Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHODS AND DEVICE FOR MONITORING A BEAM GUIDING OPTICAL UNIT IN A LASER PROCESSING HEAD DURING LASER MATERIAL PROCESSING
Document Type and Number:
WIPO Patent Application WO/2019/121146
Kind Code:
A1
Abstract:
The invention relates to methods and a device for monitoring a beam guiding optical unit in a laser processing head (10) during laser material processing, wherein a physical parameter of at least one optical element (16, 18, 26) of the beam guiding optical unit, which parameter correlates with the degree of contamination of the at least one optical element, is measured during the laser material processing, the current focus position is detected for focal position regulation by a spatially resolving sensor (36), which measures the beam diameter in the region of the focus (20), and an evaluation circuit (48) determines the current focus position from the output signal of the spatially resolving sensor (36) and outputs an actuating signal for an actuating drive, which displaces at least one optical element (16; 18; 26) of the beam guiding optical unit for focal position correction, wherein a measured focal position change is compensated for as long as the measured value of the physical parameter of the at least one optical element (16, 18, 26) of the beam guiding optical unit has not yet reached an assigned critical value, and an error signal is output if the measured parameter value of the at least one optical element (16; 18; 26) of the beam guiding optical unit reaches the assigned critical value.

Inventors:
BLÁZQUEZ-SÁNCHEZ DAVID (DE)
WECKENMANN NIKLAS (DE)
Application Number:
PCT/EP2018/084308
Publication Date:
June 27, 2019
Filing Date:
December 11, 2018
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
PRECITEC GMBH & CO KG (DE)
International Classes:
B23K26/70; B23K26/046
Foreign References:
DE102011007176A12012-10-18
DE9403822U11995-07-06
DE29816879U11998-11-26
DE20206255U12003-08-28
DE102004006565A12005-09-08
DE102011007176A12012-10-18
DE102013021151B32014-10-23
DE102007039878A12008-05-08
DE102011054941B32013-01-17
DE10113518B42016-05-19
Attorney, Agent or Firm:
TER MEER STEINMEISTER & PARTNER PATENTANWÄLTE MBB (DE)
Download PDF:
Claims:
Patentansprüche

1. Verfahren zur Überwachung einer Strahlführungsoptik in einem Laserbearbeitungs kopf (10) bei der Lasennaterialbearbeitung, bei dem

ein physikalischer Parameter von zumindest einem optischen Element (16, 18, 26) der Strahlführungsoptik, der mit dem Verschmutzungsgrad des zumindest einen optischen Elements korreliert, während der Lasermaterialbearbeitung gemessen wird,

die Fokusposition zur Fokuslagenregelung erfasst wird,

eine gemessene Fokuslagenänderung kompensiert wird, solange der gemessene Wert des physikalischen Parameters des zumindest einen optischen Elements (16, 18, 26) der Strahlführungsoptik einen zugeordneten kritischen Wert noch nicht erreicht hat, und

wenn der gemessene Parameterwert des zumindest einen optischen Elements (16;

18; 26) der Strahlführungsoptik den zugeordneten kritischen Wert erreicht, ein Fehlersignal ausgegeben wird.

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der physikalische Para meter des zumindest einen optischen Elements (16, 18, 26) dessen Temperatur ist.

3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass die Temperatur von zumindest zwei optischen Elementen (16, 18, 26) gemessen wird, und dass die gemessenen Temperaturwerte der einzelnen optischen Elemente (16, 18, 26) der Strahlführungsoptik ferner mit einander verglichen werden, um eine Verschmutzung eines optischen Elements durch einen gegenüber den Temperaturanstiegen der anderen optischen Elemente markanten Temperaturanstieg zu erkennen.

4. Verfahren nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass die Leistung eines Bearbeitungslaserstrahls (12) gemessen und ein daraus ermittelter Lei stungs verlauf mit ei nem Temperaturverlauf des zumindest einen optischen Elements (16, 18, 26) verglichen wird, um eine Verschmutzung zu erkennen.

5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der physikalische Parameter des zumindest einen optischen Elements (16, 18, 26) das von diesem ausgehende Streulicht ist.

6. V erfahren nach Anspruch 5, dadurch gekennzeichnet, dass die Leistung eines Bear- beitungslaserstrahls (12) gemessen und ein Leistungsmesswert mit einem Streulichtmess- wert des zumindest einen optischen Elements (16, 18, 26) ins Verhältnis gesetzt wird, um eine Verschmutzung zu erkennen.

7. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass zur Erfassung der Fokusposition ein Rückreflex (30) von einem im zum Fokus (20) hin konvergierenden Bearbeitungslaserstrahl (12) angeordneten optischen Element (16, 18, 26) aus dem Bearbeitungslaserstrahlengang ausgekoppelt wird, um zumindest einen Strahl durchmesser im Bereich des Fokus (20) zu vermessen und um aus dem oder den Strahl- durchmessem die Fokusposition zu bestimmen.

8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass aus zumindest zwei ge messenen Strahldurchmessern eine Strahlkaustik (62) im Fokusbereich ermittelt wird, um aus der ermittelten Strahlkaustik (62) die Fokusposition zu bestimmen.

9. Vorrichtung zur Überwachung einer Strahlführungsoptik in einem Laserbearbei- tungskopf (10) bei der Lasermaterialbearbeitung, mit

zumindest einem Sensor (41, 42, 43) zum Messen eines physikalischen Parameters von zumindest einem optischen Element (16, 18, 26) der Strahlführungsoptik, der mit dem Verschmutzungsgrad des zumindest einen optischen Elements korreliert, während der La sermaterialbearbeitung,

einem Sensor (36) zur Vermessung eines Bearbeitungslaserstrahls (12) im Bereich des Fokus (20) zur Erfassung der aktuellen Fokusposition,

einer Auswerteschaltung (48), der ein Ausgangssignal des Sensors (36) zuführbar ist und die eingerichtet ist, aus dem Ausgangssignal des Sensors (36) die aktuelle Fokuspositi on zu bestimmen und ein Stellsignal für einen Stellantrieb auszugeben, der geeignet ist, zur Fokuslagenregelung zumindest ein optisches Element (16, 18, 26) der Strahlführungsoptik zu verschieben, und

einer Überwachungsschaltung (50), die eingerichtet ist, den gemessenen Parameter wert des zumindest einen optischen Elements (16, 18, 26) der Strahlführungsoptik jeweils mit einem zugeordneten kritischen Wert zu vergleichen und ein Fehlersignal auszugeben, wenn ein Parameterwert des zumindest einen optischen Elements (16, 18, 26) der Strahlfüh rungsoptik den zugeordneten kritischen Wert erreicht. 10. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, dass der zumindest eine

Sensor zum Messen eines physikalischen Parameters des zumindest einen optischen Ele- ments (16, 18, 26) ein Temperatursensor (41, 42, 43) ist.

