organisms as hosts, such that the organisms efficiently convert carbon dioxide and light into hydrocarbons, e.g., n-alkanes and n-alkenes, wherein the n-alkanes are secreted into the culture medium via recombinantly expressed transporter proteins. In particular, the use of such organisms for the commercial production of n-alkanes and related molecules is contemplated.

Inventors:
REPPAS NIKOS BASIL (US)
LAWRENCE CAROLYN (US)
SMITH KEVIN (US)
SHOLL MARTHA (US)
RIDLEY CHRISTIAN PERRY (US)
Application Number:
PCT/US2011/051648
Publication Date:
December 06, 2012
Filing Date:
September 14, 2011
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
JOULE UNLTD TECHNOLOGIES INC (US)
REPPAS NIKOS BASIL (US)
LAWRENCE CAROLYN (US)
SMITH KEVIN (US)
SHOLL MARTHA (US)
RIDLEY CHRISTIAN PERRY (US)
International Classes:
C12P1/04; C12P5/00
Attorney, Agent or Firm:
ULLSPERGER, Christian, J. et al. (Silicon Valley Center801 California Stree, Mountain Veiw CA, US)
Download PDF:
Claims:
What is claimed is:

1. An engineered microorganism, wherein said engineered microorganism comprises (i) one or more recombinant genes encoding enzymes which catalyze the production of alkanes, and (ii) one or more recombinant genes encoding one or more protein components of a recombinant hydrocarbon ABC efflux pump system.

2. T he engineered microorganism of claim 1 , wherein said recombinant genes encoding enzymes which catalyze the production of alkanes are selected from the group consisting of a recombinant acyl-ACP reductase enzyme and a recombinant alkanal deformylative monooxygenase (ADM) enzyme.

3. T he engineered microorganism of claim 1 , wherein said recombinant hydrocarbon ABC efflux pump system is an E. coli hydrocarbon ABC efflux pump system.

4. T he engineered microorganism of claim 3, wherein said recombinant hydrocarbon ABC efflux pump system is selected from the group consisting of the

ybhG/ybhF/ybhS/ybhR/tolC and the yhil/rbbA/yhhJ/tolC pump system.

5. T he engineered microorganism of claim 4, wherein said one or more recombinant genes encoding one or more protein components of a recombinant hydrocarbon ABC efflux pump system encode at least one protein listed in T able 5, or a functional homolog of at least one protein listed in T able 5.

6. T he engineered microorganism of any of claims 1 -5, wherein said microorganism is E. coli.

7. T he engineered microorganism of claim 5, wherein expression of an operon comprising ybhG/ybhF/ybhS/ybhR is controlled by a recombinant promoter, and wherein said promoter is constitutive or inducible.

8. T he engineered microorganism of claim 7, wherein said operon is integrated into the genome of said microorganism.

9. T he engineered microorganism of claim 7, wherein said operon is extrachromosomal.

10. T he engineered microorganism of any of claims 1 -5, wherein said microorganism is a photosynthetic microorganism.

1 1. T he engineered photosynthetic microorganism of claim 10, wherein said microorganism is a cyanobacterium.

12. T he engineered photosynthetic microorganism of claim 1 1 , wherein said microorganism is a Synechococcus species.

13. T he engineered photosynthetic microorganism of any of claims 10-12, wherein said one or more protein components are selected from the group consisting of YbhG, Yhil, T olC and homologs of YbhG, Yhil and T olC, wherein the native leader sequences of said YbhG,YhiI and T olC proteins and homologs thereof are replaced with leader sequences native to said photosynthetic microorganism.

14. T he engineered photosynthetic microorganism of claim 13, wherein said protein

components comprise a YbhG variant selected from Set 1 of T able 20, and wherein said T olC homolog is SYNPCC7002 A0585.

15. T he engineered photosynthetic microorganism of claim 13, wherein said protein

components comprise a YbhG variant selected from Set 2 of T able 20, and wherein said T olC or T olC homolog is selected from the OMP variants listed in Set 2 of T able 20.

16. T he engineered photosynthetic microorganism of any of claims 1 1 -13, wherein said protein components comprise YbhS and YbhR proteins or homologs thereof,and wherein said YbhS and YbhR proteins or homologs thereof comprise pseudo-leader sequences.

17. T he engineered photosynthetic microorganism of claim 16, wherein said YbhS and YbhR proteins or homologs thereof are selected from those listed in T able 20.

18. T he engineered photosynthetic microorganism of any of claims 1 1 -13, wherein said one or more protein components is a recombinant T olC or homolog of T olC, and wherein said T olC or said homolog of T olC includes a C-terminal modification wherein the C- terminal residues of T olC are replaced with the corresponding C-terminal residues of an outer membrane protein native to said photosynthetic microorganism.

19. T he engineered photosynthetic microorganism of claim 19, wherein said T olC or T olC homolog is an OMP variant from T able 20.

20. An engineered photosynthetic microorganism comprising a recombinant outer membrane protein and a recombinant complementary ABC efflux pump, wherein said recombinant outer membrane protein is SYNPCC7002 A0585, and wherein said recombinant complementary ABC efflux pump comprises (i) a YbhG variant selected from Set 1 of T able 20, (ii) YbhF, and (iii) a YbhS/YbhR variant listed in T able 20.

21. An engineered photosynthetic microorganism comprising a recombinant outer membrane protein and a recombinant complementary ABC efflux pump, wherein said recombinant outer membrane protein is selected from the group consisting of the OMP variants listed in Set 2 of T able 20, and wherein said recombinant ABC efflux pump comprises (i) a YbhG variant selected from Set 2 of T able 20, (ii) YbhF, and (iii) a YbhS/YbhR variant listed in T able 20.

22. An engineered photosynthetic microorganism of any of claims 13-21 , wherein said

engineered photosynthetic microorganism comprises a recombinant outer membrane protein and a recombinant complementary ABC efflux pump, and wherein expression of said recombinant outer membrane protein and said recombinant ABC efflux pump is driven by distinct promoters.

23. An engineered photosynthetic microorganism of claim 22, wherein at least one of said separate promoters is inducible.

24. An engineered photosynthetic microorganism of claim 22, wherein said promoters are divergently oriented.

25. An engineered photosynthetic microorganism of claim 24, wherein said promoters are selected from the promoters listed in T able 19.

26. A method for producing hydrocarbons, comprising: culturing an engineered microorganism of any of claims 1 -25 in a culture medium, wherein said engineered microorganism secretes increased amounts of «-alkanes or n- alkenes into the culture medium relative to an otherwise identical microorganism, cultured under identical conditions, but lacking said recombinant genes.

27. T he method of claim 26, wherein said culture medium does not include a surfactant.

28. T he method of claim 26, wherein said culture medium does not include EDT A.

29. T he method of claim 26, wherein said culture medium does not include T ris buffer.

30. T he method of claim 26, wherein said engineered microorganism secretes as least twice the percentage of «-alkanes produced relative to an otherwise identical microorganism, cultured under identical conditions, but lacking said recombinant genes for efflux of n- alkanes or «-alkenes.

31. T he method of claim 26, wherein said engineered microorganism secretes as least five times the percentage of «-alkanes produced relative to an otherwise identical

microorganism, cultured under identical conditions, but lacking said recombinant genes for the efflux of «-alkanes or «-alkenes.

32. T he method of claim 26, wherein said engineered microorganism is an engineered E. coli, and wherein at least 90% of said «-alkanes or «-alkenes are secreted into the culture medium.

33. A method for producing hydrocarbons, comprising:

(i) culturing an engineered photosynthetic microorganism of any of claims 10-25 in a culture medium, and

(ii) exposing said engineered photosynthetic microorganism to light and carbon dioxide, wherein said exposure results in the conversion of said carbon dioxide by said engineered cynanobacterium into «-alkanes, wherein said «-alkanes are secreted into said culture medium in an amount greater than that secreted by an otherwise identical

cyanobacterium, cultured under identical conditions, but lacking said recombinant genes.

34. T he method of claim 33, wherein said engineered photosynthetic microorganism further produces at least one «-alkene or «-alkanol.

35. T he method of claim 33, wherein said engineered photosynthetic microorganism

produces at least one «-alkene or «-alkanol selected from the group consisting of n- pentadecene, «-heptadecene, and 1-octadecanol.

36. T he method of claim 33, wherein said «-alkanes comprise predominantly «-heptadecane, «-pentadecane or a combination thereof.

37. T he method of claim 33, further comprising isolating at least one «-alkane, «-alkene or n- alkanol from said culture medium.

38. T he method of claim 33, wherein at least one of said recombinant genes is encoded on a plasmid.

39. T he method of claim 33, wherein at least one of said recombinant genes is incorporated into the genome of said engineered photosynthetic microorganism.

40. T he method of claim 33, wherein at least one of said recombinant genes is present in multiple copies in said engineered photosynthetic microorganism.

41. T he method of claim 33 wherein at least two of said recombinant genes are part of an operon, and wherein the expression of said genes is controlled by a single promoter.

42. T he method of claim 33, wherein at least 95% of said «-alkanes are «-pentadecane and n- heptadecane.

43. T he method of claim 33, wherein the expression of at least one of said recombinant genes is controlled by one or more inducible promoters.

44. T he method of claim 43, wherein at least one promoter is a urea-repressible, nitrate - inducible promoter.

45. T he method of claim 44, wherein said promoter is a nirA-type promoter.

46. T he method of claim 45, wherein said nirA-typQ promoter is P(nir07) or P(nir09).

47. A method for producing a hydrocarbon of interest, comprising (i) culturing an engineered Escherichia coli cell in a culture medium, wherein said cell comprises a mutation in a promoter for the ybiH gene or a mutation in the structural gene encoding YbiH activity, wherein said mutation decreases expression of YbiH activity relative to an otherwise identical cell lacking said mutation and, and wherein said mutation increases secretion of said hydrocarbon of interest relative to an otherwise identical cell lacking said hydrocarbon of interest; and (ii) isolating said hydrocarbon of interest from said culture medium.

48. T he method of claim 47, wherein said hydrocarbon of interest is a biofuel.

49. An engineered microorganism comprising a disrupted lipopolysaccharide (LPS) layer, wherein said engineered microorganism comprises (i) one or more recombinant genes encoding enzymes which catalyze the production of «-alkanes, and (ii) a mutation in a gene involved in the biosynthesis or maintenance of said LPS layer, wherein said mutation leads to the disruption of said LPS layer.

50. T he engineered microorganism of claim 49, wherein said gene involved in the

maintenance of said LPS layer encodes ADP-heptose:LPS heptosyl transferase I.

51. T he engineeered microorganism of claim 49, wherein said microorganism is E. coli.

52. T he engineered microorganism of claim 49, wherein said microorganism is a

photosynthetic microorganism.

53. T he engineered microorganism of claim 52, wherein said microorganism is a

cyanobacterium.

54. A method for producing hydrocarbons, comprising: culturing an engineered

microorganism of any of claims 49-53 in a culture medium, wherein said engineered microorganism produces «-alkanes or «-alkenes, and wherein said engineered microorganism secretes increased amounts of «-alkanes or «-alkenes into the culture medium relative to an otherwise identical microorganism, cultured under identical conditions, but lacking said mutation in said gene involved in the biosynthesis or maintenance of said LPS layer.

55. T he method of claim 54, wherein said engineered microorganism is an engineered E. coli and wherein at least 10% of said «-alkanes or «-alkenes are secreted into the culture medium.

56. T he method of claim 54, wherein said engineered microorganism is an engineered E. coli and wherein at least 50% of said «-alkanes or «-alkenes are secreted into the culture medium.

57. T he method of claim 54, wherein said engineeered microorganism is a photosynthetic microorganism.

58. T he method of claim 54, wherein said microorganism is a cyanobacterium.

59. An engineered microorganism comprising a disrupted S layer or a disrupted glycocalyx, wherein said engineered microorganism comprises (i) one or more recombinant genes encoding enzymes which catalyze the production of «-alkanes or «-alkenes, and (ii) a mutation in a gene involved in the biosynthesis or maintenance of said S layer or said glycocalyx, wherein said mutation leads to the disruption of said S layer or said glycocalyx.

60. T he engineered photosynthetic microorganism of claim 59, wherein said one or more recombinant genes are selected from the group consisting of an AAR enzyme, an ADM enzyme, or both enzymes.

61. T he engineered photosynthetic microorganism of claim 59, wherein said gene involved in the biosynthesis or maintenance of said S layer or said glycocalyx is selected from T able 10B.

62. T he engineered microorganism of any of claims 59-61 , wherein said microorganism is a cyanobacterium.

63. A method for producing hydrocarbons, comprising: culturing an engineered microorganism of any of claims 59-62 in a culture medium, wherein said engineered microorganism produces «-alkanes or «-alkenes, and wherein said engineered microorganism secretes increased amounts of «-alkanes or «-alkenes into the culture medium relative to an otherwise identical microorganism, cultured under identical conditions, but lacking said mutation in said gene involved in the biosynthesis or maintenance of said S layer or said glycocalyx.

64. An engineered photosynthetic microorganism, wherein said engineered photo synthetic microorganism comprises (i) one or more recombinant genes encoding enzymes which catalyze the production of «-alkanes, and (ii) one or more recombinant genes encoding an acetyl-CoA carboxylase.

65. T he engineered photosynthetic microorganism of claim 64, wherein said one or more recombinant genes are selected from the group consisting of an acyl-ACP reductase enzyme, an ADM enzyme, or both enzymes.

66. T he engineered photoysnthetic microorganism of claim 64 or 65, wherein said

recombinant acetyl-CoA carboxylase is E. coli acetyl-CoA carboxylase.

67. T he engineered photosynthetic microorganism of any of claims 64-66, wherein said recombinant genes encoding acetyl-CoA carboxylase are controlled by an inducible promoter.

68. T he engineered photosynthetic microorganism of claim 67, wherein said inducible

promoter is an ammonia-repressible nitrate reductase promoter.

69. T he engineered photosynthetic microorganism of claim 68, wherein said ammonia- repressible nitrate reductase promoter is selected from the group consisting of p(nir07) and p(nir09).

70. T he engineered photosynthetic microorganism of any of claims 64-69, wherein said photosynthetic microorganism is a cyanobacterium.

71. T he engineered photosynthetic microorganism of claim 70, wherein said cyanobacterium is a Synechococcus species.

72. A method for producing hydrocarbons, comprising: culturing an engineered

photosynthetic microorganism of any of claims 64-71 in a culture medium, wherein said engineered microorganism produces «-alkanes, and wherein said engineered

microorganism secretes increased amounts of «-alkanes into the culture medium relative to an otherwise identical microorganism, cultured under identical conditions, but lacking said one or more genes encoding an acetyl-CoA carboxylase.

73. T he method of claim 72, wherein the percent secretion of «-alkanes is between 2-fold and 90-fold greater than that achieved by culturing an otherwise identical strain, under identical conditions, but lacking the recombinant genes encoding acetyl-CoA

carboxylase.

74. T he method of claim 72, wherein between 1 % and 25% of «-alkanes produced by the cell are secreted.

75. T he method of claim 72, wherein at least 15% of «-alkanes produced by the cell are

secreted.

76. T he method of any of claims 72-75, further comprising isolating said «-alkanes from the culture medium.

77. An isolated nucleic acid, wherein said isolated nucleic acid comprises an engineered nucleotide sequence selected from SEQ ID NOs: 1-214.

78. An isolated nucleic acid, wherein said isolated nucleic acid encodes an engineered

protein comprising an amino acid sequence selected from SEQ ID NOs: 1-214.

79. An engineered microbe, wherein said engineered microbe comprises a recombinant

nucleic acid or recombinant protein comprising a sequence selected from SEQ ID NO: 1 - 214.

80. T he engineered microbe of claim 79, wherein said engineered microbe is a photosynthetic microbe.

81 . T he engineered microbe of claim 80, wherein said engineered photosynthetic microbe is a cyanobacterium.

Description:
METHODS AND COMPOSITIONS FOR THE EXTRACELLULAR TRANSPORT OF BIOSYNTHETIC HYDROCARBONS AND OTHER MOLECULES

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] T his application claims priority to earlier filed U.S. Provisional Patent Application No. 61/382,917, filed September 14, 2010, U.S. Provisional Patent Application No. 61/414,877, filed November 17, 2010, U.S. Provisional Patent Application No. 61/416,713, filed November 23, 2010, and U.S. Provisional Patent Application No. 61/478,045, filed April 21 , 201 1.

[0002] T his application incorporates by reference the disclosures of the above provisional applications, and in addition incorporates by reference the disclosures of U.S. Provisional Patent Application No. 61/224,463 filed, July 9, 2009, U.S. Provisional Patent Application No.

61/228,937, filed July 27, 2009, U.S. utility application 12/759,657, filed April 13, 2010 (now U.S. Pat. No. 7,794,969), and U.S. utility application 12/833,821 , filed July 9, 2010.

BACKGROUND OF THE INVENTION

[0003] Previously, recombinant photosynthetic microorganisms have been engineered to produce hydrocarbons, including alkanes, in amounts that exceed the levels produced naturally by the organism. A need exists for engineered photosynthetic microorganisms which have enhanced secretion capabilities such that greater amounts of the biosynthetic hydrocarbon products are excreted into the culture medium, thereby minimizing downstream processing steps.

SUMMARY OF THE INVENTION

[0004] T his invention pertains to compositions and methods for increasing the amount of hydrocarbons (particularly «-alkanes and «-alkenes, but not limited to these compositions) that are secreted by engineered microorganisms which have been modified to biosynthetically produce such hydrocarbons. In certain embodiments, the invention provides engineered microorganisms comprising recombinant enzymes for producing hydrocarbons, wherein said microorganisms are further modified to secrete said hydrocarbons in greater amounts than otherwise identical hydrocarbon-producing microorganisms lacking the modifications.

[0005] In certain embodiment, the invention also provides a recombinant multi-subunit prokaryotic efflux pump (YbhGFSR and functional homologs thereof) capable of mediating the export of intracellular «-alkanes and «-alkenes, e.g., «-pentadecane and «-heptadecene, generated by the concerted action of acyl-ACP reductase (AAR) and alkanal deformylative

monooxygenase (ADM), and to the heterologous expression of its corresponding structural genes in a microorganism, e.g. , a photosynthetic microorganism, such as a JCC138-derived adm-aar + alkanogen, so as to enable said photosynthetic microorganism host to efflux «-alkanes into the growth medium. In certain embodiments, the invention provides a recombinant microorganism comprising recombinant alkane -producing enzymes described herein in addition to a

recombinant outer membrane protein described herein (e.g., T olC or a T olC homolog) and an ABC efflux pump described herein (e.g., a YbhGFSR efflux pump or homolog thereof). In related embodiments, the invention provides methods of culturing such microorganisms, wherein said microorganisms secrete biosynthetic alkanes and/or alkanes into the culture medium.

[0006] In additional embodiments, the invention provides an engineered microorganism comprising a disrupted S layer or a disrupted glycocalyx, wherein said engineered

microorganism comprises (i) one or more recombinant genes encoding enzymes which catalyze the production of «-alkanes or «-alkenes, and (ii) a mutation in a gene involved in the biosynthesis or maintenance of said S layer or said glycocalyx, wherein said mutation leads to the disruption of said S layer or said glycocalyx. In related embodiments, the invention provides methods of culturing such microorganisms, wherein said microorganisms secrete biosynthetic alkanes and/or alkanes into the culture medium.

[0007] In other embodiments, the invention provides an engineered photosynthetic microorganism, wherein said engineered photosynthetic microorganism comprises (i) one or more recombinant genes encoding enzymes which catalyze the production of «-alkanes, and (ii) one or more recombinant genes encoding an acetyl-CoA carboxylase. In related embodiments, the invention provides methods for producing hydrocarbons, comprising culturing such an wherein said engineered microorganism produces «-alkanes and/or «-alkenes, and wherein said engineered microorganism secretes increased amounts of «-alkanes and/or «-alkenes into the culture medium relative to an otherwise identical microorganism, cultured under identical conditions, but lacking said one or more genes encoding said acetyl-CoA carboxylase.

[0008] Additional embodiments include the following, presented in claim format:

[0009] 1. An engineered microorganism, wherein said engineered microorganism comprises (i) one or more recombinant genes encoding enzymes which catalyze the production of alkanes, and (ii) one or more recombinant genes encoding one or more protein components of a recombinant hydrocarbon ABC efflux pump system.

[0010] 2. T he engineered microorganism of claim 1 , wherein said recombinant genes encoding enzymes which catalyze the production of alkanes are selected from the group consisting of a recombinant acyl-ACP reductase enzyme and a recombinant alkanal

deformylative monooxygenase (ADM) enzyme.

[0011] 3. T he engineered microorganism of claim 1 , wherein said recombinant hydrocarbon ABC efflux pump system is an E. coli hydrocarbon ABC efflux pump system. [0012] 4. T he engineered microorganism of claim 3, wherein said recombinant hydrocarbon

ABC efflux pump system is selected from the group consisting of the ybhG/ybhF/ybhS/ybhR/tolC and the yhil/rbbA/yhhJ/tolC pump system.

[0001] 5. T he engineered microorganism of claim 4, wherein said one or more recombinant genes encoding one or more protein components of a recombinant hydrocarbon ABC efflux pump system encode at least one protein listed in T able 5, or a functional homolog of at least one protein listed in T able 5.

[0002] 6. T he engineered microorganism of any of claims 1 -5, wherein said

microorganism is E. coli.

[0003] 7. T he engineered microorganism of claim 5, wherein expression of an

operon comprising ybhG/ybhF/ybhS/ybhR is controlled by a recombinant promoter, and wherein said promoter is constitutive or inducible.

[0004] 8. T he engineered microorganism of claim 7, wherein said operon is

integrated into the genome of said microorganism.

[0005] 9. T he engineered microorganism of claim 7, wherein said operon is

extrachromosomal.

[0006] 10. T he engineered microorganism of any of claims 1 -5, wherein said

microorganism is a photosynthetic microorganism.

[0007] 1 1. T he engineered photosynthetic microorganism of claim 10, wherein said microorganism is a cyanobacterium.

[0008] 12. T he engineered photosynthetic microorganism of claim 1 1 , wherein said microorganism is a Synechococcus species.

[0009] 13. T he engineered photosynthetic microorganism of any of claims 10-12, wherein said one or more protein components are selected from the group consisting of YbhG, Yhil, T olC and ho mo logs of YbhG, Yhil and T olC, wherein the native leader sequences of said YbhG,YhiI and T olC proteins and homologs thereof are replaced with leader sequences native to said photosynthetic microorganism.

[0010] 14. T he engineered photosynthetic microorganism of claim 13, wherein said protein components comprise a YbhG variant selected from Set 1 of T able 20, and wherein said T olC homolog is SYNPCC7002_A0585.

[0011] 15. T he engineered photosynthetic microorganism of claim 13, wherein said protein components comprise a YbhG variant selected from Set 2 of T able 20, and wherein said T olC or T olC homolog is selected from the OMP variants listed in Set 2 of T able 20.

[0012] 16. T he engineered photosynthetic microorganism of any of claims 1 1-13, wherein said protein components comprise YbhS and YbhR proteins or homologs thereof,and wherein said YbhS and YbhR proteins or homologs thereof comprise pseudo- leader sequences.

[0013] 17. T he engineered photosynthetic microorganism of claim 16, wherein said

YbhS and YbhR proteins or homologs thereof are selected from those listed in T able 20.

[0014] 18. T he engineered photosynthetic microorganism of any of claims 1 1-13, wherein said one or more protein components is a recombinant T olC or homolog of T olC, and wherein said T olC or said homolog of T olC includes a C-terminal modification wherein the C-terminal residues of T olC are replaced with the corresponding C-terminal residues of an outer membrane protein native to said photosynthetic microorganism.

[0015] 19. T he engineered photosynthetic microorganism of claim 19, wherein said T olC or T olC homolog is an OMP variant from T able 20.

[0016] 20. An engineered photosynthetic microorganism comprising a recombinant outer membrane protein and a recombinant complementary ABC efflux pump, wherein said recombinant outer membrane protein is SYNPCC7002 A0585, and wherein said recombinant complementary ABC efflux pump comprises (i) a YbhG variant selected from Set 1 of T able 20, (ii) YbhF, and (iii) a YbhS/YbhR variant listed in T able 20. [0017] 21. An engineered photosynthetic microorganism comprising a recombinant outer membrane protein and a recombinant complementary ABC efflux pump, wherein said recombinant outer membrane protein is selected from the group consisting of the OMP variants listed in Set 2 of T able 20, and wherein said recombinant ABC efflux pump comprises (i) a YbhG variant selected from Set 2 of T able 20, (ii) YbhF, and (iii) a YbhS/YbhR variant listed in T able 20.

[0018] 22. An engineered photosynthetic microorganism of any of claims 13-21 , wherein said engineered photosynthetic microorganism comprises a recombinant outer membrane protein and a recombinant complementary ABC efflux pump, and wherein expression of said recombinant outer membrane protein and said recombinant ABC efflux pump is driven by distinct promoters.

[0019] 23. An engineered photosynthetic microorganism of claim 22, wherein at least one of said separate promoters is inducible.

[0020] 24. An engineered photosynthetic microorganism of claim 22, wherein said promoters are divergently oriented.

[0021] 25. An engineered photosynthetic microorganism of claim 24, wherein said promoters are selected from the promoters listed in T able 19.

[0022] 26. A method for producing hydrocarbons, comprising:

[0023] culturing an engineered microorganism of any of claims 1-25 in a culture

medium, wherein said engineered microorganism secretes increased amounts of n- alkanes or «-alkenes into the culture medium relative to an otherwise identical microorganism, cultured under identical conditions, but lacking said recombinant genes.

[0024] 27. T he method of claim 26, wherein said culture medium does not include a surfactant.

[0025] 28. T he method of claim 26, wherein said culture medium does not include

EDT A. [0026] 29. T he method of claim 26, wherein said culture medium does not include T ris buffer.

[0027] 30. T he method of claim 26, wherein said engineered microorganism secretes as least twice the percentage of «-alkanes produced relative to an otherwise identical microorganism, cultured under identical conditions, but lacking said recombinant genes for efflux of «-alkanes or «-alkenes.

[0028] 31. T he method of claim 26, wherein said engineered microorganism secretes as least five times the percentage of «-alkanes produced relative to an otherwise identical microorganism, cultured under identical conditions, but lacking said recombinant genes for the efflux of «-alkanes or «-alkenes.

[0029] 32. T he method of claim 26, wherein said engineered microorganism is an engineered E. coli, and wherein at least 90% of said «-alkanes or «-alkenes are secreted into the culture medium.

[0030] 33. A method for producing hydrocarbons, comprising:

[0031] (i) culturing an engineered photosynthetic microorganism of any of claims 10-25 in a culture medium, and

[0032] (ii) exposing said engineered photosynthetic microorganism to light and carbon dioxide, wherein said exposure results in the conversion of said carbon dioxide by said engineered cynanobacterium into «-alkanes, wherein said «-alkanes are secreted into said culture medium in an amount greater than that secreted by an otherwise identical cyanobacterium, cultured under identical conditions, but lacking said recombinant genes.

[0033] 34. T he method of claim 33, wherein said engineered photosynthetic

microorganism further produces at least one «-alkene or «-alkanol.

[0034] 35. T he method of claim 33, wherein said engineered photosynthetic

microorganism produces at least one «-alkene or «-alkanol selected from the group consisting of «-pentadecene, «-heptadecene, and 1 -octadecanol. [0035] 36. T he method of claim 33, wherein said «-alkanes comprise predominantly

«-heptadecane, «-pentadecane or a combination thereof.

[0036] 37. T he method of claim 33, further comprising isolating at least one «-alkane,

«-alkene or «-alkanol from said culture medium.

[0037] 38. T he method of claim 33, wherein at least one of said recombinant genes is encoded on a plasmid.

[0038] 39. T he method of claim 33, wherein at least one of said recombinant genes is incorporated into the genome of said engineered photosynthetic microorganism.

[0039] 40. T he method of claim 33, wherein at least one of said recombinant genes is present in multiple copies in said engineered photosynthetic microorganism.

[0040] 41. T he method of claim 33 wherein at least two of said recombinant genes are part of an operon, and wherein the expression of said genes is controlled by a single promoter.

[0041] 42. T he method of claim 33, wherein at least 95% of said «-alkanes are n- pentadecane and «-heptadecane.

[0042] 43. T he method of claim 33, wherein the expression of at least one of said recombinant genes is controlled by one or more inducible promoters.

[0043] 44. T he method of claim 43, wherein at least one promoter is a urea- repressible, nitrate-inducible promoter.

[0044] 45. T he method of claim 44, wherein said promoter is a nirA-type promoter.

[0045] 46. T he method of claim 45, wherein said nirA-type promoter is P(nir07) or

P(nir09).

[0046] 47. A method for producing a hydrocarbon of interest, comprising (i)

culturing an engineered Escherichia coli cell in a culture medium, wherein said cell comprises a mutation in a promoter for the ybiH gene or a mutation in the structural gene encoding YbiH activity, wherein said mutation decreases expression of YbiH activity relative to an otherwise identical cell lacking said mutation and, and wherein said mutation increases secretion of said hydrocarbon of interest relative to an otherwise identical cell lacking said hydrocarbon of interest; and (ii) isolating said hydrocarbon of interest from said culture medium.

[0047] 48. T he method of claim 47, wherein said hydrocarbon of interest is a biofuel.

[0048] 49. An engineered microorganism comprising a disrupted lipopolysaccharide

(LPS) layer, wherein said engineered microorganism comprises (i) one or more recombinant genes encoding enzymes which catalyze the production of «-alkanes, and (ii) a mutation in a gene involved in the biosynthesis or maintenance of said LPS layer, wherein said mutation leads to the disruption of said LPS layer.

[0049] 50. T he engineered microorganism of claim 49, wherein said gene involved in the maintenance of said LPS layer encodes ADP-heptose:LPS heptosyl transferase I.

[0050] 51. T he engineeered microorganism of claim 49, wherein said microorganism is E. coli.

[0051] 52. T he engineered microorganism of claim 49, wherein said microorganism is a photosynthetic microorganism.

[0052] 53. T he engineered microorganism of claim 52, wherein said microorganism is a cyanobacterium.

[0053] 54. A method for producing hydrocarbons, comprising: culturing an

engineered microorganism of any of claims 49-53 in a culture medium, wherein said engineered microorganism produces «-alkanes or «-alkenes, and wherein said engineered microorganism secretes increased amounts of «-alkanes or «-alkenes into the culture medium relative to an otherwise identical microorganism, cultured under identical conditions, but lacking said mutation in said gene involved in the biosynthesis or maintenance of said LPS layer. [0054] 55. T he method of claim 54, wherein said engineered microorganism is an engineered is. coli and wherein at least 10% of said «-alkanes or «-alkenes are secreted into the culture medium.

[0055] 56. T he method of claim 54, wherein said engineered microorganism is an engineered E. coli and wherein at least 50% of said «-alkanes or «-alkenes are secreted into the culture medium.

[0056] 57. T he method of claim 54, wherein said engineeered microorganism is a photosynthetic microorganism.

[0057] 58. T he method of claim 54, wherein said microorganism is a cyanobacterium.

[0058] 59. An engineered microorganism comprising a disrupted S layer or a

disrupted glycocalyx, wherein said engineered microorganism comprises (i) one or more recombinant genes encoding enzymes which catalyze the production of «-alkanes or n- alkenes, and (ii) a mutation in a gene involved in the biosynthesis or maintenance of said S layer or said glycocalyx, wherein said mutation leads to the disruption of said S layer or said glycocalyx.

[0059] 60. T he engineered photosynthetic microorganism of claim 59, wherein said one or more recombinant genes are selected from the group consisting of an AAR enzyme, an ADM enzyme, or both enzymes.

[0060] 61. T he engineered photosynthetic microorganism of claim 59, wherein said gene involved in the biosynthesis or maintenance of said S layer or said glycocalyx is selected from T able 10B.

[0061] 62. T he engineered microorganism of any of claims 59-61 , wherein said

microorganism is a cyanobacterium.

[0062] 63. A method for producing hydrocarbons, comprising: culturing an

engineered microorganism of any of claims 59-62 in a culture medium, wherein said engineered microorganism produces «-alkanes or «-alkenes, and wherein said engineered microorganism secretes increased amounts of «-alkanes or «-alkenes into the culture medium relative to an otherwise identical microorganism, cultured under identical conditions, but lacking said mutation in said gene involved in the biosynthesis or maintenance of said S layer or said glycocalyx.

[0063] 64. An engineered photosynthetic microorganism, wherein said engineered photosynthetic microorganism comprises (i) one or more recombinant genes encoding enzymes which catalyze the production of «-alkanes, and (ii) one or more recombinant genes encoding an acetyl-CoA carboxylase.

[0064] 65. T he engineered photosynthetic microorganism of claim 64, wherein said one or more recombinant genes are selected from the group consisting of an acyl-ACP reductase enzyme, an ADM enzyme, or both enzymes.

[0065] 66. T he engineered photoysnthetic microorganism of claim 64 or 65, wherein said recombinant acetyl-CoA carboxylase is E. coli acetyl-CoA carboxylase.

[0066] 67. T he engineered photosynthetic microorganism of any of claims 64-66, wherein said recombinant genes encoding acetyl-CoA carboxylase are controlled by an inducible promoter.

[0067] 68. T he engineered photosynthetic microorganism of claim 67, wherein said inducible promoter is an ammonia-repressible nitrate reductase promoter.

[0068] 69. T he engineered photosynthetic microorganism of claim 68, wherein said ammonia-repressible nitrate reductase promoter is selected from the group consisting of p(nir07) and p(nir09).

[0069] 70. T he engineered photosynthetic microorganism of any of claims 64-69, wherein said photosynthetic microorganism is a cyanobacterium.

[0070] 71. T he engineered photosynthetic microorganism of claim 70, wherein said cyanobacterium is a Synechococcus species.

[0071] 72. A method for producing hydrocarbons, comprising: culturing an

engineered photosynthetic microorganism of any of claims 64-71 in a culture medium, wherein said engineered microorganism produces «-alkanes, and wherein said engineered microorganism secretes increased amounts of «-alkanes into the culture medium relative to an otherwise identical microorganism, cultured under identical conditions, but lacking said one or more genes encoding an acetyl-CoA carboxylase.

[0072] 73. T he method of claim 72, wherein the percent secretion of «-alkanes is between 2-fold and 90-fold greater than that achieved by culturing an otherwise identical strain, under identical conditions, but lacking the recombinant genes encoding acetyl- CoA carboxylase.

[0073] 74. T he method of claim 72, wherein between 1% and 25% of «-alkanes produced by the cell are secreted.

[0074] 75. T he method of claim 72, wherein at least 15% of «-alkanes produced by the cell are secreted.

[0075] 76. T he method of any of claims 72-75, further comprising isolating said n- alkanes from the culture medium.

[0076] 77. An isolated nucleic acid, wherein said isolated nucleic acid comprises an engineered nucleotide sequence selected from SEQ ID NOs: 1 -214.

[0077] 78. An isolated nucleic acid, wherein said isolated nucleic acid encodes an engineered protein comprising an amino acid sequence selected from SEQ ID NOs: 1 - 214.

[0078] 79. An engineered microbe, wherein said engineered microbe comprises a recombinant nucleic acid or recombinant protein comprising a sequence selected from SEQ ID NO: 1-214.

[0079] 80. T he engineered microbe of claim 79, wherein said engineered microbe is a photosynthetic microbe.

[0080] 81. T he engineered microbe of claim 80, wherein said engineered

photosynthetic microbe is a cyanobacterium. [0081] In certain embodiments, the invention also provides various nucleic acid constructs and/or vectors and associated methods for engineering the various microorganisms described herein.

[0082] Various embodiments of the invention are further described in the Figures,

Description, Examples and Claims, herein. FIGURES

[0083] Figure 1 Hydrocarbon production by E. coli BL21 (DE3) derivatives JCCl 169, JCCl 170, JCC1214, and JCCl 1 13. #1 and #2 indicate the numbers of each of the two biological replicate cultures used for each strain. T l represents the time just before addition of 1 mM IPT G; T 2 represents a time 3.5 hr after T l . T he fraction of total alka(e)ne for each of the JCC1214 and JCCl 1 13 T 2 samples that was detected in the medium-associated extractant is indicated.

[0084] Figure 2 T he ybhGFSR genomic region in E. coli, encoding the components of the putative YbhGFSR ABC efflux pump for extruding hydrocarbons like n-pentadecane out of the cell. ybhG encodes the membrane fusion protein (MFP), ybhF encodes the AT P-hydrolytic subunit (also referred to herein as the AT P -binding subunit), and ybhS and ybhR encode the inner membrane subunits (also referred to herein as permease subunits). Below the gene map are the fluorescence signals of the Agilent microarray probes corresponding to the gene above each bar graph (the y-axis is the probe fluorescence signal). T he first two bars represent JCCl 169 T l and T 2, respectively; the next two bars JCCl 170 T l and T 2, respectively; the next two bars, JCC1214 T l and T 2, respectively; the next two bars JCCl 1 13 T l and T 2, respectively. Each bar has two sub-bars corresponding to the two replicate cultures of each strain, #1 and #2. [0085] Figure 3 Sequence logo of the short loop sequence separating the coil-coiled helices in the following known E. coli MFS T olC-interactors: EmrA, EmrK, AcrA, AcrE, MdtE, MdtA, and MacA.

[0086] Figure 4 is a schematic depiction of the fully assembled YbhGFSR-T olC efflux pump.

[0087] Figure 5 depicts schematically the native ybiH/ybhG/ybhF/ybhS/ybhR operon (top) and a recombinant operon wherein ybiH is disrupted and the promoter of the operon is replaced.

[0088] Figure 6 shows the relative alkane production and secretion capabilities of various engineered is. coli strains that recombinantly express ADM and AAR enzyme activities.

[0089] Figure 7 shows alkane production and secretion by overexpression of ybhGFSR in E. coli JCC1880 expressing adm-aar.

[0090] Figure 8 shows production of pentadecane in the medium and cell pellets of

JCC2055 derived strains bearing the A0585_ProNTerm_tolC and ybhGFSR transporter. Data are also included from a control strain (JCC2055 1) which did not contain the transporter and produced a similar titre of pentadecane. T he % of pentadecane in the medium is indicated above the bar for each strain.

DETAILED DESCRIPTION OF THE INVENTION

[0091] Unless otherwise defined herein or in the above-mentioned utility applications, e.g., U.S. Pat. App. No. 12/833,821 , filed July 9, 2010, scientific and technical terms used in connection with the present invention shall have the meanings that are commonly understood by those of ordinary skill in the art. Further, unless otherwise required by context, singular terms shall include the plural and plural terms shall include the singular. Generally, nomenclatures used in connection with, and techniques of, biochemistry, enzymology, molecular and cellular biology, microbiology, genetics and protein and nucleic acid chemistry and hybridization described herein are those well known and commonly used in the art.

[0092] Cyanobacteria contain not only a plasma membrane (PM) like non-photosynthetic prokaryotic hosts (as well as an outer membrane like their Gram-negative non-photosynthetic counterparts), but also, typically, an intracellular thylakoid membrane (T M) system that serves as the site for photosynthetic electron transfer and proton pumping. Given that both the plasma membrane and thylakoid membrane are typically loaded with proteins, both integral and peripheral, and, further, that a significant fraction of experimentally detected membrane proteins, both integral and peripheral, appear to be uniquely localized in each membrane, the question arises as to how differential localization of membrane proteins between the PM and T M is achieved in cyanobacteria (Rajalahti T et al. (2007) J Proteome Res 6:2420-2434). T his question is of relevance to cyanobacterial metabolic engineering because certain heterologous enzymatic functions that may be desirable to engineer into said photosynthetic hosts are encoded by heterologous integral plasma membrane proteins (HIPMPs), both prokaryotic and eukaryotic in origin, that must be targeted to the plasma membrane of the cyanobacterial host in order to function as desired. T he HIPMPs of interest in this respect comprise proteins that mediate transport, typically efflux, of substrates across the cyanobacterial plasma membrane. HIPMPs of particular interest with respect to the efflux of «-alkanes and «-alkenes are the integral plasma membrane subunits, YbhS and YbhR, of a putative YbhGFSR-T olC efflux pump system from E. coli.

[0093] T he methods described herein can be extended to integral membrane proteins that are not HIPMPs, i.e., proteins that are derived from membranes other than the plasma membrane. Such alternative membranes include: the thylakoid membrane, the endoplasmic reticulum membrane, the chloroplast inner membrane, and the mitochondrial inner membrane.

[0094] In one embodiment, the disclosure provides methods for designing a protein comprising a pseudo-leader sequence (PLS) of defined sequence fused to the N-terminus of an HIPMP of interest, wherein the resulting chimeric protein is expressed in a cyanobacterial host cell, e.g., JCC138 (Synechocystis sp. PCC 7002) or an engineered derivative thereof. T he expression of the chimeric protein will increase the amount of hydrocarbon products of interest (e.g., alkanes, alkenes, alkyl alkanoates, etc.) exported from the cynanobacterial host cell. T he PLS encodes a contiguous polypeptide sub-fragment of a protein from a different thylakoid- membrane-containing cyanobacterial host, e.g., JCC160 (Synechococcus sp. PCC 6803), that localizes as uniquely as possible to the plasma membrane of that host. T he mechanism that this non-JCC138 host natively employs to effect the localization of the protein to the plasma membrane (rather than the thylakoid membrane) should be conserved in order for the localization to occur in the recipient host.

[0095] While PLSs are designed to ensure, or at least bias, the targeting of HIPMPs to the plasma membrane of the heterologous cyanobacterial host, they may not always be required. T his is because sufficient levels of functional HIPMP may become embedded in the plasma membrane if the cyanobacterial host does, in fact, mechanistically recognize the protein as a native plasma membrane protein - even if some fraction of the protein is targeted to the thylakoid membrane or ends up in neither membrane (e.g., as inclusion bodies).

[0096] For HIPMPs with cytoplasmic N-termini ( i n ), (i) the PLS is derived from a plasma- membrane-resident protein that is naturally anchored in the membrane of a different cyanobacterial species (i.e. , different than the species into which the PLS will be functionally expressed) via two transmembrane a helices, and (ii) said plasma- membrane-resident protein naturally has its N-terminus within the cytoplasm and its C-terminus within the cytoplasm (N in /C in ), spanning the plasma membrane via an in-to-out transmembrane a helix, followed by an (ideally short) periplasmic loop sequence, followed by an out-to-in transmembrane a helix. Correspondingly, for HIPMPs with periplasmic N-termini (N out ), (i) the PLS is derived from a plasma-membrane-resident protein that is naturally anchored in the membrane of a different cyanobacterial species via one transmembrane a helix, and (ii) said plasma-membrane-resident protein naturally has its N-terminus within the cytoplasm and its C-terminus within the periplasm (N in /C out ).

[0097] In a preferred embodiment, PLSs are derived from host proteins that have most of their mass in either the periplasmic and/or cytoplasmic spaces. In another preferred

embodiment, said PLSs should contain only two a helices with N in /C in topology (for creating Ν in HIPMPs) and only one a helix with N in /C out topology (for creating N out HIPMPs). In a related embodiment, the potential for intermolecular homomultimerization among the transmembrane helices of the PLSs is minimized.

[0098] T he terms "fused", "fusion" or "fusing" used herein in the context of chimeric proteins refers to the joining of one functional protein or protein subunit (e.g., a pseudo-leader sequence) to another functional protein or protein subunit (e.g., an integral plasma membrane protein). Fusing can occur by any method which results in the covalent attachment of the C- terminus of one such protein molecule to the N-terminus of another. For example, one skilled in the art will recognize that fusing occurs when the two proteins to be fused are encoded by a recombinant nucleic acid under control of a promoter and expressed as a single structural gene in vivo or in vitro. [0099] As used herein, the term "non-target" refers to a protein or nucleic acid that is native to a species that is different than the species that will be used to recombinantly express the protein or nucleic acid.

[0100] Alkanes, also known as paraffins, are chemical compounds that consist only of the elements carbon (C) and hydrogen (H) (i.e. , hydrocarbons), wherein these atoms are linked together exclusively by single bonds (i.e., they are saturated compounds) without any cyclic structure. «-Alkanes are linear, i.e., unbranched, alkanes.

[0101] Genes encoding AAR or ADM enzymes are referred to herein as Aar genes iaar) or Adm genes (adm), respectively. T ogether, AAR and ADM enzymes function to synthesize n- alkanes from acyl-ACP molecules. As used herein, an AAR enzyme refers to an enzyme with the amino acid sequence of the SYNPCC7942_1594 protein or a homolog thereof, wherein a SYNPCC7942_1594 homolog is a protein whose BLAST alignment (i) covers >90% length of SYNPCC7942J594, (ii) covers >90% of the length of the matching protein, and (iii) has >50% identity with SYNPCC7942_1594 (when optimally aligned using the parameters provided herein), and retains the functional activity of SYNPCC7942_1594, i.e., the conversion of an acyl-ACP (acyl-acyl carrier protein) to an «-alkanal. An ADM enzyme refers to an enzyme with the amino acid sequence of the SYNPCC7942 1593 protein or a homolog thereof, wherein a SYNPCC7942_1593 homolog is defined as a protein whose amino acid sequence alignment (i) covers >90% length of SYNPCC7942_1593, (ii) covers >90% of the length of the matching protein, and (iii) has >50% identity with SYNPCC7942_1593 (when aligned using the preferred parameters provided herein), and retains the functional activity of SYNPCC7942_1593, i.e., the conversion of an «-alkanal to an («-l)-alkane. Exemplary AAR and ADM enzymes are listed in T able 1 and T able 2, respectively, of U.S. utility application 12/759,657, filed April 13, 2010 (now U.S. Pat. No. 7,794,969), and U.S. utility application 12/833,821 , filed July 9, 2010. Other ADM activities are described in U.S. Pat. App. No. 12/620,328, filed November 17, 2009.

Applicants note that in previous related applications, this enzyme was referred to as an alkanal decarboxylative monooxygenase. T he protein is referred to herein as an alkanal deformylative monooxygenase or abbreviated as ADM; to be clear, it is the same protein referred to in the related applications.

[0102] Preferred parameters for BLAST p are: Expectation value: 10 (default); Filter: none; Cost to open a gap: 1 1 (default); Cost to extend a gap: 1 (default); Maximum alignments: 100 (default); Word size: 1 1 (default); No. of descriptions: 100 (default); Penalty Matrix:

BLOWSUM62.

[0103] Functional homologs of other proteins described herein (e.g., T olC homologs, YbhG homologs, YbhF homologs, YbhR homologs, YbhS homologs and SYNPCC7002 A0585 homologs) may share significant amino acid identity (>50%) with the named proteins whose sequences are presented herein. Such homologs may be obtained from other organisms where the proteins are known to share structural and functional characteristics with the named proteins. For example, a functional outer membrane protein that is at least 95% identical to E. coli T olC is considered a T olC homolog. Likewise, a functional outer membrane protein that is at least 95% identical to T olC except for the replacement/addition of leader sequences, C-terminal sequences or other modifications intended to increase its functionality in a particular environment (e.g., a non-native host) are also considered functional homologs of T olC. T he same definitions apply to other protein homologs referred to herein.

[0104] T he methods and techniques of the present disclosure are generally performed according to conventional methods well known in the art and as described in various general and more specific references that are cited and discussed throughout the present specification unless otherwise indicated. See, e.g., Sambrook et ah, Molecular Cloning: A Laboratory Manual, 2d ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989); Ausubel et ah, Current Protocols in Molecular Biology, Greene Publishing Associates (1992, and Supplements to 2002); Harlow and Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1990); T aylor and Drickamer, Introduction to Glycobiology, Oxford Univ. Press (2003); Worthington Enzyme Manual, Worthington Biochemical Corp., Freehold, N.J.; Handbook of Biochemistry: Section A Proteins, Vol I, CRC Press (1976);

Handbook of Biochemistry: Section A Proteins, Vol II, CRC Press (1976); Essentials of Glycobiology, Cold Spring Harbor Laboratory Press (1999).

[0105] One skilled in the art will also recognize, in light of the teachings herein, that the methods and compositions described herein for use in particular organisms, e.g., cyanobacteria, are also applicable other organisms, e.g., gram-negative bacteria such as E. coli. For example, a chimeric integral plasma membrane protein for facilitating alkane efflux in E. coli could be designed by fusing a pseudo leader sequence derived from E. coli or a related bacterium to a heterologous integral plasma membrane protein.

[0106] T he following terms, unless otherwise indicated, shall be understood to have the following meanings:

[0107] T he term "polynucleotide" or "nucleic acid molecule" refers to a polymeric form of nucleotides of at least 10 bases in length. T he term includes DNA molecules (e.g. , cDNA or genomic or synthetic DNA) and RNA molecules (e.g., mRNA or synthetic RNA), as well as analogs of DNA or RNA containing non-natural nucleotide analogs, non-native internucleoside bonds, or both. T he nucleic acid can be in any topological conformation. For instance, the nucleic acid can be single-stranded, double-stranded, triple-stranded, quadruplexed, partially double-stranded, branched, hairpinned, circular, or in a padlocked conformation.

[0108] Unless otherwise indicated, and as an example for all sequences described herein under the general format "SEQ ID NO:", "nucleic acid comprising SEQ ID NO: l " refers to a nucleic acid, at least a portion of which has either (i) the sequence of SEQ ID NO: 1 , or (ii) a sequence complementary to SEQ ID NO: 1. T he choice between the two is dictated by the context. For instance, if the nucleic acid is used as a probe, the choice between the two is dictated by the requirement that the probe be complementary to the desired target.

[0109] An "isolated" RNA, DNA or a mixed polymer is one which is substantially separated from other cellular components that naturally accompany the native polynucleotide in its natural host cell, e.g., ribosomes, polymerases and genomic sequences with which it is naturally associated.

[0110] As used herein, an "isolated" organic molecule (e.g., an alkane, alkene, or alkanal) is one which is substantially separated from the cellular components (membrane lipids, chromosomes, proteins) of the host cell from which it originated, or from the medium in which the host cell was cultured. T he term does not require that the biomolecule has been separated from all other chemicals, although certain isolated biomolecules may be purified to near homogeneity.

[0111] T he term "recombinant" refers to a biomolecule, e.g., a gene or protein, that (1) has been removed from its naturally occurring environment, (2) is not associated with all or a portion of a polynucleotide in which the gene is found in nature, (3) is operatively linked to a polynucleotide which it is not linked to in nature, or (4) does not occur in nature. T he term "recombinant" can be used in reference to cloned DNA isolates, chemically synthesized polynucleotide analogs, or polynucleotide analogs that are biologically synthesized by heterologous systems, as well as proteins and/or mRNAs encoded by such nucleic acids.

[0112] As used herein, an endogenous nucleic acid sequence in the genome of an organism (or the encoded protein product of that sequence) is deemed "recombinant" herein if a heterologous sequence is placed adjacent to the endogenous nucleic acid sequence, such that the expression of this endogenous nucleic acid sequence is altered. In this context, a heterologous sequence is a sequence that is not naturally adjacent to the endogenous nucleic acid sequence, whether or not the heterologous sequence is itself endogenous (originating from the same host cell or progeny thereof) or exogenous (originating from a different host cell or progeny thereof). By way of example, a promoter sequence can be substituted (e.g., by homologous

recombination) for the native promoter of a gene in the genome of a host cell, such that this gene has an altered expression pattern. T his gene would now become "recombinant" because it is separated from at least some of the sequences that naturally flank it.

[0113] A nucleic acid is also considered "recombinant" if it contains any modifications that do not naturally occur to the corresponding nucleic acid in a genome. For instance, an endogenous coding sequence is considered "recombinant" if it contains an insertion, deletion or a point mutation introduced artificially, e.g., by human intervention. A "recombinant nucleic acid" also includes a nucleic acid integrated into a host cell chromosome at a heterologous site and a nucleic acid construct present as an episome.

[0114] As used herein, the phrase "degenerate variant" of a reference nucleic acid sequence encompasses nucleic acid sequences that can be translated, according to the standard genetic code, to provide an amino acid sequence identical to that translated from the reference nucleic acid sequence. T he term "degenerate oligonucleotide" or "degenerate primer" is used to signify an oligonucleotide capable of hybridizing with target nucleic acid sequences that are not necessarily identical in sequence but that are homologous to one another within one or more particular segments.

[0115] T he term "percent sequence identity" or "identical" in the context of nucleic acid sequences refers to the residues in the two sequences which are the same when aligned for maximum correspondence. T he length of sequence identity comparison may be over a stretch of at least about nine nucleotides, usually at least about 20 nucleotides, more usually at least about 24 nucleotides, typically at least about 28 nucleotides, more typically at least about 32 nucleotides, and preferably at least about 36 or more nucleotides. T here are a number of different algorithms known in the art which can be used to measure nucleotide sequence identity. For instance, polynucleotide sequences can be compared using FAST A, Gap or Bestfit, which are programs in Wisconsin Package Version 10.0, Genetics Computer Group (GCG), Madison, Wis. FAST A provides alignments and percent sequence identity of the regions of the best overlap between the query and search sequences. Pearson, Methods Enzymol. 183:63-98 (1990) (hereby incorporated by reference in its entirety). For instance, percent sequence identity between nucleic acid sequences can be determined using FAST A with its default parameters (a word size of 6 and the NOP AM factor for the scoring matrix) or using Gap with its default parameters as provided in GCG Version 6.1 , herein incorporated by reference. Alternatively, sequences can be compared using the computer program, BLAST (Altschul et al, J. Mol. Biol. 215:403-410 (1990); Gish and States, Nature Genet. 3:266-272 (1993); Madden et al, Meth. Enzymol. 266: 131-141 (1996); Altschul et al, Nucleic Acids Res. 25:3389-3402 (1997); Zhang and Madden, Genome Res. 7:649-656 (1997)), especially blastp or tblastn (Altschul et al, Nucleic Acids Res. 25:3389- 3402 (1997)). [0116] T he term "substantial homology" or "substantial similarity," when referring to a nucleic acid or fragment thereof, indicates that, when optimally aligned with appropriate nucleotide insertions or deletions with another nucleic acid (or its complementary strand), there is nucleotide sequence identity in at least about 76%, 80%, 85%, preferably at least about 90%, and more preferably at least about 95%, 96%, 97%, 98% or 99% of the nucleotide bases, as measured by any well-known algorithm of sequence identity, such as FAST A, BLAST or Gap, as discussed above.

[0117] Alternatively, substantial homology or similarity exists when a nucleic acid or fragment thereof hybridizes to another nucleic acid, to a strand of another nucleic acid, or to the complementary strand thereof, under stringent hybridization conditions. "Stringent hybridization conditions" and "stringent wash conditions" in the context of nucleic acid hybridization experiments depend upon a number of different physical parameters. Nucleic acid hybridization will be affected by such conditions as salt concentration, temperature, solvents, the base composition of the hybridizing species, length of the complementary regions, and the number of nucleotide base mismatches between the hybridizing nucleic acids, as will be readily appreciated by those skilled in the art. One having ordinary skill in the art knows how to vary these parameters to achieve a particular stringency of hybridization.

[0118] In general, "stringent hybridization" is performed at about 25°C below the thermal melting point (T m ) for the specific DNA hybrid under a particular set of conditions. "Stringent washing" is performed at temperatures about 5°C lower than the T m for the specific DNA hybrid under a particular set of conditions. T he T m is the temperature at which 50% of the target sequence hybridizes to a perfectly matched probe. See Sambrook et ah, Molecular Cloning: A Laboratory Manual, 2d ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989), page 9.51 , hereby incorporated by reference. For purposes herein, "stringent conditions" are defined for solution phase hybridization as aqueous hybridization (i.e., free of formamide) in 6xSSC (where 20xSSC contains 3.0 M NaCl and 0.3 M sodium citrate), 1% SDS at 65°C for 8- 12 hours, followed by two washes in 0.2xSSC, 0.1% SDS at 65°C for 20 minutes. It will be appreciated by the skilled worker that hybridization at 65°C will occur at different rates depending on a number of factors including the length and percent identity of the sequences which are hybridizing.

[0119] T he nucleic acids (also referred to as polynucleotides) of this present disclosure may include both sense and antisense strands of RNA, cDNA, genomic DNA, and synthetic forms and mixed polymers of the above. T hey may be modified chemically or biochemically or may contain non-natural or derivatized nucleotide bases, as will be readily appreciated by those of skill in the art. Such modifications include, for example, labels, methylation, substitution of one or more of the naturally occurring nucleotides with an analog, intemucleotide modifications such as uncharged linkages (e.g., methyl phosphonates, phosphotriesters, phosphorami dates, carbamates, etc.), charged linkages (e.g., phosphorothioates, phosphorodithioates, etc.), pendent moieties (e.g., polypeptides), intercalators (e.g., acridine, psoralen, etc.), chelators, alkylators, and modified linkages (e.g., alpha anomeric nucleic acids, etc.) Also included are synthetic molecules that mimic polynucleotides in their ability to bind to a designated sequence via hydrogen bonding and other chemical interactions. Such molecules are known in the art and include, for example, those in which peptide linkages substitute for phosphate linkages in the backbone of the molecule. Other modifications can include, for example, analogs in which the ribose ring contains a bridging moiety or other structure such as the modifications found in "locked" nucleic acids. [0120] T he term "mutated" when applied to nucleic acid sequences means that nucleotides in a nucleic acid sequence may be inserted, deleted or changed compared to a reference nucleic acid sequence. A single alteration may be made at a locus (a point mutation) or multiple nucleotides may be inserted, deleted or changed at a single locus. In addition, one or more alterations may be made at any number of loci within a nucleic acid sequence. A nucleic acid sequence may be mutated by any method known in the art including but not limited to mutagenesis techniques such as "error-prone PCR" (a process for performing PCR under conditions where the copying fidelity of the DNA polymerase is low, such that a high rate of point mutations is obtained along the entire length of the PCR product; see, e.g., Leung et ah, T echnique, 1 : 1 1-15 (1989) and Caldwell and Joyce, PCR Methods Applic. 2:28-33 (1992)); and "oligonucleotide-directed mutagenesis" (a process which enables the generation of site-specific mutations in any cloned DNA segment of interest; see, e.g., Reidhaar-Olson and Sauer, Science 241 :53-57 (1988)).

[0121] T he term "attenuate" as used herein generally refers to a functional deletion, including a mutation, partial or complete deletion, insertion, or other variation made to a gene sequence or a sequence controlling the transcription of a gene sequence, which reduces or inhibits production of the gene product, or renders the gene product non-functional. In some instances a functional deletion is described as a knockout mutation. Attenuation also includes amino acid sequence changes by altering the nucleic acid sequence, placing the gene under the control of a less active promoter, down-regulation, expressing interfering RNA, ribozymes or antisense sequences that target the gene of interest, or through any other technique known in the art. In one example, the sensitivity of a particular enzyme to feedback inhibition or inhibition caused by a composition that is not a product or a reactant (non-pathway specific feedback) is lessened such that the enzyme activity is not impacted by the presence of a compound. In other instances, an enzyme that has been altered to be less active can be referred to as attenuated. [0122] T he term "deletion" refers to the removal of one or more nucleotides from a nucleic acid molecule or one or more amino acids from a protein, the regions on either side being joined together.

[0123] T he term "knock out" refers to a gene whose level of expression or activity has been reduced to zero. In some examples, a gene is knocked-out via deletion of some or all of its coding sequence. In other examples, a gene is knocked-out via introduction of one or more nucleotides into its open reading frame, which results in translation of a non-sense or otherwise non-functional protein product.

[0124] T he term "vector" as used herein is intended to refer to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked. One type of vector is a "plasmid," which generally refers to a circular double stranded DNA loop into which additional DNA segments may be ligated, but also includes linear double-stranded molecules such as those resulting from amplification by the polymerase chain reaction (PCR) or from treatment of a circular plasmid with a restriction enzyme. Other vectors include cosmids, bacterial artificial chromosomes (BAC) and yeast artificial chromosomes (YAC). Another type of vector is a viral vector, wherein additional DNA segments may be ligated into the viral genome (discussed in more detail below). Certain vectors are capable of autonomous replication in a host cell into which they are introduced (e.g., vectors having an origin of replication which functions in the host cell). Other vectors can be integrated into the genome of a host cell upon introduction into the host cell, and are thereby replicated along with the host genome. Moreover, certain preferred vectors are capable of directing the expression of genes to which they are operatively linked. Such vectors are referred to herein as "recombinant expression vectors" (or simply "expression vectors"). [0125] "Operatively linked" or "operably linked" expression control sequences refers to a linkage in which the expression control sequence is contiguous with the gene of interest to control the gene of interest, as well as expression control sequences that act in trans or at a distance to control the gene of interest.

[0126] T he term "expression control sequence" as used herein refers to polynucleotide sequences which are necessary to affect the expression of coding sequences to which they are operatively linked. Expression control sequences are sequences which control the transcription, post-transcriptional events and translation of nucleic acid sequences. Expression control sequences include appropriate transcription initiation, termination, promoter and enhancer sequences; efficient R A processing signals such as splicing and polyadenylation signals; sequences that stabilize cytoplasmic mRNA; sequences that enhance translation efficiency (e.g. , ribosome binding sites); sequences that enhance protein stability; and when desired, sequences that enhance protein secretion. T he nature of such control sequences differs depending upon the host organism; in prokaryotes, such control sequences generally include promoter, ribosomal binding site, and transcription termination sequence. T he term "control sequences" is intended to include, at a minimum, all components whose presence is essential for expression, and can also include additional components whose presence is advantageous, for example, leader sequences and fusion partner sequences.

[0127] T he term "recombinant host cell" (or simply "host cell"), as used herein, is intended to refer to a cell into which a recombinant vector has been introduced. It should be understood that such terms are intended to refer not only to the particular subject cell but to the progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term "host cell" as used herein. A recombinant host cell may be an isolated cell or cell line grown in culture or may be a cell which resides in a living tissue or organism.

[0128] T he term "peptide" as used herein refers to a short polypeptide, e.g., one that is typically less than about 50 amino acids long and more typically less than about 30 amino acids long. T he term as used herein encompasses analogs and mimetics that mimic structural and thus biological function.

[0129] T he term "polypeptide" encompasses both naturally-occurring and non-naturally- occurring proteins, and fragments, mutants, derivatives and analogs thereof. A polypeptide may be monomeric or polymeric. Further, a polypeptide may comprise a number of different domains each of which has one or more distinct activities.

[0130] T he term "isolated protein" or "isolated polypeptide" is a protein or polypeptide that by virtue of its origin or source of derivation (1) is not associated with naturally associated components that accompany it in its native state, (2) exists in a purity not found in nature, where purity can be adjudged with respect to the presence of other cellular material (e.g., is free of other proteins from the same species) (3) is expressed by a cell from a different species, or (4) does not occur in nature (e.g., it is a fragment of a polypeptide found in nature or it includes amino acid analogs or derivatives not found in nature or linkages other than standard peptide bonds). T hus, a polypeptide that is chemically synthesized or synthesized in a cellular system different from the cell from which it naturally originates will be "isolated" from its naturally associated components. A polypeptide or protein may also be rendered substantially free of naturally associated components by isolation, using protein purification techniques well known in the art. As thus defined, "isolated" does not necessarily require that the protein, polypeptide, peptide or oligopeptide so described has been physically removed from its native environment.

[0131] T he term "polypeptide fragment" as used herein refers to a polypeptide that has a deletion, e.g., an amino -terminal and/or carboxy -terminal deletion compared to a full-length polypeptide. In a preferred embodiment, the polypeptide fragment is a contiguous sequence in which the amino acid sequence of the fragment is identical to the corresponding positions in the naturally-occurring sequence. Fragments typically are at least 5, 6, 7, 8, 9 or 10 amino acids long, preferably at least 12, 14, 16 or 18 amino acids long, more preferably at least 20 amino acids long, more preferably at least 25, 30, 35, 40 or 45, amino acids, even more preferably at least 50 or 60 amino acids long, and even more preferably at least 70 amino acids long.

[0132] A "modified derivative" refers to polypeptides or fragments thereof that are substantially homologous in primary structural sequence but which include, e.g., in vivo or in vitro chemical and biochemical modifications or which incorporate amino acids that are not found in the native polypeptide. Such modifications include, for example, acetylation, carboxylation, phosphorylation, glycosylation, ubiquitination, labeling, e.g., with radionuclides, and various enzymatic modifications, as will be readily appreciated by those skilled in the art. A variety of methods for labeling polypeptides and of substituents or labels useful for such

125 32 35 3 purposes are well known in the art, and include radioactive isotopes such as I, P, S, and H, ligands which bind to labeled antiligands (e.g. , antibodies), fluorophores, chemiluminescent agents, enzymes, and antiligands which can serve as specific binding pair members for a labeled ligand. T he choice of label depends on the sensitivity required, ease of conjugation with the primer, stability requirements, and available instrumentation. Methods for labeling polypeptides are well known in the art. See, e.g. , Ausubel et ah, Current Protocols in Molecular Biology, Greene Publishing Associates (1992, and Supplements to 2002) (hereby incorporated by reference).

[0133] T he term "fusion protein" refers to a polypeptide comprising a polypeptide or fragment coupled to heterologous amino acid sequences. Fusion proteins are useful because they can be constructed to contain two or more desired functional elements from two or more different proteins. A fusion protein comprises at least 10 contiguous amino acids from a polypeptide of interest, more preferably at least 20 or 30 amino acids, even more preferably at least 40, 50 or 60 amino acids, yet more preferably at least 75, 100 or 125 amino acids. Fusions that include the entirety of the proteins of the present disclosure have particular utility. T he heterologous polypeptide included within the fusion protein of the present disclosure is at least 6 amino acids in length, often at least 8 amino acids in length, and usefully at least 15, 20, and 25 amino acids in length. Fusions that include larger polypeptides, such as an IgG Fc region, and even entire proteins, such as the green fluorescent protein ("GFP") chromophore-containing proteins, have particular utility. Fusion proteins can be produced recombinantly by constructing a nucleic acid sequence which encodes the polypeptide or a fragment thereof in frame with a nucleic acid sequence encoding a different protein or peptide and then expressing the fusion protein. Alternatively, a fusion protein can be produced chemically by crosslinking the polypeptide or a fragment thereof to another protein.

[0134] As used herein, the term "antibody" refers to a polypeptide, at least a portion of which is encoded by at least one immunoglobulin gene, or fragment thereof, and that can bind specifically to a desired target molecule. T he term includes naturally-occurring forms, as well as fragments and derivatives. [0135] Fragments within the scope of the term "antibody" include those produced by digestion with various proteases, those produced by chemical cleavage and/or chemical dissociation and those produced recombinantly, so long as the fragment remains capable of specific binding to a target molecule. Among such fragments are Fab, Fab', Fv, F(ab').sub.2, and single chain Fv (scFv) fragments.

[0136] Derivatives within the scope of the term include antibodies (or fragments thereof) that have been modified in sequence, but remain capable of specific binding to a target molecule, including: interspecies chimeric and humanized antibodies; antibody fusions; heteromeric antibody complexes and antibody fusions, such as diabodies (bispecific antibodies), single-chain diabodies, and intrabodies (see, e.g., Intracellular Antibodies: Research and Disease

Applications, (Marasco, ed., Springer- Verlag New York, Inc., 1998), the disclosure of which is incorporated herein by reference in its entirety).

[0137] As used herein, antibodies can be produced by any known technique, including harvest from cell culture of native B lymphocytes, harvest from culture of hybridomas, recombinant expression systems and phage display.

[0138] T he term "non-peptide analog" refers to a compound with properties that are analogous to those of a reference polypeptide. A non-peptide compound may also be termed a "peptide mimetic" or a "peptidomimetic." See, e.g., Jones, Amino Acid and Peptide Synthesis, Oxford University Press (1992); Jung, Combinatorial Peptide and Nonpeptide Libraries: A Handbook, John Wiley (1997); Bodanszky et al., Peptide Chemistry— A Practical Textbook, Springer Verlag (1993); Synthetic Peptides: A Users Guide, (Grant, ed., W. H. Freeman and Co., 1992); Evans et al, J. Med. Chem. 30: 1229 (1987); Fauchere, J. Adv. Drug Res. 15:29 (1986); Veber and Freidinger, Trends Neurosci., 8:392-396 (1985); and references sited in each of the above, which are incorporated herein by reference. Such compounds are often developed with the aid of computerized molecular modeling. Peptide mimetics that are structurally similar to useful peptides of the present disclosure may be used to produce an equivalent effect and are therefore envisioned to be part of the present disclosure.

[0139] A "polypeptide mutant" or "mutein" refers to a polypeptide whose sequence contains an insertion, duplication, deletion, rearrangement or substitution of one or more amino acids compared to the amino acid sequence of a native or wild-type protein. A mutein may have one or more amino acid point substitutions, in which a single amino acid at a position has been changed to another amino acid, one or more insertions and/or deletions, in which one or more amino acids are inserted or deleted, respectively, in the sequence of the naturally-occurring protein, and/or truncations of the amino acid sequence at either or both the amino or carboxy termini. A mutein may have the same but preferably has a different biological activity compared to the naturally-occurring protein.

[0140] A mutein has at least 85% overall sequence homology to its wild-type counterpart. Even more preferred are muteins having at least 90% overall sequence homology to the wild- type protein.

[0141] In an even more preferred embodiment, a mutein exhibits at least 95% sequence identity, even more preferably 98%, even more preferably 99% and even more preferably 99.9% overall sequence identity.

[0142] Sequence homology may be measured by any common sequence analysis algorithm, such as Gap or Bestfit.

[0143] Amino acid substitutions can include those which: (1) reduce susceptibility to proteolysis, (2) reduce susceptibility to oxidation, (3) alter binding affinity for forming protein complexes, (4) alter binding affinity or enzymatic activity, and (5) confer or modify other physicochemical or functional properties of such analogs.

[0144] As used herein, the twenty conventional amino acids and their abbreviations follow conventional usage. See Immunology- A Synthesis (Golub and Gren eds., Sinauer Associates, Sunderland, Mass., 2 nd ed. 1991), which is incorporated herein by reference. Stereoisomers {e.g., D-amino acids) of the twenty conventional amino acids, unnatural amino acids such as α-, α- disubstituted amino acids, N-alkyl amino acids, and other unconventional amino acids may also be suitable components for polypeptides of the present disclosure. Examples of unconventional amino acids include: 4-hydroxyproline, γ-carboxyglutamate, ε-Ν,Ν,Ν-trimethyllysine, ε-Ν- acetyllysine, O-phosphoserine, N-acetylserine, N-formylmethionine, 3-methylhistidine, 5- hydroxylysine, N-methylarginine, and other similar amino acids and imino acids {e.g. , 4- hydroxyproline). In the polypeptide notation used herein, the left-hand end corresponds to the amino terminal end and the right-hand end corresponds to the carboxy-terminal end, in accordance with standard usage and convention.

[0145] A protein has "homology" or is "homologous" to a second protein if the nucleic acid sequence that encodes the protein has a similar sequence to the nucleic acid sequence that encodes the second protein. Alternatively, a protein has homology to a second protein if the two proteins have "similar" amino acid sequences. (T hus, the term "homologous proteins" is defined to mean that the two proteins have similar amino acid sequences.) As used herein, homology between two regions of amino acid sequence (especially with respect to predicted structural similarities) is interpreted as implying similarity in function.

[0146] When "homologous" is used in reference to proteins or peptides, it is recognized that residue positions that are not identical often differ by conservative amino acid substitutions. A "conservative amino acid substitution" is one in which an amino acid residue is substituted by another amino acid residue having a side chain (R group) with similar chemical properties (e.g., charge or hydrophobicity). In general, a conservative amino acid substitution will not substantially change the functional properties of a protein. In cases where two or more amino acid sequences differ from each other by conservative substitutions, the percent sequence identity or degree of homology may be adjusted upwards to correct for the conservative nature of the substitution. Means for making this adjustment are well known to those of skill in the art. See, e.g., Pearson, 1994, Methods Mol. Biol. 24:307-31 and 25:365-89 (herein incorporated by reference).

[0147] T he following six groups each contain amino acids that are conservative substitutions for one another: 1) Serine (S), T hreonine (T ); 2) Aspartic Acid (D), Glutamic Acid (E); 3) Asparagine (N), Glutamine (Q); 4) Arginine (R), Lysine (K); 5) Isoleucine (I), Leucine (L), Methionine (M), Alanine (A), Valine (V), and 6) Phenylalanine (F), T yrosine (Y),

T ryptophan (W).

[0148] Sequence homology for polypeptides, which is also referred to as percent sequence identity, is typically measured using sequence analysis software. See, e.g. , the Sequence Analysis Software Package of the Genetics Computer Group (GCG), University of Wisconsin Biotechnology Center, 910 University Avenue, Madison, Wis. 53705. Protein analysis software matches similar sequences using a measure of homology assigned to various substitutions, deletions and other modifications, including conservative amino acid substitutions. For instance, GCG contains programs such as "Gap" and "Bestfit" which can be used with default parameters to determine sequence homology or sequence identity between closely related polypeptides, such as homologous polypeptides from different species of organisms or between a wild-type protein and a mutein thereof. See, e.g., GCG Version 6.1.

