Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHODS FOR GENERATING BARCODED COMBINATORIAL LIBRARIES
Document Type and Number:
WIPO Patent Application WO/2017/223538
Kind Code:
A9
Abstract:
Provided herein are methods and composition for trackable genetic variant libraries. Further provided herein are methods and compositions for recursive engineering. Further provided herein are methods and compositions for multiplex engineering. Further provided herein are methods and compositions for enriching for editing and trackable engineered sequences and cells using nucleic acid-guided nucleases.

Inventors:
GILL RYAN (US)
GARST ANDREW (US)
LIPSCOMB TANYA ELIZABETH (US)
BASSALO MARCELO (US)
ZEITOUN RAMSEY (US)
Application Number:
PCT/US2017/039146
Publication Date:
July 19, 2018
Filing Date:
June 23, 2017
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
UNIV COLORADO REGENTS (US)
INSCRIPTA INC (US)
International Classes:
A01N63/00; C12N1/21; C12N15/00
Attorney, Agent or Firm:
DIPETRILLO, Christen G. et al. (US)
Download PDF:
Claims:
CLAIMS

WHAT IS CLAIMED IS:

1. A composition comprising:

i) a first donor nucleic acid comprising:

a) a modified first target nucleic acid sequence;

b) a first protospacer adjacent motif (PAM) mutation; and

c) a first guide nucleic acid sequence comprising a first spacer region complementary to a portion of the first target nucleic acid; and

ii) a second donor nucleic acid comprising:

a) a barcode corresponding to the modified first target nucleic acid sequence; and b) a second guide nucleic acid sequence comprising a second spacer region complementary to a portion of a second target nucleic acid.

2. The composition of claim 1, wherein the modified first target nucleic acid sequence comprises at least one inserted, deleted, or substituted nucleic acid compared to a corresponding un-modified first target nucleic acid.

3. The composition of claim 1, wherein the first guide nucleic acid and second guide nucleic acid are compatible with a nucleic acid-guided nuclease.

4. The composition of claim 3, wherein the nucleic acid-guided nuclease is a Type II or Type V Cas protein.

5. The composition of claim 3, wherein the nucleic acid-guided nuclease is a Cas9 homologue or a Cpfl homologue.

6. The composition of claim 1, wherein the second donor nucleic acid comprises a second PAM mutation.

7. The composition of claim 1, wherein the second donor nucleic acid sequence comprises a regulatory sequence or a mutation to turn a screenable or selectable marker on or off.

8. The composition of claim 1, wherein the second donor nucleic acid sequence targets a unique landing site.

9. A method of genome engineering, the method comprising:

a) contacting a population of cells with a polynucleotide, wherein each cell comprises a first target nucleic acid, a second target nucleic acid, and a nucleic acid-guided nuclease,

wherein the polynucleotide comprises

1) an editing cassette comprising:

i) a modified first target nucleic acid sequence;

ii) a first protospacer adjacent motif (PAM) mutation; iii) a first guide nucleic acid sequence comprising a spacer region complementary to a portion of the first target nucleic acid and compatible with the nucleic acid-guided nuclease; and

2) a recorder cassette comprising

i) a barcode corresponding to the modified first target nucleic acid sequence; and

ii) a second guide nucleic acid sequence comprising a second spacer region complementary to a portion of the second target nucleic acid and compatible with the nucleic acid-guided nuclease;

b) allowing the first guide nucleic acid sequence, the second guide nucleic acid sequence, and the nucleic acid-guided nuclease to create a genome edit within the first target nucleic acid and the second target nucleic acid.

10. The method of claim 9, further comprising c) sequencing a portion of the barcode, thereby identifying the modified first target nucleic acid that was inserted within the first target nucleic acid in step a).

11. The method of claim 9, wherein the nucleic acid-guided nuclease is a CRISPR nuclease.

12. The method of claim 9, wherein the PAM mutation is not recognized by the nucleic acid- guided nuclease.

13. The method of claim 9, wherein the nucleic acid-guided nuclease is a Type II or Type V Cas protein.

14. The method of claim 9, wherein the nucleic acid-guided nuclease is a Cas9 homologue or a Cpfl homologue.

15. The method of claim 9, wherein the recorder cassette further comprises a second PAM mutation that is not recognized by the nucleic acid-guided nuclease.

16. A method of selectable recursive genetic engineering comprising

a) contacting cells comprising a nucleic acid-guided nuclease with a polynucleotide comprising a recorder cassette, said recorder cassette comprising

i) a nucleic acid sequence that recombines into a unique landing site incorporated during a previous round of engineering, wherein the nucleic acid sequence comprises a unique barcode; and

ii) a guide RNA compatible with the nucleic acid-guided nuclease that targets the unique landing site; and

b) allowing the nucleic acid-guided nuclease to edit the unique landing site, thereby incorporating the unique barcode into the unique landing site.

17. The method of claim 16, wherein the nucleic acid sequence further comprises a regulatory sequence that turns transcription of a screenable or selectable marker on or off.

18. The method of claim 16, wherein the nucleic acid sequence further comprises a PAM

mutation that is not compatible with the nucleic acid-guided nuclease.

19. The method of claim 16, wherein the nucleic acid sequence further comprises a second unique landing site for subsequent engineering rounds.

20. The method of claim 16, wherein the polynucleotide further comprises an editing cassette comprising

a) a modified first target nucleic acid sequence;

b) a first protospacer adjacent motif (PAM) mutation; and

c) a first guide nucleic acid sequence comprising a first spacer region complementary to a portion of the first target nucleic acid,

wherein the unique barcode corresponds to the modified first target nucleic acid such that the modified target nucleic acid can be identified by the unique barcode.

Description:
METHODS FOR GENERATING BARCODED COMBINATORIAL LIBRARIES

CROSS-REFERENCE

[0001] The present application claims priority to U.S. Provisional Application Serial No. 62/354,516, filed June 24, 2016; U.S. Provisional Application Serial No. 62/367,386, filed July 27, 2016; and U.S. Provisional Application Serial No. 62/483,930, filed April 10, 2017, the contents of each being hereby incorporated by reference in their entirety.

STATEMENT AS TO FEDERALLY SPONSORED RESEARCH

[0002] This disclosure was made with the support of the United States government under Contract number DE-SC0008812 by the Department of Energy.

SEQUENCE LISTING

[0003] This application contains a sequence list in Table 5.

BACKGROUND OF THE DISCLOSURE

[0004] Understanding the relationship between a protein's amino acid structure and its overall function continues to be of great practical, clinical, and scientific significance for biologists and engineers. Directed evolution can be a powerful engineering and discovery tool, but the random and often combinatorial nature of mutations makes their individual impacts difficult to quantify and thus challenges further engineering. More systematic analysis of contributions of individual residues or saturation mutagenesis remains labor- and time-intensive for entire proteins and simply is not possible on reasonable timescales for editing of multiple proteins in parallel, such as metabolic pathways or multi-protein complexes, using standard methods.

SUMMARY OF THE DISCLOSURE

[0005] Disclosed herein are compositions comprising: i) a first donor nucleic acid comprising: a) a modified first target nucleic acid sequence; b) a first protospacer adjacent motif (PAM) mutation; and c) a first guide nucleic acid sequence comprising a first spacer region complementary to a portion of the first target nucleic acid; and ii) a second donor nucleic acid comprising: a) a barcode corresponding to the modified first target nucleic acid sequence; and b) a second guide nucleic acid sequence comprising a second spacer region complementary to a portion of a second target nucleic acid. Further disclosed are compositions wherein the modified first target nucleic acid sequence comprises at least one inserted, deleted, or substituted nucleic acid compared to a corresponding un-modified first target nucleic acid. Further disclosed are compositions wherein the first guide nucleic acid and second guide nucleic acid are compatible with a nucleic acid-guided nuclease. Further disclosed are compositions wherein the nucleic acid-guided nuclease is a Type II or Type V Cas protein. Further disclosed are compositions wherein the nucleic acid-guided nuclease is a Cas9 homologue or a Cpfl homologue. Further disclosed are compositions wherein the second donor nucleic acid comprises a second PAM mutation. Further disclosed are compositions wherein the second donor nucleic acid sequence comprises a regulatory sequence or a mutation to turn a screenable or selectable marker on or off. Further disclosed are compositions wherein the second donor nucleic acid sequence targets a unique landing site.

[0006] Disclosed herein are methods of genome engineering, the method comprising: a) contacting a population of cells with a polynucleotide, wherein each cell comprises a first target nucleic acid, a second target nucleic acid, and a nucleic acid-guided nuclease, wherein the polynucleotide comprises 1) an editing cassette comprising: i) a modified first target nucleic acid sequence; ii) a first protospacer adjacent motif (PAM) mutation; iii) a first guide nucleic acid sequence comprising a spacer region complementary to a portion of the first target nucleic acid and compatible with the nucleic acid-guided nuclease; and 2) a recorder cassette comprising i) a barcode corresponding to the modified first target nucleic acid sequence; and ii) a second guide nucleic acid sequence comprising a second spacer region complementary to a portion of the second target nucleic acid and compatible with the nucleic acid-guided nuclease; b) allowing the first guide nucleic acid sequence, the second guide nucleic acid sequence, and the nucleic acid- guided nuclease to create a genome edit within the first target nucleic acid and the second target nucleic acid. Further disclosed are methods further comprising c) sequencing a portion of the barcode, thereby identifying the modified first target nucleic acid that was inserted within the first target nucleic acid in step a). Further disclosed are methods wherein the nucleic acid-guided nuclease is a CRISPR nuclease. Further disclosed are methods wherein the PAM mutation is not recognized by the nucleic acid-guided nuclease. Further disclosed are methods wherein the nucleic acid-guided nuclease is a Type II or Type V Cas protein. Further disclosed are methods wherein the nucleic acid-guided nuclease is a Cas9 homologue or a Cpfl homologue. Further disclosed are methods wherein the recorder cassette further comprises a second PAM mutation that is not recognized by the nucleic acid-guided nuclease.

[0007] Disclosed herein are methods of selectable recursive genetic engineering comprising a) contacting cells comprising a nucleic acid-guided nuclease with a polynucleotide comprising a recorder cassette, said recorder cassette comprising i) a nucleic acid sequence that recombines into a unique landing site incorporated during a previous round of engineering, wherein the nucleic acid sequence comprises a unique barcode; and ii) a guide RNA compatible with the nucleic acid-guided nuclease that targets the unique landing site; and b) allowing the nucleic acid-guided nuclease to edit the unique landing site, thereby incorporating the unique barcode into the unique landing site. Further disclosed are methods wherein the nucleic acid sequence further comprises a regulatory sequence that turns transcription of a screenable or selectable marker on or off. Further disclosed are methods wherein the nucleic acid sequence further comprises a PAM mutation that is not compatible with the nucleic acid-guided nuclease. Further disclosed are methods wherein the nucleic acid sequence further comprises a second unique landing site for subsequent engineering rounds. Further disclosed are methods wherein the polynucleotide further comprises an editing cassette comprising a) a modified first target nucleic acid sequence; b) a first protospacer adjacent motif (PAM) mutation; and c) a first guide nucleic acid sequence comprising a first spacer region complementary to a portion of the first target nucleic acid, wherein the unique barcode corresponds to the modified first target nucleic acid such that the modified target nucleic acid can be identified by the unique barcode.

[0008] Provided herein are compositions comprising i) a first donor nucleic acid comprising: a) a modified first target nucleic acid sequence; b) a mutant protospacer adjacent motif (PAM) sequence; and c) a first guide nucleic acid sequence comprising a first spacer region complementary to a portion of the first target nucleic acid; and ii) a second donor nucleic acid comprising: a) a recorder sequence; and b) a second guide nucleic acid sequence comprising a second spacer region complementary to a portion of the second target nucleic acid. In some aspects, the first donor nucleic acid and the second donor nucleic acid are covalently linked or comprised on a single nucleic acid molecule. Further provided are compositions wherein the modified first target nucleic acid comprises a 5' homology are and a 3 ' homology arm. Further provided are compositions wherein the 5' homology arm and the 3' homology arm are homologous to nucleic acid sequence flanking a protospacer complementary to the first spacer region. Further provided are compositions wherein the modified first target nucleic acid sequence comprises at least one inserted, deleted, or substituted nucleic acid compared to a corresponding un-modified first target nucleic acid. Further provided are compositions wherein the first gRNA is compatible with a nucleic acid-guided nuclease, thereby facilitating nuclease- mediate cleavage of the first target nucleic acid. Further provided are compositions wherein the nucleic acid-guided nuclease is a Cas protein, such as a Type II or Type V Cas protein. Further provided are compositions wherein the nucleic acid-guided nuclease is Cas9 or Cpfl . Further provided are compositions wherein the nucleic acid-guided nuclease is MAD2 or MAD7. Further provided are compositions wherein the nucleic acid-guided nuclease is an engineered or non- natural enzyme. Further provided are compositions wherein the nucleic acid-guided nuclease is a engineered or non-natural enzyme derived from Cas9 or Cpfl . Further provided are compositions wherein the nucleic acid-guided nuclease is an engineered or non-natural enzyme that has less than 80% homology to either Cas9 or Cpfl . Further provided are compositions wherein the mutant PAM sequence is not recognized by the nucleic acid-guided nuclease. Further provided are compositions wherein the recorder sequence comprises a barcode. Further provided are compositions wherein the recorder sequence comprises a fragment of a screenable or selectable marker. Further provided are compositions wherein the recorder sequence comprises a unique sequence by which the modified first target nucleic acid sequence is specifically identified. Further provided are compositions wherein the recorder sequence comprises a unique sequence by which the edited cells may be selected or enriched. A first donor nucleic acid can be a cassette, such as an editing cassette as disclosed herein. A second donor nucleic acid can be a cassette, such as a recording cassette as disclosed herein. A first donor nucleic acid and a second donor nucleic acid can be comprised on a single cassette. A first donor nucleic acid and a second donor nucleic acid can be covalently linked. In any of these examples, the elements of the cassette or donor nucleic acids can be contiguous or non-contiguous.

[0009] Provided herein are cells comprising an engineered chromosome or polynucleic acid comprising: a first modified sequence; a first mutant protospacer adjacent motif (PAM); a first recorder sequence, the sequence of which uniquely identifies the first modified sequence, wherein the first modified sequence and the first recorder sequence are separated by at least lbp. Further provided are cells wherein the first modified sequence and the first recorder sequence are separated by at least lOObp. Further provided are cells wherein the first modified sequence and the first recorder sequence are separated by at least 500bp. Further provided are cells wherein the first modified sequence and the first recorder sequence are separated by at least lkbp. Further provided are cells wherein the first recorder sequence is a barcode. Further provided are cells wherein the first modified sequence is within a coding sequence. Further provided are cells wherein the first modified sequence comprises at least one inserted, deleted, or substituted nucleotide compared to an unmodified sequence. Further provided are cells further comprising: a second modified sequence; a second mutant PAM; and a second recorder sequence, the sequence of which uniquely identifies the second modified sequence, wherein the second modified sequence and the second recorder sequence are separated by at least 1 kb. Further provided are cells wherein the first recorder sequence and the second recorder sequence are separated by less than 100 bp. Further provided are cells wherein the second recorder sequence is a barcode. Further provided are cells wherein the second modified sequence is within a coding sequence. Further provided are cells wherein the second modified sequence comprises at least one inserted, deleted, or substituted nucleotide compared to an unmodified sequence. Further provided are cells wherein the first recorder sequence and the second recorder sequence are immediately adjacent to each other or overlapping, thereby generating a combined recorder sequence. Further provided are cells wherein the combined recorder sequence comprises a selectable or screenable marker. Further provided are cells wherein the combined recorder sequence comprises a selectable or screenable marker by which the cells may be enriched or selected. [0010] Provided herein are methods of genome engineering, the method comprising: a) introducing into a population of cells a plurality of polynucleotides, wherein each cell comprises a first target nucleic acid, a second target nucleic acid, and a targetable nuclease, wherein each polynucleotide comprises: i) a modified first target nucleic acid sequence; ii) a mutant protospacer adjacent motif (PAM) sequence; iii) a first guide nucleic acid sequence comprising a guide sequence complementary to a portion of the first target nucleic acid; and (iv) a recorder sequence; b) inserting the modified first target nucleic acid sequence within the first target nucleic acid; c) inserting the recorder sequence within the second target nucleic acid; d) cleaving the first target nucleic acid by the targetable nuclease in cells that do not comprise the mutant

PAM sequence, thereby enriching for cells comprising the inserted modified first target nucleic acid sequence. Further provided are methods wherein the recorder sequence is linked to the modified first target nucleic acid. Further provided are methods wherein each polynucleotide further comprises a second mutant PAM sequence. Further provided are methods wherein each polynucleotide further comprises a second guide nucleic acid sequence comprising a guide sequence complementary to a portion of the second target nucleic acid. Further provided are methods wherein the recorder sequence comprises a unique sequence by which the modified first target nucleic acid is specifically identified upon sequencing the recorder sequence. Further provided are methods further comprising e) sequencing the recorder sequence, thereby identifying the modified first target nucleic acid that was inserted within the first target nucleic acid in step b). Further provided are methods wherein inserting the modified first target nucleic acid sequence comprises cleaving the first target nucleic acid by the nuclease complexed with the transcription product of the first guide nucleic acid sequence. Further provided are methods wherein inserting the modified first target nucleic acid sequence further comprises homology- directed repair. Further provided are methods wherein inserting the modified first target nucleic acid sequence further comprises homologous recombination. Further provided are methods wherein the polynucleotide further comprises a second guide nucleic acid sequence comprising a spacer region complementary to a portion of the second target nucleic acid. Further provided are methods wherein inserting the recorder sequence comprises cleaving the second target nucleic acid by the nuclease complexed with the transcription product of the second guide nucleic acid sequence. Further provided are methods wherein inserting the modified first target nucleic acid sequence further comprises homology-directed repair. Further provided are methods wherein inserting the modified first target nucleic acid sequence further comprises homologous recombination. Further provided are methods wherein the targetable nuclease is a Cas protein.

Further provided are methods wherein the Cas protein is a Type II or Type V Cas protein.

Further provided are methods wherein the Cas protein is Cas9 or Cpfl . Further provided are methods wherein the targetable nuclease is a nucleic acid-guided nuclease. Further provided are methods wherein the targetable nuclease is MAD2 or MAD7. Further provided are methods wherein the mutant PAM sequence is not recognized by the targetable nuclease. Further provided are methods wherein the targetable nuclease is an engineered targetable nuclease. Further provided are methods wherein the mutant PAM sequence is not recognized by the engineered targetable nuclease. Further provided are methods further comprising introducing a second plurality of polynucleotides into a second population of cells comprising the enriched cells from step d), wherein each cell within the second population of cells comprises a third nucleic acid, a fourth target nucleic acid, and a targetable nuclease. Further provided are methods wherein each of the second polynucleotides comprises: i) a modified third target nucleic acid sequence; ii) a third mutant protospacer adjacent motif (PAM) sequence; iii) a third guide nucleic acid sequence comprising a spacer region complementary to a portion of the third target nucleic acid; and (iv) a second recorder sequence. Further provided are methods wherein each second polynucleotide further comprises a fourth mutant PAM sequence. Further provided are methods wherein each second polynucleotide further comprises a fourth guide nucleic acid sequence comprising a guide sequence complementary to a portion of the fourth target nucleic acid. Further provided are methods further comprising: a) inserting the modified third target nucleic acid sequence within the third target nucleic acid; b) inserting the second recorder sequence within the fourth target nucleic acid; c) cleaving the third target nucleic acid by the nuclease in cells that do not comprise the second mutant PAM sequence, thereby enriching for cells comprising the inserted modified third target nucleic acid sequence. Further provided are methods wherein the fourth target nucleic acid is adjacent to the second target nucleic acid. Further provided are methods wherein the inserted first recorder sequence is adjacent to the second recorder sequence, such that sequencing information can be obtained for the first and second recorder sequence from a single sequencing read. Further provided are methods further comprising obtaining sequence information from the first and second recorder sequences within a single sequence read, thereby identifying the modified first and third target nucleic acid sequences inserted into the first and third target nucleic acids respectively.

[0011] Provided herein are methods of identifying engineered cells, the method comprising: a) providing cells, wherein each cell comprises a first target nucleic acid, a second target nucleic acid, and a targetable nuclease, b) introducing into the cells a polynucleotide comprising: 1) a first donor nucleic acid comprising i) a modified target nucleic acid sequence; ii) a mutant protospacer adjacent motif (PAM) sequence; and iii) a first guide nucleic acid sequence comprising a first guide sequence complementary to a portion of the first target nucleic acid; and 2) a second donor nucleic acid comprising i) a recorder sequence corresponding to the modified target nucleic acid sequence; and ii) a second guide nucleic acid sequence comprising a second guide sequence complementary to a portion of the second target nucleic acid, c) cleaving the first target nucleic acid by the nuclease in cells that do not comprise the mutant PAM sequence, thereby enriching for cells comprising the modified target nucleic acid sequence, d) repeating steps a) - c) at least one time using the cells enriched for in step c) as the cells for step a) of the following round, wherein the recorder sequence from each round is incorporated adjacent to the recorder sequence from the previous round, thereby generating a record sequence array comprising a plurality of traceable barcodes, and e) sequencing the record sequence, thereby identifying engineered cells comprising a desired combination of modified target nucleic acids. Further provided are methods wherein the second donor nucleic acid further comprises a second mutant PAM sequence. Further provided are methods wherein sequencing the record sequence array comprises obtaining sequence information for each of the plurality of recorder sequences within a single sequencing read. Further provided are methods wherein steps a) - c) are repeated at least once. Further provided are methods wherein steps a) - c) are repeated at least twice. Further provided are methods wherein the recorder sequence is a barcode. Further provided are methods where the first donor nucleic acid and the second donor nucleic acid are covalently linked. A first donor nucleic acid can be a cassette, such as an editing cassette as disclosed herein. A second donor nucleic acid can be a cassette, such as a recording cassette as disclosed herein. A first donor nucleic acid and a second donor nucleic acid can be comprised on a single cassette. A first donor nucleic acid and a second donor nucleic acid can be covalently linked. In any of these examples, the elements of the cassette or donor nucleic acids can be contiguous or non-contiguous.

[0012] Provided herein are methods of identifying engineered cells, the method comprising: a) providing cells, wherein each cell comprises a first target nucleic acid, a second target nucleic acid, and a targetable nuclease, b) introducing into the cells a polynucleotide comprising: 1) a first donor nucleic acid comprising i) a modified target nucleic acid sequence; ii) a mutant protospacer adjacent motif (PAM) sequence; and iii) a first guide nucleic acid sequence comprising a first guide sequence complementary to a portion of the first target nucleic acid; and 2) a second donor nucleic acid comprising i) a marker fragment corresponding to the modified target nucleic acid sequence; and ii) a second guide nucleic acid sequence comprising a second guide sequence complementary to a portion of the second target nucleic acid, c) cleaving the first target nucleic acid by the nuclease in cells that do not comprise the mutant PAM sequence, thereby enriching for cells comprising the modified target nucleic acid sequence, d) repeating steps a) - c) at least one time using the cells enriched for in step c) as the cells for step a) of the following round, wherein the marker fragment from each round is incorporated adjacent to the marker fragment from the previous round, thereby generating a complete marker, and e) identifying cells comprising the complete marker, thereby identifying engineered cells comprising a desired combination of modified target nucleic acids. Further provided are methods wherein the second donor nucleic acid further comprises a second mutant PAM sequence. Further provided are methods wherein the complete marker comprises a selectable marker. Further provided are methods wherein the selectable marker comprises an antibiotic resistance marker or an auxotrophic marker. Further provided are methods wherein the complete marker comprises a screenable reporter. Further provided are methods wherein the screenable reporter comprises a fluorescent reporter. Further provided are methods wherein the screenable reporter comprises a gene. Further provided are methods wherein the screenable reporter comprises a promotor or regulatory element. Further provided are methods wherein the promoter or regulatory element turns on or off transcription of a screenable or selectable element. Further provided are methods wherein the screenable reporter comprises a screenable or selectable element which alters a characteristic of a colony comprising the element compared to a colony that does not comprise the element. A first donor nucleic acid can be a cassette, such as an editing cassette as disclosed herein. A second donor nucleic acid can be a cassette, such as a recording cassette as disclosed herein. A first donor nucleic acid and a second donor nucleic acid can be comprised on a single cassette. A first donor nucleic acid and a second donor nucleic acid can be covalently linked. In any of these examples, the elements of the cassette or donor nucleic acids can be contiguous or non-contiguous.

[0013] Provided herein are methods of genome engineering, the method comprising: a) introducing into a population of cells a polynucleotide, wherein each cell comprises a first target nucleic acid, a second target nucleic acid, and a targetable nuclease, wherein the polynucleotide comprises: i) a modified first target nucleic acid sequence; ii) a mutant nuclease recognition sequence; iii) a recorder sequence; b) inserting the modified first target nucleic acid sequence within the first target nucleic acid; c) inserting the recorder sequence within the second target nucleic acid; and d) selecting for a phenotype of interest. Further provided are methods wherein the polynucleotide further comprises a second mutant nuclease recognition site. Further provided are methods wherein selecting for a phenotype of interest comprises cleaving the first target nucleic acid by the nuclease in cells that do not comprise the mutant nuclease recognition sequence, thereby enriching for cells comprising the inserted modified first target nucleic acid sequence. Further provided are methods wherein selecting for a phenotype of interest comprises cleaving the second target nucleic acid by the nuclease in cells that do not comprise the second mutant nuclease recognition sequence, thereby enriching for cells comprising the inserted modified first target nucleic acid sequence. Further provided are methods wherein the recorder sequence is linked to the modified first target nucleic acid. Further provided are methods wherein the recorder sequence comprises a unique sequence by which the modified first target nucleic acid is specifically identified upon sequencing the recorder sequence. Further provided are methods further comprising e) sequencing the recorder sequence, thereby identifying the modified first target nucleic acid that was inserted within the first target nucleic acid in step b). Further provided are methods wherein inserting the modified first target nucleic acid sequence comprises homology-directed repair. Further provided are methods wherein inserting the modified first target nucleic acid sequence comprises homologous recombination. Further provided are methods wherein the nuclease is a Cas protein. Further provided are methods wherein the polynucleotide further comprises a first guide nucleic acid sequence comprising a guide sequence complementary to a portion of the first target nucleic acid. Further provided are methods wherein inserting the modified first target nucleic acid sequence comprises cleaving the first target nucleic acid by the nuclease complexed with the transcription product of the first guide nucleic acid sequence. Further provided are methods wherein the polynucleotide further comprises a second guide nucleic acid sequence comprising a guide sequence complementary to a portion of the second target nucleic acid. Further provided are methods wherein inserting the recorder sequence comprises cleaving the second target nucleic acid by the nuclease complexed with the transcription product of the second guide nucleic acid sequence. Further provided are methods wherein inserting the modified first target nucleic acid sequence or the recorder sequence comprises homology-directed repair. Further provided are methods wherein inserting the modified first target nucleic acid sequence or the recorder sequence comprises homologous recombination. Further provided are methods wherein the mutant nuclease recognition sequence comprises a mutant PAM sequence not recognized by the targetable nuclease. Further provided are methods wherein the Cas protein is a Type II or Type V Cas protein. Further provided are methods wherein the targetable nuclease is MAD2. Further provided are methods wherein the mutant PAM sequence is not recognized by MAD2. Further provided are methods wherein the targetable nuclease is MAD7. Further provided are methods wherein the mutant PAM sequence is not recognized by MAD7. Further provided are methods wherein the Cas protein is Cas9. Further provided are methods wherein the mutant PAM sequence is not recognized by Cas9. Further provided are methods wherein the Cas protein is Cpfl . Further provided are methods wherein the mutant PAM sequence is not recognized by Cpfl . Further provided are methods wherein the nuclease is an Argonaute nuclease. Further provided are methods further comprising introducing guide DNA oligonucleotides comprising a guide sequence complementary to a portion of the first target nucleic acid prior to selecting for a phenotype. Further provided are methods wherein the mutant nuclease recognition sequence comprises a mutant target flanking sequence not recognized by the Argonaute nuclease. Further provided are methods wherein the nuclease is a zinc finger nuclease. Further provided are methods wherein the mutant nuclease recognition sequence is not recognized by the zinc finger nuclease. Further provided are methods wherein the nuclease is a transcription activator-like effector nuclease (TALEN). Further provided are methods wherein the mutant nuclease recognition sequence is not recognized by the TALEN.

INCORPORATION BY REFERENCE

[0014] All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.

BRIEF DESCRIPTION OF THE DRAWINGS

[0015] Figures 1A-1C depict an example genetic engineering workflow including target design, plasmid design, and plasmid library generation.

[0016] Figures 2A-2D depicts validation data for an example experiment using a disclosed engineering method.

[0017] Figures 3A-3C depict an example trackable genetic engineering workflow, including a plasmid comprising an editing cassette and a recording cassette, and downstream sequencing of barcodes in order to identify the incorporated edit or mutation.

[0018] Figures 3D-3E depict an example trackable genetic engineering workflow, including iterative rounds of engineering with a different editing cassette and recorder cassette with unique barcode (BC) at each round, followed by selection and tracking to confirm the successful engineering step at each round..

[0019] Figures 4A-4B depict an example of incorporation of a target mutation and PAM mutation using a plasmid comprising an editing cassette.

[0020] Figures 5A-5B depict an example of a plasmid comprising an editing cassette, designed to incorporate a target mutation and a PAM mutation into a first target sequence, and a recording cassette, designed to incorporate a barcode sequence into a second target sequence. Figure 5B depicts example data validating incorporation of the editing cassette and recorder cassette and selection of the engineered bacterial cells.

[0021] Figure 6 depicts an example recursive engineering workflow.

[0022] Figures 7A-7B depict an example plasmid curing workflow for combinatorial engineering and validation of an example experiment using said workflow.

[0023] Figures 8A-8B depict an example genetic engineering workflow including target design, plasmid design, and plasmid library generation.

[0024] Figures 9A-9D depicts validation data for an example genetic engineering experiment. [0025] Figures 10A-10F depict an example data set from a genetic engineering experiment.

[0026] Figures 11A-11C depict an example design and data set from a genetic engineering experiment.

[0027] Figures 12A-12F depict an example design for a genetic engineering experiment.

[0028] Figures 13A-13D depict example designed edits to be made by a genetic engineering.

[0029] Figures 14A-14B depict an example design for a genetic engineering experiment.

[0030] Figures 15A-15D depict an example of Cas9 editing efficiency controls.

[0031] Figures 16A-16E depict an examples of toxicity of dsDNA cleavage in E. coli.

[0032] Figure 16F-16H depict an example of a transformation and survival assay, and editing and recording efficiencies, with low and high copy plasmids expressing Cas9.

[0033] Figures 17A-17D depict an example of genetic engineering strategy for gene deletion.

[0034] Figures 18A-18B depicts an example of editing efficiency controls by cotransformation of guide nucleic acid and linear dsDNA cassettes.

[0035] Figures 19A-19D depict an example of library cloning analysis and statistics.

[0036] Figures 20A-20B depict an example of precision of editing cassette tracking of recombineered populations.

[0037] Figure 21 depicts an example of growth characteristics of folA mutations in M9 minimal media

[0038] Figures 22A-22C depicts an example of enrichment profiles for folA editing cassettes in minimal media.

[0039] Figures 23A-23F depict an example of validation of identified acrB mutations for improved solvent and antibiotic tolerance.

[0040] Figures 24A-24D depict an example mutant variant assessment analysis.

[0041] Figure 25 depicts an example of reconstruction of mutations identified by erythromycin selection.

[0042] Figures 26A-26B depict an example of validation of Crp S28P mutation for furfural or thermal tolerance.

[0043] Figures 27A-27C depict an example of edit and barcode correlation studies.

[0044] Figure 28 depicts an example of a selectable recording strategy.

[0045] Figure 29 depicts an example of a selectable recording strategy.

[0046] Figures 30A-30B depict data from a selectable recording experiment.

[0047] Figures 31A-31B depict editing and transformation efficiencies from various nucleic acid-guided nucleases from an example experiment.

[0048] Figure 32 depict editing efficiencies of the MAD2 nuclease with various guide nucleic acids. [0049] Figure 33 depict editing efficiencies of the MAD7 nuclease with various guide nucleic acids.

DETAILED DESCRIPTION OF THE DISCLOSURE

[0050] While preferred embodiments of the present invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention.

[0051] Methods and compositions for enabling sophisticated combinatorial engineering strategies to optimize and explore complex phenotypes are provided herein. Many phenotypes of interest to basic research and biotechnology are the result of combinations of mutations that occur at distal loci. For example, cancer is often linked to mutations that influence multiple hallmark gene functions rather than a single chromosomal edit. Likewise, many metabolic and regulatory processes that are the target of continuing engineering efforts require the activities of many proteins acting in concert to produce the phenotypic output of interest. Methods and compositions disclosed herein can provide ways of rapid engineering and prototyping of such functions since they can provide rapid construction and accurate reporting on the mutational effects at many sites in parallel.

[0052] The methods and compositions described herein can be carried out or used in any type of cell in which a nucleic acid-guided nuclease system, such as CRISPR or Argonaute, or other targetable nuclease systems, such as TALEN, ZFN, or meganuclease can function (e.g., target and cleave DNA), including prokaryotic, eukaryotic, or archaeal cells. The cell can be a bacterial cell, such as Escherichia spp. (e.g., E. coli). The cell can be a fungal cell, such as a yeast cell, e.g., Saccharomyces spp. The cell can be a human cell. The cell can be an algal cell, a plant cell, an insect cell, or a mammalian cell, including a human cell. Additionally or alternatively, the methods described herein can be carried out in vitro or in cell-free systems in which a nucleic acid guided nuclease system, such as CRISPR or Argonaute, or other nuclease systems, such as TALEN, ZFN, or meganuclease can function (e.g., target and cleave DNA).

[0053] Disclosed herein are compositions and methods for genetic engineering. Disclosed are methods and compositions suitable for trackable or recursive genetic engineering. Disclosed method and compositions can use massively multiplexed oligonucleotide synthesis and cloning to enable high fidelity, trackable, multiplexed genome editing at single nucleotide resolution on a whole genome scale. Trackable plasmids

[0054] Methods and compositions can be used to perform high-fidelity trackable editing, for example, at single-nucleotide resolution and can be used to perform editing at a whole genome scale or on episomal nucleic acid molecules. Massively multiplexed oligonucleotide synthesis and/or cloning can be used in combination with a targetable nuclease system, such as a CRISPR system, MAD2 system, MAD7 system, or other nucleic acid-guided nuclease system, for editing.

[0055] As used herein, "cassette" often refers to a single molecule polynucleotide. A cassette can comprise DNA. A cassette can comprise RNA. A cassette can comprise a combination of DNA and RNA. A cassette can comprise non-naturally occurring nucleotides or modified nucleotides. A cassette can be single stranded. A cassette can be double stranded. A cassette can be synthesized as a single molecule. A cassette can be assembled from other cassettes, oligonucleotides, or other nucleic acid molecules. A cassette can comprise one or more elements. Such elements can include, as non-limiting examples, one or more of any of editing sequences, recorder sequences, guide nucleic acids, promoters, regulatory elements, mutant PAM sequences, homology arms, primer sites, linker regions, unique landing sites, a cassette, and any other element disclosed herein. Such elements can be in any order or combination. Any two or more elements can be contiguous or non-contiguous. A cassette can be comprised within a larger polynucleic acid. Such a larger polynucleic acid can be linear or circular, such as a plasmid or viral vector. A cassette can be a synthesized cassette. A cassette can be a trackable cassette.

[0056] A cassette can be designed to be used in any method or composition disclosed herein, including multiplex engineering methods and trackable engineering methods. An exemplary cassette can couple two or more elements, such as 1) a guide nucleic acid (e.g. gRNAs or gDNAs) designed for targeting a user specified target sequence in the genome and 2) an editing sequence and/or recorder sequence as disclosed herein (e.g. Figure IB and Figure 5A). A cassette comprising an editing sequence and guide nucleic acid can be referred to as an editing cassette. A cassette comprising an editing sequence can be referred to as an editing cassette. A cassette comprising a recorder sequence and a guide nucleic acid can be referred to as a recorder cassette. A cassette comprising a recorder sequence can be referred to as a recorder cassette. In a preferred embodiment, an editing cassette and a recorder cassette are delivered into the cell at the same time. Further, an editing cassette and a recorder cassette may be covalently linked. Further, these elements may be synthesized together by multiplexed oligonucleotide synthesis.

[0057] A cassette can comprise one or more guide nucleic acids and editing cassette as a contiguous polynucleotide. In other examples, one or more guide nucleic acids and editing cassette are contiguous. In other examples, one or more guide nucleic acids and editing cassette are non-contiguous. In other examples, two or more guide nucleic acids and editing cassette are non-contiguous.

[0058] A cassette can comprise one or more guide nucleic acids, an editing cassette, and a recorder cassette as a contiguous polynucleotide. In other examples, one or more guide nucleic acids, editing cassette, and recorder cassette are contiguous. In other examples, two or more guide nucleic acids, editing cassette, and recorder cassette are contiguous. In other examples, one or more guide nucleic acids, editing cassette, and recorder cassette are non-contiguous. In other examples, two or more guide nucleic acids, editing cassette, and recorder cassette are noncontiguous.

[0059] A cassette can comprise one or more guide nucleic acids, one or more editing cassettes, and one or more recorder cassettes as a contiguous polynucleotide. In other examples, one or more guide nucleic acids, one or more editing cassettes, and one or more recorder cassettes are contiguous. In other examples, two or more guide nucleic acids, two or more editing cassettes, and two or more recorder cassettes are contiguous. In other examples, one or more guide nucleic acids, one or more editing cassettes, and one or more recorder cassettes are non-contiguous. In other examples, two or more guide nucleic acids, two or more editing cassettes, and two or more recorder cassettes are non-contiguous.

[0060] A cassette can comprise one or more guide nucleic acids and editing sequence as a contiguous polynucleotide. In other examples, one or more guide nucleic acids and editing sequence are contiguous. In other examples, one or more guide nucleic acids and editing sequence are non-contiguous. In other examples, two or more guide nucleic acids and editing sequence are non-contiguous.

[0061] A cassette can comprise one or more guide nucleic acids, an editing sequence, and a recorder sequence as a contiguous polynucleotide. In other examples, one or more guide nucleic acids, editing sequence, and recorder sequence are contiguous. In other examples, two or more guide nucleic acids, editing sequence, and recorder sequence are contiguous. In other examples, one or more guide nucleic acids, editing sequence, and recorder sequence are non-contiguous. In other examples, two or more guide nucleic acids, editing sequence, and recorder sequence are non-contiguous.

[0062] A cassette can comprise one or more guide nucleic acids, one or more editing sequences, and one or more recorder sequences as a contiguous polynucleotide. In other examples, one or more guide nucleic acids, one or more editing sequences, and one or more recorder sequences are contiguous. In other examples, two or more guide nucleic acids, two or more editing sequences, and two or more recorder sequences are contiguous. In other examples, one or more guide nucleic acids, one or more editing sequences, and one or more recorder sequences are non-contiguous. In other examples, two or more guide nucleic acids, two or more editing sequences, and two or more recorder sequences are non-contiguous.

[0063] An editing cassette can comprise an editing sequence. An editing sequence can comprise a mutation, such as a synonymous or non-synonymous mutation, and homology arms (HAs). An editing sequence can comprise a mutation, such as a synonymous or non-synonymous mutation, and homology arms (HAs) designed to undergo homologous recombination with the target sequence at the site of nucleic acid-guided nuclease-mediated double strand break (e.g. Figure IB).

[0064] A recorder cassette can comprise a recorder sequence. A recorder sequence can comprise a trackable sequence, such as a barcode or marker, and homology arms (HAs). A recorder sequence can comprise a trackable sequence, such as a barcode or marker, and homology arms (HAs) designed to undergo homologous recombination with the chromosome at the site of nucleic acid-guided nuclease-mediated double strand break (e.g. Figure IB).

[0065] A cassette can encode machinery (e.g. targetable nuclease, guide nucleic acid, editing cassette, and/or recorder cassette as disclosed herein) necessary to induce strand breakage as well as designed repair that can be selectively enriched and/or tracked in cells. A cell can be any cell such as eukaryotic cell, archaeal cell, prokaryotic cell, or microorganisms such as E. coli (e.g. Figure 2A-2D).

[0066] A cassette can comprise an editing cassette. A cassette can comprise a recorder cassette. A cassette can comprise a guide nucleic acid and an editing cassette. A cassette can comprise a guide nucleic acid and a recorder cassette. A cassette can comprise a guide nucleic acid, an editing cassette, and a recorder cassette. A cassette can comprise two guide nucleic acids, an editing cassette, and a recorder cassette. A cassette can comprise more than two guide nucleic acids, one or more editing cassettes, and one or more recorder cassettes. These elements of a cassette can be linked covalently. These elements of a cassette can be contiguous. These elements of a cassette can be contiguous.

[0067] A cassette can comprise an editing sequence. A cassette can comprise a recorder sequence. A cassette can comprise a guide nucleic acid and an editing sequence. A cassette can comprise a guide nucleic acid and a recorder sequence. A cassette can comprise a guide nucleic acid, an editing sequence, and a recorder sequence. A cassette can comprise two guide nucleic acids, an editing sequence, and a recorder sequence. A cassette can comprise more than two guide nucleic acids, one or more editing sequences, and one or more recorder sequences. These elements of a cassette can be linked covalently. These elements of a cassette can be contiguous. These elements of a cassette can be contiguous. [0068] Single genome edits can be tracked using sequencing technologies, e.g. short read sequencing technologies (e.g. Figure 1C), long read sequencing technologies, or any other sequencing technologies known in the art.

[0069] In some embodiments, upon transformation, each editing cassette generates the designed genetic modification within the transformed cell. In some examples, the editng cassette can act in trans as a barcode of the genetic mutation introduced by the editing cassette and can enable the tracking of this mutation frequency in a complex population over time and across many different growth conditions (e.g. Figure 2A-2D and Figure 1C).

[0070] In some examples, a recording cassette inserts the designed trackable sequence, such as a marker or barcode sequence, within the transformed cell. In some examples, the recorder cassette can act in cis as a barcode of the chromosomal mutation and can enable the tracking of this mutation frequency in a complex population over time and across many different growth conditions.

[0071] By providing cis and/or trans tracking of designed genomic mutations, the methods provided herein simplify sample preparation and depth of coverage for mapping diversity genome wide, and provide powerful tools for engineering on a genome scale (e.g. Figure 1C).

[0072] A plurality of cassettes can be pooled into a library of cassettes. A library of cassettes can comprise at least 2 cassettes. A library of cassettes can comprise from 5 to a million cassettes. A library of cassettes can comprise at least a million cassettes. It should be understood, that a library of cassettes can comprise any number of cassettes.

[0073] A library of cassettes can comprise cassettes that have any combination of common elements and non-common or unique elements as compared to the other cassettes within the pool. For example, a library of cassettes can comprise common priming sites or common homology arms while also containing non-common or unique barcodes. Common elements can be shared by a plurality, majority, or all of the cassettes within a library of cassettes. Non- common elements can be shared by a plurality, minority, or sub-population of cassettes within the library of cassettes. Unique elements can be shared by a one, a few, or a sub-population of cassettes within the library of cassettes, such that it is able to identify or distinguish the one, few, or sub-population of cassettes from the other cassettes within the library of cassettes. Such combinations of common and non-common are advantageous for multiplexing techniques as disclosed herein.

[0074] Cassettes disclosed herein can generate the designed genetic modification or insert the designed marker or barcode sequence with high efficiency within a transformed cell. In many examples, the efficiency is greater than 50%. In some examples the efficiency is 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 99%, or 100% (e.g., Figures 32A, 32B, and 33). [0075] In some examples, transformation, editing, and/or recording efficiency can be increased by modulating the expression of one or more components disclosed herein, such as a nucleic acid-guided nuclease. Methods for modulating components are disclosed herein and are known in the art. Such methods can include expressing a component, such as a nucleic acid- guided nuclease or CRISPR enzyme of a subject system on a low or high copy plasmid, depending on the experimental design.

[0076] Disclosed herein are methods and compositions for generating cassettes. A cassettes can comprise a cassettes as disclosed herein. For example, a cassette can comprise any combination of an editing cassette and/or recorder cassette disclosed herein. Such a cassette can be comprised on a larger polynucleic acid molecule. Such a larger polynucleic acid molecule can be linear or circular, such as a plasmid or viral vector.

[0077] An editing cassette can comprise a mutation relative to a target nucleic acid sequence. The editing cassette can comprise sequence homologous to the target sequence flanking the desired mutation or editing sequence. The editing cassette can comprise a region which recognizes, or hybridizes to, a target sequence of a nucleic acid in a cell or population of cells, is homologous to the target sequence of the nucleic acid of the cell and includes a mutation, or a desired mutation, of at least one nucleotide relative to the target sequence.

[0078] An editing cassette can comprise a first editing sequence comprising a first mutation relative to a target sequence. A first mutation can comprise a mutation such as an insertion, deletion, or substitution of at least one nucleotide compared to the non-editing target sequence. The mutation can be incorporated into a coding region or non-coding region.

[0079] An editing cassette can comprise a second editing sequence comprising a second mutation relative to a target sequence. The second mutation can be designed to mutate or otherwise silence a PAM sequence such that a corresponding nucleic acid guided nuclease or CRISPR nuclease is no longer able to cleave the target sequence. In such cases, this mutation or silencing of a PAM can serve as a method for selecting transformants in which the first editing sequence has been incorporated.

[0080] In some examples, an editing cassette comprises at least two mutations, wherein one mutation is a PAM mutation. In some examples, the PAM mutation can be in a second editing cassette. Such a second editing cassette can be covalently linked and can be continuous or noncontiguous to the other elements in the cassette.

[0081] An editing cassette can comprise a guide nucleic acid, such as a gRNA encoding gene, optionally operably linked to a promoter. The guide nucleic acid can be designed to hybridize with the targeted nucleic acid sequence in which the editing sequence will be incorporated. [0082] A recording cassette can comprise a recording sequence. A recorder sequence can comprise a barcoding sequence, or other screenable or selectable marker or fragment thereof. The recording sequence can be comprised within a recorder cassette. Recorder cassettes can comprise regions homologous to an insertion site within a target nucleic acid sequence such that the recording sequence is incorporated by homologous recombination or homology-driven repair systems. The site of incorporation of the recording cassette can be comprised on the same DNA molecule as the target nucleic acid to be edited by an editing cassette. The recorder sequence can comprise a barcode, unique DNA sequence, and/or a complete copy or fragment of a selectable or screenable element or marker.

[0083] A recorder cassette can comprise a mutation relative to the target sequence. The mutation can be designed to mutate or otherwise silence a PAM sequence such that a corresponding nucleic acid guided nuclease or CRISPR nuclease is no longer able to cleave the target sequence. In such cases, this mutation or silencing of a PAM site can serve as a method for selecting transformants in which the first recording sequence has been incorporated. A recorder cassette can comprise a PAM mutation. The PAM mutation can be designed to mutate or otherwise silence a PAM site such that a corresponding CRISPR nuclease is no longer able to cleave the target sequence. In such cases, this mutation or silencing of a PAM site can serve as a method for selecting transformants in which the recorder sequence has been incorporated.

[0084] A recorder cassette can comprise a guide nucleic acid, such as a gene encoding a gRNA. A promoter can be operably linked to a nucleic acid sequence encoding a guide nucleic acid capable of targeting a nucleic acid-guided nuclease to the desired target sequence. A guide nucleic acid can target a unique site within the target site. In some cases, the guide nucleic acid targets a unique landing site that was incorporated in a prior round of engineering. In some cases, the guide nucleic acid targets a unique landing site that was incorporated by a recorder cassette in a prior round of engineering.

[0085] A recorder cassette can comprise a barcode. A barcode can be a unique barcode or relatively unique such that the corresponding mutation can be identified based on the barcode. In some examples, the barcode is a non-naturally occurring sequence that is not found in nature. In most examples, the combination of the desired mutation and the barcode within the editing cassette is non-naturally occurring and not found in nature. A barcode can be any number of nucleotides in length. A barcode can be 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, or more than 30 nucleotides in length. In some cases, the barcode is more than 30 nucleotides in length. A barcode can be generated by degenerate oligonucleotide synthesis. A barcode can be rationally designed or user-specified. [0086] A recorder cassette can comprise a landing site. A landing site can serve as a target site for a recorder cassette for a successive engineering round. A landing site can comprise a PAM. A landing site can be a unique sequence. A landing site can be at least about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50 nucleotides in length. In some cases, the landing site is greater than 50 nucleotides in length.

[0087] A recorder cassette can comprise a selectable or screenable marker, or a regulatory sequence or mutation that turns a selectable or screenable marker on or off. In such cases, the turning on or off of a selectable marker can be used of selection or counter-selection, respectively, of iterative rounds of engineering. An example regulatory sequence includes a ribosome-binding site (RBS), though other such regulatory sequences are envisioned. Mutations that turn a selectable or screenable marker on can include any possible start codon that is recognized by the host transcription machinery. A mutation that turns off a selectable or screenable marker includes a mutation that deletes a start codon or one that inserts a premature stop codon or a reading frame shift mutation.

[0088] A recorder cassette can comprise one or more of a guide nucleic acid targeting a target site into which the recorder sequence is to be incorporated, a PAM mutation to silence a PAM used by the guide RNA, a barcode corresponding to an editing cassette, a unique site to serve as a landing site for a recorder cassette of a subsequent rounds of engineering, a regulatory sequence or mutation that turns a screenable or selectable marker on or off, these one or more elements being flanked by homology arms that are designed to promote recombination of these one or more elements into the cleaved target site that is targeted by the guide RNA.

[0089] A recorder cassette can comprise a first homology arm, a PAM mutation, a barcode, a unique landing site, a regulatory sequence or mutation for a screenable or selectable marker, a second homology arm, and guide RNA. The first homology arm can be an upstream homology arm. The second homology arm can be a downstream homology arm. The homology arms can be homologous to sequences flanking a cleavage site that is targeted by the guide RNA.

[0090] A cassette can comprise two guide nucleic acids designed to target two distinct target nucleic acid sequences. In any case, the guide nucleic acid can comprise a single gRNA or chimeric gRNA consisting of a crRNA and trRNA sequences, or alternatively, the gRNA can comprise separated crRNA and trRNAs, or a guide nucleic acid can comprise a crRNA. In other examples, guide nucleic acid can be introduced simultaneously with a trackable polynucleic acid or plasmid comprising an editing cassette and/or recorder cassette. In these cases, the guide nucleic acid can be encoded on a separate plasmid or be delivered in RNA form via delivery methods well known in the art. [0091] A cassette can comprise a gene encoding a nucleic acid-guided nuclease, such as a CRISPR nuclease, functional with the chosen guide nucleic acid. A nucleic acid-guided nuclease or CRISPR nuclease gene can be provided on a separate plasmid. A nucleic acid-guided nuclease or CRISPR nuclease can be provided on the genome or episomal plasmid of a host organism to which a trackable polynucleic acid or plasmid will be introduced. In any of these examples, the nucleic acid-guided nuclease or CRISPR nuclease gene can be operably linked to a constitutive or inducible promotor. Examples of suitable constitutive and inducible promoters are well known in the art. A nucleic acid-guided nuclease or CRISPR nuclease can be provided as mRNA or polypeptide using delivery systems well known in the art. Such mRNA or polypeptide delivery systems can include, but are not limited to, nanoparticles, viral vectors, or other cell-permeable technologies.

[0092] A cassette can comprise a selectable or screenable marker, for example, such as that comprised within a recorder cassette. For example, the recorder cassette can comprise a barcode, such as trackable nucleic acid sequence which can be uniquely correlated with a genetic mutation of the corresponding editing cassette, or otherwise identifiably correlated with such a genetic mutation such that sequencing the barcode will allow identification of the corresponding genetic mutation introduced by the editing cassette. In other examples, recorder cassette can comprise a complete copy of or a fragment of a gene encoding an antibiotic resistance gene, auxotrophic marker, fluorescent protein, or other known selectable or screenable markers.

Trackable plasmid libraries

[0093] A trackable library can comprise a plurality of cassettes as disclosed herein. A trackable library can comprise a plurality of trackable polynucleic acids or plasmids comprising a cassette as disclosed herein. A cassette, polynucleotide, or plasmid comprising a recorder sequence or recorder cassette as disclosed herein can be referred to as a trackable cassette, polynucleotide, or plasmid. A cassette, polynucleotide, or plasmid comprising an editing sequence or editing cassette as disclosed herein can be referred to as a trackable cassette, polynucleotide, or plasmid.

[0094] In some cases, within the trackable library are distinct editing cassette and recorder cassette combinations that are sequenced to determine which editing sequence corresponds with a given marker or barcode sequence comprised within the recorder cassette. Therefore, when the editing and recorder sequences are incorporated into a target sequence, you can determine the edit that was incorporated by sequencing the recorder sequence. Sequence the recorder sequence or barcode can significantly cut down on sequencing time and cost.

[0095] Library size can depend on the experiment design. For example, if the aim is to edit each amino acid within a protein of interest, then the library size can depend on the number (N) of amino acids in a protein of interest, with a full saturation library (all 20 amino acids at each position or non-naturally occurring amino acids) scaling as 19 (or more)xN and an alanine- mapping library scaling as l xN. Thus, screening of even very large proteins of more than 1,000 amino acids can be tractable given current multiplex oligo synthesis capabilities (e.g. 120,000 oligos). In addition to or as an alternative to activity screens, more general properties with developed high-throughput screens and selections can be efficiently tested using the libraries disclosed herein. It should be readily understood that libraries can be designed to mutate any number of amino acids within a target protein, including 1, at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, etc. up to the total number of amino acids within a target protein. Additionally, select amino acids can be targeted, such as catalytically active amino acids, or those involved in protein-protein interactions. Each amino acid that is targeted for mutation can be mutated into any number of alternate amino acids, such as any other natural or non-naturally occurring amino acid or amino acid analog. In some examples, all targeted amino acids are mutated to the same amino acid, such as alanine. In other cases, the targeted amino acids are independently mutated to any other amino acid in any combination or permutation.

[0096] Trackable libraries can comprise trackable mutations in individual residues or sequences of interest. Trackable libraries can be generated using custom-synthesized oligonucleotide arrays. Trackable plasmids can be generated using any cloning or assembly methods known in the art. For example, CREATE-Recorder plasmids can be generated by chemical synthesis, Gibson assembly, SLIC, CPEC, PCA, ligation-free cloning, other in vitro oligo assembly techniques, traditional ligation-based cloning, or any combination thereof.

[0097] Recorder sequences, such as barcodes, can be designed in silico via standard code with a degenerate mutation at the target codon. The degenerate mutation can comprise 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, or more than 30 nucleic acid residues. In some examples, the degenerate mutations can comprise 15 nucleic acid residues (N15).

[0098] Homology arms can be added to a recorder sequence and/or editing sequence to allow incorporation of the recorder and/or editing sequence into the desired location via homologous recombination or homology-driven repair. Homology arms can be added by synthesis, in vitro assembly, PCR, or other known methods in the art. For example, homology arms can be assembled via overlapping oligo extension, Gibson assembly, or any other method disclosed herein. A homology arm can be added to both ends of a recorder and/or editing sequence, thereby flanking the sequence with two distinct homology arms, for example, a 5' homology arm and a 3' homology arm. [0099] The same 5' and 3' homology arms can be added to a plurality of distinct recorder sequences, thereby generating a library of unique recorder sequences that each have the same spacer target or targeted insertion site. The same 5' and 3' homology arms can be added to a plurality of distinct editing sequences, thereby generating a library of unique editing sequences that each have the same spacer target or targeted insertion site. In alternative examples, different or a variety of 5' or 3' homology arms can be added to a plurality of recorder sequences or editing sequences.

[00100] A recorder sequence library comprising flanking homology arms can be cloned into a vector backbone. In some examples, the recorder sequence and homology arms are cloned into a recorder cassette. Recorder cassettes can, in some cases, further comprise a nucleic acid sequence encoding a guide nucleic acid or gRNA engineered to target the desired site of recorder sequence insertion. In many cases, the nucleic acid sequences flanking the CRISPR/Cas- mediated cleavage site are homologous or substantially homologous to the homology arms comprised within the recorder cassette.

[00101] An editing sequence library comprising flanking homology arms can be cloned into a vector backbone. In some examples, the editing sequence and homology arms are cloned into an editing cassette. Editing cassettes can, in some cases, further comprise a nucleic acid sequence encoding a guide nucleic acid or gRNA engineered to target the desired site of editing sequence insertion. In many cases, the nucleic acid sequences flanking the CRISPR/Cas-mediated cleavage site are homologous or substantially homologous to the homology arms comprised within the editing cassette.

[00102] Gene-wide or genome-wide editing libraries can be subcloned into a vector backbone. In some cases, the vector backbone comprises a recorder cassette as disclosed herein. The editing sequence library can be inserted or assembled into a second site to generate competent trackable plasmids that can embed the recording barcode at a fixed locus while integrating the editing libraries at a wide variety of user defined sites.

[00103] A recorder sequence and/or cassette can be assembled or inserted into a vector backbone first, followed by insertion of an editing sequence and/or cassette. In other cases, an editing sequence and/or cassette can be inserted or assembled into a vector backbone first, followed by insertion of a recorder sequence and/or cassette. In other cases, a recorder sequence and/or cassette and an editing sequence and/or cassette are simultaneous inserted or assembled into a vector. In other cases, a recorder sequence and/or cassette and an editing sequence and/or cassette are comprised on the same cassette prior to simultaneous insertion or assembly into a vector. In other cases, a recorder sequence and/or cassette and an editing sequence and/or cassette are linked prior to simultaneous insertion or assembly into a vector. In other cases, a recorder sequence and/or cassette and an editing sequence and/or cassette are covalently linked prior to simultaneous insertion or assembly into a vector. In any of these cases, trackable plasmids or plasmid libraries can be generated.

[00104] A cassette or nucleic acid molecule can be synthesized which comprises one or more elements disclosed herein. For example, a nucleic acid molecule can be synthesized that comprises an editing cassette and a guide nucleic acid. A nucleic acid molecule can be synthesized that comprises an editing cassette and a recorder cassette. A nucleic acid molecule can be synthesized that comprises an editing cassette, a guide nucleic acid, and a recorder cassette. A nucleic acid molecule can be synthesized that comprises an editing cassette, a recorder cassette, and two guide nucleic acids. A nucleic acid molecule can be synthesized that comprises a recorder cassette and a guide nucleic acid. A nucleic acid molecule can be synthesized that comprises a recorder cassette. A nucleic acid molecule can be synthesized that comprises an editing cassette. In any of these cases, the guide nucleic acid can optionally be operably linked to a promoter. In any of these cases, the nucleic acid molecule can further include one or more barcodes.

[00105] Synthesized cassettes or synthesized nucleic acid molecules can be synthesized using any oligonucleotide synthesis method known in the art. For example, cassettes can be synthesized by array based oligonucleotide synthesis. In such examples, following synthesis of the oligonucleotides, the oligonucleotides can be cleaved from the array. Cleavage of oligonucleotides from an array can create a pool of oligonucleotides.

[00106] Software and automation methods can be used for multiplex synthesis and generation. For example, software and automation can be used to create 10, 10 2 , 10 3 , 10 4 , 10 5 , 10 6 , or more cassettes, such as trackable cassettes. An automation method can generate trackable plasmids in rapid fashion. Trackable cassettes can be processed through a workflow with minimal steps to produce precisely defined genome-wide libraries.

[00107] Cassette libraries, such as trackable cassette libraries, can be generated which comprise two or more nucleic acid molecules or plasmids comprising any combination disclosed herein of recorder sequence, editing sequence, guide nucleic acid, and optional barcode, including combinations of one or more of any of the previously mentioned elements. For example, such a library can comprise at least 2, 3, 4, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700, 800, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000, 5500, 6000, 6500, 7000, 7500, 8000, 8500, 9000, 9500, 10 4 , 10 5 , 10 6 , 10 7 , 10 8 , 10 9 , 10 10 , or more nucleic acid molecules or plasmids of the present disclosure. It should be understood that such a library can include any number of nucleic acid molecules or plasmids, even if the specific number is not explicit listed above. [00108] Cassettes or cassette libraries can be sequenced in order to determine the recorder sequence and editing sequence pair that is comprised on each cassette. In other cases, a known recorder sequence is paired with a known editing sequence during the library generation process. Other methods of determining the association between a recorder sequence and editing sequence comprised on a common nucleic acid molecule or plasmid are envisioned such that the editing sequence can be identified by identification or sequencing of the recorder sequence.

[00109] Methods and compositions for tracking edited episomal libraries that are shuttled between E. coli and other organisms/cell lines are provided herein. The libraries can be comprised on plasmids, Bacterial artificial chromosomes (BACs), Yeast artificial chromosomes (YACs), synthetic chromosomes, or viral or phage genomes. These methods and compositions can be used to generate portable barcoded libraries in host organisms, such as E. coli. Library generation in such organisms can offer the advantage of established techniques for performing homologous recombination. Barcoded plasmid libraries can be deep-sequenced at one site to track mutational diversity targeted across the remaining portions of the plasmid allowing dramatic improvements in the depth of library coverage (e.g. Figure 3 A).

Trackable engineering methods

[00110] An example of trackable engineering workflow is depicted in Figure 3 A. Each plasmid can encode a recorder cassette designed to edit a site in the target DNA (e.g. Figure 3A, black cassette). Sites to be targeted can be functionally neutral sites, or they can be a screenable or selectable marker gene. The homology arm (HA) of the recorder cassette can contain a recorder sequence (e.g., Figure 3B) that is inserted into the recording site during recombineering. Recombineering can comprise DNA cleavage, such as nucleic acid-guided nuclease-mediated DNA cleavage, and repair via homologous recombination. The recorder sequence can comprise a barcode, unique DNA sequence, or a complete copy or fragment of a screenable or selectable marker. In some examples, the recorder sequence is 15 nucleotides. The recorder sequence can comprise less than 10, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 88, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, or more than 200 nucleotides.

[00111] Through a multiplexed cloning approach, the recorder cassette can be covalently coupled to at least one editing cassette in a plasmid (e.g., Figure 3A, green cassette) to generate trackable plasmid libraries that have a unique recorder and editing cassette combination. This trackable library can be sequenced to generate the recorder/edit mapping and used to track editing libraries across large segments of the target DNA (e.g., Figure 3C). Recorder and editing sequences can be comprised on the same polynucleotide, in which case they are both incorporated into the target nucleic acid sequence, such as a genome or plasmid, by the same recombination event. In other examples, the recorder and editing sequences can be comprised on separate cassettes within the same trackable plasmid, in which case the recorder and editing sequences are incorporated into the target nucleic acid sequence by separate recombination events, either simultaneously or sequentially.

[00112] Methods are provided herein for combining multiplex oligonucleotide synthesis with recombineering, to create libraries of specifically designed and trackable mutations. Screens and/or selections followed by high-throughput sequencing and/or barcode microarray methods can allow for rapid mapping of mutations leading to a phenotype of interest.

[00113] Methods and compositions disclosed herein can be used to simultaneously engineer and track engineering events in a target nucleic acid sequence.

[00114] Trackable plasmids can be generated using in vitro assembly or cloning techniques. For example, the CREATE-Recorder plasmids can be generated using chemical synthesis, Gibson assembly, SLIC, CPEC, PCA, ligation-free cloning, other in vitro oligo assembly techniques, traditional ligation-based cloning, or any combination thereof.

[00115] Trackable plasmids can comprise at least one recording sequence, such as a barcode, and at least one editing sequence. In most cases, the recording sequence is used to record and track engineering events. Each editing sequence can be used to incorporate a desired edit into a target nucleic acid sequence. The desired edit can include insertion, deletion, substitution, or alteration of the target nucleic acid sequence. In some examples, the one or more recording sequence and editing sequences are comprised on a single cassette comprised within the trackable plasmid such that they are incorporated into the target nucleic acid sequence by the same engineering event. In other examples, the recording and editing sequences are comprised on separate cassettes within the trackable plasmid such that they are each incorporated into the target nucleic acid by distinct engineering events. In some examples, the trackable plasmid comprises two or more editing sequences. For example, one editing sequence can be used to alter or silence a PAM sequence while a second editing sequence can be used to incorporate a mutation into a distinct sequence.

[00116] Recorder sequences can be inserted into a site separated from the editing sequence insertion site. The inserted recorder sequence can be separated from the editing sequence by lbp or any number of base pairs. For example, the separation distance can be about lbp, lObp, 50bp, lOObp, 500bp, lkp, 2kb, 5kb, lOkb, or greater. The separation distance can be any discrete integer of base pairs. It should be readily understood that there the limit of the number of base pairs separating the two insertion sites can be limited by the size of the genome, chromosome, or polynucleotide into which the insertions are being made. In some examples, the maximum distance of separation depends on the size of the target nucleic acid or genome. [00117] Recorder sequences can be inserted adjacent to editing sequences, or within proximity to the editing sequence. For example, the recorder sequence can be inserted outside of the open reading frame within which the editing sequence is inserted. Recorder sequence can be inserted into an untranslated region adjacent to an open reading frame within which an editing sequence has been inserted. The recorder sequence can be inserted into a functionally neutral or nonfunctional site. The recorder sequence can be inserted into a screenable or selectable marker gene.

[00118] In some examples, the target nucleic acid sequence is comprised within a genome, artificial chromosome, synthetic chromosome, or episomal plasmid. In various examples, the target nucleic acid sequence can be in vitro or in vivo. When the target nucleic acid sequence is in vivo, the CREATE-Recorder plasmid can be introduced into the host organisms by transformation, transfection, conjugation, biolistics, nanoparticles, cell-permeable technologies, or other known methods for DNA delivery, or any combination thereof. In such examples, the host organism can be a eukaryote, prokaryote, bacterium, archaea, yeast, or other fungi.

[00119] The engineering event can comprise recombineering, non-homologous end joining, homologous recombination, or homology-driven repair. In some examples, the engineering event is performed in vitro or in vivo.

[00120] The methods described herein can be carried out in any type of cell in which a nucleic acid-guided nuclease system can function (e.g., target and cleave DNA), including prokaryotic and eukaryotic cells or in vitro. In some embodiments the cell is a bacterial cell, such as Escherichia spp. (e.g., E. coli). In other embodiments, the cell is a fungal cell, such as a yeast cell, e.g., Saccharomyces spp. In other embodiments, the cell is an algal cell, a plant cell, an insect cell, or a mammalian cell, including a human cell.

[00121] In some examples, a cell is a recombinant organism. For example, the cell can comprise a non-native nucleic acid-guided nuclease system. Additionally or alternatively, the cell can comprise recombination system machinery. Such recombination systems can include lambda red recombination system, Cre/Lox, attB/attP, or other integrase systems. Where appropriate, the trackable plasmid can have the complementary components or machinery required for the selected recombination system to work correctly and efficiently.

[00122] A method for genome editing can comprise: (a) introducing a vector that encodes at least one editing cassette and at least one guide nucleic acid into a first population of cells, thereby producing a second population of cells comprising the vector; (b) maintaining the second population of cells under conditions in which a nucleic acid-guided nuclease is expressed or maintained, wherein the nucleic acid-guided nuclease is encoded on the vector, a second vector, on the genome of cells of the second population of cells, or otherwise introduced into the cell, resulting in DNA cleavage and incorporation of the editing cassette; (c) obtaining viable cells. Such a method can optionally further comprise (d) sequencing the target DNA molecule in at least one cell of the second population of cells to identify the mutation of at least one codon.

[00123] A method for genome editing can comprise: (a) introducing a vector that encodes at least one editing cassette comprising a PAM mutation as disclosed herein and at least one guide nucleic acid into a first population of cells, thereby producing a second population of cells comprising the vector; (b) maintaining the second population of cells under conditions in which nucleic acid-guided nuclease is expressed or maintained, wherein the nucleic acid-guided nuclease is encoded on the vector, a second vector, on the genome of cells of the second population of cells, or otherwise introduced into the cell, resulting in DNA cleavage, incorporation of the editing cassette, and death of cells of the second population of cells that do not comprise the PAM mutation, whereas cells of the second population of cells that comprise the PAM mutation are viable; (c) obtaining viable cells. Such a method can optionally further comprise (d) sequencing the target DNA in at least one cell of the second population of cells to identify the mutation of at least one codon.

[00124] Method for trackable genome editing can comprise: (a) introducing a vector that encodes at least one editing cassette, at least one recorder cassette, and at least two gRNA into a first population of cells, thereby producing a second population of cells comprising the vector; (b) maintaining the second population of cells under conditions in which a nucleic acid-guided nuclease is expressed or maintained, wherein the nucleic acid-guided nuclease is encoded on the vector, a second vector, on the genome of cells of the second population of cells, or otherwise introduced into the cell, resulting in DNA cleavage and incorporation of the editing and recorder cassettes; (c) obtaining viable cells. Such a method can optionally further comprise (d) sequencing the recorder sequence of the target DNA molecule in at least one cell of the second population of cells to identify the mutation of at least one codon.

[00125] In some examples where the trackable plasmid comprises an editing cassette designed to silence a PAM site, a method for trackable genome editing can comprise: (a) introducing a vector that encodes at least one editing cassette, a recorder cassette, and at least two gRNA into a first population of cells, thereby producing a second population of cells comprising the vector; (b) maintaining the second population of cells under conditions in which a nucleic acid-guided nuclease is expressed or maintained, wherein the nucleic acid-guided nuclease is encoded on the vector, a second vector, on the genome of cells of the second population of cells, or otherwise introduced into the cell, resulting in DNA cleavage, incorporation of the editing cassette and recorder cassette, and death of cells of the second population of cells that do not comprise the PAM mutation, whereas cells of the second population of cells that comprise the PAM mutation are viable; and (c) obtaining viable cells. Such a method can optionally further comprise (d) sequencing the recorder sequence of the target DNA in at least one cell of the second population of cells to identify the mutation of at least one codon. Such methods can also further comprise a recorder cassette comprising a second PAM mutation, such that both PAMs must be silences by the editing cassette PAM mutation and recorder cassette PAM mutation in order to escape cell death.

[00126] In some examples transformation efficiency is determined by using a non-targeting guide nucleic acid control, which allows for validation of the recombineering procedure and CFU/ng calculations. In some cases, absolute efficient is obtained by counting the total number of colonies on each transformation plate, for example, by counting both red and white colonies from a galK control. In some examples, relative efficiency is calculated by the total number of successful transformants (for example, white colonies) out of all colonies from a control (for example, galK control).

[00127] The methods of the disclosure can provide, for example, greater than lOOOx improvements in the efficiency, scale, cost of generating a combinatorial library, and/or precision of such library generation.

[00128] The methods of the disclosure can provide, for example, greater than: lOx, 50x, lOOx, 200x, 300x, 400x, 500x, 600x, 700x, 800x, 900x, lOOOx, l lOOx, 1200x, 1300x, 1400x, 1500x, 1600x, 1700x, 1800x, 1900x, 2000x, or greater improvements in the efficiency of generating genomic or combinatorial libraries.

[00129] The methods of the disclosure can provide, for example, greater than: lOx, 50x, lOOx, 200x, 300x, 400x, 500x, 600x, 700x, 800x, 900x, lOOOx, l lOOx, 1200x, 1300x, 1400x, 1500x, 1600x, 1700x, 1800x, 1900x, 2000x, or greater improvements in the scale of generating genomic or combinatorial libraries.

[00130] The methods of the disclosure can provide, for example, greater than: lOx, 50x, lOOx, 200x, 300x, 400x, 500x, 600x, 700x, 800x, 900x, lOOOx, l lOOx, 1200x, 1300x, 1400x, 1500x, 1600x, 1700x, 1800x, 1900x, 2000x, or greater decrease in the cost of generating genomic or combinatorial libraries.