11. Vorrichtung nach Anspruch 10, dadurch gekennzeichnet, dass als Temperatursenso- ren (41, 42, 43) Thermofühler, Thermoelemente oder berührungslos messende Temperatur- sensoren wie Strahlungsthermometer, Thermopiles oder dergleichen vorgesehen sind.

12. Vorrichtung nach Anspruch 10 oder 11, dadurch gekennzeichnet, dass die Überwachungsschaltung (50) ferner eingerichtet ist, die gemessenen Temperaturwerte von zumin - dest zwei optischen Elementen (16, 18, 26) der Strahlführungsoptik mit einander zu vergleichen, um eine Verschmutzung eines optischen Elements (16, 18, 26) durch einen gegenüber den Temperaturanstiegen der anderen optischen Element markanten Temperaturanstieg zu erkennen. 13. Vorrichtung nach Anspruch 10, 11 oder 12, dadurch gekennzeichnet, dass zur Mes sung der Leistung des Bearbeitungslaserstrahls (12) ein Leistungssensor (64) vorgesehen ist, und dass die Überwachungsschaltung (50) ferner eingerichtet ist, einen aus der gemessenen Leistung ermittelter Leistungsverlauf mit einem Temperaturverlauf des zumindest einen optischen Elements (16, 18, 26) zu vergleichen, um eine Verschmutzung zu erkemien.

14. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, dass der zumindest eine Sensor zum Messen eines physikalischen Parameters des zumindest einen optischen Ele- ments (16, 18, 26) ein Streulichtsensor ist. 15. Vorrichtung nach Anspruch 14, dadurch gekennzeichnet, dass zur Messung der Leis- tung des Bearbeitungslaserstrahls (12) ein Leistungssensor (64) vorgesehen ist, und dass die Überwachungsschaltung (50) ferner eingerichtet ist, einen Leistungsmesswert mit einem Streulichtmesswert des zumindest einen optischen Elements (16, 18, 26) ins Verhältnis zu setzen, um eine Verschmutzung zu erkennen.

16. Vorrichtung nach einem der Ansprüche 9 bis 15, dadurch gekennzeichnet, dass der Sensor zur Vermessung des Bearbeitungslaserstrahls (12) ein ortsauflösender Sensor (36) ist.

17. Vorrichtung nach Anspruch 16, dadurch gekennzeichnet, dass ein im zum Fokus (20) hin konvergierenden Bearbeitungslaserstrahl (12) angeordnetes optisches Element (26), insbesondere das letzte optische Element der Stahlführungsoptik so gegen die optische Ach- se (28) des Bearbeitungslaserstrahlengangs geneigt ist, dass ein Rückreflex von dem opti- schen Element (26) aus dem Bearbeitungslaserstrahlengang ausgekoppelt und auf den orts- auflösenden Sensor (36) gelenkt wird. 18. Vorrichtung nach Anspruch 17, dadurch gekennzeichnet, dass zum Umlenken und

Auffalten des oder der ausgekoppelten Rückreflexe eine planparallele Platte als Umlenkelement (60) zwischen dem letzten optische Element der Stahlführungsoptik und dem orts- auflösenden Sensor (36) vorgesehen ist, das den oder die Rückreflexe in eine Mehrzahl von Rückreflexen aufteilt und auf den ortsauflösenden Sensor (36) lenkt.

19. Vorrichtung nach Anspruch 18, dadurch gekennzeichnet, dass die Auswerteschal- tung (48) ferner dazu eingerichtet ist, aus dem Ausgangssignal des ortsauflösenden Sensors (36) zumindest zwei Strahldurchmesser im Bereich des Fokus zu ermitteln und aus den er- mittelten Strahldurchmessem eine Strahlkaustik (62) im Fokusbereich zu bestimmen, um aus der ermittelten Strahlkaustik (62) die Fokusposition zu bestimmen.

Description:
Verfahren und Vorrichtung zur Überwachung einer Strahlführungsoptik in einem Laserbearbeitungskopf bei der Lasermaterialbearbeitung

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Überwachung einer Strahl- führungsoptik in einem Laserbearbeitungskopf und zur Regelung der Fokuslage bei der La- sermaterialbearbeitung.

Ein Problem bei der Lasermaterialbearbeitung ist die sogenannte„thermische Linse“, die auf die Erwärmung von optischen Elementen zur Laserstrahlführung und -fokussierung durch die Laserleistung, insbesondere im Multi-Kilowatt-Bereich und auf die Temperatur abhängigkeit der Brechzahl optischer Gläser zurückzuführen ist. Die thermische Linse führt bei der Lasermaterialbearbeitung zu einer Fokusverschiebung entlang der Strahlausbrei- tungsrichtung.

Während des Lasermaterialbearbeitungsprozesses treten in erster Linie zwei Mechanismen auf, die zu einer Erwärmung der optischen Elemente führen. Ursächlich hierfür sind zum einen eine Erhöhung der Laserleistung und zum anderen eine Verschmutzung der optischen Elemente. Weiterhin ist es möglich, dass die optischen Elemente eine mechanische Defor mation erfahren, die zu einer Änderung der Brennkraft führt. Die mechanische Deformation kann beispielsweise durch eine thermische Ausdehnung der Fassung der optischen Elemente hervorgerufen werden. Um eine qualitativ hochwertige Laserbearbeitung sicher zu stellen, ist es erforderlich die jeweilige Fokuslage zu erfassen und die Fokuslagenverschiebung aus- zugleichen, also eine schnelle und genaue Fokuslagenregelung bereitzustellen.