[0149] A preferred algorithm when comparing a particular polypeptide sequence to a database containing a large number of sequences from different organisms is the computer program BLAST (Altschul et al, J. Mol. Biol. 215:403-410 (1990); Gish and States, Nature Genet. 3:266-272 (1993); Madden et al., Meth. Enzymol. 266: 131 -141 (1996); Altschul et al, Nucleic Acids Res. 25:3389-3402 (1997); Zhang and Madden, Genome Res. 7:649-656 (1997)), especially blastp or tblastn (Altschul et al, Nucleic Acids Res. 25:3389-3402 (1997)).

[0150] T he length of polypeptide sequences compared for homology will generally be at least about 16 amino acid residues, usually at least about 20 residues, more usually at least about 24 residues, typically at least about 28 residues, and preferably more than about 35 residues. When searching a database containing sequences from a large number of different organisms, it is preferable to compare amino acid sequences. Database searching using amino acid sequences can be measured by algorithms other than blastp known in the art. For instance, polypeptide sequences can be compared using FAST A, a program in GCG Version 6.1. FAST A provides alignments and percent sequence identity of the regions of the best overlap between the query and search sequences. Pearson, Methods Enzymol. 183:63-98 (1990) (incorporated by reference herein). For example, percent sequence identity between amino acid sequences can be determined using FAST A with its default parameters (a word size of 2 and the PAM250 scoring matrix), as provided in GCG Version 6.1 , herein incorporated by reference.

[0151] "Specific binding" refers to the ability of two molecules to bind to each other in preference to binding to other molecules in the environment. T ypically, "specific binding" discriminates over adventitious binding in a reaction by at least two-fold, more typically by at least 10-fold, often at least 100-fold. T ypically, the affinity or avidity of a specific binding reaction, as quantified by a dissociation constant, is about 10 -7 M or stronger (e.g., about 10 -8 M, 10 -9 M or even stronger).

[0152] "Percent dry cell weight" refers to a measurement of hydrocarbon production obtained as follows: a defined volume of culture is centrifuged to pellet the cells. Cells are washed then dewetted by at least one cycle of microcentrifugation and aspiration. Cell pellets are lyophilized overnight, and the tube containing the dry cell mass is weighed again such that the mass of the cell pellet can be calculated within ±0.1 mg. At the same time cells are processed for dry cell weight determination, a second sample of the culture in question is harvested, washed, and dewetted. T he resulting cell pellet, corresponding to 1 -3 mg of dry cell weight, is then extracted by vortexing in approximately 1 ml acetone plus butylated

hydroxytolune (BHT ) as antioxidant and an internal standard, e.g., «-eicosane. Cell debris is then pelleted by centrifugation and the supernatant (extractant) is taken for analysis by GC. For accurate quantitation of «-alkanes, flame ionization detection (FID) is used as opposed to MS total ion count. «-Alkane concentrations in the biological extracts are calculated using calibration relationships between GC-FID peak area and known concentrations of authentic n- alkane standards. Knowing the volume of the extractant, the resulting concentrations of the n- alkane species in the extractant, and the dry cell weight of the cell pellet extracted, the percentage of dry cell weight that comprised «-alkanes can be determined.

[0153] T he term "region" as used herein refers to a physically contiguous portion of the primary structure of a biomolecule. In the case of proteins, a region is defined by a contiguous portion of the amino acid sequence of that protein. [0154] T he term "domain" as used herein refers to a structure of a biomolecule that contributes to a known or suspected function of the biomolecule. Domains may be co-extensive with regions or portions thereof; domains may also include distinct, non-contiguous regions of a biomolecule. Examples of protein domains include, but are not limited to, an Ig domain, an extracellular domain, a transmembrane domain, and a cytoplasmic domain.

[0155] As used herein, the term "molecule" means any compound, including, but not limited to, a small molecule, peptide, protein, sugar, nucleotide, nucleic acid, lipid, etc., and such a compound can be natural or synthetic.

[0156] "Carbon-based Products of Interest" include alcohols such as ethanol, propanol, isopropanol, butanol, fatty alcohols, fatty acid esters, wax esters; hydrocarbons and alkanes such as propane, octane, diesel, Jet Propellant 8 (JP8); polymers such as terephthalate,

1 ,3-propanediol, 1 ,4-butanediol, polyols, Polyhydroxyalkanoates (PHA), poly-beta- hydroxybutyrate (PHB), acrylate, adipic acid, ε-caprolactone, isoprene, caprolactam, rubber; commodity chemicals such as lactate, docosahexaenoic acid (DHA), 3-hydroxypropionate, γ-valerolactone, lysine, serine, aspartate, aspartic acid, sorbitol, ascorbate, ascorbic acid, isopentenol, lanosterol, omega-3 DHA, lycopene, itaconate, 1 ,3-butadiene, ethylene, propylene, succinate, citrate, citric acid, glutamate, malate, 3-hydroxypropionic acid (HP A), lactic acid, T HF, gamma butyrolactone, pyrrolidones, hydroxybutyrate, glutamic acid, levulinic acid, acrylic acid, malonic acid; specialty chemicals such as carotenoids, isoprenoids, itaconic acid;

pharmaceuticals and pharmaceutical intermediates such as 7-aminodeacetoxycephalosporanic acid (7-ADCA)/cephalosporin, erythromycin, polyketides, statins, paclitaxel, docetaxel, terpenes, peptides, steroids, omega fatty acids and other such suitable products of interest. Such products are useful in the context of biofuels, industrial and specialty chemicals, as intermediates used to make additional products, such as nutritional supplements, neutraceuticals, polymers, paraffin replacements, personal care products and pharmaceuticals.

[0157] Biofuel: A biofuel refers to any fuel that derives from a biological source. Biofuel can refer to one or more hydrocarbons, one or more alcohols, one or more fatty esters or a mixture thereof.

[0158] Hydrocarbon: T he term generally refers to a chemical compound that consists of the elements carbon (C), hydrogen (H) and optionally oxygen (O). T here are essentially three types of hydrocarbons, e.g., aromatic hydrocarbons, saturated hydrocarbons and unsaturated hydrocarbons such as alkenes, alkynes, and dienes. T he term also includes fuels, biofuels, plastics, waxes, solvents and oils. Hydrocarbons encompass biofuels, as well as plastics, waxes, solvents and oils.

[0159] T hroughout this specification and claims, the word "comprise" or variations such as "comprises" or "comprising", will be understood to imply the inclusion of a stated integer or group of integers but not the exclusion of any other integer or group of integers.

[0160] In another embodiment, the nucleic acid molecule of the present disclosure encodes a polypeptide having the amino acid sequence of any of the protein sequences provided in SEQ ID NOs: 1-214. Preferably, the nucleic acid molecule of the present disclosure encodes a polypeptide sequence of at least 50%, 60, 70%, 80%, 85%, 90% or 95% identity to one of the protein sequences of SEQ ID NOs: 1-214 and the identity can even more preferably be 96%, 97%, 98%, 99%, 99.9% or even higher.

[0161] In yet another embodiment, novel nucleic acid sequences useful for the recombinant expression of ABC efflux pump systems are provided, including the YbhG, YbhF,YbhS and YbhR variants listed in Table 20. T he invention also provides the engineered outer membrane proteins listed in Table 20 and the nucleic acid sequences encoding those proteins.

[0162] T he present disclosure also provides nucleic acid molecules that hybridize under stringent conditions to the above-described nucleic acid molecules. As defined above, and as is well known in the art, stringent hybridizations are performed at about 25°C below the thermal melting point (T m ) for the specific DNA hybrid under a particular set of conditions, where the T m is the temperature at which 50% of the target sequence hybridizes to a perfectly matched probe. Stringent washing is performed at temperatures about 5°C lower than the T m for the specific DNA hybrid under a particular set of conditions.

[0163] Nucleic acid molecules comprising a fragment of any one of the above-described nucleic acid sequences are also provided. T hese fragments preferably contain at least 20 contiguous nucleotides. More preferably the fragments of the nucleic acid sequences contain at least 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100 or even more contiguous nucleotides.

[0164] T he nucleic acid sequence fragments of the present disclosure display utility in a variety of systems and methods. For example, the fragments may be used as probes in various hybridization techniques. Depending on the method, the target nucleic acid sequences may be either DNA or RNA. T he target nucleic acid sequences may be fractionated (e.g. , by gel electrophoresis) prior to the hybridization, or the hybridization may be performed on samples in situ. One of skill in the art will appreciate that nucleic acid probes of known sequence find utility in determining chromosomal structure (e.g., by Southern blotting) and in measuring gene expression (e.g., by Northern blotting). In such experiments, the sequence fragments are preferably detectably labeled, so that their specific hydridization to target sequences can be detected and optionally quantified. One of skill in the art will appreciate that the nucleic acid fragments of the present disclosure may be used in a wide variety of blotting techniques not specifically described herein.

[0165] It should also be appreciated that the nucleic acid sequence fragments disclosed herein also find utility as probes when immobilized on microarrays. Methods for creating microarrays by deposition and fixation of nucleic acids onto support substrates are well known in the art. Reviewed in DNA Microarrays: A Practical Approach (Practical Approach Series), Schena (ed.), Oxford University Press (1999) (ISBN: 0199637768); Nature Genet.

21 (l)(suppl): l-60 (1999); Microarray Biochip: Tools and Technology, Schena (ed.), Eaton Publishing Company/BioT echniques Books Division (2000) (ISBN: 1881299376), the disclosures of which are incorporated herein by reference in their entireties. Analysis of, for example, gene expression using microarrays comprising nucleic acid sequence fragments, such as the nucleic acid sequence fragments disclosed herein, is a well-established utility for sequence fragments in the field of cell and molecular biology. Other uses for sequence fragments immobilized on microarrays are described in Gerhold et al., Trends Biochem. Sci. 24: 168- 173 (1999) and Zweiger, Trends Biotechnol. 17:429-436 (1999); DNA Microarrays: A Practical Approach (Practical Approach Series), Schena (ed.), Oxford University Press (1999) (ISBN: 0199637768); Nature Genet. 21 (l)(suppl): l-60 (1999); Microarray Biochip: Tools and

Technology, Schena (ed.), Eaton Publishing Company/BioT echniques Books Division (2000) (ISBN: 1881299376), the disclosure of each of which is incorporated herein by reference in its entirety.

[0166] As is well known in the art, enzyme activities can be measured in various ways. For example, the pyrophosphorolysis of OMP may be followed spectroscopically (Grabmeyer et al., (1993) J. Biol. Chem. 268:20299-20304). Alternatively, the activity of the enzyme can be followed using chromatographic techniques, such as by high performance liquid chromatography (Chung and Sloan, (1986) J. Chromatogr. 371 :71 -81). As another alternative the activity can be indirectly measured by determining the levels of product made from the enzyme activity. T hese levels can be measured with techniques including aqueous chloroform/methanol extraction as known and described in the art (Cf. M. Kates (1986) Techniques of Lipidology; Isolation, analysis and identification of Lipids. Elsevier Science Publishers, New York (ISBN:

0444807322)). More modern techniques include using gas chromatography linked to mass spectrometry (Niessen, W. M. A. (2001). Current practice of gas chromatography— mass spectrometry. New York, N.Y: Marcel Dekker. (ISBN: 0824704738)). Additional modern techniques for identification of recombinant protein activity and products including liquid chromatography-mass spectrometry (LCMS), high performance liquid chromatography (HPLC), capillary electrophoresis, Matrix- Assisted Laser Desorption Ionization time of flight-mass spectrometry (MALDI-T OF MS), nuclear magnetic resonance (NMR), near-infrared (NIR) spectroscopy, viscometry (Knothe, G (1997) Am. Chem. Soc. Symp. Series, 666: 172-208), titration for determining free fatty acids (Komers (1997) Fett/Lipid, 99(2): 52-54), enzymatic methods (Bailer (1991) Fresenius J. Anal. Chem. 340(3): 186), physical property-based methods, wet chemical methods, etc. can be used to analyze the levels and the identity of the product produced by the organisms of the present disclosure. Other methods and techniques may also be suitable for the measurement of enzyme activity, as would be known by one of skill in the art.

[0167] Also provided by the present disclosure are vectors, including expression vectors, which comprise the above nucleic acid molecules of the present disclosure, as described further herein. In a first embodiment, the vectors include the isolated nucleic acid molecules described above. In an alternative embodiment, the vectors of the present disclosure include the above- described nucleic acid molecules operably linked to one or more expression control sequences. T he vectors of the instant disclosure may thus be used to express an Aar and/or Adm polypeptide contributing to «-alkane producing activity by a host cell, and/or a chimeric efflux protein for effluxing «-alkanes and other hydrocarbons out of the cell.

[0168] In another aspect of the present disclosure, host cells transformed with the nucleic acid molecules or vectors of the present disclosure, and descendants thereof, are provided. In some embodiments of the present disclosure, these cells carry the nucleic acid sequences of the present disclosure on vectors, which may but need not be freely replicating vectors. In other embodiments of the present disclosure, the nucleic acids have been integrated into the genome of the host cells.

[0169] In a preferred embodiment, the host cell comprises one or more AAR or ADM encoding nucleic acids which express AAR or ADM in the host cell.

[0170] In an alternative embodiment, the host cells of the present disclosure can be mutated by recombination with a disruption, deletion or mutation of the isolated nucleic acid of the present disclosure so that the activity of the AAR and/or ADM protein(s) in the host cell is reduced or eliminated compared to a host cell lacking the mutation.

[0171] T he term "microorganism" includes prokaryotic and eukaryotic microbial species from the Domains Archaea, Bacteria and Eucarya, the latter including yeast and filamentous fungi, protozoa, algae, or higher Protista. T he terms "microbial cells" and "microbes" are used interchangeably with the term microorganism.

[0172] A variety of host organisms can be transformed to produce a product of interest. Photoautotrophic organisms include eukaryotic plants and algae, as well as prokaryotic cyanobacteria, green-sulfur bacteria, green non-sulfur bacteria, purple sulfur bacteria, and purple non-sulfur bacteria. [0173] Extremophiles are also contemplated as suitable organisms. Such organisms withstand various environmental parameters such as temperature, radiation, pressure, gravity, vacuum, desiccation, salinity, pH, oxygen tension, and chemicals. T hey include

hyperthermophiles, which grow at or above 80°C such as Pyrolobus fumarii; thermophiles, which grow between 60-80°C such as Synechococcus lividis; mesophiles, which grow between 15-60°C and psychrophiles, which grow at or below 15°C such as Psychrobacter and some insects. Radiation tolerant organisms include Deinococcus radiodurans. Pressure -tolerant organisms include piezophiles, which tolerate pressure of 130 MPa. Weight-tolerant organisms include barophiles. Hypergravity (e.g., >l ) and hypogravity (e.g., <lg) tolerant organisms are also contemplated. Vacuum tolerant organisms include tardigrades, insects, microbes and seeds. Dessicant tolerant and anhydrobiotic organisms include xerophiles such as Artemia salina; nematodes, microbes, fungi and lichens. Salt-tolerant organisms include halophiles (e.g., 2-5 M NaCl) Halobacteriacea and Dunaliella salina. pH-tolerant organisms include alkaliphiles such as Natronobacterium, Bacillus firmus OF4, Spirulina spp. (e.g. , pH > 9) and acidophiles such as Cyanidium caldarium, Ferroplasma sp. (e.g. , low pH). Anaerobes, which cannot tolerate 0 2 such as Methanococcus jannaschii; microaerophils, which tolerate some 0 2 such as Clostridium and aerobes, which require 0 2 are also contemplated. Gas-tolerant organisms, which tolerate pure C0 2 include Cyanidium caldarium and metal tolerant organisms include metalotolerants such as Ferroplasma acidarmanus (e.g. , Cu, As, Cd, Zn), Ralstonia sp. CH34 (e.g., Zn, Co, Cd, Hg, Pb). Gross, Michael. Life on the Edge: Amazing Creatures Thriving in Extreme

Environments. New YorK: Plenum (1998) and Seckbach, J. "Search for Life in the Universe with T errestrial Microbes Which T hrive Under Extreme Conditions." In Cristiano Batalli Cosmovici, Stuart Bowyer, and Dan Wertheimer, eds., Astronomical and Biochemical Origins and the Search for Life in the Universe, p. 51 1. Milan: Editrice Compositori (1997). [0174] Plants include but are not limited to the following genera: Arabidopsis, Beta, Glycine, Jatropha, Miscanthus, Panicum, Phalaris, Populus, Saccharum, Salix, Simmondsia and Zea.

[0175] Algae and cyanobacteria include but are not limited to the following genera:

Acanthoceras, Acanthococcus, Acaryochloris, Achnanthes, Achnanthidium, Actinastrum, Actinochloris, Actinocyclus, Actinotaenium, Amphichrysis, Amphidinium, Amphikrikos, Amphipleura, Amphiprora, Amphithrix, Amphora, Anabaena, Anabaenopsis, Aneumastus, Ankistrodesmus, Ankyra, Anomoeoneis, Apatococcus, Aphanizomenon, Aphanocapsa,

Aphanochaete, Aphanothece, Apiocystis, Apistonema, Arthrodesmus, Artherospira, Ascochloris, Asterionella, Asterococcus, Audouinella, Aulacoseira, Bacillaria, Balbiania, Bambusina, Bangia, Basichlamys, Batrachospermum, Binuclearia, Bitrichia, Blidingia, Botrdiopsis, Botrydium, Botryococcus, Botryosphaerella, Brachiomonas, Brachysira, Brachytrichia, Brebissonia, Bulbochaete, Bumilleria, Bumilleriopsis, Caloneis, Calothrix, Campylodiscus, Capsosiphon, Carteria, Catena, Cavinula, Centritractus, Centronella, Ceratium, Chaetoceros, Chaetochloris, Chaetomorpha, Chaetonella, Chaetonema, Chaetopeltis, Chaetophora, Chaetosphaeridium, Chamaesiphon, Chara, Characiochloris, Characiopsis, Characium, Charales, Chilomonas, Chlainomonas, Chlamydoblepharis, Chlamydocapsa, Chlamydomonas, Chlamydomonopsis, Chlamydomyxa, Chlamydonephris, Chlorangiella, Chlorangiopsis, Chlorella, Chlorobotrys, Chlorobrachis, Chlorochytrium, Chlorococcum, Chlorogloea, Chlorogloeopsis, Chlorogonium, Chlorolobion, Chloromonas, Chlorophysema, Chlorophyta, Chlorosaccus, Chlorosarcina, Choricystis, Chromophyton, Chromulina, Chroococcidiopsis, Chroococcus, Chroodactylon, Chroomonas, Chroothece, Chrysamoeba, Chrysapsis, Chrysidiastrum, Chrysocapsa,

Chrysocapsella, Chrysochaete, Chrysochromulina, Chrysococcus, Chrysocrinus,

Chrysolepidomonas, Chrysolykos, Chrysonebula, Chrysophyta, Chrysopyxis, Chrysosaccus, Chrysophaerella, Chrysostephanosphaera, Clodophora, Clastidium, Closteriopsis, Closterium, Coccomyxa, Cocconeis, Coelastrella, Coelastrum, Coelosphaerium, Coenochloris, Coenococcus, Coenocystis, Colacium, Coleochaete, Collodictyon, Compsogonopsis, Compsopogon,

Conjugatophyta, Conochaete, Coronastrum, Cosmarium, Cosmioneis, Cosmocladium,

Crateriportula, Craticula, Crinalium, Crucigenia, Crucigeniella, Cryptoaulax, Cryptomonas, Cryptophyta, Ctenophora, Cyanodictyon, Cyanonephron, Cyanophora, Cyanophyta, Cyanothece, Cyanothomonas, Cyclonexis, Cyclostephanos, Cyclotella, Cylindrocapsa, Cylindrocystis, Cylindrospermum, Cylindrotheca, Cymatopleura, Cymbella, Cymbellonitzschia, Cystodinium Dactylococcopsis, Debarya, Denticula, Dermatochrysis, Dermocarpa, Dermocarpella,

Desmatractum, Desmidium, Desmococcus, Desmonema, Desmosiphon, Diacanthos,

Diacronema, Diadesmis, Diatoma, Diatomella, Dicellula, Dichothrix, Dichotomococcus, Dicranochaete, Dictyochloris, Dictyococcus, Dictyosphaerium, Didymocystis, Didymogenes, Didymosphenia, Dilabifilum, Dimorphococcus, Dinobryon, Dinococcus, Diplochloris,

Diploneis, Diplostauron, Distrionella, Docidium, Draparnaldia, Dunaliella, Dysmorpho coccus, Ecballocystis, Elakatothrix, Ellerbeckia, Encyonema, Enteromorpha, Entocladia, Entomoneis, Entophysalis, Epichrysis, Epipyxis, Epithemia, Eremosphaera, Euastropsis, Euastrum, Eucapsis, Eucocconeis, Eudorina, Euglena, Euglenophyta, Eunotia, Eustigmatophyta, Eutreptia, Fallacia, Fischerella, Fragilaria, Fragilariforma, Franceia, Frustulia, Curcilla, Geminella, Genicularia, Glaucocystis, Glaucophyta, Glenodiniopsis, Glenodinium, Gloeocapsa, Gloeochaete,

Gloeochrysis, Gloeococcus, Gloeocystis, Gloeodendron, Gloeomonas, Gloeoplax, Gloeothece, Gloeotila, Gloeotrichia, Gloiodictyon, Golenkinia, Golenkiniopsis, Gomontia, Gomphocymbella, Gomphonema, Gomphosphaeria, Gonatozygon, Gongrosia, Gongrosira, Goniochloris, Gonium, Gonyostomum, Granulochloris, Granulocystopsis, Groenbladia, Gymnodinium, Gymnozyga, Gyrosigma, Haemato coccus, Hafniomonas, Hallassia, Hammatoidea, Hannaea, Hantzschia, Hapalosiphon, Haplotaenium, Haptophyta, Haslea, Hemidinium, Hemitoma, Heribaudiella, Heteromastix, Heterothrix, Hibberdia, Hildenbrandia, Hillea, Holopedium, Homoeothrix, Hormanthonema, Hormotila, Hyalobrachion, Hyalocardium, Hyalodiscus, Hyalogonium, Hyalotheca, Hydrianum, Hydrococcus, Hydrocoleum, Hydrocoryne, Hydrodictyon, Hydrosera, Hydraras, Hyella, Hymenomonas, Isthmochloron, Johannesbaptistia, Juranyiella, Karayevia, Kathablepharis, Katodinium, Kephyrion, Keratococcus, Kirchneriella, Klebsormidium, Kolbesia, Koliella, Komarekia, Korshikoviella, Kraskella, Lagerheimia, Lagynion, Lamprothamnium, Lemanea, Lepocinclis, Leptosira, Lobococcus, Lobocystis, Lobomonas, Luticola, Lyngbya, Malleochloris, Mallomonas, Mantoniella, Marssoniella, Martyana, Mastigocoleus, Gastogloia, Melosira, Merismopedia, Mesostigma, Mesotaenium, Micractinium, Micrasterias, Microchaete, Microcoleus, Microcystis, Microglena, Micromonas, Microspora, Microthamnion,

Mischococcus, Monochrysis, Monodus, Monomastix, Monoraphidium, Monostroma, Mougeotia, Mougeotiopsis, Myochloris, Myromecia, Myxosarcina, Naegeliella, Nannochloris, Nautococcus, Navicula, Neglectella, Neidium, Nephroclamys, Nephrocytium, Nephrodiella, Nephroselmis, Netrium, Nitella, Nitellopsis, Nitzschia, Nodularia, Nostoc, Ochromonas, Oedogonium,

Oligochaetophora, Onychonema, Oocardium, Oocystis, Opephora, Ophiocytium, Orthoseira, Oscillatoria, Oxyneis, Pachycladella, Palmella, Palmodictyon, Pnadorina, Pannus, Paralia, Pascherina, Paulschulzia, Pediastrum, Pedinella, Pedinomonas, Pedinopera, Pelagodictyon, Penium, Peranema, Peridiniopsis, Peridinium, Peronia, Petroneis, Phacotus, Phacus, Phaeaster, Phaeodermatium, Phaeophyta, Phaeosphaera, Phaeothamnion, Phormidium, Phycopeltis, Phyllariochloris, Phyllocardium, Phyllomitas, Pinnularia, Pitophora, Placoneis, Planctonema, Planktosphaeria, Planothidium, Plectonema, Pleodorina, Pleurastrum, Pleurocapsa, Pleurocladia, Pleurodiscus, Pleurosigma, Pleurosira, Pleurotaenium, Pocillomonas, Podohedra,

Polyblepharides, Polychaetophora, Polyedriella, Polyedriopsis, Polygoniochloris,

Polyepidomonas, Polytaenia, Polytoma, Polytomella, Porphyridium, Posteriochromonas, Prasinochloris, Prasinocladus, Prasinophyta, Prasiola, Prochlorphyta, Prochlorothrix,

Protoderma, Protosiphon, Provasoliella, Prymnesium, Psammodictyon, Psammothidium, Pseudanabaena, Pseudenoclonium, Psuedocarteria, Pseudochate, Pseudocharacium,

Pseudococcomyxa, Pseudodictyosphaerium, Pseudokephyrion, Pseudoncobyrsa,

Pseudoquadrigula, Pseudosphaerocystis, Pseudostaurastram, Pseudostaurosira, Pseudotetrastram, Pteromonas, Punctastraata, Pyramichlamys, Pyramimonas, Pyrrophyta, Quadrichloris,

Quadricoccus, Quadrigula, Radiococcus, Radiofilum, Raphidiopsis, Raphidocelis, Raphidonema, Raphidophyta, Peimeria, Rhabdoderma, Rhabdomonas, Rhizoclonium, Rhodomonas,

Rhodophyta, Rhoicosphenia, Rhopalodia, Rivularia, Rosenvingiella, Rossithidium, Roya, Scenedesmus, Scherffelia, Schizochlamydella, Schizochlamys, Schizomeris, Schizothrix, Schroederia, Scolioneis, Scotiella, Scotiellopsis, Scourfieldia, Scytonema, Selenastram,

Selenochloris, Sellaphora, Semiorbis, Siderocelis, Diderocystopsis, Dimonsenia, Siphononema, Sirocladium, Sirogonium, Skeletonema, Sorastram, Spermatozopsis, Sphaerellocystis,

Sphaerellopsis, Sphaerodinium, Sphaeroplea, Sphaerozosma, Spiniferomonas, Spirogyra, Spirotaenia, Spiralina, Spondylomoram, Spondylosium, Sporotetras, Spumella, Staurastram, Stauerodesmus, Stauroneis, Staurosira, Staurosirella, Stenopterobia, Stephanocostis,

Stephanodiscus, Stephanoporos, Stephanosphaera, Stichococcus, Stichogloea, Stigeoclonium, Stigonema, Stipitococcus, Stokesiella, Strombomonas, Stylochrysalis, Stylodinium, Styloyxis, Stylosphaeridium, Surirella, Sykidion, Symploca, Synechococcus, Synechocystis, Synedra, Synochromonas, Synura, T abellaria, T abularia, T eilingia, T emnogametum, T etmemorus, T etrachlorella, T etracyclus, T etradesmus, T etraedriella, T etraedron, T etraselmis, T etraspora, T etrastram, T halassiosira, T hamniochaete, T horakochloris, T horea, T olypella, T olypothrix, T rachelomonas, T rachydiscus, T rebouxia, T rentepholia, T reubaria, T ribonema, T richodesmium, T richodiscus, T rochiscia, T ryblionella, Ulothrix, Uroglena, Uronema, Urosolenia, Urospora, Uva, Vacuolaria, Vaucheria, Volvox, Volvulina, Westella, Woloszynskia, Xanthidium,

Xanthophyta, Xenococcus, Zygnema, Zygnemopsis, and Zygonium. A partial list of

cyanobacteria that can be engineered to express the recombinant described herein include members of the genus Chamaesiphon, Chroococcus, Cyanobacterium, Cyanobium, Cyanothece, Dactylococcopsis, Gloeobacter, Gloeocapsa, Gloeothece, Microcystis, Prochlorococcus, Prochloron, Synechococcus, Synechocystis, Cyanocystis, Dermocarpella, Stanieria, Xenococcus, Chroococcidiopsis, Myxosarcina, Arthrospira, Borzia, Crinalium, Geitlerinemia, Leptolyngbya, Limnothrix, Lyngbya, Microcoleus, Oscillatoria, Planktothrix, Prochiorothrix, Pseudanabaena, Spirulina, Starria, Symploca, T richodesmium, T ychonema, Anabaena, Anabaenopsis,

Aphanizomenon, Cyanospira, Cylindrospermopsis, Cylindrospermum, Nodularia, Nostoc, Scylonema, Calothrix, Rivularia, T olypothrix, Chlorogloeopsis, Fischerella, Geitieria,

Iyengariella, Nostochopsis, Stigonema and T hermosynechococcus.

[0176] Green non-sulfur bacteria include but are not limited to the following genera:

Chlorofiexus, Chloronema, Oscillochloris, Heliothrix, Herpeto siphon, Roseiflexus, and

T hermomicrobium.

[0177] Green sulfur bacteria include but are not limited to the following genera:

[0178] Chlorobium, Clathrochloris, and Prosthecochloris.

[0179] Purple sulfur bacteria include but are not limited to the following genera:

Allochromatium, Chromatium, Halochromatium, Isochromatium, Marichromatium,

Rhodovulum, T hermo chromatium, T hiocapsa, T hiorhodococcus, and T hiocystis,

[0180] Purple non-sulfur bacteria include but are not limited to the following genera:

Phaeospirillum, Rhodobaca, Rhodobacter, Rhodomicrobium, Rhodopila, Rhodopseudomonas, Rhodothalassium, Rhodospirillum, Rodovibrio, and Roseospira. [0181] Aerobic chemolithotrophic bacteria include but are not limited to nitrifying bacteria such as Nitrobacteraceae sp., Nitrobacter sp., Nitrospina sp., Nitrococcus sp., Nitrospira sp., Nitrosomonas sp., Nitrosococcus sp., Nitrosospira sp., Nitrosolobus sp., Nitrosovibrio sp.;

colorless sulfur bacteria such as, Thiovulum sp., Thiobacillus sp., Thiomicrospira sp.,

Thiosphaera sp., Thermothrix sp.; obligately chemolithotrophic hydrogen bacteria such as Hydrogenobacter sp., iron and manganese-oxidizing and/or depositing bacteria such as

Siderococcus sp., and magnetotactic bacteria such as Aquaspirillum sp.

[0182] Archaeobacteria include but are not limited to methanogenic archaeobacteria such as Methanobacterium sp., Methanobrevibacter sp., Methanothermus sp., Methanococcus sp., Methanomicrobium sp., Methanospirillum sp., Methanogenium sp., Methanosarcina sp., Methanolobus sp., Methanothrix sp., Methanococcoides sp., Methanoplanus sp.; extremely thermophilic S-Metabolizers such as Thermoproteus sp., Pyrodictium sp., Sulfolobus sp., Acidianus sp. and other microorganisms such as, Bacillus subtilis, Saccharomyces cerevisiae, Streptomyces sp., Ralstonia sp., Rhodococcus sp., Corynebacteria sp., Brevibacteria sp., Mycobacteria sp., and oleaginous yeast.

[0183] Preferred organisms for the manufacture of n-alkanes according to the methods discloused herein include: Arabidopsis thaliana, Panicum virgatum, Miscanthus giganteus, and Zea mays (plants); Botryococcus braunii, Chlamydomonas reinhardtii and Dunaliela salina (algae); Synechococcus sp PCC 7002, Synechococcus sp. PCC 7942, Synechocystis sp. PCC 6803, T hermosynechococcus elongatus BP-1 (cyanobacteria); Chlorobium tepidum (green sulfur bacteria), Chloroflexus auranticus (green non-sulfur bacteria); Chromatium tepidum and Chromatium vinosum (purple sulfur bacteria); Rhodospirillum rubrum, Rhodobacter capsulatus, and Rhodopseudomonas palusris (purple non-sulfur bacteria). [0184] Yet other suitable organisms include synthetic cells or cells produced by synthetic genomes as described in Venter et al. US Pat. Pub. No. 2007/0264688, and cell-like systems or synthetic cells as described in Glass et al. US Pat. Pub. No. 2007/0269862.

[0185] Still, other suitable organisms include microorganisms that can be engineered to fix carbon dioxide bacteria such as Escherichia coli, Acetobacter aceti, Bacillus subtilis, yeast and fungi such as Clostridium Ijungdahlii, Clostridium thermocellum, Penicillium chrysogenum, Pichia pastoris, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Pseudomonas fluorescens, or Zymomonas mobilis.

[0186] A suitable organism for selecting or engineering is autotrophic fixation of C0 2 to products. T his would cover photosynthesis and methanogenesis. Acetogenesis, encompassing the three types of C0 2 fixation; Calvin cycle, acetyl-CoA pathway and reductive T CA pathway is also covered. T he capability to use carbon dioxide as the sole source of cell carbon

(autotrophy) is found in almost all major groups ofprokaryotes. T he C0 2 fixation pathways differ between groups, and there is no clear distribution pattern of the four presently-known autotrophic pathways. See, e.g. , Fuchs, G. 1989. Alternative pathways of autotrophic CO 2 fixation, p. 365-382. In H. G. Schlegel, and B. Bowien (ed.), Autotrophic bacteria.

Springer- Verlag, Berlin, Germany. T he reductive pentose phosphate cycle

(Calvin-Bassham-Benson cycle) represents the C0 2 fixation pathway in almost all aerobic autotrophic bacteria, for example, the cyanobacteria.

[0187] For producing «-alkanes via the recombinant expression of Aar and/or Adm enzymes, an engineered cyanobacterium, e.g. , a Synechococcus or Thermosynechococcus species, is preferred. Other preferred organisms include Synechocystis, Klebsiella oxytoca, Escherichia coli or Saccharomyces cerevisiae. Other prokaryotic, archaeal and eukaryotic host cells are also encompassed within the scope of the present disclosure.

[0188] In various embodiments of the disclosure, desired hydrocarbons and/or alcohols of certain chain length or a mixture thereof can be produced. In certain aspects, the host cell produces at least one of the following carbon-based products of interest: 1-dodecanol, 1- tetradecanol, 1 -pentadecanol, «-tridecane, «-tetradecane, 15: 1 «-pentadecene, «-pentadecane, 16: 1 «-hexadecene, «-hexadecane, 17: 1 «-heptadecene, «-heptadecane, 16: 1 «-hexadecen-ol, n- hexadecan-1-ol and «-octadecen-1-ol, as shown in the Examples herein. In other aspects, the carbon chain length ranges from C 10 to C 20 . Accordingly, the disclosure provides production of various chain lengths of alkanes, alkenes and alkanols suitable for use as fuels and chemicals.

[0189] In preferred aspects, the methods of the present disclosure include culturing host cells for direct product secretion for easy recovery without the need to extract biomass. T hese carbon- based products of interest are secreted directly into the medium. Since the disclosure enables production of various defined chain length of hydrocarbons and alcohols, the secreted products are easily recovered or separated. T he products of the disclosure, therefore, can be used directly or used with minimal processing.

[0190] In various embodiments, compositions produced by the methods of the disclosure are used as fuels. Such fuels comply with AST M standards, for instance, standard specifications for diesel fuel oils D 975-09b, and Jet A, Jet A-l and Jet B as specified in AST M Specification D. 1655-68. Fuel compositions may require blending of several products to produce a uniform product. T he blending process is relatively straightforward, but the determination of the amount of each component to include in a blend is much more difficult. Fuel compositions may, therefore, include aromatic and/or branched hydrocarbons, for instance, 75% saturated and 25% aromatic, wherein some of the saturated hydrocarbons are branched and some are cyclic. Preferably, the methods of the disclosure produce an array of hydrocarbons, such as C 13 -C 17 or C10-C15 to alter cloud point. Furthermore, the compositions may comprise fuel additives, which are used to enhance the performance of a fuel or engine. For example, fuel additives can be used to alter the freezing/gelling point, cloud point, lubricity, viscosity, oxidative stability, ignition quality, octane level, and flash point. Fuels compositions may also comprise, among others, antioxidants, static dissipater, corrosion inhibitor, icing inhibitor, biocide, metal deactivator and thermal stability improver.

[0191] In addition to many environmental advantages of the disclosure such as C0 2 conversion and renewable source, other advantages of the fuel compositions disclosed herein include low sulfur content, low emissions, being free or substantially free of alcohol and having high cetane number.

[ 0192 ] T he following examples are for illustrative purposes and are not intended to limit the scope of the present disclosure.

EXAMPLES

EXAMPLE 1: Identification of a multi-subunit prokaryotic efflux pump capable of mediating the export of intracellular n-alkanes and n-alkenes

[0193] E. coli, upon expression of ADM and AAR, not only produces hydrocarbons, mostly «-pentadecane and «-heptadecene, but also secretes them into the growth medium (Schirmer A et al. (2010) Science 329:559-562). T his is because E. coli expresses one or more efflux pump(s), entirely absent in wild-type JCC138 (a cyanobacteria) and derivatives therefrom expressing ADM and AAR, described in, e.g., U.S. Pat. No. 7,794,969. T he one or more efflux pump(s) are capable of catalyzing the transport of hydrocarbons from inside the cell through the inner membrane, then through the periplasmic space, and then through the outer membrane into the bulk phase and/or cell surface. T his Example describes the identification of one such alk(a/e)ne efflux pump in E. coli.

[0194] RNA samples from the following four strains - each in replicate and each replicate before (T l) and 3.5 hr after (T 2) addition of 1 mM IPT G - were analyzed using Agilent E. coli arrays: (1) JCCl 169, E. coli BL21(DE3) carrying pCDFDuet-l ::adm_PCC7942 (non- hydrocarbon producing control), (2) JCCl 170, E. coli BL21(DE3) carrying pCDFDuet- l : aar_PCC7942 («-alkanal-, «-alkanol-producing control strain), (3) JCC1214, E. coli

BL21(DE3) carrying pCDFDuet-l : :adm_Pmarinus-aar_Pmarinus («-pentadecane-, n- heptadecene -producing strain), and (4) JCCl 1 13, E. coli BL21(DE3) carrying pCDFDuet- 1 : :adm_PCC7942-aar_ PCC7942 («-pentadecane-, «-heptadecene-producing strain). In one embodiment, the invention provides each of these four engineered strains of E. coli. In another embodiment, the invention provides methods of culturing each of these four engineered strains of E. coli and determining the level of secreted «-alkanes and «-alkenes in the culture medium.

[0195] At the same time as cell pellets were sampled from each of the eight cultures for transcriptomic analysis, an additional cell pellet sample was extracted in acetone and the cell-free culture supernatant was extracted in ethyl acetate. Following GC-FID analysis of these acetone and ethyl acetate extractants, the concentrations of cell-associated and medium-associated (i.e., exported) hydrocarbons were quantitated (Figure 1), confirming the different total hydrocarbon productivities of JCCl 1 13 and JCC1214, as well as the fact that for both strains, at least 20% of the «-alka(e)ne produced was medium-associated. [0196] T he microarray data were processed and 17 genes of interest were selected. T welve genes were immediately excluded from further analysis given the high probability that they were involved in a general stress response brought about by hydrocarbon production (Table 1).

Table 1

Table 1 Genes specifically up-regulated in JCC1214 and JCC1 1 13 that are likely involved in a general stress response to intracellular hydrocarbon production, and were therefore excluded from further analysis. IM, inner membrane; OM, outer membrane.

[0197] T he five remaining genes are presented in Table 2.

Table 2

[0198] T he other two genes, ybiH and ybhG, however, are notable in that (i) they are adjacent on the chromosome, (ii) they are of broad phylogenetic distribution (occurring in Pseudomonas), and, most importantly, (iii) are part of a cluster/operon of genes that encode a putative efflux pump of the AT P-binding cassette (ABC) superfamily. ybiH encodes a T etR- family transcriptional regulator, and therefore almost certainly cannot be involved directly in hydrocarbon efflux. In one embodiment of the invention, altering ybiH expression can be used to modulate expression of the ybhGFSR operon.

[0199] ybhG encodes a polypeptide of the membrane fusion protein (MFP) family. MFPs are periplasmic/extracellular subunits of multi-component efflux transporters that perform a diverse array of extrusion functions in both Gram-positive and Gram-negative prokaryotes, with substrates from heavy metal ions to whole proteins (Zgurskaya H et al. (2009) BBA 1794:794- 807). MFPs are components of three major classes of bacterial efflux pumps: Resistance- Nodulation-cell Division (RND), AT P-Binding Cassette (ABC), and Major Facilitator superfamilies.

[0200] In Gram-negative bacteria such as E. coli, MFPs are known to mediate the interaction between inner membrane pump subunits and an outer membrane channel protein partner, such that substrates can be expelled from the cytosol and/or from the periplasmic space and/or from the inner membrane to the cell exterior in a seamless fashion. ybhG is part of what appears to be operon, ybhGFSR, encoding all the components required of an ABC-family efflux pump i.e., the MFP (ybhG), the cytosolic AT P-hydrolysis subunit (ybhF), and the two inner membrane subunits (ybhS and ybhR) (Figure 2) (Davidson A et al. (2008) MMBR 72:317-364). Further bolstering this hypothesis, ybhF, ybhS, and ybhR manifest gene expression profiles largely concordant with those of ybiH and ybhG, albeit not as clean (Figure 2).

[0201] T olC, an outer membrane protein (OMP) is known to function promiscuously with several different inner membrane/periplasm efflux pump components in the extrusion of a wide range of lipophilic species and is thus the most likely candidate for the outer membrane partner of the YbhGFSR complex. T o further support an interaction between YbhGFSR and T olC, the amino acid sequences of the 15 known and predicted MFS proteins of E. coli K12 MG1655 were compared, focusing in on the sequence of the loop joining the two a-helices of the coiled-coil domain that is one of the structural signatures of MFS proteins (Table 3). T his loop sequence is significant in that in MFPs known to interact with T olC, there are conserved R, L, and S residues known to be critical for interaction with T olC (Hong-Man K et al. (2010) J Bacteriol 192:4498- 4503). Figure 3 shows the consensus sequence of the loop sequence of the seven MPS proteins known to interact with T olC (Table 3): the conserved R, L, and S are apparent, as is a conserved I/V residue preceding the conserved S. Further evidence that YbhG does indeed interact with T olC, the loop sequence of YbhG (Table 3) matches this consensus sequence of MFS proteins known to interact with T olC. A schematic of the fully assembled YbhGFSR-T olC efflux pump is shown in Figure 4. [0202] Note also, that the YbhG paralog Yhil also matches this consensus, suggesting that this MFP, too, interacts with T olC. Importantly, the MFPs known not to depend on T olC (AaeA and CusB) do not conform to this consensus sequence. Yhil is encoded within an operon paralogous to ybhGFSR, yhil-rbbA-yhhJ, that encodes another uncharacterized ABC efflux system (rbbA encoding a putative AT P-hydrolyzing/IM subunit fusion and yhhJ the other IM protein). T he evidence shows that this operon is also an inner membrane/periplasm component of a hydrocarbon efflux system.

EXAMPLE 2: Recombinant expression of hydrocarbon ABC efflux pump systems in an n-alkane producing non-photosynthetic or photosynthetic microbe

[0203] Engineered photosynthetic microbes expressing ADM and AAR, e.g., the adm-aar + JCC138 alkanogen JCC2055, have been and continue to be engineered to express hydrocarbon ABC efflux pump systems, e.g., ybhG/ybhF/ybhS/ybhR/tolC and homologous variants thereof or (prophetically) yhil/rbbA/yhhJ/tolC and homologous variants thereof. T his Example describes the creation of some exemplary constructs and microbes for alk(a/e)ne production and secretion. Many other examples of constructs and strains are provided elsewhere, herein.

[0204] T he E. coli leader sequences of YbhG was replaced with a native JCC138 leader sequence associated with periplasmic localization; T olC had its E. coli leader sequence replaced with a native JCC138 leader sequence associated with outer membrane localization. In this Example, the cytosolic AT P-binding subunits (e.g., YbhF) and inner membrane subunits (YbhPv/YbhS) will retain their entire native E. coli sequence.

[0205] A variety of standard standard promoters are used to drive expression of these efflux pump genes in the JCC138 host (see, e.g., U.S. Pat. App. No. 12/833,821 , filed July 9, 2010, and U.S. Pat. App. No. 12/876,056, filed September 3, 2010). T he DNA and protein sequences of the E. coli efflux pump components are shown in Table 4 and Table 5, respectively. T he resulting strains are compared relative to an otherwise unmodified JCC138 alkanogen control strain to demonstrate the improved ability of strains expressing recombinant hydrocarbon ABC efflux pump systems to extrude hydrocarbons, e.g., «-pentadecane and/or «-heptadecane, into the growth medium.

[0206] Exemplary perisplasmic leader sequences that will be deleted from YbhG and Yhil are as follows:

YbhG (SEQ ID NO : 15)

1 MMKKPWIGL AVWLAAWA GGYWWYQSRQ DNGLTLYGNV DIRTVNLSFR VGGRVESLAV 60 61 DEGDAIKAGQ VLGELDHKPY E IALMQAKAG VSVAQAQYDL MLAGYRNEEI AQAAAAVKQA 120 121 QAAYDYAQNF YNRQQGLWKS RTISANDLEN ARSSRDQAQA TLKSAQDKLR QYRSGNREQD 180 181 IAQAKASLEQ AQAQLAQAEL NLQDSTLIAP SDGTLLTRAV EPGTVLNEGG TVFTVSLTRP 240 241 VWVRAYVDER NLDQAQPGRK VLLYTDGRPD KPYHGQIGFV SPTAEFTPKT VETPDLRTDL 300 301 VYRLRIVVTD ADDALRQGMP VTVQFGDEAG HE

Yhil (SEQ ID NO : 16)

1 MDKSKRH LAW WVVGLLAVAA IVAWWLLRPA GVPEGFAVSN GRIEATEVDI ASKIAGRIDT 60

61 ILVKEGKFVR EGEVLAKMDT RVLQEQRLEA IAQIKEAQSA VAAAQALLEQ RQSETRAAQS 120

121 LVNQRQAELD SVAKRHTRSR SLAQRGAISA QQLDDDRAAA ESARAALESA KAQVSASKAA 180

181 IEAARTNI IQ AQTRVEAAQA TERRIAADID DSELKAPRDG RVQYRVAEPG EVLAAGGRVL 240

241 NMVDLSDVYM TFFLPTEQAG TLKLGGEARL ILDAAPDLRI PAT I SFVASV AQFTPKTVET 300

301 SDERLKLMFR VKARI PPELL QQHLEYVKTG LPGVAWVRVN EELPWPDDLV VRLPQ

[0207] An exemplary native JCC138 leader sequence associated with periplasmic location that will be swapped into YbhG and Yhil includes the first 22 amino acids of periplasmically SYNPCC7002_A0578

(http://www.ncbi.nlm.nih.gOv/protein/169884872#comment_16 9884872): MRFFW FFLT LLT LSTWQLPAWA (SEQ ID NO: 17)

[0208] An exemplary native JCC138 leader sequence associated with outer membrane location that will be swapped into T olC includes the first 25 amino acids of JCC138 T olC homo log SYNPCC7002_A0585 (http://www.ncbi.nlm.nih.gOv/protein/l 69884879): MFAFRDFLT FST GGLVVLSGGGVAIA (SEQ ID NO: 18) T he leader sequence of T olC is described elsewhere in the art, e.g., U.S. Pat. App. No. 12/876,056, filed September 3, 2010.

Table 4

Table 5

[0209] In one embodiment, the invention provides recombinant E. coli cells comprising a modification to a gene listed in Table 4, wherein said modification is selected from the group consisting of (1) a modification that eliminates or reduces the activity of the gene, wherein said modification includes a whole or partial deletion of the gene or a point mutation; and (2) a modification that increases expression of a gene listed in Table 4, wherein said modification includes an additional copy of the gene and/or expression of the gene from a stronger promoter than the native promoter. In another embodiment, the invention provides an engineeered cyanobacterium recombinantly expressing one or more genes listed in Table 4. In a related embodiment, the engineered cyanobacterium further comprises recombinant genes for «-alkane biosynthesis, e.g., aar and/or adm genes, which render it capable of synthesizing increased levels of «-alkanes (and/or «-alkenes) relative to an engineered cyanobacterium lacking said recombinant genes for «-alkane biosynthesis.

EXAMPLE 3: Construction of ADM-AAR expression vector and bacterial strains for alkane synthesis

[0210] T o express the alkane pathway in E. coli K12 strains, pJexpress404™ was purchased from DNA 2.0 (Menlo Park, CA). pJexpress404™ contains a high copy number pUC origin of replication, the bla gene for carbenicillin/ampicillin resistance, a multiple cloning site, a modified T 5 promoter for high expression and tight transcriptional control, and lacl as a repressor of the modified T 5 promoter, adm (gene Synpcc7942_1593) and aar (gene Synpcc7942_1594) of Synechococcus elongatus PCC 7942 were cloned as an operon from pJB853 into pJexpress404 to generate pJB 1440. T he sequence of pJB1440 is presented in Table 6, below.

[0211] A fadE knockout strain in E. coli BW251 13 (an E. coli K12 strain) which contains a kanamycin marker in place of fadE was obtained from the Yale strain collection (http://cgsc.biology.yale.edu; New Haven, CT ). T his marker was removed using pCP20™ which expresses a FLP recombinase vector as previously described (Datsenko et ah, PNAS (2000) 97:6640-5) to yield strain JCC1880 (E. coli W25 U3AfadE). T o knockout tolC, ybiH or any gene encoding a subunit of the YbhGFSR efflux pump, PI transduction was used to transduce the knockout (kanamycin marker in place of targeted gene for knockout) from a donor strain of the Yale strain collection to the E. coli production strain JCC1880 (BW251 l 3AfadE). T he derivative knockout strains were then transformed with the alkane production vector pJB1440 to express adm-aar.

[0212] JCC1880 derivative strains with the following genotypes were prepared:

AfadEAybiH, AfadEAybhF, AfadEAybhG, AfadEAybhS, AfadEAybhR and AfadE ybiH: :kan (replacing the ybiH gene with an insert comprising a constitutive promoter and a kanamycin resistance gene, wherein expression of both the kanamycin gene and the ybhGFSR operon are driven by the promoter; see Figure 5, bottom, and Table 7 which provides the kanamycin resistance gene coding sequence and constitutive promoter sequence). All strains were transformed with the alkane production vector pJB1440, described above. Each of these strains was cultured in minimal media + 3% glucose + 30 mg/L FeCi3 -6H 2 0 at 37°C, 250 rpm for 24 hours. Expression of the adm-aar operon was induced from the T 5 promoter with 1 mM IPT G at an OD 600 of about 0.4 (approximately six hours after inoculation). T he cells were harvested and cell- free supernatant samples were obtained after 18 hours of induction. Cell pellets were extracted with acetone and supernatants with ethyl acetate. Measurements were taken by GC- FID.

[0213] T he effects of the genotypes on cell growth and alkane secretion are depicted in

Figure 6. Figure 6 confirms that inactivation of YbiH expression promotes alkane secretion (see Figure 6A and Figure 6B; compare AybiH to JCC1 1880). Figure 6 also confirms that constitutive expression of the YbhGFSR transporter increases secretion (see Figure 6A and

Figure 6B; compare ybiH::Kan to JCC1 180 and AybiH), with 40% of total alkanes being secreted into the supernatant. T his level of secretion efficiency occurs in the absence of any agents added to the growth medium which are known to affect membrane permeability (e.g., T ris buffer, EDT A, T riton X- 100 detergent and other surfactants). Figure 6C and Figure 6D show that cell growth is inhibited when cells produce alkanes in the absence of a transporter capable of efficiently transporting alkanes, e.g., T olC or the YbhGFSR transporter.

EXAMPLE 4: Overexpression of ybhGFSR in E. coli improves alkane efflux

[0214] T o construct plasmid pJB1932, containing the ybhGFSR operon under control of an inducible promoter, plasmid pCDFDuet-1 (EMD4Biosciences) was digested with AscI and Mlul to remove a T 7 promoter and the 5 ' end of lacl present on pCDFDuet- 1. T he remaining plasmid backbone containing the CLODF 13 origin, truncated lacl, and aadA (encoding spectinomycin resistance) was gel purified and self-ligated together using NEB Quick Ligase. T he resulting plasmid was then digested with restriction enzymes Notl and Ndel to serve as an open vector for insertion of a tetracycline-inducible promoter (P LtetO1 ). A tetR-P LtetO1 insert was isolated by digestion of pJB800 (DNA 2.0) with Ndel and Notl followed by agarose gel purification. T his tetR-P LtetO1 insert was then ligated into the open vector cut with the same enzymes to create plasmid pJB 1918. Following construction of pJB 1918, the ybhGFSR operon was amplified by PCR from is. coli MG1655 genomic DNA using Phusion HF DNA polymerase (NEB) and primers KS202 (5 ' aataCAT AT GAT GAAAAAACCT GT CGT GAT CGG 3') (SEQ ID NO: 37) and KS416 (5' aataaGGCCGGCCttaCAT CACCT T ACGT CT AAACAT CGCG 3')

(SEQ ID NO: 38). T he resulting PCR product was column purified, digested with Ndel and Fsel and ligated into plasmid pJB1918 also digested with Ndel and Fsel to create pJB1932.

Table 8

[0215] Plasmids pJB 1932 (P LtetO1 -ybhGFSR) and pJB 1440 (F(TS)-adm-aar) were co- transformed into JCC1880 (AfadE) by electroporation and transformants were isolated on LB agar plates containing carbenicillin (100 μg/ml) and spectinomycin (50 μg/ml). Likewise, plasmids pJB1918 and pJB 1440 were co-transformed into JCC2359 (AfadEAybhGFSR) to serve as a negative control strain. 2 unique, single colonies for each strain were picked to inoculate two 3-ml LB seed cultures in test tubes (containing appropriate antibiotics), which were incubated at 37°C and 260 rpm for ~16 hours.

[0216] Alkane production and efflux of each strain was tested in 250 ml screw-cap shake flasks containing 25 ml M9f media (M9 minimal media + 30 g/L glucose + 30 mg/L FeCl 3 -6H 2 0 + A5 metals (27 mg/L FeCl 3 -6H 2 0, 2 mg/L ZnCl 2 -4H 2 0, 2 mg/L CaCl 2 -2H 2 0, 2 mg/L

Na 2 Mo0 4 -2H 2 0, 1.9 mg/L CuS0 4 -5H 2 0, 0.5 mg/L H 3 B0 3 )) with carbenicillin (100 μg/ml), spectinomycin (50 μg/ml), and a 5 ml DBE (25 mg/L BHT + 25 mg/L eicosane in dodecane) overlay for extraction of alkanes from the aqueous phase that were secreted by the cells. Cells were harvested from LB seed cultures and used to inoculate shake flask cultures containing 25 ml M9f to an OD 600 of 0.4. Following inoculation, 5 ml DBE was added to each culture and all flasks were incubated at 37°C and 260 rpm for 1 hour; at which point 1.0 mM IPT G and 100 ng/ml ahydrotetracycline (aT c) were added to each culture to induce gene expression from the T 5 and PLteto-i promoters, respectively. After induction with IPT G and aT c, all cultures were returned to 37°C, 250 rpm and incubated for another 23 hours. [0217] All flasks were sampled at 24 hours for alkane detection by GC-FID and to determine culture density. 2 OD-ml of cells from each flask culture were extracted with acetone containing 25 μg/ml butylated hydroxytoluene (BHT ) and 25 μg/ml eicosane (ABE) by resuspension of the de -wetted cell pellet in 1 ml ABE, vortexing for 30 seconds, and centrifugation at 15,000 rpm for 4 minutes. Following the removal of cells for ABE extraction, the entire contents of the culture was centrifuged at 6000 rpm for 15 minutes in a 50-ml Falcon tube to separate the aqueous and organic layer (DBE plus secreted hydrocarbons). 200 μΐ of the organic layer was then analyzed for alkanes and alkenes by GC-FID. Results showed that overexpression of ybhGFSR (an ABC efflux pump) in an is. coli alkanogen (JCC1880/pJB 1932) increases total alkane and alkene production in comparison with the E. coli alkanogen lacking ybhGFSR (JCC2359/pJB1918). Further, ~ 97% of the total alkanes and alkenes produced with JCC1880/pJB 1932 were detected extracellular ly (Figure 7).

EXAMPLE 5: Improved efflux of alkanes and alkenes in strains with a genetically disrupted lipopolysaccharide (LPS) layer

[0218] T o obtain an E. coli strain with a disrupted LPS, rfaC (encoding ADP-heptose:LPS heptosyl transferase I) in JCC1880 (AfadE) was knocked out. A knockout cassette was constructed by amplification of a kanamycin marker from pKD13 (obtained from the Coli Genetic Stock Center, http://cgsc.biology.yale.edu/GDK.php) using Phusion HF DNA polymerase and primers KS 140 (5'

GCGTACTGGAAGAACTCAACGCGCTATTGTTACAAGAGGAAGCCTGACGGgtgtaggctg gagctgcttc 3 ' ) (SEQ ID NO:40) and KS 141

(5 'GTGTAAGGTTTCAATGAATGAAGTTTAAAGGATGTTAGCATGTTTTACCTctgtcaaac atgagaattaa 3 ' ) (SEQ ID NO:41). T he PCR product generated here contains a constitutively expressed kanamycin resistance marker flanked by 2 regions of homology, HI and H2, which flank the rfaC ORF in the E. coli genome. Electrocompetent cells of JCC1880 harboring pKD46 and actively expressing Red Recombinase were transformed with 300 ng of purified PCR product and transformants were isolated isolated on LB agar plates containing 50 μg/ml kanamycin at 37°C. Successful insertion of the kanamycin resistance cassette in place of rfaC was confirmed by colony PCR (strain JCC1880_r aC: :kan). T o remove the kanamycin resistance marker, JCC1880_ rfaC: :kan was transformed with pCP20 and cultured as previously described

(Datsenko et. al, 2000). Successful removal of the kanamycin marker was confirmed by colony PCR, resulting in strain JCC1999.

Table 9

[0219] Plasmids pJB 1932 (P LtetO1 -ybhGFSR) and pJB 1440 (F(TS)-adm-aar) were co- transformed into JCC1880 (AfadE) and JCC1999 by electroporation. T ransformants were isolated on LB agar plates containing carbenicillin (100 μg/ml) and spectinomycin (50 μg/ml). 2 unique, single colonies for each strain were picked to inoculate two 3-ml LB seed cultures in test tubes (containing appropriate antibiotics), which were incubated at 37°C and 260 rpm for ~16 hours.

[0220] Hydrocarbon production and efflux of each strain was tested in 250 ml screw-cap shake flasks containing 25 ml M9f media (M9 minimal media + 30 g/L glucose + 30 mg/L FeCl 3 -6H 2 0 + A5 metals (27 mg/L FeCl 3 -6H 2 0, 2 mg/L ZnCl 2 -4H 2 0, 2 mg/L CaCl 2 -2H 2 0, 2 mg/L Na 2 Mo0 4 -2H 2 0, 1.9 mg/L CuS0 4 -5H 2 0, 0.5 mg/L H 3 B0 3 )) with carbenicillin (100 μg/ml) and spectinomycin (50 μg/ml). Cells were harvested from LB seed cultures and used to inoculate shake flask cultures containing 25 ml M9f to an OD 600 of 0.1. Cultures were incubated at 37C, 260 rpm until an OD 600 of 0.4 was reached, at which point 1.0 mM IPT G and 100 ng/ml ahydrotetracycline (aT c) were added to each culture to induce expression of YbhGFSR and the alkane pathway (adm-aar). After induction with IPT G and aT c, all cultures were returned to 37°C, 260 rpm and incubated for a total of 24 hours.

[0221] All flasks were sampled at 24 hours for hydrocarbon detection by GC-FID and to determine culture density. 2 OD-ml of cells from each flask culture were extracted with acetone containing 25 μg/ml butylated hydroxytoluene (BHT ) and 25 μg/ml eicosane (ABE) by resuspension of the de -wetted cell pellet in 1 ml ABE, vortexing for 30 seconds, and

centrifugation at 15,000 rpm for 4 minutes. For detection of extracellular hydrocarbons, 500 μΐ of cell-free supernatant of each culture was extracted with 1 ml EBE (ethyl acetate + 25 μg/ml butylated hydroxytoluene (BHT ) and 25 μg/ml eicosane (ABE)) by vortexing for 30 seconds, and centrifugation at 15,000 rpm for 2 minutes. Results showed that disruption of LPS in an E. coli alkanogen (JCC1999/pJB1440/pJB 1932) improves hydrocarbon efflux in comparison with the E. coli alkanogen possessing a wild type (undisrupted) LPS layer

(JCC1880/pJB1440/pJB 1932) (Table 10A). At least 50% secretion was observed in JC1999, the alkane -producing strain comprising a genetic disruption of its LPS layer. T he observed improvement in percent of total «-alkanes and «-alkenes secreted is at least 10 fold greater in a strain comprising a genetic disruption of its LPS layer than an otherwise identical strain with an undisrupted LPS layer.

Table 10A

[0222] In addition to ADP-heptose:LPS heptosyl transferase I, other genes and their corresponding enzymes involved in LPS layer synthesis or maintenance can be knocked out, mutated, or otherwise attenuated to achieve a similar effect (i.e., increased secretion of alkanes and alkenes relative to the parent strain). Exemplary genes are listed in Table 10B. In certain embodiments, where the alkane producing strain is other than E. coli, homologs of these genes can be easily identified, then knocked out or mutated. Likewise, in microbes where other membrane layers in addition to the LPS can be disrupted (e.g., the S layer and/or glycocalyx of cyanobacteria), genes involved in the biosynthesis and maintenance of those layers can identified, then knocked out or mutated to diminish their activity, disrupt the layer of interest, and improve the efflux of hydrocarbons (alkanes, alkenes, etc.) produced by the modified microbe. Exemplary genes involved in the synthesis of the S layer and glycocalyx of cyanobacteria are presented in Table IOC.

EXAMPLE 6: Increased alkanes efflux in photosynthetic microbes expressing

recombinant accADBC

[0223] T his Example shows that the recombinant expression of an acetyl-CoA carboxylase operon leads to increased alkanes secretion by alkane-producing photosynthetic microbes.

[0224] Materials and Methods. Construction of the promoter-accADBC expression plasmid. Construction of pJB525: pJB373 plasmid was designed as an empty vector for recombination into Synechococcus sp. PCC 7002 to remove the native T ype II restriction enzyme (SYNPCC7002 A0358). T wo regions of homology, the Upstream Homology Region (UHR) and the Downstream Homology Region (DHR) were designed to flank the construct. T hese 750 bp regions of homology correspond to positions 377235-377984 and 381566-382315 (Genbank Accession NC. sub.—005025) for UHR and DHR, respectively. T he aadA promoter and gene sequence were designed to confer spectinomycin and streptomycin resistance to the integrated construct. Downstream of the UHR region restriction endonuclease recognition sites were inserted for Notl, Ndel and EcoRI, as well as the sites for BamHI, Xhol, Spel and Pad. Following the EcoRI site, the natural terminator from the alcohol dehydrogenase gene from Zymomonas mobilis (adhll) terminator was included. Convenient Xbal restriction sites flank the UHR and the DHR allowing cleavage of the DNA intended for recombination from the rest of the vector. pJB373 was constructed by contract synthesis from DNA2.0 (Menlo Park, CA). T o construct pJB525, the aadA promoter and gene in pJB373 were replaced with the npt promoter and gene using Pad and Ascl, thus conferring kanamycin resistance to the integrated construct.

[0225] Construction of pJB1623-1626: T he E. coli accADBC genes (Genbank AAC73296.1 , AAC75376.1 , AAC76287.1 , AAC76288.1) were codon optimized for E coli and obtained by contract synthesis from DNA 2.0 (Menlo Park, CA) as 2 cassettes: accAD and accBC. T hese cassettes were subcloned using EcoRI and Xhol to make p JB431. Iacl-P(trc) was cloned upstream of accADBC with Notl and Ndel to make pJB504. T o construct the base

transformation plasmid, pJB540, ¥{trc)-accADBC was cloned into the Notl and EcoRI sites of pJB525. A promoterless cassette was engineered by removing the Iacl-P(trc) cassette from pJB540 with Notl and Ndel, blunting the ends with Klenow, and self-ligating to make pJB1623. T he DNA sequences of P(psaA) and the ammonia-repressible nitrate reductase promoters, P(nir07) and P(nir09), were obtained from Genbank, and cloned between Notl and Ndel sites immediately upstream of accADBC in pJB540 to make pJB1624, 1625, and 1626, respectively. Final transformation constructs are listed in Table 11. All restriction and ligation enzymes were obtained from New England Biolabs (Ipswich, MA). pJB 1623- 1626 constructs were transformed into NEB 5-a competent E. coli (High Efficiency) (New England Biolabs: Ipswich, MA).

[0226] Plasmid transformation into JCC2055. T he constructs as described above were integrated onto the genome of JCC2055 (JCC138 pAQ3::P(«z>07)_adm_aar_spec R ), which is maintained at approximately 7 copies per cell. T he following protocol was used for integrating the DNA cassettes. Genomic DNA was isolated from strains containing the ΔΑ0358: accADBC insert using Epicentre Masterpure DNA purification kit (Madison, WI). JCC2055 was grown in an incubated shaker flask at 37°C at 1% C0 2 to an OD730 of 0.6 in A + medium supplemented with 200 μg/mL spectinomycin. 1000 \iL of culture was added to a microcentrifuge tube with 5 μg of genomic DNA. Cells were incubated in the dark for one hour at 37°C. T he entire volume of cells was plated on A + plates with 1.5% agar and grown at 37°C in an illuminated incubator (40-60 μΕ/ml/s PAR, measured with a LI-250A light meter (LI-COR)) for approximately 24 hours. 50 μg/mL of kanamycin was introduced to the plates by placing the stock solution of antibiotic under the agar, and allowing it to diffuse up through the agar. After further incubation, resistant colonies became visible in 6 days. One colony from each plate was restreaked onto A + plates with 1.5% agar supplemented with 6 mM urea and 200 μg/mL spectinomycin and 50 μg/mL of kanamycin. Colonies were designated as JCC3198-3201 and are listed in Table 12.

[0227] Measurement of increased alkane production in cells and in media. Colonies of JCC138, JCC2055, JCC3198, JCC3199, JCC3200, and JCC3201 were inoculated into 5 ml of A+ media containing 3mM urea, 200 μg/ml spectinomycin, and 50 μg/ml kanamycin as necessary. T his culture was incubated at 37°C with 1% C0 2 in light (40-50 μΕ/m2/s PAR, measured with a LI-250A light meter (LI-COR)). Strains were subcultured to a starting OD730 of 0.5 in 5 ml of JB2.1 media containing 3mM urea, 200 μg/ml spectinomycin, and 50 μg/ml kanamycin as necessary and cultured in standard glass test tubes for 3 days at 37°C with 1 % C0 2 in light (40-50 μΕ/πώ/β PAR, measured with a LI-250A light meter (LI-COR)).

[0228] 2 OD-ml of cells from each tube culture were extracted with acetone containing 50.3μg/mL butylated hydroxytoluene (BHT ) and 5 ^g/ml eicosane (ABE) by resuspension of the cell pellet in 1 ml ABE, vortexing for 30 seconds, and centrifugation at 15,000 rpm for 4 minutes. T o measure alkanes present in the media ImL of cell culture was centrifuged at 15,000 rpm for 3 minutes. 500μί was moved to a fresh tube and phase partitioned with 1 mL of ethyl acetate containing 25^g/mL butylated hydroxytoluene (BHT ) and 25.1 ^g/ml eicosane (EBE). 600ul of the organic layer was then analyzed for alkanes by GC-FID.

[0229] T he data is shown in Table 13. T he results show that expression of accADBC in alkane -producing microbes results in increased «-alkane secretion levels. T he amount of n- alkane secretion observed is greater than 15% in some cases, and generally between 1 % and 20%. In strains where the recombinant acetyl-CoA carboxylase genes are functionally linked to a promoter, the percent secretion observed is between 2-fold and 90-fold greater than that observed when culturing otherwise identical strains lacking the recombinant genes encoding acetyl-CoA carboxylase.

EXAMPLE 7. Increased extracellular alkanes in JCC2055 strains expressing YbhGFSR and A0585ProNterm TolC

[0230] Cultures from single colonies of JCC2055 bearing a kanR marker at the A2208 locus, JCC2848, JCC2849, JCC2850 and JCC2851 (Table 14) were used to inoculate 30 ml of JB 2.1 medium (Patent Application WO/201 1/017565) containing 3 mM urea to a starting OD730 = 0.2. Five ml of dodecane containing 25 mg/L butylated hydroxytoluene and 25 mg/L eicosane (DBE solution) was overlayed on top of the cultures. T he cultures were incubated in 125 ml flasks in a Multitron II (Infors) shaking incubator (37 °C, 150 rpm, 2 % C0 2 /air, continuous light) for 4-7 days. At the end of the experiments, water was added to compensate for evaporation loss (based on measured mass loss of flasks from beginning to end of experiment assuming no dodecane evaporated) and 50 μΐ of culture was removed for OD730S determination. 500 μΐ of the cultures was removed and cell pellets obtained through centrifugation for quantification of cell-associated alkanes. T he supernatants were discarded and the cells resuspended in 1 ml of milli-Q water and transferred to a new microcentrifuge tube to remove contaminating DBE solution. T he cells were pelleted twice more and the supernatants discarded after each spin to remove residual water. T he cell pellets were vortexed for 20 seconds in 500 μΐ of acetone (Acros Organics 326570010) containing 25 mg/L butylated hydroxytoluene and 25 mg/L eicosane (ABE solution). T he cellular debris was pelleted by centrifugation and the acetone supernatants were analyzed for the presence of 1-alkenes. T he remaining culture containing the dodecane overlay was pelleted by centrifugation and samples of the DBE were removed for quantification of medium-associated alkanes. Both ABE and DBE samples were submitted for quantification of pentadecane by GC/FID. T he cell pellet and medium associated pentadecane concentration for each strain and flask were then normalized to the internal standard (eicosane) and reported as mg/L of culture. T he strains bearing the transporter complex show an increased percentage of secreted pentadecane in the medium when compared to the control strain which produced a similar titre of pentadecane (Figure 8). T he percentage of alkanes secreted by engineered photosynthetic microbes comprising a recombinant YbhGFSR efflux pump and recombinant OMP is at least two fold higher than that secreted by an otherwise identical strain lacking these recombinant proteins. In certain cases, the percentage of secreted alkanes is increased at least three, four or five fold in the engineered strains comprising the recombinant efflux pump/OMP relative to otherwise identical strains lacking the pump. Alkane secretion levels greater than 5%, greater than 10%, greater than 15% and /or between 5 and 20% and/or between 10 and 20% were observed in this experiment in strains comprising recombinant efflux pump/OMP proteins.

EXAMPLE 8: YbhGFSR OMP Constructs

[0231] JCC2055 is JCC138 (Synechococcus sp. PCC 7002) bearing on the endogenous high- copy plasmid pAQ3 a nitrate-inducible/urea-repressible promoter, P(nir07), a synthetic fragment derived from the nirA promoter of Synechococcus elongatus PCC 7942, directing the transcription of a codon- and restriction-site-optimized synthetic adm-aar operon encoding the alkanal deformylative monooxygenase (Adm; cce_0778) and acyl-acyl-carrier-protein (acyl- ACP) reductase (Aar; cce_1430) proteins from Cyanothece AT CC 51 142. T he adm-aar operon in JCC2055 is linked to a downstream spectinomycin-resistance marker cassette {aadA), and the strain is fully segregated as determined by PCR. JCC2055 was generated by transforming JCC138 with plasmid pJB1331 , a synthetic double-crossover recombination vector bearing upstream and downstream homology regions flanking the heterologous P(nir07)-adm-aarlaadA cassette, targeting said cassette to the intergenic region between the convergently transcribed genes SYNPCC7002 C0006 and SYNPCC7002 C0007 on pAQ3. T he DNA sequence of pJB1331 is shown in SEQ ID NO:52.

[0232] T he sequential enzymatic activities of Aar and Adm convert endogenous hexadecyl- ACP into «-pentadecane via a hexadecanal intermediate in JCC2055. T his strain typically generates, after depletion of urea in a mixed nitrate/urea culture medium during photoautotrophic growth, approximately 2% of dry cell weight as «-alkanes, >95% of which comprises n- pentadecane. Wild-type JCC138 makes no detectable «-alkane. T ypically, >95% of the «-alkane synthesized by JC2055 are found to be cell-associated, almost certainly being located within the cytosol, i.e., <5% of the «-alkane is found to be growth-medium-associated in this strain.