[00131] The methods of the disclosure can provide, for example, greater than: lOx, 50x, lOOx, 200x, 300x, 400x, 500x, 600x, 700x, 800x, 900x, lOOOx, l lOOx, 1200x, 1300x, 1400x, 1500x, 1600x, 1700x, 1800x, 1900x, 2000x, or greater improvements in the precision of genomic or combinatorial library generation.

Recursive tracking for combinatorial engineering

[00132] Disclosed herein are methods and compositions for iterative rounds of engineering. Disclosed herein are recursive engineering strategies that allow implementation of trackable engineering at the single cell level through several serial engineering cycles (e.g., Figure 3D or Figure 6). These disclosed methods and compositions can enable search-based technologies that can effectively construct and explore complex genotypic space. The terms recursive and iterative can be used interchangeably.

[00133] Combinatorial engineering methods can comprise multiple rounds of engineering. Methods disclosed herein can comprise 2 or more rounds of engineering. For example, a method can comprise 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 25, 30, or more than 30 rounds of engineering.

[00134] In some examples, during each round of engineering a new recorder sequence, such as a barcode, is incorporated at the same or nearby locus in a target site (e.g., Figure 3D, green bars or Figure 6, black bars) such that following multiple engineering cycles to construct combinatorial diversity throughout the genome (e.g., Figure 3E, green bars or Figure 6, grey bars) a PCR, or similar reaction, of the recording locus can be used to reconstruct each combinatorial genotype or to confirm that the engineered edit from each round has been incorporated into the target site. .

[00135] Disclosed herein are methods for selecting for successive rounds of engineering. Selection can occur by a PAM mutation incorporated by an editing cassette. Selection can occur by a PAM mutation incorporated by a recorder cassette. Selection can occur using a screenable, selectable, or counter-selectable marker. Selection can occur by targeting a site for editing or recording that was incorporated by a prior round of engineering, thereby selecting for variants that successfully incorporated edits and recorder sequences from both rounds or all prior rounds of engineering.

[00136] Quantitation of these genotypes can be used for understanding combinatorial mutational effects on large populations and investigation of important biological phenomena such as epi stasis.

[00137] Serial editing and combinatorial tracking can be implemented using recursive vector systems as disclosed herein. These recursive vector systems can be used to move rapidly through the transformation procedure (e.g., Figure 7A). In some examples, these systems consist of two or more plasmids containing orthogonal replication origins, antibiotic markers, and gRNAs. The gRNA in each vector can be designed to target one of the other resistance markers for destruction by nucleic acid-guided nuclease-mediated cleavage. These systems can be used, in some examples, to perform transformations in which the antibiotic selection pressure is switched to remove the previous plasmid and drive enrichment of the next round of engineered genomes. Two or more passages through the transformation loop can be performed, or in other words, multiple rounds of engineering can be performed. Introducing the requisite recording cassettes and editing cassettes into recursive vectors as disclosed herein can be used for simultaneous genome editing and plasmid curing in each transformation step with high efficiencies.

[00138] In some examples, the recursive vector system disclosed herein comprises 2, 3, 4, 5, 6, 7, 8, 9, 10, or more than 10 unique plasmids. In some examples, the recursive vector system can use a particular plasmid more than once as long as a distinct plasmid is used in the previous round and in the subsequent round.

[00139] Recursive methods and compositions disclosed herein can be used to restore function to a selectable or screenable element in a targeted genome or plasmid. The selectable or screenable element can include an antibiotic resistance gene, a fluorescent gene, a unique DNA sequence or watermark, or other known reporter, screenable, or selectable gene. In some examples, each successive round of engineering can incorporate a fragment of the selectable or screenable element, such that at the end of the engineering rounds, the entire selectable or screenable element has been incorporated into the target genome or plasmid. In such examples, only those genome or plasmids, which have successfully incorporated all of the fragments, and therefore all of the desired corresponding mutations, can be selected or screened for. In this way, the selected or screened cells will be enriched for those that have incorporated the edits from each and every iterative round of engineering.

[00140] Recursive methods can be used to switch a selectable or screenable marker between an on and an off position, or between an off and an on position, with each successive round of engineering. Using such a method allows conservation of available selectable or screenable markers by requiring, for example, the use of only one screenable or selectable marker. Furthermore, short regulatory sequence or start codon or non-start codons can be used to turn the screenable or selectable marker on and off. Such short sequences can easily fit within a cassette or polynucleotide, such as a synthesized cassette.

[00141] One or more rounds of engineering can be performed using the methods and compositions disclosed herein. In some examples, each round of engineering is used to incorporate an edit unique from that of previous rounds. Each round of engineering can incorporate a unique recording sequence. Each round of engineering can result in removal or curing of the CREATE plasmid used in the previous round of engineering. In some examples, successful incorporation of the recording sequence of each round of engineering results in a complete and functional screenable or selectable marker or unique sequence combination.

[00142] Unique recorder cassettes comprising recording sequences such as barcodes or screenable or selectable markers can be inserted with each round of engineering, thereby generating a recorder sequence that is indicative of the combination of edits or engineering steps performed. Successive recording sequences can be inserted adjacent to one another. Successive recording sequences can be inserted within proximity to one another. Successive sequences can be inserted at a distance from one another.

[00143] Successive sequences can be inserted at a distance from one another. For example, successive recorder sequences can be inserted and separated by 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 ,21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, or greater than 100 bp. In some examples, successive recorder sequences are separated by about 10, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1100, 1200, 1300, 1400, 1500, or greater than 1500bp.

[00144] Successive recorder sequences can be separated by any desired number of base pairs and can be dependent and limited on the number of successive recorder sequences to be inserted, the size of the target nucleic acid or target genomes, and/or the design of the desired final recorder sequence. For example, if the compiled recorder sequence is a functional screenable or selectable marker, than the successive recording sequences can be inserted within proximity and within the same reading frame from one another. If the compiled recorder sequence is a unique set of barcodes to be identified by sequencing and have no coding sequence element, then the successive recorder sequences can be inserted with any desired number of base pairs separating them. In these cases, the separation distance can be dependent on the sequencing technology to be used and the read length limit.

[00145] In some examples, a recorder cassette comprises a landing site to be used as a target site for the recorder cassette of the next round of engineering. By using such a method, successive rounds of recorder cassettes can only be introduced into the target site if the recorder cassette from the previous round was successfully incorporated, thereby providing the target site for the present engineering round (e.g., Figure 28).

Guide nucleic acid

[00146] A guide nucleic acid can complex with a compatible nucleic acid-guided nuclease and can hybridize with a target sequence, thereby directing the nuclease to the target sequence. A subject nucleic acid-guided nuclease capable of complexing with a guide nucleic acid can be referred to as a nucleic acid-guided nuclease that is compatible with the guide nucleic acid. Likewise, a guide nucleic acid capable of complexing with a nucleic acid-guided nuclease can be referred to as a guide nucleic acid that is compatible with the nucleic acid-guided nucleases.

[00147] A guide nucleic acid can be DNA. A guide nucleic acid can be RNA. A guide nucleic acid can comprise both DNA and RNA. A guide nucleic acid can comprise modified of non- naturally occurring nucleotides. In cases where the guide nucleic acid comprises RNA, the RNA guide nucleic acid can be encoded by a DNA sequence on a polynucleotide molecule such as a plasmid, linear construct, or editing cassette as disclosed herein.

[00148] A guide nucleic acid can comprise a guide sequence. A guide sequence is a polynucleotide sequence having sufficient complementarity with a target polynucleotide sequence to hybridize with the target sequence and direct sequence-specific binding of a complexed nucleic acid-guided nuclease to the target sequence. The degree of complementarity between a guide sequence and its corresponding target sequence, when optimally aligned using a suitable alignment algorithm, is about or more than about 50%, 60%, 75%, 80%, 85%, 90%, 95%), 97.5%), 99%), or more. Optimal alignment may be determined with the use of any suitable algorithm for aligning sequences. In some embodiments, a guide sequence is about or more than about 5, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 75, or more nucleotides in length. In some embodiments, a guide sequence is less than about 75, 50, 45, 40, 35, 30, 25, 20 nucleotides in length. Preferably the guide sequence is 10-30 nucleotides long. The guide sequence can be 15-20 nucleotides in length. The guide sequence can be 15 nucleotides in length. The guide sequence can be 16 nucleotides in length. The guide sequence can be 17 nucleotides in length. The guide sequence can be 18 nucleotides in length. The guide sequence can be 19 nucleotides in length. The guide sequence can be 20 nucleotides in length.

[00149] A guide nucleic acid can comprise a scaffold sequence. In general, a "scaffold sequence" includes any sequence that has sufficient sequence to promote formation of a targetable nuclease complex, wherein the targetable nuclease complex comprises a nucleic acid- guided nuclease and a guide nucleic acid comprising a scaffold sequence and a guide sequence. Sufficient sequence within the scaffold sequence to promote formation of a targetable nuclease complex may include a degree of complementarity along the length of two sequence regions within the scaffold sequence, such as one or two sequence regions involved in forming a secondary structure. In some cases, the one or two sequence regions are comprised or encoded on the same polynucleotide. In some cases, the one or two sequence regions are comprised or encoded on separate polynucleotides. Optimal alignment may be determined by any suitable alignment algorithm, and may further account for secondary structures, such as self- complementarity within either the one or two sequence regions. In some embodiments, the degree of complementarity between the one or two sequence regions along the length of the shorter of the two when optimally aligned is about or more than about 25%, 30%>, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 97.5%, 99%, or higher. In some embodiments, at least one of the two sequence regions is about or more than about 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,

19, 20, 25, 30, 40, 50, or more nucleotides in length.

[00150] A scaffold sequence of a subject guide nucleic acid can comprise a secondary structure. A secondary structure can comprise a pseudoknot region. In some example, the compatibility of a guide nucleic acid and nucleic acid-guided nuclease is at least partially determined by sequence within or adjacent to a pseudoknot region of the guide RNA. In some cases, binding kinetics of a guide nucleic acid to a nucleic acid-guided nuclease is determined in part by secondary structures within the scaffold sequence. In some cases, binding kinetics of a guide nucleic acid to a nucleic acid-guided nuclease is determined in part by nucleic acid sequence with the scaffold sequence.

[00151] In aspects of the invention the terms "guide nucleic acid" refers to a polynucleotide comprising 1) a guide sequence capable of hybridizing to a target sequence and 2) a scaffold sequence capable of interacting with or complexing with an nucleic acid-guided nuclease as described herein.

[00152] A guide nucleic acid can be compatible with a nucleic acid-guided nuclease when the two elements can form a functional targetable nuclease complex capable of cleaving a target sequence. Often, a compatible scaffold sequence for a compatible guide nucleic acid can be found by scanning sequences adjacent to a native nucleic acid-guided nuclease loci. In other words, native nucleic acid-guided nucleases can be encoded on a genome within proximity to a corresponding compatible guide nucleic acid or scaffold sequence.

[00153] Nucleic acid-guided nucleases can be compatible with guide nucleic acids that are not found within the nucleases endogenous host. Such orthogonal guide nucleic acids can be determined by empirical testing. Orthogonal guide nucleic acids can come from different bacterial species or be synthetic or otherwise engineered to be non-naturally occurring.

[00154] Orthogonal guide nucleic acids that are compatible with a common nucleic acid- guided nuclease can comprise one or more common features. Common features can include sequence outside a pseudoknot region. Common features can include a pseudoknot region. Common features can include a primary sequence or secondary structure.

[00155] A guide nucleic acid can be engineered to target a desired target sequence by altering the guide sequence such that the guide sequence is complementary to the target sequence, thereby allowing hybridization between the guide sequence and the target sequence. A guide nucleic acid with an engineered guide sequence can be referred to as an engineered guide nucleic acid. Engineered guide nucleic acids are often non-naturally occurring and are not found in nature. More methods

[00156] Disclosed herein are methods for genome engineering that employ a nuclease, such as a nucleic acid-guided nuclease to perform directed genome evolution/produce changes (deletions, substitutions, additions) in a target sequence, such as DNA or RNA, for example, genomic DNA or episomal DNA. Suitable nucleases can include, for example, RNA-guided nucleases such as Cas9, Cpfl, MAD2, or MAD7, DNA-guided nucleases such as Argonaute, or other nucleases such as zinc-finger nucleases, TALENs, or meganucleases. Nuclease genes can be obtained from any source, such as from a bacterium, archaea, prokaryote, eukaryote, or virus. For example, a Cas9 gene can be obtained from a bacterium harboring the corresponding Type II CRISPR system, such as the bacterium S. pyogenes (SEQ ID NO: 110). The nucleic acid sequence and/or amino acid sequence of the nuclease may be mutated, relative to the sequence of a naturally occurring nuclease. A mutation can be, for example, one or more insertions, deletions, substitutions or any combination of two or three of the foregoing. In some cases, the resulting mutated nuclease can have enhanced or reduced nuclease activity relative to the naturally occurring nuclease. In some cases, the resulting mutated nuclease can have no nuclease activity relative to the naturally occurring nuclease.

[00157] Methods for nucleic acid-guided nuclease-mediated genome editing are provided herein. Some disclosed methods can include a two-stage construction process which relies on generation of cassette libraries that incorporate directed mutations from an editing cassettes directly into a genome, episomal nucleic acid molecule, or isolated nucleic acid molecule. In some examples, during the first stage of cassette library construction, rationally designed editing cassettes can be cotransformed into cells with a guide nucleic acid (e.g., guide RNA) that hybridizes to or targets a target DNA sequence. In some examples, the guide nucleic acid is introduced as an RNA molecule, or encoded on a DNA molecule.

[00158] Editing cassettes can be designed such that they couple deletion or mutation of a PAM site with the mutation of one or more desired codons or nucleic acid residues in the adjacent nucleic acid sequence. The deleted or mutated PAM site, in some cases, can no longer be recognized by the chosen nucleic acid-guided nuclease. In some examples, at least one PAM or more than one PAM can be deleted or mutated, such as two, three, four, or more PAMs.

[00159] Methods disclosed herein can enable generation of an entire cassette library in a single transformation. The cassette library can be retrieved, in some cases, by amplification of the recombinant chromosomes, e.g. by a PCR reaction, using a synthetic feature or priming site from the editing cassettes. In some examples, a second PAM deletion or mutation is simultaneously incorporated. This approach can covalently couple the codon-targeted mutations directly to a PAM deletion. [00160] In some examples, there is a second stage to construction of cassette libraries. During the second stage the PCR amplified cassette libraries carrying the destination PAM deletion/mutation and the targeted mutations, such as a desired mutation of one or more nucleotides, such as one or more nucleotides in one or more codons, can be co-transformed into naive cells. The cells can be eukaryotic cell, archaeal cell, or prokaryotic cells. The cassette libraries can be co-transformed with a guide nucleic acid or plasmid encoding the same to generate a population of cells that express a rationally designed protein library. The libraries can be co-transformed with a guide nucleic acid such as a gRNA, chimeric gRNA, split gRNA, or a crRNA and trRNA set. The cassette library can comprise a plurality of cassettes wherein each cassette comprises an editing cassette and guide nucleic acid. The cassette library can comprise a plurality of cassettes wherein each cassette comprises an editing cassette, recorder cassettes and two guide nucleic acids.

[00161] In some targetable nuclease systems, the guide nucleic acid can guide selection of a target sequence. As used herein, a target sequence refers to any locus in vitro or in in vivo, or in the nucleic acid of a cell or population of cells in which a mutation of at least one nucleotide, such as a mutation of at least one nucleotide in at least one codon, is desired. The target sequence can be, for example, a genomic locus, target genomic sequence, or extrachromosomal locus. The guide nucleic acid can be expressed as a DNA molecule, referred to as a guide DNA, or as a RNA molecule, referred to as a guide RNA. A guide nucleic acid can comprise a guide sequence, that is complementary to a region of the target region. A guide nucleic acid can comprise a scaffold sequence that can interact with a compatible nucleic acid-guided nuclease, and can optionally form a secondary structure. A guide nucleic acid can functions to recruit a nucleic acid-guided nuclease to the target site. A guide sequence can be complementary to a region upstream of the target site. A guide sequence can be complementary to at least a portion of the target site. A guide sequence can be completely complementary (100% complementary) to the target site or include one or more mismatches, provided that it is sufficiently complementary to the target site to specifically hybridize/guide and recruit the nuclease. Suitable nucleic acid guided nuclease include, as non-limiting examples, CRISPR nucleases, Cas nucleases, such as Cas9 or Cpfl, MAD2, and MAD7.

[00162] In some CRISPR systems, the CRISPR RNA (crRNA or spacer-containing RNA) and trans-activating CRISPR RNA (tracrRNA or trRNA) can guide selection of a target sequence. As used herein, a target sequence refers to any locus in vitro or in in vivo, or in the nucleic acid of a cell or population of cells in which a mutation of at least one nucleotide, such as a mutation of at least one nucleotide in at least one codon, is desired. The target sequence can be, for example, a genomic locus, target genomic sequence, or extrachromosomal locus. The tracrRNA and crRNA can be expressed as a single, chimeric RNA molecule, referred to as a single-guide RNA, guide RNA, or gRNA. The nucleic acid sequence of the gRNA comprises a first nucleic acid sequence, also referred to as a first region, that is complementary to a region of the target region and a second nucleic acid sequence, also referred to a second region, that forms a stem loop structure and functions to recruit a CRISPR nuclease to the target region. The first region of the gRNA can be complementary to a region upstream of the target genomic sequence. The first region of the gRNA can be complementary to at least a portion of the target region. The first region of the gRNA can be completely complementary (100% complementary) to the target genomic sequence or include one or more mismatches, provided that it is sufficiently complementary to the target genomic sequence to specifically hybridize/guide and recruit a CRISPR nuclease, such as Cas9 or Cpf 1.

[00163] A guide sequence or first region of the gRNA can be at least 15, 16, 17, 18, 19,

20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or at least 30 nucleotides in length. The guide sequence or first region of the gRNA can be at least 20 nucleotides in length.

[00164] A stem loop structure that can be formed by the scaffold sequence or second nucleic acid sequence of a gRNA can be at least 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 7, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 100 nucleotides in length. A stem loop structure can be from 80 to 90 or 82 to 85 nucleotides in length. A scaffold sequence or second region of the gRNA that forms a stem loop structure can be 83 nucleotides in length.

[00165] A guide nucleic acid of a cassette that is introduced into a first cell using the methods disclosed herein can be the same as the guide nucleic acid of a second cassette that is introduced into a second cell. More than one guide nucleic acid can be introduced into the population of first cells and/or the population of second cells. The more than one guide nucleic acids can comprise guide sequences that are complementary to more than one target region.

[00166] Methods disclosed herein can comprise using oligonucleotides. Such oligonucleotides can be obtained or derived from many sources. For example, an oligonucleotide can be derived from a nucleic acid library that has been diversified by nonhomologous random recombination (NRR); such a library is referred to as an NRR library. An oligonucleotide can be synthesized, for example by array-based synthesis or other known chemical synthesis method. The length of an oligonucleotide can be dependent on the method used in obtaining the oligonucleotide. An oligonucleotide can be approximately 50-200 nucleotides, 75-150 nucleotides, or between 80- 120 nucleotides in length. An oligonucleotide can be about 10, 20, 30, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, or more nucleotides in length, including any integer, for example, 51, 52, 53, 54, 201, 202, etc. An oligonucleotide can be about 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1250, 1500, 1750, 2000, or more nucleotides in length, including any integer, for example, 101, 203, 1001, 2001, 2010, etc.

[00167] Oligonucleotides and/or other nucleic acid molecules can be combined or assembled to generate a cassette. Such a cassette can comprise (a) a region that is homologous to a target region of the nucleic acid of the cell and includes a desired mutation of at least one nucleotide or one codon relative to the target region, and (b) a protospacer adjacent motif (PAM) mutation. The PAM mutation can be any insertion, deletion or substitution of one or more nucleotides that mutates the sequence of the PAM such that it is no longer recognized by a nucleic acid-guided nuclease system or CRISPR nuclease system. A cell that comprises such a PAM mutation may be said to be "immune" to nuclease- mediated killing. The desired mutation relative to the sequence of the target region can be an insertion, deletion, and/or substitution of one or more nucleotides. In some examples, the insertion, deletion, and/or substitution of one or more nucleotides is in at least one codon of the target region. Alternatively, the cassette can be synthesized in a single synthesis, comprising (a) a region that is homologous to a target region of the nucleic acid of the cell and includes a desired mutation of at least one nucleotide or one codon relative to the target region, (b) a protospacer adjacent motif (PAM) mutation, and optionally (c) a region that is homologous to a second target region of the nucleic acid of the cell and includes a recorder sequence.

[00168] The methods disclosed herein can be applied to any target nucleic acid molecule of interest, from any prokaryote including bacteria and archaea, or any eukaryote, including yeast, mammalian, and human genes, or any viral particle. The nucleic acid module can be a non- coding nucleic acid sequence, gene, genome, chromosome, plasmid, episomal nucleic acid molecule, artificial chromosome, synthetic chromosome, or viral nucleic acid.

[00169] Methods for assessing recovery efficiency of donor strain libraries are disclosed herein. Recovery efficiency can be verified based on the presence of a PCR product or on changes in amplicon or PCR product sizes or sequence obtained with primers directed at the selected target locus. Primers can be designed to hybridize with endogenous sequences or heterologous sequences contained on the donor nucleic acid molecule. For example, the PCR primer can be designed to hybridize to a heterologous sequence such that PCR will only be possible if the donor nucleic acid is incorporated. Sequencing of PCR products from the recovered libraries indicates the heterologous sequence or synthetic priming site from the dsDNA cassettes or donor sequences can be incorporated with about 90-100% efficiency. In other examples, the efficiency can be about 5%, 10% 20%, 30%, 40%, 50%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, 99% or 100%. [00170] In some cases, the ability to improve final editing efficiencies of the methods disclosed herein can be assessed by carrying out cassette construction in gene deficient strains before transferring to a wild-type donor strain in an effort to prevent loss of mutations during the donor construction phase. Additionally or alternatively, efficiency of the disclosed methods can be assessed by targeting an essential gene. Essential genes can include any gene required for survival or replication of a viral particle, cell, or organism. In some examples, essential genes include dxs, metA, and folA. Essential genes have been effectively targeted using guide nucleic acid design strategies described. Other suitable essential genes are well known in the art.

[00171] Provided herein are method of increasing editing efficiencies by modulating the level of a nucleic acid-guided nuclease. This could be done by using copy control plasmids, such as high copy number plasmids or low copy number plasmids. Low copy number plasmids could be plasmids that can have about 20 or less copies per cell, as opposed to high copy number plasmids that can have about 1000 copies per cell. High copy number plasmids and low copy number plasmids are well known in the art and it is understood that an exact plasmid copy per cell does not need to be known in order to characterize a plasmid as either high or low copy number.

[00172] In some cases, the decreasing expression level of a nucleic acid-guided nuclease, such as Cas9, Cpfl, MAD2, or MAD7, can increase transformation, editing, and/or recording efficiencies. In some cases, decreasing expression level of the nucleic acid-guided nuclease is done by expressing the nucleic acid-guided nuclease on a low copy number plasmid.

[00173] In some cases, the increasing expression level of a nucleic acid-guided nuclease, such as Cas9, Cpfl, MAD2, or MAD7, can increase transformation, editing, and/or recording efficiencies. In some cases, increasing expression level of the nucleic acid-guided nuclease is done by expressing the nucleic acid-guided nuclease on a high copy number plasmid.

[00174] Other methods of modulating the expression level of a protein are also envisioned and are known in the art. Such methods include using a inducible or constitutive promoter, incorporating enhancers or other expression regulatory elements onto an expression plasmid, using RNAi, amiRNAi, or other RNA silencing techniques to modulate transcript level, fusing the protein of interest to a degradation domain, or any other method known in the art.

[00175] Provided herein are methods for generating mutant libraries. In some examples, the mutant library can be effectively constructed and retrieved within 1-3 hours post recombineering. In some examples, the mutant library is constructed within 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, or 24 hours post recombineering. In some examples, the mutant library can be retrieved within 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 24, 36, or 48 hours post recombineering and/or post-constructing by recombineering. [00176] Some methods disclosed herein can be used for trackable, precision genome editing. In some examples, methods disclosed herein can achieve high efficiency editing/mutating using a single cassette that encodes both an editing cassette and guide nucleic acid, and optionally a recorder cassette and second guide nucleic acid. Alternatively, a single vector can encode an editing cassette while a guide nucleic acid is provided sequentially or concomitantly. When used with parallel DNA synthesis, such as array-based DNA synthesis, methods disclosed herein can provide single step generation of hundreds or thousands of precision edits/mutations. Mutations can be mapped by sequencing the editing cassette on the vector, rather than by sequencing of the genome or a section of the genome of the cell or organism.

[00177] The methods disclosed herein can have broad utility in protein and genome engineering applications, as well as for reconstruction of mutations, such as mutations identified in laboratory evolution experiments. In some examples, the methods and compositions disclosed here can combine an editing cassette, which could include a desired mutation and a PAM mutation, with a gene encoding a guide nucleic acid on a single vector.

[00178] In some examples, a trackable mutant library can be generated in a single transformation or single reaction.

[00179] Methods disclosed herein can comprise introducing a cassette comprising an editing cassette that includes the desired mutation and the PAM mutation into a cell or population of cells. In some embodiments, the cell into which the cassette or vector is introduced also comprises a nucleic acid-guided nuclease, such as Cas9, Cpfl, MAD2, or MAD7. In some embodiments, a gene or mRNA encoding the nucleic acid-guided nuclease is concomitantly, sequentially, or subsequently introduced into the cell or population of cells. Expression of a targetable nuclease system, including nucleic acid-guided nuclease and a guide nucleic acid, in the cell or cell population can be activated such that the guide nucleic acid recruits the nucleic acid-guided nuclease to the target region, where dsDNA cleavage occurs.

[00180] In some examples, without wishing to be bound by any particular theory, the homologous region of an editing cassette complementary to the target sequence mutates the PAM and the one or more codon of the target sequence. Cells of the population of cells that did not integrate the PAM mutation can undergo unedited cell death due to nucleic acid-guided nuclease mediated dsDNA cleavage. In some examples, cells of the population of cells that integrate the PAM mutation do not undergo cell death; they remain viable and are selectively enriched to high abundance. Viable cells can be obtained and can provide a library of trackable or targeted mutations.

[00181] In some examples, without wishing to be bound by any particular theory, the homologous region of a recorder cassette complementary to the target sequence mutates the PAM and introduces a barcode into a target sequence. Cells of the population of cells that did not integrate the PAM mutation can undergo unedited cell death due to nucleic acid-guided nuclease mediated dsDNA cleavage. In some examples, cells of the population of cells that integrate the PAM mutation do not undergo cell death; they remain viable and are selectively enriched to high abundance. Viable cells can be obtained and can provide a library of trackable mutations.

[00182] A separate vector or mRNA encoding a nucleic acid-guided nuclease can be introduced into the cell or population of cells. Introducing a vector or mRNA into a cell or population of cells can be performed using any method or technique known in the art. For example, vectors can be introduced by standard protocols, such as transformation including chemical transformation and electroporation, transduction and particle bombardment. Additionally or alternatively, mRNA can be introduced by standard protocols, such as transformation as disclosed herein, and/or by techniques involving cell permeable peptides or nanoparticles.

[00183] An editing cassette can include (a) a region, which recognizes (hybridizes to) a target region of a nucleic acid in a cell or population of cells, is homologous to the target region of the nucleic acid of the cell and includes a mutation, referred to a desired mutation, of at least one nucleotide that can be in at least one codon relative to the target region, and (b) a protospacer adjacent motif (PAM) mutation. In some examples, the editing cassette also comprises a barcode. The barcode can be a unique barcode or relatively unique such that the corresponding mutation can be identified based on the barcode. The PAM mutation may be any insertion, deletion or substitution of one or more nucleotides that mutates the sequence of the PAM such that the mutated PAM (PAM mutation) is not recognized by a chosen nucleic acid-guided nuclease system. A cell that comprises such as a PAM mutation may be said to be "immune" to nucleic acid-guided nuclease-mediated killing. The desired mutation relative to the sequence of the target region may be an insertion, deletion, and/or substitution of one or more nucleotides and may be at least one codon of the target region. In some embodiments, the distance between the PAM mutation and the desired mutation is at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 40, 50, 60, 70, 80, 90, or 100 nucleotides on the editing cassette In some embodiments, the PAM mutation is located at least 9 nucleotides from the end of the editing cassette. In some embodiments, the desired mutation is located at least 9 nucleotides from the end of the editing cassette.

[00184] A desired mutation can be an insertion of a nucleic acid sequence relative to the sequence of the target sequence. The nucleic acid sequence inserted into the target sequence can be of any length. In some embodiments, the nucleic acid sequence inserted is at least 1, 2, 3, 4, 5, 10, 20, 30, 40, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, or at least 2000 nucleotides in length. In embodiments in which a nucleic acid sequence is inserted into the target sequence, the editing cassette comprises a region that is at least 10, 15, 20, 25, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50 51, 52, 53, 54, 55, 56, 57, 58, 59, or at least 60 nucleotides in length and homologous to the target sequence. The homology arms or homologous region can be about 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, or more nucleotides in length, including any integer therein. The homology arms or homologous region can be over 200 nucleotides in length.

[00185] A barcode can be a unique barcode or relatively unique such that the corresponding mutation can be identified based on the barcode. In some examples, the barcode is a non- naturally occurring sequence that is not found in nature. In most examples, the combination of the desired mutation and the barcode within the editing cassette is non-naturally occurring and not found in nature. A barcode can be any number of nucleotides in length. A barcode can be 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, or more than 30 nucleotides in length. In some cases, the barcode is more than 30 nucleotides in length.

[00186] An editing cassette or recorder cassette can comprise at least a portion of a gene encoding a guide nucleic acid, and optionally a promoter operable linked to the encoded guide nucleic acid. In some embodiments, the portion of the gene encoding the guide nucleic acid encodes the portion of the guide nucleic acid that is complementary to the target sequence. The portion of the guide nucleic acid that is complementary to the target sequence, or the guide sequence, can be at least 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or at least 30 nucleotides in length. In some embodiments, the guide sequence is 24 nucleotides in length. In some embodiments, the guide sequence is 18 nucleotides in length.

[00187] In some embodiments, the editing cassette or recorder cassette further comprises at least two priming sites. The priming sites may be used to amplify the cassette, for example by PCR. In some embodiments, the portion of the guide sequence is used as a priming site.

[00188] Editing cassettes or recorder cassettes for use in the described methods can be obtained or derived from many sources. For example, the cassettes can be synthesized, for example by array-based synthesis, multiplex synthesis, multi-parallel synthesis, PCR assembly, in vitro assembly, Gibson assembly, or any other synthesis method known in the art. In some embodiments, the editing cassette or recorder cassette is synthesized, for example by array-based synthesis, multiplex synthesis, multi-parallel synthesis, PCR assembly, -in vitro assembly, Gibson assembly, or any other synthesis method known in the art. The length of the editing cassette or recorder cassette may be dependent on the method used in obtaining said cassette. [00189] An editing cassette can be approximately 50-300 nucleotides, 75-200 nucleotides, or between 80-120 nucleotides in length. In some embodiments, the editing cassette can be any discrete length between 50 nucleotide and 1 Mb.

[00190] A recorder cassette can be approximately 50-300 nucleotides, 75-200 nucleotides, or between 80- 120 nucleotides in length. In some embodiments, the recorder cassette can be any discrete length between 50 nucleotide and 1 Mb.

[00191] Methods disclosed herein can also involve obtaining editing cassettes and recorder cassettes and constructing a trackable plasmid or vector. Methods of constructing a vector will be known to one ordinary skill in the art and may involve ligating the cassettes into a vector backbone. In some examples, plasmid construction occurs by in vitro DNA assembly methods, oligonucleotide assembly, PCR-based assembly, SLIC, CPEC, or other assembly methods well known in the art. In some embodiments, the cassettes or a subset (pool) of the cassettes can be amplified prior to construction of the vector, for example by PCR.

[00192] The cell or population of cells comprising a polynucleotide encoding a nucleic acid- guided nuclease can be maintained or cultured under conditions in which the nuclease is expressed. Nucleic acid-guided nuclease expression can be controlled or can be constitutively on. The methods described herein can involve maintaining cells under conditions in which nuclease expression is activated, resulting in production of the nuclease, for example, Cas9, Cpfl, MAD2, or MAD7. Specific conditions under which the nucleic acid-guided nuclease is expressed can depend on factors, such as the nature of the promoter used to regulate expression of the nuclease. Nucleic acid-guided nuclease expression can be induced in the presence of an inducer molecule, such as arabinose. When the cell or population of cells comprising nucleic acid-guided nuclease encoding DNA are in the presence of the inducer molecule, expression of the nuclease can occur. CRISPR-nuclease expression can be repressed in the presence of a repressor molecule. When the cell or population of cells comprising nucleic acid-guided nuclease encoding DNA are in the absence of a molecule that represses expression of the nuclease, expression of the nuclease can occur.

[00193] Cells or the population of cells that remain viable can be obtained or separated from the cells that undergo unedited cell death as a result of nucleic acid-guided nuclease -mediated killing; this can be done, for example, by spreading the population of cells on culture surface, allowing growth of the viable cells, which are then available for assessment.

[00194] Disclosed herein are methods for the identification of the mutation without the need to sequence the genome or large portions of the genome of the cell. The methods can involve sequencing of the editing cassette, recorder cassette, or barcode to identify the mutation of one of more codon. Sequencing of the editing cassette can be performed as a component of the vector or after its separation from the vector and, optionally, amplification. Sequencing can be performed using any sequencing method known in the art, such as by Sanger sequencing or next-generation sequencing methods.

[00195] Some methods described herein can be carried out in any type of cell in which a targetable nuclease system can function, or target and cleave DNA, including prokaryotic and eukaryotic cells. In some embodiments, the cell is a bacterial cell, such as Escherichia spp., e.g., E. coli. In other embodiments, the cell is a fungal cell, such as a yeast cell, e.g., Saccharomyces spp. In other embodiments, the cell is an algal cell, a plant cell, an insect cell, or a mammalian cell, including a human cell.

[00196] A "vector" is any of a variety of nucleic acids that comprise a desired sequence or sequences to be delivered to or expressed in a cell. A desired sequence can be included in a vector, such as by restriction and ligation or by recombination or assembly methods know in the art. Vectors are typically composed of DNA, although RNA vectors are also available. Vectors include, but are not limited to plasmids, fosmids, phagemids, virus genomes, artificial chromosomes, and synthetic nucleic acid molecules.

[00197] Vectors useful in the methods disclosed herein can comprise at least one editing cassette as described herein, at least one gene encoding a gRNA, and optionally a promoter and/or a barcode. More than one editing cassette can be included on the vector, for example 2, 3, 4, 5, 6, 7, 8, 9, 10 or more editing cassettes. The more than one editing cassettes can be designed to target different target regions, for example, there could be different editing cassettes, each of which contains at least one region homologous with a different target region. In other examples, each editing cassette target the same target region while each editing cassette comprises a different desired mutation relative to the target region. In other examples, the plurality of editing cassettes can comprise a combination of editing cassettes targeting the same target region and editing cassettes targeting different target regions. Each editing cassette can comprise an identifying barcode. Alternatively or additionally, the vector can include one or more genes encoding more than one gRNA, e.g., 2, 3, 4, 5, 6, 7, 8, 9, 10 or more gRNAs. The more than one gRNAs can contain regions that are complementary to a portion of different target regions, for example, if there are different gRNAs, each of which can be complementary to a portion of a different target region. In other examples, the more than one gRNA can each target the same target region. In other examples, the more than one gRNA can be a combination of gRNAs targeting the same and different target regions.

[00198] A cassette comprising a gene encoding a portion of a guide nucleic acid, can be ligated or assembled into a vector that encodes another portion of a guide nucleic acid. Upon ligation or assembly, the portion of the guide nucleic acid from the cassette and the other portion of the guide nucleic acid can form a functional guide nucleic acid. A promoter and a gene encoding a guide nucleic acid can be operably linked.

[00199] In some embodiments, the methods involve introduction of a second vector encoding a nucleic acid-guided nuclease, such as Cas9, Cpfl, MAD2, or MAD7. The vector may further comprise one or more promoters operably linked to a gene encoding the nucleic acid-guided nuclease.

[00200] As used herein, "operably" linked can mean the promoter affects or regulates transcription of the DNA encoding a gene, such as the gene encoding the gRNA or the gene encoding a CRISPR nuclease.

[00201] A promoter can be a native promoter such as a promoter present in the cell into which the vector is introduced. A promoter can be an inducible or repressible promoter, for example, the promoter can be regulated allowing for inducible or repressible transcription of a gene, such as the gene encoding the guide nucleic acid or the gene encoding a nucleic acid-guided nuclease. Such promoters that are regulated by the presence or absence of a molecule can be referred to as an inducer or a repressor, respectively. The nature of the promoter needed for expression of the guide nucleic acid or nucleic acid-guided nuclease can vary based on the species or cell type and can be recognized by one of ordinary skill in the art.

[00202] A separate vector encoding a nucleic acid-guided nuclease can be introduced into a cell or population of cells before or at the same time as introduction of a trackable plasmid as disclosed herein. The gene encoding a nucleic acid-guided nuclease can be integrated into the genome of the cell or population of cells, or the gene can be maintained episomally. The nucleic acid-guided nuclease-encoding DNA can be integrated into the cellular genome before introduction of the trackable plasmid, or after introduction of the trackable plasmid. In some examples, a nucleic acid molecule, such as DNA-encoding a nucleic acid-guided nuclease, can be expressed from DNA integrated into the genome. In some embodiments, a gene encoding Cas9, Cpfl, MAD2, or MAD7 is integrated into the genome of the cell.

[00203] Vectors or cassettes useful in the methods described herein can further comprise two or more priming sites. In some embodiments, the presence of flanking priming sites allows amplification of the vector or cassette.

[00204] In some embodiments, a cassette or vector encodes a nucleic acid-guided nuclease comprising one or more nuclear localization sequences (NLSs), such as about or more than about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more NLSs. In some embodiments, the engineered nuclease comprises about or more than about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more NLSs at or near the amino-terminus, about or more than about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more NLSs at or near the carboxy-terminus, or a combination of these (e.g. one or more NLS at the amino-terminus and one or more NLS at the carboxy terminus). When more than one NLS is present, each may be selected independently of the others, such that a single NLS may be present in more than one copy and/or in combination with one or more other NLSs present in one or more copies. In a preferred embodiment of the invention, the engineered nuclease comprises at most 6 NLSs. In some embodiments, an NLS is considered near the N- or C-terminus when the nearest amino acid of the NLS is within about 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 40, 50, or more amino acids along the polypeptide chain from the N- or C-terminus. Non-limiting examples of NLSs include an NLS sequence derived from: the NLS of the SV40 virus large T-antigen, having the amino acid sequence PKKKRKV (SEQ ID NO: 111); the NLS from nucleoplasmin (e.g. the nucleoplasmin bipartite NLS with the sequence KRPAATKKAGQAKKKK (SEQ ID NO: 112)); the c-myc NLS having the amino acid sequence PAAKRVKLD (SEQ ID NO: 113) or RQRRNELKRSP (SEQ ID NO: 114); the hRNPAl M9 NLS having the sequence NQS SNFGPMKGGNFGGRS SGP YGGGGQYF AKPRNQGGY (SEQ ID NO: 115); the sequence RMRIZFKNKGKDTAELRRRRVEVSVELRKAKKDEQILKRRNV (SEQ ID NO: l 116) of the IBB domain from importin-alpha; the sequences VSRKRPRP (SEQ ID NO: 117) and PPKKARED (SEQ ID NO: 115) of the myoma T protein; the sequence PQPKKKPL (SEQ ID NO: 119) of human p53; the sequence SALIKKKKKMAP (SEQ ID NO: 120) of mouse c-abl IV; the sequences DRLRR (SEQ ID NO: 121) and PKQKKRK (SEQ ID NO: 122) of the influenza virus NS1; the sequence RKLKKKIKKL (SEQ ID NO: 123) of the Hepatitis virus delta antigen; the sequence REKKKFLKRR (SEQ ID NO: 124) of the mouse Mxl protein; the sequence KRKGDEVDGVDEVAKKKSKK (SEQ ID NO: 125) of the human poly(ADP-ribose) polymerase; and the sequence RKCLQAGMNLEARKTKK (SEQ ID NO: 126) of the steroid hormone receptors (human) glucocorticoid.

[00205] In general, the one or more NLSs are of sufficient strength to drive accumulation of the nucleic acid-guided nuclease in a detectable amount in the nucleus of a eukaryotic cell. In general, strength of nuclear localization activity may derive from the number of NLSs, the particular NLS(s) used, or a combination of these factors. Detection of accumulation in the nucleus may be performed by any suitable technique. For example, a detectable marker may be fused to the nucleic acid-guided nuclease, such that location within a cell may be visualized, such as in combination with a means for detecting the location of the nucleus (e.g. a stain specific for the nucleus such as DAPI). Cell nuclei may also be isolated from cells, the contents of which may then be analyzed by any suitable process for detecting protein, such as immunohistochemistry, Western blot, or enzyme activity assay. Accumulation in the nucleus may also be determined indirectly, such as by an assay for the effect of the nucleic acid-guided nuclease complex formation (e.g. assay for DNA cleavage or mutation at the target sequence, or assay for altered gene expression activity affected by targetable nuclease complex formation and/or nucleic acid-guided nuclease activity), as compared to a control not exposed to the nucleic acid-guided nuclease or targetable nuclease complex, or exposed to a nucleic acid-guided nuclease lacking the one or more LSs.

ProSAR

[00206] Methods disclosed herein are capable of engineering a few to hundreds of genetic sequence or proteins simultaneously. These methods can permit one to map in a single experiment many or all possible residue changes over a collection of desired proteins onto a trait of interest, as part of individual proteins of interest or as part of a pathway. This approach can be used at least for the following by mapping i) any number of residue changes for any number of proteins of interest in a specific biochemical pathway or that catalyze similar reactions or ii) any number of residues in the regulatory sites of any number of proteins or interest with a specific regulon or iii) any number of residues of a biological agent used to treat a health condition.

[00207] In some embodiments, methods described herein include identifying genetic variations of one or more target genes that affect any number or residues, such as one or more, or all residues of one or more target proteins. In accordance with these embodiments, compositions and methods disclosed herein permit parallel analysis of two or more target proteins or proteins that contribute to a trait. Parallel analysis of multiple proteins by a single experiment described can facilitate identification, modification and design of superior systems for example for producing a eukaryotic or prokaryotic byproduct, producing a eukaryotic byproduct, for example, a biological agent such as a growth factor or antibody, in a prokaryotic organism and the like. Relevant biologies used in analysis and treatment of disease can be produced in these genetically engineered environments that could reduce production time, increase quality all while reducing costs to the manufacturers and the consumers.

[00208] Some embodiments disclosed herein comprise constructs of use for studying genetic variations of a gene or gene segment wherein the gene or gene segment is capable of generating a protein. A construct can be generated for any number of residues, such as one, two, more than two, or all residue modifications of a target protein that is linked to a trackable agent such as a barcode. A barcode indicative of a genetic variation of a gene of a target protein can be located outside of the open reading frame of the gene. In some embodiments such a barcode can be located many hundreds or thousands of bases away from the gene. It is contemplated herein that these methods can be performed in vivo. In some examples, such a construct comprises a trackable polynucleic acid or plasmid as disclosed herein.

[00209] Constructs described herein can be used to compile a comprehensive library of genetic variations encompassing all residue changes of one target protein, more than one target protein or target proteins that contribute to a trait. In certain embodiments, libraries disclosed herein can be used to select proteins with improved qualities to create an improved single or multiple protein system for example for producing a byproduct, such as a chemical, biofuels, biological agent, pharmaceutical agent, or for biomass, or biologic compared to a non-selective system. Protein Sequence-Activity Relationship (ProSAR) Mapping

[00210] Understanding the relationship between a protein's amino acid structure and its overall function continues to be of great practical, clinical, and scientific significance for biologists and engineers. Directed evolution can be a powerful engineering and discovery tool, but the random and often combinatorial nature of mutations makes their individual impacts difficult to quantify and thus challenges further engineering. More systematic analysis of contributions of individual residues or saturation mutagenesis remains labor- and time-intensive for entire proteins and simply is not possible on reasonable timescales for multiple proteins in parallel, such as metabolic pathways or multi-protein complexes, using standard methods.

[00211] Provided herein are methods which can be used to rapidly and efficiently examine the roles of some or all genes in a viral, microbial, or eukaryotic genome using mixtures of barcoded oligonucleotides. In some embodiments, these compositions and methods can be used to develop a powerful new technology for comprehensively mapping protein structure-activity relationships (ProSAR).

[00212] Using methods and compositions disclosed herein, multiplex cassette synthesis can be combined with recombineering, to create mutant libraries of specifically designed and barcoded mutations along one or more genes of interest in parallel. Screens and/or selections followed by high-throughput sequencing and/or barcode microarray methods can allow for rapid mapping of protein sequence-activity relationships (ProSAR). In some embodiments, systematic ProSAR mapping can elucidate individual amino acid mutations for improved function and/or activity and/or stability etc.

[00213] Methods can be iterated to combinatorially improve the function, activity, or stability. Cassettes can be generated by oligonucleotide synthesis. Given that existing capabilities of multiplex oligonucleotide synthesis can reach over 120,000 oligonucleotides per array, combined with recombineering, the methods disclosed herein can be scaled to construct mutant libraries for dozens to hundreds of proteins in a single experiment. In some examples, at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 25, 50, 75, 100, 150, 200, 250, 300, 400, 500, 600, 700, 800, 900, 1000, or more proteins can be partially or completely covered by mutant libraries generated by the methods disclosed herein.

[00214] Disclosed herein are strategies to construct barcoded substitution libraries for several different proteins at the same time. Using existing multiplex DNA synthesis technology, as disclosed, a partial or complete substitution library for one or more protein constructs can be barcoded, or non-barcoded if desired, for one or for several hundred proteins at the same time. In some examples, such libraries comprise trackable plasmids as disclosed herein.

[00215] Some embodiments herein apply to analysis and structure/function/stability library construction of any protein with a corresponding screen or selection for activity. Cassette library size can depend on the number (N) of amino acids in a protein of interest, with a full saturation library, including all 20 amino acids at each position and optionally non-naturally occurring amino acids, scaling as 19 (or more)xN and an alanine-mapping library scaling as l xN. Thus, in some examples, screening of even very large proteins of more than 1,000 amino acids can be tractable given current multiplex oligo synthesis capabilities of at least 120,000 oligos per array.

[00216] In addition or as an alternative to activity screens, more general properties with developed high-throughput screens and selections can be efficiently tested using methods and cassettes disclosed herein. For example, universal protein folding and solubility reporters can be engineered for expression in the cytoplasm, periplasm, and the inner membrane. In some examples, a protein library can be screened under different conditions such as different temperatures, different substrates or co-factors, in order to identify residue changes required for expression of various traits. In other embodiments, because residues can be analyzed one at a time, mutations at residues important for a particular trait, such as thermostability, resistance to environmental pressures, or increases or decreases in functionality or production, can be combined via multiplex recombineering with mutations important for various other traits, such as catalytic activity, to create combinatorial libraries for multi-trait optimization.

[00217] Methods disclosed herein can provide for creating and/or evaluating comprehensive, in vivo, mutational libraries of one or more target protein(s). These approaches can be extended via a recorder cassettes or barcoding technology to generate trackable mutational libraries for any number of residues or every residue in a protein. This approach can be based on protein sequence-activity relationship mapping method extended to work in vivo, capable of working on one or a few to hundreds of proteins simultaneously depending on the technology selected. For example, these methods permit one to map in a single experiment any number of, the majority of, or all possible residue changes over a collection of desired proteins onto a trait of interest, as part of individual proteins of interest or as part of a pathway.

[00218] In some examples, these approaches can be used at least for the following by mapping i) any number of or all residue changes for any number of or all proteins in a specific biochemical pathway, such as lycopene production, or that catalyze similar reactions, such as dehydrogenases or other enzymes of a pathway of use to produce a desired effect or produce a product, or ii) any number of or all residues in the regulatory sites of any number of or all proteins with a specific regulatory mechanism, such as heat shock response, or iii) any number of or all residues of a biological agent used to treat a health condition, such as insulin, a growth factor (HCG), an anti-cancer biologic, or a replacement protein for a deficient population.

[00219] Scores related to various input parameters can be assigned in order to generate one or more composite score(s) for designing genomically-engineered organisms or systems. These scores can reflect quality of genetic variations in genes or genetic loci as they relate to selection of an organism or design of an organism for a predetermined production, trait or traits. Certain organisms or systems can be designed based on a need for improved organisms for biorefining, biomass, such as crops, trees, grasses, crop residues, or forest residues, biofuel production, and using biological conversion, fermentation, chemical conversion and catalysis to generate and use compounds, biopharmaceutical production and biologic production. In certain embodiments, this can be accomplished by modulating growth or production of microorganism through genetic manipulation methods disclosed herein.

[00220] Genetic manipulation by methods disclosed herein of genes encoding a protein can be used to make desired genetic changes that can result in desired phenotypes and can be accomplished through numerous techniques including but not limited to, i) introduction of new genetic material, ii) genetic insertion, disruption or removal of existing genetic material, as well as, iii) mutation of genetic material, such as a point mutation, or any combinations of i, ii, and iii, that results in desired genetic changes with desired phenotypic changes. Mutations can be directed or random, in addition to those including, but not limited to, error prone or directed mutagenesis through PCR, mutator strains, and random mutagenesis. Mutations can be incorporated using trackable plasmids and methods as disclosed herein.

[00221] Disclosed methods can be used for inserting and accumulating higher order modifications into a microorganism's genome or a target protein; for example, multiple different site-specified mutations in the same genome, at high efficiency to generate libraries of genomes with over 1, 5, 10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250, 300, or more targeted modifications are described. In some examples, these mutations are within regulatory modules, regulatory elements, protein-coding regions, or non-coding regions. Protein coding modifications can include, but are not limited to, amino acid changes, codon optimization, and translation tuning.

[00222] In some instances, methods are provided for the co-delivery of reagents to a single biological cell. The methods generally involve the attachment or linkage of two or more cassettes, followed by delivery of the linked cassettes to a single cell. Generally, the methods provided herein involve the delivery of two or more cassettes to a single cell. In many cases, it is desirable that each individual cell receives the two or more cassettes. Traditional methods of reagent delivery may often be inefficient and/or inconsistent, leading to situations in which some cells receive only one of the cassettes. The methods provided herein may improve the efficiency and/or consistency of reagent delivery, such that a majority of cells in a cell population each receive the two or more cassettes. For example, more than 50%, 55%, 60%, 65%, 70%, 75%,

80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% of the cells in a cell population may receive the two or more cassettes.

[00223] The two or more cassettes may be linked by any known method in the art and generally the method chosen will be commensurate with the chemistry of the cassettes. Generally, the two or more cassettes are linked by a covalent bond (i.e., covalently-linked), however, other types of non-covalent chemical bonds are envisioned, such as hydrogen bonds, ionic bonds, and metallic bonds. In this way, the editing cassette and the recorder cassette may be linked and delivered into a single cell. A known edit is then associated with a known recorder or barcode sequence for that cell.

[00224] In one example, the two or more cassettes are nucleic acids, such as two or more nucleic acids. The nucleic acids may be RNA, DNA, or a combination of both, and may contain any number of chemically-modified nucleotides or nucleotide analogues. In some cases, two or more RNA cassettes are linked for delivery to a single cell. In other cases, two or more DNA cassettes are linked for delivery to a single cell. In yet other cases, a DNA cassettes and an RNA cassettes are linked for delivery to a single cell. The nucleic acids may be derived from genomic RNA, complementary DNA (cDNA), or chemically or enzymatically synthesized DNA.

[00225] A cassettes may be of 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, about 110, about 120, about 130, about 140, about 150, about 160, about 170, about 180, about 190, about 200, about 210, about 220, about 230, about 240, about 250, about 275, about 300, about 325, about 350, about 375, about 400, about 425, about 450, about 475, about 500, about 525, about 550, about 575, about 600, about 625, about 650, about 675, about 700, about 725, about 750, about 775, about 800, about 825, about 850, about 875, about 900, about 925, about 950, about 975, about 1000, about 1100, about 1200, about 1300, about 1400, about 1500, about 1750, about 2000, about 2500, about 3000, about 4000, about 5000, about 6000, about 7000, about 8000, about 9000, about 10,000 or greater nucleotide residues in length, up to a full length protein encoding or regulatory genetic element. [00226] Two or more cassettes may be linked on a linear nucleic acid molecule or may be linked on a plasmid or circular nucleic acid molecule. The two or more cassettes may be linked directly to one another or may be separated by one or more nucleotide spacers or linkers.

[00227] Two or more cassettes may be covalently linked on a linear cassettes or may be covalently linked on a plasmid or circular nucleic acid molecule. The two or more cassettes may be covalently linked directly to one another or may be separated by one or more nucleotide spacers or linkers.

[00228] Any number and variety of cassettes may be linked for co-delivery. For example, the two or more cassettes may include nucleic acids, lipids, proteins, peptides, small molecules, or any combination thereof. The two or more cassettes may be essentially any cassettes that are amenable to linkage.

[00229] In preferred examples, the two or more cassettes are covalently linked (e.g., by a chemical bond). Covalent linkage may help to ensure that the two or more cassettes are co- delivered to a single cell. Generally, the two or more cassettes are covalently linked prior to delivery to a cell. Any method of covalently linking two or more molecules may be utilized, and it should be understood that the methods used will be at least partly determined by the types of cassettes to be linked.

[00230] In some instances, methods are provided for the co-delivery of reagents to a single biological cell. The methods generally involve the covalent attachment or linkage of two or more cassettes, followed by delivery of the covalently-linked cassettes into a single cell. The methods provided may help to ensure that an individual cell receives the two or more cassettes. Any known method of reagent delivery may be utilized to deliver the linked cassettes to a cell and will at least partly depend on the chemistry of the cassettes to be delivered. Non-limiting examples of reagent delivery methods may include: transformation, lipofection, electroporation, transfection, nanoparticles, and the like.

[00231] In various embodiments, cassettes, or isolated, donor, or editing nucleic acids may be introduced to a cell or microorganism to alter or modulate an aspect of the cell or microorganism, for example survival or growth of the microorganism as disclosed herein. The isolated nucleic acid may be derived from genomic RNA, complementary DNA (cDNA), chemically or enzymatically synthesized DNA. Additionally or alternatively, isolated nucleic acids may be of use for capture probes, primers, labeled detection oligonucleotides, or fragments for DNA assembly.

[00232] A "nucleic acid" can include single- stranded and/or double-stranded molecules, as well as DNA, RNA, chemically modified nucleic acids and nucleic acid analogs. It is contemplated that a nucleic acid may be of 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44,

45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, about 110, about 120, about 130, about 140, about 150, about 160, about 170, about 180, about 190, about 200, about 210, about 220, about 230, about 240, about 250, about 275, about 300, about 325, about 350, about 375, about 400, about 425, about 450, about 475, about 500, about 525, about 550, about 575, about 600, about 625, about 650, about 675, about 700, about 725, about 750, about 775, about 800, about 825, about 850, about 875, about 900, about 925, about 950, about 975, about 1000, about 1100, about 1200, about 1300, about 1400, about 1500, about 1750, about 2000, about 2500, about 3000, about 4000, about 5000, about 6000, about 7000, about 8000, about 9000, about 10,000 or greater nucleotide residues in length, up to a full length protein encoding or regulatory genetic element.

[00233] Isolated nucleic acids may be made by any method known in the art, for example using standard recombinant methods, assembly methods, synthetic techniques, or combinations thereof. In some embodiments, the nucleic acids may be cloned, amplified, assembled, or otherwise constructed.

[00234] The nucleic acids may conveniently comprise sequences in addition to a portion of a lysine riboswitch. For example, a multi-cloning site comprising one or more endonuclease restriction sites may be added. A nucleic acid may be attached to a vector, adapter, or linker for cloning of a nucleic acid. Additional sequences may be added to such cloning and sequences to optimize their function, to aid in isolation of the nucleic acid, or to improve the introduction of the nucleic acid into a cell. Use of cloning vectors, expression vectors, adapters, and linkers is well known in the art.

[00235] Isolated nucleic acids may be obtained from cellular, bacterial, or other sources using any number of cloning methodologies known in the art. In some embodiments, oligonucleotide probes which selectively hybridize, under stringent conditions, to other oligonucleotides or to the nucleic acids of an organism or cell. Methods for construction of nucleic acid libraries are known and any such known methods may be used.

[00236] Cellular genomic DNA, RNA, or cDNA may be screened for the presence of an identified genetic element of interest using a probe based upon one or more sequences. Various degrees of stringency of hybridization may be employed in the assay.

[00237] High stringency conditions for nucleic acid hybridization are well known in the art. For example, conditions may comprise low salt and/or high temperature conditions, such as provided by about 0.02 M to about 0.15 M NaCl at temperatures of about 50° C. to about 70° C. It is understood that the temperature and ionic strength of a desired stringency are determined in part by the length of the particular nucleic acid(s), the length and nucleotide content of the target sequence(s), the charge composition of the nucleic acid(s), and by the presence or concentration of formamide, tetram ethyl ammonium chloride or other solvent(s) in a hybridization mixture. Nucleic acids may be completely complementary to a target sequence or may exhibit one or more mismatches.

[00238] Nucleic acids of interest may also be amplified using a variety of known amplification techniques. For instance, polymerase chain reaction (PCR) technology may be used to amplify target sequences directly from DNA, RNA, or cDNA. PCR and other in vitro amplification methods may also be useful, for example, to clone nucleic acid sequences, to make nucleic acids to use as probes for detecting the presence of a target nucleic acid in samples, for nucleic acid sequencing, or for other purposes.

[00239] Isolated nucleic acids may be prepared by direct chemical synthesis by methods such as the phosphotriester method, or using an automated synthesizer. Chemical synthesis generally produces a single stranded oligonucleotide. This may be converted into double stranded DNA by hybridization with a complementary sequence or by polymerization with a DNA polymerase using the single strand as a template.

[00240] Any method known in the art for identifying, isolating, purifying, using and assaying activities of target proteins contemplated herein are contemplated. Target proteins contemplated herein include protein agents used to treat a human condition or to regulate processes (e.g. part of a pathway such as an enzyme) involved in disease of a human or non-human mammal. Any method known for selection and production of antibodies or antibody fragments is also contemplated. Additionally or alternatively, target proteins can be proteins or enzymes involved in a pathway or process in a virus, cell, or organism.

Targetable nucleic acid cleavage systems

[00241] Some methods disclosed herein comprise targeting cleavage of specific nucleic acid sequences using a site-specific, targetable, and/or engineered nuclease or nuclease system. Such nucleases can create double-stranded break (DSBs) at desired locations in a genome or nucleic acid molecule. In other examples, a nuclease can create a single strand break. In some cases, two nucleases are used, each of which generates a single strand break.

[00242] The one or more double or single strand break can be repaired by natural processes of homologous recombination (HR) and non-homologous end-joining (NHEJ) using the cell's endogenous machinery. Additionally or alternatively, endogenous or heterologous recombination machinery can be used to repair the induced break or breaks.

[00243] Engineered nucleases such as zinc finger nucleases (ZFNs), Transcription Activator- Like Effector Nucleases (TALENs), engineered homing endonucleases, and RNA or DNA guided endonucl eases, such as CRISPR/Cas such as Cas9 or CPF1, and/or Argonaute systems, are particularly appropriate to carry out some of the methods of the present invention. Additionally or alternatively, RNA targeting systems can use used, such as CRISPR/Cas systems including c2c2 nucleases.

[00244] Methods disclosed herein can comprise cleaving a target nucleic acid using a CRISPR systems, such as a Type I, Type II, Type III, Type IV, Type V, or Type VI CRISPR system. CRISPR/Cas systems can be multi-protein systems or single effector protein systems. Multi- protein, or Class 1, CRISPR systems include Type I, Type III, and Type IV systems. Alternatively, Class 2 systems include a single effector molecule and include Type II, Type VI, and Type VI.

[00245] CRISPR systems used in methods disclosed herein can comprise a single or multiple effector proteins. An effector protein can comprise one or multiple nuclease domains. An effector protein can target DNA or RNA, and the DNA or RNA may be single stranded or double stranded. Effector proteins can generate double strand or single strand breaks. Effector proteins can comprise mutations in a nuclease domain thereby generating a nickase protein. Effector proteins can comprise mutations in one or more nuclease domains, thereby generating a catalytically dead nuclease that is able to bind but not cleave a target sequence. CRISPR systems can comprise a single or multiple guiding RNAs. The gRNA can comprise a crRNA. The gRNA can comprise a chimeric RNA with crRNA and tracrRNA sequences. The gRNA can comprise a separate crRNA and tracrRNA. Target nucleic acid sequences can comprise a protospacer adjacent motif (PAM) or a protospacer flanking site (PFS). The PAM or PFS may be 3' or 5' of the target or protospacer site. Cleavage of a target sequence may generate blunt ends, 3 ' overhangs, or 5' overhangs.

[00246] A gRNA can comprise a spacer sequence. Spacer sequences can be complementary to target sequences or protospacer sequences. Spacer sequences can be 10, 11, 12, 13, 14, 15, 16,

17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, or 36 nucleotides in length. In some examples, the spacer sequence can be less than 10 or more than 36 nucleotides in length.

[00247] A gRNA can comprise a repeat sequence. In some cases, the repeat sequence is part of a double stranded portion of the gRNA. A repeat sequence can be 10, 11, 12, 13, 14, 15, 16, 17,

18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50 nucleotides in length. In some examples, the spacer sequence can be less than 10 or more than 50 nucleotides in length.

[00248] A gRNA can comprise one or more synthetic nucleotides, non-naturally occurring nucleotides, nucleotides with a modification, deoxyribonucleotide, or any combination thereof. Additionally or alternatively, a gRNA may comprise a hairpin, linker region, single stranded region, double stranded region, or any combination thereof. Additionally or alternatively, a gRNA may comprise a signaling or reporter molecule.

[00249] A CRISPR nuclease can be endogenously or recombinantly expressed within a cell. A CRISPR nuclease can be encoded on a chromosome, extrachromosomally, or on a plasmid, synthetic chromosome, or artificial chromosome. A CRISPR nuclease can be provided or delivered to the cell as a polypeptide or mRNA encoding the polypeptide. In such examples, polypeptide or mRNA can be delivered through standard mechanisms known in the art, such as through the use of cell permeable peptides, nanoparticles, or viral particles.

[00250] gRNAs can be encoded by genetic or episomal DNA within a cell. In some examples, gRNAs can be provided or delivered to a cell expressing a CRISPR nuclease. gRNAs can be provided or delivered concomitantly with a CRISPR nuclease or sequentially. Guide RNAs can be chemically synthesized, in vitro transcribed, or otherwise generated using standard RNA generation techniques known in the art.

[00251] A CRISPR system can be a Type II CRISPR system, for example a Cas9 system. The Type II nuclease can comprise a single effector protein, which, in some cases, comprises a RuvC and HNH nuclease domains. In some cases a functional Type II nuclease can comprise two or more polypeptides, each of which comprises a nuclease domain or fragment thereof. The target nucleic acid sequences can comprise a 3' protospacer adjacent motif (PAM). In some examples, the PAM may be 5' of the target nucleic acid. Guide RNAs (gRNA) can comprise a single chimeric gRNA, which contains both crRNA and tracrRNA sequences. Alternatively, the gRNA can comprise a set of two RNAs, for example a crRNA and a tracrRNA. The Type II nuclease can generate a double strand break, which is some cases creates two blunt ends. In some cases, the Type II CRISPR nuclease is engineered to be a nickase such that the nuclease only generates a single strand break. In such cases, two distinct nucleic acid sequences can be targeted by gRNAs such that two single strand breaks are generated by the nickase. In some examples, the two single strand breaks effectively create a double strand break. In some cases where a Type II nickase is used to generate two single strand breaks, the resulting nucleic acid free ends can either be blunt, have a 3' overhang, or a 5' overhang. In some examples, a Type II nuclease may be catalytically dead such that it binds to a target sequence, but does not cleave. For example, a Type II nuclease could have mutations in both the RuvC and HNH domains, thereby rendering the both nuclease domains non-functional. A Type II CRISPR system can be one of three subtypes, namely Type II-A, Type II-B, or Type II-C.

[00252] A CRISPR system can be a Type V CRISPR system, for example a Cpfl, C2cl, or C2c3 system. The Type V nuclease can comprise a single effector protein, which in some cases comprises a single RuvC nuclease domain. In other cases, a function Type V nuclease comprises a RuvC domain split between two or more polypeptides. In such cases, the target nucleic acid sequences can comprise a 5' PAM or 3' PAM. Guide RNAs (gRNA) can comprise a single gRNA or single crRNA, such as can be the case with Cpfl . In some cases, a tracrRNA is not needed. In other examples, such as when C2cl is used, a gRNA can comprise a single chimeric gRNA, which contains both crRNA and tracrRNA sequences or the gRNA can comprise a set of two RNAs, for example a crRNA and a tracrRNA. The Type V CRISPR nuclease can generate a double strand break, which in some cases generates a 5' overhang. In some cases, the Type V CRISPR nuclease is engineered to be a nickase such that the nuclease only generates a single strand break. In such cases, two distinct nucleic acid sequences can be targeted by gRNAs such that two single strand breaks are generated by the nickase. In some examples, the two single strand breaks effectively create a double strand break. In some cases where a Type V nickase is used to generate two single strand breaks, the resulting nucleic acid free ends can either be blunt, have a 3' overhang, or a 5' overhang. In some examples, a Type V nuclease may be catalytically dead such that it binds to a target sequence, but does not cleave. For example, a Type V nuclease could have mutations a RuvC domain, thereby rendering the nuclease domain non-functional.

[00253] A CRISPR system can be a Type VI CRISPR system, for example a C2c2 system. A Type VI nuclease can comprise a HEPN domain. In some examples, the Type VI nuclease comprises two or more polypeptides, each of which comprises a HEPN nuclease domain or fragment thereof. In such cases, the target nucleic acid sequences can by RNA, such as single stranded RNA. When using Type VI CRISPR system, a target nucleic acid can comprise a protospacer flanking site (PFS). The PFS may be 3' or 5'or the target or protospacer sequence. Guide RNAs (gRNA) can comprise a single gRNA or single crRNA. In some cases, a tracrRNA is not needed. In other examples, a gRNA can comprise a single chimeric gRNA, which contains both crRNA and tracrRNA sequences or the gRNA can comprise a set of two RNAs, for example a crRNA and a tracrRNA. In some examples, a Type VI nuclease may be catalytically dead such that it binds to a target sequence, but does not cleave. For example, a Type VI nuclease could have mutations in a HEPN domain, thereby rendering the nuclease domains nonfunctional.

[00254] Non-limiting examples of suitable nucleases, including nucleic acid-guided nucleases, for use in the present disclosure include C2cl, C2c2, C2c3, Casl, CaslB, Cas2, Cas3, Cas4, Cas5, Cas6, Cas7, Cas8, Cas9 (also known as Csnl and Csxl2), CaslO, Cpfl, Csyl, Csy2, Csy3, Csel, Cse2, Cscl, Csc2, Csa5, Csn2, Csm2, Csm3, Csm4, Csm5, Csm6, Cmrl, Cmr3, Cmr4, Cmr5, Cmr6, Csbl, Csb2, Csb3, Csxl7, Csxl4, CsxlOO, Csxl6, CsaX, Csx3, Csxl, Csxl5, Csfl, Csf2, Csf3, Csf4, homologues thereof, orthologues thereof, or modified versions thereof. Suitable nucleic acid-guided nucleases can be from an organism from a genus which includes but is not limited to Thiomicrospira, Succinivibrio, Candidatus, Porphyromonas, Acidomonococcus, Prevotella, Smithella, Moraxella, Synergistes, Francisella, Leptospira, Catenibacterium, Kandleria, Clostridium, Dorea, Coprococcus, Enterococcus, Fructobacillus, Weissella, Pediococcus, Corynebacter, Sutterella, Legionella, Treponema, Roseburia, Filifactor, Eubacterium, Streptococcus, Lactobacillus, Mycoplasma, Bacteroides, Flaviivola, Flavobacterium, Sphaerochaeta, Azospirillum, Gluconacetobacter, Neisseria, Roseburia, Parvibaculum, Staphylococcus, Nitratifractor, Mycoplasma, Alicyclobacillus, Brevibacilus, Bacillus, Bacteroidetes, Brevibacilus, Carnobacterium, Clostridiaridium, Clostridium, Desulfonatronum, Desulfovibrio, Helcococcus, Leptotrichia, Listeria, Methanomethyophilus, Methylobacterium, Opitutaceae, Paludibacter, Rhodobacter, Sphaerochaeta, Tuberibacillus, and Campylobacter. Species of organism of such a genus can be as otherwise herein discussed. Suitable nucleic acid-guided nucleases can be from an organism from a genus or unclassified genus within a kingdom, which includes but is not limited to Firmicute, Actinobacteria, Bacteroidetes, Proteobacteria, Spirochates, and Tenericutes. Suitable nucleic acid-guided nucleases can be from an organism from a genus or unclassified genus within a phylum which includes but is not limited to Erysipelotrichia, Clostridia, Bacilli, Actinobacteria, Bacteroidetes, Flavobacteria, Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Deltaproteobacteria, Epsilonproteobacteria, Spirochaetes, and Mollicutes. Suitable nucleic acid- guided nucleases can be from an organism from a genus or unclassified genus within an order which includes but is not limited to Clostridiales, Lactobacillales, Actinomycetales, Bacteroidales, Flavobacteriales, Rhizobiales, Rhodospirillales, Burkholderiales, Neisseriales, Legionellales, Nautiliales, Campylobacterales, Spirochaetales, Mycoplasmatales, and Thiotrichales. Suitable nucleic acid-guided nucleases can be from an organism from a genus or unclassified genus within a family which includes but is not limited to Lachnospiraceae, Enterococcaceae, Leuconostocaceae, Lactobacillaceae, Streptococcaceae,

Peptostreptococcaceae, Staphylococcaceae, Eubacteriaceae, Corynebacterineae, Bacteroidaceae, Flavobacterium, Cryomoorphaceae, Rhodobiaceae, Rhodospirillaceae, Acetobacteraceae, Sutterellaceae, Neisseriaceae, Legionellaceae, Nautiliaceae, Campylobacteraceae, Spirochaetaceae, Mycoplasmataceae, Pisciririckettsiaceae, and Francisellaceae.

[00255] Other nucleic acid-guided nucleases suitable for use in the methods, systems, and compositions of the present disclosure include those derived from an organism such as, but not limited to, Thiomicrospira sp. XS5, Eubacterium rectale, Succinivibrio dextrinosolvens, Candidatus Methanoplasma termitum, Candidatus Methanomethylophilus alvus, Porphyromonas crevioricanis, Flavobacterium branchiophilum, Acidomonococcus sp., Lachnospiraceae bacterium COEl, Prevotella brevis ATCC 19188, Smithella sp. SCADC, Moraxella bovoculi, Synergistes jonesii, Bacteroidetes oral taxon 274, Francisella tularensis, Leptospira inadai serovar Lyme str. 10, Acidomonococcus sp. crystal structure (5B43) S. mutans, S. agalactiae, S. equisimilis, S. sanguinis, S. pneumonia; C. jejuni, C. coli; N. salsuginis, N. tergarcus; S. auricularis, S. carnosus; N. meningitides, N. gonorrhoeae; L. monocytogenes, L. ivanovii; C. botulinum, C. difficile, C. tetani, C. sordellii; Francisella tularensis 1, Prevotella albensis, Lachnospiraceae bacterium MC2017 1, Butyrivibrio proteoclasticus, Peregrinibacteria bacterium GW2011_GWA2_33_10, Parcubacteria bacterium GW2011_GWC2_44_17, Smithella sp. SCADC, Acidaminococcus sp. BV3L6, Lachnospiraceae bacterium MA2020, Candidatus Methanoplasma termitum, Eubacterium eligens, Moraxella bovoculi 237, Leptospira inadai, Lachnospiraceae bacterium D2006, Porphyromonas crevioricanis 3, Prevotella disiens, Porphyromonas macacae, Catenibacterium sp. CAG:290, Kandleria vitulina, Clostridiales bacterium KA00274, Lachnospiraceae bacterium 3-2, Dorea longicatena, Coprococcus catus GD/7, Enterococcus columbae DSM 7374, Fructobacillus sp. EFB-N1, Weissella halotolerans, Pediococcus acidilactici, Lactobacillus curvatus, Streptococcus pyogenes, Lactobacillus versmoldensis, and Filifactor alocis ATCC 35896.

