Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHODS AND COMPOSITIONS FOR IMPROVING YIELD CHARACTERISTICS IN PLANTS
Document Type and Number:
WIPO Patent Application WO/2024/054880
Kind Code:
A1
Abstract:
This invention relates to compositions and methods for modifying homeodomain-leucine zipper transcription factor (HD-Zip) genes in plants. The invention further relates to plants having improved yield characteristics produced using the methods and compositions of the invention.

Inventors:
CRAWFORD BRIAN CHARLES WILDING (US)
MATHEW LOLITA GEORGE (US)
Application Number:
PCT/US2023/073595
Publication Date:
March 14, 2024
Filing Date:
September 07, 2023
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
PAIRWISE PLANTS SERVICES INC (US)
International Classes:
C07K14/415; C12N9/22; C12N15/82
Domestic Patent References:
WO2013155001A12013-10-17
WO1993007278A11993-04-15
WO2001073087A12001-10-04
WO1999042587A11999-08-26
WO1997017432A11997-05-15
WO1998008932A11998-03-05
WO2001047952A22001-07-05
WO1998050427A11998-11-12
WO2009152359A22009-12-17
WO2007024782A22007-03-01
WO2002040677A22002-05-23
WO2006128569A22006-12-07
WO2006128570A12006-12-07
WO2002034946A22002-05-02
WO2010117737A12010-10-14
WO2010117735A12010-10-14
WO2005103266A12005-11-03
WO2006098952A22006-09-21
WO2002027004A22002-04-04
WO2011075593A12011-06-23
WO2011075595A12011-06-23
WO2010077816A12010-07-08
WO2004053062A22004-06-24
WO2010080829A12010-07-15
WO2005074671A12005-08-18
WO2006128573A22006-12-07
WO2006128571A22006-12-07
WO2006128572A12006-12-07
WO2004039986A12004-05-13
WO2005054479A12005-06-16
WO2005054480A22005-06-16
WO2012033794A22012-03-15
WO2011022469A22011-02-24
WO2012075426A12012-06-07
WO2012075429A12012-06-07
WO2009100188A22009-08-13
WO2011066384A12011-06-03
WO2011066360A12011-06-03
WO2008112019A22008-09-18
WO2008054747A22008-05-08
WO2009103049A22009-08-20
WO2008002872A22008-01-03
WO1998044140A11998-10-08
WO2011063413A22011-05-26
WO2008151780A12008-12-18
WO2007017186A12007-02-15
WO2010076212A12010-07-08
WO2004074492A12004-09-02
WO2006108674A22006-10-19
WO2006108675A22006-10-19
WO2003013224A22003-02-20
WO2000026345A12000-05-11
WO2000026356A12000-05-11
WO2005061720A22005-07-07
WO2007142840A22007-12-13
WO2005103301A22005-11-03
WO2002100163A22002-12-19
WO2004011601A22004-02-05
WO2011062904A12011-05-26
WO2009111263A12009-09-11
WO2009064652A12009-05-22
WO2010037016A12010-04-01
WO2011034704A12011-03-24
WO2012051199A22012-04-19
WO2010024976A12010-03-04
WO2009102873A12009-08-20
WO2005059103A22005-06-30
WO2004072235A22004-08-26
WO2011153186A12011-12-08
WO2012134808A12012-10-04
WO2007140256A12007-12-06
WO2006130436A22006-12-07
WO2001031042A22001-05-03
WO2001041558A12001-06-14
WO2008114282A22008-09-25
WO2002036831A22002-05-10
WO2012082548A22012-06-21
WO2002044407A22002-06-06
WO2001051654A22001-07-19
WO2008122406A12008-10-16
WO2006128568A22006-12-07
WO2004099447A22004-11-18
WO2003052073A22003-06-26
WO2011084632A12011-07-14
WO2011084621A12011-07-14
WO2011063413A22011-05-26
WO2011066360A12011-06-03
WO2011066384A12011-06-03
WO2011075593A12011-06-23
WO2011075595A12011-06-23
WO2011084621A12011-07-14
WO2011084632A12011-07-14
WO2011153186A12011-12-08
WO2012033794A22012-03-15
WO2012051199A22012-04-19
WO2012075426A12012-06-07
WO2012075429A12012-06-07
WO2012082548A22012-06-21
WO2012071039A12012-05-31
WO2012075426A12012-06-07
WO2012075429A12012-06-07
WO2012134808A12012-10-04
WO2013003558A12013-01-03
WO2013010094A12013-01-17
WO2013012775A12013-01-24
Foreign References:
US20210095300A12021-04-01
US201662633749P
US7166770B22007-01-23
US5641876A1997-06-24
EP0342926A21989-11-23
US6040504A2000-03-21
US5604121A1997-02-18
EP0452269A21991-10-16
US5625136A1997-04-29
US10421972B22019-09-24
US7141424B22006-11-28
US5459252A1995-10-17
US7579516B22009-08-25
US6855533B22005-02-15
US20020120964A12002-08-29
US20050216969A12005-09-29
US20070143876A12007-06-21
US20060230473A12006-10-12
US20060162007A12006-07-20
US20030126634A12003-07-03
US20090217423A12009-08-27
US0002010A1841-03-18
US0024077A1859-05-17
US20060130175A12006-06-15
US20070067868A12007-03-22
US20060070139A12006-03-30
US0002009A1841-03-18
US0137395A1873-04-01
US20080312082A12008-12-18
US20090210970A12009-08-20
US20100184079A12010-07-22
US20060059581A12006-03-16
US20050086719A12005-04-21
US20050188434A12005-08-25
US20100050282A12010-02-25
US20040172669A12004-09-02
US20080064032A12008-03-13
US20080320616A12008-12-25
US20080196127A12008-08-14
US20030097687A12003-05-22
US6468747B12002-10-22
US20080289060A12008-11-20
US20070028322A12007-02-01
US20090300784A12009-12-03
US20080167456A12008-07-10
US20040250317A12004-12-09
US20020102582A12002-08-01
US20060095986A12006-05-04
US20110138504A12011-06-09
US20090130071A12009-05-21
US20100080887A12010-04-01
US20110067141A12011-03-17
US20080028482A12008-01-31
US20060059590A12006-03-16
US20080260932A12008-10-23
US20060282915A12006-12-14
US20030188347A12003-10-02
US20070292854A12007-12-20
US20080070260A12008-03-20
US20090265817A12009-10-22
US20010029014A12001-10-11
US20100077501A12010-03-25
US20050039226A12005-02-17
US20120131692A12012-05-24
US9790490B22017-10-17
US10167457B22019-01-01
US10113163B22018-10-30
US9982053B22018-05-29
Other References:
ELENA A. RICE ET AL: "Expression of a Truncated ATHB17 Protein in Maize Increases Ear Weight at Silking", PLOS ONE, vol. 9, no. 4, 15 April 2014 (2014-04-15), pages e94238, XP055340589, DOI: 10.1371/journal.pone.0094238
SESSA ET AL., INT J MOL SCI, vol. 19, 2018, pages 4047
SESSA ET AL., INT J MOL SCI,, vol. 19, 2018, pages 4047
RAGOT, M ET AL.: "Marker-assisted Backcrossing: A Practical Example", TECHNIQUES ET UTILISATIONS DES MARQUEURS MOLECULAIRES LES COLLO UES, vol. 72, 1995, pages 45 - 56
OPENSHAW ET AL.: "Marker-assisted Selection in Backcross Breeding", PROCEEDINGS OF THE SYMPOSIUM ''ANALYSIS OF MOLECULAR MARKER DATA, 1994, pages 41 - 43
VAN TUNEN ET AL., EMBO J, vol. 7, 1988, pages 1257 - 1263
TIJ SSEN: "Overview of principles of hybridization and the strategy of nucleic acid probe assays", 1993, ACADEMIC PRESS, article "Laboratory Techniques in Biochemistry and Molecular Biology-Hybridization with Nucleic Acid Probes"
"Computer Analysis of Sequence Data, Part I", 1994, HUMANA PRESS
LAWTON ET AL., PLANT MOL. BIOL., vol. 9, 1987, pages 315 - 324
BINET ET AL., PLANT SCIENCE, vol. 79, 1991, pages 87 - 94
BREATHNACHCHAMBON, ANNU. REV. BIOCHEM., vol. 50, 1981, pages 349
VODKIN, PROG. CLIN. BIOL. RES., vol. 138, 1983, pages 211 - 227
WALKER ET AL., PLANT CELL REP, vol. 23, 2005, pages 727 - 735
LI ET AL., GENE, vol. 403, 2007, pages 132 - 142
LI ET AL., MOLBIOL. REP., vol. 37, 2010, pages 1143 - 1154
LI ET AL., MOLBIOL. REP, vol. 37, 2010, pages 1143 - 1154
WANG ET AL., MOL. CELL. BIOL, vol. 12, 1992, pages 3399 - 3406
O'DELL ET AL., NATURE, vol. 313, 1985, pages 810 - 812
EBERT ET AL., PROC. NATL. ACAD. SCI USA, vol. 84, 1987, pages 5745 - 5749
WALKER ET AL., PROC. NATL. ACAD. SCI. USA, vol. 84, 1987, pages 6624 - 6629
YANGRUSSELL, PROC. NATL. ACAD. SCI. USA, vol. 87, 1990, pages 4144 - 4148
CHRISTENSEN ET AL., PLANTMOLEC. BIOL, vol. 12, 1989, pages 619 - 632
NORRIS ET AL., PLANT MOLEC. BIOL, vol. 21, 1993, pages 895 - 906
MOL. GEN. GENET., vol. 231, 1991, pages 150 - 160
HUDSPETHGRULA, PLANT MOLEC. BIOL, vol. 12, 1989, pages 579 - 589
KRIDL ET AL., SEED SCI. RES., vol. 1, 1991, pages 209 - 219
FEBS, vol. 290, 1991, pages 103 - 106
NGUYEN ET AL., PLANT BIOTECHNOL. REPORTS, vol. 9, no. 5, 2015, pages 297 - 306
WANG ET AL., GENOME, vol. 60, no. 6, 2017, pages 485 - 495
TWELL ET AL., DEVELOPMENT, vol. 109, no. 3, 1990, pages 705 - 713
KIM ET AL., THE PLANT CELL, vol. 18, 2006, pages 2958 - 2970
JEONG ET AL., PLANT PHYSIOL, vol. 153, 2010, pages 185 - 197
LINDSTROM ET AL., DER. GENET, vol. 11, 1990, pages 160 - 167
DENNIS ET AL., NUCLEIC ACIDS RES, vol. 12, 1984, pages 3983 - 4000
VANDER MIJNSBRUGGE ET AL., PLANT AND CELL PHYSIOLOGY, vol. 37, no. 8, 1996, pages 1108 - 1115
BANSAL ET AL., PROC. NATL. ACAD. SCI. USA, vol. 89, 1992, pages 3654 - 3658
O'DELL, EMBO J., vol. 5, 1985, pages 451 - 458
ROCHESTER ET AL., EMBO J, vol. 5, 1986, pages 451 - 458
CASHMORE: "Genetic Engineering of Plants", 1983, PLENUM PRESS, article "Nuclear genes encoding the small subunit of ribulose-1,5-bisphosphate carboxylase", pages: 29 - 39
POULSEN ET AL., MOL. GEN. GENET, vol. 205, 1986, pages 193 - 200
LANGRIDGE ET AL., PROC. NATL. ACAD. SCI. USA, vol. 86, 1989, pages 3219 - 3223
KELLER ET AL., GENES DEV, vol. 3, 1989, pages 1639 - 1646
WENZLER ET AL., PLANT MOL. BIOL, vol. 13, 1989, pages 347 - 354
REINA ET AL., NUCLEIC ACIDS RES, vol. 18, 1990, pages 7449
KRIZ ET AL., MOL. GEN. GENET, vol. 207, 1987, pages 90 - 98
LANGRIDGE ET AL., CELL, vol. 34, 1983, pages 1015 - 1022
WANDELT ET AL., NUCLEIC ACIDS RES., vol. 17, 1989, pages 2354
BELANGER ET AL., GENETICS, vol. 129, 1991, pages 863 - 872
SULLIVAN ET AL., MOL. GEN. GENET, vol. 215, 1989, pages 431 - 440
HUDSPETHGRULA, PLANT MOL. BIOL., vol. 12, 1989, pages 579 - 589
CHANDLER ET AL., PLANT CELL, vol. 1, 1989, pages 1175 - 1183
FRANKEN ET AL., EMBO J, vol. 10, 1991, pages 2605 - 2612
CZAKO ET AL., MOL. GEN. GENET, vol. 235, 1992, pages 33 - 40
GAN ET AL., SCIENCE, vol. 270, 1995, pages 1986 - 1988
JIANG ET AL., NAT. BIOTECHNOL, vol. 31, 2013, pages 233 - 239
RAN ET AL., NATURE PROTOCOLS, vol. 8, 2013, pages 2281 - 2308
MIKI ET AL.: "Methods in Plant Molecular Biology and Biotechnology", 1993, CRC PRESS, article "Procedures for Introducing Foreign DNA into Plants", pages: 67 - 88
RAKOWOCZY-TROJANOWSKA, CELL. MOL. BIOL. LETT, vol. 7, 2002, pages 849 - 858
ESTRUCH ET AL., PROC NATL ACAD SCI US A. 28, vol. 93, no. 11, 1996, pages 5389 - 94
MALI ET AL., SCIENCE, vol. 339, no. 6121, 2013, pages 823 - 826
HORVATH ET AL., SCIENCE, vol. 327, no. 5962, 2010, pages 167 - 170
DEVEAU ET AL., J BACTERIOL, vol. 190, no. 4, 2008, pages 1390 - 1400
DEVEAU ET AL., J BACTERIOL, vol. 190, no. 4, 2008, pages 1390 - 1400
HOU, PNAS, vol. 1-6, 2013
THURONYI ET AL., NAT. BIOTECHNOL, vol. 37, 2019, pages 1070 - 1079
GRISSA ET AL., NUCLEIC ACIDS RES, vol. 35, pages W52 - 7
NATURE REVIEWS MICROBIOLOGY, vol. 13, 2015, pages 722 - 736
GENOME BIOL, vol. 16, 2015, pages 247
ESVELT ET AL., NAT. METHODS, vol. 10, 2013, pages 1116 - 1121
JIANG ET AL., NAT. BIOTECHNOL., vol. 31, 2013, pages 233 - 239
BRINERBARRANGOU, APPL. ENVIRON. MICROBIOL, vol. 80, 2014, pages 994 - 1001
MOJICA ET AL., MICROBIOLOGY, vol. 155, 2009, pages 733 - 740
SHA ET AL., PROTEIN SCI., vol. 26, no. 5, 2017, pages 910 - 924
GILBRETH, CURR OPIN STRUC BIOL, vol. 22, no. 4, 2013, pages 413 - 420
Attorney, Agent or Firm:
BONNEN, Alice M. (US)
Download PDF:
Claims:
WHAT IS CLAIMED IS:

1. A plant or part thereof comprising at least one mutation in an endogenous homeodomain-leucine zipper transcription factor (HD-Zip) gene that encodes an HD-Zip transcription factor (HD-Zip) polypeptide, wherein the mutation alters the function of the HD- Zip polypeptide as a regulator of gene expression.

2. The plant or part thereof of claim 1, wherein the mutation is in an Ethylene-responsive element binding factor-associated Amphiphilic Repression (EAR) motif of the HD-Zip gene.

3. The plant or part thereof of claim 1 or claim 2, wherein the HD-Zip gene is a HD-Zip II gene.

4. The plant or part thereof of any one of the preceding claims, wherein the HD-Zip II gene is a HD-Zip 17-1 gene and/or HD-Zip 17-2 gene.

5. The plant or part thereof of any one of the preceding claims, wherein the HD-Zip gene has a gene identification number (SoyBaseDatabase) of Glyma.20g014400 (HD-Zipl7-1) or Glyma.07g218000 (HD-Zipl7-2).

6. The plant or part thereof of any one of the preceding claims, wherein at least one mutation results in a dominant negative allele.

7. The plant or part thereof of any one of the preceding claims, wherein the endogenous HD-Zip gene:

(a) comprises a nucleotide sequence having at least 80% sequence identity to any one of SEQ ID NOs:69, 70, 88, or 89;

(b) comprises a region of consecutive nucleotides having at least 80% identity to any one of SEQ ID NOs:72-85 or 91-105;

(c) encodes a polypeptide comprising a sequence having at least 80% sequence identity to SEQ ID NO:71 or SEQ ID NQ:90; and/or

(d) encodes a polypeptide comprising a region of consecutive amino acid residues having at least 90% sequence identity to any one of SEQ ID NOs:86, 87, 106, 107, or 108.

8. The plant or part thereof of any one of the preceding claims, wherein at least one mutation is a base substitution, a base deletion and/or a base insertion.

9. The plant or part thereof of any one of the preceding claims, wherein at least one mutation comprises a base substitution to an A, a T, a G, or a C.

10. The plant or part thereof of any one of the preceding claims, wherein at least one mutation is a substitution of at least one base pair.

11. The plant or part thereof of any one of claims 1-8, wherein the at least one mutation in the endogenous gene HD-Zip gene is a base deletion, optionally a deletion of one or more base pairs, optionally a deletion of about one base pair to about 100 base pairs.

12. The plant or part thereof of claim 8 or claim 11, wherein the base deletion is an inframe deletion.

13. The plant or part thereof of any one of claims 1-8, 11 or 12, wherein the at least one mutation is a base deletion of one or more nucleotides from a region of the HD-Zip gene, optionally wherein the region comprises a nucleic acid sequence having at least 80% sequence identity to any one of SEQ ID NOs:72-85 or 91-105, optionally, wherein the deletion is within a region of the HD-Zip gene located from position 2206 to position 2220 with reference to nucleotide position numbering of SEQ ID NO:69, and/or from position 2179 to position 2193 with reference to nucleotide position numbering of SEQ ID NO:88).

14. The plant or part thereof of claim 13, wherein the base deletion is a deletion of three or more consecutive nucleotides.

15. The plant or part thereof of any one of claims 8 or 11-14, wherein the base deletion results in a deletion of one or more amino acids from a region of an amino acid sequence having at least 90% sequence identity to any one of SEQ ID NOs:86, 87, 106, 107, or 108, optionally, a deletion of one or more amino acid residues of the HD-Zip polypeptide located from position 11 to position 15 with reference to amino acid position numbering of SEQ ID NO:71 or SEQ ID NO:90, optionally, a deletion of at least 1, 2, 3, 4, or 5 amino acid residues of SEQ ID NO:71 or SEQ ID NQ:90

16. The plant or part thereof of claim 15, wherein the deletion is in the EAR motif of the HD-Zip polypeptide, optionally resulting in a deletion of the EAR motif.

17. The plant or part thereof of any one of the preceding claims, wherein the plant or part thereof comprising the at least one mutation exhibits a phenotype of increased seed number (e.g., grain number), increased seed weight (e.g., grain weight), increased number of pods per plant, modified flowering time (e.g., an earlier time of flowering), shorter stature, decreased number of nodes and/or decreased branching.

18. The plant or part thereof of one of the preceding claims, wherein the plant is a dicot.

19. The plant or part thereof of claims 1-18, wherein the plant is a monocot.

20 The plant or part thereof of any one of the preceding claims, wherein the plant is corn, soy, canola, wheat, rice, cotton, sugarcane, sugar beet, barley, oats, alfalfa, sunflower, safflower, oil palm, sesame, coconut, tobacco, potato, sweet potato, cassava, coffee, apple, plum, apricot, peach, cherry, pear, fig, banana, citrus, cocoa, avocado, olive, almond, walnut, strawberry, watermelon, pepper, grape, tomato, cucumber, blackberry, raspberry, black raspberry or a Brassica spp.

21. The plant or part thereof any one of claims 1-18, wherein the plant is soy.

22. The plant or part thereof of any one of the previous claims, wherein the at least one mutation is a non-natural mutation.

23. The plant or part thereof of any one of the preceding claims, wherein the at least one mutation results in a mutated HD-Zip gene having at least 90% sequence identity to SEQ ID NO: 113 and/or which encodes a mutated HD-Zip polypeptide having at least 90% sequence identity to SEQ ID NO: 115.

24. A plant cell comprising an editing system, the editing system comprising:

(a) a CRISPR-Cas associated effector protein; and (b) a guide nucleic acid (e.g., gRNA, gDNA, crRNA, crDNA) having a spacer sequence with complementarity to an endogenous target gene encoding a HD-Zip transcription factor polypeptide.

25. The plant cell of claim 24, wherein the endogenous target gene is a HD-Zip II gene, optionally a HD-Zip 17-1 gene and/or HD-Zip 17-2 gene.

26. The plant cell of claim 24 or claim 25, wherein the endogenous target gene:

(a) comprises a nucleotide sequence having at least 80% sequence identity to any one of SEQ ID NOs:69, 70, 88, or 89;

(b) comprises a region of consecutive nucleotides having at least 80% identity to any one of SEQ ID NOs:72-85 or 91-105;

(c) encodes a polypeptide comprising a sequence having at least 80% sequence identity to SEQ ID NO:71 or SEQ ID NQ:90; and/or

(d) encodes a polypeptide comprising a region of consecutive amino acid residues having at least 90% sequence identity to any one of SEQ ID NOs:86, 87, 106, 107, or 108.

27. The plant cell of any one of claims 24-26, wherein the guide nucleic acid comprises a nucleotide sequence (e.g., a spacer sequence) of any one of SEQ ID NOs:109-112.

28. The plant cell of any one of claims 24-27, wherein the plant cell is a soy plant cell.

29. A plant regenerated from the plant part of any one of claims 1-23 or the plant cell of any one of claims 24-28.

30. The plant of claim 29, wherein the plant exhibits a phenotype of increased seed number (e.g., grain number), increased seed weight (e.g., grain weight), increased number of pods per plant, modified flowering time (e.g., an earlier time of flowering), shorter stature, decreased number of nodes and/or decreased branching.

31. A plant cell comprising at least one mutation within an HD-Zip gene, wherein the at least one mutation is a base substitution, base insertion, and/or base deletion that is introduced using an editing system that comprises a nucleic acid binding domain that binds to a target site within the HD-Zip gene.

32. The plant cell of claim 31, wherein the at least one mutation is a dominant negative allele.

33. The plant cell of claim 31 or clam 32, wherein the target site is within a region of the HD-Zip gene, the region comprising a sequence having at least 80% sequence identity to the nucleotide sequence of any one of SEQ ID NO:72-85 or 91-105.

34. The plant cell of any one of claims 31-33, wherein the editing system further comprises a nuclease and the at least one mutation within the HD-Zip gene is made following cleavage by the nuclease.

35. The plant cell of claim 34, wherein the nuclease is a zinc finger nuclease, transcription activator-like effector nuclease (TALEN), endonuclease (e.g., Fokl) or a CRISPR-Cas effector protein.

36. The plant cell of claim 35, wherein the nucleic acid binding domain of the editing system is from a polynucleotide-guided endonuclease, a CRISPR-Cas endonuclease (e.g., CRISPR-Cas effector protein), a zinc finger nuclease, a transcription activator-like effector nuclease (TALEN) and/or an Argonaute protein.

37. The plant cell of claims 31-36, wherein the mutation is a deletion, optionally an inframe deletion.

38. The plant cell of any one of claims 31-37, wherein the mutation is a deletion of all or a portion of an Ethylene-responsive element binding factor-associated Amphiphilic Repression (EAR) motif encoded by the endogenous HD-Zip gene.

39. The plant cell of claim 38, wherein the HD-Zip gene is a HD-Zip II gene, optionally a HD-Zip 17-1 gene and/or a. HD-Zip 17-2 gene.

40. The plant cell of any one of claims 31 to 39, wherein the plant cell is cell from com, soy, canola, wheat, rice, cotton, sugarcane, sugar beet, barley, oats, alfalfa, sunflower, safflower, oil palm , sesame, coconut, tobacco, potato, sweet potato, cassava, coffee, apple, plum, apricot, peach, cherry, pear, fig, banana, citrus, cocoa, avocado, olive, almond, walnut, strawberry, watermelon, pepper, grape, tomato, cucumber, blackberry, raspberry, black raspberry or a Brassica spp., optionally wherein the plant cell is a soy plant cell.

41. The plant cell of any one of claims 31-40, wherein the mutated HD-Zip gene comprises a non-natural mutation.

42. The plant cell of any one of claims 31-41, wherein the plant comprises a mutated HD- Zip gene having at least 90% sequence identity to SEQ ID NO: 113 and/or which encodes a mutated HD-Zip polypeptide having at least 90% sequence identity to SEQ ID NO: 115.

43. A plant regenerated from the plant cell of any one of claims 31-42, wherein the plant exhibits a phenotype of increased seed number (e.g., grain number), increased seed weight (e.g., grain weight), increased number of pods per plant, modified flowering time (e.g., an earlier time of flowering), shorter stature, decreased number of nodes and/or decreased branching.

44. A method of producing/breeding a transgene-free genome-edited plant, comprising:

(a) crossing the plant of any one of claims 1-23, 29, 30, or 43 with a transgene-free plant, thereby introducing the mutation or modification into the plant that is transgene-free; and

(b) selecting a progeny plant that comprises the mutation or modification but is transgene-free, thereby producing a transgene-free genome-edited plant.

45. A method of providing a plurality of plants having a phenotype of increased seed number (e.g., grain number), increased seed weight (e.g., grain weight; 100-seed weight), increased number of pods per plant, modified flowering time (e.g., an earlier time of flowering), shorter stature, decreased number of nodes and/or decreased branching, the method comprising planting two or more plants of any one of claims 1-23, 29, 30, or 43 in a growing area, thereby providing a plurality of plants having a phenotype of increased seed number (e.g., grain number), increased seed weight (e.g., grain weight), increased number of pods per plant, modified flowering time (e.g., an earlier time of flowering), shorter stature, decreased number of nodes and/or decreased branching as compared to a plurality of control plants not comprising the mutation.

46. A method of creating a mutation in an endogenous HD-Zip gene in a plant, comprising:

(a) targeting a gene editing system to a region of the HD-Zip 17-1 and/or HD-Zip 17-2 gene that comprises a sequence having at least 80% sequence identity to any one of SEQ ID NOs: 72-85 or 91-105; and

(b) selecting a plant that comprises a modification located in a region of the gene having at least 80% sequence identity to any one of SEQ ID NOs: 72-85 or 91-105.

47. A method of generating variation in a HD-Zip gene, comprising: introducing an editing system into a plant cell, wherein the editing system is targeted to a region of a HD-Zip gene that encodes a HD-Zip polypeptide, and contacting the region of the HD-Zip gene with the editing system, thereby introducing a mutation into the HD-Zip gene and generating variation in the HD-Zip gene of the plant cell.

48. The method of claim 47, wherein the HD-Zip gene: (a) comprises a nucleotide sequence having at least 80% sequence identity to any one of SEQ ID NOs:69, 70, 88, or 89; (b) comprises a region of consecutive nucleotides having at least 80% identity to any one of SEQ ID NOs:72-85 or 91-105; (c) encodes a polypeptide comprising a sequence having at least 80% sequence identity to SEQ ID NO:71 or SEQ ID NO:90; and/or (d) encodes a polypeptide comprising a region of consecutive amino acid residues having at least 90% sequence identity to any one of SEQ ID NOs:86, 87, 106, 107, or 108.

49. The method of claim 47 or claim 48, wherein the region of the HD-Zip gene that is targeted comprises at least 80% sequence identity to any one of the nucleotide sequences of SEQ ID NOs:72-85 or 91-105

50. The method of any one of claims 47-49, wherein contacting the region of the endogenous HD-Zip gene in the plant cell with the editing system produces a plant cell comprising in its genome an edited endogenous HD-Zip gene, the method further comprising (a) regenerating a plant from the plant cell; (b) selfing the plant to produce progeny plants (El); (c) assaying the progeny plants of (b) for increased seed number (e.g., grain number), increased seed weight (e.g., grain weight), increased number of pods per plant, modified flowering time (e.g., an earlier time of flowering), shorter stature, decreased number of nodes and/or decreased branching; and (d) selecting the progeny plants exhibiting a phenotype of increased seed number (e.g., grain number), increased seed weight (e.g., grain weight), increased number of pods per plant, modified flowering time (e.g., an earlier time of flowering), shorter stature, decreased number of nodes and/or decreased branching as compared to a control plant.

51. The method of claim 50, further comprising (e) selfing the selected progeny plants of (d) to produce progeny plants (E2); (f) assaying the progeny plants of (e) for increased seed number (e.g., grain number), increased seed weight (e.g., grain weight), increased number of pods per plant, modified flowering time (e.g., an earlier time of flowering), shorter stature, decreased number of nodes and/or decreased branching; and (g) selecting the progeny plants exhibiting a phenotype of increased seed number (e.g., grain number), increased seed weight (e.g., grain weight), increased number of pods per plant, modified flowering time (e.g., an earlier time of flowering), shorter stature, decreased number of nodes and/or decreased branching as compared to a control plant, optionally repeating (e) through (g) one or more additional times.

52. A method of detecting a mutant HD-Zip gene (a mutation in an endogenous HD-Zip gene) in a plant comprising detecting in the genome of the plant a HD-Zip gene having at least one mutation within a region having at least 80% sequence identity to any one of the nucleotide sequences of SEQ ID NOs:72-85 or 91-105.

53. The method of claim 52, wherein the mutant HD-Zip gene that is detected comprises a nucleotide sequence having at least 90% sequence identity to SEQ ID NO: 113 and/or encodes a mutated HD-Zip polypeptide having at least 90% sequence identity to SEQ ID NO: 115.

54. A method for editing a specific site in the genome of a plant cell, the method comprising: cleaving, in a site-specific manner, a target site within an endogenous HD-Zip gene in the plant cell, the endogenous HD-Zip gene:

(a) comprises a nucleotide sequence having at least 80% sequence identity to any one of SEQ ID NOs:69, 70, 88, or 89;

(b) comprises a region of consecutive nucleotides having at least 80% identity to any one of SEQ ID NOs:72-85 or 91-105;

(c) encodes a polypeptide comprising a sequence having at least 80% sequence identity to SEQ ID NO:71 or SEQ ID NQ:90; and/or (d) encodes a polypeptide comprising a region of consecutive amino acid residues having at least 90% sequence identity to any one of SEQ ID NOs:86, 87, 106, 107, or 108.

55. The method of claim 54, further comprising regenerating a plant from the plant cell comprising the edit in the endogenous HD-Zv gene to produce a plant comprising the edit in its endogenous HD-Zip gene.

56. The method of claim 54 or claim 55, wherein the plant comprising the edit in its endogenous HD-Zip gene exhibits a phenotype of increased seed number (e.g., grain number), increased seed weight (e.g., grain weight), increased number of pods per plant, modified flowering time (e.g., an earlier time of flowering), shorter stature, decreased number of nodes and/or decreased branching.

57. The method of any one of claims 54-56, wherein the edit is located in an Ethyleneresponsive element binding factor-associated Amphiphilic Repression (EAR) motif of the HD- Zip gene.

58. The method of any one of claims 54-57, wherein the edit results in an HD-Zip gene with a deletion.

59. The method of any one of claims 54-58, wherein the edit results in an HD-Zip gene with a dominant negative mutation.

60. The method of any one of claims 54-59, wherein the edit results in a mutation in the endogenous HD-Zip gene that produces an HD-Zip polypeptide with altered function as a regulator of gene expression.

61. The method of any one of claims 54-60, wherein the edit results in a non-natural mutation.

62. The method of any one of claims 54-61, wherein the edit results in a mutated HD-Zip gene having at least 90% sequence identity to SEQ ID NO: 113 and/or which encodes a mutated HD-Zip polypeptide having at least 90% sequence identity to SEQ ID NO: 115.

63. A method for making a plant, comprising:

(a) contacting a population of plant cells comprising an endogenous HD-Zip gene with a nuclease linked to a nucleic binding domain (e.g., editing system) that binds to a target site within the endogenous HD-Zip gene, wherein the endogenous gene (i) comprises a nucleotide sequence having at least 80% sequence identity to any one of SEQ ID NOs:69, 70, 88, or 89, (ii) comprises a region of consecutive nucleotides having at least 80% identity to any one of SEQ ID NOs:72-85 or 91-105, (iii) encodes a polypeptide comprising a sequence having at least 80% sequence identity to SEQ ID NO:71 or SEQ ID NO:90, and/or (iv) encodes a polypeptide comprising a region of consecutive amino acid residues having at least 90% sequence identity to any one of SEQ ID NOs:86, 87, 106, 107, or 108;

(b) selecting a plant cell from the population of plant cells in which the endogenous HD-Zip gene has been mutated, thereby producing a plant cell comprising a mutation in the endogenous HD-Zip gene; and

(c) growing the selected plant cell into a plant comprising the mutation in the endogenous HD-Zip gene.

64. A method for increasing seed number (e.g., grain number), increasing seed weight (e.g., grain weight), increasing the number of pods per node, increasing the number of pods per plant, modifying the flowering time (e.g., an earlier time of flowering), shortening the stature, decreased number of nodes and/or decreased branching in a plant, comprising

(a) contacting a plant cell comprising an endogenous HD-Zip gene with a nuclease linked to a nucleic binding domain (e.g., editing system) that binds to a target site within the endogenous HD-Zip gene, wherein the endogenous gene (i) comprises a nucleotide sequence having at least 80% sequence identity to any one of SEQ ID NOs:69, 70, 88, or 89, (ii) comprises a region of consecutive nucleotides having at least 80% identity to any one of SEQ ID NOs:72-85 or 91-105, (iii) encodes a polypeptide comprising a sequence having at least 80% sequence identity to SEQ ID NO:71 or SEQ ID NO:90, and/or (iv) encodes a polypeptide comprising a region of consecutive amino acid residues having at least 90% sequence identity to any one of SEQ ID NOs:86, 87, 106, 107, or 108; and

(b) growing the plant cell comprising the mutation in the endogenous HD-Zip gene into a plant, thereby producing a plant having the mutated HD-Zip gene and which exhibits the phenotype of increased seed number (e.g., grain number), increased seed weight (e.g., grain weight), increased number of pods per plant, modified flowering time (e.g., an earlier time of flowering), shorter stature, decreased number of nodes and/or decreased branching.

65. A method for producing a plant or part thereof comprising at least one cell having a mutated endogenous HD-Zip gene, the method comprising: contacting a target site within an endogenous HD-Zip gene in the plant or plant part with a nuclease comprising a cleavage domain and a nucleic acid binding domain, wherein the nucleic acid binding domain binds to a target site within the endogenous HD-Zip gene, wherein the endogenous HD-Zip gene

(a) comprises a nucleotide sequence having at least 80% sequence identity to any one of SEQ ID NOs:69, 70, 88, or 89;

(b) comprises a region of consecutive nucleotides having at least 80% identity to any one of SEQ ID NOs:72-85 or 91-105;

(c) encodes a polypeptide comprising a sequence having at least 80% sequence identity to SEQ ID NO:71 or SEQ ID NQ:90; and/or

(d) encodes a polypeptide comprising a region of consecutive amino acid residues having at least 90% sequence identity to any one of SEQ ID NOs:86, 87, 106, 107, or 108, thereby producing a plant or part thereof comprising at least one cell having a mutation in the endogenous HD-Zip gene.

66. A method of producing a plant or part thereof comprising a mutated endogenous HD- Zip gene and exhibiting a phenotype of increased seed number (e.g., grain number), increased seed weight (e.g., grain weight), increased number of pods per plant, modified flowering time (e.g., an earlier time of flowering), shorter stature, decreased number of nodes and/or decreased branching, the method comprising contacting a target site within an endogenous HD-Zip gene in the plant or plant part with a nuclease comprising a cleavage domain and a nucleic acid binding domain, wherein the nucleic acid binding domain binds to a target site within the HD- Zip gene, wherein the HD-Zip gene

(a) comprises a nucleotide sequence having at least 80% sequence identity to any one of SEQ ID NOs:69, 70, 88, or 89;

(b) comprises a region of consecutive nucleotides having at least 80% identity to any one of SEQ ID NOs:72-85 or 91-105;

(c) encodes a polypeptide comprising a sequence having at least 80% sequence identity to SEQ ID NO:71 or SEQ ID NQ:90; and/or

(d) encodes a polypeptide comprising a region of consecutive amino acid residues having at least 90% sequence identity to any one of SEQ ID NOs:86, 87, 106, 107, or 108, thereby producing a plant or part thereof comprising an endogenous HD-Zip gene having a mutation and exhibiting a phenotype of increased seed number (e.g., grain number), increased seed weight (e.g., grain weight), increased number of pods per plant, modified flowering time (e.g., an earlier time of flowering), shorter stature, decreased number of nodes and/or decreased branching.

67. The method of any one of claims 63-66, wherein the nuclease cleaves the endogenous HD-Zip gene and introduces the mutation into the Ethylene-responsive element binding factor- associated Amphiphilic Repression (EAR) motif of the endogenous HD-Zip gene.

68. The method of any one of claims 63-67, wherein the mutation results in a dominant negative allele.

69. The method of any one of claims 63-68, wherein the mutation is a base deletion, optionally an in-frame deletion.

70. The method of any one of claims 63-69, wherein the mutation comprises a base substitution to an A, a T, a G, or a C.

71. The method of any one of claims 63-70, wherein the mutation is a substitution of at least one base pair.

72. The method of any one of claims 63-71, wherein the mutation results in a mutated HD- Zip polypeptide with altered function as a regulator of gene expression.

73. The method of any one of claims 63-69 or 72, wherein the mutation is a base deletion comprises a deletion of one or more consecutive nucleotides from a region of the HD-Zip gene, optionally wherein the region comprises a nucleic acid sequence having at least 80% sequence identity to any one of SEQ ID NOs:72-85 or 91-105, optionally, wherein the deletion is within a region of the HD-Zip gene located from position 2206 to position 2220 with reference to nucleotide position numbering of SEQ ID NO:69, and/or from position 2179 to position 2193 with reference to nucleotide position numbering of SEQ ID NO:88.

74. The method of claim 73, wherein the base deletion is a deletion of three or more consecutive amino acid residues from a region of the HD-Zip polypeptide.

75. The method of claim 73 or claim 74, wherein the base deletion results in a deletion of one or more amino acids from a region having at least 90% sequence identity to an amino acid sequence of any one of SEQ ID NOs:86, 87, 106, 107, or 108, optionally, a deletion of one or more amino acid residues of the HD-Zip polypeptide located from position 11 to position 15 with reference to amino acid position numbering of SEQ ID NO:71 or SEQ ID NO:90, optionally, a deletion of at least 1, 2, 3, 4, or 5 amino acid residues of SEQ ID NO:71 or SEQ ID NQ:90

76. The method of any one of claims 63-75, wherein the plant or part thereof comprising the at least one mutation exhibits a phenotype of increased seed number (e.g., grain number), increased seed weight (e.g., grain weight), increased number of pods per plant, modified flowering time (e.g., an earlier time of flowering), shorter stature, decreased number of nodes and/or decreased branching as compared to a control plant or plant part thereof that does not comprise the mutation.