Die DE 10 2011 007 176 Al beschreibt eine Vorrichtung zur Fokussierung eines Laser strahls auf ein Werkstück, die mindestens ein transmissives optisches Element, das bezüg lich einer Ebene senkrecht zur Strahlachse des Laserstrahls unter einem Kippwinkel ange ordnet ist, und einen ortsauflösenden Detektor zur Erfassung von an dem transmissiven op- tischen Element rückreflektierter Laserstrahlung umfasst. Aus dem vom Detektor, z.B. ei nem CCD-Chip erfassten Bild wird von einer Bildauswerteeinrichtung die Größe oder der Durchmesser der rückreflektierten Laserstrahlung auf dem Detektor ermittelt, aus der bzw. dem wiederum zur Fokuslagenregelung die Fokusposition bestimmt werden kann. Die DE 10 2013 021 151 B3 betrifft ein Verfahren zur zumindest teilweisen Kompensation einer thermischen Linse in einer optischen Anordnung. Die optische Anordnung weist ein oder mehrere optische Elemente auf, in denen sich eine thermische Linse ausbildet. Im Strahlengang des Laserstrahls ist eine optische Kompensationsanordnung mit wenigstens einem optischen Kompensationselement angeordnet, das in einem Durchtrittsbereich der Laserstrahlung eine gegenüber wenigstens einem der optischen Elemente umgekehrte Ände rung des Brechungsindex mit der Temperatur aufweist. Der Durchmesser des Kompensationselementes ist dabei so gewählt, dass seine thermische Zeitkonstante im Durchtrittsbe reich der des wenigstens einen optischen Elementes möglichst nahe kommt. Mit dem Ver- fahren und der daraus resultierenden optischen Anordnung lassen sich auch transiente Ef fekte bei Ausbildung einer thermischen Linse auf einfache Weise zumindest annähernd kompensieren. Eine durch Verschmutzung bedingte thermische Linse kann hierdurch nicht kompensiert werden.

Die DE 10 2007 039 878 Al beschreibt eine Vorrichtung und ein Verfahren zur Stabilisie- rang der Fokuslage bei Optiken für FIochleistungs-Laserstrahlung zur Lasermaterialbearbei tung, bei denen der Fokus mittels beweglicher optischer Elemente und einer Steuerung bei Auftreten einer laserstrahlinduzierten Fokuslagenänderung in entgegengesetzter Richtung verschoben wird, so dass der Fokus in Summe in der Soll-Lage verbleibt. Die für die Kor- rektur erforderliche Information kann über die momentane Leistung des Laserstrahls be- rechnet werden. Um diese zu messen, kann im Strahlengang der Optik eine planparallele Platte unter einem Winkel zur optischen Achse angeordnet werden, an der ein kleiner kon stanter Bruchteil des Laserstrahls auf einen optischen Sensor umgelenkt wird. Auch hier ist eine Kompensation einer durch Verschmutzung bedingten thermischen Linse nicht möglich.

Die DE 10 2011 054 941 B3 betrifft eine Vorrichtung zur Korrektur der thermischen Ver- Schiebung der Fokuslage. Die Vorrichtung ist mit einem Sensor zur Ermittlung der aktuellen Fokuslage der Laserstrahlen, einer Recheneinheit zum Vergleichen der aktuellen Fokuslage mit einer, in einem Speicher abgelegten Soll-Fokuslage und zum Ableiten von Korrekturda ten aus dem Vergleich von aktueller und Soll-Fokuslage und einer Korrektureinheit mit we nigstens einem veränderbaren optischen Element, zum Verändern der Fokuslage gemäß der Korrekturdaten ausgestattet. Hier ist der Sensor am Ort des Fokus eines Rückreflexes der Laserstrahlung angeordnet, die von einer der Flächen eines der letzten optischen Elemente in StraMrichtung vor dem zu bearbeitenden Material reflektiert wird.

Beim aktuellen Stand der Technik kann zwar auch bei einem hohen Verschmutzungsgrad eine Fokuslagenüberwachung zur Fokuslagenkompensation durchgeführt werden, jedoch besteht die Gefahr, dass die verschmutze Optik vollständig zerstört wird, da eine Ver schmutzung nicht erkannt wird.

Die DE 101 13 518 B4 betrifft ein Verfahren zur Messung des Verschmutzungsgrades eines Schutzglases, das in einem Laserbearbeitungskopf strahlausgangsseitig zu einer im Laserbe- arbeitungskopf vorhandenen Linsenanordnung liegt, durch die ein Laserstrahl hindurchtritt. Hierzu ist außerhalb des Laserstrahls eine erste Strahlungsdetektoranordnung angeordnet, die eine vom Laserstrahl durchsetzte Fläche des Schutzglases beobachtet, um die Intensität der von dort kommenden Streustrahlung zu messen, die durch Streuung des Laserstrahls an Partikeln hervorgerufen wird, die am Schutzglas haften. Eine zweite Strahlungsdetektoran- ordnung misst zur Erfassung der Laserleistung die Intensität eines aus dem Laserstrahl um- gelenkten Teilstrahls. Aus dem Verhältnis von Streustrahlung zu Laserleistung kann dann auf den Verschmutzungsgrad der beobachteten Fläche des Schutzglases geschlossen wer den. Eine Fokuslagenkompensation ist hier nicht vorgesehen.

Davon ausgehend liegt der Erfindung die Aufgabe zugrunde, ein Verfahren und eine Vor- richtung bereitzustellen, die eine Echtzeit-Regelung der Fokuslage bei der Lasermaterialbe- arbeitung bei gleichzeitiger Maximierung der Standzeit der Optik ermöglicht.

Diese Aufgabe wird durch das Verfahren nach Patentanspruch 1 und die Vorrichtung nach Patentanspruch 9 gelöst. Vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung sind in den jeweiligen Unteransprüchen beschrieben.