[00256] Suitable nucleases for use in any of the methods disclosed herein include, but are not limited to, nucleases having the sequences listed in Table 1, or homologues having at least 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%), or 99% sequence identity to any of the nucleases listed in Table 1.

Table 1.

[00257] In some methods disclosed herein, Argonaute (Ago) systems can be used to cleave target nucleic acid sequences. Ago protein can be derived from a prokaryote, eukaryote, or archaea. The target nucleic acid may be RNA or DNA. A DNA target may be single stranded or double stranded. In some examples, the target nucleic acid does not require a specific target flanking sequence, such as a sequence equivalent to a protospacer adjacent motif or protospacer flanking sequence. The Ago protein may create a double strand break or single strand break. In some examples, when a Ago protein forms a single strand break, two Ago proteins may be used in combination to generate a double strand break. In some examples, an Ago protein comprises one, two, or more nuclease domains. In some examples, an Ago protein comprises one, two, or more catalytic domains. One or more nuclease or catalytic domains may be mutated in the Ago protein, thereby generating a nickase protein capable of generating single strand breaks. In other examples, mutations in one or more nuclease or catalytic domains of an Ago protein generates a catalytically dead Ago protein that can bind but not cleave a target nucleic acid.

[00258] Ago proteins can be targeted to target nucleic acid sequences by a guiding nucleic acid. In many examples, the guiding nucleic acid is a guide DNA (gDNA). The gDNA can have a 5' phosphorylated end. The gDNA can be single stranded or double stranded. Single stranded gDNA can be 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50 nucleotides in length. In some examples, the gDNA can be less than 10 nucleotides in length. In some examples, the gDNA can be more than 50 nucleotides in length.

[00259] Argonaute-mediated cleavage can generate blunt end, 5' overhangs, or 3' overhangs. In some examples, one or more nucleotides are removed from the target site during or following cleavage.

[00260] Argonaute protein can be endogenously or recombinantly expressed within a cell. Argonaute can be encoded on a chromosome, extrachromosomally, or on a plasmid, synthetic chromosome, or artificial chromosome. Additionally or alternatively, an Argonaute protein can be provided or delivered to the cell as a polypeptide or mRNA encoding the polypeptide. In such examples, polypeptide or mRNA can be delivered through standard mechanisms known in the art, such as through the use of cell permeable peptides, nanoparticles, or viral particles.

[00261] Guide DNAs can be provided by genetic or episomal DNA within a cell. In some examples, gDNA are reverse transcribed from RNA or mRNA within a cell. In some examples, gDNAs can be provided or delivered to a cell expressing an Ago protein. Guide DNAs can be provided or delivered concomitantly with an Ago protein or sequentially. Guide DNAs can be chemically synthesized, assembled, or otherwise generated using standard DNA generation techniques known in the art. Guide DNAs can be cleaved, released, or otherwise derived from genomic DNA, episomal DNA molecules, isolated nucleic acid molecules, or any other source of nucleic acid molecules.

[00262] In some instances, compositions are provided comprising a nuclease such as an nucleic acid-guided nuclease (e.g., Cas9, Cpfl, MAD2, or MAD7) or a DNA-guided nuclease (e.g., Ago), linked to a chromatin-remodeling enzyme. Without wishing to be bound by theory, a nuclease fusion protein as described herein may provide improved accessibility to regions of highly-structured DNA. Non-limiting examples of chromatin-remodeling enzymes that can be linked to a nucleic-acid guided nuclease may include: histone acetyl transferases (HATs), histone deacetylases (HDACs), histone methyltransferases (HMTs), chromatin remodeling complexes, and transcription activator-like (Tal) effector proteins. Histone deacetylases may include HDAC1, HDAC2, HDAC3, HDAC4, HDAC5, HDAC6, HDAC7, HDAC8, HDAC9, HDAC10, HDAC11, sirtuin 1, sirtuin 2, sirtuin 3, sirtuin 4, sirtuin 5, sirtuin 6, and sirtuin 7. Histone acetyl transferases may include GCN5, PCAF, Hatl, Elp3, Hpa2, Hpa3, ATF-2, Nutl, Esal, Sas2, Sas3, Tip60, MOF, MOZ, MORF, HBOl, p300, CBP, SRC-1, ACTR, TIF-2, SRC-3, TAFII250, TFIIIC, Rttl09, and CLOCK. Histone methyltransferases may include ASH1L, DOT1L, EHMT1, EHMT2, EZH1, EZH2, MLL, MLL2, MLL3, MLL4, MLL5, NSD1, PRDM2, SET, SETBP1, SETD1A, SETD1B, SETD2, SETD3, SETD4, SETD5, SETD6, SETD7, SETD8, SETD9, SETDB1, SETDB2, SETMAR, SMYD1, SMYD2, SMYD3, SMYD4, SMYD5, SUV39H1, SUV39H2, SUV420H1, and SUV420H2. Chromatin-remodeling complexes may include SWI/SNF, ISWI, NuRD/Mi-2/CHD, F O80 and SWR1.

[00263] In some instances, the nuclease is a wild-type nuclease. In other instances, the nuclease is a chimeric engineered nuclease. Chimeric engineered nucleases as disclosed herein can comprise one or more fragments or domains, and the fragments or domains can be of a nuclease, such as nucleic acid-guided nuclease, orthologs of organisms of genuses, species, or other phylogenetic groups disclosed herein; advantageously the fragments are from nuclease orthologs of different species. A chimeric engineered nuclease can be comprised of fragments or domains from at least two different nucleases. A chimeric engineered nuclease can be comprised of fragments or domains from at least two different species. A chimeric engineered nuclease can be comprised of fragments or domains from at least 2, 3, 4, 5, 6, 7, 8, 9, 10, or more different nucleases or different species. In some cases, more than one fragment or domain from one nuclease or species, wherein the more than one fragment or domain are separated by fragments or domains from a second nuclease or species. In some examples, a chimeric engineered nuclease comprises 2 fragments, each from a different protein or nuclease. In some examples, a chimeric engineered nuclease comprises 3 fragments, each from a different protein or nuclease. In some examples, a chimeric engineered nuclease comprises 4 fragments, each from a different protein or nuclease. In some examples, a chimeric engineered nuclease comprises 5 fragments, each from a different protein or nuclease.

[00264] Nuclease fusion proteins can be recombinantly expressed within a cell. A nuclease fusion protein can be encoded on a chromosome, extrachromosomally, or on a plasmid, synthetic chromosome, or artificial chromosome. A nuclease and a chromatin-remodeling enzyme may be engineered separately, and then covalently linked, prior to delivery to a cell. A nuclease fusion protein can be provided or delivered to the cell as a polypeptide or mRNA encoding the polypeptide. In such examples, polypeptide or mRNA can be delivered through standard mechanisms known in the art, such as through the use of cell permeable peptides, nanoparticles, or viral particles.

Cell-cycle-dependent expression of targeted nucleases.

[00265] In some instances, compositions comprising a cell-cycle-dependent nuclease are provided. A cell-cycle dependent nuclease generally includes a targeted nuclease as described herein linked to an enzyme that leads to degradation of the targeted nuclease during Gl phase of the cell cycle, and expression of the targeted nuclease during G2/M phase of the cell cycle. Such cell-cycle dependent expression may, for example, bias the expression of the nuclease in cells where homology-directed repair (HDR) is most active (e.g., during G2/M phase). In some cases, the nuclease is covalently linked to cell-cycle regulated protein such as one that is actively degraded during Gl phase of the cell cycle and is actively expressed during G2/M phase of the cell cycle. In a non-limiting example, the cell-cycle regulated protein is Geminin. Other non- limiting examples of cell-cycle regulated proteins may include: Cyclin A, Cyclin B, Hsll, Cdc6, Finl, p21 and Skp2.

[00266] In some instances, the nuclease is a wild-type nuclease.

[00267] In other instances, the nuclease is a engineered nuclease. Engineered nucleases can be non-naturally occurring.

[00268] Non-naturally occurring targetable nucleases and non-naturally occurring targetable nuclease systems can address many of these challenges and limitations.

[00269] Disclosed herein are non-naturally targetable nuclease systems. Such targetable nuclease systems are engineered to address one or more of the challenges described above and can be referred to as engineered nuclease systems. Engineered nuclease systems can comprise one or more of an engineered nuclease, such as an engineered nucleic acid-guided nuclease, an engineered guide nucleic acid, an engineered polynucleotides encoding said nuclease, or an engineered polynucleotides encoding said guide nucleic acid. Engineered nucleases, engineered guide nucleic acids, and engineered polynucleotides encoding the engineered nuclease or engineered guide nucleic acid are not naturally occurring and are not found in nature. It follows that engineered nuclease systems including one or more of these elements are non-naturally occurring.

[00270] Non-limiting examples of types of engineering that can be done to obtain a non- naturally occurring nuclease system are as follows. Engineering can include codon optimization to facilitate expression or improve expression in a host cell, such as a heterologous host cell. Engineering can reduce the size or molecular weight of the nuclease in order to facilitate expression or delivery. Engineering can alter PAM selection in order to change PAM specificity or to broaden the range of recognized PAMs. Engineering can alter, increase, or decrease stability, processivity, specificity, or efficiency of a targetable nuclease system. Engineering can alter, increase, or decrease protein stability. Engineering can alter, increase, or decrease processivity of nucleic acid scanning. Engineering can alter, increase, or decrease target sequence specificity. Engineering can alter, increase, or decrease nuclease activity. Engineering can alter, increase, or decrease editing efficiency. Engineering can alter, increase, or decrease transformation efficiency. Engineering can alter, increase, or decrease nuclease or guide nucleic acid expression.

[00271] Examples of non-naturally occurring nucleic acid sequences which are disclosed herein include sequences codon optimized for expression in bacteria, such as E. coli (e.g., SEQ ID NO: 41-60), sequences codon optimized for expression in single cell eukaryotes, such as yeast (e.g., SEQ ID NO: 127-146), sequences codon optimized for expression in multi cell eukaryotes, such as human cells (e.g., SEQ ID NO: 147-166), polynucleotides used for cloning or expression of any sequences disclosed herein (e.g., SEQ ID NO: 61-80), plasmids comprising nucleic acid sequences (e.g., SEQ ID NO: 21-40) operably linked to a heterologous promoter or nuclear localization signal or other heterologous element, proteins generated from engineered or codon optimized nucleic acid sequences (e.g., SEQ ID NO: 1-20), or engineered guide nucleic acids comprising any one of SEQ ID NO: 84-107. Such non-naturally occurring nucleic acid sequences can be amplified, cloned, assembled, synthesized, generated from synthesized oligonucleotides or dNTPs, or otherwise obtained using methods known by those skilled in the art.

[00272] Additional examples of non-naturally occurring nucleic acid sequences which are disclosed herein include sequences codon optimized for expression in bacteria, such as E. coli (e.g., SEQ ID NO: 168), sequences codon optimized for expression in single cell eukaryotes, such as yeast (e.g., SEQ ID NO: 169), sequences codon optimized for expression in multi cell eukaryotes, such as human cells (e.g., SEQ ID NO: 170), polynucleotides used for cloning or expression of any sequences disclosed herein (e.g., SEQ ID NO: 171), plasmids comprising nucleic acid sequences (e.g., SEQ ID NO: 167) operably linked to a heterologous promoter or nuclear localization signal or other heterologous element, proteins generated from engineered or codon optimized nucleic acid sequences (e.g., SEQ ID NO: 108-110), or engineered guide nucleic acids compatible with any targetable nuclease disclosed herein. Such non-naturally occurring nucleic acid sequences can be amplified, cloned, assembled, synthesized, generated from synthesized oligonucleotides or dNTPs, or otherwise obtained using methods known by those skilled in the art..

[00273] A guide nucleic acid can be DNA. A guide nucleic acid can be RNA. A guide nucleic acid can comprise both DNA and RNA. A guide nucleic acid can comprise modified of non- naturally occurring nucleotides. In cases where the guide nucleic acid comprises RNA, the RNA guide nucleic acid can be encoded by a DNA sequence on a polynucleotide molecule such as a plasmid, linear construct, or editing cassette as disclosed herein.

[00274] Nucleic acid-guided nucleases can be compatible with guide nucleic acids that are not found within the nucleases endogenous host. Such orthogonal guide nucleic acids can be determined by empirical testing. Orthogonal guide nucleic acids can come from different bacterial species or be synthetic or otherwise engineered to be non-naturally occurring.

[00275] Orthogonal guide nucleic acids that are compatible with a common nucleic acid- guided nuclease can comprise one or more common features. Common features can include sequence outside a pseudoknot region. Common features can include a pseudoknot region (e.g., 172-181). Common features can include a primary sequence or secondary structure.

[00276] A guide nucleic acid can be engineered to target a desired target sequence by altering the guide sequence such that the guide sequence is complementary to the target sequence, thereby allowing hybridization between the guide sequence and the target sequence. A guide nucleic acid with an engineered guide sequence can be referred to as an engineered guide nucleic acid. Engineered guide nucleic acids are often non-naturally occurring and are not found in nature.

[00277] In other instances, the nuclease is a chimeric nuclease. Chimeric nucleases can be engineered nucleases. Chimeric nucleases as disclosed herein can comprise one or more fragments or domains, and the fragments or domains can be of a nuclease, such as nucleic acid- guided nuclease, orthologs of organisms of genuses, species, or other phylogenetic groups; advantageously the fragments are from nuclease orthologs of different species. A chimeric nuclease can be comprised of fragments or domains from at least two different nucleases. A chimeric nuclease can be comprised of fragments or domains from at least two different species. A chimeric nuclease can be comprised of fragments or domains from at least 2, 3, 4, 5, 6, 7, 8, 9, 10, or more different nucleases or different species. In some cases, more than one fragment or domain from one nuclease or species, wherein the more than one fragment or domain are separated by fragments or domains from a second nuclease or species. In some examples, a chimeric nuclease comprises 2 fragments, each from a different protein or nuclease. In some examples, a chimeric nuclease comprises 3 fragments, each from a different protein or nuclease. In some examples, a chimeric nuclease comprises 4 fragments, each from a different protein or nuclease. In some examples, a chimeric nuclease comprises 5 fragments, each from a different protein or nuclease.

EXAMPLES

Example 1 - CREATE-plasmids and libraries

[00278] Figures 1A-C depict an example of an overview of CRISPR EnAbled Trackable genome Engineering (CREATE) design and workflow. Figure 1A shows an example of the CREATE methodology which allows programmatic genome modifications to be focused on key amino acid residues or promoter targets across the genome. Such libraries thus enable systematic assessment of sequence/activity relationships for a wide variety of genomic targets in parallel. Figure IB depicts an example of CREATE cassettes designed to encode both homology arm (HA) and guide RNA (gRNA) sequences to target a specific locus in the E. coli genome. The 100 bp homology arm was designed to introduce a specific codon mutation (target codon) that can be selectively enriched by a synonymous PAM mutation to rescue the sequence from Cas9 cleavage and allow highly efficient mutagenesis. The PI and P2 sites (black) serve as general priming sites allowing multiplexed amplification, cloning and sequencing of many libraries in parallel. The promoter (J23119, green) is a constitutive promoter that drives expression of the gRNA. Detailed example the HA design for introducing a stop codon at residue 145 in the galK locus is also depicted at the bottom of Figure IB. The top sequence shows the wildtype genome sequence with the PAM (CCG; the reverse complement of which is CGG, which is recognized by S. pyogenes Cas9) and target codon (TAT, encoding Y) highlighted. The HA design introduces a "silent scar" at the PAM site (CgG, the reverse complement of which is CCG, which is not recognized by S. pyogenes Cas9) and a single nucleotide TAT>TAA mutation at codon 145 (resulting in a STOP). This design strategy was implemented programmatically for coding regions across the genome. Figure 1C depicts an overview of an example CREATE workflow. CREATE cassettes are synthesized on a microarray delivered as large oligo pools (10 4 to 10 6 individual library members). Parallel cloning and recombineering allowed processing of these pools into genomic libraries, in some cases in 23 days. Deep sequencing of the CREATE plasmids can be used to track the fitness of thousands of precision mutations genome wide following selection or screening of the mutant libraries. Example 2 - CREATE plasmid validation

[00279] Figure 2A-D depicts an example of the effect of Cas9 activity on transformation and editing efficiencies. The galK 120/17 CREATE cassette (120 bp HA and 17 bp PAM/codon spacing) targeting codon 145 in galK gene or a control non-targeting gRNA vector was transformed in cells carrying pSFM5 along with dCas9 (e.g. left set of bars in Figure 2A) or Cas9 (e.g. right set of bars in Figure 2A) plasmids. The pSFM5 plasmid carries lambda red recombination machinery. The cas9 gene was cloned into the pBTBX-2 backbone under the control of a pBAD promoter to allow control of the cleavage activity by addition of arabinose. Transformation efficiencies of each vector are shown with dark grey bars. The total number of recombinant cells (light grey bars) were calculated based on red/white colony screening on MacConkey agar. In cases where white colonies were undetectable by plate based screening we assumed 10 4 editing efficiencies. A 10 2 fold reduction in transformation efficiency compared to the non-targeting gRNA control was also observed for CREATE cassettes transformed into the Cas9 background.

[00280] Figure 2B depicts an example of the characterization of CREATE cassette HA length and PAM/codon spacing on editing efficiency. All cassettes were designed to introduce a TAA stop at codon 145 in the gene using PAMs at the indicated distance (PAM/codon bottom) from the target codon and variable homology arms lengths (HA, bottom). Dark grey and light grey bars correspond to uninduced or induced expression of Cas9 under the pBAD promoter using 0.2% arabinose. In the majority of cases the editing efficiency appears to be unaffected by induction suggesting that low amounts of Cas9 due to leaky expression are sufficient for high efficiency editing.

[00281] Figure 2C shows example data from sequencing of the genomic loci from CREATE recombineering reactions. The galK cassettes from Figure 2B are labeled according to the HA length and PAM codon spacing. The other loci shown were cassettes isolated from multiplexed library cloning reactions. The bar plot (Figure 2C) indicates the number of times each genotype was observed by genomic colony sequencing following recombineering with each CREATE cassette. The + and labels at the bottom indicate the presence or absence of the designed mutation at the two relevant sites in each clone. The circular inset indicates the relative position of each gene on the E. coli genome.

[00282] Figure 2D depicts an example of library coverage from multiplexed cloning of CREATE plasmids. Deep sequencing counts each variant are shown with respect to their position on the genome. The inset shows a histogram of these plasmid counts for the entire library. The distribution follows expected Poisson distribution for low average counts. Example 3 - CREATE-recording used to engineer trackable episomal DNA libraries

[00283] Figure 3A depicts an example of an overview of the method used to generate a trackable episomal DNA library. Transformation of a CREATE recorder plasmid generates modifications of the target DNA at two sites. One edit occurs to the desired target gene (gray) introducing a codon or promoter mutation designed to test specific engineering objectives. The second edit targets a functionally neutral site and introduces a 15 nucleotide barcode (BC, black). By virtue of coupling these libraries on a single CREATE plasmid the target DNA is edited at both sites and each unique barcode can be used to track edits throughout the rest of the plasmid.

[00284] Figure 2B depicts an example of the CREATE barcode design. A degenerate library is constructed from overlapping oligos and cloned in a separate site of the CREATE vector to make a library of CREATE recorder cassettes that can be coupled to the designer editing libraries.

[00285] Figure 2C depicts an exemplary CREATE record mapping strategy. Deep sequencing of both the target DNA (left) and CREATE plasmids allows a simple sequence mapping strategy by allowing each editing cassette to be uniquely assigned by the barcode sequence. This allows the relative fitness of each barcode (and thus edit) to be tracked during selection or screening processes and can be shuttled between different organisms using standard vectors.

Example 4 - CREATE-mediated editing of episomal DNA

[00286] Methods and compositions disclosed herein were used to mutate a key residue of the cas9 gene used for the CREATE process (e.g. Figure 4A-4B). A cassette was designed to make an R1335K mutation in the Cas9 protein. This cassette was cloned into a CREATE plasmid and transformed into MG1655 E. coli carrying the pSEVI5 and X2-Cas9 vectors. The pSEVI5 vector comprises lambda red recombination machinery. The X2-Cas9 vector comprises an arabinose- inducible Cas9 expression cassette. Following three hours recovery in LB supplemented with 0.4% arabinose to induce Cas9 expression, the cells were plated on agar containing antibiotics that maintain selective pressure for replication of both the X2-Cas9 and CREATE plasmids. Colony PCR of random clones revealed the designed edits from the CREATE plasmid were efficiently transferred into the X2-Cas9 plasmid (e.g. Figure 4B). Of the clones that were sequenced, 100% contained the silent PAM mutation in X2Cas9 and 6/14 (43%) also containing desired coding edit. This is the first demonstration that plasmid based editing using CREATE is robust despite higher copy numbers associated with the plasmid target as compared to previous genome engineering efforts.

Example 5 - CREATE-mediated editing and tracking of E. coli genome - double cassette

[00287] To test the performance of the recording strategy in a genomic context we tested the ability to edit two distal genomic loci in the E. coli genome (e.g. Figure 5 A). To do so we cloned CREATE recording cassette libraries designed to embed the 15 nucleotide barcodes into the galK locus. After cloning, we isolated a few unique barcodes and cloned a second editing cassette designed to incorporate an F153R mutation in the dihydrofolate reductase (DHFR)//e>M gene that was identified by our previous CREATE studies as conferring tolerance to the antibiotic trimethoprim. Genotyping of E. coli strains following transformation of the dual CREATE recording vector according to previously described protocols yielded the data in Figure 5 A. The efficiency of barcoding (100%) was higher than the target genome edit (80-90%), ensuring that edited genomes can be tracked. Of the transformed population we observed > 80% of colonies contained the barcode edit in the galK locus as determined by red white colony screening (e.g. Figure 5B). From the barcoded colonies we found that 85% of the colonies also encoded the DFIFR F153R mutation indicating that we have a strong tracking between the barcode and codon edits. Figure 5B depicts the total number of colonies (CFUs) in duplicate experiments that are edited and/or barcoded. The edited CFUs numbers were calculated by extrapolation of the data in Figure 5A to the total number of CFUs on the plate. The barcoded CFUs numbers were calculated by counting the number of white colonies in a galK screening (site in which barcode is integrated). These data show that the majority of barcoded colonies contained the designed genomic edit.

Example 6- Plasmid curing for combinatorial engineering

[00288] Figure 6 depicts an example of combinatorial genome engineering and tracking. Three recursive CREATE plasmids are used, each with a gRNA targeting one of the other markers in this series (indicated by T-lines). During each transformation, an edit and barcode are incorporated into the genome and the previous CREATE plasmid is cured. In this way rapid iterative transformations can be performed to construct either a defined combination of mutations or a combinatorial library to search for improved phenotypes. The recording site is compatible with short read sequencing technologies that allow the fitness of combinations to be tracked across a population. Such an approach allows rapid investigation of genetic epistasis and optimization of phenotypes relevant to basic research or for commercial biological applications.

[00289] Figure 3D and Figure 3E depict another example of combinatorial genome engineering. With each round of engineering, an editing cassette (blue rectangle in Figure 3D) is incorporated into the target sequence in the genome (blue star) and a recorder cassette (green rectangle in Figure 3D) is incorporated into a different target sequence of the genome (green dash in middle panel of Figure 3D). In this example, each recorder sequence comprises a 15 nucleotide barcode. As shown in the right panel of Figure 3D, the recorder sequences are each inserted adjacent to the last recorder sequence, despite where the editing cassette was inserted. Each recorder cassette can simultaneously delete a PAM site. After completion of each round of engineering, the engineered cells can be selected and then the inserted mutations can be tracked by sequencing the recorder region that comprises all of the inserted recorder cassettes. By sequencing the starting plasmid library, each editing cassette can be linked or associated with one or more unique barcodes within the recorder cassette. Since each recorder cassette corresponds to the associate editing cassette, then the mutations incorporated by the editing cassettes can be tracked or identified by the sequence of the recorder cassette, or the sequence of the barcodes within the recorder cassette. As is demonstrated in Figure 3E, by sequencing all of the recorder cassettes or barcodes within the recorder cassettes, each of the inserted mutations can be identified and tracked. The inserted recorder sequences can be referred to as a recorder site, recorder array, or barcode array. As a result, after recursive rounds of engineering, sequencing the barcode array or recorder site allows tracking of the history of genomic editing events in the strain. When the recorder cassettes are inserted in order as depicted, for example, in Figure 3D, then the barcode array or recorder site can identify the order in which the mutations were inserted as well as what the mutation is.

Example 7 - Recursive Engineering using iterative CREATE-recording engineering events

[00290] The example of recursive engineering depicted in Figure 7A was used for plasmid curing to demonstrate that the design is extremely efficient at eliminating previous vectors (Figure 7B). Each CREATE plasmid can be positively selected for based on the indicated antibiotics (Trimeth: trimethoprim, Carb: carbenicillin, Tet: tetracycline) and contains a gRNA targeting one of the other antibiotic markers. For example, the reCREATEl plasmid can be selected for on carbenicillin and encodes a gRNA that will selectively target the trimethoprim resistance gene for destruction. One pass through the carb/tetracycline/trimethoprim antibiotic marker series allows selective incorporation of up to three targeted edits. The recording function would be implemented as illustrated in Figure 5, but is omitted here for simplicity.

[00291] Figure 7B depicts an example of data from iterative rounds of CREATE engineering. A serial transformation series began with cells transformed with X2cas9 (kan) and the reCREATEl vector. The spot plating results indicate that curing is 99.99% effective at each transformation step, ensuring highly efficient engineering in each round of transformation. Simultaneous genome editing and plasmid curing in each transformation step with high efficiencies was achieved by introducing the requisite recording and editing CREATE cassettes into recursive vectors as disclosed herein (e.g. Figure 7B).

Example 8- CREATE design and workflow

[00292] An example overview of CRISPR EnAbled Trackable genome Engineering (CREATE) design workflow is depicted in Figures 8A-8B. Figure 8A shows example anatomy of a CREATE cassette designed for protein engineering. Cassettes encode a spacer (red) along with part of a guide RNA (gRNA) sequence and a designer homology arm (HA) that can template homologous recombination at the genomic cut site. For protein engineering purposes the HA is designed to systematically couple mutations to a specified codon or target site (TS, blue) to a nearby synonymous PAM mutation (SPM, red) to rescue the sequence from Cas9 cleavage and allow highly efficient mutagenesis. The priming sites (PI and P2, black) are designed to allow multiplexed amplification and cloning of specific subpools from massively parallel array based synthesis. A constitutive promoter (green) drives expression of the gRNA.

Figure 8 A further shows a detailed example of HA design for introducing a stop codon at residue

145 in the galK locus. The top sequence shows is of the wt genome with the PAM and TS codon highlighted. The translation sequences are shown to illustrate that the resulting mutant contains a single nonsynonymous mutation at the target site. Figure 8B shows an example overview of the

CREATE workflow. CREATE oligos are synthesized on a microarray and delivered as large pools (10 4 -10 6 individual library members). These cassettes are amplified and cloned in multiplex with the ability to subpool designs. After introduction of the CREATE plasmids into cells expressing Cas9 mutations are transferred to the genome with high efficiencies.

Measurement of the frequency of each plasmid before (fi, tl) and after selection (fi, t2) by deep sequencing provides enrichment scores (Ei) for each CREATE cassette. These scores allow rapid identification of adaptive variants at up to single nucleotide or amino acid resolution for thousands loci in parallel.

Example 9- CREATE design validation

[00293] Figure 9A depicts an example of the effects of Cas9 activity on transformation and editing efficiencies were measured using no a cassette with a spacer and 120 bp HA targeted to the galK (galK Y " 145* _120 y Ί7) The total transformants (TT white) produced by this CREATE vector are shown in white and the total number of recombinants (TR) in dark blue. TR is calculated as the product of the editing efficiency and Tt. Asterisks indicate experiments in which recombinants could not be observed by plate based screening. Figure 9B shows an example of characterization of CREATE cassette HA length and PAM/codon spacing on editing efficiency. All cassettes were designed to introduce a TAA stop at codon 145 in the gene using PAMs at the indicated distance (PAM/codon bottom) from the target codon and variable homology arms lengths (HA, bottom). White and blue bars correspond to uninduced or induced expression of Cas9 under the pBAD promoter using 0.2% arabinose. In the majority of cases the editing efficiency appears to be unaffected by induction suggesting that low amounts of Cas9 due to leaky expression are sufficient for high efficiency editing. Figure 9C depicts an example of determination of editing efficiency for oligo derived cassettes by sequencing of the genomic loci. The gor/ _Y145*_120/17 cassette from Figures 9A and 9B is shown in white for reference. The bar plot indicates the number of times each genotype was observed by genomic colony sequencing following recombineering with each CREATE cassette. The circular inset indicates the relative position of each gene on the E. coli genome. Figure 9D depicts distance between

SPM and the TS (as exemplified in Figure 8A) is strongly correlated with editing efficiency

(correct edits/total sequences sampled). The galK cassettes with 44 and 59 bp in Figure 9B were omitted from this analysis. The depicted error bars are derived from N=3 independent replicates of the indicated experiment.

Example 10- Scanning saturation mutagenesis of an essential chromosomal gene

[00294] Figure 1 OA- IOC depict an example where CREATE was used to generate a full scanning saturation mutagenesis library of the folA gene for identification of mutations that can confer resistance to TMP. The count weighted average enrichment score from two trials of selection is plotted as a function of residue position (right). Cassettes encoding nonsynonymous mutations are shown in gray, and those encoding synonymous mutations in black. Cassettes with enrichment scores greater than 1.8 are highlighted in red and mutations that affect previously reported sites are labeled for reference. The dashed lines indicate enrichment values that are significantly different (p<0.05) from the synonymous dataset as determined by bootstrapping of the confidence intervals. These values are shown as a histogram for reference (middle). Mutations that appear to significantly impact DHFR resistance are highlighted as red spheres to the far right. Figures 10D-10F depict example growth analysis of wt (left) F153W (middle) and F153R (right) variants in the indicated range of TMP concentrations (shown right).

Example 11- Reconstruction of ALE mutation set and forward engineering of

thermotolerant genotypes

[00295] Figure 11A depicts example genomic plots of enrichment scores for CREATE libraries grown at 42.2°C in minimal media conditions. The innermost plot illustrates the counts of the plasmid library before selection with labels for the top 20 representatives. The outer ring shows the fitness of pooled library variants after growth in minimal media at elevated temperature (42.2°C). The bars are colored according to log2 enrichment. Blue bars represent detrimental mutations, red bars represent significantly enriched mutations and gray bars indicate mutations that appear neutral in this assay. The 20 most enriched variants are labeled for reference and labels corresponding to ALE-derived variants are colored red. Figure 1 IB shows a histogram of enrichment scores of all library variants (gray), ALE-derived mutants (red) and synonymous mutants (black) under 42.2°C growth conditions. The dotted gray line indicates significant enrichment scores compared to the synonymous population. The histograms are normalized as a fraction of the total number of variants passing the counting threshold (number indicated in parentheses). Note that 231 of 251 unique nonsynonmous ALE cassettes sampled by this experiment appear to provide significant growth benefits. Figure 11C depicts enrichment of mutations based on mutational distance from wt. Mutations that require 2 and 3 nucleotide (nt) transitions are exceedingly rare or absent in ALE approaches however we note that the two most enriched clones from the pooled library selection (targeting the Crp regulator) require two nucleotide substitutions and are highlighted at the far right.

Example 12- Genome scale mapping of amino acid substitutions for the study of antibiotic resistance and tolerance

[00296] Figure 12A depicts example genomic plots of enrichment (log2) of library variants in the presence of erythromycin (outer) and rifampicin (middle). The innermost plot illustrates the count distribution of the input plasmids for reference. Coloring and labeling are as in Figure 11A-11C. Figure 12B depicts CREATE mutation mapping at the individual amino acid level. CREATE cassettes that introduce bulky side chains to amino acids 1572, S531 and L533 (red) of the RNA polymerase β subunit (rpoB) are highly enriched in the presence of rifampicin from genome wide targeting libraries. Figure 11C depicts a zoomed in region of the MarA transcription factor bound to its cognate DNA target is shown for reference (PDB ID 1BL0). The wt Q89 residue protrudes away from the DNA binding interface due to unfavorable steric and electrostatic interactions between this side chain and the DNA. The Q89N substitution identified by selection introduces a H-donor and shortens the side chain such that productive H-bonding can occur between this residue and the DNA backbone. Such an interaction likely favors stronger DNA binding and induction of downstream resistance genes. Figure 12D depicts enrichment plot of genome wide targeting libraries with 10 g/L acetate or 2 g/L furfural respectively. Coloring is the same as in Figure 11 A. Figure 12E depicts CREATE mapping at a gene level reveals trends at the gene level. Strong enrichment fis metA and fadR targeting mutations in acetate suggests important roles for these genes in acetate tolerance, as depicted in Figure 12F, same as in the furfural selections depicted in Figure 12E.

Example 13- CREATE-enabled flexible design strategies

[00297] Illustration of example designs compatible with CREATE strategy are depicted in Figures 13A-13D. Figure 13 A shows protein engineering applications a silent codon approach is taken (top, see also Figure 8A-8B). This mutation strategy allows targeted mutagenesis of key protein regions to alter features such as DNA binding, protein-protein interactions, catalysis, or allosteric regulation. Above an illustration of a DNA binding saturation mutagenesis library designed for the global transcription factor Fis designed for this study is illustrated. Figure 13B shows promoter mutations PAM sites in proximity to a specified transcription start site (TSS) can be disrupted through nucleotide replacement or integration cassettes. To simplify this design procedure used in this study consensus CAP or UP elements were designed for integration at a fixed location relative to the TSS without taking into account possible effects of these mutations may have on proximal genes. Figure 13C shows an example cassette design for mutagenizing a ribosome binding site (RBS). Figure 13D depicts an example of a simple deletion design. Points a and b are included to illustrate distance between two sites at the gene deletion locus. In all cases cassette designs disrupt a targeted PAM to allow selective enrichment of the designed mutant.

Example 14- Engineering the lycopene pathway

[00298] Figures 14A-14B depict edits made the DMAPP pathway in E. coli which is the precursor to lycopene. Edits were made to the ORF's for 11 genes. Eight edits were designed to improve activity and 3 edits were designed to reduce activity of competitive enzymes. Approximately 10,000 variants within the lycopene pathway were constructed and screened.

Example 15- Cas9 editing efficiency controls

[00299] Figure 15 depicts Cas9 editing control experiments. The CREATE galK_120/17 off cassette (relevant edits shown in red at bottom) was transformed into different backgrounds to assess the efficiency of homologous recombination between the CREATE plasmid and the target genome. Red colonies represent unedited (wt) genomic variants and white colonies represent edited variants. Transformation into cells containing only pSEVI5 or pSEVI5/X2 and dCas9 plasmids exhibited no detectable recombination as indicated by the lack of white colonies. In the presence of active Cas9 (X2-Cas9 far right) we observe high efficiency editing (>80%), indicating the requirements for dsDNA cleavage to achieve high efficiency editing and library coverage.

Example 16- Toxicity of gRNA dsDNA cleavage in E. coli

[00300] Figures 16A-16C depict experiments testing the toxicity of generating double strand breaks in E. coli. The toxicity of a single gRNA cut in E. coli as observed in control experiments with a gRNA targeting galK (spacer sequence TTAACTTTGCGTAACAACGC) or folA ( spacer sequence GTAATTTTGTATAGAATTTA). In the absence of a repair template we observe strong killing from the gRNA. Rescue efficiencies of 10 3 -10 4 are observed upon co- transformation of a single stranded donor oligo indicating the need for a homologous repair template to alleviate this toxicity, b) Toxicity of multiple CREATE edits. The targeted sites are illustrated graphically on the left and at the bottom of the bar graph. A non-targeting gRNA control was used to estimate transformation efficiency based on no edits (far left, no target sites). A CREATE cassette targeting either folA (green) or galK (red) or a combination of the two. Note the multiplicative toxicity in E. coli of having additional gRNAs expressed from the same plasmid. In this scenario there is homologous repair for each site suggesting that off-target gRNA cleavage would be highly lethal. These data suggest that off target cleavage by a CREATE cassette would be selectively removed from the population early in the library construction phase.

[00301] Figures 16D-16E depicts data from another such cell survival assay. The editing cassette contained a F153R mutation, which leads to temperature sensitivity of the folA gene. The recorder cassette contained a 15 nucleotide barcode designed to disrupt the galK gene, which allows screening of colonies on MacConkey agar plates. In this example, generating two cuts decreased cell survival compared to generating zero or one cut.

[00302] Figure 16F depicts data from a transformation and survival assay comparing a low copy number plasmid (Ec23) expressing Cas9 and a high copy number plasmid (MG) expressing Cas9. Different vectors with distinct editing cassettes were used to target different gene target sites (folA, lacZ, xylA, and rhaA). The recorder cassettes were designed to target different sequences within the galK gene, either site SI, S2, or S3. The recursive vector used had a different vector backbone compared to the others and is part of a 3-vector system designed for iterative engineering that cures the cell of the previous round vector. The data indicates that lower Cas9 expression (Ec23 vector) increases survival and/or transformation efficiency. The decreased Cas9 expression increased transformation efficiency by orders of magnitude in cells undergoing two genomic cuts (editing cassette and recording cassette).

[00303] Figure 16G shows the correlation between editing efficiency and recording efficiency in cells transformed with the low copy number plasmid (Ec23) expressing Cas9 and the high copy number plasmid (MG) expressing Cas9. Editing and recording efficiencies were similar for high (MG) and lower (Ec23) expression of cas9. Ec23 yielded more colonies and had better survival (as shown in Figure 16E), while maintaining a high efficiency of dual editing (editing cassette and recorder cassette incorporation). .

Example 17- CREATE strategy for gene deletion

[00304] Figure 17A-D depict an example CREATE strategy for gene deletion. Figure 17A depicts an example cassette design for deleting 100 bp from the galK ORF. The HA is designed to recombine with regions of homology with the designated spacing, with each 50 bp side of the CREATE HA designed to recombine at the designated site (blue). The PAM/spacer location (red) is proximal to one of the homology arms and is deleted during recombination, allowing selectable enrichment of the deleted segment. Figure 17B depicts electrophoresis of chromosomal PCR amplicons from clones recombineered with this cassette. Figure 17C depicts design for 700 bp deletion as in a). Figure 17D depicts colony PCR of 700 bp deletion cassettes as in Figure 17B). The asterisks in Figure 17B and 17D indicate colonies that appear to have the designed deletion. Note that some clones appear to have bands pertaining to both wt and deletion sizes indicating that chromosome segregation in some of the colonies is incomplete when plated 3 hrs post recombineering.

Example 18- Editing efficiency controls by cotransformation of gRNA and linear dsDNA cassettes

[00305] Figure 18 depicts effect of PAM distance on editing efficiency using linear dsDNA PCR amplicons and co-transformation with a gRNA. On the left is an illustration of the experiments using PCR amplicons containing a dual (TAATAA) stop codon on one side (asterisk) and a PAM mutation just downstream of the galK gene (gray box) on the other end were co-transformed with a gRNA targeting the downstream galK PAM site. The primers were designed such that the mutations were 40 nt from the end of the amplicon to ensure enough homology for recombination. Data was obtained from these experiments by red/white colony screening. A linear fit to the data is shown at the bottom. Cassettes in which only the PAM mutation is present were included as assay controls were observed to have very low rates of GalK inactivation. These experiments were performed in a BW25113 strain of E. coli in which the mutS gene was knocked out to allow high efficiency editing with double stranded DNA templates. This approach in MG1655 did not achieve high efficiency editing due to the active mutS allele.

Example 19- Library cloning analysis and statistics

[00306] Figure 19A depicts reads from an example plasmid library following cloning are shown according to the number of total mismatches between the read and the target design sequence. The majority of plasmids are matches to the correct design. However, there are a large number of 4 base pair indel/mismatch mutants that were observed in this cloned population. Figure 19B depicts a plot of the mutation profile for the plasmid pool as a function of cassette position. An increase in the mutation frequency is observed near the center of the homology arm (HA) indicating a small error bias in the sequencing or synthesis of this region. We suspect that this is due to the presence of sequences complementary to the spacer element in the gRNA. Figure 19C depicts a histogram of the distances between the PAM and codon for the CREATE cassettes designed in this study. Large majority (> 95%) were within the design constraints tested in Figure 9A-9D. The small fraction that are beyond 60 bp were made in cases where there was no synonymous PAM mutation within closer proximity. Figure 19D depicts library coverage from multiplexed cloning of CREATE plasmids. Deep sequencing counts each variant are shown with respect to their position on the genome. The inset shows a histogram of the number of variants having the indicated plasmid counts in the cloned libraries. Example 20- Precision of CREATE cassette tracking of recombineered populations

[00307] Figure 20A depicts a correlation plot of CREATE cassette read frequencies in the plasmid population prior to Cas9 exposure (x-axis) and after 3 hours post transformation into a Cas9 background. Figure 20B depicts a correlation plot between replicate recombineering reactions following overnight recovery. The gray lines indicate the line of perfect correlation for reference. R2 and p values were calculated from a linear fit to the data using the Python SciPy statistics package. A counting threshold of 5 for each replicate experiment was applied to the data to filter out noise from each data set.

Example 21- Growth characteristics of folA mutations in M9 minimal media

[00308] Figure 21 depicts growth characteristics of folA mutations in M9 minimal media.

While F153R appears to maintain normal growth characteristics the growth rate of the F153W mutation is significantly slower under these conditions, suggesting that these two amino acid substitutions at the same site have very different effects on organismal fitness presumably due to different changes invoked in the stability/dynamics of this protein.

Example 22- Enrichment profiles for folA CREATE cassettes in minimal media

[00309] Figure 22 depicts enrichment profiles for folA CREATE cassettes in minimal media.

Cassettes that encode synonymous HA are shown in black and non-synonymous cassettes in gray, the dashed lines indicate enrichment scores with p<0.05 significance compared to the synonymous population mean as estimated from a bootstrap analysis. The enrichment score observed for each mutant cassette at each position in the protein sequence is shown to the left and a histogram of these enrichment scores as a fraction of the total variants to the right. The two populations appear to be largely similar. Conserved residues that are highly deleterious are shown in blue for reference.

Example 23- Validation of newly identified acrB mutations for improved solvent and antibiotic tolerance

[00310] Figure 23A depicts on the left a global overview of AcrB efflux pump. Substrates enter the pump through the openings in the periplasmic space and are extruded via the AcrB/AcrA/TolC complex across the outer membrane and into the extracellular space. Library targeted residues are highlighted by blue spheres for reference and the red dot indicates the region where many of the enriched variants clustered. On the right is a blow up of the loop-helix motif abutting the central funnel where enriched mutations in isobutanol were identified (red and teal spheres), presumably affecting solute transport from the periplasmic space. Mutants targeting the T60 position (teal spheres) was also enriched in the presence of erythromycin. Figure 23B depicts confirmation of N70D and D73L mutations for tolerance to isobutanol. The N70D mutation in particular appears to improve the final OD to a significant degree. Reconstructed strains were measured for final OD in capped 1.5 mL eppendorf tubes following 48 hours incubation. Error bars are derived from N=3 trials and p-values derived from a one- tailed T-test. Figure 23C depicts improved growth of the AcrB T60N mutant was observed in inhibitory concentrations of erythromycin (200 μg/mL) and isobutanol (1.2%) in shaking 96 well plate, indicating that this mutation may enhance the efflux activity of this pump towards many compounds. For these experiments CREATE cassette designs were individually synthesized, cloned and sequence verified before recombineering into E. coli MG1655 to reconstruct the mutations and the genomic modifications were sequence verified by colony PCR to confirm the genotype-phenotype association.

Example 24- Benefits of rational mutagenesis for sampling novel adaptive genotypes

[00311] Figures 24A-24D depict the number of variants detected in CREATE experiments involving 500 μg/mL rifampicin (Figure 24A), 500 μg/mL erythromycin (Figure 24B), 10 g/L acetate (Figure 24C), and 2 g/L furfural (Figure 24D). While naturally evolving systems or error- prone PCR are highly biased towards sampling single nucleotide polymorphisms (e.g. 1 nt mutations, red) these histograms illustrate the potential advantages for rational design approaches that can identify rare or inaccessible mutations (2 and 3 nt, green and blue respectively). For example, the highest fitness solutions appear to be biased toward these rare mutations in rifampicin, erythromycin and furfural selections to varying degrees. These results indicate that procedures such as CREATE should allow more rapid and thorough analysis of fitness improving mutations, in much the same way that computational approaches are being used to improve directed evolution for protein engineering.

Example 25- Reconstruction of mutations identified by erythromycin selection

[00312] Figure 25 depicts reconstructed strains grown in 0.5 mL in capped 1.5 mL eppendorf tubes following 48 hours incubation in the presence of 200 μg/mL erythromycin and final OD measurements assessed. Error bars are derived from N=3 trials. A one tailed T-test was performed on each set of measurements to determine p-values indicated for significance of growth benefit.

Example 26- Validation of Crp S28P mutation for furfural or thermal tolerance

[00313] Figure 26A depicts a crystal structure of the Crp regulatory protein with variants identified by furfural selection highlighted in red (PDB ID 3N4M). A number of the CREATE designs targeting residues near the cyclic- AMP binding site (aa. 28-30, 65) of this regulator were highly enriched in minimal media selections for furfural or thermal tolerance suggesting that these mutations may enhance E. coli growth in minimal media under a variety of stress conditions. Figure 26B depicts validation the Crp S28P mutant identified in 2 g/L furfural selections in M9 media. This mutant was reconstructed as described for AcrB T60S in Example 23.

Example 27- Genome-scale sequence to activity relationship mapping at single nucleotide resolution

[00314] Advances in DNA synthesis and sequencing have motivated increasingly complex efforts to rationally program genomic modifications on laboratory timescales. Realization of such efforts requires strategies that span the design-build-test forward-engineering cycle by not only precisely and efficiently generating large numbers of mutant designs but also by mapping the effects of these mutations at similar throughputs. CRISPR EnAbled Trackable genome Engineering (CREATE) couples highly efficient CRISPR editing with massively parallel oligomer synthesis to enable trackable precision editing on a genome wide scale. This can be accomplished using synthetic cassettes that link a targeting guide RNA with rationally programmable homologous repair cassettes that can be systematically designed to edit loci across a genome and track their phenotypic effects. We demonstrated the flexibility and ease of use of CREATE for genome engineering by parallel mapping of sequence-activity relationships for applications ranging from site saturation mutagenesis, rational protein engineering, complete residue substitution libraries and reconstruction of prior adaptive laboratory evolution experiments.

[00315] Validation of CREATE cassette design

[00316] In order to realize our engineering objectives we took into account a number of key design considerations to both maximize the editing efficiency as well as distill a complex design process into an easily executable workflow. For example, each CREATE cassette is designed to include both a targeting guide RNA (gRNA) and a homology arm (HA) that introduces rational mutations at the chromosomal cleavage site (e.g. Figure 8A). The HA encodes both the genomic edit of interest coupled to a synonymous PAM mutation that is designed to abrogate Cas9 cleavage after repair (e.g. Fig 8B). This arrangement not only ensures that the desired edit can be selectively enriched to high levels by Cas9 but also that the sequences required to guide cleavage and HR are covalently coupled during synthesis and thus delivered simultaneously to the same cell during transformation. The high efficiency editing of CRISPR based selection in E. coli should also ensure a strong correlation between the CREATE plasmid and genomic sequences and allow the plasmid sequence to serve as a transacting barcode or proxy for the genomic edit (e.g. Figure 8C). Assuming that changes in the plasmid frequency under different selective pressures are correlated to their associated genomic edit thereby allows the impact of precise genomic modifications at many loci to be monitored in parallel using a simple downstream sequencing approach to map enriched genotypes on a population scale, analogous to previous genomic tracking methodologies.

[00317] To test this concept we first performed control experiments using a CREATE cassette designed to inactivate the galK gene by introducing a single point mutation to convert codon 145 from TAT to a TAA stop codon (e.g. Figure 8B) using a 120 bp HA. The editing efficiency of this cassette using Cas9 and the nuclease deficient dCas9 control was evaluated using a red/white colony screening assay (e.g. Figure 8A-B, Figure 15A-15C). These experiments also indicated that HR between a circular double stranded plasmid and the chromosome is strongly dependent on the Cas9 cleavage as recombination is not observed in the absence of the active enzyme (e.g. Figure 15A-15D). This is in contrast to single stranded recombineering approaches in which oligonucleotides anneal with high efficiency at the lagging strand of the replication fork. Cas9 also adversely impacts the overall transformation efficiency due to toxicity of dsDNA cleavage in E. coli (e.g. Figure 9A-9D). This toxicity is further exacerbated when performing CREATE at two sites simultaneously in the same cell (e.g. Figure 16A-16E); which when combined with the absence of an effective nonhomologous end joining pathway strongly supports the fact that off target editing events should be rare within a recombineered library. Additionally, toxicity limits the size of library construction and coverage, however we note that the observed 10 4 -10 5 DNA (e.g. Figure 9A) is on a scale compatible with current oligo synthesis capabilities (10 4"5 oligos per order). Thus, we anticipated that using the CREATE synthetic oligo design, we would be able to simultaneously generate ~10 5 or more designer mutations at any location in the genome and precisely map such mutations onto a targeted phenotype.

[00318] To further characterize how changes in the CREATE cassette design influence the editing efficiency we varied the HA length (80-120 bp) and the distance between the PAM- codon/ TS (17-59 bp) (e.g. Figure 9B). Induction of Cas9 revealed that all of these cassette variants can support high efficiency HR. High efficiency conversion is also observed in the absence of Cas9 induction indicating that low level expression of Cas9, due to a leaky inducible promoter, is sufficient to drive cleavage and HR (e.g. Figure 9B). To verify that the edits matched our intended design we sequenced the chromosome of randomly chosen clones and found that 71% (27/38) contained a perfect match to the CREATE design, while 26% (10/38) contained only the PAM edit and the remaining 3% (1/38) appeared to be wt escapers. As an additional test of design flexibility performed similar experiments using deletion cassettes that that introduce different sized deletions (e.g. Figure 17A-17D) and observed similar efficiencies (>70%) indicating that the same design automation and tracking capabilities should readily extend to a variety of design objectives (e.g. Figure 13A-13D). [00319] High-throughput design and multiplexed library construction

[00320] To scale the CREATE process for genome-wide applications we developed a custom software to automate cassette design that takes into account the above mentioned criteria to systematically identify a PAM sequence nearest to a target site (TS) of interest and modify it to create a synonymous PAM mutation. This design software is part of a suite of web-based design tools that can be implemented for E. coli and is under further development for other organisms as well as an expanded set of CRISPR-Cas systems. This software platform enables high-throughput rational design of genomic libraries in a format that is compatible with parallelized array based oligo synthesis and simple homology based cloning methods that can be performed in batch for library construction (e.g. Figure 8B).

[00321] Using this design software we generated a total of 52,356 CREATE cassettes for a range of applications where sequence to activity mapping by traditional methods would be time-consuming and prohibitively expensive. Briefly, the library designs included: 1) a complete saturation of the folA gene to map the entire mutational landscape of an essential gene in its chromosomal context 2) saturation mutagenesis of functional residues in 35 global regulators, efflux pumps and metabolic enzymes implicated in a wide range of tolerance and production phenotypes in E. coli 3) a reconstruction of the complete set of nonsynonymous mutations identified by a recent adaptive laboratory evolution (ALE) study of thermotolerance, and 4) promoter engineering libraries designed to incorporate UP elements or CAP binding elements at transcription start sites annotated in RegulonDB (e.g. Figure 13A-13D).

[00322] The pooled oligo libraries were amplified and cloned in parallel and a subset of single variants were isolated to further characterize editing efficiency at different loci (e.g. Figure 9C). Amplification and sequencing of the genomic loci after transformation with the CREATE plasmids revealed editing efficiencies of 70% on average (106 of 144 clones sampled at seven different loci), with a range of 30% for the metA_V20L cassette to 100% for the rpoH_V179H cassette. Interestingly, the differences in editing efficiency for each cassette were highly correlated with the distance between the PAM and target codon (e.g. Figure 9D), a feature that also appears to affect the ability of linear DNA templates to effectively introduce targeted mutations (e.g. Figure 18A-18B). This relationship suggests that subsequent CREATE designs should readily increase editing efficiency by optimizing PAM selection criteria. We also note that differences in editing efficiency may reflect detrimental effects of some mutations on organismal fitness (metA is considered an essential gene in most media conditions), and that there may be an upper bound on the number of mutations that can be observed for a particular protein. Finally, these data were obtained outside of any specific selective or screening steps that enrich for chromosomal mutants of interest, and as such demonstrate the ability of this approach to construct mutational libraries.

[00323] To further characterize the fidelity of the multiplexed synthesis and cloning procedures we performed deep sequencing on the pooled libraries (e.g. Figure 19A-D). From 594,998 total reads of the cloned CREATE cassette libraries, 550,152 (92%) passed quality filtering and produced hits against the design database. Of these we observed a perfect match for 34,291 (65%) of the possible unique variants and note that many cassettes that were missing in this initial pool were observed in later selections, suggesting that at the cloning stage we can readily cover the majority of the intended design space. In depth analysis of these reads revealed that 46% of the reads passing quality filter were exact matches to their intended design, with the remainder containing 1-4 bp indels or mismatches, primarily in the HA region near the designed mutation site (e.g. Figure 19A). The mutational bias in this region suggests that the repetitive spacer elements in the HA and gRNA portions of the cassette may form secondary structures that adversely affect sequencing or synthesis (e.g. Figure 19B). We note that these variant designs are easily identified via the CREATE plasmid-barcoding strategy, and that in some cases it may be desired to have this added diversity in the generated library. We also observed significant (p<0.05) correlation between variant frequencies from the cloned pools and after overnight recovery following recombineering, as well as between replicate recombineering experiments (e.g. Figure 20A-20B). These results suggest that well represented variants should be readily tracked by our methodology with a precision similar to previous CRISPR based saturation mutagenesis procedures performed at a single loci.

[00324] CREATE based protein engineering

[00325] To test the robustness of the CREATE methodology for protein engineering at a single gene level we performed deep-scanning mutagenesis of the essential folA gene. This gene encodes the dihydrofolate reductase (DHFR) enzyme responsible for the production of tetrahydrofolate and the biosynthesis of pyrimidines, purines and nucleic acids. DHFR is also the primary target of the antibiotic trimethoprim (TMP) and other antifolates that are used as antibiotics or chemotherapeutics. The wealth of structural and biochemical data DHFR function and antibiotic resistance make it an ideal model for validation of the approach.

[00326] A CREATE library designed to saturate every codon from 2-158 of the DHFR enzyme was recombineered into E. coli MG1655 and allowed to recover overnight. Following recovery - 10 9 cells (1 mL saturated culture) was transferred into media containing inhibitory TMP concentrations and allowed to grow for 48 hours. The resulting plasmid populations were then sequenced to assess our ability to capture information at the level of single amino acid substitutions that can confer TMP resistance (e.g. Figure 10A-10B). Bootstrapped confidence intervals for mutational effect were derived using the enrichment data of the 158 synonymous mutations included in this experiment (e.g. Figure 10A-10B). Using this criteria, we observed significant (P<0.05) levels of enrichment for 74 substitutions (2.3% of the design space) covering 49 aa positions in the protein. Although this degree of mutational flexibility of an essential enzyme may seem counterintuitive, it supports previous conclusions that this enzyme has not reached its evolutionary optimum and that many mutations that can improve TMP tolerance through enhancement of the endogenous enzymatic activity or alteration of the dynamic folding landscape of this enzyme.

[00327] These results also support the fact that we probe more deeply into the mutation space of improved fitness variants using rational mutagenesis strategies. For example, we observed 7 significantly enriched substitutions at position F153 (e.g. Figure 10A-10B), none of which have been previously identified by error-prone PCR and adaptive laboratory evolution (ALE). To validate these specific mutations, we reconstructed F153R and F153W variants, which had not been previously reported in the literature and spanned a large range of the measured enrichment scale at this position (e.g. Figure 10D-10F). We confirmed that the highly enriched F153R mutant grows rapidly under a large range of TMP concentrations while the F153W mutant demonstrates growth only at the moderate TMP concentration used in the selection, consistent with their respective enrichment scores (e.g. Figure 10A-10F). Moreover, 6 of the 7 mutations we identified using CREATE require two nucleotide changes to convert the wt TTT codon to one of the observed amino acids (I: 1 nt,W: 2 nt ,D: 2 nt,R: 2 nt,P: 2 nt,M: 2 nt,H: 2 nt). The F153R and F153W mutations also appear to impact the native enzyme activity in distinct ways (e.g. Figure 21), implying that these substitutions may confer tolerance by altering the enzymatic cycle of this enzyme in distinct manners.

[00328] In addition to mapping substitutions that confer TMP resistance, we also attempted to identify substitutions that affect the native activity of DHFR. To do so, we compared the frequencies of each plasmid variant after overnight growth in M9 (e.g. Figure 22A-22C). In this case, we observed similar overall enrichment profiles for both synonymous and nonsynonymous mutation sets, with very few mutations observed to have significant impact on growth. This unexpected result suggests a need for greater sequencing depth and/or alternate selection strategies to assign high confidence to low fitness variants.

[00329] As a separate validation of protein engineering applications, we generated a 4,240 variant library targeting the AcrB multidrug efflux pump in E. coli (e.g. Figure 23 A-23F). This protein acts as a proton exchange pump that exports a wide variety of chemicals including antibiotics, chemical mutagens, and short chain alcohols that are being pursued as next generation biofuels and motivating numerous engineering efforts. The library was designed to target the interior chamber, the exit funnel that channels substrates towards the outer- membrane component of the AcrB/AcrA/TolC complex, and key regions of the transmembrane domain where mutations conferring tolerance to isobutanol and longer chain alcohols have been identified (e.g. Figure 23A-23C). We then constructed the AcrB CREATE library identically as for the FolA library and grew the library in the presence of 1.2% isobutanol. Sequencing identified multiple mutations to the loop-helix motif adjacent to the central efflux funnel that were significantly enriched, suggesting this substructure may provide a novel target for engineering enhanced efflux activity. Reconstruction of the AcrB N70D and D73L mutations also confirmed the ability of these mutations to enhance overall growth in the presence of this solvent stress (e.g. Figure 23D).

[00330] Parallel evaluation of genotype fitness from large scale adaptation studies

[00331] We next sought to expand our efforts from the single protein scale and validate the use of CREATE at the genome-scale. To do so we chose to reconstruct and map mutations resulting from a prior adaptive laboratory evolution study of E. coli thermal tolerance. ALE has been used extensively as a tool to study the bacterial adaptation in response to a broad range of environmental stressors. However, in the majority of cases the genome undergoes multiple mutations making it difficult to assess the contribution of each mutation to the phenotype in question. Here, we designed and constructed a CREATE library to include all 645 nonsynonymous mutants from the Tenaillon et al ALE experiment and then subjected this library to growth selection in minimal media at 42.2°C. To assess any possible effects that could arise from the synonymous PAM mutation we included redundancy in the design of this library such that each target codon was coupled to two different PAM mutations to provide a 4 fold design redundancy for each nonsynonymous mutation. For calibration purposes the ALE library was pooled with the protein targeting libraries to allow for relative enrichment comparisons from the non-ALE derived libraries as a benchmark (e.g. Figure 11A- 11C). Of the more than 50,000 cassettes in this experiment we observed 405 cassettes from the ALE derived library above the minimal counting threshold, pertaining to 252 unique variants (e.g. Figure 11B). Of these 346 cassettes (encoding 231 nonsynonymous changes) were significantly enriched compared with the synonymous controls (e.g. Figure 1 IB), suggesting that 92% (231/252) of the mutations sampled confer significant selective growth advantages as individual chromosomal mutations, consistent with their fixation during adaptive growth. Additionally we found that 141 mutations from the additional CREATE libraries were also significantly enriched, with 86 of these targeting residues in or around the cAMP binding site of Crp, a central regulator of carbon metabolism. The identification of such a large number of Crp mutants is highly suggestive of a role for Crp in thermal-tolerance in agreement with previous findings.

[00332] For each mutant we also calculated the number of mutations required to convert the wt codon to each of the other 19 amino acids (e.g. Figure 11C). As with folA, we found that highly impactful mutations, such as the crp S28P and L30Y mutations, require more than a single nucleotide substitution and would therefore be inaccessible or exceedingly rare in naturally evolving systems under laboratory timescales. In fact, this seemed to be a recurrent theme across many of the selections we performed (e.g. Figure 24A-24D) highlighting again the value of synthetic DNA driven search strategies for genomic engineering applications.

[00333] High-throughput mapping of selectable precision edits on a genome wide scale

[00334] To further validate the method for genome-scale mapping and exploration we challenged genome wide targeting libraries with antibiotics or solvents relevant to bioproduction (e.g. Figure 12A-12F). In the case of selections performed with rifampicin, an antibiotic that inhibits transcription by the RNA polymerase (e.g. Figure 12A, inner circle) we observed a number of enriched variants that highlighted the robustness of the CREATE approach for atomic resolution mapping. For example, 10 of the top 50 hits identified mutations to residues 1572, L533 and S531 of the RNA polymerase β subunit (encoded by rpoB) including variants that form part of the rifampicin binding site (e.g. Figure 12B). In 6 of the 7 enriched variants the data suggest that a bulky substitution is necessary to sterically hinder 7 rifampicin binding. In addition to the β-subunit mutations the rifampicin selections enriched a number mutations to the MarA transcriptional activator, whose over-expression due to marR knockout is a well studied aspect of multiple antibiotic resistance (MAR) phenotypes in E. coli . In the DNA bound crystal structure of MarA, Q89 is positioned near the DNA backbone but pointed into solution due to a steric clash between other possible rotamers and nearest phosphate group on the DNA backbone (e.g. Figure 12C). Modeling of the MarA Q89N and Q89D mutations identified by this selection suggests that shortening the side chain by a single carbon unit may enable new protein-DNA H-bonding interactions and thereby improve the overall MAR induction response.

[00335] To compare these results to an antibiotic that interferes with translation we performed another round of selections in the presence of erythromycin (e.g. outer circle Figure 12A). The enrichment profiles from this selection again highlighted loci previously implicated in resistance to this antibiotic. For example, we observed strong enrichment of 4 different mutations to the AcrB efflux pump which acts as the primary exporter of this drug from the periplasmic space (e.g. Figure 12A). Interestingly, one of the variants (AcrB T60N) appears at the same residue identified from isobutanol selections (e.g. Figure 23A-23F). As with the other mutations, reconstruction validated that at least two of these mutations (e.g. T60N in Figure 23E-23F and D73L in Figure 25) can significantly improve tolerance to both erythromycin as well as isobutanol isobutanol, further supporting the idea that this motif may provide a useful engineering target for broad range of tolerance phenotypes. In addition to AcrB we also observed enrichment of multiple soxR and rpoS mutants, both of which have been previously implicated in stress tolerance and general antibiotic resistance phenotypes. In total, we observed 136 of the

341 significantly enriched mutations (40%) were identified within the RpoB, MarA, MarR,

SoxR, AcrB, or dxs proteins, each of which has extensive prior validation as antibiotic resistance genes.

[00336] Finally, we performed selections using furfural or acetate, common components of cellulosic hydrolysate that inhibit bacterial growth under industrial fermentation conditions and are thus the target of many strain engineering efforts (e.g. Figure 12D-12F). In the presence of high acetate concentrations (10 g/L , e.g. inner plot Figure 12D) the top 100 ranking mutations were predominated by cassettes targeting the fis, fadR, rho and fnr genes respectively (e.g. Figure 12E). The Fis, Fnr and FadR regulators are all involved transcriptional regulation of the primary acetate utilization gene acs, and implicated in the so-called "acetate- switch" which allows the cell to effectively scavenge acetate. Knockout of these regulators leads to constitutive expression of the acetate utilization pathways and improved acetate growth phenotypes suggesting that the mutations identified in this study (e.g. Figure 12E-12F) likely inhibit these regulatory functions by destabilizing their respective protein targets.

[00337] In contrast to the weak acid tolerance of acetate, the enrichment profiles obtained the presence of growth inhibiting concentrations of furfural (2g/L) were significantly different with the most frequently observed mutations targeting the oxidative stress response regulator rpoS (e.g. Figure 12F). Furfural growth inhibition is thought to occur through depletion of cellular NADPH pools, an important cofactor in the prevention of oxidative stress and anabolic pathways for cell growth. In line with our findings, previous studies of RpoS have demonstrated that inactive alleles are favored in such nutrient depleted scenarios. Interestingly, we also observed some of the same mutations in crp that were observed in the 42.2°C selections (e.g. Figure 11A and 11C) and upon reconstruction confirmed that the Crp S28P mutant can substantially improve growth in the presence of furfural (e.g. Figure 26A-26B). We also found that this selection uniquely enriched for variants of the PntA transhydrogenase, a membrane bound transhydrogenase that transfers hydride ions from NADH to NADP+ to maintain sufficient pools for anabolism. A mutation to 1258 A in close proximity to the substrate binding cleft may therefore impart enhanced NADPH production.

[00338] Collectively, these selections validate the CREATE strategy by demonstrating the ability to map known associations as well as highlight power of this method for rapid mapping of novel mutations to traits of interest. It is also important to note that in contrast to the most other functional genomics technologies that mainly identify loss of function mutations, the ability to perform such broad scale scanning mutagenesis opens the door for more general genomic searches that can also identify novel gain of function mutations.

[00339] In this work we have demonstrated that CREATE allows parallel mapping of tens of thousands of amino acid and promoter mutations in a single experiment. The construction, selection, and mapping of >50,000 genome-wide mutations (e.g. Figures 11A-11C and 12A-12F) can in some examples be accomplished in 1-2 weeks by a single researcher, offering orders of magnitude improvement in economics, throughput, and target scale over the current state of the art methods in synthetic biology. Importantly, the ability to track the enrichment of library variants allows multiplex sequence to activity mapping by a simple PCR based workflow using just a single set of primers as opposed to more complicated downstream sequencing approaches that are limited to a few dozen loci. In addition, the ability to map the effects of single nucleotide or amino acid level variation in coding regions or promoters allows CREATE to address a considerably more diverse set of design objectives than previous high-throughput genomic technologies such as trackable multiplexed recombineering (TRMR) or Tn-seq approaches that are limited to gene resolution analysis. Such capabilities enable new paradigms for deciphering gene function and engineering cellular traits including workflows in which iterative rounds of CREATE could be implemented to perform design-driven genome engineering and address a broad range of ambitions.

[00340] Notably, as a further distinction from prior approaches, the high efficiency mutagenesis (e.g. Figure 9A-9D) reported in this work was not only an order of magnitude improved but was also achieved in a wild type MG1655 strain in which all of the native DNA repair pathways are intact. The majority of previously reported recombineering efforts in E. coli have used single-stranded oligo engineering which requires deletion of the mismatch repair genes or chemically modified oligonucleotides to achieve mutagenesis at 1-30% efficiency. The combination of plasmid based homologous recombination substrates and Cas9 dsDNA cleavage appears to circumvent these requirements (e.g. Figure 13A-13D and Figure 9A-9D), eliminating the need for specialized genetic modifications outside of the Cas9 and λ-RED genes to perform efficient editing and tracking on a population scale (e.g. Figure 9A-9D). This fact alongside the broad utility of CRISPR editing suggests that the CREATE approach will readily port to a wide range of microorganisms such as Saccharomyces cerevisiae and other recombinogenic bacteria for which high-efficiency transformation protocols are available. The CREATE strategy should also be compatible with a wide range of CRISPR/Cas systems using similar automation approaches to design and tracking. Extension of this methodology to higher eukaryotes however will require the development of strategies to overcome non-homologous end-joining as well as alternative tracking systems that can stably replicate.

[00341] The CREATE strategy provides a streamlined approach for sequence to activity mapping and directed evolution by integrating multiplexed oligo synthesis, CRISPR- CAS editing, and high-throughput sequencing.

Example 28- Genome-scale sequence to activity relationship mapping at single nucleotide resolution, additional examples

[00342] Possible effects of inconsistent mapping of plasmid barcode to genomic edit

[00343] We note that the initial CREATE library included designs that we would expect to have low confidence mapping between the plasmid barcode and the genomic edit (as explained primarily by distance between the PAM and target mutation in the CREATE cassette, see Fig 2d). We describe below the various scenarios that may arise in the fraction of cases where the plasmid tracking may lead to erroneous conclusions regarding a genomic variant. A few things to note in evaluating these scenarios include i) the plasmid cassette should have minimal or no functional influence relative to the genomic edit, ii) the genomic loci will only be either the WT sequence or the sequence from the editing cassette that we obtain via sequencing, and iii) offsite editing is highly unlikely given the toxicity of CRISPR-Cas editing of multiple sites (e.g. Figure 16A-16E) or when performed in the absence of an added editing-repair template. Finally, we note that the use of replicate experiments and deeper sequencing can also address these issues.

[00344] Tracking of high fitness variants (positive enrichment tracking)

[00345] In cases where there is a strong selective advantage for the genomic modification (and thus the associated plasmid) we will only observe cells with the edit in the chromosome post selection. Thus, this is almost always a true positive particularly when selection times are short, thus limiting the possibility of random mutations due to replication error sweeping the population. While this phenomenon may lead to a quantitative underestimation of the true fitness of a mutation due to an enrichment profile that represents the convolution of modified and wt fitness, it will not produce false positives. Moreover, the use of replicated experiments and/or longer selections can also address this potential issue and eliminate erroneous conclusions regarding a mutations impact on fitness.

[00346] Tracking of low fitness variants (negative enrichment tracking)

[00347] In cases where the encoded mutation has a negative fitness contribution but is linked to a PAM only or unmodified chromosome we would incorrectly overestimate the fitness of the mutant and assume that it is closer to wt, especially for longer selection times (e.g. see Figure 22A-22C). However, any deep sequencing approach must deal with similar limitations due to the lack of information regarding such mutations following selection and the problems associated with counting statistics in these scenarios. Moreover, we would note that this scenario is only relevant to the subset of truly negative fitness mutants (which should be 10-20% based on historic directed evolution and ALE data) within the unedited fraction (-30%) and that remain in the unedited fraction in multiple replicate transformations. In other words, it is a small percentage (4-5%) scenario that can be detected and/or addressed through replicate transformations where one would observe inconsistencies in the particular mutant showing up occasionally with WT fitness.

[00348] Incomplete coverage

[00349] In cases where a variant is not present in the initial population (due to both low transformation efficiency and low editing efficiency) a couple of scenarios could arise. As implied by the points above, if the mutation is beneficial one could falsely conclude that it does not confer a fitness advantage, and if it is truly deleterious it also could be incorrectly assigned a neutral fitness score. This appears to be encountered sometimes in this work and impacts both the error associated with replicate measurements and our ability to distinguish low fitness variants from a synonymous control. However, our ability to identify beneficial mutants is robust despite these issues as evidenced by our ability to readily identify novel and previously validated mutations. Strategies to address this by overcoming Cas9 toxicity and improving recombineering efficiencies hold promise to largely eliminate such problems. Furthermore, increasing the number of replicates, increasing sequencing depth, and/or improving the library coverage by performing larger scale transformation also can help to address these issues.