77. The method of any one of claims 63-76, wherein the nuclease is a zinc finger nuclease, transcription activator-like effector nucleases (TALEN), endonuclease (e.g., Fokl) or a CRISPR-Cas effector protein.

78. The method of any one of claims 63-77, wherein the nucleic acid binding domain is a zinc finger, transcription activator-like DNA binding domain (TAL), argonaute or a CRISPR- Cas effector DNA binding domain.

79. The method of any one of claims 63-78, wherein the mutation results in a mutated HD- Zip gene having at least 90% sequence identity to SEQ ID NO: 113 and/or which encodes a mutated HD-Zip polypeptide having at least 90% sequence identity to SEQ ID NO: 115.

80. The method of any one of claims 63-79, wherein the mutation is a non-natural mutation.

81. A plant produced by any one of the methods of claims 63-80.

82. A method for modifying an endogenous HD-Zip gene in a plant or part thereof for increasing seed number, increasing seed weight, increasing the number of pods per node, increasing the number of pods per plant, modifying the flowering time, shortening the stature, decreased number of nodes and/or decreased branching in the plant or part thereof, the method comprising modifying a target site within the endogenous HD-Zip gene in the plant or a part thereof, wherein the endogenous HD-Zip gene:

(a) comprises a nucleotide sequence having at least 80% sequence identity to any one of SEQ ID NOs:69, 70, 88, or 89;

(b) comprises a region of consecutive nucleotides having at least 80% identity to any one of SEQ ID NOs:72-85 or 91-105;

(c) encodes a polypeptide comprising a sequence having at least 80% sequence identity to SEQ ID NO:71 or SEQ ID NQ:90; and/or

(d) encodes a polypeptide comprising a region of consecutive amino acid residues having at least 90% sequence identity to any one of SEQ ID NOs:86, 87, 106, 107, or 108, thereby modifying the endogenous HD-Zip gene and increasing seed number, increasing seed weight, increasing the number of pods per node, increasing the number of pods per plant, modifying the flowering time, shortening the stature, decreased number of nodes and/or decreased branching in the plant or part thereof.

83. The method of claim 82, wherein the target site is a region of the HD-Zip gene having at least 80% sequence identity to a nucleotide sequence of any one of SEQ ID NOs:72-85 and/or 91-105, optionally the target site is in a region comprising at least 80% sequence identity to a nucleotide sequence of any one of SEQ ID NOs:72-85 and/or 91-105.

84. A guide nucleic acid that binds to a target site within an endogenous HD-Zip gene, the target site comprising a sequence having at least 80% identity to any one or more of the nucleotide sequences of SEQ ID NO:72-85 or 91-105.

85. The guide nucleic acid of claim 84, wherein the guide nucleic acid comprises a spacer having the nucleotide sequence of any one of SEQ ID NOs:109-112.

86. A system comprising the guide nucleic acid of claim 84 or claim 85 and a CRISPR-Cas effector protein that associates with the guide nucleic acid.

87. The system of claim 86, further comprising a tracr nucleic acid that associates with the guide nucleic acid and a CRISPR-Cas effector protein, optionally wherein the tracr nucleic acid and the guide nucleic acid are covalently linked.

88. A gene editing system comprising a CRISPR-Cas effector protein in association with a guide nucleic acid, wherein the guide nucleic acid comprises a spacer sequence that binds to an endogenous HD-Zip gene.

89. The gene editing system of claim 88, wherein the HD-Zip gene

(a) comprises a nucleotide sequence having at least 80% sequence identity to any one of SEQ ID NOs:69, 70, 88, or 89;

(b) comprises a region of consecutive nucleotides having at least 80% identity to any one of SEQ ID NOs:72-85 or 91-105;

(c) encodes a polypeptide comprising a sequence having at least 80% sequence identity to SEQ ID NO:71 or SEQ ID NQ:90; and/or

(d) encodes a polypeptide comprising a region of consecutive amino acid residues having at least 90% sequence identity to any one of SEQ ID NOs:86, 87, 106, 107, or 108.

90. The gene editing system of claim 88 or claim 89, wherein the guide nucleic acid comprises a spacer sequence having a nucleotide sequence of any one of SEQ ID NOs:109- 112

91. The gene editing system of any one of claims 88-90, further comprising a tracr nucleic acid that associates with the guide nucleic acid and a CRISPR-Cas effector protein, optionally wherein the tracr nucleic acid and the guide nucleic acid are covalently linked.

92. A complex comprising a CRISPR-Cas effector protein comprising a cleavage domain and a guide nucleic acid, wherein the guide nucleic acid binds to a target site within an endogenous HD-Zip gene

(a) comprises a nucleotide sequence having at least 80% sequence identity to any one of SEQ ID NOs:69, 70, 88, or 89;

(b) comprises a region of consecutive nucleotides having at least 80% identity to any one of SEQ ID NOs:72-85 or 91-105; (c) encodes a polypeptide comprising a sequence having at least 80% sequence identity to SEQ ID NO:71 or SEQ ID NO:90; and/or

(d) encodes a polypeptide comprising a region of consecutive amino acid residues having at least 90% sequence identity to any one of SEQ ID NOs:86, 87, 106, 107, or 108, and the cleavage domain cleaves a target strand in the HD-Zip gene.

93. An expression cassette comprising (a) a polynucleotide encoding CRISPR-Cas effector protein comprising a cleavage domain and (b) a guide nucleic acid that binds to a target site within an endogenous HD-Zip gene, wherein the guide nucleic acid comprises a spacer sequence that is complementary to and binds to (i) a portion of a nucleic acid encoding an amino acid sequence having at least 80% sequence identity the amino acid sequence of SEQ ID NO:71 or SEQ ID NO:90; (ii) a portion of a nucleic acid encoding an amino acid sequence having at least 90% sequence identity to any one of SEQ ID NOs:86, 87, 106, 107, or 108;

(iii) a portion of a sequence having at least 80% sequence identity to the nucleotide sequence of SEQ ID NOs:69, 70, 88, or 89; and/or (iii) a portion of a sequence having at least 80% sequence identity to any one of the nucleotide sequences of any one of SEQ ID NOs:72-85 or 91-105.

94. A nucleic acid encoding a HD-Zip polypeptide having a mutated Ethylene-responsive element binding factor-associated Amphiphilic Repression (EAR) motif, wherein the mutated EAR motif comprises a mutation that alters its function as a regulator of gene expression, optionally wherein the nucleic acid encoding the HD-Zip polypeptide has the gene identification number (SoyBaseDatabase) of Glyma.20g014400 (HD-Zip 17-1) or Glyma.07g218000 (HD-Zipl7-2).

95. The nucleic acid of claim 94, wherein the nucleic acid comprises a sequence having at least 90% sequence identity to SEQ ID NO: 113.

96. The nucleic acid of claim 94 or claim 95, wherein the nucleic acid encodes an amino acid sequence having at least 90% sequence identity to SEQ ID NO: 115.

97. A modified HD-Zip polypeptide having at least 90% sequence identity to SEQ ID

98. A plant or part thereof comprising the nucleic acid of any one of claims 94-96 and/or the polypeptide of claim 97, optionally wherein the plant is a soybean plant.

99. The plant or part thereof of claim 98, wherein the plant exhibits a phenotype of increased seed number (e.g., grain number), increased seed weight (e.g., grain weight), increased number of pods per plant, modified flowering time (e.g., an earlier time of flowering), shorter stature, decreased number of nodes and/or decreased branching as compared to a control plant that does not comprise the HD-Zip polypeptide having a mutated Ethylene-responsive element binding factor-associated Amphiphilic Repression (EAR) motif.

100. A soybean plant or plant part thereof comprising a mutation in at least one endogenous HD-Zip gene having the gene identification number (SoyBaseDatabase) of Glyma.20g014400 (HD-Zipl7-D) or Glyma.07g218000 (HD-Zipl7-2).

101. The soybean plant or part thereof of claim 100, wherein the soybean plant or part thereof exhibits a phenotype of increased seed number (e.g., grain number), increased seed weight (e.g., grain weight), increased number of pods per plant, modified flowering time (e.g., an earlier time of flowering), shorter stature decreased number of nodes and/or decreased branching as compared to a control plant that does not comprise the HD-Zip polypeptide having a mutated Ethylene-responsive element binding factor-associated Amphiphilic Repression (EAR) motif.

102. A method of producing a plant comprising a mutation in an endogenous HD-Zip gene and at least one polynucleotide of interest, the method comprising crossing a first plant, which is the plant of any one of claims 1-23, 29, 30, 43, 81, or 98-101, with a second plant that comprises the at least one polynucleotide of interest to produce progeny plants; and selecting progeny plants comprising the mutation in the HD-Zip gene and the at least one polynucleotide of interest, thereby producing the plant comprising a mutation in an endogenous HD-Zip gene and at least one polynucleotide of interest.

103. A method of producing a plant comprising a mutation in an endogenous HD-Zip gene and at least one polynucleotide of interest, the method comprising introducing at least one polynucleotide of interest into a plant of any one of claims 1- 23, 29, 30, 43, 81, or 98-101, thereby producing a plant comprising a mutation in a. HD-Zip gene and at least one polynucleotide of interest.

104. The method of claim 102 or claim 103, wherein the polynucleotide of interest is a polynucleotide that confers herbicide tolerance, insect resistance, disease resistance, increased yield, increased nutrient use efficiency or abiotic stress resistance.

105. A method of producing a plant comprising a mutation in an endogenous HD-Zip gene and exhibiting a phenotype of improved yield traits and/or improved plant architecture, comprising crossing a first plant, which is the plant of any one of claims 1-23, 29, 30, 43, 81, or 98- 101, with a second plant that exhibits a phenotype of improved yield traits and/or improved plant architecture; and selecting progeny plants comprising the mutation in the HD-Zip gene and a phenotype of improved yield traits and/or improved plant architecture, thereby producing the plant comprising a mutation in an endogenous HD-Zip gene and exhibiting a phenotype of improved yield traits and/or improved plant architecture as compared to a control plant.

106. A method of controlling weeds in a container (e.g., pot, or seed tray and the like), a growth chamber, a greenhouse, a field, a recreational area, a lawn, or on a roadside, comprising applying an herbicide to one or more (a plurality) plants of any one of 1-23, 29, 30, 43, 81, or 98-101 growing in a container, a growth chamber, a greenhouse, a field, a recreational area, a lawn, or on a roadside, thereby controlling the weeds in the container, the growth chamber, the greenhouse, the field, the recreational area, the lawn, or on the roadside in which the one or more plants are growing.

107. A method of reducing insect predation on a plant, comprising applying an insecticide to one or more plants of any one of claims 1-23, 29, 30, 43, 81, or 98-101, thereby reducing insect predation on the one or more plants.

108. A method of reducing fungal disease on a plant, comprising applying a fungicide to one or more plants of any one of claims 1-23, 29, 30, 43, 81, or 98-101, thereby reducing fungal disease on the one or more plants.

109. The method of claim 107 or claim 108, wherein the one or more plants are growing in a container, a growth chamber, a greenhouse, a field, a recreational area, a lawn, or on a roadside.

Description:
METHODS AND COMPOSITIONS FOR IMPROVING YIELD CHARACTERISTICS IN PLANTS

STATEMENT REGARDING ELECTRONIC FILING OF A SEQUENCE LISTING

A Sequence Listing in XML text format, entitled 1499-108_ST26.xml, 226,465 bytes in size, generated on August 28, 2023, and filed herewith, is hereby incorporated by reference into the specification for its disclosures.

STATEMENT OF PRIORITY

This application claims the benefit, under 35 U.S.C. § 119 (e), of U.S. Provisional Application No. 63/374,916 filed on September 8, 2022, the entire contents of which are incorporated by reference herein.

FIELD OF THE INVENTION

This invention relates to compositions and methods for modifying homeodomain- leucine zipper transcription factor (HD-Zip) genes in plants. The invention further relates to plants having improved yield characteristics produced using the methods and compositions of the invention.

BACKGROUND OF THE INVENTION

The HD-Zip transcription factors can be subdivided into four subfamilies: HD-Zip I to IV, based on distinct sequence features (DNA binding domains and additional conserved motifs that are specific to each of the subfamilies), and distinct functions of proteins from each of the subfamilies (Sessa et al., IntJMol Sci, 19:4047 (2018)).

A characteristic feature of the HD-Zip gene family is the association of homeodomain (HD) and the leucine zipper (LZ) motif in a single protein. In other kingdoms, they are present as domains of distinct proteins. The homeodomain of the HD-Zip gene is a DNA binding domain of about 60 amino acids and composed of a helix-tum-helix structure that folds into three characteristic alpha-helices. This DNA binding domain is capable of interacting specifically with DNA. The LZ motif is a dimerization motif and is located immediately after the HD. The LZ motif allows the formation of homo- and hetero-dimers that are required for binding to DNA (Sessa et al., IntJMol Sci, 19:4047 (2018)). HD-Zip II transcription factors also contain an LxLxL type of ERF-associated amphiphilic repression (EAR) motif, which may function as a negative regulator of gene expression. Furthermore, HOMEOBOX ARABIDOPSIS THALIANA (HAT) 1 and HAT22, two members of the HD-Zip II protein family, interact with the TOPLESS (TPL) co-repressor protein via the EAR motif. HD-Zip II proteins preferentially bind the CAAT(C/G)ATTG motif (Sessa et aD IntJMol Sci, 19:4047 (2018)).

The present invention is directed to improvement of photosynthesis and yield traits through manipulation of class II HD-Zip factors, which may lead to crop plants with improved growth characteristics.

SUMMARY OF THE INVENTION

One aspect of the invention provides a plant or plant part comprising at least one mutation in an endogenous homeodomain-leucine zipper transcription factor (HD-Zip) gene that encodes an HD-Zip transcription factor (HD-Zip) polypeptide, wherein the mutation alters the function of the HD-Zip polypeptide as a regulator of gene expression, optionally wherein the at least one mutation may be a non-natural mutation.

A second aspect of the invention provides a plant cell, comprising an editing system comprising: (a) a CRISPR-Cas effector protein; and (b) a guide nucleic acid (e.g., gRNA, gDNA, crRNA, crDNA) having a spacer sequence with complementarity to an endogenous target gene encoding a HD-Zip transcription factor polypeptide.

A third aspect of the invention provides a plant cell comprising at least one mutation within an HD-Zip gene, wherein the at least one mutation is a base substitution, base insertion, and/or base deletion that is introduced using an editing system that comprises a nucleic acid binding domain that binds to a target site within the HD-Zip gene, optionally wherein the at least one mutation may be a non-natural mutation.

A fourth aspect of the invention provides a method of producing/breeding a transgene- free edited plant, comprising: crossing the plant of the invention with a transgene-free plant, thereby introducing the at least one mutation into the plant that is transgene-free; and selecting a progeny plant that comprises the at least one mutation and is transgene-free, thereby producing a transgene-free edited plant, optionally wherein the at least one mutation may be a non-natural mutation.

A fifth aspect of the invention provides a method of providing a plurality of plants having improved yield traits, the method comprising planting two or more plants of the invention in a growing area, thereby providing a plurality of plants of the invention having improved yield traits, optionally increased seed number (e.g., grain number), increased seed weight (e.g., grain weight; 100-seed weight), increased number of pods per plant, modified flowering time (e.g., an earlier time of flowering), shorter stature, decreased number of nodes and/or decreased branching as compared to a plurality of control plants devoid of the at least one mutation.

In a sixth aspect, a method of creating a mutation in an endogenous HD-Zip gene in a plant is provided, comprising: (a) targeting a gene editing system to a region of the HD-Zip 17- 1 and/or HD-Zip 17-2 gene that comprises a sequence having at least 80% sequence identity to any one of SEQ ID NOs: 72-85 or 91-105; and (b) selecting a plant that comprises a modification located in a region of the gene having at least 80% sequence identity to any one of SEQ ID NOs: 72-85 or 91-105

A seventh aspect of the invention provides a method of generating variation in a HD- Zip gene, comprising: introducing an editing system into a plant cell, wherein the editing system is targeted to a region of a HD-Zip gene that encodes a HD-Zip polypeptide, and contacting the region of the HD-Zip gene with the editing system, thereby introducing a mutation into the HD-Zip gene and generating variation in the HD-Zip gene of the plant cell.

An eighth aspect of the invention provides a method of detecting a mutant HD-Zip gene (a mutation in an endogenous HD-Zip gene) in a plant comprising detecting in the genome of the plant a HD-Zip gene having at least one mutation within a region having at least 80% sequence identity to any one of the nucleotide sequences of SEQ ID NOs:72-85 or 91-105.

An ninth aspect provides a method for editing a specific site in the genome of a plant cell, the method comprising: cleaving, in a site-specific manner, a target site within an endogenous HD-Zip gene in the plant cell, the endogenous HD-Zip gene: (a) comprises a nucleotide sequence having at least 80% sequence identity to any one of SEQ ID NOs:69, 70, 88, or 89; (b) comprises a region of consecutive nucleotides having at least 80% identity to any one of SEQ ID NOs:72-85 or 91-105; (c) encodes a polypeptide comprising a sequence having at least 80% sequence identity to SEQ ID NO:71 or SEQ ID NO:90; and/or (d) encodes a polypeptide comprising a region of consecutive amino acid residues having at least 90% sequence identity to any one of SEQ ID NOs:86, 87, 106, 107, or 108.

A tenth aspect provides a method for making a plant, comprising (a) contacting a population of plant cells comprising an endogenous HD-Zip gene with a nuclease linked to a nucleic binding domain (e.g., editing system) that binds to a target site within the endogenous HD-Zip gene, wherein the endogenous gene (i) comprises a nucleotide sequence having at least 80% sequence identity to any one of SEQ ID NOs:69, 70, 88, or 89, (ii) comprises a region of consecutive nucleotides having at least 80% identity to any one of SEQ ID NOs:72-85 or 91- 105, (iii) encodes a polypeptide comprising a sequence having at least 80% sequence identity to SEQ ID NO:71 or SEQ ID NO:90, (iv) and/or a encodes a polypeptide comprising a region of consecutive amino acid residues having at least 90% sequence identity to any one of SEQ ID NOs:86, 87, 106, 107, or 108; (b) selecting a plant cell from the population of plant cells in which the endogenous HD-Zip gene has been mutated, thereby producing a plant cell comprising a mutation in the endogenous HD-Zip gene; and (c) growing the selected plant cell into a plant comprising the mutation in the endogenous HD-Zip gene.

An eleventh aspect provides a method for increasing seed number (e.g., grain number), increasing seed weight (e.g., grain weight), increasing the number of pods per node, increasing the number of pods per plant, modifying the flowering time (e.g., an earlier time of flowering), shortening the stature, decreased number of nodes and/or decreased branching in a plant, comprising (a) contacting a plant cell comprising an endogenous HD-Zip gene with a nuclease linked to a nucleic binding domain (e.g., editing system) that binds to a target site within the endogenous HD-Zip gene, wherein the endogenous gene (i) comprises a nucleotide sequence having at least 80% sequence identity to any one of SEQ ID NOs:69, 70, 88, or 89, (ii) comprises a region of consecutive nucleotides having at least 80% identity to any one of SEQ ID NOs:72-85 or 91-105, (iii) encodes a polypeptide comprising a sequence having at least 80% sequence identity to SEQ ID NO:71 or SEQ ID NO:90, (iv) and/or a encodes a polypeptide comprising a region of consecutive amino acid residues having at least 90% sequence identity to any one of SEQ ID NOs:86, 87, 106, 107, or 108; and (b) growing the plant cell comprising the mutation in the endogenous HD-Zip gene into a plant, thereby producing a plant having the mutated HD-Zip gene and which exhibits the phenotype of increased seed number (e.g., grain number), increased seed weight (e.g., grain weight), increased number of pods per plant, modified flowering time (e.g., an earlier time of flowering), shorter stature, decreased number of nodes and/or decreased branching.

A twelfth aspect provides a method for producing a plant or part thereof comprising at least one cell having a mutated endogenous HD-Zip gene, the method comprising: contacting a target site within an endogenous HD-Zip gene in the plant or plant part with a nuclease comprising a cleavage domain and a nucleic acid binding domain, wherein the nucleic acid binding domain binds to a target site within the endogenous HD-Zip gene, wherein the endogenous HD-Zip gene (a) comprises a nucleotide sequence having at least 80% sequence identity to any one of SEQ ID NOs:69, 70, 88, or 89; (b) comprises a region of consecutive nucleotides having at least 80% identity to any one of SEQ ID NOs:72-85 or 91-105; (c) encodes a polypeptide comprising a sequence having at least 80% sequence identity to SEQ ID NO:71 or SEQ ID NO:90; and/or (d) encodes a polypeptide comprising a region of consecutive amino acid residues having at least 90% sequence identity to any one of SEQ ID NOs:86, 87, 106, 107, or 108, thereby producing a plant or part thereof comprising at least one cell having a mutation in the endogenous HD-Zip gene.

A thirteenth aspect of the invention provides a method for producing a plant or part thereof comprising a mutated endogenous HD-Zip gene and exhibiting a phenotype of increased seed number (e.g., grain number), increased seed weight (e.g., grain weight), increased number of pods per plant, modified flowering time (e.g., an earlier time of flowering), shorter stature, decreased number of nodes and/or decreased branching, the method comprising contacting a target site within an endogenous HD-Zip gene in the plant or plant part with a nuclease comprising a cleavage domain and a nucleic acid binding domain, wherein the nucleic acid binding domain binds to a target site within the HD-Zip gene, wherein the HD-Zip gene (a) comprises a nucleotide sequence having at least 80% sequence identity to any one of SEQ ID NOs:69, 70, 88, or 89; (b) comprises a region of consecutive nucleotides having at least 80% identity to any one of SEQ ID NOs:72-85 or 91-105; (c) encodes a polypeptide comprising a sequence having at least 80% sequence identity to SEQ ID NO:71 or SEQ ID NO:90; and/or (d) encodes a polypeptide comprising a region of consecutive amino acid residues having at least 90% sequence identity to any one of SEQ ID NOs:86, 87, 106, 107, or 108, thereby producing a plant or part thereof comprising an endogenous HD-Zip gene having a mutation and exhibiting a phenotype of increased seed number (e.g., grain number), increased seed weight (e.g., grain weight), increased number of pods per plant, modified flowering time (e.g., an earlier time of flowering), shorter stature, decreased number of nodes and/or decreased branching.

In a fourteenth aspect, a method for modifying an endogenous HD-Zip gene in a plant or part thereof for increasing seed number (e.g., grain number), increasing seed weight (e.g., grain weight), increasing number of pods per plant, modifying flowering time (e.g., an earlier time of flowering), reducing stature, decreasing number of nodes and/or decreasing branching in the plant or part thereof is provided, the method comprising modifying a target site within the endogenous HD-Zip gene in the plant or a part thereof, wherein the endogenous HD-Zip gene (a) comprises a nucleotide sequence having at least 80% sequence identity to any one of SEQ ID NOs:69, 70, 88, or 89; (b) comprises a region of consecutive nucleotides having at least 80% identity to any one of SEQ ID NOs:72-85 or 91-105; (c) encodes a polypeptide comprising a sequence having at least 80% sequence identity to SEQ ID NO:71 or SEQ ID NO:90; and/or (d) encodes a polypeptide comprising a region of consecutive amino acid residues having at least 90% sequence identity to any one of SEQ ID NOs:86, 87, 106, 107, or 108, thereby modifying the endogenous HD-Zip gene and improving a yield trait in the plant or part thereof.

A fifteenth aspect provides a guide nucleic acid that binds within a target site within a HD-Zip gene, the target site comprising a sequence having at least 80% identity to any one or more of the nucleotide sequences of SEQ ID NO:72-85 or 91-105.

In a sixteenth aspect, a system is provided comprising a guide nucleic acid of the invention and a CRISPR-Cas effector protein that associates with the guide nucleic acid A seventeenth aspect provides a gene editing system comprising a CRISPR-Cas effector protein in association with a guide nucleic acid, wherein the guide nucleic acid comprises a spacer sequence that binds to an endogenous HD-Zip gene.

In a eighteenth aspect, a complex is provided, the complex comprising a guide nucleic acid and a CRISPR-Cas effector protein comprising a cleavage domain, wherein the guide nucleic acid binds to a target site within an endogenous HD-Zip gene (a) comprises a nucleotide sequence having at least 80% sequence identity to any one of SEQ ID NOs:69, 70, 88, or 89; (b) comprises a region of consecutive nucleotides having at least 80% identity to any one of SEQ ID NOs:72-85 or 91-105; (c) encodes a polypeptide comprising a sequence having at least 80% sequence identity to SEQ ID NO:71 or SEQ ID NO:90; and/or (d) encodes a polypeptide comprising a region of consecutive amino acid residues having at least 90% sequence identity to any one of SEQ ID NOs:86, 87, 106, 107, or 108 , and the cleavage domain cleaves a target strand in the HD-Zip gene.

In an nineteenth aspect, an expression cassette is provided, the expression cassette comprising (a) a polynucleotide encoding CRISPR-Cas effector protein comprising a cleavage domain and (b) a guide nucleic acid that binds to a target site within an endogenous HD-Zip gene, wherein the guide nucleic acid comprises a spacer sequence that is complementary to and binds to (i) a portion of a nucleic acid encoding an amino acid sequence having at least 80% sequence identity the amino acid sequence of SEQ ID NO:71 or SEQ ID NO:90; (ii) a portion of a nucleic acid encoding an amino acid sequence having at least 90% sequence identity to any one of SEQ ID NOs:86, 87, 106, 107, or 108; (iii) a portion of a sequence having at least 80% sequence identity to the nucleotide sequence of SEQ ID NOs:69, 70, 88, or 89; and/or (iii) a portion of a sequence having at least 80% sequence identity to any one of the nucleotide sequences of any one of SEQ ID NOs:72-85 or 91-105. In an additional aspect, a nucleic acid is provided that encodes a HD-Zip polypeptide having a mutated Ethylene-responsive element binding factor-associated Amphiphilic Repression (EAR) motif, wherein the mutated EAR motif comprises a mutation that alters its function as a regulator of gene expression, optionally wherein the nucleic acid encoding the HD-Zip polypeptide has the gene identification number (SoyBaseDatabase) of Glyma.20g014400 (HD-Zipl7-1) or Glyma.07g218000 (HD-Zip 17-2), optionally wherein the mutation may be a non-natural mutation.

Further provided is a modified HD-Zip gene comprising having at least 90% sequence identity to SEQ ID NO: 113 and/or encoding a mutated HD-Zip polypeptide having at least 90% sequence identity to SEQ ID NO: 115.

Additionally provided is a soybean plant or plant part thereof comprising a mutation in at least one endogenous HD-Zip gene having the gene identification number (SoyBaseDatabase) of Glyma.20g014400 (HD-Zipl7-1) or Glyma.07g218000 HD-Zip 17 -2).

A further aspect provides guide nucleic acids that bind to a target nucleic acid in an endogenous HD-Zip gene having a gene identification number of Glyma.20g014400 or Glyma.07g218000.

Further provided are plants comprising in their genome one or more mutated HD-Zip genes produced by the methods of the invention as well as polypeptides, polynucleotides, nucleic acid constructs, expression cassettes and vectors for making a plant of this invention.

These and other aspects of the invention are set forth in more detail in the description of the invention below.

BRIEF DESCRIPTION OF THE SEQUENCES

SEQ ID NOs:l-17 are exemplary Casl2a amino acid sequences useful with this invention.

SEQ ID NOs: 18-20 are exemplary Casl2a nucleotide sequences useful with this invention.

SEQ ID NOs:21-22 are exemplary regulatory sequences encoding a promoter and intron.

SEQ ID NOs:23-29 are exemplary cytosine deaminase sequences useful with this invention.

SEQ ID N0s:30-40 are exemplary adenine deaminase amino acid sequences useful with this invention. SEQ ID NO:41 is an exemplary uracil-DNA glycosylase inhibitor (UGI) sequences useful with this invention.

SEQ ID NOs:42-44 provide example peptide tags and affinity polypeptides useful with this invention.

SEQ ID NOs:45-55 provide example RNA recruiting motifs and corresponding affinity polypeptides useful with this invention.

SEQ ID NOs:56-57 are exemplary Cas9 polypeptide sequences useful with this invention.

SEQ ID NOs:58-68 are exemplary Cas9 polynucleotide sequences useful with this invention.

SEQ ID NO:69 and SEQ ID NO:88 are example HD-Zip genomic sequences.

SEQ ID NO:70 and SEQ ID NO:89 are example HD-Zip coding (cds) sequences for SEQ ID NO:69 and SEQ ID NO:88, respectively.

SEQ ID NO:71 and SEQ ID NO:90 are example HD-Zip polypeptide sequences encoded by SEQ ID NO:69 and SEQ ID NQ:70, and SEQ ID NO:88 and SEQ ID NO:89, respectively.

SEQ ID NOs:72-83 are example target regions of an HD-Zip genomic sequence (SEQ ID NO:69) useful with this invention.

SEQ ID NOs:91-102 are example target regions of an HD-Zip genomic sequence (SEQ ID NO:88) useful with this invention.

SEQ ID NOs:84-85 and 105 are example sequences comprising the EAR motif of the HD-Zip genomic sequence, SEQ ID NO:69.

SEQ ID NOs: 103-105 are example sequences comprising the EAR motif of the HD- Zip genomic sequence, SEQ ID NO:88.

SEQ ID NOs:86, 87 and 108 are example peptide sequences comprising the EAR motif of the HD-Zip polypeptide sequence, SEQ ID NO:71.

SEQ ID NOs: 106-108 are example peptide sequences comprising the EAR motif of the HD-Zip polypeptide sequence, SEQ ID NO:90.

SEQ ID NOs:109-112 are example spacer sequences for guide nucleic acids useful with this invention.

SEQ ID NO: 113 is an example mutated HD-Zip genomic sequence edited as described herein.

SEQ ID NO:114 is the 21 consecutive nucleotides deleted from SEQ ID NO:69 to generate the mutated nucleic acid sequence of SEQ ID NO: 113. SEQ ID NO: 115 is an example mutated HD-Zip polypeptide, which is encoded by SEQ ID NOs:113

SEQ ID NO:116 is the 7 consecutive amino acids deleted from SEQ ID NO:71 to generate the mutated polypeptide of SEQ ID NO: 115.

DETAILED DESCRIPTION

The present invention now will be described hereinafter with reference to the accompanying examples, in which embodiments of the invention are shown. This description is not intended to be a detailed catalog of all the different ways in which the invention may be implemented, or all the features that may be added to the instant invention. For example, features illustrated with respect to one embodiment may be incorporated into other embodiments, and features illustrated with respect to a particular embodiment may be deleted from that embodiment. Thus, the invention contemplates that in some embodiments of the invention, any feature or combination of features set forth herein can be excluded or omitted. In addition, numerous variations and additions to the various embodiments suggested herein will be apparent to those skilled in the art in light of the instant disclosure, which do not depart from the instant invention. Hence, the following descriptions are intended to illustrate some particular embodiments of the invention, and not to exhaustively specify all permutations, combinations, and variations thereof.

Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. The terminology used in the description of the invention herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention.

All publications, patent applications, patents and other references cited herein are incorporated by reference in their entireties for the teachings relevant to the sentence and/or paragraph in which the reference is presented.

Unless the context indicates otherwise, it is specifically intended that the various features of the invention described herein can be used in any combination. Moreover, the present invention also contemplates that in some embodiments of the invention, any feature or combination of features set forth herein can be excluded or omitted. To illustrate, if the specification states that a composition comprises components A, B and C, it is specifically intended that any of A, B or C, or a combination thereof, can be omitted and disclaimed singularly or in any combination. As used in the description of the invention and the appended claims, the singular forms "a," "an" and "the" are intended to include the plural forms as well, unless the context clearly indicates otherwise.

Also as used herein, "and/or" refers to and encompasses any and all possible combinations of one or more of the associated listed items, as well as the lack of combinations when interpreted in the alternative ("or").

The term "about," as used herein when referring to a measurable value such as an amount or concentration and the like, is meant to encompass variations of ± 10%, ± 5%, ± 1%, ± 0.5%, or even ± 0.1% of the specified value as well as the specified value. For example, "about X" where X is the measurable value, is meant to include X as well as variations of ± 10%, ± 5%, ± 1%, ± 0.5%, or even ± 0.1% of X. A range provided herein for a measurable value may include any other range and/or individual value therein.

As used herein, phrases such as "between X and Y" and "between about X and Y" should be interpreted to include X and Y. As used herein, phrases such as "between about X and Y" mean "between about X and about Y" and phrases such as "from about X to Y" mean "from about X to about Y."

Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. For example, if the range 10 tol5 is disclosed, then 11, 12, 13, and 14 are also disclosed.

The term "comprise," "comprises" and "comprising" as used herein, specify the presence of the stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.

As used herein, the transitional phrase "consisting essentially of means that the scope of a claim is to be interpreted to encompass the specified materials or steps recited in the claim and those that do not materially affect the basic and novel characteristic(s) of the claimed invention. Thus, the term "consisting essentially of when used in a claim of this invention is not intended to be interpreted to be equivalent to "comprising."

As used herein, the terms "increase," "increasing," "increased," "enhance," "enhanced," "enhancing," and "enhancement" (and grammatical variations thereof) describe an elevation of at least about 5%, 10%, 15%, 20%, 25%, 50%, 75%, 100%, 150%, 200%, 300%, 400%, 500% or more as compared to a control. For example, a plant comprising a mutation in an HD-Zip gene as described herein can exhibit an improved yield trait, optionally the improved yield trait may be a phenotype of increased seed number (e.g., grain number), increased seed weight (e.g., grain weight, increase in 100-seed weight), and increased number of pods per plant as compared to a control plant not comprising the same HD-Zip mutation. A control plant is typically the same plant as the edited plant, but the control plant has not been similarly edited and therefore does not comprise or is devoid of the edit/mutation. A control plant maybe an isogenic plant and/or a wild type plant. Thus, a control plant can be the same breeding line, variety, or cultivar as the subject plant into which a mutation as described herein is introgressed, but the control breeding line, variety, or cultivar is free of the mutation. In some embodiments, a comparison between a plant of the invention and a control plant is made under the same growth conditions, e.g., the same environmental conditions (soil, hydration, light, heat, nutrients and the like).

As used herein, the terms "reduce," "reduced," "reducing," "reduction," "diminish," and "decrease" (and grammatical variations thereof), describe, for example, a decrease of at least about 5%, 10%, 15%, 20%, 25%, 35%, 50%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.6%, 99.7%, 99.8%, 99.9%, or 100% as compared to a control. In particular embodiments, the reduction can result in no or essentially no (z.e., an insignificant amount, e.g., less than about 10% or even 5%) detectable activity or amount. As an example, a plant produced by the methods of this invention may exhibit a phenotype of an earlier flowering time, e.g., a reduced time to flowering, reduced height (e.g., shorter stature), a decreased number of nodes and/or decreased branching.

A "control plant" is typically the same plant as the edited plant, but the control plant has not been similarly edited and therefore is devoid of the mutation. A control plant maybe an isogenic plant and/or a wild type plant. Thus, a control plant can be the same breeding line, variety, or cultivar as the subject plant into which a mutation as described herein is introgressed, but the control breeding line, variety, or cultivar is free of the mutation. In some embodiments, a comparison between a plant of the invention and a control plant is made under the same growth conditions, e.g., the same environmental conditions (soil, hydration, light, heat, nutrients, and the like).

As used herein, the terms "express," "expresses," "expressed" or "expression," and the like, with respect to a nucleic acid molecule and/or a nucleotide sequence (e.g., RNA or DNA) indicates that the nucleic acid molecule and/or a nucleotide sequence is transcribed and, optionally, translated. Thus, a nucleic acid molecule and/or a nucleotide sequence may express a polypeptide of interest or, for example, a functional untranslated RNA. As used herein, the term "heterologous" refers to a nucleotide/polypeptide that originates from a foreign species, or, if from the same species, is substantially modified from its native form in composition and/or genomic locus by deliberate human intervention. A "heterologous" or a "recombinant" nucleotide sequence is a nucleotide sequence not naturally associated with a host cell into which it is introduced, including non- naturally occurring multiple copies of a naturally occurring nucleotide sequence.

A "native" or "wild type" nucleic acid, nucleotide sequence, polypeptide or amino acid sequence refers to a naturally occurring or endogenous nucleic acid, nucleotide sequence, polypeptide, or amino acid sequence. In some contexts, a "wild type" nucleic acid is a nucleic acid that is not edited as described herein and can differ from an "endogenous" gene that may be edited as described herein (e.g., a mutated endogenous gene). In some contexts, a "wild type" nucleic acid (e.g., unedited) may be heterologous to the organism in which the wild type nucleic acid is found (e.g., a transgenic organism). As an example, a "wild type endogenous homeodomain-leucine zipper transcription factor (HD-Zip) gene" is a HD-Zip gene that is naturally occurring in or endogenous to the reference organism, e.g., a plant (e.g., a soybean plant), and may be subject to modification as described herein, after which, such a modified endogenous gene is no longer wild type.

As used herein, the term "heterozygous" refers to a genetic status wherein different alleles reside at corresponding loci on homologous chromosomes.

As used herein, the term "homozygous" refers to a genetic status wherein identical alleles reside at corresponding loci on homologous chromosomes.

As used herein, the term "allele" refers to one of two or more different nucleotides or nucleotide sequences that occur at a specific locus.

A "null allele" is a nonfunctional allele caused by a genetic mutation that results in a complete lack of production of the corresponding protein or produces a protein that is nonfunctional.

A "knock-out mutation" is a mutation that results in a non-functional protein, but which may have a detectable transcript or protein.

A "recessive mutation" is a mutation in a gene that produces a phenotype when homozygous, but the phenotype is not observable when the locus is heterozygous.

A "dominant mutation" is a mutation in a gene that produces a mutant phenotype in the presence of a non-mutated copy of the gene. A dominant mutation may be a loss or a gain-of- function mutation, a hypomorphic mutation, a hypermorphic mutation or a weak loss of function or a weak gain-of-function. A "dominant negative mutation" is a mutation that produces an altered gene product (e.g., having an aberrant function relative to wild type), which gene product adversely affects the function of the wild-type allele or gene product. For example, a "dominant negative mutation" may block a function of the wild type gene product. A dominant negative mutation may also be referred to as an "antimorphic mutation."