Erfindungsgemäß wird also zur Überwachung einer Strahlführungsoptik in einem Laserbe- arbeitungskopf bei der Lasermaterialbearbeitung ein physikalischer Parameter von wenigs- tens einem optischen Element der Strahlführungsoptik, der mit dem Verschmutzungsgrad des optischen Elements korreliert, während der Lasermaterialbearbeitung gemessen und die Fokusposition zur Fokuslagenregelung erfasst. Eine gemessene Fokuslagenänderung wird dann solange kompensiert, wie der gemessene Wert des physikalischen Parameters des opti- schen Elements der Strahlfiihrungsoptik einen zugeordneten kritischen Wert noch nicht er reicht hat. Wenn jedoch der gemessene Wert des physikalischen Parameters des zumindest einen optischen Elements der Strahlfährungsoptik den zugeordneten kritischen Wert er- reicht, wird ein Fehlersignal ausgegeben. Hierdurch wird die gleichzeitige Erkennung der Fokuslagenverschiebung, im Folgenden auch Fokusshift genannt, und der Verschmutzungs- grad der optischen Elemente ermöglicht, um einerseits durch die Fokuslagenkorrektur eine hohe Bearbeitungsqualität sicher zu stellen und andererseits eine Beschädigung der Strahl- fuhrungsoptik durch übermäßige Erwärmung aufgrund von Verschmutzungen zu verhin- dem.

Bei einer Ausgestaltung der Erfindung ist vorgesehen, dass der zu messende physikalische Parameter des oder der optischen Elemente der Strahlführungsoptik deren Temperatur ist.

Bei einer vorteilhaften Ausgestaltung der Erfindung ist vorgesehen, dass die Temperatur von wenigstens zwei optischen Elementen der Strahlfährungsoptik gemessen wird und dass die gemessenen Temperaturwerte der einzelnen optischen Elemente der Strahlführungsoptik ferner mit einander verglichen werden, um eine Verschmutzung eines optischen Elements durch einen gegenüber den Temperaturanstiegen der anderen optischen Element markanten Temperaturanstieg zu erkennen.

Da sowohl ein großer Anstieg in der Laserleistung als auch ein hoher Verschmutzungsgrad der Strahlfiihrungsoptik, zu einer Fokuslagenverschiebung fährt, ist es zweckmäßig, wenn die Leistung eines Bearbeitungslaserstrahls gemessen und ein daraus ermittelter Leistungs verlauf mit dem Temperaturverlauf des zumindest einen optischen Elements verglichen wird, um einen verschmutzungsbedingten Fokusshift zu erkennen und gegebenenfalls die Laserbearbeitung zu Wartungszwecken zu unterbrechen. Gemäß einer weiteren Ausgestaltung der Erfindung ist vorgesehen, dass der physikalische Parameter des zumindest einen optischen Elements das von diesem ausgehende Streulicht ist. Dabei kann vorgesehen sein, dass die Streulichtmessung allein oder in Kombination mit einer Temperaturmessung eingesetzt wird. Durch die Kombination der Erfassung von zwei Parametern lässt sich die Zuverlässigkeit der Verschmutzungserkennung verbessern. Zweckmäßiger Weise wird auch die Leistung eines Bearbeitungslaserstrahls gemessen und ein Leistungsmesswert mit einem Streulichtmesswert des zumindest einen optischen Ele ments ins Verhältnis gesetzt wird, um eine Verschmutzung zu erkennen.

Bei einer anderen vorteilhaften Ausgestaltung der Erfindung ist vorgesehen, dass zur Erfas- sung der Fokusposition ein Rückreflex von einem im zum Fokus hin konvergierenden Bear- beitungslaserstrahl angeordneten optischen Element aus dem Bearbeitungslaserstrahlengang ausgekoppelt wird, um zumindest einen Strahldurchmesser im Bereich des Fokus zu vermessen und um aus dem oder den Strahldurchmessem die Fokusposition zu bestimmen.

Dabei ist es zweckmäßig, wenn aus zumindest zwei gemessenen Strahldurchmessem eine Strahlkaustik im Fokusbereich ermittelt wird, um aus der ermittelten Strahlkaustik die Fo- kusposition zu bestimmen. Hierdurch wird eine direkte Echtzeit- oder Inline- Strahlkaustikvermessung ermöglich, um während des Laserbearbeitungsprozesses eine prä- zise Ermittlung Fokuslage in Echtzeit sicher zu stellen.

Ferner ist erfindungsgemäß eine Vorrichtung zur Überwachung einer Strahlführungsoptik in einem Laserbearbeitungskopf bei der Lasermaterialbearbeitung vorgesehen, die zumindest einen Sensor zum Messen eines physikalischen Parameters von zumindest einem optischen Element der Strahlführungsoptik, der mit dem Verschmutzungsgrad des optischen Elements korreliert, während der Lasermaterialbearbeitung und einen ortsauflösenden Sensor zur Vermessung des Strahldurchmesser im Bereich des Fokus zur Erfassung der aktuellen Fo- kusposition aufweist. Eine Auswerteschaltung, der ein Ausgangssignal des ortsauflösenden Sensors zufuhrbar ist, bestimmt aus dem Ausgangssignal des ortsauflösenden Sensors die aktuelle Fokusposition zu und gibt ein Stellsignal für einen Stellantrieb aus, der daraufhin zumindest ein optisches Element der Strahlführungsoptik zur Fokuslagenregelung ver- schiebt. Eine Überwachungsschaltung vergleicht den oder die gemessenen Werte des Para- meters des oder der optischen Elemente der Strahlführungsoptik mit einem zugeordneten kritischen Wert und gibt ein Fehlersignal aus, wenn ein Wert des gemessenen Parameters des oder der optischen Elemente der Strahlführungsoptik den zugeordneten kritischen Wert erreicht. Somit kann eine Beschädigung der Strahlführungsoptik wegen übermäßiger Er- wärmung aufgrund von Verschmutzung ausgeschlossen werden. Zweckmäßiger Weise ist der physikalische Wert des zumindest einen optischen Elements dessen Temperatur. Somit wird als Sensor ein Temperatursensor zum Messen der Tempera- tur einzelner optischer Elemente der Strahlführungsoptik vorgesehen, der als Thermofühler, Thermoelement oder berührungslos messender Temperatursensor wie Strahlungsthermome- ter, Thermopile oder dergleichen ausgebildet sein kann.