[00350] Off target gRNA cleavage

[00351] Off target gRNA cleavage should be rare in E. coli due to the relatively small size of its genome (4 Mb), and thus lack of (non-targeted) regions of homology to the CREATE cassette. Moreover, the toxicity of gRNAs in the presence of Cas9 (e.g. Figure 9A) ensures that cells survival is compromised in E. coli due to dsDNA breaks. Each additional cut introduced into E. coli appears to incur multiplicative toxicity effects, even when homologous repair templates are provided for each cut site (e.g. Figure 16A-16E). This toxicity effect would be further exacerbated by the absence of a repair template to guide HR (e.g. Figure 16A-16E), as would be the case for an off-target cleavage event from a single gRNA targeting two sites but containing only a single HA.

[00352] Random off target mutagenesis (evolution)

[00353] The probability that a CREATE variant is strongly enriched due to an off target mutation even is highly improbable due to 2 factors: 1) the toxicity effect for the reasons stated above and 2) the low mutation rates of MG1655 or other mutation repair proficient strains compared with the mutagenesis rates of CREATE, particularly in multiple replicates of selection.

We also have validated that we can transfer the plasmid pool back into a naive parental background and rapidly verify the enrichment of fitness improving CREATE plasmids from the initial population. Like replicate data, this allows us to decouple each CREATE plasmid from the potential of background mutations that would interfere with our analysis. These factors simplify the assumptions made during our analysis, the validity of which is supported both by externally and internally validated genotypes that were identified during this work.

[00354] Possible effects of Synonymous mutations

[00355] Synonymous mutations (e.g. in the PAM region) can confer unexpected effects on phenotype. We have controlled for this in a number of manners. In every experiment we included an internal control that consists of a library of synonymous mutations (1/20 at each codon or 5% of total input), each of which samples different PAM and codon combinations and thus give us an idea of the range of possible effects we may have on a gene by measuring the enrichment profile of many synonymous changes. Using this population as a control we can accurately identify significant fitness changes at the resolution of single amino acids as the work suggests. We can also control for this effect by utilizing redundant sampling approaches where a site is coupled to multiple PAM mutations similar to what was done for the ALE study described herein.

[00356] CREATE library design considerations

[00357] A variety of design principles were implemented in the gene targeting libraries described in some work disclosed herein. For example, the folA library (3140 cassettes) was designed to be an unbiased, exploratory library for full single site saturation mutagenesis and sequence activity. However, for the majority of the genes we sought to maximize the probability of interesting genotypes by choosing to focus the diversity of sites most likely to have a functional impact on the targeted protein (e.g. DNA binding sites, active sites, regions identified as mutational hotspots by previous selections). The sites that were included in these library designs were selected based on information deposited in databases including Ecocyc (biocyc.org/), Uniprot (uniprot.org/), and the PDB (rcsb.org/pdb) as well as relevant literature citations that identified residues or regions of interest using directed evolution approaches. The Uniprot and Ecocyc databases provide manually curated sequence features that indicate mutational effects and important domains of each protein. In cases where there was enough structural information to model ligand or DNA binding sites the relevant crystal structures were loaded into Pymol and manual residue selections were made and exported as numerical lists. For promoter libraries we took into account the spacing of these sites relative to the transcription start site and the canonical recognition sequence of either the CRP binding site (AAATGTGAtctagaTCACATTT located between -72 and -40 relative to the transcription start site) or the UP element (AAAATTTTTTTTCAAAAGTA -60 from the transcription start site) that directly recruit the alpha subunit of the RNA polymerase. These sequences were designed to integrate at these positions relative to the publicly available transcriptional start site annotations in RegulonDB using a variation of the automated CREATE design software designed for protein targeting (e.g. Figure 13A-13D). These cassettes were made with the intent of assessing the effects of gene dosage and regulation on fitness. Finally, we designed a library to reconstruct all of the 645 non-synonymous mutations targeting 197 genes that were identified by a comprehensive ALE experiment in which the complete genomes of 115 isolates were sequenced after a year of adaptation to growth at elevated temperature (e.g. 42.2°C). In all, we designed 52,356 oligomers, with 48,080 intended to saturate 2404 codon positions across 35 genes, 2,550 oligos were made for regenerating the ALE mutations, 379 UP promoter mutants and 772 CAP promoter mutations in a manner that would allow simultaneous sequence to activity relationship mapping.

[00358] Cassette design and automation principles

[00359] Based on the control experiments with galK (e.g. Figure 9A-9D) and current maximal commercial synthesis length constraints (200 bp from Agilent) we developed a general design for each CREATE cassette (e.g. Figure 8A-8B).

[00360] Design of the CREATE cassettes was automated using custom Python scripts. The basic algorithm takes a gene sequence, a list of target residues, and a list of codons as inputs. The gene sequence is searched for all available PAM sites with the corresponding spacer sequence. This list is then sorted according to relative proximity to the targeted codon position. For each PAM site in the initial list the algorithm checks for synonymous mutations that can be made in-frame that also directly disrupt the PAM site, in the event that this condition is met the algorithm proceeds to making the prescribed codon change and designing the full CREATE cassette with the accompanying spacer and iterates for each input codon and position respectively. For each PAM mutation, all possible synonymous codon substitutions are checked before proceeding to the next PAM site. For the codon saturation libraries in this study we chose the most frequent codons (genscript.com/cgi-bin/tools/codon_freq_table) for each designed amino acid substitution according to the E. coli usage statistics. The script can be run rapidly on a laptop computer and was used to generate the full design of these libraries in < 10 minutes. The algorithm used in this study was designed to make the most conservative mutations possible by sometimes using only the PAM as the selectable mutation marker.

[00361] Plasmids [00362] The X2-cas9 broad host range vector was constructed by amplifying the cas9 gene from genomic S. pyogenes DNA into the pBTBX2 backbone (Lucigen). A vector map and sequence of this vector and the galK_Y145*_120/17 CREATE cassette are provided at the following locations: benchling.eom/s/3c941j/edit; benchling.com/s/xRBDwcMy/edit.

[00363] The editing experiments performed in some of this work employed the X2-cas9 vector in combination with the pSIM5 vector (redrecombineering.ncifcrf.gov/strains~ plasmids.html) to achieve the reported efficiencies.

[00364] Recombineering of CREATE libraries

[00365] Genomic libraries were prepared by transforming CREATE plasmid libraries into a wildtype E. coli MG1655 strain carrying the temperature sensitive pSIM5 plasmid (lambda RED) and a broad host range plasmid containing an inducible cas9 gene from cloned from S. pyogenes genomic DNA into the pBTBX-2 backbone (X2cas9, e.g. Figure 15A-15D). pSEVI5 was induced for 15 min at 42°C followed by chilling on ice for 15 min. The cells were washed 3 times with ½ the initial culture volume of ddH20 (e.g. 10 mL washes for 50 mL culture). Following electroporation the cells were recovered in LB + 0.4% arabinose to induce Cas9. The cells were recovered 1-2 hrs before spot plating to determine library coverage and transferred to a 10X volume for overnight recovery in LB+ 0.4% arabinose + 50 μg/mL kanamycin + 100 μg/mL carbenicillin. Saturated overnight cultures were pelleted and resuspended in 5 mL of LB. 1 mL was used to make glycerol stocks and the other 1 mL washed with the appropriate selection media before proceeding with selection.

[00366] For the control experiments with galK we used CREATE cassettes designed to convert Y145 (TAT) into a stop codon (TAA) with a single point mutation at this position and a second point mutation to make a synonymous mutation that abolishes the targeted PAM site (e.g. Figure 8B and Figure 13A-13D). Editing efficiencies (e.g. Figure 13A-13D and Figure 9A-9B) were estimated using red/white plate based screening on 1% galactose supplemented MacConkey agar as previously described.

[00367] Selection procedures

[00368] Following overnight recovery, the cells were harvested by pelleting and resuspension in fresh selection media. All selections were performed in shake flask and inoculated at an initial OD600 of 0.1. Three serial dilutions (48-96 hrs depending on growth rates in the target condition) were carried out for each selection by transferring 1/lOOth the media volume after the cultures reached stationary phase. The 42°C selections were performed in M9 media + 0.2% glucose to mimic low carbon availability from the initial adaptation. Antibiotic selections were carried out in LB + 500 μg/mL rifampicin or erythromycin to ensure stringent selection. The solvent selections were performed in M9 + 0.4% glucose and either 10 g/L acetate (unbuffered) or 2 g/L furfural. Selections were harvested by pelleting 1 mL of the final culture and the cell pellet was boiled in 100 μΙ_, TE buffer to preserve both the plasmid and the genomic DNA for further desired analyses.

[00369] Library preparation and sequencing

[00370] Custom Illumina compatible primers were designed to allow a single amplification step from the CREATE plasmid and assignment of experimental reads using barcodes. The CREATE cassettes were amplified directly from the plasmid sequences of boiled cell lysates using 20 cycles of PCR with the Phusion (NEB) polymerase using 60°C annealing and 1 :30 minute extension times. As in the cloning procedure a minimal number of PCR cycles was maintained to prevent accumulation of mutations and recombined CREATE cassettes that were observed when an excessive number of PCR cycles was implemented (e.g. >25-30). Amplified fragments were verified and quantified by 1% agarose gel electrophoresis and pooled according to the desired read depth for each sample. The pooled library was cleaned using Qiaquick PCR cleanup kit and processed for NGS using standard Illumina preparation kits. The Dlumina sequencing and sample preparation were performed with the primers.

[00371] Preprocessing of high-throughput sequencing and count generation

[00372] Paired-end Illumina sequencing reads were sorted according to the golay barcode index with allowance of up to 3 mismatches then merged using the usearch -fastq merge algorithm. Sorted reads were then matched against the database of designed CREATE cassettes using the usearch global algorithm at an identity threshold of 90% allowing up to 60 possible hits for each read. The resulting hits were further sorted according to percent identity and read assignment was made using the best matching CREATE cassette design at a final cutoff 98% identity to the initial design. It should be noted that this read assignment strategy attempts to identify correlations between the designed genotypes and may therefore miss other important features that arise due to mutations that could occur during the experimental procedure. This approach was taken both to simplify data analysis as well as evaluate the 'forward' design and annotation procedure and it's ability to accurately identify meaningful genetic phenomena.

[00373] Data analysis and fitness calculation

[00374] Enrichment scores (or absolute fitness scores were calculated as the log2 enrichment score using the following equation: , where F X;f is the frequency of cassette X at the final time point and F x i is the initial frequency of cassette X and W is the absolute fitness of each variant. Frequencies were determined by dividing the read counts for each variant by the total experimental counts including those that were lost to filtering. Each selection was performed in duplicate and the count weighted average of the two measurements was used to infer the average fitness score of each mutation as

follows:

[00375] These scores were used to rank and assess the fitness contributions of each mutation under the various selection pressures investigated. For all selections we took average absolute fitness scores for all of the synonymous mutants as a composite measure of the average growth rate. Absolute enrichment scores were considered significant if the mutant enrichment was at least +/- 2*σ (e.g. p=0.05 assuming a normal distribution) of the wild-type value. We performed two replicates of each selection reported in this study to derive these figures and applied a cutoff threshold of 10 across the replicate experiments for inclusion in each analysis.

[00376] For every codon targeted our designs also included a synonymous variant to provide an internal experimental control. Thus 5% of the protein targeting cassettes encoded synonymous mutations that allow us to estimate confidence intervals for mutation effects using custom Python bootstrapping scripts. The enrichment data for each experiment was resampled with replacement 20000 to obtain 95% confidence interval estimations that were used to infer statistical significance of enrichment scores for each analysis presented in the manuscript.

[00377] Mutant reconstructions and growth measurements

[00378] The AcrB T60N and Crp S28P and FolA F153R/W CREATE cassettes were ordered as separate gblocks from IDT, cloned and sequence verified. Each cassette was transformed into MG1655 and colony screened to identify a clone with the designed genomic edit. These strains (e.g. Figure 21 and Figure 22A-22C) were then subjected to the growth conditions from the pooled library selection as indicated. The growth curves were taken in triplicate for each condition in 100 μÎ. in a 96 well plate reader set to measure absorbance at 600 nm. The plate was covered and water added to empty wells to reduce evaporation during the growth.

[00379] Software and figure generation

[00380] Circle plots were generated using Circos v0.67. Plots were generated in Python 2.7 using the matplotlib plotting libraries and figures were made using Adobe Illustrator CS5. Entropy scores for the FolA (Figure 10A) were determined using the ProDy Python package and the Pfam accession PF00186 representative proteome alignment RP35.

[00381] Figures of the protein libraries and high fitness mutations were made using The PyMol Molecular Graphics System, Schrodinger, LLC. The following are the proteins and PDBs used in the figure generation: AcrB (3W9H, 4K7Q, 3AOC), Fis (3JR9), Ihf (1IHF), RNA polymerase (4KMU, 4IGC), Crp (3N4M), MarA (1BLO), and SoxR (2ZHG). Example 29: Testing Edit-Barcode correlation

[00382] A strain expressing a low copy number plasmid (Ec23) which is a Cas9-pSIM5 dual vector,, was tested using different gene editing cassettes (lacZ, xylA, and rhaA) and recorder cassettes with different barcodes and insertion sites (galK site 1, galK site 2, and galK site 3) (Summarized in Figure 27A). The possible outcomes are depicted in Figure 27B. Pre-selection, all combinations of edit/barcodeAVT are possible. After selection, edits cells could be enriched whether they are barcoded or not in this experimental design.

[00383] The transformations were plated on selective media that allowed for enrichment of cells contaiing the gene edits. 30 colonies from each combination transformation were sequenced to determine if they contained the desired barcode.

[00384] Figure 27C shows the results from the sequencing data. Two of the edit/barcode combinations were found in 100% of the tested colonies (30/30 colonies), and the other edit/barcode combination transformation was found in approximately 97% of tested colonies (29/30 colonies). The single colony that was not properly engineered contained the gene edit, but not the barcode.

[00385] Overall, 89 out of 90 tested colonies has the designed gene edit and barcode.

Example 30: Selectable Recording

[00386] When a barcode is not selected for, it allows for enrichment of non-barcoded cells even if the corresponding gene edit is incorporated and selected for. Figure 28 depicts an example strategy for selecting for the recording event (e.g., incorporation of the barcode by the recorder cassette), in addition to selecting for the editing cassette incorporation, thereby increasing the efficiency of recovering cells that have been both edited and barcoded.

[00387] As depicted in Figure 28, sequences SO, SI, S2, etc. are designed to be targeted by the guide RNA associated with the recorder cassette of the next round. In the depicted example, in the first round of engineering, a PAM mutation, a barcode, SI site, and regulatory elementary necessary to turn on a selectable marker are incorporated into the SO site in the target region. This turns on the TetR selectable marker and allows for enrichment of barcoded mutants variants with the SI site that have the first round PAM site deleted. In the second round of engineering, a new recorder cassette comprising a second PAM mutation, a second barcode, a S2 site, and a mutation that turns off the selectable marker is incorporated into the S I site from the previous round. This allows for counter-selection of variants that have incorporated the second barcode and S2 site. The subsequent rounds continue to flip the selectable marker between an on and off state and using selection or counter-selection respectively to enrich the desired variants. The recorder cassette from each round is designed to incorporate into a unique sequence (e.g., SO, SI, etc.) that was incorporated in the previous round. This ensures that the last round of barcoding was successful so that all desired engineering steps are contained in the final product. The incorporation of PAM mutations at each step also helps ensure that the desired barcoded variants are selected for since cells having the unmodified PAM sequences will be killed as they can't escape CRISPR enzyme cleavage.

[00388] This strategy uses multiple methods to increase the efficiency of isolating desired variants that contain all of the engineered edits from each round of engineering. The PAM mutation, selectable marker switch, and unique landing site incorporated in each round separately increase efficiency and together increase efficiency as well. These tools allow for selection of each recording round and allow design of highly active recording guide RNAs. An array of equally spaced (or not equally spaced, depending on the design) barcodes is generated and facilitates downstream analysis such as sequencing the barcode array to determine which corresponding edits are incorporated throughout the genome.

[00389] Figure 29 depicts an experimental design to test the selectable recorder strategy described above. A plasmid (pRECl) containing an editing cassette and a recorder cassette was transformed into cells. The editing cassette either contained a non-targeting editing cassette, or a mutation that incorporated a mutation (not TS) or a temperature sensitive mutation (TS) into a target gene. The recorder cassette was designed to incorporate into the SO site in the target gene that originally had the tetR selectable marker turned off. The recorder cassette also contained a PAM mutation that deleted the SO PAM site, first barcode (BCl), a unique SI site for the subsequent engineering round recording cassette to incorporate into, and a corrective mutation that will turn on the TetR selectable marker. A guide RNA on the recorder cassette that targets a PAM site in the SO site (SO-gRNA) allows a CRISPR enzyme, in this case Cas9, to cleave the SO site. The recorder cassette recombines into the cleaved SO site. The PAM mutation is incorporated, which means the SO-gRNA can no longer target the SO site, thereby killing WT cells and enriching for cells that received the barcode. The TetR selectable marker was also turned on, allowing further selection of the barcoded variant.

[00390] The data in Figures 30A and 30B show the results from the experiment described above and depicted in Figure 29. Of the Tet Resistant colonies that were recovered from the transformation and engineering round, 16 were sequence and determined to all contain the designed barcode (Figure 30A). Figure 30B shows that the control cells that did not contain the recorder target site (non-target) did not survive the presence of Tet, while cells that contained the target site were successfully barcoded as evidences by the turning on of TetR, allowing cells to be selected on Tet containing media. The Tet resistant colonies were confirmed at the genomic site to have TetR gene turned on. These data showed that selectable recording was successful. Example 31: Expression of MAD nucleases

[00391] Wild-type nucleic acid sequences for MAD1-MAD20 include SEQ ID NOs 21-40, respectively. These MAD nucleases were codon optimized for expression in E. coli and the codon optimized sequences are listed as SEQ ID NO: 41-60, respectively (summarized in Table 2).

Codon optimized MAD1-MAD20 were cloned into an expression construct comprising a constitutive or inducible promoter (e.g., T7 promoter SEQ ID NO: 83, or pBAD promoter SEQ ID NO: 81 or SEQ ID NO: 82) and an optional 6X-His tag. The generated MAD1-MAD20 expression constructs are provided as SEQ ID NOs: 61-80, respectively.

Table 2.

Example 32: MAD2 and MAD7 nucleases

[00392] MAD2 and MAD7 nucleases are nucleic acid-guided nuclease that can be used in the methods disclosed herein. Nucleases Mad2 (SEQ ID NO: 2) and Mad 7 (SEQ ID NO: 7) were cloned and transformed into cells. Editing cassettes designed to mutate a target site in a galK gene were designed with mutations, which allowed for white/red screening of successfully editing colonies. The editing cassettes also encoded a guide nucleic acid designed to target galK. The editing cassettes were transformed into E. coli cells expressing MAD2, MAD7, or Cas9. Figure 31A shows the editing efficiency of Mad2 and Mad7 compared to Cas9 (SEQ ID NO: 110). Figure 3 IB shows the transformation efficiency as evidenced by cell survival rates. In this example, the guide nucleic acid used with MAD2 and MAD7 comprised a scaffold-12 sequence and a guide sequence targeting galK. The guide nucleic acid used with Cas9 comprised a sequence compatible with the S. pyogenes Cas9.

[00393] Figure 32 and Table 3 show more examples of gene editing using the MAD2 nuclease. In this experiment, different guide nucleic acid sequences were tested. The guide sequence of the guide nucleic acids targeted the galK gene as described above. The scaffold sequence of the guide nucleic acids were one of various sequences tested as indicated. Guide nucleic acids with scaffold-5, scaffold-10, scaffold-11, and scaffold-12 were able to form functional complexes with MAD2.

[00394] Figure 33 and Table 4 show more examples of gene editing using the MAD7 nuclease. In this experiment, different guide nucleic acid sequences were tested. The guide sequence of the guide nucleic acids targeted the galK gene as described above. The scaffold sequence of the guide nucleic acids were one of various sequences tested as indicated. Guide nucleic acids with scaffold-10, scaffold-11, and scaffold-12 (e.g., Figure 31 A) were able to form functional complexes with MAD7. Amino acid sequences are provided in Table 2 and scaffolding sequences are provided in Table 3 and Table 4. Table 3 and Table 4 also provided the designed mutations in the editing cassettes that were used to mutate the galK target gene.

[00395] Further details and characterization of MAD2, MAD7, and other MAD nucleases are described in US Application No. 15/631,989, filed June 23, 2017, and US Application No. 15/632,001, filed June 23, 2017, each of which are incorporated herein in their entirety. Table 3.

[00396] While preferred embodiments of the present invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention. It is intended that the following claims define the scope of the invention and that methods and structures within the scope of these claims and their equivalents be covered thereby. SEQUENCE LISTING

Table 5.

SE I Sequence

Q

no

N

O:

" SE MGKMYYLGLDIGTNSVGYAVTDPSYHLLKFKGEPMWGAHVFAAGNQSAERRSFRTSRRRL DRRQQ Q RVKLVQEIFAPVISPIDPRFFIRLHESALWRDDVAETDKHIFFNDPTYTDKEYYSDYPTI HHLIVDLME

E) SSEKHDPRLVYLAVAWLVAHRGHFLNEVDKDNIGDVLSFDAFYPEFLAFLSDNGVSPWVC ESKALQ N ATLLSRNSVNDKYKALKSLIFGSQKPEDNFDANISEDGLIQLLAGKKVKVN LFPQESNDASFTLND

O: KEDAIEEILGTLTPDECEWIAHIRRLFDWAIMKHALKDGRTISESKVKLYEQHHHDLTQL KYFVKTY

1 LAKEYDDIFRNVDSETTK YVAYSYHVKEVKGTLPKNKATQEEFCKYVLGKVKNIECSEADKVDFD EMIQRLTDNSFMPKQVSGENRVIPYQLYYYELKTILNKAASYLPFLTQCGKDAISNQDKL LSIMTFRI PYFVGPLRKDNSEHAWLERKAGKIYPWNFNDKVDLDKSEEAFIRRMTNTCTYYPGEDVLP LDSLIYE KFMILNEINNimDGYPISVDVKQQWGLFEKKRRVTVKDIQNLLLSLGALDKHGKLTGIDT TIHSNYN TYHHFKSLMERGVLTRDDVERIVERMTYSDDTKJ VRLWLN YGTLTADDVKHISR^

SKMFLTGLKGVHKETGERASILDFMWNTNDNLMQLLSECYTFSDEITKLQEAYYAKAQLS LNDFLD SMYISNAVKRPIYRTLAVVNDIRKACGTAPKRIFIEMARDGESKKKRSVTRREQIKNLYR SIRKDFQQ EVDFLEKILENKSDGQLQSDALYLYFAQLGRDMYTGDPIKLEHIKDQSFYNIDHIYPQSM VKDDSLD NKVLVQSEINGEKSSRYPLDAAIRNKMKPLWDAYYNHGLISLKKYQRLTRSTPFTDDEKW DFINRQL VETRQSTKALAILLKRKFPDTEIVYSKAGLSSDFRHEFGLVKSRNINDLHHAKDAFLAIV TGNVYHER FNRRWFMVNQPYSVKTKTLFTHSIKNGNFVAWNGEEDLGRIVKMLKQNKNTIHFTRFSFD RKEGLF DIQPLKASTGLVPRKAGLDVVKYGGYDKSTAAYYLLVRFTLEDKKTQHKLMMIPVEGLYK ARIDH DKEFLTDYAQTTISEILQKDKQKVINIMFPMGTRHIKLNSMISIDGFYLSIGGKSSKGKS VLCHAMVPL IWHKIECYIKAMESFARKFKEN KLmVEKFDKITVEDNLNLYELFLQKLQHNPYNKTFSTQFDVLT NGRSTFT LSPEEQVQTLLNILSIFKTCRSSGCDLKSINGSAQAARIMISADLTGLSKKYSDIRLVEQ SA SGLFVSKSQNLLEYL*

SE MSSLTKFTNKYSKQLTIKNELIPVGKTLENIKENGLIDGDEQLNENYQKAKIIVDDFLRD FINKALNNT Q QIGNWRELADALNKEDEDNIEKLQDKIRGIIVSKFETFDLFSSYSIKKDEKIIDDDNDVE EEELDLGKK HO TSSFKYIFKKNLFKLVLPSYLKTTNQDKLKIISSFDNFSTYFRGFFENRKNIFTKKPIST SIAYRIVHDNF N PKFLDNIRCFNVWQTECPQLIVKADNYLKSKNVIAKDKSLANYFTVGAYDYFLSQNGIDF YNNIIGG

O: LPAFAGHEKIQGLNEFINQECQKDSELKSKLKNRHAFKMAVLFKQILSDREKSFVIDEFE SDAQVIDA

2 VKNFYAEQCKDNNVIFNLLNLn NIAFLSDDELDGIFIEGKYLSSVSQKLYSDWSKLRNDIEDSANSK QGN ELAKKIKTNKGDVEKAISKYEFSLSELNSIVHDNTKESDLLSCTLHKVASEKLVKVNEGD WPK HLKNNEEKQKIKEPLDALLEIYNTLLIFNCKSFNKNGNFYVDYDRCINELSSVWLYNKTR NYCTKK PYNTDKFKLNFNSPQLGEGFSKSKENDCLTLLFKKDDNYYVGIIRKGAKINFDDTQAIAD NTDNCIFK MNYFLLKDAKKFIPKCSIQLKEVKAHFKKSEDDYILSDKEKFASPLVIKKSTFLLATAHV KGKKGNIK KFQKEYSKENPTEYRNSLNEWIAFCKEFLKTYKAATIFDITTLKKAEEYADIVEFYKDVD NLCYKLEF CPIKTSFIENLIDNGDLYLFRIN KDFSSKSTGTKNLHTLYLQAIFDERNLN PTIMLNGGAELFYRKE SIEQKNPJTHKAGSILWKVCKDGTSLDDKIRNEIYQYEN FIDTLSDEAKKVLPNVIKKEATHDITKD

KRFTSDKFFFHCPLTINYKEGDTKQFN EVLSFLRGNPDINIIGIDRGER LIYVTVINQKGEILDSVSF

NTWNKSSKIEQTVDYEEKLAVREKERIEAKRSWDSISKIATLKEGYLSAIVHEICLL MIKHNAIVVLE

NLNAGFKRIRGGLSEKSWQKFEKMLINKLNYFVSKKESDWNKPSGLLNGLQLSDQFE SFEKLGIQS

GFIFYVPAAYTSKIDPTTGFANVLNLSKVRNVDAIKSFFSNFNEISYSKKEALFKFS FDLDSLSKKGFSS

FVKFSKSKWNWTFGERIIKPKNKQGYREDKRINLTFEMKKLLNEYKVSFDLENNLIP NLTSANLKD

TFWKELFFIFKTTLQLRNSVTNGKEDVLISPVKNAKGEFFVSGTHNKTLPQDCDANG AYHIALKGLM

ILERN LVREEKDTKKIMAISNVDWFEYVQKRRGVL*

SE MN YDEFT LYPIQKTIRFELKPQGRTMEHLETFNFFEEDRDRAEKYKILKEAIDEYHKKFIDEHLTN

Q MSLDWNSLKQISEKYYKSREEKDKK LSEQKRMRQEIVSEFKKDDRFKDLFSKKLFSELLKEEIYK

no KGNHQEIDALKSFDKFSGYFIGLHENRKNMYSDGDEITAISNRIVNENFPKFLDNLQKYQ EARKKYP

N EWIIKAESALVAHNIKMDE SLEYFNKVLNQEGIQRYNLALGGYVTKSGEKMMGLNDALNLAHQ

O: SEKSSKGRIHMTPLFKQILSEKESFSYIPDVFTEDSQLLPSIGGFFAQIENDKDGNIFDR ALELISSYAEY

3 DTERIYIRQADINRVSNVIFGEWGTLGGLMREYKADSINDINLERTCKKVDKWLDSKEFA LSDVLEAI

KRTGNNDAFNEYISKMRTAREKIDAARKEMKFISEKISGDEESIHIIKTLLDSVQQF LHFFNLFKARQD

IPLDGAFYAEFDEVHSKLFAIWLYNKVR YLTKN LNTKKIKLNFKNPTLANGWDQNKVYDYASLI

FLRDGNYYLGIINPKRKKNIKFEQGSGNGPFYRKMWKQIPGPNKNLPR LTSTKGKKEYKPSKEII

EGYEADKHIRGDKFDLDFCHKLIDFFKESIEKHKDWSKFNFYFSPTESYGDISEFYL DVEKQGYRMHF

ENISAETroEYVEKGDLFLFQIYN DFVKAATGKKDMHTIYWNAAFSPENLQDVVVKLNGEAELFY

RDKSDIKEIVHREGEILVNRTYNGRTP DKIHKKLTDYHNGRTKDLGEAKEYLDKVRYFKAHYDIT

KDRRYLNDKIYFHVPLTLNFKANGKKNLNKMVIEKFLSDEKAHIIGIDRGERNLLYY SIIDRSGKIIDQ

QSLNVIDGFDYREKLNQREIEMKDARQSWNAIGKIKDLKEGYLSKAVHEITKMAIQY NAIVVMEEL

NYGFKRGRFKVEKQIYQKFENMLIDKMNYLVFKDAPDESPGGVLNAYQLTNPLESFA KLGKQTGIL

FYVPAAYTSKIDPTTGFVNLFNTSSKTNAQERKEFLQKFESISYSAKDGGIFAFAFD YRKFGTSKTDH

KNVWTAYTNGERMRYIKEKKR ELFDPSKEIKEALTSSGIKYDGGQNILPDILRSN NGLIYTMYSSF

IAAIQMRVYDGKEDYIISPIKNSKGEFFRTDPKRRELPIDADANGAYNIALRGELTM RAIAEKFDPDSE

KMAKLELKHKD WFEFMQTRGD *

SE MTKTFDSEFFNLYSLQKTVRFELKPVGETASFVEDFKNEGLKRVVSEDERRAVDYQKVKE IIDDYHR

Q DFIEESLNYFPEQVSKDALEQAFHLYQKLKAAKVEEREKALKEWEALQKKLREKVVKCFS DSNKAR

no FSRIDKKELIKEDLINWLVAQNREDDIPTVETFN FTTYFTGFHENRKNIYSKDDHATAISFRLIHENL

N PKFFDNVISFNKLKEGFPELKFDKVKEDLEVDYDLKHAFEIEYFVNFVTQAGIDQYNYLL GGKTLED

O: GTKKQGMNEQINLFKQQQTRDKARQIPKLIPLFKQILSERTESQSFIPKQFESDQELFDS LQKLHNNCQ 4 DKFTVLQQAILGLAEADLKKVFIKTSDLNALSNTIFGNYS SDALNLYKESLKTKKAQEAFEKLPA

HSIHDLIQYLEQFNSSLDAEKQQSTDTVLNYFIKTDELYSRFIKSTSEAFTQVQPLF ELEALSSKRRPPE

SEDEGAKGQEGFEQIKRIKAYLDTLMEAVHFAKPLYLVKGRKMIEGLDKDQSFYEAF EMAYQELES

LIIPIYNKARSYLSRKPFKADKFKINFDNNTLLSGWDANKETANASILFKKDGLYYL GIMPKGKTFLF

DYFVSSEDSEKLKQRRQKTAEEALAQDGESYFEKIRYKLLPGASKMLPKVFFSNKNI GFYNPSDDILR

IRNTASHTKNGTPQKGHSKVEFNLNDCHKMIDFFKSSIQKHPEWGSFGFTFSDTSDF EDMSAFYREV

ENQGYVISFDKIKETYIQSQVEQGNLYLFQIYNKDFSPYSKGKPNLHTLYWKALFEE ANLNNVVAKL

NGEAEIFFRRHSIKASDKVVHPANQAIDNKNPHTEKTQSTFEYDLVKDKRYTQDKFF FHVPISLNFKA

QGVSKFNDKVNGFLKGNPDVNIIGIDRGERHLLYFTVVNQKGEILVQESLNTLMSDK GHVNDYQQK

LDKKEQERDAARKSWTTVENIKELKEGYLSHVVHKLAHLIIKYNAIVCLEDLNFGFK RGRFKVEKQ VYQKFEKALIDKLNYLVFKEKELGEVGHYLTAYQLTAPFESFKKLGKQSGILFYVPADYT SKIDPTT GFVNFLDLRYQSVEKAKQLLSDFNAIRFNSVQNYFEFEIDYKKLTPKRKVGTQSKWVICT YGDVRY QNRRNQKGHWETEEVNVTEKLKALFASDSKTTTVIDYANDDNLIDVILEQDKASFFKELL WLLKLT MTLRHSKIKSEDDFILSPVKNEQGEFYDSRKAGEVWPKDADANGAYHIALKGLWNLQQIN QWEKG KTLNLAIKNQDWFSFIQEKPYQE*

SE MHTGGLLSMDAKEFTGQYPLSKTLRFELRPIGRTWDNLEASGYLAEDRHRAECYPRAKEL LDDNHR

Q AFLNRVLPQIDMDWHPIAEAFCKVHKNPGNKELAQDYNLQLSKRRKEISAYLQDADGYKG LFAKPA

no LDEAMKIAKENGNESDIEVLEAFNGFSVYFTGYHESRENIYSDEDMVSVAYRITEDNFPR FVSNALIF

N DKLNESHPDIISEVSGNLGVDDIGKYFDVSNYN FLSQAGIDDYNHIIGGHTTEDGLIQAFNVVLNLR

O: HQKDPGFEKIQFKQLYKQILSVRTSKSYIPKQFDNSKEMVDCICDYVSKIEKSETVERAL KLVRNISSF 5 DLRGIFWKKNLRILSNK IGDWDAIETALMHSSSSENDKKSWDSAEAFTLDDIFSSVKKFSDASAE

DIGNRAEDICRVISETAPFINDLRAVDLDSLNDDGYEAAVSKIRESLEPYMDLFHEL EIFSVGDEFPKC

AAFYSELEEVSEQLIEIIPLFNKARSFCTRKRYSTDKIKVNLKFPTLADGWDLNKER DNKAAILRKDG

KYYLAILDMKKDLSSIRTSDEDESSFEKMEYKLLPSPVKMLPKIFVKSKAAKEKYGL TDRMLECYDK

GMHKSGSAFDLGFCHELIDYYKRCIAEYPGWDVFDFKFRETSDYGSMKEFNEDVAGA GYYMSLRKI

PCSEWRLLDEKSIYLFQIYN DYSENAHGNKNMHTMYWEGLFSPQNLESPVFKLSGGAELFFRKSS

IPNDAKTVHPKGSVLWRNDVNGRRIPDSIYRELTRYFNRGDCRISDEAKSYLDKVKT KKADHDIVK

DRRFTVDKM FHWIAMNFKAISKPNLN VIDGIIDDQDLKIIGIDRGER^

DSLNILNGYDYRKALDVREYDN EARRNWTKVEGIRKMKEGYLSLAVSKLADMIIENNAIIVMEDL

NHGFKAGRSKIEKQWQKFESMLINKLGYMVLKDKSIDQSGGALHGYQLANHVTTLAS VGKQCGVI

FYIPAAFTSKIDPTTGFADLFALSNVKNVASMREFFSKMKSVIYDKAEGKFAFTFDY LDYNVKSECG

RTLWTVYTVGERFTYSRVNREYVRKVPTDIIYDALQKAGISVEGDLRDRIAESDGDT LKSIFYAFKY

ALDMRVENREEDYIQSPVKNASGEFFCSKNAGKSLPQDSDANGAYNIALKGILQLRM LSEQYDPNA

ESIRLPLITNKAWLTFMQSGMKTWKN*

SE MD SLKDFTNLYP VSKTLRFELKP VGKTLENIEKAGILKEDEHRAES YRRVKKIIDTYHKVFID S SLEN

Q MAKMGIENEIKAMLQSFCELYKKDHRTEGEDKALDKIRAVLRGLIVGAFTGVCGRRENTV QNEKYE

no SLFKEKLKEILPDFVLSTEAESLPFSVEEATRSLKEFDSFTSYFAGFYENRKNIYSTKPQ STAIAYRLIH

N ENLPKFIDNILVFQKIKEPIAKELEHIRADFSAGGYIKKDERLEDIFSLNYYIHVLSQAG IEKYNALIGKI

O: VTEGDGEMKGLNEHINLYNQQRGREDRLPLFRPLYKQILSDREQLSYLPESFEKDEELLR ALKEFYD

6 HIAEDILGRTQQLMTSISEYDLSRIYVR DSQLTDISKKMLGDWNAIYMARERAYDHEQAPKRITAK

YERDRIKALKGEESISLANLNSCIAFLDNVRDCRVDTYLSTLGQKEGPHGLSNLVEN VFASYHEAEQ

LLSFPYPEEN LIQDKDNVVLIKNLLDNISDLQRFLKPLWGMGDEPDKDERFYGEYNYIRGALDQVIP

LYNKVR YLTRKPYSTRKVKLNFGNSQLLSGWDRNKEKDNSCVILRKGQNFYLAIMNNRHKRSFE

NKVLPEYKEGEPWEKMDYKFLPDPNKMLPK LSKKGIEIYKPSPKLLEQYGHGTHKKGDTFSMD

DLHELIDFFKHSIEAHEDWKQFGFKFSDTATYENVSSFYREVEDQGYKLSFRKVSES YVYSLIDQGKL

YLFQIYN DFSPCSKGTPNLHTLYWRMLFDERNLADVIYKLDGKAEIFFREKSLKNDHPTHPAGKPI

KKKSRQKKGEESLFEYDLVKDRHYTMDKEQFHWITMNFKCSAGSKVNDMVNAHI

IDRGERNLLYICVIDSRGTILDQISLNTINDIDYHDLLESRDKDRQQERRNWQTIEG IKELKQGYLSQA

VHmAELNWAYKAVVALEDLNMGFKRGRQKVESSVYQQFEKQLIDKLNYLVDKKKRPE DIGGLLR

AYQFTAPFKSFKEMGKQNGFLFYIPAWNTSNIDPTTGFVNLFHAQYENVDKAKSFFQ KFDSISYNPK

KDWFEFAFDYKNFTKKAEGSRSMWILCTHGSRIKNFRNSQKNGQWDSEEFALTEAFK SLFVRYEID

YTADLKTAIVDEKQKDFFVDLLKLFKLTVQMRNSWKEKDLDYLISPVAGADGRFFDT REGNKSLPK DADANGAYNIALKGLWALRQIRQTSEGGKLKLAISNKEWLQFVQERSYEKD*

SE MNNGTN FQNFIGISSLQKTLRNALIPTETTQQFIVKNGIIKEDELRGENRQILKDIMDDYYRGFIS ETL

Q SSIDDIDWTSLFEK EIQLKNGDN DTLIKEQTEYRKAIHKKFANDDRFKNMFSAKLISDILPEFVIHN

no N YSASEKEEKTQVIKLFSRFATSFKDYFKNRANCFSADDISSSSCHRIVNDNAEIFFSNAL VYRRIVK

N SLSNDDINKISGDMKDSLKEMSLEEIYSYEKYGEFITQEGISFYNDICGKVNSFMNLYCQ KNKENKNL

0: YKLQKLHKQILCIADTSYEVPYKFESDEEVYQSVNGFLDNISSKHIVERLRKIGDNYNGY NLDKIYIV

7 SKFYESVSQKTYRDWETINTALEIHYNNILPGNGKSKADKVKKAVKNDLQKSITEINELV SNYKLCS

DDNIKAETYIHEISHILN FEAQELKYNPEIHLVESELKASELKNVLDVIMNAFHWCSVFMTEELVDK

DN FYAELEEIYDEIYPVISLYNLVR YVTQKPYSTKKIKLNFGIPTLADGWSKSKEYSNNAIILMRD

NLYYLGIFNAKNKPDKKIIEGNTSENKGDYKKMIYNLLPGPNKMIPKVFLSSKTGVE TYKPSAYILEG

YKQNKHIKSSKDFDITFCHDLIDYFKNCIAIHPEWKNFGFDFSDTSTYEDISGFYRE VELQGYKIDWT

YISEKDIDLLQEKGQLYLFQIYNKDFSKKSTGNDNLHTMYLKNLFSEENLKDIVLKL NGEAEIFFRKS

SIKNPIIFn KGSILVNRTYEAEEKDQFGNIQIVRKNIPENIYQELYKYFNDKSDKELSDEAAKLKNVVG

HHEAATNIVKDYRYTYDKYFLHMPITINFKANKTGFINDRILQYIAKEKDLHVIGID RGERNLIYVSVI

DTCGNIVEQKSFNIVNGYDYQIKLKQQEGARQIARKEWKEIGKIKEIKEGYLSLVIH EISKMVIKYNAI

IAMEDLSYGFKKGRFKVERQWQKFETMLINKLNYLVFKDISITENGGLLKGYQLTYI PDKLKNVGH

QCGCIFYVPAAYTSKIDPTTGFWIFKFKDLTVDAKREFIKKFDSIRYDSEKNLFCFT FDYN FITQNT

VMSKSSWSWTYGWIKRRFWGRFSNESDTIDITKDMEKTLEMTDINWRDGHDLRQDII DYEIVQHI

FEIFRLTVQMRNSLSELEDRDYDRLISPVLNENNIFYDSAKAGDALPKDADANGAYC IALKGLYEIKQ

ITENWKEDGKFSRDKLKISNKDWFDFIQNKRYL*

SE MTN FTNQYSLSKTLRFELIPQGKTLEFIQEKGLLSQDKQRAESYQEMKKTIDKFHKYFIDLAL SNAK

Q LTHLETYLELYNKSAET KEQKFKDDLKKVQDNLRKEIVKSFSDGDAKSIFAILDKKELITVELEKWF

no EN EQKDIYFDEKFKTFTTYFTGFHQNRKNMYSVEPNSTAIAYRLIHENLPKFLENAKAFEKI KQVES

N LQVNFRELMGEFGDEGLIFWELEEMFQINYYNDVLSQNGITIYNSIISGFTKNDIKYKGL NEYIN YN

0: QTKDKKDRLPKLKQLYKQILSDRISLSFLPDAFTDGKQVLKAIFDFYKINLLSYTIEGQE ESQNLLLLI 8 RQTIENLSSFDTQKIYLKNDTHLTTISQQ GDFS STALNYWYETKVNPKFETEYSKA EKKREIL

DKAKA TKQDYFSIAFLQEVLSEYILTLDHTSDIVKKHSSNCIADYFKNHFVAKKENETDKTFDFI A

NITAKYQCIQGILENADQYEDELKQDQKLIDNLKFFLDAILELLHFIKPLHLKSESI TEKDTAFYDVFE

NYYEALSLLTPLYNMVRNYVTQKPYSTEKIKLNFENAQLLNGWDAN EGDYLTTILKKDGNYFLAI

MDKKHNKAFQKFPEGKENYEKMWKLLPGVNKMLPK FSNKNIAYFNPSK^

DTFNLEHCHTLIDFFKDSLNKHEDWKYFDFQFSETKSYQDLSGFYREVEHQGYKINFKNI DSEYIDGL

VNEGKLFLFQIYSKDFSPFSKGKPNMHTLYWKALFEEQNLQNVIYKLNGQAEIFFRK ASIKPKNIILH

KKKIKIAKKHFIDKKTKTSEIWVQTIKNLNMYYQGKISEKELTQDDLRYIDNFSIFN EKNKTIDIIKDK

RFTVDKFQFHWITMNFKATGGSYINQTVLEYLQNNPEVKIIGLDRGERHLVYLTLID QQGNILKQES

LNTITDSKISTPYHKLLDNKENERDLARKNWGTVENIKELKEGYISQVVHKIATLML EENAIVVMED

LNFGFKRGRFKVEKQIYQKLEKMLIDKLNYLVLKDKQPQELGGLYNALQLTNKFESF QKMGKQSGF

LFYWAWNTSKIDPTTGFVNYFYTKYENVDKAKAFFEKFEAIRFNAEKKYFEFEVKKY SDFNPKAEG

TQQAWTICTYGERIETKRQKDQN FVSTPINLTEKIEDFLGKNQIVYGDGNCIKSQIASKDDKAFFE

TLLYWFKMTLQMRNSETRTDIDYLISPVMNDNGTFYNSRDYEKLENPTLPKDADANG AYHIAKKGL

MLLNKIDQADLTKKVDLSISNRDWLQFVQKNK*

SE MEQEYYLGLDMGTGSVGWAVTDSEYHVLRKHGKALWGVRLFESASTAEERRMFRTSRRRL DRRN

Q WRIEILQEIFAEEISKKDPGFFLRMKESKYYPEDKRDINGNCPELPYALFVDDDFTDKDY HKKFPTIYH no LRK LMNTEETPDIRLWLAIHHMMKH^

N EEYAVVESILKDNMLNRSTKKTP IKALKAKSICEKAVLNLLAGGTVKLSDIFGLEELNETEPJKISFA

O: DNGYDDYIGEVENELGEQFYIIETAKAVYDWAVLVEILGKYTSISEAKVATYEKHKSDLQ FLKKIVR

9 KYLTKEEYKDIFVSTSDKLKNYSAYIGMTKINGKKVDLQSKRCSKEEFYDFIKKNVLKKL EGQPEYE

YLKEELEP^TFLPKQVNRDNGVIPYQIHLYELKKILGNLRDKIDLIKENEDKLVQLF EFRIPYYVGPLN

KIDDGKEGKFTWAVRKSNEKIYPWNFENVVDIEASAEKFIRRMTNKCTYLMGEDVLP KDSLLYSKY

MVLNELNNVKLDGEKLSVELKQRLYTDVFCKYRKVTVKKIKNYLKCEGIISGNVEIT GIDGDFKASL

TAYHDFKEILTGTELAKKDKENIITNIVLFGDDKKLLKKRLNRLYPQITPNQLKKIC ALSYTGWGRFS

KKFLEEITAPDPETGE NIITALWESN NLMQLLSNEYRFMEEVETYNMGKQTKTLSYETVENMY

VSPSVKRQIWQTLKIVKELEKVMKESPKRVFIEMAREKQESKRTESRKKQLIDLYKA CKNEEKDWV

KELGDQEEQKLRSDKLYLYYTQKGRCMYSGEVIELKDLWDNTKYDIDHIYPQSKTMD DSLNNRVL

VKKKYNATKSDKYPLNENIRHERKGFWKSLLDGGFISKEKYERLIRNTELSPEELAG FIERQIVETRQ

STKAVAEILKQVFPESEIVYVKAGTVSRFRKDFELLKVREVNDLHHAKDAYLNIVVG NSYYVKFTK

NASWFKENPGRTYNLKKMFTSGWNIERNGEVAWEVGKKGTIVTVKQIMNKNNILVTR QVHEAKG

GLFDQQIMKKGKGQIAIKETDERLASIEKYGGYNKAAGAYFMLVESKDKKGKTIRTI EFIPLYLKNKI

ESDESIALNFLEKGRGLKEPKILLKKIKE)TLFDVDGFKMWLSGRTGDRLLFKCANQ LILDEKIIVTMK

KIVKFIQRRQENRELKLSDKDGIDNEVLMEIYNTFVDKLENTVYRIRLSEQAKTLID KQKEFERLSLE

DKSSTLFEILHIFQCQSSAANLKMIGGPGKAGILVMNNNISKCNKISIINQSPTGIF ENEIDLLK

SE MN FENFTGLYPISKTLRFELIPQGKTLEYIEKSEILENDNYRAEKYEEVKDIIDGYHKWFIN ETLHDL

Q HINWSELKVALENNRIEKSDASKKELQRVQKIKREEIYNAFIEHEAFQYLFKENLLSDLL PIQIEQSED

no LDAEKKKQAVETFNRFSTYFTGFHENRKNIYSKEGISTSVTYmVHDNFPKFLENMKVFEI LRNECPE

N VISDTANELAPFIDGVRIEDIFLIDFFNSTFSQNGIDYYNRILGGVTTETGEKYRGINEF TNLYRQQHPE

O: FGKSKKATKMVVLFKQILSDRDTLSFIPEMFGNDKQVQNSIQLFYNREISQFENEGVKTD VCTALATL 10 TSKIAEFDTEKIYIQQPELPNVSQRLFGSWNELNACLFKYAELKFGTAEKVANRKKIDKW LKSDLFSF

TELNKALEFSGKDERIENYFSETGIFAQLVKTGFDEAQSILETEYTSEVHLKDQQTD IEKIKTFLDALQ

NLMHLLKSLCVSEEADRDAAFYNEFDMLYNQLKLVWLYNKVR YITQKLFRSDKIKIYFENKGQF

LGGWVDSQTENSDNGTQAGGYIFRKENVINEYDYYLGICSDPKLFRRTTIVSENDRS SFERLDYYQL

KTASVYGNSYCGKHPYTEDKNELVNSIDRFVHLSGNNILIEKIAKDKVKSNPTTNTP SGYLNFIHREA

PNTYECLLQDENFVSLNQRWSALKATLATLVRVPKALVYAKKDYHLFSEIINDIDEL SYEKAFSYFP

VSQTEFENSSNRTIKPLLLFKISNKDLSFAENFEKGNRQKIGKKNLHTLYFEALMKG NQDTIDIGTGM

VFHRVKSLNYNEKTLKYGHHSTQLNEKFSYPIIKDKRFASDKFLFHLSTEINYKEKR KPLNNSIIEFLT

N PDINIIGLDRGERHLIYLTLINQKGEILRQKTFNIVGNTNYHEKLNQREKERDNARKSWA TIGKIKE

LKEGFLSLVIHEIAKIMVENNAIVVLEDLNFGFKRGRFKVEKQIYQKFEKMLIDKLN YLVFKDKKAN

EAGGVLKGYQLAEKFESFQKMGKQSGFLFYWAAYTSKIDPTTGFVNMLNLNYTNMKD AQTLLSG

MDKISFNADANYFEFELDYEKFKTNQTDHTNKWTICTVGEKRFTYNSATKETTTVNV TEDLKKLLD

KFEVKYSNGDNIKDEICRQTDAKFFEIILWLLKLTMQMRNSNTKTEEDFILSPVKNS NGEFFRSNDDA

NGIWPADADANGAYHIALKGLYLVKECFNKNEKSLKIEHKNWFKFAQTRFNGSLTKN G*

SE NffiNFKNLYPINKTLRFELRPYGKTLENFKKSGLLEKDAFKANSRRSMQAIIDEKFKET ffiERLKYTEF

Q SECDLGNMTSKDKKITDKAATNLKKQVILSFDDEIFNNYLKPDKNIDALFKNDPSNPVIS TFKGFTTY

no FVNFFEIRKHIFKGESSGSMAYRIIDENLTTYLNNIEKIKKLPEELKSQLEGIDQIDKLN YNEFITQSGI

N THYNEIIGGISKSENVKIQGINEGINLYCQKNKVKLPRLTPLYKMILSDRVSNSFVLDTI ENDTELIEMI

O: SDLINKTEISQDVIMSDIQNIFIKYKQLGNLPGISYSSIVNAICSDYDN FGDGKRKKSYENDRKKHLE 11 TNWSINYISELLTDTDVSSNIKMRYKELEQNYQVCKENFNATNWMNIKNIKQSEKTNLIK DLLDILK

SIQPJYDLFDIVDEDKNPSAEFYTWLSKNAEKLDFEFNSWNKSRNYLTPJ QYSDKKIKLNFDSPTLA

KGWDANKEIDNSTIIMPJ FN DRGDYDYFLGIWNKSTPA EKIIPLEDNGLFEKMQYKLYPDPSKM^

PKQFLSKIWKAKHPTTPEFDKKYKEGRHKKGPDFEKEFLHELIDCFKHGLVNHDEKY QD GFNLR

NTEDYNSYTEFLEDVERCNYNLSFNKIADTSNLINDGKLY QIWSKDFSIDSKGTKNLNTIYFESLFS

EENMIEKMFKLSGEAEIFYRPASLNYCEDIIKKGHHHAELKDKFDYPIIKDKRYSQD KFFFHVPMVIN

YKSEKLNSKSLN RTNENLGQFTHIIGIDRGERHLIYLTVVDVSTGEIVEQKHLDEIINTDTKGVEHKT

HYLNKLEEKSKTRDNERKSWEAIETIKELKEGYISHVINEIQKLQEKYNALIVMENL NYGFKNSRIKV

EKQVYQKFETALIKKFNYIIDKKDPETYIHGYQLTNPITTLDKIGNQSGIVLYIPAW NTSKIDPVTGFV

NLLYADDLKYKNQEQAKSFIQKIDNIYFENGEFKFDIDFSKWN RYSISKTKWTLTSYGTRIQTFRNP

QKN KWDSAEYDLTEEFKLILNIDGTLKSQDVETYKKFMSLFKLMLQLRNSVTGTDIDYMISPV TDK

TGTHFDSRENIKNLPADADANGAYNIARKGIMAIENIMNGISDPLKISNEDYLKYIQ NQQE

SE MTQFEGFTNLYQVSKTLRFELIPQGKTLKHIQEQGFIEEDKARNDHYKELKPIIDRIYKT YADQCLQL

Q VQLDWENLSAAIDSYRKEKTEETRNALIEEQATYRNAIHDYFIGRTDNLTDAINKRHAEI YKGLFKAE

ID LFNGKVLKQLGTVTTTEHENALLRSFDKFTTYFSGFYENRKNVFSAEDISTAIPHRIVQD NFPKFKEN N CHIFTRLITAVPSLREHFENVKKAIGIFVSTSIEEVFSFPFYNQLLTQTQIDLYNQLLGG ISREAGTEKIK

O: GLNEVLNLAIQKNDETAHIIASLPHRFIPLFKQILSDRNTLSFILEEFKSDEEVIQSFCK YKTLLRNENVL 12 ETAEALFNELNSIDLTHIFISHKKLETISSALCDHWDTLRNALYERRISELTGKITKSAK EKVQRSLKH

EDINLQEIISAAGKELSEAFKQKTSEILSHAHAALDQPLPTTLKKQEEKEILKSQLD SLLGLYHLLDWF

AVDESNEVDPEFSARLTGIKLEMEPSLSFYNKARNYATKXPYSVEKFKLNFQMPTLA SGWDV^

NNGAILFVKNGLYYLGIMPKQKGRYKALSFEPTEKTSEGFDKMYYDYFPDAAKMIPK CSTQLKAVT

AHFQTHTTPILLSNNFIEPLEITKEIYDLN PEKEPKKFQTAYAKKTGDQKGYREALCKWIDFTRDFLS

KYTKTTSIDLSSLRPSSQYKDLGEYYAELNPLLYHISFQRIAEKEIMDAVETGKLYL FQIYN DFAKG

HHGKPNLHTLYWTGLFSPENLAKTSIKLNGQAELFYRPKSRMKRMAHRLGEKMLNKX LKDQKTP

DTLYQELYDYVNHRLSHDLSDEARALLPNVITKEVSHEIIKDRRFTSDKFFFHVPIT LNYQAANSPSKF

NQRVNAYLKEHPETPIIGIDRGERNLIYITVIDSTGKILEQRSLNTIQQFDYQKKLD NREKERVAARQA

WSVVGTIKDLKQGYLSQVIHEIVDLMIHYQAVVVLENLNFGFKSKRTGIAEKAVYQQ FEKMLIDKL

NCLVLKDYPAEKVGGVLNPYQLTDQFTSFAKMGTQSGFLFYVPAPYTSKIDPLTGFV DPFVWKTIKN

HESRKHFLEGFDFLHYDVKTGDFILHFKMNRNLSFQRGLPGFMPAWDIVFEKNETQF DAKGTPFIAG

KRIWVIENHRFTGRYRDLYPANELIALLEEKGI RDGSNILPKLLENDDSHAIDTMVALIRSVLQMR

NSNAATGEDYINSPVRDLNGVCFDSRFQNPEWPMDADANGAYHIALKGQLLLNHLKE SKDLKLQN

GISNQDWLAYIQELRN*

SE MAVKSIKVKLRLDDMPEIRAGLWKLHKEVNAGVRYYTEWLSLLRQENLYRRSPNGDGEQE CDKTA

Q EECKAELLERLRARQVENGHRGPAGSDDELLQLARQLYELLVPQAIGAKGDAQQIARKFL SPLADK

ID DAVGGLGIAKAGN PRWVRMREAGEPGWEEEKEKAETRKSADRTADVLRALADFGLKPLMRVYT N DSEMSSVEWKPLRKGQAWTWDRDMFQQAIERMMSWESWNQRVGQEYAKLVEQKNRFEQKN FV

O: GQEHLVHLVNQLQQDMKEASPGLESKEQTAHYVTGRALRGSDKVFEKWGKLAPDAPFDLY DAEIK 13 NVQRRNTRRFGSHDLFAKLAEPEYQALWREDASFLTRYAVYNSILRKLNHAKMFATFTLP DATAHP

IWTRFDKLGGNLHQYTFLFNEFGERRHAIRFHKLLKVENGVAREVDDVTVPISMSEQ LDNLLPRDPN

EPIALYFRDYGAEQHFTGEFGGAKIQCRRDQLAHMHRRRGARDVYLNVSVRVQSQSE ARGERRPPY

AAVFRLVGDNHRAFVHFDKLSDYLAEHPDDGKLGSEGLLSGLRVMSVDLGLRTSASI SVFRVARKD

ELKPNSKGRVPFFFPIKGNDNLVAVHERSQLLKLPGETESKDLRAIREERQRTLRQL RTQLAYLRLLV RCGSEDVGPJ ERSWAKLIEQPVDAA HMTPDWP^AFENELQKLKSLHGICSDKEWMDAVYESVRR

VWRHMGKQVRDWRKDVRSGERPKIRGYAKDVVGGNSIEQIEYLERQYKFLKSWSFFG KVSGQVIR

AEKGSRFAITLREHIDHAKEDRLKKLADRIIMEALGYVYALDERGKGKWVAKYPPCQ LILLEELSEY

QFN DRPPSENNQLMQWSHRGVFQELINQAQVHDLLVGTMYAAFSSRFDARTGAPGIRCRRVPA RC

TQEHNPEPFPWWLNKFWEHTLDACPLRADDLIPTGEGEIFVSPFSAEEGDFHQIHAD LNAAQNLQQ

RLWSDFDISQIRLRCDWGEVDGELVLIPRLTGKRTADSYSNKVFYTNTGVTYYERER GKKRRKVFA

QEKL SEEEAELL VE ADE AREKS VVLMRDP SGIINRGNWTRQKEF WSMVNQRIEGYL VKQIRSRVPLQ

DSACENTGDI*

SE MATRSFILKIEPNEEVKKGLWKTHEVLNHGIAYYMNILKLIRQEAIYEHHEQDPKNPKKV SKAEIQAE

Q LWDFVLKMQKCNSFTHEVDKDV NILRELYEELWSSVEKKGEANQLSNKFLYPLVDPNSQSGKG

no TASSGRKPRWYNLKIAGDPSWEEEKKKWEEDKKKDPLAKILGKLAEYGLIPLFIPFTDSN EPIVKEIK

N WMEKSRNQSVRRLDKDMFIQALERFLSWESWNLKVKEEYEKVEKEHKTLEERIKEDIQAF KSLEQY

O: EKERQEQLLRDTLNTNEYRLSKRGLRGWREIIQKmKMDENEPSEKYLEVFKDYQRKHPRE AGDYS 14 WEFLSKKENHFIWR HPEYPYLYATFCEIDKKKKDAKQQATFTLADPINHPLWVRFEERSGSNLNK

YRILTEQLHTEKLKKKLTVQLDRLIYPTESGGWEEKGKVDIVLLPSRQFYNQIFLDI EEKGKHAFTYK

DESIKFPLKGTLGGARVQFDRDHLRRYPHKVESGNVGRIYFNMTVNIEPTESPVSKS LKIHRDDFPKF

VNFKPKELTEWIKDSKGKKLKSGIESLEIGLRVMSIDLGQRQAAAASIFEVVDQKPD IEGKLFFPIKGT

ELYAVHRASFNIKLPGETLVKSREVLRKAREDNLKLMNQKLNFLRNVLHFQQFEDIT EREKRVTKWI

SRQENSDVPLVYQDELIQIRELMYKPYKDWVAFLKQLHKRLEVEIGKEVKHWRKSLS DGRKGLYGI

SLKNIDEIDRTRKFLLRWSLRPTEPGEVRRLEPGQRFAIDQLNHLNALKEDRLKKMA NTIIMHALGYC

YDVRKKKWQAKNPACQIILFEDLSNYNPYEERSRFENSKLMKWSRREIPRQVALQGE IYGLQVGEV

GAQFSSRFHAKTGSPGIRCSVVTKEKLQDNRFFKNLQREGRLTLDKIAVLKEGDLYP DKGGEKFISLS

KDRKLVTTHADINAAQNLQKRFWTRTHGFYKVYCKAYQVDGQTVYIPESKDQKQKII EEFGEGYFI

LKDGVYE WGNAGKLKIKKGS SKQ S S SEL VD SDILKD SFDL ASELKGEKLMLYRDP SGNVFPSDKWM

AAGVFFGKLERILISKLTNQYSISTIEDDSSKQSM*

SE MPTRTINLKLVLGKNPENATLRRALFSTHRLVNQATKRIEEFLLLCRGEAYRTVDNEGKE AEIPRHA

Q VQEEALAFAKAAQRHNGCISTYEDQEILDVLRQLYERLVPSVNEN EAGDAQAANAWVSPLMSAES

no EGGLSWDKVLDPPPVWMKLKEEKAPGWEAASQIWIQSDEGQSLLNKPGSPPRWIRKLRSG QPWQD

N DFVSDQKKKQDELTKGNAPLIKQLKEMGLLPLVNPFFRHLLDPEGKGVSPWDRLAVRAAV AHFISW

O: ESWNHRTRAEYNSLKLRRDEFEAASDEFKDDFTLLRQYEAKRHSTLKSIALADDSNPYRI GVRSLRA 15 WNRVREEWIDKGATEEQRVTILSKLQTQLRGKFGDPDLFNWLAQDRHVHLWSPRDSVTPL VRINAV

DKVLRRRKPYALMTFAHPRFHPRWILYEAPGGSNLRQYALDCTENALHITLPLLVDD AHGTWIEKKI

R LAPSGQIQDLTLEKLEKKKNRLYYRSGFQQFAGLAGGAEVLFHRPYMEHDERSEESLLER PGAV

WFKLTLDVATQAPPNWLDGKGRWTPPEVHHFKTALSNKSKHTRTLQPGLRVLSVDLG MRTFASCS ELIEGKPETGRAFPVADERSMDSPN LWAKHERSFKLTLPGETPSRKEEEERSIARAEIYALKRDIQ

RLKSLLRLGEEDNDNRRDALLEQFFKGWGEEDVVPGQAFPRSLFQGLGAAPFRSTPE LWRQHCQTY

YDKAEACLAKHISDWRKRTRPRPTSREMWYKTRSYHGGKSIWMLEYLDAVRKLLLSW SLRGRTYG

AINRQDTARFGSLASRLLHHINSLKEDRIKTGADSIVQAARGYIPLPHGKGWEQRYE PCQLILFEDLA

RYRFRVDRPRRENSQLMQWNHRAIVAETTMQAELYGQIVENTAAGFSSRFHAATGAP GVRCRFLLE

RDFDNDLPKPYLLRELSWMLGNTKVESEEEKLRLLSEKIRPGSLVPWDGGEQFATLH PKRQTLCVIH

ADMNAAQNLQRRFFGRCGEAFRLVCQPHGDDVLRLASTPGARLLGALQQLENGQGAF ELVRDMGS

TSQMNRFVMKSLGKKKIKPLQDNNGDDELEDVLSVLPEEDDTGRITVFRDSSGIFFP CNVWIPAKQF WPAVRAMIWKVMASHSLG*

SE MTKLPJmQKKLTHDWAGSKKREVLGSNGKLQNPLLMPVKKGQVTEFRKAFSAYARATKGE MTDG

Q R NMFTHSFEPFKTKPSLHQCELADKAYQSLHSYLPGSLAHFLLSAHALGFRIFSKSGEATA FQASSK

no IEAYESKLASELACVDLSIQNLTISTLFNALTTSVRGKGEETSADPLIARFYTLLTGKPL SRDTQGPERD

N LAEVISRKIASSFGTWKEMTANPLQSLQFFEEELHALDANVSLSPAFDVLIKMNDLQGDL KNRTIVFD

O: PDAP EYNAEDPADIIIKLTARYAKEAVIKNQNVGNYVKNAITTTNANGLGWLLNKGLSLLPVST D 16 DELLEFIGVERSHP SCH ALIELI AQLE APELFEKNVF SDTRSEVQGMID S AVSNHI ARLS S SRNSLSMD S

EELERLIKSFQIHTPHCSLFIGAQSLSQQLESLPEALQSGVNSADILLGSTQYMLTN SLVEESIATYQRT

LNRINYLSGVAGQINGAIKRKAIDGEKIHLPAAWSELISLPFIGQPVIDVESDLAHL KNQYQTLSNEFD

TLISALQKNFDLNFNKALLNRTQHFEAMCRSTKKNALSKPEIVSYRDLLARLTSCLY RGSLVLRRAGI

EVLKKHKIFESNSELREHVHERKHF VSPLDRKAKKLLRLTDSRPDLLHVIDEILQHDNLENKDRES

LWLVRSGYLLAGLPDQLSSSFINLPIITQKGDRRLIDLIQYDQINRDAFVMLVTSAF KSNLSGLQYRAN

KQSFVVTRTLSPYLGSKLVYVPKDKDWLVPSQMFEGRFADILQSDYMVWKDAGRLCV IDTAKHLS

NIKKSVFSSEEVLAFLRELPHRTFIQTEVRGLGVNVDGIAFNNGDIPSLKTFSNCVQ VKVSRTNTSLVQ

TLNRWFEGGKVSPPSIQFERAYYKKDDQIHEDAAKRKIRFQMPATELVHASDDAGWT PSYLLGIDPG

EYGMGLSLVSINNGEVLDSGFIHINSLINFASKKSNHQTKVVPRQQYKSPYANYLEQ SKDSAAGDIA

HILDRLIYKLNALPVFEALSGNSQSAADQVWTKVLSFYTWGDNDAQNSIRKQHWFGA SHWDIKGM

LRQPPTEKKPKPYIAFPGSQVSSYGNSQRCSCCGR PIEQLREMAKDTSIKELKIRNSEIQLFDGTIKLF

NPDPSTVIERRRHNLGPSRIPVADRTFKNISPSSLEFKELITIVSRSIRHSPEFIAK KRGIGSEYFCAYSDC

NS SLNSE AN AAANV AQKFQKQLFFEL *

SE MKRILNSLKVAALRLLFRGKGSELVKTVKYPLVSPVQGAVEELAEAIRHDNLHLFGQKEI VDLMEK

Q DEGTQVYSVVDFWLDTLRLGMFFSPSANALKITLGKFNSDQVSPFRKVLEQSPFFLAGRL KVEPAERI

no LSVEIRKIGKRENRVENYAADVETCFIGQLSSDEKQSIQKLANDIWDSKDHEEQRMLKAD FFAIPLIK

N DPKAVTEEDPENETAGKQKPLELCVCLVPELYTRGFGSIADFLVQRLTLLRDKMSTDTAE DCLEYVG

O: IEEEKGNGMNSLLGTFLKNLQGDGFEQIFQFMLGSYVGWQGKEDVLRERLDLLAEKVKRL PKPKFA 17 GEWSGHRMFLHGQLKSWSSNFFRLFNETRELLESIKSDIQHATMLISYVEEKGGYHPQLL SQYRKLM

EQLPALRTKVLDPEIEMTHMSEAVRSYIMIHKSVAGFLPDLLESLDRDKDREFLLSI FPRIPKIDKKTK

EIVAWELPGEPEEGYLFTANNLFRNFLENPKHWRFMAERIPEDWTRLRSAPVWFDGM VKQWQKV

VNQLVESPGALYQFNESFLRQRLQAMLTVYKRDLQTEKFLKLLADVCRPLVDFFGLG GNDIIFKSCQ

DPRKQWQTVIPLSWADVYTACEGLAIRLRETLGFEWKNLKGHEREDFLRLHQLLGNL LFWIRDAK

LVVKLEDWMNNPCVQEYVEARKAIDLPLEIFGFEWIFLNGYLFSELRQLELLLRRKS VMTSYSVKTT

GSPNRLFQLVYLPLNPSDPEKKNSNNFQERLDTPTGLSRRFLDLTLDAFAGKLLTDP VTQELKTMAG

FYDHLFGFKLPCKL AAMSNHPGS S SKMV VL AKPKKG VASNIGFEPIPDP AHP VFRVRS S WPELKYLE

GLLYLPEDTPLTIELAETSVSCQSVSSVAFDLKNLTTILGRVGEFRVTADQPFKLTP IIPEKEESFIGKTY

LGLDAGERSGVGFAIVTVDGDGYEVQRLGVHEDTQLMALQQVASKSLKEPVFQPLRK GTFRQQERI

RKSLRGCYWNFYHALMIKYRAKVVHEESVGSSGLVGQWLRAFQKDLKKADVLPKKGG KNGVDK

KKRESSAQDTLWGGAFSKKEEQQIAFEVQAAGSSQFCLKCGWWFQLGMREVNRVQES GVVLDWN

RSIVTFLIESSGEKWGFSPQQLEKGFRPDIETFKKMVRDFMRPPMFDRKGRPAAAYE RFVLGRRHRR

YRFDK EERFGRSALFICPRVGCGNFDHSSEQSAVVLALIGYIADKEGMSGKKLVYVRLAELMAE

WKLKKLERSR VEEQ S S AQ *

SE MAESKQMQCRKCGASMKYEVIGLGKKSCRYMCPDCGNHTSARKIQNKKKRDKKYGSASKA QSQR

Q I AV AG AL YPDKKVQTIKTYKYP ADLNGEVHD S GVAEKI AQ AIQEDEIGLLGP S SEY ACWI ASQKQSE no PYSVVDFWFDAVCAGGVFAYSGARLLSTVLQLSGEESVLRAALASSPFVDDINLAQAEKF LAVSRRT

N GQDKLGKRIGECFAEGRLEALGIKDPJVIP^FVQAIDVAQTAGQPJAAKLKIFGISQMPE AKQWN DS O: GLTVCILPDYYVPEENRADQLVVLLRRLREIAYCMGIEDEAGFEHLGIDPGALSNFSNGN PKRGFLGR 18 LLN DIIALANNMSAMTPYWEGRKGELIERLAWLKHRAEGLYLKEPHFGNSWADHRSRIFSRIA GW

LSGCAGKLKIAKDQISGVRTDLFLLKRLLDAVPQSAPSPDFIASISALDRFLEAAES SQDPAEQVRALY

AFHLNAPAWSIANKAVQRSDSQEWLIKELDAVDHLEFNKAFPFFSDTGKKKKKGANS NGAPSEEE

YTETESIQQPEDAEQEVNGQEGNGASKNQKKFQRIPRFFGEGSRSEYRILTEAPQYF DMFCN MRAIF

MQLESQPRKAPRDFKCFLQNRLQKLYKQTFLNARSNKCRALLESVLISWGEFYTYGA NEKKFRLRH

EASERSSDPDYVVQQALEIARRLFLFGFEWRDCSAGERVDLVEIHKKAISFLLAITQ AEVSVGSYNWL

GNSTVSRYLSVAGTDTLYGTQLEEFLNATVLSQMRGLAIRLSSQELKDGFDVQLESS CQDNLQHLLV

YRASRDLAACKRATCPAELDPKILVLPVGAFIASVMKMIERGDEPLAGAYLRHRPHS FGWQIRVRGV

AEVGMDQGTALAFQKPTESEPFKIKPFSAQYGPVLWLNSSSYSQSQYLDGFLSQPKN WSMRVLPQA

GSWVEQRVALIWNLQAGKMRLERSGARAFFMPVPFSFRPSGSGDEAVLAPNRYLGLF PHSGGIEYA

VVDVLDSAGFKILERGTIAWGFSQKRGERQEEAHREKQRRGISDIGRKKPVQAEVDA ANELHRKYT

DVATRLGCRIVVQWAPQPKPGTAPTAQTVYARAVRTEAPRSGNQEDHARMKSSWGYT WGTYWEK

RKPEDILGISTQVYWTGGIGESCPAVAVALLGHIRATSTQTEWEKEEVVFGRLKKFF PS*

SE MEKRINKIRKKLSADNATKPVSRSGPMKTLLWVMTDDLKKRLEKRRKKPEVMPQVISNNA AN^

Q MLLDDYTKMKEAILQWWQEFKDDHVGLMCKFAQPASKKIDQNKLKPEMDEKGNLTTAGFA CSQ

no CGQPLFVYKLEQVSEKGKAYTNYFGRCNVAEHEKLILLAQLKPEKDSDEAVTYSLGKFGQ RALDFY

N SIHVTKESTHPVKPLAQIAGNRYASGPVGKALSDACMGTIASFLSKYQDIIIEHQKVVKG NQKRLESL

O: REL AGKENLEYP S VTLPPQPHTKEGVD AYNE VI ARVRMWVNLNL WQKLKL SRDD AKPLLRLKGFP S 19 FPVVERRENEVDWWNTINEVKKLIDAKRDMGR WSGVTAEKRNTILEGYNYLPNENDHKKREG