A "semi-dominant mutation" refers to a mutation in which the penetrance of the phenotype in a heterozygous organism is less than that observed for a homozygous organism.

A "weak loss-of-function mutation" is a mutation that results in a gene product having partial function or reduced function (partially inactivated) as compared to the wildtype gene product.

A "hypomorphic mutation" is a mutation that results in a partial loss of gene function, which may occur through reduced expression (e.g., reduced protein and/or reduced RNA) or reduced functional performance (e.g., reduced activity), but not a complete loss of function/ activity. A ‘‘hypomorphic” allele is a semi-functional allele caused by a genetic mutation that results in production of the corresponding protein that functions at anywhere between 1% and 99% of normal efficiency.

A "hypermorphic mutation" is a mutation that results in increased expression of the gene product and/or increased activity of the gene product.

A "gain-of-function" allele or mutation is a mutation that confers a new function on the encoded gene product and/or confers a new gene expression pattern. In some embodiments, a gain-of-function mutation may be dominant or semi-dominant.

As used herein, a “non-natural mutation” refers to a mutation that is generated through human intervention and differs from mutations found in the same gene that have occurred in nature (e.g., occurred naturally and not as a result of a modification made by a human).

A "locus" is a position on a chromosome where a gene or marker or allele is located. In some embodiments, a locus may encompass one or more nucleotides.

As used herein, the terms "desired allele," "target allele" and/or "allele of interest" are used interchangeably to refer to an allele associated with a desired trait. In some embodiments, a desired allele may be associated with either an increase or a decrease (relative to a control) of or in a given trait, depending on the nature of the desired phenotype.

A marker is "associated with" a trait when said trait is linked to it and when the presence of the marker is an indicator of whether and/or to what extent the desired trait or trait form will occur in a plant/germplasm comprising the marker. Similarly, a marker is "associated with" an allele or chromosome interval when it is linked to it and when the presence of the marker is an indicator of whether the allele or chromosome interval is present in a plant/germplasm comprising the marker.

As used herein, the terms "backcross" and "backcrossing" refer to the process whereby a progeny plant is crossed back to one of its parents one or more times (e.g., 1, 2, 3, 4, 5, 6, 7, 8, etc.). In a backcrossing scheme, the "donor" parent refers to the parental plant with the desired gene or locus to be introgressed. The "recipient" parent (used one or more times) or "recurrent" parent (used two or more times) refers to the parental plant into which the gene or locus is being introgressed. For example, see Ragot, M. et al. Marker-assisted Backcrossing: A Practical Example, in TECHNIQUES ET UTILISATIONS DES MARQUEURS MOLECULAIRES LES COLLOQUES, Vol. 72, pp. 45-56 (1995); and Openshaw et al., Marker-assisted Selection in Backcross Breeding, in PROCEEDINGS OF THE SYMPOSIUM "ANALYSIS OF MOLECULAR MARKER DATA," pp. 41-43 (1994). The initial cross gives rise to the Fl generation. The term "BC1" refers to the second use of the recurrent parent, "BC2" refers to the third use of the recurrent parent, and so on.

As used herein, the terms "cross" or "crossed" refer to the fusion of gametes via pollination to produce progeny (e.g., cells, seeds or plants). The term encompasses both sexual crosses (the pollination of one plant by another) and selfing (self-pollination, e.g., when the pollen and ovule are from the same plant). The term "crossing" refers to the act of fusing gametes via pollination to produce progeny.

As used herein, the terms "introgression," "introgressing" and "introgressed" refer to both the natural and artificial transmission of a desired allele or combination of desired alleles of a genetic locus or genetic loci from one genetic background to another. For example, a desired allele at a specified locus can be transmitted to at least one progeny via a sexual cross between two parents of the same species, where at least one of the parents has the desired allele in its genome. Alternatively, for example, transmission of an allele can occur by recombination between two donor genomes, e.g., in a fused protoplast, where at least one of the donor protoplasts has the desired allele in its genome. The desired allele may be a selected allele of a marker, a QTL, a transgene, or the like. Offspring comprising the desired allele can be backcrossed one or more times (e.g., 1, 2, 3, 4, or more times) to a line having a desired genetic background, selecting for the desired allele, with the result being that the desired allele becomes fixed in the desired genetic background. For example, a marker associated with increased yield under non-water stress conditions may be introgressed from a donor into a recurrent parent that does not comprise the marker and does not exhibit increased yield under non-water stress conditions. The resulting offspring could then be backcrossed one or more times and selected until the progeny possess the genetic marker(s) associated with increased yield under non-water stress conditions in the recurrent parent background.

A "genetic map" is a description of genetic linkage relationships among loci on one or more chromosomes within a given species, generally depicted in a diagrammatic or tabular form. For each genetic map, distances between loci are measured by the recombination frequencies between them. Recombination between loci can be detected using a variety of markers. A genetic map is a product of the mapping population, types of markers used, and the polymorphic potential of each marker between different populations. The order and genetic distances between loci can differ from one genetic map to another.

As used herein, the term "genotype" refers to the genetic constitution of an individual (or group of individuals) at one or more genetic loci, as contrasted with the observable and/or detectable and/or manifested trait (the phenotype). Genotype is defined by the allele(s) of one or more known loci that the individual has inherited from its parents. The term genotype can be used to refer to an individual's genetic constitution at a single locus, at multiple loci, or more generally, the term genotype can be used to refer to an individual's genetic make-up for all the genes in its genome. Genotypes can be indirectly characterized, e.g., using markers and/or directly characterized by nucleic acid sequencing.

As used herein, the term "germplasm" refers to genetic material of or from an individual (e.g., a plant), a group of individuals (e.g., a plant line, variety or family), or a clone derived from a line, variety, species, or culture. The germplasm can be part of an organism or cell or can be separate from the organism or cell. In general, germplasm provides genetic material with a specific genetic makeup that provides a foundation for some or all of the hereditary qualities of an organism or cell culture. As used herein, germplasm includes cells, seed or tissues from which new plants may be grown, as well as plant parts that can be cultured into a whole plant (e.g., leaves, stems, buds, roots, pollen, cells, etc.).

As used herein, the terms "cultivar" and "variety" refer to a group of similar plants that by structural or genetic features and/or performance can be distinguished from other varieties within the same species.

As used herein, the terms "exotic," "exotic line" and "exotic germplasm" refer to any plant, line or germplasm that is not elite. In general, exotic plants/germplasms are not derived from any known elite plant or germplasm, but rather are selected to introduce one or more desired genetic elements into a breeding program (e.g., to introduce novel alleles into a breeding program). As used herein, the term "hybrid" in the context of plant breeding refers to a plant that is the offspring of genetically dissimilar parents produced by crossing plants of different lines or breeds or species, including but not limited to the cross between two inbred lines.

As used herein, the term "inbred" refers to a substantially homozygous plant or variety. The term may refer to a plant or plant variety that is substantially homozygous throughout the entire genome or that is substantially homozygous with respect to a portion of the genome that is of particular interest.

A "haplotype" is the genotype of an individual at a plurality of genetic loci, i.e., a combination of alleles. Typically, the genetic loci that define a haplotype are physically and genetically linked, i.e., on the same chromosome segment. The term "haplotype" can refer to polymorphisms at a particular locus, such as a single marker locus, or polymorphisms at multiple loci along a chromosomal segment.

A plant in which at least one (e.g., one or more, e.g., 1, 2, 3, or 4, or more) endogenous HD-Zip gene(s) is modified as described herein (e.g., comprises a modification as described herein) may have improved yield traits as compared to a plant that does not comprise (is devoid of) the modification in the at least one endogenous HD-Zip gene. As used herein, "improved yield traits" refers to any plant trait associated with growth, for example, biomass, yield, nitrogen use efficiency (NUE), inflorescence size/weight, fruit yield, fruit quality, fruit size, seed size (e.g., seed area, seed size), seed number, foliar tissue weight, nodulation number, nodulation mass, nodulation activity, number of seed heads, number of tillers, number of branches, number of flowers, number of tubers, tuber mass, bulb mass, number of seeds, total seed mass, rate of leaf emergence, rate of tiller/branch emergence, rate of seedling emergence, length of roots, number of roots, size and/or weight of root mass, or any combination thereof. In some aspects, "improved yield traits" may include, but are not limited to, increased inflorescence production, increased fruit production (e.g., increased number, weight and/or size of fruit; e.g., increased number, weight, and/or length of ears for, e.g., maize), increased fruit quality, increased number, size and/or weight of roots, increased meristem size, increased seed size (e.g., seed area and/or seed weight), increased biomass, increased leaf size, and/or increased nitrogen use efficiency, as compared to a control plant or part thereof (e.g., a plant that does not comprise a mutated endogenous HD-Zip nucleic acid as described herein). In some aspects, improved yield traits can be expressed as quantity of grain/seed produced per area of land (e.g., bushels per acre of land). In some embodiments, the one or more improved yield traits may be any one or more of increased flower number, increased size of floral structures, increased ear length and/or increased kernel row number, optionally wherein ear length is not substantially reduced when kernel row number is increased.

As used herein a "control plant" means a plant that does not contain an edited HD-Zip gene or gene as described herein that imparts an enhanced/improved trait (e.g., yield trait) or altered phenotype (e.g., increased seed number (e.g., grain number), increased seed weight (e.g., grain weight, increase in 100-seed weight), increased number of pods per plant, modified flowering time (e.g., an earlier time of flowering), shorter stature, decreased number of nodes and/or decreased branching). A control plant is used to identify and select a plant edited as described herein and that has an enhanced trait or altered phenotype as compared to the control plant. A suitable control plant can be a plant of the parental line used to generate a plant comprising a mutated HD-Zip gene(s), for example, a wild type plant or isogenic plant devoid of an edit in an endogenous HD-Zip gene as described herein. A suitable control plant can also be a plant that contains recombinant nucleic acids that impart other traits, for example, a transgenic plant having enhanced herbicide tolerance. A suitable control plant can in some cases be a progeny of a heterozygous or hemizygous transgenic plant line that is devoid of the mutated HD-Zip gene as described herein, known as a negative segregant, or a negative isogenic line.

An enhanced trait (e.g., improved yield trait) may include, for example, decreased days from planting to maturity, increased stalk size, increased number of leaves, increased ear size, increased ear dry weight per plant, increased number of kernels per ear, increased weight per kernel, increased number of kernels per plant, decreased ear void, extended grain fill period, reduced plant height, increased number of root branches, increased total root length, increased yield, increased nitrogen use efficiency, and/or increased water use efficiency as compared to a control plant. An altered phenotype may be, for example, plant height, biomass, canopy area, anthocyanin content, chlorophyll content, water applied, water content, and water use efficiency.

In some embodiments, a plant of this invention may comprise one or more improved yield traits including, but not limited to, In some embodiments, the one or more improved yield traits includes higher yield (bu/acre), decreased plant height, increased stem diameter, increased leaf area, increased number of flowers, increased kernel row number, optionally wherein ear length is not substantially reduced, increased kernel number, increased kernel size, increased ear length, decreased tiller number, decreased tassel branch number, increased number of pods, including an increased number of pods per plant, increased number of seeds per pod, increased number of seeds, increased seed size, and/or increased seed weight (e.g., increase in 100-seed weight) as compared to a control plant devoid of the at least one mutation. In some embodiments, a plant of this invention may comprise one or more improved yield traits including, but not limited to, optionally an increase in yield (bu/acre), seed size (including kernel size), seed weight (including kernel weight), increased kernel row number (optionally wherein ear length is not substantially reduced), increased number of pods, increased number of seeds per pod and an increase in ear length as compared to a control plant or part thereof.

As used herein a "trait" is a physiological, morphological, biochemical, or physical characteristic of a plant or particular plant material or cell. In some instances, this characteristic is visible to the human eye and can be measured mechanically, such as seed or plant size, weight, shape, form, length, height, growth rate and development stage, or can be measured by biochemical techniques, such as detecting the protein, starch, certain metabolites, or oil content of seed or leaves, or by observation of a metabolic or physiological process, for example, by measuring tolerance to water deprivation or particular salt or sugar concentrations, or by the measurement of the expression level of a gene or genes, for example, by employing Northern analysis, RT-PCR, microarray gene expression assays, or reporter gene expression systems, or by agricultural observations such as hyperosmotic stress tolerance or yield. However, any technique can be used to measure the amount of, the comparative level of, or the difference in any selected chemical compound or macromolecule in the transgenic plants.

As used herein an "enhanced trait" means a characteristic of a plant resulting from mutations in a HD-Zip gene(s) as described herein. Such traits include, but are not limited to, an enhanced agronomic trait characterized by enhanced plant morphology, physiology, growth and development, yield, nutritional enhancement, disease or pest resistance, or environmental or chemical tolerance. In some embodiments, an enhanced trait/altered phenotype may be, for example, decreased days from planting to maturity, increased stalk size, increased number of leaves, increased ear size, increased ear dry weight per plant, increased number of kernels per ear, increased weight per kernel, increased number of kernels per plant, decreased ear void, extended grain fill period, reduced plant height (optionally further exhibiting either no substantial change in yield or exhibiting an increase in yield with the reduction in plant height), increased number of root branches, increased total root length, drought tolerance, increased water use efficiency, cold tolerance, increased nitrogen use efficiency, and/or increased yield. In some embodiments, a trait is increased yield under nonstress conditions or increased yield under environmental stress conditions. Stress conditions can include both biotic and abiotic stress, for example, drought, shade, fungal disease, viral disease, bacterial disease, insect infestation, nematode infestation, cold temperature exposure, heat exposure, osmotic stress, reduced nitrogen nutrient availability, reduced phosphorus nutrient availability and high plant density. "Yield" can be affected by many properties including without limitation, plant height, plant biomass, pod number, pod position on the plant, number of internodes, incidence of pod shatter, grain size, ear size, ear tip filling, kernel abortion, efficiency of nodulation and nitrogen fixation, efficiency of nutrient assimilation, resistance to biotic and abiotic stress, carbon assimilation, plant architecture, resistance to lodging, percent seed germination, seedling vigor, and juvenile traits. Yield can also be affected by efficiency of germination (including germination in stressed conditions), growth rate (including growth rate in stressed conditions), flowering time and duration, ear number, ear size, ear weight, seed number per ear or pod, seed size, composition of seed (starch, oil, protein) and characteristics of seed fill.

Also used herein, the term "trait modification" encompasses altering the naturally occurring trait by producing a detectable difference in a characteristic in a plant comprising a mutation in an endogenous HD-Zip gene as described herein relative to a plant not comprising the mutation, such as a wild-type plant, or a negative segregant. In some cases, the trait modification can be evaluated quantitatively. For example, the trait modification can entail an increase or decrease in an observed trait characteristic or phenotype as compared to a control plant. It is known that there can be natural variations in a modified trait. Therefore, the trait modification observed can entail a change of the normal distribution and magnitude of the trait characteristics or phenotype in the plants as compared to a control plant.

The present disclosure relates to a plant with improved economically relevant characteristics, more specifically reduced plant height (optionally further exhibiting either no substantial change in yield or exhibiting an increase in yield), increased flower number, increased size of floral structures and/or increased ear length. More specifically the present disclosure relates to a plant comprising a mutation(s) in a HD-Zip gene(s) as described herein, wherein the plant exhibits a reduced plant height (optionally further exhibiting either no substantial change in yield or exhibiting an increase in yield), an increased flower number, increased size of floral structures and/or increased ear length as compared to a control plant devoid of said mutation(s). In some embodiments, a plant of the present disclosure exhibits further improved traits related to yield, including but not limited to increased nitrogen use efficiency, increased nitrogen stress tolerance, increased water use efficiency and/or increased drought tolerance, as defined and discussed infra.

Yield can be defined as the measurable produce of economic value from a crop. Yield can be defined in the scope of quantity and/or quality. Yield can be directly dependent on several factors, for example, the number and size of organs (e.g., number of flowers), plant architecture (such as the number of branches, plant biomass, e.g., increased root biomass, steeper root angle and/or longer roots, and the like), flowering time and duration, grain fill period. Root architecture and development, photosynthetic efficiency, nutrient uptake, stress tolerance, early vigor, delayed senescence and functional stay green phenotypes may be factors in determining yield. Optimizing the above-mentioned factors can therefore contribute to increasing crop yield.

Reference herein to an increase/improvement in yield-related traits can also be taken to mean an increase in biomass (weight) of one or more parts of a plant, which can include above ground and/or below ground (harvestable) plant parts. In particular, such harvestable parts are seeds, and performance of the methods of the disclosure results in plants with increased yield and in particular increased seed yield relative to the seed yield of suitable control plants. The term "yield" of a plant can relate to vegetative biomass (root and/or shoot biomass), to reproductive organs, and/or to propagules (such as seeds) of that plant.

Increased yield of a plant of the present disclosure can be measured in a number of ways, including test weight, seed number per plant, seed weight, seed number per unit area (for example, seeds, or weight of seeds, per acre), bushels per acre, tons per acre, or kilo per hectare. Increased yield can result from improved utilization of key biochemical compounds, such as nitrogen, phosphorous and carbohydrate, or from improved responses to environmental stresses, such as cold, heat, drought, salt, shade, high plant density, and attack by pests or pathogens.

"Increased yield" can manifest as one or more of the following: (i) increased plant biomass (weight) of one or more parts of a plant, particularly aboveground (harvestable) parts, of a plant, increased root biomass (increased number of roots, increased root thickness, increased root length) or increased biomass of any other harvestable part; or (ii) increased early vigor, defined herein as an improved seedling aboveground area approximately three weeks post-germination.

"Early vigor" refers to active healthy plant growth especially during early stages of plant growth, and can result from increased plant fitness due to, for example, the plants being better adapted to their environment (for example, optimizing the use of energy resources, uptake of nutrients and partitioning carbon allocation between shoot and root). Early vigor, for example, can be a combination of the ability of seeds to germinate and emerge after planting and the ability of the young plants to grow and develop after emergence. Plants having early vigor also show increased seedling survival and better establishment of the crop, which often results in highly uniform fields with the majority of the plants reaching the various stages of development at substantially the same time, which often results in increased yield. Therefore, early vigor can be determined by measuring various factors, such as kernel weight, percentage germination, percentage emergence, seedling growth, seedling height, root length, root and shoot biomass, canopy size and color and others.

Further, increased yield can also manifest as increased total seed yield, which may result from one or more of an increase in seed biomass (seed weight) due to an increase in the seed weight on a per plant and/or on an individual seed basis an increased number of, for example, flowers/panicles per plant; an increased number of pods; a modified number of nodes; an increased number of flowers ("florets") per panicle/plant; increased seed fill rate; an increased number of filled seeds; increased seed size (length, width, area, perimeter, and/or weight), which can also influence the composition of seeds; and/or increased seed volume, which can also influence the composition of seeds. In one embodiment, increased yield can be increased seed yield, for example, increased seed weight; increased number of filled seeds; and/or increased harvest index.

Increased yield can also result in modified architecture, or can occur because of modified plant architecture.

Increased yield can also manifest as increased harvest index, which is expressed as a ratio of the yield of harvestable parts, such as seeds, over the total biomass

The disclosure also extends to harvestable parts of a plant such as, but not limited to, seeds, leaves, fruits, flowers, bolls, pods, siliques, nuts, stems, rhizomes, tubers and bulbs. The disclosure furthermore relates to products derived from a harvestable part of such a plant, such as dry pellets, powders, oil, fat and fatty acids, starch or proteins.

The present disclosure provides a method for increasing "yield" of a plant or "broad acre yield" of a plant or plant part defined as the harvestable plant parts per unit area, for example seeds, or weight of seeds, per acre, pounds per acre, bushels per acre, tones per acre, tons per acre, kilo per hectare.

As used herein "nitrogen use efficiency" refers to the processes which lead to an increase in the plant's yield, biomass, vigor, and growth rate per nitrogen unit applied. The processes can include the uptake, assimilation, accumulation, signaling, sensing, retranslocation (within the plant) and use of nitrogen by the plant.

As used herein "increased nitrogen use efficiency" refers to the ability of plants to grow, develop, or yield faster or better than normal when subjected to the same amount of available/applied nitrogen as under normal or standard conditions; ability of plants to grow, develop, or yield normally, or grow, develop, or yield faster or better when subjected to less than optimal amounts of available/applied nitrogen, or under nitrogen limiting conditions.

As used herein "nitrogen limiting conditions" refers to growth conditions or environments that provide less than optimal amounts of nitrogen needed for adequate or successful plant metabolism, growth, reproductive success and/or viability.

As used herein the "increased nitrogen stress tolerance" refers to the ability of plants to grow, develop, or yield normally, or grow, develop, or yield faster or better when subjected to less than optimal amounts of available/applied nitrogen, or under nitrogen limiting conditions.

Increased plant nitrogen use efficiency can be translated in the field into either harvesting similar quantities of yield, while supplying less nitrogen, or increased yield gained by supplying optimal/ sufficient amounts of nitrogen. The increased nitrogen use efficiency can improve plant nitrogen stress tolerance and can also improve crop quality and biochemical constituents of the seed such as protein yield and oil yield. The terms "increased nitrogen use efficiency", "enhanced nitrogen use efficiency", and "nitrogen stress tolerance" are used interchangeably in the present disclosure to refer to plants with improved productivity under nitrogen limiting conditions.

As used herein "water use efficiency" refers to the amount of carbon dioxide assimilated by leaves per unit of water vapor transpired. It constitutes one of the most important traits controlling plant productivity in dry environments. "Drought tolerance" refers to the degree to which a plant is adapted to arid or drought conditions. The physiological responses of plants to a deficit of water include leaf wilting, a reduction in leaf area, leaf abscission, and the stimulation of root growth by directing nutrients to the underground parts of the plants. Typically, plants are more susceptible to drought during flowering and seed development (the reproductive stages), as plant's resources are deviated to support root growth. In addition, abscisic acid (ABA), a plant stress hormone, induces the closure of leaf stomata (microscopic pores involved in gas exchange), thereby reducing water loss through transpiration, and decreasing the rate of photosynthesis. These responses improve the wateruse efficiency of the plant on the short term. The terms "increased water use efficiency", "enhanced water use efficiency", and "increased drought tolerance" are used inter-changeably in the present disclosure to refer to plants with improved productivity under water-limiting conditions.

As used herein "increased water use efficiency" refers to the ability of plants to grow, develop, or yield faster or better than normal when subjected to the same amount of available/applied water as under normal or standard conditions; ability of plants to grow, develop, or yield normally, or grow, develop, or yield faster or better when subjected to reduced amounts of available/applied water (water input) or under conditions of water stress or water deficit stress.

As used herein "increased drought tolerance” refers to the ability of plants to grow, develop, or yield normally, or grow, develop, or yield faster or better than normal when subjected to reduced amounts of available/applied water and/or under conditions of acute or chronic drought; ability of plants to grow, develop, or yield normally when subjected to reduced amounts of available/applied water (water input) or under conditions of water deficit stress or under conditions of acute or chronic drought.

As used herein, "drought stress" refers to a period of dryness (acute or chronic/prolonged) that results in water deficit and subjects plants to stress and/or damage to plant tissues and/or negatively affects grain/crop yield; a period of dryness (acute or chronic/prolonged) that results in water deficit and/or higher temperatures and subjects plants to stress and/or damage to plant tissues and/or negatively affects grain/crop yield.

As used herein, "water deficit" refers to the conditions or environments that provide less than optimal amounts of water needed for adequate/successful growth and development of plants.

As used herein, "water stress" refers to the conditions or environments that provide improper (either less/insufficient or more/excessive) amounts of water than that needed for adequate/successful growth and development of plants/crops thereby subjecting the plants to stress and/or damage to plant tissues and/or negatively affecting grain/crop yield.

As used herein "water deficit stress" refers to the conditions or environments that provide less/insufficient amounts of water than that needed for adequate/successful growth and development of plants/crops thereby subjecting the plants to stress and/or damage to plant tissues and/or negatively affecting grain yield.

As used herein, the terms "nucleic acid," "nucleic acid molecule," "nucleotide sequence" and "polynucleotide" refer to RNA or DNA that is linear or branched, single or double stranded, or a hybrid thereof. The term also encompasses RNA/DNA hybrids. When dsRNA is produced synthetically, less common bases, such as inosine, 5-methylcytosine, 6- methyladenine, hypoxanthine and others can also be used for antisense, dsRNA, and ribozyme pairing. For example, polynucleotides that contain C-5 propyne analogues of uridine and cytidine have been shown to bind RNA with high affinity and to be potent antisense inhibitors of gene expression. Other modifications, such as modification to the phosphodiester backbone, or the 2'-hydroxy in the ribose sugar group of the RNA can also be made. As used herein, the term "nucleotide sequence" refers to a heteropolymer of nucleotides or the sequence of these nucleotides from the 5' to 3' end of a nucleic acid molecule and includes DNA or RNA molecules, including cDNA, a DNA fragment or portion, genomic DNA, synthetic (e.g., chemically synthesized) DNA, plasmid DNA, mRNA, and anti-sense RNA, any of which can be single stranded or double stranded. The terms "nucleotide sequence" "nucleic acid," "nucleic acid molecule," "nucleic acid construct," "oligonucleotide" and "polynucleotide" are also used interchangeably herein to refer to a heteropolymer of nucleotides. Nucleic acid molecules and/or nucleotide sequences provided herein are presented herein in the 5' to 3' direction, from left to right and are represented using the standard code for representing the nucleotide characters as set forth in the U.S. sequence rules, 37 CFR §§1.821 - 1.825 and the World Intellectual Property Organization (WIPO) Standard ST.25. A "5' region" as used herein can mean the region of a polynucleotide that is nearest the 5' end of the polynucleotide. Thus, for example, an element in the 5' region of a polynucleotide can be located anywhere from the first nucleotide located at the 5' end of the polynucleotide to the nucleotide located halfway through the polynucleotide. A "3' region" as used herein can mean the region of a polynucleotide that is nearest the 3' end of the polynucleotide. Thus, for example, an element in the 3' region of a polynucleotide can be located anywhere from the first nucleotide located at the 3' end of the polynucleotide to the nucleotide located halfway through the polynucleotide.

As used herein with respect to nucleic acids, the term "fragment" or "portion" refers to a nucleic acid that is reduced in length relative (e.g., reduced by 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 20, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300, 310, 320, 330, 340, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, or 900 or more nucleotides or any range or value therein) to a reference nucleic acid and that comprises, consists essentially of and/or consists of a nucleotide sequence of contiguous nucleotides identical or almost identical (e.g., 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% identical) to a corresponding portion of the reference nucleic acid. Such a nucleic acid fragment may be, where appropriate, included in a larger polynucleotide of which it is a constituent. As an example, a repeat sequence of guide nucleic acid of this invention may comprise a "portion" of a wild type CRISPR-Cas repeat sequence (e.g., a wild Type CRISPR-Cas repeat; e.g., a repeat from the CRISPR Cas system of, for example, a Cas9, Casl2a (Cpfl), Casl2b, Casl2c (C2c3), Casl2d (CasY), Casl2e (CasX), Casl2g, Casl2h, Casl2i, C2c4, C2c5, C2c8, C2c9, C2cl0, Casl4a, Casl4b, and/or a Casl4c, and the like).

In some embodiments, a nucleic acid fragment may comprise, consist essentially of or consist of about 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 70, 75, 80, 85, 90, 95, 100, 101, 102, 103, 104, 105, 110, 111, 112, 113, 114, 115, 120, 121, 122, 123, 124, 125, 130, 135, 140, 141, 142, 143, 144, 145,

150, 151, 152, 153, 154, 155, 160, 165, 170, 175, 180, 185, 190, 191, 192, 193, 194, 195, 200,

205, 210, 215, 220, 221, 222, 223, 224, 225, 230, 235, 240, 245, 250, 255, 260, 265, 270, 271,

272, 273, 274, 275, 280, 285, 290, 295, 300, 305, 310, 320, 330, 340, 350, 360, 370, 380, 390,

395, 400, 410, 415, 420, 425, 430, 435, 440, 445, 450, 500, 550, 600, 650, 700, 750, 800, 850,

900, 950, 1000, 1100, 1150, 1200, 1250, 1300, 1350, 1400, 1450, 1500, 1550, 1600, 1650, 1700, 1750, 1800, 1850, 1900, 1950, 2000, 2500, 3000, 3500, or 4000 or more consecutive nucleotides or any range or value therein of a nucleic acid encoding a HD-Zip polypeptide, optionally a fragment of a. HD-Zip polynucleotide may be about 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42,

43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67,

68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92,

93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112,

113, 114, 115, 120, 125, 130, 135, 140, 141, 142, 143, 144, 145, 150 consecutive nucleotides to about 155, 160, 165, 170, 175, 180, 181, 182, 183, 184, 185, 190, 195, 200, 205, 210, 215, 220, 221, 222, 223, 224, 225, 230, 240, 245, 250, 255, 260, 265, 270, 271, 272, 273, 274, 275, 280, 285, 290, 295, 300, 305, 310, 315, 320, 325, 330, 340, 345, 350, 355, 360, 365, 370, 375, 380, 385, 390, 395, or 400, or more consecutive nucleotides in length, or any range or value therein (e.g., a fragment or portion of consecutive nucleotides any one of SEQ ID NO:69, SEQ ID NO:70, SEQ ID NO:88, or SEQ ID NO:89 (e g , SEQ ID NOs:72-85 or 91-105, optionally to any one of SEQ ID NOs:72-75, 76-79, 80-83, 84-85, 91-94, 95-98, 99-102, or 103-105)

As used herein with respect to polypeptides, the term "fragment" or "portion" may refer to a polypeptide that is reduced in length relative to a reference polypeptide and that comprises, consists essentially of and/or consists of an amino acid sequence of contiguous amino acids identical or almost identical (e.g, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% identical) to a corresponding portion of the reference polypeptide. Such a polypeptide fragment may be, where appropriate, included in a larger polypeptide of which it is a constituent. In some embodiments, the polypeptide fragment comprises, consists essentially of or consists of at least about 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 125, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 260, 270, 280, or 290, or more consecutive amino acids of a reference polypeptide. In some embodiments, a HD-Zip polypeptide fragment may comprise, consist essentially of or consist of about 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 60, 70, 71, 72, 73, 74, 75, 80, 90, 100, 125, 150, 175, 200 or 210 consecutive amino acid residues, or any range or value therein, optionally a fragment may comprise, consist essentially of or consist of about 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 consecutive amino acid residues, or any range or value therein (e.g., a fragment or a portion of SEQ ID NO:71 or SEQ ID NO:90, e.g., see, for example, SEQ ID NOs:86, 87 or 108, or SEQ ID NOs: 106-108, respectively). In some embodiments, a fragment of a HD-Zip polypeptide or a HD-Zip polynucleotide maybe the result of a deletion generated in the HD-Zip gene resulting in a truncated polypeptide, optionally wherein the amount of the HD-Zip polypeptide is reduced or undetectable. A deletion may result in an in-frame deletion allele or an out-of-frame deletion allele. A HD-Zip gene may be edited in more than one location, thereby providing a HD-Zip gene comprising more than one mutation.

In some embodiments, a "portion" or “region” may be related to the number of amino acids that are deleted from a polypeptide. Thus, for example, a deleted "portion" or “region” of a HD-Zip polypeptide may comprise at least one amino acid residue (e.g., at least 1, or at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 or more consecutive amino acid residues, optionally a deletion of about 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 to about 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50 residues or any range or value therein) deleted from the amino acid sequence of SEQ ID NO:71 or SEQ ID NO:90 (or from a sequence having at least 80% sequence identity (e.g., at least 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99 or 100% identity to SEQ ID NO:71 or SEQ ID NO:90). In some embodiments the percent identity may be at least 85%. In some embodiments the percent identity may be at least 90%. In some embodiments the percent identity may be at least 95%. In some embodiments, the percent identity may be 100%.

In some embodiments, a "portion" or "region" in reference to a nucleic acid means at least 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28,

29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,

54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78,

79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103,104, 105, 106, 107, 108, 109, 110, 115, 120, 125, 130, 135,140, 145, 150, 155, 160, 165,

170, 175, 180, 185, 190, 195, 200, 210, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230,

240, 250, 260, 270, 280, 285, 290, 300, 310, 320, 330, 340, 350, 360, 370, 380, 390, 395, 400,

405, 410, 415, 420, 425, 430, 435, 440, 445, 450, 500, 600, 700, 800, 900, 1000, 1100, 1200,

1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000, 2500, 3000, 3500, 4000, 4500, or 5000 or more consecutive nucleotides from a gene (e.g., consecutive nucleotides from a HD-Zip gene), optionally a "portion" or "region" of a HD-Zip gene may be about 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 80, 90, 100, 101, 102, 103, 104, 105, 110, 115, 120, 125, 130, 135, 140, 141, 142, 143, 144, 145, or 150 consecutive nucleotides to about 155, 160, 165, 170, 175, 180, 185, 190, 195, 200, 205, 210, 215, 220, 221, 222, 223, 224, 225, 230, 235, 240, 245, 250, 255, 255, 260, 265, 270, 271,

273, 274, 275, 280, 285, 290, 295, 300, 305, 310, 315, 320, 325, 326, 327, 328, 329, 330, 340,

345, 350, 355, 360, 365, 370, 375, 380, 385, 390, 395, 400, 405, 410, 415, 420, 425, 430, 435,

440, 445, or 450, or more consecutive nucleotides in length, or any range or value therein (e.g., a portion or region of consecutive nucleotides from SEQ ID NO:69 or SEQ ID NO:88 (e.g., see, SEQ ID NOs:72-85 or 91-105, optionally any one of SEQ ID NOs:72-75, 76-79, 80-83, 84-85, 91-94, 95-98, 99-102, or 103-105)

A "region" of a polynucleotide or a polypeptide refers to a portion of consecutive nucleotides or consecutive amino acid residues of that polynucleotide or a polypeptide, respectively. For example, a region of a HD-Zip polynucleotide sequence may include, but is not limited to, to any one of the nucleic acid sequences of SEQ ID NOs:72-85 or 91-105, optionally to any one of SEQ ID NOs:72-75, 76-79, 80-83, 84-85, 91-94, 95-98, 99-102, or 103-105. In some embodiments, a region may be a target region or target site for modification in the HD-Zip polynucleotide.

In some embodiments, a "sequence-specific nucleic acid binding domain" (e.g., sequence-specific DNA binding domain) may bind to a HD-Zip gene (e.g., SEQ ID NO:69 or SEQ ID NO:88) and/or to one or more fragments, portions, or regions of a. HD-Zip nucleic acid (e.g., SEQ ID NOs:72-85 or 91-105, optionally to any one of SEQ ID NOs:72-75, 76-79, 80-83, 84-85, 91-94, 95-98, 99-102, or 103-105) as described herein.

As used herein with respect to nucleic acids, the term "functional fragment" refers to nucleic acid that encodes a functional fragment of a polypeptide. A “functional fragment” with respect to a polypeptide is a fragment of a polypeptide that retains one or more of the activities of the native reference polypeptide. The term "gene," as used herein, refers to a nucleic acid molecule capable of being used to produce mRNA, antisense RNA, miRNA, anti-microRNA antisense oligodeoxyribonucleotide (AMO) and the like. Genes may or may not be capable of being used to produce a functional protein or gene product. Genes can include both coding and noncoding regions (e.g., introns, regulatory elements, promoters, enhancers, termination sequences and/or 5' and 3' untranslated regions). A gene may be "isolated" by which is meant a nucleic acid that is substantially or essentially free from components normally found in association with the nucleic acid in its natural state. Such components include other cellular material, culture medium from recombinant production, and/or various chemicals used in chemically synthesizing the nucleic acid.

The term "mutation" refers to point mutations (e.g., missense, or nonsense, or insertions or deletions of single base pairs that result in frame shifts), insertions, deletions, and/or truncations. When the mutation is a substitution of a residue within an amino acid sequence with another residue, or a deletion or insertion of one or more residues within a sequence, the mutations are typically described by identifying the original residue followed by the position of the residue within the sequence and by the identity of the newly substituted residue. A truncation can include a truncation at the C-terminal end of a polypeptide or at the N-terminal end of a polypeptide. A truncation of a polypeptide can be the result of a deletion of the corresponding 5' end or 3' end of the gene encoding the polypeptide. A frameshift mutation can occur when deletions or insertions of one or more base pairs are introduced into a gene. Frameshift mutations in a gene can result in the production of a polypeptide that is longer, shorter or the same length as the wild type polypeptide depending on when the first stop codon occurs following the mutated region of the gene.

The terms "complementary" or "complementarity," as used herein, refer to the natural binding of polynucleotides under permissive salt and temperature conditions by base-pairing. For example, the sequence "A-G-T" (5' to 3') binds to the complementary sequence "T-C-A" (3' to 5'). Complementarity between two single-stranded molecules may be "partial," in which only some of the nucleotides bind, or it may be complete when total complementarity exists between the single stranded molecules. The degree of complementarity between nucleic acid strands has significant effects on the efficiency and strength of hybridization between nucleic acid strands.

"Complement," as used herein, can mean 100% complementarity with the comparator nucleotide sequence or it can mean less than 100% complementarity (e.g., about 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, and the like, complementarity) to the comparator nucleotide sequence.

Different nucleic acids or proteins having homology are referred to herein as "homologues." The term homologue includes homologous sequences from the same and from other species and orthologous sequences from the same and other species. "Homology" refers to the level of similarity between two or more nucleic acid and/or amino acid sequences in terms of percent of positional identity (z.e., sequence similarity or identity). Homology also refers to the concept of similar functional properties among different nucleic acids or proteins. Thus, the compositions and methods of the invention further comprise homologues to the nucleotide sequences and polypeptide sequences of this invention. "Orthologous," as used herein, refers to homologous nucleotide sequences and/ or amino acid sequences in different species that arose from a common ancestral gene during speciation. A homologue of a nucleotide sequence of this invention has a substantial sequence identity (e.g., at least about 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or 100%) to said nucleotide sequence of the invention.

As used herein, "sequence identity" refers to the extent to which two optimally aligned polynucleotide or polypeptide sequences are invariant throughout a window of alignment of components, e.g., nucleotides or amino acids. "Identity" can be readily calculated by known methods including, but not limited to, those described in: Computational Molecular Biology (Lesk, A. M., ed.) Oxford University Press, New York (1988); Biocomputing: Informatics and Genome Projects (Smith, D. W ., ed.) Academic Press, New York (1993); Computer Analysis of Sequence Data, Part I (Griffin, A. M., and Griffin, H. G., eds.) Humana Press, New Jersey (1994); Sequence Analysis in Molecular Biology (von Heinje, G., ed.) Academic Press (1987); and Sequence Analysis Primer (Gribskov, M. and Devereux, J., eds.) Stockton Press, New York (1991).