Zur zuverlässigen Unterscheidung zwischen den verschiedenen Ursachen für eine thermische Linse ist vorgesehen, dass die Temperaturüberwachungsschaltung ferner eingerichtet ist die gemessenen Temperaturwerte von zumindest zwei optischen Elementen der Strahl- führungsoptik mit einander zu vergleichen, um eine Verschmutzung eines optischen Ele- ments durch einen gegenüber den Temperaturanstiegen der anderen optischen Element mar- kanten Temperaturanstieg zu erkennen.

Eine weitere Ausgestaltung der Erfindung sieht vor, dass zur Messung der Leistung eines Bearbeitungslaserstrahls ein Leistungssensor vorgesehen ist, und dass die Temperaturüb er- wachungsschaltung ferner eingerichtet ist, einen aus der gemessenen Leistung ermittelten Leistungsverlauf mit einem Temperaturverlauf des zumindest einen optischen Elements zu vergleichen, um eine Verschmutzung zu erkennen und die dadurch initiierte thermische Lin- se von einer thermischen Linse aufgrund erhöhter Laserleistung zu unterscheiden. Die Leis- tungsmessung ermöglicht nicht nur eine Doppelkontrolle des Temperaturverlaufs, sondern auch eine Doppelkontrolle der Fokuslage. Für den Fall, dass alle Optiken„sauber“ sind, kann man Soll- Werte für die Fokuslage in Abhängigkeit von der Laserleistung ermitteln.

Bei einer bestimmten Laserleistung geben Abweichungen von den Soll-Temperaturwerten und von der Soll-Fokuslage einen Elinweis auf Verschmutzungsprobleme.

Bei einer anderen Ausgestaltung der erfindungsgemäßen Vorrichtung ist vorgesehen, dass der zumindest eine Sensor zum Messen eines physikalischen Parameters des zumindest ei nen optischen Elements ein Streulichtsensor ist. Ist dabei gleichzeitig zur Messung der Leis- tung des Bearbeitungslaserstrahls ein Leistungssensor vorgesehen ist, so ist es möglich, dass eine entsprechend eingerichtete Überwachungsschaltung (50) einen Leistungsmesswert mit einem Streulichtmesswert des zumindest einen optischen Elements ins Verhältnis setzen kann, um eine Verschmutzung sicher zu erkennen. Der Sensor zur Vermessung des Bearbeitungslaserstrahls ist vorteilhafter Weise ein ortsauf- lösender Sensor.

Eine zweckmäßige Ausgestaltung der Erfindung zeichnet sich dadurch aus, dass ein im zum Fokus hin konvergierenden Bearbeitungslaserstrahl angeordnetes optisches Element, insbe sondere das letzte optische Element der Stahlführungsoptik so gegen die optische Achse des Bearbeitungslaserstrahlengangs geneigt ist, dass ein Rückreflex von dem optischen Element aus dem Bearbeitungslaserstrahlengang ausgekoppelt und auf den ortsauflösenden Sensor gelenkt wird, wobei insbesondere zum Umlenken und Auffalten des oder der ausgekoppel- ten Rückreflexe eine planparallele Platte als Umlenkelement zwischen dem letzten optische Element der Stahlführungsoptik und dem ortsauflösenden Sensor vorgesehen ist, das den oder die Rückreflexe in eine Mehrzahl von Rückreflexen aufteilt und auf den ortsauflösen- den Sensor lenkt. Hierdurch lässt sich in bautechnisch kompakter Weise eine Strahlvermes- sung erreichen, die zur Fokuslagenkorrektur genutzt werden kann.

Dabei ist vorteilhafter Weise vorgesehen, dass die Auswerteschaltung ferner dazu eingerichtet ist, aus dem Ausgangs signal des ortsauflösenden Sensors zumindest zwei Strahldurch- messer im Bereich des Fokus zu ermitteln und aus den ennittelten Strahldurchmessem eine Strahlkaustik im Fokusbereich zu bestimmen, um aus der ermittelten Strahlkaustik die Fo- kusposition zu bestimmen.

Die Erfindung wird im Folgenden beispielsweise anhand der Zeichnung näher erläutert. Es zeigen:

Figur 1 eine schematische vereinfachte Darstellung eines Laserbearbeitungskopfes mit einer erfindungsgemäßen Vorrichtung zur Überwachung einer Strahlführungsoptik und zur Rege- lung der Fokuslage bei der Lasermaterialbearbeitung,

Figur 2 eine vereinfachte Darstellung der Strahlführungsoptik eines Laserbearbeitungskop- fes mit Sensoren zur Temperaturüberwachung und zur Fokuslagenkontrolle,

Figur 3 eine schematische Darstellung der Strahlführungsoptik nach Figur 2 mit einem Fokuslagensensor gemäß einer anderen Ausgestaltung der Erfindung, Figur 4 einen Verlauf einer Laserstrahlkaustik im Bereich des Laserfokus,

Figur 5 eine Darstellung der Strahlführungsoptik und des Fokuslagensensors gemäß Figur 3 mit zusätzlichem Leistungssensor, und

Figur 6 eine vereinfachte schematische Darstellung der Strahlführungsoptik in einem Laser- bearbeitungskopf mit einem Fokuslagensensor gemäß einer weiteren Ausgestaltung der Er- findung.

In den verschiedenen Figuren der Zeichnung sind einander entsprechende Elemente mit gleichen Bezugszeichen versehen.