[0233] T o make JCC2055 competent to efflux intracellular «-alkane and/or «-alkenes into the growth medium, this strain has been transformed with a panel of DNA constructs (assembled from component fragments in E. coli using standard cloning techniques involving restriction digestion and ligation operation) designed to chromosomally integrate genes encoding an energy-driven tripartite «-alkane efflux pump complex. T ripartite efflux pumps are found in Gram-negative prokaryotes, and are thus called because they comprise proteinaceous components in the inner membrane, in the periplasmic space, and in the outer membrane - all of which interact together to form a functional extrusion pump. T ripartite pumps are energetically driven by either the proton-motive force across the inner membrane or by the AT P hydrolytic activity associated with the cytosolic moiety of the inner membrane component, and catalyze the active efflux of substrates from either the periplasmic space and/or cytosol beyond the outer membrane. T he tripartite efflux pump selected for expression in JCC2055, the T olC-YbhGFSR complex, and homologous variants thereof, is of the AT P-hydrolytic variety, its subunits being encoded by the ybhG-ybhF-ybhS-ybhR (ybhGFSR) operon and tolC gene of Escherichia coli K- 12, or homologous operons and genes, respectively, thereof. ybhG encodes the periplasmic membrane fusion protein subunit(s), ybhF the cytosolically located AT P-hydrolyzing subunit(s) of the inner membrane component encoded by the paralogous integral membrane proteins encoded by ybhS and ybhR, and tolC the outer membrane protein (OMP - when genie, referred to as omp) subunit(s) known to partner with many different periplasmic/inner membrane efflux pumps in E. coli.

[0234] One class of efflux pump constructs integrated into JCC2055 consist of an omp transcriptional unit, V\-omp, adjacent to, and divergently transcribed from, aybhGFSR operonic transcriptional unit, V2-ybhGFSR, wherein PI and P2 indicate specific promoters independently driving transcription of omp and ybhGFSR, respectively, the P1 -P2 unit being referred to as the divergent promoter. Note that, in this context, P 1 and P2 promoters are defined so as to include not only the promoter region itself, but also any and all additional downstream sequence up to the first base pair of the start codon of the associated ORF. Also note that, in this context, omp typically refers to one of a multitude of possible variants of the OMP pump component, and ybhGFSR typically refers to one of a multitude of possible variant YbhG/YbhF/YbhS/YbhR complements. Associated with these divergently transcribed omp-Vl -Pl-ybhGFSR constructs is an antibiotic-resistance cassette, different from aadA, to permit selection of trans formants.

Flanking the omp-¥\ -P2-ybhGFSRIm&rkQr cassette are upstream and downstream homology regions used for recombinationally integrating linked constructs into the JCC2055 chromosome. In some omp-Vl-Vl-ybhGFSR efflux pump constructs, the encoded OMP is E. coli T olC, or a homolog thereof. In other omp-V\ -?2-ybhGFSR efflux pump constructs, the encoded OMP is either the T olC homolog of JCC138, SYNPCC7002 A0585 or the T olC homolog of

Synechococcus elongatus PCC 7942, Synpcc7942_1761. In yet other omp-Vl-Pl-ybhGFSR efflux pump constructs, the encoded YbhG is one of several different homologous variants with specifically modified coiled-coil regions designed to promote functional interaction between the YbhGFSR component and either SYNPCC7002 A0585 or E. coli T olC, or a homolog thereof, encoded by the partner omp gene. T he second class of efflux pump constructs integrated into JCC2055 consists of a V2-ybhGFSR transcriptional unit integrated at one locus (linked to a unique antibiotic-resistance marker) of the JCC2055 chromosome and a PI -omp transcriptional unit at another, separate, locus of the JCC2055 chromosome (also linked to a unique antibiotic- resistance marker); in some cases, V\ -omp corresponds to the wild-type SYNPCC7002_A0585 locus, i.e., native promoter plus native coding sequence.

[0235] One set of 14 divergent omp-V\-V2-ybhGFSR efflux pump constructs was integrated into JCC2055 immediately downstream of the amtl open reading frame (SYNPCC7002 A2208)

- referred to as the amtl -downstream locus. T his was achieved by using a double-crossover recombination vector bearing upstream and downstream homology regions flanking the heterologous omp-V\-V2-ybhGFSR cassette, targeting said cassette to this region between base pairs 2,299,863 and 2,299,864 of the JCC138 chromosome ( CBI accession # NC_010475). Homology regions and omp-V\-V2-ybhGFSR cassette were harbored on an E. coli vector backbone derived from pJ208 (DNA2.0; Menlo Park, CA). T he sequence of the homology regions and vector backbone, minus the omp-V \-P2-ybhGFSR cassette, whose insertion site is indicated by a dash, is shown in SEQ ID NO: 55.

[0236] T he omp gene for all 14 amtl -downstream-targeted divergent omp-V\ -?2-ybhGFSR pump constructs was either the native tolC gene from is. coli K-12 substr. MG1655 (E. coli

MG1655; NCBI accession # NC_000913), or one of two derivatives of this gene modified in the

5' region. T he three E. coli tolC variants differ in their encoded cleavable N-terminal signal sequence: either (1) the natural E. coli signal sequence of T olC, (2) the predicted signal sequence of the JCC138 T olC homolog SYNPCC7002_A0585 (A0585), or (3) the contiguous sequence encompassing both the predicted signal sequence and proline-rich N-terminal region of

SYNPCC7002_A0585 (A0585_ProNterm), was employed. Only one ybhGFSR operon was used for all 14 amt1 -downstream-targeted divergent tolC-?\-V2-ybhGFSR pump constructs: the native ybhGFSR operon from E. coli MG1655 (the native ybhG start codon being changed from GT G to

AT G). Five different variants of the P1 -P2 divergent promoter were employed for the 14 constructs, component PI and P2 promoters being selected from a panel of constitutive

(P(aphII), P(psaA), P(tsr2142), and P(pmpR)) or nitrate-inducible/urea-repressible promoters

(P(nir09) and P(nir07)) active in JCC138. For all amtl -downstream-targeted tolC-Pl-P2- ybhGFSR pump constructs, the marker used to select for JCC2055 transformants was a kanamycin-resistance (kan) cassette located between PI and P2, bearing its own promoter, transcribed in the same direction as P2, and rho-independent transcriptional terminator. T he structures of these 14 amtl -downstream- targeted tolC-V\ -P2-ybhGFSR pump constructs are summarized in the Table 15; associated DNA and protein sequences are indicated in SEQ ID

NOs:56-75. T he DNA sequences of each of the 14 fully assembled, chromosomally integrated constructs can be generated by concatenating, in the following order, (1) the appropriate tolC variant DNA sequence in reverse complementary orientation with respect to the indicated DNA sequence, (2) the appropriate P1-P2 divergent promoter (containing the internal kan marker) in the orientation corresponding to the indicated DNA sequence, and (3) the native E. coli ybhGFSR DNA sequence in the orientation corresponding to the indicated DNA sequence, and then situating the resulting tripartite sequence concatamer between the flanking invariant homology region/bidirectional terminator DNA sequences of the mii-downstream homologous recombination vector (i.e., at the site of the dash in vector backbone of SEQ ID NO:55).

[0237] In addition to the 14 divergent omp-Vl-Vl-ybhGFSR pump constructs derived from native E. coli genomic DNA discussed above (Table 15), another, larger set of divergent omp- V\-?2-ybhGFSR pump constructs derived from mostly synthetic DNA fragments (DNA2.0; Menlo Park, CA) was assembled and transformed into JCC2055. T his latter set of synthetic omp- V\-V2-ybhGFSR constructs was integrated into JCC2055 such that the SYNPCC7002 A0358 open reading frame and associated upstream sequence (referred to as the ΔΑ0358 locus) were deletionally replaced with said constructs. T his was achieved by using a double-crossover recombination vector bearing upstream and downstream homology regions flanking the heterologous omp-Vl-Vl-ybhGFSR, targeting said cassette to this region, replacing base pairs 377,985 to 381 ,565 of the JCC138 chromosome ( CBI accession # NC_010475). Homology regions and omp-V\-?2-ybhGFSR cassette were harbored on an E. coli vector backbone derived from pJ201 (DNA2.0; Menlo Park, CA). T he sequence of the homology regions and vector backbone, minus the omp-Vl-Vl-ybhGFSR cassette, whose insertion site is indicated by a dash, is provided in SEQ ID NO:76. Note that, in contrast to the amtl -do wnstream-targted omp-?\ - V2-ybhGFSR pump constructs (Table 15) that featured a kan marker situated between promoters PI and P2, the AA0358-targted omp-V\ -P2-ybhGFSR pump constructs possess a gentamycin- resistance (aacCl) transformant selection marker situated downstream of, and transcribed in the same direction as, the ybhGFSR operon.

[0238] Four omp gene variants used for the AA0358-targeted divergent omp-V\-V2- ybhGFSR pump constructs were either a restriction- and codon-optimized version of the E. coli MG1655 tolC, tolC_opt, or one of three derivatives of this gene modified in the 5' region. T he four codon-optimized tolC variants differ in their encoded cleavable (codon-optimized) N- terminal signal sequence: either (1) the predicted signal sequence of SYNPCC7002_A0585 (A0585), (2) the predicted signal sequence of the JCC138 OMP85/BamA homolog

SYNPCC7002 A0318 (A0318), (3) the contiguous sequence encompassing both the predicted signal sequence and proline-rich N-terminal region of SYNPCC7002_A0585

(A0585_ProNterm), was employed, or (4) the contiguous sequence encompassing both the signal sequence and proline-rich N-terminal region of SYNPCC7002 A0318 (A0318_ProNterm), was used. T wo additional omp gene variants used for the AA0358-targeted divergent omp-P\ -P2- ybhGFSR pump constructs, both restriction- and codon-optimized: (1) the SYNPCC7002 A0585 OPvF with its two putative 24 amino acid encoded membrane-fusion-protein-interacting loop regions replaced with the corresponding regions of E. coli T olC, denoted as hybrid_A0585, and (2) the Synpcc7942_1761 ORF, corresponding to the T olC ho mo log in Synechococcus elongatus PCC 7942, with its two putative 24 amino acid encoded membrane-fusion-protein-interacting loop regions replaced with the corresponding regions of E. coli T olC, denoted as hybrid_1761. T he loop regions in question are those located between a-helices H3 and H4 and between a- helices H7 and H8 of E. coli T olC, using the nomenclature and X-ray crystallographic information of Koronakis V et al. (2000). Crystal structure of the bacterial membrane protein T olC central to multidrug efflux and protein export. Nature 405:914-919. Accompanying the six aforementioned omp gene variants, four ybhG gene variants were used for the AA0358-targeted divergent omp-Vl -Pl-ybhGFSR pump constructs, all derived from a restriction- and codon- optimized version of E. coli ybhG, ybhG_opt, but differing in their encoded (codon-optimized) N-terminal region: either (1) the predicted signal sequence of E. coli YbhG, (2) the signal sequence of E. coli T orA, a protein exported into the periplasm via the twin-arginine transport (T AT ) system (T orA), (3) the predicted signal sequence of the JCC138 N-acetylmuramyl-L- alanine amidase SYNPCC7002_A0578 (A0578), or (4) the predicted signal sequence of the JCC138 OMP85/BamA homolog SYNPCC7002 A0318 (A0318), was employed.

Accompanying the six omp variants and four ybhG_opt variants, three variants of the ybhS-ybhR suboperonic pair were used, all derived from restriction- and codon-optimized gene sequences encoding E. coliybhS and ybhR, ybhS_opt and ybhR_opt, respectively, but differing in their encoded, augmented (codon-optimized) N-terminal regions: either (1) no additional N-terminal sequences were added to the encoded YbhS and YbhR proteins (i.e. , they both had the native amino acids sequences), or, either (2) a 97 amino acid pseudo-leader sequence (PLS) derived from the predicted transmembraneous region encoded within the sll0041 open reading frame of Synechocystis sp. PCC 6803 (sll0041_Nin_PLS) replacing the N-terminal methionine of both YbhS and YbhR, or (3) a 1 16 amino acid PLS derived from the predicted transmembraneous region encoded within the sir 1044 open reading frame of Synechocystis sp. PCC 6803

(slrl044_Nin_PLS) replacing the N-terminal methionine of both YbhS and YbhR, was used. PLS regions were added in an effort to potentially bias localization of YbhS and YbhR to the plasma membrane, rather than to the thylakoid membrane. T he YbhF component of the ΔΑ0358- targeted divergent omp-?\ -?2-ybhGFSR pump constructs was an invariant restriction- and codon-optimized version of E. coli ybhF, ybhF_opt. 22 different variants of the P1 -P2 divergent promoter were employed for the each AA0358-targeted omp-V\ -?2-ybhGFSR construct, some component P 1 and P2 promoters being selected from a panel of promoters known to be constitutively active in JCC138, and others being selected as naturally occurring P1-P2 divergent promoters (of unknown activity with respect to JCC138) in non-JCC138 cyanobacterial genomes. Each of these 22 P1-P2 divergent promoters was designed with symmetric terminal Ndel sites such that, during construct assembly in E. coli via Ndel digestion and ligation, it could insert between the omp gene andybhGFSR operon in either orientation (i.e., complementary or reverse complementary) thereby generating 44 possible divergent promoter sequences driving a given omp-ybhGFSR base construct. T he structures of the omp-ybhGFSR constructs integrated at the ΔΑ0358 locus are summarized in Table 16; associated DNA and protein sequences are provided in SEQ ID NOs: 77-88. T he DNA sequences of each of the fully assembled, chromosomally integrated constructs can be generated by concatenating, in the following order, (1) the appropriate omp variant DNA sequence in reverse complementary orientation with respect to the indicated DNA sequence, (2) the appropriate P 1 -P2 divergent promoter in either complementary or reverse complementary orientation with respect to the indicated DNA sequence, (3) the appropriate ybhG variant in the orientation corresponding to the indicated DNA sequence, and (4) the appropriate ybhFSR variant DNA sequence in the orientation

corresponding to the indicated DNA sequence, and then situating the resulting tetrapartite sequence concatamer between the flanking invariant homology region/bidirectional terminator DNA sequences of the ΔΑ0358 homologous recombination vector (SEQ ID NO:76) (i.e., at the site of the dash in the vector backbone in SEQ ID NO:76). Note that AA0358-targeted omp-V\- V2-ybhGFSR constructs were combinatorially assembled to generate, at least theoretically, all 3,168 possible combinations of 6 omp variants, ybhG_opt variants, 3 ybhS_opt-ybhR_opt operon variants, and 44 divergent P1-P2 promoters.

[0239] T he 22 divergent promoter sequences used for the AA0358-targeted omp-V\-V2- ybhGFSR constructs are shown in Table 17.

[0240] In addition to the amtl -downstream- targeted (Table 15) and AA0358-targeted (Table 16) divergent omp-Vl -Pl-ybhGFSR pump constructs discussed above, another set of non- divergent JCC2055 transformants was generated bearing an invariant ¥(Xsr2 \2)-ybhGFSR transcriptional unit (expressing the native E. coli ybhGFSR operon) integrated at the amtl- downstream locus, and, in addition, one of each of 31 different V\ -omp constructs integrated, separately, at the ΔΑ0358 locus. T he DNA sequence corresponding to the integrated P(tsr2412)- ybhGFSR construct corresponds to the tolC-P(psaA)-kan-P(tw2 \A2)-ybhG-ybhF-ybhS-ybhR assembly described in Table 15, except that the DNA sequence between the amtl -downstream upstream homology region and the 5' end of the kan cassette, i.e., that encompassing the P(psaA)-to\C unit as well as 100 bp downstream of it, was entirely deleted. T he JCC2055- derived base strain bearing this kan-\mke,d P(tsr2 \2)-ybhGFSR transcriptional unit was JCC2522. T he DNA sequence corresponding to the base plasmid used to transform JCC2522 with the 31 V\-omp constructs corresponds to the sequence detailed above covering the ΔΑ0358- targeted homology regions and associated vector backbone, except that the approximately 70 bp between the ΔΑ0358 upstream homology region and the T nlO bidirectional terminator (itself upstream of the gentamycin-resistance cassette), has been replaced by the rho-independent transcriptional terminator BBa_B0015 (Registry of Standard Biological Parts;

http://partsregistry.org/), downstream of which is a V\-omp DNA sequence, transcribed in the same direction as the gentamycin-resistance marker (and also in the same direction as the "forward direction" of the BBa_B0015 terminator). T he structures of the 31 V\-omp constructs transformed into JCC2522 are shown in Table 17; they encompass hybrid _A0585, hybrid _1761, 12 derivatives of tolC_opt variously modified in their 5 ' (i.e., encoded N-terminal) and 3 ' regions i.e., encoded C-terminal), and three PI promoter variants. T he N-terminal tolC_opt variants employed have been previously discussed. T he three different C-terminal tolC_opt variants differ in their encoded (non-cleaved) carboxyl terminal sequences: either (1) the native E. coli T olC terminal sequence was used, (2) it was replaced by the corresponding C-terminal residues of SYNPCC7002_A0585 (A0585C), or (3) it was replaced by the corresponding C- terminal residues of SYNPCC7002 A0318 (A0318C). T he rationale for the using the C-terminal modifications was that C-terminal residues are known to be important for proper insertion of certain OMPs into the outer membrane (Robert V et al. (2006). Assembly Factor Omp85 Recognizes Its Outer Membrane Protein Substrates by a Species-Specific C-T erminal Motif. PLoS Biol 4:e377). T he DNA sequences of each of the 31 fully assembled, chromosomally integrated V\-omp constructs can be generated by concatenating, in the following order, (1) the appropriate P 1 promoter in the orientation corresponding to the indicated DNA sequence and (2) the appropriate omp DNA sequence in the orientation corresponding to the indicated DNA sequence, and then situating the resulting bipartite sequence concatamer between the flanking invariant homology region/bidirectional terminator DNA sequences of the AA0358-downstream homologous recombination vector - minus the aforementioned 70 bp between the ΔΑ0358 upstream homology region and the T nl O bidirectional terminator - as was described for the constmcts described in Table 16.

[0241] In addition to the amtl -downstream- targeted (Table 15) and AA0358-targeted (Table 16) divergent omp-Vl -Pl-ybhGFSR pump constructs and to the split amtl -do wnstream- /AA0358-targeted omplybhGFSR pump constructs (Table 18) discussed above, yet another set of JCC2055 transformants was generated bearing a panel of internally modified ybhG variants, generally expressed divergently with respect to an upstream omp variant, at the ΔΑ0358 locus. T he rationale underlying the design of said ybhG variants was to engineer YbhGFSR transporter complexes to become able to functionally interact with the endogenous T olC-homologous OMP of JCC138, SYNPCC7002_A0585. Accordingly, amino acid sequence alignments were performed of E. coli MacA ( CBI accession # NP_415399.4), E. coli AcrA ( CBI accession # NP_414996.1), E. coli YbhG, and SYNPCC7002_A1723 (NCBI accession # YP_001734968.1), a distant ho mo log of YbhG found in JCC138 which is believed to dock with

SYNPCC7002 A0585. T he a-helix hairpin and binding tip regions of MacA and AcrA (Kim H- M et al. (2010). Functional relationships between the AcrA hairpin tip region and the T olC aperture region for the formation of the bacterial tripartite pump AcrAB-T olC. J. Bacteriol. 192:4498-4503) were used to identify the corresponding regions in YbhG and

SYNPCC7002 A1723. Chimeric YbhG proteins were designed to replace the binding tip, and the coiled-coil heptads flanking said binding tip, with the corresponding sequences of

SYNPCC7002 A1723 (YbhG opt hpl), or to replace the entire hairpin and binding tip of YbhG with those of SYNPCC7002 A1723 (YbhG_opt_hp2), or to replace the binding tip sequence of YbhG with that of SYNPCC7002 A1723 (YbhG_opt_hp4). As part of this strategy, a YbhG chimera was designed to contain the SYNPCC7002 A1723 hairpin and retain the binding tip and flanking coiled-coil heptads of YbhG (YbhG_opt_hp3); this YbhG variant may allow the YbhGFSR complex to span the periplasm and peptidoglycan of JCC138 to successfully dock with heterologously expressed E. coli T olC, or homologs thereof. T he structures of the omp- ybhGFSR constructs transformed into JCC2055 are shown in Table 19. T he DNA sequences of each of the fully assembled, chromosomally integrated efflux pump constructs can be generated by concatenating, in the following order, (1) the appropriate omp variant DNA sequence in reverse complementary orientation with respect to the indicated DNA sequence, (2) the appropriate P 1 -P2 divergent promoter in either complementary or reverse complementary orientation with respect to the indicated DNA sequence, (3) the appropriate ybhG hairpin variant in the orientation corresponding to the indicated DNA sequence, and (4) the appropriate ybhFSR variant DNA sequence in the orientation corresponding to the indicated DNA sequence, and then situating the resulting tetrapartite sequence concatamer between the flanking invariant homology region/bidirectional terminator DNA sequences of the ΔΑ0358 homologous recombination vector (SEQ ID NO: 76). Note that ΔΑ0358 -targeted omp-ybhGFSR constructs were designed to be able to be combinatorially assembled to generate, at least theoretically, all 14,784 possible combinations of 2 omp variants, 12 ybhG_opt variants (_hpl , _hp2, _hp4), 4 ybhS_opt-ybhR_opt operon variants, and 44 divergent P1 -P2 promoters plus 15 omp variants, ybhG_opt variants (_hp3), 4 ybhS_opt-ybhR_opt operon variants, and 44 divergent P 1-P2 promoters.

EXAMPLE 9: Functional combinations of ABC efflux pump proteins for expression in cyanobacteria

[0242] Table 20 indicates all possible functional combinations of the OMP, YbhG, YbhF, YbhS, and YbhR proteins to be expressed in JCC2055. T he appropriate combinations of OMP, YbhG, YbhF, YbhS, and YbhR are designed to lead to the formation of functional ABC efflux pumps capable of catalyzing efflux of intracellular «-pentandecane.

[0243] T here are two main efflux pump protein complement sets with respect to the OMP involved. In the first set (Set 1), SYNPCC7002_A0585 (NCBI Accession # YP 001733848.1 ; encoded naturally by JCC138) is the single OMP variant, to be paired with one of 12 possible YbhG variants: YbhGJipl , YbhG_hp2, YbhG_hp4, T orA YbhGJipl , T orA_YbhG_hp2, T orA_YbhG_hp4, A0318_YbhG_hpl , A0318_YbhG_hp2, A0318_YbhG_hp4,

A0578_YbhG_hpl , A0578_YbhG_hp2, or A0578_YbhG_hp4.

[0244] In the second said set (Set 2), one of 13 possible OMP variants (hybrid_A0585, hybridj 761 , T olC, A0585_T olC, A0585_T olC_A0318C, A0585_T olC_A0585C,

A0585_ProNterm_T olC, A0585_ProNT erm_T olC_A0318C, A0585_ProNT erm_T olC_A0585C, A0318_T olC, A0318_ProNT erm_T olC, A0318_ProNT erm_T olC_A0318C, or

A0318_ProNT erm_T olC_A0585C) is to be paired with one of 8 possible YbhG variants: YbhG, T orA YbhG, A0578_YbhG, A0318_YbhG, YbhG_hp3, T orA_YbhG_hp3, A0318_YbhG_hp3, or A0578_YbhG_hp3.

[0245] Any given OMP/YbhG variant pair within each of the said sets can be functionally paired with YbhF - only one variant thereof, corresponding to the wild-type E. coli sequence - and one of three possible YbhS/YbhR paralog pairs: wild-type YbhS plus wild-type YbhR, sll0041_Nin_PLS_YbhS plus sll0041_Nin_PLS_YbhR, or slrl044_Nin_PLS_YbhS plus sir 1044_Nin_PLS_YbhR.

[0246] T he OMP and YbhG protein sequences associated with Set 1 are provided in SEQ ID NOs: 174-186. Note that the T orA, A0318, and A0578 prefixes indicate differences only in the cleavable N-terminal signal sequence relative to the native YbhG signal sequence; other than this signal sequence difference, all mature YbhG variants of the same hairpin subtype, e.g.,

YbhGJipl , T orA YbhGJipl , A0318_YbhG_hpl , and A0578_YbhG_hpl , are of identical protein sequence. Also note that all mature YbhG variants of the hairpin subtypes hpl and _hp4 are >95% identical at the amino acid level. But note that all mature YbhG variants of the hairpin subtype _hp2 are <60% identical at the amino acid level to those of either subtypes hpl or _hp4.

[0247] T he OMP and YbhG protein sequences associated with Set 2 are provided in SEQ ID NOs: 187-207. Note that A0585_T olC, A0585_T olC_A0318C, A0585_T olC_A0585C,

A0585_ProNterm_T olC, A0585_ProNT erm_T olC_A0318C, A0585_ProNT erm_T olC_A0585C, A0318_T olC, A0318_ProNT erm_T olC, A0318_ProNT erm_T olC_A0318C, and

A0318_ProNT erm_T olC_A0585C all contain >95% of the entire mature (i.e., post signal sequence cleavage) T olC. Note, however, that neither Hybrid_A0585 nor Hybrid_1761 bears more than 35% identity at the amino acid level to T olC. Also, note that Hybrid_A0585 and Hybrid_1761 are only 42% identical at the amino acid level. With respect to the YbhG variants of Set 2, as with Set 1 , the T orA, A0318, and A0578 prefixes indicate differences only in the cleavable N-terminal signal sequence relative to the native YbhG signal sequence; other than this signal sequence difference YbhG, T orA YbhG, A0578_YbhG, and A0318_YbhG are of identical mature protein sequence. But note that mature YbhG and mature YbhG variants of the hairpin subtype _hp3 bear significant alignment-based discontiguity to one another at the amino acid level.

[0248] T he YbhF and YbhS/YbhR protein sequences associated with both Set 1 and Set 2 are are provided in SEQ ID NOs:208-214. Note both sll0041_Nin_PLS_YbhS and

slrl044_Nin_PLS_YbhS contain the entire YbhS sequence, excluding its N-terminal methionine, and that both sll0041_Nin_PLS_YbhR and slrl 044_Nin_PLS_YbhR contain the entire YbhR sequence, excluding its N-terminal methionine. Informal Sequence Listing

SEQ ID NO: 19

ybhG

GTGATGAAAAAACCTGTCGTGATCGGATTGGCGGTAGTGGTACTTGCCGCCGTGGTTGCC GGAGGCTACTGGTGGTATCAAAGCCGCCAGGATAACGGCCTGACGCTGTATGGCAACGTG GATATTCGTACGGTAAATCTTAGTTTCCGTGTTGGGGGGCGCGTTGAATCGCTGGCGGTG GACGAAGGTGATGCTATCAAAGCGGGCCAGGTGCTGGGCGAACTGGATCACAAGCCGTAT GAGATTGCCCTGATGCAGGCGAAAGCGGGTGTTTCGGTGGCACAGGCGCAGTATGACCTG ATGCTTGCCGGGTATCGCAATGAAGAAATCGCTCAGGCCGCCGCAGCGGTGAAACAGGCG CAAGCCGCCTATGACTATGCGCAGAACTTCTATAACCGCCAGCAAGGGTTGTGGAAAAGC CGCACTATTTCGGCAAATGACCTGGAAAATGCCCGCTCCTCGCGCGACCAGGCGCAGGCA ACGCTGAAATCAGCACAGGATAAATTGCGTCAGTACCGTTCCGGTAACCGTGAACAGGAC ATCGCTCAGGCGAAAGCCAGCCTCGAACAGGCGCAGGCGCAACTGGCGCAGGCGGAGTTG AATTTACAGGACTCAACGTTGATAGCCCCGTCTGATGGCACGCTGTTAACGCGCGCGGTG GAGCCAGGCACGGTCCTCAATGAAGGTGGCACGGTGTTTACCGTTTCACTAACGCGTCCG GTGTGGGTGCGCGCTTATGTTGATGAACGTAATCTTGACCAGGCCCAGCCGGGGCGCAAA GTGCTGCTTTATACCGATGGTCGCCCGGACAAGCCGTATCACGGGCAGATTGGTTTCGTT TCGCCGACTGCTGAATTTACCCCGAAAACCGTCGAAACGCCGGATCTGCGTACCGACCTC GTCTATCGCCTGCGTATTGTGGTGACCGACGCCGATGATGCGTTACGCCAGGGAATGCCA GTGACGGTACAATTCGGTGACGAGGCAGGACATGAATGA

SEQ ID NO:20

ybhF

ATGAATGATGCCGTTATCACGCTGAACGGCCTGGAAAAACGCTTTCCGGGCATGGAC AAG CCCGCCGTCGCGCCGCTCGATTGTACCATTCACGCCGGTTATGTGACGGGGTTGGTGGGG CCGGACGGTGCAGGTAAAACCACGCTGATGCGGATGTTGGCGGGATTACTGAAACCCGAC AGCGGCAGTGCCACGGTGATTGGCTTTGATCCGATCAAAAACGACGGCGCGCTGCACGCC GTGCTCGGTTATATGCCGCAGAAATTTGGTCTGTATGAAGATCTCACGGTGATGGAGAAC CTCAATCTGTACGCGGATTTGCGCAGCGTCACCGGCGAGGCACGTAAGCAAACTTTTGCT CGCCTGCTGGAGTTTACGTCTCTTGGGCCGTTTACCGGACGCCTGGCGGGCAAGCTCTCC GGTGGGATGAAACAAAAACTCGGTCTGGCCTGTACCCTGGTGGGCGAACCGAAAGTGTTG CTGCTCGATGAACCCGGCGTCGGCGTTGACCCTATCTCACGGCGCGAACTGTGGCAGATG GTGCATGAGCTGGCGGGCGAAGGGATGTTAATCCTCTGGAGTACCTCGTATCTCGACGAA GCCGAGCAGTGCCGTGACGTGTTACTGATGAACGAAGGCGAGTTGCTGTATCAGGGAGAA CCAAAAGCCCTGACACAAACCATGGCCGGACGCAGCTTTCTGATGACCAGTCCACACGAG GGCAACCGCAAACTGTTGCAACGCGCCTTGAAACTGCCGCAGGTCAGCGACGGCATGATT CAGGGGAAATCGGTACGTCTGATCCTCAAAAAAGAGGCCACACCAGACGATATTCGCCAT GCCGACGGGATGCCGGAAATCAACATCAACGAAAC TACGCCGCGTTTTGAAGATGCGTTT ATTGATTTGCTGGGCGGTGCCGGAACCTCGGAATCGCCGCTGGGCGCAATATTACATACG GTAGAAGGCACACCCGGCGAGACGGTGATCGAAGCGAAAGAACTGACCAAGAAATTTGGG GATTTTGCCGCCACCGATCACGTCAACTTTGCCGTTAAACGTGGGGAGATTTTTGGTTTG CTGGGGCCAAACGGCGCGGGTAAATCGACCACCTTTAAGATGATGTGCGGTTTGCTGGTG CCGACTTCCGGCCAGGCGCTGGTGCTGGGGATGGATCTGAAAGAGAGTTCCGGTAAAGCG CGCCAGCATCTCGGCTATATGGCGCAAAAATTTTCGCTCTACGGTAACCTGACGGTCGAA CAGAATTTACGCTTTTTCTCTGGTGTGTATGGCTTACGCGGTCGGGCGCAGAACGAAAAA ATCTCCCGCATGAGCGAGGCGTTCGGCCTGAAAAGTATCGCCTCCCACGCCACCGATGAA CTGCCATTAGGTTTTAAACAGCGGCTGGCGCTGGCCTGTTCGCTGATGCATGAACCGGAC ATTCTGTTTCTCGACGAACCGACTTCCGGCGTTGACCCCCTCACCCGCCGTGAATTTTGG CTGCACATCAACAGCATGGTAGAGAAAGGCGTCACGGTGATGGTCACCACCCACTTTATG GATGAAGCGGAATATTGCGACCGCATCGGCCTGGTGTACCGCGGGAAATTAATCGCCAGC GGCACGCCGGACGATTTGAAAGCACAGTCGGCTAACGATGAGCAACCCGATCCCACCATG GAGCAAGCCTTTATTCAGTTGATCCACGACTGGGATAAGGAGCATAGCAATGAGTAA

SEQ ID NO:21 ybhS

ATGAGTAACCCGATCCTGTCCTGGCGTCGCGTACGGGCGCTGTGCGTTAAAGAGACG CGG CAGATCGTTCGCGATCCGAGTAGCTGGCTGATTGCGGTAGTGATCCCGCTGCTACTGCTG TTTATTTTTGGTTACGGCATTAACCTCGACTCCAGCAAGCTGCGGGTCGGGATTTTACTG GAACAGCGTAGCGAAGCGGCGCTGGATTTCACCCACACCATGACCGGTTCGCCCTACATC GACGCCACCATCAGCGATAACCGTCAGGAACTGATCGCCAAAATGCAGGCGGGGAAAATT CGCGGTCTGGTGGTTATTCCGGTGGATTTTGCGGAACAGATGGAGCGCGCCAACGCCACC GCACCGATTCAGGTGATCACCGACGGCAGTGAGCCGAATACCGCTAACTTTGTACAGGGG TATGTCGAAGGGATCTGGCAGATCTGGCAAATGCAGCGAGCGGAGGACAACGGGCAGACT TTTGAACCGCTTATTGATGTACAAACCCGCTACTGGTTTAACCCGGCGGCGATTAGCCAG CACTTCATTATCCCCGGTGCGGTGACCATTATCATGACGGTCATCGGCGCGATTCTCACC TCGCTGGTGGTGGCGCGAGAATGGGAACGCGGCACCATGGAGGCTCTGCTCTCTACGGAG ATTACCCGCACGGAACTGCTGCTGTGTAAGCTGATCCCTTATTACTTTCTCGGGATGCTG GCGATGTTGCTGTGTATGCTGGTGTCAGTGTTTATTCTCGGCGTGCCGTATCGCGGGTCG CTGCTGATTCTGTTTTTTATCTCCAGCCTGTTTTTACTCAGTACCCTGGGGATGGGGCTG CTGATTTCCACGATTACCCGCAACCAGTTCAATGCCGCTCAGGTCGCCCTGAACGCCGCT TTTCTGCCGTCGATTATGCTTTCCGGCTTTATTTTTCAGATCGACAGTATGCCCGCGGTG ATCCGCGCGGTGACGTACATTATTCCCGCTCGTTATTTCGTCAGCACCCTGCAAAGCCTG TTCCTCGCCGGGAATATTCCAGTGGTGCTGGTGGTAAACGTGCTGTTTTTGATCGCTTCG GCGGTGATGTTTATCGGCCTGACGTGGCTGAAAACCAAACGTCGGCTGGATTAG

SEQ ID NO:22

ybhR

ATGTTTCATCGCTTATGGACGTTAATCCGCAAAGAGTTGCAGTCGTTGCTGCGCGAA CCG CAAACCCGCGCGATTCTGATTTTACCCGTGCTAATTCAGGTGATCCTGTTCCCGTTCGCC GCCACGCTGGAAGTGACTAACGCCACCATCGCCATCTACGATGAAGATAACGGCGAGCAT TCGGTGGAGCTGACCCAACGTTTTGCCCGCGCCAGCGCCTTTACTCATGTGCTGCTGCTG AAAAGCCCACAGGAGATCCGCCCAACCATCGACACACAAAAGGCGTTACTACTGGTGCGT TTCCCGGCTGACTTCTCGCGCAAACTGGATACCTTCCAGACCGCGCCTTTGCAGTTGATC CTCGACGGGCGTAACTCCAACAGTGCGCAAATTGCCGCCAAC TACCTGCAACAGATCGTC AAAAATTATCAGCAGGAGCTGCTGGAAGGAAAACCGAAACCTAACAACAGCGAGCTGGTG GTACGCAACTGGTATAACCCGAATCTCGACTACAAATGGTTTGTGGTGCCGTCACTGATC GCCATGATCACCACTATCGGCGTAATGATCGTCACTTCACTTTCCGTCGCCCGCGAACGT GAACAAGGTACGCTCGATCAGCTACTGGTTTCGCCGCTCACCACCTGGCAGATCTTCATC GGCAAAGCCGTACCGGCGTTAATTGTCGCCACCTTCCAGGCCACCATTGTGCTGGCGATT GGTATCTGGGCGTATCAAATCCCCTTCGCCGGATCGCTGGCGCTGTTCTACTTTACGATG GTGATTTATGGTTTATCGCTGGTGGGATTCGGTCTGTTGATTTCATCACTCTGTTCAACA CAACAGCAGGCGTTTATCGGCGTGTTTGTCTTTATGATGCCCGCCATTCTCCTTTCCGGT TACGTTTCTCCGGTGGAAAACATGCCGGTATGGCTGCAAAACCTGACGTGGATTAACCCT ATTCGCCACTTTACGGACATTACCAAGCAGATTTATTTGAAGGATGCGAGTCTGGATATT GTGTGGAATAGTTTGTGGCCGCTACTGGTGATAACGGCCACGACAGGGTCAGCGGCGTAC GCGATGTTTAGACGTAAGGTGATGTAA

SEQ ID NO:23

tolC

ATGAAGAAATTGCTCCCCATTCTTATCGGCCTGAGCCTTTCTGGGTTCAGTTCGTTG AGC CAGGCCGAGAACCTGATGCAAGTTTATCAGCAAGCACGCCTTAGTAACCCGGAATTGCGT AAGTCTGCCGCCGATCGTGATGCTGCCTTTGAAAAAATTAATGAAGCGCGCAGTCCATTA CTGCCACAGCTAGGTTTAGGTGCAGATTACACCTATAGCAACGGCTACCGCGACGCGAAC GGCATCAACTCTAACGCGACCAGTGCGTCCTTGCAGTTAACTCAATCCATTTTTGATATG TCGAAATGGCGTGCGTTAACGCTGCAGGAAAAAGCAGCAGGGATTCAGGACGTCACGTAT CAGACCGATCAGCAAACCTTGATCCTCAACACCGCGACCGCTTATTTCAACGTGTTGAAT GCTATTGACGTTCTTTCCTATACACAGGCACAAAAAGAAGCGATCTACCGTCAATTAGAT CAAACCACCCAACGTTTTAACGTGGGCCTGGTAGCGATCACCGACGTGCAGAACGCCCGC GCACAGTACGATACCGTGCTGGCGAACGAAGTGACCGCACGTAATAACCTTGATAACGCG GTAGAGCAGCTGCGCCAGATCACCGGTAACTACTATCCGGAACTGGCTGCGCTGAATGTC GAAAACTTTAAAACCGACAAACCACAGCCGGTTAACGCGCTGCTGAAAGAAGCCGAAAAA CGCAACCTGTCGCTGTTACAGGCACGCTTGAGCCAGGACCTGGCGCGCGAGCAAATTCGC CAGGCGCAGGATGGTCACTTACCGACTCTGGATTTAACGGCTTCTACCGGGATTTCTGAC ACCTCTTATAGCGGTTCGAAAACCCGTGGTGCCGCTGGTACCCAGTATGACGATAGCAAT ATGGGCCAGAACAAAGTTGGCCTGAGCTTCTCGCTGCCGATTTATCAGGGCGGAATGGTT AACTCGCAGGTGAAACAGGCACAGTACAACTTTGTCGGTGCCAGCGAGCAACTGGAAAGT GCCCATCGTAGCGTCGTGCAGACCGTGCGTTCCTCCTTCAACAACATTAATGCATCTATC AGTAGCATTAACGCCTACAAACAAGCCGTAGTTTCCGCTCAAAGCTCATTAGACGCGATG GAAGCGGGCTACTCGGTCGGTACGCGTACCATTGTTGATGTGTTGGATGCGACCACCACG TTGTACAACGCCAAGCAAGAGCTGGCGAATGCGCGTTATAAC TACCTGATTAATCAGCTG AATATTAAGTCAGCTCTGGGTACGTTGAACGAGCAGGATCTGCTGGCACTGAACAATGCG CTGAGCAAACCGGTTTCCACTAATCCGGAAAACGTTGCACCGCAAACGCCGGAACAGAAT GCTATTGCTGATGGTTATGCGCCTGATAGCCCGGCACCAGTCGTTCAGCAAACATCCGCA CGCACTACCACCAGTAACGGTCATAACCCTTTCCGTAACTGA

SEQ ID NO:24

yhil

ATGGATAAGAGTAAGCGCCATCTGGCGTGGTGGGTTGTCGGGTTACTGGCGGTGGCG GCT ATCGTGGCGTGGTGGCTGTTGCGCCCGGCAGGTGTGCCGGAAGGCTTTGCTGTCAGTAAT GGGCGCATTGAAGCGACGGAAGTGGATATTGCCAGCAAAATTGCCGGGCGTATCGACACC ATTCTGGTGAAAGAAGGCAAGTTTGTTCGCGAAGGTGAAGTGCTGGCGAAGATGGATACT CGCGTGTTGCAGGAACAGCGACTGGAAGCCATCGCGCAAATCAAAGAGGCACAAAGCGCC GTTGCTGCCGCGCAGGCTTTGCTGGAGCAACGACAAAGCGAAACTCGTGCCGCACAGTCG CTGGTTAATCAACGCCAGGCAGAACTGGACTCCGTAGCAAAACGTCATACGCGTTCCCGT TCACTGGCCCAACGAGGGGCTATTTCTGCGCAACAGCTGGATGACGATCGCGCCGCCGCT GAGAGCGCCCGAGCTGCGCTGGAATCGGCGAAAGCTCAGGTATCGGCTTCTAAAGCGGCT ATAGAAGCGGCACGCACCAATATCATTCAGGCGCAAACCCGCGTCGAAGCGGCACAAGCC ACTGAACGGCGCATTGCCGCAGATATCGATGACAGCGAACTGAAAGCCCCGCGTGACGGA CGCGTGCAGTATCGGGTTGCCGAGCCAGGCGAAGTGCTGGCGGCAGGCGGTCGGGTGCTG AATATGGTCGATCTCAGCGACGTCTATATGACTTTCTTCCTGCCAACCGAACAGGCGGGC ACGCTGAAACTGGGCGGTGAAGCCCGGCTGATCCTCGATGCCGCGCCAGATCTGCGTATT CCTGCAACCATCAGTTTTGTCGCCAGTGTCGCCCAGTTCACGCCAAAAACCGTCGAAACC AGCGATGAACGGCTGAAACTGATGTTCCGCGTCAAAGCGCGTATCCCACCGGAATTACTC CAGCAGCATCTGGAATATGTCAAAACCGGTTTGCCGGGCGTAGCGTGGGTGCGGGTGAAT GAAGAACTTCCGTGGCCTGACGACCTCGTGGTGAGGTTGCCGCAATGA

SEQ ID NO:25

rbbA

ATGACGCATCTGGAACTGGTTCCCGTCCCGCCTGTCGCGCAACTGGCGGGCGTGAGC CAG CATTATGGAAAAACCGTTGCGCTGAACAATATCACTCTCGATATTCCGGCCCGCTGTATG GTCGGGCTGATTGGCCCGGACGGCGTCGGGAAGTCGAGCTTGTTGTCGTTGATTTCCGGT GCCCGCGTCATTGAACAGGGCAATGTGATGGTGCTGGGCGGCGATATGCGCGACCCGAAG CATCGCCGCGACGTCTGCCCGCGCATCGCCTGGATGCCGCAGGGGCTGGGCAAAAACCTC TACCACACCTTGTCGGTGTATGAAAACGTCGATTTTTTCGCTCGCCTGTTCGGTCACGAC AAAGCGGAGCGGGAAGTGCGAATCAATGAGCTGCTGACCAGCACCGGGTTAGCACCGTTT CGCGATCGTCCGGCAGGGAAACTCTCCGGCGGGATGAAGCAAAAACTTGGGCTGTGCTGC GCGTTAATCCACGACCCGGAACTGTTGATCCTTGATGAGCCAACAACGGGGGTTGACCCG CTCTCCCGCTCCCAGTTCTGGGATCTGATCGACAGTATTCGCCAGCGGCAGAGCAATATG AGCGTGCTGGTCGCCACCGCCTATATGGAAGAGGCCGAACGCTTCGACTGGCTGGTAGCG ATGAATGCCGGAGAAGTGCTGGCAACTGGCAGCGCCGAAGAGCTACGGCAGCAAACGCAA AGCGCTACGCTGGAAGAAGCATTTATAAATCTGTTACCGCAAGCGCAACGCCAGGCGCAT CAGGCGGTAGTGATCCCACCGTATCAACCTGAAAACGCAGAGATTGCCATCGAAGCGCGC GATCTGACCATGCGTTTTGGTTCCTTCGTTGCCGTTGATCACGTTAATTTCCGCATTCCA CGCGGGGAGATTTTTGGTTTTCTTGGTTCGAACGGCTGCGGTAAATCCACCACCATGAAA ATGCTCACCGGACTGCTGCCCGCCAGCGAAGGTGAGGCGTGGCTGTTCGGGCAACCGGTT GATCCAAAAGATATCGATACCCGCCGTCGGGTGGGCTATATGTCGCAGGCGTTTTCGCTC TATAACGAACTCACCGTGCGGCAAAACCTTGAGTTACATGCCCGTTTGTTTCACATCCCG GAAGCGGAAATTCCCGCAAGAGTGGCTGAAATGAGCGAGCGTTTTAAGCTCAACGACGTT GAAGATATTCTGCCGGAGTCATTGCCGCTCGGCATTCGCCAGCGGCTTTCGCTGGCGGTG GCGGTGATTCATCGCCCGGAGATGTTAATCCTCGATGAGCCTACTTCTGGTGTCGATCCG GTGGCGAGGGATATGTTCTGGCAGTTGATGGTCGATCTCTCGCGCCAGGACAAAGTGACT ATCTTCATCTCCACCCACTTTATGAACGAAGCGGAACGTTGCGACCGCATCTCACTGATG CACGCCGGAAAAGTGCTTGCCAGCGGTACACCGCAGGAACTGGTTGAGAAACGCGGAGCC GCCAGTCTGGAAGAGGCATTTATCGCCTATTTGCAGGAAGCGGCAGGGCAGAGCAACGAA GCCGAAGCGCCGCCCGTGGTACACGACACCACCCACGCGCCGCGTCAGGGATTTAGCCTG CGCCGTCTGTTTAGCTACAGCCGCCGCGAAGCGCTGGAACTGCGACGCGATCCAGTACGT TCGACGCTGGCGCTGATGGGAACGGTGATCCTGATGCTGATAATGGGTTACGGCATCAGT ATGGATGTGGAAAACCTGCGCTTTGCGGTGCTCGACCGCGACCAGACCGTCAGTAGCCAG GCGTGGACACTCAACCTCTCCGGTTCCCGTTACTTTATCGAACAGCCGCCGCTCACCAGT TATGACGAGCTTGATCGTCGGATGCGTGCGGGCGATATCACGGTGGCGATTGAGATCCCG CCCAATTTCGGGCGCGATATCGCGCGTGGTACGCCTGTGGAACTCGGCGTCTGGATCGAC GGAGCGATGCCGAGCCGTGCTGAAACGGTAAAAGGTTACGTGCAGGCCATGCACCAGAGC TGGTTACAGGATGTGGCGAGCCGACAATCGACACCCGCCAGCCAAAGCGGGCTGATGAAT ATTGAGACGCGCTATCGCTATAACCCGGACGTAAAAAGCCTGCCAGCGATTGTTCCGGCG GTGATCCCGCTTCTGCTGATGATGATCCCGTCAATGCTAAGCGCCCTTAGCGTGGTGCGG GAAAAAGAGCTTGGGTCGATTATCAACCTTTACGTGACCCCCACCACGCGTAGTGAATTT TTGCTTGGTAAACAGTTGCCATACATCGCGCTGGGGATGCTGAACTTTTTCCTGCTCTGC GGCCTGTCGGTGTTTGTGTTTGGCGTACCGCATAAAGGCAGTTTCCTGACGCTCACCCTG GCGGCGCTGCTGTATATCATCATTGCCACCGGAATGGGGCTGCTGATCTCCACCTTTATG AAAAGCCAGATTGCCGCCATTTTCGGAACGGCGATTATCACGTTGATCCCGGCGACACAG TTTTCCGGGATGATCGATCCGGTAGCTTCGCTGGAAGGGCCTGGACGTTGGATCGGCGAG GTTTACCCGACCAGTCATTTTCTGAC TATCGCCCGCGGGACGTTCTCGAAAGCGCTGGAT CTGACTGATTTGTGGCAACTTTTTATCCCGTTACTGATAGCCATCCCGCTGGTGATGGGC TTAAGTATCC TGC TGC TGAAAAAACAGGAGGGATGA

SEQ ID NO:26

yhhJ

ATGCGCCATTTACGCAATATTTTTAATCTGGGTATCAAAGAGTTGCGCAGTCTGCTC GGT GATAAAGCGATGCTGACGCTGATTGTCTTCTCGTTTACGGTGTCGGTGTATTCGTCAGCG ACCGTTACGCCAGGATCGTTGAACCTCGCGCCGATCGCCATTGCCGATATGGATCAATCG CAGTTATCGAACCGGATCGTTAACAGCTTCTATCGTCCGTGGTTTTTGCCACCGGAGATG ATCACCGCCGATGAGATGGATGCCGGACTGGACGCCGGACGCTATACCTTCGCGATAAAT ATTCCGCCTAATTTTCAGCGTGATGTCCTCGCCGGACGCCAGCCGGATATTCAGGTGAAC GTCGATGCCACGCGCATGAGCCAGGCATTTACCGGCAATGGGTATATCCAGAATATTATC AACGGTGAAGTGAACAGCTTTGTCGCGCGCTACCGTGATAACAGCGAACCGTTGGTATCG CTGGAAACCCGGATGCGCTTTAACCCGAACCTCGATCCCGCGTGGTTTGGCGGGGTGATG GCGATCATCAACAACATTACCATGCTGGCGATTGTATTGACCGGATCGGCGCTGATCCGC GAGCGTGAACACGGCACGGTGGAACACTTACTGGTGATGCCGATAACGCCGTTTGAGATC ATGATGGCGAAGATCTGGTCGATGGGGCTGGTGGTGCTGGTGGTATCGGGATTATCGCTG GTGCTGATGGTGAAAGGTGTACTGGGCGTACCGATTGAAGGCTCGATCCCGCTGTTTATG CTGGGCGTGGCGCTCAGTCTGTTTGCCACCACGTCAATCGGCATTTTTATGGGGACGATA GCGCGTTCAATGCCGCAACTGGGGCTGCTGGTGATTCTGGTGCTGCTGCCGCTGCAAATG CTTTCCGGTGGTTCCACGCCGCGCGAAAGTATGCCGCAGATGGTGCAGGACATTATGCTG ACCATGCCGACGACACACTTTGTTAGCCTCGCGCAGGCCATCCTCTACCGGGGTGCCGGA TTCGAAATCGTCTGGCCGCAGTTTCTGACGCTGATGGCAATTGGCGGCGCATTTTTCACC ATTGCGCTGCTGCGATTCAGGAAGACGATTGGGACAATGGCGTAA

SEQ ID NO:27

YbhG MMKKPVVIGLAWVLAAWAGGYWWYQSRQDNGLTLYGNVDIRTVNLSFRVGGRVESLAV DEGDAIKAGQVLGELDHKPYEIALMQAKAGVSVAQAQYDLMLAGYRNEEIAQAAAAVKQA QAAYDYAQNFYNRQQGLWKSRTISANDLENARSSRDQAQATLKSAQDKLRQYRSGNREQD IAQAKASLEQAQAQLAQAELNLQDSTLIAPSDGTLLTRAVEPGTVLNEGGTVFTVSLTRP VWVRAYVDERNLDQAQPGRKVLLYTDGRPDKPYHGQIGFVSPTAEFTPKTVETPDLRTDL VYRLRIWTDADDALRQGMPVTVQFGDEAGHE

SEQ ID NO:28

YbhF

MNDAVITLNGLEKRFPGMDKPAVAPLDCTIHAGYVTGLVGPDGAGKTTLMRMLAGLL KPD SGSATVIGFDPIKNDGALHAVLGYMPQKFGLYEDLTVMENLNLYADLRSVTGEARKQTFA RLLEFTSLGPFTGRLAGKLSGGMKQKLGLACTLVGEPKVLLLDEPGVGVDPISRRELWQM VHELAGEGMLILWSTSYLDEAEQCRDVLLMNEGELLYQGEPKALTQTMAGRSFLMTSPHE GNRKLLQRALKLPQVSDGMIQGKSVRLILKKEATPDDIRHADGMPEININETTPRFEDAF IDLLGGAGTSESPLGAILHTVEGTPGETVIEAKELTKKFGDFAATDHVNFAVKRGEIFGL LGPNGAGKSTTFKMMCG LLVPTSGQALVLGMDLKESSGKARQHLGYMAQKFSLYGNLTVE QNLRFFSGVYGLRGRAQNEKISRMSEAFGLKS IASHATDELPLGFKQRLALACSLMHEPD ILFLDEPTSGVDPLTRREFWLHINSMVEKGVTVMVTTHFMDEAEYCDRIGLVYRGKLIAS GTPDDLKAQSANDEQPDPTMEQAFIQLIHDWDKEHSNE

SEQ ID NO:29

YbhS

MSNPILSWRRVRALCVKETRQIVRDPSSWLIAWI PLLLLFIFGYGINLDSSKLRVGILL EQRSEAALDFTHTMTG SPYIDAT ISDNRQELIAKMQAGKIRGLWIPVDFAEQMERANAT APIQVITDGSEPNTANFVQGYVEGIWQIWQMQRAE DNGQTFEPLIDVQTRYWFNPAAI SQ HFI IPGAVTI IMTVIGAILTSLWAREWERGTMEALLSTEITRTELLLCKLIPYYFLGML AMLLCMLVSVFILGVPYRGSLLILFFISSLFLLSTLGMGLLI STITRNQFNAAQVALNAA FLPSIMLSGFIFQIDSMPAVIRAVTYI IPARYFVSTLQSLFLAG IPVVLVVNVLFLIAS AVMFIGLTWLKTKRRLD

SEQ ID NO:30

YbhR

MFHRLWTLIRKELQSLLREPQTRAILILPVLIQVILFPFAATLEVTNAT IAIYDEDNGEH SVELTQRFARASAFTHVLLLKSPQEIRPTIDTQKALLLVRFPADFSRKLDTFQTAPLQLI LDGRNSNSAQIAANYLQQIVKNYQQELLEGKPKPNNSELWRNWYNPNLDYKWFWPSLI AMITTIGVMIVTSLSVARE REQGTLDQLLVSPLTTWQIFIGKAVPALIVATFQAT IVLAI GIWAYQIPFAGSLALFYFTMVI YGLSLVGFGLLISSLCSTQQQAFIGVFVFMMPAILLSG YVSPVENMPVWLQNLTWINPIRHFTDITKQIYLKDASLDIVWNSLWPLLVITATTG SAAY AMFRRKVM

SEQ ID NO:31

TolC

MKKLLPILIGLSLSGFSSLSQAENLMQVYQQARLSNPELRKSAADRDAAFEKINEAR SPL LPQLGLGADYTYSNGYRDANGINSNAT SASLQLTQSIFDMSKWRALTLQEKAAGIQDVTY QTDQQTLILNTATAYFNVLNAIDVLSYTQAQKEAIYRQLDQTTQRFNVGLVAITDVQNAR AQYDTVLANEVTARNNLDNAVEQLRQITGNYYPELAALNVENFKTDKPQPVNALLKEAEK RNLSLLQARLSQDLAREQIRQAQDGHLPTLDLTASTG I SDTSYSGSKTRGAAGTQYDDSN MGQNKVGLSFSLPIYQGGMVNSQVKQAQYNFVGASEQLESAHRSVVQTVRSSFNNINASI SSINAYKQAVVSAQSSLDAAGYSVGTRTIVDVLDATT TLYNAKQELANARYNYLINQLNK SALGTLNEQDLLALNNALSKPVSTNPENVAPQTPEQNAIADGYAPDSPAPVVQQTSARTT TSNGHNPFRN

SEQ ID NO:32 Yhil

MDKSKRHLAWWWGLLAVAAIVAWWLLRPAGVPEGFAVSNGRIEATEVDIASKIAGRI DT ILVKEGKFVREGEVLAKMDTRVLQEQRLEAIAQIKEAQSAVAAAQALLEQRQSETRAAQS LVNQRQAELDSVAKRHTRSRSLAQRGAISAQQLDDDRAAAESARAALESAKAQVSASKAA I EAART 11 QAQTRVE AAQATE RRI AAD I DDS E LKAPRDGRVQYRVAE PGE VLAAGGRVL

NMVDLSDVYMTFFLPTEQAGTLKLGGEARLILDAAPDLRIPATISFVASVAQFTPKT VET SDERLKLMFRVKARIPPELLQQHLEYVKTGLPGVAWVRVNEELPWPDDLWRLPQ

SEQ ID NO:33

RbbA

MTHLELVPVPPVAQLAGVSQHYGKTVALNNITLDI PARCMVGLIGPDGVGKSSLLSLI SG ARVIEQGNVMVLGGDMRDPKHRRDVCPRIAWMPQGLGKNLYHTLSVYENVDFFARLFGHD KAE REVRINELLTSTGLAPFRDRPAGKLSGGMKQKLGLCCAL1HDPELLILDEPTTGVDP

LSRSQFWDLIDSIRQRQSNMSVLVATAYMEEAERFDWLVAMNAGEVLATGSAEELRQ QTQ SATLEEAFINLLPQAQRQAHQAWIPPYQPENAEIAIEARDLTMRFGSFVAVDHVNFRIP RGE IFGFLGSNGCGKSTTMKMLTGLLPASEGEAWLFGQPVDPKDIDTRRRVGYMSQAFSL YNELTVRQNLELHARLFHI PEAEIPARVAEMSERFKLNDVEDILPESLPLGIRQRLSLAV AV1HRPEMLILDEPTSGVDPVARDMFWQLMVDLSRQDKVTIFISTHFMNEAERCDRISLM

HAGKVLASGTPQELVEKRGAASLEEAFIAYLQEAAGQSNEAEAPPWHDTTHAPRQGF SL RRLFSYSRREALELRRDPVRSTLALMGTVILMLIMGYGISMDVENLRFAVLDRDQTVSSQ AWTLNLSGSRYFIEQPPLTSYDELDRRMRAGDITVAIE IPPNFGRDIARGTPVELGVWID GAMPSRAE TVKGYVQAMHQSWLQDVASRQSTPASQSGLM IETRYRY PDVKSLPAIVPA VIPLLLMMIPSMLSALSWREKELGS I INLYVTPTTRSEFLLGKQLPYIALGMLNFFLLC GLSVFVFGVPHKGSFLTLTLAALLYI I IATGMGLLISTFMKSQIAAIFGTAI ITLIPATQ FSGMIDPVASLEGPGRWIGEVYPTSHFLTIARGTFSKALDLTDLWQLFIPLLIAIPLVMG LSILLLKKQEG

SEQ ID NO:34

YhhJ

MRHLRNIFNLGIKELRSLLGDKAMLTLIVFSFTVSVYSSATVTPGSLNLAPIAIADM DQS QLSNRIVNSFYRPWFLPPEMITADEMDAGLDAGRYTFAINIPPNFQRDVLAGRQPDIQVN VDATRMSQAFTGNGYIQ I INGEVNSFVARYRDNSEPLVSLETRMRF PNLDPAWFGGVM AIINNITMLAIVLTGSALIREREHGTVEHLLVMPITPFEIMMAKIWSMGLVVLVVSGLSL VLMVKGVLGVPIEGSI PLFMLGVALSLFATTS IGIFMGTIARSMPQLGLLVILVLLPLQM LSGGSTPRESMPQMVQDIMLTMPTTHFVSLAQAILYRGAGFE IVWPQFLTLMAIGGAFFT IALLRFRKTIGTMA

SEQ ID NO:35

pJB1440 Sequence

CTCATGACCAAAATCCCTTAACGTGAGTTACGCGCGCGTCGTTCCACTGAGCGTCAGACC CCGTAGAAAA GATCAAAGGATCTTCTTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAA AAAACCACCG CTACCAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACT GGCTTCAGCA GAGCGCAGATACCAAATACTGTTCTTCTAGTGTAGCCGTAGTTAGCCCACCACTTCAAGA ACTCTGTAGC ACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGGCGATAA GTCGTGTCTT ACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACGGGG GGTTCGTGCA CACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACCTACAGCGTGAGCTAT GAGAAAGCGC CACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGG AGAGCGCACG AGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTC TGACTTGAGC GTCGATTTTTGTGATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACGCCAGCAACGCGG CCTTTTTACG GTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGTTCTTTCCTGCGTTATCCCCTGATTC TGTGGATAAC CGTATTACCGCCTTTGAGTGAGCTGATACCGCTCGCCGCAGCCGAACGACCGAGCGCAGC GAGTCAGTGA GCGAGGAAGCGGAAGGCGAGAGTAGGGAACTGCCAGGCATCAAACTAAGCAGAAGGCCCC TGACGGATGG CCTTTTTGCGTTTCTACAAACTCTTTCTGTGTTGTAAAACGACGGCCAGTCTTAAGCTCG GGCCCCCTGG GCGGTTCTGATAACGAGTAATCGTTAATCCGCAAATAACGTAAAAACCCGCTTCGGCGGG TTTTTTTATG GGGGGAGTTTAGGGAAAGAGCA TTTGTCAGAA TA TTTAAGG G CG C C TGTCACTTTGCTTGATATATGAGA ATTATTTAACCTTATAAATGAGAAAAAAGCAACGCACTTTAAATAAGATACGTTGCTTTT TCGATTGATG AACACCTATAATTAAACTATTCATCTATTATTTATGATTTTTTGTATATACAATATTTCT AGTTTGTTAA AGAGAATTAAGAAAATAAATCTCGAAAATAATAAAGGGAAAATCAGTTTTTGATATCAAA ATTATACATG TCAACGATAATACAAAATATAATACAAACTATAAGATGTTATCAGTATTTATTATGCATT TAGAATAAAT TTTGTGTCGCCCTTAATTGTGAGCGGATAACAATTACGAGCTTCATGCACAGTGAAATCA TGAAAAATTT ATTTGCTTTGTGAGCGGATAACAATTATAATATGTGGAATTGTGAGCGCTCACAATTCCA CAACGGTTTC CCTCTAGAAATAATTTTGTTTAACTTTTAGGAGGTAAAACATArGCCGCAGCrrGAflGC CflGCCrrGAflC TGGACTTTCAAAGCGAGTCCTACAAAGACGCTTACAGCCGCATCAACGCGATCGTGATTG AAGGCGAACA AGAGGCGTTCGACAACTACAATCGCCTTGCTGAGATGCTGCCCGACCAGCGGGATGAGCT TCACAAGCTA GCCAAGA TGGAACAGCGCCACA TGAAAGGCTTTA TGGCCTGTGGCAAAAATCTCTCCGTCACTCCTGACA TGGGTTTTGCCCAGAAATTTTTCGAGCGCTTGCACGAGAACTTCAAAGCGGCGGCTGCGG AAGGCAAGGT CGTCACCTGCCTACTGATTCAATCGCTAATCATCGAGTGCTTTGCGATCGCGGCTTACAA CATCTACATC CCAGTGGCGGATGCTTTTGCCCGCAAAATCACGGAGGGGGTCGTGCGCGACGAATACCTG CACCGCAACT TCGGTGAAGAGTGGCTGAAGGCGAATTTTGATGCTTCCAAAGCCGAACTGGAAGAAGCCA ATCGTCAGAA CCTGCCCTTGGTTTGGCTAA TGCTCAACGAAGTGGCCGATGA TGCTCGCGAACTCGGGA TGGAGCGTGAG TCGCTCGTCGAGGACTTTA TGA TTGCCTACGGTGAAGCTCTGGAAAACA TCGGCTTCACAACGCGCGAAA TCA TGCGTATGTCCGCCTA TGGCCTTGCGGCCGTTTGAt ccaggaaatc tqaATGTTCGGTCTTATCGGT CATCTCACCAGTTTGGAGCAGGCCCGCGACGTTTCTCGCAGGATGGGCTACGACGAATAC GCCGATCAAG GA TTGGAGTTTTGGAGTAGCGCTCCTCCTCAAA TCGTTGA TGAAA TCACAGTCACCAGTGCCACAGGCAA GGTGATTCACGGTCGCTACA TCGAA TCGTGTTTCTTGCCGGAAA TGCTGGCGGCGCGCCGCTTCAAAACA GCCACGCGCAAAGTTCTCAA TGCCA TGTCCCA TGCCCAAAAACACGGCA TCGACA TCTCGGCCTTGGGGG GCTTTACCTCGA TTA TTTTCGAGAA TTTCGATTTGGCCAGTTTGCGGCAAGTGCGCGACACTACCTTGGA GTTTGAACGGTTCACCACCGGCAA TACTCACACGGCCTACGTAA TCTGTAGACAGGTGGAAGCCGCTGCT AAAACGCTGGGCATCGACA TTACCCAAGCGACAGTAGCGGTTGTCGGCGCGACTGGCGA TA TCGGTAGCG CTGTCTGCCGCTGGCTCGACCTCAAACTGGGTGTCGGTGA TTTGA TCCTGACGGCGCGCAA TCAGGAGCG TTTGGA TAACCTGCAGGCTGAACTCGGCCGGGGCAAGA TTCTGCCCTTGGAAGCCGCTCTGCCGGAAGCT GACTTTATCGTGTGGGTCGCCAGTATGCCTCAGGGCGTAGTGATCGACCCAGCAACCCTG AAGCAACCCT GCGTCCTAATCGACGGGGGCTACCCCAAAAACTTGGGCAGCAAAGTCCAAGGTGAGGGCA TCTATGTCCT CAA TGGCGGGGTAGTTGAACATTGCTTCGACA TCGACTGGCAGA TCA TGTCCGCTGCAGAGATGGCGCGG CCCGAGCGCCAGATGTTTGCCTGCTTTGCCGAGGCGATGCTCTTGGAATTTGAAGGCTGG CATACTAACT TCTCCTGGGGCCGCAACCAAATCACGATCGAGAAGATGGAAGCGATCGGTGAGGCATCGG TGCGCCACGG

CrrCCAACCCrrGGCarrGGCaArrrGflgaattcAAAacgtttcaattggctaata ggatccTAGACGTC gcTAAtacggccggccacccttttttaggtagcGCTAGCatagggcccTAACTCGAGCCC CAAGGGCGAC AC C C C T AATTAGCCCGGGCGAAAGGCCCAGTCTTTCGACTGAGCCTTTCGTTTTATTTGATGCCTG GCA GTTCCCTACTCTCGCATGGGGAGTCCCCACACTACCATCGGCGCTACGGCGTTTCACTTC TGAGTTCGGC ATGGGGTCAGGTGGGACCACCGCGCTACTGCCGCCAGGCAAAC A A GGGGTGTTATGAGCCATATTCAGGT ATAAATGGGCTCGCGATAATGTTCAGAATTGGTTAATTGGTTGTAACACTGACCCCTATT TGTTTATTTT TCTAAATACATTCAAATATGTATCCGCTCATGAGACAATAACCCTGATAAATGCTTCAAT AATATTGAAA AAGG AAGAATATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGC CTTCCT GTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGA TGCTGAAGA TCAGTTGGGTGCACGAGTGGGTT AC A TCGAACTGGATCTCAACAGCGGTAAGA TCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAA TGA T GAGCACTTTTAAAGTTCTGCTA TGTGGCGCGGTA TTA TCCCGTA TTGACGCCGGGCAAGAGCAACTCGGT CGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCAT CTTACGGATG GCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCA ACTTACTTCT GACAACGA TCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACA TGGGGGATCA TGTAACTCGCCTT GATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATG CCTGTAGCGA TGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAAC AATTAATAGA CTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTG GTTTATTGCT GA TAAA TCCGGAGCCGGTGAGCGTGGTTCTCGCGGTA TCA TCGCAGCGCTGGGGCCAGA TGGTAAGCCCT CCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGAC AGATCGCTGA GATAGGTGCCTCACTGATTAAGCATTGGTAAGCGGCGCGCCATCGAATGGCGCAAAACCT TTCGCGGTAT GGCATG AT AGCG CCCG GAAGAGAGTCAAT TCAGGGTG GTG AATArGAAflCCAGrAflCGrrArACGArGrC GCAGAGTATGCCGGTGTCTCTTATCAGACCGTTTCCCGCGTGGTGAACCAGGCCAGCCAC GTTTCTGCGA AAACGCGGGAAAAAGTGGAAGCGGCGATGGCGGAGCTGAATTACATTCCCAACCGCGTGG CACAACAACT GGCGGGCAAACAGTCGTTGCTGATTGGCGTTGCCACCTCCAGTCTGGCCCTGCACGCGCC GTCGCAAATT GTCGCGGCGA TTAAA TCTCGCGCCGA TCAACTGGGTGCCAGCGTGGTGGTGTCGA TGGTAGAACGAAGCG GCGTCGAAGCCTGTAAAGCGGCGGTGCACAATCTTCTCGCGCAACGCGTCAGTGGGCTGA TCATTAACTA TCCGCTGGATGACCAGGA TGCCATTGCTGTGGAAGCTGCCTGCACTAA TGTTCCGGCGTTA TTTCTTGA T GTCTCTGACCAGACACCCA TCAACAGTA TTATTTTCTCCCA TGAGGACGGTACGCGACTGGGCGTGGAGC ATCTGGTCGCATTGGGTCACCAGCAAATCGCGCTGTTAGCGGGCCCATTAAGTTCTGTCT CGGCGCGTCT GCGTCTGGCTGGCTGGCA TAAA TA TCTCACTCGCAA TCAAA TTCAGCCGATAGCGGAACGGGAAGGCGAC TGGAGTGCCA TGTCCGGTTTTCAACAAACCATGCAAA TGCTGAA TGAGGGCA TCGTTCCCACTGCGA TGC TGGTTGCCAACGATCAGATGGCGCTGGGCGCAATGCGCGCCATTACCGAGTCCGGGCTGC GCGTTGGTGC GGATATCTCGGTAGTGGGATACGACGATACCGAAGATAGCTCATGTTATATCCCGCCGTT AACCACCATC AAACAGGATTTTCGCCTGCTGGGGCAAACCAGCGTGGACCGCTTGCTGCAACTCTCTCAG GGCCAGGCGG TGAAGGGCAA TCAGCTGTTGCCAGTCTCACTGGTGAAAAGAAAAACCACCCTGGCGCCCAA TACGCAAAC CGCCTCTCCCCGCGCGTTGGCCGA TTCA TTAA TGCAGCTGGCACGACAGGTTTCCCGACTGGAAAGCGGG CAGTGA

pUC ori - 1 st underlined sequence

rpn txn terminator - 1 st italicized sequence

bla txn terminator - 2 nd underlined sequence

T5 promoter - 1 st double-underlined sequence

adm_PCC7942 - 1 st italicized and underlined sequence

aar_PCC7942 -2 nd italicized and underlined sequence

rrnBl - B2 T l txn terminator 2 nd italicized sequence

bla - 3 rd italicized and underlined sequence

lacl - 4 th italicized and underlined sequence

SEQ ID NO:36

Kanamycin promoter and gene coding sequence

CTG TCAAACATG AGAAT TAAT TCCG GGGAT CCG TCG ACCTG CAGTTC G AAGTTCCTAT TCTCTAGAAAGT AT AGGAACTTCAGAGCG CTTTTG AAGCTCACG CTG CCG CAAGCACTCAGGGCG CAAGGGCTG CTAAAGGA AGCG GAACACG TAGAAAGCCAGTCCG CAGAAACG GTG CTG ACCCCG GATG AATG TCAGCTACTG GGCTAT CTG GACAAGGGAAAACG CAAGCG CAAAGAGAAAGCAGGTAGCTTG CAGTG GGCTTACATG GCG AT AGCTA GACTG GGCG GTTTTATG GACAGCAAGCG AACCGGAflrrGCCAGCrGGGGCGCCCrCrGGrAflGGrrGGGA AGCCCTGCAAAGTAAACTGGATGGCTTTCTTGCCGCCAAGGATCTGATGGCGCAGGGGAT CAAGATCTGA TCAAGAGACAGGATGAGGATCGTTTCGCATGATTGAACAAGATGGATTGCACGCAGGTTC TCCGGCCGCT TGGGTGGAGAGGCTATTCGGCTATGACTGGGCACAACAGACAATCGGCTGCTCTGATGCC GCCGTGTTCC GGCTGTCAGCGCAGGGGCGCCCGGTTCTTTTTGTCAAGACCGACCTGTCCGGTGCCCTGA ATGAACTGCA GGACGAGGCAGCGCGGCTATCGTGGCTGGCCACGACGGGCGTTCCTTGCGCAGCTGTGCT CGACGTTGTC ACTGAAGCGGGAAGGGACTGGCTGCTATTGGGCGAAGTGCCGGGGCAGGATCTCCTGTCA TCTCACCTTG CTCCTGCCGAGAAAGTATCCATCATGGCTGATGCAATGCGGCGGCTGCATACGCTTGATC CGGCTACCTG CCCATTCGACCACCAAGCGAAACATCGCATCGAGCGAGCACGTACTCGGATGGAAGCCGG TCTTGTCGAT CAGGATGATCTGGACGAAGAGCATCAGGGGCTCGCGCCAGCCGAACTGTTCGCCAGGCTC AAGGCGCGCA TGCCCGACGGCGAGGATCTCGTCGTGACCCATGGCGATGCCTGCTTGCCGAATATCATGG TGGAAAATGG CCGCTTTTCTGGATTCATCGACTGTGGCCGGCTGGGTGTGGCGGACCGCTATCAGGACAT AGCGTTGGCT ACCCGTGATATTGCTGAAGAGCTTGGCGGCGAATGGGCTGACCGCTTCCTCGTGCTTTAC GGTATCGCCG CTCCCGATTCGCAGCGCATCGCCTTCTATCGCCTTCTTGACGAGTTCTTCTAATAAGGGG ATCTTGAAGT TCCTATTCCGAAGTTCCTATTCTCTAGAAAGTATAGGAACTTCGAAGCAGCTCCAGCCTA CAC