LENPKKPAKRQFGDLLLYLEKKYAGDWGKVFDEAWERIDKKIAGLTSHIEREEARNA EDAQSKAVL

TDWLRAKASFVLERLKEMDEKEFYACEIQLQKWYGDLRGNPFAVEAENRVVDISGFS IGSDGHSIQY

RNLLAWKYLENGKREFYLLMNYGKKGRIRFTDGTDIKKSGKWQGLLYGGGKAKVIDL TFDPDDEQ

LIILPLAFGTRQGREFIWNDLLSLETGLIKLANGRVIEKTIYNKKIGRDEPALFVAL TFERREVVDPSNI

KPVNLIGVDRGENIPAVIALTDPEGCPLPEFKDSSGGPTDILRIGEGYKEKQRAIQA AKEVEQRRAGG

YSRKFASKSRNLADDMWNSARDLFYHAVTHDAVL ENLSRGFGRQGKRTFMTERQYTKMEDW

LTAKLAYEGLTSKTYLSKTLAQYTSKTCSNCGFTITTADYDGMLVRLKKTSDGWATT LN KELKAE

GQITYYNRYKRQTVEKELSAELDRLSEESGN DISKWTKGRRDEALFLLKKRFSHRPVQEQFVCLDC

GHEVHADEQAALNIARSWLFLNSNSTEFKSYKSGKQPFVGAWQAFYKRRLKEVWKPN A

SE MKRINKIRRRLVKDSNTKKAGKTGPMKTLLVR

Q LTDYTEMKKAILHVYWEEFQKDPVGLMSRVAQPAPKNIDQRKLIPVKDGNERLTSSGFAC SQCCQP

ID LYVYKLEQVNDKGKPHTNYFGRCNVSEHERLILLSPHKPEANDELVTYSLGKFGQRALDF YSIHVTR

N ESNHP VKPLEQIGGNS CAS GP VGKAL SD ACMGAVASFLTKYQDIILEHQKVIKKNEKRL ANLKDI AS

O: ANGLAFPKITLPPQPHTKEGIEAYNNVVAQIVIWVNLNLWQKLKIGRDEAKPLQRLKGFP SFPLVERQ 20 ANEVDWWDMVCNVKKLINEKKEDGK WQNLAGYKRQEALLPYLSSEEDRKKGKKFARYQFGD

LLLHLEKKHGEDWGKVYDEAWERIDKKVEGLSKHIKLEEERRSEDAQSKAALTDWLR AKASFVIEG

LKEADKDEFCRCELKLQKWYGDLRGKPFAIEAENSILDISGFSKQYNCAFIWQKDGV KKLNLYLIIN

YFKGGKLRFKKIKPEAFEANRFYTVINKXSGEIWMEVNFNFDDPNLIILPLAFGKRQ GREFIW^

LETGSLKL ANGRVIEKTLYNRRTRQDEP ALF V ALTFERRE VLD S SNIKPMNLIGIDRGENIP AVI ALTD

PEGCPLSRFKDSLGNPTHILRIGESYKEKQRTIQAAKEVEQRRAGGYSRKYASKAKN LADDMVRNT ARDLLYYAVTQDAMLIFENLSRGFGRQGKRTFMAERQYTRMEDWLTAKLAYEGLPSKTYL SKTLA QYTSKTCSNCGFTITSADYDRVLEKLKKTATGWMTTINGKELKVEGQITYYNRYKRQNVV KDLSVE LDRLSEESVNNDISSWTKGRSGEALSLLKKRFSHRPVQEKFVCLNCGFETHADEQAALNI ARSWLFL RSQEYKKYQTNKTTGNTDKRAFVETWQSFYRKKLKEVWKP

SE atgGGAAAAATGTATTATCTTGGTCTGGATATAGGAACAAATTCTGTTGGATATGCCGTA ACCGA

Q CCCATCGTACCATTTGCTCAAATTTAAAGGCGAACCGATGTGGGGTGCCCACGTGTTTGC TGCG

no GGGAATCAATCAGCTGAACGGAGAAGCTTTCGTACGAGCCGCAGACGCCTTGACCGCAGG CAA

N CAGCGTGTCAAACTGGTTCAAGAAATCTTTGCTCCCGTGATTAGTCCCATTGATCCACGT TTTTT

O: TATCAGACTTCATGAGAGCGCTTTATGGCGGGATGATGTGGCTGAAACGGATAAACATAT TTTC 21 TTTAATGACCCGACCTATACGGATAAGGAATATTATTCTGACTATCCAACCATCCATCAT CTCAT

TGTGGACCTTATGGAAAGCAGTGAAAAGCATGACCCGCGGCTTGTTTATTTGGCTGT TGCCTGG

CTGGTTGCTCATCGTGGTCATTTCCTCAATGAAGTGGATAAGGATAATATTGGGGAT GTCCTGAG

TTTTGACGCCTTTTATCCTGAGTTTCTGGCATTTCTTTCCGATAATGGGGTGTCACC TTGGGTATG

TGAGTCAAAAGCACTCCAAGCGACCCTGCTTTCACGAAACTCCGTCAACGATAAGTA TAAAGCC

TTGAAGTCTCTGATCTTTGGCAGCCAAAAGCCGGAGGATAATTTTGATGCCAATATC AGTGAAG

ATGGACTTATCCAACTTTTAGCAGGAAAAAAGGTCAAGGTCAATAAACTTTTTCCTC AAGAAAG

TAATGATGCTTCCTTTACACTCAATGATAAGGAAGATGCAATTGAGGAAATCTTAGG AACGCTT

ACACCGGATGAGTGTGAATGGATTGCGCATATTAGGAGGCTGTTTGATTGGGCCATC ATGAAAC

ATGCTCTCAAAGATGGCAGAACAATCTCCGAATCGAAAGTAAAGCTCTATGAACAGC ATCACCA

TGACTTGACACAGCTCAAGTATTTTGTGAAGACCTATCTAGCAAAGGAATATGATGA CATTTTTC

GAAACGTAGATAGTGAAACAACCAAAAACTATGTCGCATATTCCTATCATGTAAAAG AAGTCAA

GGGTACATTGCCCAAAAATAAGGCAACCCAAGAAGAATTTTGCAAGTATGTCCTTGG AAAGGTA

AAGAACATCGAATGCAGTGAAGCTGATAAGGTTGATTTTGATGAAATGATTCAGCGT CTTACAG

ACAATTCCTTTATGCCGAAACAAGTATCAGGTGAAAACAGGGTTATCCCTTACCAGC TTTACTAT

TATGAACTAAAGACTATTTTGAATAAAGCCGCTTCTTATCTGCCTTTTTTGACCCAA TGCGGAAA

AGATGCCATCTCCAATCAAGATAAGCTCCTTTCCATCATGACCTTTCGGATTCCGTA TTTCGTTG

GGCCCTTGCGCAAGGACAATTCAGAGCATGCCTGGCTGGAACGAAAAGCAGGGAAAA TCTATC

CGTGGAATTTTAACGACAAAGTTGACCTTGATAAAAGTGAAGAAGCGTTCATTCGGA GAATGAC

GAATACCTGCACTTATTATCCCGGTGAAGATGTTTTGCCACTTGACTCCCTTATTTA TGAAAAAT

TCATGATCCTCAATGAAATCAATAATATCCGAATTGATGGTTATCCTATTTCTGTAG ATGTAAAA

TGCTTTCCTTGGGTGCCTTGGATAAGCATGGTAAATTGACGGGAATCGATACTACCA TCCATAGC

AATTACAATACATACCATCATTTTAAATCGCTCATGGAGCGTGGCGTTCTTACTCGT GATGATGT

GGAACGCATTGTGGAGCGTATGACCTATAGTGATGATACAAAACGCGTCCGTCTTTG GCTGAAC

AATAATTATGGAACGCTCACTGCTGACGACGTAAAGCATATTTCAAGGCTCCGAAAG CATGATT

TTGGCCGGCTTTCCAAAATGTTCCTCACAGGCCTAAAGGGAGTTCATAAGGAAACGG GGGAACG

AGCTTCCATTTTGGATTTTATGTGGAATACCAATGATAACTTGATGCAGCTTTTATC TGAATGTT

ATACTTTTTCGGATGAAATTACCAAGCTGCAGGAAGCATACTATGCCAAGGCGCAGC TTTCCCT

GAATGATTTTCTGGACTCCATGTATATTTCAAATGCTGTCAAACGTCCTATCTATCG AACTCTTG

CCGTTGTAAATGACATACGCAAAGCCTGTGGGACGGCGCCAAAACGCATTTTTATCG AAATGGC

AAGAGATGGGGAAAGCAAAAAGAAAAGGAGCGTAACAAGAAGAGAACAAATCAAGAA TCTTT

ATAGGTCCATCCGCAAGGATTTTCAGCAGGAGGTAGATTTCCTTGAAAAAATCCTTG AAAACAA AAGCGATGGACAGCTGCAAAGCGATGCGCTCTATCTATACTTTGCGCAGCTTGGAAGGGA TATG

TATACCGGGGACCCTATCAAGTTGGAGCATATCAAGGACCAGTCCTTCTATAATATT GATCATAT

CTATCCCCAAAGCATGGTCAAGGACGATAGTCTTGATAACAAGGTGTTGGTTCAATC GGAAATT

AATGGAGAGAAGAGCAGTCGATATCCTCTTGATGCTGCTATCCGTAATAAAATGAAG CCTCTTT

GGGATGCTTATTATAACCATGGCCTGATTTCCCTCAAGAAGTATCAGCGTTTGACGC GGAGCAC

TCCCTTTACAGATGATGAAAAGTGGGATTTCATCAATCGGCAGCTTGTTGAGACAAG ACAATCC

ACGAAGGCCTTGGCAATCTTACTAAAAAGGAAGTTCCCTGATACGGAGATTGTCTAC TCCAAGG

CAGGGCTTTCTTCTGATTTTCGGCATGAGTTTGGTCTCGTAAAATCGAGGAATATCA ATGACCTG

CACCATGCAAAGGACGCATTTCTTGCGATTGTAACAGGAAATGTCTATCATGAACGC TTTAATC

GCCGGTGGTTTATGGTGAACCAGCCCTATTCCGTCAAGACCAAGACGTTGTTTACGC ATTCTATT

AAAAATGGTAATTTTGTAGCTTGGAATGGAGAAGAGGATCTTGGCCGCATTGTTAAA ATGTTAA

AGCAAAATAAGAACACTATTCATTTCACGCGGTTCTCTTTTGATCGAAAGGAAGGCC TGTTTGAT

ATTCAGCCACTAAAAGCGTCAACCGGTCTTGTACCAAGAAAAGCCGGACTAGACGTG GTAAAAT

ATGGTGGCTATGACAAATCGACAGCAGCTTATTATCTCCTTGTTCGATTTACACTAG AAGATAAA

AAGACTCAACATAAATTGATGATGATTCCTGTAGAAGGCTTGTATAAAGCTCGAATT GACCATG

ATAAGGAATTCTTAACGGACTATGCACAAACTACAATCAGTGAAATCCTACAAAAAG ATAAAC

AAAAGGTGATAAATATAATGTTTCCAATGGGAACAAGGCACATTAAACTGAATTCCA TGATTTC

AATCGATGGTTTTTATCTTTCCATTGGAGGAAAGTCTAGTAAGGGAAAATCGGTGTT GTGTCATG

CTATGGTACCTCTTATTGTACCTCATAAGATAGAATGTTATATTAAGGCGATGGAGT CTTTTGCA

CGTAAATTTAAAGAAAATAATAAATTAAGGATTGTGGAAAAGTTTGATAAGATTACG GTGGAA

GATAACTTGAACCTATACGAACTATTTTTACAAAAACTTCAACATAACCCATATAAT AAGTTCTT

CTCCACACAATTTGATGTGCTGACTAATGGAAGAAGTACATTTACTAAATTATCTCC AGAGGAA

CAAGTTCAAACGTTATTGAATATCTTATCAATTTTTAAAACTTGTCGGAGCTCTGGC TGCGATTT

AAAATCCATTAACGGTTCTGCTCAAGCTGCCAGAATTATGATCAGCGCAGATTTAAC TGGACTC

TCAAAAAAATATTCCGATATTCGGCTTGTTGAGCAATCAGCATCTGGACTTTTTGTT AGTAAATC

ACAAAATCTTTTGGAGTATTTAtga

SE atgtcttcattaacaaaatttacaaataaatacagtaagcagctaaccataaaaaatgaa ctcatcccagtaggaaagactctcgagaacattaaggaaaacggtc

Q tcatagatggagatgaacagctaaacgagaattatcaaaaagcaaagataatcgttgatg attttctacgagatttcataaataaagctttaaataatacccaaatag no gaaattggagagaattagcagatgctttaaataaagaagatgaagataacatagaaaagc tccaagacaaaatcagaggaataattgtaagtaaattcgagaca

N tttgatttgttttcttcttactcgataaagaaagacgaaaagataatagatgatgataat g^

O: aatatatttttaagaaaaacctttttaaattagtacttccttcttatttaaagacaacaa atcaggataaactgaaaataatctcttcttttga

22 aggattctttgagaacagaaaaaatattttcactaagaagcctatatctacgtcaattgc ctacagaattgtccatgataactttccaaagtttctagataacat^ gttttaatgtgtggcaaacagaatgcccacagttaattgtaaaggctgataattatt^

gtaggagcatatgattacttcttatcccagaatggcattgatttctacaacaacattatc ggcggtctaccagcatttgctggtcatgagaaaatccaaggacttaat gaatttataaatcaagaatgccaaaaggacagcgaactaaaatctaaactgaaaaacaga catgctttcaaaatggctgttctatttaagcaaattctttcagatag agaaaaaagttttgttatagacgagttcgaatctgatgctcaggtcatagatgcggttaa gaacttctatgcagaacaatgtaaggataataatgttatttttaac taaatcttatcaagaatatagcgttcttatctgatgatgaattagatggaattttMagaa ggcaagtatttaagctctgtttcccaaaagctatatt^ agcttcgaaatgatattgaagatagtgcaaacagtaaacaaggaaataaagagttagcaa agaaaattaaaacaaataaaggcgatgttgaaaaggccataagt aaatatgagttttcttMcagaacttaactcaattgtacatgataatacaaaattcagtga ccttctttcttgtacgttacataaagtggctagcgaaaaacte gttaatgaaggggactggccaaaacacctgaaaaataatgaagaaaaacaaaagataaaa gagcctttagatgcattgttagaaatttataatacattgctgatat tcaactgcaagtcatttaataagaacggtaatttcMgttgattatgacagatgcataaa ¾^

aaagaaaccttataacacagacaaattcaaattaaactttaacagtcctcaattaggaga gggctttagtaagtcgaaagaaaatgactgtctgacattattatte aaaagacgacaattactatgttggaattatcagaaaaggggcaaaaattaactttgatga tacacaagccattgcagacaatacagataactgtatatttaagatga attatttcctattaaaagatgctaaaaagtttattcctaaatgttcaatt^

aaagaaaaatttgcctctccccttgttattaagaaatcaacatttttattagcaacagca catgtaaaaggaaagaaaggaaacataaaaaaattccaaaaggaat attctaaggaaaatccaacagaatatagaaattctctgaatgaatggattgcattttgta aagaatttctaaaaacatataaggcggcaacaatctttgacattacaa cgttaaaaaaagctgaagaatatgctgatattgttgagttttataaggatgtag

attgataatggggacttatatttattcagaatcaataataaagatttcagttcaaaatct actggtacaaagaatcttcatacgctcMcttcaggcaatctttga agaaacctcaataatcctactattatgttaaatggcggagcagagttattttatcgaaaa gaaagcattgaacagaaaaataggataactcataaggcaggatcaa ttcttgtaaacaaggtttgtaaggatggaacaagtctagatgacaaaatcagaaacgaaa taMcaaM^

aaaaagttttacctaatgtaataaaaaaagaagcaactcacgacataacaaaagataagc gatttacat^^

taaggaaggagatacaaaacaatttaacaatgaggttttatctttccttagaggtaatcc agacattaatatcatcggaattgacagaggagaaagaaaccttatat acgtaactgttattaatcagaaaggcgaaatacttgacagcgtttcgtttaacacagtaa caaacaagtcgagcaaaattgaacaaactgttgattatgaggaaaa gcttgctgttagggaaaaagaaagaatagaagcaaaaagatcctgggattcaatatcaaa gatagcaaccttaaaagaaggttatctatcagctattgttcatgag atatgcctactgatgatcaaacacaacgcaatcgttgtacttgagaatctaaatgcagga tttaagagaattagaggaggattatcagaaaagtctgtttatcagaa attcgagaagatgctMtaacaaactaaattactttgtatctaaaaaagaatcagactgga ataaacctagtggacttttaaatggtttacaactttcagaccagttc gagtcatttgagaaattaggaattcaatctgggttcatcttcMgttcctgcagcata^

aaggtaagaaatgttgatgcaataaagagttttttcagtaatttcaatgaaat^^

gaagggcttcagctcatttgtaaaattcagtaaatctaaatggaatgtatatacatttgg agagagaataataaaaccaaagaataagcaagggtatcgtgaagat aagagaattaatttaacatttgaaatgaaaaaacttctgaatgaatataaagtaagtttt g

taccttctggaaagaactattctttatttttaaaacaactctgcagctta^

aggagagttctttgtatcaggaactcataacaagacattacctcaagactgtgatgcaaa tggagcatatcatatcgccctaaaaggtctgatgattcttgaacgta acaatcttgttagagaagaaaaagacacaaagaagataatggcaatttctaatgttgact ggtttgagtatgttcaaaaaaggagaggtgtcctgtaa

SE ATGAACAACTATGATGAGTTTACCAAACTGTACCCAATACAGAAAACGATAAGGTTCGAA TTGA

Q AGCCGCAGGGAAGAACGATGGAACACCTCGAAACATTCAACTTTTTCGAAGAGGACAGGG ATA

no GAGCGGAGAAATATAAGATTTTAAAGGAAGCAATCGACGAGTATCATAAGAAGTTTATAG ACG

N AACATCTAACAAATATGTCTCTTGACTGGAATTCTTTAAAACAGATTTCAGAGAAATACT ATAA

O: GAGTAGAGAGGAAAAAGACAAGAAAGTTTTTCTGTCAGAACAGAAACGCATGAGGCAAGA GAT

23 AGTTTCTGAGTTCAAAAAAGACGATCGGTTTAAAGATCTTTTTTCAAAAAAATTGTTTTC TGAAC

TTCTCAAGGAAGAGATTTACAAAAAAGGAAACCATCAGGAAATTGACGCATTGAAAA GTTTTG

ATAAATTCTCAGGCTATTTTATTGGGTTGCATGAGAACCGAAAAAATATGTATTCTG ACGGAGA

CGAGATCACGGCTATCTCTAACCGTATTGTAAATGAGAATTTCCCGAAGTTCCTCGA CAACCTTC

AGAAATATCAGGAAGCTCGTAAAAAATATCCAGAGTGGATCATTAAGGCAGAATCTG CTTTAGT

TGCACATAATATCAAGATGGATGAAGTCTTTTCCTTAGAGTATTTCAACAAAGTCCT GAATCAA

GAAGGAATACAGAGATACAATCTCGCCCTAGGTGGCTATGTGACCAAAAGTGGTGAG AAAATG

ATGGGGCTTAATGATGCACTTAATCTTGCCCATCAAAGTGAAAAAAGCAGCAAGGGA AGGATA

CACATGACTCCACTCTTCAAACAGATTCTGAGTGAAAAAGAGTCCTTTTCTTATATA CCAGATGT

TTTTACAGAAGACTCTCAACTTTTACCATCCATTGGTGGGTTCTTTGCACAAATAGA AAATGATA

AGGACGGGAATATTTTTGACAGAGCATTAGAATTGATATCTTCTTATGCAGAATACG ATACAGA

AAGGATATATATCAGGCAAGCGGACATAAACAGAGTTTCTAATGTTATTTTCGGGGA GTGGGGA

ACACTGGGGGGGTTAATGAGGGAATACAAAGCAGACTCTATCAACGACATCAATTTG GAGAGA

ACATGCAAGAAGGTAGACAAGTGGCTCGACTCAAAGGAGTTTGCGTTATCAGATGTA TTAGAGG

CAATAAAAAGAACCGGCAATAATGATGCTTTTAATGAATATATCTCAAAGATGCGCA CTGCCAG

GGAAAAGATTGACGCTGCAAGAAAGGAAATGAAATTCATTTCGGAAAAAATATCTGG AGACGA AGAATCGATCCATATTATCAAAACCTTATTGGACTCGGTGCAACAGTTTTTACATTTTTT CAATT

TATTCAAAGCGCGTCAGGACATTCCTCTTGATGGAGCATTCTATGCGGAGTTCGATG AAGTCCAT

AGCAAACTGTTTGCTATTGTTCCGTTGTATAATAAGGTTAGGAACTATCTTACGAAA AATAACCT

TAACACGAAAAAGATAAAGCTAAACTTCAAGAATCCAACTCTGGCAAACGGATGGGA TCAAAA

CAAGGTATATGACTACGCCTCCTTAATCTTTCTCCGCGATGGTAATTATTATCTCGG AATAATAA

ATCCAAAAAGGAAAAAGAATATTAAATTCGAACAAGGGTCTGGAAATGGCCCATTCT ACCGGA

AGATGGTGTACAAACAAATTCCAGGGCCGAACAAGAACTTACCAAGAGTCTTCCTCA CATCTAC

GAAAGGCAAAAAAGAGTACAAGCCGTCAAAGGAGATAATAGAAGGATATGAAGCGGA CAAAC

ACATAAGAGGAGATAAATTCGATCTGGATTTCTGTCATAAGCTGATAGACTTCTTCA AGGAATC

CATCGAGAAGCACAAGGACTGGAGTAAGTTCAACTTCTATTTCTCTCCAACTGAATC ATATGGA

GACATCAGCGAATTCTATCTGGATGTAGAAAAACAGGGATACCGGATGCATTTTGAG AATATTT

CTGCCGAGACGATTGATGAGTATGTCGAAAAGGGGGACTTATTCCTCTTCCAGATAT ACAACAA

AGACTTTGTGAAAGCGGCAACCGGAAAAAAAGATATGCACACCATTTATTGGAACGC GGCATTC

TCGCCCGAGAACCTTCAGGATGTGGTAGTGAAACTGAACGGTGAAGCAGAACTTTTC TACAGAG

ACAAGAGCGACATCAAGGAGATAGTTCACAGGGAGGGAGAGATACTGGTCAATCGTA CCTACA

ACGGCAGGACACCTGTGCCTGACAAGATCCACAAAAAATTAACAGATTATCATAATG GCCGTAC

CAAAGATCTCGGAGAAGCAAAAGAATACCTCGATAAGGTCAGATATTTCAAAGCGCA CTACGA

CATCACAAAGGATCGCAGATACCTGAATGATAAAATATACTTCCATGTGCCTCTGAC ATTGAAT

TTCAAAGCAAACGGGAAGAAGAATCTCAATAAGATGGTAATTGAAAAGTTCCTCTCG GACGAA

AAAGCGCATATTATTGGGATTGATCGCGGGGAAAGGAATCTTCTTTACTATTCTATC ATTGACAG

GTCAGGTAAAATAATCGATCAACAGAGCCTCAACGTCATCGATGGATTCGATTACCG AGAGAAA

CTGAATCAGAGGGAGATCGAGATGAAGGATGCCAGACAAAGCTGGAATGCTATCGGG AAGATA

AAGGACCTCAAGGAAGGGTATCTTTCAAAAGCGGTCCACGAAATTACCAAGATGGCG ATACAA

TACAATGCCATTGTTGTCATGGAGGAACTCAATTATGGGTTCAAACGCGGACGTTTC AAAGTTG

AGAAGCAGATATATCAGAAATTCGAGAATATGCTGATTGACAAGATGAATTATCTGG TATTCAA

GGATGCTCCGGATGAAAGTCCGGGAGGAGTCCTCAATGCATATCAGCTTACTAATCC GCTTGAA

AGTTTCGCTAAACTTGGGAAACAGACAGGAATTCTTTTCTATGTTCCGGCAGCCTAT ACTTCGAA

GATAGATCCGACGACCGGGTTTGTCAATCTTTTCAATACTTCAAGTAAAACGAACGC ACAGGAA

AGAAAAGAATTCTTGCAAAAATTCGAGTCGATCTCCTATTCCGCTAAAGACGGAGGA ATATTCG

CATTCGCGTTCGATTATCGGAAGTTCGGAACGTCAAAAACAGACCACAAAAATGTAT GGACCGC

ATACACGAACGGGGAAAGGATGAGGTACATAAAAGAGAAAAAACGCAACGAACTGTT CGACCC

CTCGAAGGAGATCAAAGAGGCTCTCACTTCATCAGGAATCAAATATGACGGCGGACA GAACAT

ATTGCCAGATATCCTGAGGAGCAACAATAACGGTCTGATCTACACAATGTATTCCTC TTTCATAG

CGGCCATTCAAATGAGGGTCTATGACGGGAAAGAAGACTATATCATCTCGCCGATAA AGAACA

GCAAGGGAGAGTTCTTCAGGACCGATCCGAAAAGAAGGGAACTTCCGATAGACGCGG ATGCGA

ACGGCGCGTATAACATTGCTCTCAGGGGCGAATTGACGATGCGTGCGATAGCGGAGA AGTTCGA

TCCGGACTCGGAAAAGATGGCGAAGCTAGAACTGAAACATAAGGACTGGTTCGAATT CATGCA

GACAAGGGGGGATTGA

SE ATGACAAAAACATTTGATTCAGAATTTTTTAATTTATATTCTCTTCAAAAAACAGTTCGT TTTGA

Q ACTCAAGCCGGTTGGTGAAACAGCCTCGTTTGTTGAAGATTTTAAAAACGAAGGTTTGAA ACGA

no GTTGTTTCAGAGGATGAACGGCGTGCGGTTGATTACCAAAAAGTGAAAGAAATTATTGAT GACT

N ACCACCGAGATTTTATTGAAGAATCGCTGAACTATTTTCCTGAGCAGGTCTCAAAAGACG CTTTG GAACAAGCTTTTCACCTTTATCAAAAACTAAAAGCCGCTAAGGTTGAAGAGCGTGAAAAA GCAT

TGAAAGAATGGGAAGCCCTTCAGAAAAAACTGCGCGAAAAAGTTGTTAAATGTTTTT CAGATTC

AAACAAAGCACGCTTTTCCCGCATTGATAAAAAAGAACTGATTAAAGAAGATTTAAT TAACTGG

TTGGTTGCACAAAATCGCGAAGATGACATTCCAACCGTTGAAACCTTTAACAACTTT ACGACTT

ATTTTACGGGGTTTCATGAAAACCGAAAAAACATTTATTCAAAAGACGATCATGCCA CAGCCAT

TTCATTTCGACTCATTCATGAAAACCTGCCTAAGTTTTTTGATAATGTGATCAGCTT TAATAAATT

GAAGGAAGGATTTCCAGAGCTGAAATTTGATAAGGTTAAGGAAGATTTAGAAGTTGA TTATGAC

TTGAAACATGCCTTTGAAATCGAATACTTTGTCAATTTTGTTACCCAAGCCGGAATT GACCAATA

TAACTATCTTTTGGGGGGTAAAACCTTAGAAGACGGCACCAAAAAGCAAGGCATGAA TGAACA

AATCAATCTGTTCAAGCAACAGCAAACCCGAGACAAAGCCCGACAAATTCCCAAACT CATACCA

TTGTTTAAACAAATTCTAAGCGAACGAACGGAAAGCCAATCGTTTATTCCAAAACAA TTTGAAT

CAGACCAAGAGCTATTTGACTCACTGCAAAAACTGCATAACAACTGCCAAGATAAAT TTACCGT

ACTGCAACAAGCCATTTTAGGCTTAGCCGAAGCAGATCTGAAAAAAGTATTCATTAA AACATCT

GATCTTAATGCGCTATCAAATACCATTTTTGGAAATTACAGTGTGTTTTCGGATGCG TTGAATTT

ATACAAAGAATCGCTCAAAACAAAAAAGGCGCAAGAAGCGTTTGAAAAACTACCCGC TCACAG

CATTCATGACTTGATTCAATATTTGGAGCAATTTAATAGCTCTTTGGATGCAGAAAA ACAGCAAT

CAACTGACACCGTACTGAATTACTTTATTAAAACAGACGAGCTGTATTCTCGGTTCA TAAAATCA

ACGAGCGAAGCCTTCACACAAGTACAACCACTCTTTGAATTGGAAGCATTAAGCTCA AAACGTC

GTCCACCGGAAAGTGAAGACGAAGGCGCAAAAGGTCAGGAAGGGTTTGAGCAAATTA AACGCA

TAAAAGCCTATTTGGATACCTTGATGGAGGCGGTGCATTTTGCAAAACCACTTTATC TGGTGAA

GGGGCGCAAAATGATTGAAGGTCTGGACAAAGACCAAAGTTTCTATGAAGCCTTTGA AATGGCT

TACCAAGAACTAGAAAGTCTGATTATTCCAATCTACAACAAAGCTCGTAGTTATTTA AGTCGTA

AACCGTTTAAAGCGGACAAATTCAAAATTAATTTTGATAATAATACATTGCTTTCCG GTTGGGAT

GCTAATAAAGAAACGGCTAACGCTTCAATTTTGTTTAAGAAGGATGGTTTGTATTAT TTAGGAAT

CATGCCTAAAGGAAAAACGTTTTTGTTCGATTACTTCGTTTCATCGGAAGATTCTGA AAAGTTAA

AACAAAGAAGACAAAAAACCGCCGAAGAAGCGCTTGCGCAAGATGGCGAAAGCTACT TTGAAA

AAATTCGTTACAAGCTGTTACCTGGCGCCAGCAAAATGTTGCCGAAAGTATTTTTTT CCAACAAA

AACATAGGGTTTTACAACCCAAGTGATGACATACTTCGTATCAGGAATACAGCCTCT CACACTA

AAAACGGAACACCGCAAAAAGGGCACTCTAAAGTAGAGTTTAATTTGAATGATTGTC ATAAGAT

GATTGATTTCTTTAAATCAAGCATTCAAAAGCATCCAGAGTGGGGAAGTTTTGGATT CACCTTTT

CAGATACATCAGATTTTGAAGATATGAGCGCCTTTTATCGAGAAGTCGAAAACCAAG GTTATGT

CATTAGTTTCGATAAAATAAAAGAAACTTACATTCAGAGTCAAGTTGAACAGGGGAA CCTATAT

TTATTCCAAATCTACAATAAAGACTTCTCGCCCTACAGCAAAGGCAAACCAAATTTA CACACGC

TTTACTGGAAAGCGTTGTTTGAGGAAGCCAACCTAAATAATGTGGTGGCAAAACTCA ATGGTGA

AGCTGAAATTTTCTTTAGGCGACACTCAATCAAAGCATCTGATAAAGTGGTGCACCC AGCGAAT

CAAGCCATTGACAATAAAAACCCGCATACCGAAAAAACGCAAAGCACCTTTGAATAT GATCTTG

TAAAAGACAAGCGCTATACCCAAGACAAATTCTTCTTCCATGTACCGATTTCATTGA ACTTTAAG

GCACAAGGTGTTTCAAAATTTAACGATAAAGTGAATGGATTTTTAAAGGGTAACCCA GATGTCA

ATATTATTGGCATTGACCGAGGCGAACGACACCTTCTGTATTTCACTGTGGTGAATC AGAAAGG

TGAAATTTTGGTTCAAGAGTCGCTTAATACCCTAATGAGTGATAAAGGGCATGTGAA TGACTAC

CAGCAAAAACTCGACAAAAAAGAACAAGAACGCGATGCCGCTCGCAAAAGCTGGACG ACGGTT

GAAAATATCAAAGAATTAAAAGAAGGCTATTTATCTCATGTTGTTCATAAGTTGGCA CACCTGA TTATTAAATACAATGCCATTGTTTGCTTGGAAGACCTGAATTTTGGTTTCAAACGCGGGC GTTTT

AAAGTGGAAAAACAAGTTTATCAGAAATTTGAAAAAGCGCTTATTGATAAGCTTAAC TACTTGG

TATTTAAAGAAAAAGAGTTAGGCGAGGTGGGCCATTATCTAACCGCCTATCAGTTGA CCGCACC

GTTTGAAAGTTTCAAGAAGTTAGGCAAGCAAAGTGGCATATTGTTTTATGTTCCGGC GGATTAC

ACCTCCAAAATTGACCCAACCACCGGGTTTGTCAACTTTCTTGATCTGCGTTATCAG AGTGTCGA

AAAAGCCAAACAGCTCTTAAGCGACTTTAATGCCATTCGTTTTAATTCAGTACAAAA CTATTTTG

AGTTCGAAATAGATTACAAAAAACTCACACCCAAACGTAAAGTTGGTACTCAGAGTA AATGGGT

GATTTGTACCTATGGAGATGTCCGCTATCAAAATCGGCGTAATCAAAAAGGTCACTG GGAAACG

GAAGAAGTCAATGTGACTGAAAAACTAAAAGCCCTTTTCGCCAGTGATTCCAAAACT ACAACCG

TAATCGATTACGCCAATGACGACAACCTAATTGACGTCATTCTGGAACAGGACAAAG CCAGCTT

CTTCAAAGAACTGTTATGGTTATTAAAACTCACCATGACGCTCCGCCACAGCAAAAT CAAAAGT

GAAGACGACTTTATTCTTTCACCCGTTAAAAACGAACAAGGCGAGTTTTACGATAGT CGAAAAG

CGGGCGAGGTGTGGCCTAAAGATGCAGACGCCAATGGCGCTTATCACATAGCGTTGA AAGGCTT

GTGGAATCTGCAACAGATCAATCAGTGGGAAAAGGGTAAAACACTTAATCTGGCGAT TAAAAA

CCAGGATTGGTTCAGTTTTATTCAAGAAAAGCCCTATCAAGAATAA

SE ATGCACACAGGCGGATTACTTAGCATGGATGCCAAGGAGTTTACCGGACAGTACCCCCTT TCGA

Q AGACTCTGCGTTTTGAACTGAGACCGATAGGCAGAACGTGGGACAATCTCGAAGCATCGG GGTA

no TCTTGCGGAGGACAGACACCGTGCAGAATGCTATCCCAGGGCAAAAGAGCTCTTGGACGA CAA

N CCATCGTGCATTCCTCAACCGTGTCCTGCCTCAGATCGATATGGATTGGCACCCGATCGC AGAG

O: GCATTCTGCAAAGTCCACAAGAATCCGGGAAACAAGGAATTGGCTCAGGATTACAATCTT CAGC 25 TGTCCAAACGCAGAAAGGAGATTTCGGCCTATCTGCAGGATGCGGACGGCTATAAAGGTC TGTT

TGCCAAACCTGCATTGGATGAAGCAATGAAGATCGCGAAAGAAAACGGAAATGAATC GGACAT

AGAGGTTCTTGAGGCATTCAACGGTTTCTCCGTATACTTCACCGGATATCATGAGAG CAGGGAG

AACATCTATTCGGACGAGGATATGGTGTCGGTAGCTTATCGCATCACCGAAGACAAT TTCCCGA

GATTCGTTTCCAATGCGCTTATATTCGATAAGCTGAATGAGTCGCACCCCGATATAA TCTCGGAA

GTATCCGGAAATCTGGGCGTAGACGACATCGGAAAATATTTTGATGTGTCTAACTAC AATAATT

TCCTGTCGCAGGCCGGTATAGATGACTACAATCACATCATCGGCGGCCATACGACGG AGGACGG

TCTGATCCAGGCATTCAATGTTGTTCTGAATCTCAGGCATCAGAAAGACCCCGGATT CGAAAAA

ATCCAATTCAAACAGCTGTACAAACAGATACTCAGCGTCCGTACATCCAAATCCTAT ATCCCGA

AACAGTTCGATAATTCGAAGGAGATGGTGGACTGCATCTGCGACTATGTGTCCAAGA TCGAAAA

ATCCGAAACGGTCGAGAGAGCATTGAAGCTGGTAAGGAACATATCTTCTTTTGATTT GCGCGGA

ATATTCGTAAACAAGAAGAATCTCCGCATTCTTTCCAACAAACTGATTGGTGATTGG GACGCGA

TCGAAACCGCGCTGATGCACTCCTCCTCTTCGGAAAATGATAAGAAATCCGTCTACG ACAGCGC

CGAGGCATTTACGCTGGATGATATCTTTTCGTCCGTTAAAAAATTCTCAGATGCATC TGCAGAGG

ATATCGGAAACCGGGCGGAGGACATATGCAGAGTCATATCTGAGACCGCTCCGTTCA TAAACGA

TCTGAGGGCTGTCGATTTGGACAGTTTGAATGACGACGGTTACGAGGCGGCGGTTTC CAAGATA

AGGGAATCTCTGGAACCATATATGGATCTGTTTCATGAACTGGAGATATTCTCCGTA GGCGATG

AATTCCCGAAATGTGCAGCTTTCTACAGTGAACTTGAAGAAGTCTCCGAACAGCTAA TCGAGAT

TATACCGTTATTCAACAAGGCCCGTTCGTTCTGTACGCGCAAGAGATACAGTACGGA CAAGATA

AAGGTCAATTTGAAATTCCCGACACTCGCCGACGGATGGGATCTCAACAAAGAACGC GACAAC

AAAGCCGCAATACTCAGGAAAGACGGAAAGTACTACCTGGCCATACTGGATATGAAG AAAGAT

CTTTCTTCGATCAGAACTTCGGATGAAGACGAATCCAGTTTTGAGAAAATGGAGTAC AAGCTTC TTCCGAGTCCGGTAAAGATGCTGCCAAAGATCTTCGTAAAATCGAAGGCGGCCAAGGAGA AGT

ACGGTCTGACCGACCGTATGCTGGAGTGCTACGATAAAGGGATGCACAAGAGCGGCA GTGCAT

TCGATCTCGGATTTTGTCACGAATTGATCGATTACTACAAGAGGTGCATCGCAGAAT ATCCCGG

CTGGGACGTCTTCGATTTCAAGTTCAGGGAAACATCGGATTATGGCAGCATGAAGGA GTTCAAT

GAGGATGTTGCAGGGGCCGGATACTATATGTCCCTCAGAAAGATCCCTTGTTCGGAG GTCTACA

GGCTTCTTGATGAGAAATCGATATATCTTTTCCAGATCTACAACAAAGATTATTCGG AAAACGCT

CATGGGAATAAGAACATGCATACCATGTATTGGGAAGGGCTCTTTTCCCCCCAGAAT CTGGAAT

CCCCTGTGTTTAAACTCAGCGGCGGTGCGGAGCTTTTCTTCCGTAAATCCTCCATAC CCAATGAC

GCCAAAACGGTCCATCCGAAGGGAAGCGTCCTGGTTCCGCGCAATGATGTAAACGGC CGCAGG

ATACCTGACAGCATATATCGGGAGCTCACCAGATATTTCAACCGCGGAGATTGCCGC ATAAGCG

ACGAGGCAAAGAGTTATCTGGACAAGGTGAAAACCAAGAAAGCTGACCACGATATCG TGAAAG

ACAGGAGGTTCACGGTGGACAAGATGATGTTCCACGTCCCTATCGCCATGAATTTCA AAGCGAT

TTCGAAGCCGAATCTCAATAAAAAGGTGATTGACGGCATAATCGACGACCAAGATCT GAAGATC

ATCGGCATAGACCGCGGAGAGCGCAACCTCATCTACGTAACCATGGTGGATCGCAAA GGGAAC

ATCCTCTATCAGGATAGCCTCAATATTCTGAACGGATACGATTACCGTAAGGCCCTC GACGTCC

GCGAATATGACAATAAAGAGGCTCGGAGGAACTGGACGAAGGTCGAAGGCATCCGTA AGATGA

AAGAGGGGTATCTGTCGCTTGCAGTCAGCAAATTGGCAGATATGATCATAGAGAACA ATGCGAT

TATCGTCATGGAGGATCTCAATCACGGATTCAAGGCAGGGCGTTCGAAGATAGAGAA ACAGGT

CTATCAGAAGTTCGAATCCATGCTCATAAACAAACTCGGTTACATGGTCCTCAAGGA TAAGTCT

ATCGATCAGAGCGGCGGAGCTCTCCACGGATACCAGCTTGCCAACCATGTGACAACA TTGGCAT

CTGTAGGTAAACAATGTGGAGTGATATTCTACATCCCTGCTGCATTTACATCCAAGA TAGATCCG

ACAACAGGATTTGCAGATCTGTTCGCCCTCAGCAATGTTAAAAACGTGGCATCTATG AGAGAAT

TTTTCTCCAAGATGAAGTCTGTAATCTATGATAAGGCGGAGGGAAAATTCGCATTTA CCTTCGAC

TATCTTGATTATAATGTGAAATCCGAGTGCGGAAGGACCCTTTGGACCGTGTATACG GTCGGAG

AGAGATTCACATACAGCAGGGTCAATAGAGAATATGTCAGAAAAGTTCCGACAGACA TAATCT

ACGACGCATTGCAAAAGGCAGGAATATCTGTTGAAGGGGATCTCAGGGACAGGATTG CTGAAT

CGGATGGCGACACTCTGAAGAGCATATTCTATGCATTCAAGTATGCATTGGATATGA GAGTAGA

GAACCGCGAAGAGGATTACATACAGTCTCCTGTCAAAAATGCCTCCGGAGAATTCTT CTGTTCC

AAGAACGCAGGCAAATCGCTCCCTCAGGATTCCGATGCGAACGGTGCATACAATATC GCACTCA

AGGGGATCCTGCAGCTACGTATGCTTTCCGAGCAGTATGATCCGAATGCAGAGAGCA TACGGTT

GCCACTGATAACCAACAAGGCCTGGCTGACCTTTATGCAGTCCGGTATGAAGACATG GAAGAAC

TGA

SE atgGATAGTTTGAAAGATTTCACCAATCTGTACCCTGTCAGTAAGACATTGAGATTTGAA TTAAAG

Q CCCGTTGGAAAGACTTTAGAAAATATCGAGAAAGCAGGTATTTTGAAAGAGGATGAGCAT CGT

no GCAGAAAGTTATCGGAGGGTGAAGAAAATAATTGATACTTATCATAAGGTATTTATCGAT TCTT

N CTCTTGAAAATATGGCTAAAATGGGTATTGAGAATGAAATAAAAGCAATGCTCCAAAGTT TCTG

O: CGAATTGTATAAAAAAGATCATCGCACTGAGGGTGAAGACAAGGCATTAGATAAAATTCG AGC 26 AGTACTTCGTGGCCTGATTGTTGGGGCTTTCACTGGTGTTTGCGGAAGACGGGAAAATAC AGTC

CAAAACGAGAAGTACGAGAGTTTGTTCAAAGAAAAGTTGATAAAAGAAATTTTACCT GATTTTG

TGCTCTCTACTGAGGCTGAAAGCTTGCCTTTCTCTGTTGAAGAAGCTACGAGGTCAC TGAAGGA

GTTTGATAGCTTTACATCCTACTTTGCTGGTTTTTACGAGAATAGAAAGAATATATA CTCGACGA

AACCTCAATCCACTGCCATTGCTTATCGTCTTATTCATGAGAACTTGCCGAAGTTCA TTGATAAT ATTCTTGTTTTTCAGAAGATCAAAGAGCCTATAGCCAAAGAGCTGGAACATATTCGTGCG GACT

TTTCTGCCGGGGGGTACATAAAAAAGGATGAGAGATTGGAGGATATTTTTTCGTTGA ACTATTA

TATCCACGTGTTATCTCAGGCTGGGATCGAAAAATATAACGCATTGATTGGGAAGAT TGTGACA

GAAGGAGATGGAGAGATGAAAGGGCTCAATGAACACATCAACCTTTACAACCAACAA AGAGGC

AGAGAGGATCGGCTCCCTCTTTTTAGGCCTCTTTATAAACAGATATTGAGTGACAGA GAGCAAT

TATCATACTTGCCTGAGAGTTTTGAAAAAGATGAGGAGCTCCTCAGGGCTCTAAAAG AGTTCTA

TGATCATATCGCAGAAGACATTCTCGGACGTACTCAACAGTTGATGACTTCTATTTC AGAATATG

ATTTATCTCGGATATACGTAAGGAACGATAGCCAATTGACTGATATATCAAAAAAAA TGTTGGG

AGATTGGAATGCTATCTACATGGCTAGAGAACGAGCATATGACCACGAGCAGGCTCC CAAAAG

AATCACGGCGAAATACGAGAGGGACAGGATTAAAGCTCTTAAAGGAGAAGAGAGTAT AAGTCT

GGCAAATCTTAATAGTTGTATTGCCTTTCTGGACAATGTTAGAGATTGCCGTGTAGA TACTTATC

TTTCCACACTGGGCCAGAAGGAAGGACCACATGGTCTATCTAATCTCGTTGAGAACG TTTTTGCC

TCATACCATGAAGCAGAGCAATTGTTGAGCTTTCCATACCCCGAAGAGAATAATCTG ATTCAGG

ACAAGGACAATGTGGTGTTAATTAAGAATCTTCTCGACAATATCAGTGATCTGCAGA GGTTCTT

GAAACCTCTTTGGGGTATGGGAGACGAACCCGATAAAGATGAAAGATTTTATGGAGA GTATAAT

TATATCCGAGGAGCTCTAGATCAGGTGATCCCTCTGTACAATAAGGTAAGGAACTAC CTCACTC

GGAAGCCTTATTCGACCAGAAAAGTAAAACTCAATTTTGGGAATTCTCAATTGCTTA GTGGTTG

GGATAGAAATAAGGAAAAGGATAATAGCTGTGTGATTTTGCGTAAGGGGCAGAACTT CTATTTG

GCTATTATGAACAATAGGCACAAAAGAAGTTTCGAAAACAAGGTGTTGCCCGAGTAT AAGGAG

GGAGAACCTTACTTCGAAAAGATGGATTATAAATTTTTGCCTGATCCTAATAAAATG CTTCCTAA

GGACATGGAACTCACAAAAAGGGAGATACCTTTAGTATGGATGATTTGCACGAACTG ATCGATT

TCTTCAAACACTCAATCGAGGCTCATGAAGATTGGAAGCAATTCGGATTCAAATTTT CTGATAC

GGCTACTTATGAGAATGTATCTAGTTTCTATAGAGAAGTTGAGGATCAGGGGTATAA GCTCTCTT

TCCGAAAAGTTTCGGAATCTTATGTCTATTCATTAATAGATCAAGGCAAGTTGTATT TATTTCAG

ATATACAACAAGGACTTTTCTCCCTGCAGCAAAGGGACACCTAATCTGCATACCTTG TATTGGA

GAATGCTTTTTGACGAGCGCAATTTGGCAGATGTCATATACAAACTGGATGGGAAGG CTGAAAT

CTTTTTCCGAGAGAAGAGTTTGAAAAATGATCATCCCACGCATCCGGCTGGTAAGCC TATCAAA

AAGAAAAGTCGACAAAAAAAAGGAGAGGAGAGTCTGTTTGAGTATGATTTAGTCAAG GATAGG

CACTATACGATGGATAAGTTCCAGTTTCATGTGCCTATTACTATGAATTTTAAATGT TCTGCAGG

AAGCAAAGTCAATGATATGGTTAATGCTCATATTCGAGAGGCAAAGGATATGCATGT CATTGGA

ATTGATCGTGGAGAACGCAATCTGCTGTATATATGCGTGATAGATAGTCGAGGGACG ATTTTGG

ATCAAATTTCTCTGAATACGATTAACGATATAGACTATCATGATTTATTGGAGAGTC GAGACAA

AGACCGTCAGCAGGAGCGCCGAAACTGGCAAACTATCGAAGGGATCAAGGAGCTAAA ACAAGG

CTACCTTAGTCAGGCGGTTCATCGGATAGCCGAACTGATGGTGGCTTATAAGGCTGT AGTTGCTT

TGGAGGATTTGAATATGGGGTTCAAACGTGGGCGGCAGAAAGTAGAAAGTTCTGTTT ATCAGCA

GTTTGAGAAACAGCTGATAGATAAGCTCAACTATCTTGTGGACAAGAAGAAAAGGCC TGAAGA

TATTGGAGGATTGTTGAGAGCCTATCAATTTACGGCCCCATTTAAGAGTTTTAAGGA AATGGGA

AAGCAAAACGGCTTCTTGTTTTATATCCCGGCTTGGAACACGAGCAACATAGATCCG ACTACTG

GATTTGTTAATTTATTTCATGCCCAGTATGAAAATGTAGATAAAGCGAAGAGCTTCT TTCAAAAG

TTTGATTCAATTAGTTACAACCCGAAGAAAGACTGGTTTGAGTTTGCATTCGATTAT AAAAACTT

TACT AAAAAGGCTGAAGGAAGTCGTTCTATGTGGAT ATT ATGCACACATGGTTCCCGAATAAAG AATTTTAGAAATTCCCAGAAGAATGGTCAATGGGATTCCGAAGAATTCGCCTTGACGGAG GCTT TTAAGTCTCTTTTTGTGCGATATGAGATAGATTATACCGCTGATTTGAAAACAGCTATTG TGGAC GAAAAGCAAAAAGACTTCTTCGTGGATCTTCTGAAGCTATTCAAATTGACAGTACAGATG CGCA ACAGCTGGAAAGAGAAGGATTTGGATTATCTAATCTCTCCTGTAGCAGGGGCTGATGGCC GTTT CTTCGATACAAGAGAGGGAAATAAAAGTCTGCCTAAGGATGCAGATGCCAATGGAGCTTA TAA TATTGCCCTAAAAGGACTTTGGGCTCTACGCCAGATTCGGCAAACTTCAGAAGGCGGTAA ACTC AAATTGGCGATTTCCAATAAGGAATGGCTACAGTTTGTGCAAGAGAGATCTTACGAGAAA GACt ga

SE atgaataatggaacaaataactttcagaattttatcggaatttcttctttgcagaagact cttaggaatgctctcattccaaccgaaacaacacagcaatttattgttaa

Q aaacggaataattaaagaagatgagctaagaggagaaaatcgtcagatacttaaagatat catggatgattattacagaggtttcatttcagaaactttatcgtcaa no ttgatgaMtgactggacttctttatttgagaaaatggaaattcagttaaaaaatggagat aacaaagacactcttataaaagaacagactgaataccgtaaggca

N attcataaaaaatttgcaaatgatgatagatttaaaaatatgttcagtgcaaaate

O: aaaggaagaaaaaacacaggtaattaaattattttccagatttgcaacgtcattcaagga ctattttaaaaacagggctaattgtttttcggctgatgataMctte

27 cttcttgtcatagaatagttaatgataatgcagagatattttttagtaa¾^

gagatatgaaggattcattaaaggaaatgtctctggaagaaatttattcttatgaaaaat a¾^

gtaaagtaaattcatttatgaatttatattgccagaaaaataaagaaaacaaaaatctct ataagctgcaaaagcttcataaacagatactgtgcatagcagatactt ctMgaggtgccgtataaatttgaatcagatgaagaggttMcaatcagtgaatggattttt ggacaatattagttcgaaacaMcgttgaaagattgcgtaagatt ggagacaactataacggctacaatcttgataagatttaMtgttagtaaattctatgaatc agtttcacaaaagacatatagagattgggaaacaataaatactgcat tagaaattcattacaacaatatattacccggaaatggtaaatctaaagctgacaaggtaa aaaaagcggtaaagaatgatctgcaaaaaagcattactgaaatca atgagcttgttagcaattataaatMgttcggatgataatattaaagctgagacataMaca tgaaaMcacatattttgaataattttgaagcacaggagcttaagt ataatcctgaaattcatctggtggaaagtgaattgaaagcatctgaattaaaaaatgttc tcgatgtaataatgaatgcttttcattggtgttcggtttte gagctggtagataaagataataattttMgccgagttagaagagaMatgacgaaatatatc cggtaatttcattgtataatcttgtgcgtaattatgtaacgcaga agccatatagtacaaaaaaaattaaattgaattttggtattcctacactagcggatggat ggag^

ataatttgtactatttaggaatatttaatgcaaaaaataagcctgacaaaaagataattg aaggtaatacatcagaaaataaaggggattataagaagatgatttate atcttctgccaggaccaaataaaatgatccccaaggtattcctctcttcaaaaaccggag tggaaacatataagccgtctgcctatatattggagggctataaaca aaacaagcatattaaatcctctaaggattttgatataacattttgtcacgatttgattga ttattttaagaactgtatagcaatacatcctgaatggaaga^ gatttttctgacacctccacatatgaagatatcagcggattttacagagaagtcgaatta caaggttataaaatcgactggacatatatcagcgaaaaggatattga tttgttgcaggaaaaaggacagttatatttattccaaatatataacaaagatttttccaa gaaaagtaccggaaatgataatcttcatactatgtattt^ agtgaagagaatttaaaggatattgtactgaaattaaacggtgaggcggaaatcttcttt agaaaate

tcttgttaatagaacatatgaagcagaggaaaaagatcaatttggaaatatccagatagt cagaaaaaacataccggaaaatatatatcaggagctttataaatatt tcaatgataaaagtgataaagaactttcggatgaagcagctaagcttaagaatgtagtag gtcatcatgaggctgctacaaacatagtaaaagattatagatatac atatgataaatattttcttcatatgccMtacaatcaattttaaagccaataagacaggct t

gtaataggcattgatcgtggtgaaagaaacctgataMgtttcagtaattgatacttgtgg aaatattgttgaacaaaaatcgtttaacattgttaa^ cagattaagctcaagcagcaggagggggcgcgacaaatcgcacgaaaagaatggaaagaa atcggcaaaataaaagaaattaaagaaggctatttatctctt gtaattcatgaaatttcaaagatggttattaaatataatgccataattgcaatggaggat ttaagctacggatttaaaaaaggtcgtttcaaggttgagcgaca accagaagtttgagacaatgcttatcaacaaactcaactatctggtatttaaagatatat ccataacggaaaacggtggtcttctaaagggataccagcttacatat attccagataaactgaaaaatgtgggtcatcaatgtggctgtatattttatgtacctgct gcctatacatcaaaaatagatcctacaaccggatttgtaaatatattcaa atttaaagatttaacagttgatgcgaagagagaatttataaaaaaatttgacagtatcag aMgattcagaaaaaaatctgttttgttttacattcgattata^ attacgcaaaatactgttatgtcaaagtcaagctggagtgtatatacgtacggagttagg ataaaaagaagatttgtcaatggcaggttctcaaatgaatcggatac aattgatataacaaaagatatggaaaaaacactcgaaatgacagatataaattggagaga tggtcatgatctgaggcaggatattattgattatgaaatcgtacaa cacatatttgagatttttagattgactgtacaaatgagaaacagtttaagtgaattagaa gacagggatMgaccgtttgatttctccggtgctcaatgaaaataaM attttatgattcagctaaagcaggagatgcgttacctaaagacgcagatgctaatggtgc atattgtatagctctaaaaggcttgtatgaaatcaaacaaattacag agaattggaaagaagacggtaagttttcaagagataaacttaaaatttccaataaggact ggtttgactttattcaaaataaaaggtatttataa

SE atgacaaacaaatttacaaaccagtactcgctttccaaaacacttcgatttgagttgatt ccacaaggaaaaacattggaatttattcaagaaaaaggattgctctct

Q caagataaacaacgagcggagagttatcaagaaatgaaaaaaactattgataaatttcat aaatacttt^

no aaacttacttggaattatacaataaaagtgctgaaacaaaaaaagaacaaaaatttaaag acgatt^

N atctttttcagatggtgatgcaaaatcaatttttgcaattttggataaaaaagaactgat taccgtagaacttgaaaaatggtttgaaaacaacgaacaaaaagacat^ O: Mtttgacgaaaaattcaaaacgtttactacttattttactggtttte^

28 ttcatgaaaatttacctaaatttttagaaaatgctaaagcatttgaaaaaataaaacaag tagaaa

tgaagggctaattttcgtaaatgaattagaagaaatgtttcaaatcaattattataatga tgtgctttcacaaaatggaattacaatttataatagt^ accaaaaatgatataaaatataaaggtctaaatgaatacataaataattacaatcaaacc aaagacaaaaaagaccgtttgccaaaattaaaacaattgtataaac agattttgagtgataggatttcactttcgtttttgcccgatgcttttacggatgggaaac aagttttgaaagccatatttgacttttataaaatcaactte^ attgaaggacaggaagaaagccaaaatcttttactattaattcgtcagacaattgaaaac rt^

aaccactatttcacaacaagtatttggcgatttttcggtgttto

ccaacgaaaaaaaacgagaaattttagataaagccaaagcggtatttacaaaacaagatt atttttcaattgcttttttacaagaagtactttcggaatacattct^ cttagatcacacttctgaMtgtaaaaaagcattcctccaactgtattgcggattatttta aaaatcattttgtagccaaaaaagaaaatgaaaccgacaaaacctt^ gattttattgctaatattactgcaaaataccaatgtattcaaggtattttagaaaatgca gaccaatacgaagacgaactcaaacaagaccaaaaattaattgataa tgaaattctttttagatgctattttagaattgttgcattttattaaacctttgcatttaa aatcagaaagcattaccgaaaaagacactgctttttatg^

attacgaagcattgagtttgttgaccccattatataatatggtgcgaaactatgtaacgc aaaagccgtacagcaccgaaaaaataaaattaaattttgaaaatgca caattattgaatggttgggatgccaataaagaaggtgattacctaactaccattttgaaa aaagacggtaattattttttagccataatggataaaaagcataa^ gcgtttcaaaagtttccagaaggaaaagaaaattatgaaaaaatggtgtataaactattg cctggagtaaataagatgttgccaaaagtatttttttccaa attgcttacttcaacccatcaaaagagttattagaaaactataaaaaagagacgcacaaa aaaggagacacattcaatttagaacattgtcatacgttgatcgatttt ttcaaggactctttaaacaaacatgaagactggaaatactttgattttcaattttctgaa acaaaatcgtatcaagatttgagtggtttttate^

aggctacaaaatcaattttaaaaaMcgattcagaatatattgatggtttggtgaacgaag g^

aaagggaaaccgaacatgcacactttgtattggaaagccttatttgaagaacaaaatttg caaaatgtaatctataaattgaatggacaagccgaaatatttttt^ aaagcctctataaaacctaaaaatataaMtgcacaaaaagaaaattaaaattgccaaaaa gcatt^

aaacaataaaaaacctcaaMgtactaccaaggaaaaataagtgaaaaagaattaacacaa gatgatttaaggtatattgataattttagcattttcaa ataaaacaattgatattataaaagacaaacgatttacggttgataaatttcagtttcatg tgccgattaccatgaactttaaagcaacgggcggaagttatatcaatca aaccgtattagaatatttgcaaaacaatcccgaagttaagattattggattggatagagg cgaacgccatttggtatatctgacactgatagaccagcaaggaaac atcttgaaacaagaaagtttgaatacaatcaccgattctaaaatctcgacaccttatcat aagttgttggataacaaggaaaacgagcgtgacttggctcgaaaaa attggggaacggtggaaaacatcaaagaactcaaagaaggctacatcagtcaagtggtgc ataaaattgctacgttgatgctggaagaaaatgccattgtggta atggaagatttgaattttggatttaaacgtggacgttttaaagtggaaaaa^

agacaaacaacctcaggaattaggcggattgtacaacgcattacaactcaccaataaatt tgaaagtttccaaaaaatgggtaaacaatcgggctttttgttttatgt acccgcttggaacacctccaaaatagacccaaccacagggtttgtcaattatttttatac caaaMgaaaatgttgacaaagccaaagccttttttgaaaaatttga ggcgattcgtttcaatgcagaaaagaagtattttgaatttgaagtaaaaaaatatagcga ttttaacccaaaagccgaaggcactcaacaagcctggaccatttgc acgtatggcgaacgaatagaaaccaaacgacaaaaagaccaaaacaacaaatttgtaagc actccaattaatctaaccgaaaagatagaagactttttgggtaa aaaccaaattgttMggtgatggtaattgcatcaaatctcaaattgctagcaaagac^^

gcgaaacagcgaaacaagaacagatatagattatctaatttcgcccgtgatgaatgacaa cggaacattttacaacagccgagattatgaaaaattagaaaatcc aactttgcccaaagatgccgatgccaacggagcgtatcatattgccaaaaaaggattgat gcttttgaataaaatagaccaagccgacttgacaaaaaaagtgg atttatctattagtaacagagattggttgcaatttgtacaaaaaaataaataa

SE atggaacaggagtactatttaggactggatatgggaaccggatctgtaggatgggctgtt acagattcggaatatcatgtcttgcgtaaacatggaaaagcactat

Q ggggagtccgattatttgaaagtgcatcgacagcagaagaacgaagaatgttccgaacat caagaagaagactagatcgaagaaactggagaattgaaatttt no acaggaaatttttgcagaggaaataagtaagaaagatccaggatttttcttgcgaatgaa agaaagcaaatattatccagaagataagcgagatatcaatggaaa

N ttgtccggaactgccatatgcattatttgttgatgacgattttacagataaagattatca taaaaaatttccgacaatttatcatctcaggaaaatgttgatgaata^ O: aggagacaccggatatccggttggtgtatctggcaattcatcatatgatgaagcataggg gccatttcttgttatctggtgacattaatgagattaaggagttcgga

29 acgacattttcaaaattgttggagaatatcaaaaatgaggaattggattggaatcttgaa ctgggaaaagaagaaMgctgttgtagaaagtattttaaaagataa catgttaaaccgatccacaaagaaaaccagattaataaaagcattaaaagcaaaatcaat atgtgaaaaggctgtactgaatttattggctggtggaacggtgaa attgagtgatatatttggtcttgaagaattaaatgagacagaaagaccgaagatttcctt tgctgataatggatacgatgattatatcggagaagttgaaaatgagct gggagaacaattctatattatagagacggcaaaagcagtgtatgactgggcggtattagt tgaaatattgggaaaatatacgtcaatttcagaagcgaaagtagc aacgtatgaaaaacataaatcggatttacaatttttgaaaaagatagttcggaaaMctga caaaggaggaatataaagaMttttgtaagtacgagtgacaaatt gaaaaattactctgcttatataggaatgacgaaaataaatggaaaaaaggttgatttgca gagc^

acgtacttaaaaagctagaaggacaacctgaatatgaatatttgaaagaagagctagaaa gagaaacatttctaccaaaacaggtgaacagggataatggtgta ataccgtatcagattcatttgtacgagttgaaaaagatattaggaaatttacgggataaa atagacctcattaaagagaacgaagataaactggttcaattatt¾^ ttcagaattccgtattatgttggtccgctgaataagatagatgacggaaaagagggaaaa tttacatgggctgtacggaaaagtaatgaaaagatatatccatgga attttgaaaatgtagttgatatagaagcaagtgcagaaaaatttatccggagaatgacaa ataagtgtacatatctgatgggcgaagatgtattgccgaaggattc attgctttacagtaaataMggttttaaatgaattaaataatgtaaagttggat^^

gtatcggaaagtaactgtaaagaagataaaaaattacttgaaatgtgaaggtatcatatc cggcaatgtcgaaataactggaattgatggtgattttaaggcatcgt taacggcatatcatgattttaaagaaatcttgacaggaacagaattggctaaaaaggaca aagaaaatattattaccaatatagtattgtttggagatgataaaaag ctgctgaaaaagagactgaatcgattatatcctcagattacgccgaatcagttgaagaaa atatgtgcgctatcctatacaggctggggaagattttctaaaaagtt cttagaagaaataacagctccagatccggaaacgggagaggtatggaatatcattacggc attgtgggaatcgaataataatctgatgcaattattaagtaatga atatcggtttatggaagaagtcgaaacatacaatatgggaaaacagactaaaacattgtc gtacgaaacagtagagaatatgtatgtttctccatctgtgaaaaga cagatatggcagacgctgaaaatcgtgaaagaattagaaaaagtaatgaaagaatctccg aaacgtgtatttattgagatggcgagagaaaagcaagaaagta agagaaccgaatcgcgtaaaaaacaactaatagatttgtataaggcttgtaaaaatgaag aaaaagattgggtaaaagaactgggagatcaggaagaacaga aattacgaagcgataagttgtacctaMtatacgcaaaagggtcgttgtatgtattctggc gaggtaatagaactgaaagacttatgggataatacaaaat^^ attgatcatatatatccacaatctaaaacgatggatgacagtcttaataatcgcgtattg gtaaaaaagaaatataatgcaacaaaatcagataagtatccattaaat gaaaatatacgacatgagagaaaaggcttttggaagtcactgttagatggagggtttata agtaaagaaaaatatgaacgcttaataagaaatacagaattgagt ccggaagaattagcaggatttattgaaaggcagattgttgaaacgaggcagagtacaaaa gctgtagcggaaatattaaagcaagtgtttccggaaagtgaaat tgtatatgtcaaagcaggtacggtttcaagattcagaaaagattttgaattactgaaagt tcgagaagtgaatgatttgcatcacgcaaaggatgcgtatttaaatatt gtagttggtaatagtMMgtgaaatttactaagaatgcatcatggtttataaaagaaaatc cgggacgtacttacaacttaaaaaagatgtttacatcaggtt atattgaacgaaatggagaagttgcatgggaagtcgggaaaaaaggaacaattgtaacgg taaaacaaataatgaataaaaataatatattggtgacaagacag gttcatgaagcgaaaggtgggctgtttgatcagcagattatgaaaaaaggaaaaggtcag attgctataaaggaaactgatgaacgtcttgcatcaatagaaaa gtatggaggctataataaagctgccggggcatattttatgctggtagaatctaaagataa aaaaggaaaaacaattcgaacgatagaatttataccattatatttaa agaataaaatcgagtcggatgaatcaatagcattgaactttttagaaaaaggcagaggtt tgaaagaaccaaagatactattgaaaaaaattaagattgatacatt atttgatgtggacggattcaaaatgtggttgtctggaagaacaggggacagactactatt ^

gaaaaaaattgtaaagtttattcaaaggagacaagaaaatagagaattaaaatMctgata aagat

gtggataagttagaaaacacagtgtatagaatacgattatccgaacaggcaaaaacgctt atagataaacaaaaagaatttgaaaggttatcactagaggataaa agtagtactttgtttgaaattttacatatttttcagtgtcaaagtagtgcggccaattta aaaatgataggcggacctggaaaagcaggaatattagtta atataagtaagtgtaacaaaatttctattataaatcagtctccaacaggaattttcgaaa atgagattgatttgttaaagat

SE ATGAAATCTTTCGATTCATTCACAAATCTTTATTCTCTTTCAAAAACCTTGAAATTTGAG ATGAG

Q ACCTGTCGGAAATACCCAAAAAATGCTCGACAATGCAGGAGTATTTGAAAAAGACAAACT AAT

no TCAAAAAAAGTACGGAAAAACAAAGCCGTATTTCGACAGACTCCACAGAGAATTTATAGA AGA

N AGCGCTCACGGGGGTAGAGCTAATAGGACTAGATGAGAACTTTAGGACACTTGTTGACTG GCAA

O: AAAGATAAGAAAAATAATGTCGCAATGAAAGCGTATGAAAATAGTTTGCAGCGGCTGAGA ACG

30 GAAATAGGTAAAATATTTAACCTAAAGGCTGAGGATTGGGTAAAGAACAAATATCCAATA TTA

GGGCTGAAAAATAAAAATACCGATATTTTATTCGAAGAGGCTGTATTCGGGATATTG AAAGCCC

GATATGGAGAAGAAAAAGATACTTTTATAGAAGTAGAGGAAATAGATAAAACCGGCA AATCAA AGATCAATCAAATATCAATTTTCGATAGTTGGAAAGGATTTACAGGATATTTCAAAAAAT TTTTT