As used herein, the term "percent sequence identity" or "percent identity" refers to the percentage of identical nucleotides in a linear polynucleotide sequence of a reference ("query") polynucleotide molecule (or its complementary strand) as compared to a test ("subject") polynucleotide molecule (or its complementary strand) when the two sequences are optimally aligned. In some embodiments, "percent sequence identity" can refer to the percentage of identical amino acids in an amino acid sequence as compared to a reference polypeptide. In regard to a HD-Zip gene, a sequence may have at least 80% sequence identity to the nucleotide sequence of any one of SEQ ID NO:69, 70, 88 and/or 89. In some embodiments, a HD-Zip gene may have at least 85% sequence identity to the nucleotide sequence of any one of SEQ ID NO:69, 70, 88 and/or 89. In some embodiments, a. HD-Zip gene may have at least 90% sequence identity to the nucleotide sequence of any one of SEQ ID NO:69, 70, 88 and/or 89. In some embodiments, a HD-Zip gene may have at least 95% sequence identity to the nucleotide sequence of any one of SEQ ID NO:69, 70, 88 and/or 89, optionally wherein the HD-Zip gene may have 100% sequence identity to the nucleotide sequence of any one of SEQ ID NO:69, 70, 88 and/or 89. A HD-Zip polypeptide as described herein may have at least 80% sequence identity to the polypeptide sequence of any one of SEQ ID NO:71 and/or SEQ ID NO:90. In some embodiments, a HD-Zip polypeptide may have at least 85% sequence identity to the polypeptide sequence of any one of SEQ ID NO:71 and/or SEQ ID NO:90. In some embodiments, a HD-Zip polypeptide may have at least 90% sequence identity to the polypeptide sequence of any one of SEQ ID NO:71 and/or SEQ ID NO:90. In some embodiments, a HD-Zip polypeptide may have at least 95% sequence identity to the polypeptide sequence of any one of SEQ ID NO:71 and/or SEQ ID NO:90, optionally wherein the HD-Zip polypeptide may have 100% sequence identity to the polypeptide sequence of any one of SEQ ID NO:71 and/or SEQ ID NO:90. With regard to regions or portions of a HD-Zip gene, the region or portion may have at least 80% sequence identity to the nucleotide sequence of any one of SEQ ID NOs:72-85 and/or 91-105, optionally at least 80% sequence identity to any one of SEQ ID NOs:72-75, 76-79, 80-83, 84-85, 91-94, 95-98, 99-102, and/or 103-105. In some embodiments, a region or portion of a HD-Zip gene may have at least 85% sequence identity to the nucleotide sequence of any one of SEQ ID NOs:72-85 and/or 91-105, optionally at least 85% sequence identity any one of SEQ ID NOs:72-75, 76- 79, 80-83, 84-85, 91-94, 95-98, 99-102, and/or 103-105. In some embodiments, a region or portion of a HD-Zip gene may have at least 90% sequence identity to the nucleotide sequence of any one of SEQ ID NOs:72-85 and/or 91-105, optionally at least 90% sequence identity any one of SEQ ID NOs:72-75, 76-79, 80-83, 84-85, 91-94, 95-98, 99-102, and/or 103-105. With regard to regions or portions of a HD-Zip polypeptide, the region or portion may have at least 80% sequence identity to the amino acid sequence of any one of SEQ ID NOs:86, 87,

106. 107 and/or 108. In some embodiments, a region or portion of a HD-Zip polypeptide may have at least 85% sequence identity to the amino acid sequence of any one of SEQ ID NOs:86,

87. 106. 107 and/or 108. In some embodiments, a region or portion of a HD-Zip polypeptide may have at least 90% sequence identity to the amino acid sequence of any one of SEQ ID NOs:86, 87, 106, 107 and/or 108. In some embodiments, a region or portion of a HD-Zip polypeptide may have at least 95% sequence identity to the amino acid sequence of any one of SEQ ID NOs:86, 87, 106, 107 and/or 108. In some embodiments, a region or portion of a HD- Zip polypeptide may have 100% sequence identity to the amino acid sequence of any one of SEQ ID NOs:86, 87, 106, 107 and/or 108. In some embodiments, a mutated HD-Zip gene may have at least 90% sequence identity to a mutated HD-Zip gene having a nucleotide sequence of SEQ ID NO: 113 In some embodiments, a mutated HD-Zip gene may have at least 95% sequence identity to a mutated HD-Zip gene having a nucleotide sequence of SEQ ID NO: 113. In some embodiments, a mutated HD-Zip gene may have 100% sequence identity to a mutated HD-Zip gene having a nucleotide sequence of SEQ ID NO: 113. In some embodiments, a mutated HD-Zip polypeptide may have at least 90% sequence identity to a mutated HD-Zip polypeptide having amino acid sequence of SEQ ID NO: 115. In some embodiments, a mutated HD-Zip polypeptide may have at least 95% sequence identity to a mutated HD-Zip polypeptide having an amino acid sequence of SEQ ID NO:115. In some embodiments, a mutated HD-Zip polypeptide may have 100% sequence identity to a mutated HD-Zip polypeptide having an amino acid sequence of SEQ ID NO: 115.

As used herein, the phrase "substantially identical," or "substantial identity" in the context of two nucleic acid molecules, nucleotide sequences, or polypeptide sequences, refers to two or more sequences or subsequences that have at least about 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or 100% nucleotide or amino acid residue identity, when compared and aligned for maximum correspondence, as measured using one of the following sequence comparison algorithms or by visual inspection. In some embodiments of the invention, the substantial identity exists over a region of consecutive nucleotides of a nucleotide sequence of the invention that is about 10 nucleotides to about 20 nucleotides, about 10 nucleotides to about 25 nucleotides, about 10 nucleotides to about 30 nucleotides, about 15 nucleotides to about 25 nucleotides, about 30 nucleotides to about 40 nucleotides, about 50 nucleotides to about 60 nucleotides, about 70 nucleotides to about 80 nucleotides, about 90 nucleotides to about 100 nucleotides, about 100 nucleotides to about 200 nucleotides, about 100 nucleotides to about 300 nucleotides, about 100 nucleotides to about 400 nucleotides, about 100 nucleotides to about 500 nucleotides, about 100 nucleotides to about 600 nucleotides, about 100 nucleotides to about 800 nucleotides, about 100 nucleotides to about 900 nucleotides, or more in length, or any range therein, up to the full length of the sequence. In some embodiments, nucleotide sequences can be substantially identical over at least about 20 nucleotides (e.g., about 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 50, 60, 70, or 80 nucleotides or more). In some embodiments, two or more HD-Zip genes may be substantially identical to one another over at least about 30 or more consecutive nucleotides (e.g., 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 54, 56, 57, 58, 59, 60, 65, 70, 75, 80, 85, 90, 95, 100, 110, 120, 130, 140, 150, 160, 170, 180, 200, 220, 240, 260, 280, 300, 320, 340, 360, 380, 400, 420, 440, 460, 480, 500, 520, 540, 560, 580, 600, or more consecutive nucleotides) of any one of SEQ ID NOs:69, 70, 88 or 89 (see, e g , SEQ ID NOs:72-85 or 91-105)

In some embodiments of the invention, the substantial identity exists over a region of consecutive amino acid residues of a polypeptide of the invention that is about 3 amino acid residues to about 20 amino acid residues, about 5 amino acid residues to about 25 amino acid residues, about 7 amino acid residues to about 30 amino acid residues, about 10 amino acid residues to about 25 amino acid residues, about 15 amino acid residues to about 30 amino acid residues, about 20 amino acid residues to about 40 amino acid residues, about 25 amino acid residues to about 40 amino acid residues, about 25 amino acid residues to about 50 amino acid residues, about 30 amino acid residues to about 50 amino acid residues, about 40 amino acid residues to about 50 amino acid residues, about 40 amino acid residues to about 70 amino acid residues, about 50 amino acid residues to about 70 amino acid residues, about 60 amino acid residues to about 80 amino acid residues, about 70 amino acid residues to about 80 amino acid residues, about 90 amino acid residues to about 100 amino acid residues, or more amino acid residues in length, and any range therein, up to the full length of the sequence. In some embodiments, polypeptide sequences can be substantially identical to one another over at least about 8 to about 350 consecutive amino acid residues (e.g., about 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,

41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65,

66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90,

91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111,

112, 113, 114, 115, 116, 117, 118, 119, 120, 130, 140, 150, 175, 200, or 225 or more amino acids in length or more consecutive amino acid residues of SEQ ID NO:71 or SEQ ID NQ:90) In some embodiments, two or more HD-Zip polypeptides may be identical or substantially identical (e.g., at least 70% to 99.9% identical, e.g., about 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5%. 99.9% identical or any range or value therein) over at least 8, 9, 10, 11, 12, 13, 14, or 15 consecutive amino acids to about 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, or 40 or more consecutive amino acids. In some embodiments, a substantially identical nucleotide or protein sequence may perform substantially the same function as the nucleotide (or encoded protein sequence) to which it is substantially identical.

For sequence comparison, typically one sequence acts as a reference sequence to which test sequences are compared. When using a sequence comparison algorithm, test and reference sequences are entered into a computer, subsequence coordinates are designated if necessary, and sequence algorithm program parameters are designated. The sequence comparison algorithm then calculates the percent sequence identity for the test sequence(s) relative to the reference sequence, based on the designated program parameters.

Optimal alignment of sequences for aligning a comparison window are well known to those skilled in the art and may be conducted by tools such as the local homology algorithm of Smith and Waterman, the homology alignment algorithm of Needleman and Wunsch, the search for similarity method of Pearson and Lipman, and optionally by computerized implementations of these algorithms such as GAP, BESTFIT, FASTA, and TFASTA available as part of the GCG® Wisconsin Package® (Accelrys Inc., San Diego, CA). An "identity fraction" for aligned segments of a test sequence and a reference sequence is the number of identical components which are shared by the two aligned sequences divided by the total number of components in the reference sequence segment, e.g., the entire reference sequence or a smaller defined part of the reference sequence. Percent sequence identity is represented as the identity fraction multiplied by 100. The comparison of one or more polynucleotide sequences may be to a full-length polynucleotide sequence or a portion thereof, or to a longer polynucleotide sequence. For purposes of this invention "percent identity" may also be determined using BLASTX version 2.0 for translated nucleotide sequences and BLASTN version 2.0 for polynucleotide sequences.

Two nucleotide sequences may also be considered substantially complementary when the two sequences hybridize to each other under stringent conditions. In some embodiments, two nucleotide sequences considered to be substantially complementary hybridize to each other under highly stringent conditions.

"Stringent hybridization conditions" and "stringent hybridization wash conditions" in the context of nucleic acid hybridization experiments such as Southern and Northern hybridizations are sequence dependent and are different under different environmental parameters. An extensive guide to the hybridization of nucleic acids is found in Tijssen Laboratory Techniques in Biochemistry and Molecular Biology-Hybridization with Nucleic Acid Probes part I chapter 2 "Overview of principles of hybridization and the strategy of nucleic acid probe assays" Elsevier, New York (1993). Generally, highly stringent hybridization and wash conditions are selected to be about 5°C lower than the thermal melting point (Tm) for the specific sequence at a defined ionic strength and pH.

The Tm is the temperature (under defined ionic strength and pH) at which 50% of the target sequence hybridizes to a perfectly matched probe. Very stringent conditions are selected to be equal to the Tm for a particular probe. An example of stringent hybridization conditions for hybridization of complementary nucleotide sequences which have more than 100 complementary residues on a filter in a Southern or northern blot is 50% formamide with 1 mg of heparin at 42°C, with the hybridization being carried out overnight. An example of highly stringent wash conditions is 0.1 5M NaCl at 72°C for about 15 minutes. An example of stringent wash conditions is a 0.2x SSC wash at 65°C for 15 minutes (see, Sambrook, infra, for a description of SSC buffer). Often, a high stringency wash is preceded by a low stringency wash to remove background probe signal. An example of a medium stringency wash for a duplex of, e.g., more than 100 nucleotides, is lx SSC at 45°C for 15 minutes. An example of a low stringency wash for a duplex of, e.g., more than 100 nucleotides, is 4-6x SSC at 40°C for 15 minutes. For short probes (e.g., about 10 to 50 nucleotides), stringent conditions typically involve salt concentrations of less than about 1.0 M Na ion, typically about 0.01 to 1.0 M Na ion concentration (or other salts) at pH 7.0 to 8.3, and the temperature is typically at least about 30°C. Stringent conditions can also be achieved with the addition of destabilizing agents such as formamide. In general, a signal to noise ratio of 2x (or higher) than that observed for an unrelated probe in the particular hybridization assay indicates detection of a specific hybridization. Nucleotide sequences that do not hybridize to each other under stringent conditions are still substantially identical if the proteins that they encode are substantially identical. This can occur, for example, when a copy of a nucleotide sequence is created using the maximum codon degeneracy permitted by the genetic code.

A polynucleotide and/or recombinant nucleic acid construct of this invention (e.g., expression cassettes and/or vectors) may be codon optimized for expression. In some embodiments, the polynucleotides, nucleic acid constructs, expression cassettes, and/or vectors of the editing systems of the invention (e.g., comprising/encoding a sequence-specific nucleic acid binding domain (e.g., a sequence-specific nucleic acid binding domain from a polynucleotide-guided endonuclease, a zinc finger nuclease, a transcription activator-like effector nuclease (TALEN), an Argonaute protein, and/or a CRISPR-Cas endonuclease (e.g., CRISPR-Cas effector protein) (e.g., a Type I CRISPR-Cas effector protein, a Type II CRISPR- Cas effector protein, a Type III CRISPR-Cas effector protein, a Type IV CRISPR-Cas effector protein, a Type V CRISPR-Cas effector protein or a Type VI CRISPR-Cas effector protein)), a nuclease (e.g., an endonuclease (e.g., Fokl), a polynucleotide-guided endonuclease, a CRISPR-Cas endonuclease (e.g., CRISPR-Cas effector protein), a zinc finger nuclease, and/or a transcription activator-like effector nuclease (TALEN)), deaminase proteins/domains (e.g., adenine deaminase, cytosine deaminase), a polynucleotide encoding a reverse transcriptase protein or domain, a polynucleotide encoding a 5'-3' exonuclease polypeptide, and/or affinity polypeptides, peptide tags, etc.) may be codon optimized for expression in a plant. In some embodiments, the codon optimized nucleic acids, polynucleotides, expression cassettes, and/or vectors of the invention have about 70% to about 99.9% (e.g., 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5%. 99.9% or 100%) identity or more to the reference nucleic acids, polynucleotides, expression cassettes, and/or vectors that have not been codon optimized.

In embodiments described herein, a polynucleotide or nucleic acid construct of the invention may be operatively associated with a variety of promoters and/or other regulatory elements for expression in a plant and/or a cell of a plant. Thus, in some embodiments, a polynucleotide or nucleic acid construct of this invention may further comprise one or more promoters, introns, enhancers, and/or terminators operably linked to one or more nucleotide sequences. In some embodiments, a promoter may be operably associated with an intron (e.g., Ubil promoter and intron). In some embodiments, a promoter associated with an intron maybe referred to as a "promoter region" (e.g., Ubil promoter and intron) (see, e.g., SEQ ID NO:21 and SEQ ID NO:22)

By "operably linked" or "operably associated" as used herein in reference to polynucleotides, it is meant that the indicated elements are functionally related to each other and are also generally physically related. Thus, the term "operably linked" or "operably associated" as used herein, refers to nucleotide sequences on a single nucleic acid molecule that are functionally associated. Thus, a first nucleotide sequence that is operably linked to a second nucleotide sequence means a situation when the first nucleotide sequence is placed in a functional relationship with the second nucleotide sequence. For instance, a promoter is operably associated with a nucleotide sequence if the promoter effects the transcription or expression of said nucleotide sequence. Those skilled in the art will appreciate that the control sequences (e.g., promoter) need not be contiguous with the nucleotide sequence to which it is operably associated, as long as the control sequences function to direct the expression thereof. Thus, for example, intervening untranslated, yet transcribed, nucleic acid sequences can be present between a promoter and the nucleotide sequence, and the promoter can still be considered "operably linked" to the nucleotide sequence.

As used herein, the term "linked," in reference to polypeptides, refers to the attachment of one polypeptide to another. A polypeptide may be linked to another polypeptide (at the N- terminus or the C-terminus) directly (e.g., via a peptide bond) or through a linker.

The term "linker" is art-recognized and refers to a chemical group, or a molecule linking two molecules or moi eties, e.g., two domains of a fusion protein, such as, for example, a nucleic acid binding polypeptide or domain and peptide tag and/or a reverse transcriptase and an affinity polypeptide that binds to the peptide tag; or a DNA endonuclease polypeptide or domain and peptide tag and/or a reverse transcriptase and an affinity polypeptide that binds to the peptide tag. A linker may be comprised of a single linking molecule or may comprise more than one linking molecule. In some embodiments, the linker can be an organic molecule, group, polymer, or chemical moiety such as a bivalent organic moiety. In some embodiments, the linker may be an amino acid, or it may be a peptide. In some embodiments, the linker is a peptide.

In some embodiments, a peptide linker useful with this invention may be about 2 to about 100 or more amino acids in length, for example, about 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37,

38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62,

63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87,

88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100 or more amino acids in length (e.g., about 2 to about 40, about 2 to about 50, about 2 to about 60, about 4 to about 40, about 4 to about 50, about 4 to about 60, about 5 to about 40, about 5 to about 50, about 5 to about 60, about 9 to about 40, about 9 to about 50, about 9 to about 60, about 10 to about 40, about 10 to about 50, about 10 to about 60, or about 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 amino acids to about 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100 or more amino acids in length (e.g., about 105, 110, 115, 120, 130, 140 150 or more amino acids in length). In some embodiments, a peptide linker may be a GS linker.

As used herein, the term "linked," or "fused" in reference to polynucleotides, refers to the attachment of one polynucleotide to another. In some embodiments, two or more polynucleotide molecules may be linked by a linker that can be an organic molecule, group, polymer, or chemical moiety such as a bivalent organic moiety. A polynucleotide may be linked or fused to another polynucleotide (at the 5' end or the 3' end) via a covalent or noncovenant linkage or binding, including e.g., Watson-Crick base-pairing, or through one or more linking nucleotides. In some embodiments, a polynucleotide motif of a certain structure may be inserted within another polynucleotide sequence (e.g., extension of the hairpin structure in the guide RNA). In some embodiments, the linking nucleotides may be naturally occurring nucleotides. In some embodiments, the linking nucleotides may be non-naturally occurring nucleotides.

A "promoter" is a nucleotide sequence that controls or regulates the transcription of a nucleotide sequence (e.g., a coding sequence) that is operably associated with the promoter. The coding sequence controlled or regulated by a promoter may encode a polypeptide and/or a functional RNA. Typically, a "promoter" refers to a nucleotide sequence that contains a binding site for RNA polymerase II and directs the initiation of transcription. In general, promoters are found 5', or upstream, relative to the start of the coding region of the corresponding coding sequence. A promoter may comprise other elements that act as regulators of gene expression; e.g., a promoter region. These include a TATA box consensus sequence, and often a CAAT box consensus sequence (Breathnach and Chambon, (1981) Annu. Rev. Biochem. 50:349). In plants, the CAAT box may be substituted by the AGGA box (Messing et al., (1983) in Genetic Engineering of Plants, T. Kosuge, C. Meredith and A. Hollaender (eds.), Plenum Press, pp. 211-227).

Promoters useful with this invention can include, for example, constitutive, inducible, temporally regulated, developmentally regulated, chemically regulated, tissue-preferred and/or tissue-specific promoters for use in the preparation of recombinant nucleic acid molecules, e.g., "synthetic nucleic acid constructs" or "protein-RNA complex." These various types of promoters are known in the art.

The choice of promoter may vary depending on the temporal and spatial requirements for expression, and also may vary based on the host cell to be transformed. Promoters for many different organisms are well known in the art. Based on the extensive knowledge present in the art, the appropriate promoter can be selected for the particular host organism of interest. Thus, for example, much is known about promoters upstream of highly constitutively expressed genes in model organisms and such knowledge can be readily accessed and implemented in other systems as appropriate.

In some embodiments, a promoter functional in a plant may be used with the constructs of this invention. Non-limiting examples of a promoter useful for driving expression in a plant include the promoter of the RubisCo small subunit gene 1 (PrbcSl), the promoter of the actin gene (Pactin), the promoter of the nitrate reductase gene (Pnr) and the promoter of duplicated carbonic anhydrase gene 1 (Pdcal) (See, Walker et al. Plant Cell Rep. 23:727-735 (2005); Li et al. Gene 403:132-142 (2007); Li et al. fo/Bzo/. Tte . 37: 1143-1154 (2010)). PrbcSl and Pactin are constitutive promoters and Pnr and Pdcal are inducible promoters. Pnr is induced by nitrate and repressed by ammonium (Li et al. Gene 403: 132-142 (2007)) and Pdcal is induced by salt (Li et al. Mol Biol. Rep. 37: 1143-1154 (2010)). In some embodiments, a promoter useful with this invention is RNA polymerase II (Pol II) promoter. In some embodiments, a U6 promoter or a 7SL promoter from Zea mays may be useful with constructs of this invention. In some embodiments, the U6c promoter and/or 7SL promoter from Zea mays may be useful for driving expression of a guide nucleic acid. In some embodiments, a U6c promoter, U6i promoter and/or 7SL promoter from Glycine max may be useful with constructs of this invention. In some embodiments, the U6c promoter, U6i promoter and/or 7SL promoter from Glycine max may be useful for driving expression of a guide nucleic acid.

Examples of constitutive promoters useful for plants include, but are not limited to, cestrum virus promoter (cmp) (U.S. Patent No. 7,166,770), the rice actin 1 promoter (Wang et al. (1992) Mol. Cell. Biol. 12:3399-3406; as well as US Patent No. 5,641,876), CaMV 35S promoter (Odell et al. (1985) Nature 313:810-812), CaMV 19S promoter (Lawton et al. (1987) Plant Mol. Biol. 9:315-324), nos promoter (Ebert et al. (1987) Proc. Natl. Acad. Sci USA 84:5745-5749), Adh promoter (Walker et al. (1987) Proc. Natl. Acad. Sci. USA 84:6624-6629), sucrose synthase promoter (Yang & Russell (1990) Proc. Natl. Acad. Sci. USA 87:4144-4148), and the ubiquitin promoter. The constitutive promoter derived from ubiquitin accumulates in many cell types. Ubiquitin promoters have been cloned from several plant species for use in transgenic plants, for example, sunflower (Binet et al., 1991. Plant Science 79: 87-94), maize (Christensen et al., 1989. Plant Molec. Biol. 12: 619-632), and arabidopsis (Norris et al. 1993. Plant Molec. Biol. 21 :895-906). The maize ubiquitin promoter (UbiP) has been developed in transgenic monocot systems and its sequence and vectors constructed for monocot transformation are disclosed in the patent publication EP 0 342 926. The ubiquitin promoter is suitable for the expression of the nucleotide sequences of the invention in transgenic plants, especially monocotyledons. Further, the promoter expression cassettes described by McElroy et al. (Mol. Gen. Genet. 231 : 150-160 (1991)) can be easily modified for the expression of the nucleotide sequences of the invention and are particularly suitable for use in monocotyledonous hosts.

In some embodiments, tissue specific/tissue preferred promoters can be used for expression of a heterologous polynucleotide in a plant cell. Tissue specific or preferred expression patterns include, but are not limited to, green tissue specific or preferred, root specific or preferred, stem specific or preferred, flower specific or preferred or pollen specific or preferred. Promoters suitable for expression in green tissue include many that regulate genes involved in photosynthesis and many of these have been cloned from both monocotyledons and dicotyledons. In one embodiment, a promoter useful with the invention is the maize PEPC promoter from the phosphoenol carboxylase gene (Hudspeth & Grula, Plant Molec. Biol. 12:579-589 (1989)). Non-limiting examples of tissue-specific promoters include those associated with genes encoding the seed storage proteins (such as P-conglycinin, cruciferin, napin and phaseolin), zein or oil body proteins (such as oleosin), or proteins involved in fatty acid biosynthesis (including acyl carrier protein, stearoyl-ACP desaturase and fatty acid desaturases (fad 2-1)), and other nucleic acids expressed during embryo development (such as Bce4, see, e.g., Kridl et al. (1991) Seed Sci. Res. 1 :209-219; as well as EP Patent No. 255378). Tissue-specific or tissue-preferential promoters useful for the expression of the nucleotide sequences of the invention in plants, particularly maize, include but are not limited to those that direct expression in root, pith, leaf or pollen. Such promoters are disclosed, for example, in WO 93/07278, herein incorporated by reference in its entirety. Other non-limiting examples of tissue specific or tissue preferred promoters useful with the invention the cotton rubisco promoter disclosed in US Patent 6,040,504; the rice sucrose synthase promoter disclosed in US Patent 5,604,121; the root specific promoter described by de Framond (FEBS 290: 103-106 (1991); EP 0 452 269 to Ciba- Geigy); the stem specific promoter described in U.S. Patent 5,625,136 (to Ciba-Geigy) and which drives expression of the maize trpA gene; the cestrum yellow leaf curling virus promoter disclosed in WO 01/73087; and pollen specific or preferred promoters including, but not limited to, ProOsLPSlO and ProOsLPSl 1 from rice (Nguyen et al. Plant Biotechnol. Reports 9(5):297-306 (2015)), ZmSTK2_USP from maize (Wang et al. Genome 60(6):485-495 (2017)), LAT52 and LAT59 from tomato (Twell et al. Development 109(3):705-713 (1990)), Zml3 (U.S. Patent No. 10,421,972), PLA2-6 promoter from arabidopsis (U.S. Patent No. 7,141,424), and/or the ZmC5 promoter from maize (International PCT Publication No. WO1999/042587.

Additional examples of plant tissue-specific/tissue preferred promoters include, but are not limited to, the root hair-specific cis-elements (RHEs) (Kim et al. The Plant Cell 18:2958- 2970 (2006)), the root-specific promoters RCc3 (Jeong et al. Plant Physiol. 153: 185-197 (2010)) and RB7 (U.S. Patent No. 5459252), the lectin promoter (Lindstrom et al. (1990) Der. Genet. 11 : 160-167; and Vodkin (1983) Prog. Clin. Biol. Res. 138:87-98), com alcohol dehydrogenase 1 promoter (Dennis et al. (1984) Nucleic Acids Res. 12:3983-4000), S~ adenosyl-L-methionine synthetase (SAMS) (Vander Mijnsbrugge et al. (1996) Plant and Cell Physiology, 37(8): 1108-1115), corn light harvesting complex promoter (Bansal et al. (1992) Proc. Natl. Acad. Sci. USA 89:3654-3658), corn heat shock protein promoter (O'Dell et al. (1985) EA7BO J. 5:451-458; and Rochester et al. (1986) EA7BO J. 5:451-458), pea small subunit RuBP carboxylase promoter (Cashmore, "Nuclear genes encoding the small subunit of ribulose-l,5-bisphosphate carboxylase" pp. 29-39 In: Genetic Engineering of Plants (Hollaender ed., Plenum Press 1983; and Poulsen et al. (1986) Mol. Gen. Genet. 205: 193-200), Ti plasmid mannopine synthase promoter (Langridge et al. (1989) Proc. Natl. Acad. Sci. USA 86:3219-3223), Ti plasmid nopaline synthase promoter (Langridge et al. (1989), supra), petunia chaicone isomerase promoter (van Tunen et al. (1988) EMBO J. 7: 1257-1263), bean glycine rich protein 1 promoter (Keller et al. (1989) Genes Dev. 3: 1639-1646), truncated CaMV 35S promoter (O'Dell et al. ( 1985) /Z/z/v 313:810-812), potato patatin promoter (Wenzler et al. (1989) Plant Mol. Biol. 13:347-354), root cell promoter (Yamamoto et al. 1990) Nucleic Acids Res . 18:7449), maize zein promoter (Kriz et al. (1987) Mol. Gen. Genet. 207:90-98; Langridge et al. (1983) Cell 34: 1015-1022; Reina et al. ( \ 99Q) Nucleic Acids Res. 18:6425; Reina et al. (1990) Nucleic Acids Res. 18:7449; and Wandelt et al. (1989) Nucleic Acids Res. 17:2354), globulin-1 promoter (Belanger et al. (1991) Genetics 129:863-872), a- tubulin cab promoter (Sullivan et al. (1989) Mol. Gen. Genet. 215:431-440), PEPCase promoter (Hudspeth & Grula (1989) Plant Mol. Biol. 12:579-589), R gene complex-associated promoters (Chandler et al. (1989) Plant Cell 1 : 1175-1183), and chaicone synthase promoters (Franken et al. (1991) EMBO J. 10:2605-2612).

Useful for seed-specific expression is the pea vicilin promoter (Czako et al. (1992) Mol. Gen. Genet. 235:33-40; as well as the seed-specific promoters disclosed in U.S. Patent No. 5,625,136. Useful promoters for expression in mature leaves are those that are switched at the onset of senescence, such as the SAG promoter from Arabidopsis (Gan et al. (1995) Science 270: 1986-1988).

In addition, promoters functional in chloroplasts can be used. Non-limiting examples of such promoters include the bacteriophage T3 gene 9 5' UTR and other promoters disclosed in U.S. Patent No. 7,579,516. Other promoters useful with the invention include but are not limited to the S-E9 small subunit RuBP carboxylase promoter and the Kunitz trypsin inhibitor gene promoter (Kti3).

Additional regulatory elements useful with this invention include, but are not limited to, introns, enhancers, termination sequences and/or 5' and 3' untranslated regions. An intron useful with this invention can be an intron identified in and isolated from a plant and then inserted into an expression cassette to be used in transformation of a plant. As would be understood by those of skill in the art, introns can comprise the sequences required for self-excision and are incorporated into nucleic acid constructs/expression cassettes in frame. An intron can be used either as a spacer to separate multiple protein-coding sequences in one nucleic acid construct, or an intron can be used inside one protein-coding sequence to, for example, stabilize the mRNA. If they are used within a protein-coding sequence, they are inserted "in-frame" with the excision sites included. Introns may also be associated with promoters to improve or modify expression. As an example, a promoter/intron combination useful with this invention includes but is not limited to that of the maize Ubil promoter and intron (see, e.g., SEQ ID NO:21 and SEQ ID NO:22).

Non-limiting examples of introns useful with the present invention include introns from the ADHI gene (e.g., Adhl-S introns 1, 2 and 6), the ubiquitin gene (Ubil), the RuBisCO small subunit (rbcS) gene, the RuBisCO large subunit (rbcL) gene, the actin gene (e.g., actin- 1 intron), the pyruvate dehydrogenase kinase gene (pdk), the nitrate reductase gene (nr), the duplicated carbonic anhydrase gene 1 (Tdcal), the psbA gene, the atpA gene, or any combination thereof.

In some embodiments, a polynucleotide and/or a nucleic acid construct of the invention can be an "expression cassette" or can be comprised within an expression cassette. As used herein, "expression cassette" means a recombinant nucleic acid molecule comprising, for example, a one or more polynucleotides of the invention (e.g., a polynucleotide encoding a sequence-specific nucleic acid (e.g., DNA) binding domain, a polynucleotide encoding a deaminase protein or domain, a polynucleotide encoding a reverse transcriptase protein or domain, a polynucleotide encoding a 5'-3' exonuclease polypeptide or domain, a guide nucleic acid and/or reverse transcriptase (RT) template), wherein polynucleotide(s) is/are operably associated with one or more control sequences (e.g., a promoter, terminator and the like). Thus, in some embodiments, one or more expression cassettes may be provided, which are designed to express, for example, a nucleic acid construct of the invention (e.g., a polynucleotide encoding a sequence-specific nucleic acid binding domain, a polynucleotide encoding a nuclease polypeptide/domain, a polynucleotide encoding a deaminase protein/domain, a polynucleotide encoding a reverse transcriptase protein/domain, a polynucleotide encoding a 5'-3' exonuclease polypeptide/domain, a polynucleotide encoding a peptide tag, and/or a polynucleotide encoding an affinity polypeptide, and the like, or comprising a guide nucleic acid, an extended guide nucleic acid, and/or RT template, and the like). When an expression cassete of the present invention comprises more than one polynucleotide, the polynucleotides may be operably linked to a single promoter that drives expression of all of the polynucleotides or the polynucleotides may be operably linked to one or more separate promoters (e.g., three polynucleotides may be driven by one, two or three promoters in any combination). When two or more separate promoters are used, the promoters may be the same promoter, or they may be different promoters. Thus, a polynucleotide encoding a sequence specific nucleic acid binding domain, a polynucleotide encoding a nuclease protein/domain, a polynucleotide encoding a CRISPR-Cas effector protein/domain, a polynucleotide encoding an deaminase protein/domain, a polynucleotide encoding a reverse transcriptase polypeptide/domain (e.g., RNA-dependent DNA polymerase), and/or a polynucleotide encoding a 5'-3' exonuclease polypeptide/domain, a guide nucleic acid, an extended guide nucleic acid and/or RT template when comprised in a single expression cassete may each be operably linked to a single promoter, or separate promoters in any combination.

An expression cassete comprising a nucleic acid construct of the invention may be chimeric, meaning that at least one of its components is heterologous with respect to at least one of its other components (e.g., a promoter from the host organism operably linked to a polynucleotide of interest to be expressed in the host organism, wherein the polynucleotide of interest is from a different organism than the host or is not normally found in association with that promoter). An expression cassette may also be one that is naturally occurring but has been obtained in a recombinant form useful for heterologous expression.

An expression cassete can optionally include a transcriptional and/or translational termination region (i.e., termination region) and/or an enhancer region that is functional in the selected host cell. A variety of transcriptional terminators and enhancers are known in the art and are available for use in expression cassetes. Transcriptional terminators are responsible for the termination of transcription and correct mRNA polyadenylation. A termination region and/or the enhancer region may be native to the transcriptional initiation region, may be native to, for example, a gene encoding a sequence-specific nucleic acid binding protein, a gene encoding a nuclease, a gene encoding a reverse transcriptase, a gene encoding a deaminase, and the like, or may be native to a host cell, or may be native to another source (e.g., foreign or heterologous to, for example, to a promoter, to a gene encoding a sequence-specific nucleic acid binding protein, a gene encoding a nuclease, a gene encoding a reverse transcriptase, a gene encoding a deaminase, and the like, or to the host cell, or any combination thereof). An expression cassette of the invention also can include a polynucleotide encoding a selectable marker, which can be used to select a transformed host cell. As used herein, "selectable marker" means a polynucleotide sequence that when expressed imparts a distinct phenotype to the host cell expressing the marker and thus allows such transformed cells to be distinguished from those that do not have the marker. Such a polynucleotide sequence may encode either a selectable or screenable marker, depending on whether the marker confers a trait that can be selected for by chemical means, such as by using a selective agent (e.g., an antibiotic and the like), or on whether the marker is simply a trait that one can identify through observation or testing, such as by screening (e.g., fluorescence). Many examples of suitable selectable markers are known in the art and can be used in the expression cassettes described herein.

In addition to expression cassettes, the nucleic acid molecules/constructs and polynucleotide sequences described herein can be used in connection with vectors. The term "vector" refers to a composition for transferring, delivering or introducing a nucleic acid (or nucleic acids) into a cell. A vector comprises a nucleic acid construct (e.g., expression cassette(s)) comprising the nucleotide sequence(s) to be transferred, delivered or introduced. Vectors for use in transformation of host organisms are well known in the art. Non-limiting examples of general classes of vectors include viral vectors, plasmid vectors, phage vectors, phagemid vectors, cosmid vectors, fosmid vectors, bacteriophages, artificial chromosomes, minicircles, or Agrobacterium binary vectors in double or single stranded linear or circular form which may or may not be self-transmissible or mobilizable. In some embodiments, a viral vector can include, but is not limited, to a retroviral, lentiviral, adenoviral, adeno- associated, or herpes simplex viral vector. A vector as defined herein can transform a prokaryotic or eukaryotic host either by integration into the cellular genome or exist extrachromosomally (e.g., autonomous replicating plasmid with an origin of replication). Additionally included are shuttle vectors by which is meant a DNA vehicle capable, naturally or by design, of replication in two different host organisms, which may be selected from actinomycetes and related species, bacteria and eukaryotic (e.g., higher plant, mammalian, yeast, or fungal cells). In some embodiments, the nucleic acid in the vector is under the control of, and operably linked to, an appropriate promoter or other regulatory elements for transcription in a host cell. The vector may be a bi-functional expression vector which functions in multiple hosts. In the case of genomic DNA, this may contain its own promoter and/or other regulatory elements and in the case of cDNA this may be under the control of an appropriate promoter and/or other regulatory elements for expression in the host cell. Accordingly, a nucleic acid or polynucleotide of this invention and/or expression cassettes comprising the same may be comprised in vectors as described herein and as known in the art.

As used herein, "contact," "contacting," "contacted," and grammatical variations thereof, refer to placing the components of a desired reaction together under conditions suitable for carrying out the desired reaction (e.g., transformation, transcriptional control, genome editing, nicking, and/or cleavage). As an example, a target nucleic acid may be contacted with a sequence-specific nucleic acid binding protein (e.g., polynucleotide-guided endonuclease, a CRISPR-Cas endonuclease (e.g., CRISPR-Cas effector protein), a zinc finger nuclease, a transcription activator-like effector nuclease (TALEN) and/or an Argonaute protein)) and a deaminase or a nucleic acid construct encoding the same, under conditions whereby the sequence-specific nucleic acid binding protein, the reverse transcriptase and/or the deaminase are expressed and the sequence-specific nucleic acid binding protein binds to the target nucleic acid, and the reverse transcriptase and/or deaminase may be fused to either the sequencespecific nucleic acid binding protein or recruited to the sequence-specific nucleic acid binding protein (via, for example, a peptide tag fused to the sequence-specific nucleic acid binding protein and an affinity tag fused to the reverse transcriptase and/or deaminase) and thus, the deaminase and/or reverse transcriptase is positioned in the vicinity of the target nucleic acid, thereby modifying the target nucleic acid. Other methods for recruiting reverse transcriptase and/or deaminase may be used that take advantage of other protein-protein interactions, and also RNA-protein interactions and chemical interactions may be used for protein-protein and protein-nucleic acid recruitment.

As used herein, "modifying" or "modification" in reference to a target nucleic acid includes editing (e.g., mutating), covalent modification, exchanging/substituting nucleic acids/nucleotide bases, deleting, cleaving, nicking, and/or altering transcriptional control of a target nucleic acid. In some embodiments, a modification may include one or more single base changes (SNPs) of any type.