Kanamycin promoter region - italicized

Kan R marker - underlined

SEQ ID NO:39

tetR_?u et o\-ybhGFSR DNA sequence (start codon of ybhG changed from native 'GTG' sequence to 'ATG')

The nucleotide sequence for:

tetR is in bold

Puetoi is lower-case

ybhGFSR is underlined

TTAAGACCCACTTTCACATTTAAGTTGTTTTTCTAATCCGCAAATGATCAATTCAAG GCCGAATAAGAAG GCTGGCTCTGCACCTTGGTGTTCAAATAATTCGATAGCTTGTCGTAATAATGCTGGCATA CTATCAGTAG TAGGTGTTTCCCTTTCTTCTTTAGCGACTTGATGCTCTTGATCTTCCAATACGCAACCTA AAGTAAAATG CCCCACAGCGCTGAGTGCATATAATGCATTCTCTAGTGAAAAACCTTGTTGGCATAAAAA GGCTAATTGA TTTTCGAGAGTTTCATACTGTTTTTCTGTAGGCCGTGTACCTAAATGTACTTTTGCTCCA TCGCGATGAC TTAGTAAAGCACATCTAAAACTTTTAGCGTTATTACGTAAAAAATCTTGCCAGCTTTCCC CTTCTAAAGG GCAAAAGTGAGTATGGTGCCTATCTAACATCTCAATGGCTAAGGCGTCGAGCAAAGCCCG CTTATTTTTT ACATGCCAATACAATGTAGGCTGCTCTACACCCAGCTTCTGGGCGAGTTTACGGGTTTTT AAACCTTCGA TTCCGACCTCATTAAGCAGCTCTAATGCGCTGTTAATCACTTTACTTTTATCTAATCTGG ACATCATTTG GTTTTCCTCCAGCAAAATGTACAGCAACCATTATCACCGCCAGAGGTAAAATAGTCAACA CGCACGGTGT TAGAGCTCtccctatcagtgatagagattgacatccctatcagtgatagagatactgagc acatcagcag gacgcactgacccAATTCATTAAAGAGGAGAAAGGTCATATGATGAAAAAACCTGTCGTG ATCGGATTGG CGGTAGTGGTACTTGCCGCCGTGGTTGCCGGAGGCTACTGGTGGTATCAAAGCCGCCAGG ATAACGGCCT GACGCTGTATGGCAACGTGGATATTCGTACGGTAAATCTTAGTTTCCGTGTTGGGGGGCG CGTTGAATCG CTGGCGGTGGACGAAGGTGATGCTATCAAAGCGGGCCAGGTGCTGGGCGAACTGGATCAC AAGCCGTATG AGATTGCCCTGATGCAGGCGAAAGCGGGTGTTTCGGTGGCACAGGCGCAGTATGACCTGA TGCTTGCCGG GTATCGCAATGAAGAAATCGCTCAGGCCGCCGCAGCGGTGAAACAGGCGCAAGCCGCCTA TGACTATGCG CAGAACTTCTATAACCGCCAGCAAGGGTTGTGGAAAAGCCGCACTATTTCGGCAAATGAC CTGGAAAATG CCCGCTCCTCGCGCGACCAGGCGCAGGCAACGCTGAAATCAGCACAGGATAAATTGCGTC AGTACCGTTC CGGTAACCGTGAACAGGACATCGCTCAGGCGAAAGCCAGCCTCGAACAGGCGCAGGCGCA ACTGGCGCAG GCGGAGTTGAATTTACAGGACTCAACGTTGATAGCCCCGTCTGATGGCACGCTGTTAACG CGCGCGGTGG AGCCAGGCACGGTCCTCAATGAAGGTGGCACGGTGTTTACCGTTTCACTAACGCGTCCGG TGTGGGTGCG CGCTTATGTTGATGAACGTAATCTTGACCAGGCCCAGCCGGGGCGCAAAGTGCTGCTTTA TACCGATGGT CGCCCGGACAAGCCGTATCACGGGCAGATTGGTTTCGTTTCGCCGACTGCTGAATTTACC CCGAAAACCG TCGAAACGCCGGATCTGCGTACCGACCTCGTCTATCGCCTGCGTATTGTGGTGACCGACG CCGATGATGC GTTACGCCAGGGAATGCCAGTGACGGTACAATTCGGTGACGAGGCAGGACATGAATGATG CCGTTATCAC GCTGAACGGCCTGGAAAAACGCTTTCCGGGCATGGACAAGCCCGCCGTCGCGCCGCTCGA TTGTACCATT CACGCCGGTTATGTGACGGGGTTGGTGGGGCCGGACGGTGCAGGTAAAACCACGCTGATG CGGATGTTGG CGGGATTACTGAAACCCGACAGCGGCAGTGCCACGGTGATTGGCTTTGATCCGATCAAAA ACGACGGCGC GCTGCACGCCGTGCTCGGTTATATGCCGCAGAAATTTGGTCTGTATGAAGATCTCACGGT GATGGAGAAC CTCAATCTGTACGCGGATTTGCGCAGCGTCACCGGCGAGGCACGTAAGCAAACTTTTGCT CGCCTGCTGG AGTTTACGTCTCTTGGGCCGTTTACCGGACGCCTGGCGGGCAAGCTCTCCGGTGGGATGA AACAAAAACT CGGTCTGGCCTGTACCCTGGTGGGCGAACCGAAAGTGTTGCTGCTCGATGAACCCGGCGT CGGCGTTGAC CCTATCTCACGGCGCGAACTGTGGCAGATGGTGCATGAGCTGGCGGGCGAAGGGATGTTA ATCCTCTGGA GTACCTCGTATCTCGACGAAGCCGAGCAGTGCCGTGACGTGTTACTGATGAACGAAGGCG AGTTGCTGTA TCAGGGAGAACCAAAAGCCCTGACACAAACCATGGCCGGACGCAGCTTTCTGATGACCAG TCCACACGAG GGCAACCGCAAACTGTTGCAACGCGCCTTGAAACTGCCGCAGGTCAGCGACGGCATGATT CAGGGGAAAT CGGTACGTCTGATCCTCAAAAAAGAGGCCACACCAGACGATATTCGCCATGCCGACGGGA TGCCGGAAAT CAACATCAACGAAACTACGCCGCGTTTTGAAGATGCGTTTATTGATTTGCTGGGCGGTGC CGGAACCTCG GAATCGCCGCTGGGCGCAATATTACATACGGTAGAAGGCACACCCGGCGAGACGGTGATC GAAGCGAAAG AACTGACCAAGAAATTTGGGGATTTTGCCGCCACCGATCACGTCAACTTTGCCGTTAAAC GTGGGGAGAT TTTTGGTTTGCTGGGGCCAAACGGCGCGGGTAAATCGACCACCTTTAAGATGATGTGCGG TTTGCTGGTG CCGACTTCCGGCCAGGCGCTGGTGCTGGGGATGGATCTGAAAGAGAGTTCCGGTAAAGCG CGCCAGCATC TCGGCTATATGGCGCAAAAATTTTCGCTCTACGGTAACCTGACGGTCGAACAGAATTTAC GCTTTTTCTC TGGTGTGTATGGCTTACGCGGTCGGGCGCAGAACGAAAAAATCTCCCGCATGAGCGAGGC GTTCGGCCTG AAAAGTATCGCCTCCCACGCCACCGATGAACTGCCATTAGGTTTTAAACAGCGGCTGGCG CTGGCCTGTT CGCTGATGCATGAACCGGACATTCTGTTTCTCGACGAACCGACTTCCGGCGTTGACCCCC TCACCCGCCG TGAATTTTGGCTGCACATCAACAGCATGGTAGAGAAAGGCGTCACGGTGATGGTCACCAC CCACTTTATG GATGAAGCGGAATATTGCGACCGCATCGGCCTGGTGTACCGCGGGAAATTAATCGCCAGC GGCACGCCGG ACGATTTGAAAGCACAGTCGGCTAACGATGAGCAACCCGATCCCACCATGGAGCAAGCCT TTATTCAGTT GATCCACGACTGGGATAAGGAGCATAGCAATGAGTAACCCGATCCTGTCCTGGCGTCGCG TACGGGCGCT GTGCGTTAAAGAGACGCGGCAGATCGTTCGCGATCCGAGTAGCTGGCTGATTGCGGTAGT GATCCCGCTG CTACTGCTGTTTATTTTTGGTTACGGCATTAACCTCGACTCCAGCAAGCTGCGGGTCGGG ATTTTACTGG AACAGCGTAGCGAAGCGGCGCTGGATTTCACCCACACCATGACCGGTTCGCCCTACATCG ACGCCACCAT CAGCGATAACCGTCAGGAACTGATCGCCAAAATGCAGGCGGGGAAAATTCGCGGTCTGGT GGTTATTCCG GTGGATTTTGCGGAACAGATGGAGCGCGCCAACGCCACCGCACCGATTCAGGTGATCACC GACGGCAGTG AGCCGAATACCGCTAACTTTGTACAGGGGTATGTCGAAGGGATCTGGCAGATCTGGCAAA TGCAGCGAGC GGAGGACAACGGGCAGACTTTTGAACCGCTTATTGATGTACAAACCCGCTACTGGTTTAA CCCGGCGGCG ATTAGCCAGCACTTCATTATCCCCGGTGCGGTGACCATTATCATGACGGTCATCGGCGCG ATTCTCACCT CGCTGGTGGTGGCGCGAGAATGGGAACGCGGCACCATGGAGGCTCTGCTCTCTACGGAGA TTACCCGCAC GGAACTGCTGCTGTGTAAGCTGATCCCTTATTACTTTCTCGGGATGCTGGCGATGTTGCT GTGTATGCTG GTGTCAGTGTTTATTCTCGGCGTGCCGTATCGCGGGTCGCTGCTGATTCTGTTTTTTATC TCCAGCCTGT TTTTACTCAGTACCCTGGGGATGGGGCTGCTGATTTCCACGATTACCCGCAACCAGTTCA ATGCCGCTCA GGTCGCCCTGAACGCCGCTTTTCTGCCGTCGATTATGCTTTCCGGCTTTATTTTTCAGAT CGACAGTATG CCCGCGGTGATCCGCGCGGTGACGTACATTATTCCCGCTCGTTATTTCGTCAGCACCCTG CAAAGCCTGT TCCTCGCCGGGAATATTCCAGTGGTGCTGGTGGTAAACGTGCTGTTTTTGATCGCTTCGG CGGTGATGTT TATCGGCCTGACGTGGCTGAAAACCAAACGTCGGCTGGATTAGGGAGAAGAGCATGTTTC ATCGCTTATG GACGTTAATCCGCAAAGAGTTGCAGTCGTTGCTGCGCGAACCGCAAACCCGCGCGATTCT GATTTTACCC GTGCTAATTCAGGTGATCCTGTTCCCGTTCGCCGCCACGCTGGAAGTGACTAACGCCACC ATCGCCATCT ACGATGAAGATAACGGCGAGCATTCGGTGGAGCTGACCCAACGTTTTGCCCGCGCCAGCG CCTTTACTCA TGTGCTGCTGCTGAAAAGCCCACAGGAGATCCGCCCAACCATCGACACACAAAAGGCGTT ACTACTGGTG CGTTTCCCGGCTGACTTCTCGCGCAAACTGGATACCTTCCAGACCGCGCCTTTGCAGTTG ATCCTCGACG GGCGTAACTCCAACAGTGCGCAAATTGCCGCCAACTACCTGCAACAGATCGTCAAAAATT ATCAGCAGGA GCTGCTGGAAGGAAAACCGAAACCTAACAACAGCGAGCTGGTGGTACGCAACTGGTATAA CCCGAATCTC GACTACAAATGGTTTGTGGTGCCGTCACTGATCGCCATGATCACCACTATCGGCGTAATG ATCGTCACTT CACTTTCCGTCGCCCGCGAACGTGAACAAGGTACGCTCGATCAGCTACTGGTTTCGCCGC TCACCACCTG GCAGATCTTCATCGGCAAAGCCGTACCGGCGTTAATTGTCGCCACCTTCCAGGCCACCAT TGTGCTGGCG ATTGGTATCTGGGCGTATCAAATCCCCTTCGCCGGATCGCTGGCGCTGTTCTACTTTACG ATGGTGATTT ATGGTTTATCGCTGGTGGGATTCGGTCTGTTGATTTCATCACTCTGTTCAACACAACAGC AGGCGTTTAT CGGCGTGTTTGTCTTTATGATGCCCGCCATTCTCCTTTCCGGTTACGTTTCTCCGGTGGA AAACATGCCG GTATGGCTGCAAAACCTGACGTGGATTAACCCTATTCGCCACTTTACGGACATTACCAAG CAGATTTATT TGAAGGATGCGAGTCTGGATATTGTGTGGAATAGTTTGTGGCCGCTACTGGTGATAACGG CCACGACAGG GTCAGCGGCGTACGCGATGTTTAGACGTAAGGTGATGTAA

SEQ ID NO:42

DNA sequence of rfaC locus in JCC1880 (AfadE)

TGACGCTGCGGAGGGTTATCACCAGAGCTTAATCGACATTACTCCCCAGCGCGTACT GGAAGAACTCAAC CCGCTATTGTTACAAGAGGAAGCCTGACGGatqCGGGTTTTGATCGTTAAAACATCGTCG ATGGGCGATG TTCTCCATACGTTGCCCGCACTCACTGATGCCCAGCAGGCAATCCCAGGGATTAAGTTTG ACTGGGTGGT GGAAGAAGGGTTCGCACAGATTCCTTCCTGGCACGCTGCCGTTGAGCGAGTTATTCCTGT GGCAATACGT CGCTGGCGTAAAGCCTGGTTCTCGGCCCCCATAAAAGCGGAACGCAAAGCGTTTCGTGAA GCGCTACAAG CAGAGAACTATGACGCAGTTATCGACGCTCAGGGGCTGGTAAAAAGCGCGGCGCTGGTGA CGCGTCTGGC GCATGGCGTAAAGCATGGCATGGACTGGCAAACCGCTCGCGAACCTTTAGCCAGCCTGTT TTACAATCGT AAGCATCATATTGCAAAACAGCAGCACGCCGTAGAACGCACCCGCGAACTGTTTGCCAAA AGTTTGGGCT ATAGCAAACCGCAAACCCAGGGCGATTATGCTATCGCACAGCATTTTCTGACGAACCTGC CTACAGATGC TGGCGAATATGCCGTATTTCTTCATGCGACGACCCGTGATGATAAACACTGGCCGGAAGA ACACTGGCGA GAATTGATTGGTTTACTGGCTGATTCAGGAATACGGATTAAACTTCCGTGGGGCGCGCCG CATGAGGAAG AACGGGCGAAACGACTGGCGGAAGGATTTGCTTATGTTGAAGTATTGCCGAAGATGAGTC TGGAAGGCGT TGCCCGCGTGCTGGCCGGGGCTAAATTTGTAGTGTCGGTGGATACGGGGTTAAGCCATTT AACGGCGGCA CTGGATAGACCCAATATCACGGTTTATGGACCAACCGATCCGGGATTAATTGGTGGGTAT GGGAAGAATC AGATGGTATGTAGGGCTCCAAGAGAAAATTTAATTAACCTCAACAGTCAAGCAGTTTTGG AAAAGTTATC ATCA TAtaaAGGTAAAACA GCTAACATCCTTTAAACTTCA TTCA TTGAAACCTTACACTCTGAAATCA TCAATGATTTTAGAGATAATAACTTATATATTATGTTTTT

ORF is underlined, HI and H2 italicized

SEQ ID NO:43

DNA sequence of rfaC locus in JCC1999 (AfadEArfaC)

TGACGCTGCGGAGGGTTATCACCAGAGCTTAATCGACATTACTCCCCAGCGCGTACT GGAAGAACTCAAC GCGCTATTGTACCAAGAGGAAGCCTGACGGgtgtaggctggagctgcttcgaagttccta tactttctag agaataggaacttcgaactgcaggtcgacggatccccggaattaattctcatgtttgaca gAGGTAAAAC ATGCTAACATCCTTTAAACTTCATTCATTGAAACCTTACACTCTGAAATCATCAATGATT TTAGAGATAA TAACTTATATATTATGTTTTT

HI and H2 italicized

SEQ ID NO:44

F(psaA) DNA sequence GCCCCTATATTATGCATTTATACCCCCACAATCATGTCAAGAATTCAAGCATCTTAAATA ATGTTAATTA TCGGCAAAGTCTGTGCTCCCCTTCTATAATGCTGAATTGAGCATTCGCCTCCTGAACGGT CTTTATTCTT CCATTGTGGGTCTTTAGATTCACGATTCTTCACAATCATTGATCTAAAGATCTTTCTAGA TTCTCGAGGC A

SEQ ID NO:45

F(nir07) DNA sequence

GGCCGCTTGTAGCAATTGCTACTAAAAACTGCGATCGCTGCTGAAATGAGCTGGAATTTT GTCCCTCTCA GCTCAAAAAGTATCAATGATTACTTAATGTTTGTTCTGCGCAAACTTCTTGCAGAACATG CATGATTTAC AAAAAGTTGTAGTTTCTGTTACCAATTGCGAATCGAGAACTGCCTAATCTGCCGAGTATG CGATCCTTTA GCAGGAGGAAAACCA

SEQ ID NO:46

?(nir09) DNA sequence

GCTACTCATTAGTTAAGTGTAATGCAGAAAACGCATATTCTCTATTAAACTTACGCATTA ATACGAGAAT TTTGTAGCTACTTATACTATTTTACCTGAGATCCCGACATAACCTTAGAAGTATCGAAAT CGTTACATAA ACATTCACACAAACCACTTGACAAATTTAGCCAATGTAAAAGACTACAGTTTCTCCCCGG TTTAGTTCTA GAGTTACCTTCAGTGAAACATCGGCGGCGTGTCAGTCATTGAAGTAGCATAAATCAATTC AAAATACCCT GCGGGAAGGCTGCGCCAACAAAATTAAATATTTGGTTTTTCACTATTAGAGCATCGATTC ATTAATCAAA AACCTTACCCCCCAGCCCCCTTCCCTTGTAGGGAAGTGGGAGCCAAACTCCCCTCTCCGC GTCGGAGCGA AAAGTCTGAGCGGAGGTTTCCTCCGAACAGAACTTTTAAAGAGAGAGGGGTTGGGGGAGA GGTTCTTTCA AGATTACTAAATTGCTATCACTAGACCTCGTAGAACTAGCAAAGACTACGGGTGGATTGA TCTTGAGCAA AAAAAC T T T AT G AG AACT T T AGC AGG AGG AAAAC C A

SEQ ID NO:47

accA Codon optimized DNA sequence

ATGAGCCTGAATTTCCTGGACTTTGAACAACCTATTGCTGAACTGGAGGCAAAAATC GATTCCCTGACTG CCGTTAGCCGCCAGGACGAAAAGCTGGATATCAACATCGACGAAGAAGTACATCGCCTGC GTGAGAAATC TGTTGAACTGACCCGTAAAATCTTCGCCGATCTGGGCGCCTGGCAGATCGCGCAGCTGGC TCGCCACCCA CAACGTCCGTATACCCTGGACTACGTACGTCTGGCTTTCGATGAGTTCGACGAGCTGGCG GGCGATCGTG CCTACGCGGACGACAAAGCTATCGTGGGCGGTATCGCTCGTCTGGACGGTCGTCCGGTAA TGATCATCGG CCATCAAAAGGGTCGTGAAACCAAAGAGAAAATCCGTCGTAACTTCGGTATGCCTGCACC GGAAGGCTAT CGTAAAGCCCTGCGTCTGATGCAAATGGCGGAGCGTTTCAAAATGCCGATTATCACCTTT ATCGATACTC CTGGTGCTTACCCAGGTGTCGGTGCGGAAGAACGTGGCCAGTCCGAGGCTATCGCCCGTA ACCTGCGTGA AATGTCCCGCCTGGGTGTCCCGGTTGTTTGCACCGTTATTGGCGAGGGTGGCTCCGGTGG TGCGCTGGCA ATCGGTGTTGGTGACAAAGTTAACATGCTGCAGTACTCTACCTACAGCGTCATCTCTCCG GAGGGCTGCG CTTCTATCCTGTGGAAATCCGCTGACAAAGCTCCGCTGGCAGCTGAAGCTATGGGCATCA TCGCACCGCG CCTGAAAGAGCTGAAACTGATCGACTCTATCATCCCTGAGCCGCTGGGTGGTGCTCACCG CAACCCAGAA GCGATGGCAGCGTCCCTGAAAGCACAACTGCTGGCTGACCTGGCGGATCTGGATGTTCTG TCTACTGAGG ATCTGAAAAATCGTCGTTACCAACGTCTGATGTCCTATGGTTACGCTTGA

SEQ ID NO:48

accD Codon optimized DNA sequence

ATGTCGTGGATCGAGCGTATTAAATCTAACATCACCCCAACTCGTAAGGCATCCATT CCGGAAGGCGTTT GGACGAAATGTGATTCTTGCGGCCAGGTTCTGTATCGCGCCGAACTGGAACGTAACCTGG AGGTTTGTCC GAAGTGTGACCACCACATGCGTATGACCGCGCGCAATCGTCTGCATAGCCTGCTGGATGA GGGCAGCCTG GTCGAACTGGGTTCCGAGCTGGAGCCGAAAGATGTTCTGAAATTCCGTGATTCTAAAAAG TATAAAGACC GTCTGGCGTCTGCTCAAAAGGAAACCGGCGAGAAGGATGCACTGGTAGTTATGAAAGGCA CTCTGTATGG CATGCCGGTGGTTGCAGCGGCTTTTGAGTTCGCTTTTATGGGCGGTAGCATGGGTAGCGT AGTTGGTGCT CGTTTTGTACGTGCGGTGGAACAGGCCCTGGAGGACAACTGCCCGCTGATCTGCTTCTCC GCTTCTGGCG GTGCGCGTATGCAGGAAGCACTGATGTCCCTGATGCAGATGGCTAAAACCTCTGCTGCAC TGGCGAAAAT GCAGGAGCGTGGCCTGCCATACATCTCTGTTCTGACGGACCCGACGATGGGTGGTGTTTC CGCTTCTTTC GCGATGCTGGGCGACCTGAACATTGCCGAACCGAAGGCGCTGATCGGTTTCGCGGGTCCG CGTGTTATCG AACAGACGGTACGCGAAAAACTGCCGCCAGGTTTCCAACGCAGCGAGTTTCTGATCGAAA AAGGTGCAAT CGACATGATCGTTCGTCGCCCTGAGATGCGTCTGAAGCTGGCTTCCATCCTGGCGAAACT GATGAACCTG CCAGCCCCGAATCCGGAAGCGCCGCGTGAAGGCGTTGTTGTCCCACCAGTACCAGACCAG GAACCGGAGG CGTAA

SEQ ID NO:49

accB Codon optimized DNA sequence

ATGGACATCCGTAAAATCAAGAAACTGATCGAACTGGTTGAGGAGTCTGGCATCAGC GAGCTGGAGATTT CCGAAGGCGAAGAATCCGTCCGTATCAGCCGTGCTGCCCCGGCAGCCAGCTTCCCGGTCA TGCAACAGGC TTATGCTGCTCCGATGATGCAGCAACCGGCACAGAGCAACGCTGCGGCTCCGGCGACTGT TCCGTCTATG GAGGCTCCGGCAGCTGCAGAAATCAGCGGCCACATCGTTCGTAGCCCTATGGTGGGCACC TTCTACCGTA CCCCATCTCCGGACGCGAAAGCGTTCATCGAAGTAGGCCAGAAAGTCAACGTTGGTGACA CCCTGTGTAT CGTCGAAGCGATGAAAATGATGAACCAAATCGAGGCAGATAAATCCGGCACCGTAAAGGC GATCCTGGTT GAATCTGGTCAGCCGGTTGAATTTGATGAACCGCTGGTTGTCATCGAATAA

SEQ ID NO:50

accC Codon optimized DNA sequence

ATGCTGGATAAAATCGTTATTGCTAACCGCGGCGAGATTGCTCTGCGCATCCTGCGC GCATGCAAAGAAC TGGGTATTAAAACCGTTGCAGTTCATTCTTCCGCCGATCGCGACCTGAAGCACGTCCTGC TGGCCGATGA AACTGTATGCATCGGTCCAGCACCGTCCGTTAAATCCTACCTGAACATTCCGGCGATCAT CTCTGCCGCG GAAATCACCGGCGCTGTAGCTATCCACCCGGGTTATGGTTTTCTGTCCGAAAACGCCAAC TTTGCGGAGC AGGTTGAGCGCAGCGGCTTTATCTTCATCGGTCCGAAGGCTGAAACCATCCGTCTGATGG GCGATAAAGT GTCCGCTATCGCGGCAATGAAAAAGGCAGGTGTTCCATGCGTTCCGGGCTCTGACGGCCC GCTGGGCGAC GATATGGATAAAAACCGCGCTATCGCAAAACGTATCGGTTATCCGGTTATTATCAAGGCA TCTGGCGGTG GTGGTGGTCGTGGTATGCGCGTTGTTCGTGGTGACGCGGAACTGGCTCAGAGCATTAGCA TGACCCGTGC GGAAGCGAAAGCGGCTTTCTCTAACGATATGGTGTATATGGAAAAGTACCTGGAGAACCC GCGTCACGTG GAAATTCAGGTGCTGGCTGATGGTCAGGGTAACGCTATCTACCTGGCTGAGCGCGATTGC TCTATGCAGC GTCGTCACCAGAAGGTGGTTGAAGAAGCTCCGGCACCGGGCATCACTCCAGAGCTGCGTC GCTACATCGG CGAACGTTGTGCGAAAGCCTGCGTGGATATCGGTTACCGTGGTGCTGGCACTTTCGAATT TCTGTTTGAA AACGGTGAGTTCTACTTCATTGAAATGAACACTCGTATCCAGGTTGAACACCCTGTCACC GAAATGATTA CCGGCGTTGACCTGATTAAAGAACAACTGCGTATCGCAGCGGGTCAGCCGCTGTCTATTA AGCAGGAAGA AGTCCATGTCCGTGGTCACGCCGTCGAATGCCGTATCAACGCAGAAGACCCGAACACCTT CCTGCCGTCC CCGGGTAAAATCACTCGCTTTCACGCGCCAGGTGGTTTCGGTGTCCGTTGGGAGTCCCAC ATTTATGCTG GTTACACGGTACCGCCGTACTACGACTCCATGATCGGTAAACTGATCTGCTATGGCGAAA ACCGTGACGT AGCGATCGCGCGTATGAAGAACGCTCTGCAGGAGCTGATTATTGATGGCATCAAAACCAA TGTTGACCTG CAGATCCGCATTATGAACGACGAGAACTTCCAGCACGGCGGCACCAACATCCATTATCTG GAGAAGAAAC TGGGTCTGCAGGAAAAATAA

SEQ ID NO:51

Base vector sequence for pJB 1623- 1626 EcoRI/Notl-flanked sequence of plasmid pJB525. EcoRI and NotI sites are in lower case, DHR and UHR are in italics (in that order), and the kanamycin cassette coding sequence is underlined gaattcGGTTTTCCGTCCTGTCTTGATTTTCAAGCAAACAATGCCTCCGATTTCTAATCG GAGGCATTTG TTTTTGTTTATTGCAAAAACAAAAAATATTGTTACAAATTTTTACAGGCTATTAAGCCTA CCGTCATAAA TAATTTGCCATTTACTAGTTTTTAATTAAACCCCTATTTGTTTATTTTTCTAAATACATT CAAATATGTA TCCGCTCATGAGACAATAACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTAT GATTGAACAA GATGGCCTGCATGCTGGTTCTCCGGCTGCTTGGGTGGAACGCCTGTTTGGTTACGACTGG GCTCAGCTGA CTATTGGCTGTAGCGATGCAGCGGTTTTCCGTCTGTCTGCACAGGGTCGTCCGGTTCTGT TTGTGAAAAC CGACCTGTCCGGCGCACTGAACGAACTGCAGGACGAAGCGGCCCGTCTGTCCTGGCTCGC GACGACTGGT GTTCCGTGCGCGGCAGTTCTGGACGTAGTTACTGAAGCCGGTCGCGATTGGCTGCTGCTG GGTGAAGTTC CGGGTCAGGATCTGCTGAGCAGCCACCTCGCTCCGGCAGAAAAAGTTTCCATCATGGCGG ACGCGATGCG CCGTCTGCACACCCTGGACCCGGCAACTTGCCCGTTTGACCATCAGGCTAAACACCGTAT TGAACGTGCA CGCACTCGTATGGAAGCGGGTCTGGTTGATCAGGACGACCTGGATGAAGAGCACCAGGGC CTCGCACCGG CGGAACTGTTTGCACGTCTGAAAGCCCGCATGCCGGACGGCGAAGACCTGGTGGTAACGC ATGGCGACGC TTGTCTGCCAAACATTATGGTGGAAAACGGCCGCTTCTCTGGTTTTATTGACTGTGGCCG TCTGGGTGTA GCTGATCGCTATCAGGATATCGCCCTCGCTACCCGCGATATTGCAGAAGAACTGGGTGGT GAATGGGCTG ACCGTTTCCTGGTGCTGTACGGTATCGCAGCGCCGGATTCTCAGCGCATTGCCTTCTACC GTCTGCTGGA TGAGTTCTTCTAAGGCGCGCC TGATCAGTTGGTGCTGCATTAGCTAAGAAGGTCAGGAGATATTATTCGA CATCTAGCTGACGGCCATTGCGATCATAAACGAGGATATCCCACTGGCCATTTTCAGCGG CTTCAAAGGC AATTTTAGACCCATCAGCACTAATGGTTGGATTACGCACTTCTTGGTTTAAGTTATCGGT TAAATTCCGC TTTTGTTCAAACTCGCGATCATAGAGATAAATATCAGATTCGCCGCGACGATTGACCGCA AAGACAATGT AGCGACCATCTTCAGAAACGGCAGGATGGGAGGCAATTTCATTTAGGGTATTGAGGCCCG GTAACAGAAT CGTTTGCCTGGTGCTGGTATCAAATAGATAGATATCCTGGGAACCATTGCGGTCTGAGGC AAAAACGAGG TAGGGTTCGGCGATCGCCGGGTCAAATTCGAGGGCCCGACTATTTAAACTGCGGCCACCG GGATCAACGG GAAAATTGACAATGCGCGGATAACCAACGCAGCTCTGGAGCAGCAAACCGAGGCTACCGA GGAAAAAACT GCGTAGAAAAGAAACATAGCGCATAGGTCAAAGGGAAATCAAAGGGCGGGCGATCGCCAA TTTTTCTATA ATATTGTCCTAACAGCACACTAAAACAGAGCCATGCTAGCAAAAATTTGGAGTGCCACCA TTGTCGGGGT CGATGCCCTCAGGGTCGGGGTGGAAGTGGATATTTCCGGCGGCTTACCGAAAATGATGGT GGTCGGACTG CGGCCGGCCAAAATGAAGTGAAGTTCCTATACTTTCTAGAGAATAGGAACTTCTATAGTG AGTCGAATAA GGGCGACACAAAATTTATTCTAAATGCATAATAAATACTGATAACATCTTATAGTTTGTA TTATATTTTG TATTATCGTTGACATGTATAATTTTGATATCAAAAACTGATTTTCCCTTTATTATTTTCG AGATTTATTT TCTTAATTCTCTTTAACAAACTAGAAATATTGTATATACAAAAAATCATAAATAATAGAT GAATAGTTTA ATTATAGGTGTTCATCAATCGAAAAAGCAACGTATCTTATTTAAAGTGCGTTGCTTTTTT CTCATTTATA AGGTTAAATAATTCTCATATATCAAGCAAAGTGACAGGCGCCCTTAAATATTCTGACAAA TGCTCTTTCC CTAAACTCCCCCCATAAAAAAACCCGCCGAAGCGGGTTTTTACGTTATTTGCGGATTAAC GATTACTCGT TATCAGAACCGCCCAGGGGGCCCGAGCTTAAGACTGGCCGTCGTTTTACAACACAGAAAG AGTTTGTAGA AACGCAAAAAGGCCATCCGTCAGGGGCCTTCTGCTTAGTTTGATGCCTGGCAGTTCCCTA CTCTCGCCTT CCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCGAGCGGTATCAG CTCACTCAAA GGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAA AGGCCAGCAA AAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCT GACGAGCATC ACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGG CGTTTCCCCC TGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGC CTTTCTCCCT TCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTC GTTCGCTCCA AGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACT ATCGTCTTGA GTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAG CAGAGCGAGG TATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGGCTAACTACGGCTACACTAGAAGA ACAGTATTTG GTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCG GCAAACAAAC CACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGG ATCTCAAGAA GATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGACGCGCGCGTAACTCAC GTTAAGGGAT TTTGGTCATGAGCTTGCGCCGTCCCGTCAAGTCAGCGTAATGCTCTGCTTTTAGAAAAAC TCATCGAGCA TCAAATGAAACTGCAATTTATTCATATCAGGATTATCAATACCATATTTTTGAAAAAGCC GTTTCTGTAA TGAAGGAGAAAACTCACCGAGGCAGTTCCATAGGATGGCAAGATCCTGGTATCGGTCTGC GATTCCGACT CGTCCAACATCAATACAACCTATTAATTTCCCCTCGTCAAAAATAAGGTTATCAAGTGAG AAATCACCAT GAGTGACGACTGAATCCGGTGAGAATGGCAAAAGTTTATGCATTTCTTTCCAGACTTGTT CAACAGGCCA GCCATTACGCTCGTCATCAAAATCACTCGCATCAACCAAACCGTTATTCATTCGTGATTG CGCCTGAGCG AGGCGAAATACGCGATCGCTGTTAAAAGGACAATTACAAACAGGAATCGAGTGCAACCGG CGCAGGAACA CTGCCAGCGCATCAACAATATTTTCACCTGAATCAGGATATTCTTCTAATACCTGGAACG CTGTTTTTCC GGGGATCGCAGTGGTGAGTAACCATGCATCATCAGGAGTACGGATAAAATGCTTGATGGT CGGAAGTGGC ATAAATTCCGTCAGCCAGTTTAGTCTGACCATCTCATCTGTAACATCATTGGCAACGCTA CCTTTGCCAT GTTTCAGAAACAACTCTGGCGCATCGGGCTTCCCATACAAGCGATAGATTGTCGCACCTG ATTGCCCGAC ATTATCGCGAGCCCATTTATACCCATATAAATCAGCATCCATGTTGGAATTTAATCGCGG CCTCGACGTT TCCCGTTGAATATGGCTCATATTCTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGT TATTGTCTCA TGAGCGGATACATATTTGAATGTATTTAGAAAAATAAACAAATAGGGGTCAGTGTTACAA CCAATTAACC AATTCTGAACATTATCGCGAGCCCATTTATACCTGAATATGGCTCATAACACCCCTTGTT TGCCTGGCGG CAGTAGCGCGGTGGTCCCACCTGACCCCATGCCGAACTCAGAAGTGAAACGCCGTAGCGC CGATGGTAGT GTGGGGACTCCCCATGCGAGAGTAGGGAACTGCCAGGCATCAAATAAAACGAAAGGCTCA GTCGAAAGAC TGGGCCTTTCGCCCGGGCTAATTAGGGGGTGTCGCCCTTATTCGACTCTATAGTGAAGTT CCTATTCTCT AGAAAGTATAGGAACTTCTGAAGTGGGGCCTGCAGGACAACrCGGCrrCCGAGCrrGGCr CCACCArGGr TATATCTGGAGTAACCAGAATTTCGACAACTTCGACGACTATCTCGGTGCTTTTACCTCC AACCAACGCA AAAACATTAAGCGCGAACGCAAAGCCGTTGACAAAGCAGGTTTATCCCTCAAGATGATGA CCGGGGACGA AATTCCCGCCCATTACTTCCCACTCATTTATCGTTTCTATAGCAGCACCTGCGACAAATT TTTTTGGGGG AGrAAArArCrCCGGAAACCCTTTTTTGAAACCCTAGAATCTACCTATCGCCATCGCGTT GTTCTGGCCG CCGCTTACACGCCAGAAGATGACAAACATCCCGTCGGTTTATCTTTTTGTATCCGTAAAG ATGATTATCT TTATGGTCGTTATTGGGGGGCCTTTGATGAATATGACTGTCTCCATTTTGAAGCCTGCTA TTACAAACCG ATCCAATGGGCAATCGAGCAGGGAATTACGATGTACGATCCGGGCGCTGGCGGAAAACAT AAGCGACGAC GTGGTTTCCCGGCAACCCCAAACTATAGCCTCCACCGTTTTTATCAACCCCGCATGGGCC AAGTTTTAGA CGCTTATATTGATGAAATTAATGCCATGGAGCAACAGGAAATTGAAGCGATCAATGCGGA TATTCCCTTT AAACGGCAGGAAGTTCAATTGAAAATTTCCTAGCTTCACTAGCCAAAAGCGCGATCGCCC ACCGACCATC CTCCCTTGGGGGAGATgcggccgc

SEQ ID NO: 52

Underlined (2) Upstream, downstream homology regions targeted to the locus between base pairs 7,676 and 7,677 of pAQ3 ( CBI accession # NC_010477)

Italicized P(nir07) promoter

Bold (3) adm, aar, aadA coding open reading frames (ORFs), in that order

Lowercase E. coli vector backbone (DNA2.0; Menlo Park, CA)

CGAGCATTTCAACGATGATGAATGGGACGGCGAAC C CAC TGAAC CCGTCGC CATTGACC CAGAACCGCGCAAAGAACGG GAAAAAATTGATCTCGATCTGGAGGATGAACCAGAGGAAAACCGCAAACCGCAAAAAATC AAAGTGAAGTTAGCCGATG GGAAAGAGCGGGAACTCGCCCATACTCAAACCACAACTTTTTGGGATGCTGATGGTAAAC CCATTTCCGCCCAAGAATT TAT CGAAAAGC TATT TGGCGAC C TGC CCGAC C TC TTCAAGGATGAAGCCGAAC TACGCAC CAT C TGGGGGAAAC C CGAT ACCCGTAAATCGTTCCTGACCGGACTCGCGGAAAAAGGCTACGGTGACACCCAACTGAAG GCGATCGCACGCATTGCCG AAGCGGAAAAAAGTGATGT C TATGATGT C C TGAC TTGGGTTGCC TACAACAC CAAAC CCATTAGCAGAGAAGAGCGAGT AATTAAGCATCGAGAT CTGATT TTC T CGAAGTACAC CGGAAAGCAGCAAGAATT T T TAGATT T TGT C C TAGACCAATAC ATTCGAGAAGGAGTGGAGGAAC T TGATCGGGGGAAAC TGC C TAC C C T CATCGAAAT CAAATAC CAAAC CGTTAATGAAG GTTTAGTGATCTTGGGTCAGGATATCGGTCAAGTATTCGCAGATTTTCAGGCGGATTTAT ATACCGAAGATGTGGCATA AAAAAGGACGGCGATCGCCGGGGGCGTTGCCTGCCTTGAGCGGCC GCTTGTAGCAATTGCTACTAAAAACTGCGATCGC TGCTGAAATGAGCTGGAATTTTGTCCCTCTCAGCTCAAAAAGTATCAATGATTACTTAAT GTTTGTTCTGCGCAAACTT CTTGCAGAACATGCATGATTTACAAAAAGTTGTAGTTTCTGTTACCAATTGCGAATCGAG AACTGCCTAATCTGCCGAG TATGCGArCCrrrAGCAGGAGGAAAACCArATGCAAGAACTGGCCCTGAGAAGCGAGCTG GACTTCAATAGCGAAACCT ATAAAGATGCGTATAGCCGTATTAACGCCATTGTGATCGAAGGCGAGCAAGAAGCATACC AAAACTACCTGGACATGGC GCAACTGCTGCCGGAGGACGAGGCTGAGCTGATTCGTTTGAGCAAGATGGAGAACCGTCA CAAAAAGGGTTTTCAAGCG TGCGGCAAGAACCTCAATGTGACTCCGGATATGGATTATGCACAGCAGTTCTTTGCGGAG CTGCACGGCAATTTTCAGA AGGCTAAAGCCGAGGGTAAGATTGTTACCTGCCTGCTCATCCAAAGCCTGATCATCGAGG CGTTTGCGATTGCAGCCTA CAACATTTACATTCCAGTGGCTGATCCGTTTGCACGTAAAATCACCGAGGGTGTCGTCAA GGATGAGTATACCCACCTG AATTTCGGCGAAGTTTGGTTGAAGGAACATTTTGAAGCAAGCAAGGCGGAGTTGGAGGAC GCCAACAAAGAGAACTTAC CGCTGGTCTGGCAGATGTTGAACCAGGTCGAAAAGGATGCCGAAGTGCTGGGTATGGAGA AAGAGGCTCTGGTGGAGGA CTTTATGATTAGCTATGGTGAGGCACTGAGCAACATCGGCTTTTCTACGAGAGAAATCAT GAAGATGAGCGCGTACGGT CTGCGTGCAGCATAACTCGAGTATAAGTAGGAGATAAAAACATGTTCGGCTTGATTGGCC ACCTGACTAGCCTGGAGCA CGCGCACAGCGTGGCGGATGCGTTTGGCTACGGCCCGTACGCAACCCAGGGTTTAGACCT GTGGTGTAGCGCACCGCCA CAGTTTGTTGAGCACTTTCATGTCACGAGCATTACGGGCCAAACGATTGAGGGTAAATAC ATTGAGAGCGCGTTTTTGC CGGAGATGTTGATTAAACGTCGTATCAAAGCAGCGATCCGTAAGATTCTGAACGCGATGG CATTTGCGCAGAAGAACAA TTTGAACATTACCGCGCTGGGTGGCTTCAGCAGCATTATCTTTGAGGAGTTTAATCTGAA GGAGAATCGTCAGGTTCGC AATGTGAGCTTGGAGTTTGACCGCTTCACCACCGGTAACACCCATACTGCTTACATTATC TGCCGTCAAGTCGAACAGG CGAGCGCGAAACTGGGTATCGACCTGTCCCAAGCGACCGTGGCGATTTGCGGTGCCACGG GTGATATTGGCAGCGCAGT TTGTCGCTGGCTGGATCGCAAAACCGACACCCAAGAGCTGTTCCTGATTGCGCGCAATAA GGAACGCTTGCAACGTCTG CAAGATGAACTGGGTCGCGGCAAGATCATGGGCCTGGAAGAGGCACTGCCGGAAGCAGAC ATTATTGTGTGGGTTGCCT CCATGCCGAAGGGCGTGGAGATTAATGCGGAAACCCTGAAGAAGCCGTGTCTGATCATTG ACGGTGGCTACCCGAAGAA TCTGGACACGAAAATCAAGCATCCGGACGTGCACATTTTGAAGGGTGGTATTGTAGAGCA TTCGTTGGACATTGATTGG AAAATCATGGAAACCGTGAACATGGACGTTCCGAGCCGTCAAATGTTTGCGTGCTTCGCA GAGGCGATCTTGCTGGAGT TCGAGCAATGGCACACGAACTTCTCGTGGGGTCGCAATCAAATCACGGTGACGAAGATGG AACAGATTGGTGAGGCGAG CGTGAAGCATGGTCTGCAACCGCTGCTGTCCTGGTAAGAATTCGGTTTTCCGTCCTGTC TTGATT TTCAAGCAAACAAT GCCTCCGATTTCTAATCGGAGGCATTTGTTTTTGTTTATTGCAAAAACAAAAAATATTGT TACAAATTTTTACAGGCTA TTAAGCCTACCGTCATAAATAATTTGCCATTTACTAGTTTTTAATTAACCAGAACCTTGA CCGAACGCAGCGGTGGTAA CGGCGCAGTGGCGGTTTTCATGGCTTGTTATGACTGTTTTTTTGGGGTACAGTCTATGCC TCGGGCATCCAAGCAGCAA GCGCGTTACGCCGTGGGTCGATGTTTGATGTTATGGAGCAGCAACGATGTTACGCAGCAG GGCAGTCGCCCTAAAACAA AGTTAAACATCATGAGGGAAGCGGTGATCGCCGAAGTATCGACTCAACTATCAGAGGTAG TTGGCGTCATCGAGCGCCA TCTCGAACCGACGTTGCTGGCCGTACATTTGTACGGCTCCGCAGTGGATGGCGGCCTGAA GCCACACAGTGATATTGAT TTGCTGGTTACGGTGACCGTAAGGCTTGATGAAACAACGCGGCGAGCTTTGATCAACGAC CTTTTGGAAACTTCGGCTT CCCCTGGAGAGAGCGAGATTCTCCGCGCTGTAGAAGTCACCATTGTTGTGCACGACGACA TCATTCCGTGGCGTTATCC AGCTAAGCGCGAACTGCAATTTGGAGAATGGCAGCGCAATGACATTCTTGCAGGTATCTT CGAGCCAGCCACGATCGAC ATTGATCTGGCTATCTTGCTGACAAAAGCAAGAGAACATAGCGTTGCCTTGGTAGGTCCA GCGGCGGAGGAACTCTTTG ATCCGGTTCCTGAACAGGATCTATTTGAGGCGCTAAATGAAACCTTAACGCTATGGAACT CGCCGCCCGACTGGGCTGG CGATGAGCGAAATGTAGTGCTTACGTTGTCCCGCATTTGGTACAGCGCAGTAACCGGCAA AATCGCGCCGAAGGATGTC GCTGCCGACTGGGCAATGGAGCGCCTGCCGGCCCAGTATCAGCCCGTCATACTTGAAGCT AGACAGGCTTATCTTGGAC AAGAAGAAGATCGCTTGGCCTCGCGCGCAGATCAGTTGGAAGAATTTGTCCACTACGTGA AAGGCGAGATCACCAAGGT AGTCGGCAAATAATGTCTAACAATTCGTTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAA CTCAAGCGTTAGATGCACT AAGCACATAATTGCTCACAGCCAAACTATCAGGTCAAGTCTGCTTTTATTATTTTTAAGC GTGCATAATAAGCCCTACA CAAATTGGGAGATATAT CATGAGGCGCGC CACGAGAAAGAGTTATGACAAATTAAAATTC TGAC TC T TAGATTATTTC C AGAGAGGCTGATTTTCCCAATCTTTGGGAAAGCCTAAGTTTTTAGATTCTATTTCTGGAT ACATCTCAAAAGTTCTTTT TAAATGCTGTGCAAAATTATGCTCTGGTTTAATTCTGTCTAAGAGATACTGAATACAACA TAAGCCAGTGAAAATTTTA CGGCTGTTTCTTTGATTAATATCCTCCAATACTTCTCTAGAGAGCCATTTTCCTTTTAAC CTATCAGGCAATTTAGGTG ATTCTCCTAGCTGTATATTCCAGAGCCTTGAATGATGAGCGCAAATATTTCTAATATGCG ACAAAGACCGTAACCAAGA TATAAAAAACTTGTTAGGTAATTGGAAATGAGTATGTATTTTTTGTCGTGTCTTAGATGG TAATAAATTTGTGTACATT CTAGATAACTGCCCAAAGGCGATTATCTCCAAAGCCATATATGACGGCGGTAGTAGAGGA TTTGTGTACTTGTTTCGAT AATGCCCGATAAATTCTTCTACTTTTTTAGATTGGCAATATTGAGTAATCGAATCGATTA ATTCTTGATGCTTCCCAGT GTCATAAAATAAAC T T T TATTCAGATAC CAATGAGGAT CATAAT CATGGGAGTAGTGATAAAT CATT TGAGTTC TGAC T GCTACTTCTATCGACTCCGTAGCATTAAAAATAAGCATTCTCAAGGATTTATCAAACTTG TATAGATTTggccggcccg tcaaaagggcgacaccccataattagcccgggcgaaaggcccagtctttcgactgagcct ttcgttttatttgatgcct ggcagttccctactctcgcatggggagtccccacactaccatcggcgctacggcgtttca cttctgagttcggcatggg gtcaggtgggaccaccgcgctactgccgccaggcaaacaaggggtgttatgagccatatt caggtataaatgggctcgc gataatgttcagaattggttaattggttgtaacactgacccctatttgtttatttttcta aatacattcaaatatgtat ccgctcatgagacaataaccctgataaatgcttcaataatattgaaaaaggaagaatatg agtattcaacatttccgtg tcgcccttattcccttttttgcggcattttgccttcctgtttttgctcacccagaaacgc tggtgaaagtaaaagatgc tgaagatcagttgggtgcacgagtgggttacatcgaactggatctcaacagcggtaagat ccttgagagttttcgcccc gaagaacgttttccaatgatgagcacttttaaagttctgctatgtggcgcggtattatcc cgtattgacgccgggcaag agcaactcggtcgccgcatacactattctcagaatgacttggttgagtactcaccagtca cagaaaagcatcttacgga tggcatgacagtaagagaattatgcagtgctgccataaccatgagtgataacactgcggc caacttacttctgacaacg atcggaggaccgaaggagctaaccgcttttttgcacaacatgggggatcatgtaactcgc cttgatcgttgggaaccgg agctgaatgaagccataccaaacgacgagcgtgacaccacgatgcctgtagcgatggcaa caacgttgcgcaaactatt aactggcgaactacttactctagcttcccggcaacaattaatagactggatggaggcgga taaagttgcaggaccactt ctgcgctcggcccttccggctggctggtttattgctgataaatccggagccggtgagcgt ggttctcgcggtatcatcg cagcgctggggccagatggtaagccctcccgtatcgtagttatctacacgacggggagtc aggcaactatggatgaacg aaatagacagatcgctgagataggtgcctcactgattaagcattggtaaaagcagagcat tacgctgacttgacgggac ggcgcaagctcatgaccaaaatcccttaacgtgagttacgcgcgcgtcgttccactgagc gtcagaccccgtagaaaag atcaaaggatcttcttgagatcctttttttc tgcgcgtaatctgctgcttgcaaacaaaaaaaccaccgctaccagcgg tggtttgtttgccggatcaagagctaccaactctttttc cgaaggtaactggcttcagcagagcgcagataccaaatac tgttcttctagtgtagccgtagttagcccaccacttcaagaactctgtagcaccgcctac atacctcgctctgctaatc ctgttaccagtggctgctgccagtggcgataagtcgtgtcttaccgggttggactcaaga cgatagttaccggataagg cgcagcggtcgggctgaacggggggttcgtgcacacagcccagcttggagcgaacgacct acaccgaactgagatacct acagcgtgagctatgagaaagcgccacgcttcccgaagggagaaaggcggacaggtatcc ggtaagcggcagggtcgga acaggagagcgcacgagggagcttccagggggaaacgcctggtatctttatagtcctgtc gggtttcgccacctctgac ttgagcgtcgatttttgtgatgctcgtcaggggggcggagcctatggaaaaacgccagca acgcggcctttttacggtt cctggccttttgctggccttttgctcacatgttctttcctgcgttatcccctgattctgt ggataaccgtattaccgcc tttgagtgagctgataccgctcgccgcagccgaacgaccgagcgcagcgagtcagtgagc gaggaagcggaaggcgaga gtagggaactgccaggcatcaaactaagcagaaggcccctgacggatggcctttttgcgt ttctacaaactctttctgt gttgtaaaacgacggccagtcttaagctcgggccccctgggcggttctgataacgagtaa tcgttaatccgcaaataac gtaaaaacccgcttcggcgggtttttttatggggggagtttagggaaagagcatttgtca gaatatttaagggcgcctg tcactttgcttgatatatgagaattatttaaccttataaatgagaaaaaagcaacgcact ttaaataagatacgttgct ttttcgattgatgaacacctataattaaactattcatctattatttatgattttttgtat atacaatatttctagtttg ttaaagagaattaagaaaataaatctcgaaaataataaagggaaaatcagtttttgatat caaaattatacatgtcaac gataatacaaaatataatacaaactataagatgttatcagtatttattatgcatttagaa taaattttgtgtcgccctt cgctgaacctgcagg

SEQ ID NO: 53

Adm amino acid sequence encoded by JB 1331

MQELALRSELDFNSETYKDAYSRINAIVIEGEQEAYQNYLDMAQLLPEDEAELIRLS KMENRHKKGFQACGKNLNVTPD MDYAQQFFAELHGNFQKAKAEGKIVTCLLIQSLI IEAFAIAAYNI YIPVADPFARKITEGWKDEYTHLNFGEVWLKEH FEASKAELEDANKENLPLVWQMLNQVEKDAEVLGMEKEALVEDFMI S YGEALSNIGFSTREIMKMSAYGLRAA

SEQ ID NO: 54

Aar amino acid sequence encoded by pJB1331

MFGLIGHLTSLEHAHSVADAFGYGPYATQGLDLWCSAPPQFVEHFHVTSITGQTIEG KYIESAFLPEMLIKRRIKAAIR KILNAMAFAQKNNLNITALGGFSSIIFEEFNLKENRQVRNVSLEFDRFTTGNTHTAYIIC RQVEQASAKLGIDLSQATV AICGATGDIGSAVCRWLDRKTDTQELFLIARNKERLQRLQDELGRGKIMGLEEALPEADI IVWVASMPKGVEINAETLK KPCLI IDGGYPKNLDTKIKHPDVHILKGGIVEHSLDIDWKIMETVNMDVPSRQMFACFAEAILLE FEQWHTNFSWGRNQ ITVTKMEQIGEASVKHGLQPLLSW

SEQ ID NO:55

Underlined (2) Upstream, downstream homology regions targeted to the locus between base pairs 2,299,863 and 2,299,864 of the JCC138 chromosome. T he synthetically generated upstream homology region contains three silent single-nucleotide changes, and the downstream homology region, also synthetically generated, two single-nucleotide changes, with respect to the wild-type JCC138 genomic sequence. T his was done to eliminate certain natural restriction sites so as to facilitate DNA sequence assembly by restriction digestion/ligation.

Bold (2) Bidirectional rho-independent transcriptional terminators BBa BOOl l

(with an A-to-G single-nucleotide change) and BBa_B1002, in that order. Both sequences were derived from the Registry of Standard Biological Parts (http://partsregistry.org/). T hese sequences were incorporated to transcriptionally insulate the integrated divergent omp-?\-V2-ybhGFSR cassette.

Lowercase E. coli vector backbone (DNA2.0; Menlo Park, CA)

GTGGGTGCTGCAGTAGTCGGGCCTCGCCTCGGCAAATACCGTGATGGTCAAGTCCACGCC ATTCCTGGTCACAACATGA GTATTGCGACCTTAGGCTGTCTAATTCTTTGGATTGGCTGGTTTGGTTTTAACCCCGGTT CTCAATTGGCAGCAGATGC TGCGGTGCCTTACATCGCAATCACTACAAACCTTTCGGCTGCAGCTGGGGGAATCACCGC AACCGCAACCTCTTGGATC AAAGATGGGAAGCCAGACCTGTCTATGATTATTAACGGTATTTTGGCTGGTCTCGTTGGG ATTACAGCCGGTTGTGATG GCGTCAGTTTCTTTTCTGCTGTGATCATCGGGGCGATCGCCGGTGTACTCGTCGTCTTCT CTGTGGCCTTCTTCGATGC TATTAAAATCGATGACCCCGTTGGTGCGACCTCTGTGCACCTCGTCTGCGGTATCTGGGG AACTCTTGCCGTTGGTCTG TTCAAGATGGATGGGGGTTTATTCACTGGCGGTGGCATCCAACAGCTGATTGCCCAAATC GTCGGAATCCTTTCCATTG GTGGCTTTACCGTCGCCTTTAGCTTTATTGTTTGGTATGCCCTATCGGCAGTCCTTGGTG GCATTCGCGTCGAAAAAGA CGAGGAACTCCGGGGTCTCGACATTGGTGAGCACGGCATGGAAGCTTACAGCGGCTTTGT TAAAGAGTCCGATGTTATC TTCCGAGGGACTGCCACTGGTTCCGAAACCGAAGGATAAGCGGCCGCGGTACTGCCCTCG ATCTGTAAGAGAATATAAA AAGCCAGATTATTAATCCGGCTTTTTTGTTATTTCTATACATCTTATATCCGTGGGATCC -GAGCTCTCAGGTATCCGG TACGC CGCCGCAAAAAACCCCGCTTCGGCGGGGTTTTTTCGCGGCGCGC CATC C T C C CAGGAAAT C C T TAAAACAAT C T AAAGAAATTTTTCCTAACCTTCCTTACCCAAGGGAGGTTTTTTATGTGAGTTCACATTTT GTTACGTTACCCAATCAAT ACT TGAGC CGC T CAAAAAGT C TGAC C TAGAGCAGAAAGT C C CTGAGTATAT CGAC T CATTAAT CCGGTCTTTCCGCTTG GTTTCTTGAGTTGATTTTCTGCGAAATTTTGGAAATTCAGAGATGTAACCTTAGGGGGAG TCCACTTAAAAACGGCTCT GCTCAACCTTGCAAATGCCCTACTCTTCTTCTGTCTAGCCCAAGCACTCCCTGAGAAAAT TAGCGGCGATCGCCTATAA ACATGAAGTTT TATGACAGAT CATT T TACAAGATGTAATGTTTAAATGC CGGCAGACGTTGTATAACATT TACC TAAGA TTAAGAGTCACTCGCAGTACTCCTTAGAAACCCCATAGGTTCCAAGGAACTAGCATGAAC TTTATCTGGCAACTTTAAG AAT C TGAGAAATTCAATGAATGTAAAGTTTC T TAAATGC CAAGGTGAAAAACAAGCAAAAATAGCTGACAC T CT TAATT GGCTTTGGGGATTAAGTTTCCAACTCGAAAACAAAACCTTTTATCGACTCTAGGATTTTG TTTTCAGCAAGAGAGCCCC TCAGCACTTGCTTCACTCTTGTTAGTAAGCAAACCGCACAAAATAAATCCCACTCATCAA AATATAAGTAGGAGATAAA AACATGTTTGggccggccaaaagagtcgaataagggcgacacaaaatttattctaaatgc ataataaatactgataaca tcttatagtttgtattatattttgtattatcgttgacatgtataattttgatatcaaaaa ctgattttccctttattat tttcgagatttattttcttaattctctttaacaaactagaaatattgtatatacaaaaaa tcataaataatagatgaat agtttaattataggtgttcatcaatcgaaaaagcaacgtatcttatttaaagtgcgttgc ttttttc tcatttataagg ttaaataattctcatatatcaagcaaagtgacaggcgcccttaaatattctgacaaatgc tctttccctaaactccccc cataaaaaaacccgccgaagcgggtttttacgttatttgcggattaacgattactcgtta tcagaaccgcccagggggc ccgagcttaagactggccgtcgttttacaacacagaaagagtttgtagaaacgcaaaaag gccatccgtcaggggcctt ctgcttagtttgatgcctggcagttccctactctcgccttccgcttcctcgctcactgac tcgctgcgctcggtcgttc ggctgcggcgagcggtatcagctcactcaaaggcggtaatacggttatccacagaatcag gggataacgcaggaaagaa catgtgagcaaaaggccagcaaaaggccaggaaccgtaaaaaggccgcgttgctggcgtt tttc cataggctccgcccc cctgacgagcatcacaaaaatcgacgctcaagtcagaggtggcgaaacccgacaggacta taaagataccaggcgtttc cccctggaagctccctcgtgcgctctcctgttccgaccctgccgcttaccggatacctgt ccgcctttctcccttcggg aagcgtggcgctttctcatagctcacgctgtaggtatctcagttcggtgtaggtcgttcg ctccaagctgggctgtgtg cacgaaccccccgttcagcccgaccgctgcgccttatccggtaactatcgtcttgagtcc aacccggtaagacacgact tatcgccactggcagcagccactggtaacaggattagcagagcgaggtatgtaggcggtg ctacagagttcttgaagtg gtgggctaactacggctacactagaagaacagtatttggtatctgcgctctgctgaagcc agttaccttcggaaaaaga gttggtagctcttgatccggcaaacaaaccaccgctggtagcggtggtttttttgtttgc aagcagcagattacgcgca gaaaaaaaggatctcaagaagatcctttgatcttttctacggggtctgacgctcagtgga acgacgcgcgcgtaactca cgttaagggattttggtcatgagcttgcgccgtcccgtcaagtcagcgtaatgctctgct taggtggcggtacttgggt cgatatcaaagtgcatcacttcttcccgtatgcccaactttgtatagagagccactgcgg gatcgtcaccgtaatctgc ttgcacgtagatcacataagcaccaagcgcgttggcctcatgcttgaggagattgatgag cgcggtggcaatgccctgc ctccggtgctcgccggagactgcgagatcatagatatagatctcactacgcggctgctca aacttgggcagaacgtaag ccgcgagagcgccaacaaccgcttcttggtcgaaggcagcaagcgcgatgaatgtcttac tacggagcaagttcccgag gtaatcggagtccggctgatgttgggagtaggtggctacgtcaccgaactcacgaccgaa aagatcaagagcagcccgc atggatttgacttggtcagggccgagcctacatgtgcgaatgatgcccatacttgagcca cctaactttgttttagggc gactgccctgctgcgtaacatcgttgctgctccataacatcaaacatcgacccacggcgt aacgcgcttgctgcttgga tgcccgaggcatagactgtacaaaaaaacagtcataacaagccatgaaaaccgccactgc gccgttaccaccgctgcgt tcggtcaaggttctggaccagttgcgtgagcgcatttttttttc ctcctcggcgtttacgccccgccctgccactcatc gcagtactgttgtaattcattaagcattctgccgacatggaagccatcacagacggcatg atgaacctgaatcgccagc ggcatcagcaccttgtcgccttgcgtataatatttgcccatagtgaaaacgggggcgaag aagttgtccatattggcca cgtttaaatcaaaactggtgaaactcacccagggattggcgctgacgaaaaacatattct caataaaccctttagggaa ataggccaggttttcaccgtaacacgccacatcttgcgaatatatgtgtagaaactgccg gaaatcgtcgtgtgcactc atggaaaacggtgtaacaagggtgaacactatcccatatcaccagctcaccgtctttcat tgccatacggaactccgga tgagcattcatcaggcgggcaagaatgtgaataaaggccggataaaacttgtgcttattt ttctttacggtctttaaaa aggccgtaatatccagctgaacggtctggttataggtacattgagcaactgactgaaatg cctcaaaatgttctttacg atgccattgggatatatcaacggtggtatatccagtgatttttttc tccatttttttttc ctcctttagaaaaactcat cgagcatcaaatgaaactgcaatttattcatatcaggattatcaataccatatttttgaa aaagccgtttctgtaatga aggagaaaactcaccgaggcagttccataggatggcaagatcctggtatcggtctgcgat tccgactcgtccaacatca atacaacctattaatttcccctcgtcaaaaataaggttatcaagtgagaaatcaccatga gtgacgactgaatccggtg agaatggcaaaagtttatgcatttctttccagacttgttcaacaggccagccattacgct cgtcatcaaaatcactcgc atcaaccaaaccgttatteattcgtgattgcgcctgagcgaggcgaaatacgcgatcgct gttaaaaggacaattacaa acaggtgcacactgccagcgcatcaacaatattttcacctgaatcaggatattcttctaa tacctggaacgctgttttt ccggggatcgcagtggtgagtaaccatgcatcatcaggagtacggataaaatgcttgatg gtcggaagtggcataaatt ccgtcagccagtttagtctgaccatctcatctgtaacatcattggcaacgctacctttgc catgtttcagaaacaactc tggcgcatcgggcttcccatacaagcgatagattgtcgcacctgattgcccgacattatc gcgagcccatttataccca tataaatcagcatccatgttggaatttaatcgcggcctcgacgtttcccgttgaatatgg ctcatttttttttc ctcct ttaccaatgcttaatcagtgaggcacctatctcagcgatctgtctatttcgttcatccat agttgcctgactccccgtc gtgtagataactacgatacgggagggcttaccatctggccccagcgctgcgatgataccg cgagaaccacgctcaccgg ctccggatttatcagcaataaaccagccagccggaagggccgagcgcagaagtggtcctg caactttatccgcctccat ccagtctattaattgttgccgggaagctagagtaagtagttcgccagttaatagtttgcg caacgttgttgccatcgct acaggcatcgtggtgtcacgctcgtcgtttggtatggcttcattcagctccggttcccaa cgatcaaggcgagttacat gatcccccatgttgtgcaaaaaagcggttagctccttcggtcctccgatcgttgtcagaa gtaagttggccgcagtgtt atcactcatggttatggcagcactgcataattctcttactgtcatgccatccgtaagatg cttttctgtgactggtgag tactcaaccaagtcattctgagaatagtgtatgcggcgaccgagttgctcttgcccggcg tcaatacgggataataccg cgccacatagcagaactttaaaagtgctcatcattggaaaacgttcttcggggcgaaaac tctcaaggatcttaccgct gttgagatccagttcgatgtaacccactcgtgcacccaactgatcttcagcatcttttac tttcaccagcgtttctggg tgagcaaaaacaggaaggcaaaatgccgcaaaaaagggaataagggcgacacggaaatgt tgaatactcatattcttcc tttttcaatattattgaagcatttatcagggttattgtctcatgagcggatacatatttg aatgtatttagaaaaataa acaaataggggtcagtgttacaaccaattaaccaattctgaacattatcgcgagcccatt tatacctgaatatggctca taacaccccttgtttgcctggcggcagtagcgcggtggtcccacctgaccccatgccgaa ctcagaagtgaaacgccgt agcgccgatggtagtgtggggactccccatgcgagagtagggaactgccaggcatcaaat aaaacgaaaggctcagtcg aaagactgggcctttcgcccgggctaattgaggggtgtcgcccttattcgactcggggcc tgcagg

SEQ ID NO:56

T he DNA sequence of A0585_ProNterm_tolC (native E. coli tolC with its encoded signal sequence replaced by the codon-optimized signal sequence and N-terminal proline-rich region of SYNPCC7002_A0585), integrated at the amtl -downstream locus, is:

ATGTTTGCCTTCCGTGACTTCCTGACGTTTAGCACGGGCGGTTTGGTCGTGTTGAGC GGTGGCGGTGTTGCGATTGCAC AAACCACCCCTCCGCAGATCGCCACTCCGGAGCCGTTTATCGGTCAGACGCCGCAGGCAC CGCTGCCACCGCTGGCTGC GCCGTCCGTTGAAAGCCTGGACACCGCGGCTTTCCTGCCGAGCCTGGGCGGTCTGTCCCA ACCGACCACCCTGGCCGCA CTGCCTTTGCCGAGCCCGGAGTTGAACCTGTCGCCTACGGCGCATCTGGGTACCATCCAG GCGCCAAGCCCGCTGTTGG CGCAAGTGGATAC CAC TGCGAC C C CGAGCC CGAC CAC CGCGATTGACGT CAC C C TGC CGACGGCGGAAACGAAT CAAAC CATTC CGC TGGT C CAGC CGC TGC CGC CAGAC CGCGT CAT CAATGAGGAC CTGAAC CAACTGC TGGAGC CGATTGATAAC C CGGCAGTTACGGTGCCGCAGGAAGCGAC CGCCGTTACGAC CGATAATGTTGTGGATGAGAACCTGATGCAAGTT TAT C AGCAAGCACGCCTTAGTAACCCGGAATTGCGTAAGTCTGCCGCCGATCGTGATGCTGCCT TTGAAAAAATTAATGAAGC GCGCAGTCCATTACTGCCACAGCTAGGTTTAGGTGCAGATTACACCTATAGCAACGGCTA CCGCGACGCGAACGGCATC AACTCTAACGCGACCAGTGCGTCCTTGCAGTTAACTCAATCCATTTTTGATATGTCGAAA TGGCGTGCGTTAACGCTGC AGGAAAAAGCAGCAGGGATTCAGGACGT CACGTAT CAGAC CGAT CAGCAAAC C T TGATCC T CAACAC CGCGACCGC T TA TTTCAACGTGTTGAATGCTATTGACGTTCTTTCCTATACACAGGCACAAAAAGAAGCGAT CTACCGTCAATTAGATCAA ACCACCCAACGTTTTAACGTGGGCCTGGTAGCGATCACCGACGTGCAGAACGCCCGCGCA CAGTACGATACCGTGCTGG CGAACGAAGTGACCGCACGTAATAACCTTGATAACGCGGTAGAGCAGCTGCGCCAGATCA CCGGTAACTAC TAT CCGGA ACTGGC TGCGCTGAATGTCGAAAACTTTAAAACCGACAAACCACAGCCGGTTAACGCGCTGCTGAA AGAAGCCGAAAAA CGCAACCTGTCGCTGTTACAGGCACGCTTGAGCCAGGACCTGGCGCGCGAGCAAATTCGC CAGGCGCAGGATGGTCACT TACCGACTCTGGATTTAACGGCTTCTACCGGGATTTCTGACACCTCTTATAGCGGTTCGA AAACCCGTGGTGCCGCTGG TAC C CAGTATGACGATAGCAATATGGGC CAGAACAAAGTTGGC C TGAGC TTC T CGC TGC CGATT TAT CAGGGCGGAATG GTTAACTCGCAGGTGAAACAGGCACAGTACAACTTTGTCGGTGC CAGCGAGCAACTGGAAAGTGCC CAT CGTAGCGTCG TGCAGAC CGTGCGTTC C TC C TTCAACAACATTAATGCAT C TAT CAGTAGCATTAACGCC TACAAACAAGC CGTAGTTTC CGC T CAAAGCT CATTAGACGCGATGGAAGCGGGC TAC TCGGTCGGTACGCGTAC CATTGTTGATGTGTTGGATGCGACC ACCACGTTGTACAACGCCAAGCAAGAGCTGGCGAATGCGCGTTATAAC TAC CTGATTAAT CAGC TGAATATTAAGTCAG CTCTGGGTACGTTGAACGAGCAGGATCTGCTGGCACTGAACAATGCGCTGAGCAAACCGG TTTCCACTAATCCGGAAAA CGTTGCACCGCAAACGCCGGAACAGAATGCTATTGCTGATGGTTATGCGCCTGATAGCCC GGCACCAGTCGTTCAGCAA ACAT C CGCACGCAC TAC CAC CAGTAACGGT CATAAC C C T TTCCGTAAC TGA

SEQ ID NO:57

T he protein sequence encoded by A0585 _ProNterm_tolC (native E. coli tolC with its encoded signal sequence replaced by the codon-optimized signal sequence and N-terminal proline-rich region of SYNPCC7002_A0585), integrated at the amtl -downstream locus, is:

MFAFRDFLTFSTGGLWLSGGGVAIAQTTPPQIATPEPFIGQTPQAPLPPLAAPSVES LDTAAFLPSLGGLSQPTTLAA LPLPSPELNLSPTAHLGTIQAPSPLLAQVDTTATPSPTTAIDVTLPTAETNQTIPLVQPL PPDRVINEDLNQLLEPIDN PAVTVPQEATAVTTDNWDENLMQVYQQARLSNPELRKSAADRDAAFEKINEARSPLLPQL GLGADYTYSNGYRDANGI NSNATSASLQLTQS IFDMSKWRALTLQEKAAGIQDVTYQTDQQTLILNTATAYFNVLNAIDVLS YTQAQKEAIYRQLDQ TTQRFNVGLVAITDVQNARAQYDTVLANEVTARNNLDNAVEQLRQITGNYYPELAAL VENFKTDKPQPVNALLKEAEK RNLSLLQARLSQDLAREQIRQAQDGHLPTLDLTASTGI S DTSYS GSKTRGAAGTQYDDSNMGQNKVGLS FSLPIYQGGM VNSQVKQAQYNFVGASEQLE SAHRSWQTVRS SFNNINAS I S S INAYKQAWSAQS SLDAMEAGYSVGTRTIVDVLDAT TTLYNAKQELANARYNYLINQLNIKSALGTLNEQDLLALNNALSKPVSTNPENVAPQTPE QNAIADGYAPDS PAPWQQ TSARTTTSNGHNPFRN

SEQ ID NO:58

The DNA sequence of A0585_tolC (native E. coli tolC with its encoded signal sequence replaced by the codon-optimized signal sequence of SYNPCC7002_A0585), integrated at the amtl- downstream locus, is:

ATGTTTGCCTTTCGTGACTTCTTGACCTTCAGCACCGGTGGCCTGGTTGTCCTGTCCGGC GGTGGTGTTGCGATTGCGG AGAACCTGATGCAAGTTTATCAGCAAGCACGCCTTAGTAACCCGGAATTGCGTAAGTCTG CCGCCGATCGTGATGCTGC CTTTGAAAAAATTAATGAAGCGCGCAGTCCATTACTGCCACAGCTAGGTTTAGGTGCAGA TTACACCTATAGCAACGGC TAC C GC GAC GC GAAC GGCAT CAAC T C TAACGCGAC CAGT GC GT C C T T GCAGT TAAC T CAAT C CATT T T T GATAT GT C GA AATGGCGTGCGTTAACGCTGCAGGAAAAAGCAGCAGGGATTCAGGACGTCACGTATCAGA CCGATCAGCAAACCTTGAT CCTCAACACCGCGACCGCTTATTTCAACGTGTTGAATGCTATTGACGTTCTTTCCTATAC ACAGGCACAAAAAGAAGCG ATC TAC CGT CAAT TAGATCAAACCACCCAACGTTT TAAC GTGGGCCTGGTAGC GAT CACC GAC GTGCAGAACGCCCGCG CACAGTAC GATAC C GT GCT GGC GAAC GAAGT GAC C GCAC GTAATAAC C T TGATAAC GCGGTAGAGCAGC T GC GC CAGAT CACCGGTAACTAC TAT CCGGAACTGGCTGCGCTGAATGTCGAAAACTTTAAAACCGACAAACCACAGCCGGT TAAC GCG CTGCTGAAAGAAGCCGAAAAACGCAACCTGTCGCTGTTACAGGCACGCTTGAGCCAGGAC CTGGCGCGCGAGCAAATTC GCCAGGCGCAGGATGGTCACTTACCGACTCTGGATTTAACGGCTTCTACCGGGATTTCTG ACACCTCTTATAGCGGTTC GAAAACCCGTGGTGCCGCTGGTACCCAGTATGACGATAGCAATATGGGCCAGAACAAAGT TGGCCTGAGCTTCTCGCTG CCGATTTATCAGGGCGGAATGGTTAACTCGCAGGTGAAACAGGCACAGTACAACTTTGTC GGTGCCAGCGAGCAACTGG AAAGTGCCCATCGTAGCGTCGTGCAGACCGTGCGTTCCTCCTTCAACAACATTAATGCAT CTATCAGTAGCATTAACGC CTACAAACAAGCCGTAGTTTCCGCTCAAAGCTCATTAGACGCGATGGAAGCGGGCTACTC GGTCGGTACGCGTACCATT GTT GAT GT GTT GGAT GC GAC CAC CAC GT T GTACAAC GC CAAGCAAGAGC TGGC GAAT GC GC GT TATAAC TAC CT GAT TA ATCAGCTGAATATTAAGTCAGCTCTGGGTACGTTGAACGAGCAGGATCTGCTGGCACTGA ACAATGCGCTGAGCAAACC GGTTTCCACTAATCCGGAAAACGTTGCACCGCAAACGCCGGAACAGAATGCTATTGCTGA TGGTTATGCGCCTGATAGC C CGGCAC CAGT C GT T CAGCAAACAT C CGCAC GCAC TAC CAC CAGTAAC GGT CATAAC CC T T T C C GTAAC T GA

SEQ ID NO: 59

The protein sequence encoded by A0585_tolC (native E. coli tolC with its encoded signal sequence replaced by the codon-optimized signal sequence of SYNPCC7002_A0585), integrated at the amtl -downstream locus, is:

MFAFRDFLTFSTGGLWLS GGGVAIAENLMQVYQQARLSNPELRKSAADRDAAFEKINEARS PLLPQLGLGADYTYSNG YRDANGINSNATSASLQLTQS I FDMSKWRALTLQEKAAGIQDVTYQTDQQTLILNTATAYFNVLNAI DVLS YTQAQKEA IYRQLDQTTQRFNVGLVAITDVQNARAQYDTVLANEVTARNNLDNAVEQLRQITGNYYPE LAAL VENFKTDKPQPVNA LLKEAEKRNLSLLQARLSQDLAREQIRQAQDGHLPTLDLTASTGI S DTS YS GSKTRGAAGTQYDDSNMGQNKVGLS FSL P I YQGGMVNSQVKQAQYNFV GAS EQLESAHRSWQTVRS S FNNINAS I S S INAYKQAWSAQS SLDAMEAGYSVGTRT I VDVLDATTTLYNAKQELANARYNYLINQLNIKSALGTLNEQDLLALNNALSKPVSTNPEN VAPQTPEQNAIADGYAPDS PAPWQQTSARTTTSNGHNPFRN

SEQ ID NO: 60

The DNA sequence of tolC (native E. coli tolC), integrated at the amtl -downstream locus, is:

ATGAAGAAATTGCTCCCCATTCTTATCGGCCTGAGCCTTTCTGGGTTCAGTTCGTTG AGCCAGGCCGAGAACCTGATGC AAGTTTATCAGCAAGCACGCCTTAGTAACCCGGAATTGCGTAAGTCTGCCGCCGATCGTG ATGCTGCCTTTGAAAAAAT TAAT GAAGC GC GCAGT C CAT TAC T GC CACAGC TAGGT T TAGGT GCAGAT TACAC C TATAGCAAC GGC TAC C GCGAC GC G AACGGCATCAACTCTAACGCGACCAGTGCGTCCTTGCAGTTAACTCAATCCATTTTTGAT ATGTCGAAATGGCGTGCGT TAAC GC T GCAGGAAAAAGCAGCAGGGAT T CAGGAC GT CAC GTAT CAGAC CGAT CAGCAAAC C T T GAT C C T CAACAC C GC GACCGCTTATTTCAACGTGTTGAATGCTATTGACGTTCTTTCCTATACACAGGCACAAAA AGAAGCGATCTACCGTCAA TTAGATCAAAC CACC CAAC GTTTTAACGTGGGCCTGGTAGC GAT CACC GAC GTGCAGAACGCCCGCGCACAGTACGATA CCGTGCTGGCGAACGAAGTGACCGCACGTAATAACCTTGATAACGCGGTAGAGCAGCTGC GCCAGATCACCGGTAACTA C TAT C C GGAACT GGC TGCGCT GAAT GTCGAAAACTTTAAAACCGACAAACCACAGCC GGT TAAC GCGCTGCTGAAAGAA GCCGAAAAACGCAACCTGTCGCTGTTACAGGCACGCTTGAGCCAGGACCTGGCGCGCGAG CAAATTCGCCAGGCGCAGG ATGGTCACTTACCGACTCTGGATTTAACGGCTTCTACCGGGATTTCTGACACCTCTTATA GCGGTTCGAAAACCCGTGG TGCCGCTGGTACCCAGTATGACGATAGCAATATGGGCCAGAACAAAGTTGGCCTGAGCTT CTCGCTGCCGATTTATCAG GGC GGAAT GGT TAAC TCGCAGGTGAAACAGGCACAGTACAACTTTGTC GGT GCCAGCGAGCAACTGGAAAGTGCC CATC GTAGC GT C GTGCAGAC C GT GC GT T C C TC C T T CAACAACAT TAAT GCAT C TAT CAGTAGCAT TAACGC C TACAAACAAGC CGTAGTTTCCGCTCAAAGCTCATTAGACGCGATGGAAGCGGGCTACTCGGTCGGTACGCG TACCATTGTTGATGTGTTG GAT GC GAC CAC CAC GT T GTACAAC GC CAAGCAAGAGC T GGC GAAT GC GC GT TATAAC TAC C TGATTAAT CAGCTGAATA TTAAGTCAGCTCTGGGTACGTTGAACGAGCAGGATCTGCTGGCACTGAACAATGCGCTGA GCAAACCGGTTTCCACTAA TCCGGAAAACGTTGCACCGCAAACGCCGGAACAGAATGCTATTGCTGATGGTTATGCGCC TGATAGCCCGGCACCAGTC GTT CAGCAAACAT C C GCAC GCAC TAC CAC CAGTAAC GGT CATAAC C C T T TC C GTAAC TGA

SEQ ID NO:61

T he protein sequence encoded by tolC (native E. coli tolC), integrated at the amtl -downstream locus, is:

MKKLLPILIGLSLS GFS SLSQAENLMQVYQQARLSNPELRKSAADRDAAFEKINEARSPLLPQLGLGADYTYSNGYR DA NGINSNATSASLQLTQS IFDMSKWRALTLQEKAAGIQDVTYQTDQQTLILNTATAYF VLNAI DVLS YTQAQKEAI YRQ LDQTTQRFNVGLVAITDVQNARAQYDTVLANEVTARNNLDNAVEQLRQITGNYYPELAAL NVENFKTDKPQPV ALLKE AEKRNLSLLQARLSQDLAREQIRQAQDGHLPTLDLTASTGI SDTS YS GSKTRGAAGTQYDDSNMGQNKVGLS FSLPI YQ GGMVNSQVKQAQYNFVGASEQLE SAHRSWQTVRS S FNNINAS I S S INAYKQAWSAQS SLDAMEAGYSVGTRT IVDVL DATTTLYNAKQELANARYNYLINQLNIKSALGTLNEQDLLALNNALSKPVSTNPENVAPQ TPEQNAIADGYAPDS PAPV VQQTSARTTTSNGHNPFRN

SEQ ID NO: 62

T he DNA sequence of the ¥{aphll)-¥{aphll) promoter, with the kanamycin-resistance cassette indicated in bold, integrated at the amtl -downstream locus, is:

ATGATCACTTGTATTACTGTTTATGTAAGCAGACAGTTTTATTGTTCATGATGATAT ATTTTTATCTTGTGCAATGTAA CAT C AGAGAT T T T GAGACAC AAC GT GGC TTTCCCCCCCCCCCCC TTAATTAAACCCCTATTTGTTTATTTTTCTAAATA CATTCAAATATGTATCCGCTCATGAGACAATAACCCTGATAAATGCTTCAATAATATTGA AAAAGGAAGAGTATGATTG AACAAGATGGCCTGCATGCTGGTTCTCCGGCTGCTTGGGTGGAACGCCTGTTTGGTTACG ACTGGGCTCAGCTGACTAT TGGCTGTAGCGATGCAGCGGTTTTCCGTCTGTCTGCACAGGGTCGTCCGGTTCTGTTTGT GAAAACCGACCTGTCCGGC GCACTGAACGAACTGCAGGACGAAGCGGCCCGTCTGTCCTGGCTCGCGACGACTGGTGTT CCGTGCGCGGCAGTTCTGG ACGTAGTTACTGAAGCCGGTCGCGATTGGCTGCTGCTGGGTGAAGTTCCGGGTCAGGATC TGCTGAGCAGCCACCTCGC TCCGGCAGAAAAAGTTTCCATCATGGCGGACGCGATGCGCCGTCTGCACACCCTGGACCC GGCAACTTGCCCGTTTGAC CATCAGGCTAAACACCGTATTGAACGTGCACGCACTCGTATGGAAGCGGGTCTGGTTGAT CAGGACGACCTGGATGAAG AGCACCAGGGCCTCGCACCGGCGGAACTGTTTGCACGTCTGAAAGCCCGCATGCCGGACG GCGAAGACCTGGTGGTAAC GCATGGCGACGCTTGTCTGCCAAACATTATGGTGGAAAACGGCCGCTTCTCTGGTTTTAT TGACTGTGGCCGTCTGGGT GTAGCTGATCGCTATCAGGATATCGCCCTCGCTACCCGCGATATTGCAGAAGAACTGGGT GGTGAATGGGCTGACCGTT TCCTGGTGCTGTACGGTATCGCAGCGCCGGATTCTCAGCGCATTGCCTTCTACCGTCTGC TGGATGAGTTCTTCTAAGG CGCGCCGAGCATCTCTTCGAAGTATTCCAGGCATCAAATAAAACGAAAGGCTCAGTCGAA AGACTGGGCCTTTCGTTTT ATCTGTTGTTTGTCGGTGAACGCTCTCTACTAGAGTCACACTGGCTCACCTTCGGGTGGG CCTTTCTGCGTTTATAAAG CTTGGGGGGGGGGGGGAAAGCCACGTTGTGTCTCAAAATCTCTGATGTTACATTGCACAA GATAAAAATATATCATCAT GAAC AAT AAAAC TGTCTGCT T AC AT AAAC AGT AAT AC AAGT GT AC AT

SEQ ID NO: 63

T he DNA sequence of the ¥{aphII)-P(psaA) promoter, with the kanamycin-resistance cassette indicated in bold, integrated at the amtl -downstream locus, is:

ATGATCACTTGTATTACTGTTTATGTAAGCAGACAGTTTTATTGTTCATGATGATAT ATTTTTATCTTGTGCAATGTAA CAT C AGAGAT T T T GAGACAC AAC GT GGC TTTCCCCCCCCCCCCC TTAATTAAACCCCTATTTGTTTATTTTTCTAAATA CATTCAAATATGTATCCGCTCATGAGACAATAACCCTGATAAATGCTTCAATAATATTGA AAAAGGAAGAGTATGATTG AACAAGATGGCCTGCATGCTGGTTCTCCGGCTGCTTGGGTGGAACGCCTGTTTGGTTACG ACTGGGCTCAGCTGACTAT TGGCTGTAGCGATGCAGCGGTTTTCCGTCTGTCTGCACAGGGTCGTCCGGTTCTGTTTGT GAAAACCGACCTGTCCGGC GCACTGAACGAACTGCAGGACGAAGCGGCCCGTCTGTCCTGGCTCGCGACGACTGGTGTT CCGTGCGCGGCAGTTCTGG ACGTAGTTACTGAAGCCGGTCGCGATTGGCTGCTGCTGGGTGAAGTTCCGGGTCAGGATC TGCTGAGCAGCCACCTCGC TCCGGCAGAAAAAGTTTCCATCATGGCGGACGCGATGCGCCGTCTGCACACCCTGGACCC GGCAACTTGCCCGTTTGAC CATCAGGCTAAACACCGTATTGAACGTGCACGCACTCGTATGGAAGCGGGTCTGGTTGAT CAGGACGACCTGGATGAAG AGCACCAGGGCCTCGCACCGGCGGAACTGTTTGCACGTCTGAAAGCCCGCATGCCGGACG GCGAAGACCTGGTGGTAAC GCATGGCGACGCTTGTCTGCCAAACATTATGGTGGAAAACGGCCGCTTCTCTGGTTTTAT TGACTGTGGCCGTCTGGGT GTAGCTGATCGCTATCAGGATATCGCCCTCGCTACCCGCGATATTGCAGAAGAACTGGGT GGTGAATGGGCTGACCGTT TCCTGGTGCTGTACGGTATCGCAGCGCCGGATTCTCAGCGCATTGCCTTCTACCGTCTGC TGGATGAGTTCTTCTAAGG CGCGCCGAGCATCTCTTCGAAGTATTCCAGGCATCAAATAAAACGAAAGGCTCAGTCGAA AGACTGGGCCTTTCGTTTT ATCTGTTGTTTGTCGGTGAACGCTCTCTACTAGAGTCACACTGGCTCACCTTCGGGTGGG CCTTTCTGCGTTTATAAAG CTTGCCCCTATATTATGCATTTATACCCCCACAATCATGTCAAGAATTCAAGCATCTTAA ATAATGTTAATTATCGGCA AAGTCTGTGCTCCCCTTCTATAATGCTGAATTGAGCATTCGCCTCCTGAACGGTCTTTAT TCTTCCATTGTGGGTCTTT AGAT T CAC GAT T C T T CACAAT CAT T GAT C TAAGGAT C T T TGTAGAT T C TCTGTACAT SEQ ID NO: 64

T he DNA sequence of the P(psa ^ 4)-P(tsr2142) promoter, with the kanamycin-resistance cassette indicated in bold, integrated at the amtl -downstream locus, is:

ATGAT CAGAGAAT C TACAAAGAT C C T TAGAT CAATGATTGTGAAGAAT CGTGAAT C TAAAGAC C CACAATGGAAGAATA AAGAC CGTTCAGGAGGCGAATGC T CAATTCAGCATTATAGAAGGGGAGCACAGAC T T TGC CGATAATTAACATTATT TA AGATGCTTGAATTCTTGACATGATTGTGGGGGTATAAATGCATAATATAGGGGCTTAATT AAACCCCTATTTGTTTATT TTTCTAAATACATTCAAATATGTATCCGCTCATGAGACAATAACCCTGATAAATGCTTCA ATAATATTGAAAAAGGAAG AGTATGATTGAACAAGATGGCCTGCATGCTGGTTCTCCGGCTGCTTGGGTGGAACGCCTG TTTGGTTACGACTGGGCTC AGCTGACTATTGGCTGTAGCGATGCAGCGGTTTTCCGTCTGTCTGCACAGGGTCGTCCGG TTCTGTTTGTGAAAACCGA CCTGTCCGGCGCACTGAACGAACTGCAGGACGAAGCGGCCCGTCTGTCCTGGCTCGCGAC GACTGGTGTTCCGTGCGCG GCAGTTCTGGACGTAGTTACTGAAGCCGGTCGCGATTGGCTGCTGCTGGGTGAAGTTCCG GGTCAGGATCTGCTGAGCA GCCACCTCGCTCCGGCAGAAAAAGTTTCCATCATGGCGGACGCGATGCGCCGTCTGCACA CCCTGGACCCGGCAACTTG CCCGTTTGACCATCAGGCTAAACACCGTATTGAACGTGCACGCACTCGTATGGAAGCGGG TCTGGTTGATCAGGACGAC CTGGATGAAGAGCACCAGGGCCTCGCACCGGCGGAACTGTTTGCACGTCTGAAAGCCCGC ATGCCGGACGGCGAAGACC TGGTGGTAACGCATGGCGACGCTTGTCTGCCAAACATTATGGTGGAAAACGGCCGCTTCT CTGGTTTTATTGACTGTGG CCGTCTGGGTGTAGCTGATCGCTATCAGGATATCGCCCTCGCTACCCGCGATATTGCAGA AGAACTGGGTGGTGAATGG GCTGACCGTTTCCTGGTGCTGTACGGTATCGCAGCGCCGGATTCTCAGCGCATTGCCTTC TACCGTCTGCTGGATGAGT TCTTCTAAGGCGCGCCGAGCATCTCTTCGAAGTATTCCAGGCATCAAATAAAACGAAAGG CTCAGTCGAAAGACTGGGC CTTTCGTTTTATCTGTTGTTTGTCGGTGAACGCTCTCTACTAGAGTCACACTGGCTCACC TTCGGGTGGGCCTTTCTGC GTTTATAAAGCTTCCAAGGTGGCTACTTCAACGATAGCTTAAACTTCGCTGCTCCAGCGA GGGGATTTCACTGGTTTGA ATGCTTCAATGCTTGCCAAAAGAGTGCTACTGGAACTTACAAGAGTGACCCTGCGTCAGG GGAGCTAGCACTCAAAAAA GAC TCCTCCTGTACAT

SEQ ID NO: 65

T he DNA sequence of the P(tsr2142)-P(om/?i?) promoter, with the kanamycin-resistance cassette indicated in bold, integrated at the amtl -downstream locus, is:

ATGATCAGGAGGAGTCTTTTTTGAGTGCTAGCTCCCCTGACGCAGGGTCACTCTTGT AAGTTCCAGTAGCACTCTTTTG GCAAGCATTGAAGCATTCAAACCAGTGAAATCCCCTCGCTGGAGCAGCGAAGTTTAAGCT ATCGTTGAAGTAGCCACCT TGGTTAATTAAACCCCTATTTGTTTATTTTTCTAAATACATTCAAATATGTATCCGCTCA TGAGACAATAACCCTGATA AATGCTTCAATAATATTGAAAAAGGAAGAGTATGATTGAACAAGATGGCCTGCATGCTGG TTCTCCGGCTGCTTGGGTG GAACGCCTGTTTGGTTACGACTGGGCTCAGCTGACTATTGGCTGTAGCGATGCAGCGGTT TTCCGTCTGTCTGCACAGG GTCGTCCGGTTCTGTTTGTGAAAACCGACCTGTCCGGCGCACTGAACGAACTGCAGGACG AAGCGGCCCGTCTGTCCTG GCTCGCGACGACTGGTGTTCCGTGCGCGGCAGTTCTGGACGTAGTTACTGAAGCCGGTCG CGATTGGCTGCTGCTGGGT GAAGTTCCGGGTCAGGATCTGCTGAGCAGCCACCTCGCTCCGGCAGAAAAAGTTTCCATC ATGGCGGACGCGATGCGCC GTCTGCACACCCTGGACCCGGCAACTTGCCCGTTTGACCATCAGGCTAAACACCGTATTG AACGTGCACGCACTCGTAT GGAAGCGGGTCTGGTTGATCAGGACGACCTGGATGAAGAGCACCAGGGCCTCGCACCGGC GGAACTGTTTGCACGTCTG AAAGCCCGCATGCCGGACGGCGAAGACCTGGTGGTAACGCATGGCGACGCTTGTCTGCCA AACATTATGGTGGAAAACG GCCGCTTCTCTGGTTTTATTGACTGTGGCCGTCTGGGTGTAGCTGATCGCTATCAGGATA TCGCCCTCGCTACCCGCGA TATTGCAGAAGAACTGGGTGGTGAATGGGCTGACCGTTTCCTGGTGCTGTACGGTATCGC AGCGCCGGATTCTCAGCGC ATTGCCTTCTACCGTCTGCTGGATGAGTTCTTCTAAGGCGCGCCGAGCATCTCTTCGAAG TATTCCAGGCATCAAATAA AACGAAAGGCTCAGTCGAAAGACTGGGCCTTTCGTTTTATCTGTTGTTTGTCGGTGAACG CTCTCTACTAGAGTCACAC TGGCTCACCTTCGGGTGGGCCTTTCTGCGTTTATAAAGCTTTAGTACAAAAAGACGATTA AC C C CATGGGTAAAAGCAG GGGAGC CAC TAAAGTTCACAGGTT TACAC CGAATT TTC CATTTGAAAAGTAGTAAAT CATACAGAAAACAAT CATGTAA AAATTGAATACTCTAATGGTTTGATGTCCGAAAAAGTCTAGTTTCTTCTATTCTTCGACC AAATCTATGGCAGGGCACT ATCACAGAGCTGGCTTAATAATTTGGGAGAAATGGGTGGGGGCGGACTTTCGTAGAACAA TGTAGATTAAAGTACTGTA CAT

SEQ ID NO: 66

T he DNA sequence of the P(nir09)-P(nir07) promoter, with the kanamycin-resistance cassette indicated in bold, integrated at the amtl -downstream locus, is:

ATGATCATCCTCCTCCTAAAGTTCTCATAAAGTTTTTTTGCTCAAGATCAATCCACC CGTAGTCTTTGCTAGTTCTACG AGGTCTAGTGATAGCAATTTAGTAATCTTGAAAGAACCTCTCCCCCAACCCCTCTCTCTT TAAAAGTTCTGTTCGGAGG AAACCTCCGCTCAGACTTTTCGCTCCGACGCGGAGAGGGGAGTTTGGCTCCCACTTCCCT ACAAGGGAAGGGGGCTGGG GGGTAAGGTTTTTGATTAATGAATCGATGCTCTAATAGTGAAAAACCAAATATTTAATTT TGTTGGCGCAGCCTTCCCG CAGGGTATT TTGAATTGATT TATGC TAC TTCAATGAC TGACACGC CGC CGATGTTTCAC TGAAGGTAAC T C TAGAAC TA AACCGGGGAGAAACTGTAGTCTTTTACATTGGCTAAATTTGTCAAGTGGTTTGTGTGAAT GTTTATGTAACGATTTCGA TACTTCTAAGGTTATGTCGGGATCTCAGGTAAAATAGTATAAGTAGCTACAAAATTCTCG TATTAATGCGTAAGTTTAA TAGAGAATATGCGTT TTCTGCATTACAC T TAACTAATGAGTAGTTAATTAAACCCCTATTTGTTTATTTTTCTAAATAC ATTCAAATATGTATCCGCTCATGAGACAATAACCCTGATAAATGCTTCAATAATATTGAA AAAGGAAGAGTATGATTGA ACAAGATGGCCTGCATGCTGGTTCTCCGGCTGCTTGGGTGGAACGCCTGTTTGGTTACGA CTGGGCTCAGCTGACTATT GGCTGTAGCGATGCAGCGGTTTTCCGTCTGTCTGCACAGGGTCGTCCGGTTCTGTTTGTG AAAACCGACCTGTCCGGCG CACTGAACGAACTGCAGGACGAAGCGGCCCGTCTGTCCTGGCTCGCGACGACTGGTGTTC CGTGCGCGGCAGTTCTGGA CGTAGTTACTGAAGCCGGTCGCGATTGGCTGCTGCTGGGTGAAGTTCCGGGTCAGGATCT GCTGAGCAGCCACCTCGCT CCGGCAGAAAAAGTTTCCATCATGGCGGACGCGATGCGCCGTCTGCACACCCTGGACCCG GCAACTTGCCCGTTTGACC ATCAGGCTAAACACCGTATTGAACGTGCACGCACTCGTATGGAAGCGGGTCTGGTTGATC AGGACGACCTGGATGAAGA GCACCAGGGCCTCGCACCGGCGGAACTGTTTGCACGTCTGAAAGCCCGCATGCCGGACGG CGAAGACCTGGTGGTAACG CATGGCGACGCTTGTCTGCCAAACATTATGGTGGAAAACGGCCGCTTCTCTGGTTTTATT GACTGTGGCCGTCTGGGTG TAGCTGATCGCTATCAGGATATCGCCCTCGCTACCCGCGATATTGCAGAAGAACTGGGTG GTGAATGGGCTGACCGTTT CCTGGTGCTGTACGGTATCGCAGCGCCGGATTCTCAGCGCATTGCCTTCTACCGTCTGCT GGATGAGTTCTTCTAAGGC GCGCCGAGCATCTCTTCGAAGTATTCCAGGCATCAAATAAAACGAAAGGCTCAGTCGAAA GACTGGGCCTTTCGTTTTA TCTGTTGTTTGTCGGTGAACGCTCTCTACTAGAGTCACACTGGCTCACCTTCGGGTGGGC CTTTCTGCGTTTATAAAGC TTGCTTGTAGCAATTGCTACTAAAAACTGCGATCGCTGCTGAAATGAGCTGGAATTTTGT C C CTCTCAGCTCAAAAAGT ATCAAT GAT TAC T TAAT GTTTGTTCT GCGCAAAC T T C T T GCAGAACAT GCAT GAT T TACAAAAAGTTGTAGTTTC TGTT ACCAAT TGCGAAT C GAGAAC T GC C TAAT C T GC CGAGTAT GC GAT C C T T TAGCAGGAGGATGTACAT

SEQ ID NO: 67

T he DNA sequence of the ybhG-ybhF-ybhS-ybhR operon (native E. coli ybhGFSR operon with overlaps between ybhG and ybhF and also between ybhF and ybhS), integrated at the amtl- downstream locus, is:

ATGATGAAAAAAC CTGTCGTGATCGGATTGGCGGTAGTGGTACTTGCCGCCGTGGTTGCCGGAGGCTACTGGT GGTATC AAAGCCGC CAGGATAACGGC CTGACGCTGTATGGCAACGTGGATATTCGTACGGTAAATCTTAGTTTCCGTGTTGGGGG GCGCGTTGAATCGCTGGCGGTGGACGAAGGTGATGCTATCAAAGCGGGC CAGGTGCTGGGCGAACTGGATCACAAGCCG TATGAGATTGC C CTGATGCAGGCGAAAGCGGGTGTTTCGGTGGCACAGGCGCAGTATGAC CTGATGCTTGCCGGGTATC GCAATGAAGAAATCGCTCAGGCCGCCGCAGCGGTGAAACAGGCGCAAGCCGC CTATGACTATGCGCAGAACTTCTATAA CCGC CAGCAAGGGTTGTGGAAAAGCCGCACTATTTCGGCAAATGAC CTGGAAAATGC CCGCTC CTCGCGCGACCAGGCG CAGGCAACGCTGAAATCAGCACAGGATAAATTGCGTCAGTACCGTTCCGGTAACCGTGAA CAGGACATCGCTCAGGCGA AAGC CAGC CTCGAACAGGCGCAGGCGCAACTGGCGCAGGCGGAGTTGAATTTACAGGACTCAACGTTG ATAGCC CCGTC TGATGGCACGCTGTTAACGCGCGCGGTGGAGC CAGGCACGGTC CTCAATGAAGGTGGCACGGTGTTTACCGTTTCACTA ACGCGTCCGGTGTGGGTGCGCGCTTATGTTGATGAACGTAATCTTGAC CAGGC C CAGCCGGGGCGCAAAGTGCTGCTTT ATACCGATGGTCGC CCGGACAAGCCGTATCACGGGCAGATTGGTTTCGTTTCGCCGACTGCTGAATTTAC C CCGAAAAC CGTCGAAACGCCGGATCTGCGTACCGAC CTCGTCTATCGC CTGCGTATTGTGGTGACCGACGCCGATGATGCGTTACGC CAGGGAATGCCAGTGACGGTACAATTCGGTGACGAGGCAGGACATGAATGATGCCGTTAT CACGCTGAACGGCCTGGAA AAACGCTTTCCGGGCATGGACAAGC CCGCCGTCGCGCCGCTCGATTGTACCATTCACGCCGGTTATGTGACGGGGTTGG TGGGGCCGGACGGTGCAGGTAAAAC CACGCTGATGCGGATGTTGGCGGGATTACTGAAAC CCGACAGCGGCAGTGC CAC GGTGATTGGCTTTGATCCGATCAAAAACGACGGCGCGCTGCACGCCGTGCTCGGTTATAT GCCGCAGAAATTTGGTCTG TATGAAGATCTCACGGTGATGGAGAACCTCAATCTGTACGCGGATTTGCGCAGCGTCACC GGCGAGGCACGTAAGCAAA CTTTTGCTCGC CTGCTGGAGTTTACGTCTCTTGGGCCGTTTACCGGACGCCTGGCGGGCAAGCTCTCCGGT GGGATGAA ACAAAAACTCGGTCTGGCCTGTAC C CTGGTGGGCGAACCGAAAGTGTTGCTGCTCGATGAAC CCGGCGTCGGCGTTGAC C CTATCTCACGGCGCGAACTGTGGCAGATGGTGCATGAGCTGGCGGGCGAAGGGATGTTAA TC CTCTGGAGTAC CTCGT ATCTC GAC GAAGC C GAGCAGT GC C GT GAC GT GTTAC T GAT GAAC GAAGGCGAGT T GC TGTAT CAGGGAGAAC CAAAAGC C CTGACACAAAC CATGGCCGGACGCAGCTTTCTGATGAC CAGTC CACACGAGGGCAACCGCAAACTGTTGCAACGCGC C TTGAAACTGCCGCAGGTCAGCGACGGCATGATTCAGGGGAAATCGGTACGTCTGATC CTCAAAAAAGAGGC CACAC CAG ACGATAT T C GC CAT GC C GAC GGGAT GCC GGAAAT CAACAT CAAC GAAAC TAC GC C GCGTT T TGAAGATGCGTTTATTGA TTTGCTGGGCGGTGCCGGAAC CTCGGAATCGCCGCTGGGCGCAATATTACATACGGTAGAAGGCACAC CCGGCGAGACG GTGAT CGAAGCGAAAGAACT GAC CAAGAAATTTGGGGATTTTGCCGC CACC GAT CACGT CAAC TTTGCCGTTAAACGTG GGGAGATTTTTGGTTTGCTGGGGC CAAACGGCGCGGGTAAATCGAC CAC CTTTAAGATGATGTGCGGTTTGCTGGTGC C GACTTCCGGCCAGGCGCTGGTGCTGGGGATGGATCTGAAAGAGAGTTCCGGTAAAGCGCG C CAGCATCTCGGCTATATG GCGCAAAAATTTTCGCTCTACGGTAACCTGACGGTCGAACAGAATTTACGCTTTTTCTCT GGTGTGTATGGCTTACGCG GTCGGGCGCAGAACGAAAAAATCTC CCGCATGAGCGAGGCGTTCGGC CTGAAAAGTATCGC CTC CCACGC CACCGATGA ACTGC CATTAGGTTTTAAACAGCGGCTGGCGCTGGC CTGTTCGCTGATGCATGAACCGGACATTCTGTTTCTCGACGAA CCGACTTCCGGCGTTGACC C C CTCAC CCGCCGTGAATTTTGGCTGCACATCAACAGCATGGTAGAGAAAGGCGTCACGG T GAT GGTCACCAC C CACTT TAT GGATGAAGCGGAATATTGC GAC C GCAT CGGC CTGGTGTACCGCGGGAAATTAAT CGC CAGCGGCACGCCGGACGATTTGAAAGCACAGTCGGCTAACGATGAGCAACCCGATC C CAC CATGGAGCAAGC CTTTATT CAGTT GAT C CAC GAC T GGGATAAGGAGCATAGCAAT GAGTAAC C C GAT C CT GT C C T GGCGT CGCGTACGGGCGC TGTGC GTTAAAGAGACGCGGCAGATCGTTCGCGATCCGAGTAGCTGGCTGATTGCGGTAGTGATC CCGCTGCTACTGCTGTTTA TTTTTGGTTACGGCATTAAC CTCGACTC CAGCAAGCTGCGGGTCGGGATTTTACTGGAACAGCGTAGCGAAGCGGCGCT GGATTTCAC CCACAC CATGACCGGTTCGC C CTACATCGACGCCAC CATCAGCGATAACCGTCAGGAACTGATCGC CAAA ATGCAGGCGGGGAAAATTCGCGGTCTGGTGGTTATTCCGGTGGATTTTGCGGAACAGATG GAGCGCGC CAACGC CACCG CACCGATTCAGGTGATCACCGACGGCAGTGAGCCGAATACCGCTAACTTTGTACAGGGGT ATGTCGAAGGGATCTGGCA GAT CTGGCAAATGCAGCGAGCGGAGGACAACGGGCAGACTTTTGAACCGCT TAT TGATGTACAAACCCGC TACTGGTTT AACCCGGCGGCGATTAGCCAGCACTTCATTATCCCCGGTGCGGTGACCATTATCATGACG GTCATCGGCGCGATTCTCA CCTCGCTGGTGGTGGCGCGAGAATGGGAACGCGGCACCATGGAGGCTCTGCTCTCTACGG AGATTACCCGCACGGAACT GCTGCTGTGTAAGCTGATCCCTTATTACTTTCTCGGGATGCTGGCGATGTTGCTGTGTAT GCTGGTGTCAGTGTTTATT CTCGGCGTGCCGTATCGCGGGTCGCTGCTGATTCTGTTTTTTATCTCCAGCCTGTTTTTA CTCAGTACCCTGGGGATGG GGCTGCTGATTTCCACGATTACCCGCAACCAGTTCAATGCCGCTCAGGTCGCCCTGAACG CCGCTTTTCTGCCGTCGAT TATGCTTTCCGGCTTTATTTTTCAGATCGACAGTATGCCCGCGGTGATCCGCGCGGTGAC GTACATTATTCCCGCTCGT TATTTCGTCAGCACCCTGCAAAGCCTGTTCCTCGCCGGGAATATTCCAGTGGTGCTGGTG GTAAACGTGCTGTTTTTGA TCGCTTCGGCGGTGATGTTTATCGGCCTGACGTGGCTGAAAACCAAACGTCGGCTGGATT AGGGAGAAGAGCATGTTTC ATCGCTTATGGACGTTAATCCGCAAAGAGTTGCAGTCGTTGCTGCGCGAACCGCAAACCC GCGCGATTCTGATTTTACC CGTGCTAATTCAGGTGATCCTGTTCCCGTTCGCCGCCACGCTGGAAGTGACTAACGCCAC CATCGCCATCTACGATGAA GATAACGGCGAGCATTCGGTGGAGCTGACCCAACGTTTTGCCCGCGCCAGCGCCTTTACT CATGTGCTGCTGCTGAAAA GCCCACAGGAGATCCGCCCAACCATCGACACACAAAAGGCGTTACTACTGGTGCGTTTCC CGGCTGACTTCTCGCGCAA ACTGGATACCTTCCAGACCGCGCCTTTGCAGTTGATCCTCGACGGGCGTAACTCCAACAG TGCGCAAATTGCCGCCAAC TACCTGCAACAGATCGTCAAAAATTATCAGCAGGAGCTGCTGGAAGGAAAACCGAAACCT AACAACAGCGAGCTGGTGG TAC GCAAC T GGTATAAC CC GAAT C T C GAC TACAAAT GGT T T GT GGT GC C GT CAC T GATCGC CATGAT CAC CACTAT CGG CGTAATGATCGTCACTTCACTTTCCGTCGCCCGCGAACGTGAACAAGGTACGCTCGATCA GCTACTGGTTTCGCCGCTC ACCACCTGGCAGATCTTCATCGGCAAAGCCGTACCGGCGTTAATTGTCGCCACCTTCCAG GCCACCATTGTGCTGGCGA TTGGTATCTGGGCGTATCAAATCCCCTTCGCCGGATCGCTGGCGCTGTTCTACTTTACGA TGGTGATTTATGGTTTATC GCTGGTGGGATTCGGTCTGTTGATTTCATCACTCTGTTCAACACAACAGCAGGCGTTTAT CGGCGTGTTTGTCTTTATG ATGCCCGCCATTCTCCTTTCCGGTTACGTTTCTCCGGTGGAAAACATGCCGGTATGGCTG CAAAACCTGACGTGGATTA ACCCTATTCGCCACTTTACGGACATTACCAAGCAGATTTATTTGAAGGATGCGAGTCTGG ATATTGTGTGGAATAGTTT GTGGCCGC TACT GGT GATAACGGCCACGACAGGGTCAGCGGCGTACGC GAT GTTTAGACGTAAGGTGATGTAA

SEQ ID NO: 68

The DNA sequence encoding the ybhG ORF in the ybhG-ybhF-ybhS-ybhR operon, integrated at the amtl -downstream locus, is:

ATGATGAAAAAACCTGTCGTGATCGGATTGGCGGTAGTGGTACTTGCCGCCGTGGTT GCCGGAGGCTACTGGTGGTATC AAAGCCGCCAGGATAACGGCCTGACGCTGTATGGCAACGTGGATATTCGTACGGTAAATC TTAGTTTCCGTGTTGGGGG GCGCGTT GAAT CGCTGGCGGTGGACGAAGGT GAT GC TAT CAAAGCGGGCCAGGTGCTGGGCGAACTGGATCACAAGCCG TATGAGATTGCCCTGATGCAGGCGAAAGCGGGTGTTTCGGTGGCACAGGCGCAGTATGAC CTGATGCTTGCCGGGTATC GCAATGAAGAAATCGCTCAGGCCGCCGCAGCGGTGAAACAGGCGCAAGCCGCCTATGACT ATGCGCAGAACTTCTATAA CCGCCAGCAAGGGTTGTGGAAAAGCCGCACTATTTCGGCAAATGACCTGGAAAATGCCCG CTCCTCGCGCGACCAGGCG CAGGCAACGCTGAAATCAGCACAGGATAAATTGCGTCAGTACCGTTCCGGTAACCGTGAA CAGGACATCGCTCAGGCGA AAGCCAGCCTCGAACAGGCGCAGGC GCAAC TGGCGCAGGCGGAGTTGAATTTACAGGACTCAACGTTGATAGCCCCGTC TGATGGCACGCTGTTAACGCGCGCGGTGGAGCCAGGCACGGTCCTCAATGAAGGTGGCAC GGTGTTTACCGTTTCACTA ACGCGTCCGGTGTGGGTGCGCGCTTATGTTGATGAACGTAATCTTGACCAGGCCCAGCCG GGGCGCAAAGTGCTGCTTT ATACCGATGGTCGCCCGGACAAGCCGTATCACGGGCAGATTGGTTTCGTTTCGCCGACTG CTGAATTTACCCCGAAAAC CGTCGAAACGCCGGATCTGCGTACCGACCTCGTCTATCGCCTGCGTATTGTGGTGACCGA CGCCGATGATGCGTTACGC CAGGGAATGCCAGT GAC GGTACAATTCGGTGACGAGGCAGGACAT GAAT GA

SEQ ID NO: 69

The protein sequence encoded by ybhG ORF in the ybhG-ybhF-ybhS-ybhR operon, integrated at the amtl -downstream locus, is:

MMKKPWIGLAWVLAAWAGGYWWYQSRQDNGLTLYGNVDIRTVNLSFRVGGRVESLAV DEGDAIKAGQVLGELDHKP YEIALMQAKAGVSVAQAQYDLMLAGYRNEEIAQAAAAVKQAQAAYDYAQNFYNRQQGLWK SRTI SANDLENARS SRDQA QATLKSAQDKLRQYRSGNREQDIAQAKASLEQAQAQLAQAELNLQDSTLIAPSDGTLLTR AVEPGTVLNEGGTVFTVSL TRPVWVRAYVDERNLDQAQPGRKVLLYTDGRPDKPYHGQIGFVSPTAEFTPKTVETPDLR TDLVYRLRIWTDADDALR QGMPVTVQFGDEAGHE

SEQ ID NO: 70

The DNA sequence encoding the ybhF ORF in the ybhG-ybhF-ybhS-ybhR operon, integrated at the amtl -downstream locus, is:

ATGAATGATGCCGTTATCACGCTGAACGGCCTGGAAAAACGCTTTCCGGGCATGGAC AAGCCCGCCGTCGCGCCGCTCG ATTGTACCATTCACGCCGGTTATGTGACGGGGTTGGTGGGGCCGGACGGTGCAGGTAAAA CCACGCTGATGCGGATGTT GGCGGGATTACTGAAACCCGACAGCGGCAGTGCCACGGTGATTGGCTTTGATCCGATCAA AAACGACGGCGCGCTGCAC GCCGTGCTCGGTTATATGCCGCAGAAATTTGGTCTGTATGAAGATCTCACGGTGATGGAG AACCTCAATCTGTACGCGG ATTTGCGCAGCGTCACCGGCGAGGCACGTAAGCAAACTTTTGCTCGCCTGCTGGAGTTTA CGTCTCTTGGGCCGTTTAC CGGACGCCTGGCGGGCAAGCTCTCCGGTGGGATGAAACAAAAACTCGGTCTGGCCTGTAC CCTGGTGGGCGAACCGAAA GTGTTGCTGCTCGATGAACCCGGCGTCGGCGTTGACCCTATCTCACGGCGCGAACTGTGG CAGATGGTGCATGAGCTGG CGGGCGAAGGGATGTTAATCCTCTGGAGTACCTCGTATCTCGACGAAGCCGAGCAGTGCC GTGACGTGTTACTGATGAA CGAAGGCGAGTTGCTGTATCAGGGAGAACCAAAAGCCCTGACACAAACCATGGCCGGACG CAGCTTTCTGATGACCAGT CCACACGAGGGCAACCGCAAACTGTTGCAACGCGCCTTGAAACTGCCGCAGGTCAGCGAC GGCATGATTCAGGGGAAAT CGGTACGT C TGAT C C T CAAAAAAGAGGC CACACCAGACGATATTCGCCATGCCGACGGGATGCCGGAAAT CAACAT CAA CGAAACTACGCCGCGTTTTGAAGATGCGTTTATTGATTTGCTGGGCGGTGCCGGAACCTC GGAATCGCCGCTGGGCGCA ATATTACATACGGTAGAAGGCACAC C CGGCGAGACGGTGAT CGAAGCGAAAGAAC TGAC CAAGAAATT TGGGGATT T TG CCGCCACCGATCACGTCAACTTTGCCGTTAAACGTGGGGAGATTTTTGGTTTGCTGGGGC CAAACGGCGCGGGTAAATC GACCACCTTTAAGATGATGTGCGGTTTGCTGGTGCCGACTTCCGGCCAGGCGCTGGTGCT GGGGATGGATCTGAAAGAG AGTTCCGGTAAAGCGCGCCAGCATCTCGGCTATATGGCGCAAAAATTTTCGCTCTACGGT AACCTGACGGTCGAACAGA ATTTACGCTTTTTCTCTGGTGTGTATGGCTTACGCGGTCGGGCGCAGAACGAAAAAATCT CCCGCATGAGCGAGGCGTT CGGCCTGAAAAGTATCGCCTCCCACGCCACCGATGAACTGCCATTAGGTTTTAAACAGCG GCTGGCGCTGGCCTGTTCG CTGATGCATGAACCGGACATTCTGTTTCTCGACGAACCGACTTCCGGCGTTGACCCCCTC ACCCGCCGTGAATTTTGGC TGCACAT CAACAGCATGGTAGAGAAAGGCGT CACGGTGATGGT CAC CAC CCAC T T TATGGATGAAGCGGAATATTGCGA CCGCATCGGCCTGGTGTACCGCGGGAAATTAATCGCCAGCGGCACGCCGGACGATTTGAA AGCACAGTCGGCTAACGAT GAGCAAC C CGAT C C CAC CATGGAGCAAGC C T T TATTCAGTTGAT C CACGAC TGGGATAAGGAGCATAGCAATGAGTAA

SEQ ID NO:71

T he protein sequence encoded by ybhF ORF in the ybhG-ybhF-ybhS-ybhR operon, integrated at the amtl -downstream locus, is:

MNDAVITLNGLEKRFPGMDKPAVAPLDCT1HAGYVTGLVGPDGAGKTTLMRMLAGLL KPDSGSATVIGFDPIKNDGALH AVLGYMPQKFGLYEDLTVMENLNLYADLRSVTGEARKQTFARLLEFTSLGPFTGRLAGKL SGGMKQKLGLACTLVGEPK VLLLDEPGVGVDPI SRRELWQMVHELAGEGMLILWSTS YLDEAEQCRDVLLMNEGELLYQGEPKALTQTMAGRSFLMTS PHEGNRKLLQRALKLPQVSDGMIQGKSVRLILKKEATPDDIRHADGMPEININETTPRFE DAFIDLLGGAGTSESPLGA ILHTVEGTPGETVIEAKELTKKFGDFAATDHVNFAVKRGEIFGLLGPNGAGKSTTFKMMC GLLVPTSGQALVLGMDLKE S SGKARQHLGYMAQKFSLYGNLTVEQNLRFFSGVYGLRGRAQNEKI SRMSEAFGLKS IASHATDELPLGFKQRLALACS LMHEPDILFLDEPTSGVDPLTRRE FWLHINSMVEKGVTVMVTTHFMDEAEYCDRIGLVYRGKLIASGTPDDLKAQSAND EQPDPTMEQAFIQLIHDWDKEHSNE

SEQ ID NO: 72

T he DNA sequence encoding the ybhS ORF in the ybhG-ybhF-ybhS-ybhR operon, integrated at the amtl -downstream locus, is:

ATGAGTAACCCGATCCTGTCCTGGCGTCGCGTACGGGCGCTGTGCGTTAAAGAGACG CGGCAGATCGTTCGCGATCCGA GTAGCTGGCTGATTGCGGTAGTGATCCCGCTGCTACTGCTGTTTATTTTTGGTTACGGCA TTAACCTCGACTCCAGCAA GCTGCGGGT CGGGATTTTACTGGAACAGCGTAGCGAAGCGGCGCTGGATTTCAC CCACAC CATGAC CGGTTCGCCCTAC ATCGACGCCACCATCAGCGATAACCGTCAGGAACTGATCGCCAAAATGCAGGCGGGGAAA ATTCGCGGTCTGGTGGTTA TTCCGGTGGATTTTGCGGAACAGATGGAGCGCGCCAACGCCACCGCACCGATTCAGGTGA TCACCGACGGCAGTGAGCC GAATACCGCTAACTTTGTACAGGGGTATGTCGAAGGGATCTGGCAGATCTGGCAAATGCA GCGAGCGGAGGACAACGGG CAGAC T T T TGAAC CGC T TATTGATGTACAAAC CCGC TAC TGGTT TAAC C CGGCGGCGATTAGC CAGCAC TTCATTAT C C CCGGTGCGGTGACCATTATCATGACGGTCATCGGCGCGATTCTCACCTCGCTGGTGGTGG CGCGAGAATGGGAACGCGG CACCATGGAGGCTCTGCTCTCTACGGAGATTACCCGCACGGAACTGCTGCTGTGTAAGCT GATCCCTTATTACTTTCTC GGGATGCTGGCGATGTTGCTGTGTATGCTGGTGTCAGTGTTTATTCTCGGCGTGCCGTAT CGCGGGTCGCTGCTGATTC TGTTTTTTATCTCCAGCCTGTTTTTACTCAGTACCCTGGGGATGGGGCTGCTGATTTCCA CGATTACCCGCAACCAGTT CAATGCCGCTCAGGTCGCCCTGAACGCCGCTTTTCTGCCGTCGATTATGCTTTCCGGCTT TATTTTTCAGATCGACAGT ATGCCCGCGGTGATCCGCGCGGTGACGTACATTATTCCCGCTCGTTATTTCGTCAGCACC CTGCAAAGCCTGTTCCTCG CCGGGAATATTCCAGTGGTGCTGGTGGTAAACGTGCTGTTTTTGATCGCTTCGGCGGTGA TGTTTATCGGCCTGACGTG GCTGAAAAC CAAACGT CGGC TGGATTAG

SEQ ID NO: 73

T he protein sequence encoded by ybhS ORF in the ybhG-ybhF-ybhS-ybhR operon, integrated at the amtl -downstream locus, is:

MSNPILSWRRVRALCVKETRQIVRDPSSWLIAWIPLLLLFIFGYGINLDS SKLRVGILLEQRSEAALDFTHTMTGSPY IDATI SDNRQELIAKMQAGKIRGLWIPVDFAEQMERANATAPIQVITDGSEPNTANFVQGYVEGI WQIWQMQRAEDNG QTFEPLIDVQTRYWFNPAAISQHFIIPGAVTIIMTVIGAILTSLWAREWERGTMEALLST EITRTELLLCKLIPYYFL GMLAMLLCMLVSVFILGVPYRGSLLILFFISSLFLLSTLGMGLLISTITRNQFNAAQVAL NAAFLPSIMLSGFIFQIDS MPAVIRAVTYI IPARYFVSTLQSLFLAGNIPWLWNVLFLIASAVMFIGLTWLKTKRRLD

SEQ ID NO: 74 T he DNA sequence encoding the ybhR ORF in the ybhG-ybhF-ybhS-ybhR operon, integrated at the amtl -downstream locus, is:

ATGTTTCATCGCTTATGGACGTTAATCCGCAAAGAGTTGCAGTCGTTGCTGCGCGAA CCGCAAACCCGCGCGATTCTGA TTTTACCCGTGCTAATTCAGGTGATCCTGTTCCCGTTCGCCGCCACGCTGGAAGTGACTA ACGCCACCATCGCCATCTA CGATGAAGATAACGGCGAGCATTCGGTGGAGCTGACCCAACGTTTTGCCCGCGCCAGCGC CTTTACTCATGTGCTGCTG CTGAAAAGCCCACAGGAGATCCGCCCAACCATCGACACACAAAAGGCGTTACTACTGGTG CGTTTCCCGGCTGACTTCT CGCGCAAACTGGATACCTTCCAGACCGCGCCTTTGCAGTTGATCCTCGACGGGCGTAACT CCAACAGTGCGCAAATTGC CGC CAAC TACC TGCAACAGAT CGT CAAAAATTAT CAGCAGGAGC TGC TGGAAGGAAAAC CGAAACC TAACAACAGCGAG CTGGTGGTACGCAACTGGTATAACCCGAATCTCGACTACAAATGGTTTGTGGTGCCGTCA CTGATCGCCATGATCACCA CTATCGGCGTAATGATCGTCACTTCACTTTCCGTCGCCCGCGAACGTGAACAAGGTACGC TCGATCAGCTACTGGTTTC GCCGCTCACCACCTGGCAGATCTTCATCGGCAAAGCCGTACCGGCGTTAATTGTCGCCAC CTTCCAGGCCACCATTGTG CTGGCGATTGGTATCTGGGCGTATCAAATCCCCTTCGCCGGATCGCTGGCGCTGTTCTAC TTTACGATGGTGATTTATG GTTTATCGCTGGTGGGATTCGGTCTGTTGATTTCATCACTCTGTTCAACACAACAGCAGG CGTTTATCGGCGTGTTTGT CTTTATGATGCCCGCCATTCTCCTTTCCGGTTACGTTTCTCCGGTGGAAAACATGCCGGT ATGGCTGCAAAACCTGACG TGGATTAAC CC TATTCGCCAC T T TACGGACATTAC CAAGCAGATT TATT TGAAGGATGCGAGT C TGGATATTGTGTGGA ATAGTTTGTGGCCGCTACTGGTGATAACGGCCACGACAGGGTCAGCGGCGTACGCGATGT TTAGACGTAAGGTGATGTA A

SEQ ID NO: 75

T he protein sequence encoded by ybhR ORF in the ybhG-ybhF-ybhS-ybhR operon, integrated at the amtl -downstream locus, is:

MFHRLWTLIRKELQSLLREPQTRAILILPVLIQVILFPFAATLEVTNATIAI YDEDNGEHSVELTQRFARASAFTHVLL LKSPQEIRPTIDTQKALLLVRFPADFSRKLDTFQTAPLQLILDGRNSNSAQIAANYLQQI VKNYQQELLEGKPKPNNSE LWRNWYNPNLDYKWFWPSLIAMITTIGVMIVTSLSVAREREQGTLDQLLVSPLTTWQIFI GKAVPALIVATFQATIV LAIGIWAYQIPFAGSLALFYFTMVIYGLSLVGFGLLISSLCSTQQQAFIGVFVFMMPAIL LSGYVSPVENMPVWLQNLT WINPIRHFTDITKQI YLKDASLDIVWNSLWPLLVITATTGSAAYAMFRRKVM

SEQ ID NO: 76

Underlined (2) Upstream, downstream homology regions deletionally targeted to the locus encompassing base pairs 377,985 to 381 ,565 of the JCC138 chromosome ( CBI accession # NC_010475).

Bold (2) Bidirectional rho-independent transcriptional terminators, incorporated to transcriptionally insulate the integrated divergent tolC-ybhGFSR cassette. T he first terminator sequence was derived from the intergenic region between yhdN and rplQ in E. coli MG1655 (Wright JJ et al. (1992). Hypersymmetry in a transcriptional terminator of Escherichia coli confers increased efficiency as well as bidirectionality. EMBO 11: 1957-1964). T he second terminator sequence was derived from a T nlO bidirectional terminator (Hillen W and Schollmeier K (1983). Nucleotide sequence of the T nlO encoded tetracycline resistance gene. Nucleic Acids Res. 11:525- 539).

Italics Synthetic gentamycin-resistance cassette, containing promoter plus open reading frame aacCl plus flanking restriction sites

Lowercase E. coli vector backbone (DNA2.0; Menlo Park, CA)

ACAACTCGGCTTCCGAGCTTGGCTCCACCATGGTTATATCTGGAGTAACCAGAATTTCGA CAACTTCGACGACTATCTC GGTGCTTTTACCTCCAACCAACGCAAAAACATTAAGCGCGAACGCAAAGCCGTTGACAAA GCAGGTTTATCCCTCAAGA TGATGACCGGGGACGAAATTCCCGCCCATTACTTCCCACTCATTTATCGTTTCTATAGCA GCACCTGCGACAAATTTTT TTGGGGGAGTAAATATCTCCGGAAACCCTTTTTTGAAACCCTAGAATCTACCTATCGCCA TCGCGTTGTTCTGGCCGCC GCTTACACGCCAGAAGATGACAAACATCCCGTCGGTTTATCTTTTTGTATCCGTAAAGAT GATTATCTTTATGGTCGTT ATTGGGGGGCCTTTGATGAATATGACTGTCTCCATTTTGAAGCCTGCTATTACAAACCGA TCCAATGGGCAATCGAGCA

GGGAATTACGATGTACGATCCGGGCGCTGGCGGAAAACATAAGCGACGACGTGGTTT CCCGGCAACCCCAAACTATAGC CTCCACCGTTTTTATCAACCCCGCATGGGCCAAGTTTTAGACGCTTATATTGATGAAATT AATGCCATGGAGCAACAGG AAATTGAAGCGATCAATGCGGATATTCCCTTTAAACGGCAGGAAGTTCAATTGAAAATTT CCTAGCTTCACTAGCCAAA AGCGCGAT CGC C CAC CGAC CAT C C T C CC T TGGGGGAGATGCGGCCGCAACGTAAAAAAACCCGCCCCGGCGGGTTTTTT TATACCGGTAC TGC C C T CGAT C TGTA-GAATTC TGCACGCAGATGTGC CGAAGTAAAAAATGCCCTCTTGGGTTATCAA

GRGGGTCR.TTATATTTAATTAACGAATCCATGTGGGAGTTTATTCTTGACACAGAT ATTTATGATATAATAACTGAGTA

AGCTTAACATAAGGAGGAAAAACTAATGTTACGCAGCAGCAACGATGTTACGCAGCA GGGCAGTCGCCCTAAAACAAAG TTAGGTGGCTCAAGTATGGGCATCATTCGCACATGTAGGCTCGGCCCTGACCAAGTCAAA TCCATGCGGGCTGCTCTTG ATCTTTTCGGTCGTGAGTTCGGAGACGTAGCCACCTACTCCCAACATCAGCCGGACTCCG ATTACCTCGGGAACTTGCT CCGTAGTAAGACATTCATCGCGCTTGCTGCCTTCGACCAAGAAGCGGTTGTTGGCGCTCT CGCGGCTTACGTTCTGCCC AAGTTTGAGCAGCCGCGTAGTGAGATCTATATCTATGATCTCGCAGTCTCCGGCGAGCAC CGGAGGCAGGGCATTGCCA CCGCGCTCATCAATCTCCTCAAGCATGAGGCCAACGCGCTTGGTGCTTATGTGATCTACG TGCAAGCAGATTACGGTGA CGATCCCGCAGTGGCTCTCTATACAAAGTTGGGCATACGGGAAGAAGTGATGCACTTTGA TATCGACCCAAGTACCGCC ACCTAGGCGCGCCT GAT CAGTTGGTGCTGCATTAGC TAAGAAGGT CAGGAGATATTATTCGACAT C TAGCTGACGGC CA TTGCGATCATAAACGAGGATATCCCACTGGCCATTTTCAGCGGCTTCAAAGGCAATTTTA GACCCATCAGCACTAATGG TTGGATTACGCACTTCTTGGTTTAAGTTATCGGTTAAATTCCGCTTTTGTTCAAACTCGC GATCATAGAGATAAATATC AGATTCGCCGCGACGATTGACCGCAAAGACAATGTAGCGACCATCTTCAGAAACGGCAGG ATGGGAGGCAATTTCATTT AGGGTATTGAGGCCCGGTAACAGAATCGTTTGCCTGGTGCTGGTATCAAATAGATAGATA TCCTGGGAACCATTGCGGT CTGAGGCAAAAACGAGGTAGGGTTCGGCGATCGCCGGGTCAAATTCGAGGGCCCGACTAT TTAAACTGCGGCCACCGGG ATCAACGGGAAAATTGACAATGCGCGGATAACCAACGCAGCTCTGGAGCAGCAAACCGAG GCTACCGAGGAAAAAACTG CGTAGAAAAGAAACATAGCGCATAGGTCAAAGGGAAATCAAAGGGCGGGCGATCGCCAAT TTTTCTATAATATTGTCCT AACAGCACACTAAAACAGAGCCATGCTAGCAAAAATTTGGAGTGCCACCATTGTCGGGGT CGATGCCCTCAGGGTCGGG GTGGAAGTGGATATTTCCGGCGGCTTACCGAAAATGATGGTGGTCGGACTGCggccggcc aaaatgaagtgaagttcct atactttctagagaataggaacttctatagtgagtcgaataagggcgacacaaaatttat tctaaatgcataataaata ctgataacatcttatagtttgtattatattttgtattatcgttgacatgtataattttga tatcaaaaactgattttcc ctttattattttcgagatttattttcttaattctctttaacaaactagaaatattgtata tacaaaaaatcataaataa tagatgaatagtttaattataggtgttcatcaatcgaaaaagcaacgtatcttatttaaa gtgcgttgcttttttc tca tttataaggttaaataattctcatatatcaagcaaagtgacaggcgcccttaaatattct gacaaatgctctttcccta aactccccccataaaaaaacccgccgaagcgggtttttacgttatttgcggattaacgat tactcgttatcagaaccgc ccagggggcccgagcttaagactggccgtcgttttacaacacagaaagagtttgtagaaa cgcaaaaaggccatccgtc aggggccttctgcttagtttgatgcctggcagttccctactctcgccttccgcttcctcg ctcactgactcgctgcgct cggtcgttcggctgcggcgagcggtatcagctcactcaaaggcggtaatacggttatcca cagaatcaggggataacgc aggaaagaacatgtgagcaaaaggccagcaaaaggccaggaaccgtaaaaaggccgcgtt gctggcgtttttccatagg ctccgcccccctgacgagcatcacaaaaatcgacgctcaagtcagaggtggcgaaacccg acaggactataaagatacc aggcgtttccccctggaagctccctcgtgcgctctcctgttccgaccctgccgcttaccg gatacctgtccgcctttct cccttcgggaagcgtggcgctttctcatagctcacgctgtaggtatctcagttcggtgta ggtcgttcgctccaagctg ggctgtgtgcacgaaccccccgttcagcccgaccgctgcgccttatccggtaactatcgt cttgagtccaacccggtaa gacacgacttatcgccactggcagcagccactggtaacaggattagcagagcgaggtatg taggcggtgctacagagtt cttgaagtggtgggctaactacggctacactagaagaacagtatttggtatctgcgctct gctgaagccagttaccttc ggaaaaagagttggtagctcttgatccggcaaacaaaccaccgctggtagcggtggtttt tttgtttgcaagcagcaga ttacgcgcagaaaaaaaggatctcaagaagatcctttgatcttttctacggggtctgacg ctcagtggaacgacgcgcg cgtaactcacgttaagggattttggtcatgagcttgcgccgtcccgtcaagtcagcgtaa tgctctgcttttagaaaaa ctcatcgagcatcaaatgaaactgcaatttattcatatcaggattatcaataccatattt ttgaaaaagccgtttctgt aatgaaggagaaaactcaccgaggcagttccataggatggcaagatcctggtatcggtct gcgattccgactcgtccaa catcaatacaacctattaatttcccctcgtcaaaaataaggttatcaagtgagaaatcac catgagtgacgactgaatc cggtgagaatggcaaaagtttatgcatttctttccagacttgttcaacaggccagccatt acgctcgtcatcaaaatca ctcgcatcaaccaaaccgttattcattcgtgattgcgcctgagcgaggcgaaatacgcga tcgctgttaaaaggacaat tacaaacaggaatcgagtgcaaccggcgcaggaacactgccagcgcatcaacaatatttt cacctgaatcaggatattc ttctaatacctggaacgctgtttttc cggggatcgcagtggtgagtaaccatgcatcatcaggagtacggataaaatgc ttgatggtcggaagtggcataaattccgtcagccagtttagtctgaccatctcatctgta acatcattggcaacgctac ctttgccatgtttcagaaacaactctggcgcatcgggcttcccatacaagcgatagattg tcgcacctgattgcccgac attatcgcgagcccatttatacccatataaatcagcatccatgttggaatttaatcgcgg cctcgacgtttcccgttga atatggctcatattcttcctttttc aatattattgaagcatttatcagggttattgtctcatgagcggatacatatttg aatgtatttagaaaaataaacaaataggggtcagtgttacaaccaattaaccaattctga acattatcgcgagcccatt tatacctgaatatggctcataacaccccttgtttgcctggcggcagtagcgcggtggtcc cacctgaccccatgccgaa ctcagaagtgaaacgccgtagcgccgatggtagtgtggggactccccatgcgagagtagg gaactgccaggcatcaaat aaaacgaaaggctcagtcgaaagactgggcctttcgcccgggctaattagggggtgtcgc ccttattcgactctatagt gaagttcctattctctagaaagtataggaacttctgaagtggggcctgcagg

SEQ ID NO: 77

T he DNA sequence encoding A 0585_tolC_opt, integrated at the ΔΑ0358 locus, is: ATGTTTGCCTTTCGTGACTTCTTGACCTTCAGCACCGGTGGCCTGGTTGTCCTGTCCGGC GGTGGTGTTGCGATTGCGG AGAATTTGATGCAGGTTTACCAGCAGGCGCGTCTGTCCAATCCGGAGCTGCGTAAAAGCG CTGCCGACCGTGATGCCGC GTTTGAGAAGATTAACGAAGCCCGCAGCCCGCTGCTGCCGCAGCTGGGTTTGGGCGCTGA CTACACCTACTCCAACGGC TAT C GT GAC GC CAAC GGTAT CAATAGCAAT GC GAC CAGC GC CAGC C TGCAAC T GAC C CAAAGCATT T T TGATATGAGCA AATGGCGCGCTCTGACCCTGCAAGAGAAAGCGGCAGGTATCCAGGATGTGACCTACCAAA CGGACCAGCAGACCCTGAT CTTGAACACGGCGACCGCGTATTTCAATGTTTTGAACGCAATCGATGTCCTGAGCTATAC CCAGGCCCAGAAGGAAGCG ATTTATCGTCAGTTGGATCAGACCACCCAGCGCTTCAATGTGGGTCTGGTGGCGATTACG GATGTTCAAAATGCGCGTG CGCAATACGATACTGTTTTGGCAAACGAAGTGACGGCGCGTAACAATCTGGATAATGCCG TTGAACAGCTGCGTCAAAT CACGGGCAACTACTATCCGGAACTGGCAGCACTGAACGTTGAGAATTTCAAGACGGATAA GCCGCAACCTGTGAACGCG CTGCTGAAAGAGGCGGAAAAGCGCAATCTGAGCCTGCTGCAAGCCCGTCTGAGCCAAGAC CTGGCGCGTGAGCAGATTC GTCAGGCACAAGATGGCCACCTGCCAACCCTGGACTTGACGGCATCCACGGGTATCTCGG ACACCAGCTACTCCGGTAG CAAGACTCGCGGTGCAGCAGGTACGCAGTATGACGACTCTAACATGGGTCAAAACAAAGT CGGCCTGTCTTTCAGCCTG CCGATCTACCAAGGTGGCATGGTTAATTCTCAAGTTAAACAGGCGCAATACAACTTTGTC GGCGCGAGCGAACAGCTGG AGAGCGCTCACCGTAGCGTGGTCCAGACCGTCCGTTCTTCTTTTAACAACATTAACGCGA GCATCAGCAGCATTAACGC ATACAAACAAGCGGTGGTGAGCGCGCAATCGAGCCTGGACGCAATGGAGGCGGGTTACAG CGTCGGTACGCGCACCATT GTCGACGTGCTGGATGCAACTACCACCCTGTATAATGCAAAGCAAGAACTGGCAAATGCG CGCTACAACTATCTGATTA ACCAGCTGAATATCAAATCCGCGCTGGGCACGCTGAACGAGCAGGATCTGCTGGCATTGA ACAACGCGCTGAGCAAGCC GGTAAGCAC GAAT C C GGAGAAC GT C GCC C CACAAAC C C C GGAACAGAAT GC TAT C GCGGACGGC TATGC C C CGGACAGC CCGGCTCCGGTTGTGCAGCAGACTAGCGCTCGCACCACCACCAGCAATGGTCATAATCCG TTCCGTAATTAA

SEQ ID NO: 78

T he protein sequence encoded by A0585_tolC_opt, integrated at the ΔΑ0358 is:

MFAFRDFLTFSTGGLWLS GGGVAIAENLMQVYQQARLSNPELRKSAADRDAAFEKINEARS PLLPQLGLGADYTYSNG YRDANGINSNATSASLQLTQS I FDMSKWRALTLQEKAAGIQDVTYQTDQQTLILNTATAYFNVLNAI DVLS YTQAQKEA IYRQLDQTTQRFNVGLVAITDVQNARAQYDTVLANEVTARNNLDNAVEQLRQITGNYYPE LAAL VENFKTDKPQPVNA LLKEAEKRNLSLLQARLSQDLAREQIRQAQDGHLPTLDLTASTGI S DTS YS GSKTRGAAGTQYDDSNMGQNKVGLS FSL PIYQGGMVNSQVKQAQYNFVGASEQLESAHRSWQTVRS S FNNINAS I S S INAYKQAWSAQS SLDAMEAGYSVGTRTI VDVLDATTTLYNAKQELANARYNYLINQLNIKSALGTLNEQDLLALNNALSKPVSTNPEN VAPQTPEQNAIADGYAPDS PAPWQQTSARTTTSNGHNPFRN

SEQ ID NO: 79

T he DNA sequence encoding AOS 18 JolC_opt, integrated at the ΔΑ0358 locus, is: ATGCAGAAACAACAAAATCT GGAC TACT TTAGCCCGCAGGCCCT GGC CCTGTGGGCTGC GATTGCGAGCTTGGGTGTTA TGTCCCCTGCGCATGCGGAGAATTTGATGCAGGTTTACCAGCAGGCGCGTCTGTCCAATC CGGAGCTGCGTAAAAGCGC TGCCGACCGTGATGCCGCGTTTGAGAAGATTAACGAAGCCCGCAGCCCGCTGCTGCCGCA GCTGGGTTTGGGCGCTGAC TACACCTACTC CAAC GGCTATCGTGACGCCAACGGTAT CAATAGCAAT GCGAC CAGC GC CAGC C TGCAAC TGAC CCAAA GCAT T T T T GATAT GAGCAAAT GGC GC GC T C T GAC C C T GCAAGAGAAAGC GGCAGGTATC CAGGATGTGAC C TAC CAAAC GGACCAGCAGACCCTGATCTTGAACACGGCGACCGCGTATTTCAATGTTTTGAACGCAAT CGATGTCCTGAGCTATACC CAGGC C CAGAAGGAAGC GAT T TAT CGTCAGTTGGATCAGACCACC CAGC GCTTCAATGTGGGTCTGGTGGCGATTACGG ATGTTCAAAATGCGCGTGCGCAATACGATACTGTTTTGGCAAACGAAGTGACGGCGCGTA ACAATCTGGATAATGCCGT TGAACAGCTGCGTCAAATCACGGGCAAC TAC TAT CCGGAACTGGCAGCACTGAACGTTGA GAATTTCAA GACGGATAAG C CGCAAC C T GT GAAC GC GC T GC T GAAAGAGGC GGAAAAGC GCAAT C T GAGC C T GC TGCAAGC C CGT C TGAGC CAAGAC C TGGCGCGTGAGCAGATTCGTCAGGCACAAGATGGCCACCTGCCAACCCTGGACTTGACGG CATCCACGGGTATCTCGGA CAC CAGC TACT CCGGTAGCAAGACTCGCGGTGCAGCAGGTACGCAGTAT GAC GAC TCTAACATGGGTCAAAACAAAGTC GGCCTGTCTTTCAGCCTGCCGATCTACCAAGGTGGCATGGTTAATTCTCAAGTTAAACAG GCGCAATACAACTTTGTCG GCGCGAGCGAACAGCTGGAGAGCGCTCACCGTAGCGTGGTCCAGACCGTCCGTTCTTCTT TTAACAACATTAACGCGAG CAT CAGCAGCATTAACGCATACAAACAAGCGGTGGT GAGC GCGCAATC GAGC CTGGACGCAATGGAGGCGGGTTACAGC GTCGGTACGCGCACCATTGTCGACGTGCTGGATGCAACTACCACCCTGTATAATGCAAAG CAAGAACTGGCAAATGCGC GCTACAAC TAT CT GAT TAAC CAGC TGAATATCAAATCCGCGCTGGGCACGCT GAAC GAGCAGGATCTGCTGGCATTGAA CAACGCGCTGAGCAAGCCGGTAAGCACGAATCCGGAGAACGTCGCCCCACAAACCCCGGA ACAGAATGCTATCGCGGAC GGCTATGCCCCGGACAGCCCGGCTCCGGTTGTGCAGCAGACTAGCGCTCGCACCACCACC AGCAATGGTCATAATCCGT TCCGTAATTAA

SEQ ID NO:80

T he protein sequence encoded by A0318_tolC_opt, integrated at the ΔΑ0358 is:

MQKQQNLDYFS PQALALWAAIASLGVMS PAHAENLMQVYQQARLSNPELRKSAADRDAAFEKINEARS PLLPQLGLGAD YTYSNGYRDANGINSNATSASLQLTQS I FDMSKWRALTLQEKAAGIQDVTYQTDQQTLILNTATAYFNVLNAIDVLSYT QAQKEAI YRQLDQTTQRFNVGLVAITDVQNARAQYDTVLANEVTARNNLDNAVEQLRQITGNYYPEL AALNVENFKTDK PQPVNALLKEAEKRNLSLLQARLSQDLAREQIRQAQDGHLPTLDLTAS TGI S DTS YS GSKTRGAAGTQYDDSNMGQNKV GLS FSLPI YQGGMVNSQVKQAQ YNFV GAS EQLESAHRSWQTVRS S FNNINAS I S S INAYKQAWSAQS SLDAMEAGYS VGTRTIVDVLDATTTLYNAKQELANARYNYLINQLNIKSALGTLNEQDLLALNNALSKPV STNPENVAPQTPEQNAIAD GYAPDSPAPWQQTSARTTTSNGHNPFRN