GAAACCAGAAAGAATTTTTACAAAAACGACGGAACTTCTACAGCAATTGCTACAAGG ATCATTG

ATCAAAATCTGAAAAGATTCATAGATAATCTGTCAATAGTTGAAAGTGTGAGACAAA AGGTTGA

TCTCGCCGAGACAGAAAAATCTTTCAGCATATCTCTATCGCAATTCTTCTCAATAGA CTTTTATA

ACAAGTGTCTCCTTCAAGATGGTATTGATTACTACAACAAGATAATCGGTGGAGAAA CTCTCAA

AAATGGCGAAAAACTAATAGGTCTCAATGAACTAATAAATCAATATAGGCAGAATAA TAAGGA

ATGAAATAAAAAATGACACAGAACTGATCGAGGCGCTGAGTCAGTTCGCAAAAACAG CCGAAG

AAAAAACAAAAATTGTCAAAAAGCTTTTTGCCGATTTTGTAGAAAATAATTCCAAAT ACGATCT

TGCACAGATTTATATTTCCCAAGAAGCATTCAATACTATATCAAACAAGTGGACAAG CGAAACT

GAGACGTTCGCTAAATATCTATTCGAAGCAATGAAGAGTGGAAAACTTGCAAAGTAT GAGAAA

AAAGATAATAGCTATAAATTTCCTGATTTTATTGCCCTTTCACAGATGAAGAGTGCT TTATTAAG

TATCAGCCTTGAGGGACATTTTTGGAAAGAGAAATACTACAAAATTTCAAAATTCCA AGAGAAG

ACCAATTGGGAGCAGTTTCTTGCAATTTTTCTATACGAGTTTAACTCTCTTTTCAGC GACAAAAT

AAATACAAAAGATGGAGAAACAAAGCAAGTTGGATACTATCTATTTGCCAAAGACCT GCATAA

TCTTATCTTAAGTGAGCAGATTGATATTCCAAAAGATTCAAAAGTCACAATAAAAGA TTTTGCC

GATTCTGTACTCACAATCTACCAAATGGCAAAATATTTTGCGGTAGAAAAAAAACGA GCGTGGC

TTGCCGAGTATGAACTAGATTCATTTTATACCCAGCCAGACACAGGCTATTTACAGT TTTATGAT

AACGCCTACGAGGATATTGTGCAGGTATACAACAAGCTTCGAAACTATCTGACCAAA AAGCCAT

ATAGCGAGGAGAAATGGAAGTTGAATTTTGAAAATTCTACGCTGGCAAATGGATGGG ATAAGA

ACAAAGAATCTGATAATTCAGCAGTTATTCTACAAAAAGGTGGAAAATATTATTTGG GACTGAT

TACTAAAGGACACAACAAAATTTTTGATGACCGTTTTCAAGAAAAATTTATTGTGGG AATTGAA

GGTGGAAAATATGAAAAAATAGTCTATAAATTTTTCCCCGACCAGGCAAAAATGTTT CCCAAAG

TGTGCTTTTCTGCAAAAGGACTCGAATTTTTTAGACCGTCTGAAGAAATTTTAAGAA TTTATAAC

AATGCAGAGTTTAAAAAAGGAGAAACTTATTCAATAGATAGTATGCAGAAGTTGATT GATTTTT

ATAAAGATTGCTTGACTAAATATGAAGGCTGGGCATGTTATACCTTTCGGCATCTAA AACCCAC

AGAAGAATACCAAAACAATATTGGAGAGTTTTTTCGAGATGTTGCAGAGGACGGATA CAGGATT

GATTTTCAAGGCATTTCAGATCAATATATTCATGAAAAAAACGAGAAAGGCGAACTT CACCTTT

TTGAAATCCACAATAAAGATTGGAATTTGGATAAGGCACGAGACGGAAAGTCAAAAA CAACAC

AAAAAAACCTTCATACACTCTATTTCGAATCGCTCTTTTCAAACGATAATGTTGTTC AAAACTTT

CCAATAAAACTCAATGGTCAAGCTGAAATTTTTTATAGACCGAAAACGGAAAAAGAC AAATTA

GAATCAAAAAAAGATAAGAAAGGGAATAAAGTGATTGACCATAAACGCTATAGTGAG AATAAG

ATTTTTTTTCATGTTCCTCTCACACTAAACCGCACTAAAAATGACTCATATCGCTTT AATGCTCAA

ATCAACAACTTTCTCGCAAATAATAAAGATATCAACATCATCGGTGTAGATAGGGGA GAAAAGC

ATTTAGTCTATTATTCGGTGATTACACAAGCTAGTGACATCTTAGAAAGTGGCTCAC TAAATGAG

CTAAATGGCGTGAATTATGCTGAAAAACTGGGAAAAAAGGCAGAAAATCGAGAACAA GCACGC

AGAGACTGGCAAGACGTACAAGGGATCAAAGACCTCAAGAAAGGATATATTTCACAG GTGGTG

CGAAAGCTTGCTGATTTAGCAATTAAACACAATGCCATTATCATTCTTGAAGATTTG AATATGAG

ATTTAAACAAGTTCGGGGCGGTATCGAAAAATCCATTTATCAACAGTTAGAAAAAGC ACTGATA

GATAAATTAAGCTTTCTTGTAGACAAAGGTGAAAAAAATCCCGAGCAAGCAGGACAT CTTCTGA

AAGCATATCAGCTTTCGGCCCCATTTGAGACATTTCAAAAAATGGGCAAACAGACGG GTATAAT

CTTTTATACACAAGCTTCGTATACCTCAAAAAGTGACCCTGTAACAGGTTGGCGACC ACACCTGT ATCTCAAATATTTCAGTGCCAAAAAAGCAAAAGACGATATTGCAAAGTTTACAAAAATAG AATT TGTAAACGATAGGTTTGAGCTTACCTATGATATAAAGGACTTTCAGCAAGCAAAAGAATA TCCA AATAAAACTGTTTGGAAAGTTTGCTCAAATGTAGAGAGATTCAGGTGGGACAAAAACCTC AATC AAAACAAAGGCGGATATACTCACTACACAAATATAACTGAGAATATCCAAGAGCTTTTTA CAAA ATATGGAATTGATATCACAAAAGATTTGCTCACACAGATTTCTACAATTGATGAAAAACA AAAT

TCTGAGATTGCTAAAAAGAATGGGAAAGATGATTTTATACTGTCACCTGTTGAGCCG TTTTTCGA

TAGCCGAAAAGACAATGGAAATAAACTTCCTGAGAATGGAGATGATAACGGCGCGTA TAACAT

AGCAAGAAAAGGGATTGTCATACTCAACAAAATCTCACAATATTCAGAGAAAAACGA AAATTG

CGAGAAAATGAAATGGGGGGATTTGTATGTATCAAACATTGACTGGGACAATTTTGT AACCCAA

GCTAATGCACGGCATTAA

SE ATGATTATCTTATATATTAGTACCTCGAATATGAACATGGAAGGAGTATTTATGGAAAAT TTTAA

Q AAACTTGTATCCAATAAACAAAACACTTCGATTTGAATTAAGACCCTATGGAAAAACATT GGAA

no AATTTTAAAAAATCCGGACTTTTAGAAAAAGATGCCTTTAAGGCAAATAGTAGACGAAGT ATGC

N AAGCTATAATCGATGAAAAATTCAAAGAGACTATCGAAGAACGCTTAAAGTACACTGAAT TCA

O: GTGAATGTGATCTTGGAAACATGACATCAAAAGATAAAAAAATAACTGATAAAGCAGCTA CAA 31 ATTTAAAAAAGCAAGTTATCTTATCTTTTGACGATGAAATATTTAATAATTACCTAAAAC CTGAT

AAAAATATTGACGCATTATTTAAAAATGATCCTTCAAATCCTGTAATCTCTACATTT AAAGGTTT

CAATGGCATACCGAATTATAGATGAAAACCTGACAACATACTTGAATAATATTGAAA AAATAAA

AAAACTGCCAGAAGAATTAAAATCACAGCTAGAAGGCATTGATCAGATTGATAAACT TAATAAT

TATAATGAGTTCATTACACAGTCAGGTATAACACACTATAATGAAATCATCGGCGGT ATATCAA

AATCAGAGAATGTCAAAATACAGGGAATTAATGAAGGAATTAATCTATACTGTCAGA AGAACA

AAGTTAAACTTCCTCGACTGACTCCGCTATACAAAATGATATTATCAGACAGAGTTT CCAACTCT

TTTGTATTAGACACTATTGAAAATGACACAGAATTAATTGAAATGATAAGTGATTTG ATTAATA

AGACTGAGATTTCGCAAGATGTTATAATGTCAGATATTCAAAATATTTTCATAAAAT ACAAACA

ACTTGGTAATTTGCCGGGTATCTCATATTCTTCAATAGTTAATGCTATTTGCTCGGA TTATGACA

ACAATTTCGGAGATGGGAAGCGAAAAAAATCTTACGAAAATGATCGCAAAAAGCATT TGGAGA

CTAATGTATACTCCATAAATTATATTTCTGAATTGCTTACAGATACCGATGTTTCAT CAAATATC

AAGATGAGATATAAAGAGCTTGAGCAAAATTATCAGGTTTGCAAAGAAAATTTTAAT GCCACAA

ACTGGATGAATATTAAAAATATAAAACAATCTGAAAAAACAAACCTTATTAAAGATT TGTTAGA

TATACTTAAATCGATTCAACGTTTCTATGATTTGTTTGATATTGTTGACGAAGATAA AAATCCAA

GTGCTGAATTTTATACCTGGTTATCAAAAAATGCTGAAAAGCTTGACTTTGAATTCA ATTCTGTA

TATAACAAGTCACGAAACTATCTCACCAGGAAACAATACTCTGATAAAAAAATCAAG CTGAATT

TTGATTCTCCAACATTGGCCAAAGGGTGGGATGCTAACAAAGAAATAGATAACTCCA CGATTAT

AATGCGTAAATTTAATAATGACAGAGGCGATTATGATTACTTCCTTGGCATATGGAA TAAATCC

ACACCTGCAAATGAAAAAATAATCCCACTGGAGGATAATGGATTATTCGAAAAAATG CAATAT

AAGCTGTATCCAGATCCTAGTAAGATGTTACCGAAACAATTTCTATCAAAAATATGG AAGGCAA

AGCATCCTACGACACCTGAATTTGATAAAAAATATAAAGAGGGAAGACATAAAAAAG GTCCTG

ATTTCGAAAAAGAATTCCTGCATGAATTGATTGATTGCTTCAAACATGGTCTTGTTA ATCACGAT

GAAAAATATCAGGATGTTTTTGGCTTCAATCTCCGTAACACTGAAGATTATAATTCA TATACAGA

GTTTCTCGAAGATGTGGAAAGATGCAATTACAATCTTTCATTTAACAAAATTGCTGA TACTTCAA ACCTTATTAATGATGGGAAATTGTATGTATTTCAGATATGGTCAAAAGACTTTTCTATTG ATTCA

AAAGGTACTAAAAACTTGAATACAATCTATTTTGAATCACTATTTTCAGAAGAAAAC ATGATAG

AAAAAATGTTCAAGCTTTCTGGAGAGGCTGAGATATTCTATCGACCAGCATCGTTGA ATTATTGT

GAAGATATCATAAAAAAAGGTCATCACCATGCAGAATTAAAAGATAAGTTTGACTAT CCTATAA

TAAAAGATAAGCGATATTCACAAGATAAGTTTTTCTTTCATGTGCCAATGGTTATAA ATTATAAA

TCTGAGAAACTGAATTCCAAAAGCCTTAACAACCGAACAAATGAAAACCTGGGACAG TTTACAC

ATATTATAGGTATAGACAGGGGCGAGCGGCACTTGATTTATTTAACTGTTGTTGATG TTTCCACT

GGTGAAATCGTTGAACAGAAACATCTGGACGAAATTATCAATACTGATACCAAGGGA GTTGAA

CACAAAACCCATTATTTGAATAAATTGGAAGAAAAATCTAAAACAAGAGATAACGAG CGTAAA

TCATGGGAAGCTATTGAAACTATCAAAGAATTAAAAGAAGGCTATATTTCTCATGTA ATTAATG

AAATACAAAAGCTGCAAGAAAAATATAATGCCTTAATCGTAATGGAAAATCTTAACT ATGGGTT

CAAAAACTCACGAATCAAAGTTGAAAAACAGGTTTATCAAAAATTCGAGACAGCATT GATTAA

AAAGTTCAATTATATTATTGATAAAAAAGATCCAGAAACCTATATACATGGTTACCA GCTTACA

AATCCTATTACCACTCTGGATAAGATTGGAAATCAATCTGGAATAGTGCTGTATATT CCTGCGTG

GAATACTTCTAAGATAGATCCCGTCACAGGATTTGTAAACCTTCTGTACGCAGATGA TTTGAAGT

ATAAAAATCAGGAGCAGGCCAAATCATTCATTCAGAAAATAGACAACATATATTTTG AAAATGG

AGAGTTTAAATTTGATATTGATTTTTCCAAATGGAATAATCGCTACTCAATAAGTAA AACTAAAT

GGACGTTAACAAGTTATGGGACTCGCATCCAGACATTTAGAAATCCCCAGAAAAACA ATAAGTG

GGATTCTGCTGAATATGATTTGACAGAAGAGTTTAAATTAATTTTAAATATAGACGG AACGTTA

AAGTCACAGGACGTAGAAACATACAAAAAATTCATGTCTTTATTTAAACTAATGCTA CAGCTTC

GAAACTCTGTTACAGGAACCGACATTGATTATATGATCTCTCCTGTCACTGATAAAA CAGGAAC

ACATTTCGATTCAAGAGAAAATATTAAAAATCTTCCTGCCGATGCAGATGCCAATGG TGCCTAC

AACATTGCGCGCAAAGGAATAATGGCTATTGAAAATATAATGAACGGTATAAGCGAT CCACTA

AAAATAAGCAACGAAGACTATTTAAAGTATATTCAGAATCAACAGGAATAA

SE ATGACCCAATTTGAAGGTTTTACCAATTTATACCAAGTTTCGAAGACCCTTCGTTTTGAA CTGAT

Q TCCCCAAGGAAAAACACTCAAACATATCCAGGAGCAAGGGTTCATTGAGGAGGATAAAGC TCG

no CAATGACCATTACAAAGAGTTAAAACCAATCATTGACCGCATCTATAAGACTTATGCTGA TCAA

N TGTCTCCAACTGGTACAGCTTGACTGGGAGAATCTATCTGCAGCCATAGACTCCTATCGT AAGG

O: AAAAAACCGAAGAAACACGAAATGCGCTGATTGAGGAGCAAGCAACATATAGAAATGCGA TTC

32 ATGACTACTTTATAGGTCGGACGGATAATCTGACAGATGCCATAAATAAGCGCCATGCTG AAAT

CTATAAAGGACTTTTTAAAGCTGAACTTTTCAATGGAAAAGTTTTAAAGCAATTAGG GACCGTA

ACCACGACAGAACATGAAAATGCTCTACTCCGTTCGTTTGACAAATTTACGACCTAT TTTTCCGG

CTTTTATGAAAACCGAAAAAATGTCTTTAGCGCTGAAGATATCAGCACGGCAATTCC CCATCGA

ATCGTCCAGGACAATTTCCCTAAATTTAAGGAAAACTGCCATATTTTTACAAGATTG ATAACCGC

AGTTCCTTCTTTGCGGGAGCATTTTGAAAATGTCAAAAAGGCCATTGGAATCTTTGT TAGTACGT

CTATTGAAGAAGTCTTTTCCTTTCCCTTTTATAATCAACTTCTAACCCAAACGCAAA TTGATCTTT

ATAATCAACTTCTCGGCGGCATATCTAGGGAAGCAGGCACAGAAAAAATCAAGGGAC TTAATG

AAGTTCTCAATCTGGCTATCCAAAAAAATGATGAAACAGCCCATATAATCGCGTCCC TGCCGCA

TCGTTTTATTCCTCTTTTTAAACAAATTCTTTCCGATCGAAATACGTTATCCTTTAT TTTGGAAGA

ATTCAAAAGCGATGAGGAAGTCATCCAATCCTTCTGCAAATATAAAACCCTCTTGAG AAACGAA

AATGTACTGGAGACTGCAGAAGCCCTTTTCAATGAATTAAATTCCATTGATTTGACT CATATCTT

TATTTCCCATAAAAAGTTAGAAACCATCTCTTCAGCGCTTTGTGACCATTGGGATAC CTTGCGCA ATGCACTTTACGAAAGACGGATTTCTGAACTCACTGGCAAAATAACAAAAAGTGCCAAAG AAA

AAGTTCAAAGGTCATTAAAACATGAGGATATAAATCTCCAAGAAATTATTTCTGCTG CAGGAAA

AGAACTATCAGAAGCATTCAAACAAAAAACAAGTGAAATTCTTTCCCATGCCCATGC TGCACTT

GACCAGCCTCTTCCCACAACATTAAAAAAACAGGAAGAAAAAGAAATCCTCAAATCA CAGCTC

GATTCGCTTTTAGGCCTTTATCATCTTCTTGATTGGTTTGCTGTCGATGAAAGCAAT GAAGTCGA

CCCAGAATTCTCAGCACGGCTGACAGGCATTAAACTAGAAATGGAACCAAGCCTTTC GTTTTAT

AATAAAGCAAGAAATTATGCGACAAAAAAGCCCTATTCGGTGGAAAAATTTAAATTG AATTTTC

AAATGCCAACCCTTGCCTCTGGTTGGGATGTCAATAAAGAAAAAAATAATGGAGCTA TTTTATT

CGTAAAAAATGGTCTCTATTACCTTGGTATCATGCCTAAACAGAAGGGGCGCTATAA AGCCCTG

TCTTTTGAGCCGACAGAAAAAACATCAGAAGGATTCGATAAGATGTACTATGACTAC TTCCCAG

ATGCCGCAAAAATGATTCCTAAGTGTTCCACTCAGCTAAAGGCTGTAACCGCTCATT TTCAAACT

CATACCACCCCCATTCTTCTCTCAAATAATTTCATTGAACCTCTTGAAATCACAAAA GAAATTTA

TGACCTGAACAATCCTGAAAAGGAGCCTAAAAAGTTTCAAACGGCTTATGCAAAGAA GACAGG

CGATCAAAAAGGCTATAGAGAAGCGCTTTGCAAATGGATTGACTTTACGCGGGATTT TCTCTCT

AAATATACGAAAACAACTTCAATCGATTTATCTTCACTCCGCCCTTCTTCGCAATAT AAAGATTT

AGGGGAATATTACGCCGAACTGAATCCGCTTCTCTATCATATCTCCTTCCAACGAAT TGCTGAAA

AGGAAATCATGGATGCTGTAGAAACGGGAAAATTGTATCTGTTCCAAATCTACAATA AGGATTT

TGCGAAGGGCCATCACGGGAAACCAAATCTCCACACCCTGTATTGGACAGGTCTCTT CAGTCCT

GAAAACCTTGCGAAAACCAGCATCAAACTTAATGGTCAAGCAGAATTGTTCTATCGA CCTAAAA

GCCGCATGAAGCGGATGGCCCATCGTCTTGGGGAAAAAATGCTGAACAAAAAACTAA AGGACC

AGAAGACACCGATTCCAGATACCCTCTACCAAGAACTGTACGATTATGTCAACCACC GGCTAAG

CCATGATCTTTCCGATGAAGCAAGGGCCCTGCTTCCAAATGTTATCACCAAAGAAGT CTCCCAT

GAAATTATAAAGGATCGGCGGTTTACTTCCGATAAATTTTTCTTCCATGTTCCCATT ACACTGAA

TTATCAAGCAGCCAATAGTCCCAGTAAATTCAACCAGCGTGTCAATGCCTACCTTAA GGAGCAT

CCGGAAACGCCCATCATTGGTATCGATCGTGGAGAACGCAATCTAATCTATATTACC GTCATTG

ACAGTACTGGGAAAATTTTGGAGCAGCGTTCCCTGAATACCATCCAGCAATTTGACT ACCAAAA

AAAATTGGACAACAGGGAAAAAGAGCGTGTTGCCGCCCGTCAAGCCTGGTCCGTCGT CGGAAC

GATCAAAGACCTTAAACAAGGCTACTTGTCACAGGTCATCCATGAAATTGTAGACCT GATGATT

CATTACCAAGCTGTTGTCGTCCTTGAAAACCTCAACTTCGGATTTAAATCAAAACGG ACAGGCA

TTGCCGAAAAAGCAGTCTACCAACAATTTGAAAAGATGCTAATAGATAAACTCAACT GTTTGGT

TCTCAAAGATTATCCTGCTGAGAAAGTGGGAGGCGTCTTAAACCCGTATCAACTTAC AGATCAG

TTCACGAGCTTTGCAAAAATGGGCACGCAAAGCGGCTTCCTTTTCTATGTACCGGCC CCTTATAC

CTCAAAGATTGATCCCCTGACTGGTTTTGTCGATCCCTTTGTATGGAAGACCATTAA AAATCATG

AAAGTCGGAAGCATTTCCTAGAAGGATTTGATTTCCTGCATTATGATGTCAAAACAG GTGATTTT

ATCCTCCATTTTAAAATGAATCGGAATCTCTCTTTCCAGAGAGGGCTTCCTGGCTTC ATGCCAGC

TTGGGATATTGTTTTCGAAAAGAATGAAACCCAATTTGATGCAAAAGGGACGCCCTT CATTGCA

GGAAAACGAATTGTTCCTGTAATCGAAAATCATCGTTTTACGGGTCGTTACAGAGAC CTCTATCC

CGCTAATGAACTCATTGCCCTTCTGGAAGAAAAAGGCATTGTCTTTAGAGACGGAAG TAATATA

TTACCCAAACTTTTAGAAAATGATGATTCTCATGCAATTGATACGATGGTCGCCTTG ATTCGCAG

TGTACTCCAAATGAGAAACAGCAATGCCGCAACGGGGGAAGACTACATCAACTCTCC CGTTAGG

GATCTGAACGGGGTGTGTTTCGACAGTCGATTCCAAAATCCAGAATGGCCAATGGAT GCGGATG

CCAACGGAGCTTATCATATTGCCTTAAAAGGGCAGCTTCTTCTGAACCACCTCAAAG AAAGCAA AGATCTGAAATTACAAAACGGCATCAGCAACCAAGATTGGCTGGCCTACATTCAGGAACT GAG AAACTGA

SE ATGGCCGTCAAATCCATCAAAGTGAAACTTCGTCTCGACGATATGCCGGAGATTCGGGCC GGTC

Q TATGGAAACTTCATAAGGAAGTCAATGCGGGGGTTCGATATTACACGGAATGGCTCAGTC TTCT

no CCGTCAAGAGAACTTGTATCGAAGAAGTCCGAATGGGGACGGAGAGCAAGAATGTGATAA GAC

N TGCAGAAGAATGCAAAGCCGAATTGTTGGAGCGGCTGCGCGCGCGTCAAGTGGAGAATGG ACA

O: CCGTGGTCCGGCGGGATCGGACGATGAATTGCTGCAGTTGGCGCGTCAACTCTATGAGTT GTTG

33 GTTCCGCAGGCGATAGGTGCGAAAGGCGACGCGCAGCAAATTGCCCGCAAATTTTTGAGC CCCT

TGGCCGACAAGGACGCAGTTGGTGGGCTTGGAATCGCGAAGGCGGGGAACAAACCGC GGTGGG

TTCGCATGCGCGAAGCGGGGGAACCAGGCTGGGAAGAGGAGAAGGAGAAGGCTGAGA CGAGG

AAATCTGCGGATCGGACTGCGGATGTTTTGCGCGCGCTCGCGGATTTTGGGTTAAAG CCACTGA

TGCGCGTATACACCGATTCTGAGATGTCATCGGTGGAGTGGAAACCGCTTCGGAAGG GACAAGC

CGTTCGGACGTGGGATAGGGACATGTTCCAACAAGCTATCGAACGGATGATGTCGTG GGAGTCG

TGGAATCAGCGCGTTGGGCAAGAGTACGCGAAACTCGTAGAACAAAAAAATCGATTT GAGCAG

AAGAATTTCGTCGGCCAGGAACATCTGGTCCATCTCGTCAATCAGTTGCAACAAGAT ATGAAAG

AAGCATCGCCCGGACTCGAATCGAAAGAGCAAACCGCGCACTATGTGACGGGACGGG CATTGC

GCGGATCGGACAAGGTATTTGAGAAGTGGGGGAAACTCGCCCCCGATGCACCTTTCG ATTTGTA

CGACGCCGAAATCAAGAATGTGCAGAGACGTAACACGAGACGATTCGGATCACATGA CTTGTTC

GCAAAATTGGCAGAGCCAGAGTATCAGGCCCTGTGGCGCGAAGATGCTTCGTTTCTC ACGCGTT

ACGCGGTGTACAACAGCATCCTTCGCAAACTGAATCACGCCAAAATGTTCGCGACGT TTACTTT

GCCGGATGCAACGGCGCACCCGATTTGGACTCGCTTCGATAAATTGGGTGGGAATTT GCACCAG

TACACCTTTTTGTTCAACGAATTTGGAGAACGCAGGCACGCGATTCGTTTTCACAAG CTATTGAA

AGTCGAGAATGGTGTCGCAAGAGAAGTTGATGATGTCACCGTGCCCATTTCAATGTC AGAGCAA

TTGGATAATCTGCTTCCCAGAGATCCCAATGAACCGATTGCGCTATATTTTCGAGAT TACGGAGC

CGAACAGCATTTCACAGGTGAATTTGGTGGCGCGAAGATCCAGTGCCGCCGGGATCA GCTGGCT

CATATGCACCGACGCAGAGGGGCGAGGGATGTTTATCTCAATGTCAGCGTACGTGTG CAGAGTC

AGTCTGAGGCGCGGGGAGAACGTCGCCCGCCGTATGCGGCAGTATTTCGTCTGGTCG GGGACAA

CCATCGCGCGTTTGTCCATTTCGATAAACTATCGGATTATCTTGCGGAACATCCGGA TGATGGGA

AGCTCGGGTCGGAGGGGTTGCTTTCCGGGCTGCGGGTGATGAGTGTCGATCTCGGCC TTCGCAC

ATCTGCATCGATTTCCGTTTTTCGCGTTGCCCGGAAGGACGAGTTGAAGCCGAACTC AAAAGGT

CGTGTACCGTTTTTCTTTCCGATAAAAGGGAATGACAATCTCGTCGCGGTTCATGAG CGATCACA

ACTCTTGAAGCTGCCTGGCGAAACGGAGTCGAAGGACCTGCGTGCTATCCGAGAAGA ACGCCA

ACGGACATTGCGGCAGTTGCGGACGCAACTGGCGTATTTGCGGCTGCTCGTGCGGTG TGGGTCG

GAAGATGTGGGGCGGCGTGAACGGAGTTGGGCAAAGCTTATCGAGCAGCCGGTGGAT GCGGCC

AATCACATGACACCGGATTGGCGCGAGGCTTTTGAAAACGAACTTCAGAAGCTTAAG TCACTCC

ATGGTATCTGTAGCGACAAGGAATGGATGGATGCTGTCTACGAGAGCGTTCGCCGCG TGTGGCG

TCACATGGGCAAACAGGTTCGCGATTGGCGAAAGGACGTACGAAGCGGAGAGCGGCC CAAGAT

TCGCGGCTATGCGAAAGACGTGGTCGGTGGAAACTCGATTGAGCAAATCGAGTATCT GGAACGT

CAGTACAAGTTCCTCAAGAGTTGGAGCTTCTTTGGTAAGGTGTCGGGACAAGTGATT CGTGCGG

AGAAGGGATCTCGTTTTGCGATCACGCTGCGCGAACACATTGATCACGCGAAGGAAG ATCGGCT

GAAGAAATTGGCGGATCGCATCATTATGGAGGCTCTCGGCTATGTGTACGCGTTGGA TGAGCGC

GGCAAAGGAAAGTGGGTTGCGAAGTATCCGCCGTGCCAGCTCATCCTGCTGGAGGAA TTGAGC GAGTACCAGTTCAATAACGACAGGCCTCCGAGCGAAAACAACCAGTTGATGCAATGGAGT CAT

CGCGGCGTGTTCCAGGAGTTGATAAATCAGGCCCAAGTCCATGATTTACTCGTTGGG ACGATGT

ATGCAGCGTTCTCGTCGCGATTCGACGCGCGAACTGGGGCACCGGGTATCCGCTGTC GCCGGGT

TCCGGCGCGTTGCACCCAGGAGCACAATCCAGAACCATTTCCTTGGTGGCTGAACAA GTTTGTG

GTGGAACATACGTTGGATGCTTGTCCCCTACGCGCAGACGACCTCATCCCAACGGGT GAAGGAG

AGATTTTTGTCTCGCCGTTCAGCGCGGAGGAGGGGGACTTTCATCAGATTCACGCCG ACCTGAA

TGCGGCGCAAAATCTGCAGCAGCGACTCTGGTCTGATTTTGATATCAGTCAAATTCG GTTGCGGT

GTGATTGGGGTGAAGTGGACGGTGAACTCGTTCTGATCCCAAGGCTTACAGGAAAAC GAACGG

CGGATTCATATAGCAACAAGGTGTTTTATACCAATACAGGTGTCACCTATTATGAGC GAGAGCG

GGGGAAGAAGCGGAGAAAGGTTTTCGCGCAAGAGAAATTGTCGGAGGAAGAGGCGGA GTTGCT

CGTGGAAGCAGACGAGGCGAGGGAGAAATCGGTCGTTTTGATGCGTGATCCGTCTGG CATCATC

AATCGGGGAAATTGGACCAGGCAAAAGGAATTTTGGTCGATGGTGAACCAGCGGATC GAAGGA

TACTTGGTCAAGCAGATTCGCTCGCGCGTTCCATTACAAGATAGTGCGTGTGAAAAC ACGGGGG

ATATTTAA

SE ATGGCGACACGCAGTTTTATTTTAAAAATTGAACCAAATGAAGAAGTTAAAAAGGGATTA TGGA

Q AGACGCATGAGGTATTGAATCATGGAATTGCCTACTACATGAATATTCTGAAACTAATTA GACA

no GGAAGCTATTTATGAACATCATGAACAAGATCCTAAAAATCCGAAAAAAGTTTCAAAAGC AGA

N AATACAAGCCGAGTTATGGGATTTTGTTTTAAAAATGCAAAAATGTAATAGTTTTACACA TGAA

O: GTTGACAAAGATGTTGTTTTTAACATCCTGCGTGAACTATATGAAGAGTTGGTCCCTAGT TCAGT 34 CGAGAAAAAGGGTGAAGCCAATCAATTATCGAATAAGTTTCTGTACCCGCTAGTTGATCC GAAC

AGTCAAAGTGGGAAAGGGACGGCATCATCCGGACGTAAACCTCGGTGGTATAATTTA AAAATA

GCAGGCGACCCATCGTGGGAGGAAGAAAAGAAAAAATGGGAAGAGGATAAAAAGAAA GATCC

CCTTGCTAAAATCTTAGGTAAGTTAGCAGAATATGGGCTTATTCCGCTATTTATTCC ATTTACTG

ACAGCAACGAACCAATTGTAAAAGAAATTAAATGGATGGAAAAAAGTCGTAATCAAA GTGTCC

GGCGACTTGATAAGGATATGTTTATCCAAGCATTAGAGCGTTTTCTTTCATGGGAAA GCTGGAA

CCTTAAAGTAAAGGAAGAGTATGAAAAAGTTGAAAAGGAACACAAAACACTAGAGGA AAGGA

TAAAAGAGGACATTCAAGCATTTAAATCCCTTGAACAATATGAAAAAGAACGGCAGG AGCAAC

TTCTTAGAGATACATTGAATACAAATGAATACCGATTAAGCAAAAGAGGATTACGTG GTTGGCG

TGAAATTATCCAAAAATGGCTAAAGATGGATGAAAATGAACCATCAGAAAAATATTT AGAAGT

ATTTAAAGATTATCAACGGAAACATCCACGAGAAGCCGGGGACTATTCTGTCTATGA ATTTTTA

AGCAAGAAAGAAAATCATTTTATTTGGCGAAATCATCCTGAATATCCTTATTTGTAT GCTACATT

TTGTGAAATTGACAAAAAAAAGAAAGACGCTAAGCAACAGGCAACTTTTACTTTGGC TGACCCG

ATTAACCATCCGTTATGGGTACGATTTGAAGAAAGAAGCGGTTCGAACTTAAACAAA TATCGAA

TTTTAACAGAGCAATTACACACTGAAAAGTTAAAAAAGAAATTAACAGTTCAACTTG ATCGTTT

AATTTATCCAACTGAATCCGGCGGTTGGGAGGAAAAAGGTAAAGTAGATATCGTTTT GTTGCCG

TCAAGACAATTTTATAATCAAATCTTCCTTGATATAGAAGAAAAGGGGAAACATGCT TTTACTT

ATAAGGATGAAAGTATTAAATTCCCCCTTAAAGGTACACTTGGTGGTGCAAGAGTGC AGTTTGA

CCGTGACCATTTGCGGAGATATCCGCATAAAGTAGAATCAGGAAATGTTGGACGGAT TTATTTT

AACATGACAGTAAATATTGAACCAACTGAGAGCCCTGTTAGTAAGTCTTTGAAAATA CATAGGG

ACGATTTCCCCAAGTTCGTTAATTTTAAACCGAAAGAGCTCACCGAATGGATAAAAG ATAGTAA

AGGGAAAAAATTAAAAAGTGGTATAGAATCCCTTGAAATTGGTCTACGGGTGATGAG TATCGAC

TTAGGTCAACGTCAAGCGGCTGCTGCATCGATTTTTGAAGTAGTTGATCAGAAACCG GATATTG AAGGGAAGTTATTTTTTCCAATCAAAGGAACTGAGCTTTATGCTGTTCACCGGGCAAGTT TTAAC

ATTAAATTACCGGGTGAAACATTAGTAAAATCACGGGAAGTATTGCGGAAAGCTCGG GAGGAC

AACTTAAAATTAATGAATCAAAAGTTAAACTTTCTAAGAAATGTTCTACATTTCCAA CAGTTTGA

AGATATCACAGAAAGAGAGAAGCGTGTAACTAAATGGATTTCTAGACAAGAAAATAG TGATGT

TCCTCTTGTATATCAAGATGAGCTAATTCAAATTCGTGAATTAATGTATAAACCCTA TAAAGATT

GGGTTGCCTTTTTAAAACAACTCCATAAACGGCTAGAAGTCGAGATTGGCAAAGAGG TTAAGCA

TTGGCGAAAATCATTAAGTGACGGGAGAAAAGGTCTTTACGGAATCTCCCTAAAAAA TATTGAT

GAAATTGATCGAACAAGGAAATTCCTTTTAAGATGGAGCTTACGTCCAACAGAACCT GGGGAAG

TAAGACGCTTGGAACCAGGACAGCGTTTTGCGATTGATCAATTAAACCACCTAAATG CATTAAA

AGAAGATCGATTAAAAAAGATGGCAAATACGATTATCATGCATGCCTTAGGTTACTG TTATGAT

GTAAGAAAGAAAAAGTGGCAGGCAAAAAATCCAGCATGTCAAATTATTTTATTTGAA GATTTAT

CTAACTACAATCCTTACGAGGAAAGGTCCCGTTTTGAAAACTCAAAACTGATGAAGT GGTCACG

GAGAGAAATTCCACGACAAGTCGCCTTACAAGGTGAAATTTACGGATTACAAGTTGG GGAAGT

AGGTGCCCAATTCAGTTCAAGATTCCATGCGAAAACCGGGTCGCCGGGAATTCGTTG CAGTGTT

GTAACGAAAGAAAAATTGCAGGATAATCGCTTTTTTAAAAATTTACAAAGAGAAGGA CGACTTA

CTCTTGATAAAATCGCAGTTTTAAAAGAAGGAGACTTATATCCAGATAAAGGTGGAG AAAAGTT

TATTTCTTTATCAAAGGATCGAAAGTTGGTAACTACGCATGCTGATATTAACGCGGC CCAAAATT

TACAGAAGCGTTTTTGGACAAGAACACATGGATTTTATAAAGTTTACTGCAAAGCCT ATCAGGT

TGATGGACAAACTGTTTATATTCCGGAGAGCAAGGACCAAAAACAAAAAATAATTGA AGAATT

TGGGGAAGGCTATTTTATTTTAAAAGATGGTGTATATGAATGGGGTAATGCGGGGAA ACTAAAA

ATTAAAAAAGGTTCCTCTAAACAATCATCGAGTGAATTAGTAGATTCGGACATACTG AAAGATT

CATTTGATTTAGCAAGTGAACTTAAGGGAGAGAAACTCATGTTATATCGAGATCCGA GTGGAAA

CGTATTTCCTTCCGACAAGTGGATGGCAGCAGGAGTATTTTTTGGCAAATTAGAAAG AATATTG

ATTTCTAAGTTAACAAATCAATACTCAATATCAACAATAGAAGATGATTCTTCAAAA CAATCAA

TGTAA

SE ATGCCCACCCGCACCATCAATCTGAAACTTGTTCTTGGGAAAAATCCTGAAAACGCAACA TTGC

Q GACGCGCCCTATTTTCGACACACCGTTTGGTTAACCAAGCGACGAAACGTATTGAGGAAT TCTT

no GTTGCTGTGTCGTGGAGAAGCCTACAGAACAGTGGATAATGAGGGGAAGGAAGCCGAGAT TCC

N ACGTCATGCAGTCCAAGAAGAAGCTCTTGCCTTTGCCAAAGCTGCTCAACGCCACAACGG CTGT

O: ATATCCACCTATGAAGACCAAGAGATTCTTGATGTACTGCGGCAACTGTACGAACGTCTT GTTCC

35 TTCGGTCAACGAAAACAACGAGGCAGGCGATGCTCAAGCTGCTAACGCCTGGGTCAGTCC GCTC

ATGTCGGCAGAAAGCGAAGGAGGCTTGTCGGTCTACGACAAGGTGCTTGATCCACCG CCGGTTT

GGATGAAGCTTAAAGAAGAAAAGGCTCCAGGATGGGAAGCCGCTTCTCAAATTTGGA TTCAGA

GTGATGAGGGACAGTCGTTACTTAATAAGCCAGGTAGCCCTCCCCGCTGGATTCGAA AACTGCG

ATCTGGGCAACCGTGGCAAGATGATTTCGTCAGTGACCAAAAGAAAAAGCAAGATGA GCTGAC

CAAAGGGAACGCACCACTTATAAAACAACTCAAAGAAATGGGGTTGTTGCCTCTTGT TAACCCA

TTTTTTAGACATCTTCTTGACCCTGAAGGTAAAGGCGTGAGTCCATGGGACCGTCTT GCTGTACG

CGCTGCAGTGGCTCACTTTATCTCCTGGGAAAGTTGGAATCATAGAACACGTGCAGA ATACAAT

TCCTTGAAACTACGGCGAGACGAGTTTGAGGCAGCATCCGACGAATTCAAAGACGAT TTTACTT

TGCTCCGACAATATGAAGCCAAACGCCATAGTACATTGAAAAGCATCGCGCTGGCCG ACGATTC

GAACCCTTACCGGATTGGAGTACGTTCTCTGCGTGCCTGGAACCGCGTTCGTGAAGA ATGGATA

GACAAGGGTGCAACAGAAGAACAACGCGTGACCATATTGTCAAAGCTTCAAACACAA CTTCGG GGAAAATTCGGCGATCCCGATCTGTTCAACTGGCTAGCTCAGGATAGGCATGTCCATTTG TGGT

CTCCTCGGGACAGCGTGACACCATTGGTTCGCATCAATGCGGTAGATAAAGTTCTGC GTCGACG

AAAACCGTATGCATTGATGACCTTTGCCCATCCCCGCTTCCACCCTCGATGGATACT GTACGAGG

CTCCAGGAGGAAGCAATCTCCGTCAATATGCATTGGATTGTACAGAAAACGCTCTAC ACATCAC

GTTGCCTTTGCTTGTCGACGATGCGCACGGAACCTGGATTGAAAAAAAGATCAGGGT GCCGCTG

GCACCATCCGGACAAATTCAAGATTTAACTCTGGAAAAACTTGAGAAGAAAAAAAAT CGTTTAT

ACTACCGTTCCGGTTTTCAGCAGTTTGCCGGCTTGGCTGGCGGAGCTGAGGTTCTTT TCCACAGA

CCCTATATGGAACACGACGAACGCAGCGAGGAGTCTCTTTTGGAACGTCCGGGAGCC GTTTGGT

TCAAATTGACCCTGGATGTGGCAACACAGGCTCCCCCGAACTGGCTTGATGGTAAGG GCCGTGT

CCGTACACCGCCGGAGGTACATCATTTTAAAACCGCATTGTCGAATAAAAGCAAACA TACACGT

ACGCTGCAGCCGGGTCTCCGTGTCTTGTCAGTAGACTTGGGCATGCGAACATTCGCC TCCTGCTC

AGTATTTGAACTCATCGAGGGAAAGCCTGAGACAGGCCGTGCCTTCCCTGTTGCCGA TGAGAGA

TCAATGGACAGCCCGAATAAACTGTGGGCCAAGCATGAACGTAGTTTTAAACTGACG CTCCCCG

GCGAAACCCCTTCTCGAAAGGAAGAGGAAGAGCGTAGCATAGCAAGAGCGGAAATTT ATGCAC

TGAAACGCGACATACAACGCCTCAAAAGCCTACTCCGCTTAGGTGAAGAAGATAACG ATAACC

GTCGTGATGCATTGCTTGAACAGTTCTTTAAAGGATGGGGAGAAGAAGACGTTGTGC CTGGACA

AGCGTTTCCACGCTCTCTTTTCCAAGGGTTGGGAGCTGCCCCGTTTCGCTCAACTCC AGAGTTAT

GGCGTCAGCATTGCCAAACATATTATGACAAAGCGGAAGCCTGTCTGGCTAAACATA TCAGTGA

TTGGCGCAAGCGAACTCGTCCCCGTCCGACATCGCGGGAGATGTGGTACAAAACACG TTCCTAT

CATGGCGGCAAGTCCATTTGGATGTTGGAATATCTTGATGCCGTTCGAAAACTGCTT CTCAGTTG

GAGCTTACGTGGTCGTACTTACGGTGCCATTAATCGCCAGGATACAGCCCGGTTTGG TTCTTTGG

CATCACGGCTGCTCCACCATATCAATTCCCTAAAGGAAGACCGCATCAAAACAGGAG CCGACTC

TATCGTTCAGGCTGCTCGCGGGTATATTCCTCTCCCTCATGGCAAGGGTTGGGAACA AAGATAT

GAGCCTTGTCAGCTCATATTATTTGAAGACCTCGCACGATATCGCTTTCGCGTGGAT CGACCTCG

TCGAGAGAACAGCCAACTCATGCAGTGGAACCATCGAGCCATCGTGGCAGAAACAAC GATGCA

AGCCGAACTCTACGGACAAATTGTCGAAAATACTGCAGCGGGGTTCAGCAGTCGTTT TCACGCG

GCGACAGGTGCCCCCGGTGTACGTTGTCGTTTTCTTCTAGAAAGAGACTTTGATAAC GATTTGCC

CAAACCGTACCTTCTCAGGGAACTTTCTTGGATGCTCGGCAATACAAAAGTCGAGTC TGAAGAA

GAAAAGCTTCGATTGCTGTCTGAAAAAATCAGGCCAGGCAGTCTTGTTCCTTGGGAT GGAGGCG

AACAGTTCGCTACCCTGCATCCCAAAAGACAAACACTTTGCGTCATTCATGCCGATA TGAATGC

TGCCCAAAATTTACAACGCCGGTTTTTCGGTCGATGCGGCGAGGCCTTTCGGCTTGT TTGTCAAC

CCCACGGTGACGACGTGTTACGACTCGCATCCACCCCAGGAGCTCGTCTTCTTGGAG CCCTGCA

GCAGCTTGAAAATGGACAAGGAGCTTTCGAGTTGGTTCGAGACATGGGGTCAACAAG TCAAAT

GAACCGGTTCGTCATGAAGTCTTTGGGAAAAAAGAAAATAAAACCCCTTCAGGACAA CAATGG

AGACGACGAGCTTGAAGACGTGTTGTCCGTACTCCCGGAGGAAGACGACACAGGACG TATCAC

AGTCTTCCGCGATTCATCAGGAATCTTTTTTCCTTGCAACGTCTGGATACCGGCCAA ACAGTTTT

GGCCAGCAGTACGCGCCATGATTTGGAAGGTCATGGCTTCCCATTCTTTGGGGTGA

SE ATGACAAAGTTAAGACACCGACAGAAAAAATTAACACACGACTGGGCTGGCTCCAAAAAG AGG

Q GAAGTATTAGGCTCAAATGGCAAGCTTCAGAATCCGTTGTTAATGCCGGTTAAAAAAGGT CAGG

no TTACTGAGTTCCGGAAAGCGTTTTCTGCGTATGCTCGCGCAACGAAAGGAGAAATGACTG ACGG

N CCGAAAGAATATGTTTACGCATAGTTTCGAGCCATTTAAGACAAAGCCCTCGCTTCATCA GTGT

O: GAATTGGCAGATAAAGCATATCAATCTTTACATTCGTATCTGCCTGGTTCTCTTGCTCAT TTTCTA TTATCTGCTCACGCATTAGGTTTTCGTATTTTTTCAAAATCTGGTGAAGCAACTGCATTC CAGGC

ATCCTCTAAAATTGAAGCTTACGAATCAAAATTGGCAAGCGAATTAGCTTGTGTAGA TTTATCTA

TTCAAAACTTGACTATTTCAACGCTTTTTAATGCGCTTACAACGTCTGTAAGAGGGA AGGGCGA

AGAAACTAGCGCTGACCCCTTAATTGCACGATTTTACACCTTACTTACTGGCAAGCC TCTGTCTC

GAGACACTCAAGGGCCTGAACGTGATTTAGCAGAAGTTATCTCGCGTAAGATAGCTA GTTCTTT

TGGCACATGGAAAGAAATGACGGCAAACCCTCTTCAGTCATTACAATTTTTTGAAGA GGAACTC

CATGCGCTGGATGCCAATGTCTCGCTCTCACCCGCCTTCGACGTTTTAATTAAAATG AATGATTT

GCAGGGCGATTTAAAAAATCGAACCATTGTTTTTGATCCTGACGCCCCTGTTTTTGA ATATAACG

CAGAAGACCCTGCCGACATAATTATTAAACTTACAGCTCGTTACGCTAAAGAAGCTG TCATCAA

AAATCAAAACGTAGGAAATTACGTTAAAAACGCTATTACTACCACAAATGCCAATGG TCTTGGT

TGGCTTTTGAACAAAGGTTTGTCGTTACTCCCTGTCTCGACCGATGACGAATTGCTA GAGTTTAT

TGGCGTTGAACGATCTCATCCCTCATGCCATGCCTTAATTGAATTGATTGCACAATT AGAAGCCC

CCGAGCTCTTTGAGAAGAACGTATTTTCAGATACTCGTTCTGAAGTTCAAGGTATGA TTGATTCA

GCTGTTTCTAATCATATTGCTCGTCTTTCCAGCTCTAGAAATAGCTTGTCAATGGAT AGTGAAGA

ATTAGAACGTTTAATCAAAAGCTTTCAGATACACACACCTCATTGCTCACTTTTTAT TGGCGCCC

AATCACTTTCACAGCAGTTAGAATCTTTGCCTGAAGCCCTTCAATCGGGCGTTAATT CAGCCGAT

ATTTTACTAGGCTCTACTCAATATATGCTCACCAATTCTTTGGTTGAAGAGTCAATT GCAACTTA

TCAAAGAACACTTAATCGCATCAATTACTTGTCAGGTGTTGCAGGTCAGATTAACGG CGCAATA

AAGCGAAAAGCGATAGATGGAGAAAAAATTCACTTGCCTGCAGCTTGGTCAGAGTTG ATATCTT

TACCATTTATAGGCCAGCCTGTTATAGATGTTGAAAGCGATTTAGCTCATCTAAAAA ATCAATAC

CAAACACTTTCAAATGAGTTTGATACTCTTATATCTGCTTTGCAAAAGAATTTTGAT TTGAACTT

TAATAAAGCGCTCCTTAATCGTACTCAGCATTTTGAAGCCATGTGTAGAAGCACTAA GAAAAAC

GCTTTATCCAAACCAGAGATCGTTTCCTATCGCGACCTGCTTGCTCGATTAACTTCT TGTTTGTAT

CGAGGCTCTTTAGTTTTGCGTCGTGCCGGCATTGAAGTGTTAAAAAAACATAAAATA TTTGAGTC

AAACAGCGAACTTCGTGAACATGTTCATGAAAGAAAGCATTTCGTGTTTGTTAGTCC TCTAGATC

GCAAAGCCAAGAAACTCCTTCGATTAACTGATTCGCGTCCAGACTTGTTACATGTTA TTGATGAA

ATATTGCAGCACGATAATCTTGAAAACAAAGACCGCGAGTCACTTTGGCTAGTTCGC TCTGGTT

ATTTGCTTGCAGGACTTCCAGATCAACTTTCTTCATCTTTTATTAACTTGCCTATCA TTACTCAAA

AAGGAGATAGACGCCTTATAGACCTGATTCAGTATGATCAAATTAATCGTGATGCTT TTGTTATG

TTAGTGACCTCTGCATTCAAGTCTAATTTGTCTGGTCTGCAGTATCGTGCCAATAAG CAATCGTT

CGTTGTTACTCGCACGCTAAGCCCTTATCTCGGCTCAAAACTTGTCTACGTACCCAA GGATAAAG

ATTGGTTAGTTCCTTCTCAAATGTTTGAAGGACGATTTGCTGACATTCTTCAATCAG ATTATATG

GTCTGGAAAGATGCCGGTCGTCTTTGTGTTATTGATACTGCAAAACACCTTTCTAAT ATAAAGAA

AGACCGAAGTTCGCGGCCTTGGCGTTAATGTCGATGGAATTGCATTTAATAATGGTG ATATTCC

GTCATTAAAAACCTTTTCAAATTGCGTTCAGGTAAAAGTTTCTCGGACTAATACATC CCTAGTTC

AAACACTTAATCGTTGGTTTGAAGGAGGAAAAGTTTCTCCTCCGAGCATTCAATTTG AACGGGC

GTATTATAAAAAAGACGATCAAATTCATGAAGACGCAGCGAAAAGAAAGATACGATT CCAGAT

GCCCGCAACTGAGTTGGTTCATGCTTCTGACGATGCGGGGTGGACACCAAGTTATTT GCTCGGC

ATTGATCCTGGCGAGTATGGAATGGGTCTTTCATTGGTTTCGATTAATAACGGAGAA GTCTTAGA

TTCAGGCTTTATTCATATTAATTCTCTGATCAATTTTGCCTCTAAAAAGAGCAACCA TCAAACTA

AGGTTGTTCCGCGTCAGCAGTACAAATCTCCTTATGCAAATTATTTAGAACAATCTA AAGATTCT GCTGCTGGTGATATTGCGCATATACTCGATCGACTTATATACAAATTAAATGCGTTGCCT GTTTT

TGAGGCTCTTTCAGGTAATTCTCAGAGTGCTGCTGATCAAGTTTGGACGAAAGTCTT ATCGTTTT

ACACTTGGGGTGATAATGACGCTCAGAATTCTATTAGAAAGCAGCATTGGTTTGGAG CCAGTCA

TTGGGATATCAAAGGTATGTTAAGGCAACCCCCTACGGAGAAGAAGCCTAAACCGTA TATTGCT

TTTCCTGGCTCTCAGGTTTCTTCGTATGGTAATTCCCAACGTTGCTCTTGCTGCGGT CGCAATCCT

ATTGAACAACTTCGAGAAATGGCAAAGGATACCTCTATTAAAGAGCTAAAAATTCGC AATTCTG

AGATACAGCTTTTTGACGGAACCATTAAATTATTTAATCCAGACCCATCCACTGTGA TAGAGAG

AAGGCGACATAATCTTGGTCCATCAAGAATTCCTGTTGCTGACCGTACTTTCAAAAA CATCAGTC

CATC AAGTCTAGAATTTAAAGAATTGATT ACT ATCGTGTCTCGATCTATCCGTCATTCACCTGAG

TTTATCGCTAAAAAACGCGGCATAGGGTCTGAGTATTTTTGCGCTTATTCCGATTGC AACTCATC

CTTAAATTCTGAAGCTAACGCAGCTGCTAACGTAGCGCAAAAATTTCAAAAACAGTT ATTTTTTG

AGTTATAA

SE ATGAAGAGAATTCTGAACAGTCTGAAAGTTGCTGCCTTGAGACTTCTGTTTCGAGGCAAA GGTT

Q CTGAATTAGTGAAGACAGTCAAATATCCATTGGTTTCCCCGGTTCAAGGCGCGGTTGAAG AACT

no TGCTGAAGCAATTCGGCACGACAACCTGCACCTTTTTGGGCAGAAGGAAATAGTGGATCT TATG

N GAGAAAGACGAAGGAACCCAGGTGTATTCGGTTGTGGATTTTTGGTTGGATACCCTGCGT TTAG

O: GGATGTTTTTCTCACCATCAGCGAATGCGTTGAAAATCACGCTGGGAAAATTCAATTCTG ATCA

37 GGTTTCACCTTTTCGTAAGGTTTTGGAGCAGTCACCTTTTTTTCTTGCGGGTCGCTTGAA GGTTGA

ACCTGCGGAAAGGATACTTTCTGTTGAAATCAGAAAGATTGGTAAAAGAGAAAACAG AGTTGA

GAACTATGCCGCCGATGTGGAGACATGCTTCATTGGTCAGCTTTCTTCAGATGAGAA ACAGAGT

ATCCAGAAGCTGGCAAATGATATCTGGGATAGCAAGGATCATGAGGAACAGAGAATG TTGAAG

GCGGATTTTTTTGCTATACCTCTTATAAAAGACCCCAAAGCTGTCACAGAAGAAGAT CCTGAAA

ATGAAACGGCGGGAAAACAGAAACCGCTTGAATTATGTGTTTGTCTTGTTCCTGAGT TGTATAC

CCGAGGTTTCGGCTCCATTGCTGATTTTCTGGTTCAGCGACTTACCTTGCTGCGTGA CAAAATGA

GTACCGACACGGCGGAAGATTGCCTCGAGTATGTTGGCATTGAGGAAGAAAAAGGCA ATGGAA

TGAATTCCTTGCTCGGCACTTTTTTGAAGAACCTGCAGGGTGATGGTTTTGAACAGA TTTTTCAG

TTTATGCTTGGGTCTTATGTTGGCTGGCAGGGGAAGGAAGATGTACTGCGCGAACGA TTGGATT

TGCTGGCCGAAAAAGTCAAAAGATTACCAAAGCCAAAATTTGCCGGAGAATGGAGTG GTCATC

GTATGTTTCTCCATGGTCAGCTGAAAAGCTGGTCGTCGAATTTCTTCCGTCTTTTTA ATGAGACG

CGGGAACTTCTGGAAAGTATCAAGAGTGATATTCAACATGCCACCATGCTCATTAGC TATGTGG

AAGAGAAAGGAGGCTATCATCCACAGCTGTTGAGTCAGTATCGGAAGTTAATGGAAC AATTACC

GGCGTTGCGGACTAAGGTTTTGGATCCTGAGATTGAGATGACGCATATGTCCGAGGC TGTTCGA

AGTTACATTATGATACACAAGTCTGTAGCGGGATTTCTGCCGGATTTACTCGAGTCT TTGGATCG

AGATAAGGATAGGGAATTTTTGCTTTCCATCTTTCCTCGTATTCCAAAGATAGATAA GAAGACG

AAAGAGATCGTTGCATGGGAGCTACCGGGCGAGCCAGAGGAAGGCTATTTGTTCACA GCAAAC

AACCTTTTCCGGAATTTTCTTGAGAATCCGAAACATGTGCCACGATTTATGGCAGAG AGGATTCC

CGAGGATTGGACGCGTTTGCGCTCGGCCCCTGTGTGGTTTGATGGGATGGTGAAGCA ATGGCAG

AAGGTGGTGAATCAGTTGGTTGAATCTCCAGGCGCCCTTTATCAGTTCAATGAAAGT TTTTTGCG

TCAAAGACTGCAAGCAATGCTTACGGTCTATAAGCGGGATCTCCAGACTGAGAAGTT TCTGAAG

CTGCTGGCTGATGTCTGTCGTCCACTCGTTGATTTTTTCGGACTTGGAGGAAATGAT ATTATCTTC

AAGTCATGTCAGGATCCAAGAAAGCAATGGCAGACTGTTATTCCACTCAGTGTCCCA GCGGATG

TTTATACAGCATGTGAAGGCTTGGCTATTCGTCTCCGCGAAACTCTTGGATTCGAAT GGAAAAAT CTGAAAGGACACGAGCGGGAAGATTTTTTACGGCTGCATCAGTTGCTGGGAAATCTGCTG TTCT

GGATCAGGGATGCGAAACTTGTCGTGAAGCTGGAAGACTGGATGAACAATCCTTGTG TTCAGGA

GTATGTGGAAGCACGAAAAGCCATTGATCTTCCCTTGGAGATTTTCGGATTTGAGGT GCCGATTT

TTCTCAATGGCTATCTCTTTTCGGAACTGCGCCAGCTGGAATTGTTGCTGAGGCGTA AGTCGGTG

ATGACGTCTTACAGCGTCAAAACGACAGGCTCGCCAAATAGGCTCTTCCAGTTGGTT TACCTAC

CTCTAAACCCTTCAGATCCGGAAAAGAAAAATTCCAACAACTTTCAGGAGCGCCTCG ATACACC

TACCGGTTTGTCGCGTCGTTTTCTGGATCTTACGCTGGATGCATTTGCTGGCAAACT CTTGACGG

ATCCGGTAACTCAGGAACTGAAGACGATGGCCGGTTTTTACGATCATCTCTTTGGCT TCAAGTTG

CCGTGTAAACTGGCGGCGATGAGTAACCATCCAGGATCCTCTTCCAAAATGGTGGTT CTGGCAA

AACCAAAGAAGGGTGTTGCTAGTAACATCGGCTTTGAACCTATTCCCGATCCTGCTC ATCCTGTG

TTCCGGGTGAGAAGTTCCTGGCCGGAGTTGAAGTACCTGGAGGGGTTGTTGTATCTT CCCGAAG

ATACACCACTGACCATTGAACTGGCGGAAACGTCGGTCAGTTGTCAGTCTGTGAGTT CAGTCGC

TTTCGATTTGAAGAATCTGACGACTATCTTGGGTCGTGTTGGTGAATTCAGGGTGAC GGCAGATC

AACCTTTCAAGCTGACGCCCATTATTCCTGAGAAAGAGGAATCCTTCATCGGGAAGA CCTACCT

CGGTCTTGATGCTGGAGAGCGATCTGGCGTTGGTTTCGCGATTGTGACGGTTGACGG CGATGGG

TATGAGGTGCAGAGGTTGGGTGTGCATGAAGATACTCAGCTTATGGCGCTTCAGCAA GTCGCCA

GCAAGTCTCTTAAGGAGCCGGTTTTCCAGCCACTCCGTAAGGGCACATTTCGTCAGC AGGAGCG

CATTCGCAAAAGCCTCCGCGGTTGCTACTGGAATTTCTATCATGCATTGATGATCAA GTACCGAG

CTAAAGTTGTGCATGAGGAATCGGTGGGTTCATCCGGTCTGGTGGGGCAGTGGCTGC GTGCATT

TCAGAAGGATCTCAAAAAGGCTGATGTTCTGCCCAAGAAGGGTGGAAAAAATGGTGT AGACAA

AAAAAAGAGAGAAAGCAGCGCTCAGGATACCTTATGGGGAGGAGCTTTCTCGAAGAA GGAAGA

GCAGCAGATAGCCTTTGAGGTTCAGGCAGCTGGATCAAGCCAGTTTTGTCTGAAGTG TGGTTGG

TGGTTTCAGTTGGGGATGCGGGAAGTAAATCGTGTGCAGGAGAGTGGCGTGGTGCTG GACTGGA

ACCGGTCCATTGTAACCTTCCTCATCGAATCCTCAGGAGAAAAGGTATATGGTTTCA GTCCTCAG

CAACTGGAAAAAGGCTTTCGTCCTGACATCGAAACGTTCAAAAAAATGGTAAGGGAT TTTATGA

GACCCCCCATGTTTGATCGCAAAGGTCGGCCGGCCGCGGCGTATGAAAGATTCGTAC TGGGACG

TCGTCACCGTCGTTATCGCTTTGATAAAGTTTTTGAAGAGAGATTTGGTCGCAGTGC TCTTTTCA

TCTGCCCGCGGGTCGGGTGTGGGAATTTCGATCACTCCAGTGAGCAGTCAGCCGTTG TCCTTGCC

CTTATTGGTTACATTGCTGATAAGGAAGGGATGAGTGGTAAGAAGCTTGTTTATGTG AGGCTGG

CTGAACTTATGGCTGAGTGGAAGCTGAAGAAACTGGAGAGATCAAGGGTGGAAGAAC AGAGCT

CGGCACAATAA

SE ATGGCAGAAAGCAAGCAGATGCAATGCCGCAAGTGCGGCGCAAGCATGAAGTATGAAGTA ATT

Q GGATTGGGCAAGAAGTCATGCAGATATATGTGCCCAGATTGCGGCAATCACACCAGCGCG CGC

no AAGATTCAGAACAAGAAAAAGCGCGACAAAAAGTATGGATCCGCAAGCAAAGCGCAGAGC CA

N GAGGATAGCTGTGGCTGGCGCGCTTTATCCAGACAAAAAAGTGCAGACCATAAAGACCTA CAA

O: ATACCCAGCGGATCTTAATGGCGAAGTTCATGACAGCGGCGTCGCAGAGAAGATTGCGCA GGC

38 GATTCAGGAAGATGAGATCGGCCTGCTTGGCCCGTCCAGCGAATACGCTTGCTGGATTGC TTCA

CAAAAACAGAGCGAGCCGTATTCAGTTGTAGATTTTTGGTTTGACGCGGTGTGCGCA GGCGGAG

TATTCGCGTATTCTGGCGCGCGCCTGCTTTCCACAGTCCTCCAGTTGAGTGGCGAGG AAAGCGTT

TTGCGCGCTGCTTTAGCATCTAGCCCGTTTGTAGATGACATTAATTTGGCGCAAGCG GAAAAGTT

CCTAGCCGTTAGCCGGCGCACAGGCCAAGATAAGCTAGGCAAGCGCATTGGAGAATG TTTTGCG

GAAGGCCGGCTTGAAGCGCTTGGCATCAAAGATCGCATGCGCGAATTCGTGCAAGCG ATTGATG TGGCCCAAACCGCGGGCCAGCGGTTCGCGGCCAAGCTAAAGATATTCGGCATCAGTCAGA TGCC

TGAAGCCAAGCAATGGAACAATGATTCCGGGCTCACTGTATGTATTTTGCCGGATTA TTATGTCC

CGGAAGAAAACCGCGCGGACCAGCTGGTTGTTTTGCTTCGGCGCTTACGCGAGATCG CGTATTG

CATGGGAATTGAGGATGAAGCAGGATTTGAGCATCTAGGCATTGACCCTGGTGCTCT TTCCAAT

TTTTCCAATGGCAATCCAAAGCGAGGATTTCTCGGCCGCCTGCTCAATAATGACATT ATAGCGCT

GGCAAACAACATGTCAGCCATGACGCCGTATTGGGAAGGCAGAAAAGGCGAGTTGAT TGAGCG

CCTTGCATGGCTTAAACATCGCGCTGAAGGATTGTATTTGAAAGAGCCACATTTCGG CAACTCCT

GGGCAGACCACCGCAGCAGGATTTTCAGTCGCATTGCGGGCTGGCTTTCCGGATGCG CGGGCAA

GCTCAAGATTGCCAAGGATCAGATTTCAGGCGTGCGTACGGATTTGTTTCTGCTCAA GCGCCTTC

TGGATGCGGTACCGCAAAGCGCGCCGTCGCCGGACTTTATTGCTTCCATCAGCGCGC TGGATCG

GTTTTTGGAAGCGGCAGAAAGCAGCCAGGATCCGGCAGAACAGGTACGCGCTTTGTA CGCGTTT

CATCTGAACGCGCCTGCGGTCCGATCCATCGCCAACAAGGCGGTACAGAGGTCTGAT TCCCAGG

AGTGGCTTATCAAGGAACTGGATGCTGTAGATCACCTTGAATTCAACAAAGCATTTC CGTTTTTT

TCGGATACAGGAAAGAAAAAGAAGAAAGGAGCGAATAGCAACGGAGCGCCTTCTGAA GAAGA

ATACACGGAAACAGAATCCATTCAACAACCAGAAGATGCAGAGCAGGAAGTGAATGG TCAAGA

AGGAAATGGCGCTTCAAAGAACCAGAAAAAGTTTCAGCGCATTCCTCGATTTTTCGG GGAAGGG

TCAAGGAGTGAGTATCGAATTTTAACAGAAGCGCCGCAATATTTTGACATGTTCTGC AATAATA

TGCGCGCGATCTTTATGCAGCTAGAGAGTCAGCCGCGCAAGGCGCCTCGTGATTTCA AATGCTT

TCTGCAGAATCGTTTGCAGAAGCTTTACAAGCAAACCTTTCTCAATGCTCGCAGTAA TAAATGCC

GCGCGCTTCTGGAATCCGTCCTTATTTCATGGGGAGAATTTTATACTTATGGCGCGA ATGAAAAG

AAGTTTCGTCTGCGCCATGAAGCGAGCGAGCGCAGCTCGGATCCGGACTATGTGGTT CAGCAGG

CATTGGAAATCGCGCGCCGGCTTTTCTTGTTCGGATTTGAGTGGCGCGATTGCTCTG CTGGAGAG

CGCGTGGATTTGGTTGAAATCCACAAAAAAGCAATCTCATTTTTGCTTGCAATCACT CAGGCCG

AGGTTTCAGTTGGTTCCTATAACTGGCTTGGGAATAGCACCGTGAGCCGGTATCTTT CGGTTGCT

GGCACAGACACATTGTACGGCACTCAACTGGAGGAGTTTTTGAACGCCACAGTGCTT TCACAGA

TGCGTGGGCTGGCGATTCGGCTTTCATCTCAGGAGTTAAAAGACGGATTTGATGTTC AGTTGGA

GAGTTCGTGCCAGGACAATCTCCAGCATCTGCTGGTGTATCGCGCTTCGCGCGACTT GGCTGCGT

GCAAACGCGCTACATGCCCGGCTGAATTGGATCCGAAAATTCTTGTTCTGCCGGTTG GTGCGTTT

ATCGCGAGCGTAATGAAAATGATTGAGCGTGGCGATGAACCATTAGCAGGCGCGTAT TTGCGTC

ATCGGCCGCATTCATTCGGCTGGCAGATACGGGTTCGTGGAGTGGCGGAAGTAGGCA TGGATCA

GGGCACAGCGCTAGCATTCCAGAAGCCGACTGAATCAGAGCCGTTTAAAATAAAGCC GTTTTCC

GCTCAATACGGCCCAGTACTTTGGCTTAATTCTTCATCCTATAGCCAGAGCCAGTAT CTGGATGG

ATTTTTAAGCCAGCCAAAGAATTGGTCTATGCGGGTGCTACCTCAAGCCGGATCAGT GCGCGTG

GAACAGCGCGTTGCTCTGATATGGAATTTGCAGGCAGGCAAGATGCGGCTGGAGCGC TCTGGAG

CGCGCGCGTTTTTCATGCCAGTGCCATTCAGCTTCAGGCCGTCTGGTTCAGGAGATG AAGCAGT

ATTGGCGCCGAATCGGTACTTGGGACTTTTTCCGCATTCCGGAGGAATAGAATACGC GGTGGTG

GATGTATTAGATTCCGCGGGTTTCAAAATTCTTGAGCGCGGTACGATTGCGGTAAAT GGCTTTTC

CCAGAAGCGCGGCGAACGCCAAGAGGAGGCACACAGAGAAAAACAGAGACGCGGAAT TTCTG

ATATAGGCCGCAAGAAGCCGGTGCAAGCTGAAGTTGACGCAGCCAATGAATTGCACC GCAAAT

ACACCGATGTTGCCACTCGTTTAGGGTGCAGAATTGTGGTTCAGTGGGCGCCCCAGC CAAAGCC

GGGCACAGCGCCGACCGCGCAAACAGTATACGCGCGCGCAGTGCGGACCGAAGCGCC GCGATC

TGGAAATCAAGAGGATCATGCTCGTATGAAATCCTCTTGGGGATATACCTGGGGCAC CTATTGG GAGAAGCGCAAACCAGAGGATATTTTGGGCATCTCAACCCAAGTATACTGGACCGGCGGT ATA GGCGAGTCATGTCCCGCAGTCGCGGTTGCGCTTTTGGGGCACATTAGGGCAACATCCACT CAAA CTGAATGGGAAAAAGAGGAGGTTGTATTCGGTCGACTGAAGAAGTTCTTTCCAAGCTAG

SE ATGGAAAAGAGAATAAACAAGATACGAAAGAAACTATCGGCCGATAATGCCACAAAGCCT GTG

Q AGCAGGAGCGGCCCCATGAAAACACTCCTTGTCCGGGTCATGACGGACGACTTGAAAAAA AGA

no CTGGAGAAGCGTCGGAAAAAGCCGGAAGTTATGCCGCAGGTTATTTCAAATAACGCAGCA AAC

N AATCTTAGAATGCTCCTTGATGACTATACAAAGATGAAGGAGGCGATACTACAAGTTTAC TGGC

O: AGGAATTTAAGGACGACCATGTGGGCTTGATGTGCAAATTTGCCCAGCCTGCTTCCAAAA AAAT

39 TGACCAGAACAAACTAAAACCGGAAATGGATGAAAAAGGAAATCTAACAACTGCCGGTTT TGC

ATGTTCTCAATGCGGTCAGCCGCTATTTGTTTATAAGCTTGAACAGGTGAGTGAAAA AGGCAAG

GCTTATACAAATTACTTCGGCCGGTGTAATGTGGCCGAGCATGAGAAATTGATTCTT CTTGCTCA

ATTAAAACCTGAAAAAGACAGTGACGAAGCAGTGACATACTCCCTTGGCAAATTCGG CCAGAG

GGCATTGGACTTTTATTCAATCCACGTAACAAAAGAATCCACCCATCCAGTAAAGCC CCTGGCA

CAGATTGCGGGCAACCGCTATGCAAGCGGACCTGTTGGCAAGGCCCTTTCCGATGCC TGTATGG

GCACTATAGCCAGTTTTCTTTCGAAATATCAAGACATCATCATAGAACATCAAAAGG TTGTGAA

GGGTAATCAAAAGAGGTTAGAGAGTCTCAGGGAATTGGCAGGGAAAGAAAATCTTGA GTACCC

ATCGGTTACACTGCCGCCGCAGCCGCATACGAAAGAAGGGGTTGACGCTTATAACGA AGTTATT

GCAAGGGTACGTATGTGGGTTAATCTTAATCTGTGGCAAAAGCTGAAGCTCAGCCGT GATGACG

CAAAACCGCTACTGCGGCTAAAAGGATTCCCATCTTTCCCTGTTGTGGAGCGGCGTG AAAACGA

AGTTGACTGGTGGAATACGATTAATGAAGTAAAAAAACTGATTGACGCTAAACGAGA TATGGG

ACGGGTATTCTGGAGCGGCGTTACCGCAGAAAAGAGAAATACCATCCTTGAAGGATA CAACTAT

CTGCCAAATGAGAATGACCATAAAAAGAGAGAGGGCAGTTTGGAAAACCCTAAGAAG CCTGCC

AAACGCCAGTTTGGAGACCTCTTGCTGTATCTTGAAAAGAAATATGCCGGAGACTGG GGAAAGG

TCTTCGATGAGGCATGGGAGAGGATAGATAAGAAAATAGCCGGACTCACAAGCCATA TAGAGC

GCGAAGAAGCAAGAAACGCGGAAGACGCTCAATCCAAAGCCGTACTTACAGACTGGC TAAGGG

CAAAGGCATCATTTGTTCTTGAAAGACTGAAGGAAATGGATGAAAAGGAATTCTATG CGTGTGA

AATCCAACTTCAAAAATGGTATGGCGATCTTCGAGGCAACCCGTTTGCCGTTGAAGC TGAGAAT

AGAGTTGTTGATATAAGCGGGTTTTCTATCGGAAGCGATGGCCATTCAATCCAATAC AGAAATC

TCCTTGCCTGGAAATATCTGGAGAACGGCAAGCGTGAATTCTATCTGTTAATGAATT ATGGCAA

GAAAGGGCGCATCAGATTTACAGATGGAACAGATATTAAAAAGAGCGGCAAATGGCA GGGACT

ATTATATGGCGGTGGCAAGGCAAAGGTTATTGATCTGACTTTCGACCCCGATGATGA ACAGTTG

ATAATCCTGCCGCTGGCCTTTGGCACAAGGCAAGGCCGCGAGTTTATCTGGAACGAT TTGCTGA

GTCTTGAAACAGGCCTGATAAAGCTCGCAAACGGAAGAGTTATCGAAAAAACAATCT ATAACA

AAAAAATAGGGCGGGATGAACCGGCTCTATTCGTTGCCTTAACATTTGAGCGCCGGG AAGTTGT

TGATCCATCAAATATAAAGCCTGTAAACCTTATAGGCGTTGACCGCGGCGAAAACAT CCCGGCG

GTTATTGCATTGACAGACCCTGAAGGTTGTCCTTTACCGGAATTCAAGGATTCATCA GGGGGCC

CAACAGACATCCTGCGAATAGGAGAAGGATATAAGGAAAAGCAGAGGGCTATTCAGG CAGCAA

AGGAGGTAGAGCAAAGGCGGGCTGGCGGTTATTCACGGAAGTTTGCATCCAAGTCGA GGAACC

TGGCGGACGACATGGTGAGAAATTCAGCGCGAGACCTTTTTTACCATGCCGTTACCC ACGATGC

CGTCCTTGTCTTTGAAAACCTGAGCAGGGGTTTTGGAAGGCAGGGCAAAAGGACCTT CATGACG

GAAAGACAATATACAAAGATGGAAGACTGGCTGACAGCGAAGCTCGCATACGAAGGT CTTACG

TCAAAAACCTACCTTTCAAAGACGCTGGCGCAATATACGTCAAAAACATGCTCCAAC TGCGGGT TTACTATAACGACTGCCGATTATGACGGGATGTTGGTAAGGCTTAAAAAGACTTCTGATG GATG