Figur 1 zeigt schematisch einen Laserbearbeitungskopf 10 durch den ein Bearbeitungslaser- strahl 12 geführt ist. Das Bearbeitungslaserlicht wird beispielsweise über eine Lichtleitfaser 14 an den Laserbearbeitungskopf 10 geliefert. Der aus der Lichtleitfaser 14 austretende Be arbeitungslaserstrahl 12 wird von einer ersten Optik 16 kollimiert und von einer Fokussier optik 18 in einen Laserfokus 20 auf einem Werkstück 22 fokussiert. Zwischen der Fokussieroptik 18 und einer Strahldüse 24, durch die der konvergente Bearbeitungslaserstrahl 12 auf das Werkstück 22 fokussiert wird, ist üblicherweise ein Schutzglas 26 angeordnet, das das Innere des Laserbearbeitungskopfes und insbesondere die Fokussieroptik 18 vor Verschmutzungen schützen soll, die z.B. durch Spritzer oder Schmauch verursacht werden kön nen.

Die erste Optik 16 und Fokussieroptik 18 sind als Einzellinsen dargestellt, können aber auch in bekannter Weise Linsengruppen sein. Insbesondere die erste Optik 16 kann von bewegli chen Linsen eines Zoomsystems gebildet sein, die den Bearbeitungslaserstrahl 12 kollimie- ren.

Um Rückreflexe 30 für eine Fokuslagenkontrolle aus dem Bearbeitungslaserstrahlengang auszukoppeln, ist das Schutzglas 26 so gegenüber der optischen Achse 28 der Strahlfüh- rungsoptik geneigt, dass der Winkel zwischen der optischen Achse 28 und den brechenden und reflektierenden Flächen 32, 34 des Schutzglases von 90° verschieden ist. Wie in Figur 1 schematisch dargestellt ist, werden die Rückreflexe 30 auf einen ortsauflösenden Sensor 36 gelenkt. Als ortsauflösender Sensor 36 kann jeder Sensor eingesetzt werden, mit dem ein Durchmesser des auf den Sensor auftreffenden Laserstrahls, also des Laserrückreflexes zur Stahlvermessung ermittelt werden kann. Beispielsweise könnte auch ein Sensor eingesetzt werden, der nach dem sogenannten Knife-Edge- Verfahren arbeitet, bei dem der auf den Sensor auftreffende Lichtstrahl wie bei der Schneidenprüfung schrittweise abgedeckt wird. Zweckmäßigerweise wird jedoch als ortsauflösender Sensor 36 eine Kamera eingesetzt, deren Sensorfläche beispielsweise von einem CCD- Sensor gebildet wird.

Um einen physikalischen Parameter von zumindest einem der optischen Element 16, 18, 26 der Strahlführungsoptik, der mit dem Verschmutzungsgrad des zumindest einen optischen Elements korreliert, wie beispielsweise die Temperatur oder das von dem Element aus ge sendete Streulicht, während der Lasermaterialbearbeitung zu messen, sind jedem der opti- schen Elemente 16, 18, 26 entsprechende Sensoren zu geordnet.

Um beispielsweise die Temperatur des Faserendes 14’ der Lichtleitfaser 14 und der einzel- nen optischen Elemente der Strahlführungsoptik, also die Temperatur der ersten Optik 16, der Fokussieroptik 18 und des Schutzglases 26 für eine Erkennung einer thermischen Linse und einer Verschmutzung erfassen zu können, ist jedem dieser Elemente ein Temperatur sensor 40, 41, 42 und 43 zugeordnet. Als Temperatursensor 40, 41, 42, 43 kann dabei ein Thermofühler oder ein Thermoelement eingesetzt werden, das mit dem Rand oder einer nicht dargestellten Fassung des jeweiligen optischen Elements in Eingriff steht. Es ist aber auch möglich, berührungslos messende Temperatursensoren wie Strahlungsthermometer, Thermopiles, oder dergleichen einzusetzen. Ferner können auch Streulichtsensoren einge- setzt werden, die eine vergleichbare Information wie die Temperatursensoren liefern. Die Signale von Streulichtsensoren sind umso höher je größer die Leistung oder der Verschmut- zungsgrad ist. Ideal ist eine Kombination von Temperatur- und Streulichtmessung. Zur Einstellung einer Fokuslage und zur Fokuslagenkorrektur ist zumindest eines der abbil- denden optischen Element der Stahlführungsoptik, also im dargestellten Beispiel die erste Optik 16 und/oder die Fokussieroptik 18 in Richtung ihrer optischen Achse beweglich an- geordnet, so dass sie von einem geeigneten Stellantrieb 46 bewegt werden können. Wie in den Figuren 2, 3 und 5 durch den Doppelpfeil 44 angedeutet, wird vorzugsweise die erste Optik 16 durch den Stellantrieb 46 bewegt, um eine Fokuslagenkorrektur durchzuführen. Um aufgrund einer erfassten Fokuslagenverschiebung zur Fokuslagenkorrektur zu steuern, wird ein Ausgangssignal des ortsauflösenden Sensors 36 an eine Auswerteschaltung 48 ge liefert, die aus dem Ausgangssignal des ortsauflösenden Sensors 36 die aktuelle Fokusposi- tion oder -läge bestimmt und ein Stellsignal für den Stellantrieb 46 ausgibt, so dass im dar- gestellten Beispiel die erste Optik 16 entsprechend verschoben wird.

Um die von einzelnen Temperatursensoren 41, 42, 43 gemessenen Temperaturwerte für eine Überwachung der Strahlführungsoptik nutzen zu können, werden diese an eine Temperatur- Überwachungsschaltung 50 geliefert, die die gemessenen Temperaturwerte der einzelnen optischen Elemente der Strahlführungsoptik miteinander und jeweils auch mit einem zuge- ordneten kritischen Temperaturwert vergleicht und z. B. über einen Ausgang 52 ein Wam- oder ein Fehlersignal ausgibt, wenn ein Temperaturwert eines optischen Elements der Strahlführungsoptik einen markanten Temperaturanstieg anzeigt bzw. den zugeordneten kritischen Temperaturwert erreicht. Das Fehlersignal kann - wie unten näher beschrieben - genutzt werden, um die Lasermaterialbearbeitung für dann notwendig werdende Wartungs- maßnahmen zu unterbrechen. Das Fehlersignal vom Ausgang 52 kann auch über einen Ein- gang 54 der Auswerteschaltung zugeführt werden, um eine weitere Fokuslagenregelung zu stoppen. Andere physikalische Parameter, die mit der Verschmutzung korrelieren, wie z. B. Streulicht, können in entsprechender Weise genutzt werden, wie die hier und im Folgenden zur Veranschaulichung der Erfindung in einem bevorzugten Ausführungsbeispiel beschrie- bene Temperatur.