"Introducing," "introduce," "introduced" (and grammatical variations thereof) in the context of a polynucleotide of interest means presenting a nucleotide sequence of interest (e.g., polynucleotide, RT template, a nucleic acid construct, and/or a guide nucleic acid) to a plant, plant part thereof, or cell thereof, in such a manner that the nucleotide sequence gains access to the interior of a cell.

The terms "transformation" or transfection" may be used interchangeably and as used herein refer to the introduction of a heterologous nucleic acid into a cell. Transformation of a cell may be stable or transient. Thus, in some embodiments, a host cell or host organism (e.g., a plant) may be stably transformed with a polynucleotide/nucleic acid molecule of the invention. In some embodiments, a host cell or host organism may be transiently transformed with a polynucleotide/nucleic acid molecule of the invention.

"Transient transformation" in the context of a polynucleotide means that a polynucleotide is introduced into the cell and does not integrate into the genome of the cell.

By "stably introducing" or "stably introduced" in the context of a polynucleotide introduced into a cell is intended that the introduced polynucleotide is stably incorporated into the genome of the cell, and thus the cell is stably transformed with the polynucleotide.

"Stable transformation" or "stably transformed" as used herein means that a nucleic acid molecule is introduced into a cell and integrates into the genome of the cell. As such, the integrated nucleic acid molecule is capable of being inherited by the progeny thereof, more particularly, by the progeny of multiple successive generations. "Genome" as used herein includes the nuclear and the plastid genome, and therefore includes integration of the nucleic acid into, for example, the chloroplast or mitochondrial genome. Stable transformation as used herein can also refer to a transgene that is maintained extrachromasomally, for example, as a minichromosome or a plasmid.

Transient transformation may be detected by, for example, an enzyme-linked immunosorbent assay (ELISA) or Western blot, which can detect the presence of a peptide or polypeptide encoded by one or more transgene introduced into an organism. Stable transformation of a cell can be detected by, for example, a Southern blot hybridization assay of genomic DNA of the cell with nucleic acid sequences which specifically hybridize with a nucleotide sequence of a transgene introduced into an organism (e.g., a plant). Stable transformation of a cell can be detected by, for example, a Northern blot hybridization assay of RNA of the cell with nucleic acid sequences which specifically hybridize with a nucleotide sequence of a transgene introduced into a host organism. Stable transformation of a cell can also be detected by, e.g., a polymerase chain reaction (PCR) or other amplification reactions as are well known in the art, employing specific primer sequences that hybridize with target sequence(s) of a transgene, resulting in amplification of the transgene sequence, which can be detected according to standard methods Transformation can also be detected by direct sequencing and/or hybridization protocols well known in the art.

Accordingly, in some embodiments, nucleotide sequences, polynucleotides, nucleic acid constructs, and/or expression cassettes of the invention may be expressed transiently and/or they can be stably incorporated into the genome of the host organism. Thus, in some embodiments, a nucleic acid construct of the invention (e.g., one or more expression cassettes comprising polynucleotides for editing as described herein) may be transiently introduced into a cell with a guide nucleic acid and as such, no DNA is maintained in the cell.

A nucleic acid construct of the invention may be introduced into a plant cell by any method known to those of skill in the art. Non-limiting examples of transformation methods include transformation via bacterial-mediated nucleic acid delivery (e.g., via Agrobacteria), viral-mediated nucleic acid delivery, silicon carbide or nucleic acid whisker-mediated nucleic acid delivery, liposome mediated nucleic acid delivery, microinjection, microparticle bombardment, calcium-phosphate-mediated transformation, cyclodextrin-mediated transformation, electroporation, nanoparticle-mediated transformation, sonication, infiltration, PEG-mediated nucleic acid uptake, as well as any other electrical, chemical, physical (mechanical) and/or biological mechanism that results in the introduction of nucleic acid into the plant cell, including any combination thereof. Procedures for transforming both eukaryotic and prokaryotic organisms are well known and routine in the art and are described throughout the literature (See, for example, Jiang et al. 2013. Nat. Biotechnol. 31 :233-239; Ran et al. Nature Protocols 8:2281-2308 (2013)). General guides to various plant transformation methods known in the art include Miki et al. ("Procedures for Introducing Foreign DNA into Plants" in Methods in Plant Molecular Biology and Biotechnology, Glick, B. R. and Thompson, J. E., Eds. (CRC Press, Inc., Boca Raton, 1993), pages 67-88) and Rakowoczy- Trojanowska (Cell. Mol. Biol. Lett. 7:849-858 (2002)).

In some embodiments of the invention, transformation of a cell may comprise nuclear transformation. In other embodiments, transformation of a cell may comprise plastid transformation (e.g., chloroplast transformation). In still further embodiments, nucleic acids of the invention may be introduced into a cell via conventional breeding techniques. In some embodiments, one or more of the polynucleotides, expression cassettes and/or vectors may be introduced into a plant cell via Agrobacterium transformation.

A polynucleotide therefore can be introduced into a plant, plant part, plant cell in any number of ways that are well known in the art. The methods of the invention do not depend on a particular method for introducing one or more nucleotide sequences into a plant, only that they gain access to the interior the cell. Where more than polynucleotide is to be introduced, they can be assembled as part of a single nucleic acid construct, or as separate nucleic acid constructs, and can be located on the same or different nucleic acid constructs. Accordingly, the polynucleotide can be introduced into the cell of interest in a single transformation event, or in separate transformation events, or, alternatively, a polynucleotide can be incorporated into a plant as part of a breeding protocol. The present invention provides methods and compositions for improving yield traits, optionally wherein the changes are architectural changes that can lead to improved yield. Specifically, the present invention is directed to modifying endogenous homeodomain-leucine zipper transcription factor (HD-Zip) genes in plants, which genes HD-Zip transcription factor (HD-Zip) polypeptides. In some embodiments, the improved yield traits can include, but are not limited to, increased seed number (e.g., grain number), increased seed weight (e.g., grain weight, increase in 100-seed weight), increased number of pods per plant, modified flowering time (e.g., an earlier time of flowering), shorter stature (i.e., reduced height), decreased number of nodes and/or decreased branching. Decreased branching allows for planting plants at a higher density without shading of neighboring plants. Decreased branches along with more seed pods on the mainstem provides for higher individual plant yield and higher planting density.

As used herein, an "increased seed number" means an increase in seed number by at least about 10% (e.g., about 10% to about 200%, e.g., about 10, 11, 12, 13, 14, 15, 16, 17, 18,

19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43,

44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68,

69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93,

94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 115, 120, 125, 130, 135, 140, 141, 142, 143, 144, 145, 150, 155, 160, 165, 170, 175, 180, 185, 190, 195, or 200%, or any range or value therein) as compared to a control plant that is devoid of the mutation as described herein.

As used herein, an "increased seed weight" can mean a seed that is increased in seed weight (e.g., 100-seed weight). In some embodiments, a seed may be increased in weight by up to about 50% (e.g., about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45,

45, 46, 47, 48, 49, or 50%) as compared to a seed from a control plant (e.g., a plant not comprising the mutation in an endogenous HD-Zip gene as described herein). In some embodiments, an increase in seed size can include an increase in both seed size and seed area. An increased seed weight may be measured, for example, by 100-seed weight.

As used herein, an “increased number of pods per plant” refers to the number of flowers that, when pollinated, lead to the formation of at least one seed in the resulting pod. The number of pods per plant may be increased by at least about 10% (e.g., about 10% to about 200%, e.g., about 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 115, 120, 125, 130, 135, 140, 141, 142, 143, 144, 145, 150, 155, 160, 165, 170, 175, 180, 185, 190, 195, or 200%, or any range or value therein) as compared to a control plant that is devoid of the mutation as described herein.

As used herein, a “reduced flowering time” can mean an earlier time of flowering (reduced time to flowering). A reduced time to flowering refers to a to a decrease in the number of days from planting to initiation of flowering of about 15% to 40% (e.g., about 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, or 40%, or any range or value therein) as compared to a control plant that is devoid of the mutation as described herein. In general, a soybean plant begins flower about 45 days to 55 days (45, 46, 47, 48, 49, 50, 51, 52, 53, or 54 days) after planting. However, some soybean varieties used in double cropping may begin to flower in about 34 days to about 38 days (34, 35, 36, 37, or 38 days) after planting.

As used herein, a “shorter stature” refers to a plant having a reduced height. A shorter stature can refer to a reduction in height of about 10% to about 75% (e.g., about 10, 11, 12, 13,

14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38,

39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,

64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, or 75%, or any range or value therein) as compared to a control plant that is devoid of the mutation as described herein.

As used herein, “decreased number of nodes” and/or “decreased branching” refers to a decrease in the number of lateral branches that are formed. This can be observed as a decrease in the “bushiness” of the plant and/or a decrease in the overall number of primary and secondary branches. A decrease in the number of nodes or a decrease in branching may be a decrease of about 10% to about 100% (e.g., about 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46,

47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71,

72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96,

97, 98, 99, 100%, or any range or value therein) as compared to a control plant that is devoid of the mutation as described herein.

Accordingly, as described herein, editing technology is used to target HD-Zip genes in plants to generate plants having improved yield traits, such as increased seed number (e.g., grain number), increased seed weight (e.g., grain weight, increase in 100-seed weight), increased number of pods per plant, modified flowering time (e.g., an earlier time of flowering), shorter stature, decreased number of nodes and/or decreased branching, optionally wherein the mutation may be a non-natural mutation. Types of mutations that may be useful for production of plants exhibiting improved yield traits include, for example, substitutions, deletions and insertions. In some aspects, a mutation generated by the editing technology can be a point mutation. In some embodiments, a mutation generated by the editing technology of this invention can be a dominant negative mutation.

In some embodiments, the invention provides a plant or plant part thereof comprising at least one mutation (e.g., 1, 2, 3, 4, or 5, or more mutations) in an endogenous homeodomain- leucine zipper transcription factor (HD-Zip) gene that encodes an HD-Zip protein, wherein the mutation alters the function of the HD-Zip polypeptide as a regulator of gene expression. In some embodiments, the at least one mutation may be a non-natural mutation. In some embodiments, the HD-Zip gene is a HD-Zip II gene, optionally an HD-Zip 17-1 gene and/or HD-Zip 17-2 gene, wherein the HD-Zip 17-1 gene has a gene identification number (SoyBaseDatabase) of Glyma.20g014400 and/or the HD-Zipl7-2 gene has a gene identification number (SoyBaseDatabase) of Glyma.07g218000. In some embodiments, the at least one mutation may result in a dominant negative mutation. In some embodiments, the plant or part thereof comprising a mutated HD-Zip gene comprises a mutated HD-Zip nucleic acid having at least to 90% sequence identity to SEQ ID NO: 113 and/or which encodes an amino acid sequence having at least 90% sequence identity to SEQ ID NO: 115.

An endogenous HD-Zip gene useful with this invention (e.g., an endogenous target gene) encodes a HD-Zip transcription factor (HD-Zip) polypeptide. In some embodiments, an endogenous HD-ZIP gene may (a) comprise a nucleotide sequence having at least 80% sequence identity (e.g., at least about 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99 or 100% sequence identity) to SEQ ID NO:69, 70, 88 or 89, (b) comprise a region having at least 80% sequence identity to any one of the nucleotide sequences of SEQ ID NOs:72-85 or 91-105, optionally to any one of SEQ ID NOs:72-75, 76-79, 80-83, 84-85, 91-94, 95-98, 99-102, or 103-105, (c) encode an amino acid sequence having at least 80% sequence identity to SEQ ID NO:71 or SEQ ID NO:90, and/or (d) encode a region having at least 80% sequence identity to SEQ ID NOs:86, 87, 106, 107 or 108, optionally wherein the sequence identity of (a), (b), (c) and/or (d) may be at least 85%, or at least 90%, or it may be at least 95%, optionally the sequence identity may be 100%. Thus, a plant or plant part of the invention may comprise at least one mutation (e.g., one or more mutations) in an endogenous HD-ZIP gene, wherein the endogenous HD-ZIP gene (a) comprises a sequence having at least 80% sequence identity (e.g., at least about 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99 or 100% sequence identity) to the nucleotide sequence of any one of SEQ ID NO:69, 70, 88 or 89; (b) comprises a region having at least 80% sequence identity to any one of the nucleotide sequences of any one of SEQ ID NOs:72-85 or 91-105, optionally to any one of SEQ ID NOs:72-75, 76-79, 80-83, 84-85, 91-94, 95-98, 99-102, or 103-105; (c) encodes a polypeptide comprising a sequence having at least 80% sequence identity to any one of the amino acid sequences of SEQ ID NO:71 or SEQ ID NO:90, and/or (d) encode a region having at least 80% sequence identity to SEQ ID NOs:86, 87, 106, 107 or 108, optionally wherein the sequence identity of (a), (b), (c) and/or (d) may be at least 85%, or at least 90%, or it may be at least 95%, optionally the sequence identity may be 100%. In some embodiments, a mutated HD-Zip gene may comprise a nucleotide sequence having at least about 90% sequence identity to any one of the mutated nucleic acid sequences described herein. In some embodiments, the mutated HD-Zip gene may comprise a non-natural mutation.

A mutation in a HD-Zip gene of a plant, plant part thereof or the plant cell may be any type of mutation, including a substitution, a deletion and/or an insertion. In some embodiments, a mutation may be a non-natural mutation. In some embodiments, a mutation may comprise a base substitution to an A, a T, a G, or a C. In some embodiments, a mutation may be a deletion or an insertion of at least one base pair, optionally 1 base pair to about 200 consecutive base pairs or more (e.g., 1 base pair, about 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,

15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39,

40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64,

65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89,

90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 185, 190, 195 or 200 or more consecutive base pairs or any range or value therein), optionally a deletion or insertion of 1 base pair to about 100 consecutive base pairs (e.g., a deletion or insertion of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44,

45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69,

70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94,

95, 96, 97, 98, 99, or 100 consecutive base pairs or any range or value therein), or a deletion of

1 base pair to about 21 consecutive base pairs (e.g., a deletion of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, or 21 base pairs, or any range or value therein), optionally wherein the mutation is an in-frame deletion, optionally wherein the base deletion is in the Ethylene-responsive element binding factor-associated Amphiphilic Repression (EAR) motif encoded by the HD-Zip gene.

In some embodiments, the at least one mutation may be an in-frame deletion, optionally resulting in a dominant negative mutation, optionally wherein the mutation is a non-natural mutation. In some embodiments, the at least one mutation may result in a modified HD-Zip polypeptide that is altered in its ability to regulate gene expression. In some embodiments, the at least one mutation may be a base deletion that results in the deletion of one or more amino acid residues, optionally wherein the deletion of one or more amino acid residues is in the Ethylene-responsive element binding factor-associated Amphiphilic Repression (EAR) motif of the HD-Zip polypeptide.

In some embodiments, the at least one mutation (one or more) may be a base deletion from a region of the HD-Zip gene, wherein the region is within or adjacent to the EAR motif encoded by the HD-Zip gene. As used herein, “adjacent” to the EAR motif means within about 150 consecutive nucleotides 5’ and/or 3’ of the EAR motif (TTGGAATTGACCATA SEQ ID NO:105) (e.g., see SEQ ID NOs:72-85, 105 (from HD-Zipl7-1, SoyBaseDatabase gene identification number Glyma.20g014400 (SEQ ID NO:69)) and/or SEQ ID NOs:91-105 (from HD-Zip 17-2, SoyBaseDatabase gene identification number Glyma.07g218000 (SEQ ID NO:88)). In some embodiments, a deletion in an HD-Zip gene may be of one or more nucleotides (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15) (e.g., at least one deletion of one or more nucleotides, optionally wherein when more than one, the deletion is of two or more consecutive nucleotides) located from position 2206 to position 2220 with reference to nucleotide position numbering of SEQ ID NO:69, or from position 2179 to position 2193 with reference to nucleotide position numbering of SEQ ID NO:88), optionally wherein the deletion may be a deletion of three or more consecutive nucleotides (e.g., 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15). In some embodiments, the deletion may be 3, 6, 9, 12, or 15 consecutive nucleotides from a region of an HD-Zip gene, the region located from position 2206 to position 2220 with reference to nucleotide position numbering of SEQ ID NO:69, or from position 2179 to position 2193 with reference to nucleotide position numbering of SEQ ID NO:88. In some embodiments, the base deletion results in a deletion of one or more amino acid residues of the HD-Zip polypeptide, optionally, wherein the deletion is in the EAR motif of the HD-Zip polypeptide, optionally resulting in a deletion of the EAR motif.

In some embodiments, a mutation in an endogenous HD-Zip gene may result in a mutated HD-Zip gene having at least 90% sequence identity (e.g., at least 90, 91, 92, 93, 94, 95, 96, 97, 98, 99% or 100% sequence identity, optionally the sequence identity may be at least 95%, optionally the sequence identity may be 100%) to a nucleotide sequence of SEQ ID NO: 113 and/or encode an amino acid sequence having at least 90% sequence identity to SEQ ID NO:115

In some embodiments, a plant comprising at least one mutation (e.g., non-natural mutation) in an endogenous HD-Zip gene may exhibit one or more improved yield traits as compared to a control plant devoid of the at least one mutation, optionally increased seed number (e.g., grain number), increased seed weight (e.g., grain weight, increase in 100-seed weight), increased number of pods per plant, modified flowering time (e.g., an earlier time of flowering), shorter stature, decreased number of nodes and/or decreased branching. In some embodiments, the plant comprising at least one mutation in an endogenous HD-Zip gene may exhibit increased yield. In some embodiments, a plant may be regenerated from a plant part and/or plant cell of the invention, wherein the regenerated plant comprises the mutated endogenous HD-Zip gene and exhibits a phenotype of increased seed number (e.g., grain number), increased seed weight (e.g., grain weight, increase in 100-seed weight), increased number of pods per plant, modified flowering time (e.g., an earlier time of flowering), shorter stature, decreased number of nodes and/or decreased branching, optionally the regenerated plant further exhibits increased yield. In some embodiments, the at least one mutation may be a non-natural mutation. In some embodiments, a plant comprising at least one mutation in an endogenous HD-Zip gene is not regenerated.

In some embodiments, a plant cell is provided, the plant cell comprising an editing system comprising: (a) a CRISPR-Cas effector protein; and (b) a guide nucleic acid (gRNA, gDNA, crRNA, crDNA, sgRNA, sgDNA) comprising a spacer sequence with complementarity to an endogenous target gene encoding an HD-Zip protein. In some embodiments, an endogenous HD-Zip gene to which a spacer sequence of the guide nucleic acid shares complementarity may (a) comprise a sequence having at least 80% sequence identity (e.g., at least about 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99 or 100% sequence identity) to the nucleotide sequence of any one of SEQ ID NO:69, 70, 88 or 89; (b) comprise a region having at least 80% sequence identity to any one of the nucleotide sequences of any one of SEQ ID NOs:72-85 or 91-105, optionally to any one of SEQ ID NOs:72-75, 76- 79, 80-83, 84-85, 91-94, 95-98, 99-102, or 103-105; (c) encode a polypeptide comprising a sequence having at least 80% sequence identity to any one of the amino acid sequences of SEQ ID NO:71 or SEQ ID NO:90, and/or (d) encode a region having at least 80% sequence identity to SEQ ID NOs:86, 87, 106, 107 or 108, optionally wherein the sequence identity of (a), (b), (c) and/or (d) may be at least 85%, or at least 90%, or it may be at least 95%, optionally the sequence identity may be 100%. In some embodiments, a spacer sequence useful with this invention can include, but is not limited to, a nucleotide sequence of any one of SEQ ID NOs:109, 110, 111 or 112, or reverse complement thereof, or a combination thereof. In some embodiments, the endogenous target gene is a HD-Zip II gene, optionally a HD-Zipl7-1 gene and/or HD-Zip 17-2 gene. The editing system may be used to generate a mutation in the endogenous target gene encoding a HD-Zip protein. In some embodiments, the mutation is a non-natural mutation.

In some embodiments, a plant cell is provided that comprises at least one mutation within a HD-Zip gene, wherein the mutation is a substitution, an insertion or a deletion that is introduced using an editing system that comprises a nucleic acid binding domain that binds to a target site within the HD-Zip gene, optionally wherein the endogenous HD-Zip gene: (a) comprises a sequence having at least 80% sequence identity (e.g., at least about 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99 or 100% sequence identity) to the nucleotide sequence of any one of SEQ ID NO:69, 70, 88 or 89; (b) comprises a region having at least 80% sequence identity to any one of the nucleotide sequences of any one of SEQ ID NOs:72-85 or 91-105, optionally to any one of SEQ ID NOs:72-75, 76-79, 80-83, 84-85, 91- 94, 95-98, 99-102, or 103-105; (c) encodes a polypeptide comprising a sequence having at least 80% sequence identity to any one of the amino acid sequences of SEQ ID NO:71 or SEQ ID NO:90, and/or (d) encodes a region having at least 80% sequence identity to SEQ ID NOs:86, 87, 106, 107 or 108, optionally wherein the sequence identity of (a), (b), (c) and/or (d) may be at least 85%, or at least 90%, or it may be at least 95%, optionally the sequence identity may be 100%. In some embodiments, the substitution, insertion, or deletion within a. HD-Zip gene results in a dominant negative allele. In some embodiments, the mutation is a point mutation. In some embodiments, the target site is within a region of the HD-Zip gene, the region comprising a sequence having at least 80% sequence identity (e.g., about 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 99.5, 99.6, 99.7, 99.8, 99.9, or 100% sequence identity) to the nucleotide sequence of any one of SEQ ID NOs:72-85 or 91- 105. In some embodiments, the editing system further comprises a nuclease, the nucleic acid binding domain binds to a target site within a sequence having at least 80% sequence identity to the nucleotide sequence of any one of SEQ ID NOs:72-85 or 91-105, and the at least one mutation within a HD-Zip gene is made following cleavage by the nuclease. In some embodiments, the HD-Zip gene of the plant cell that comprises at least one mutation is a HD- Zip II gene, optionally a HD-Zip 17-1 gene and/or a HD-Zip 17-2 gene. In some embodiments, the HD-Zip II gene comprises a sequence having at least 80% sequence identity to any one of the nucleotide sequences of 69, 70, 88, or 89 or encodes a sequence having at least 80% sequence identity to the amino acid sequence of SEQ ID NO:71 or SEQ ID NO:90. In some embodiments, the at least one mutation is an in-frame deletion that results in a mutated HD-Zip polypeptide, optionally results in a HD-Zip polypeptide with a deletion within the Ethyleneresponsive element binding factor-associated Amphiphilic Repression (EAR) motif or a deleted EAR motif (e.g., a portion or all of the EAR motif is absent from the mutated HD-Zip polypeptide). In some embodiments, the mutation may be a non-natural mutation.

In some embodiments, the least one mutation within a HD-Zip gene in a plant cell may result in a modification of the ability of the encoded HD-Zip polypeptide to regulate gene expression, optionally wherein the HD-Zip polypeptide exhibits reduced or no ability to repress gene expression. In some embodiments, the methods of the present invention may result in an HD-Zip gene in which HD-Zip polypeptide comprises a mutated or no EAR motif. Thus, while not wishing to be bound by any particular theory, a HD-Zip polypeptide encoded by a HD-Zip gene mutated as described herein may comprises a mutation in the EAR motif that may reduce or eliminate the ability of the encoded HD-Zip polypeptide to negatively regulate downstream genes.

In some embodiments, a mutated HD-Zip gene that is comprised in a plant cell may have at least 90% sequence identity (optionally the sequence identity may be at least 85%, or at least 90%, or it may be at least 95%, optionally the sequence identity may be 100%) to SEQ ID NO: 113 and/or encode a mutated HD-Zip polypeptide comprising an amino acid sequence having at least 90% sequence identity to SEQ ID NO: 115.

In some embodiments, a plant cell or plant part comprising a mutated HD-Zip gene as described herein may be regenerated into a plant comprising the mutated HD-Zip gene, optionally comprising a mutated HD-Zip polypeptide. In some embodiments, a plant part or plant cell comprising a mutated HD-Zip gene as described herein is not regenerated into a plant.

Also provided herein is a method of providing a plurality of plants (e.g., soybean plants) having one or more improved yield traits, the method comprising planting two or more plants of the invention (e.g., 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 100, 200, 300, 400, 500, 1000, 2000, 3000, 400, 5000, or 10,000 or more plants comprising the one or more mutations (e.g., non-natural mutations) in one or more HD-Zip genes and having one or more improved yield traits in a growing area, thereby providing a plurality of plants having one or more improved yield traits as compared to a plurality of control plants devoid of the mutation, optionally wherein the improved yield traits may be increased seed number (e.g., grain number), increased seed weight (e.g., grain weight; 100-seed weight), increased number of pods per plant, modified flowering time (e.g., an earlier time of flowering), shorter stature, decreased number of nodes and/or decreased branching. A growing area can be any area in which a plurality of plants can be planted together, including, but not limited to, a field (e.g., a cultivated field, an agricultural field), a growth chamber, a greenhouse, a recreational area, a lawn, and/or a roadside, and the like.

In some embodiments, a method of producing/breeding a transgene-free edited plant is provided, the method comprising: crossing a plant of the present invention (e.g., a plant comprising a mutation in a HD-Zip gene and exhibiting a phenotype of increased seed number (e.g., grain number), increased seed weight (e.g., grain weight), increased number of pods per plant, modified flowering time (e.g., an earlier time of flowering), shorter stature, decreased number of nodes and/or decreased branching with a transgene-free plant, thereby introducing the at least one mutation (e.g., one or more mutations) into the plant that is transgene-free (e.g., into progeny plants); and selecting a progeny plant that comprises the at least one mutation and is transgene-free, thereby producing a transgene-free edited (e.g., base edited) plant. In some embodiments, the at least one mutation may be a non-natural mutation.

In some embodiments, the present invention provides a method of creating a mutation in an endogenous HD-Zip gene in a plant, comprising: (a) targeting a gene editing system to a portion of the HD-Zip gene that (i) comprises a sequence having at least 80% sequence identity (e.g., at least about 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99 or 100% sequence identity) to the nucleotide sequence of any one of SEQ ID NO:69, 70, 88 or 89; (ii) comprises a region having at least 80% sequence identity to any one of the nucleotide sequences of SEQ ID NOs:72-85 or 91-105, optionally to any one of SEQ ID NOs:72-75, 76- 79, 80-83, 84-85, 91-94, 95-98, 99-102, and/or 103-105; (iii) encodes a polypeptide comprising a sequence having at least 80% sequence identity to the amino acid sequence of SEQ ID NO:71 or SEQ ID NO:90, and/or (iv) encodes a region having at least 80% sequence identity to SEQ ID NOs:86, 87, 106, 107 or 108, optionally wherein the sequence identity of (i), (ii), (iii) and/or (iv) may be at least 85%, or at least 90%, or it may be at least 95%, optionally the sequence identity may be 100%; and (b) selecting a plant that comprises a modification located in a region of the HD-Zip gene having at least 80% sequence identity to any one of the nucleic acids of SEQ ID NOs:72-85 or 91-105, optionally to any one of SEQ ID NOs:72-75, 76-79, 80-83, 84-85, 91-94, 95-98, 99-102, and/or 103-105. In some embodiments, the mutation that is created results in a nucleic acid having at least 90% sequence identity to SEQ ID NO: 113 and/or results in a polypeptide having at least 90% sequence identity to SEQ ID NO: 115.

In some embodiments, a method of generating variation in a region of a HD-Zip gene, comprising: introducing an editing system into a plant cell, wherein the editing system is targeted to a region of a HD-Zip gene that encodes a HD-Zip polypeptide, and contacting the region of the HD-Zip gene with the editing system, thereby introducing a mutation into the HD-Zip gene and generating variation in the HD-Zip gene of the plant cell. In some embodiments, the HD-Zip gene: (a) comprises a nucleotide sequence having at least 80% sequence identity (e.g., at least about 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99 or 100% sequence identity) to the nucleotide sequence of any one of SEQ ID NOs:69, 70, 88, or 89; (b) comprises a region of consecutive nucleotides having at least 80% identity to any one of SEQ ID NOs:72-85 or 91-105, optionally to any one of SEQ ID NOs:72-75, 76-79, 80-83, 84-85, 91-94, 95-98, 99-102, or 103-105; (c) encodes a polypeptide comprising a sequence having at least 80% sequence identity to the amino acid sequence of SEQ ID NO:71 or SEQ ID NQ:90; and/or (d) encodes a polypeptide comprising a region of consecutive amino acid residues having at least 90% sequence identity to any one of SEQ ID NOs:86, 87, 106, 107, or 108, optionally wherein the sequence identity of (a), (b), (c) and/or (d) may be at least 85%, or at least 90%, or it may be at least 95%, optionally the sequence identity may be 100%. In some embodiments, contacting the region of the endogenous HD- Zip gene in the plant cell with the editing system produces a plant cell comprising in its genome an edited endogenous HD-Zip gene, the method further comprising (a) regenerating a plant from the plant cell; (b) selfing the plant to produce progeny plants (El); (c) assaying the progeny plants of (b) for increased seed number (e.g., grain number), increased seed weight (e.g., grain weight, 100-seed weight), increased number of pods per plant, modified flowering time (e.g., an earlier time of flowering), shorter stature, decreased number of nodes and/or decreased branching; and (d) selecting the progeny plants exhibiting increased seed number (e.g., grain number), increased seed weight (e.g., grain weight), increased number of pods per plant, modified flowering time (e.g., an earlier time of flowering), shorter stature, decreased number of nodes and/or decreased branching as compared to a control plant. In some embodiments, the method may further comprise (e) selfing the selected progeny plants of (d) to produce progeny plants (E2); (f) assaying the progeny plants of (e) for increased seed number (e.g., grain number), increased seed weight (e.g., grain weight), increased number of pods per plant, modified flowering time (e.g., an earlier time of flowering), shorter stature, decreased number of nodes and/or decreased branching; and (g) selecting the progeny plants exhibiting increased seed number (e.g., grain number), increased seed weight (e.g., grain weight), increased number of pods per plant, modified flowering time (e.g., an earlier time of flowering), shorter stature, decreased number of nodes and/or decreased branching to produce selected progeny plants exhibiting increased seed number (e.g., grain number), increased seed weight (e.g., grain weight), increased number of pods per plant, modified flowering time (e.g., an earlier time of flowering), shorter stature, decreased number of nodes and/or decreased branching as compared to a control plant, optionally repeating (e) through (g) one or more additional times.

In some embodiments, a mutated HD-Zip gene produced by the methods of the invention may comprise a sequence having at least 90% sequence identity to a mutated HD-Zip gene having a nucleotide sequence of SEQ ID NO: 113 and/or encode a modified HD-Zip polypeptide, the modified HD-Zip polypeptide comprising an amino acid sequence having at least 90% sequence identity to SEQ ID NO: 115.

In some embodiments, a plant may comprise one or more (e.g., at least one, e.g., 1, 2, 3, 4, 5, 6 or more) mutated HD-Zip genes as described herein, optionally wherein the edited plant may be heterozygous or homozygous, or a combination thereof, for one or more mutation(s) at any given allele. In some embodiments, a plant may be heterozygous and comprise a mutation in one allele of a. HD-Zip gene at a particular locus in its genome and be wild type at the same locus in the second copy of the same gene. In some embodiments, in a specific HD-Zip locus, a plant may comprise a different mutation at each allele for a particular HD-Zip gene or may comprise the same mutation at each allele.

In some embodiments, the invention provides a method of detecting a mutant HD-Zip gene (a mutation in an endogenous HD-Zip gene) in a plant comprising detecting in the genome of the plant a HD-Zip gene having at least one mutation within a region having at least 80% sequence identity (e.g., at least about 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99 or 100% sequence identity, optionally the sequence identity may be at least 85%, or at least 90%, or it may be at least 95%, optionally the sequence identity may be 100%) to any one of the nucleotide sequences of SEQ ID NOs:72-85 or 91-105, optionally at least 80% sequence identity to any one of SEQ ID NOs:72-75, 76-79, 80-83, 84-85, 91-94, 95-98, 99-102, and/or 103-105. In some embodiments, the mutant HD-Zip gene that is detected may comprise a mutated nucleotide sequence having at least 90% sequence identity to a mutated HD-Zip gene having a nucleotide sequence of SEQ ID NO: 113, optionally wherein the mutation that is detected is a non-natural mutation. In some embodiments, a mutated HD-Zip polypeptide as described herein may be detected, the mutated HD-Zip polypeptide having at least 90% sequence identity to SEQ ID NO: 115, optionally wherein the mutation that is detected is a non-natural mutation.

In some embodiments, a method of detecting a mutant HD-Zip gene (a mutation in an endogenous HD-Zip gene) is provided, the method comprising detecting in the genome of the plant a HD-Zip gene having at least one mutation in a region having at least 80% sequence identity to any one of the nucleotide sequences of NOs:72-85 or 91-105, optionally at least 80% sequence identity to any one of SEQ ID NOs:72-75, 76-79, 80-83, 84-85, 91-94, 95-98, 99-102, and/or 103-105.

In some embodiments, a method of detecting a mutant HD-Zip gene (a mutation in an endogenous HD-Zip gene) is provided, the method comprising detecting in the genome of the plant a HD-Zip gene having at least one mutation in a nucleic acid encoding the amino acid sequence of SEQ ID NO:71 or SEQ ID NO:90, optionally wherein the mutation is a modification of the EAR motif of the HD-Zip polypeptide, optionally a deletion of a portion or of the entire EAR motif. In some embodiments, the mutation results in a HD-Zip polypeptide modified in its ability to regulate gene expression, optionally wherein the ability of the mutated HD-Zip polypeptide to regulate gene expression is reduced.

In some embodiments, a method of detecting a mutation in an endogenous HD-Zip gene is provided, comprising detecting in the genome of a plant a mutated HD-Zip gene. In some embodiments, the mutated HD-Zip gene that is detected comprises a sequence having at least 90% sequence identity to SEQ ID NO: 113, optionally wherein the mutation that is detected in the HD-Zip gene comprises is a non-natural mutation.

In some embodiments, a method for editing a specific site in the genome of a plant cell is provided, the method comprising: cleaving, in a site-specific manner, a target site within an endogenous HD-Zip gene in the plant cell, the endogenous HD-Zip gene: (a) comprising a nucleotide sequence having at least 80% sequence identity (e.g., at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or more (e.g., 99.1, 99.2, 99.3, 99.4, 99.5, 99.6, 99.7, 99.8, 99.9, or 100% sequence identity) to SEQ ID NOs:69, 70, 88, or 89, (b) comprising a region having at least 80% sequence identity to any one of the nucleotide sequences of SEQ ID NOs:72-85 or 91-105, (c) encoding an amino acid sequence having at least 80% sequence identity to SEQ ID NO:71 or SEQ ID NO:90, and/or (d) encoding a region having at least 80% sequence identity to SEQ ID NOs:86, 87, 106, 107 or 108, optionally wherein the sequence identity of (a), (b), (c) and/or (d) may be at least 85%, or at least 90%, or it may be at least 95%, optionally the sequence identity may be 100%, thereby generating an edit in the endogenous HD-Zip gene of the plant cell and producing a plant cell comprising the edit in the endogenous HD-Zip gene. In some embodiments, the edit may be located in a region of the endogenous HD-Zip gene, the region comprising at least 80% sequence identity (e.g., at least about 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99 or 100% sequence identity, optionally at least 90% or 95%, optionally 100%) to any one of SEQ ID NOs:72-85 and/or 91-105, optionally at least 80% sequence identity to any one of SEQ ID NOs:72-75, 76-79, 80-83, 84-85, 91-94, 95-98, 99-102, and/or 103-105; and/or encodes a HD-Zip polypeptide comprising a region of consecutive amino acid residues having at least 90% sequence identity to any one of SEQ ID NOs:86, 87, 106, 107, or 108. In some embodiments, the edit results in a non-natural mutation. In some embodiments, the edit results in a deletion, substitution, or insertion, optionally resulting in a dominant negative allele. In some embodiments, the edit results in an in-frame deletion, optionally resulting in a HD-Zip polypeptide having a modified EAR motif. In some embodiments, the mutation in the EAR motif results in a HD-Zip polypeptide having altered function, e.g., reduced ability or no ability to regulate gene expression. In some embodiments, the target site comprises a sequence having at least 80% sequence identity to the nucleotide sequence of any one of SEQ ID NOs:72-85 or 91-105, optionally at least 80% sequence identity to any one of SEQ ID NOs:72-75, 76-79, 80-83, 84-85, 91-94, 95-98, 99- 102, and/or 103-105. In some embodiments, the edit results in a mutated HD-Zip gene having at least 90% sequence identity (e.g., at least 90, 91, 92, 93, 94, 95, 96, 97, 98, 99 or 100%, optionally the sequence identity may be at least 95%, optionally the sequence identity may be 100%) to SEQ ID NO: 113.

In some embodiments, a method of editing may further comprise regenerating a plant from the plant cell comprising the edit in the endogenous HD-Zip gene, thereby producing a plant comprising the edit in its endogenous HD-Zip gene and having a phenotype of increased seed number (e.g., grain number), increased seed weight (e.g., grain weight), increased number of pods per plant, modified flowering time (e.g., an earlier time of flowering), shorter stature, decreased number of nodes and/or decreased branching when compared to a control plant that does not comprise the edit, optionally wherein the plant exhibits increased yield when compared to a control plant that does not comprise the edit.