GGCAACTACCCTCAACAACAAAGAATTAAAAGCCGAAGGCCAGATAACGTATTATAA CCGGTA

TAAAAGGCAAACCGTGGAAAAAGAACTCTCCGCAGAGCTTGACAGGCTTTCAGAAGA GTCGGG

CAATAATGATATTTCTAAGTGGACCAAGGGTCGCCGGGACGAGGCATTATTTTTGTT AAAGAAA

AGATTCAGCCATCGGCCTGTTCAGGAACAGTTTGTTTGCCTCGATTGCGGCCATGAA GTCCACGC

CGATGAACAGGCAGCCTTGAATATTGCAAGGTCATGGCTTTTTCTAAACTCAAATTC AACAGAA

TTCAAAAGTTATAAATCGGGTAAACAGCCCTTCGTTGGTGCTTGGCAGGCCTTTTAC AAAAGGA

GGCTTAAAGAGGTATGGAAGCCCAACGCC

SE ATGAAAAGGATAAATAAAATACGAAGGAGATTGGTAAAGGATAGCAACACGAAAAAAGCC GG

Q CAAAACCGGCCCTATGAAAACCTTGCTCGTTCGGGTTATGACACCTGACCTGAGAGAAAG GTTA

no GAGAATCTTCGCAAAAAGCCGGAAAACATTCCTCAGCCCATTTCAAATACTTCACGTGCA AATT

N TAAATAAACTCCTCACTGACTATACGGAAATGAAGAAAGCAATCCTGCATGTTTATTGGG AAGA

O: GTTCCAAAAAGACCCTGTCGGATTGATGAGCAGGGTTGCACAACCAGCGCCCAAGAATAT TGAT 40 CAGAGAAAATTGATTCCGGTGAAGGACGGAAATGAGAGACTAACAAGTTCTGGATTTGCC TGTT

CTCAGTGCTGTCAACCCCTCTATGTTTATAAGCTTGAACAAGTGAATGACAAGGGTA AGCCCCA

TACAAATTACTTTGGCCGTTGTAATGTCTCCGAGCATGAACGTTTGATATTGCTCTC GCCGCATA

AACCGGAGGCAAATGACGAGCTAGTAACGTATTCGTTGGGGAAGTTCGGTCAAAGGG CATTGG

ACTTTTATTCAATCCACGTAACAAGAGAATCGAACCATCCTGTAAAGCCGCTAGAAC AGATCGG

TGGCAATAGCTGCGCAAGTGGTCCCGTTGGTAAGGCTTTATCTGATGCCTGTATGGG AGCAGTA

GCCAGTTTCCTTACAAAGTACCAGGACATCATCCTCGAACACCAAAAGGTTATAAAA AAAAACG

AAAAGAGATTGGCAAATCTAAAGGATATAGCAAGTGCAAACGGGCTTGCATTTCCTA AAATCAC

TCTTCCACCGCAACCGCATACAAAAGAAGGGATTGAAGCTTATAACAATGTTGTTGC TCAGATA

GTGATCTGGGTAAACCTGAATCTTTGGCAGAAACTCAAAATTGGCAGGGATGAGGCA AAGCCCT

TACAGCGGCTTAAGGGTTTTCCGTCCTTCCCTCTTGTTGAACGCCAGGCGAATGAGG TTGATTGG

TGGGATATGGTCTGTAATGTCAAAAAGTTGATTAACGAAAAGAAAGAGGACGGGAAG GTCTTC

TGGCAAAATCTTGCTGGATATAAAAGGCAGGAAGCCTTGCTTCCATATCTTTCGTCT GAAGAAG

ACCGTAAAAAAGGAAAAAAGTTTGCGCGTTATCAGTTTGGTGACCTTTTGCTTCACC TTGAAAA

GAAACACGGTGAAGATTGGGGCAAAGTTTATGATGAGGCATGGGAAAGAATAGATAA AAAAGT

TGAAGGTCTGAGTAAGCACATAAAGTTGGAGGAAGAAAGAAGGTCTGAAGATGCTCA ATCAAA

GGCTGCCCTCACTGATTGGCTCAGGGCAAAGGCCTCTTTTGTTATTGAAGGGCTCAA AGAAGCT

GATAAGGATGAGTTTTGCAGGTGTGAGTTAAAGCTTCAAAAGTGGTATGGAGATTTG AGAGGAA

AACCATTTGCTATAGAAGCAGAGAACAGCATTTTAGATATAAGCGGATTTTCTAAAC AGTATAA

TTGTGCATTTATATGGCAGAAAGACGGCGTAAAGAAGTTAAATCTTTATTTAATAAT AAATTACT

TCAAAGGTGGTAAGCTACGCTTCAAAAAAATCAAGCCAGAAGCTTTTGAAGCAAATA GGTTTTA

TACAGTAATTAATAAAAAAAGCGGTGAGATTGTGCCTATGGAGGTCAACTTCAATTT TGATGAC

CCGAATTTGATAATTCTGCCTTTGGCCTTTGGAAAAAGGCAGGGGAGGGAGTTTATC TGGAACG

ACCTATTGAGCCTTGAGACGGGTTCATTGAAACTCGCCAATGGCAGGGTTATTGAAA AAACGCT

CTATAACAGAAGGACGAGACAGGATGAACCAGCACTTTTTGTTGCCCTGACATTTGA AAGAAGA

GAGGTGCTTGACTCATCGAATATAAAACCGATGAATCTGATAGGAATAGACCGGGGA GAAAAT

ATCCCGGCAGTCATAGCATTAACAGACCCGGAAGGATGCCCCTTGTCAAGATTCAAA GATTCAT

TGGGCAATCCAACGCATATTTTGCGAATAGGAGAAAGTTATAAGGAAAAACAACGGA CTATTC

AGGCTGCTAAAGAAGTTGAACAAAGGCGGGCAGGCGGATATTCGAGAAAATATGCAT CAAAGG CGAAGAATCTGGCGGACGATATGGTAAGAAATACAGCTCGTGACCTCTTATATTATGCTG TTAC

TCAAGATGCAATGCTCATTTTTGAAAATCTTTCCCGCGGTTTTGGTAGACAAGGCAA GAGGACTT

TTATGGCGGAAAGGCAGTACACGAGGATGGAAGACTGGCTGACTGCAAAGCTTGCCT ATGAAG

GTCTGCCATCAAAAACCTATCTTTCAAAGACTCTGGCACAGTATACCTCAAAGACAT GTTCTAAT

TGTGGTTTTACAATCACAAGTGCAGATTATGACAGGGTGCTCGAAAAGCTCAAGAAG ACGGCTA

CTGGATGGATGACTACAATCAATGGAAAAGAGTTAAAAGTTGAAGGACAGATAACAT ACTATA

ACCGGTATAAAAGGCAGAATGTGGTAAAAGACCTCTCTGTAGAGCTGGATAGACTTT CGGAAG

AGTCGGTAAATAATGATATTTCTAGTTGGACAAAAGGCCGCAGTGGTGAAGCTTTAT CTCTGCT

AAAAAAGAGATTTAGTCACAGGCCGGTGCAGGAAAAGTTTGTTTGCCTGAACTGTGG TTTTGAA

ACCCATGCAGACGAACAAGCAGCACTGAATATTGCAAGGTCGTGGCTCTTTCTCCGT TCTCAAG

AATATAAGAAGTATCAAACCAATAAAACGACCGGAAATACTGACAAAAGGGCATTTG TTGAAA

CATGGCAATCCTTTTACAGAAAGAAGCTCAAAGAAGTATGGAAACCA

SE ATGGGTAAAATGTATTACCTTGGTTTAGACATTGGCACGAATTCCGTGGGCTACGCGGTG ACCG

Q ACCCCTCATACCACCTGCTGAAGTTTAAGGGGGAACCAATGTGGGGTGCGCACGTATTTG CCGC

no CGGTAATCAGAGCGCGGAACGACGCTCGTTCCGCACATCGCGTCGTCGTTTGGACCGACG CCAA

N CAGCGCGTTAAACTGGTACAGGAGATTTTTGCCCCGGTGATTAGTCCGATCGACCCACGC TTCTT

O: CATTCGTCTGCATGAATCCGCCCTGTGGCGCGATGACGTCGCGGAGACGGATAAACATAT CTTT 41 TTCAATGATCCTACCTATACCGATAAGGAATATTATAGCGATTACCCGACTATCCATCAC CTGAT

CGTTGATCTGATGGAAAGCTCTGAGAAACACGATCCGCGGCTGGTGTACCTTGCAGT GGCGTGG

TTAGTGGCACACCGTGGTCATTTTCTGAACGAGGTGGACAAGGATAATATTGGAGAT GTGTTGT

CGTTCGACGCATTTTATCCGGAGTTTCTCGCGTTCCTGTCGGACAACGGTGTATCAC CGTGGGTG

TGCGAAAGCAAAGCGCTGCAGGCGACCTTGCTGAGCCGTAACTCAGTGAACGACAAA TATAAA

GCCCTTAAGTCTCTGATCTTCGGATCCCAGAAACCTGAAGATAACTTCGATGCCAAT ATTTCGGA

AGATGGACTCATTCAACTGCTGGCCGGCAAAAAGGTAAAAGTTAACAAACTGTTCCC TCAGGAA

TCGAACGATGCATCCTTCACATTGAATGATAAAGAAGACGCGATAGAAGAAATCCTG GGTACGC

TTACACCAGATGAATGTGAATGGATTGCGCATATACGCCGCCTTTTTGACTGGGCTA TCATGAA

ACATGCTCTGAAAGATGGCAGGACTATTAGCGAGTCAAAAGTCAAACTGTATGAGCA GCACCAT

CACGATCTGACCCAACTTAAATACTTCGTGAAAACCTACCTTGCAAAAGAATACGAC GATATTT

TCCGCAACGTGGATAGCGAAACAACGAAAAACTATGTAGCGTATTCCTATCATGTGA AAGAGGT

GAAAGGCACTCTGCCTAAAAATAAGGCAACGCAAGAAGAGTTTTGTAAGTATGTCCT GGGCAA

GGTTAAAAACATTGAATGCTCTGAAGCAGACAAGGTTGACTTTGATGAGATGATTCA GCGTCTT

ACCGACAACTCTTTTATGCCTAAGCAGGTTTCGGGCGAAAACCGCGTTATTCCTTAT CAGTTATA

TTATTATGAACTGAAGACAATTCTGAATAAAGCAGCCTCGTACCTGCCTTTCCTGAC GCAGTGTG

GAAAAGATGCAATTTCGAACCAGGACAAACTACTGTCGATCATGACGTTCCGTATTC CTTACTTC

GTCGGACCCTTGCGAAAAGATAATTCGGAACATGCATGGCTCGAACGAAAGGCCGGT AAGATTT

ATCCGTGGAACTTTAACGACAAAGTGGACTTGGATAAATCAGAAGAAGCGTTCATTC GCCGAAT

GACCAATACCTGTACCTATTATCCCGGCGAAGATGTTTTACCGTTGGATTCGCTGAT CTATGAGA

AATTTATGATTTTAAATGAAATCAATAATATTCGTATTGACGGCTACCCGATTAGTG TTGACGTT

AAACAGCAGGTTTTTGGCTTGTTCGAAAAAAAACGACGCGTAACCGTGAAAGATATT CAGAACC

TGCTGCTGTCTCTCGGAGCTCTGGACAAACACGGGAAGCTGACAGGCATCGATACCA CTATCCA

CTCAAACTATAATACGTATCACCATTTTAAATCTCTCATGGAACGCGGCGTCCTGAC CCGGGATG

ACGTGGAACGCATCGTTGAAAGGATGACCTACAGCGACGATACTAAGCGTGTGCGTC TGTGGCT GAATAACAACTATGGTACTTTAACCGCCGACGATGTGAAACACATTTCGCGTCTGCGCAA ACAC

GATTTTGGCCGTTTATCCAAAATGTTCTTAACAGGTCTGAAGGGTGTCCATAAGGAG ACCGGTG

AACGTGCCTCCATACTGGATTTCATGTGGAACACGAACGATAACCTGATGCAGCTCC TTTCCGA

ATGCTACACGTTCAGTGATGAAATCACAAAGCTGCAAGAGGCGTATTATGCAAAAGC CCAGTTG

TCTTTAAACGATTTTTTAGACTCGATGTACATCTCTAACGCGGTGAAACGTCCGATT TACAGAAC

TCTGGCAGTGGTGAACGATATTCGAAAAGCATGTGGGACGGCCCCTAAACGCATTTT CATCGAA

ATGGCTCGTGATGGTGAATCAAAAAAAAAGAGAAGTGTTACACGTCGCGAGCAGATC AAAAAC

CTGTACCGCTCGATTCGTAAAGATTTCCAGCAGGAAGTTGATTTTCTGGAAAAGATC CTGGAAA

ATAAATCTGATGGTCAACTTCAGTCAGATGCTTTGTATCTTTACTTTGCACAATTAG GGCGCGAT

ATGTACACGGGCGATCCAATAAAGCTGGAGCACATCAAAGATCAGAGTTTCTATAAC ATAGACC

ATATTTACCCGCAGTCTATGGTGAAAGACGATTCCCTAGATAACAAAGTGCTGGTGC AAAGCGA

AATTAACGGCGAGAAAAGCTCGCGATACCCTTTGGACGCCGCGATCCGCAATAAAAT GAAGCC

CCTTTGGGACGCTTACTATAATCATGGCCTGATCTCCTTAAAGAAATACCAGCGTCT AACGCGCT

CGACCCCGTTTACCGATGATGAAAAATGGGACTTTATTAATCGCCAGTTAGTGGAAA CCCGTCA

ATCTACCAAAGCGCTGGCCATTTTGTTGAAGCGTAAGTTTCCAGACACCGAAATTGT GTATTCGA

AGGCGGGGTTATCGTCCGACTTCAGACATGAATTCGGCCTTGTAAAAAGTCGCAATA TTAATGA

TTTGCACCACGCTAAAGACGCATTCTTGGCTATCGTTACCGGCAATGTGTACCATGA AAGATTCA

ATCGCAGATGGTTTATGGTGAACCAGCCGTACTCAGTTAAAACTAAAACTCTTTTTA CCCACAGC

ATAAAGAATGGCAACTTCGTTGCCTGGAACGGCGAAGAAGATCTCGGTCGTATTGTA AAAATGC

TGAAGCAAAACAAAAATACCATTCACTTCACGCGCTTCTCCTTCGATCGCAAAGAAG GATTATT

TGATATCCAACCTCTGAAAGCCAGCACCGGCTTAGTCCCACGAAAAGCCGGTCTGGA TGTCGTT

AAATACGGCGGATATGACAAATCTACCGCGGCCTATTACCTGCTGGTGAGGTTCACG CTCGAGG

ACAAGAAAACCCAGCACAAGCTGATGATGATTCCTGTAGAAGGCCTGTACAAGGCTC GCATTGA

TCATGACAAGGAATTTCTTACCGATTATGCGCAAACGACTATAAGCGAAATCCTACA GAAAGAT

AAACAGAAAGTGATCAATATTATGTTTCCAATGGGTACGAGGCATATAAAACTCAAT TCAATGA

TTAGTATCGATGGCTTCTATCTTAGTATCGGCGGAAAGTCCTCTAAAGGTAAGTCAG TTCTATGT

CACGCAATGGTTCCACTGATCGTCCCTCACAAAATCGAATGTTACATTAAAGCAATG GAAAGCT

TCGCCCGGAAGTTTAAAGAAAACAACAAGCTGCGCATCGTAGAAAAATTCGATAAAA TCACCG

TTGAAGACAACCTGAATCTCTACGAGCTCTTTCTCCAAAAACTGCAGCATAATCCCT ATAATAA

GTTTTTTTCGACACAGTTTGACGTACTGACGAACGGCCGTTCTACTTTCACAAAACT GTCGCCGG

AGGAACAGGTACAGACGCTCTTGAACATTTTAAGTATCTTTAAAACATGCCGCAGTT CGGGTTG

CGACCTGAAATCCATCAACGGCAGTGCCCAGGCAGCGCGCATCATGATTAGCGCTGA CTTAACT

GGACTGTCGAAAAAATATTCAGATATTAGGTTGGTTGAACAGTCAGCTTCTGGTTTG TTCGTATC

CAAAAGTCAGAACTTACTGGAGTATCTCTAA

SE ATGTCATCGCTCACGAAATTCACTAACAAATACTCTAAACAGCTCACCATTAAGAATGAA CTCA

Q TCCCAGTTGGCAAAACACTGGAGAACATCAAAGAGAATGGTCTGATAGATGGCGACGAAC AGC

no TGAATGAGAATTATCAGAAGGCGAAAATTATTGTGGATGATTTTCTGCGGGACTTCATTA ATAA

N AGCACTGAATAATACGCAGATCGGGAACTGGCGCGAACTGGCGGATGCCCTTAATAAAGA GGA

O: TGAAGATAACATCGAGAAATTGCAGGATAAAATTCGGGGAATCATTGTATCCAAATTTGA AACG 42 TTTGATCTGTTTAGCAGCTATTCTATTAAGAAAGATGAAAAGATTATTGACGACGACAAT GATG

TTGAAGAAGAGGAACTGGATCTGGGCAAGAAGACCAGCTCATTTAAATACATATTTA AAAAAA

ACCTGTTTAAGTTAGTGTTGCCATCCTACCTGAAAACCACAAACCAGGACAAGCTGA AGATTAT TAGCTCGTTTGATAATTTTTCAACGTACTTCCGCGGGTTCTTTGAAAACCGGAAAAACAT TTTTA

CCAAGAAACCGATCTCCACAAGTATTGCGTATCGCATTGTTCATGATAACTTCCCGA AATTCCTT

GATAACATTCGTTGTTTTAATGTGTGGCAGACGGAATGCCCGCAACTAATCGTGAAA GCAGATA

ACTATCTGAAAAGCAAAAATGTTATAGCGAAAGATAAAAGTTTGGCAAACTATTTTA CCGTGGG

CGCGTATGACTATTTCCTGTCTCAGAATGGTATAGATTTTTACAACAATATTATAGG TGGACTGC

CAGCGTTCGCCGGCCATGAGAAAATCCAAGGTCTCAATGAATTCATCAATCAAGAGT GCCAAAA

AGACAGCGAGCTGAAAAGTAAGCTGAAAAACCGTCACGCGTTCAAAATGGCGGTACT GTTCAA

ACAGATACTCAGCGATCGTGAAAAAAGTTTTGTAATTGATGAGTTCGAGTCGGATGC TCAAGTT

ATTGACGCCGTTAAAAACTTTTACGCCGAACAGTGCAAAGATAACAATGTTATTTTT AACTTATT

AAATCTTATCAAGAATATCGCTTTCTTAAGTGATGACGAACTGGACGGCATATTCAT TGAAGGG

AAATACCTGTCGAGCGTTAGTCAAAAACTCTATAGCGATTGGTCAAAATTACGTAAC GACATTG

AGGATTCGGCTAACTCTAAACAAGGCAATAAAGAGCTGGCCAAGAAGATCAAAACCA ACAAAG

GGGATGTAGAAAAAGCGATCTCGAAATATGAGTTCTCGCTGTCGGAACTGAACTCGA TTGTACA

TGATAACACCAAGTTTTCTGACCTCCTTAGTTGTACACTGCATAAGGTGGCTTCTGA GAAACTGG

TGAAGGTCAATGAAGGCGACTGGCCGAAACATCTCAAGAATAATGAAGAGAAACAAA AAATCA

AAGAGCCGCTTGATGCTCTGCTGGAGATCTATAATACACTTCTGATTTTTAACTGCA AAAGCTTC

AATAAAAACGGCAACTTCTATGTCGACTATGATCGTTGCATCAATGAACTGAGTTCG GTCGTGT

ATCTGTATAATAAAACACGTAACTATTGCACTAAAAAACCCTATAACACGGACAAGT TCAAACT

CAATTTTAACAGTCCGCAGCTCGGTGAAGGCTTTTCCAAGTCGAAAGAAAATGACTG TCTGACT

CTTTTGTTTAAAAAAGACGACAACTATTATGTAGGCATTATCCGCAAAGGTGCAAAA ATCAATT

TTGATGATACACAAGCAATCGCCGATAACACCGACAATTGCATCTTTAAAATGAATT ATTTCCTA

CTTAAAGACGCAAAAAAATTTATCCCGAAATGTAGCATTCAGCTGAAAGAAGTCAAG GCCCATT

TTAAGAAATCTGAAGATGATTACATTTTGTCTGATAAAGAGAAATTTGCTAGCCCGC TGGTCATT

AAAAAGAGCACATTTTTGCTGGCAACTGCACATGTGAAAGGGAAAAAAGGCAATATC AAGAAA

TTTCAGAAAGAATATTCGAAAGAAAACCCCACTGAGTATCGCAATTCTTTAAACGAA TGGATTG

CTTTTTGTAAAGAGTTCTTAAAAACTTATAAAGCGGCTACCATTTTTGATATAACCA CATTGAAA

AAGGCAGAGGAATATGCTGATATTGTAGAATTCTACAAGGATGTCGATAATCTGTGC TACAAAC

TGGAGTTCTGCCCGATTAAAACCTCGTTTATAGAAAACCTGATAGATAACGGCGACC TGTATCT

GTTTCGCATCAATAACAAAGACTTCAGCAGTAAATCGACCGGCACCAAGAACCTTCA TACGTTA

TATTTACAAGCTATATTCGATGAACGTAATCTGAACAATCCGACAATTATGCTGAAT GGGGGAG

CAGAACTGTTCTATCGTAAAGAAAGTATTGAGCAGAAAAACCGTATCACACACAAAG CCGGTTC

AATTCTCGTGAATAAGGTGTGTAAAGACGGTACAAGCCTGGATGATAAGATACGTAA TGAAATT

TATCAATATGAGAATAAATTTATTGATACCCTGTCTGATGAAGCTAAAAAGGTGTTA CCGAATG

TCATTAAAAAGGAAGCTACCCATGACATTACAAAAGATAAACGTTTCACTAGTGACA AATTCTT

CTTTCACTGCCCCCTGACAATTAATTATAAGGAAGGCGATACCAAGCAGTTCAATAA CGAAGTG

CTGAGTTTTCTGCGTGGAAATCCTGACATCAACATTATCGGCATTGACCGCGGAGAG CGTAATTT

AATCTATGTAACGGTTATAAACCAGAAAGGCGAGATTCTGGATTCGGTTTCATTCAA TACCGTG

ACCAACAAGAGTTCAAAAATCGAGCAGACAGTCGATTATGAAGAGAAATTGGCAGTC CGCGAG

AAAGAGAGGATTGAAGCAAAACGTTCCTGGGACTCTATCTCAAAAATTGCGACACTA AAGGAA

GGTTATCTGAGCGCAATAGTTCACGAGATCTGTCTGTTAATGATTAAACACAACGCG ATCGTTGT

CTTAGAGAATCTTAATGCAGGCTTTAAGCGTATTCGTGGCGGTTTATCAGAAAAAAG TGTTTATC

AAAAATTCGAAAAAATGTTGATTAACAAACTGAACTATTTTGTCAGCAAGAAGGAAT CCGACTG GAATAAACCGTCTGGTCTGCTGAATGGACTGCAGCTTTCGGATCAGTTTGAAAGCTTCGA AAAA

CTGGGTATTCAGTCTGGTTTTATTTTTTACGTGCCGGCTGCATATACCTCAAAGATT GATCCGAC

CACGGGCTTCGCCAATGTTCTGAATCTGTCGAAGGTACGCAATGTTGATGCGATCAA AAGCTTTT

TTTCTAACTTCAACGAAATTAGTTATAGCAAGAAAGAAGCCCTTTTCAAATTCTCAT TCGATCTG

GATTCACTGAGTAAGAAAGGCTTTAGTAGCTTTGTGAAATTTAGTAAGAGTAAATGG AACGTCT

ACACCTTTGGAGAACGTATCATAAAGCCAAAGAATAAGCAAGGTTATCGGGAGGACA AAAGAA

TCAACTTGACCTTCGAGATGAAGAAGTTACTTAACGAGTATAAGGTTTCTTTTGATC TTGAAAAT

AACTTGATTCCGAATCTCACGAGTGCCAACCTGAAGGATACTTTTTGGAAAGAGCTA TTCTTTAT

CTTCAAGACTACGCTGCAGCTCCGTAACAGCGTTACTAACGGTAAAGAAGATGTGCT CATCTCT

CCGGTCAAAAATGCGAAGGGTGAATTCTTCGTTTCGGGAACGCATAACAAGACTCTT CCGCAAG

ATTGCGATGCGAACGGTGCATACCATATTGCGTTGAAAGGTCTGATGATACTCGAAC GTAACAA

CCTTGTACGTGAGGAGAAAGATACGAAAAAGATTATGGCGATTTCAAACGTGGATTG GTTCGAG

TACGTGCAGAAACGTAGAGGCGTTCTGTAA

SE ATGAACAACTACGACGAATTCACCAAACTGTACCCGATCCAGAAAACCATCCGTTTCGAA CTGA

Q AACCGCAGGGTCGTACCATGGAACACCTGGAAACCTTCAACTTCTTCGAAGAAGACCGTG ACCG

no TGCGGAAAAATACAAAATCCTGAAAGAAGCGATCGACGAATACCACAAAAAATTCATCGA CGA

N ACACCTGACCAACATGTCTCTGGACTGGAACTCTCTGAAACAGATCTCTGAAAAATACTA CAAA

O: TCTCGTGAAGAAAAAGACAAAAAAGTTTTCCTGTCTGAACAGAAACGTATGCGTCAGGAA ATCG 43 TTTCTGAATTCAAAAAAGACGACCGTTTCAAAGACCTGTTCTCTAAAAAACTGTTCTCTG AACTG

CTGAAAGAAGAAATCTACAAAAAAGGTAACCACCAGGAAATCGACGCGCTGAAATCT TTCGAC

AAATTCTCTGGTTACTTCATCGGTCTGCACGAAAACCGTAAAAACATGTACTCTGAC GGTGACG

AAATCACCGCGATCTCTAACCGTATCGTTAACGAAAACTTCCCGAAATTCCTGGACA ACCTGCA

GAAATACCAGGAAGCGCGTAAAAAATACCCGGAATGGATCATCAAAGCGGAATCTGC GCTGGT

TGCGCACAACATCAAAATGGACGAAGTTTTCTCTCTGGAATACTTCAACAAAGTTCT GAACCAG

GAAGGTATCCAGCGTTACAACCTGGCGCTGGGTGGTTACGTTACCAAATCTGGTGAA AAAATGA

TGGGTCTGAACGACGCGCTGAACCTGGCGCACCAGTCTGAAAAATCTTCTAAAGGTC GTATCCA

CATGACCCCGCTGTTCAAACAGATCCTGTCTGAAAAAGAATCTTTCTCTTACATCCC GGACGTTT

TCACCGAAGACTCTCAGCTGCTGCCGTCTATCGGTGGTTTCTTCGCGCAGATCGAAA ACGACAA

AGACGGTAACATCTTCGACCGTGCGCTGGAACTGATCTCTTCTTACGCGGAATACGA CACCGAA

CGTATCTACATCCGTCAGGCGGACATCAACCGTGTTTCTAACGTTATCTTCGGTGAA TGGGGTAC

CCTGGGTGGTCTGATGCGTGAATACAAAGCGGACTCTATCAACGACATCAACCTGGA ACGTACC

TGCAAAAAAGTTGACAAATGGCTGGACTCTAAAGAATTCGCGCTGTCTGACGTTCTG GAAGCGA

TCAAACGTACCGGTAACAACGACGCGTTCAACGAATACATCTCTAAAATGCGTACCG CGCGTGA

AAAAATCGACGCGGCGCGTAAAGAAATGAAATTCATCTCTGAAAAAATCTCTGGTGA CGAAGA

ATCTATCCACATCATCAAAACCCTGCTGGACTCTGTTCAGCAGTTCCTGCACTTCTT CAACCTGT

TCAAAGCGCGTCAGGACATCCCGCTGGACGGTGCGTTCTACGCGGAATTCGACGAAG TTCACTC

TAAACTGTTCGCGATCGTTCCGCTGTACAACAAAGTTCGTAACTACCTGACCAAAAA CAACCTG

AACACCAAAAAAATCAAACTGAACTTCAAAAACCCGACCCTGGCGAACGGTTGGGAC CAGAAC

AAAGTTTACGACTACGCGTCTCTGATCTTCCTGCGTGACGGTAACTACTACCTGGGT ATCATCAA

CCCGAAACGTAAAAAAAACATCAAATTCGAACAGGGTTCTGGTAACGGTCCGTTCTA CCGTAAA

ATGGTTTACAAACAGATCCCGGGTCCGAACAAAAACCTGCCGCGTGTTTTCCTGACC TCTACCA

AAGGTAAAAAAGAATACAAACCGTCTAAAGAAATCATCGAAGGTTACGAAGCGGACA AACACA TCCGTGGTGACAAATTCGACCTGGACTTCTGCCACAAACTGATCGACTTCTTCAAAGAAT CTATC

GAAAAACACAAAGACTGGTCTAAATTCAACTTCTACTTCTCTCCGACCGAATCTTAC GGTGACA

TCTCTGAATTCTACCTGGACGTTGAAAAACAGGGTTACCGTATGCACTTCGAAAACA TCTCTGCG

GAAACCATCGACGAATACGTTGAAAAAGGTGACCTGTTCCTGTTCCAGATCTACAAC AAAGACT

TCGTTAAAGCGGCGACCGGTAAAAAAGACATGCACACCATCTACTGGAACGCGGCGT TCTCTCC

GGAAAACCTGCAGGACGTTGTTGTTAAACTGAACGGTGAAGCGGAACTGTTCTACCG TGACAAA

TCTGACATCAAAGAAATCGTTCACCGTGAAGGTGAAATCCTGGTTAACCGTACCTAC AACGGTC

GTACCCCGGTTCCGGACAAAATCCACAAAAAACTGACCGACTACCACAACGGTCGTA CCAAAG

ACCTGGGTGAAGCGAAAGAATACCTGGACAAAGTTCGTTACTTCAAAGCGCACTACG ACATCAC

CAAAGACCGTCGTTACCTGAACGACAAAATCTACTTCCACGTTCCGCTGACCCTGAA CTTCAAA

GCGAACGGTAAAAAAAACCTGAACAAAATGGTTATCGAAAAATTCCTGTCTGACGAA AAAGCG

CACATCATCGGTATCGACCGTGGTGAACGTAACCTGCTGTACTACTCTATCATCGAC CGTTCTGG

TAAAATCATCGACCAGCAGTCTCTGAACGTTATCGACGGTTTCGACTACCGTGAAAA ACTGAAC

CAGCGTGAAATCGAAATGAAAGACGCGCGTCAGTCTTGGAACGCGATCGGTAAAATC AAAGAC

CTGAAAGAAGGTTACCTGTCTAAAGCGGTTCACGAAATCACCAAAATGGCGATCCAG TACAACG

CGATCGTTGTTATGGAAGAACTGAACTACGGTTTCAAACGTGGTCGTTTCAAAGTTG AAAAACA

GATCTACCAGAAATTCGAAAACATGCTGATCGACAAAATGAACTACCTGGTTTTCAA AGACGCG

CCGGACGAATCTCCGGGTGGTGTTCTGAACGCGTACCAGCTGACCAACCCGCTGGAA TCTTTCG

CGAAACTGGGTAAACAGACCGGTATCCTGTTCTACGTTCCGGCGGCGTACACCTCTA AAATCGA

CCCGACCACCGGTTTCGTTAACCTGTTCAACACCTCTTCTAAAACCAACGCGCAGGA ACGTAAA

GAATTCCTGCAGAAATTCGAATCTATCTCTTACTCTGCGAAAGACGGTGGTATCTTC GCGTTCGC

GTTCGACTACCGTAAATTCGGTACCTCTAAAACCGACCACAAAAACGTTTGGACCGC GTACACC

AACGGTGAACGTATGCGTTACATCAAAGAAAAAAAACGTAACGAACTGTTCGACCCG TCTAAA

GAAATCAAAGAAGCGCTGACCTCTTCTGGTATCAAATACGACGGTGGTCAGAACATC CTGCCGG

ACATCCTGCGTTCTAACAACAACGGTCTGATCTACACCATGTACTCTTCTTTCATCG CGGCGATC

CAGATGCGTGTTTACGACGGTAAAGAAGACTACATCATCTCTCCGATCAAAAACTCT AAAGGTG

AATTCTTCCGTACCGACCCGAAACGTCGTGAACTGCCGATCGACGCGGACGCGAACG GTGCGTA

CAACATCGCGCTGCGTGGTGAACTGACCATGCGTGCGATCGCGGAAAAATTCGACCC GGACTCT

GAAAAAATGGCGAAACTGGAACTGAAACACAAAGACTGGTTCGAATTCATGCAGACC CGTGGT

GACTAA

SE ATGACTAAAACATTTGATTCAGAGTTTTTTAATTTGTACTCGCTGCAAAAAACGGTACGC TTTGA

Q GTTAAAACCCGTGGGAGAAACCGCGTCATTTGTGGAAGACTTTAAAAACGAGGGCTTGAA ACGT

no GTTGTGAGCGAAGATGAAAGGCGAGCCGTCGATTACCAGAAAGTTAAGGAAATAATTGAC GAT

N TACCATCGGGATTTCATTGAAGAAAGTTTAAATTATTTTCCGGAACAGGTGAGTAAAGAT GCTC

O: TTGAGCAGGCGTTTCATCTTTATCAGAAACTGAAGGCAGCAAAAGTTGAGGAAAGGGAAA AAG 44 CGCTGAAAGAATGGGAAGCGCTGCAGAAAAAGCTACGTGAAAAAGTGGTGAAATGCTTCT CGG

ACTCGAATAAAGCCCGCTTCTCAAGGATTGATAAAAAGGAACTGATTAAGGAAGACC TGATAA

ATTGGTTGGTCGCCCAGAATCGCGAGGATGATATCCCTACGGTCGAAACGTTTAACA ACTTCAC

CACATATTTTACCGGCTTCCATGAGAATCGTAAAAATATTTACTCCAAAGATGATCA CGCCACC

GCTATTAGCTTTCGCCTTATTCATGAAAATCTTCCAAAGTTTTTTGACAACGTGATT AGCTTCAAT

AAGTTGAAAGAGGGTTTCCCTGAATTAAAATTTGATAAAGTGAAAGAGGATTTAGAA GTAGATT

ATGATCTGAAGCATGCGTTTGAAATAGAATATTTCGTTAACTTCGTGACCCAAGCGG GCATAGA TCAGTATAATTATCTGTTAGGAGGGAAAACCCTGGAGGACGGGACGAAAAAACAAGGGAT GAA

TGAGCAAATTAATCTGTTCAAACAACAGCAAACGCGAGATAAAGCGCGTCAGATTCC CAAACTG

ATCCCCCTGTTCAAACAGATTCTTAGCGAAAGGACTGAAAGCCAGTCCTTTATTCCT AAACAATT

TGAAAGTGATCAGGAGTTGTTCGATTCACTGCAGAAGTTACATAATAACTGCCAGGA TAAATTC

ACCGTGCTGCAACAAGCCATTCTCGGTCTGGCAGAGGCGGATCTTAAGAAGGTCTTC ATCAAAA

CCTCTGATTTAAATGCCTTATCTAACACCATTTTCGGGAATTACAGCGTCTTTTCCG ATGCACTG

AACCTGTATAAAGAAAGCCTGAAAACGAAAAAAGCGCAGGAGGCTTTTGAGAAACTA CCGGCC

CATTCTATTCACGACCTCATTCAATACTTGGAACAGTTCAATTCCAGCCTGGACGCG GAAAAAC

AACAGAGCACCGACACCGTCCTGAACTACTTCATCAAGACCGATGAATTATATTCTC GCTTCATT

AAATCCACTAGCGAGGCTTTCACTCAGGTGCAGCCTTTGTTCGAACTGGAAGCCCTG TCATCTAA

GCGCCGCCCACCGGAATCGGAAGATGAAGGGGCAAAAGGGCAGGAAGGCTTCGAGCA GATCA

AGCGTATTAAAGCTTACCTGGATACGCTTATGGAAGCGGTACACTTTGCAAAGCCGT TGTATCTT

GTTAAGGGTCGTAAAATGATCGAAGGGCTCGATAAAGACCAGTCCTTTTATGAAGCG TTTGAAA

TGGCGTACCAAGAACTTGAATCGTTAATCATTCCTATCTATAACAAAGCGCGGAGCT ATCTGTC

GCGGAAACCTTTCAAGGCCGATAAATTCAAGATTAATTTTGACAACAACACGCTACT GAGCGGA

TGGGATGCGAACAAGGAAACTGCTAACGCGTCCATTCTGTTTAAGAAAGACGGGTTA TATTACC

TTGGAATTATGCCGAAAGGTAAGACCTTTCTCTTTGACTACTTTGTATCGAGCGAGG ATTCAGAG

AAACTGAAACAGCGTCGCCAGAAGACCGCCGAAGAAGCTCTGGCGCAGGATGGTGAA AGTTAC

TTCGAAAAAATTCGTTATAAACTGTTACCAGGGGCTTCAAAGATGTTACCGAAAGTC TTTTTTAG

CAACAAAAATATTGGCTTTTACAACCCGTCGGATGACATTTTACGCATTCGCAACAC AGCCTCTC

ACACCAAAAACGGGACCCCTCAGAAAGGCCACTCAAAAGTTGAGTTTAACCTGAATG ATTGTCA

TAAGATGATTGATTTCTTCAAATCATCAATTCAGAAACACCCGGAATGGGGGTCTTT TGGCTTTA

CGTTTTCTGATACCAGTGATTTTGAAGACATGAGTGCCTTCTACCGGGAAGTAGAAA ACCAGGG

TTACGTAATTAGCTTTGACAAAATCAAAGAGACCTATATACAGAGCCAGGTGGAACA GGGTAAT

CTCTACTTATTCCAGATTTATAACAAGGATTTCTCGCCCTACAGCAAAGGCAAACCA AACCTGC

ATACTCTGTACTGGAAAGCCCTGTTTGAAGAAGCGAACCTGAATAACGTAGTGGCGA AGTTGAA

CGGTGAAGCGGAAATCTTCTTCCGTCGTCACTCCATTAAGGCCTCTGATAAAGTTGT CCATCCGG

CAAATCAGGCCATTGATAATAAGAATCCACACACGGAAAAAACGCAGTCAACCTTTG AATATG

ACCTCGTTAAAGACAAACGCTACACGCAAGATAAGTTCTTTTTCCACGTCCCAATCA GCCTCAA

CTTTAAAGCACAAGGGGTTTCAAAGTTTAATGATAAAGTCAATGGGTTCCTCAAGGG CAACCCG

GATGTCAACATTATAGGTATAGACAGGGGCGAACGCCATCTGCTTTACTTTACCGTA GTGAATC

AGAAAGGTGAAATACTGGTTCAGGAATCATTAAATACCTTGATGTCGGACAAAGGGC ACGTTAA

TGATTACCAGCAGAAACTGGATAAAAAAGAACAGGAACGTGATGCTGCGCGTAAATC GTGGAC

CACGGTTGAGAACATTAAAGAGCTGAAAGAGGGGTATCTAAGCCATGTGGTACACAA ACTGGC

GCACCTCATCATTAAATATAACGCAATAGTCTGCCTAGAAGACTTGAATTTTGGCTT TAAACGCG

GCCGCTTCAAAGTGGAAAAACAAGTTTATCAAAAATTTGAAAAGGCGCTTATAGATA AACTGAA

ACGGCCCCGTTCGAATCATTCAAAAAACTGGGCAAACAGTCTGGCATTCTGTTTTAC GTGCCGG

CAGATTATACTTCAAAAATCGATCCAACAACTGGCTTTGTGAACTTCCTGGACCTGA GATATCA

GTCTGTAGAAAAAGCTAAACAACTTCTTAGCGATTTTAATGCCATTCGTTTTAACAG CGTTCAGA

ATTACTTTGAATTCGAAATTGACTATAAAAAACTTACTCCGAAACGTAAAGTCGGAA CCCAAAG

TAAATGGGTAATTTGTACGTATGGCGATGTCAGGTATCAGAACCGTCGGAATCAAAA AGGTCAT TGGGAGACCGAAGAAGTGAACGTGACCGAAAAGCTGAAGGCTCTGTTCGCCAGCGATTCA AAA ACTACAACTGTGATCGATTACGCAAATGATGATAACCTGATAGATGTGATTTTAGAGCAG GATA

ATCAAATCGGAAGATGATTTTATTCTGTCACCGGTCAAGAATGAGCAGGGTGAATTC TATGATA GTAGGAAAGCCGGCGAAGTGTGGCCGAAAGACGCCGACGCCAATGGCGCCTATCATATCG CGC TCAAAGGGCTTTGGAATTTGCAGCAGATTAACCAGTGGGAAAAAGGTAAAACCCTGAATC TGGC TATCAAAAACCAGGATTGGTTTAGCTTTATCCAAGAGAAACCGTATCAGGAATGA

SE ATGCATACAGGCGGTCTTCTTAGTATGGACGCGAAAGAGTTCACAGGTCAGTATCCGTTG TCGA

Q AAACATTACGATTCGAACTTCGGCCCATCGGCCGCACGTGGGATAACCTGGAGGCCTCAG GCTA

no CTTAGCGGAAGACCGCCATCGTGCCGAATGTTATCCTCGTGCGAAAGAGTTATTGGATGA CAAC

N CATCGTGCCTTCCTGAATCGTGTGTTGCCACAAATCGATATGGATTGGCACCCGATTGCG GAGG

O: CCTTTTGTAAGGTACATAAAAACCCTGGTAATAAAGAACTTGCCCAGGATTACAACCTTC AGTT 45 GTCAAAGCGCCGTAAGGAGATCAGCGCATATCTTCAGGATGCAGATGGCTATAAAGGCCT GTTC

GCGAAGCCCGCCTTAGACGAAGCTATGAAAATTGCGAAAGAAAACGGGAACGAAAGT GATATT

GAGGTTCTCGAAGCGTTTAACGGTTTTAGCGTATACTTCACCGGTTATCATGAGTCA CGCGAGA

ACATTTATAGCGATGAGGATATGGTGAGCGTAGCCTACCGAATTACTGAGGATAATT TCCCGCG

CTTTGTCTCAAACGCTTTGATCTTTGATAAATTAAACGAAAGCCATCCGGATATTAT CTCTGAAG

TATCGGGCAATCTTGGAGTTGATGACATTGGTAAGTACTTTGACGTGTCGAACTATA ACAATTTT

CTTTCCCAGGCCGGTATAGATGACTACAATCACATTATTGGCGGCCATACAACCGAA GACGGAC

TGATACAAGCGTTTAATGTCGTATTGAACTTACGTCACCAAAAAGACCCTGGCTTTG AAAAAAT

TCAGTTCAAACAGCTCTACAAACAAATCCTGAGCGTGCGTACCAGCAAAAGCTACAT CCCGAAA

CAGTTTGACAACTCTAAGGAGATGGTTGACTGCATTTGCGATTATGTCAGCAAAATA GAGAAAT

CCGAAACAGTAGAACGGGCCCTGAAACTAGTCCGTAATATCAGTTCTTTCGACTTGC GCGGGAT

CTTTGTCAATAAAAAGAACTTGCGCATACTGAGCAACAAACTGATAGGAGATTGGGA CGCGATC

GAAACCGCATTGATGCATAGTTCTTCATCAGAAAACGATAAGAAAAGCGTATATGAT AGCGCGG

AGGCTTTTACGTTGGATGACATCTTTTCAAGCGTGAAAAAATTTTCTGATGCCTCTG CCGAAGAT

ATTGGCAACAGGGCGGAAGACATCTGTAGAGTGATAAGTGAGACGGCCCCTTTTATC AACGATC

TGCGAGCGGTGGACCTGGATAGCCTGAACGACGATGGTTATGAAGCGGCCGTCTCAA AAATTCG

GGAGTCGCTGGAGCCTTATATGGATCTTTTCCATGAACTGGAAATTTTCTCGGTTGG CGATGAGT

TCCCAAAATGCGCAGCATTTTACAGCGAACTGGAGGAAGTCAGCGAACAGCTGATCG AAATTAT

TCCGTTATTCAACAAGGCGCGTTCGTTCTGCACCCGGAAACGCTATAGCACCGATAA GATTAAA

GTGAACTTAAAATTCCCGACCTTGGCGGACGGGTGGGACCTGAACAAAGAGAGAGAC AACAAA

GCCGCGATTCTGCGGAAAGACGGTAAGTATTATCTGGCAATTCTGGATATGAAGAAA GATCTGT

CAAGCATTAGGACCAGCGACGAAGATGAATCCAGCTTCGAAAAGATGGAGTATAAAC TGTTAC

CGAGTCCAGTAAAAATGCTGCCAAAGATATTCGTAAAATCGAAAGCCGCTAAGGAAA AATATG

GCCTGACAGATCGTATGCTTGAATGCTACGATAAAGGTATGCATAAGTCGGGTAGTG CGTTTGA

TCTTGGCTTTTGCCATGAACTCATTGATTATTACAAGCGTTGTATCGCGGAGTACCC AGGCTGGG

ATGTGTTCGATTTCAAGTTTCGCGAAACTTCCGATTATGGGTCCATGAAAGAGTTCA ATGAAGAT

GTGGCCGGAGCCGGTTACTATATGAGTCTGAGAAAAATTCCGTGCAGCGAAGTGTAC CGTCTGT

TAGACGAGAAATCGATTTATCTATTTCAAATTTATAACAAAGATTACTCTGAAAATG CACATGG

TAATAAGAACATGCATACCATGTACTGGGAGGGTCTCTTTTCCCCGCAAAACCTGGA GTCGCCC

GTTTTCAAGTTGTCGGGTGGGGCAGAACTTTTCTTTCGAAAATCCTCAATCCCTAAC GATGCCAA AACAGTACACCCGAAAGGCTCAGTGCTGGTTCCACGTAATGATGTTAACGGTCGGCGTAT TCCA

GATTCAATCTACCGCGAACTGACACGCTATTTTAACCGTGGCGATTGCCGAATCAGT GACGAAG

CCAAAAGTTATCTTGACAAGGTTAAGACTAAAAAAGCGGACCATGACATTGTGAAAG ATCGCC

GCTTTACCGTGGATAAAATGATGTTCCACGTCCCGATTGCGATGAACTTTAAGGCGA TCAGTAA

ACCGAACTTAAACAAAAAAGTCATTGATGGCATCATTGATGATCAGGATCTGAAAAT CATTGGT

ATTGATCGTGGCGAGCGGAACTTAATTTACGTCACGATGGTTGACAGAAAAGGGAAT ATCTTAT

ATCAGGATTCTCTTAACATCCTCAATGGCTACGACTATCGTAAAGCTCTGGATGTGC GCGAATAT

GACAACAAGGAAGCGCGTCGTAACTGGACTAAAGTGGAGGGCATTCGCAAAATGAAG GAAGGC

TATCTGTCATTAGCGGTCTCGAAATTAGCGGATATGATTATCGAAAATAACGCCATC ATCGTTAT

GGAGGACCTGAACCACGGATTCAAAGCGGGCCGCTCAAAGATTGAAAAACAAGTTTA TCAGAA

ATTTGAGAGTATGCTGATTAACAAACTGGGCTATATGGTGTTAAAAGACAAGTCAAT TGACCAA

TCAGGTGGCGCGCTGCATGGATACCAGCTGGCGAACCATGTTACCACCTTAGCATCA GTTGGAA

AGCAGTGTGGGGTTATCTTTTATATACCGGCAGCGTTCACTAGTAAAATAGATCCGA CCACTGG

TTTCGCCGATCTCTTTGCCCTGAGTAACGTTAAAAACGTAGCGAGCATGCGTGAATT CTTTTCCA

AAATGAAATCTGTCATTTATGATAAAGCTGAAGGCAAATTCGCATTCACCTTTGATT ACTTGGAT

TACAACGTGAAGAGCGAATGTGGTCGTACGCTGTGGACCGTTTACACCGTTGGTGAG CGCTTCA

CCTATTCCCGTGTGAACCGCGAATATGTACGTAAAGTCCCCACCGATATTATCTATG ATGCCCTC

CAGAAAGCAGGCATTAGCGTCGAAGGAGACTTAAGGGACAGAATTGCCGAAAGCGAT GGCGAT

ACGCTGAAGTCTATTTTTTACGCATTCAAATACGCGCTAGATATGCGCGTTGAGAAT CGCGAGG

AAGACTACATTCAATCACCTGTGAAAAATGCCTCTGGGGAATTTTTTTGTTCAAAAA ATGCTGGT

AAAAGCCTCCCACAAGATAGCGATGCAAACGGTGCATATAACATTGCCCTGAAAGGT ATTCTTC

AATTACGCATGCTGTCTGAGCAGTACGACCCCAACGCGGAATCTATTAGACTTCCGC TGATAAC

CAATAAAGCCTGGCTGACATTCATGCAGTCTGGCATGAAGACCTGGAAAAATTAG

SE ATGGATAGTTTAAAAGATTTTACGAATCTATATCCCGTAAGCAAAACTCTTCGTTTTGAA CTGAA

Q ACCTGTTGGAAAAACGTTGGAGAATATCGAGAAAGCGGGCATCCTGAAAGAAGACGAGCA CCG

no TGCCGAAAGCTACAGGCGTGTCAAAAAGATTATCGATACTTATCACAAAGTGTTCATTGA TAGC

N AGTCTGGAGAACATGGCAAAAATGGGCATAGAAAATGAAATCAAAGCAATGCTGCAGAGC TTT

O: TGCGAGCTCTACAAGAAAGATCACCGAACGGAAGGTGAAGATAAAGCACTGGACAAAATT CGC 46 GCCGTTCTTCGCGGTCTGATTGTTGGCGCGTTCACCGGCGTGTGCGGCCGCCGTGAAAAC ACCGT

GCAGAACGAAAAGTACGAGTCGCTGTTCAAAGAAAAACTGATAAAAGAAATTTTGCC TGACTTT

GTGCTTTCGACCGAAGCGGAATCCCTGCCATTTTCTGTCGAAGAAGCGACCCGCAGC CTGAAAG

AATTTGACTCATTCACAAGTTACTTTGCAGGCTTCTACGAAAACCGTAAAAACATCT ACAGCAC

GAAGCCACAGAGCACGGCTATTGCTTATCGCCTGATTCATGAGAACCTGCCGAAGTT CATCGAT

ACTTTTCTGCGGGTGGGTACATTAAAAAAGATGAGCGGCTGGAAGACATCTTCAGTC TAAACTA

TTATATCCACGTTCTGTCGCAGGCAGGCATTGAGAAATATAATGCGCTGATTGGTAA GATTGTC

ACAGAAGGCGATGGTGAGATGAAAGGTCTTAATGAACATATCAATCTGTATAACCAG CAGCGT

GGTCGCGAAGACCGTCTTCCACTGTTCCGCCCACTGTATAAACAGATCCTGTCTGAC CGGGAAC

AGCTGTCCTACCTGCCGGAAAGCTTTGAAAAGGATGAAGAGCTACTTCGCGCATTAA AGGAGTT

TTACGACCATATTGCGGAAGACATTTTGGGTAGAACGCAGCAACTGATGACGTCAAT TTCTGAA

TACGATCTGAGTAGAATCTACGTTAGGAATGATAGCCAGCTGACCGATATTAGCAAA AAAATGC

TGGGCGACTGGAACGCTATCTATATGGCACGTGAACGTGCATATGATCATGAACAAG CACCGAA ACGTATAACCGCGAAATATGAGCGTGATCGCATTAAGGCGCTAAAGGGAGAAGAAAGCAT CTC

ACTCGCAAACCTGAACTCCTGTATCGCTTTCTTAGATAACGTGCGCGATTGTCGCGT CGACACGT

ATCTGTCAACCCTTGGGCAGAAAGAGGGTCCACATGGTCTGTCTAACCTGGTGGAAA ATGTCTT

TGCGAGTTACCATGAAGCGGAACAACTGCTGTCTTTTCCATACCCCGAAGAAAACAA TCTAATA

CAGGATAAAGATAACGTGGTGTTAATCAAAAACCTGCTGGACAACATCAGCGATCTG CAACGTT

TCCTGAAACCTTTGTGGGGTATGGGTGACGAGCCAGACAAAGACGAACGTTTTTATG GTGAGTA

TAATTATATACGTGGCGCCCTTGACCAAGTTATTCCGCTGTATAACAAAGTACGGAA CTATCTGA

CCCGTAAGCCATATTCTACCCGTAAAGTGAAACTGAACTTTGGCAACTCGCAACTGC TGTCGGG

TTGGGATCGTAACAAAGAAAAAGATAATAGTTGTGTTATCCTGCGTAAGGGACAAAA TTTTTAC

CTCGCGATTATGAACAACAGACACAAGCGTTCATTTGAAAATAAGGTTCTGCCGGAG TATAAAG

AGGGCGAACCGTACTTCGAGAAAATGGATTATAAGTTCTTACCAGACCCTAATAAGA TGTTACC

GAAAGTCTTTCTTTCGAAAAAAGGCATAGAAATCTATAAGCCGTCCCCGAAATTACT CGAACAG

TATGGGCACGGGACCCACAAGAAAGGGGATACTTTTAGCATGGACGATCTGCACGAA CTGATC

TACAGCCACATACGAGAATGTGTCTAGTTTTTATCGGGAAGTGGAGGATCAGGGCTA CAAACTT AGTTTTCGTAAAGTTTCAGAGAGTTATGTTTATAGTTTAATTGATCAGGGAAAACTTTAC CTGTT CCAGATCTACAACAAAGATTTCTCGCCATGTAGTAAGGGTACCCCGAATCTGCATACACT CTATT GGAGAATGTTATTCGATGAGCGTAACTTAGCGGATGTCATTTATAAATTGGACGGGAAAG CAGA

AAAAAAAAATCCCGCCAGAAAAAAGGAGAAGAGTCTCTGTTTGAATATGATCTGGTG AAAGAC

CGTCATTACACTATGGATAAATTTCAATTTCATGTTCCAATTACAATGAACTTCAAA TGTTCGGC

GGGTTCCAAAGTAAATGATATGGTAAACGCCCATATTCGCGAAGCGAAAGATATGCA TGTTATT

GGCATCGATAGAGGCGAAAGAAACCTGCTTTATATTTGCGTAATTGACAGCCGTGGT ACCATTC

TGGACCAGATCTCTTTAAACACCATCAATGACATCGATTATCACGACCTGTTGGAGT CTCGGGA

CAAGGACCGCCAGCAGGAGCGCCGTAATTGGCAGACAATTGAAGGCATAAAAGAATT AAAACA

GGGTTACCTTTCCCAGGCCGTACACCGCATAGCGGAACTGATGGTGGCCTACAAAGC CGTAGTT

GCCCTGGAAGACTTGAATATGGGGTTTAAACGTGGCCGTCAAAAAGTCGAGAGCAGC GTGTATC

AGCAATTTGAAAAACAGTTGATTGACAAGTTGAATTATTTGGTTGATAAAAAGAAAC GTCCAGA

AGATATTGGTGGCTTACTGCGTGCATACCAGTTTACGGCACCTTTTAAGTCCTTCAA AGAAATGG

GTAAACAGAACGGGTTTCTGTTTTACATCCCGGCCTGGAATACATCCAACATCGATC CTACCACC

GGGTTTGTCAACCTGTTTCATGCACAATATGAAAACGTGGATAAAGCGAAGAGTTTT TTCCAAA

AATTCGATAGTATTTCGTATAACCCAAAAAAAGATTGGTTTGAGTTTGCGTTCGATT ATAAAAAT

TTTACTAAAAAGGCTGAGGGATCCCGCAGTATGTGGATCCTCTGCACCCATGGCAGT CGTATTA

AAAATTTTCGTAATTCGCAAAAGAATGGCCAGTGGGACTCGGAAGAGTTTGCCCTGA CCGAAGC

GTTCAAATCGCTGTTTGTACGCTACGAAATTGACTACACAGCAGATCTGAAAACAGC CATCGTC

GATGAAAAACAGAAAGATTTTTTTGTAGATCTCCTAAAACTGTTCAAACTGACTGTT CAGATGC

GCAATTCCTGGAAAGAGAAAGACCTGGATTATCTGATTAGCCCGGTAGCCGGTGCTG ATGGACG

ATTTTTCGATACTCGTGAAGGTAACAAAAGTCTCCCGAAAGATGCTGATGCCAATGG TGCATAC

AATATTGCATTAAAGGGGCTATGGGCCTTGCGACAGATCCGCCAGACCAGCGAAGGC GGCAAG

CTGAAATTGGCCATATCGAATAAGGAATGGTTACAATTTGTTCAGGAACGTAGCTAT GAAAAAG

ATTGA

ATGAACAACGGCACAAATAATTTTCAGAACTTCATCGGGATCTCAAGTTTGCAGAAA ACGCTGC Q GCAATGCTCTGATCCCCACGGAAACCACGCAACAGTTCATCGTCAAGAACGGAATAATTA AAGA no AGATGAGTTACGTGGCGAGAACCGCCAGATTCTGAAAGATATCATGGATGACTACTACCG CGGA

N TTCATCTCTGAGACTCTGAGTTCTATTGATGACATAGATTGGACTAGCCTGTTCGAAAAA ATGGA

O: AATTCAGCTGAAAAATGGTGATAATAAAGATACCTTAATTAAGGAACAGACAGAGTATCG GAA

47 AGCAATCCATAAAAAATTTGCGAACGACGATCGGTTTAAGAACATGTTTAGCGCCAAACT GATT

AGTGACATATTACCTGAATTTGTCATCCACAACAATAATTATTCGGCATCAGAGAAA GAGGAAA

AAACCCAGGTGATAAAATTGTTTTCGCGCTTTGCGACTAGCTTTAAAGATTACTTCA AGAACCGT

GCAAATTGCTTTTCAGCGGACGATATTTCATCAAGCAGCTGCCATCGCATCGTCAAC GACAATG

CAGAGATATTCTTTTCAAATGCGCTGGTCTACCGCCGGATCGTAAAATCGCTGAGCA ATGACGA

TATCAACAAAATTTCGGGCGATATGAAAGATTCATTAAAAGAAATGAGTCTGGAAGA AATATAT

TCTTACGAGAAGTATGGGGAATTTATTACCCAGGAAGGCATTAGCTTCTATAATGAT ATCTGTG

GGAAAGTGAATTCTTTTATGAACCTGTATTGTCAGAAAAATAAAGAAAACAAAAATT TATACAA

ACTTCAGAAACTTCACAAACAGATTCTATGCATTGCGGACACTAGCTATGAGGTCCC GTATAAA

TTTGAAAGTGACGAGGAAGTGTACCAATCAGTTAACGGCTTCCTTGATAACATTAGC AGCAAAC

ATATAGTCGAAAGATTACGCAAAATCGGCGATAACTATAACGGCTACAACCTGGATA AAATTTA

TATCGTGTCCAAATTTTACGAGAGCGTTAGCCAAAAAACCTACCGCGACTGGGAAAC AATTAAT

ACCGCCCTCGAAATTCATTACAATAATATCTTGCCGGGTAACGGTAAAAGTAAAGCC GACAAAG

TAAAAAAAGCGGTTAAGAATGATTTACAGAAATCCATCACCGAAATAAATGAACTAG TGTCAA

ACTATAAGCTGTGCAGTGACGACAACATCAAAGCGGAGACTTATATACATGAGATTA GCCATAT

CTTGAATAACTTTGAAGCACAGGAATTGAAATACAATCCGGAAATTCACCTAGTTGA ATCCGAG

CTCAAAGCGAGTGAGCTTAAAAACGTGCTGGACGTGATCATGAATGCGTTTCATTGG TGTTCGG

TTTTTATGACTGAGGAACTTGTTGATAAAGACAACAATTTTTATGCGGAACTGGAGG AGATTTA

CGATGAAATTTATCCAGTAATTAGTCTGTACAACCTGGTTCGTAACTACGTTACCCA GAAACCGT

ACAGCACGAAAAAGATTAAATTGAACTTTGGAATACCGACGTTAGCAGACGGTTGGT CAAAGTC

CAAAGAGTATTCTAATAACGCTATCATACTGATGCGCGACAATCTGTATTATCTGGG CATCTTTA

ATGCGAAGAATAAACCGGACAAGAAGATTATCGAGGGTAATACGTCAGAAAATAAGG GTGACT

ACAAAAAGATGATTTATAATTTGCTCCCGGGTCCCAACAAAATGATCCCGAAAGTTT TCTTGAG

CAGCAAGACGGGGGTGGAAACGTATAAACCGAGCGCCTATATCCTAGAGGGGTATAA ACAGAA

TAAACATATCAAGTCTTCAAAAGACTTTGATATCACTTTCTGTCATGATCTGATCGA CTACTTCA

AAAACTGTATTGCAATTCATCCCGAGTGGAAAAACTTCGGTTTTGATTTTAGCGACA CCAGTACT

TATGAAGACATTTCCGGGTTTTATCGTGAGGTAGAGTTACAAGGTTACAAGATTGAT TGGACAT

ACATTAGCGAAAAAGACATTGATCTGCTGCAGGAAAAAGGTCAACTGTATCTGTTCC AGATATA

CTTTTCTCAGAAGAAAATCTTAAGGATATCGTCCTGAAACTTAACGGCGAAGCGGAA ATCTTCT

TCAGGAAGAGCAGCATAAAGAACCCAATCATTCATAAAAAAGGCTCGATTTTAGTCA ACCGTAC

CTACGAAGCAGAAGAAAAAGACCAGTTTGGCAACATTCAAATTGTGCGTAAAAATAT TCCGGA

AAACATTTATCAGGAGCTGTACAAATACTTCAACGATAAAAGCGACAAAGAGCTGTC TGATGAA

GCAGCCAAACTGAAGAATGTAGTGGGACACCACGAGGCAGCGACGAATATAGTCAAG GACTAT

CGCTACACGTATGATAAATACTTCCTTCATATGCCTATTACGATCAATTTCAAAGCC AATAAAAC

GGGTTTTATTAATGATAGGATCTTACAGTATATCGCTAAAGAAAAAGACTTACATGT GATCGGC

ATTGATCGGGGCGAGCGTAACCTGATCTACGTGTCCGTGATTGATACTTGTGGTAAT ATAGTTGA

ACAGAAAAGCTTTAACATTGTAAACGGCTACGACTATCAGATAAAACTGAAACAACA GGAGGG CGCTAGACAGATTGCGCGGAAAGAATGGAAAGAAATTGGTAAAATTAAAGAGATCAAAGA GGG

CTACCTGAGCTTAGTAATCCACGAGATCTCTAAAATGGTAATCAAATACAATGCAAT TATAGCG

ATGGAGGATTTGTCTTATGGTTTTAAAAAAGGGCGCTTTAAGGTCGAACGGCAAGTT TACCAGA

AATTTGAAACCATGCTCATCAATAAACTCAACTATCTGGTATTTAAAGATATTTCGA TTACCGAG

AATGGCGGTCTCCTGAAAGGTTATCAGCTGACATACATTCCTGATAAACTTAAAAAC GTGGGTC

ATCAGTGCGGCTGCATTTTTTATGTGCCTGCTGCATACACGAGCAAAATTGATCCGA CCACCGGC

TTTGTGAATATCTTTAAATTTAAAGACCTGACAGTGGACGCAAAACGTGAATTCATT AAAAAAT

TTGACTCAATTCGTTATGACAGTGAAAAAAATCTGTTCTGCTTTACATTTGACTACA ATAACTTT

ATTACGCAAAACACGGTCATGAGCAAATCATCGTGGAGTGTGTATACATACGGCGTG CGCATCA

AACGTCGCTTTGTGAACGGCCGCTTCTCAAACGAAAGTGATACCATTGACATAACCA AAGATAT

GGAGAAAACGTTGGAAATGACGGACATTAACTGGCGCGATGGCCACGATCTTCGTCA AGACATT

ATAGATTATGAAATTGTTCAGCACATATTCGAAATTTTCCGTTTAACAGTGCAAATG CGTAACTC

CTTGTCTGAACTGGAGGACCGTGATTACGATCGTCTCATTTCACCTGTACTGAACGA AAATAAC

ATTTTTTATGACAGCGCGAAAGCGGGGGATGCACTTCCTAAGGATGCCGATGCAAAT GGTGCGT

ATTGTATTGCATTAAAAGGGTTATATGAAATTAAACAAATTACCGAAAATTGGAAAG AAGATGG

TAAATTTTCGCGCGATAAACTCAAAATCAGCAATAAAGATTGGTTCGACTTTATCCA GAATAAG

CGCTATCTCTAA

SE ATGACCAATAAATTCACTAACCAGTATTCTCTCTCTAAGACCCTGCGCTTTGAACTGATT CCGCA

Q GGGGAAAACCTTGGAGTTCATTCAAGAAAAAGGCCTCTTGTCTCAGGATAAACAGAGGGC TGA

no ATCTTACCAAGAAATGAAGAAAACTATTGATAAGTTTCATAAATATTTCATTGATTTAGC CTTGT

N CTAACGCCAAATTAACTCACTTGGAAACGTATCTGGAGTTATACAACAAATCTGCCGAAA CTAA

O: GAAAGAACAGAAATTTAAAGACGATTTGAAAAAAGTACAGGACAATCTGCGTAAAGAAAT TGT 48 CAAATCCTTCAGTGACGGCGATGCTAAAAGCATTTTTGCCATTCTGGACAAAAAAGAGTT GATT

ACTGTGGAATTAGAAAAGTGGTTTGAAAACAATGAGCAGAAAGACATCTACTTCGAT GAGAAA

TTCAAAACTTTCACCACCTATTTTACAGGATTTCATCAAAACCGGAAGAACATGTAC TCAGTAG

AACCGAACTCCACGGCCATTGCGTATCGTTTGATCCATGAGAATCTGCCTAAATTTC TGGAGAAT

GCGAAAGCCTTTGAAAAGATTAAGCAGGTCGAATCGCTGCAAGTGAATTTTCGTGAA CTCATGG

GCGAATTTGGTGACGAAGGTCTAATCTTCGTTAACGAACTGGAAGAAATGTTTCAGA TTAATTA

CTACAATGACGTGCTATCGCAGAACGGTATCACAATCTACAATAGTATTATCTCAGG GTTCACA

AAAAACGATATAAAATACAAAGGCCTGAACGAGTATATCAATAACTACAACCAAACA AAGGAC

AAAAAGGATAGGCTTCCGAAACTGAAGCAGTTATACAAACAGATTTTATCTGACAGA ATCTCCC

TGAGCTTTCTGCCGGATGCTTTCACTGATGGGAAGCAGGTTCTGAAAGCGATTTTCG ATTTTTAT

AAGATTAACTTACTGAGCTACACGATTGAAGGTCAAGAAGAATCTCAAAACTTACTG CTCTTGA

TCCGTCAAACCATTGAAAATCTATCATCGTTCGATACGCAGAAAATCTACCTCAAAA ACGATAC

TCACCTGACTACGATCTCTCAGCAGGTTTTCGGGGATTTTAGTGTATTTTCAACAGC TCTGAACT

ACTGGTATGAAACCAAAGTCAATCCGAAATTCGAGACGGAATATTCTAAGGCCAACG AAAAAA

AACGTGAGATTCTTGATAAAGCTAAAGCCGTATTTACTAAACAGGATTACTTTTCTA TTGCTTTC

CTGCAGGAAGTTTTATCGGAGTATATCCTGACCCTGGATCATACATCTGATATCGTT AAAAAAC

ACAGCAGCAATTGCATCGCTGACTATTTCAAAAACCACTTTGTCGCCAAAAAAGAAA ACGAAAC

AGACAAGACTTTCGATTTCATTGCTAACATCACCGCAAAATACCAGTGTATTCAGGG TATCTTGG

AAAACGCCGACCAATACGAAGACGAACTGAAACAAGATCAGAAGCTGATCGATAATT TAAAAT

TCTTCTTAGATGCAATCCTGGAGCTGCTGCACTTCATCAAACCGCTTCATTTAAAGA GCGAGTCC ATTACCGAAAAGGACACCGCCTTCTATGACGTTTTTGAAAATTATTATGAAGCCCTCTCC TTGCT

GACTCCGCTGTATAATATGGTACGCAATTACGTAACCCAGAAACCATATTCTACCGA AAAAATT

AAACTGAACTTTGAAAACGCACAGCTGCTCAACGGTTGGGACGCGAATAAAGAAGGT GACTAC

CTCACCACCATCCTGAAAAAAGATGGTAACTATTTTCTGGCAATTATGGATAAGAAA CATAATA

AAGCATTCCAGAAATTTCCTGAAGGGAAAGAAAATTACGAAAAGATGGTGTACAAAC TCTTACC

TGGAGTTAACAAAATGTTGCCGAAAGTATTTTTTAGTAATAAGAACATCGCGTACTT TAACCCGT

CCAAAGAACTGCTGGAAAATTATAAAAAGGAGACGCATAAGAAAGGGGATACCTTTA ACCTGG

AACATTGCCATACCTTAATAGACTTCTTCAAGGATTCCCTGAATAAACACGAGGATT GGAAATA

TTTCGATTTTCAGTTTAGTGAGACCAAGTCATACCAGGATCTTAGCGGCTTTTATCG CGAAGTAG

AACACCAAGGCTATAAAATTAACTTCAAAAACATCGACAGCGAATACATCGACGGTT TAGTTAA

CGAGGGCAAACTGTTTCTGTTCCAGATCTATTCAAAGGATTTTAGCCCGTTCTCTAA AGGCAAAC

CAAATATGCATACGTTGTACTGGAAAGCACTGTTTGAAGAGCAAAACCTGCAGAATG TGATTTA

TAAACTGAACGGCCAAGCTGAGATTTTTTTCCGTAAAGCCTCGATTAAACCGAAAAA TATCATC

CTTCATAAGAAGAAAATAAAGATCGCTAAAAAACACTTCATAGATAAAAAAACCAAA ACCTCC

GAAATAGTGCCTGTTCAAACAATTAAGAACTTGAATATGTACTACCAGGGCAAGATA TCGGAAA

AGGAGTTGACTCAAGACGATCTTCGCTATATCGATAACTTTTCGATTTTTAACGAAA AAAACAA

GACGATCGACATCATCAAAGATAAACGCTTCACTGTAGATAAGTTCCAGTTTCATGT GCCGATT

ACTATGAACTTCAAAGCTACCGGGGGTAGCTATATCAACCAAACGGTGTTGGAATAC CTGCAGA

ATAACCCGGAAGTCAAAATCATTGGGCTGGACCGCGGAGAACGTCACCTTGTGTACT TGACCTT

AATCGATCAGCAAGGCAACATCTTAAAACAAGAATCGCTGAATACCATTACGGATTC AAAGATT

AGCACCCCGTATCATAAGCTGCTCGATAACAAGGAGAATGAGCGCGACCTGGCCCGT AAAAAC

TGGGGCACGGTGGAAAACATTAAGGAGTTAAAGGAGGGTTATATTTCCCAGGTAGTG CATAAG

ATCGCCACTCTCATGCTCGAGGAAAATGCGATCGTTGTCATGGAAGACTTAAACTTC GGATTTA

AACGTGGGCGATTTAAAGTAGAGAAACAAATCTACCAGAAGTTAGAAAAAATGCTGA TTGACA

AATTAAATTACTTGGTCCTAAAAGACAAACAGCCGCAAGAATTGGGTGGATTATACA ACGCCCT

CCAACTTACCAATAAATTCGAAAGTTTTCAGAAAATGGGTAAACAGTCAGGCTTTCT TTTTTATG

TTCCTGCGTGGAACACATCCAAAATCGACCCTACAACCGGCTTCGTCAATTACTTCT ATACTAAA

TATGAAAACGTCGACAAAGCAAAAGCATTCTTTGAAAAGTTCGAAGCAATACGTTTT AACGCTG

AGAAAAAATATTTCGAGTTCGAAGTCAAGAAATACTCAGACTTTAACCCCAAAGCTG AGGGCAC

ACAGCAAGCGTGGACAATCTGCACCTACGGCGAGCGCATCGAAACGAAGCGTCAAAA AGATCA

GAATAACAAATTTGTTTCAACACCTATCAACCTGACCGAGAAGATTGAAGACTTCTT AGGTAAA

AATCAGATTGTTTATGGCGACGGTAACTGTATAAAATCTCAAATAGCCTCAAAGGAT GATAAAG

CATTTTTCGAAACATTATTATATTGGTTCAAAATGACACTGCAGATGCGCAATAGTG AGACGCG

TACAGATATTGATTATCTTATCAGCCCGGTCATGAACGACAACGGTACTTTTTACAA CTCCAGAG

ACTATGAAAAACTTGAGAATCCAACTCTCCCCAAAGATGCTGATGCGAACGGTGCTT ATCACAT

CGCGAAAAAAGGTCTGATGCTGCTGAACAAAATCGACCAAGCCGATCTGACTAAGAA AGTTGA

CCTAAGCATTTCAAATCGGGACTGGTTACAGTTTGTTCAAAAGAACAAATGA

SE ATGGAACAGGAATATTATCTGGGCTTGGACATGGGCACCGGTTCCGTCGGCTGGGCTGTT ACTG

Q ACAGTGAATATCACGTTCTAAGAAAGCATGGTAAGGCATTGTGGGGTGTAAGACTTTTCG AATC

no TGCTTCCACTGCTGAAGAGCGTAGAATGTTTAGAACGAGTCGACGTAGGCTAGACAGGCG CAAT

N TGGAGAATCGAAATTTTACAAGAAATTTTTGCGGAAGAGATATCTAAGAAAGACCCAGGC TTTT

O: TCCTGAGAATGAAGGAATCTAAGTATTACCCTGAGGATAAAAGAGATATAAATGGTAACT GTCC CGAATTGCCTTACGCATTATTTGTGGACGATGATTTTACCGATAAGGATTACCATAAAAA GTTCC