SEQ ID NO:81

The DNA sequence encoding A0585_ProNterm_tolC_opt, integrated at the ΔΑ0358 locus, is: ATGTTTGCCTTCCGTGACTTCCTGACGTTTAGCACGGGCGGTTTGGTCGTGTTGAGCGGT GGCGGTGTTGCGATTGCAC AAACCACCCCTCCGCAGATCGCCACTCCGGAGCCGTTTATCGGTCAGACGCCGCAGGCAC CGCTGCCACCGCTGGCTGC GCCGTCCGTTGAAAGCCTGGACACCGCGGCTTTCCTGCCGAGCCTGGGCGGTCTGTCCCA ACCGACCACCCTGGCCGCA CTGCCTTTGCCGAGCCCGGAGTTGAACCTGTCGCCTACGGCGCATCTGGGTACCATCCAG GCGCCAAGCCCGCTGTTGG C GCAAGT GGATAC CAC T GC GAC C C C GAGCC C GAC CAC C GC GAT T GAC GT CAC C C TGC CGACGGCGGAAACGAAT CAAAC CATTCCGCTGGTCCAGCCGCTGCCGCCAGACCGCGTCATCAATGAGGACCTGAACCAACT GCTGGAGCCGATTGATAAC CCGGCAGTTACGGTGCCGCAGGAAGC GAC CGCCGTTAC GAC CGATAATGTTGTGGATGA GAATTTGATGCAGGTTTACC AGCAGGCGCGTCTGTCCAATCCGGAGCTGCGTAAAAGCGCTGCCGACCGTGATGCCGCGT TTGAGAAGATTAACGAAGC CCGCAGCCCGCTGCTGCCGCAGCTGGGTTTGGGCGCTGACTACACCTACTCCAACGGCTA TCGTGACGCCAACGGTATC AATAGCAAT GC GAC CAGCGC CAGC C T GCAAC T GAC C CAAAGCAT T T T T GATAT GAGCAAATGGCGCGC T C TGAC C C TGC AAGAGAAAGCGGCAGGTAT C CAGGAT GT GAC C TAC CAAAC GGAC CAGCAGAC C C T GATCT TGAACACGGCGACCGCGTA TTTCAATGTTTTGAACGCAATCGATGTCCTGAGCTATACCCAGGCCCAGAAGGAAGCGAT TTATCGTCAGTTGGATCAG ACCACCCAGCGCTTCAATGTGGGTCTGGTGGCGATTACGGATGTTCAAAATGCGCGTGCG CAATACGATACTGTTTTGG CAAAC GAAGTGAC GGC GCGTAACAATCTGGATAATGCCGTTGAACAGCTGCGTCAAATCACGGGCAAC TAC TAT CCGGA ACT GGCAGCACTGAACGTTGA GAAT TTCAAGACGGATAAGCCGCAACCTGTGAACGCGCTGCTGAAAGAGGCGGAAAAG CGCAATCTGAGCCTGCTGCAAGCCCGTCTGAGCCAAGACCTGGCGCGTGAGCAGATTCGT CAGGCACAAGATGGCCACC TGCCAACCCTGGACTTGACGGCATCCACGGGTATCTCGGACACCAGCTACTCCGGTAGCA AGACTCGCGGTGCAGCAGG TAC GCAGTATGAC GAC TCTAACATGGGTCAAAACAAAGTC GGC CTGTCTTT CAGC CTGCC GAT C TAC CAAGGTGGCATG GTTAATTCTCAAGTTAAACAGGCGCAATACAACTTTGTCGGCGCGAGCGAACAGCTGGAG AGCGCTCACCGTAGCGTGG TCCAGACCGTCCGTTCTTCTTTTAACAACATTAACGCGAGCATCAGCAGCATTAACGCAT ACAAACAAGCGGTGGTGAG CGCGCAATCGAGCCT GGAC GCAATGGAGGCGGGTTACAGCGTCGGTACGCGCAC CAT TGTCGACGTGCTGGATGCAACT ACCACCCTGTATAATGCAAAGCAAGAACTGGCAAATGCGCGCTACAACTATCTGATTAAC CAGCTGAATATCAAATCCG CGCTGGGCACGCTGAACGAGCAGGATCTGCTGGCATTGAACAACGCGCTGAGCAAGCCGG TAAGCACGAAT CCGGA GAA C GT CGCCCCACAAACCCCGGAACAGAATGCTATCGC GGAC GGC TAT GCCCCGGACAGCCCGGC TCCGGTTGTGCAGCAG ACTAGCGCTCGCACCACCACCAGCAATGGTCATAATCCGTTCCGTAATTAA

SEQ ID NO: 82

The protein sequence encoded by A0585_ProNterm_tolC_opt, integrated at the ΔΑ0358 is: MFAFRDFLTFSTGGLWLSGGGVAIAQTTPPQIATPEPFIGQTPQAPLPPLAAPSVESLDT AAFLPSLGGLSQPTTLAA LPLPSPELNLSPTAHLGTIQAPSPLLAQVDTTATPSPTTAIDVTLPTAETNQTIPLVQPL PPDRVINEDLNQLLEPIDN PAVTVPQEATAVTTDNWDENLMQVYQQARLSNPELRKSAADRDAAFEKINEARSPLLPQL GLGADYTYSNGYRDANGI NSNATSASLQLTQS IFDMSKWRALTLQEKAAGIQDVTYQTDQQTLILNTATAYFNVLNAIDVLS YTQAQKEAIYRQLDQ TTQRFNVGLVAITDVQNARAQYDTVLANEVTARNNLDNAVEQLRQITGNYYPELAAL VENFKTDKPQPVNALLKEAEK RNLSLLQARLSQDLAREQIRQAQDGHLPTLDLTASTGISDTSYSGSKTRGAAGTQYDDSN MGQNKVGLSFSLPIYQGGM VNSQVKQAQYNFVGASEQLESAHRSWQTVRS SFNNINAS I SS INAYKQAWSAQS SLDAMEAGYSVGTRTIVDVLDAT TTLYNAKQELANARYNYLINQLNIKSALGTLNEQDLLALNNALSKPVSTNPENVAPQTPE QNAIADGYAPDSPAPWQQ TSARTTTSNGHNPFRN

SEQ ID NO: 83

The DNA sequence encoding A0318_ProNterm_tolC_opt, integrated at the ΔΑ0358 locus, is: ATGCAAAAACAACAGAATCTGGACTACTTTAGCCCGCAGGCGTTGGCACTGTGGGCGGCT ATTGCTTCCCTGGGTGTTA T GAGC C C GGCACAC GC GGAGC CGCGTAGCGAGGGCAGC CAT TCT GAT CCGCTGGTTC CGAC CGCGACGCAGGTCGTGGT TCCGGCGCTGCCGGTGGAGGACGTTGCGCCGACCGCCGCACCGGCATCGCAGACCCCGGC TCCTCAGAGCGAAAACTTG GCGCAATCCAGCACCCAAGCCGTCACGAGCCCTGTGGCGCAGGCGCAGGAAGCCCCGCAA GACAGCAATCTGCCGCAAC TGTATGCCCAGCAGCAAGGTAACCCAAATGCCCAACAGGCGAACCCGGAGAATTTGATGC AGGTTTACCAGCAGGCGCG TCTGTCCAATCCGGAGCTGCGTAAAAGCGCTGCCGACCGTGATGCCGCGTTTGAGAAGAT TAACGAAGCCCGCAGCCCG CTGCTGCCGCAGCTGGGTTTGGGCGCTGACTACACCTACTCCAACGGCTATCGTGACGCC AACGGTATCAATAGCAATG C GAC CAGC GCCAGC C T GCAAC T GAC C CAAAGCAT T T T T GATAT GAGCAAAT GGC GCGCT C TGAC CC TGCAAGAGAAAGC GGCAGGTAT CCAGGAT GTGAC C TAC CAAAC GGAC CAGCAGACC C T GAT C TT GAACAC GGCGAC CGCGTATTTCAATGTT T TGAAC GCAAT C GAT GT CC T GAGC TATAC C CAGGCC CAGAAGGAAGC GATT TAT C GT CAGTTGGAT CAGAC CAC C CAGC GCT T CAAT GTGGGTCTGGT GGC GAT TAC GGATGTTCAAAATGCGCGTGCGCAATACGATACTGTTTTGGCAAACGAAGT GACGGCGCGTAACAATCTGGATAATGCCGTTGAACAGCTGCGTCAAATCACGGGCAACTA CTATCCGGAACTGGCAGCA C TGAAC GTTGAGAATTTCAAGACGGATAAGCC GCAAC CTGTGAACGCGCTGCTGAAAGAGGCGGAAAAGCGCAAT CTGA GCCTGCTGCAAGCCCGTCTGAGCCAAGACCTGGCGCGTGAGCAGATTCGTCAGGCACAAG ATGGCCACCTGCCAACCCT GGAC TT GAC GGCATCCACGGGTATCTCGGACACCAGC TAC TCCGGTAGCAA GAC TCGCGGTGCAGCAGGTACGCAGTAT GACGACTCTAACATGGGTCAAAACAAAGTCGGCCTGTCTTTCAGCCTGCCGATCTACCAA GGTGGCATGGTTAATTCTC AAGTTAAACAGGCGCAATACAACTTTGTCGGCGCGAGCGAACAGCTGGAGAGCGCTCACC GTAGCGTGGTCCAGACCGT CCGTTCTTCTTTTAACAACATTAACGCGAGCATCAGCAGCATTAACGCATACAAACAAGC GGTGGTGAGCGCGCAATCG AGCCTGGACGCAATGGAGGCGGGTTACAGCGTCGGTACGCGCACCATTGTCGACGTGCTG GATGCAACTACCACCCTGT ATAATGCAAAGCAAGAACTGGCAAATGCGCGCTACAACTATCTGATTAACCAGCTGAATA TCAAATCCGCGCTGGGCAC GCTGAACGAGCAGGATCTGCTGGCATTGAACAACGCGCTGAGCAAGCCGGTAAGCACGAA TCCGGAGAACGTCGCCCCA CAAACCCCGGAACAGAATGCTATCGCGGACGGCTATGCCCCGGACAGCCCGGCTCCGGTT GTGCAGCAGACTAGCGCTC GCAC CAC CACCAGCAAT GGT CATAAT CC GT T C CGTAAT TAA

SEQ ID NO: 84

T he protein sequence encoded by A0318_ProNterm_tolC_opt, integrated at the ΔΑ0358 is: MQKQQNLDYFS PQALALWAAIASLGVMS PAHAEPRSEGSHS DPLVPTATQWVPALPVEDVAPTAAPASQTPAPQSENL AQS STQAVTSPVAQAQEAPQDSNLPQLYAQQQGNPNAQQANPENLMQVYQQARLSNPELRKSA ADRDAAFEKINEARS P LLPQLGLGADYTYSNGYRDANGINSNATSASLQLTQS I FDMSKWRALTLQEKAAGIQDVTYQTDQQTLILNTATAYFNV LNAI DVLS YTQAQKEAI YRQLDQTTQRFNVGLVAITDVQNARAQYDTVLANEVTARNNLDNAVEQLRQITGNYYPEL AA L VENFKTDKPQPVNALLKEAEKRNLSLLQARLSQDLAREQIRQAQDGHLPTLDLTASTGI S DTSYS GSKTRGAAGTQY DDSNMGQNKVGLS FSLPIYQGGMVNSQVKQAQYNFVGASEQLE SAHRSWQTVRS S FNNINAS I S S INAYKQAWSAQS SLDAMEAGYSVGTRTIVDVLDATTTLYNAKQELANARYNYLINQLNIKSALGTLNEQDLL ALNNALSKPVSTNPENVAP QTPEQNAIADGYAPDS PAPWQQTSARTTTSNGHNPFRN

SEQ ID NO:85

T he DNA sequence encoding hybrid _A0585, integrated at the ΔΑ0358 locus, is:

ATGTTCGCTTTTCGCGACTTTCTGACCTTTTCGACTGGCGGCCTGGTCGTTCTGTCC GGTGGCGGTGTTGCGATTGCGC AGACCACCCCTCCGCAGATCGCGACCCCGGAACCGTTTATCGGTCAGACGCCGCAAGCCC CGCTGCCTCCGCTGGCCGC TCCGAGCGTTGAGAGCCTGGATACCGCGGCTTTCTTGCCGTCGCTGGGCGGTCTGAGCCA ACCGACCACGCTGGCAGCA CTGCCGCTGCCGAGCCCAGAGCTGAATCTGTCCCCGACCGCCCACCTGGGTACGATCCAA GCCCCGAGCCCGTTGCTGG C GCAAGT GGATAC CAC C GC TAC GC C GAGCC C GAC GAC C GC CAT T GAT GT GAC T T TGCCGAC CGCGGAAACGAAT CAAAC GAT T C C GC T GGT T CAAC CGC T GC C GC CT GAT C GT GT GAT TAAC GAAGAT CT GAAC CAGC TGC TGGAAC CGAT CGACAAT CCGGCGGTCACCGTCCCGCAAGAGGCAACCGCGGTGACCACCGATAATGTGGTTGACCTG ACGCTCGAGGAAACGATCC GCCTGGCACTGGAGCGCAACGAAACCTTGCAAGAGGCGCGTCT GAAC TATGACCGCAGCGAGGAGCTGGTGCGTGAGGC GAT T GCGGCTGAGTACCCGAATTTGTCGAACCAGGTCGACATTACCCGTACTGACAGCGC GAACGGTGAGCTGCAAGCT CGTCGTCTGGGTGGTGACAATAATGCCACCACCGCCATCAATGGTCGCCTGGAAGTGAGC TACGACATCTATACCGGCG GTCGCCGTAGCGCGCAGATTGAGGCGGCACAGACC CAGC TGCAAATTGCCGAGCTGGATATCGAACGCCTGACCGAGGA GAC TCGTCTGGCTGCGGCGGT GAAT TAC TATAATCTGCAATCTGCGGACGCGCAGGTTGT TATTGAACAGAGCTCAGTT TTT GAT GCAACCCAGCAACTGGAT CAAAC TAC TCAGCGTTT CAAC GTGGGTCT GGT GGCAATTACGGACGTTCAGAACG C GC GT GCAGAGC T GGC TAGCGCCCAACAGCGTCT GAC GCGCGCTGAAGC CAC C CAGCGCACGGCACGTCGT CAAC TGGC GCAGT T GC T GAGC T T GGAGC C GAC CATC GAC C CGC GCAC GGCC GAC GAGAT CAAC CTGGCGGGTCGTTGGGA GAT CAGC CTGGAGGAAACCATTGTTCTGGCCTTGCAGAATCGTCAAGAACTGCGTCAACAGCTGCTG CAACGTGAGGTGGATGGCT ACCAGGAGCGCATCGCGTTGGCGGCAGTCCGCCCACTGGTGAGCGTCTTTGCGAATTATG ACGTCCTGGAGGTATTTGA CGATAGCTTGGGCCCAGCGGATGGTTTGACTGTCGGTGCTCGTATGCGTTGGAACTTCTT CGACGGCGGTGCTGCGGCA GCGCGTGC CAAC CAGGAACAAGTGGATCAGGC CAT CGCGGAGAATCGCTTTGCAAAC CAACGCAACCAGATTCGTCTGG CAGTC GAAACC GCATAT TAC GAC T T C GAAGC GAGC GAACAGAACAT TAC CAC GGC C GCAGCGGC CGTAACGTTAGCAGA AGAAAGCCTGGACGCGATGGAGGCTGGTTACTCCGTTGGTACCCGCACTATCGTTGATGT CCTGGATGCGACGACGGGC C TGAATAC GGC CCGGGGTAAC TAC CTGCAAGC GGT TAC CGATTACAACCGTGCGTT CGCGCAGC TGAAGCGTGAAGTTG GCCTGGGCGACGCCGTCATTGCGCCTGCGGCTCCGTAA

SEQ ID NO:86

T he protein sequence encoded by hybrid _A058 '5, integrated at the ΔΑ0358 is:

MFAFRDFLTFSTGGLWLS GGGVAIAQTTPPQIATPEPFIGQTPQAPLPPLAAPSVE SLDTAAFLPSLGGLSQPTTLAA LPLPS PELNLS PTAHLGTIQAPS PLLAQVDTTATPS PTTAI DVTLPTAETNQTI PLVQPLPPDRVINEDLNQLLEPI DN PAVTVPQEATAVTTDNWDLTLEETIRLALERNETLQEARLNYDRSEELVREAIAAEYPNL SNQVDITRTDSANGELQA RRLGGDNNATTAINGRLEVS YDI YTGGRRSAQIEAAQTQLQIAELDIERLTEETRLAAAVNYYNLQSADAQWIEQS SV FDATQQLDQTTQRFNVGLVAITDVQNARAELASAQQRLTRAEATQRTARRQLAQLLSLEP TI DPRTADE INLAGRWE I S LEETIVLALQNRQELRQQLLQREVDGYQERIALAAVRPLVSVFANYDVLEVFDDSLGPAD GLTVGARMRWNFFDGGAAA ARANQEQVDQAIAENRFANQRNQIRLAVETAYYDFEASEQNITTAAAAVTLAEE SLDAMEAGYSVGTRTIVDVLDATTG LNTARGNYLQAVTDYNRAFAQLKREVGLGDAVIAPAAP

SEQ ID NO:87

T he DNA sequence encoding hybrid_l 761, integrated at the ΔΑ0358 locus, is:

ATGGCGGCCTTCTTGTACCGCCTGAGCTTCCTGAGCGCGCTGGCAATCGCGGCTCAC GGCGTTACCCCACCGACCGCCA TCGCTGAGCTCGCGGAGGCGACCACCGCAGAACCAACCCCGACCGTCGCCCAAGCTACGA CCCCACCGGCTACCACGCC GACGACCACCCCGGCTCCTGGCCCGGTCAAAGAAGTCGTGCCGGACGCGAATCTGCTGAA GGAGCTGCAAGCCAACCCG AACCCGTTCCAGCTGCCGAACCAGCCGAATCAGGTGAAAACCGAGGCCCTGCAACCGTTG ACCCTCGAGCAGGCTCTGA ATCTGGCGCGTTTGAATAACCCGCAGATTCAGGTGCGTCAGCTGCAAGTTCAGCAACGCC AGGCGGCATTGCGTGGTAC GGAAGCAGCCCTGTACCCTACTCTGGGCCTGCAAGGTACGGCAGGCTATCAGCAAAACGG CACGCGCTTGAACGTGACC GAGGGTACCCCGACGCAGCCGACCGGCAGCTCCCTGTTCACGACCCTGGGTGAGAGCAGC ATCGGCGCAACCCTGAACC TGAATTACACGATTTTTGATTTCGTCCGTGGTGCACAACTGGCGGCCAGCCGTGACCAGG TGACGCAGGCGGAATTGGA TCTGGAGGCGGCACTGGAGGACCTGCAACTGACTGTTTCGGAAGCGTACTATCGTTTGCA GAATGCGGATCAATTGGTC CGCATCGCTCGCGAGTCTGTCGTCGCGTCCGAGCGTCAGTTGGATCAGACCACCCAACGC TTTAATGTTGGCCTGGTGG CGATCACGGATGTGCAAAATGCCCGTGCCCAGCTGGCACAAGACCAGCAGAATCTGGTCG ACTCGATCGGTAACCAGGA CAAGGCGCGTCGCGCGCTGGTTCAGGCACTGAACCTGCCGCAGAATGTTAATGTCCTGAC CGCTGATCCGGTTGAACTG GCTGCGCCGTGGAATCTGAGCCTGGATGAGTCTATTGTTCTGGCTTTCCAGAACCGTCCG GAGCTGGAGCGCGAGGTGT TGCAACGTAACATTAGCTATAACCAAGCGCAAGCAGCTCGCGGTCAAGTTCTGCCGCAGC TGGGTCTGCAAGCGAGCTA CGGCGTCAACGGTGCCATCAATTCTAATCTGCGTAGCGGTAGCCAAGCGCTGACCTTCCC GAGCCCGACTCTGACGAAC ACGAGCAGCTATAAC TACT C CAT TGGTCTGGTTTTGAATGTGCCGCTGTTTGACGGCGGTCTGGCGAACGCGAACGCAC AGCAACAGGAAT T GAAC GGT CAGAT T GC T GAACAAAAC T T T GT GC T GACCCGCAAT CAGATTCGTACGGACGTCGAGAC TGCCTTTTACGACCTGCAAACCAATCTGGCAAATATCGGTACCACCCGTAAAGCGGTGGA ACAAGCTCGTGAAAGCCTG GACGC GAT GGAAGCGGGTTATAGCGTGGGTACCC GTAC CAT TGTTGACGTTCTGGATGCCACGACGGATCTGACCCGTG CAGAGGCGAATGCGCTGAATGCCATCACCGCGTATAACCTGGCACTGGCGCGTATTAAGC GCGCAGTGAGCAACGTTAA CAACCTGGCGCGTGCGGGTGGCTAA

SEQ ID NO:88

The protein sequence encoded by hybrid_l 761, integrated at the ΔΑ0358 is:

MAAFLYRLSFLSALAIAAHGVTPPTAIAELAEATTAEPTPTVAQATTPPATTPTTTP APGPVKEWPDANLLKELQANP NPFQLPNQPNQVKTEALQPLTLEQALNLARLNNPQIQVRQLQVQQRQAALRGTEAALYPT LGLQGTAGYQQNGTRLNVT EGTPTQPTGSSLFTTLGES S IGATLNLNYTIFDFVRGAQLAASRDQVTQAELDLEAALEDLQLTVSEAYYRLQNADQLV RIARESWASERQLDQTTQRFNVGLVAITDVQNARAQLAQDQQNLVDS IGNQDKARRALVQALNLPQNVNVLTADPVEL AAPWNLSLDES IVLAFQNRPELEREVLQRNI S YNQAQAARGQVLPQLGLQAS YGVNGAINSNLRSGSQALTFPSPTLTN TSS YNYS IGLVLNVPLFDGGLANANAQQQELNGQIAEQNFVLTRNQIRTDVETAFYDLQTNLANIGT TRKAVEQARESL DAMEAGYSVGTRTIVDVLDATTDLTRAEANALNAITAYNLALARIKRAVSNVNNLARAGG

SEQ ID NO:lll

The DNA sequence encoding ybhG_opt, integrated at the ΔΑ0358 locus, is:

ATGATGAAAAAGCCGGTTGTTATTGGCCTGGCGGTTGTCGTGTTGGCAGCCGTGGTC GCGGGTGGTTACTGGTGGTATC AGAGCCGCCAAGATAACGGTCTGACTCTGTACGGTAATGTTGATATCCGCACGGTGAACC TGAGCTTCCGTGTCGGTGG TCGTGTAGAGTCTCTGGCTGTCGACGAGGGCGATGCGATCAAGGCGGGTCAGGTGTTGGG CGAGTTGGACCATAAACCG TATGAAATCGCCCTGATGCAAGCAAAGGCGGGTGTCAGCGTGGCCCAGGCGCAATACGAC CTGATGCTGGCAGGTTACC GTAATGAGGAGATTGCCCAGGCAGCAGCGGCGGTGAAGCAGGCCCAAGCGGCATACGATT ATGCGCAAAACTTTTACAA CCGTCAGCAAGGTCTGTGGAAAAGCCGTACGATCTCCGCGAATGACTTGGAAAACGCCCG TAGCAGCCGCGACCAAGCG CAGGCTACGCTGAAAAGCGCGCAGGACAAACTGCGCCAGTACCGTTCTGGCAATCGCGAA CAAGACATTGCACAGGCTA AAGCCAGCCTGGAGCAAGCGCAAGCCCAACTGGCACAGGCGGAACTGAACTTGCAGGACT CGACCCTGATTGCGCCGAG CGACGGTACCCTGCTGACCCGTGCTGTCGAACCAGGCACCGTTCTGAATGAAGGTGGCAC CGTTTTTACCGTGAGCCTG ACCCGTCCGGTGTGGGTCCGCGCTTATGTTGACGAACGCAATCTGGATCAGGCGCAGCCG GGTCGTAAGGTTCTGCTGT ATACCGATGGTCGTCCGGATAAGCCGTACCACGGCCAAATTGGCTTTGTTTCCCCTACGG CAGAGTTCACCCCGAAAAC GGT C GAGAC TC C GGAT T TGC GTAC C GAT CTGGTT TAT CGCCTGCGTATCGT GGT TACCGATGCGGACGATGCGCTGCGT CAGGGTATGCCGGTGACGGTCCAATTCGGCGACGAGGCAGGCCACGAGTAA

SEQ ID NO:112

The DNA sequence encoding torA_ybhG_opt, integrated at the ΔΑ0358 locus, is:

ATGAACAATAACGACTTGTTTCAGGCAAGCCGCCGTCGCTTCCTGGCGCAGCTGGGT GGCCTGACGGTGGCAGGCATGC TGGGTCCGAGCTTGCTGACCCCGCGTCGTGCCACCGCGGGTGGTTACTGGTGGTATCAGA GCCGCCAAGATAACGGTCT GACTCTGTACGGTAATGTTGATATCCGCACGGTGAACCTGAGCTTCCGTGTCGGTGGTCG TGTAGAGTCTCTGGCTGTC GACGAGGGCGATGCGATCAAGGCGGGTCAGGTGTTGGGCGAGTTGGACCATAAACCGTAT GAAATCGCCCTGATGCAAG CAAAGGCGGGTGTCAGCGTGGCCCAGGCGCAATACGACCTGATGCTGGCAGGTTACCGTA ATGAGGAGATTGCCCAGGC AGCAGCGGCGGTGAAGCAGGCCCAAGCGGCATACGATTATGCGCAAAACTTTTACAACCG TCAGCAAGGTCTGTGGAAA AGCCGTACGATCTCCGCGAATGACTTGGAAAACGCCCGTAGCAGCCGCGACCAAGCGCAG GCTACGCTGAAAAGCGCGC AGGACAAACTGCGCCAGTACCGTTCTGGCAATCGCGAACAAGACATTGCACAGGCTAAAG CCAGCCTGGAGCAAGCGCA AGCCCAACTGGCACAGGCGGAACTGAACTTGCAGGACTCGACCCTGATTGCGCCGAGCGA CGGTACCCTGCTGACCCGT GCTGTCGAACCAGGCACCGTTCTGAATGAAGGTGGCACCGTTTTTACCGTGAGCCTGACC CGTCCGGTGTGGGTCCGCG CTTATGTTGAC GAAC GCAATCT GGAT CAGGCGCAGCCGGGTCGTAAGGTTCTGCTGTATACCGATGGTCGTCCGGATAA GCCGTACCACGGCCAAATTGGCTTTGTTTCCCCTACGGCAGAGTTCACCCCGAAAACGGT CGAGACTCCGGATTTGCGT ACCGATCTGGTTTATCGCCTGCGTATCGTGGTTACCGATGCGGACGATGCGCTGCGTCAG GGTATGCCGGTGACGGTCC AATTCGGCGACGAGGCAGGC CACGAGTAA

SEQ ID NO:113

T he protein sequence encoded by torA_ybhG_opt, integrated at the ΔΑ0358 is:

MNNNDLFQASRRRFLAQLGGLTVAGMLGPSLLTPRRATAGGYWWYQSRQDNGLTLYG VDIRTVNLSFRVGGRVESLAV DEGDAIKAGQVLGELDHKPYEIALMQAKAGVSVAQAQYDLMLAGYRNEEIAQAAAAVKQA QAAYDYAQNFYNRQQGLWK SRTI SANDLENARS SRDQAQATLKSAQDKLRQYRSGNREQDIAQAKASLEQAQAQLAQAELNLQDSTLIAPSDG TLLTR AVEPGTVLNEGGTVFTVSLTRPVWVRAYVDERNLDQAQPGRKVLLYTDGRPDKPYHGQIG FVSPTAEFTPKTVETPDLR TDLVYRLRIWTDADDALRQGMPVTVQFGDEAGHE

SEQ ID NO:114

T he DNA sequence encoding A0578 _ybhG_opt, integrated at the ΔΑ0358 locus, is: ATGCGTTTCTTTTGGTTCTTTCTGACGCTGCTGACCTTGAGCACCTGGCAACTGCCGGCG TGGGCAGGTGGTTACTGGT GGTATCAGAGCCGCCAAGATAACGGTCTGACTCTGTACGGTAATGTTGATATCCGCACGG TGAACCTGAGCTTCCGTGT CGGTGGTCGTGTAGAGTCTCTGGCTGTCGACGAGGGCGATGCGATCAAGGCGGGTCAGGT GTTGGGCGAGTTGGACCAT AAACCGTATGAAATCGCCCTGATGCAAGCAAAGGCGGGTGTCAGCGTGGCCCAGGCGCAA TACGACCTGATGCTGGCAG GTTACCGTAATGAGGAGATTGCCCAGGCAGCAGCGGCGGTGAAGCAGGCCCAAGCGGCAT ACGATTATGCGCAAAACTT TTACAACCGTCAGCAAGGTCTGTGGAAAAGCCGTACGATCTCCGCGAATGACTTGGAAAA CGCCCGTAGCAGCCGCGAC CAAGCGCAGGCTACGCTGAAAAGCGCGCAGGACAAACTGCGCCAGTACCGTTCTGGCAAT CGCGAACAAGACATTGCAC AGGCTAAAGCCAGCCTGGAGCAAGCGCAAGCCCAACTGGCACAGGCGGAACTGAACTTGC AGGACTCGACCCTGATTGC GCCGAGCGACGGTACCCTGCTGACCCGTGCTGTCGAACCAGGCACCGTTCTGAATGAAGG TGGCACCGTTTTTACCGTG AGCCTGACCCGTCCGGTGTGGGTCCGCGCTTATGTTGACGAACGCAATCTGGATCAGGCG CAGCCGGGTCGTAAGGTTC TGCTGTATACCGATGGTCGTCCGGATAAGCCGTACCACGGCCAAATTGGCTTTGTTTCCC CTACGGCAGAGTTCACCCC GAAAACGGTCGAGACTCCGGATTTGCGTACCGATCTGGTTTATCGCCTGCGTATCGTGGT TACCGATGCGGACGATGCG CTGCGTCAGGGTATGCCGGTGACGGTCCAATTCGGCGACGAGGCAGGC CACGAGTAA

SEQ ID NO:115

T he protein sequence encoded by A0578_ybhG_opt, integrated at the ΔΑ0358 is:

MRFFWFFLTLLTLSTWQLPAWAGGYWWYQSRQDNGLTLYGNVDIRTVNLSFRVGGRV ESLAVDEGDAIKAGQVLGELDH KPYE I ALMQAKAGVSVAQAQYDLMLAGYRNEEIAQAAAAVKQAQAAYDYAQNFYNRQQGLWKSRT I SANDLENARS SRD QAQATLKSAQDKLRQYRSGNREQDIAQAKASLEQAQAQLAQAELNLQDSTLIAPSDGTLL TRAVEPGTVLNEGGTVFTV SLTRPVWVRAYVDERNLDQAQPGRKVLLYTDGRPDKPYHGQIGFVSPTAEFTPKTVETPD LRTDLVYRLRIWT DADDA LRQGMPVTVQFGDEAGHE

SEQ ID NO:116

T he DNA sequence encoding AOS 18 _ybhG_opt, integrated at the ΔΑ0358 locus, is: ATGCAGAAACAACAAAATCTGGAC TACT TTAGCCCGCAGGCCCTGGCCCTGTGGGCTGCGATTGCGAGCTTGGGTGTTA TGTCCCCTGCGCATGCGGGTGGTTACTGGTGGTATCAGAGCCGCCAAGATAACGGTCTGA CTCTGTACGGTAATGTTGA TATCCGCACGGTGAACCTGAGCTTCCGTGTCGGTGGTCGTGTAGAGTCTCTGGCTGTCGA CGAGGGCGATGCGATCAAG GCGGGTCAGGTGTTGGGCGAGTTGGACCATAAACCGTATGAAATCGCCCTGATGCAAGCA AAGGCGGGTGTCAGCGTGG CCCAGGCGCAATACGACCTGATGCTGGCAGGTTACCGTAATGAGGAGATTGCCCAGGCAG CAGCGGCGGTGAAGCAGGC CCAAGCGGCATACGATTATGCGCAAAACTTTTACAACCGTCAGCAAGGTCTGTGGAAAAG CCGTACGATCTCCGCGAAT GACTTGGAAAACGCCCGTAGCAGCCGCGACCAAGCGCAGGCTACGCTGAAAAGCGCGCAG GACAAACTGCGCCAGTACC GTTCTGGCAATCGCGAACAAGACATTGCACAGGCTAAAGCCAGCCTGGAGCAAGCGCAAG CCCAACTGGCACAGGCGGA ACTGAACTTGCAGGACTCGACCCTGATTGCGCCGAGCGACGGTACCCTGCTGACCCGTGC TGTCGAACCAGGCACCGTT CTGAATGAAGGTGGCACCGTTTTTACCGTGAGCCTGACCCGTCCGGTGTGGGTCCGCGCT TATGTTGACGAACGCAATC TGGATCAGGCGCAGCCGGGTCGTAAGGTTCTGCTGTATACCGATGGTCGTCCGGATAAGC CGTACCACGGCCAAATTGG CTTTGTTTCCCCTACGGCAGAGTTCACCCCGAAAACGGTCGAGACTCCGGATTTGCGTAC CGATCTGGTTTATCGCCTG CGTAT CGTGGTTAC CGATGCGGACGATGCGCTGCGTCAGGGTATGCCGGTGACGGTCCAATTCGGCGACGAGGC AGGC C ACGAGTAA

SEQ ID NO:117

T he protein sequence encoded by A0318_ybhG_opt, integrated at the ΔΑ0358 is:

MQKQQNLDYFSPQALALWAAIASLGVMSPAHAGGYWWYQSRQDNGLTLYGNVDIRTV NLSFRVGGRVESLAVDEGDAIK AGQVLGELDHKPYEIALMQAKAGVSVAQAQYDLMLAGYRNEEIAQAAAAVKQAQAAYDYA QNFYNRQQGLWKSRTI SAN DLENARS SRDQAQATLKSAQDKLRQYRSGNREQDIAQAKASLEQAQAQLAQAELNLQDSTLIAPSDG TLLTRAVEPGTV LNEGGTVFTVSLTRPVWVRAYVDERNLDQAQPGRKVLLYTDGRPDKPYHGQIGFVSPTAE FTPKTVETPDLRTDLVYRL RIWTDADDALRQGMPVTVQFGDEAGHE

SEQ ID NO:118

The DNA sequence encoding the ybhF _opt-ybhS_opt-ybhR_opt operon integrated at the ΔΑ0358 locus is below, lower case sequence representing intergenic sequence, and upper case sequence indicating the three consecutive, non-overlapping open reading frames:

caattgtatataaactgcagtataagtaggaggtaaaatcATGAACGACGCAGTAAT CACCCTGAACGGCCTGGAAAAA CGCTTCCCGGGCATGGACAAACCGGCTGTTGCTCCATTGGACTGTACCATCCACGCCGGT TACGTGACGGGTCTGGTTG GTCCGGATGGTGCGGGCAAAACCACCTTGATGCGTATGCTGGCGGGTCTGCTGAAGCCGG ACAGCGGCTCCGCGACCGT TATCGGTTTTGACCCGATTAAGAATGACGGTGCATTGCACGCGGTTTTGGGCTACATGCC GCAGAAATTCGGCCTGTAC GAAGATCTGACCGTCATGGAAAATCTGAATCTGTATGCTGATTTGCGCTCTGTTACGGGT GAGGCGCGTAAACAAACCT TTGCGCGTTTGCTGGAATTTACCTCTCTGGGCCCGTTTACGGGTCGTCTGGCGGGTAAGC TGAGCGGTGGTATGAAGCA GAAACTGGGTTTGGCATGCACCCTGGTGGGCGAGCCGAAAGTCCTGCTGCTGGATGAGCC GGGTGTGGGCGTCGATCCG ATTAGCCGTCGTGAGCTGTGGCAGATGGTCCACGAACTGGCTGGCGAAGGCATGTTGATC CTGTGGAGCACCAGCTATC TGGATGAAGCGGAGCAGTGCCGTGATGTTCTGTTGATGAATGAGGGCGAGCTGCTGTACC AAGGCGAACCAAAAGCGCT GACCCAAACGATGGCGGGTCGCAGCTTCCTGATGACCAGCCCGCATGAGGGCAACCGTAA ACTGCTGCAACGCGCATTG AAACTGCCGCAAGTCAGCGACGGCATGATTCAGGGCAAATCCGTTCGTCTGATTCTGAAG AAAGAGGCAACCCCGGACG ACATTCGTCATGCAGATGGCATGCCTGAAATCAATATCAACGAAACGACCCCGCGTTTCG AGGATGCCTTCATCGATCT GCTGGGTGGTGCCGGTACCTCTGAGAGCCCGCTGGGCGCAATCCTGCATACCGTGGAAGG TACTCCGGGTGAGACTGTT ATTGAAGCGAAGGAGCTGACGAAAAAGTTCGGTGACTTTGCCGCGACCGATCACGTGAAT TTCGCGGTCAAACGTGGTG AGATCTTCGGCCTGCTGGGTCCTAACGGTGCAGGTAAATCCACCACTTTTAAGATGATGT GTGGTCTGTTGGTGCCAAC GAGCGGTCAGGCGCTGGTCCTGGGTATGGACCTGAAGGAAAGCAGCGGCAAAGCTCGCCA ACACCTGGGTTACATGGCA CAAAAGTTTTCTCTGTACGGCAATTTGACGGTGGAGCAGAACTTGCGCTTTTTCAGCGGT GTGTATGGTCTGCGTGGTC GCGCCCAAAATGAAAAGATTAGCCGCATGAGCGAAGCGTTCGGTCTGAAAAGCATCGCGA GCCACGCAACCGACGAGTT GCCGCTGGGTTTCAAACAACGCCTGGCGCTGGCCTGTAGCCTGATGCACGAGCCGGATAT TCTGTTTCTGGACGAGCCG ACCAGCGGTGTCGATCCGCTGACGCGTCGTGAGTTCTGGCTGCACATTAACAGCATGGTC GAAAAGGGCGTTACCGTGA TGGTTACTACGCATTTCATGGACGAAGCCGAGTATTGCGATCGTATCGGCCTGGTGTATC GTGGCAAGTTGATTGCGTC C GGTACGCC GGAT GAT C TGAAGGCACAGT C GGCGAAC GAC GAGCAGC C GGAC C C GACGATGGAACAGGC C T T TAT C CAG CTGATTCACGACTGGGACAAGGAGCATAGCAACGAGTAAggatcctcaagtaggaggtac tagtaATGAGCAATCCAAT CCTGAGCTGGCGTCGCGTCCGTGCACTGTGCGTGAAAGAAACTCGCCAAATCGTCCGCGA CCCGAGCTCCTGGCTGATC GCCGTTGTGATTCCGCTGCTGCTGTTGTTCATCTTCGGCTATGGTATCAACCTGGATAGC AGCAAACTGCGCGTCGGTA TTCTGCTGGAGCAGCGTAGCGAAGCTGCCCTGGACTTCACCCACACCATGACGGGCTCCC CGTATATCGACGCTACCAT TTCTGATAATCGTCAGGAACTGATTGCGAAGATGCAAGCGGGCAAGATTCGCGGTCTGGT TGTTATTCCGGTTGACTTC GCAGAGCAAATGGAGCGTGCCAATGCGACCGCCCCAATTCAGGTGATTACCGACGGTAGC GAACCGAATACCGCGAACT TTGTTCAAGGTTACGTAGAAGGTATTTGGCAAATCTGGCAGATGCAACGTGCAGAGGACA ACGGTCAGACCTTCGAACC GCTGATTGATGTGCAGACCCGTTACTGGTTTAACCCTGCGGCCATTAGCCAACATTTCAT CATCCCGGGTGCCGTCACC ATCATTATGACGGTTATCGGCGCGATTCTGACGAGCTTGGTTGTGGCGCGTGAATGGGAG CGTGGTACGATGGAGGCAT TGCTGAGCACGGAGATCACCCGTACCGAGTTGCTGTTGTGCAAGCTGATTCCGTACTATT TCCTGGGCATGCTGGCGAT GCTGCTGTGTATGTTGGTCAGCGTGTTCATCCTGGGCGTGCCGTATCGTGGTAGCCTGCT GATCTTGTTCTTTATCTCT AGCTTGTTTCTGCTGTCTACCCTGGGTATGGGTCTGCTGATTAGCACCATCACGCGCAAC CAGTTTAACGCAGCACAGG TCGCGCTGAACGCGGCGTTTCTGCCGAGCATCATGCTGAGCGGTTTTATCTTTCAGATTG ATTCCATGCCGGCTGTTAT CCGTGCGGTCACTTACATTATTCCTGCGCGCTACTTCGTGTCGACGTTGCAAAGCCTGTT CCTGGCAGGCAATATTCCG GTCGTGCTGGTGGTTAATGTTCTGTTCCTGATTGCATCCGCGGTTATGTTTATCGGCCTG ACGTGGCTGAAAACCAAAC GCCGTCTGGATTAActcgagactcataggaggacatctagATGTTTCATAGATTATGGAC ACTAATCAGAAAAGAACTG CAATCCCTGCTGCGTGAACCTCAGACGCGTGCGATCCTGATCTTGCCGGTGCTGATTCAG GTCATCCTGTTCCCGTTTG C CGC TAC C T TGGAAGT CAC GAAT GC CAC TAT T GC GAT C TAC GAC GAGGATAAC GGTGAACACAGCGT CGAGCTGAC C CA GCGTTTCGCGCGTGCCTCTGCTTTTACCCACGTGCTGTTGCTGAAAAGCCCGCAGGAAAT TCGCCCGACGATTGATACG CAAAAGGCGCTGCTGCTGGTTCGCTTTCCGGCCGACTTTAGCCGTAAGCTGGACACCTTT CAGACCGCACCTCTGCAAC T GAT C C T GGAT GGC C GCAAC T C GAATAGC GC GCAGAT T GC T GC GAAT TACC T GCAACAAATTGTGAAAAAC TAT CAGCA AGAGCTGCTGGAGGGTAAACCGAAGCCAAATAACTCCGAGCTGGTTGTCCGTAACTGGTA TAATCCGAATTTGGACTAT AAGTGGTTCGTGGTTCCGAGCCTGATTGCGATGATTACCACCATTGGTGTGATGATTGTT ACCAGCTTGAGCGTTGCAC GTGAACGTGAGCAAGGTACGCTGGATCAACTGCTGGTTTCTCCGCTGACCACCTGGCAGA TTTTCATCGGTAAAGCTGT TCCGGCGTTGATCGTAGCGACCTTTCAGGCGACCATCGTGCTGGCAATCGGTATCTGGGC GTACCAGATCCCGTTCGCC GGCAGCCTGGCGCTGTTCTACTTCACGATGGTGATTTATGGTCTGAGCCTGGTCGGCTTC GGTCTGCTGATTAGCAGCC TGTGCAGCACCCAGCAACAGGCCTTCATTGGCGTGTTCGTGTTTATGATGCCGGCAATCT TGCTGTCGGGCTACGTCAG C CCAGT C GAGAATAT GC CGGTTT GGT TGCAAAACCT GAC GT GGAT CAACCC GAT CCGTCATTT TACGGACAT CACGAAG CAGATTTATCTGAAAGATGCAAGCCTGGACATTGTTTGGAACTCCCTGTGGCCGCTGCTG GTCATCACCGCAACTACCG GCAGCGCGGCATACGCTATGTTCCGCCGCAAGGTTATGTAA SEQ ID NO:119

T he DNA sequence encoding the ybhF_opt-sll041_Nin_PLS_ybhS_opt- sM0041 _Nin_PLS_ybhR_opt operon integrated at the ΔΑ0358 locus is below, lower case sequence representing intergenic sequence, and upper case sequence indicating the three consecutive, non-overlapping open reading frames:

caattgtatataaactgcagtataagtaggaggtaaaatcATGAACGACGCAGTAAT CACCCTGAACGGCCTGGAAAAA CGCTTCCCGGGCATGGACAAACCGGCTGTTGCTCCATTGGACTGTACCATCCACGCCGGT TACGTGACGGGTCTGGTTG GTCCGGATGGTGCGGGCAAAACCACCTTGATGCGTATGCTGGCGGGTCTGCTGAAGCCGG ACAGCGGCTCCGCGACCGT TATCGGTTTTGACCCGATTAAGAATGACGGTGCATTGCACGCGGTTTTGGGCTACATGCC GCAGAAATTCGGCCTGTAC GAAGATCTGACCGTCATGGAAAATCTGAATCTGTATGCTGATTTGCGCTCTGTTACGGGT GAGGCGCGTAAACAAACCT TTGCGCGTTTGCTGGAATTTACCTCTCTGGGCCCGTTTACGGGTCGTCTGGCGGGTAAGC TGAGCGGTGGTATGAAGCA GAAACTGGGTTTGGCATGCACCCTGGTGGGCGAGCCGAAAGTCCTGCTGCTGGATGAGCC GGGTGTGGGCGTCGATCCG ATTAGCCGTCGTGAGCTGTGGCAGATGGTCCACGAACTGGCTGGCGAAGGCATGTTGATC CTGTGGAGCACCAGCTATC TGGATGAAGCGGAGCAGTGCCGTGATGTTCTGTTGATGAATGAGGGCGAGCTGCTGTACC AAGGCGAACCAAAAGCGCT GACCCAAACGATGGCGGGTCGCAGCTTCCTGATGACCAGCCCGCATGAGGGCAACCGTAA ACTGCTGCAACGCGCATTG AAACTGCCGCAAGTCAGCGACGGCATGATTCAGGGCAAATCCGTTCGTCTGATTCTGAAG AAAGAGGCAACCCCGGACG ACATTCGTCATGCAGATGGCATGCCTGAAATCAATATCAACGAAACGACCCCGCGTTTCG AGGATGCCTTCATCGATCT GCTGGGTGGTGCCGGTACCTCTGAGAGCCCGCTGGGCGCAATCCTGCATACCGTGGAAGG TACTCCGGGTGAGACTGTT ATTGAAGCGAAGGAGCTGACGAAAAAGTTCGGTGACTTTGCCGCGACCGATCACGTGAAT TTCGCGGTCAAACGTGGTG AGATCTTCGGCCTGCTGGGTCCTAACGGTGCAGGTAAATCCACCACTTTTAAGATGATGT GTGGTCTGTTGGTGCCAAC GAGCGGTCAGGCGCTGGTCCTGGGTATGGACCTGAAGGAAAGCAGCGGCAAAGCTCGCCA ACACCTGGGTTACATGGCA CAAAAGTTTTCTCTGTACGGCAATTTGACGGTGGAGCAGAACTTGCGCTTTTTCAGCGGT GTGTATGGTCTGCGTGGTC GCGCCCAAAATGAAAAGATTAGCCGCATGAGCGAAGCGTTCGGTCTGAAAAGCATCGCGA GCCACGCAACCGACGAGTT GCCGCTGGGTTTCAAACAACGCCTGGCGCTGGCCTGTAGCCTGATGCACGAGCCGGATAT TCTGTTTCTGGACGAGCCG ACCAGCGGTGTCGATCCGCTGACGCGTCGTGAGTTCTGGCTGCACATTAACAGCATGGTC GAAAAGGGCGTTACCGTGA TGGTTACTACGCATTTCATGGACGAAGCCGAGTATTGCGATCGTATCGGCCTGGTGTATC GTGGCAAGTTGATTGCGTC CGGTACGCCGGATGAT C TGAAGGCACAGT CGGCGAACGACGAGCAGC CGGAC C CGACGATGGAACAGGC C T T TAT C CAG CTGATTCACGACTGGGACAAGGAGCATAGCAACGAGTAAggatcctcaagtaggaggtac tagtaATGCAAGCACCAAC GCAAAGCGGCGGTCTGAGCCTGAGAAACAAAGCGGTCCTGATTGCACTGCTGATCGGCCT GATTCCGGCAGGCGTTATT GGTGGTTTGAATCTGAGCAGCGTTGATCGTCTGCCGGTCCCTCAAACCGAGCAGCAGGTC AAAGATAGCACCACCAAGC AGATTCGTGAC CAGATTCTGAT CGGTCTGCTGGTGAC CGCAGTGGGTGCAGCGTTCGTCGCGTATTGGATGGTTGGTGA GAACACCAAAGCGCAAACCGCGCTGGCGCTGAAGGCTAAGTCCAATCCGATTCTGAGCTG GCGCCGTGTACGCGCGCTG TGTGTGAAGGAAACCCGTCAGATTGTGCGTGATCCGAGCTCGTGGCTGATTGCGGTCGTC ATCCCGTTGTTGCTGCTGT TCATTTTTGGCTACGGTATCAACCTGGATAGCAGCAAATTGCGCGTTGGTATTTTGCTGG AGCAGCGTAGCGAAGCGGC GCTGGATTTTACCCATACCATGACGGGCAGCCCGTACATTGACGCCAC CATTAGCGACAATCGTCAGGAACTGATTGCG AAGATGCAAGCCGGTAAGATCCGTGGCCTGGTTGTGATCCCGGTCGACTTTGCGGAGCAA ATGGAGCGCGCGAATGCGA CCGCACCGATCCAAGTCATCACGGACGGCAGCGAGCCGAACACCGCTAACTTCGTTCAGG GTTATGTCGAGGGTATCTG GCAAATTTGGCAGATGCAACGTGCGGAGGATAATGGCCAGACCTTCGAACCGCTGATCGA CGTTCAGACTCGTTACTGG TTCAATCCAGCCGCTATCAGCCAGCACTTCATCATTCCGGGTGCGGTTACGATCATTATG ACGGTAATCGGTGCGATTC TGACGTCCCTGGTTGTCGCCCGTGAGTGGGAACGTGGTACGATGGAGGCACTGCTGTCTA CCGAAATTACGCGTACGGA ACTGTTGCTGTGCAAATTGATCCCGTACTACTTCCTGGGTATGTTGGCCATGCTGCTGTG CATGCTGGTGAGCGTGTTC ATCCTGGGTGTGCCGTATCGTGGTTCTCTGCTGATCCTGTTTTTCATCTCTAGCCTGTTT TTGCTGTCCACTCTGGGCA TGGGCCTGCTGATTAGCACTATCACCCGCAACCAGTTTAATGCGGCCCAGGTGGCCCTGA ACGCAGCATTTTTGCCGAG CATCATGCTGTCCGGTTTCATCTTTCAAATTGATAGCATGCCGGCAGTGATCCGCGCTGT TACCTATATCATTCCTGCT CGTTACTTCGTTAGCACGCTGCAATCGCTGTTCTTGGCGGGCAACATTCCGGTCGTGCTG GTTGTTAACGTGCTGTTTC TGATTGCCAGCGCTGTGATGTTTATTGGCCTGACCTGGCTGAAAACGAAACGCCGCCTGG ACTAActcgagactcatag gaggacatctagATGCAAGCACCAACCCAATCCGGCGGCCTGAGCCTGCGCAACAAAGCG GTTCTGATCGCGTTGCTGA T TGGT C TGATTCCGGCAGGTGTGATTGGTGGCCTGAATCTGTCTAGCGTGGAT CGCCTGCCGGTGCCGCAGACTGAACA GCAGGTGAAGGACTCCACGACCAAGCAAATTCGTGACCAGATTCTGATTGGCCTGTTGGT TACTGCCGTGGGTGCGGCA TTTGTCGCGTATTGGATGGTTGGTGAAAATACCAAAGCGCAAACCGCGCTGGCTCTGAAG GCGAAATTTCATCGTCTGT GGACCCTGATCCGTAAGGAGCTGCAAAGCCTGTTGCGTGAGCCGCAGACCCGTGCTATTC TGATTCTGCCGGTCTTGAT CCAAGTGATCCTGTTCCCGTTTGCCGCTACCCTGGAAGTGACGAATGCCACGATTGCCAT TTACGATGAGGACAATGGT GAGCACTCCGTTGAACTGACCCAACGTTTTGCACGTGCGTCCGCTTTCACCCATGTGCTG CTGTTGAAATCTCCGCAGG AGATTCGTCCGAC CATTGATACGCAGAAGGCGCTGCTGCTGGTGCGCTTTCCTGCTGACTTCAGCCGTAAGCT GGACAC CTTCCAGACCGCGC CATTGCAGCTGATCCTGGATGGCCGCAATTCTAATAGCGCACAGATCGCCGCAAACTATC TGCAA CAGATTGTGAAAAACTACCAGCAAGAACTGCTGGAGGGTAAACCGAAACCGAACAATAGC GAAC TGGT CGTCCGTAACT GGTATAACCCGAACCTGGACTACAAATGGTTCGTTGTCCCGAGCCTGATCGCGATGATTA CCACCATCGGCGTTATGAT CGTCACCAGCCTGAGCGTAGCACGTGAGCGCGAGCAAGGCACCCTGGATCAACTGTTGGT GAGCCCTCTGACTACGTGG CAGATCTTCATCGGTAAGGCGGTTCCGGCACTGATCGTCGCCACGTTCCAGGCGACCATC GTTTTGGCAATCGGTATTT GGGCGTATCAAATCCCGTTCGCGGGTAGCCTGGCCCTGTTTTACTTCACGATGGTTATCT ACGGCTTGAGCCTGGTTGG CTTCGGTTTGCTGATTAGCAGCCTGTGCAGCACCCAGCAACAGGCGTTTATCGGTGTTTT TGTGTTTATGATGCCGGCG ATTCTGCTGAGCGGTTACGTCAGCCCGGTCGAGAACATGCCGGTGTGGCTGCAAAACCTG ACGTGGATCAATCCGATCC GCCAC TTCACGGATATTAC CAAGCAGAT C T AC C TGAAAGACGCGAGCC TGGACATTGTC TGGAACAGC T TGTGGCCGTT GCTGGTTATCACCGCGACGACGGGTTCGGCAGCGTATGCCATGTTCCGCCGTAAGGTAAT GTAA

SEQ ID NO:120

T he protein sequence encoded by the ybhS_opt ORF in the ybhF_opt- sll0041_Nin_PLS /bhS_opt-sll0041_Nin_PLS /bhR_opt operon, integrated at the ΔΑ0358 locus, is:

MQAPTQSGGLSLRNKAVLIALLIGLIPAGVIGGLNLSSVDRLPVPQTEQQVKDSTTK QIRDQILIGLLVTAVGAAFVAY WMVGENTKAQTALALKAKSNPILSWRRVRALCVKETRQIVRDPS SWLIAWIPLLLLFIFGYGINLDS SKLRVGILLEQ RSEAALDFTHTMTGSPYIDATISDNRQELIAKMQAGKIRGLWIPVDFAEQMERANATAPI QVITDGSEPNTANFVQGY VEGIWQIWQMQRAEDNGQTFEPLIDVQTRYWFNPAAISQHFIIPGAVTIIMTVIGAILTS LWAREWERGTMEALLSTE ITRTELLLCKLIPYYFLGMLAMLLCMLVSVFILGVPYRGSLLILFFISSLFLLSTLGMGL LISTITRNQFNAAQVALNA AFLPSIMLSGFIFQIDSMPAVIRAVTYIIPARYFVSTLQSLFLAGNIPWLWNVLFLIASA VMFIGLTWLKTKRRLD

SEQ ID NO:121

T he protein sequence encoded by the ybhR_opt ORF in the ybhF_opt- sll0041_Nin_PLS /bhS_opt-sll0041_Nin_PLS /bhR_opt operon, integrated at the ΔΑ0358 locus, is:

MQAPTQSGGLSLRNKAVLIALLIGLIPAGVIGGLNLSSVDRLPVPQTEQQVKDSTTK QIRDQILIGLLVTAVGAAFVAY WMVGENTKAQTALALKAKFHRLWTLIRKELQSLLREPQTRAILILPVLIQVILFPFAATL EVTNATIAI YDEDNGEHSV ELTQRFARASAFTHVLLLKSPQEIRPTIDTQKALLLVRFPADFSRKLDTFQTAPLQLILD GRNSNSAQIAANYLQQIVK NYQQELLEGKPKPNNSELWRNWYNPNLDYKWFWPSLIAMITTIGVMIVTSLSVAREREQG TLDQLLVSPLTTWQIFI GKAVPALIVATFQATIVLAIGIWAYQIPFAGSLALFYFTMVIYGLSLVGFGLLI S SLCSTQQQAFIGVFVFMMPAILLS GYVSPVENMPVWLQNLTWINPIRHFTDITKQI YLKDASLDIVWNSLWPLLVITATTGSAAYAMFRRKVM

SEQ ID NO:122

T he DNA sequence encoding the ybhF_opt-slrl 044_Nin_PLS_ybhS_opt- slrl044_Nin_PLS_ybhR_opt operon integrated at the ΔΑ0358 locus is below, lower case sequence representing intergenic sequence, and upper case sequence indicating the three consecutive, non-overlapping open reading frames:

caattgtatataaactgcagtataagtaggaggtaaaatcATGAACGACGCAGTAAT CACCCTGAACGGCCTGGAAAAA CGCTTCCCGGGCATGGACAAACCGGCTGTTGCTCCATTGGACTGTACCATCCACGCCGGT TACGTGACGGGTCTGGTTG GTCCGGATGGTGCGGGCAAAACCACCTTGATGCGTATGCTGGCGGGTCTGCTGAAGCCGG ACAGCGGCTCCGCGACCGT TATCGGTTTTGACCCGATTAAGAATGACGGTGCATTGCACGCGGTTTTGGGCTACATGCC GCAGAAATTCGGCCTGTAC GAAGATCTGACCGTCATGGAAAATCTGAATCTGTATGCTGATTTGCGCTCTGTTACGGGT GAGGCGCGTAAACAAACCT TTGCGCGTTTGCTGGAATTTACCTCTCTGGGCCCGTTTACGGGTCGTCTGGCGGGTAAGC TGAGCGGTGGTATGAAGCA GAAACTGGGTTTGGCATGCACCCTGGTGGGCGAGCCGAAAGTCCTGCTGCTGGATGAGCC GGGTGTGGGCGTCGATCCG ATTAGCCGTCGTGAGCTGTGGCAGATGGTCCACGAACTGGCTGGCGAAGGCATGTTGATC CTGTGGAGCACCAGCTATC TGGATGAAGCGGAGCAGTGCCGTGATGTTCTGTTGATGAATGAGGGCGAGCTGCTGTACC AAGGCGAACCAAAAGCGCT GACCCAAACGATGGCGGGTCGCAGCTTCCTGATGACCAGCCCGCATGAGGGCAACCGTAA ACTGCTGCAACGCGCATTG AAACTGCCGCAAGTCAGCGACGGCATGATTCAGGGCAAATCCGTTCGTCTGATTCTGAAG AAAGAGGCAACCCCGGACG ACATTCGTCATGCAGATGGCATGCCTGAAATCAATATCAACGAAACGACCCCGCGTTTCG AGGATGCCTTCATCGATCT GCTGGGTGGTGCCGGTACCTCTGAGAGCCCGCTGGGCGCAATCCTGCATACCGTGGAAGG TACTCCGGGTGAGACTGTT ATTGAAGCGAAGGAGCTGACGAAAAAGTTCGGTGACTTTGCCGCGACCGATCACGTGAAT TTCGCGGTCAAACGTGGTG AGATCTTCGGCCTGCTGGGTCCTAACGGTGCAGGTAAATCCACCACTTTTAAGATGATGT GTGGTCTGTTGGTGCCAAC GAGCGGTCAGGCGCTGGTCCTGGGTATGGACCTGAAGGAAAGCAGCGGCAAAGCTCGCCA ACACCTGGGTTACATGGCA CAAAAGTTTTCTCTGTACGGCAATTTGACGGTGGAGCAGAACTTGCGCTTTTTCAGCGGT GTGTATGGTCTGCGTGGTC GCGCCCAAAATGAAAAGATTAGCCGCATGAGCGAAGCGTTCGGTCTGAAAAGCATCGCGA GCCACGCAACCGACGAGTT GCCGCTGGGTTTCAAACAACGCCTGGCGCTGGCCTGTAGCCTGATGCACGAGCCGGATAT TCTGTTTCTGGACGAGCCG ACCAGCGGTGTCGATCCGCTGACGCGTCGTGAGTTCTGGCTGCACATTAACAGCATGGTC GAAAAGGGCGTTACCGTGA TGGTTACTACGCATTTCATGGACGAAGCCGAGTATTGCGATCGTATCGGCCTGGTGTATC GTGGCAAGTTGATTGCGTC CGGTACGC CGGATGAT C TGAAGGCACAGT CGGCGAACGACGAGCAGC CGGAC C CGACGATGGAACAGGC C T T TAT C CAG CTGATTCACGACTGGGACAAGGAGCATAGCAACGAGTAAggatcctcaagtaggaggtac tagtAATGTTCTTAGGATG GTTCACCAACGCATCGCTGTTCCGCAAGCAAATCTATATGGCGATTGCGAGCGGTGTTTT TAGCGGCTTTGCTGTTCTG GTGCTGGGCAGCATTGTGGGTCTGGGTGGTACCCCTAAGGACGTTCCGGCACCGAGCGGT GAAACCACCACCGAAGCAC CGGCAGAAGGTGCACCAGCGGAAGGCCAAGCTCCGAGCCAGACCCCGGAAGAGGAACCGG GCAAACCGAGCCTGCTGAA CCTGGCGTTCCTGACGGCCATTGCTACGGCGATTGGTGTCTTTCTGATTAACCGCTTGCT GATGCAGCAAATCAAAAGC ATCATTGACGACCTGCAAAGCAATCCGATCCTGAGCTGGCGCCGTGTTCGTGCCCTGTGC GTGAAGGAAACCCGTCAGA TTGTGCGTGATCCGAGCTCTTGGCTGATCGCGGTCGTCATTCCTCTGCTGCTGCTGTTCA TTTTCGGTTATGGTATTAA CCTGGATAGCAGCAAACTGCGTGTTGGTATTCTGCTGGAACAGCGTAGCGAGGCGGCGTT GGATTTTACCCATACCATG ACGGGTTCCCCGTACATTGACGCGACCATCAGCGATAACCGCCAGGAGCTGATCGCAAAG ATGCAGGCCGGCAAAATTC GTGGCCTGGTGGTGATTCCGGTTGACTTCGCGGAGCAGATGGAGCGCGCAAACGCAACCG CACCGATTCAAGTGATTAC CGATGGTTCCGAACCGAATACGGCAAATTTCGTGCAAGGCTATGTGGAGGGTATCTGGCA AATTTGGCAGATGCAACGC GCGGAGGATAATGGCCAGACCTTTGAACCGCTGATCGACGTCCAAACTCGTTACTGGTTT AATCCAGCGGCCATCAGCC AACACTTTATCATTCCGGGTGCGGTCACCATCATTATGACGGTCATTGGCGCTATCCTGA CCTCTTTGGTAGTCGCCCG TGAGTGGGAGCGTGGTACGATGGAGGCGCTGCTGAGCACGGAGATCACTCGTACGGAATT GCTGCTGTGCAAACTGATC CCGTACTACTTCCTGGGTATGCTGGCGATGCTGTTGTGTATGCTGGTCAGCGTTTTCATT CTGGGTGTGCCATACCGCG GCAGCTTGTTGATTCTGTTCTTCATCTCCTCGTTGTTTCTGCTGTCTACCCTGGGCATGG GTCTGCTGATTAGCACGAT CACCCGCAATCAGTTCAACGCGGCTCAGGTCGCGCTGAATGCCGCCTTCCTGCCGAGCAT CATGCTGAGCGGCTTTATC TTTCAGATCGATTCGATGCCGGCTGTTATTCGTGCCGTTACGTATATCATCCCGGCACGT TACTTCGTTTCCACCTTGC AGAGCCTGTTTTTGGCCGGTAACATCCCGGTGGTGCTGGTTGTTAATGTCTTGTTCCTGA TCGCGTCCGCGGTTATGTT TATCGGTCTGACTTGGCTGAAAACGAAGCGTCGTCTGGACTAActcgagactcataggag gacatctagATGTTTTTAG GCTGGTTCACCAATGCCTCGTTATTTCGCAAACAGATCTACATGGCCATTGCGAGCGGTG TTTTCTCCGGTTTCGCGGT GCTGGTTCTGGGTTCCATCGTTGGTCTGGGCGGTACCCCGAAGGACGTCCCTGCACCGTC TGGCGAAACGACCACGGAG GCACCGGCGGAAGGTGCTCCGGCGGAGGGCCAAGCGCCGAGCCAGACCCCGGAGGAAGAA CCGGGCAAGCCGAGCTTGT TGAATCTGGCCTTCTTGACCGCTATCGCCACCGCGATCGGTGTCTTTCTGATTAACCGTC TGCTGATGCAGCAAATCAA GAGCATCATTGACGATTTGCAATTTCATCGCCTGTGGACGCTGATTCGTAAGGAGCTGCA AAGCCTGCTGCGCGAACCA CAAACCCGTGCCATTCTGATTCTGCCGGTGCTGATCCAGGTTATTCTGTTCCCGTTCGCA GCGACCCTGGAGGTGACGA ACGCCACCATTGC CATC TATGACGAGGATAACGGCGAGCACAGCGTGGAGCTGACCCAGCGTTTCGCTCGTGCAAGC GC GTT TACGCACGTTC TGC TGC TGAAAAGC C CGCAGGAGAT C CGT C CGAC CATTGACAC TCAGAAAGCGC TGC TGC TGGTT CGCTTTCCTGCGGATTTTAGCCGTAAACTGGACACCTTCCAGACGGCACCGCTGCAACTG ATTCTGGATGGTCGTAACA GCAACAGCGCGCAGATTGCGGCCAACTACCTGCAACAGATTGTTAAGAACTATCAGCAAG AATTGTTGGAGGGCAAACC GAAGCCGAATAACAGCGAACTGGTCGTGCGTAATTGGTACAATCCGAATCTGGACTACAA GTGGTTCGTGGTTCCGAGC C TGAT CGCGATGATTAC CAC CATTGGCGTAATGAT CGTTAC TTC C C TGAGCGTGGCACGCGAACGTGAACAAGGTACGC TGGACCAGTTGCTGGTCAGCCCGTTGACCACCTGGCAGATCTTCATCGGTAAAGCAGTTC CAGCACTGATCGTTGCGAC TTTCCAGGCAACCATCGTGCTGGCCATCGGTATTTGGGCGTACCAGATTCCGTTTGCGGG TAGCCTGGCTCTGTTTTAC TTCACTATGGTCATTTATGGCCTGTCTTTGGTTGGTTTTGGTTTGCTGATCTCTTCCCTG TGCAGCACCCAGCAACAAG CGTTCATTGGTGTCTTTGTGTTTATGATGCCAGCAATTCTGCTGAGCGGCTATGTGAGCC CGGTCGAGAACATGCCGGT C TGGC TGCAAAAT C TGACGTGGAT CAAT C CGATC CGT CATTTCACGGATATTAC CAAACAAAT C TAC C TGAAGGATGC T AGCCTGGATATCGTGTGGAACAGCTTGTGGCCGCTGCTGGTCATTACGGCAACCACGGGT TCTGCGGCGTATGCGATGT TCCGTCGCAAAGTGATGTAA

SEQ ID NO:123

T he protein sequence encoded by the ybhS_opt ORF in the ybhF_opt- slrl 044_Nin_PLS_ybhS_opt-slrl 044_Nin_PLS_ybhR_opt operon, integrated at the ΔΑ0358 locus, is:

MFLGWFTNASLFRKQI YMAIASGVFSGFAVLVLGS IVGLGGTPKDVPAPSGETTTEAPAEGAPAEGQAPSQTPEEEPGK PSLLNLAFLTAIATAIGVFLINRLLMQQIKS I IDDLQSNPILSWRRVRALCVKETRQIVRDPS SWLIAWIPLLLLFIF GYGINLDS SKLRVGILLEQRSEAALDFTHTMTGSPYIDATI SDNRQELIAKMQAGKIRGLWIPVDFAEQMERANATAP IQVITDGSEPNTANFVQGYVEGIWQIWQMQRAEDNGQTFEPLIDVQTRYWFNPAAISQHF IIPGAVTIIMTVIGAILTS LWAREWERGTMEALLSTEITRTELLLCKLIPYYFLGMLAMLLCMLVSVFILGVPYRGSLL ILFFI S SLFLLSTLGMGL LISTITRNQFNAAQVALNAAFLPSIMLSGFIFQIDSMPAVIRAVTYIIPARYFVSTLQSL FLAGNIPWLW VLFLIA SAVMFIGLTWLKTKRRLD

SEQ ID NO:124

T he protein sequence encoded by the ybhR_opt ORF in the ybhF_opt- slrl 044_Nin_PLS_ybhS_opt-slrl 044_Nin_PLS_ybhR_opt operon, integrated at the ΔΑ0358 locus, is:

MFLGWFTNASLFRKQI YMAIASGVFSGFAVLVLGS IVGLGGTPKDVPAPSGETTTEAPAEGAPAEGQAPSQTPEEEPGK PSLLNLAFLTAIATAIGVFLINRLLMQQIKS I IDDLQFHRLWTLIRKELQSLLREPQTRAILILPVLIQVILFPFAATL EVTNATIAI YDEDNGEHSVELTQRFARASAFTHVLLLKSPQEIRPTIDTQKALLLVRFPADFSRKLDTF QTAPLQLILD GRNSNSAQIAANYLQQIVKNYQQELLEGKPKPNNSELWRNWYNPNLDYKWFWPSLIAMIT TIGVMIVTSLSVARERE QGTLDQLLVSPLTTWQIFIGKAVPALIVATFQATIVLAIGIWAYQIPFAGSLALFYFTMV IYGLSLVGFGLLISSLCST QQQAFIGVFVFMMPAILLSGYVSPVENMPVWLQNLTWINPIRHFTDITKQIYLKDASLDI VWNSLWPLLVITATTGSAA YAMFRRKVM SEQ ID NO:125

The DNA sequence of the P(aphII) promoter, integrated at the ΔΑ0358 -downstream locus in JCC2522, is:

GGGGGGGGGGGGGAAAGCCACGTTGTGTCTCAAAATCTCTGATGTTACATTGCACAAGAT AAAAATATATCATCATGAA CAATAAAACTGTCTGCTTACATAAACAGTAATACAAGTGTACAT

SEQ ID NO:126

The DNA sequence of the P(psaA) promoter, integrated at the ΔΑ0358 -downstream locus in JCC2522, is:

GCCCCTATATTATGCATTTATACCCCCACAATCATGTCAAGAATTCAAGCATCTTAAATA ATGTTAATTATCGGCAAAG TCTGTGCTCCCCTTCTATAATGCTGAATTGAGCATTCGCCTCCTGAACGGTCTTTATTCT TCCATTGTGGGTCTTTAGA T T C AC GAT T C T T C AC AAT C AT T GAT C TAAGGAT C T T T GT AGAT T C T C T GTAC AT

SEQ ID NO:127

The DNA sequence of the P(tsr2142) promoter, integrated at the ΔΑ0358 -downstream locus in JCC2522, is:

CCAAGGTGGCTACTTCAACGATAGCTTAAACTTCGCTGCTCCAGCGAGGGGATTTCACTG GTTTGAATGCTTCAATGCT TGCCAAAAGAGTGCTACTGGAACTTACAAGAGTGACCCTGCGTCAGGGGAGCTAGCACTC AAAAAAGACTCCTCCTGTA CAT

SEQ ID NO:128

The DNA sequence encoding A0318_ProNTerm_tolC_opt_A0318C, integrated at the ΔΑ0358- downstream locus in JCC2522, is:

ATGCAAAAACAACAGAATCTGGACTACTTTAGCCCGCAGGCGTTGGCACTGTGGGCG GCTATTGCTTCCCTGGGTGTTA TGAGCCCGGCACACGCGGAGCCGCGTAGCGAGGGCAGCCATTCTGATCCGCTGGTTCCGA CCGCGACGCAGGTCGTGGT TCCGGCGCTGCCGGTGGAGGACGTTGCGCCGACCGCCGCACCGGCATCGCAGACCCCGGC TCCTCAGAGCGAAAACTTG GCGCAATCCAGCACCCAAGCCGTCACGAGCCCTGTGGCGCAGGCGCAGGAAGCCCCGCAA GACAGCAATCTGCCGCAAC TGTATGCCCAGCAGCAAGGTAACCCAAATGCCCAACAGGCGAACCCGGAGAATTTGATGC AGGTTTACCAGCAGGCGCG TCTGTCCAATCCGGAGCTGCGTAAAAGCGCTGCCGACCGTGATGCCGCGTTTGAGAAGAT TAACGAAGCCCGCAGCCCG CTGCTGCCGCAGCTGGGTTTGGGCGCTGACTACACCTACTCCAACGGCTATCGTGACGCC AACGGTATCAATAGCAATG C GAC CAGC GCCAGC C TGCAAC T GAC C CAAAGCAT T T T T GATAT GAGCAAAT GGC GCGCT C TGAC CC TGCAAGAGAAAGC GGCAGGTAT CCAGGAT GTGAC C TAC CAAAC GGAC CAGCAGACC C T GAT CTTGAACAC GGCGAC CGCGTATTTCAATGTT T TGAAC GCAAT C GAT GT CC T GAGC TATAC C CAGGCC CAGAAGGAAGC GATT TAT C GT CAGTTGGAT CAGAC CAC C CAGC GCT T CAAT GTGGGTCTGGT GGC GAT TAC GGATGTTCAAAATGCGCGTGCGCAATACGATACTGTTTTGGCAAACGAAGT GACGGCGCGTAACAATCTGGATAATGCCGTTGAACAGCTGCGTCAAATCACGGGCAACTA CTATCCGGAACTGGCAGCA C TGAAC GTTGAGAATTTCAAGACGGATAAGCCGCAACCTGTGAACGCGCTGCTGAAAGAGGCGGAA AAGCGCAAT CTGA GCCTGCTGCAAGCCCGTCTGAGCCAAGACCTGGCGCGTGAGCAGATTCGTCAGGCACAAG ATGGCCACCTGCCAACCCT GGAC TT GAC GGCATCCACGGGTATCTCGGACACCAGC TAC TCCGGTAGCAA GAC TCGCGGTGCAGCAGGTACGCAGTAT GACGACTCTAACATGGGTCAAAACAAAGTCGGCCTGTCTTTCAGCCTGCCGATCTACCAA GGTGGCATGGTTAATTCTC AAGTTAAACAGGCGCAATACAACTTTGTCGGCGCGAGCGAACAGCTGGAGAGCGCTCACC GTAGCGTGGTCCAGACCGT CCGTTCTTCTTTTAACAACATTAACGCGAGCATCAGCAGCATTAACGCATACAAACAAGC GGTGGTGAGCGCGCAATCG AGCCTGGACGCAATGGAGGCGGGTTACAGCGTCGGTACGCGCACCATTGTCGACGTGCTG GATGCAACTACCACCCTGT ATAATGCAAAGCAAGAACTGGCAAATGCGCGCTACAACTATCTGATTAACCAGCTGAATA TCAAATCCGCGCTGGGCAC GCTGAACGAGCAGGATCTGCTGGCATTGAACAACGCGCTGAGCAAGCCGGTAAGCACGAA TCCGGAGAACGTCGCCCCA CAAACCCCGGAACAGAATGCTATCGCGGACGGCTATGCCCCGGACAGCCCGGCTCCGGTT GTGCAGCAGACTAGCGCTC GCAC CAC CACCAGCAATGGTCATAATCCGTTCCGTAATC GTAT T CAC TTTGGTATTGGT GAGCGTTTCTAA

SEQ ID NO:129

The protein sequence encoded by A0318_ProNTerm_tolC_opt_A0318C, integrated at the AA0358-downstream locus in JCC2522, is: MQKQQNLDYFS PQALALWAAIASLGVMS PAHAEPRSEGSHS DPLVPTATQWVPALPVEDVAPTAAPASQTPAPQSENL AQS STQAVTSPVAQAQEAPQDSNLPQLYAQQQGNPNAQQANPENLMQVYQQARLSNPELRKSA ADRDAAFEKINEARS P LLPQLGLGADYTYSNGYRDANGINSNATSASLQLTQS I FDMSKWRALTLQEKAAGIQDVTYQTDQQTLILNTATAYFNV LNAI DVLS YTQAQKEAI YRQLDQTTQRFNVGLVAITDVQNARAQYDTVLANEVTARNNLDNAVEQLRQITGNYYPEL AA L VENFKTDKPQPVNALLKEAEKRNLSLLQARLSQDLAREQIRQAQDGHLPTLDLTASTGI S DTSYS GSKTRGAAGTQY DDSNMGQNKVGLS FSLPIYQGGMVNSQVKQAQYNFVGASEQLE SAHRSWQTVRS S FNNINAS I S S INAYKQAWSAQS SLDAMEAGYSVGTRTIVDVLDATTTLYNAKQELANARYNYLINQLNIKSALGTLNEQDLL ALNNALSKPVSTNPENVAP QTPEQNAIADGYAPDS PAPWQQTSARTTTSNGHNPFRNR1HFGI GERF

SEQ ID NO:130

T he DNA sequence encoding A0318_ProNTerm_tolC_opt_A0585C, integrated at the ΔΑ0358- downstream locus in JCC2522, is:

ATGCAAAAACAACAGAATCTGGACTACTTTAGCCCGCAGGCGTTGGCACTGTGGGCG GCTATTGCTTCCCTGGGTGTTA TGAGCCCGGCACACGCGGAGCCGCGTAGCGAGGGCAGCCATTCTGATCCGCTGGTTCCGA CCGCGACGCAGGTCGTGGT TCCGGCGCTGCCGGTGGAGGACGTTGCGCCGACCGCCGCACCGGCATCGCAGACCCCGGC TCCTCAGAGCGAAAACTTG GCGCAATCCAGCACCCAAGCCGTCACGAGCCCTGTGGCGCAGGCGCAGGAAGCCCCGCAA GACAGCAATCTGCCGCAAC TGTATGCCCAGCAGCAAGGTAACCCAAATGCCCAACAGGCGAACCCGGAGAATTTGATGC AGGTTTACCAGCAGGCGCG TCTGTCCAATCCGGAGCTGCGTAAAAGCGCTGCCGACCGTGATGCCGCGTTTGAGAAGAT TAACGAAGCCCGCAGCCCG CTGCTGCCGCAGCTGGGTTTGGGCGCTGACTACACCTACTCCAACGGCTATCGTGACGCC AACGGTATCAATAGCAATG C GAC CAGC GCCAGC C TGCAAC T GAC C CAAAGCAT T T T T GATAT GAGCAAAT GGC GCGCT C TGAC CC TGCAAGAGAAAGC GGCAGGTAT CCAGGAT GTGAC C TAC CAAAC GGAC CAGCAGACC C T GAT CTTGAACAC GGCGAC CGCGTATTTCAATGTT T TGAAC GCAAT C GAT GT CC T GAGC TATAC C CAGGCC CAGAAGGAAGC GATT TAT CGTCAGTTGGAT CAGAC CAC C CAGC GCTTCAATGTGGGTCTGGTGGCGATTACGGATGTTCAAAATGCGCGTGCGCAATACGATA CTGTTTTGGCAAACGAAGT GACGGCGCGTAACAATCTGGATAATGCCGTTGAACAGCTGCGTCAAATCACGGGCAACTA CTATCCGGAACTGGCAGCA C TGAAC GTTGAGAATTTCAAGACGGATAAGCCGCAACCTGTGAACGCGCTGCTGAAAGAGGCGGAA AAGCGCAAT CTGA GCCTGCTGCAAGCCCGTCTGAGCCAAGACCTGGCGCGTGAGCAGATTCGTCAGGCACAAG ATGGCCACCTGCCAACCCT GGAC TT GAC GGCATCCACGGGTATCTCGGACACCAGC TAC TCCGGTAGCAA GAC TCGCGGTGCAGCAGGTACGCAGTAT GACGACTCTAACATGGGTCAAAACAAAGTCGGCCTGTCTTTCAGCCTGCCGATCTACCAA GGTGGCATGGTTAATTCTC AAGTTAAACAGGCGCAATACAACTTTGTCGGCGCGAGCGAACAGCTGGAGAGCGCTCACC GTAGCGTGGTCCAGACCGT CCGTTCTTCTTTTAACAACATTAACGCGAGCATCAGCAGCATTAACGCATACAAACAAGC GGTGGTGAGCGCGCAATCG AGCCTGGACGCAATGGAGGCGGGTTACAGCGTCGGTACGCGCACCATTGTCGACGTGCTG GATGCAACTACCACCCTGT ATAATGCAAAGCAAGAACTGGCAAATGCGCGCTACAACTATCTGATTAACCAGCTGAATA TCAAATCCGCGCTGGGCAC GCTGAACGAGCAGGATCTGCTGGCATTGAACAACGCGCTGAGCAAGCCGGTAAGCACGAA TCCGGAGAACGTCGCCCCA CAAACCCCGGAACAGAATGCTATCGCGGACGGCTATGCCCCGGACAGCCCGGCTCCGGTT GTGCAGCAGACTAGCGCTC GCACCACCACCAGCAATGGTCATAATCCGTTCCGTAATGGGGATGCGGTGATTGCCCCGG CGGCTCCCTAA

SEQ ID NO:131

T he protein sequence encoded by A0318_ProNTerm_tolC_opt_A0585C, integrated at the AA0358-downstream locus in JCC2522, is:

MQKQQNLDYFS PQALALWAAIASLGVMS PAHAEPRSEGSHS DPLVPTATQWVPALPVEDVAPTAAPASQTPAPQSENL AQS STQAVTSPVAQAQEAPQDSNLPQLYAQQQGNPNAQQANPENLMQVYQQARLSNPELRKSA ADRDAAFEKINEARS P LLPQLGLGADYTYSNGYRDANGINSNATSASLQLTQS I FDMSKWRALTLQEKAAGIQDVTYQTDQQTLILNTATAYFNV LNAI DVLS YTQAQKEAI YRQLDQTTQRFNVGLVAITDVQNARAQYDTVLANEVTARNNLDNAVEQLRQ ITGNYYPELAA LNVENFKTDKPQPVNALLKEAEKRNLSLLQARLSQDLAREQIRQAQDGHLPTLDLTASTG I S DTSYS GSKTRGAAGTQY DDSNMGQNKVGLS FSLPIYQGGMVNSQVKQAQYNFVGASEQLE SAHRSWQTVRS S FNNINAS I S S INAYKQAWSAQS SLDAMEAGYSVGTRTIVDVLDATTTLYNAKQELANARYNYLINQLNIKSALGTLNEQDLL ALNNALSKPVSTNPENVAP QTPEQNAIADGYAPDS PAPWQQTSARTTTSNGHNPFRNGDAVIAPAAP

SEQ ID NO:132

T he DNA sequence encoding A0585_tolC_opt_A0318C, integrated at the AA0358-downstream locus in JCC2522, is:

ATGTTTGCCTTTCGTGACTTCTTGACCTTCAGCACCGGTGGCCTGGTTGTCCTGTCC GGCGGTGGTGTTGCGATTGCGG AGAATTTGATGCAGGTTTACCAGCAGGCGCGTCTGTCCAATCCGGAGCTGCGTAAAAGCG CTGCCGACCGTGATGCCGC GTTTGAGAAGATTAACGAAGCCCGCAGCCCGCTGCTGCCGCAGCTGGGTTTGGGCGCTGA CTACACCTACTCCAACGGC TAT C GT GAC GC CAAC GGTAT CAATAGCAAT GC GAC CAGC GC CAGC C TGCAAC T GAC C CAAAGCATT T T TGATATGAGCA AAT GGC GC GCT CT GAC CCT GCAAGAGAAAGC GGCAGGTAT CCAGGATGT GAC C TAC CAAACGGACCAGCAGACCCTGAT C TT GAACAC GGC GAC CGCGTATTTCAATGTTT TGAAC GCAATC GAT GTCCT GAGC TATAC C CAGGCC CAGAAGGAAGCG ATTTATCGTCAGTTGGATCAGACCACCCAGCGCTTCAATGTGGGTCTGGTGGCGATTACG GATGTTCAAAATGCGCGTG CGCAATACGATACTGTTTTGGCAAACGAAGTGACGGCGCGTAACAATCTGGATAATGCCG TTGAACAGCTGCGTCAAAT CACGGGCAACTACTATCCGGAACTGGCAGCACTGAACGTTGAGAATTTCAAGACGGATAA GCCGCAACCTGTGAACGCG CTGCTGAAAGAGGCGGAAAAGCGCAATCTGAGCCTGCTGCAAGCCCGTCTGAGCCAAGAC CTGGCGCGTGAGCAGATTC GTCAGGCACAAGATGGCCACCTGCCAACCCTGGACTTGACGGCATCCACGGGTATCTCGG ACACCAGCTACTCCGGTAG CAAGACTCGCGGTGCAGCAGGTACGCAGTATGACGACTCTAACATGGGTCAAAACAAAGT CGGCCTGTCTTTCAGCCTG CCGATCTACCAAGGTGGCATGGTTAATTCTCAAGTTAAACAGGCGCAATACAACTTTGTC GGCGCGAGCGAACAGCTGG AGAGCGCTCACCGTAGCGTGGTCCAGACCGTCCGTTCTTCTTTTAACAACATTAACGCGA GCATCAGCAGCATTAACGC ATACAAACAAGCGGTGGTGAGCGCGCAATCGAGCCTGGACGCAATGGAGGCGGGTTACAG CGTCGGTACGCGCACCATT GTCGACGTGCTGGATGCAACTACCACCCTGTATAATGCAAAGCAAGAACTGGCAAATGCG CGCTACAACTATCTGATTA ACCAGCTGAATATCAAATCCGCGCTGGGCACGCTGAACGAGCAGGATCTGCTGGCATTGA ACAACGCGCTGAGCAAGCC GGTAAGCAC GAAT C C GGAGAAC GT C GCC C CACAAAC C C C GGAACAGAAT GC TAT C GCGGACGGC TATGC C C CGGACAGC CCGGCTCCGGTTGTGCAGCAGACTAGCGCTCGCACCACCACCAGCAATGGTCATAATCCG TTCCGTAATCGTATTCACT TTGGTATTGGTGAGCGTTTCTAA

SEQ ID NO:133

T he protein sequence encoded by A0585_tolC_opt_A0318C, integrated at the ΔΑ0358- downstream locus in JCC2522, is:

MFAFRDFLTFSTGGLWLS GGGVAIAENLMQVYQQARLSNPELRKSAADRDAAFEKINEARS PLLPQLGLGADYTYSNG YRDANGINSNATSASLQLTQS I FDMSKWRALTLQEKAAGIQDVTYQTDQQTLILNTATAYFNVLNAI DVLS YTQAQKEA IYRQLDQTTQRFNVGLVAITDVQNARAQYDTVLANEVTARNNLDNAVEQLRQITGNYYPE LAAL VENFKTDKPQPVNA LLKEAEKRNLSLLQARLSQDLAREQIRQAQDGHLPTLDLTASTGI S DTS YS GSKTRGAAGTQYDDSNMGQNKVGLS FSL PIYQGGMVNSQVKQAQYNFVGASEQLESAHRSWQTVRS S FNNINAS I S S INAYKQAWSAQS SLDAMEAGYSVGTRTI VDVLDATTTLYNAKQELANARYNYLINQLNIKSALGTLNEQDLLALNNALSKPVSTNPEN VAPQTPEQNAIADGYAPDS PAPWQQTSARTTTSNGHNPFRNR1HFGI GERF

SEQ ID NO:134

T he DNA sequence encoding A0585_tolC_opt_A0585C, integrated at the AA0358-downstream locus in JCC2522, is:

ATGTTTGCCTTTCGTGACTTCTTGACCTTCAGCACCGGTGGCCTGGTTGTCCTGTCC GGCGGTGGTGTTGCGATTGCGG AGAATTTGATGCAGGTTTACCAGCAGGCGCGTCTGTCCAATCCGGAGCTGCGTAAAAGCG CTGCCGACCGTGATGCCGC GTTTGAGAAGATTAACGAAGCCCGCAGCCCGCTGCTGCCGCAGCTGGGTTTGGGCGCTGA CTACACCTACTCCAACGGC TAT C GT GAC GC CAAC GGTAT CAATAGCAAT GC GAC CAGCGCCAGCC TGCAAC T GAC C CAAAGCATT T T TGATATGAGCA AATGGCGCGCTCTGACCCTGCAAGAGAAAGCGGCAGGTATCCAGGATGTGACCTACCAAA CGGACCAGCAGACCCTGAT CTTGAACACGGCGACCGCGTATTTCAATGTTTTGAACGCAATCGATGTCCTGAGCTATAC CCAGGCCCAGAAGGAAGCG ATTTATCGTCAGTTGGATCAGACCACCCAGCGCTTCAATGTGGGTCTGGTGGCGATTACG GATGTTCAAAATGCGCGTG CGCAATACGATACTGTTTTGGCAAACGAAGTGACGGCGCGTAACAATCTGGATAATGCCG TTGAACAGCTGCGTCAAAT CACGGGCAACTACTATCCGGAACTGGCAGCACTGAACGTTGAGAATTTCAAGACGGATAA GCCGCAACCTGTGAACGCG CTGCTGAAAGAGGCGGAAAAGCGCAATCTGAGCCTGCTGCAAGCCCGTCTGAGCCAAGAC CTGGCGCGTGAGCAGATTC GTCAGGCACAAGATGGCCACCTGCCAACCCTGGACTTGACGGCATCCACGGGTATCTCGG ACACCAGCTACTCCGGTAG CAAGACTCGCGGTGCAGCAGGTACGCAGTATGACGACTCTAACATGGGTCAAAACAAAGT CGGCCTGTCTTTCAGCCTG CCGATCTACCAAGGTGGCATGGTTAATTCTCAAGTTAAACAGGCGCAATACAACTTTGTC GGCGCGAGCGAACAGCTGG AGAGCGCTCACCGTAGCGTGGTCCAGACCGTCCGTTCTTCTTTTAACAACATTAACGCGA GCATCAGCAGCATTAACGC ATACAAACAAGCGGTGGTGAGCGCGCAATCGAGCCT GGAC GCAATGGAGGCGGGTTACAGCGTCGGTACGCGCAC CATT GTCGACGTGCTGGATGCAACTACCACCCTGTATAATGCAAAGCAAGAACTGGCAAATGCG CGCTACAACTATCTGATTA ACCAGCTGAATATCAAATCCGCGCTGGGCACGCTGAACGAGCAGGATCTGCTGGCATTGA ACAACGCGCTGAGCAAGCC GGTAAGCAC GAAT C C GGAGAAC GT C GCC C CACAAAC C C C GGAACAGAAT GC TAT C GCGGACGGC TATGC C C CGGACAGC CCGGCTCCGGTTGTGCAGCAGACTAGCGCTCGCACCACCACCAGCAATGGTCATAATCCG TTCCGTAATGGGGATGCGG TGATTGCCCCGGCGGCTCCCTAA

SEQ ID NO:135

T he protein sequence encoded by A0585_tolC_opt_A0585C, integrated at the ΔΑ0358- downstream locus in JCC2522, is:

MFAFRDFLTFSTGGLWLS GGGVAIAENLMQVYQQARLSNPELRKSAADRDAAFEKINEARS PLLPQLGLGADYTYSNG YRDANGINSNATSASLQLTQS I FDMSKWRALTLQEKAAGIQDVTYQTDQQTLILNTATAYFNVLNAI DVLS YTQAQKEA IYRQLDQTTQRFNVGLVAITDVQNARAQYDTVLANEVTARNNLDNAVEQLRQITGNYYPE LAALNVENFKTDKPQPVNA LLKEAEKRNLSLLQARLSQDLAREQIRQAQDGHLPTLDLTASTGI S DTS YS GSKTRGAAGTQYDDSNMGQNKVGLS FSL PIYQGGMVNSQVKQAQYNFVGASEQLESAHRSWQTVRS S FNNINAS I S S INAYKQAWSAQS SLDAMEAGYSVGTRTI VDVLDATTTLYNAKQELANARYNYLINQLNIKSALGTLNEQDLLALNNALSKPVSTNPEN VAPQTPEQNAIADGYAPDS PAPWQQTSARTTTSNGHNPFRNGDAVIAPAAP T he DNA sequence encoding, and the protein sequence encoded by, A0585 _ProNTerm_tolC_opt, integrated at the AA0358-downstream locus in JCC2522 are identical to the A0585_ProNTerm_tolC_opt sequences discussed in, and associated with, Table 16.

SEQ ID NO:136

T he DNA sequence encoding A0585_ProNTerm_tolC_opt_A0318C, integrated at the ΔΑ0358- downstream locus in JCC2522, is:

ATGTTTGCCTTCCGTGACTTCCTGACGTTTAGCACGGGCGGTTTGGTCGTGTTGAGC GGTGGCGGTGTTGCGATTGCAC AAACCACCCCTCCGCAGATCGCCACTCCGGAGCCGTTTATCGGTCAGACGCCGCAGGCAC CGCTGCCACCGCTGGCTGC GCCGTCCGTTGAAAGCCTGGACACCGCGGCTTTCCTGCCGAGCCTGGGCGGTCTGTCCCA ACCGACCACCCTGGCCGCA CTGCCTTTGCCGAGCCCGGAGTTGAACCTGTCGCCTACGGCGCATCTGGGTACCATCCAG GCGCCAAGCCCGCTGTTGG C GCAAGT GGATAC CAC T GC GAC C C C GAGCC C GAC CAC C GC GAT T GAC GT CAC C C TGC CGACGGCGGAAACGAAT CAAAC CATTCCGCTGGTCCAGCCGCTGCCGCCAGACCGCGTCATCAATGAGGACCTGAACCAACT GCTGGAGCCGATTGATAAC CCGGCAGTTACGGTGCCGCAGGAAGC GAC CGCCGTTAC GAC CGATAATGTTGTGGATGA GAATTTGATGCAGGTTTACC AGCAGGCGCGTCTGTCCAATCCGGAGCTGCGTAAAAGCGCTGCCGACCGTGATGCCGCGT TTGAGAAGATTAACGAAGC CCGCAGCCCGCTGCTGCCGCAGCTGGGTTTGGGCGCTGACTACACCTACTCCAACGGCTA TCGTGACGCCAACGGTATC AATAGCAAT GC GAC CAGCGC CAGC C T GCAAC T GAC C CAAAGCAT T T T T GATAT GAGCAAATGGCGCGC T C TGAC C C TGC AAGAGAAAGCGGCAGGTAT C CAGGAT GT GAC C TAC CAAAC GGAC CAGCAGAC C C T GATCT TGAACACGGCGACCGCGTA TTTCAATGTTTTGAACGCAATCGATGTCCTGAGCTATACCCAGGCCCAGAAGGAAGCGAT TTATCGTCAGTTGGATCAG ACCACCCAGCGCTTCAATGTGGGTCTGGTGGCGATTACGGATGTTCAAAATGCGCGTGCG CAATACGATACTGTTTTGG CAAAC GAAGTGAC GGC GCGTAACAATCTGGATAATGCCGTTGAACAGCTGCGTCAAATCACGGGCAAC TAC TAT CCGGA ACT GGCAGCACTGAACGTTGA GAAT TTCAAGACGGATAAGCCGCAACCTGTGAACGCGCTGCTGAAAGAGGCGGAAAAG CGCAATCTGAGCCTGCTGCAAGCCCGTCTGAGCCAAGACCTGGCGCGTGAGCAGATTCGT CAGGCACAAGATGGCCACC TGCCAACCCTGGACTTGACGGCATCCACGGGTATCTCGGACACCAGCTACTCCGGTAGCA AGACTCGCGGTGCAGCAGG TAC GCAGTATGAC GAC TCTAACATGGGTCAAAACAAAGTC GGC CTGTCTTT CAGC CTGCC GAT C TAC CAAGGTGGCATG GTTAATTCTCAAGTTAAACAGGCGCAATACAACTTTGTCGGCGCGAGCGAACAGCTGGAG AGCGCTCACCGTAGCGTGG TCCAGACCGTCCGTTCTTCTTTTAACAACATTAACGCGAGCATCAGCAGCATTAACGCAT ACAAACAAGCGGTGGTGAG CGCGCAATCGAGCCT GGAC GCAATGGAGGCGGGTTACAGCGTCGGTACGCGCAC CAT TGTCGACGTGCTGGATGCAACT ACCACCCTGTATAATGCAAAGCAAGAACTGGCAAATGCGCGCTACAACTATCTGATTAAC CAGCTGAATATCAAATCCG CGCTGGGCACGCTGAACGAGCAGGATCTGCTGGCATTGAACAACGCGCTGAGCAAGCCGG TAAGCACGAAT CCGGA GAA C GT CGCCCCACAAACCCCGGAACAGAATGCTATCGC GGAC GGC TAT GCCCCGGACAGCCCGGC TCCGGTTGTGCAGCAG ACTAGCGCTCGCACCACCACCAGCAATGGTCATAATCCGTTCCGTAATCGTATTCACTTT GGTATTGGTGAGCGTTTCT AA

SEQ ID NO:137

T he protein sequence encoded by A0585_ProNTerm_tolC_opt_A0318C, integrated at the AA0358-downstream locus in JCC2522, is:

MFAFRDFLTFSTGGLWLS GGGVAIAQTTPPQIATPEPFIGQTPQAPLPPLAAPSVE SLDTAAFLPSLGGLSQPTTLAA LPLPS PELNLS PTAHLGTIQAPS PLLAQVDTTATPS PTTAI DVTLPTAETNQTI PLVQPLPPDRVINEDLNQLLEPI DN PAVTVPQEATAVTTDNWDENLMQVYQQARLSNPELRKSAADRDAAFEKINEARS PLLPQLGLGADYTYSNGYRDANGI NSNATSASLQLTQS I FDMSKWRALTLQEKAAGIQDVTYQTDQQTLILNTATAYFNVLNAI DVLS YTQAQKEAIYRQLDQ TTQRFNVGLVAITDVQNARAQYDTVLANEVTARNNLDNAVEQLRQITGNYYPELAAL VENFKTDKPQPVNALLKEAEK RNLSLLQARLSQDLAREQIRQAQDGHLPTLDLTASTGI S DTSYS GSKTRGAAGTQYDDSNMGQNKVGLS FSLPIYQGGM VNSQVKQAQYNFVGASEQLE SAHRSWQTVRS SFNNINAS I S S INAYKQAWSAQS SLDAMEAGYSVGTRTIVDVLDAT TTLYNAKQELANARYNYLINQLNIKSALGTLNEQDLLALNNALSKPVSTNPENVAPQTPE QNAIADGYAPDS PAPWQQ TSARTTTSNGHNPFRNR1HFGI GERF

SEQ ID NO:138

T he DNA sequence encoding A0585_ProNTerm_tolC_opt_A0585C, integrated at the ΔΑ0358- downstream locus in JCC2522, is:

ATGTTTGCCTTCCGTGACTTCCTGACGTTTAGCACGGGCGGTTTGGTCGTGTTGAGC GGTGGCGGTGTTGCGATTGCAC AAACCACCCCTCCGCAGATCGCCACTCCGGAGCCGTTTATCGGTCAGACGCCGCAGGCAC CGCTGCCACCGCTGGCTGC GCCGTCCGTTGAAAGCCTGGACACCGCGGCTTTCCTGCCGAGCCTGGGCGGTCTGTCCCA ACCGACCACCCTGGCCGCA CTGCCTTTGCCGAGCCCGGAGTTGAACCTGTCGCCTACGGCGCATCTGGGTACCATCCAG GCGCCAAGCCCGCTGTTGG C GCAAGT GGATAC CAC T GC GAC C C C GAGCC C GAC CAC C GC GAT T GAC GT CAC C C TGC CGACGGCGGAAACGAAT CAAAC CATTCCGCTGGTCCAGCCGCTGCCGCCAGACCGCGTCATCAATGAGGACCTGAACCAACT GCTGGAGCCGATTGATAAC CCGGCAGTTACGGTGCCGCAGGAAGC GAC CGCCGTTAC GAC CGATAATGTTGTGGATGA GAATTTGATGCAGGTTTACC AGCAGGCGCGTCTGTCCAATCCGGAGCTGCGTAAAAGCGCTGCCGACCGTGATGCCGCGT TTGAGAAGATTAACGAAGC CCGCAGCCCGCTGCTGCCGCAGCTGGGTTTGGGCGCTGACTACACCTACTCCAACGGCTA TCGTGACGCCAACGGTATC AATAGCAAT GC GAC CAGCGC CAGC C T GCAAC T GAC C CAAAGCAT T T T T GATAT GAGCAAATGGCGCGC T C TGAC C C TGC AAGAGAAAGCGGCAGGTAT C CAGGAT GT GAC C TAC CAAAC GGAC CAGCAGAC C C T GATCT TGAACACGGCGACCGCGTA TTTCAATGTTTTGAACGCAATCGATGTCCTGAGCTATACCCAGGCCCAGAAGGAAGCGAT TTATCGTCAGTTGGATCAG ACCACCCAGCGCTTCAATGTGGGTCTGGTGGCGATTACGGATGTTCAAAATGCGCGTGCG CAATACGATACTGTTTTGG CAAAC GAAGTGAC GGC GCGTAACAATCTGGATAATGCCGTTGAACAGCTGCGTCAAATCACGGGCAAC TAC TAT CCGGA ACT GGCAGCACTGAACGTTGA GAAT TTCAAGACGGATAAGCCGCAACCTGTGAACGCGCTGCTGAAAGAGGCGGAAAAG CGCAATCTGAGCCTGCTGCAAGCCCGTCTGAGCCAAGACCTGGCGCGTGAGCAGATTCGT CAGGCACAAGATGGCCACC TGCCAACCCTGGACTTGACGGCATCCACGGGTATCTCGGACACCAGCTACTCCGGTAGCA AGACTCGCGGTGCAGCAGG TAC GCAGTATGAC GAC TCTAACATGGGTCAAAACAAAGTC GGC CTGTCTTT CAGC CTGCC GAT C TAC CAAGGTGGCATG GTTAATTCTCAAGTTAAACAGGCGCAATACAACTTTGTCGGCGCGAGCGAACAGCTGGAG AGCGCTCACCGTAGCGTGG TCCAGACCGTCCGTTCTTCTTTTAACAACATTAACGCGAGCATCAGCAGCATTAACGCAT ACAAACAAGCGGTGGTGAG CGCGCAATCGAGCCT GGAC GCAATGGAGGCGGGTTACAGCGTCGGTACGCGCAC CAT TGTCGACGTGCTGGATGCAACT ACCACCCTGTATAATGCAAAGCAAGAACTGGCAAATGCGCGCTACAACTATCTGATTAAC CAGCTGAATATCAAATCCG CGCTGGGCACGCTGAACGAGCAGGATCTGCTGGCATTGAACAACGCGCTGAGCAAGCCGG TAAGCACGAAT CCGGA GAA C GT CGCCCCACAAACCCCGGAACAGAATGCTATCGC GGAC GGC TAT GCCCCGGACAGCCCGGC TCCGGTTGTGCAGCAG ACTAGCGCTCGCACCACCACCAGCAATGGTCATAATCCGTTCCGTAATGGGGATGCGGTG ATTGCCCCGGCGGCTCCCT AA

SEQ ID NO:139

T he protein sequence encoded by A0585_ProNTerm_tolC_opt_A0585C, integrated at the AA0358-downstream locus in JCC2522, is:

MFAFRDFLTFSTGGLWLS GGGVAIAQTTPPQIATPEPFIGQTPQAPLPPLAAPSVE SLDTAAFLPSLGGLSQPTTLAA LPLPS PELNLS PTAHLGTIQAPS PLLAQVDTTATPS PTTAI DVTLPTAETNQTI PLVQPLPPDRVINEDLNQLLEPI DN PAVTVPQEATAVTTDNWDENLMQVYQQARLSNPELRKSAADRDAAFEKINEARS PLLPQLGLGADYTYSNGYRDANGI NSNATSASLQLTQS I FDMSKWRALTLQEKAAGIQDVTYQTDQQTLILNTATAYFNVLNAI DVLS YTQAQKEAIYRQLDQ TTQRFNVGLVAITDVQNARAQYDTVLANEVTARNNLDNAVEQLRQITGNYYPELAAL VENFKTDKPQPVNALLKEAEK RNLSLLQARLSQDLAREQIRQAQDGHLPTLDLTASTGI S DTSYS GSKTRGAAGTQYDDSNMGQNKVGLS FSLPIYQGGM VNSQVKQAQYNFVGASEQLE SAHRSWQTVRS SFNNINAS I S S INAYKQAWSAQS SLDAMEAGYSVGTRTIVDVLDAT TTLYNAKQELANARYNYLINQLNIKSALGTLNEQDLLALNNALSKPVSTNPENVAPQTPE QNAIADGYAPDS PAPWQQ TSARTTTSNGHNPFRNGDAVIAPAAP T he DNA sequence encoding, and the protein sequence encoded by, hybrid_A0585, integrated at the ΔΑ0358 -downstream locus in JCC2522 are identical to the hybrid_A0585 sequences discussed in, and associated with, Table 16. T he DNA sequence encoding, and the protein sequence encoded by, hybrid_1761, integrated at the AA0358-downstream locus in JCC2522 are identical to the hybrid_1761 sequences discussed in, and associated with, Table 16. T he DNA sequences encoding, and the protein sequences encoded by, all omp variants, other than SYNPCC7002_A0585, integrated at the ΔΑ0358 -downstream locus in JCC2055 with the yMG-hairpin panel have been indicated in the respectively named sequences associated with Table 15 and Table 16.

SEQ ID NO:140 T he DNA sequences encoding SYNPCC7002_A0585, the wild-type JCC138 ORF of the same name, is integrated at the AA0358-downstream locus in JCC2055 with the ybhG-hairpin panel, is:

ATGTTCGCTTTTCGAGATTTTCTTACTTTCAGTACCGGTGGCCTTGTGGTTCTCTCT GGTGGTGGGGTGGCGATCGCCC AAACAACCCCGCCGCAAATCGCTACTCCAGAACCTTTCATCGGCCAGACCCCCCAGGCGC CATTGCCACCATTGGCCGC TCCTAGCGTTGAATCCCTCGATACAGCAGCCTTTTTACCGAGTCTCGGTGGTCTCAGCCA ACCCACAACCCTGGCCGCT TTACCTCTACCTTCCCCAGAGCTCAATTTATCCCCGACTGCCCACCTCGGCACAATTCAA GCTCCCTCGCCGCTCCTTG C CCAGGTAGATACAAC GGC GAC CCCCTCCC CAACAAC C GC CAT T GAT GT GAC C C TGCCCAC CGCAGAGACAAAC CAGAC GATTCCCCTTGTGCAACCCTTACCGCCGGATCGGGTGATTAATGAAGATCTAAATCAGCT CCTAGAGCCCATCGATAAT CCGGCAGTGACAGTCCCCCAGGAGGCCACGGCGGTGACGACTGACAATGTTGTTGACCTC ACCCTAGAAGAAACGATTC GTCTGGCCCTAGAGCGCAATGAAACGCTCCAGGAAGCCCGTCTGAACTACGACCGATCAG AGGAACTGGTGCGAGAGGC GAT C GC C GC CGAATAC C CAAAT C T CAGCAAC CAGGT T GACATTAC C C GCAC C GATAGCGC CAACGGAGAAC T CCAGGC C CGACGGCTGGGGGGAGACAACAATGCCACCACAGCGATCAATGGTCGTCTCGAAGTCAGC TATGACATCTATACCGGGG GGCGTCGCTCTGCC CAAAT T GAAGCAGC C CAGAC C CAAT TGCAAAT T GC TGAAC TAGACAT CGAGCGC C T CACCGAAGA AACTCGTCTAGCCGCTGCGGTGAACTATTACAATCTCCAGAGTGCCGACGCCCAGGTGGT TATCGAGCAAAGTTCGGTG TTTGATGCCACCCAGAGTTTACGGGATGCCACCCTACTAGAACAGGCAGGCTTGGGCACA AAATTTGATGTGTTGCGGG C CGAGGT C GAAC T C GC TAGT GC C CAACAGCGGCTCACCAGGGCTGAAGCCACCCAAAGAACCGCCCGGCGT CAAC TGGC TCAACTGCTGAGTTTGGAACCGACCATCGATCCCCGCACCGCCGATGAGATTAACCTCGC TGGAAGATGGGAAATTTCT TTAGAAGAAACCATTGTCCTGGCATTGCAAAACCGCCAAGAATTGCGCCAGCAGCTCCTC CAGCGGGAAGTTGATGGTT ACCAGGAACGGATTGCATTGGCTGCCGTTCGACCTTTAGTCAGCGTTTTTGCGAATTATG ATGTCTTGGAAGTGTTTGA TGATAGCCTTGGCCCCGCCGATGGGTTAACGGTTGGGGCCCGGATGCGTTGGAATTTCTT TGATGGGGGTGCAGCGGCC GCCCGGGCAAATCAAGAGCAAGTTGATCAGGC GAT CGCCGAAAATCGTTTTGCTAACCAAAGAAAC CAAATTCGCCTGG CGGTGGAAACGGCCTACTATGACTTTGAAGCCAGCGAACAAAACATCACGACGGCAGCCG CCGCAGTCACTTTAGCAGA AGAAAGTTTACGCCTGGCTCGTCTGCGCTTTAATGCAGGGGTCGGCACCCAAACCGATGT AATCTCTGCCCAAACGGGT CTGAATACGGCCCGGGGGAACTATCTTCAGGCAGTCACCGATTACAATCGTGCCTTTGCC CAACTGAAACGGGAAGTCG GTTTAGGGGATGCGGTGATTGCCCCGGCGGCTCCCTAG

SEQ ID NO:141

T he protein sequence encoded by SYNPCC7002_A0585, the wild-type JCC138 ORF of the same name, is integrated at the AA0358-downstream locus in JCC2055 with the ybhG-hairpin panel, is:

MFAFRDFLTFSTGGLWLS GGGVAIAQTTPPQIATPEPFIGQTPQAPLPPLAAPSVE SLDTAAFLPSLGGLSQPTTLAA LPLPS PELNLS PTAHLGTIQAPS PLLAQVDTTATPS PTTAI DVTLPTAETNQTI PLVQPLPPDRVINEDLNQLLEPI DN PAVTVPQEATAVTTDNWDLTLEETIRLALERNETLQEARLNYDRSEELVREAIAAEYPNL SNQVDITRTDSANGELQA RRLGGDNNATTAINGRLEVS YDI YTGGRRSAQIEAAQTQLQIAELDIERLTEETRLAAAVNYYNLQSADAQWIEQS SV FDATQSLRDATLLEQAGLGTKFDVLRAEVELASAQQRLTRAEATQRTARRQLAQLLSLEP TI DPRTADE INLAGRWE I S LEETIVLALQNRQELRQQLLQREVDGYQERIALAAVRPLVSVFANYDVLEVFDDSLGPAD GLTVGARMRWNFFDGGAAA ARANQEQVDQAIAENRFANQRNQIRLAVETAYYDFEASEQNITTAAAAVTLAEE SLRLARLRFNAGVGTQTDVI SAQTG LNTARGNYLQAVTDYNRAFAQLKREVGLGDAVIAPAAP T he DNA sequences of all 22 either-orientation promoters have been indicated in respectively named sequences associated with Table 16.

SEQ ID NO:142

T he DNA sequence encoding ybhG_opt_hpl , integrated as part of the ybhGFSR operon at AA0358-downstream locus in JCC2055, is:

ATGATGAAAAAGCCGGTTGTTATCGGTTTGGCGGTGGTGGTTCTGGCAGCAGTCGTT GCGGGTGGCTACTGGTGGTATC AAAGCCGCCAGGATAACGGTTTGACCCTGTATGGCAATGTTGATATTCGCACCGTCAACC TGTCGTTCCGCGTGGGTGG CCGTGTGGAGAGCCTGGCCGTGGATGAAGGC GAT GC GAT CAAAGCAGGT CAGGT CCTAGGTGAGCTGGATCACAAACCA TACGAAATCGCCCTGATGCAAGCCAAAGCGGGTGTTAGCGTGGCACAAGCGCAGTACGAT CTGATGTTGGCGGGTTACC GCAATGAAGAGATTGCGCAGGCGGCAGCGGCGGTGAAACAAGCGCAAGCGGCGTATGACC TGGCTAAGGCCGACGGCGA CCGTTTCCAAGAGCTGTATGCAAGCGGTGTGGTTAGCAAGCAACGTCTGGAGCAGGCGCA GACCAGCCGTGATCAGGCA CAGGCCACGCTGAAGAGCGCGCAGGATAAGCTGCGCCAATATCGTAGCGGCAATCGTGAA CAAGACATTGCACAGGCTA AGGCATCTCTGGAACAGGCCCAAGCTCAACTGGCCCAGGCGGAACTGAACCTGCAGGACT CCACTCTGATCGCACCTTC TGACGGTACTTTGCTGACGCGTGCGGTTGAACCGGGTACCGTGCTGAATGAGGGCGGTAC GGTTTTCACGGTCAGCCTG ACGCGTCCGGTCTGGGTTCGTGCCTACGTCGATGAGCGTAACCTGGACCAGGCGCAACCA GGCCGTAAGGTTCTGCTGT ATAC C GAC GGT C GC C C GGATAAAC C T TAC CAC GGT CAAAT T GGC T TTGTTTCCCC GACGGC TGAGTT TAC C C CGAAAAC CGTCGAAACGCCGGACCTGCGTACCGACCTGGTCTACCGTCTGCGCATCGTCGTGACCGA CGCGGATGACGCATTGCGT CAGGGCATGCCGGTGACCGTGCAGTTCGGCGACGAGGCTGGTCATGAGTAA

SEQ ID NO:143

T he protein sequence encoded by ybhG_opt_hpl, integrated as part of the ybhGFSR operon at the AA0358-downstream locus in JCC2055, is:

MMKKPWI GLAWVLAAWAGGYWWYQSRQDNGLTLYGNVDIRTVNLS FRVGGRVE SLAVDEGDAIKAGQVLGELDHKP YEIALMQAKAGVSVAQAQYDLMLAGYRNEE IAQAAAAVKQAQAAYDLAKADGDRFQELYAS GWSKQRLEQAQTSRDQA QATLKSAQDKLRQYRS GNREQDIAQAKASLEQAQAQLAQAELNLQDSTLIAPS DGTLLTRAVEPGTVLNEGGTVFTVSL TRPVWVRAYVDERNLDQAQPGRKVLLYTDGRPDKPYHGQI GFVS PTAEFTPKTVETPDLRTDLVYRLRIWTDADDALR QGMPVTVQFGDEAGHE

SEQ ID NO:144

T he DNA sequence encoding ybhG_opt_hp2, integrated as part of the ybhGFSR operon at the AA0358-downstream locus in JCC2055, is:

ATGATGAAAAAGCCGGTTGTTATCGGTTTGGCGGTGGTGGTTCTGGCAGCAGTCGTT GCGGGTGGCTACTGGTGGTATC AAAGCCGCCAGGATAACGGTTTGACCCTGTATGGCAATGTTGATATTCGCACCGTCAACC TGTCGTTCCGCGTGGGTGG CCGTGTGGAGAGCCTGGCCGTGGATGAAGGCGATGCGATCAAAGCAGGTCAGGTCCTAGG TGAGCTGGATAGCGCCGAA CTGCAGGCATCCCTGGATGGTGCACAAGCCCGTATCAATGCGGCGCAGCAGCAGGTTAAT CAAGCACAGCTGCAAATCA CCGTGATTGAAAACCAGATTACCGAGGCACAGCTGACCCAACGCCAAGCACAGGATGACA CTGCCGGTCGCGTTAATGC GGCACAAGCGAACGTGGCGGCAGCCAAGGCGCAACTGGCCCAGGCGCAAGCGCAGGTCAA GCAGCTGGAAGCAGAGCTG GCCCTGGCGAAGGCAGACGGTGACCGTTTCCAAGAACTGTACGCGAGCGGTGTGGTGAGC AAACAGCGTCTGGAGCAAG CTCAAACCCAATATCTGAGCACGAAAGAGAATCTGGATGCTCGTCGCGCGGTTGTTGCGG CAGCTGCGGAGCAAGTGAA AACCGCGGAGGGTAACCTGACGCAAACTCAGGCGTCCCAGTTCAACCCAGACATTCAGTA CCTGAGCACCAAAGAAAAT CTGGACGCACGTCGTGCTGTCGTCGCTGCCGCTGCAGAACAAGTTAAGACCGCCGAGGGT AACTTGACTCAGACCCAAG CGAGCCAATTCAACCCGGACATTCGTGCAGTTCAAGTGCAGCGCCTGCAAACGCAACTGG TCCAGGCGCAGGCCCAGCT GTCTGCGGCGCAAGCACAAGTTCAGAATGCTCAGGCCAACTATAACGAGATCGCGGCGAA CCTGCAGGACTCCACTCTG ATCGCACCTTCTGACGGTACTTTGCTGACGCGTGCGGTTGAACCGGGTACCGTGCTGAAT GAGGGCGGTACGGTTTTCA CGGTCAGCCTGACGCGTCCGGTCTGGGTTCGTGCCTACGTCGATGAGCGTAACCTGGACC AGGCGCAACCAGGCCGTAA GGTTCTGCTGTATACCGACGGTCGCCCGGATAAACCTTACCACGGTCAAATTGGCTTTGT TTCCCCGACGGCTGAGTTT ACCCCGAAAACCGTCGAAACGCCGGACCTGCGTACCGACCTGGTCTACCGTCTGCGCATC GTCGTGACCGACGCGGATG ACGCATTGCGTCAGGGCATGCCGGTGACCGTGCAGTTCGGCGACGAGGCTGGTCATGAGT AA

SEQ ID NO:145

T he protein sequence encoded by ybhG_opt_hp2, integrated as part of the ybhGFSR operon at the AA0358-downstream locus in JCC2055, is:

MMKKPWI GLAWVLAAWAGGYWWYQSRQDNGLTLYGNVDIRTVNLS FRVGGRVE SLAVDEGDAIKAGQVLGELDSAE LQASLDGAQARINAAQQQVNQAQLQITVIENQITEAQLTQRQAQDDTAGRVNAAQANVAA AKAQLAQAQAQVKQLEAEL ALAKADGDRFQELYAS GWSKQRLEQAQTQYLSTKENLDARRAWAAAAEQVKTAE GNLTQTQASQFNPDIQYLSTKEN LDARRAWAAAAEQVKTAEGNLTQTQASQFNPDIRAVQVQRLQTQLVQAQAQLSAAQAQVQ NAQANYNE IAANLQDSTL IAPS DGTLLTRAVEPGTVLNEGGTVFTVSLTRPVWVRAYVDERNLDQAQPGRKVLLYTDGRPDK PYHGQI GFVS PTAEF T PKTVE T PDLRT DLVYRLRI WT DADDALRQGMPVTVQFGDEAGHE

SEQ ID NO:146

T he DNA sequence encoding ybhG_opt_hp3, integrated as part of the ybhGFSR operon at the AA0358-downstream locus in JCC2055, is:

ATGATGAAAAAGCCGGTTGTTATCGGTTTGGCGGTGGTGGTTCTGGCAGCAGTCGTT GCGGGTGGCTACTGGTGGTATC AAAGCCGCCAGGATAACGGTTTGACCCTGTATGGCAATGTTGATATTCGCACCGTCAACC TGTCGTTCCGCGTGGGTGG CCGTGTGGAGAGCCTGGCCGTGGATGAAGGCGATGCGATCAAAGCAGGTCAGGTCCTAGG TGAGCTGGATAGCGCCGAA CTGCAGGCATCCCTGGATGGTGCACAAGCCCGTATCAATGCGGCGCAGCAGCAGGTTAAT CAAGCACAGCTGCAAATCA CCGTGATTGAAAACCAGATTACCGAGGCACAGCTGACCCAACGCCAAGCACAGGATGACA CTGCCGGTCGCGTTAATGC GGCACAAGCGAACGTGGCGGCAGCCAAGGCGCAACTGGCCCAGGCGCAAGCGCAGGTCAA GCAGCTGGAAGCAGAGCTG GCCTATGCGCAAAACTTTTACAATCGCCAGCAAGGTTTGTGGAAGAGCCGTACGATTAGC GCAAACGATCTGGAAAATG CGCGTTCTCAATATCTGAGCACGAAAGAGAATCTGGATGCTCGTCGCGCGGTTGTTGCGG CAGCTGCGGAGCAAGTGAA AACCGCGGAGGGTAACCTGACGCAAACTCAGGCGTCCCAGTTCAACCCAGACATTCAGTA CCTGAGCACCAAAGAAAAT CTGGACGCACGTCGTGCTGTCGTCGCTGCCGCTGCAGAACAAGTTAAGACCGCCGAGGGT AACTTGACTCAGACCCAAG CGAGCCAATTCAACCCGGACATTCGTGCAGTTCAAGTGCAGCGCCTGCAAACGCAACTGG TCCAGGCGCAGGCCCAGCT GTCTGCGGCGCAAGCACAAGTTCAGAATGCTCAGGCCAACTATAACGAGATCGCGGCGAA CCTGCAGGACTCCACTCTG ATCGCACCTTCTGACGGTACTTTGCTGACGCGTGCGGTTGAACCGGGTACCGTGCTGAAT GAGGGCGGTACGGTTTTCA CGGTCAGCCTGACGCGTCCGGTCTGGGTTCGTGCCTACGTCGATGAGCGTAACCTGGACC AGGCGCAACCAGGCCGTAA GGTTCTGCTGTATACCGACGGTCGCCCGGATAAACCTTACCACGGTCAAATTGGCTTTGT TTCCCCGACGGCTGAGTTT ACCCCGAAAACCGTCGAAACGCCGGACCTGCGTACCGACCTGGTCTACCGTCTGCGCATC GTCGTGACCGACGCGGATG ACGCATTGCGTCAGGGCATGCCGGTGACCGTGCAGTTCGGCGACGAGGCTGGTCATGAGT AA

SEQ ID NO:147

T he protein sequence encoded by ybhG_opt_hp3, integrated as part of the ybhGFSR operon at the AA0358-downstream locus in JCC2055, is:

MMKKPWI GLAWVLAAWAGGYWWYQSRQDNGLTLYGNVDIRTVNLS FRVGGRVE SLAVDEGDAIKAGQVLGELDSAE LQASLDGAQARINAAQQQVNQAQLQITVIENQITEAQLTQRQAQDDTAGRVNAAQANVAA AKAQLAQAQAQVKQLEAEL AYAQNFYNRQQGLWKSRTI SANDLENARSQYLSTKENLDARRAWAAAAEQVKTAE GNLTQTQASQFNPDIQYLSTKEN LDARRAWAAAAEQVKTAEGNLTQTQASQFNPDIRAVQVQRLQTQLVQAQAQLSAAQAQVQ NAQANYNE IAANLQDSTL IAPS DGTLLTRAVEPGTVLNEGGTVFTVSLTRPVWVRAYVDERNLDQAQPGRKVLLYTDGRPDK PYHGQI GFVS PTAEF T PKTVE T PDLRT DLVYRLRI WT DADDALRQGMPVTVQFGDEAGHE

SEQ ID NO:148

T he DNA sequence encoding ybhG_opt_hp4, integrated as part of the ybhGFSR operon at the AA0358-downstream locus in JCC2055, is:

ATGATGAAAAAGCCGGTTGTTATCGGTTTGGCGGTGGTGGTTCTGGCAGCAGTCGTT GCGGGTGGCTACTGGTGGTATC AAAGCCGCCAGGATAACGGTTTGACCCTGTATGGCAATGTTGATATTCGCACCGTCAACC TGTCGTTCCGCGTGGGTGG CCGTGTGGAGAGCCTGGCCGTGGATGAAGGCGATGCGATCAAAGCAGGTCAGGTCCTAGG TGAGCTGGATCACAAACCA TACGAAATCGCCCTGATGCAAGCCAAAGCGGGTGTTAGCGTGGCACAAGCGCAGTACGAT CTGATGTTGGCGGGTTACC GCAATGAAGAGATTGCGCAGGCGGCAGCGGCGGTGAAACAAGCGCAAGCGGCGTATGACT ATGCGCAAAACTTTTACAA TCGTTTCCAAGAGCTGTATGCAAGCGGTGTGGTTAGCAAGCAAGATCTGGAAAATGCGCG TTCTAGCCGTGATCAGGCA CAGGCCACGCTGAAGAGCGCGCAGGATAAGCTGCGCCAATATCGTAGCGGCAATCGTGAA CAAGACATTGCACAGGCTA AGGCATCTCTGGAACAGGCCCAAGCTCAACTGGCCCAGGCGGAACTGAACCTGCAGGACT CCACTCTGATCGCACCTTC TGACGGTACTTTGCTGACGCGTGCGGTTGAACCGGGTACCGTGCTGAATGAGGGCGGTAC GGTTTTCACGGTCAGCCTG ACGCGTCCGGTCTGGGTTCGTGCCTACGTCGATGAGCGTAACCTGGACCAGGCGCAACCA GGCCGTAAGGTTCTGCTGT ATACCGACGGTCGCCCGGATAAACCTTACCACGGTCAAATTGGCTTTGTTTCCCCGACGG CTGAGTTTACCCCGAAAAC CGTCGAAACGCCGGACCTGCGTACCGACCTGGTCTACCGTCTGCGCATCGTCGTGACCGA CGCGGATGACGCATTGCGT CAGGGCATGCCGGTGACCGTGCAGTTCGGCGACGAGGCTGGTCATGAGTAA

SEQ ID NO:149

T he protein sequence encoded by ybhG_opt_hp4, integrated as part of the ybhGFSR operon at the AA0358-downstream locus in JCC2055, is:

MMKKPWI GLAWVLAAWAGGYWWYQSRQDNGLTLYGNVDIRTVNLS FRVGGRVE SLAVDEGDAIKAGQVLGELDHKP YEIALMQAKAGVSVAQAQYDLMLAGYRNEE IAQAAAAVKQAQAAYDYAQNFYNRFQELYAS GWSKQDLENARS SRDQA QATLKSAQDKLRQYRS GNREQDIAQAKASLEQAQAQLAQAELNLQDSTLIAPS DGTLLTRAVEPGTVLNEGGTVFTVSL TRPVWVRAYVDERNLDQAQPGRKVLLYTDGRPDKPYHGQ I GFVS PTAEFTPKTVET PDLRT DLVYRLRI WTDADDALR QGMPVTVQFGDEAGHE

SEQ ID NO:150

T he DNA sequence encoding torA_ybhG_opt_hpl, integrated as part of the ybhGFSR operon at the AA0358-downstream locus in JCC2055, is:

ATGAACAACAACGATCTGTTTCAAGCAAGCCGCCGTCGCTTTCTGGCGCAGCTGGGC GGCTTGACCGTCGCTGGCATGC TGGGTCCGAGCCTGCTGACGCCACGCCGTGCAACCGCTGGTGGCTACTGGTGGTATCAAA GCCGCCAGGATAACGGTTT GACCCTGTATGGCAATGTTGATATTCGCACCGTCAACCTGTCGTTCCGCGTGGGTGGCCG TGTGGAGAGCCTGGCCGTG GAT GAAGGC GAT GC GAT CAAAGCAGGTCAGGT CC TAGGT GAGC TGGAT CACAAAC CATACGAAATCGCC C TGATGCAAG CCAAAGCGGGTGTTAGCGTGGCACAAGCGCAGTACGATCTGATGTTGGCGGGTTACCGCA ATGAAGAGATTGCGCAGGC GGCAGCGGCGGTGAAACAAGCGCAAGCGGCGTATGACCTGGCTAAGGCCGACGGCGACCG TTTCCAAGAGCTGTATGCA AGCGGTGTGGTTAGCAAGCAACGTCTGGAGCAGGCGCAGACCAGCCGT GAT CAGGCACAGGCCACGCTGAA GAGCGCGC AGGATAAGCTGCGCCAATATCGTAGCGGCAATCGTGAACAAGACATTGCACAGGCTAAGG CATCTCTGGAACAGGCCCA AGCTCAACTGGCCCAGGCGGAACTGAACCTGCAGGACTCCACTCTGATCGCACCTTCTGA CGGTACTTTGCTGACGCGT GCGGTTGAACCGGGTACCGTGCTGAATGAGGGCGGTACGGTTTTCACGGTCAGCCTGACG CGTCCGGTCTGGGTTCGTG CCTACGTCGATGAGCGTAACCTGGACCAGGCGCAACCAGGCCGTAAGGTTCTGCTGTATA CCGACGGTCGCCCGGATAA ACCTTACCACGGTCAAATTGGCTTTGTTTCCCCGACGGCTGAGTTTACCCCGAAAACCGT CGAAACGCCGGACCTGCGT ACCGACCTGGTCTACCGTCTGCGCATCGTCGTGACCGACGCGGATGACGCATTGCGTCAG GGCATGCCGGTGACCGTGC AGTTCGGCGACGAGGCTGGTCATGAGTAA

SEQ ID NO:151

The protein sequence encoded by torA_ybhG_opt_hpl , integrated as part of the ybhGFSR operon at the AA0358-downstream locus in JCC2055, is:

MNNNDLFQASRRRFLAQLGGLTVAGMLGPSLLTPRRATAGGYWWYQSRQDNGLTLYG VDIRTVNLSFRVGGRVESLAV DEGDAIKAGQVLGELDHKPYEIALMQAKAGVSVAQAQYDLMLAGYRNEEIAQAAAAVKQA QAAYDLAKADGDRFQELYA SGWSKQRLEQAQTSRDQAQATLKSAQDKLRQYRSGNREQDIAQAKASLEQAQAQLAQAEL NLQDSTLIAPSDGTLLTR AVEPGTVLNEGGTVFTVSLTRPVWVRAYVDERNLDQAQPGRKVLLYTDGRPDKPYHGQIG FVSPTAEFTPKTVETPDLR TDLVYRLRIWTDADDALRQGMPVTVQFGDEAGHE

SEQ ID NO:152

The DNA sequence encoding torA_ybhG_opt_hp2, integrated as part of the ybhGFSR operon at the AA0358-downstream locus in JCC2055, is:

ATGAACAACAACGATCTGTTTCAAGCAAGCCGCCGTCGCTTTCTGGCGCAGCTGGGC GGCTTGACCGTCGCTGGCATGC TGGGTCCGAGCCTGCTGACGCCACGCCGTGCAACCGCTGGTGGCTACTGGTGGTATCAAA GCCGCCAGGATAACGGTTT GACCCTGTATGGCAATGTTGATATTCGCACCGTCAACCTGTCGTTCCGCGTGGGTGGCCG TGTGGAGAGCCTGGCCGTG GATGAAGGCGATGCGATCAAAGCAGGTCAGGTCCTAGGTGAGCTGGATAGCGCCGAACTG CAGGCATCCCTGGATGGTG CACAAGCCCGTATCAATGCGGCGCAGCAGCAGGTTAATCAAGCACAGCTGCAAATCACCG TGATTGAAAACCAGATTAC CGAGGCACAGCTGACCCAACGCCAAGCACAGGATGACACTGCCGGTCGCGTTAATGCGGC ACAAGCGAACGTGGCGGCA GCCAAGGCGCAACTGGCCCAGGCGCAAGCGCAGGTCAAGCAGCTGGAAGCAGAGCTGGCC CTGGCGAAGGCAGACGGTG ACCGTTTCCAAGAACTGTACGCGAGCGGTGTGGTGAGCAAACAGCGTCTGGAGCAAGCTC AAACCCAATATCTGAGCAC GAAAGAGAATCTGGATGCTCGTCGCGCGGTTGTTGCGGCAGCTGCGGAGCAAGTGAAAAC CGCGGAGGGTAACCTGACG CAAACTCAGGCGTCCCAGTTCAACCCAGACATTCAGTACCTGAGCACCAAAGAAAATCTG GACGCACGTCGTGCTGTCG TCGCTGCCGCTGCAGAACAAGTTAAGACCGCCGAGGGTAACTTGACTCAGACCCAAGCGA GCCAATTCAACCCGGACAT TCGTGCAGTTCAAGTGCAGCGCCTGCAAACGCAACTGGTCCAGGCGCAGGCCCAGCTGTC TGCGGCGCAAGCACAAGTT CAGAATGCT CAGGC CAACTATAAC GAGAT CGCGGCGAAC C T GCAGGAC TCCAC T C T GAT CGCAC CTTC TGACGGTAC T T TGCTGACGCGTGCGGTTGAACCGGGTACCGTGCTGAATGAGGGCGGTACGGTTTTCACGG TCAGCCTGACGCGTCCGGT CTGGGTTCGTGCCTACGTCGATGAGCGTAACCTGGACCAGGCGCAACCAGGCCGTAAGGT TCTGCTGTATACCGACGGT CGCCCGGATAAACCTTACCACGGTCAAATTGGCTTTGTTTCCCCGACGGCTGAGTTTACC CCGAAAACCGTCGAAACGC CGGACCTGCGTACCGACCTGGTCTACCGTCTGCGCATCGTCGTGACCGACGCGGATGACG CATTGCGTCAGGGCATGCC GGTGACCGTGCAGTTCGGCGACGAGGCTGGTCATGAGTAA

SEQ ID NO:153

The protein sequence encoded by torA_ybhG_opt_hp2, integrated as part of the ybhGFSR operon at the AA0358-downstream locus in JCC2055, is:

MNNNDLFQASRRRFLAQLGGLTVAGMLGPSLLTPRRATAGGYWWYQSRQDNGLTLYG NVDIRTVNLSFRVGGRVESLAV DEGDAIKAGQVLGELDSAELQASLDGAQARINAAQQQVNQAQLQITVIENQITEAQLTQR QAQDDTAGRVNAAQANVAA AKAQLAQAQAQVKQLEAELALAKADGDRFQELYASGWSKQRLEQAQTQYLSTKENLDARR AWAAAAEQVKTAEGNLT QTQASQFNPDIQYLSTKENLDARRAWAAAAEQVKTAE GNLTQTQASQFNPDIRAVQVQRLQTQLVQAQAQLSAAQAQV QNAQANYNEIAANLQDSTLIAPSDGTLLTRAVEPGTVLNEGGTVFTVSLTRPVWVRAYVD ERNLDQAQPGRKVLLYTDG RPDKPYHGQIGFVSPTAEFTPKTVETPDLRTDLVYRLRIWTDADDALRQGMPVTVQFGDE AGHE

SEQ ID NO:154

The DNA sequence encoding torA_ybhG_opt_hp3, integrated as part of the ybhGFSR operon at the AA0358-downstream locus in JCC2055, is:

ATGAACAACAACGATCTGTTTCAAGCAAGCCGCCGTCGCTTTCTGGCGCAGCTGGGC GGCTTGACCGTCGCTGGCATGC TGGGTCCGAGCCTGCTGACGCCACGCCGTGCAACCGCTGGTGGCTACTGGTGGTATCAAA GCCGCCAGGATAACGGTTT GACCCTGTATGGCAATGTTGATATTCGCACCGTCAACCTGTCGTTCCGCGTGGGTGGCCG TGTGGAGAGCCTGGCCGTG GATGAAGGCGATGCGATCAAAGCAGGTCAGGTCCTAGGTGAGCTGGATAGCGCCGAACTG CAGGCATCCCTGGATGGTG CACAAGCCCGTATCAATGCGGCGCAGCAGCAGGTTAATCAAGCACAGCTGCAAATCACCG TGATTGAAAACCAGATTAC CGAGGCACAGCTGACCCAACGCCAAGCACAGGATGACACTGCCGGTCGCGTTAATGCGGC ACAAGCGAACGTGGCGGCA GCCAAGGCGCAACTGGCCCAGGCGCAAGCGCAGGTCAAGCAGCTGGAAGCAGAGCTGGCC TATGCGCAAAACTTTTACA ATCGCCAGCAAGGTTTGTGGAAGAGCCGTACGATTAGCGCAAACGATCTGGAAAATGCGC GTTCTCAATATCTGAGCAC GAAAGAGAATCTGGATGCTCGTCGCGCGGTTGTTGCGGCAGCTGCGGAGCAAGTGAAAAC CGCGGAGGGTAACCTGACG CAAACTCAGGCGTCCCAGTTCAACCCAGACATTCAGTACCTGAGCACCAAAGAAAATCTG GACGCACGTCGTGCTGTCG TCGCTGCCGCTGCAGAACAAGTTAAGACCGCCGAGGGTAACTTGACTCAGACCCAAGCGA GCCAATTCAACCCGGACAT TCGTGCAGTTCAAGTGCAGCGCCTGCAAACGCAACTGGTCCAGGCGCAGGCCCAGCTGTC TGCGGCGCAAGCACAAGTT CAGAATGCT CAGGC CAACTATAAC GAGAT CGCGGCGAAC C T GCAGGAC TCCAC T C T GAT CGCAC CTTC TGACGGTAC T T TGCTGACGCGTGCGGTTGAACCGGGTACCGTGCTGAATGAGGGCGGTACGGTTTTCACGG TCAGCCTGACGCGTCCGGT CTGGGTTCGTGCCTACGTCGATGAGCGTAACCTGGACCAGGCGCAACCAGGCCGTAAGGT TCTGCTGTATACCGACGGT CGCCCGGATAAACCTTACCACGGTCAAATTGGCTTTGTTTCCCCGACGGCTGAGTTTACC CCGAAAACCGTCGAAACGC CGGACCTGCGTACCGACCTGGTCTACCGTCTGCGCATCGTCGTGACCGACGCGGATGACG CATTGCGTCAGGGCATGCC GGTGACCGTGCAGTTCGGCGACGAGGCTGGTCATGAGTAA

SEQ ID NO:155

The protein sequence encoded by torA_ybhG_opt_hp3, integrated as part of the ybhGFSR operon at the AA0358-downstream locus in JCC2055, is:

MNNNDLFQASRRRFLAQLGGLTVAGMLGPSLLTPRRATAGGYWWYQSRQDNGLTLYG VDIRTVNLSFRVGGRVESLAV DEGDAIKAGQVLGELDSAELQASLDGAQARINAAQQQVNQAQLQITVIENQITEAQLTQR QAQDDTAGRVNAAQANVAA AKAQLAQAQAQVKQLEAELAYAQNFYNRQQGLWKSRTI SANDLENARSQYLSTKENLDARRAWAAAAEQVKTAE GNLT QTQASQFNPDIQYLSTKENLDARRAWAAAAEQVKTAE GNLTQTQASQFNPDIRAVQVQRLQTQLVQAQAQLSAAQAQV QNAQANYNEIAANLQDSTLIAPSDGTLLTRAVEPGTVLNEGGTVFTVSLTRPVWVRAYVD ERNLDQAQPGRKVLLYTDG RPDKPYHGQIGFVSPTAEFTPKTVETPDLRTDLVYRLRIWTDADDALRQGMPVTVQFGDE AGHE

SEQ ID NO:156

The DNA sequence encoding torA_ybhG_opt_hp4, integrated as part of the ybhGFSR operon at the AA0358-downstream locus in JCC2055, is:

ATGAACAACAACGATCTGTTTCAAGCAAGCCGCCGTCGCTTTCTGGCGCAGCTGGGC GGCTTGACCGTCGCTGGCATGC TGGGTCCGAGCCTGCTGACGCCACGCCGTGCAACCGCTGGTGGCTACTGGTGGTATCAAA GCCGCCAGGATAACGGTTT GACCCTGTATGGCAATGTTGATATTCGCACCGTCAACCTGTCGTTCCGCGTGGGTGGCCG TGTGGAGAGCCTGGCCGTG GAT GAAGGC GAT GC GAT CAAAGCAGGTCAGGT CC TAGGT GAGC TGGAT CACAAAC CATACGAAATCGCC C TGATGCAAG CCAAAGCGGGTGTTAGCGTGGCACAAGCGCAGTACGATCTGATGTTGGCGGGTTACCGCA ATGAAGAGATTGCGCAGGC GGCAGCGGCGGTGAAACAAGCGCAAGCGGCGTATGACTATGCGCAAAACTTTTACAATCG TTTCCAAGAGCTGTATGCA AGCGGTGTGGTTAGCAAGCAAGATCTGGAAAATGCGCGTTCTAGCCGT GAT CAGGCACAGGCCACGCTGAA GAGCGCGC AGGATAAGCTGCGCCAATATCGTAGCGGCAATCGTGAACAAGACATTGCACAGGCTAAGG CATCTCTGGAACAGGCCCA AGCTCAACTGGCCCAGGCGGAACTGAACCTGCAGGACTCCACTCTGATCGCACCTTCTGA CGGTACTTTGCTGACGCGT GCGGTTGAACCGGGTACCGTGCTGAATGAGGGCGGTACGGTTTTCACGGTCAGCCTGACG CGTCCGGTCTGGGTTCGTG CCTACGTC GAT GAGC GTAACCTGGAC CAGGC GCAAC CAGGC CGTAAGGTTCTGCTGTATACCGACGGTCGCCCGGATAA ACCTTACCACGGTCAAATTGGCTTTGTTTCCCCGACGGCTGAGTTTACCCCGAAAACCGT CGAAACGCCGGACCTGCGT ACCGACCTGGTCTACCGTCTGCGCATCGTCGTGACCGACGCGGATGACGCATTGCGTCAG GGCATGCCGGTGACCGTGC AGTTCGGCGACGAGGCTGGTCATGAGTAA

SEQ ID NO:157

The protein sequence encoded by torA_ybhG_opt_hp4, integrated as part of the ybhGFSR operon at the AA0358-downstream locus in JCC2055, is:

MNNNDLFQASRRRFLAQLGGLTVAGMLGPSLLTPRRATAGGYWWYQSRQDNGLTLYG VDIRTVNLSFRVGGRVESLAV DEGDAIKAGQVLGELDHKPYEIALMQAKAGVSVAQAQYDLMLAGYRNEEIAQAAAAVKQA QAAYDYAQNFYNRFQELYA SGWSKQDLENARS SRDQAQATLKSAQDKLRQYRSGNREQDIAQAKASLEQAQAQLAQAELNLQDSTLIAPSDG TLLTR AVEPGTVLNEGGTVFTVSLTRPVWVRAYVDERNLDQAQPGRKVLLYTDGRPDKPYHGQIG FVSPTAEFTPKTVETPDLR TDLVYRLRIWTDADDALRQGMPVTVQFGDEAGHE

SEQ ID NO:158

The DNA sequence encoding A0318_ybhG_opt_hpl, integrated as part of the ybhGFSR operon at the AA0358-downstream locus in JCC2055, is:

ATGCAGAAGCAGCAGAACCTGGACTATTTCAGCCCGCAAGCGTTGGCGCTGTGGGCA GCTATCGCCAGCCTGGGCGTTA TGTCCCCAGCACACGCTGGTGGCTACTGGTGGTATCAAAGCCGCCAGGATAACGGTTTGA CCCTGTATGGCAATGTTGA TATTCGCACCGTCAACCTGTCGTTCCGCGTGGGTGGCCGTGTGGAGAGCCTGGCCGTGGA TGAAGGCGATGCGATCAAA GCAGGTCAGGTCCTAGGTGAGCTGGATCACAAAC CATAC GAAATCGCCCTGATGCAAGCCAAAGCGGGTGTTAGCGTGG CACAAGCGCAGTACGATCTGATGTTGGCGGGTTACCGCAATGAAGAGATTGCGCAGGCGG CAGCGGCGGTGAAACAAGC GCAAGCGGCGTATGACCTGGCTAAGGCCGACGGCGACCGTTTCCAAGAGCTGTATGCAAG CGGTGTGGTTAGCAAGCAA CGTCTGGAGCAGGCGCAGACCAGCCGTGATCAGGCACAGGCCACGCTGAAGAGCGCGCAG GATAAGCTGCGCCAATATC GTAGCGGCAATCGTGAACAAGACATTGCACAGGCTAAGGCATCTCTGGAACAGGCCCAAG CTCAACTGGCCCAGGCGGA ACTGAACCTGCAGGACTCCACTCTGATCGCACCTTCTGACGGTACTTTGCTGACGCGTGC GGTTGAACCGGGTACCGTG CTGAATGAGGGCGGTACGGTTTTCACGGTCAGCCTGACGCGTCCGGTCTGGGTTCGTGCC TACGTCGATGAGCGTAACC TGGACCAGGCGCAACCAGGCCGTAAGGTTCTGCTGTATACCGACGGTCGCCCGGATAAAC CTTACCACGGTCAAATTGG CTTTGTTTCCCCGACGGCTGAGTTTACCCCGAAAACCGTCGAAACGCCGGACCTGCGTAC CGACCTGGTCTACCGTCTG CGCATCGTCGTGACCGACGCGGATGACGCATTGCGTCAGGGCATGCCGGTGACCGTGCAG TTCGGCGACGAGGCTGGTC ATGAGTAA

SEQ ID NO:159

The protein sequence encoded by A0318_ybhG_opt_hpl , integrated as part of the ybhGFSR operon at the AA0358-downstream locus in JCC2055, is:

MQKQQNLDYFSPQALALWAAIASLGVMSPAHAGGYWWYQSRQDNGLTLYGNVDIRTV NLSFRVGGRVESLAVDEGDAIK AGQVLGELDHKPYEIALMQAKAGVSVAQAQYDLMLAGYRNEEIAQAAAAVKQAQAAYDLA KADGDRFQELYASGWSKQ RLEQAQTSRDQAQATLKSAQDKLRQYRSGNREQDIAQAKASLEQAQAQLAQAELNLQDST LIAPSDGTLLTRAVEPGTV LNEGGTVFTVSLTRPVWVRAYVDERNLDQAQPGRKVLLYTDGRPDKPYHGQIGFVSPTAE FTPKTVETPDLRTDLVYRL RIWTDADDALRQGMPVTVQFGDEAGHE