In some embodiments, a method for making a plant is provided, comprising: (a) contacting a population of plant cells comprising an endogenous HD-Zip gene with a nuclease linked to a nucleic binding domain (e.g., editing system) that binds to a target site within the endogenous HD-Zip gene, wherein the endogenous gene (i) comprises a nucleotide sequence having at least 80% sequence identity (e.g., at least about 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99 or 100% sequence identity) to any one of SEQ ID NOs:69, 70, 88, or 89, (ii) comprises a region of consecutive nucleotides having at least 80% identity to any one of SEQ ID NOs:72-85 or 91-105, optionally at least 80% sequence identity to any one of SEQ ID NOs:72-75, 76-79, 80-83, 84-85, 91-94, 95-98, 99-102, and/or 103-105, (iii) encodes a polypeptide comprising a sequence having at least 80% sequence identity to SEQ ID NO:71 or SEQ ID NQ:90, and/or (iv) encodes a polypeptide comprising a region of consecutive amino acid residues having at least 90% sequence identity to any one of SEQ ID NOs:86, 87, 106, 107, or 108, optionally wherein the sequence identity of (i), (ii), (iii) and/or (iv) may be at least 85%, or at least 90%, or it may be at least 95%, optionally the sequence identity may be 100%; (b) selecting a plant cell from the population of plant cells in which the endogenous HD-Zip gene has been mutated, thereby producing a plant cell comprising a mutation in the endogenous HD-Zip gene; and (c) growing the selected plant cell into a plant comprising the mutation in the endogenous HD-Zip gene. In some embodiments, the mutation in an endogenous HD-Zip gene may result in a mutated HD-Zip gene having at least 90% sequence identity (e.g., at least 90, 91, 92, 93, 94, 95, 96, 97, 98, 99 or 100%, optionally the sequence identity may be at least 95%, optionally the sequence identity may be 100%) to SEQ ID NO: 113 and/or may result in a mutated HD-Zip polypeptide, the mutated HD-Zip polypeptide having at least 90% sequence identity to the amino acid sequence of SEQ ID NO:115

In some embodiments, a method for increasing seed number (e.g., grain number), increasing seed weight (e.g., grain weight), increasing the number of pods per node, increasing the number of pods per plant, modifying the flowering time (e.g., an earlier time of flowering), shortening the stature, decreased number of nodes and/or decreased branching in a plant, comprising (a) contacting a plant cell comprising an endogenous HD-Zip gene with a nuclease linked to a nucleic binding domain (e.g., editing system) that binds to a target site within the endogenous HD-Zip gene, wherein the endogenous gene (i) comprises a nucleotide sequence having at least 80% sequence identity (e.g., at least about 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99 or 100% sequence identity) to the nucleotide sequence of any one of SEQ ID NOs:69, 70, 88, or 89, (ii) comprises a region of consecutive nucleotides having at least 80% identity to any one of SEQ ID NOs:72-85 or 91-105, optionally at least 80% sequence identity to any one of SEQ ID NOs:72-75, 76-79, 80-83, 84-85, 91-94, 95-98, 99-102, and/or 103-105, (iii) encodes a polypeptide comprising a sequence having at least 80% sequence identity to SEQ ID NO:71 or SEQ ID NO:90, and/or (iv) encodes a polypeptide comprising a region of consecutive amino acid residues having at least 90% sequence identity to any one of SEQ ID NOs:86, 87, 106, 107, or 108, optionally wherein the sequence identity of (i), (ii), (iii) and/or (iv) may be at least 85%, or at least 90%, or it may be at least 95%, optionally the sequence identity may be 100%; and (b) growing the plant cell comprising the mutation in the endogenous HD-Zip gene into a plant, thereby producing a plant having the mutated HD-Zip gene and which exhibits the phenotype of increased seed number (e.g., grain number), increased seed weight (e.g., grain weight), increased number of pods per plant, modified flowering time (e.g., an earlier time of flowering), shorter stature, decreased number of nodes and/or decreased branching. In some embodiments, the plant regenerated from the plant cell comprises a mutated HD-Zip gene having at least 90% sequence identity (e.g., at least 90, 91, 92, 93, 94, 95, 96, 97, 98, 99 or 100%, optionally the sequence identity may be at least 95%, optionally the sequence identity may be 100%) to SEQ ID NO: 113 and/or comprises a mutated HD-Zip polypeptide having at least 90% sequence identity to SEQ ID NO:115

In some embodiments, a method is provided for producing a plant or part thereof comprising at least one cell (e.g., one or more cells) having a mutated endogenous HD-Zip gene, the method comprising contacting a target site within an endogenous HD-Zip gene in the plant or plant part with a nuclease comprising a cleavage domain and a nucleic acid binding domain, wherein the nucleic acid binding domain binds to a target site within the endogenous HD-Zip gene, wherein the endogenous HD-Zip gene (a) comprises a nucleotide sequence having at least 80% sequence identity (e.g., at least about 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99 or 100% sequence identity) to the nucleotide sequence of any one of SEQ ID NOs:69, 70, 88, or 89; (b) comprises a region of consecutive nucleotides having at least 80% identity to any one of SEQ ID NOs:72-85 or 91-105, optionally at least 80% sequence identity to any one of SEQ ID NOs:72-75, 76-79, 80-83, 84-85, 91-94, 95-98, 99-102, and/or 103-105; (c) encodes a polypeptide comprising a sequence having at least 80% sequence identity to SEQ ID NO:71 or SEQ ID NO:90; and/or (d) encodes a polypeptide comprising a region of consecutive amino acid residues having at least 90% sequence identity to any one of SEQ ID NOs:86, 87, 106, 107, or 108, optionally wherein the sequence identity of (a), (b), (c) and/or (d) may be at least 85%, or at least 90%, or it may be at least 95%, optionally the sequence identity may be 100%, thereby producing a plant or part thereof comprising at least one cell having a mutation in the endogenous HD-Zip gene. In some embodiments, the plant that is produced comprises a mutated HD-Zip gene having at least 90% sequence identity (e.g., at least 90, 91, 92, 93, 94, 95, 96, 97, 98, 99 or 100%, optionally the sequence identity may be at least 95%, optionally the sequence identity may be 100%) to SEQ ID NO: 113 and/or encode an amino acid sequence having at least 90% sequence identity to SEQ ID NO:115

Also provided herein is a method for producing a plant or part thereof comprising a mutated endogenous HD-Zip gene and exhibiting an improved yield trait (one or more improved yield traits), the method comprising contacting a target site within an endogenous HD-Zip gene in the plant or plant part with a nuclease comprising a cleavage domain and a nucleic acid binding domain, wherein the nucleic acid binding domain binds to a target site within the HD-Zip gene, wherein the HD-Zip gene (a) comprises a nucleotide sequence having at least 80% sequence identity (e.g., at least about 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99 or 100% sequence identity) to the nucleotide sequence of any one of SEQ ID NOs:69, 70, 88, or 89; (b) comprises a region of consecutive nucleotides having at least 80% identity to any one of SEQ ID NOs:72-85 or 91-105, optionally at least 80% sequence identity to any one of SEQ ID NOs:72-75, 76-79, 80-83, 84-85, 91-94, 95-98, 99- 102, and/or 103-105; (c) encodes a polypeptide comprising a sequence having at least 80% sequence identity to SEQ ID NO:71 or SEQ ID NO:90; and/or (d) encodes a polypeptide comprising a region of consecutive amino acid residues having at least 90% sequence identity to any one of SEQ ID NOs:86, 87, 106, 107, or 108, optionally wherein the sequence identity of (a), (b), (c) and/or (d) may be at least 85%, or at least 90%, or it may be at least 95%, optionally the sequence identity may be 100%, thereby producing the plant or part thereof comprising an endogenous HD-Zip gene having a mutation and exhibiting a phenotype of increased seed number (e.g., grain number), increased seed weight (e.g., grain weight, 100- seed weight), increased number of pods per plant, modified flowering time (e.g., an earlier time of flowering), shorter stature, decreased number of nodes and/or decreased branching. In some embodiments, the plant may further exhibit increased yield as compared to a control plant not comprising the mutation. In some embodiments, the method may produce a plant or part thereof comprising a mutated HD-Zip gene having at least 90% sequence identity (e.g., at least 90, 91, 92, 93, 94, 95, 96, 97, 98, 99 or 100%, optionally the sequence identity may be at least 95%, optionally the sequence identity may be 100%) to SEQ ID NO: 113 and/or encode an amino acid sequence having at least 90% sequence identity to SEQ ID NO: 115.

In some embodiments, a target site may be a region or within a region of a HD-Zip gene having at least 80% sequence identity (e.g., at least about 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99 or 100% sequence identity, optionally the sequence identity may be at least 85%, or may be at least 90% or it may be at least 95%, optionally the sequence identity may be 100%) to a nucleotide sequence of any one of SEQ ID NOs:72-85 and/or 91-105, optionally at least 80% sequence identity to any one of SEQ ID NOs:72-75, 76-79, 80-83, 84-85, 91-94, 95-98, 99-102, and/or 103-105 (e.g., at least about 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99 or 100% sequence identity, optionally the sequence identity may be at least 85%, or may be at least 90% or it may be at least 95%, optionally the sequence identity may be 100%).

In some embodiments, a nuclease useful with the invention may cleave an endogenous HD-Zip gene, thereby introducing a mutation into the endogenous HD-Zip gene. In some embodiments, the nuclease can include, but is not limited to a zinc finger nuclease, transcription activator-like effector nucleases (TALEN), endonuclease (e.g., Fokl) and/or a CRISPR-Cas effector protein. Likewise, a nucleic acid binding domain (e.g., DNA binding domain, RNA binding domain) useful with the invention may be any nucleic acid binding domain that may be utilized to edit/modify a target nucleic acid. Such nucleic acid binding domains include, but are not limited to, a zinc finger, transcription activator-like DNA binding domain (TAL), an argonaute and/or a CRISPR-Cas effector DNA binding domain. In some embodiments, a mutation may be a non-natural mutation. In some embodiments, the mutation may be a dominant negative mutation. In some embodiments, the mutation may be a deletion, optionally wherein the mutation may be an in-frame deletion. In some embodiments, the mutation may result in a mutated HD-Zip polypeptide having an in-frame deletion, optionally wherein the in-frame deletion results in a deletion of a portion or the entire Ethyleneresponsive element binding factor-associated Amphiphilic Repression (EAR) motif, wherein the mutated EAR motif comprises a mutation that alters its function as a regulator of gene expression.

In some embodiments, a plant or part thereof comprising at least one cell having a mutation in an endogenous HD-Zip gene as described herein comprises a sequence having at least 90% identity to sequence identity to SEQ ID NO: 113 and/or a modified HD-Zip polypeptide, the modified HD-Zip polypeptide comprising an amino acid sequence having at least 90% sequence identity to SEQ ID NO: 115. In some embodiments, the plant or part thereof of this invention comprises a mutated endogenous HD-Zip gene as described herein and has a phenotype of increased seed number (e.g., grain number), increased seed weight (e.g., grain weight), increased number of pods per plant, modified flowering time (e.g., an earlier time of flowering), shorter stature, decreased number of nodes and/or decreased branching when compared to a control plant that does not comprise the mutation, optionally wherein the plant exhibits increased yield when compared to a control plant. In some embodiments, a method of editing an endogenous HD-Zip gene in a plant or plant part is provided, the method comprising contacting a target site within an HD-Zip gene in the plant or part thereof with a cytosine base editing system comprising a cytosine deaminase and a nucleic acid binding domain that binds to a target site within the HD-Zip gene, wherein the HD-Zip gene (a) comprises a nucleotide sequence having at least 80% sequence identity (e.g., at least about 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99 or 100% sequence identity) to the nucleotide sequence of any one of SEQ ID NOs:69, 70, 88, or 89; (b) comprises a region of consecutive nucleotides having at least 80% identity to any one of SEQ ID NOs:72-85 or 91-105, optionally at least 80% sequence identity to any one of SEQ ID NOs:72-75, 76-79, 80-83, 84-85, 91-94, 95-98, 99-102, and/or 103-105; (c) encodes a polypeptide comprising a sequence having at least 80% sequence identity to SEQ ID NO:71 or SEQ ID NQ:90; and/or (d) encodes a polypeptide comprising a region of consecutive amino acid residues having at least 90% sequence identity to any one of SEQ ID NOs:86, 87, 106, 107, or 108, optionally wherein the sequence identity of (a), (b), (c) and/or (d) may be at least 85%, or at least 90%, or it may be at least 95%, optionally the sequence identity may be 100%, thereby editing the endogenous HD-Zip gene in the plant or part thereof and producing a plant or part thereof comprising at least one cell having a mutation in the endogenous HD-Zip gene. In some embodiments, the nucleic acid that is detected may comprise a non-natural mutation.

In some embodiments, a method of editing an endogenous HD-Zip gene in a plant or plant part is provided, the method comprising contacting a target site within an HD-Zip gene in the plant or part thereof with an adenosine base editing system comprising an adenosine deaminase and a nucleic acid binding domain that binds to a target site within the HD-Zip gene, wherein the HD-Zip gene (a) comprises a nucleotide sequence having at least 80% sequence identity (e.g., at least about 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99 or 100% sequence identity) to the nucleotide sequence of any one of SEQ ID NOs:69, 70, 88, or 89; (b) comprises a region of consecutive nucleotides having at least 80% identity to any one of SEQ ID NOs:72-85 or 91-105, optionally at least 80% sequence identity to any one of SEQ ID NOs:72-75, 76-79, 80-83, 84-85, 91-94, 95-98, 99-102, and/or 103-105;

(c) encodes a polypeptide comprising a sequence having at least 80% sequence identity to SEQ ID NO:71 or SEQ ID NQ:90; and/or (d) encodes a polypeptide comprising a region of consecutive amino acid residues having at least 90% sequence identity to any one of SEQ ID NOs:86, 87, 106, 107, or 108, optionally wherein the sequence identity of (a), (b), (c) and/or

(d) may be at least 85%, or at least 90%, or it may be at least 95%, optionally the sequence identity may be 100%, thereby editing the endogenous HD-Zip gene in the plant or part thereof and producing a plant or part thereof comprising at least one cell having a mutation in the endogenous HD-Zip gene. In some embodiments, the nucleic acid that is detected may comprise a non-natural mutation.

In some embodiments, a method is provided for modifying an endogenous HD-Zip gene in a plant or part thereof for increasing seed number (e.g., grain number), increasing seed weight (e.g., grain weight), increasing number of pods per plant, modifying flowering time (e.g., an earlier time of flowering), reducing stature, decreasing number of nodes and/or decreasing branching in the plant or part thereof, the method comprising modifying a target site within the endogenous HD-Zip gene in the plant or a part thereof, wherein the endogenous HD-Zip gene, (a) comprises a sequence having at least 80% sequence identity (e.g., at least about 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99 or 100% sequence identity) to the nucleotide sequence of any one of SEQ ID NO:69, 70, 88 or 89; (b) comprises a region having at least 80% sequence identity to any one of the nucleotide sequences of any one of SEQ ID NOs:72-85 or 91-105, optionally to any one of SEQ ID NOs:72-75, 76-79, 80-83, 84-85, 91-94, 95-98, 99-102, or 103-105; (c) encodes a polypeptide comprising a sequence having at least 80% sequence identity to any one of the amino acid sequences of SEQ ID NO:71 or SEQ ID NO:90, and/or (d) encodes a region having at least 80% sequence identity to SEQ ID NOs:86, 87, 106, 107 or 108, optionally wherein the sequence identity of (a), (b), (c) and/or (d) may be at least 85%, or at least 90%, or it may be at least 95%, optionally the sequence identity may be 100%, thereby modifying the endogenous HD-Zip gene and increasing seed number (e.g., grain number), increasing seed weight (e.g., grain weight), increasing number of pods per plant, modifying flowering time (e.g., an earlier time of flowering), reducing stature, decreasing number of nodes and/or decreasing branching in the plant or part thereof. In some embodiments, the target site is a region of the HD-Zip gene having at least 80% sequence identity to a nucleotide sequence of any one of SEQ ID NOs:72- 85 and/or 91-105, optionally wherein the sequence identity may be at least 85%, or at least 90%, or it may be at least 95%, optionally the sequence identity may be 100%.

In some embodiments, a mutation in an endogenous HD-Zip gene edited as described herein results in a mutated HD-Zip gene having at least 90% sequence identity to the nucleotide sequence of SEQ ID NO: 113. In some embodiments, a mutation in an endogenous HD-Zip gene edited as described herein results in a non-natural mutation.

In some embodiments, a method of producing a plant comprising a mutation in an endogenous HD-Zip gene and at least one polynucleotide of interest is provided, the method comprising crossing a plant of the invention comprising at least one mutation in an endogenous HD-Zip gene (a first plant) with a second plant that comprises the at least one polynucleotide of interest to produce progeny plants; and selecting progeny plants comprising at least one mutation in the HD-Zip gene and the at least one polynucleotide of interest, thereby producing the plant comprising a mutation in an endogenous HD-Zip gene and at least one polynucleotide of interest.

In some embodiments, the present invention provides a method of producing a plant comprising a mutation in an endogenous HD-Zip gene and at least one polynucleotide of interest, the method comprising introducing at least one polynucleotide of interest into a plant of the invention comprising at least one mutation in an endogenous HD-Zip gene, thereby producing a plant comprising at least one mutation in a HD-Zip gene and at least one polynucleotide of interest.

In some embodiments, a method of producing a plant comprising a mutation in an endogenous a HD-Zip gene and exhibiting a phenotype of improved yield traits, improved plant architecture and/or improved defense traits is provided, the method comprising crossing a first plant, which is the plant of the present invention (e.g., comprising at least one mutation in an endogenous HD-Zip gene), with a second plant that exhibits a phenotype of improved yield traits, improved plant architecture and/or improved defense traits; and selecting progeny plants comprising the mutation in the a HD-Zip gene and a phenotype of improved yield traits, improved plant architecture and/or improved defense traits, thereby producing the plant comprising a mutation in an endogenous a. HD-Zip gene and exhibiting a phenotype of improved yield traits, improved plant architecture and/or improved defense traits as compared to a control plant.

Further provided is a method of controlling weeds in a container (e.g., pot, or seed tray and the like), a growth chamber, a greenhouse, a field, a recreational area, a lawn, or on a roadside, the method comprising applying an herbicide to one or more (a plurality) plants of the present invention (e.g., comprising at least one mutation in an endogenous HD-Zip gene) growing in a container, a growth chamber, a greenhouse, a field, a recreational area, a lawn, or on a roadside, thereby controlling the weeds in the container, the growth chamber, the greenhouse, the field, the recreational area, the lawn, or on the roadside in which the one or more plants are growing.

In some embodiments, a method of reducing insect predation on a plant is provided, the method comprising applying an insecticide to one or more plants of the invention (e.g., comprising at least one mutation in an endogenous HD-Zip gene), thereby reducing insect predation on the one or more plants.

In some embodiments, a method of reducing fungal disease on a plant is provided, the method comprising applying a fungicide to one or more plants of the invention (e.g., comprising at least one mutation in an endogenous HD-Zip gene), thereby reducing fungal disease on the one or more plants, optionally wherein the one or more plants are growing in a container, a growth chamber, a greenhouse, a field, a recreational area, a lawn, or on a roadside.

In some embodiments, a method of reducing bacterial disease on a plant is provided, the method comprising applying a bactericide to one or more plants of the invention (e.g., comprising at least one mutation in an endogenous CT2 gene), thereby reducing bacterial disease on the one or more plants, optionally wherein the one or more plants are growing in a container, a growth chamber, a greenhouse, a field, a recreational area, a lawn, or on a roadside.

A polynucleotide of interest may be any polynucleotide that can confer a desirable phenotype or otherwise modify the phenotype or genotype of a plant. In some embodiments, a polynucleotide of interest may include, but is not limited to, a polynucleotide that confers herbicide tolerance, insect resistance, nematode resistance, disease resistance, increased yield, increased nutrient use efficiency or abiotic stress resistance.

Thus, plants or plant cultivars which are to be treated with preference in accordance with the invention include all plants which, through genetic modification, received genetic material which imparts particular advantageous useful properties ("traits") to these plants. Examples of such properties are better plant growth, vigor, stress tolerance, standability, lodging resistance, nutrient uptake, plant nutrition, and/or yield, in particular improved growth, increased tolerance to high or low temperatures, increased tolerance to drought or to levels of water or soil salinity, enhanced flowering performance, easier harvesting, accelerated ripening, higher yields, higher quality and/or a higher nutritional value of the harvested products, better storage life and/or processability of the harvested products.

Further examples of such properties are an increased resistance against animal and microbial pests, such as against insects, arachnids, nematodes, mites, slugs and snails owing, for example, to toxins formed in the plants. Among DNA sequences encoding proteins which confer properties of tolerance to such animal and microbial pests, in particular insects, mention will particularly be made of the genetic material from Bacillus thuringiensis encoding the Bt proteins widely described in the literature and well known to those skilled in the art. Mention will also be made of proteins extracted from bacteria such as Photorhabdus (WO97/17432 and WO98/08932). In particular, mention will be made of the Bt Cry or VIP proteins which include the CrylA, CrylAb, CrylAc, CryllA, CrylllA, CryIIIB2, Cry9c Cry2Ab, Cry3Bb and CrylF proteins or toxic fragments thereof and also hybrids or combinations thereof, especially the CrylF protein or hybrids derived from a CrylF protein (e.g. hybrid CrylA-CrylF proteins or toxic fragments thereof), the CrylA-type proteins or toxic fragments thereof, preferably the CrylAc protein or hybrids derived from the CrylAc protein (e.g. hybrid CrylAb-CrylAc proteins) or the CrylAb or Bt2 protein or toxic fragments thereof, the Cry2Ae, Cry2Af or Cry2Ag proteins or toxic fragments thereof, the CrylA.105 protein or a toxic fragment thereof, the VIP3Aal9 protein, the VIP3Aa20 protein, the VIP3A proteins produced in the COT202 or COT203 cotton events, the VIP3 Aa protein or a toxic fragment thereof as described in Estruch et al. (1996), Proc Natl Acad Sci US A. 28;93(11):5389-94, the Cry proteins as described in WO2001/47952, the insecticidal proteins from Xenorhabdus (as described in WO98/50427), Serratia (particularly from S. entomophila) o Photorhabdus species strains, such as Tc- proteins from Photorhabdus as described in WO98/08932. Also any variants or mutants of any one of these proteins differing in some amino acids (1-10, preferably 1-5) from any of the above named sequences, particularly the sequence of their toxic fragment, or which are fused to a transit peptide, such as a plastid transit peptide, or another protein or peptide, is included herein.

Another and particularly emphasized example of such properties is conferred tolerance to one or more herbicides, for example imidazolinones, sulphonylureas, glyphosate or phosphinothricin. Among DNA sequences encoding proteins (i.e., polynucleotides of interest) which confer properties of tolerance to certain herbicides on the transformed plant cells and plants, mention will be particularly be made to the bar or PAT gene or the Streptomyces coelicolor gene described in WO2009/152359 which confers tolerance to glufosinate herbicides, a gene encoding a suitable EPSPS (5-Enolpyruvylshikimat-3-phosphat-Synthase) which confers tolerance to herbicides having EPSPS as a target, especially herbicides such as glyphosate and its salts, a gene encoding glyphosate-n-acetyltransferase, or a gene encoding glyphosate oxidoreductase. Further suitable herbicide tolerance traits include at least one ALS (acetolactate synthase) inhibitor (e.g., W02007/024782), a mutated Arabidopsis ALS/AHAS gene (e.g., U.S. Patent 6,855,533), genes encoding 2,4-D-monooxygenases conferring tolerance to 2,4-D (2,4- dichlorophenoxyacetic acid) and genes encoding Dicamba monooxygenases conferring tolerance to dicamba (3,6-dichloro-2- methoxybenzoic acid). Further examples of such properties are increased resistance against phytopathogenic fungi, bacteria and/or viruses owing, for example, to systemic acquired resistance (SAR), systemin, phytoalexins, elicitors and also resistance genes and correspondingly expressed proteins and toxins.

Particularly useful transgenic events in transgenic plants or plant cultivars which can be treated with preference in accordance with the invention include Event 531/ PV-GHBK04 (cotton, insect control, described in W02002/040677), Event 1143-14A (cotton, insect control, not deposited, described in WO2006/128569); Event 1143-5 IB (cotton, insect control, not deposited, described in W02006/128570); Event 1445 (cotton, herbicide tolerance, not deposited, described in US-A 2002-120964 or W02002/034946); Event 17053 (rice, herbicide tolerance, deposited as PTA-9843, described in WO2010/117737); Event 17314 (rice, herbicide tolerance, deposited as PTA-9844, described in WO2010/117735); Event 281-24-236 (cotton, insect control - herbicide tolerance, deposited as PTA-6233, described in W02005/103266 or US-A 2005-216969); Event 3006-210-23 (cotton, insect control - herbicide tolerance, deposited as PTA-6233, described in US-A 2007-143876 orW02005/103266); Event 3272 (corn, quality trait, deposited as PTA-9972, described in W02006/098952 or US-A 2006-230473); Event 33391 (wheat, herbicide tolerance, deposited as PTA-2347, described in W02002/027004), Event 40416 (corn, insect control - herbicide tolerance, deposited as ATCC PTA-11508, described in WO 11/075593); Event 43A47 (com, insect control - herbicide tolerance, deposited as ATCC PTA-11509, described in WO201 1/075595); Event 5307 (corn, insect control, deposited as ATCC PTA-9561, described in W02010/077816); Event ASR-368 (bent grass, herbicide tolerance, deposited as ATCC PTA-4816, described in US-A 2006-162007 or W02004/053062); Event B16 (corn, herbicide tolerance, not deposited, described in US-A 2003-126634); Event BPS-CV127- 9 (soybean, herbicide tolerance, deposited as NCIMB No. 41603, described in W02010/080829); Event BLR1 (oilseed rape, restoration of male sterility, deposited as NCIMB 41193, described in W02005/074671), Event CE43-67B (cotton, insect control, deposited as DSM ACC2724, described in US-A 2009-217423 or WO2006/128573); Event CE44-69D (cotton, insect control, not deposited, described in US-A 2010- 0024077); Event CE44-69D (cotton, insect control, not deposited, described in WO2006/128571); Event CE46-02A (cotton, insect control, not deposited, described in WO2006/128572); Event COT102 (cotton, insect control, not deposited, described in US-A 2006-130175 or W02004/039986); Event COT202 (cotton, insect control, not deposited, described in US-A 2007-067868 or W02005/054479); Event COT203 (cotton, insect control, not deposited, described in W02005/054480); ); Event DAS21606-3 / 1606 (soybean, herbicide tolerance, deposited as PTA-11028, described in WO2012/033794), Event DAS40278 (com, herbicide tolerance, deposited as ATCC PTA- 10244, described in WO2011/022469); Event DAS-44406-6 / pDAB8264.44.06.1 (soybean, herbicide tolerance, deposited as PTA-11336, described in WO2012/075426), Event DAS- 14536-7 /pDAB8291.45.36.2 (soybean, herbicide tolerance, deposited as PTA-11335, described in WO2012/075429), Event DAS-59122-7 (corn, insect control - herbicide tolerance, deposited as ATCC PTA 11384, described in US-A 2006-070139); Event DAS-59132 (com, insect control - herbicide tolerance, not deposited, described in W02009/100188); Event DAS68416 (soybean, herbicide tolerance, deposited as ATCC PTA- 10442, described in WO201 1/066384 or WO2011/066360); Event DP-098140-6 (corn, herbicide tolerance, deposited as ATCC PTA-8296, described in US-A 2009- 137395 or WO 08/112019); Event DP-305423-1 (soybean, quality trait, not deposited, described in US-A 2008-312082 or W02008/054747); Event DP-32138-1 (corn, hybridization system, deposited as ATCC PTA- 9158, described in US-A 2009-0210970 or W02009/103049); Event DP-356043-5 (soybean, herbicide tolerance, deposited as ATCC PTA-8287, described in US-A 2010-0184079 or W02008/002872); Event EE-I (brinjal, insect control, not deposited, described in WO 07/091277); Event Fil 17 (com, herbicide tolerance, deposited as ATCC 209031, described in US-A 2006-059581 or WO 98/044140); Event FG72 (soybean, herbicide tolerance, deposited as PTA-11041, described in WO2011/063413), Event GA21 (corn, herbicide tolerance, deposited as ATCC 209033, described in US-A 2005-086719 or WO 98/044140); Event GG25 (corn, herbicide tolerance, deposited as ATCC 209032, described in US-A 2005-188434 or W098/044140); Event GHB 119 (cotton, insect control - herbicide tolerance, deposited as ATCC PTA-8398, described in W02008/151780); Event GHB614 (cotton, herbicide tolerance, deposited as ATCC PTA-6878, described in US-A 2010-050282 or W02007/017186); Event GJ11 (corn, herbicide tolerance, deposited as ATCC 209030, described in US-A 2005-188434 or W098/044140); Event GM RZ13 (sugar beet, vims resistance, deposited as NCIMB-41601, described in W02010/076212); Event H7-1 (sugar beet, herbicide tolerance, deposited as NCIMB 41158 or NCIMB 41159, described in US-A 2004-172669 or WO 2004/074492); Event JOPLIN1 (wheat, disease tolerance, not deposited, described in US-A 2008-064032); Event LL27 (soybean, herbicide tolerance, deposited as NCIMB41658, described in W02006/108674 or US-A 2008-320616); Event LL55 (soybean, herbicide tolerance, deposited as NCIMB 41660, described in WO 2006/108675 or US-A 2008-196127); Event LLcotton25 (cotton, herbicide tolerance, deposited as ATCC PTA-3343, described in W02003/013224 or US- A 2003-097687); Event LLRICE06 (rice, herbicide tolerance, deposited as ATCC 203353, described in US 6,468,747 or W02000/026345); Event LLRice62 ( rice, herbicide tolerance, deposited as ATCC 203352, described in W02000/026345), Event LLRICE601 (rice, herbicide tolerance, deposited as ATCC PTA- 2600, described in US-A 2008-2289060 or W02000/026356); Event LY038 (corn, quality trait, deposited as ATCC PTA-5623, described in US-A 2007-028322 or W02005/061720); Event MIR162 (corn, insect control, deposited as PTA-8166, described in US-A 2009-300784 or W02007/142840); Event MIR604 (corn, insect control, not deposited, described in US-A 2008-167456 or W02005/103301); Event MON15985 (cotton, insect control, deposited as ATCC PTA-2516, described in US-A 2004-250317 or W02002/100163); Event M0N810 (corn, insect control, not deposited, described in US-A 2002-102582); Event MON863 (corn, insect control, deposited as ATCC PTA-2605, described in W02004/011601 or US-A 2006- 095986); Event MON87427 (corn, pollination control, deposited as ATCC PTA-7899, described in WO2011/062904); Event MON87460 (corn, stress tolerance, deposited as ATCC PTA-8910, described in W02009/111263 or US-A 2011-0138504); Event MON87701 (soybean, insect control, deposited as ATCC PTA- 8194, described in US-A 2009-130071 or W02009/064652); Event MON87705 (soybean, quality trait - herbicide tolerance, deposited as ATCC PTA-9241, described in US-A 2010-0080887 or W02010/037016); Event MON87708 (soybean, herbicide tolerance, deposited as ATCC PTA-9670, described in WO2011/034704); Event MON87712 (soybean, yield, deposited as PTA-10296, described in W02012/051199), Event MON87754 (soybean, quality trait, deposited as ATCC PTA-9385, described in W02010/024976); Event MON87769 (soybean, quality trait, deposited as ATCC PTA- 8911, described in US-A 2011-0067141 or W02009/102873); Event MON88017 (corn, insect control - herbicide tolerance, deposited as ATCC PTA-5582, described in US-A 2008-028482 or W02005/059103); Event MON88913 (cotton, herbicide tolerance, deposited as ATCC PTA-4854, described in W02004/072235 or US-A 2006-059590); Event MON88302 (oilseed rape, herbicide tolerance, deposited as PTA-10955, described in WO2011/153186), Event MON88701 (cotton, herbicide tolerance, deposited as PTA-11754, described in WO2012/134808), Event MON89034 (corn, insect control, deposited as ATCC PTA-7455, described in WO 07/140256 or US-A 2008-260932); Event MON89788 (soybean, herbicide tolerance, deposited as ATCC PTA-6708, described in US-A 2006-282915 or W02006/130436); Event MSI 1 (oilseed rape, pollination control - herbicide tolerance, deposited as ATCC PTA-850 or PTA-2485, described in WO2001/031042); Event MS8 (oilseed rape, pollination control - herbicide tolerance, deposited as ATCC PTA-730, described in W02001/041558 or US-A 2003-188347); Event NK603 (com, herbicide tolerance, deposited as ATCC PTA-2478, described in US-A 2007-292854); Event PE-7 (rice, insect control, not deposited, described in W02008/114282); Event RF3 (oilseed rape, pollination control - herbicide tolerance, deposited as ATCC PTA-730, described in W02001/041558 or US-A 2003-188347); Event RT73 (oilseed rape, herbicide tolerance, not deposited, described in W02002/036831 or US-A 2008-070260); Event SYHT0H2 / SYN-000H2-5 (soybean, herbicide tolerance, deposited as PTA-11226, described in WO2012/082548), Event T227-1 (sugar beet, herbicide tolerance, not deposited, described in W02002/44407 or US-A 2009- 265817); Event T25 (com, herbicide tolerance, not deposited, described in US-A 2001-029014 or W02001/051654); Event T304-40 (cotton, insect control - herbicide tolerance, deposited as ATCC PTA-8171, described in US-A 2010-077501 or W02008/122406); Event T342-142 (cotton, insect control, not deposited, described in WO2006/128568); Event TC1507 (com, insect control - herbicide tolerance, not deposited, described in US-A 2005-039226 or W02004/099447); Event VIP 1034 (corn, insect control - herbicide tolerance, deposited as ATCC PTA-3925, described in W02003/052073), Event 32316 (corn, insect control-herbicide tolerance, deposited as PTA-11507, described in WO2011/084632), Event 4114 (corn, insect control-herbicide tolerance, deposited as PTA-11506, described in W02011/084621), event EE-GM3 / FG72 (soybean, herbicide tolerance, ATCC Accession N° PTA-11041) optionally stacked with event EE-GM1/LL27 or event EE-GM2/LL55 (WO2011/063413 A2), event DAS- 68416-4 (soybean, herbicide tolerance, ATCC Accession N° PTA-10442,

WO201 1/066360A1), event DAS-68416-4 (soybean, herbicide tolerance, ATCC Accession N° PTA-10442, WO2011/066384A1), event DP-040416-8 (corn, insect control, ATCC Accession N° PTA-11508, WO2011/075593 Al), event DP-043 A47-3 (com, insect control, ATCC Accession N° PTA-11509, WO2011/075595A1), event DP- 004114-3 (corn, insect control, ATCC Accession N° PTA-11506, WO2011/084621 Al), event DP-032316-8 (corn, insect control, ATCC Accession N° PTA-11507, WO2011/084632A1), event MON-88302-9 (oilseed rape, herbicide tolerance, ATCC Accession N° PTA-10955, WO2011/153186A1), event DAS- 21606-3 (soybean, herbicide tolerance, ATCC Accession No. PTA-11028, WO2012/033794A2), event MON-87712-4 (soybean, quality trait, ATCC Accession N°. PTA- 10296, W02012/051199A2), event DAS-44406-6 (soybean, stacked herbicide tolerance, ATCC Accession N°. PTA-11336, WO2012/075426 Al), event DAS-14536-7 (soybean, stacked herbicide tolerance, ATCC Accession N°. PTA-11335, WO2012/075429A1), event SYN-000H2-5 (soybean, herbicide tolerance, ATCC Accession N°. PTA-11226, WO2012/082548A2), event DP-061061-7 (oilseed rape, herbicide tolerance, no deposit N° available, W02012071039A1), event DP-073496-4 (oilseed rape, herbicide tolerance, no deposit N° available, US2012131692), event 8264.44.06.1 (soybean, stacked herbicide tolerance, Accession N° PTA-11336, WO2012075426A2), event 8291.45.36.2 (soybean, stacked herbicide tolerance, Accession N°. PTA-11335, WO2012075429 A2), event SYHT0H2 (soybean, ATCC Accession N°. PTA-11226, WO2012/082548 A2), event MON88701 (cotton, ATCC Accession N° PTA-11754, WO2012/134808A1), event KK179-2 (alfalfa, ATCC Accession N° PTA-11833, WO2013/003558 Al), event pDAB8264.42.32.1 (soybean, stacked herbicide tolerance, ATCC Accession N° PTA-11993, WO2013/010094 Al), event MZDT09Y (corn, ATCC Accession N° PTA-13025, WO2013/012775A1).

The genes/events (e.g., polynucleotides of interest), which impart the desired traits in question, may also be present in combinations with one another in the transgenic plants. Examples of transgenic plants which may be mentioned are the important crop plants, such as cereals (wheat, rice, triticale, barley, rye, oats), maize, soya beans, potatoes, sugar beet, sugar cane, tomatoes, peas and other types of vegetable, cotton, tobacco, oilseed rape and also fruit plants (with the fruits apples, pears, citrus fruits and grapes), with particular emphasis being given to maize, soya beans, wheat, rice, potatoes, cotton, sugar cane, tobacco and oilseed rape. Traits which are particularly emphasized are the increased resistance of the plants to insects, arachnids, nematodes and slugs and snails, as well as the increased resistance of the plants to one or more herbicides.

Commercially available examples of such plants, plant parts or plant seeds that may be treated with preference in accordance with the invention include commercial products, such as plant seeds, sold or distributed under the GENUITY®, DROUGHTGARD®, SMARTSTAX®, RIB COMPLETE®, ROUNDUP READY®, VT DOUBLE PRO®, VT TRIPLE PRO®, BOLLGARD II®, ROUNDUP READY 2 YIELD®, YIELDGARD®, ROUNDUP READY® 2 XTENDTM, INTACTA RR2 PRO®, VISTIVE GOLD®, and/or XTENDFLEX™ trade names.

An HD-Zip gene useful with this invention includes any HD-Zip gene in which a mutation as described herein can confer an improved yield trait (one or more improved yield traits) in a plant or part thereof comprising optionally, wherein the improved yield trait can include but is not limited to, increased seed number (e.g., grain number), increased seed weight (e.g., grain weight), increased number of pods per plant, modified flowering time (e.g., an earlier time of flowering), shorter stature, increased number of nodes and/or increased branching as compared to a control plant not comprising the mutation. In some embodiments, a HD-Zip polypeptide comprises an amino acid sequence having at least 80% identity (e.g., about 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 99.5, or 100% sequence identity) to SEQ ID NO:71 or SEQ ID NO:90 or comprises a region of consecutive amino acid residues having at least 90% sequence identity to any one of SEQ ID NOs:86, 87, 106, 107, or 108. In some embodiments, a. HD-Zip gene may comprise a sequence having at least about 80% sequence identity to the nucleotide sequence of NOs:69, 70, 88, or 89, or the HD-Zip gene comprises within it a sequence (a region or portion) having at least 80% identity to any one of the nucleotide sequences of SEQ ID NOs:72-85 or 91-105.