Wie besonders gut in Figur 2 zu erkennen ist, wird zur Stahlvermessung ein Laserrückreflex 30.1 von der letzten transparenten optischen Fläche 34 des Schutzglases 26 vor dem Laser- prozess, also von der der Wechselwirkungszone gegenüberliegende Fläche 34 auf den orts- auflösenden Sensor 36 gerichtet. Der ortsauflösende Sensor 36 ist dabei so außerhalb der optischen Achse des Bearbeitungs laserstrahls 12 positioniert, dass der Fokus 20' des Rückreflexes 30.1 auf der Sensorfläche liegt.

Ein zweiter Rückreflex 30.2 von der der Fokussieroptik 18 zugewandten Fläche 32 des Schutzglases 26 wird ebenfalls auf den ortsauflösenden Sensor 36 gelenkt, wobei jedoch der Fokus 20 des zweiten Rückreflexes 30.2 hinter der Sensorfläche liegt, die in Figur 2 ge- strichelt angedeutet ist. Um die Auftreffbereiche der beiden Rückreflexe 30 auf der Sensor fläche des ortsauflösenden Sensor 36 weiter von einander zu trennen, kann ein planes optisches Element, also beispielsweise ein Schutzglas mit größerer Dicke verwendet werden.

Während der Lasermaterialbearbeitung wird also eine Fokuslagenregelung zur Kompensati- on eines sogenannten Fokusshifts, also einer Verschiebung des Fokus entlang der optischen Achse 28 des Bearbeitungslaserstrahlengangs mit Hilfe des ortsauflösenden Sensors 36, also beispielsweise mit Hilfe einer Kamera, deren Ausgangssignal, also deren Bilddaten von der Auswerteschaltung genutzt werden, um den Strahldurchmesser der Rückreflexe im Bereich des Fokus zu bestimmen und um daraus ein Stellsignal für den Stellantrieb 46 zur Fokusla- genkorrektur zu liefern.

Gleichzeitig werden bei der Lasermaterialbearbeitung mit Hilfe der Temperatursensoren 41, 42, 43 die Temperaturwerte der einzelnen optischen Elemente der Stahlführungsoptik ermittelt, so dass die gemessenen Temperaturwerte mit der ermittelten Fokuslage verglichen werden können. Wird bei der Lasermaterialbearbeitung die Laserleistung erhöht, werden alle Temperatursensoren 41, 42, 43 einen Anstieg der Temperatur der zugeordneten opti- schen Elemente, also der ersten Optik 16, der Fokussierlinse 18 und des Schutzglases 26 messen. Ein Vergleich dieser Temperaturwerte unter einander und/oder mit für die jeweili- gen optischen Elemente charakteristischen Temperaturwerten, die bei der erfolgten Laser- leistungsänderung zu erwarten sind, kann festgestellt werden, ob der Anstieg der Tempera- tur der einzelnen optischen Elemente nur auf die Erhöhung der Laserleistung zurückgeht oder auch verschmutzungsbedingt ist. Somit wird der mittels des ortsauflösenden Sensors 36 (zum Beispiel einer Kamera) und der Auswerteschaltung 48 ermittelte Fokusshift durch eine entsprechende Verschiebung der ersten Optik 16 (oder einer anderen Optik) kompen siert, solange keine oder nur eine geringe Verschmutzung vorliegt.

Wenn eine Verschmutzung eines optischen Elements, beispielsweise des Schutzglases 26 vorliegt, so wird für das Schutzglas 26 vom Temperatursensor 43 ein markanter Tempera turanstieg gemessen. Durch einen Vergleich mit den anderen Temperaturwerten und/oder einem dem Schutzglas 26 zugeordneten charakteristischen Temperaturwert für die erfolgte Erhöhung der Laserleistung kann erkannt werden, dass die Temperaturerhöhung des Schutzglases 26 nicht nur auf den Leistungsanstieg im Bearbeitungslaserstrahl 12, sondern auch durch die Verschmutzung hervorgerufen ist. Die Temperaturüberwachungsschaltung 50 kann dann eine Warnung ausgeben, die von einem Bediener oder einer automatischen Maschinensteuerung erkannt wird, um später zu einem geeigneten Zeitpunkt Wartungsmaß- nahmen durchzuführen. Der vom ortsauflösenden Sensor 36 gemessene Fokusshift wird durch Verschiebung der entsprechenden Optik, also im dargestellten Beispiel der ersten Optik 16 kompensiert, da die Lasermaterialbearbeitung nicht unterbrochen wird.

Erreicht die Temperatur des als verschmutzt erkannten optischen Elements eine zugeordnete kritische Temperatur dann wird durch den Vergleich mit den anderen Temperaturwerten ein „Fehler“ in der Stahlführungsoptik erkannt. In diesem Fall wird der gemessene Fokusshift nicht kompensiert, sondern es wird eine Warnung ausgegeben beispielsweise einen Hinweis darauf, dass„Wartung notwendig“ ist. Gleichzeitig erfolgt eine Abschaltung der Laserbear- beitung, um eine Zerstörung des verschmutzten optischen Elements zu verhindern.