SEQ ID NO:160

The DNA sequence encoding A0318_ybhG_opt_hp2, integrated as part of the ybhGFSR operon at the AA0358-downstream locus in JCC2055, is:

ATGCAGAAGCAGCAGAACCTGGACTATTTCAGCCCGCAAGCGTTGGCGCTGTGGGCA GCTATCGCCAGCCTGGGCGTTA TGTCCCCAGCACACGCTGGTGGCTACTGGTGGTATCAAAGCCGCCAGGATAACGGTTTGA CCCTGTATGGCAATGTTGA TATTCGCACCGTCAACCTGTCGTTCCGCGTGGGTGGCCGTGTGGAGAGCCTGGCCGTGGA TGAAGGCGATGCGATCAAA GCAGGTCAGGTCCTAGGTGAGCTGGATAGCGCCGAACTGCAGGCATCCCTGGATGGTGCA CAAGCCCGTATCAATGCGG CGCAGCAGCAGGTTAATCAAGCACAGCTGCAAATCACCGTGATTGAAAACCAGATTACCG AGGCACAGCTGACCCAACG CCAAGCACAGGATGACACTGCCGGTCGCGTTAATGCGGCACAAGCGAACGTGGCGGCAGC CAAGGCGCAACTGGCCCAG GCGCAAGCGCAGGTCAAGCAGCTGGAAGCAGAGCTGGCCCTGGCGAAGGCAGACGGTGAC CGTTTCCAAGAACTGTACG CGAGCGGTGTGGTGAGCAAACAGCGTCTGGAGCAAGCTCAAACCCAATATCTGAGCACGA AAGAGAATCTGGATGCTCG TCGCGCGGTTGTTGCGGCAGCTGCGGAGCAAGTGAAAACCGCGGAGGGTAACCTGACGCA AACTCAGGCGTCCCAGTTC AACCCAGACATTCAGTACCTGAGCACCAAAGAAAATCTGGACGCACGTCGTGCTGTCGTC GCTGCCGCTGCAGAACAAG TTAAGACCGCCGAGGGTAACTTGACTCAGACCCAAGCGAGCCAATTCAACCCGGACATTC GTGCAGTTCAAGTGCAGCG CCTGCAAACGCAACTGGTCCAGGCGCAGGCCCAGCTGTCTGCGGCGCAAGCACAAGTTCA GAATGCTCAGGCCAACTAT AACGAGATCGCGGCGAACCTGCAGGACTCCACTCTGATCGCACCTTCTGACGGTACTTTG CTGACGCGTGCGGTTGAAC CGGGTACCGTGCTGAATGAGGGCGGTACGGTTTTCACGGTCAGCCTGACGCGTCCGGTCT GGGTTCGTGCCTACGTCGA TGAGCGTAACCTGGACCAGGCGCAACCAGGCCGTAAGGTTCTGCTGTATACCGACGGTCG CCCGGATAAACCTTACCAC GGTCAAATTGGCTTTGTTTCCCCGACGGCTGAGTTTACCCCGAAAACCGTCGAAACGCCG GACCTGCGTACCGACCTGG TCTACCGTCTGCGCATCGTCGTGACCGACGCGGATGACGCATTGCGTCAGGGCATGCCGG TGACCGTGCAGTTCGGCGA CGAGGCTGGTCATGAGTAA

SEQ ID NO:161

The protein sequence encoded by A0318_ybhG_opt_hp2, integrated as part of the ybhGFSR operon at the AA0358-downstream locus in JCC2055, is:

MQKQQNLDYFSPQALALWAAIASLGVMSPAHAGGYWWYQSRQDNGLTLYGNVDIRTV NLSFRVGGRVESLAVDEGDAIK AGQVLGELDSAELQASLDGAQARINAAQQQVNQAQLQITVIENQITEAQLTQRQAQDDTA GRVNAAQANVAAAKAQLAQ AQAQVKQLEAELALAKADGDRFQELYASGWSKQRLEQAQTQYLSTKENLDARRAWAAAAE QVKTAE GNLTQTQASQF NPDIQYLSTKENL D ARRAWAAAAE Q VK T AE GNLTQTQASQF PDI RAVQVQ RL Q T Q LVQ AQ AQ L S AAQ AQ VQNAQ AN Y NEIAANLQDSTLIAPSDGTLLTRAVEPGTVLNEGGTVFTVSLTRPVWVRAYVDERNLDQA QPGRKVLLYTDGRPDKPYH GQIGFVSPTAEFTPKTVETPDLRTDLVYRLRIWTDADDALRQGMPVTVQFGDEAGHE

SEQ ID NO:162

The DNA sequence encoding A0318_ybhG_opt_hp3, integrated as part of the ybhGFSR operon at the AA0358-downstream locus in JCC2055, is:

ATGCAGAAGCAGCAGAACCTGGACTATTTCAGCCCGCAAGCGTTGGCGCTGTGGGCA GCTATCGCCAGCCTGGGCGTTA TGTCCCCAGCACACGCTGGTGGCTACTGGTGGTATCAAAGCCGCCAGGATAACGGTTTGA CCCTGTATGGCAATGTTGA TATTCGCACCGTCAACCTGTCGTTCCGCGTGGGTGGCCGTGTGGAGAGCCTGGCCGTGGA TGAAGGCGATGCGATCAAA GCAGGTCAGGTCCTAGGTGAGCTGGATAGCGCCGAACTGCAGGCATCCCTGGATGGTGCA CAAGCCCGTATCAATGCGG CGCAGCAGCAGGTTAATCAAGCACAGCTGCAAATCACCGTGATTGAAAACCAGATTACCG AGGCACAGCTGACCCAACG CCAAGCACAGGATGACACTGCCGGTCGCGTTAATGCGGCACAAGCGAACGTGGCGGCAGC CAAGGCGCAACTGGCCCAG GCGCAAGCGCAGGTCAAGCAGCTGGAAGCAGAGCTGGCCTATGCGCAAAACTTTTACAAT CGCCAGCAAGGTTTGTGGA AGAGCCGTACGATTAGCGCAAACGATCTGGAAAATGCGCGTTCTCAATATCTGAGCACGA AAGAGAATCTGGATGCTCG TCGCGCGGTTGTTGCGGCAGCTGCGGAGCAAGTGAAAACCGCGGAGGGTAACCTGACGCA AACTCAGGCGTCCCAGTTC AACCCAGACATTCAGTACCTGAGCACCAAAGAAAATCTGGACGCACGTCGTGCTGTCGTC GCTGCCGCTGCAGAACAAG TTAAGACCGCCGAGGGTAACTTGACTCAGACCCAAGCGAGCCAATTCAACCCGGACATTC GTGCAGTTCAAGTGCAGCG CCTGCAAACGCAACTGGTCCAGGCGCAGGCCCAGCTGTCTGCGGCGCAAGCACAAGTTCA GAATGCTCAGGCCAACTAT AACGAGATCGCGGCGAACCTGCAGGACTCCACTCTGATCGCACCTTCTGACGGTACTTTG CTGACGCGTGCGGTTGAAC CGGGTACCGTGCTGAATGAGGGCGGTACGGTTTTCACGGTCAGCCTGACGCGTCCGGTCT GGGTTCGTGCCTACGTCGA TGAGCGTAACCTGGACCAGGCGCAACCAGGCCGTAAGGTTCTGCTGTATACCGACGGTCG CCCGGATAAACCTTACCAC GGTCAAATTGGCTTTGTTTCCCCGACGGCTGAGTTTACCCCGAAAACCGTCGAAACGCCG GACCTGCGTACCGACCTGG TCTACCGTCTGCGCATCGTCGTGACCGACGCGGATGACGCATTGCGTCAGGGCATGCCGG TGACCGTGCAGTTCGGCGA CGAGGCTGGTCATGAGTAA

SEQ ID NO:163

T he protein sequence encoded by A0318_ybhG_opt_hp3, integrated as part of the ybhGFSR operon at the AA0358-downstream locus in JCC2055, is:

MQKQQNLDYFS PQALALWAAIASLGVMS PAHAGGYWWYQSRQDNGLTLYGNVDIRTVNLS FRVGGRVE SLAVDEGDAIK AGQVLGELDSAELQASLDGAQARINAAQQQVNQAQLQITVIENQITEAQLTQRQAQDDTA GRVNAAQANVAAAKAQLAQ AQAQVKQLEAELAYAQNFYNRQQGLWKSRTI SANDLENARSQYLSTKENLDARRAWAAAAEQVKTAE GNLTQTQASQF NPDIQYLSTKENL D ARRAWAAAAE Q VK T AE GNLTQTQASQF PDI RAVQVQ RL Q T Q LVQ AQ AQ L S AAQ AQ VQNAQ A Y NEIAANLQDSTLIAPS DGTLLTRAVEPGTVLNEGGTVFTVSLTRPVWVRAYVDERNLDQAQPGRKVLLYTDGRPDK PYH GQI GFVS PTAEFTPKTVETPDLRTDLVYRLRIWTDADDALRQGMPVTVQFGDEAGHE

SEQ ID NO:164

T he DNA sequence encoding A0318_ybhG_opt_hp4, integrated as part of the ybhGFSR operon at the AA0358-downstream locus in JCC2055, is:

ATGCAGAAGCAGCAGAACCTGGACTATTTCAGCCCGCAAGCGTTGGCGCTGTGGGCA GCTATCGCCAGCCTGGGCGTTA TGTCCCCAGCACACGCTGGTGGCTACTGGTGGTATCAAAGCCGCCAGGATAACGGTTTGA CCCTGTATGGCAATGTTGA TATTCGCACCGTCAACCTGTCGTTCCGCGTGGGTGGCCGTGTGGAGAGCCTGGCCGTGGA TGAAGGCGATGCGATCAAA GCAGGTCAGGTCCTAGGTGAGCTGGATCACAAACCATACGAAATCGCCCTGATGCAAGCC AAAGCGGGTGTTAGCGTGG CACAAGCGCAGTACGATCTGATGTTGGCGGGTTACCGCAATGAAGAGATTGCGCAGGCGG CAGCGGCGGTGAAACAAGC GCAAGCGGCGTATGACTATGCGCAAAACTTTTACAATCGTTTCCAAGAGCTGTATGCAAG CGGTGTGGTTAGCAAGCAA GATCTGGAAAATGCGCGTTCTAGCCGTGATCAGGCACAGGCCACGCTGAAGAGCGCGCAG GATAAGCTGCGCCAATATC GTAGCGGCAATCGTGAACAAGACATTGCACAGGCTAAGGCATCTCTGGAACAGGCCCAAG CTCAACTGGCCCAGGCGGA ACTGAACCTGCAGGACTCCACTCTGATCGCACCTTCTGACGGTACTTTGCTGACGCGTGC GGTTGAACCGGGTACCGTG CTGAATGAGGGCGGTACGGTTTTCACGGTCAGCCTGACGCGTCCGGTCTGGGTTCGTGCC TACGTCGATGAGCGTAACC TGGACCAGGCGCAACCAGGCCGTAAGGTTCTGCTGTATACCGACGGTCGCCCGGATAAAC CTTACCACGGTCAAATTGG CTTTGTTTCCCCGACGGCTGAGTTTACCCCGAAAACCGTCGAAACGCCGGACCTGCGTAC CGACCTGGTCTACCGTCTG CGCATCGTCGTGACCGACGCGGATGACGCATTGCGTCAGGGCATGCCGGTGACCGTGCAG TTCGGCGACGAGGCTGGTC ATGAGTAA

SEQ ID NO:165

T he protein sequence encoded by A0318_ybhG_opt_hp4, integrated as part of the ybhGFSR operon at the AA0358-downstream locus in JCC2055, is:

MQKQQNLDYFS PQALALWAAIASLGVMS PAHAGGYWWYQSRQDNGLTLYGNVDIRTVNLS FRVGGRVE SLAVDEGDAIK AGQVLGELDHKPYE IALMQAKAGVSVAQAQYDLMLAGYRNEEIAQAAAAVKQAQAAYDYAQNFYNRFQELYASG WSKQ DLENARS SRDQAQATLKSAQDKLRQYRS GNREQDIAQAKASLEQAQAQLAQAELNLQDSTLIAPSDGTLLTRAVEPGTV LNEGGTVFTVSLTRPVWVRAYVDERNLDQAQPGRKVLLYTDGRPDKPYHGQI GFVS PTAEFTPKTVETPDLRTDLVYRL RIWTDADDALRQGMPVTVQFGDEAGHE

SEQ ID NO:166

T he DNA sequence encoding A0578_ybhG_opt_hpl, integrated as part of the ybhGFSR operon at the AA0358-downstream locus in JCC2055, is:

ATGCGTTTCTTTTGGTTTTTCCTGACGTTGCTGACCCTGAGCACCTGGCAGCTGCCG GCGTGGGCGGGTGGCTACTGGT GGTATCAAAGCCGCCAGGATAACGGTTTGACCCTGTATGGCAATGTTGATATTCGCACCG TCAACCTGTCGTTCCGCGT GGGTGGCCGTGTGGAGAGCCTGGCCGTGGATGAAGGCGATGCGATCAAAGCAGGTCAGGT CCTAGGTGAGCTGGATCAC AAACCATACGAAATCGCCCTGATGCAAGCCAAAGCGGGTGTTAGCGTGGCACAAGCGCAG TACGATCTGATGTTGGCGG GTTACCGCAATGAAGAGATTGCGCAGGCGGCAGCGGCGGTGAAACAAGCGCAAGCGGCGT ATGACCTGGCTAAGGCCGA CGGCGACCGTTTCCAAGAGCTGTATGCAAGCGGTGTGGTTAGCAAGCAACGTCTGGAGCA GGCGCAGACCAGCCGTGAT CAGGCACAGGCCACGCTGAAGAGCGCGCAGGATAAGCTGCGCCAATATCGTAGCGGCAAT CGTGAACAAGACATTGCAC AGGCTAAGGCATCTCTGGAACAGGCCCAAGCTCAACTGGCCCAGGCGGAACTGAACCTGC AGGACTCCACTCTGATCGC ACCTTCTGACGGTACTTTGCTGACGCGTGCGGTTGAACCGGGTACCGTGCTGAATGAGGG CGGTACGGTTTTCACGGTC AGCCTGACGCGTCCGGTCTGGGTTCGTGCCTACGTCGATGAGCGTAACCTGGACCAGGCG CAACCAGGCCGTAAGGTTC TGCTGTATACCGACGGTCGCCCGGATAAACCTTACCACGGTCAAATTGGCTTTGTTTCCC CGACGGCTGAGTTTACCCC GAAAACCGTCGAAACGCCGGACCTGCGTACCGACCTGGTCTACCGTCTGCGCATCGTCGT GACCGACGCGGATGACGCA TTGCGTCAGGGCATGCCGGTGACCGTGCAGTTCGGCGACGAGGCTGGTCATGAGTAA

SEQ ID NO:167

The protein sequence encoded by A0578_ybhG_opt_hpl , integrated as part of the ybhGFSR operon at the AA0358-downstream locus in JCC2055, is:

MRFFWFFLTLLTLSTWQLPAWAGGYWWYQSRQDNGLTLYGNVDIRTVNLSFRVGGRV ESLAVDEGDAIKAGQVLGELDH KPYEIALMQAKAGVSVAQAQYDLMLAGYRNEEIAQAAAAVKQAQAAYDLAKADGDRFQEL YASGWSKQRLEQAQTSRD QAQATLKSAQDKLRQYRSGNREQDIAQAKASLEQAQAQLAQAELNLQDSTLIAPSDGTLL TRAVEPGTVLNEGGTVFTV SLTRPVWVRAYVDERNLDQAQPGRKVLLYTDGRPDKPYHGQIGFVSPTAEFTPKTVETPD LRTDLVYRLRIWT DADDA LRQGMPVTVQFGDEAGHE

SEQ ID NO:168

The DNA sequence encoding A0578_ybhG_opt_hp2, integrated as part of the ybhGFSR operon at the AA0358-downstream locus in JCC2055, is:

ATGATGAAAAAGCCGGTTGTTATCGGTTTGGCGGTGGTGGTTCTGGCAGCAGTCGTT GCGGGTGGCTACTGGTGGTATC AAAGCCGCCAGGATAACGGTTTGACCCTGTATGGCAATGTTGATATTCGCACCGTCAACC TGTCGTTCCGCGTGGGTGG CCGTGTGGAGAGCCTGGCCGTGGATGAAGGCGATGCGATCAAAGCAGGTCAGGTCCTAGG TGAGCTGGATAGCGCCGAA CTGCAGGCATCCCTGGATGGTGCACAAGCCCGTATCAATGCGGCGCAGCAGCAGGTTAAT CAAGCACAGCTGCAAATCA CCGTGATTGAAAACCAGATTACCGAGGCACAGCTGACCCAACGCCAAGCACAGGATGACA CTGCCGGTCGCGTTAATGC GGCACAAGCGAACGTGGCGGCAGCCAAGGCGCAACTGGCCCAGGCGCAAGCGCAGGTCAA GCAGCTGGAAGCAGAGCTG GCCCTGGCGAAGGCAGACGGTGACCGTTTCCAAGAACTGTACGCGAGCGGTGTGGTGAGC AAACAGCGTCTGGAGCAAG CTCAAACCCAATATCTGAGCACGAAAGAGAATCTGGATGCTCGTCGCGCGGTTGTTGCGG CAGCTGCGGAGCAAGTGAA AACCGCGGAGGGTAACCTGACGCAAACTCAGGCGTCCCAGTTCAACCCAGACATTCAGTA CCTGAGCACCAAAGAAAAT CTGGACGCACGTCGTGCTGTCGTCGCTGCCGCTGCAGAACAAGTTAAGACCGCCGAGGGT AACTTGACTCAGACCCAAG CGAGCCAATTCAACCCGGACATTCGTGCAGTTCAAGTGCAGCGCCTGCAAACGCAACTGG TCCAGGCGCAGGCCCAGCT GTCTGCGGCGCAAGCACAAGTTCAGAATGCTCAGGCCAACTATAACGAGATCGCGGCGAA CCTGCAGGACTCCACTCTG ATCGCACCTTCTGACGGTACTTTGCTGACGCGTGCGGTTGAACCGGGTACCGTGCTGAAT GAGGGCGGTACGGTTTTCA CGGTCAGCCTGACGCGTCCGGTCTGGGTTCGTGCCTACGTCGATGAGCGTAACCTGGACC AGGCGCAACCAGGCCGTAA GGTTCTGCTGTATACCGACGGTCGCCCGGATAAACCTTACCACGGTCAAATTGGCTTTGT TTCCCCGACGGCTGAGTTT ACCCCGAAAACCGTCGAAACGCCGGACCTGCGTACCGACCTGGTCTACCGTCTGCGCATC GTCGTGACCGACGCGGATG ACGCATTGCGTCAGGGCATGCCGGTGACCGTGCAGTTCGGCGACGAGGCTGGTCATGAGT AA

SEQ ID NO:169

The protein sequence encoded by A0578_ybhG_opt_hp2, integrated as part of the ybhGFSR operon at the AA0358-downstream locus in JCC2055, is:

MMKKPWIGLAWVLAAWAGGYWWYQSRQDNGLTLYGNVDIRTVNLSFRVGGRVESLAV DEGDAIKAGQVLGELDSAE LQASLDGAQARINAAQQQVNQAQLQITVIENQITEAQLTQRQAQDDTAGRVNAAQANVAA AKAQLAQAQAQVKQLEAEL ALAKADGDRFQELYASGWSKQRLEQAQTQYLSTKENLDARRAWAAAAEQVKTAE GNLTQTQASQFNPDIQYLSTKEN LDARRAWAAAAEQVKTAEGNLTQTQASQFNPDIRAVQVQRLQTQLVQAQAQLSAAQAQVQ NAQANYNEIAANLQDSTL IAPSDGTLLTRAVEPGTVLNEGGTVFTVSLTRPVWVRAYVDERNLDQAQPGRKVLLYTDG RPDKPYHGQIGFVSPTAEF T PKTVE T PDLRT DLVYRLRI WT DADDALRQGMPVTVQFGDEAGHE

SEQ ID NO:170

The DNA sequence encoding A0578_ybhG_opt_hp3, integrated as part of the ybhGFSR operon at the AA0358-downstream locus in JCC2055, is:

ATGCGTTTCTTTTGGTTTTTCCTGACGTTGCTGACCCTGAGCACCTGGCAGCTGCCG GCGTGGGCGGGTGGCTACTGGT GGTATCAAAGCCGCCAGGATAACGGTTTGACCCTGTATGGCAATGTTGATATTCGCACCG TCAACCTGTCGTTCCGCGT GGGTGGCCGTGTGGAGAGCCTGGCCGTGGATGAAGGCGATGCGATCAAAGCAGGTCAGGT CCTAGGTGAGCTGGATAGC GCCGAACTGCAGGCATCCCTGGATGGTGCACAAGCCCGTATCAATGCGGCGCAGCAGCAG GTTAATCAAGCACAGCTGC AAAT CAC CGTGATTGAAAAC CAGATTAC CGAGGCACAGC TGAC C CAACGCCAAGCACAGGATGACAC TGCCGGTCGCGT TAATGCGGCACAAGCGAACGTGGCGGCAGCCAAGGCGCAACTGGCCCAGGCGCAAGCGCA GGTCAAGCAGCTGGAAGCA GAGCTGGCCTATGCGCAAAACTTTTACAATCGCCAGCAAGGTTTGTGGAAGAGCCGTACG ATTAGCGCAAACGATCTGG AAAATGCGCGTTCTCAATATCTGAGCACGAAAGAGAATCTGGATGCTCGTCGCGCGGTTG TTGCGGCAGCTGCGGAGCA AGTGAAAAC CGCGGAGGGTAACCTGACGCAAACTCAGGCGTCCCAGTTCAAC CCAGACATTCAGTACCTGAGCACCAAA GAAAATCTGGACGCACGTCGTGCTGTCGTCGCTGCCGCTGCAGAACAAGTTAAGACCGCC GAGGGTAACTTGACTCAGA CCCAAGCGAGCCAATTCAACCCGGACATTCGTGCAGTTCAAGTGCAGCGCCTGCAAACGC AACTGGTCCAGGCGCAGGC CCAGCTGTCTGCGGCGCAAGCACAAGTTCAGAATGCTCAGGCCAACTATAACGAGATCGC GGCGAACCTGCAGGACTCC ACTCTGATCGCACCTTCTGACGGTACTTTGCTGACGCGTGCGGTTGAACCGGGTACCGTG CTGAATGAGGGCGGTACGG TTTTCACGGTCAGCCTGACGCGTCCGGTCTGGGTTCGTGCCTACGTCGATGAGCGTAACC TGGACCAGGCGCAACCAGG CCGTAAGGTTCTGCTGTATACCGACGGTCGCCCGGATAAACCTTACCACGGTCAAATTGG CTTTGTTTCCCCGACGGCT GAGTT TAC C CCGAAAAC CGT CGAAACGC CGGACC TGCGTACCGACCTGGTC TAC CGTCTGCGCATCGTCGTGAC CGACG CGGATGACGCATTGCGTCAGGGCATGCCGGTGACCGTGCAGTTCGGCGACGAGGCTGGTC ATGAGTAA

SEQ ID NO:171

T he protein sequence encoded by A0578_ybhG_opt_hp3, integrated as part of the ybhGFSR operon at the AA0358-downstream locus in JCC2055, is:

MRFFWFFLTLLTLSTWQLPAWAGGYWWYQSRQDNGLTLYGNVDIRTVNLSFRVGGRV ESLAVDEGDAIKAGQVLGELDS AELQASLDGAQARINAAQQQVNQAQLQITVIENQITEAQLTQRQAQDDTAGRVNAAQANV AAAKAQLAQAQAQVKQLEA ELAYAQNFYNRQQGLWKSRTI SANDLENARSQYLSTKENLDARRAWAAAAEQVKTAEGNLTQTQASQFNPDIQYLSTK ENLDARRAWAAAAEQVKTAE GNLTQTQASQFNPDIRAVQVQRLQTQLVQAQAQLSAAQAQVQNAQANYNEIAANLQDS TLIAPSDGTLLTRAVEPGTVLNEGGTVFTVSLTRPVWVRAYVDERNLDQAQPGRKVLLYT DGRPDKPYHGQIGFVSPTA EFTPKTVETPDLRTDLVYRLRIWTDADDALRQGMPVTVQFGDEAGHE

SEQ ID NO:172

T he DNA sequence encoding A0578_ybhG_opt_hp4, integrated as part of the ybhGFSR operon at the AA0358-downstream locus in JCC2055, is:

ATGCGTTTCTTTTGGTTTTTCCTGACGTTGCTGACCCTGAGCACCTGGCAGCTGCCG GCGTGGGCGGGTGGCTACTGGT GGTATCAAAGCCGCCAGGATAACGGTTTGACCCTGTATGGCAATGTTGATATTCGCACCG TCAACCTGTCGTTCCGCGT GGGTGGCCGTGTGGAGAGCCTGGCCGTGGATGAAGGCGATGCGATCAAAGCAGGTCAGGT CCTAGGTGAGCTGGATCAC AAACCATACGAAATCGCCCTGATGCAAGCCAAAGCGGGTGTTAGCGTGGCACAAGCGCAG TACGATCTGATGTTGGCGG GTTACCGCAATGAAGAGATTGCGCAGGCGGCAGCGGCGGTGAAACAAGCGCAAGCGGCGT ATGACTATGCGCAAAACTT TTACAATCGTTTCCAAGAGCTGTATGCAAGCGGTGTGGTTAGCAAGCAAGATCTGGAAAA TGCGCGTTCTAGCCGTGAT CAGGCACAGGCCACGCTGAAGAGCGCGCAGGATAAGCTGCGCCAATATCGTAGCGGCAAT CGTGAACAAGACATTGCAC AGGCTAAGGCATCTCTGGAACAGGCCCAAGCTCAACTGGCCCAGGCGGAACTGAACCTGC AGGACTCCACTCTGATCGC ACCTTCTGACGGTACTTTGCTGACGCGTGCGGTTGAACCGGGTACCGTGCTGAATGAGGG CGGTACGGTTTTCACGGTC AGCCTGACGCGTCCGGTCTGGGTTCGTGCCTACGTCGATGAGCGTAACCTGGACCAGGCG CAACCAGGCCGTAAGGTTC TGCTGTATACCGACGGTCGCCCGGATAAACCTTACCACGGTCAAATTGGCTTTGTTTCCC CGACGGCTGAGTTTACCCC GAAAAC CGT CGAAACGC CGGAC C TGCGTACCGAC CTGGTC TAC CGTCTGCGCAT CGT CGTGAC CGACGCGGATGACGCA TTGCGTCAGGGCATGCCGGTGACCGTGCAGTTCGGCGACGAGGCTGGTCATGAGTAA

SEQ ID NO:173

T he protein sequence encoded by A0578_ybhG_opt_hp4, integrated as part of the ybhGFSR operon at the AA0358-downstream locus in JCC2055, is:

MRFFWFFLTLLTLSTWQLPAWAGGYWWYQSRQDNGLTLYGNVDIRTVNLSFRVGGRV ESLAVDEGDAIKAGQVLGELDH KPYEIALMQAKAGVSVAQAQYDLMLAGYRNEEIAQAAAAVKQAQAAYDYAQNFYNRFQEL YASGWSKQDLENARSSRD QAQATLKSAQDKLRQYRSGNREQDIAQAKASLEQAQAQLAQAELNLQDSTLIAPSDGTLL TRAVEPGTVLNEGGTVFTV SLTRPVWVRAYVDERNLDQAQPGRKVLLYTDGRPDKPYHGQIGFVSPTAEFTPKTVETPD LRTDLVYRLRIWT DADDA LRQGMPVTVQFGDEAGHE

All ybhFSR variants, integrated at the AA0358-downstream locus in JCC2055 with the ybhG- hairpin panel, are indicated in Table 15 and Table 16.

Example 9: Set l

OMP variant

SEQ ID NO: 174

>SYNPCC7002_A0585

MFAFRDFLTFSTG GLVVLSGGGVAIAQTT PPQIAT PEPFI GQTPQAPLPPLAAPSVESLDTAAFLPSLGG LSQPTTLAALPLPSPELNLSPTAHLGT IQAPSPLLAQVDTTAT PSPTTAIDVTLPTAETNQT I PLVQPLP PDRVINEDLNQLLEPI DNPAVTVPQEAT AVTT DNWDLTLEET IRLALERNETLQEARLNYDRSEELVRE AIAAEYPNLSNQVDITRT DSANGELQARRLGGDNNAT TAINGRLEVSYDIYTG GRRSAQIEAAQTQLQIA ELDIERLTEETRLAAAVNYYNLQSADAQVVIEQSSVFDAT QSLRDAT LLEQAGLGTKFDVLRAEVELASA QQRLTRAEAT QRTARRQLAQLLSLEPT I DPRTADEINLAGRWEI SLEET IVLALQNRQELRQQLLQREVD GYQERIALAAVRPLVSVFANYDVLEVFDDSLGPADGLTVGARMRWNFFDGGAAAARANQE QVDQAIAENR FANQRNQIRLAVETAYYDFEASEQNITTAAAAVTLAEESLRLARLRFNAGVGTQT DVISAQTG LNTARGN YLQAVT DYNRAFAQLKREVGLGDAVIAPAAP

YbhG variants

SEQ ID NO:175

>YbhG_hpl

MMKKPVVIGLAVWLAAVVAGGYWWYQSRQDNGLTLYGNVDIRTVNLSFRVGGRVESL AVDEGDAIKAGQ VLGELDHKPYE IALMQAKAGVSVAQAQYDLMLAGYRNEEIAQAAAAVKQAQAAYDLAKADGDRFQELYAS GVVSKQRLEQAQTSRDQAQAT LKSAQDKLRQYRSGNREQDIAQAKASLEQAQAQLAQAELNLQDSTLIAP SDGTLLTRAVEPGTVLNEGGTVFTVSLTRPVWVRAYVDERNLDQAQPGRKVLLYT DGRPDKPYHGQIGFV SPTAEFT PKTVETPDLRT DLVYRLRIWT DADDALRQGMPVTVQFGDEAGHE

SEQ ID NO:176

>YbhG_hp2

MMKKPVVIGLAVWLAAVVAGGYWWYQSRQDNGLTLYGNVDIRTVNLSFRVGGRVESL AVDEGDAIKAGQ VLGELDSAELQASLDGAQARINAAQQQVNQAQLQITVIENQITEAQLTQRQAQDDTAGRV NAAQANVAAA KAQLAQAQAQVKQLEAELALAKADGDRFQELYASGVVSKQRLEQAQTQYLSTKENLDARR AWAAAAEQV KTAEGNLTQTQASQFNPDIQYLSTKENLDARRAVVAAAAEQVKTAEGNLTQTQASQFNPD IRAVQVQRLQ TQLVQAQAQLSAAQAQVQNAQANYNE IAANLQDSTLIAPSDGTLLTRAVEPGTVLNEGGTVFTVSLTRPV WVRAYVDERNLDQAQPGRKVLLYT DGRPDKPYHGQIGFVSPTAEFTPKTVET PDLRT DLVYRLRIVVTDA DDALRQGMPVTVQFGDEAGHE

SEQ ID NO:177

>YbhG_hp4

MMKKPVVIGLAVWLAAVVAGGYWWYQSRQDNGLTLYGNVDIRTVNLSFRVGGRVESL AVDEGDAIKAGQ VLGELDHKPYE IALMQAKAGVSVAQAQYDLMLAGYRNEEIAQAAAAVKQAQAAYDYAQNFYNRFQELYAS GVVSKQDLENARSSRDQAQAT LKSAQDKLRQYRSGNREQDIAQAKASLEQAQAQLAQAELNLQDSTLIAP SDGTLLTRAVEPGTVLNEGGTVFTVSLTRPVWVRAYVDERNLDQAQPGRKVLLYT DGRPDKPYHGQIGFV SPTAEFT PKTVETPDLRT DLVYRLRIWT DADDALRQGMPVTVQFGDEAGHE

SEQ ID NO:178

>torA_YbhG_hpl

MNNNDLFQASRRRFLAQLGGLTVAGMLGPSLLT PRRAT AGGYWWYQSRQDNGLTLYGNVDIRTVNLSFRV GGRVESLAVDEGDAIKAGQVLGELDHKPYE IALMQAKAGVSVAQAQYDLMLAGYRNEEIAQAAAAVKQAQ AAYDLAKADGDRFQELYASGWSKQRLEQAQT SRDQAQAT LKSAQDKLRQYRSGNREQDIAQAKASLEQA QAQLAQAELNLQDSTLIAPSDGTLLTRAVEPGTVLNEGGTVFTVSLTRPVWVRAYVDERN LDQAQPGRKV LLYT DGRPDKPYHGQIGFVSPTAEFT PKTVET PDLRT DLVYRLRIWT DADDALRQGMPVTVQFGDEAGH E

SEQ ID NO:179

>torA_YbhG_hp2

MNNNDLFQASRRRFLAQLGGLTVAGMLGPSLLT PRRAT AGGYWWYQSRQDNGLTLYGNVDIRTVNLSFRV GGRVESLAVDEGDAIKAGQVLGELDSAELQASLDGAQARINAAQQQVNQAQLQITVIENQ ITEAQLTQRQ AQDDTAGRVNAAQANVAAAKAQLAQAQAQVKQLEAELALAKADGDRFQELYASGVVSKQR LEQAQTQYLS TKENLDARRAVVAAAAEQVKTAEGNLTQTQASQFNPDIQYLSTKENLDARRAVVAAAAEQ VKTAEGNLTQ TQASQFNPDIRAVQVQRLQTQLVQAQAQLSAAQAQVQNAQANYNE IAANLQDSTLIAPSDGTLLTRAVEP GTVLNEGGTVFTVSLTRPVWVRAYVDERNLDQAQPGRKVLLYTDGRPDKPYHGQIGFVSP TAEFTPKTVE TPDLRT DLVYRLRIWTDADDALRQGMPVTVQFGDEAGHE

SEQ ID NO:180

>torA_YbhG_hp4

MNNNDLFQASRRRFLAQLGGLTVAGMLGPSLLT PRRAT AGGYWWYQSRQDNGLTLYGNVDIRTVNLSFRV GGRVESLAVDEGDAIKAGQVLGELDHKPYE IALMQAKAGVSVAQAQYDLMLAGYRNEEIAQAAAAVKQAQ AAYDYAQNFYNRFQELYASGWSKQDLENARSSRDQAQAT LKSAQDKLRQYRSGNREQDIAQAKASLEQA QAQLAQAELNLQDSTLIAPSDGTLLTRAVEPGTVLNEGGTVFTVSLTRPVWVRAYVDERN LDQAQPGRKV LLYT DGRPDKPYHGQIGFVSPTAEFT PKTVET PDLRT DLVYRLRIWT DADDALRQGMPVTVQFGDEAGH E

SEQ ID NO:181

>A0318_YbhG_hpl

MQKQQNLDYFSPQALALWAAIASLGVMSPAHAGGYWWYQSRQDNGLTLYGNVDIRTV NLSFRVGGRVESL AVDEGDAIKAGQVLGELDHKPYEIALMQAKAGVSVAQAQYDLMLAGYRNEE IAQAAAAVKQAQAAYDLAK ADGDRFQELYASGVVSKQRLEQAQT SRDQAQAT LKSAQDKLRQYRSGNREQDIAQAKASLEQAQAQLAQA ELNLQDSTLIAPSDGTLLTRAVEPGTVLNEGGTVFTVSLTRPVWVRAYVDERNLDQAQPG RKVLLYT DGR PDKPYHGQIGFVSPTAEFT PKTVET PDLRT DLVYRLRIWT DADDALRQGMPVTVQFGDEAGHE

SEQ ID NO:182

>A0318_YbhG_hp2

MQKQQNLDYFSPQALALWAAIASLGVMSPAHAGGYWWYQSRQDNGLTLYGNVDIRTV NLSFRVGGRVESL AVDEGDAIKAGQVLGELDSAELQASLDGAQARINAAQQQVNQAQLQITVIENQITEAQLT QRQAQDDTAG RVNAAQANVAAAKAQLAQAQAQVKQLEAELALAKADGDRFQELYASGVVSKQRLEQAQTQ YLSTKENLDA RRAVVAAAAEQVKTAEGNLTQTQASQFNPDIQYLSTKENLDARRAWAAAAEQVKTAEGNL TQTQASQFN PDIRAVQVQRLQTQLVQAQAQLSAAQAQVQNAQANYNE IAANLQDSTLIAPSDGTLLTRAVEPGTVLNEG GTVFTVSLTRPVWVRAYVDERNLDQAQPGRKVLLYT DGRPDKPYHGQIGFVSPTAEFTPKTVET PDLRT D LVYRLRIWT DADDALRQGMPVTVQFGDEAGHE

SEQ ID NO:183

>A0318_YbhG_hp4

MQKQQNLDYFSPQALALWAAIASLGVMSPAHAGGYWWYQSRQDNGLTLYGNVDIRTV NLSFRVGGRVESL AVDEGDAIKAGQVLGELDHKPYEIALMQAKAGVSVAQAQYDLMLAGYRNEE IAQAAAAVKQAQAAYDYAQ NFYNRFQELYASGVVSKQDLENARSSRDQAQAT LKSAQDKLRQYRSGNREQDIAQAKASLEQAQAQLAQA ELNLQDSTLIAPSDGTLLTRAVEPGTVLNEGGTVFTVSLTRPVWVRAYVDERNLDQAQPG RKVLLYT DGR PDKPYHGQIGFVSPTAEFT PKTVET PDLRT DLVYRLRIWT DADDALRQGMPVTVQFGDEAGHE

SEQ ID NO: 184

>A0578_YbhG_hpl MRFFWFFLTLLTLSTWQLPAWAGGYWWYQSRQDNGLTLYGNVDIRTVNLSFRVGGRVESL AVDEGDAIKA GQVLGELDHKPYEIALMQAKAGVSVAQAQYDLMLAGYRNEEIAQAAAAVKQAQAAYDLAK ADGDRFQELY ASGVVSKQRLEQAQTSRDQAQATLKSAQDKLRQYRSGNREQDIAQAKASLEQAQAQLAQA ELNLQDSTLI APSDGTLLTRAVEPGTVLNEGGTVFTVSLTRPVWVRAYVDERNLDQAQPGRKVLLYTDGR PDKPYHGQIG FVSPTAEFTPKTVETPDLRTDLVYRLRIVVTDADDALRQGMPVTVQFGDEAGHE

SEQ ID NO:185

>A0578_YbhG_hp2

MMKKPVVIGLAVWLAAVVAGGYWWYQSRQDNGLTLYGNVDIRTVNLSFRVGGRVESL AVDEGDAIKAGQ VLGELDSAELQASLDGAQARINAAQQQVNQAQLQITVIENQITEAQLTQRQAQDDTAGRV NAAQANVAAA KAQLAQAQAQVKQLEAELALAKADGDRFQELYASGVVSKQRLEQAQTQYLSTKENLDARR AWAAAAEQV KTAEGNLTQTQASQFNPDIQYLSTKENLDARRAVVAAAAEQVKTAEGNLTQTQASQFNPD IRAVQVQRLQ TQLVQAQAQLSAAQAQVQNAQANYNEIAANLQDSTLIAPSDGTLLTRAVEPGTVLNEGGT VFTVSLTRPV WVRAYVDERNLDQAQPGRKVLLYTDGRPDKPYHGQIGFVSPTAEFTPKTVETPDLRTDLV YRLRIVVTDA DDALRQGMPVTVQFGDEAGHE

SEQ ID NO:186

>A0578_YbhG_hp4

MRFFWFFLTLLTLSTWQLPAWAGGYWWYQSRQDNGLTLYGNVDIRTVNLSFRVGGRV ESLAVDEGDAIKA GQVLGELDHKPYEIALMQAKAGVSVAQAQYDLMLAGYRNEEIAQAAAAVKQAQAAYDYAQ NFYNRFQELY ASGVVSKQDLENARSSRDQAQATLKSAQDKLRQYRSGNREQDIAQAKASLEQAQAQLAQA ELNLQDSTLI APSDGTLLTRAVEPGTVLNEGGTVFTVSLTRPVWVRAYVDERNLDQAQPGRKVLLYTDGR PDKPYHGQIG FVSPTAEFTPKTVETPDLRTDLVYRLRIVVTDADDALRQGMPVTVQFGDEAGHE

Set 2

OMP variants

SEQ ID NO:187

>Hybrid_A0585

MFAFRDFLTFSTGGLWLSGGGVAIAQTTPPQIATPEPFIGQTPQAPLPPLAAPSVES LDTAAFLPSLGG LSQPTTLAALPLPSPELNLSPTAHLGTIQAPSPLLAQVDTTATPSPTTAIDVTLPTAETN QTIPLVQPLP PDRVINEDLNQLLEPIDNPAVTVPQEATAVTTDNWDLTLEETIRLALERNETLQEARLNY DRSEELVRE AIAAEYPNLSNQVDITRTDSANGELQARRLGGDNNATTAINGRLEVSYDIYTGGRRSAQI EAAQTQLQIA ELDIERLTEETRLAAAVNYYNLQSADAQVVIEQSSVFDATQQLDQTTQRFNVGLVAITDV QNARAELASA QQRLTRAEATQRTARRQLAQLLSLEPTIDPRTADEINLAGRWEISLEETIVLALQNRQEL RQQLLQREVD GYQERIALAAVRPLVSVFANYDVLEVFDDSLGPADGLTVGARMRWNFFDGGAAAARANQE QVDQAIAENR FANQRNQIRLAVETAYYDFEASEQNITTAAAAVTLAEESLDAMEAGYSVGTRTIVDVLDA TTGLNTARGN YLQAVTDYNRAFAQLKREVGLGDAVIAPAAP

SEQ ID NO:188

>Hybrid_1761

MAAFLYRLSFLSALAIAAHGVTPPTAIAELAEATTAEPTPTVAQATTPPATTPTTTP APGPVKEWPDAN LLKELQANPNPFQLPNQPNQVKTEALQPLTLEQALNLARLNNPQIQVRQLQVQQRQAALR GTEAALYPTL GLQGTAGYQQNGTRLNVTEGTPTQPTGSSLFTTLGESSIGATLNLNYTIFDFVRGAQLAA SRDQVTQAEL DLEAALEDLQLTVSEAYYRLQNADQLVRIARESVVASERQLDQTTQRFNVGLVAITDVQN ARAQLAQDQQ NLVDSIGNQDKARRALVQALNLPQNVNVLTADPVELAAPWNLSLDESIVLAFQNRPELER EVLQRNISYN QAQAARGQVLPQLGLQASYGVNGAINSNLRSGSQALTFPSPTLTNTSSYNYSIGLVLNVP LFDGGLANAN AQQQELNGQIAEQNFVLTRNQIRTDVETAFYDLQTNLANIGTTRKAVEQARESLDAMEAG YSVGTRTIVD VLDATTDLTRAEANALNAITAYNLALARIKRAVSNVNNLARAGG

SEQ ID NO:189

>TolC

MKKLLPILIGLSLSGFSSLSQAENLMQVYQQARLSNPELRKSAADRDAAFEKINEAR SPLLPQLGLGADY TYSNGYRDANGINSNATSASLQLTQSIFDMSKWRALTLQEKAAGIQDVTYQTDQQTLILN TATAYFNVLN AIDVLSYTQAQKEAIYRQLDQTTQRFNVGLVAITDVQNARAQYDTVLANEVTARNNLDNA VEQLRQITGN YYPELAALNVENFKTDKPQPVNALLKEAEKRNLSLLQARLSQDLAREQIRQAQDGHLPTL DLTASTGISD TSYSGSKTRGAAGTQYDDSNMGQNKVGLSFSLPIYQGGMVNSQVKQAQYNFVGASEQLES AHRSWQTVR SSFNNINASISSINAYKQAVVSAQSSLDAMEAGYSVGTRTIVDVLDATTTLYNAKQELAN ARYNYLINQL NIKSALGTLNEQDLLALNNALSKPVSTNPENVAPQTPEQNAIADGYAPDSPAPWQQTSAR TTTSNGHNP FRN

SEQ ID NO:190

>A0585_TolC

MFAFRDFLTFSTGGLVVLSGGGVAIAENLMQVYQQARLSNPELRKSAADRDAAFEKI NEARSPLLPQLGL GADYTYSNGYRDANGINSNATSASLQLTQSIFDMSKWRALTLQEKAAGIQDVTYQTDQQT LILNTATAYF NVLNAIDVLSYTQAQKEAIYRQLDQTTQRFNVGLVAITDVQNARAQYDTVLANEVTARNN LDNAVEQLRQ ITGNYYPELAALNVENFKTDKPQPVNALLKEAEKRNLSLLQARLSQDLAREQIRQAQDGH LPTLDLTAST GISDTSYSGSKTRGAAGTQYDDSNMGQNKVGLSFSLPIYQGGMVNSQVKQAQYNFVGASE QLESAHRSVV QTVRSSFNNINASISSINAYKQAVVSAQSSLDAMEAGYSVGTRTIVDVLDATTTLYNAKQ ELANARYNYL INQLNIKSALGTLNEQDLLALNNALSKPVSTNPENVAPQTPEQNAIADGYAPDSPAPWQQ TSARTTTSN GHNPFRN

SEQ ID NO:191

>A0585_TolC_A0318C

MFAFRDFLTFSTGGLVVLSGGGVAIAENLMQVYQQARLSNPELRKSAADRDAAFEKI NEARSPLLPQLGL GADYTYSNGYRDANGINSNATSASLQLTQSIFDMSKWRALTLQEKAAGIQDVTYQTDQQT LILNTATAYF NVLNAIDVLSYTQAQKEAIYRQLDQTTQRFNVGLVAITDVQNARAQYDTVLANEVTARNN LDNAVEQLRQ ITGNYYPELAALNVENFKTDKPQPVNALLKEAEKRNLSLLQARLSQDLAREQIRQAQDGH LPTLDLTAST GISDTSYSGSKTRGAAGTQYDDSNMGQNKVGLSFSLPIYQGGMVNSQVKQAQYNFVGASE QLESAHRSVV QTVRSSFNNINASISSINAYKQAVVSAQSSLDAMEAGYSVGTRTIVDVLDATTTLYNAKQ ELANARYNYL INQLNIKSALGTLNEQDLLALNNALSKPVSTNPENVAPQTPEQNAIADGYAPDSPAPWQQ TSARTTTSN GHNPFRNR1HFGIGERF

SEQ ID NO:192

>A0585_TolC_A0585C

MFAFRDFLTFSTGGLWLSGGGVAIAENLMQVYQQARLSNPELRKSAADRDAAFEKIN EARSPLLPQLGL GADYTYSNGYRDANGINSNATSASLQLTQSIFDMSKWRALTLQEKAAGIQDVTYQTDQQT LILNTATAYF NVLNAIDVLSYTQAQKEAIYRQLDQTTQRFNVGLVAITDVQNARAQYDTVLANEVTARNN LDNAVEQLRQ ITGNYYPELAALNVENFKTDKPQPVNALLKEAEKRNLSLLQARLSQDLAREQIRQAQDGH LPTLDLTAST GISDTSYSGSKTRGAAGTQYDDSNMGQNKVGLSFSLPIYQGGMVNSQVKQAQYNFVGASE QLESAHRSVV QTVRSSFNNINASISSINAYKQAVVSAQSSLDAMEAGYSVGTRTIVDVLDATTTLYNAKQ ELANARYNYL INQLNIKSALGTLNEQDLLALNNALSKPVSTNPENVAPQTPEQNAIADGYAPDSPAPWQQ TSARTTTSN GHNPFRNGDAVIAPAAP

SEQ ID NO:193

>A0585_ProNterm_TolC

MFAFRDFLTFSTGGLVVLSGGGVAIAQTTPPQIATPEPFIGQTPQAPLPPLAAPSVE SLDTAAFLPSLGG LSQPTTLAALPLPSPELNLSPTAHLGTIQAPSPLLAQVDTTATPSPTTAIDVTLPTAETN QTIPLVQPLP PDRVINEDLNQLLEPIDNPAVTVPQEATAVTTDNWDENLMQVYQQARLSNPELRKSAADR DAAFEKINE ARSPLLPQLGLGADYTYSNGYRDANGINSNATSASLQLTQSIFDMSKWRALTLQEKAAGI QDVTYQTDQQ TLILNTATAYFNVLNAIDVLSYTQAQKEAIYRQLDQTTQRFNVGLVAITDVQNARAQYDT VLANEVTARN NLDNAVEQLRQITGNYYPELAALNVENFKTDKPQPVNALLKEAEKRNLSLLQARLSQDLA REQIRQAQDG HLPTLDLTASTGISDTSYSGSKTRGAAGTQYDDSNMGQNKVGLSFSLPIYQGGMVNSQVK QAQYNFVGAS EQLESAHRSVVQTVRSSFNNINASISSINAYKQAWSAQSSLDAMEAGYSVGTRTIVDVLD ATTTLYNAK QELANARYNYLINQLNIKSALGTLNEQDLLALNNALSKPVSTNPENVAPQTPEQNAIADG YAPDSPAPVV QQTSARTTTSNGHNPFRN

SEQ ID NO:194

>A0585_ProNTerm_TolC_A0318C

MFAFRDFLTFSTGGLWLSGGGVAIAQTTPPQIATPEPFIGQTPQAPLPPLAAPSVES LDTAAFLPSLGG LSQPTTLAALPLPSPELNLSPTAHLGTIQAPSPLLAQVDTTATPSPTTAIDVTLPTAETN QTIPLVQPLP PDRVINEDLNQLLEPIDNPAVTVPQEATAVTTDNWDENLMQVYQQARLSNPELRKSAADR DAAFEKINE ARSPLLPQLGLGADYTYSNGYRDANGINSNATSASLQLTQSIFDMSKWRALTLQEKAAGI QDVTYQTDQQ TLILNTATAYFNVLNAIDVLSYTQAQKEAIYRQLDQTTQRFNVGLVAITDVQNARAQYDT VLANEVTARN NLDNAVEQLRQITGNYYPELAALNVENFKTDKPQPVNALLKEAEKRNLSLLQARLSQDLA REQIRQAQDG HLPTLDLTASTGISDTSYSGSKTRGAAGTQYDDSNMGQNKVGLSFSLPIYQGGMVNSQVK QAQYNFVGAS EQLESAHRSVVQTVRSSFNNINASISSINAYKQAWSAQSSLDAMEAGYSVGTRTIVDVLD ATTTLYNAK QELANARYNYLINQLNIKSALGTLNEQDLLALNNALSKPVSTNPENVAPQTPEQNAIADG YAPDSPAPVV QQTSARTTTSNGHNPFRNR1HFGIGERF

SEQ ID NO:195

>A0585_ProNTerm_TolC_A0585C

MFAFRDFLTFSTGGLVVLSGGGVAIAQTTPPQIATPEPFIGQTPQAPLPPLAAPSVE SLDTAAFLPSLGG LSQPTTLAALPLPSPELNLSPTAHLGTIQAPSPLLAQVDTTATPSPTTAIDVTLPTAETN QTIPLVQPLP PDRVINEDLNQLLEPIDNPAVTVPQEATAVTTDNWDENLMQVYQQARLSNPELRKSAADR DAAFEKINE ARSPLLPQLGLGADYTYSNGYRDANGINSNATSASLQLTQSIFDMSKWRALTLQEKAAGI QDVTYQTDQQ TLILNTATAYFNVLNAIDVLSYTQAQKEAIYRQLDQTTQRFNVGLVAITDVQNARAQYDT VLANEVTARN NLDNAVEQLRQITGNYYPELAALNVENFKTDKPQPVNALLKEAEKRNLSLLQARLSQDLA REQIRQAQDG HLPTLDLTASTGISDTSYSGSKTRGAAGTQYDDSNMGQNKVGLSFSLPIYQGGMVNSQVK QAQYNFVGAS EQLESAHRSVVQTVRSSFNNINASISSINAYKQAWSAQSSLDAMEAGYSVGTRTIVDVLD ATTTLYNAK QELANARYNYLINQLNIKSALGTLNEQDLLALNNALSKPVSTNPENVAPQTPEQNAIADG YAPDSPAPVV QQTSARTTTSNGHNPFRNGDAVIAPAAP

SEQ ID NO:196

>A0318_TolC

MQKQQNLDYFSPQALALWAAIASLGVMSPAHAENLMQVYQQARLSNPELRKSAADRD AAFEKINEARSPL LPQLGLGADYTYSNGYRDANGINSNATSASLQLTQSIFDMSKWRALTLQEKAAGIQDVTY QTDQQTLILN TATAYFNVLNAIDVLSYTQAQKEAIYRQLDQTTQRFNVGLVAITDVQNARAQYDTVLANE VTARNNLDNA VEQLRQITGNYYPELAALNVENFKTDKPQPVNALLKEAEKRNLSLLQARLSQDLAREQIR QAQDGHLPTL DLTASTGISDTSYSGSKTRGAAGTQYDDSNMGQNKVGLSFSLPIYQGGMVNSQVKQAQYN FVGASEQLES AHRSWQTVRSSFNNINASISSINAYKQAVVSAQSSLDAMEAGYSVGTRTIVDVLDATTTL YNAKQELAN ARYNYLINQLNIKSALGTLNEQDLLALNNALSKPVSTNPENVAPQTPEQNAIADGYAPDS PAPVVQQTSA RTTTSNGHNPFRN

SEQ ID NO:197

>A0318_ProNTerm_TolC

MQKQQNLDYFSPQALALWAAIASLGVMSPAHAEPRSEGSHSDPLVPTATQWVPALPV EDVAPTAAPASQ TPAPQSENLAQSSTQAVTSPVAQAQEAPQDSNLPQLYAQQQGNPNAQQANPENLMQVYQQ ARLSNPELRK SAADRDAAFEKINEARSPLLPQLGLGADYTYSNGYRDANGINSNATSASLQLTQSIFDMS KWRALTLQEK AAGIQDVTYQT DQQTLILNTAT AYFNVLNAIDVLSYTQAQKEAIYRQLDQTTQRFNVGLVAIT DVQNARA QYDTVLANEVTARNNLDNAVEQLRQITG NYYPELAALNVENFKT DKPQPVNALLKEAEKRNLSLLQARLS QDLAREQIRQAQDGHLPTLDLTASTG ISDT SYSGSKTRGAAGTQYDDSNMGQNKVGLSFSLPIYQGGMVN SQVKQAQYNFVGASEQLESAHRSVVQTVRSSFNNINAS ISS INAYKQAVVSAQSSLDAMEAGYSVGTRT I VDVLDAT TTLYNAKQELANARYNYLINQLNIKSALGTLNEQDLLALNNALSKPVSTNPENVAPQTPE QNA IADGYAPDSPAPWQQTSARTTTSNGHNPFRN

SEQ ID NO:198

>A0318_ProNTerm_TolC_A0318C

MQKQQNLDYFSPQALALWAAIASLGVMSPAHAEPRSEGSHSDPLVPTAT QVVVPALPVEDVAPTAAPASQ TPAPQSENLAQSSTQAVT SPVAQAQEAPQDSNLPQLYAQQQGNPNAQQANPENLMQVYQQARLSNPELRK SAADRDAAFEKINEARSPLLPQLGLGADYTYSNGYRDANGINSNAT SASLQLTQSIFDMSKWRALTLQEK AAGIQDVTYQT DQQTLILNTAT AYFNVLNAIDVLSYTQAQKEAIYRQLDQTTQRFNVGLVAIT DVQNARA QYDTVLANEVTARNNLDNAVEQLRQITG NYYPELAALNVENFKT DKPQPVNALLKEAEKRNLSLLQARLS QDLAREQIRQAQDGHLPTLDLTASTG ISDT SYSGSKTRGAAGTQYDDSNMGQNKVGLSFSLPIYQGGMVN SQVKQAQYNFVGASEQLESAHRSVVQTVRSSFNNINAS ISS INAYKQAVVSAQSSLDAMEAGYSVGTRT I VDVLDAT TTLYNAKQELANARYNYLINQLNIKSALGTLNEQDLLALNNALSKPVSTNPENVAPQTPE QNA IADGYAPDSPAPWQQTSARTTTSNGHNPFRNR1HFGIGERF

SEQ ID NO:199

>A0318_ProNTerm_TolC_A0585C

MQKQQNLDYFSPQALALWAAIASLGVMSPAHAEPRSEGSHSDPLVPTAT QVVVPALPVEDVAPTAAPASQ TPAPQSENLAQSSTQAVT SPVAQAQEAPQDSNLPQLYAQQQGNPNAQQANPENLMQVYQQARLSNPELRK SAADRDAAFEKINEARSPLLPQLGLGADYTYSNGYRDANGINSNAT SASLQLTQSIFDMSKWRALTLQEK AAGIQDVTYQT DQQTLILNTAT AYFNVLNAIDVLSYTQAQKEAIYRQLDQTTQRFNVGLVAIT DVQNARA QYDTVLANEVTARNNLDNAVEQLRQITG NYYPELAALNVENFKT DKPQPVNALLKEAEKRNLSLLQARLS QDLAREQIRQAQDGHLPTLDLTASTG ISDT SYSGSKTRGAAGTQYDDSNMGQNKVGLSFSLPIYQGGMVN SQVKQAQYNFVGASEQLESAHRSVVQTVRSSFNNINAS ISS INAYKQAVVSAQSSLDAMEAGYSVGTRT I VDVLDAT TTLYNAKQELANARYNYLINQLNIKSALGTLNEQDLLALNNALSKPVSTNPENVAPQTPE QNA IADGYAPDSPAPWQQTSARTTTSNGHNPFRNGDAVIAPAAP

YbhG variants

SEQ ID NO:200

>YbhG

MMKKPVVIGLAVWLAAVVAGGYWWYQSRQDNGLTLYGNVDIRTVNLSFRVGGRVESL AVDEGDAIKAGQ VLGELDHKPYE IALMQAKAGVSVAQAQYDLMLAGYRNEEIAQAAAAVKQAQAAYDYAQNFYNRQQGLWKS RT I SANDLENARSSRDQAQAT LKSAQDKLRQYRSGNREQDIAQAKASLEQAQAQLAQAELNLQDSTLIAP SDGTLLTRAVEPGTVLNEGGTVFTVSLTRPVWVRAYVDERNLDQAQPGRKVLLYT DGRPDKPYHGQIGFV SPTAEFT PKTVETPDLRT DLVYRLRIWT DADDALRQGMPVTVQFGDEAGHE

SEQ ID NO:201

>TorA_YbhG

MNNNDLFQASRRRFLAQLGGLTVAGMLGPSLLT PRRAT AGGYWWYQSRQDNGLTLYGNVDIRTVNLSFRV GGRVESLAVDEGDAIKAGQVLGELDHKPYE IALMQAKAGVSVAQAQYDLMLAGYRNEEIAQAAAAVKQAQ AAYDYAQNFYNRQQGLWKSRT I SANDLENARSSRDQAQAT LKSAQDKLRQYRSGNREQDIAQAKASLEQA QAQLAQAELNLQDSTLIAPSDGTLLTRAVEPGTVLNEGGTVFTVSLTRPVWVRAYVDERN LDQAQPGRKV LLYT DGRPDKPYHGQIGFVSPTAEFT PKTVET PDLRT DLVYRLRIWT DADDALRQGMPVTVQFGDEAGH E

SEQ ID NO:202 >A0578_YbhG

MRFFWFFLTLLTLSTWQLPAWAGGYWWYQSRQDNGLTLYGNVDIRTVNLSFRVGGRV ESLAVDEGDAIKA GQVLGELDHKPYEIALMQAKAGVSVAQAQYDLMLAGYRNEE IAQAAAAVKQAQAAYDYAQNFYNRQQGLW KSRT ISANDLENARSSRDQAQAT LKSAQDKLRQYRSGNREQDIAQAKASLEQAQAQLAQAELNLQDSTLI APSDGTLLTRAVEPGTVLNEGGTVFTVSLTRPVWVRAYVDERNLDQAQPGRKVLLYT DGRPDKPYHGQIG FVSPTAEFTPKTVET PDLRT DLVYRLRIVVTDADDALRQGMPVTVQFGDEAGHE

SEQ ID NO:203

>A0318_YbhG

MQKQQNLDYFSPQALALWAAIASLGVMSPAHAGGYWWYQSRQDNGLTLYGNVDIRTV NLSFRVGGRVESL AVDEGDAIKAGQVLGELDHKPYEIALMQAKAGVSVAQAQYDLMLAGYRNEE IAQAAAAVKQAQAAYDYAQ NFYNRQQGLWKSRT I SANDLENARSSRDQAQAT LKSAQDKLRQYRSGNREQDIAQAKASLEQAQAQLAQA ELNLQDSTLIAPSDGTLLTRAVEPGTVLNEGGTVFTVSLTRPVWVRAYVDERNLDQAQPG RKVLLYT DGR PDKPYHGQIGFVSPTAEFT PKTVET PDLRT DLVYRLRIWT DADDALRQGMPVTVQFGDEAGHE

SEQ ID NO:204

>YbhG_hp3

MMKKPVVIGLAVWLAAVVAGGYWWYQSRQDNGLTLYGNVDIRTVNLSFRVGGRVESL AVDEGDAIKAGQ VLGELDSAELQASLDGAQARINAAQQQVNQAQLQITVIENQITEAQLTQRQAQDDTAGRV NAAQANVAAA KAQLAQAQAQVKQLEAELAYAQNFYNRQQGLWKSRT I SANDLENARSQYLSTKENLDARRAWAAAAEQV KTAEGNLTQTQASQFNPDIQYLSTKENLDARRAVVAAAAEQVKTAEGNLTQTQASQFNPD IRAVQVQRLQ TQLVQAQAQLSAAQAQVQNAQANYNE IAANLQDSTLIAPSDGTLLTRAVEPGTVLNEGGTVFTVSLTRPV WVRAYVDERNLDQAQPGRKVLLYT DGRPDKPYHGQIGFVSPTAEFTPKTVET PDLRT DLVYRLRIVVTDA DDALRQGMPVTVQFGDEAGHE

SEQ ID NO:205

>TorA_YbhG_hp3

MNNNDLFQASRRRFLAQLGGLTVAGMLGPSLLT PRRAT AGGYWWYQSRQDNGLTLYGNVDIRTVNLSFRV GGRVESLAVDEGDAIKAGQVLGELDSAELQASLDGAQARINAAQQQVNQAQLQITVIENQ ITEAQLTQRQ AQDDTAGRVNAAQANVAAAKAQLAQAQAQVKQLEAELAYAQNFYNRQQGLWKSRT I SANDLENARSQYLS TKENLDARRAVVAAAAEQVKTAEGNLTQTQASQFNPDIQYLSTKENLDARRAVVAAAAEQ VKTAEGNLTQ TQASQFNPDIRAVQVQRLQTQLVQAQAQLSAAQAQVQNAQANYNE IAANLQDSTLIAPSDGTLLTRAVEP GTVLNEGGTVFTVSLTRPVWVRAYVDERNLDQAQPGRKVLLYTDGRPDKPYHGQIGFVSP TAEFTPKTVE TPDLRT DLVYRLRIVVTDADDALRQGMPVTVQFGDEAGHE

SEQ ID NO:206

>A0318_YbhG_hp3

MQKQQNLDYFSPQALALWAAIASLGVMSPAHAGGYWWYQSRQDNGLTLYGNVDIRTV NLSFRVGGRVESL AVDEGDAIKAGQVLGELDSAELQASLDGAQARINAAQQQVNQAQLQITVIENQITEAQLT QRQAQDDTAG RVNAAQANVAAAKAQLAQAQAQVKQLEAELAYAQNFYNRQQGLWKSRT I SANDLENARSQYLSTKENLDA RRAVVAAAAEQVKTAEGNLTQTQASQFNPDIQYLSTKENLDARRAWAAAAEQVKTAEGNL TQTQASQFN PDIRAVQVQRLQTQLVQAQAQLSAAQAQVQNAQANYNE IAANLQDSTLIAPSDGTLLTRAVEPGTVLNEG GTVFTVSLTRPVWVRAYVDERNLDQAQPGRKVLLYT DGRPDKPYHGQIGFVSPTAEFTPKTVET PDLRT D LVYRLRIWT DADDALRQGMPVTVQFGDEAGHE

SEQ ID NO:207

>A0578_YbhG_hp3

MRFFWFFLTLLTLSTWQLPAWAGGYWWYQSRQDNGLTLYGNVDIRTVNLSFRVGGRV ESLAVDEGDAIKA GQVLGELDSAELQASLDGAQARINAAQQQVNQAQLQITVIENQITEAQLTQRQAQDDTAG RVNAAQANVA AAKAQLAQAQAQVKQLEAELAYAQNFYNRQQGLWKSRT ISANDLENARSQYLSTKENLDARRAVVAAAAE QVKTAEGNLTQTQASQFNPDIQYLSTKENLDARRAVVAAAAEQVKTAEGNLTQTQASQFN PDIRAVQVQR LQTQLVQAQAQLSAAQAQVQNAQANYNEIAANLQDSTLIAPSDGTLLTRAVEPGTVLNEG GTVFTVSLTR PVWVRAYVDERNLDQAQPGRKVLLYTDGRPDKPYHGQIGFVSPTAEFTPKTVETPDLRTD LVYRLRIWT DADDALRQGMPVTVQFGDEAGHE

Sets 1 and 2

YbhF variant

SEQ ID NO:208

>YbhF

MNDAVITLNGLEKRFPGMDKPAVAPLDCT1HAGYVTGLVGPDGAGKTTLMRMLAGLL KPDSGSATVIGFD PIKNDGALHAVLGYMPQKFGLYEDLTVMENLNLYADLRSVTGEARKQTFARLLEFTSLGP FTGRLAGKLS GGMKQKLGLACTLVGEPKVLLLDEPGVGVDPISRRELWQMVHELAGEGMLILWSTSYLDE AEQCRDVLLM NEGELLYQGEPKALTQTMAGRSFLMTSPHEGNRKLLQRALKLPQVSDGMIQGKSVRLILK KEATPDDIRH ADGMPEININETTPRFEDAFIDLLGGAGTSESPLGAILHTVEGTPGETVIEAKELTKKFG DFAATDHVNF AVKRGEIFGLLGPNGAGKSTTFKMMCGLLVPTSGQALVLGMDLKESSGKARQHLGYMAQK FSLYGNLTVE QNLRFFSGVYGLRGRAQNEKISRMSEAFGLKSIASHATDELPLGFKQRLALACSLMHEPD ILFLDEPTSG VDPLTRREFWLHINSMVEKGVTVMVTTHFMDEAEYCDRIGLVYRGKLIASGTPDDLKAQS ANDEQPDPTM EQAFIQL1HDWDKEHSNE

YbhS, YbhR variants

SEQ ID NO:209

>YbhS

MSNPILSWRRVRALCVKETRQIVRDPSSWLIAVVIPLLLLFIFGYGINLDSSKLRVG ILLEQRSEAALDF THTMTGSPYIDATISDNRQELIAKMQAGKIRGLVVIPVDFAEQMERANATAPIQVITDGS EPNTANFVQG YVEGIWQIWQMQRAEDNGQTFEPLIDVQTRYWFNPAAISQHFIIPGAVTIIMTVIGAILT SLVVAREWER GTMEALLSTEITRTELLLCKLIPYYFLGMLAMLLCMLVSVFILGVPYRGSLLILFFISSL FLLSTLGMGL LISTITRNQFNAAQVALNAAFLPSIMLSGFIFQIDSMPAVIRAVTYIIPARYFVSTLQSL FLAGNIPWL WNVLFLIASAVMFIGLTWLKTKRRLD

SEQ ID NO:210

>YbhR

MFHRLWTLIRKELQSLLREPQTRAILILPVLIQVILFPFAATLEVTNATIAIYDEDN GEHSVELTQRFAR ASAFTHVLLLKSPQEIRPTIDTQKALLLVRFPADFSRKLDTFQTAPLQLILDGRNSNSAQ IAANYLQQIV KNYQQELLEGKPKPNNSELVVRNWYNPNLDYKWFWPSLIAMITTIGVMIVTSLSVARERE QGTLDQLLV SPLTTWQIFIGKAVPALIVATFQATIVLAIGIWAYQIPFAGSLALFYFTMVIYGLSLVGF GLLISSLCST QQQAFIGVFVFMMPAILLSGYVSPVENMPVWLQNLTWINPIRHFTDITKQIYLKDASLDI VWNSLWPLLV ITATTGSAAYAMFRRKVM

SEQ ID NO:211

>sll0041_Nin_PLS_YbhS

MQAPTQSGGLSLRNKAVLIALLIGLIPAGVIGGLNLSSVDRLPVPQTEQQVKDSTTK QIRDQILIGLLVT AVGAAFVAYWMVGENTKAQTALALKAKSNPILSWRRVRALCVKETRQIVRDPSSWLIAVV IPLLLLFIFG YGINLDSSKLRVGILLEQRSEAALDFTHTMTGSPYIDATISDNRQELIAKMQAGKIRGLV VIPVDFAEQM ERANATAPIQVITDGSEPNTANFVQGYVEGIWQIWQMQRAEDNGQTFEPLIDVQTRYWFN PAAISQHFII PGAVTIIMTVIGAILTSLVVAREWERGTMEALLSTEITRTELLLCKLIPYYFLGMLAMLL CMLVSVFILG VPYRGSLLILFFISSLFLLSTLGMGLLISTITRNQFNAAQVALNAAFLPSIMLSGFIFQI DSMPAVIRAV TYIIPARYFVSTLQSLFLAGNIPVVLWNVLFLIASAVMFIGLTWLKTKRRLD SEQ ID NO:212

>sll0041_Nin_PLS_YbhR

MQAPTQSGGLSLRNKAVLIALLIGLIPAGVIGGLNLSSVDRLPVPQTEQQVKDSTTK QIRDQILIGLLVT AVGAAFVAYWMVGENTKAQTALALKAKFHRLWTLIRKELQSLLREPQTRAILILPVLIQV ILFPFAATLE VTNATIAIYDEDNGEHSVELTQRFARASAFTHVLLLKSPQEIRPTIDTQKALLLVRFPAD FSRKLDTFQT APLQLILDGRNSNSAQIAANYLQQIVKNYQQELLEGKPKPNNSELWRNWYNPNLDYKWFV VPSLIAMIT TIGVMIVTSLSVAREREQGTLDQLLVSPLTTWQIFIGKAVPALIVATFQATIVLAIGIWA YQIPFAGSLA LFYFTMVIYGLSLVGFGLLISSLCSTQQQAFIGVFVFMMPAILLSGYVSPVENMPVWLQN LTWINPIRHF TDITKQIYLKDASLDIVWNSLWPLLVITATTGSAAYAMFRRKVM

SEQ ID NO:213

>slrl044_Nin_PLS_YbhS

MFLGWFTNASLFRKQIYMAIASGVFSGFAVLVLGSIVGLGGTPKDVPAPSGETTTEA PAEGAPAEGQAPS QTPEEEPGKPSLLNLAFLTAIATAIGVFLINRLLMQQIKSIIDDLQSNPILSWRRVRALC VKETRQIVRD PSSWLIAVVIPLLLLFIFGYGINLDSSKLRVGILLEQRSEAALDFTHTMTGSPYIDATIS DNRQELIAKM QAGKIRGLWIPVDFAEQMERANATAPIQVITDGSEPNTANFVQGYVEGIWQIWQMQRAED NGQTFEPLI DVQTRYWFNPAAISQHFIIPGAVTIIMTVIGAILTSLVVAREWERGTMEALLSTEITRTE LLLCKLIPYY FLGMLAMLLCMLVSVFILGVPYRGSLLILFFISSLFLLSTLGMGLLISTITRNQFNAAQV ALNAAFLPSI MLSGFIFQIDSMPAVIRAVTYIIPARYFVSTLQSLFLAGNIPWLWNVLFLIASAVMFIGL TWLKTKRR LD

SEQ ID NO:214

>slrl044_Nin_PLS_YbhR

MFLGWFTNASLFRKQIYMAIASGVFSGFAVLVLGSIVGLGGTPKDVPAPSGETTTEA PAEGAPAEGQAPS QTPEEEPGKPSLLNLAFLTAIATAIGVFLINRLLMQQIKSIIDDLQFHRLWTLIRKELQS LLREPQTRAI LILPVLIQVILFPFAATLEVTNATIAIYDEDNGEHSVELTQRFARASAFTHVLLLKSPQE IRPTIDTQKA LLLVRFPADFSRKLDTFQTAPLQLILDGRNSNSAQIAANYLQQIVKNYQQELLEGKPKPN NSELWRNWY NPNLDYKWFVVPSLIAMITTIGVMIVTSLSVAREREQGTLDQLLVSPLTTWQIFIGKAVP ALIVATFQAT IVLAIGIWAYQIPFAGSLALFYFTMVIYGLSLVGFGLLISSLCSTQQQAFIGVFVFMMPA ILLSGYVSPV ENMPVWLQNLTWINPIRHFTDITKQIYLKDASLDIVWNSLWPLLVITATTGSAAYAMFRR KVM

[0249] Additional embodiments are described in the claims.