In some embodiments, an at least one mutation generated in an endogenous HD-Zip gene in a plant may be a substitution, a deletion and/or an insertion. In some embodiments, the at least one mutation in an endogenous HD-Zip gene in a plant may be a substitution, a deletion and/or an insertion that results in a dominant negative mutation, optionally wherein the plant comprising the mutation may exhibit a phenotype of increased seed number (e.g., grain number), increased seed weight (e.g., grain weight), increased number of pods per plant, modified flowering time (e.g., an earlier time of flowering), shorter stature, decreased number of nodes, decreased branching and/or increased yield when compared to a control plant not comprising the edit/mutation. For example, the mutation may be a deletion of one or more amino acid residues (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more amino acids of the HD-Zip polypeptide) or the mutation may be a deletion of at least 1 nucleotide to about 50 consecutive nucleotides (e.g., about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49 or 50 consecutive nucleotides, or any range or value therein, optionally about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15 consecutive nucleotides) in the gene encoding the HD-Zip polypeptide. In some embodiments, the deletion may be in a region of the HD-Zip gene encoding the Ethylene-responsive element binding factor-associated Amphiphilic Repression (EAR) motif resulting in a deletion of one or more amino acids in the EAR motif of the encoded HD-Zip polypeptide. In some embodiments, the mutation may be a point mutation. In some embodiments, the at least one mutation may be a base substitution to an A, a T, a G, or a C. In some embodiments, a mutation or edit may be an in-frame insertion or in-frame deletion. In some embodiments, the mutation or edit in an HD-Zip gene may result in a modification of the ability of the encoded HD-Zip polypeptide to regulate gene expression. In some embodiments, the at least one mutation may be a non-natural mutation.

In some embodiments, a mutation generated by the methods of the invention results in a mutated HD-Zip gene comprising an edited nucleotide sequence having at least 90% sequence identity (e.g., at least 95%, optionally the sequence identity may be 100%) to the nucleotide sequence of SEQ ID NO: 113 and/or results in a modified HD-Zip polypeptide having at least 90% sequence identity to the amino acid sequence of SEQ ID NO: 115, optionally wherein the mutation in the HD-Zip gene is a non-natural mutation.

In some embodiments, a mutation in an endogenous HD-Zip gene may be made following cleavage by an editing system that comprises a nuclease and a nucleic acid binding domain (e.g., DNA binding domain) that binds to a target site within a target nucleic acid (e.g., a HD-Zip gene), wherein the target nucleic acid: (a) comprises a sequence having at least 80% sequence identity (e.g., at least about 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99 or 100% sequence identity) to the nucleotide sequence of any one of SEQ ID NO:69, 70, 88 or 89; (b) comprises a region having at least 80% sequence identity to any one of the nucleotide sequences of any one of SEQ ID NOs:72-85 or 91-105, optionally to any one of SEQ ID NOs:72-75, 76-79, 80-83, 84-85, 91-94, 95-98, 99-102, or 103-105; (c) encodes a polypeptide comprising a sequence having at least 80% sequence identity to any one of the amino acid sequences of SEQ ID NO:71 or SEQ ID NO:90, and/or (d) encodes a region having at least 80% sequence identity to SEQ ID NOs:86, 87, 106, 107 or 108, optionally wherein the sequence identity of (a), (b), (c) and/or (d) may be at least 85%, or at least 90%, or it may be at least 95%, optionally the sequence identity may be 100%. In some embodiments, the nuclease cleaves the endogenous HD-Zip gene, and a mutation is introduced into the endogenous HD-Zip gene. In some embodiments, the mutation that is made by the editing system may result in a deletion or insertion. In some embodiments, the mutation may modify the EAR motif of the HD-Zip polypeptide, thereby altering the ability of the HD-Zip polypeptide to function as a regulator of gene expression. In some embodiments, the mutation may be an in-frame mutation (e.g., an in-frame deletion or insertion). In some embodiments, the at least one mutation may be a non-natural mutation. In some embodiments, the cleavage results in a mutated endogenous HD-Zip gene having at least 90% sequence identity to the nucleotide sequence of SEQ ID NO: 113, optionally wherein the percent sequence identity to SEQ ID NO: 113 may be at least 95% or it may be 100%.

A nuclease useful with this invention may cleave an endogenous HD-Zip gene, thereby introducing a mutation into the endogenous HD-Zip gene. Such nucleases include, but are not limited to a zinc finger nuclease, transcription activator-like effector nucleases (TALEN), endonuclease (e.g., Fokl) and/or a CRISPR-Cas effector protein. Likewise, a nucleic acid binding domain (e.g., DNA binding domain, RNA binding domain) useful with the invention includes any nucleic acid binding domain that can be utilized to edit/modify a target nucleic acid. Such nucleic acid binding domains include, but are not limited to, a zinc finger, transcription activator-like DNA binding domain (TAL), an argonaute and/or a CRISPR-Cas effector DNA binding domain.

Further provided herein are guide nucleic acids (e.g., gRNA, gDNA, crRNA, crDNA) that bind to a target site within HD-Zip gene, wherein the endogenous HD-Zip gene: (a) comprises a sequence having at least 80% sequence identity (e.g., at least about 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99 or 100% sequence identity) to the nucleotide sequence of any one of SEQ ID NO:69, 70, 88 or 89; (b) comprises a region having at least 80% sequence identity to any one of the nucleotide sequences of any one of SEQ ID NOs:72-85 or 91-105, optionally to any one of SEQ ID NOs:72-75, 76-79, 80-83, 84-85, 91- 94, 95-98, 99-102, or 103-105; (c) encodes a polypeptide comprising a sequence having at least 80% sequence identity to any one of the amino acid sequences of SEQ ID NO:71 or SEQ ID NO:90, and/or (d) encodes a region having at least 80% sequence identity to SEQ ID NOs:86, 87, 106, 107 or 108, optionally wherein the sequence identity of (a), (b), (c) and/or (d) may be at least 85%, or at least 90%, or it may be at least 95%, optionally the sequence identity may be 100%. In some embodiments, the target site may be in a region within any one of the nucleotide sequences of SEQ ID NOs:72-85 or 91-105, optionally within any one of SEQ ID NOs:72-75, 76-79, 80-83, 84-85, 91-94, 95-98, 99-102, or 103-105. In some embodiments, a guide nucleic acid is provided that binds to a target nucleic acid in a HD-Zip gene in a plant, wherein the HD-Zip gene has the gene identification number (SoyBaseDatabase) of Glyma.20g014400 (HD-Zipl7-1, SEQ ID NO:69) or Glyma.07g218000 (HD-Zipl7-2, SEQ ID NO:88) In some embodiments, a guide nucleic acid comprises a spacer having the nucleotide sequence of any of SEQ ID NOs:109-112.

In some embodiments, the target site to which a guide nucleic acid of the invention may bind may comprise a nucleotide sequence, or portion thereof, having at least 80% sequence identity (e.g., at least about 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99 or 100% sequence identity, optionally the sequence identity may be at least 85%, or at least 90%, or it may be at least 95%, optionally the sequence identity may be 100%) to any one of the nucleotide sequences of SEQ ID NOs:72-85 or 91-105, or having at least 80% sequence identity to any one of SEQ ID NOs:72-75, 76-79, 80-83, 84-85, 91-94, 95-98, 99-102, or 103- 105 (e.g., at least about 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99 or 100% sequence identity, optionally the sequence identity may be at least 85%, or at least 90%, or it may be at least 95%, optionally the sequence identity may be 100%).

Example spacer sequences useful with a guide of this invention may comprise complementarity to a fragment or portion of a nucleotide sequence having at least 80% sequence identity (e.g., at least about 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99 or 100% sequence identity, optionally the sequence identity may be at least 85%, or at least 90%, or it may be at least 95%, optionally the sequence identity may be 100%) to any one of the nucleotide sequences of SEQ ID NO:69, 70, 88 and/or 89, optionally at least about 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99 or 100% sequence identity (optionally at least 85% sequence identity or at least 90% sequence identity or at least 95% sequence identity, optionally wherein the sequence identity is 100%) to any one of the nucleotide sequences of SEQ ID NOs:72-85 or 91-105 (optionally, to any one of SEQ ID NOs:72-85 and/or 91-105); or a fragment or portion of a nucleotide sequence encoding a polypeptide comprising a sequence having at least 80% (e.g., at least about 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99 or 100% sequence identity, optionally the sequence identity may be at least 85%, or at least 90%, or it may be at least 95%, optionally the sequence identity may be 100%) sequence identity to any one of the amino acid sequences SEQ ID NO:71 and/or SEQ ID NQ:90, or a nucleotide sequence encoding a polypeptide comprising a sequence having at least 80% (e.g., at least about 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99 or 100% sequence identity, optionally the sequence identity may be at least 85%, or at least 90%, or it may be at least 95%, optionally the sequence identity may be 100%) sequence identity to any one of the amino acid sequences SEQ ID NOs:86, 87, 106, 107 and/or 108.

In some embodiments, a guide nucleic acid comprises a spacer having the nucleotide sequence of SEQ ID NQs:109, 110, 111 or 112, or a reverse complement thereof, or any combination thereof.

In some embodiments, a system is provided that comprises a guide nucleic acid of the invention and a CRISPR-Cas effector protein that associates with the guide nucleic acid. In some embodiments, a system is provided comprising a guide nucleic acid comprising a spacer having the nucleotide sequence of any of SEQ ID NOs: 109-112 and a CRISPR-Cas effector protein that associates with the guide nucleic acid. In some embodiments, the system may further comprise a tracr nucleic acid that associates with the guide nucleic acid and a CRISPR- Cas effector protein, optionally wherein the tracr nucleic acid and the guide nucleic acid are covalently linked.

As used herein, "a CRISPR-Cas effector protein in association with a guide nucleic acid" refers to the complex that is formed between a CRISPR-Cas effector protein and a guide nucleic acid in order to direct the CRISPR-Cas effector protein to a target site within a gene. In some embodiments, further provided is a gene editing system comprising a CRISPR- Cas effector protein in association with a guide nucleic acid and the guide nucleic acid comprises a spacer sequence that binds to a HD-Zip gene, wherein the HD-Zip gene (a) comprises a nucleotide sequence having at least 80% sequence identity (e.g., at least about 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99 or 100% sequence identity) to a nucleotide sequence of any one of SEQ ID NOs:69, 70, 88, or 89; (b) comprises a region of consecutive nucleotides having at least 80% identity to any one of SEQ ID NOs:72-85 or 91-105, optionally at least 80% sequence identity to any one of SEQ ID NOs:72-75, 76-79, 80-83, 84-85, 91-94, 95-98, 99-102, and/or 103-105; (c) encodes a polypeptide comprising a sequence having at least 80% sequence identity to SEQ ID NO:71 or SEQ ID NO:90; and/or (d) encodes a polypeptide comprising a region of consecutive amino acid residues having at least 90% sequence identity to any one of SEQ ID NOs:86, 87, 106, 107, or 108, optionally wherein the sequence identity of (a), (b), (c) and/or (d) may be at least 85%, or at least 90%, or it may be at least 95%, optionally the sequence identity may be 100%. In some embodiments, a spacer sequence of the guide nucleic acid may comprise the nucleotide sequence of any of SEQ ID NOs:109-112. In some embodiments, the gene editing system may further comprise a tracr nucleic acid that associates with the guide nucleic acid and a CRISPR-Cas effector protein, optionally wherein the tracr nucleic acid and the guide nucleic acid are covalently linked.

In some embodiments, the guide nucleic acid of a gene editing system can comprise a spacer sequence that has complementarity to a region, portion or fragment of a nucleotide sequence having at least 80% sequence identity (e.g., at least about 80, 81, 82, 83, 84, 85, 86,

87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99 or 100% sequence identity) to any one of the nucleotide sequences of SEQ ID NO:69, 70, 88 and/or 89 (e.g., SEQ ID NOs:72-85 and/or 91-105, optionally to any one of SEQ ID NOs:72-75, 76-79, 80-83, 84-85, 91-94, 95-98, 99- 102, and/or 103-105), or may encode a region, portion or fragment of a sequence having at least 80% sequence identity to any one of the amino acid sequences of SEQ ID NO:71 or SEQ ID NO:90, optionally wherein the sequence identity to any one of SEQ ID NO:69, 70, 72-85,

88, 89 and/or 91-105 may be at least 85%, or at least 90%, or it may be at least 95%, optionally the sequence identity may be 100%. In some embodiments, a gene editing system may further comprise a tracr nucleic acid that associates with the guide nucleic acid and a CRISPR-Cas effector protein, optionally wherein the tracr nucleic acid and the guide nucleic acid are covalently linked. In some embodiments, a complex is provided comprising a guide nucleic acid and a CRISPR-Cas effector protein comprising a cleavage domain, wherein the guide nucleic acid binds to a target site within an endogenous HD-Zip gene, wherein the endogenous HD-Zip gene: (a) comprises a sequence having at least 80% sequence identity (e.g., at least about 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99 or 100% sequence identity) to the nucleotide sequence of any one of SEQ ID NO:69, 70, 88 or 89; (b) comprises a region having at least 80% sequence identity to any one of the nucleotide sequences of any one of SEQ ID NOs:72-85 or 91-105, optionally to any one of SEQ ID NOs:72-75, 76-79, 80-83, 84-85, 91-94, 95-98, 99-102, or 103-105; (c) encodes a polypeptide comprising a sequence having at least 80% sequence identity to SEQ ID NO:71 or SEQ ID NO:90, and/or (d) encodes a region having at least 80% sequence identity to any one of SEQ ID NOs:86, 87, 106, 107 or 108, optionally wherein the sequence identity of (a), (b), (c) and/or (d) may be at least 85%, or at least 90%, or it may be at least 95%, optionally the sequence identity may be 100%, and the cleavage domain cleaves a target strand in the HD-Zip gene. In some embodiments, the cleavage domain cleaves a target strand in the HD-Zip gene resulting in a mutation in an endogenous HD-Zip gene comprising a sequence having at least 90% identity to any one of the mutated HD-Zip nucleic acids described herein. In some embodiments, the mutation in the endogenous HD-Zip gene is a non-natural mutation.

In some embodiments, expression cassettes are provided that comprise (a) a polynucleotide encoding CRISPR-Cas effector protein comprising a cleavage domain and (b) a guide nucleic acid that binds to a target site within an endogenous HD-Zip gene, wherein the guide nucleic acid comprises a spacer sequence that is complementary to and binds to (i) a portion of a nucleic acid encoding an amino acid sequence having at least 80% sequence identity (e.g., at least about 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99 or 100% sequence identity) the amino acid sequence of SEQ ID NO:71 or SEQ ID NO:90; (ii) a portion of a nucleic acid encoding an amino acid sequence having at least 90% sequence identity to any one of SEQ ID NOs:86, 87, 106, 107, or 108; (iii) a portion of a sequence having at least 80% sequence identity to the nucleotide sequence of SEQ ID NOs:69, 70, 88, or 89; and/or (iii) a portion of a sequence having at least 80% sequence identity to any one of the nucleotide sequences of any one of SEQ ID NOs:72-85 or 91-105, optionally wherein the sequence identity of (i), (ii), and/or (iii) may be at least 85%, or at least 90%, or it may be at least 95%, optionally the sequence identity may be 100%, optionally wherein the expression cassettes that are provided comprise (a) a polynucleotide encoding CRISPR-Cas effector protein comprising a cleavage domain and (b) a guide nucleic acid that binds to a target site within an endogenous HD-Zip gene, wherein the guide nucleic acid comprises a spacer sequence that is complementary to and binds to a portion of a nucleic acid having at least 80% sequence identity to any one of SEQ ID NOs:69, 70, 72-85, 88, 89, and/or 91-105.

Also provided herein are nucleic acids encoding a mutated HD-Zip gene that when present in a plant (or part thereof) results in the plant comprising a phenotype of increased seed number (e.g., grain number), increased seed weight (e.g., grain weight), increased number of pods per plant, modified flowering time (e.g., an earlier time of flowering), shorter stature, decreased number of nodes and/or decreased branching as compared to a control plant or plant part thereof that is devoid of the mutation. In some embodiments, the mutated HD-Zip gene comprises nucleic acid encoding a dominant negative mutation. In some embodiments, a mutated HD-Zip gene may comprise a sequence having at least 90% sequence identity (e.g., at least about 90, 91, 92, 93, 94, 95, 96, 97, 99 or 100% sequence identity, optionally the sequence identity may be at least 95%, optionally the sequence identity may be 100%) to SEQ ID NO: 113 and/or may encode a mutated HD-Zip polypeptide, the mutated HD-Zip polypeptide having at least 90% sequence identity to SEQ ID NO: 115. A modified HD-Zip polypeptide comprising the modified amino acid sequence of SEQ ID NO: 115 is also provided.

Nucleic acid constructs of the invention (e.g., a construct comprising a sequence specific nucleic acid binding domain, a CRISPR-Cas effector domain, a deaminase domain, reverse transcriptase (RT), RT template and/or a guide nucleic acid, etc.) and expression cassettes/vectors comprising the same may be used as an editing system of this invention for modifying target nucleic acids (e.g., endogenous HD-Zip genes) and/or their expression.

Any plant comprising an endogenous HD-Zip gene that is capable of conferring one or more improved yield traits such as increased seed number (e.g., grain number), increased seed weight (e.g., grain weight), increased number of pods per plant, modified flowering time (e.g., an earlier time of flowering), shorter stature, decreased number of nodes and/or decreased branching as compared to a control plant or plant part thereof that is devoid of the mutation, when modified as described herein (e.g., mutated, e.g., base edited, cleaved, nicked, etc.) may be used with the present invention to generate mutated HD-Zip genes of the invention (e.g., using the polypeptides, polynucleotides, RNPs, nucleic acid constructs, expression cassettes, and/or vectors of the invention) to provide one or more improved yield traits in the plant. In some embodiments, a plant or plant part thereof is provided comprising at least one mutation in at least one endogenous homeodomain-leucine zipper transcription factor (HD-Zip) gene having the gene identification number (SoyBaseDatabase) of Glyma.20g014400 (HD- Zip 17-1) or Glyma.07g218000 (HD-Zip 17-2 wherein the mutated endogenous HD-Zip gene comprises a nucleic acid sequence having at least 90% sequence identity to any one of the mutated HD-Zip nucleic acid sequences described herein, optionally wherein the at least one mutation is a non-natural mutation.

An editing system useful with this invention can be any site-specific (sequencespecific) genome editing system now known or later developed, which system can introduce mutations in target specific manner. For example, an editing system (e.g., site- or sequencespecific editing system) can include, but is not limited to, a CRISPR-Cas editing system, a meganuclease editing system, a zinc finger nuclease (ZFN) editing system, a transcription activator-like effector nuclease (TALEN) editing system, a base editing system and/or a prime editing system, each of which can comprise one or more polypeptides and/or one or more polynucleotides that when expressed as a system in a cell can modify (mutate) a target nucleic acid in a sequence specific manner. In some embodiments, an editing system (e.g., site- or sequence-specific editing system) can comprise one or more polynucleotides and/or one or more polypeptides, including but not limited to a nucleic acid binding domain (DNA binding domain), a nuclease, and/or other polypeptide, and/or a polynucleotide.

In some embodiments, an editing system can comprise one or more sequence-specific nucleic acid binding domains (DNA binding domains) that can be from, for example, a polynucleotide-guided endonuclease, a CRISPR-Cas endonuclease (e.g., CRISPR-Cas effector protein), a zinc finger nuclease, a transcription activator-like effector nuclease (TALEN) and/or an Argonaute protein. In some embodiments, an editing system can comprise one or more cleavage domains (e.g., nucleases) including, but not limited to, an endonuclease (e.g., Fokl), a polynucleotide-guided endonuclease, a CRISPR-Cas endonuclease (e.g., CRISPR-Cas effector protein), a zinc finger nuclease, and/or a transcription activator-like effector nuclease (TALEN). In some embodiments, an editing system can comprise one or more polypeptides that include, but are not limited to, a deaminase (e.g., a cytosine deaminase, an adenine deaminase), a reverse transcriptase, a Dna2 polypeptide, and/or a 5' flap endonuclease (FEN). In some embodiments, an editing system can comprise one or more polynucleotides, including, but is not limited to, a CRISPR array (CRISPR guide) nucleic acid, extended guide nucleic acid, and/or a reverse transcriptase template.

In some embodiments, a method of modifying or editing a HD-Zip gene may comprise contacting a target nucleic acid (e.g., a nucleic acid encoding a HD-Zip polypeptide) with a base-editing fusion protein (e.g., a sequence specific nucleic acid binding protein, a sequence specific DNA binding protein (e.g., a CRISPR-Cas effector protein or domain) fused to a deaminase domain (e.g., an adenine deaminase and/or a cytosine deaminase) and a guide nucleic acid, wherein the guide nucleic acid is capable of guiding/targeting the base editing fusion protein to the target nucleic acid, thereby editing a locus within the target nucleic acid. In some embodiments, a base editing fusion protein and guide nucleic acid may be comprised in one or more expression cassettes. In some embodiments, the target nucleic acid may be contacted with a base editing fusion protein and an expression cassette comprising a guide nucleic acid. In some embodiments, the sequence-specific nucleic acid binding fusion proteins and guides may be provided as ribonucleoproteins (RNPs). In some embodiments, a cell may be contacted with more than one base-editing fusion protein and/or one or more guide nucleic acids that may target one or more target nucleic acids in the cell.

In some embodiments, a method of modifying or editing a HD-Zip gene may comprise contacting a target nucleic acid (e.g., a nucleic acid encoding a HD-Zip polypeptide) with a sequence-specific nucleic acid binding fusion protein (e.g., a sequence-specific DNA binding protein (e.g., a CRISPR-Cas effector protein or domain) fused to a peptide tag, a deaminase fusion protein comprising a deaminase domain (e.g., an adenine deaminase and/or a cytosine deaminase) fused to an affinity polypeptide that is capable of binding to the peptide tag, and a guide nucleic acid, wherein the guide nucleic acid is capable of guiding/targeting the sequencespecific nucleic acid binding fusion protein to the target nucleic acid and the sequence-specific nucleic acid binding fusion protein is capable of recruiting the deaminase fusion protein to the target nucleic acid via the peptide tag-affinity polypeptide interaction, thereby editing a locus within the target nucleic acid. In some embodiments, the sequence-specific nucleic acid binding fusion protein may be fused to the affinity polypeptide that binds the peptide tag and the deaminase may be fuse to the peptide tag, thereby recruiting the deaminase to the sequence-specific nucleic acid binding fusion protein and to the target nucleic acid. In some embodiments, the sequence-specific binding fusion protein, deaminase fusion protein, and guide nucleic acid may be comprised in one or more expression cassettes. In some embodiments, the target nucleic acid may be contacted with a sequence-specific binding fusion protein, deaminase fusion protein, and an expression cassette comprising a guide nucleic acid. In some embodiments, the sequence-specific nucleic acid binding fusion proteins, deaminase fusion proteins and guides may be provided as ribonucleoproteins (RNPs).

In some embodiments, methods such as prime editing may be used to generate a mutation in an endogenous HD-Zip gene. In prime editing, RNA-dependent DNA polymerase (reverse transcriptase, RT) and reverse transcriptase templates (RT template) are used in combination with sequence specific nucleic acid binding domains that confer the ability to recognize and bind the target in a sequence-specific manner, and which can also cause a nick of the PAM-containing strand within the target. The nucleic acid binding domain may be a CRISPR-Cas effector protein and in this case, the CRISPR array or guide RNA may be an extended guide that comprises an extended portion comprising a primer binding site (PSB) and the edit to be incorporated into the genome (the template). Similar to base editing, prime editing can take advantageous of the various methods of recruiting proteins for use in the editing to the target site, such methods including both non-covalent and covalent interactions between the proteins and nucleic acids used in the selected process of genome editing.

In some embodiments, a sequence-specific nucleic acid binding domain (sequencespecific DNA binding domains) of an editing system useful with this invention can be from, for example, a polynucleotide-guided endonuclease, a CRISPR-Cas endonuclease (e.g., CRISPR-Cas effector protein), a zinc finger nuclease, a transcription activator-like effector nuclease (TALEN) and/or an Argonaute protein.

In some embodiments, a sequence-specific nucleic acid binding domain (e.g., a sequence-specific DNA binding domain) may be a CRISPR-Cas effector protein. In some embodiments, a CRISPR-Cas effector protein may be from a Type I CRISPR-Cas system, a Type II CRISPR-Cas system, a Type III CRISPR-Cas system, a Type IV CRISPR-Cas system, Type V CRISPR-Cas system, or a Type VI CRISPR-Cas system. In some embodiments, a CRISPR-Cas effector protein of the invention may be from a Type II CRISPR-Cas system or a Type V CRISPR-Cas system. In some embodiments, a CRISPR-Cas effector protein may be Type II CRISPR-Cas effector protein, for example, a Cas9 effector protein. In some embodiments, a CRISPR-Cas effector protein may be Type V CRISPR-Cas effector protein, for example, a Cast 2 effector protein.

As used herein, a "CRISPR-Cas effector protein" is a protein or polypeptide or domain thereof that cleaves or cuts a nucleic acid, binds a nucleic acid (e.g., a target nucleic acid and/or a guide nucleic acid), and/or that identifies, recognizes, or binds a guide nucleic acid as defined herein. In some embodiments, a CRISPR-Cas effector protein may be an enzyme (e.g., a nuclease, endonuclease, nickase, etc.) or portion thereof and/or may function as an enzyme. In some embodiments, a CRISPR-Cas effector protein refers to a CRISPR-Cas nuclease polypeptide or domain thereof that comprises nuclease activity or in which the nuclease activity has been reduced or eliminated, and/or comprises nickase activity or in which the nickase has been reduced or eliminated, and/or comprises single stranded DNA cleavage activity (ss DNAse activity) or in which the ss DNAse activity has been reduced or eliminated, and/or comprises self-processing RNAse activity or in which the self-processing RNAse activity has been reduced or eliminated. A CRISPR-Cas effector protein may bind to a target nucleic acid.

In some embodiments, a CRISPR-Cas effector protein may include, but is not limited to, a Cas9, C2cl, C2c3, Casl2a (also referred to as Cpfl), Casl2b, Casl2c, Casl2d, Casl2e, Casl3a, Casl3b, Casl3c, Casl3d, Casl, CaslB, Cas2, Cas3, Cas3', Cas3", Cas4, Cas5, Cas6, Cas7, Cas8, Cas9 (also known as Csnl and Csxl2), CaslO, Csyl, Csy2, Csy3, Csel, Cse2, Cscl, Csc2, Csa5, Csn2, Csm2, Csm3, Csm4, Csm5, Csm6, Cmrl, Cmr3, Cmr4, Cmr5, Cmr6, Csbl, Csb2, Csb3, Csxl7, Csxl4, CsxlO, Csxl6, CsaX, Csx3, Csxl, Csxl5, Csfl, Csf2, Csf3, Csf4 (dinG), and/or Csf5 nuclease, optionally wherein the CRISPR-Cas effector protein may be a Cas9, Casl2a (Cpfl), Casl2b, Casl2c (C2c3), Casl2d (CasY), Casl2e (CasX), Casl2g, Casl2h, Casl2i, C2c4, C2c5, C2c8, C2c9, C2cl0, Casl4a, Casl4b, and/or Casl4c effector protein.

In some embodiments, a CRISPR-Cas effector protein useful with the invention may comprise a mutation in its nuclease active site (e.g., RuvC, HNH, e.g., RuvC site of a Casl2a nuclease domain, e.g., RuvC site and/or HNH site of a Cas9 nuclease domain). A CRISPR- Cas effector protein having a mutation in its nuclease active site, and therefore, no longer comprising nuclease activity, is commonly referred to as "dead," e.g., dCas. In some embodiments, a CRISPR-Cas effector protein domain or polypeptide having a mutation in its nuclease active site may have impaired activity or reduced activity as compared to the same CRISPR-Cas effector protein without the mutation, e.g., a nickase, e.g., Cas9 nickase, Casl2a nickase.

A CRISPR Cas9 effector protein or CRISPR Cas9 effector domain useful with this invention may be any known or later identified Cas9 nuclease. In some embodiments, a CRISPR Cas9 polypeptide can be a Cas9 polypeptide from, for example, Streptococcus spp. (e.g., S. pyogenes, S. thermophilus), Lactobacillus spp., Bifidobacterium spp., Kandleria spp., Leuconostoc spp., Oenococcus spp., Pediococcus spp., Weissella spp., and/or Olsenella spp. Example Cas9 sequences include, but are not limited to, the amino acid sequences of SEQ ID NO:56 and SEQ ID NO:57 or the nucleotide sequences of SEQ ID NOs:58-68.

In some embodiments, the CRISPR-Cas effector protein may be a Cas9 polypeptide derived from Streptococcus pyogenes and recognizes the PAM sequence motif NGG, NAG, NGA (Mali et al, Science 2013; 339(6121): 823-826). In some embodiments, the CRISPR-Cas effector protein may be a Cas9 polypeptide derived from Streptococcus thermophiles and recognizes the PAM sequence motif NGGNG and/or NNAGAAW (W = A or T) (See, e.g., Horvath et al, Science, 2010; 327(5962): 167-170, and Deveau et al, J Bacteriol 2008; 190(4): 1390-1400). In some embodiments, the CRISPR-Cas effector protein may be a Cas9 polypeptide derived from Streptococcus mutans and recognizes the PAM sequence motif NGG and/or NAAR (R = A or G) (See, e.g., Deveau et al, J BACTERIOL 2008; 190(4): 1390-1400). In some embodiments, the CRISPR-Cas effector protein may be a Cas9 polypeptide derived from Streptococcus aureus and recognizes the PAM sequence motif NNGRR (R = A or G). In some embodiments, the CRISPR-Cas effector protein may be a Cas9 protein derived from S. aureus, which recognizes the PAM sequence motif N GRRT (R = A or G). In some embodiments, the CRISPR-Cas effector protein may be a Cas9 polypeptide derived from S. aureus, which recognizes the PAM sequence motif NGRRV (R = A or G). In some embodiments, the CRISPR-Cas effector protein may be a Cas9 polypeptide that is derived from Neisseria meningitidis and recognizes the PAM sequence motif NGATT or NGCTT (R = A or G, V = A, G or C) (See, e.g., Hou et ah, PNAS 2013, 1-6). In the aforementioned embodiments, N can be any nucleotide residue, e.g., any of A, G, C or T. In some embodiments, the CRISPR-Cas effector protein may be a Cast 3a protein derived from Leptotrichia shahii, which recognizes a protospacer flanking sequence (PFS) (or RNA PAM (rPAM)) sequence motif of a single 3' A, U, or C, which may be located within the target nucleic acid.

In some embodiments, the CRISPR-Cas effector protein may be derived from Cast 2a, which is a Type V Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas nuclease see, e.g., amino acid sequences of SEQ ID NOs:l-17, nucleic acid sequences of SEQ ID NOs:18-20. Casl2a differs in several respects from the more well-known Type II CRISPR Cas9 nuclease. For example, Cas9 recognizes a G-rich protospacer-adjacent motif (PAM) that is 3' to its guide RNA (gRNA, sgRNA, crRNA, crDNA, CRISPR array) binding site (protospacer, target nucleic acid, target DNA) (3 '-NGG), while Cast 2a recognizes a T-rich PAM that is located 5' to the target nucleic acid (5'-TTN, 5'-TTTN. In fact, the orientations in which Cas9 and Cast 2a bind their guide RNAs are very nearly reversed in relation to their N and C termini. Furthermore, Cast 2a enzymes use a single guide RNA (gRNA, CRISPR array, crRNA) rather than the dual guide RNA (sgRNA (e.g., crRNA and tracrRNA)) found in natural Cas9 systems, and Casl2a processes its own gRNAs. Additionally, Casl2a nuclease activity produces staggered DNA double stranded breaks instead of blunt ends produced by Cas9 nuclease activity, and Cast 2a relies on a single RuvC domain to cleave both DNA strands, whereas Cas9 utilizes an HNH domain and a RuvC domain for cleavage.

A CRISPR Casl2a effector protein/domain useful with this invention may be any known or later identified Casl2a polypeptide (previously known as Cpfl) (see, e.g., U.S. Patent No. 9,790,490, which is incorporated by reference for its disclosures of Cpfl (Casl2a) sequences). The term "Casl2a", "Casl2a polypeptide" or "Casl2a domain" refers to an RNA- guided nuclease comprising a Casl2a polypeptide, or a fragment thereof, which comprises the guide nucleic acid binding domain of Casl2a and/or an active, inactive, or partially active DNA cleavage domain of Cast 2a. In some embodiments, a Cast 2a useful with the invention may comprise a mutation in the nuclease active site (e.g., RuvC site of the Casl2a domain). A Cast 2a domain or Cast 2a polypeptide having a mutation in its nuclease active site, and therefore, no longer comprising nuclease activity, is commonly referred to as deadCasl2a (e.g., dCasl2a). In some embodiments, a Casl2a domain or Casl2a polypeptide having a mutation in its nuclease active site may have impaired activity, e.g., may have nickase activity.

Any deaminase domain/polypeptide useful for base editing may be used with this invention. In some embodiments, the deaminase domain may be a cytosine deaminase domain or an adenine deaminase domain. A cytosine deaminase (or cytidine deaminase) useful with this invention may be any known or later identified cytosine deaminase from any organism (see, e.g., U.S. Patent No. 10,167,457 and Thuronyi et al. Nat. Biotechnol. 37:1070-1079 (2019), each of which is incorporated by reference herein for its disclosure of cytosine deaminases). Cytosine deaminases can catalyze the hydrolytic deamination of cytidine or deoxycytidine to uridine or deoxyuridine, respectively. Thus, in some embodiments, a deaminase or deaminase domain useful with this invention may be a cytidine deaminase domain, catalyzing the hydrolytic deamination of cytosine to uracil. In some embodiments, a cytosine deaminase may be a variant of a naturally occurring cytosine deaminase, including but not limited to a primate (e.g., a human, monkey, chimpanzee, gorilla), a dog, a cow, a rat or a mouse. Thus, in some embodiments, a cytosine deaminase useful with the invention may be about 70% to about 100% identical to a wild type cytosine deaminase (e.g., about 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical, and any range or value therein, to a naturally occurring cytosine deaminase).

In some embodiments, a cytosine deaminase useful with the invention may be an apolipoprotein B mRNA-editing complex (APOBEC) family deaminase. In some embodiments, the cytosine deaminase may be an APOBEC 1 deaminase, an APOBEC2 deaminase, an APOBEC3A deaminase, an APOBEC3B deaminase, an APOBEC3C deaminase, an APOBEC3D deaminase, an APOBEC3F deaminase, an APOBEC3G deaminase, an APOBEC3H deaminase, an APOBEC4 deaminase, a human activation induced deaminase (hAID), an rAPOBECl, FERNY, and/or a CDA1, optionally a pmCDAl, an atCDAl (e.g., At2gl9570), and evolved versions of the same (e.g., SEQ ID NO:27, SEQ ID NO:28 or SEQ ID NO:29) In some embodiments, the cytosine deaminase may be an APOBEC1 deaminase having the amino acid sequence of SEQ ID NO:23. In some embodiments, the cytosine deaminase may be an APOBEC3 A deaminase having the amino acid sequence of SEQ ID NO:24. In some embodiments, the cytosine deaminase may be an CDA1 deaminase, optionally a CDA1 having the amino acid sequence of SEQ ID NO:25. In some embodiments, the cytosine deaminase may be a FERNY deaminase, optionally a FERNY having the amino acid sequence of SEQ ID NO:26. In some embodiments, a cytosine deaminase useful with the invention may be about 70% to about 100% identical (e.g., 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or 100% identical) to the amino acid sequence of a naturally occurring cytosine deaminase (e.g., an evolved deaminase). In some embodiments, a cytosine deaminase useful with the invention may be about 70% to about 99.5% identical (e.g., about 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 99.5% identical) to the amino acid sequence of SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25 or SEQ ID NO:26 (e g , at least 80%, at least 85%, at least 90%, at least 92%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to the amino acid sequence of SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:26, SEQ ID NO:27, SEQ ID NO:28 or SEQ ID NO:29). In some embodiments, a polynucleotide encoding a cytosine deaminase may be codon optimized for expression in a plant and the codon optimized polypeptide may be about 70% to 99.5% identical to the reference polynucleotide.

In some embodiments, a nucleic acid construct of this invention may further encode a uracil glycosylase inhibitor (UGI) (e.g., uracil-DNA glycosylase inhibitor) polypeptide/domain. Thus, in some embodiments, a nucleic acid construct encoding a CRISPR-Cas effector protein and a cytosine deaminase domain (e.g., encoding a fusion protein comprising a CRISPR-Cas effector protein domain fused to a cytosine deaminase domain, and/or a CRISPR-Cas effector protein domain fused to a peptide tag or to an affinity polypeptide capable of binding a peptide tag and/or a deaminase protein domain fused to a peptide tag or to an affinity polypeptide capable of binding a peptide tag) may further encode a uracil-DNA glycosylase inhibitor (UGI), optionally wherein the UGI may be codon optimized for expression in a plant. In some embodiments, the invention provides fusion proteins comprising a CRISPR-Cas effector polypeptide, a deaminase domain, and a UGI and/or one or more polynucleotides encoding the same, optionally wherein the one or more polynucleotides may be codon optimized for expression in a plant. In some embodiments, the invention provides fusion proteins, wherein a CRISPR-Cas effector polypeptide, a deaminase domain, and a UGI may be fused to any combination of peptide tags and affinity polypeptides as described herein, thereby recruiting the deaminase domain and UGI to the CRISPR-Cas effector polypeptide and a target nucleic acid. In some embodiments, a guide nucleic acid may be linked to a recruiting RNA motif and one or more of the deaminase domain and/or UGI may be fused to an affinity polypeptide that is capable of interacting with the recruiting RNA motif, thereby recruiting the deaminase domain and UGI to a target nucleic acid.

A "uracil glycosylase inhibitor" useful with the invention may be any protein that is capable of inhibiting a uracil-DNA glycosylase base-excision repair enzyme. In some embodiments, a UGI domain comprises a wild type UGI or a fragment thereof. In some embodiments, a UGI domain useful with the invention may be about 70% to about 100% identical (e.g., 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or 100% identical and any range or value therein) to the amino acid sequence of a naturally occurring UGI domain. In some embodiments, a UGI domain may comprise the amino acid sequence of SEQ ID NO:41 or a polypeptide having about 70% to about 99.5% sequence identity to the amino acid sequence of SEQ ID NO:41 (e.g., at least 80%, at least 85%, at least 90%, at least 92%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to the amino acid sequence of SEQ ID NO:41). For example, in some embodiments, a UGI domain may comprise a fragment of the amino acid sequence of SEQ ID NO:41 that is 100% identical to a portion of consecutive nucleotides (e.g., 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80 consecutive nucleotides; e.g., about 10, 15, 20, 25, 30, 35, 40, 45, to about 50, 55, 60, 65, 70, 75, 80 consecutive nucleotides) of the amino acid sequence of SEQ ID NO:41 In some embodiments, a UGI domain may be a variant of a known UGI (e.g., SEQ ID NO:41) having about 70% to about 99.5% sequence identity (e.g., 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% sequence identity, and any range or value therein) to the known UGI. In some embodiments, a polynucleotide encoding a UGI may be codon optimized for expression in a plant (e.g., a plant) and the codon optimized polypeptide may be about 70% to about 99.5% identical to the reference polynucleotide. An adenine deaminase (or adenosine deaminase) useful with this invention may be any known or later identified adenine deaminase from any organism (see, e.g., U.S. Patent No. 10,113,163, which is incorporated by reference herein for its disclosure of adenine deaminases). An adenine deaminase can catalyze the hydrolytic deamination of adenine or adenosine. In some embodiments, the adenine deaminase may catalyze the hydrolytic deamination of adenosine or deoxyadenosine to inosine or deoxyinosine, respectively. In some embodiments, the adenosine deaminase may catalyze the hydrolytic deamination of adenine or adenosine in DNA. In some embodiments, an adenine deaminase encoded by a nucleic acid construct of the invention may generate an A^G conversion in the sense (e.g., template) strand of the target nucleic acid or a T^C conversion in the antisense (e.g., complementary) strand of the target nucleic acid.