Wie in Figur 3 dargestellt ist, werden idealerweise die beiden Rückreflexe 30.1, 30.2 von dem letzten optischen Element der Stahlführungsoptik vor dem Laserprozess also von dem Schutzglas 26 mit einem weiteren transparenten optischen Element, einem Umlenkelement 60 umgelenkt. Als Umlenkelement 60 kann eine planparallele Platte vorgesehen sein. Es ist aber auch möglich eine Keilplatte als Umlenkelement 60, Schutzglas 26 oder als weiteres Umlenkelement zu verwenden, um die Auftreffpunkte oder -bereiche der einzelnen

Teilrückreflexe auf dem ortsauflösenden Sensor 36 also auf dessen Sensorfläche weiter von einander zu trennen. Ferner ist möglich, die hintere Fläche des Umlenkelements 60 zu ver- spiegeln, um Lichtverluste für die entsprechenden Rückreflexe zu venneiden. Dabei ist es auch denkbar, die vordere Fläche des Umlenkelements 60 mit einer Beschichtung zu versehen, so dass die Intensität der beiden einfallenden Rückreflexe 30.1 und 30.2 gleichmäßig auf die jeweiligen Teilrückreflexe verteilt wird. Wird als Schutzglas 26 eine Keilplatte ver- wendet, so ist das Schutzglas 26 nicht unbedingt geneigt einzubauen.

Durch die auf diese Weise erzeugten mehrfach Rückreflexe lässt sich der Strahldurchmesser im Bereich des Fokus an mehreren Stellen vermessen, da der optische Weg des Lichts von letzten Fläche der Fokussieroptik 18 bis zur Sensorfläche des ortsauflösenden Sensors 36 für jeden der Rückreflexe unterschiedlich ist, also teilweise kürzer und teilweise länger als die nominale Brennweite, die die Fokuslage bestimmt. Wie in Figur 3 dargestellt ist, treffen die vier Rückreflexe, die aus den beiden Rückreflexen 30 vom Schutzglas 26 durch die mehrfach Reflektion an den Umlenkelement 60 entstehen, an den Stellen 1, k-2, k-l und k auf. Die von dem ortauflösenden Sensor 36 an diesen Bereichen seiner Sensorfläche ermit- telten Stahldurchmesser sind in Figur 4 schematisch dargestellt. Es zeigt sich also, dass an den Bereichen 1 und k-2 Strahldurchmesser erfasst werden, die vor dem Fokus 20 liegen während in den Bereichen k-l und k Stahl durchmesser an Stellen erfasst werden, die hinter dem Fokus 20 liegen. Durch die Vermessung mehrerer Stahldurchmesser entlang der Strahlausbreitungsrichtung im Bereich des nominellen Fokus 20 ist es möglich, die Stahl- kaustik 62 näherungsweise zu ermitteln, um dann aus der Stahlkaustik 62 die reale Fokusla ge des Bearbeitungslaserstrahls 12 zu bestimmen.

Um die Vielzahl von Rückreflexen, die von dem Umlenkelement 60 ausgehen, weiter zu erhöhen, kann das Umlenkelement 60 mehrere gestapelte Planplatten aufweisen. Dabei können die einzelnen Flächen der gestapelten Planplatten so beschichtet sein, dass die In- tensität der aus dem Laserbearbeitungsstrahlengang ausgekoppelten Rückreflexe 30.1, 30.2 gleichmäßig auf die Vielzahl der Teilrückreflexe verteilt wird.

Wie anhand von Figur 5 dargestellt ist, kann bei geeigneter Auslegung des Umlenkelements 60, also bei einem Einsatz eines transparenten Umlenkelements 60, der durch das Umlen kelement 60 hindurchtretende Anteil der beiden Rückreflexe 30 einem Sensor zur Messung der Leistung des Bearbeitungslaserstrahls 12 also einem Leistungssensor 64 zugeführt werden. Das von dem Leistungssensor 64 zur Leistungsmessung gelieferte Leistungssignal, dessen zeitlicher Verlauf eine Zunahme der Laserleistung, eine Abnahme der Laserleistung oder eine konstante Laserleistung bei der Lasermaterialbearbeitung zeigt, kann dann bei einem Vergleich der gemessenen Temperaturwerte der einzelnen optischen Elemente der Strahlführungsoptik benutzt werden, um Temperaturanstiege eindeutig einem Laserleis tungsanstieg zuzuordnen und um Verschmutzungen von einzelnen optischen Elementen der Strahlführungsoptik sicher erkennen zu können. Insbesondere zeigt eine Korrelation zwi schen dem Leistungsverlauf des Bearbeitungslaserstrahls 12 und Temperaturverlauf eines optischen Elements an, dass keine Verschmutzung vorliegt, während ein nicht mit dem Leistungsverlauf des Bearbeitungslaserstrahls 12 korrelierter Temperaturverlauf eines optischen Elements auf eine gegebenenfalls strake Verschmutzung hinweist. Die Leistungsmes- sung ermöglicht aber nicht nur eine Doppelkontrolle des Temperaturverlaufs, sondern auch eine Doppelkontrolle der Fokuslage, da für den Fall, dass alle Optiken„sauber“ sind, Soll- Werte für die Fokuslage in Abhängigkeit von der Laserleistung ermittelt werden können, die dann mit der bei einer bestimmten Laserleistung gemessenen Ist-Fokuslage verglichen werden können. Bei einer bestimmten Laserleistung geben also Abweichungen von den Soll-Temperaturwerten und von der Soll-Fokuslage einen Hinweis auf Verschmutzungsprobleme.

Figur 6 zeigt eine Strahlführungsoptik für einen Laserbearbeitungskopf, die zusätzlich zu der ersten Optik 16 zum Kollimieren des über die Lichtleitfaser 14 gelieferten Bearbeitungs- laserstrahls, der Fokussieroptik 18 und dem Schutzglas 26 ein weiteres Schutzglas 27 auf weist, das dicht hinter der Fokussieroptik 18 angeordnet und senkrecht zur optischen Achse 28 ausgerichtet ist. Das weitere Schutzglas 27 dient hier als Umlenkelement, das die beiden Rückreflexe vom letzten Schutzglas 26 in vier Rückreflexe aufteilt, die dann von einem Spiegel 66 auf den ortsauflösenden Sensor 36 gelenkt werden. Je nach Größe der Sensorflä- che des ortauflösenden Sensors 36 können dann alle oder auch nur einige der Rückreflexe für die Strahlvermessung im Bereich des Fokus genutzt werden.