In some embodiments, an adenosine deaminase may be a variant of a naturally occurring adenine deaminase. Thus, in some embodiments, an adenosine deaminase may be about 70% to 100% identical to a wild type adenine deaminase (e.g., about 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical, and any range or value therein, to a naturally occurring adenine deaminase). In some embodiments, the deaminase or deaminase does not occur in nature and may be referred to as an engineered, mutated or evolved adenosine deaminase. Thus, for example, an engineered, mutated or evolved adenine deaminase polypeptide or an adenine deaminase domain may be about 70% to 99.9% identical to a naturally occurring adenine deaminase polypeptide/domain (e.g., about 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8% or 99.9% identical, and any range or value therein, to a naturally occurring adenine deaminase polypeptide or adenine deaminase domain). In some embodiments, the adenosine deaminase may be from a bacterium, (e.g., Escherichia coli, Staphylococcus aureus, Haemophilus influenzae, Caulobacter crescentus, and the like). In some embodiments, a polynucleotide encoding an adenine deaminase polypeptide/domain may be codon optimized for expression in a plant.

In some embodiments, an adenine deaminase domain may be a wild type tRNA- specific adenosine deaminase domain, e.g., a tRNA-specific adenosine deaminase (TadA) and/or a mutated/evolved adenosine deaminase domain, e.g., mutated/evolved tRNA-specific adenosine deaminase domain (TadA*). In some embodiments, a TadA domain may be from E. coli. In some embodiments, the TadA may be modified, e.g., truncated, missing one or more N-terminal and/or C-terminal amino acids relative to a full-length TadA (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 6, 17, 18, 19, or 20 N-terminal and/or C terminal amino acid residues may be missing relative to a full length TadA. In some embodiments, a TadA polypeptide or TadA domain does not comprise an N-terminal methionine. In some embodiments, a wild type E. coli TadA comprises the amino acid sequence of SEQ ID NO:30. In some embodiments, a mutated/ evolved E. coli TadA* comprises the amino acid sequence of SEQ ID NOs:31-40 (e g , SEQ ID NOs:31, 32, 33, 34, 35, 36, 37, 38, 39 or 40). In some embodiments, a polynucleotide encoding a TadA/TadA* may be codon optimized for expression in a plant.

A cytosine deaminase catalyzes cytosine deamination and results in a thymidine (through a uracil intermediate), causing a C to T conversion, or a G to A conversion in the complementary strand in the genome. Thus, in some embodiments, the cytosine deaminase encoded by the polynucleotide of the invention generates a C^T conversion in the sense (e.g., template) strand of the target nucleic acid or a G — A conversion in antisense (e.g., complementary) strand of the target nucleic acid.

In some embodiments, the adenine deaminase encoded by the nucleic acid construct of the invention generates an A^G conversion in the sense (e.g., template) strand of the target nucleic acid or a T^C conversion in the antisense (e.g., complementary) strand of the target nucleic acid.

The nucleic acid constructs of the invention encoding a base editor comprising a sequence-specific nucleic acid binding protein and a cytosine deaminase polypeptide, and nucleic acid constructs/expression cassettes/vectors encoding the same, may be used in combination with guide nucleic acids for modifying target nucleic acid including, but not limited to, generation of C^T or G — A mutations in a target nucleic acid including, but not limited to, a plasmid sequence; generation of C^T or G — A mutations in a coding sequence to alter an amino acid identity; generation of C^T or G — A mutations in a coding sequence to generate a stop codon; generation of C^T or G — A mutations in a coding sequence to disrupt a start codon; generation of point mutations in genomic DNA to disrupt function; and/or generation of point mutations in genomic DNA to disrupt splice junctions.

The nucleic acid constructs of the invention encoding a base editor comprising a sequence-specific nucleic acid binding protein and an adenine deaminase polypeptide, and expression cassettes and/or vectors encoding the same may be used in combination with guide nucleic acids for modifying a target nucleic acid including, but not limited to, generation of A^G or T^C mutations in a target nucleic acid including, but not limited to, a plasmid sequence; generation of A^G or T^C mutations in a coding sequence to alter an amino acid identity; generation of A^G or T^C mutations in a coding sequence to generate a stop codon; generation of A^G or T^C mutations in a coding sequence to disrupt a start codon; generation of point mutations in genomic DNA to disrupt function; and/or generation of point mutations in genomic DNA to disrupt splice junctions.

The nucleic acid constructs of the invention comprising a CRISPR-Cas effector protein or a fusion protein thereof may be used in combination with a guide RNA (gRNA, CRISPR array, CRISPR RNA, crRNA), designed to function with the encoded CRISPR-Cas effector protein or domain, to modify a target nucleic acid. A guide nucleic acid useful with this invention comprises at least one spacer sequence and at least one repeat sequence. The guide nucleic acid is capable of forming a complex with the CRISPR-Cas nuclease domain encoded and expressed by a nucleic acid construct of the invention and the spacer sequence is capable of hybridizing to a target nucleic acid, thereby guiding the complex (e.g., a CRISPR-Cas effector fusion protein (e.g., CRISPR-Cas effector domain fused to a deaminase domain and/or a CRISPR-Cas effector domain fused to a peptide tag or an affinity polypeptide to recruit a deaminase domain and optionally, a UGI) to the target nucleic acid, wherein the target nucleic acid may be modified (e.g., cleaved or edited) or modulated (e.g., modulating transcription) by the deaminase domain.

As an example, a nucleic acid construct encoding a Cas9 domain linked to a cytosine deaminase domain (e.g., fusion protein) may be used in combination with a Cas9 guide nucleic acid to modify a target nucleic acid, wherein the cytosine deaminase domain of the fusion protein deaminates a cytosine base in the target nucleic acid, thereby editing the target nucleic acid. In a further example, a nucleic acid construct encoding a Cas9 domain linked to an adenine deaminase domain (e.g., fusion protein) may be used in combination with a Cas9 guide nucleic acid to modify a target nucleic acid, wherein the adenine deaminase domain of the fusion protein deaminates an adenosine base in the target nucleic acid, thereby editing the target nucleic acid.

Likewise, a nucleic acid construct encoding a Casl2a domain (or other selected CRISPR-Cas nuclease, e.g., C2cl, C2c3, Cast 2b, Cast 2c, Cast 2d, Casl2e, Cast 3 a, Cast 3b, Casl3c, Casl3d, Casl, CaslB, Cas2, Cas3, Cas3', Cas3", Cas4, Cas5, Cas6, Cas7, Cas8, Cas9 (also known as Csnl and Csxl2), CaslO, Csyl, Csy2, Csy3, Csel, Cse2, Cscl, Csc2, Csa5, Csn2, Csm2, Csm3, Csm4, Csm5, Csm6, Cmrl, Cmr3, Cmr4, Cmr5, Cmr6, Csbl, Csb2, Csb3, Csxl7, Csxl4, CsxlO, Csxl6, CsaX, Csx3, Csxl, Csxl5, Csfl, Csf2, Csf3, Csf4 (dinG), and/or Csf5) linked to a cytosine deaminase domain or adenine deaminase domain (e.g., fusion protein) may be used in combination with a Cast 2a guide nucleic acid (or the guide nucleic acid for the other selected CRISPR-Cas nuclease) to modify a target nucleic acid, wherein the cytosine deaminase domain or adenine deaminase domain of the fusion protein deaminates a cytosine base in the target nucleic acid, thereby editing the target nucleic acid.

A "guide nucleic acid," "guide RNA," "gRNA," "CRISPR RNA/DNA" "crRNA" or "crDNA" as used herein means a nucleic acid that comprises at least one spacer sequence, which is complementary to (and hybridizes to) a target DNA (e.g., protospacer), and at least one repeat sequence (e.g., a repeat of a Type V Cast 2a CRISPR-Cas system, or a fragment or portion thereof; a repeat of a Type II Cas9 CRISPR-Cas system, or fragment thereof; a repeat of a Type V C2cl CRISPR Cas system, or a fragment thereof; a repeat of a CRISPR-Cas system of, for example, C2c3, Casl2a (also referred to as Cpfl), Casl2b, Casl2c, Casl2d, Casl2e, Casl3a, Casl3b, Casl3c, Casl3d, Casl, CaslB, Cas2, Cas3, Cas3', Cas3", Cas4, Cas5, Cas6, Cas7, Cas8, Cas9 (also known as Csnl and Csxl2), CaslO, Csyl, Csy2, Csy3, Csel, Cse2, Cscl, Csc2, Csa5, Csn2, Csm2, Csm3, Csm4, Csm5, Csm6, Cmrl, Cmr3, Cmr4, Cmr5, Cmr6, Csbl, Csb2, Csb3, Csxl7, Csxl4, CsxlO, Csxl6, CsaX, Csx3, Csxl, Csxl5, Csfl, Csf2, Csf3, Csf4 (dinG), and/or Csf5, or a fragment thereof), wherein the repeat sequence may be linked to the 5' end and/or the 3' end of the spacer sequence. The design of a gRNA of this invention may be based on a Type I, Type II, Type III, Type IV, Type V, or Type VI CRISPR-Cas system.

In some embodiments, a Casl2a gRNA may comprise, from 5' to 3', a repeat sequence (full length or portion thereof ("handle"); e.g., pseudoknot-like structure) and a spacer sequence.

In some embodiments, a guide nucleic acid may comprise more than one repeat sequence-spacer sequence (e.g., 2, 3, 4, 5, 6, 7, 8, 9, 10, or more repeat-spacer sequences) (e.g., repeat-spacer-repeat, e.g., repeat-spacer-repeat-spacer-repeat-spacer-repeat-spacer-repe at- spacer, and the like). The guide nucleic acids of this invention are synthetic, human-made and not found in nature. A gRNA can be quite long and may be used as an aptamer (like in the MS2 recruitment strategy) or other RNA structures hanging off the spacer.

A "repeat sequence" as used herein, refers to, for example, any repeat sequence of a wild-type CRISPR Cas locus (e.g., a Cas9 locus, a Casl2a locus, a C2cl locus, etc.) or a repeat sequence of a synthetic crRNA that is functional with the CRISPR-Cas effector protein encoded by the nucleic acid constructs of the invention. A repeat sequence useful with this invention can be any known or later identified repeat sequence of a CRISPR-Cas locus (e.g., Type I, Type II, Type III, Type IV, Type V or Type VI) or it can be a synthetic repeat designed to function in a Type I, II, III, IV, V or VI CRISPR-Cas system. A repeat sequence may comprise a hairpin structure and/or a stem loop structure. In some embodiments, a repeat sequence may form a pseudoknot-like structure at its 5' end (i.e., "handle"). Thus, in some embodiments, a repeat sequence can be identical to or substantially identical to a repeat sequence from wild-type Type I CRISPR-Cas loci, Type II, CRISPR-Cas loci, Type III, CRISPR-Cas loci, Type IV CRISPR-Cas loci, Type V CRISPR-Cas loci and/or Type VI CRISPR-Cas loci. A repeat sequence from a wild-type CRISPR-Cas locus may be determined through established algorithms, such as using the CRISPRfmder offered through CRISPRdb (see, Grissa et al. Nucleic Acids Res. 35(Web Server issue):W52-7). In some embodiments, a repeat sequence or portion thereof is linked at its 3' end to the 5' end of a spacer sequence, thereby forming a repeat-spacer sequence (e.g., guide nucleic acid, guide RNA/DNA, crRNA, crDNA).

In some embodiments, a repeat sequence comprises, consists essentially of, or consists of at least 10 nucleotides depending on the particular repeat and whether the guide nucleic acid comprising the repeat is processed or unprocessed (e.g., about 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50 to 100 or more nucleotides, or any range or value therein). In some embodiments, a repeat sequence comprises, consists essentially of, or consists of about 10 to about 20, about 10 to about 30, about 10 to about 45, about 10 to about 50, about 15 to about 30, about 15 to about 40, about 15 to about 45, about 15 to about 50, about 20 to about 30, about 20 to about 40, about 20 to about 50, about 30 to about 40, about 40 to about 80, about 50 to about 100 or more nucleotides.

A repeat sequence linked to the 5' end of a spacer sequence can comprise a portion of a repeat sequence (e.g., 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 or more contiguous nucleotides of a wild type repeat sequence). In some embodiments, a portion of a repeat sequence linked to the 5' end of a spacer sequence can be about five to about ten consecutive nucleotides in length (e.g., about 5, 6, 7, 8, 9, 10 nucleotides) and have at least 90% sequence identity (e.g., at least about 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or more (e.g., 99.1, 99.2, 99.3, 99.4, 99.5, 99.6, 99.7, 99.8, 99.9, or 100%)) to the same region (e.g., 5' end) of a wild type CRISPR Cas repeat nucleotide sequence. In some embodiments, a portion of a repeat sequence may comprise a pseudoknot-like structure at its 5' end (e.g., "handle").

A "spacer sequence" as used herein is a nucleotide sequence that is substantially complementary to a target nucleic acid (e.g., target DNA) (e.g., protospacer) (e.g., substantially complementary to consecutive nucleotides of a portion/region of a HD-Zip nucleotide sequence (a) having at least 80% sequence identity (e.g., at least about 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99 or 100% sequence identity) to the nucleotide sequence of any one of SEQ ID NOs:69, 70, 88, or 89, (b) comprising a region having at least 80% sequence identity to any one of the nucleotide sequences of SEQ ID NOs:72-85 or 91- 105, (c) encoding an amino acid sequence having at least 80% sequence identity to SEQ ID NO:71 or SEQ ID NQ:90, and/or (d) encoding a polypeptide comprising a region of consecutive amino acid residues having at least 90% sequence identity to any one of SEQ ID NOs:86, 87, 106, 107, or 108, optionally wherein the sequence identity of (a), (b), (c) and/or (d) may be at least 85%, or at least 90%, or it may be at least 95%, optionally the sequence identity may be 100%. In some embodiments, a spacer sequence may include, but is not limited to, the nucleotide sequences of any of SEQ ID NOs:109-112, or the reverse complement thereof, or any combination thereof. A spacer sequence can be fully complementary or substantially complementary (e.g., at least about 70% complementary (e.g., about 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or more (e.g., 99.1, 99.2, 99.3, 99.4, 99.5, 99.6, 99.7, 99.8, 99.9, or 100%)) to a target nucleic acid. Thus, in some embodiments, the spacer sequence can have one, two, three, four, or five mismatches as compared to the target nucleic acid, which mismatches can be contiguous or noncontiguous. In some embodiments, the spacer sequence can be 70% complementary to a target nucleic acid. In other embodiments, the spacer nucleotide sequence can be 80% complementary to a target nucleic acid. In still other embodiments, the spacer nucleotide sequence can be 85%, 90%, 95%, 96%, 97%, 98%, 99% or 99.5% complementary, and the like, to the target nucleic acid (protospacer). In some embodiments, the spacer sequence is 100% complementary to the target nucleic acid. A spacer sequence may have a length from about 15 nucleotides to about 30 nucleotides (e.g., 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 nucleotides, or any range or value therein). Thus, in some embodiments, a spacer sequence may have complete complementarity or substantial complementarity (e.g., at least 70% complementarity) over a region of a target nucleic acid (e.g., protospacer) that is at least about 15 nucleotides to about 30 nucleotides in length. In some embodiments, the spacer is about 20 nucleotides in length. In some embodiments, the spacer is about 21, 22, or 23 nucleotides in length.

In some embodiments, the 5' region of a spacer sequence of a guide nucleic acid may be identical to a target DNA, while the 3' region of the spacer may be substantially complementary to the target DNA (see, for example, a spacer sequence of a Type V CRISPR- Cas system), or the 3' region of a spacer sequence of a guide nucleic acid may be identical to a target DNA, while the 5' region of the spacer may be substantially complementary to the target DNA (see, for example, a spacer sequence of a Type II CRISPR-Cas system), and therefore, the overall complementarity of the spacer sequence to the target DNA may be less than 100%. Thus, for example, in a guide for a Type V CRISPR-Cas system, the first 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 nucleotides in the 5' region (i.e., seed region) of, for example, a 20 nucleotide spacer sequence may be 100% complementary to the target DNA, while the remaining nucleotides in the 3' region of the spacer sequence are substantially complementary (e.g., at least about 70% complementary) to the target DNA. In some embodiments, the first 1 to 8 nucleotides (e.g., the first 1, 2, 3, 4, 5, 6, 7, 8, nucleotides, and any range therein) of the 5' end of the spacer sequence may be 100% complementary to the target DNA, while the remaining nucleotides in the 3' region of the spacer sequence are substantially complementary (e.g., at least about 50% complementary (e.g., 50%, 55%, 60%, 65%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or more)) to the target DNA.

As a further example, in a guide for a Type II CRISPR-Cas system, the first 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 nucleotides in the 3' region (i.e., seed region) of, for example, a 20 nucleotide spacer sequence may be 100% complementary to the target DNA, while the remaining nucleotides in the 5' region of the spacer sequence are substantially complementary (e.g., at least about 70% complementary) to the target DNA. In some embodiments, the first 1 to 10 nucleotides (e.g., the first 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 nucleotides, and any range therein) of the 3' end of the spacer sequence may be 100% complementary to the target DNA, while the remaining nucleotides in the 5' region of the spacer sequence are substantially complementary (e.g., at least about 50% complementary (e.g., at least about 50%, 55%, 60%, 65%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or more or any range or value therein)) to the target DNA.

In some embodiments, a seed region of a spacer may be about 8 to about 10 nucleotides in length, about 5 to about 6 nucleotides in length, or about 6 nucleotides in length.

As used herein, a "target nucleic acid", "target DNA," "target nucleotide sequence," "target region," or a "target region in the genome" refers to a region of a plant's genome that is fully complementary (100% complementary) or substantially complementary (e.g., at least 70% complementary (e.g., 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or more)) to a spacer sequence in a guide nucleic acid of this invention. A target region useful for a CRISPR-Cas system may be located immediately 3' (e.g., such as for a Type V CRISPR-Cas system) or immediately 5' (e.g., such as for a Type II CRISPR-Cas system) to a PAM sequence in the genome of the organism (e.g., a plant genome). A target region may be selected from any region of at least 15 consecutive nucleotides (e.g., 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 nucleotides, and the like) located immediately adjacent to a PAM sequence.

A "protospacer sequence" refers to the target double stranded DNA and specifically to the portion of the target DNA (e.g., or target region in the genome) that is fully or substantially complementary (and hybridizes) to the spacer sequence of the CRISPR repeat-spacer sequences (e.g., guide nucleic acids, CRISPR arrays, crRNAs).

In the case of Type V CRISPR-Cas (e.g., Casl2a) systems and Type II CRISPR-Cas (Cas9) systems, the protospacer sequence is flanked by (e.g., immediately adjacent to) a protospacer adjacent motif (PAM). For Type IV CRISPR-Cas systems, the PAM is located at the 5' end on the non-target strand and at the 3' end of the target strand (see below, as an example).

5'-NNNNNNNNNNNNNNNNNNN-3' RNA Spacer

3'AAANNNNNNNNNNNNNNNNNNN-5' Target strand

5'TTT NNNNNNNNNNNNNNNNNN-3' Non-target strand

In the case of Type II CRISPR-Cas (e.g., Cas9) systems, the PAM is located immediately 3' of the target region. The PAM for Type I CRISPR-Cas systems is located 5' of the target strand. There is no known PAM for Type III CRISPR-Cas systems. Makarova et al. describes the nomenclature for all the classes, types, and subtypes of CRISPR systems (Nature Reviews Microbiology 13:722-736 (2015)). Guide structures and PAMs are described in by R. Barrangou (Genome Biol. 16:247 (2015)).

Canonical Cast 2a PAMs are T rich. In some embodiments, a canonical Cast 2a PAM sequence may be 5'-TTN, 5'-TTTN, or 5'-TTTV. In some embodiments, canonical Cas9 (e.g., S. pyogenes) PAMs may be 5'-NGG-3‘. In some embodiments, non-canonical PAMs may be used but may be less efficient.

Additional PAM sequences may be determined by those skilled in the art through established experimental and computational approaches. Thus, for example, experimental approaches include targeting a sequence flanked by all possible nucleotide sequences and identifying sequence members that do not undergo targeting, such as through the transformation of target plasmid DNA (Esvelt et al. 2013. Nat. Methods 10: 1116-1121; Jiang et al. 2013. Nat. Biotechnol. 31 :233-239). In some aspects, a computational approach can include performing BLAST searches of natural spacers to identify the original target DNA sequences in bacteriophages or plasmids and aligning these sequences to determine conserved sequences adjacent to the target sequence (Briner and Barrangou. 2014. AppL Environ. Microbiol. 80:994-1001; Mojica et al. 2009. Microbiology 155:733-740).

In some embodiments, the present invention provides expression cassettes and/or vectors comprising the nucleic acid constructs of the invention (e.g., one or more components of an editing system of the invention). In some embodiments, expression cassettes and/or vectors comprising the nucleic acid constructs of the invention and/or one or more guide nucleic acids may be provided. In some embodiments, a nucleic acid construct of the invention encoding a base editor (e.g., a construct comprising a CRISPR-Cas effector protein and a deaminase domain (e.g., a fusion protein)) or the components for base editing (e.g., a CRISPR-Cas effector protein fused to a peptide tag or an affinity polypeptide, a deaminase domain fused to a peptide tag or an affinity polypeptide, and/or a UGI fused to a peptide tag or an affinity polypeptide), may be comprised on the same or on a separate expression cassette or vector from that comprising the one or more guide nucleic acids. When the nucleic acid construct encoding a base editor or the components for base editing is/are comprised on separate expression cassette(s) or vector(s) from that comprising the guide nucleic acid, a target nucleic acid may be contacted with (e.g., provided with) the expression cassette(s) or vector(s) encoding the base editor or components for base editing in any order from one another and the guide nucleic acid, e.g., prior to, concurrently with, or after the expression cassette comprising the guide nucleic acid is provided (e.g., contacted with the target nucleic acid).

Fusion proteins of the invention may comprise sequence-specific nucleic acid binding domains, CRISPR-Cas polypeptides, and/or deaminase domains fused to peptide tags or affinity polypeptides that interact with the peptide tags, as known in the art, for use in recruiting the deaminase to the target nucleic acid. Methods of recruiting may also comprise guide nucleic acids linked to RNA recruiting motifs and deaminases fused to affinity polypeptides capable of interacting with RNA recruiting motifs, thereby recruiting the deaminase to the target nucleic acid. Alternatively, chemical interactions may be used to recruit polypeptides (e.g., deaminases) to a target nucleic acid. A peptide tag (e.g., epitope) useful with this invention may include, but is not limited to, a GCN4 peptide tag (e.g., Sun-Tag), a c-Myc affinity tag, an HA affinity tag, a His affinity tag, an S affinity tag, a methionine-His affinity tag, an RGD-His affinity tag, a FLAG® octapeptide, a strep tag or strep tag II, a V5 tag, and/or a VSV-G epitope. Any epitope that may be linked to a polypeptide and for which there is a corresponding affinity polypeptide that may be linked to another polypeptide may be used with this invention as a peptide tag. In some embodiments, a peptide tag may comprise 1 or 2 or more copies of a peptide tag (e.g., repeat unit, multimerized epitope (e.g., tandem repeats)) (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 or more repeat units. In some embodiments, an affinity polypeptide that interacts with/binds to a peptide tag may be an antibody. In some embodiments, the antibody may be a scFv antibody. In some embodiments, an affinity polypeptide that binds to a peptide tag may be synthetic (e.g., evolved for affinity interaction) including, but not limited to, an affibody, an anticalin, a monobody and/or a DARPin (see, e.g., Sha et al., Protein Sci. 26(5):910-924 (2017)); Gilbreth (Curr Opin Struc Biol 22(4):413-420 (2013)), U.S. Patent No. 9,982,053, each of which are incorporated by reference in their entireties for the teachings relevant to affibodies, anticalins, monobodies and/or DARPins. Example peptide tag sequences and their affinity polypeptides include, but are not limited to, the amino acid sequences of SEQ ID NOs:42-44.

In some embodiments, a guide nucleic acid may be linked to an RNA recruiting motif, and a polypeptide to be recruited (e.g., a deaminase) may be fused to an affinity polypeptide that binds to the RNA recruiting motif, wherein the guide binds to the target nucleic acid and the RNA recruiting motif binds to the affinity polypeptide, thereby recruiting the polypeptide to the guide and contacting the target nucleic acid with the polypeptide (e.g., deaminase). In some embodiments, two or more polypeptides may be recruited to a guide nucleic acid, thereby contacting the target nucleic acid with two or more polypeptides (e.g., deaminases). Example RNA recruiting motifs and their affinity polypeptides include, but are not limited to, the sequences of SEQ ID NOs:45-55.

In some embodiments, a polypeptide fused to an affinity polypeptide may be a reverse transcriptase and the guide nucleic acid may be an extended guide nucleic acid linked to an RNA recruiting motif. In some embodiments, an RNA recruiting motif may be located on the 3' end of the extended portion of an extended guide nucleic acid (e.g., 5'-3', repeat-spacer- extended portion (RT template-primer binding site)-RNA recruiting motif). In some embodiments, an RNA recruiting motif may be embedded in the extended portion. In some embodiments of the invention, an extended guide RNA and/or guide RNA may be linked to one or to two or more RNA recruiting motifs (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more motifs; e.g., at least 10 to about 25 motifs), optionally wherein the two or more RNA recruiting motifs may be the same RNA recruiting motif or different RNA recruiting motifs. In some embodiments, an RNA recruiting motif and corresponding affinity polypeptide may include, but is not limited, to a telomerase Ku binding motif (e.g., Ku binding hairpin) and the corresponding affinity polypeptide Ku (e.g., Ku heterodimer), a telomerase Sm7 binding motif and the corresponding affinity polypeptide Sm7, an MS2 phage operator stem-loop and the corresponding affinity polypeptide MS2 Coat Protein (MCP), a PP7 phage operator stem-loop and the corresponding affinity polypeptide PP7 Coat Protein (PCP), an SfMu phage Com stemloop and the corresponding affinity polypeptide Com RNA binding protein, a PUF binding site (PBS) and the affinity polypeptide Pumilio/fem-3 mRNA binding factor (PUF), and/or a synthetic RNA-aptamer and the aptamer ligand as the corresponding affinity polypeptide. In some embodiments, the RNA recruiting motif and corresponding affinity polypeptide may be an MS2 phage operator stem-loop and the affinity polypeptide MS2 Coat Protein (MCP). In some embodiments, the RNA recruiting motif and corresponding affinity polypeptide may be a PUF binding site (PBS) and the affinity polypeptide Pumilio/fem-3 mRNA binding factor (PUF).

In some embodiments, the components for recruiting polypeptides and nucleic acids may those that function through chemical interactions that may include, but are not limited to, rapamycin-inducible dimerization of FRB - FKBP; Biotin-streptavidin; SNAP tag; Halo tag; CLIP tag; DmrA-DmrC heterodimer induced by a compound; bifunctional ligand (e.g., fusion of two protein-binding chemicals together, e.g., dihydrofolate reductase (DHFR).

In some embodiments, the nucleic acid constructs, expression cassettes or vectors of the invention that are optimized for expression in a plant may be about 70% to 100% identical (e.g., about 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or 100%) to the nucleic acid constructs, expression cassettes or vectors comprising the same polynucleotide(s) but which have not been codon optimized for expression in a plant.

Further provided herein are cells comprising one or more polynucleotides, guide nucleic acids, nucleic acid constructs, expression cassettes or vectors of the invention. A target nucleic acid of any plant or plant part (or groupings of plants, for example, into a genus or higher order classification) may be modified (e.g., mutated, e.g., base edited, cleaved, nicked, etc.) using the polypeptides, polynucleotides, ribonucleoproteins (RNPs), nucleic acid constructs, expression cassettes, and/or vectors of the invention including an angiosperm, a gymnosperm, a monocot, a dicot, a C3, C4, CAM plant, a bryophyte, a fern and/or fern ally, a microalgae, and/or a macroalgae. A plant and/or plant part that may be modified as described herein may be a plant and/or plant part of any plant species/variety/cultivar. In some embodiments, a plant that may be modified as described herein is a monocot. In some embodiments, a plant that may be modified as described herein is a dicot.

The term "plant part," as used herein, includes but is not limited to reproductive tissues (e.g., petals, sepals, stamens, pistils, receptacles, anthers, pollen, flowers, fruits, flower bud, ovules, seeds, and embryos); vegetative tissues (e.g., petioles, stems, roots, root hairs, root tips, pith, coleoptiles, stalks, shoots, branches, bark, apical meristem, axillary bud, cotyledon, hypocotyls, and leaves); vascular tissues e.g., phloem and xylem); specialized cells such as epidermal cells, parenchyma cells, collenchyma cells, sclerenchyma cells, stomates, guard cells, cuticle, mesophyll cells; callus tissue; and cuttings. The term "plant part" also includes plant cells, including plant cells that are intact in plants and/or parts of plants, plant protoplasts, plant tissues, plant organs, plant cell tissue cultures, plant calli, plant clumps, and the like. As used herein, "shoot" refers to the above ground parts including the leaves and stems. As used herein, the term "tissue culture" encompasses cultures of tissue, cells, protoplasts and callus.

As used herein, "plant cell" refers to a structural and physiological unit of the plant, which typically comprise a cell wall but also includes protoplasts. A plant cell of the present invention can be in the form of an isolated single cell or can be a cultured cell or can be a part of a higher-organized unit such as, for example, a plant tissue (including callus) or a plant organ. A "protoplast" is an isolated plant cell without a cell wall or with only parts of the cell wall. Thus, in some embodiments of the invention, a transgenic cell comprising a nucleic acid molecule and/or nucleotide sequence of the invention is a cell of any plant or plant part including, but not limited to, a root cell, a leaf cell, a tissue culture cell, a seed cell, a flower cell, a fruit cell, a pollen cell, and the like. In some aspects of the invention, the plant part can be a plant germplasm. In some aspects, a plant cell can be non-propagating plant cell that does not regenerate into a plant.

"Plant cell culture" means cultures of plant units such as, for example, protoplasts, cell culture cells, cells in plant tissues, pollen, pollen tubes, ovules, embryo sacs, zygotes and embryos at various stages of development.

As used herein, a "plant organ" is a distinct and visibly structured and differentiated part of a plant such as a root, stem, leaf, flower bud, or embryo. "Plant tissue" as used herein means a group of plant cells organized into a structural and functional unit. Any tissue of a plant in planta or in culture is included. This term includes, but is not limited to, whole plants, plant organs, plant seeds, tissue culture and any groups of plant cells organized into structural and/or functional units. The use of this term in conjunction with, or in the absence of, any specific type of plant tissue as listed above or otherwise embraced by this definition is not intended to be exclusive of any other type of plant tissue.

In some embodiments of the invention, a transgenic tissue culture or transgenic plant cell culture is provided, wherein the transgenic tissue or cell culture comprises a nucleic acid molecule/nucleotide sequence of the invention. In some embodiments, transgenes may be eliminated from a plant developed from the transgenic tissue or cell by breeding of the transgenic plant with a non-transgenic plant and selecting among the progeny for the plants comprising the desired gene edit and not the transgenes used in producing the edit.

Any plant comprising an endogenous homeodomain-leucine zipper transcription factor (HD-Zip) gene may be modified as described herein to improve one or more yield traits. Nonlimiting examples of plants that may be modified as described herein may include, but are not limited to, turf grasses (e.g., bluegrass, bentgrass, ryegrass, fescue), feather reed grass, tufted hair grass, miscanthus, arundo, switchgrass, vegetable crops, including artichokes, kohlrabi, arugula, leeks, asparagus, lettuce (e.g., head, leaf, romaine), malanga, melons (e.g., muskmelon, watermelon, crenshaw, honeydew, cantaloupe), cole crops (e.g., brussels sprouts, cabbage, cauliflower, broccoli, collards, kale, Chinese cabbage, bok choy), cardoni, carrots, napa, okra, onions, celery, parsley, chick peas, parsnips, chicory, peppers, potatoes, cucurbits (e.g., marrow, cucumber, zucchini, squash, pumpkin, honeydew melon, watermelon, cantaloupe), radishes, dry bulb onions, rutabaga, eggplant, salsify, escarole, shallots, endive, garlic, spinach, green onions, squash, greens, beet (sugar beet and fodder beet), sweet potatoes, chard, horseradish, tomatoes, turnips, and spices; a fruit crop such as apples, apricots, cherries, nectarines, peaches, pears, plums, prunes, cherry, quince, fig, nuts (e.g., chestnuts, pecans, pistachios, hazelnuts, pistachios, peanuts, walnuts, macadamia nuts, almonds, and the like), citrus (e.g., clementine, kumquat, orange, grapefruit, tangerine, mandarin, lemon, lime, and the like), blueberries, black raspberries, boysenberries, cranberries, currants, gooseberries, loganberries, raspberries, strawberries, blackberries, grapes (wine and table), avocados, bananas, kiwi, persimmons, pomegranate, pineapple, tropical fruits, pomes, melon, mango, papaya, and lychee, a field crop plant such as clover, alfalfa, timothy, evening primrose, meadow foam, corn/maize (field, sweet, popcorn), hops, jojoba, buckwheat, safflower, quinoa, wheat, rice, barley, rye, millet, sorghum, oats, triticale, sorghum, tobacco, kapok, a leguminous plant (beans (e.g., green and dried), lentils, peas, soybeans), an oil plant (rape, canola, mustard, poppy, olive, sunflower, coconut, castor oil plant, cocoa bean, groundnut, oil palm), duckweed, Arabidopsis. a fiber plant (cotton, flax, hemp, jute), Cannabis (e.g., Cannabis sativa, Cannabis indica, and Cannabis ruderalis), Lauraceae (cinnamon, camphor), or a plant such as coffee, sugar cane, tea, and natural rubber plants; and/or a bedding plant such as a flowering plant, a cactus, a succulent and/or an ornamental plant (e.g., roses, tulips, violets), as well as trees such as forest trees (broad-leaved trees and evergreens, such as conifers; e.g., elm, ash, oak, maple, fir, spruce, cedar, pine, birch, cypress, eucalyptus, willow), as well as shrubs and other nursery stock. In some embodiments, the nucleic acid constructs of the invention and/or expression cassettes and/or vectors encoding the same may be used to modify maize, soybean, wheat, canola, rice, tomato, pepper, and/or sunflower. In some embodiments, the nucleic acid constructs of the invention and/or expression cassettes and/or vectors encoding the same may be used to modify soybean.

In some embodiments, a plant that may be modified as described herein may include, but is not limited to, com, soybean, canola, wheat, rice, cotton, sugarcane, sugar beet, barley, oats, alfalfa, sunflower, safflower, oil palm, sesame, coconut, tobacco, potato, sweet potato, cassava, coffee, apple, plum, apricot, peach, cherry, pear, fig, banana, citrus, cocoa, avocado, olive, almond, walnut, strawberry, watermelon, pepper, grape, tomato, cucumber, or a Brassica spp (e.g., B. napus, B. oleracea, B. rapa, B.juncea, and/or B. nigra). In some embodiments, a plant that may be modified as described herein is a dicot. In some embodiments, a plant that may be modified as described herein is a monocot. In some embodiments, a plant that may be modified as described herein is soybean (i.e., Glycine max).

The invention will now be described with reference to the following examples. It should be appreciated that these examples are not intended to limit the scope of the claims to the invention but are rather intended to be exemplary of certain embodiments. Any variations in the exemplified methods that occur to the skilled artisan are intended to fall within the scope of the invention.

EXAMPLES

EXAMPLE 1. Editing the EAR domain in soybean HD-Zipl7 genes

A strategy was developed for altering the activity of the transcription factor HD-Zipl7- 1 (Glyma.20g014400, SEQ ID NO:69) by generating edits in the EAR domain of the HD- Zipl7-1 polypeptide (SEQ ID NO:71). An editing construct was designed with spacers PWspl537 (SEQ ID NO:109) and PWspl539 (SEQ ID NO:110) and regenerating soybean plants were evaluated for edits in the target gene.

Lines carrying edits in the HD-Zipl7-1 gene were screened and those that showed about 10% of the sequencing reads having edits in the targeted gene were advanced to the next generation.

EXAMPLE 2. Edited alleles in soybean

Soybean plants with edited alleles of the HD-Zipl7-1 gene were generated as described in Example 1 and comprising an in-frame deletion were selected for further analysis. One of the edited alleles contained a 21 bp deletion (AAGTAGCTCCTCAAACTTGGA; SEQ ID NO: 114) starting at position 2190 of SEQ ID NO:69 giving rise to the edited allele sequence of SEQ ID NO: 113. The 21 bp deletion is in-frame and results in the deletion of the amino acids “SSSSNLE” (SEQ ID NO:116) at amino acids 6-12 of SEQ ID NO:71 giving rise to the amino acid sequence of SEQ ID NO: 115.

EXAMPLE 3. Soybean yield phenotypes in the El

The soybean plants described in Example 2 were evaluated at the R6 growth stage for plant architectural features that may be indicative of an increase in yield, as well as seed counts which are a direct indication of plant yield. The plant phenotypes measured included number of nodes on the mainstem, number of branches, pods on branches, pods on mainstem, pod per node on the mainstem, pods per plant, seeds per pod and seeds per plant. Results are summarized in Tables 1-8. These observations suggest the 21 bp deletion edited allele of the soybean HD-Zipl7-1 gene affects yield traits in both the homozygous and the heterozygous allelic state.

Table 1: Nodes on main stem

Table 2: branches per plant

Table 5: Pods per node on mainstem

The foregoing is illustrative of the present invention and is not to be construed as limiting thereof. The invention is defined by the following claims, with equivalents of the claims to be included therein.