CAACTATCTACCATTTACGCAAAATGTTAATGAATACAGAGGAAACCCCAGACATAA GACTAGT

TTATCTGGCAATACACCATATGATGAAACATAGAGGCCATTTCTTACTTTCCGGGGA TATCAACG

AAATCAAAGAGTTTGGTACCACATTTAGTAAGTTACTGGAAAACATAAAGAATGAAG AATTGG

ATTGGAACTTAGAACTCGGAAAAGAAGAATACGCGGTTGTCGAATCTATCCTGAAGG ATAATAT

GCTGAATAGGTCGACCAAAAAAACTAGGCTGATCAAAGCACTGAAAGCCAAATCTAT CTGCGA

AAAAGCTGTTTTAAATTTACTTGCTGGTGGCACTGTTAAGTTATCAGACATTTTTGG TTTGGAAG

AATTGAACGAAACCGAGCGTCCAAAAATTAGTTTCGCTGATAATGGCTACGATGATT ACATTGG

TGAGGTGGAAAACGAGTTGGGCGAACAATTTTATATTATAGAGACAGCTAAGGCAGT CTATGAC

TGGGCTGTTTTAGTAGAAATCCTTGGTAAATACACATCTATCTCCGAAGCGAAAGTT GCTACTTA

CGAAAAGCACAAGTCCGATCTCCAGTTTTTGAAGAAAATTGTCAGGAAATATCTGAC TAAGGAA

GAATATAAAGATATTTTCGTTAGTACCTCTGACAAACTGAAAAATTACTCCGCTTAC ATCGGGAT

GACCAAGATTAATGGCAAAAAAGTTGATCTGCAAAGCAAAAGGTGTTCGAAGGAAGA ATTTTA

TGATTTCATTAAAAAGAATGTCTTAAAAAAATTAGAAGGTCAGCCAGAATACGAATA TTTGAAA

GAAGAACTGGAAAGAGAGACATTCTTACCAAAACAAGTCAACAGAGATAATGGGGTA ATTCCA

TATCAAATTCACCTCTACGAATTAAAAAAAATTTTAGGCAATTTACGCGATAAAATT GACCTTAT

CAAAGAAAATGAGGATAAGCTGGTTCAACTCTTTGAATTCAGAATACCCTATTATGT GGGCCCA

CTGAACAAGATTGATGACGGCAAAGAAGGTAAATTCACATGGGCCGTCCGCAAATCC AATGAA

AAAATTTACCCATGGAACTTTGAAAATGTAGTAGATATTGAAGCGTCTGCGGAGAAA TTTATTC

GAAGAATGACTAATAAATGCACTTACTTGATGGGAGAGGATGTTCTGCCTAAAGACA GCTTATT

ATACAGCAAGTACATGGTTCTAAACGAACTTAACAACGTTAAGTTGGACGGTGAGAA ATTAAGT

GTAGAATTGAAACAAAGATTGTATACTGACGTCTTCTGCAAGTACAGAAAAGTGACA GTTAAAA

AAATTAAGAATTACTTGAAGTGCGAAGGTATAATTTCTGGAAACGTAGAGATTACTG GTATTGA

TGGTGATTTCAAAGCATCCCTAACAGCTTACCACGATTTCAAGGAAATCCTGACAGG AACTGAA

CTCGCAAAAAAAGATAAAGAAAACATTATTACTAATATTGTTCTTTTCGGTGATGAC AAGAAAT

TGTTGAAGAAAAGACTGAATAGACTTTACCCCCAGATTACTCCCAATCAACTTAAGA AAATTTG

TGCTTTGTCTTACACAGGATGGGGTCGTTTTTCAAAAAAGTTCTTAGAAGAGATTAC CGCACCTG

ATCCAGAAACAGGCGAAGTATGGAATATAATTACCGCCTTATGGGAATCGAACAATA ATCTTAT

GCAACTTCTGAGCAATGAATATCGTTTCATGGAAGAAGTTGAGACTTACAACATGGG CAAACAG

ACGAAGACTTTATCCTATGAAACTGTGGAAAATATGTATGTATCACCTTCTGTCAAG AGACAAA

TTTGGCAAACCTTAAAAATTGTCAAAGAATTAGAAAAGGTAATGAAGGAGTCTCCTA AACGTGT

GTTTATTGAAATGGCTAGAGAAAAACAAGAGTCAAAAAGAACCGAGTCAAGAAAGAA GCAGTT

AATCGATTTATATAAGGCTTGTAAAAACGAAGAGAAAGATTGGGTTAAAGAATTGGG GGACCA

AGAGGAACAAAAACTACGGTCGGATAAGTTGTATTTATACTATACGCAAAAGGGACG ATGTAT

GTATTCCGGCGAGGTAATAGAATTGAAGGATTTATGGGACAATACAAAATATGACAT AGACCAT

ATATATCCCCAATCAAAAACGATGGACGATAGCTTGAACAATAGAGTACTCGTGAAA AAAAAA

TATAATGCGACCAAATCTGATAAGTATCCTCTGAATGAAAATATCAGACATGAAAGA AAGGGGT

TCTGGAAGTCCTTGTTAGATGGTGGGTTTATAAGCAAAGAAAAGTACGAGCGTCTAA TAAGAAA

CACGGAGTTATCGCCAGAAGAACTCGCTGGTTTTATTGAGAGGCAAATCGTGGAAAC GAGACA

ATCTACCAAAGCCGTTGCTGAGATCCTAAAGCAAGTTTTCCCAGAGTCGGAGATTGT CTATGTC

AAAGCTGGCACAGTGAGCAGGTTTAGGAAAGACTTCGAACTATTAAAGGTAAGAGAA GTGAAC

GATTTACATCACGCAAAGGACGCTTACCTAAATATCGTTGTAGGTAACTCATATTAT GTTAAATT TACCAAGAACGCCTCTTGGTTTATAAAGGAGAACCCAGGTAGAACATATAACCTGAAAAA GAT

GTTCACCTCTGGTTGGAATATTGAGAGAAACGGAGAAGTCGCATGGGAAGTTGGTAA GAAAGG

GACTATAGTGACAGTAAAGCAAATTATGAACAAAAATAATATCCTCGTTACAAGGCA GGTTCAT

GAAGCAAAGGGCGGCCTTTTTGACCAACAAATTATGAAGAAAGGGAAAGGTCAAATT GCAATA

AAAGAAACCGATGAGAGACTAGCGTCAATAGAAAAGTATGGTGGCTATAATAAAGCT GCGGGT

GCATACTTTATGCTTGTTGAATCAAAAGACAAGAAAGGTAAGACTATTAGAACTATA GAATTTA

TACCCCTGTACCTTAAAAACAAAATTGAATCGGATGAGTCAATCGCGTTAAATTTTC TAGAGAA

AGGAAGGGGTTTAAAAGAACCAAAGATCCTGTTAAAAAAGATTAAGATTGACACCTT GTTCGAT

GTAGATGGATTTAAAATGTGGTTATCTGGCAGAACAGGCGATAGACTTTTGTTTAAG TGCGCTA

ATCAATTAATTTTGGATGAGAAAATCATTGTCACAATGAAAAAAATAGTTAAGTTTA TTCAGAG

AAGACAAGAAAACAGGGAGTTGAAATTATCTGATAAAGATGGTATCGACAATGAAGT TTTAAT

GGAAATCTACAATACATTCGTTGATAAACTTGAAAATACCGTATATCGAATCAGGTT AAGTGAA

CAAGCCAAAACATTAATTGATAAACAAAAAGAATTTGAAAGGCTATCACTGGAAGAC AAATCC

TCCACCCTATTTGAAATTTTGCATATATTCCAGTGCCAATCTTCAGCAGCTAATTTA AAAATGAT

TGGCGGACCTGGGAAAGCCGGCATCCTAGTGATGAACAATAATATCTCCAAGTGTAA CAAAATA

TCAATTATTAACCAATCTCCGACAGGTATTTTTGAAAATGAAATAGACTTGCTTAAG ATATAA

SE ATGTCTTTCGACTCTTTCACCAACCTGTACTCTCTGTCTAAAACCCTGAAATTCGAAATG CGTCC

Q GGTTGGTAACACCCAGAAAATGCTGGACAACGCGGGTGTTTTCGAAAAAGACAAACTGAT CCA

no GAAAAAATACGGTAAAACCAAACCGTACTTCGACCGTCTGCACCGTGAATTCATCGAAGA AGC

N GCTGACCGGTGTTGAACTGATCGGTCTGGACGAAAACTTCCGTACCCTGGTTGACTGGCA GAAA

O: GACAAAAAAAACAACGTTGCGATGAAAGCGTACGAAAACTCTCTGCAGCGTCTGCGTACC GAA 50 ATCGGTAAAATCTTCAACCTGAAAGCGGAAGACTGGGTTAAAAACAAATACCCGATCCTG GGTC

TGAAAAACAAAAACACCGACATCCTGTTCGAAGAAGCGGTTTTCGGTATCCTGAAAG CGCGTTA

CGGTGAAGAAAAAGACACCTTCATCGAAGTTGAAGAAATCGACAAAACCGGTAAATC TAAAAT

CAACCAGATCTCTATCTTCGACTCTTGGAAAGGTTTCACCGGTTACTTCAAAAAATT CTTCGAAA

CCCGTAAAAACTTCTACAAAAACGACGGTACCTCTACCGCGATCGCGACCCGTATCA TCGACCA

GAACCTGAAACGTTTCATCGACAACCTGTCTATCGTTGAATCTGTTCGTCAGAAAGT TGACCTGG

CGGAAACCGAAAAATCTTTCTCTATCTCTCTGTCTCAGTTCTTCTCTATCGACTTCT ACAACAAAT

GCCTGCTGCAGGACGGTATCGACTACTACAACAAAATCATCGGTGGTGAAACCCTGA AAAACG

GTGAAAAACTGATCGGTCTGAACGAACTGATCAACCAGTACCGTCAGAACAACAAAG ACCAGA

AAATCCCGTTCTTCAAACTGCTGGACAAACAGATCCTGTCTGAAAAAATCCTGTTCC TGGACGA

AATCAAAAACGACACCGAACTGATCGAAGCGCTGTCTCAGTTCGCGAAAACCGCGGA AGAAAA

AACCAAAATCGTTAAAAAACTGTTCGCGGACTTCGTTGAAAACAACTCTAAATACGA CCTGGCG

CAGATCTACATCTCTCAGGAAGCGTTCAACACCATCTCTAACAAATGGACCTCTGAA ACCGAAA

CCTTCGCGAAATACCTGTTCGAAGCGATGAAATCTGGTAAACTGGCGAAATACGAAA AAAAAG

ACAACTCTTACAAATTCCCGGACTTCATCGCGCTGTCTCAGATGAAATCTGCGCTGC TGTCTATC

TCTCTGGAAGGTCACTTCTGGAAAGAAAAATACTACAAAATCTCTAAATTCCAGGAA AAAACCA

ACTGGGAACAGTTCCTGGCGATCTTCCTGTACGAATTCAACTCTCTGTTCTCTGACA AAATCAAC

ACCAAAGACGGTGAAACCAAACAGGTTGGTTACTACCTGTTCGCGAAAGACCTGCAC AACCTGA

TCCTGTCTGAACAGATCGACATCCCGAAAGACTCTAAAGTTACCATCAAAGACTTCG CGGACTC

TGTTCTGACCATCTACCAGATGGCGAAATACTTCGCGGTTGAAAAAAAACGTGCGTG GCTGGCG

GAATACGAACTGGACTCTTTCTACACCCAGCCGGACACCGGTTACCTGCAGTTCTAC GACAACG CGTACGAAGACATCGTTCAGGTTTACAACAAACTGCGTAACTACCTGACCAAAAAACCGT ACTC

TGAAGAAAAATGGAAACTGAACTTCGAAAACTCTACCCTGGCGAACGGTTGGGACAA AAACAA

AGAATCTGACAACTCTGCGGTTATCCTGCAGAAAGGTGGTAAATACTACCTGGGTCT GATCACC

AAAGGTCACAACAAAATCTTCGACGACCGTTTCCAGGAAAAATTCATCGTTGGTATC GAAGGTG

GTAAATACGAAAAAATCGTTTACAAATTCTTCCCGGACCAGGCGAAAATGTTCCCGA AAGTTTG

CTTCTCTGCGAAAGGTCTGGAATTCTTCCGTCCGTCTGAAGAAATCCTGCGTATCTA CAACAACG

CGGAATTCAAAAAAGGTGAAACCTACTCTATCGACTCTATGCAGAAACTGATCGACT TCTACAA

AGACTGCCTGACCAAATACGAAGGTTGGGCGTGCTACACCTTCCGTCACCTGAAACC GACCGAA

GAATACCAGAACAACATCGGTGAATTCTTCCGTGACGTTGCGGAAGACGGTTACCGT ATCGACT

TCCAGGGTATCTCTGACCAGTACATCCACGAAAAAAACGAAAAAGGTGAACTGCACC TGTTCGA

AATCCACAACAAAGACTGGAACCTGGACAAAGCGCGTGACGGTAAATCTAAAACCAC CCAGAA

AAACCTGCACACCCTGTACTTCGAATCTCTGTTCTCTAACGACAACGTTGTTCAGAA CTTCCCGA

TCAAACTGAACGGTCAGGCGGAAATCTTCTACCGTCCGAAAACCGAAAAAGACAAAC TGGAAT

CTAAAAAAGACAAAAAAGGTAACAAAGTTATCGACCACAAACGTTACTCTGAAAACA AAATCT

TCTTCCACGTTCCGCTGACCCTGAACCGTACCAAAAACGACTCTTACCGTTTCAACG CGCAGATC

AACAACTTCCTGGCGAACAACAAAGACATCAACATCATCGGTGTTGACCGTGGTGAA AAACACC

TGGTTTACTACTCTGTTATCACCCAGGCGTCTGACATCCTGGAATCTGGTTCTCTGA ACGAACTG

AACGGTGTTAACTACGCGGAAAAACTGGGTAAAAAAGCGGAAAACCGTGAACAGGCG CGTCGT

GACTGGCAGGACGTTCAGGGTATCAAAGACCTGAAAAAAGGTTACATCTCTCAGGTT GTTCGTA

AACTGGCGGACCTGGCGATCAAACACAACGCGATCATCATCCTGGAAGACCTGAACA TGCGTTT

CAAACAGGTTCGTGGTGGTATCGAAAAATCTATCTACCAGCAGCTGGAAAAAGCGCT GATCGAC

AAACTGTCTTTCCTGGTTGACAAAGGTGAAAAAAACCCGGAACAGGCGGGTCACCTG CTGAAA

GCGTACCAGCTGTCTGCGCCGTTCGAAACCTTCCAGAAAATGGGTAAACAGACCGGT ATCATCT

TCTACACCCAGGCGTCTTACACCTCTAAATCTGACCCGGTTACCGGTTGGCGTCCGC ACCTGTAC

CTGAAATACTTCTCTGCGAAAAAAGCGAAAGACGACATCGCGAAATTCACCAAAATC GAATTCG

TTAACGACCGTTTCGAACTGACCTACGACATCAAAGACTTCCAGCAGGCGAAAGAAT ACCCGAA

CAAAACCGTTTGGAAAGTTTGCTCTAACGTTGAACGTTTCCGTTGGGACAAAAACCT GAACCAG

AACAAAGGTGGTTACACCCACTACACCAACATCACCGAAAACATCCAGGAACTGTTC ACCAAAT

ACGGTATCGACATCACCAAAGACCTGCTGACCCAGATCTCTACCATCGACGAAAAAC AGAACAC

CTCTTTCTTCCGTGACTTCATCTTCTACTTCAACCTGATCTGCCAGATCCGTAACAC CGACGACTC

TGAAATCGCGAAAAAAAACGGTAAAGACGACTTCATCCTGTCTCCGGTTGAACCGTT CTTCGAC

TCTCGTAAAGACAACGGTAACAAACTGCCGGAAAACGGTGACGACAACGGTGCGTAC AACATC

GCGCGTAAAGGTATCGTTATCCTGAACAAAATCTCTCAGTACTCTGAAAAAAACGAA AACTGCG

AAAAAATGAAATGGGGTGACCTGTACGTTTCTAACATCGACTGGGACAACTTCGTT

SE ATGGAAAACTTTAAAAACTTATACCCAATAAACAAAACGTTACGTTTTGAACTGCGTCCA TATG

Q GTAAAACACTGGAAAACTTTAAAAAAAGCGGTTTGTTGGAGAAGGATGCATTTAAAGCGA ACT

no CTCGCAGATCCATGCAGGCCATCATTGATGAAAAATTTAAAGAGACGATCGAAGAACGTC TGAA

N ATACACGGAATTTAGTGAGTGTGACTTAGGTAATATGACTTCTAAAGATAAGAAAATCAC CGAT

O: AAGGCGGCGACCAACCTGAAGAAGCAAGTCATTTTATCTTTTGATGATGAAATCTTTAAC AACT 51 ATTTGAAACCGGACAAAAACATCGATGCCTTATTTAAAAATGACCCTTCGAACCCGGTGA TTAG

CACATTTAAGGGCTTCACAACGTATTTTGTCAATTTTTTTGAAATTCGTAAACATAT CTTCAAAG

GAGAATCAAGCGGCTCTATGGCTTATCGCATTATTGATGAAAACCTGACGACCTATT TGAATAA CATTGAAAAAATCAAAAAACTGCCAGAGGAATTAAAGTCTCAGTTAGAAGGCATCGACCA GAT

CGACAAACTCAACAACTATAACGAATTTATTACGCAGTCTGGTATCACCCACTATAA TGAAATT

ATTGGAGGTATCAGTAAATCAGAAAATGTGAAAATCCAAGGGATTAATGAAGGCATT AACCTCT

ATTGCCAGAAAAATAAAGTGAAACTGCCGAGGCTGACTCCACTCTACAAAATGATCC TGTCTGA

CCGCGTCTCGAATAGCTTTGTCCTGGACACAATTGAAAACGATACGGAATTGATTGA GATGATA

AGCGATCTGATTAACAAAACCGAAATTTCACAGGATGTAATCATGAGTGATATACAA AACATCT

TTATTAAATATAAACAGCTTGGTAATCTGCCTGGAATTAGCTATTCGTCAATAGTGA ACGCAATC

TGTTCTGATTATGATAACAATTTTGGCGACGGTAAGCGTAAAAAGAGTTATGAAAAC GATAGGA

AAAAACACCTGGAAACTAACGTGTATTCTATCAACTATATCAGCGAACTGCTTACGG ACACCGA

TGTGAGTTCAAACATTAAGATGCGGTATAAGGAGCTTGAACAGAACTACCAGGTCTG TAAGGAA

AACTTCAACGCAACCAACTGGATGAACATTAAAAATATCAAACAATCCGAGAAGACC AACTTA

ATCAAAGATCTGCTGGATATTTTGAAGAGCATTCAACGTTTTTATGATCTGTTCGAT ATCGTTGA

TGAAGACAAGAATCCTAGTGCGGAATTTTATACATGGCTGTCTAAAAATGCGGAGAA ATTGGAT

TTCGAATTCAATTCTGTTTATAATAAATCACGCAACTATTTGACCCGCAAACAATAC AGCGACA

AAAAGATAAAACTAAACTTCGACAGTCCGACATTGGCAAAGGGCTGGGACGCAAATA AGGAAA

TCGATAACTCTACGATAATTATGCGTAAGTTCAATAATGATCGAGGTGATTATGATT ATTTCTTA

GGCATTTGGAACAAAAGCACCCCGGCCAACGAAAAGATAATTCCACTGGAGGATAAC GGTCTG

TTCGAAAAAATGCAGTACAAATTATATCCGGATCCAAGCAAGATGCTTCCAAAGCAG TTTCTGT

CTAAAATTTGGAAAGCTAAGCATCCGACCACCCCAGAATTTGACAAGAAATATAAGG AAGGCC

GCCATAAGAAAGGTCCCGATTTTGAAAAAGAATTCTTGCACGAACTGATTGATTGCT TTAAACA

TGGCTTAGTCAATCACGATGAAAAGTATCAAGATGTTTTTGGATTCAATTTGAGAAA CACAGAA

GACTACAATTCCTACACTGAGTTTCTCGAAGATGTGGAACGATGTAATTATAATCTG AGCTTTAA

CAAAATCGCGGACACCTCGAATCTGATTAACGATGGTAAACTTTATGTTTTCCAGAT CTGGAGC

AAGGATTTCTCTATTGACAGCAAAGGCACCAAAAACCTGAACACCATTTACTTTGAA AGTCTCT

TCAGCGAAGAAAATATGATTGAGAAAATGTTTAAACTTAGCGGTGAAGCTGAAATAT TCTATCG

CCCGGCAAGCCTGAACTATTGCGAAGACATTATCAAAAAGGGTCATCACCACGCTGA ACTGAAA

GATAAATTTGATTATCCTATCATAAAAGATAAACGCTATAGCCAGGATAAATTTTTT TTTCATGT

TCCTATGGTCATTAACTACAAATCAGAAAAACTGAACTCTAAAAGCCTCAATAATCG AACCAAT

GAAAACCTTGGGCAGTTTACCCATATAATTGGAATTGATCGCGGAGAGCGTCATTTA ATCTACC

TGACCGTAGTCGATGTATCGACCGGCGAGATCGTCGAGCAGAAGCACTTAGACGAGA TTATCAA

CACTGATACCAAAGGTGTTGAGCATAAGACGCACTATCTAAACAAGCTGGAGGAAAA ATCGAA

AACCCGTGATAATGAACGTAAGAGTTGGGAGGCAATTGAAACGATTAAAGAACTGAA GGAGGG

TTATATCAGCCACGTAATCAATGAAATTCAAAAACTGCAGGAAAAATACAACGCCCT GATCGTT

ATGGAAAATCTGAATTACGGTTTCAAAAATTCTCGCATCAAAGTGGAAAAACAGGTA TATCAGA

AGTTCGAGACGGCATTAATTAAAAAGTTTAATTACATCATTGACAAAAAAGATCCGG AAACTTA

TATTCATGGCTATCAGCTGACGAACCCGATCACCACACTGGATAAAATTGGTAACCA GTCTGGT

ATCGTGCTTTACATCCCTGCCTGGAATACCAGTAAAATCGATCCGGTAACGGGATTC GTCAACCT

TCTATATGCAGATGACCTCAAATATAAGAATCAGGAACAGGCCAAGTCTTTTATTCA GAAAATC

GATAACATTTACTTTGAGAATGGGGAATTCAAATTTGATATTGATTTTTCTAAATGG AACAATCG

TTATAGTATATCTAAGACGAAATGGACGCTCACCTCGTACGGAACCCGAATCCAGAC ATTCCGC

AATCCGCAGAAGAACAATAAATGGGACAGCGCCGAGTATGATCTCACTGAAGAATTC AAATTG

ATTCTGAACATTGACGGTACCCTGAAAAGCCAGGATGTCGAAACCTATAAAAAATTT ATGTCTC TGTTCAAGCTGATGCTGCAACTTAGGAACTCTGTTACCGGCACTGATATCGATTATATGA TCTCC

CCTGTCACTGATAAAACAGGTACGCATTTCGATTCGCGCGAAAATATCAAAAATCTG CCCGCAG

ATGCCGACGCCAATGGGGCGTACAATATTGCACGCAAGGGTATCATGGCGATCGAAA ACATTAT

GAATGGTATCAGCGACCCGCTGAAAATCTCAAACGAAGATTATTTGAAATATATCCA AAACCAG

CAGGAATAA

SE ATGACCCAGTTCGAAGGTTTCACCAACCTGTACCAGGTTTCTAAAACCCTGCGTTTCGAA CTGAT

Q CCCGCAGGGTAAAACCCTGAAACACATCCAGGAACAGGGTTTCATCGAAGAAGACAAAGC GCG

no TAACGACCACTACAAAGAACTGAAACCGATCATCGACCGTATCTACAAAACCTACGCGGA CCA

N GTGCCTGCAGCTGGTTCAGCTGGACTGGGAAAACCTGTCTGCGGCGATCGACTCTTACCG TAAA

O: GAAAAAACCGAAGAAACCCGTAACGCGCTGATCGAAGAACAGGCGACCTACCGTAACGCG ATC 52 CACGACTACTTCATCGGTCGTACCGACAACCTGACCGACGCGATCAACAAACGTCACGCG GAAA

TCTACAAAGGTCTGTTCAAAGCGGAACTGTTCAACGGTAAAGTTCTGAAACAGCTGG GTACCGT

TACCACCACCGAACACGAAAACGCGCTGCTGCGTTCTTTCGACAAATTCACCACCTA CTTCTCTG

GTTTCTACGAAAACCGTAAAAACGTTTTCTCTGCGGAAGACATCTCTACCGCGATCC CGCACCGT

ATCGTTCAGGACAACTTCCCGAAATTCAAAGAAAACTGCCACATCTTCACCCGTCTG ATCACCG

CGGTTCCGTCTCTGCGTGAACACTTCGAAAACGTTAAAAAAGCGATCGGTATCTTCG TTTCTACC

TCTATCGAAGAAGTTTTCTCTTTCCCGTTCTACAACCAGCTGCTGACCCAGACCCAG ATCGACCT

GTACAACCAGCTGCTGGGTGGTATCTCTCGTGAAGCGGGTACCGAAAAAATCAAAGG TCTGAAC

GAAGTTCTGAACCTGGCGATCCAGAAAAACGACGAAACCGCGCACATCATCGCGTCT CTGCCGC

ACCGTTTCATCCCGCTGTTCAAACAGATCCTGTCTGACCGTAACACCCTGTCTTTCA TCCTGGAA

GAATTCAAATCTGACGAAGAAGTTATCCAGTCTTTCTGCAAATACAAAACCCTGCTG CGTAACG

AAAACGTTCTGGAAACCGCGGAAGCGCTGTTCAACGAACTGAACTCTATCGACCTGA CCCACAT

CTTCATCTCTCACAAAAAACTGGAAACCATCTCTTCTGCGCTGTGCGACCACTGGGA CACCCTGC

GTAACGCGCTGTACGAACGTCGTATCTCTGAACTGACCGGTAAAATCACCAAATCTG CGAAAGA

AAAAGTTCAGCGTTCTCTGAAACACGAAGACATCAACCTGCAGGAAATCATCTCTGC GGCGGGT

AAAGAACTGTCTGAAGCGTTCAAACAGAAAACCTCTGAAATCCTGTCTCACGCGCAC GCGGCGC

TGGACCAGCCGCTGCCGACCACCCTGAAAAAACAGGAAGAAAAAGAAATCCTGAAAT CTCAGC

TGGACTCTCTGCTGGGTCTGTACCACCTGCTGGACTGGTTCGCGGTTGACGAATCTA ACGAAGTT

GACCCGGAATTCTCTGCGCGTCTGACCGGTATCAAACTGGAAATGGAACCGTCTCTG TCTTTCTA

CAACAAAGCGCGTAACTACGCGACCAAAAAACCGTACTCTGTTGAAAAATTCAAACT GAACTTC

CAGATGCCGACCCTGGCGTCTGGTTGGGACGTTAACAAAGAAAAAAACAACGGTGCG ATCCTGT

TCGTTAAAAACGGTCTGTACTACCTGGGTATCATGCCGAAACAGAAAGGTCGTTACA AAGCGCT

GTCTTTCGAACCGACCGAAAAAACCTCTGAAGGTTTCGACAAAATGTACTACGACTA CTTCCCG

GACGCGGCGAAAATGATCCCGAAATGCTCTACCCAGCTGAAAGCGGTTACCGCGCAC TTCCAGA

CCCACACCACCCCGATCCTGCTGTCTAACAACTTCATCGAACCGCTGGAAATCACCA AAGAAAT

CTACGACCTGAACAACCCGGAAAAAGAACCGAAAAAATTCCAGACCGCGTACGCGAA AAAAAC

CGGTGACCAGAAAGGTTACCGTGAAGCGCTGTGCAAATGGATCGACTTCACCCGTGA CTTCCTG

TCTAAATACACCAAAACCACCTCTATCGACCTGTCTTCTCTGCGTCCGTCTTCTCAG TACAAAGA

CCTGGGTGAATACTACGCGGAACTGAACCCGCTGCTGTACCACATCTCTTTCCAGCG TATCGCG

GAAAAAGAAATCATGGACGCGGTTGAAACCGGTAAACTGTACCTGTTCCAGATCTAC AACAAA

GACTTCGCGAAAGGTCACCACGGTAAACCGAACCTGCACACCCTGTACTGGACCGGT CTGTTCT

CTCCGGAAAACCTGGCGAAAACCTCTATCAAACTGAACGGTCAGGCGGAACTGTTCT ACCGTCC GAAATCTCGTATGAAACGTATGGCGCACCGTCTGGGTGAAAAAATGCTGAACAAAAAACT GAA

AGACCAGAAAACCCCGATCCCGGACACCCTGTACCAGGAACTGTACGACTACGTTAA CCACCGT

CTGTCTCACGACCTGTCTGACGAAGCGCGTGCGCTGCTGCCGAACGTTATCACCAAA GAAGTTT

CTCACGAAATCATCAAAGACCGTCGTTTCACCTCTGACAAATTCTTCTTCCACGTTC CGATCACC

CTGAACTACCAGGCGGCGAACTCTCCGTCTAAATTCAACCAGCGTGTTAACGCGTAC CTGAAAG

AACACCCGGAAACCCCGATCATCGGTATCGACCGTGGTGAACGTAACCTGATCTACA TCACCGT

TATCGACTCTACCGGTAAAATCCTGGAACAGCGTTCTCTGAACACCATCCAGCAGTT CGACTAC

CAGAAAAAACTGGACAACCGTGAAAAAGAACGTGTTGCGGCGCGTCAGGCGTGGTCT GTTGTT

GGTACCATCAAAGACCTGAAACAGGGTTACCTGTCTCAGGTTATCCACGAAATCGTT GACCTGA

TGATCCACTACCAGGCGGTTGTTGTTCTGGAAAACCTGAACTTCGGTTTCAAATCTA AACGTACC

GGTATCGCGGAAAAAGCGGTTTACCAGCAGTTCGAAAAAATGCTGATCGACAAACTG AACTGC

CTGGTTCTGAAAGACTACCCGGCGGAAAAAGTTGGTGGTGTTCTGAACCCGTACCAG CTGACCG

ACCAGTTCACCTCTTTCGCGAAAATGGGTACCCAGTCTGGTTTCCTGTTCTACGTTC CGGCGCCG

TACACCTCTAAAATCGACCCGCTGACCGGTTTCGTTGACCCGTTCGTTTGGAAAACC ATCAAAA

ACCACGAATCTCGTAAACACTTCCTGGAAGGTTTCGACTTCCTGCACTACGACGTTA AAACCGG

TGACTTCATCCTGCACTTCAAAATGAACCGTAACCTGTCTTTCCAGCGTGGTCTGCC GGGTTTCA

TGCCGGCGTGGGACATCGTTTTCGAAAAAAACGAAACCCAGTTCGACGCGAAAGGTA CCCCGTT

CATCGCGGGTAAACGTATCGTTCCGGTTATCGAAAACCACCGTTTCACCGGTCGTTA CCGTGACC

TGTACCCGGCGAACGAACTGATCGCGCTGCTGGAAGAAAAAGGTATCGTTTTCCGTG ACGGTTC

TAACATCCTGCCGAAACTGCTGGAAAACGACGACTCTCACGCGATCGACACCATGGT TGCGCTG

ATCCGTTCTGTTCTGCAGATGCGTAACTCTAACGCGGCGACCGGTGAAGACTACATC AACTCTCC

GGTTCGTGACCTGAACGGTGTTTGCTTCGACTCTCGTTTCCAGAACCCGGAATGGCC GATGGAC

GCGGACGCGAACGGTGCGTACCACATCGCGCTGAAAGGTCAGCTGCTGCTGAACCAC CTGAAA

GAATCTAAAGACCTGAAACTGCAGAACGGTATCTCTAACCAGGACTGGCTGGCGTAC ATCCAGG

AACTGCGTAACTA

SE ATGGCGGTTAAATCTATCAAAGTTAAACTGCGTCTGGACGACATGCCGGAAATCCGTGCG GGTC

Q TGTGGAAACTGCACAAAGAAGTTAACGCGGGTGTTCGTTACTACACCGAATGGCTGTCTC TGCT

no GCGTCAGGAAAACCTGTACCGTCGTTCTCCGAACGGTGACGGTGAACAGGAATGCGACAA AAC

N CGCGGAAGAATGCAAAGCGGAACTGCTGGAACGTCTGCGTGCGCGTCAGGTTGAAAACGG TCA

O: CCGTGGTCCGGCGGGTTCTGACGACGAACTGCTGCAGCTGGCGCGTCAGCTGTACGAACT GCTG

53 GTTCCGCAGGCGATCGGTGCGAAAGGTGACGCGCAGCAGATCGCGCGTAAATTCCTGTCT CCGC

TGGCGGACAAAGACGCGGTTGGTGGTCTGGGTATCGCGAAAGCGGGTAACAAACCGC GTTGGG

TTCGTATGCGTGAAGCGGGTGAACCGGGTTGGGAAGAAGAAAAAGAAAAAGCGGAAA CCCGTA

AATCTGCGGACCGTACCGCGGACGTTCTGCGTGCGCTGGCGGACTTCGGTCTGAAAC CGCTGAT

GCGTGTTTACACCGACTCTGAAATGTCTTCTGTTGAATGGAAACCGCTGCGTAAAGG TCAGGCG

GTTCGTACCTGGGACCGTGACATGTTCCAGCAGGCGATCGAACGTATGATGTCTTGG GAATCTT

GGAACCAGCGTGTTGGTCAGGAATACGCGAAACTGGTTGAACAGAAAAACCGTTTCG AACAGA

AAAACTTCGTTGGTCAGGAACACCTGGTTCACCTGGTTAACCAGCTGCAGCAGGACA TGAAAGA

AGCGTCTCCGGGTCTGGAATCTAAAGAACAGACCGCGCACTACGTTACCGGTCGTGC GCTGCGT

GGTTCTGACAAAGTTTTCGAAAAATGGGGTAAACTGGCGCCGGACGCGCCGTTCGAC CTGTACG

ACGCGGAAATCAAAAACGTTCAGCGTCGTAACACCCGTCGTTTCGGTTCTCACGACC TGTTCGC

GAAACTGGCGGAACCGGAATACCAGGCGCTGTGGCGTGAAGACGCGTCTTTCCTGAC CCGTTAC GCGGTTTACAACTCTATCCTGCGTAAACTGAACCACGCGAAAATGTTCGCGACCTTCACC CTGCC

GGACGCGACCGCGCACCCGATCTGGACCCGTTTCGACAAACTGGGTGGTAACCTGCA CCAGTAC

ACCTTCCTGTTCAACGAATTCGGTGAACGTCGTCACGCGATCCGTTTCCACAAACTG CTGAAAGT

TGAAAACGGTGTTGCGCGTGAAGTTGACGACGTTACCGTTCCGATCTCTATGTCTGA ACAGCTG

GACAACCTGCTGCCGCGTGACCCGAACGAACCGATCGCGCTGTACTTCCGTGACTAC GGTGCGG

AACAGCACTTCACCGGTGAATTCGGTGGTGCGAAAATCCAGTGCCGTCGTGACCAGC TGGCGCA

CATGCACCGTCGTCGTGGTGCGCGTGACGTTTACCTGAACGTTTCTGTTCGTGTTCA GTCTCAGT

CTGAAGCGCGTGGTGAACGTCGTCCGCCGTACGCGGCGGTTTTCCGTCTGGTTGGTG ACAACCA

CCGTGCGTTCGTTCACTTCGACAAACTGTCTGACTACCTGGCGGAACACCCGGACGA CGGTAAA

CTGGGTTCTGAAGGTCTGCTGTCTGGTCTGCGTGTTATGTCTGTTGACCTGGGTCTG CGTACCTCT

GCGTCTATCTCTGTTTTCCGTGTTGCGCGTAAAGACGAACTGAAACCGAACTCTAAA GGTCGTGT

TCCGTTCTTCTTCCCGATCAAAGGTAACGACAACCTGGTTGCGGTTCACGAACGTTC TCAGCTGC

TGAAACTGCCGGGTGAAACCGAATCTAAAGACCTGCGTGCGATCCGTGAAGAACGTC AGCGTA

CCCTGCGTCAGCTGCGTACCCAGCTGGCGTACCTGCGTCTGCTGGTTCGTTGCGGTT CTGAAGAC

GTTGGTCGTCGTGAACGTTCTTGGGCGAAACTGATCGAACAGCCGGTTGACGCGGCG AACCACA

TGACCCCGGACTGGCGTGAAGCGTTCGAAAACGAACTGCAGAAACTGAAATCTCTGC ACGGTAT

CTGCTCTGACAAAGAATGGATGGACGCGGTTTACGAATCTGTTCGTCGTGTTTGGCG TCACATG

GGTAAACAGGTTCGTGACTGGCGTAAAGACGTTCGTTCTGGTGAACGTCCGAAAATC CGTGGTT

ACGCGAAAGACGTTGTTGGTGGTAACTCTATCGAACAGATCGAATACCTGGAACGTC AGTACAA

ATTCCTGAAATCTTGGTCTTTCTTCGGTAAAGTTTCTGGTCAGGTTATCCGTGCGGA AAAAGGTT

CTCGTTTCGCGATCACCCTGCGTGAACACATCGACCACGCGAAAGAAGACCGTCTGA AAAAACT

GGCGGACCGTATCATCATGGAAGCGCTGGGTTACGTTTACGCGCTGGACGAACGTGG TAAAGGT

AAATGGGTTGCGAAATACCCGCCGTGCCAGCTGATCCTGCTGGAAGAACTGTCTGAA TACCAGT

TCAACAACGACCGTCCGCCGTCTGAAAACAACCAGCTGATGCAGTGGTCTCACCGTG GTGTTTT

CCAGGAACTGATCAACCAGGCGCAGGTTCACGACCTGCTGGTTGGTACCATGTACGC GGCGTTC

TCTTCTCGTTTCGACGCGCGTACCGGTGCGCCGGGTATCCGTTGCCGTCGTGTTCCG GCGCGTTG

CACCCAGGAACACAACCCGGAACCGTTCCCGTGGTGGCTGAACAAATTCGTTGTTGA ACACACC

CTGGACGCGTGCCCGCTGCGTGCGGACGACCTGATCCCGACCGGTGAAGGTGAAATC TTCGTTT

CTCCGTTCTCTGCGGAAGAAGGTGACTTCCACCAGATCCACGCGGACCTGAACGCGG CGCAGAA

CCTGCAGCAGCGTCTGTGGTCTGACTTCGACATCTCTCAGATCCGTCTGCGTTGCGA CTGGGGTG

AAGTTGACGGTGAACTGGTTCTGATCCCGCGTCTGACCGGTAAACGTACCGCGGACT CTTACTCT

AACAAAGTTTTCTACACCAACACCGGTGTTACCTACTACGAACGTGAACGTGGTAAA AAACGTC

GTAAAGTTTTCGCGCAGGAAAAACTGTCTGAAGAAGAAGCGGAACTGCTGGTTGAAG CGGACG

AAGCGCGTGAAAAATCTGTTGTTCTGATGCGTGACCCGTCTGGTATCATCAACCGTG GTAACTG

GACCCGTCAGAAAGAATTCTGGTCTATGGTTAACCAGCGTATCGAAGGTTACCTGGT TAAACAG

ATCCGTTCTCGTGTTCCGCTGCAGGACTCTGCGTGCGAAAACACCGGTGACATCTAA

SE ATGGCGACCCGTTCTTTCATCCTGAAAATCGAACCGAACGAAGAAGTTAAAAAAGGTCTG TGGA

Q AAACCCACGAAGTTCTGAACCACGGTATCGCGTACTACATGAACATCCTGAAACTGATCC GTCA

no GGAAGCGATCTACGAACACCACGAACAGGACCCGAAAAACCCGAAAAAAGTTTCTAAAGC GGA

N AATCCAGGCGGAACTGTGGGACTTCGTTCTGAAAATGCAGAAATGCAACTCTTTCACCCA CGAA

O: GTTGACAAAGACGTTGTTTTCAACATCCTGCGTGAACTGTACGAAGAACTGGTTCCGTCT TCTGT 54 TGAAAAAAAAGGTGAAGCGAACCAGCTGTCTAACAAATTCCTGTACCCGCTGGTTGACCC GAAC TCTCAGTCTGGTAAAGGTACCGCGTCTTCTGGTCGTAAACCGCGTTGGTACAACCTGAAA ATCG

CGGGTGACCCGTCTTGGGAAGAAGAAAAAAAAAAATGGGAAGAAGACAAAAAAAAAG ACCCG

CTGGCGAAAATCCTGGGTAAACTGGCGGAATACGGTCTGATCCCGCTGTTCATCCCG TTCACCG

ACTCTAACGAACCGATCGTTAAAGAAATCAAATGGATGGAAAAATCTCGTAACCAGT CTGTTCG

TCGTCTGGACAAAGACATGTTCATCCAGGCGCTGGAACGTTTCCTGTCTTGGGAATC TTGGAACC

TGAAAGTTAAAGAAGAATACGAAAAAGTTGAAAAAGAACACAAAACCCTGGAAGAAC GTATCA

AAGAAGACATCCAGGCGTTCAAATCTCTGGAACAGTACGAAAAAGAACGTCAGGAAC AGCTGC

TGCGTGACACCCTGAACACCAACGAATACCGTCTGTCTAAACGTGGTCTGCGTGGTT GGCGTGA

AATCATCCAGAAATGGCTGAAAATGGACGAAAACGAACCGTCTGAAAAATACCTGGA AGTTTT

CAAAGACTACCAGCGTAAACACCCGCGTGAAGCGGGTGACTACTCTGTTTACGAATT CCTGTCT

AAAAAAGAAAACCACTTCATCTGGCGTAACCACCCGGAATACCCGTACCTGTACGCG ACCTTCT

GCGAAATCGACAAAAAAAAAAAAGACGCGAAACAGCAGGCGACCTTCACCCTGGCGG ACCCGA

TCAACCACCCGCTGTGGGTTCGTTTCGAAGAACGTTCTGGTTCTAACCTGAACAAAT ACCGTATC

CTGACCGAACAGCTGCACACCGAAAAACTGAAAAAAAAACTGACCGTTCAGCTGGAC CGTCTG

ATCTACCCGACCGAATCTGGTGGTTGGGAAGAAAAAGGTAAAGTTGACATCGTTCTG CTGCCGT

CTCGTCAGTTCTACAACCAGATCTTCCTGGACATCGAAGAAAAAGGTAAACACGCGT TCACCTA

CAAAGACGAATCTATCAAATTCCCGCTGAAAGGTACCCTGGGTGGTGCGCGTGTTCA GTTCGAC

CGTGACCACCTGCGTCGTTACCCGCACAAAGTTGAATCTGGTAACGTTGGTCGTATC TACTTCAA

CATGACCGTTAACATCGAACCGACCGAATCTCCGGTTTCTAAATCTCTGAAAATCCA CCGTGAC

GACTTCCCGAAATTCGTTAACTTCAAACCGAAAGAACTGACCGAATGGATCAAAGAC TCTAAAG

GTAAAAAACTGAAATCTGGTATCGAATCTCTGGAAATCGGTCTGCGTGTTATGTCTA TCGACCTG

GGTCAGCGTCAGGCGGCGGCGGCGTCTATCTTCGAAGTTGTTGACCAGAAACCGGAC ATCGAAG

GTAAACTGTTCTTCCCGATCAAAGGTACCGAACTGTACGCGGTTCACCGTGCGTCTT TCAACATC

AAACTGCCGGGTGAAACCCTGGTTAAATCTCGTGAAGTTCTGCGTAAAGCGCGTGAA GACAACC

TGAAACTGATGAACCAGAAACTGAACTTCCTGCGTAACGTTCTGCACTTCCAGCAGT TCGAAGA

CATCACCGAACGTGAAAAACGTGTTACCAAATGGATCTCTCGTCAGGAAAACTCTGA CGTTCCG

CTGGTTTACCAGGACGAACTGATCCAGATCCGTGAACTGATGTACAAACCGTACAAA GACTGGG

TTGCGTTCCTGAAACAGCTGCACAAACGTCTGGAAGTTGAAATCGGTAAAGAAGTTA AACACTG

GCGTAAATCTCTGTCTGACGGTCGTAAAGGTCTGTACGGTATCTCTCTGAAAAACAT CGACGAA

ATCGACCGTACCCGTAAATTCCTGCTGCGTTGGTCTCTGCGTCCGACCGAACCGGGT GAAGTTCG

TCGTCTGGAACCGGGTCAGCGTTTCGCGATCGACCAGCTGAACCACCTGAACGCGCT GAAAGAA

GACCGTCTGAAAAAAATGGCGAACACCATCATCATGCACGCGCTGGGTTACTGCTAC GACGTTC

GTAAAAAAAAATGGCAGGCGAAAAACCCGGCGTGCCAGATCATCCTGTTCGAAGACC TGTCTA

ACTACAACCCGTACGAAGAACGTTCTCGTTTCGAAAACTCTAAACTGATGAAATGGT CTCGTCG

TGAAATCCCGCGTCAGGTTGCGCTGCAGGGTGAAATCTACGGTCTGCAGGTTGGTGA AGTTGGT

GCGCAGTTCTCTTCTCGTTTCCACGCGAAAACCGGTTCTCCGGGTATCCGTTGCTCT GTTGTTACC

AAAGAAAAACTGCAGGACAACCGTTTCTTCAAAAACCTGCAGCGTGAAGGTCGTCTG ACCCTGG

ACAAAATCGCGGTTCTGAAAGAAGGTGACCTGTACCCGGACAAAGGTGGTGAAAAAT TCATCTC

TCTGTCTAAAGACCGTAAACTGGTTACCACCCACGCGGACATCAACGCGGCGCAGAA CCTGCAG

AAACGTTTCTGGACCCGTACCCACGGTTTCTACAAAGTTTACTGCAAAGCGTACCAG GTTGACG

GTCAGACCGTTTACATCCCGGAATCTAAAGACCAGAAACAGAAAATCATCGAAGAAT TCGGTG

AAGGTTACTTCATCCTGAAAGACGGTGTTTACGAATGGGGTAACGCGGGTAAACTGA AAATCAA AAAAGGTTCTTCTAAACAGTCTTCTTCTGAACTGGTTGACTCTGACATCCTGAAAGACTC TTTCG ACCTGGCGTCTGAACTGAAAGGTGAAAAACTGATGCTGTACCGTGACCCGTCTGGTAACG TTTT CCCGTCTGACAAATGGATGGCGGCGGGTGTTTTCTTCGGTAAACTGGAACGTATCCTGAT CTCTA AACTGACCAACCAGTACTCTATCTCTACCATCGAAGACGACTCTTCTAAACAGTCTATGT AA

SE ATGCCGACCCGTACCATCAACCTGAAACTGGTTCTGGGTAAAAACCCGGAAAACGCGACC CTGC

Q GTCGTGCGCTGTTCTCTACCCACCGTCTGGTTAACCAGGCGACCAAACGTATCGAAGAAT TCCTG

no CTGCTGTGCCGTGGTGAAGCGTACCGTACCGTTGACAACGAAGGTAAAGAAGCGGAAATC CCG

N CGTCACGCGGTTCAGGAAGAAGCGCTGGCGTTCGCGAAAGCGGCGCAGCGTCACAACGGT TGC

O: ATCTCTACCTACGAAGACCAGGAAATCCTGGACGTTCTGCGTCAGCTGTACGAACGTCTG GTTC 55 CGTCTGTTAACGAAAACAACGAAGCGGGTGACGCGCAGGCGGCGAACGCGTGGGTTTCTC CGCT

GATGTCTGCGGAATCTGAAGGTGGTCTGTCTGTTTACGACAAAGTTCTGGACCCGCC GCCGGTTT

GGATGAAACTGAAAGAAGAAAAAGCGCCGGGTTGGGAAGCGGCGTCTCAGATCTGGA TCCAGT

CTGACGAAGGTCAGTCTCTGCTGAACAAACCGGGTTCTCCGCCGCGTTGGATCCGTA AACTGCG

TTCTGGTCAGCCGTGGCAGGACGACTTCGTTTCTGACCAGAAAAAAAAACAGGACGA ACTGACC

AAAGGTAACGCGCCGCTGATCAAACAGCTGAAAGAAATGGGTCTGCTGCCGCTGGTT AACCCGT

TCTTCCGTCACCTGCTGGACCCGGAAGGTAAAGGTGTTTCTCCGTGGGACCGTCTGG CGGTTCGT

GCGGCGGTTGCGCACTTCATCTCTTGGGAATCTTGGAACCACCGTACCCGTGCGGAA TACAACT

CTCTGAAACTGCGTCGTGACGAATTCGAAGCGGCGTCTGACGAATTCAAAGACGACT TCACCCT

GCTGCGTCAGTACGAAGCGAAACGTCACTCTACCCTGAAATCTATCGCGCTGGCGGA CGACTCT

AACCCGTACCGTATCGGTGTTCGTTCTCTGCGTGCGTGGAACCGTGTTCGTGAAGAA TGGATCG

ACAAAGGTGCGACCGAAGAACAGCGTGTTACCATCCTGTCTAAACTGCAGACCCAGC TGCGTGG

TAAATTCGGTGACCCGGACCTGTTCAACTGGCTGGCGCAGGACCGTCACGTTCACCT GTGGTCTC

CGCGTGACTCTGTTACCCCGCTGGTTCGTATCAACGCGGTTGACAAAGTTCTGCGTC GTCGTAAA

CCGTACGCGCTGATGACCTTCGCGCACCCGCGTTTCCACCCGCGTTGGATCCTGTAC GAAGCGCC

GGGTGGTTCTAACCTGCGTCAGTACGCGCTGGACTGCACCGAAAACGCGCTGCACAT CACCCTG

CCGCTGCTGGTTGACGACGCGCACGGTACCTGGATCGAAAAAAAAATCCGTGTTCCG CTGGCGC

CGTCTGGTCAGATCCAGGACCTGACCCTGGAAAAACTGGAAAAAAAAAAAAACCGTC TGTACT

ACCGTTCTGGTTTCCAGCAGTTCGCGGGTCTGGCGGGTGGTGCGGAAGTTCTGTTCC ACCGTCCG

TACATGGAACACGACGAACGTTCTGAAGAATCTCTGCTGGAACGTCCGGGTGCGGTT TGGTTCA

AACTGACCCTGGACGTTGCGACCCAGGCGCCGCCGAACTGGCTGGACGGTAAAGGTC GTGTTCG

TACCCCGCCGGAAGTTCACCACTTCAAAACCGCGCTGTCTAACAAATCTAAACACAC CCGTACC

CTGCAGCCGGGTCTGCGTGTTCTGTCTGTTGACCTGGGTATGCGTACCTTCGCGTCT TGCTCTGTT

TTCGAACTGATCGAAGGTAAACCGGAAACCGGTCGTGCGTTCCCGGTTGCGGACGAA CGTTCTA

TGGACTCTCCGAACAAACTGTGGGCGAAACACGAACGTTCTTTCAAACTGACCCTGC CGGGTGA

AACCCCGTCTCGTAAAGAAGAAGAAGAACGTTCTATCGCGCGTGCGGAAATCTACGC GCTGAA

ACGTGACATCCAGCGTCTGAAATCTCTGCTGCGTCTGGGTGAAGAAGACAACGACAA CCGTCGT

GACGCGCTGCTGGAACAGTTCTTCAAAGGTTGGGGTGAAGAAGACGTTGTTCCGGGT CAGGCGT

TCCCGCGTTCTCTGTTCCAGGGTCTGGGTGCGGCGCCGTTCCGTTCTACCCCGGAAC TGTGGCGT

CAGCACTGCCAGACCTACTACGACAAAGCGGAAGCGTGCCTGGCGAAACACATCTCT GACTGGC

GTAAACGTACCCGTCCGCGTCCGACCTCTCGTGAAATGTGGTACAAAACCCGTTCTT ACCACGG

TGGTAAATCTATCTGGATGCTGGAATACCTGGACGCGGTTCGTAAACTGCTGCTGTC TTGGTCTC

TGCGTGGTCGTACCTACGGTGCGATCAACCGTCAGGACACCGCGCGTTTCGGTTCTC TGGCGTCT CGTCTGCTGCACCACATCAACTCTCTGAAAGAAGACCGTATCAAAACCGGTGCGGACTCT ATCG

TTCAGGCGGCGCGTGGTTACATCCCGCTGCCGCACGGTAAAGGTTGGGAACAGCGTT ACGAACC

GTGCCAGCTGATCCTGTTCGAAGACCTGGCGCGTTACCGTTTCCGTGTTGACCGTCC GCGTCGTG

AAAACTCTCAGCTGATGCAGTGGAACCACCGTGCGATCGTTGCGGAAACCACCATGC AGGCGG

AACTGTACGGTCAGATCGTTGAAAACACCGCGGCGGGTTTCTCTTCTCGTTTCCACG CGGCGACC

GGTGCGCCGGGTGTTCGTTGCCGTTTCCTGCTGGAACGTGACTTCGACAACGACCTG CCGAAAC

CGTACCTGCTGCGTGAACTGTCTTGGATGCTGGGTAACACCAAAGTTGAATCTGAAG AAGAAAA

ACTGCGTCTGCTGTCTGAAAAAATCCGTCCGGGTTCTCTGGTTCCGTGGGACGGTGG TGAACAG

TTCGCGACCCTGCACCCGAAACGTCAGACCCTGTGCGTTATCCACGCGGACATGAAC GCGGCGC

AGAACCTGCAGCGTCGTTTCTTCGGTCGTTGCGGTGAAGCGTTCCGTCTGGTTTGCC AGCCGCAC

GGTGACGACGTTCTGCGTCTGGCGTCTACCCCGGGTGCGCGTCTGCTGGGTGCGCTG CAGCAGC

TGGAAAACGGTCAGGGTGCGTTCGAACTGGTTCGTGACATGGGTTCTACCTCTCAGA TGAACCG

TTTCGTTATGAAATCTCTGGGTAAAAAAAAAATCAAACCGCTGCAGGACAACAACGG TGACGAC

GAACTGGAAGACGTTCTGTCTGTTCTGCCGGAAGAAGACGACACCGGTCGTATCACC GTTTTCC

GTGACTCTTCTGGTATCTTCTTCCCGTGCAACGTTTGGATCCCGGCGAAACAGTTCT GGCCGGCG

GTTCGTGCGATGATCTGGAAAGTTATGGCGTCTCACTCTCTGGGTTAA

SE ATGACCAAACTGCGTCACCGTCAGAAAAAACTGACCCACGACTGGGCGGGTTCTAAAAAA CGT

Q GAAGTTCTGGGTTCTAACGGTAAACTGCAGAACCCGCTGCTGATGCCGGTTAAAAAAGGT CAGG

no TTACCGAATTCCGTAAAGCGTTCTCTGCGTACGCGCGTGCGACCAAAGGTGAAATGACCG ACGG

N TCGTAAAAACATGTTCACCCACTCTTTCGAACCGTTCAAAACCAAACCGTCTCTGCACCA GTGCG

O: AACTGGCGGACAAAGCGTACCAGTCTCTGCACTCTTACCTGCCGGGTTCTCTGGCGCACT TCCTG 56 CTGTCTGCGCACGCGCTGGGTTTCCGTATCTTCTCTAAATCTGGTGAAGCGACCGCGTTC CAGGC

GTCTTCTAAAATCGAAGCGTACGAATCTAAACTGGCGTCTGAACTGGCGTGCGTTGA CCTGTCT

ATCCAGAACCTGACCATCTCTACCCTGTTCAACGCGCTGACCACCTCTGTTCGTGGT AAAGGTGA

AGAAACCTCTGCGGACCCGCTGATCGCGCGTTTCTACACCCTGCTGACCGGTAAACC GCTGTCTC

GTGACACCCAGGGTCCGGAACGTGACCTGGCGGAAGTTATCTCTCGTAAAATCGCGT CTTCTTTC

GGTACCTGGAAAGAAATGACCGCGAACCCGCTGCAGTCTCTGCAGTTCTTCGAAGAA GAACTGC

ACGCGCTGGACGCGAACGTTTCTCTGTCTCCGGCGTTCGACGTTCTGATCAAAATGA ACGACCT

GCAGGGTGACCTGAAAAACCGTACCATCGTTTTCGACCCGGACGCGCCGGTTTTCGA ATACAAC

GCGGAAGACCCGGCGGACATCATCATCAAACTGACCGCGCGTTACGCGAAAGAAGCG GTTATC

AAAAACCAGAACGTTGGTAACTACGTTAAAAACGCGATCACCACCACCAACGCGAAC GGTCTG

GGTTGGCTGCTGAACAAAGGTCTGTCTCTGCTGCCGGTTTCTACCGACGACGAACTG CTGGAATT

CATCGGTGTTGAACGTTCTCACCCGTCTTGCCACGCGCTGATCGAACTGATCGCGCA GCTGGAA

GCGCCGGAACTGTTCGAAAAAAACGTTTTCTCTGACACCCGTTCTGAAGTTCAGGGT ATGATCG

ACTCTGCGGTTTCTAACCACATCGCGCGTCTGTCTTCTTCTCGTAACTCTCTGTCTA TGGACTCTG

AAGAACTGGAACGTCTGATCAAATCTTTCCAGATCCACACCCCGCACTGCTCTCTGT TCATCGGT

GCGCAGTCTCTGTCTCAGCAGCTGGAATCTCTGCCGGAAGCGCTGCAGTCTGGTGTT AACTCTGC

GGACATCCTGCTGGGTTCTACCCAGTACATGCTGACCAACTCTCTGGTTGAAGAATC TATCGCGA

CCTACCAGCGTACCCTGAACCGTATCAACTACCTGTCTGGTGTTGCGGGTCAGATCA ACGGTGC

GATCAAACGTAAAGCGATCGACGGTGAAAAAATCCACCTGCCGGCGGCGTGGTCTGA ACTGAT

CTCTCTGCCGTTCATCGGTCAGCCGGTTATCGACGTTGAATCTGACCTGGCGCACCT GAAAAACC

AGTACCAGACCCTGTCTAACGAATTCGACACCCTGATCTCTGCGCTGCAGAAAAACT TCGACCT GAACTTCAACAAAGCGCTGCTGAACCGTACCCAGCACTTCGAAGCGATGTGCCGTTCTAC CAAA

AAAAACGCGCTGTCTAAACCGGAAATCGTTTCTTACCGTGACCTGCTGGCGCGTCTG ACCTCTTG

CCTGTACCGTGGTTCTCTGGTTCTGCGTCGTGCGGGTATCGAAGTTCTGAAAAAACA CAAAATCT

TCGAATCTAACTCTGAACTGCGTGAACACGTTCACGAACGTAAACACTTCGTTTTCG TTTCTCCG

CTGGACCGTAAAGCGAAAAAACTGCTGCGTCTGACCGACTCTCGTCCGGACCTGCTG CACGTTA

TCGACGAAATCCTGCAGCACGACAACCTGGAAAACAAAGACCGTGAATCTCTGTGGC TGGTTCG

TTCTGGTTACCTGCTGGCGGGTCTGCCGGACCAGCTGTCTTCTTCTTTCATCAACCT GCCGATCAT

CACCCAGAAAGGTGACCGTCGTCTGATCGACCTGATCCAGTACGACCAGATCAACCG TGACGCG

TTCGTTATGCTGGTTACCTCTGCGTTCAAATCTAACCTGTCTGGTCTGCAGTACCGT GCGAACAA

ACAGTCTTTCGTTGTTACCCGTACCCTGTCTCCGTACCTGGGTTCTAAACTGGTTTA CGTTCCGAA

AGACAAAGACTGGCTGGTTCCGTCTCAGATGTTCGAAGGTCGTTTCGCGGACATCCT GCAGTCT

GACTACATGGTTTGGAAAGACGCGGGTCGTCTGTGCGTTATCGACACCGCGAAACAC CTGTCTA

ACATCAAAAAATCTGTTTTCTCTTCTGAAGAAGTTCTGGCGTTCCTGCGTGAACTGC CGCACCGT

ACCTTCATCCAGACCGAAGTTCGTGGTCTGGGTGTTAACGTTGACGGTATCGCGTTC AACAACG

GTGACATCCCGTCTCTGAAAACCTTCTCTAACTGCGTTCAGGTTAAAGTTTCTCGTA CCAACACC

TCTCTGGTTCAGACCCTGAACCGTTGGTTCGAAGGTGGTAAAGTTTCTCCGCCGTCT ATCCAGTT

CGAACGTGCGTACTACAAAAAAGACGACCAGATCCACGAAGACGCGGCGAAACGTAA AATCCG

TTTCCAGATGCCGGCGACCGAACTGGTTCACGCGTCTGACGACGCGGGTTGGACCCC GTCTTAC

CTGCTGGGTATCGACCCGGGTGAATACGGTATGGGTCTGTCTCTGGTTTCTATCAAC AACGGTGA

AGTTCTGGACTCTGGTTTCATCCACATCAACTCTCTGATCAACTTCGCGTCTAAAAA ATCTAACC

ACCAGACCAAAGTTGTTCCGCGTCAGCAGTACAAATCTCCGTACGCGAACTACCTGG AACAGTC

TAAAGACTCTGCGGCGGGTGACATCGCGCACATCCTGGACCGTCTGATCTACAAACT GAACGCG

CTGCCGGTTTTCGAAGCGCTGTCTGGTAACTCTCAGTCTGCGGCGGACCAGGTTTGG ACCAAAG

TTCTGTCTTTCTACACCTGGGGTGACAACGACGCGCAGAACTCTATCCGTAAACAGC ACTGGTTC

GGTGCGTCTCACTGGGACATCAAAGGTATGCTGCGTCAGCCGCCGACCGAAAAAAAA CCGAAA

CCGTACATCGCGTTCCCGGGTTCTCAGGTTTCTTCTTACGGTAACTCTCAGCGTTGC TCTTGCTGC

GGTCGTAACCCGATCGAACAGCTGCGTGAAATGGCGAAAGACACCTCTATCAAAGAA CTGAAA

ATCCGTAACTCTGAAATCCAGCTGTTCGACGGTACCATCAAACTGTTCAACCCGGAC CCGTCTAC

CGTTATCGAACGTCGTCGTCACAACCTGGGTCCGTCTCGTATCCCGGTTGCGGACCG TACCTTCA

AAAACATCTCTCCGTCTTCTCTGGAATTCAAAGAACTGATCACCATCGTTTCTCGTT CTATCCGT

CACTCTCCGGAATTCATCGCGAAAAAACGTGGTATCGGTTCTGAATACTTCTGCGCG TACTCTGA

CTGCAACTCTTCTCTGAACTCTGAAGCGAACGCGGCGGCGAACGTTGCGCAGAAATT CCAGAAA

CAGCTGTTCTTCGAACTGTAA

SE ATGAAACGTATCCTGAACTCTCTGAAAGTTGCGGCGCTGCGTCTGCTGTTCCGTGGTAAA GGTTC

Q TGAACTGGTTAAAACCGTTAAATACCCGCTGGTTTCTCCGGTTCAGGGTGCGGTTGAAGA ACTG

no GCGGAAGCGATCCGTCACGACAACCTGCACCTGTTCGGTCAGAAAGAAATCGTTGACCTG ATGG

N AAAAAGACGAAGGTACCCAGGTTTACTCTGTTGTTGACTTCTGGCTGGACACCCTGCGTC TGGG

O: TATGTTCTTCTCTCCGTCTGCGAACGCGCTGAAAATCACCCTGGGTAAATTCAACTCTGA CCAGG

57 TTTCTCCGTTCCGTAAAGTTCTGGAACAGTCTCCGTTCTTCCTGGCGGGTCGTCTGAAAG TTGAA

CCGGCGGAACGTATCCTGTCTGTTGAAATCCGTAAAATCGGTAAACGTGAAAACCGT GTTGAAA

ACTACGCGGCGGACGTTGAAACCTGCTTCATCGGTCAGCTGTCTTCTGACGAAAAAC AGTCTAT

CCAGAAACTGGCGAACGACATCTGGGACTCTAAAGACCACGAAGAACAGCGTATGCT GAAAGC GGACTTCTTCGCGATCCCGCTGATCAAAGACCCGAAAGCGGTTACCGAAGAAGACCCGGA AAA

CGAAACCGCGGGTAAACAGAAACCGCTGGAACTGTGCGTTTGCCTGGTTCCGGAACT GTACACC

CGTGGTTTCGGTTCTATCGCGGACTTCCTGGTTCAGCGTCTGACCCTGCTGCGTGAC AAAATGTC

TACCGACACCGCGGAAGACTGCCTGGAATACGTTGGTATCGAAGAAGAAAAAGGTAA CGGTAT

GAACTCTCTGCTGGGTACCTTCCTGAAAAACCTGCAGGGTGACGGTTTCGAACAGAT CTTCCAG

TTCATGCTGGGTTCTTACGTTGGTTGGCAGGGTAAAGAAGACGTTCTGCGTGAACGT CTGGACCT

GCTGGCGGAAAAAGTTAAACGTCTGCCGAAACCGAAATTCGCGGGTGAATGGTCTGG TCACCGT

ATGTTCCTGCACGGTCAGCTGAAATCTTGGTCTTCTAACTTCTTCCGTCTGTTCAAC GAAACCCG

TGAACTGCTGGAATCTATCAAATCTGACATCCAGCACGCGACCATGCTGATCTCTTA CGTTGAA

GAAAAAGGTGGTTACCACCCGCAGCTGCTGTCTCAGTACCGTAAACTGATGGAACAG CTGCCGG

CGCTGCGTACCAAAGTTCTGGACCCGGAAATCGAAATGACCCACATGTCTGAAGCGG TTCGTTC

TTACATCATGATCCACAAATCTGTTGCGGGTTTCCTGCCGGACCTGCTGGAATCTCT GGACCGTG

ACAAAGACCGTGAATTCCTGCTGTCTATCTTCCCGCGTATCCCGAAAATCGACAAAA AAACCAA

AGAAATCGTTGCGTGGGAACTGCCGGGTGAACCGGAAGAAGGTTACCTGTTCACCGC GAACAA

CCTGTTCCGTAACTTCCTGGAAAACCCGAAACACGTTCCGCGTTTCATGGCGGAACG TATCCCG

GAAGACTGGACCCGTCTGCGTTCTGCGCCGGTTTGGTTCGACGGTATGGTTAAACAG TGGCAGA

AAGTTGTTAACCAGCTGGTTGAATCTCCGGGTGCGCTGTACCAGTTCAACGAATCTT TCCTGCGT

CAGCGTCTGCAGGCGATGCTGACCGTTTACAAACGTGACCTGCAGACCGAAAAATTC CTGAAAC

TGCTGGCGGACGTTTGCCGTCCGCTGGTTGACTTCTTCGGTCTGGGTGGTAACGACA TCATCTTC

AAATCTTGCCAGGACCCGCGTAAACAGTGGCAGACCGTTATCCCGCTGTCTGTTCCG GCGGACG

TTTACACCGCGTGCGAAGGTCTGGCGATCCGTCTGCGTGAAACCCTGGGTTTCGAAT GGAAAAA

CCTGAAAGGTCACGAACGTGAAGACTTCCTGCGTCTGCACCAGCTGCTGGGTAACCT GCTGTTC

TGGATCCGTGACGCGAAACTGGTTGTTAAACTGGAAGACTGGATGAACAACCCGTGC GTTCAGG

AATACGTTGAAGCGCGTAAAGCGATCGACCTGCCGCTGGAAATCTTCGGTTTCGAAG TTCCGAT

CTTCCTGAACGGTTACCTGTTCTCTGAACTGCGTCAGCTGGAACTGCTGCTGCGTCG TAAATCTG

TTATGACCTCTTACTCTGTTAAAACCACCGGTTCTCCGAACCGTCTGTTCCAGCTGG TTTACCTGC

CGCTGAACCCGTCTGACCCGGAAAAAAAAAACTCTAACAACTTCCAGGAACGTCTGG ACACCCC

GACCGGTCTGTCTCGTCGTTTCCTGGACCTGACCCTGGACGCGTTCGCGGGTAAACT GCTGACCG

ACCCGGTTACCCAGGAACTGAAAACCATGGCGGGTTTCTACGACCACCTGTTCGGTT TCAAACT

GCCGTGCAAACTGGCGGCGATGTCTAACCACCCGGGTTCTTCTTCTAAAATGGTTGT TCTGGCGA

AACCGAAAAAAGGTGTTGCGTCTAACATCGGTTTCGAACCGATCCCGGACCCGGCGC ACCCGGT

TTTCCGTGTTCGTTCTTCTTGGCCGGAACTGAAATACCTGGAAGGTCTGCTGTACCT GCCGGAAG

ACACCCCGCTGACCATCGAACTGGCGGAAACCTCTGTTTCTTGCCAGTCTGTTTCTT CTGTTGCG

TTCGACCTGAAAAACCTGACCACCATCCTGGGTCGTGTTGGTGAATTCCGTGTTACC GCGGACC

AGCCGTTCAAACTGACCCCGATCATCCCGGAAAAAGAAGAATCTTTCATCGGTAAAA CCTACCT

GGGTCTGGACGCGGGTGAACGTTCTGGTGTTGGTTTCGCGATCGTTACCGTTGACGG TGACGGTT

ACGAAGTTCAGCGTCTGGGTGTTCACGAAGACACCCAGCTGATGGCGCTGCAGCAGG TTGCGTC

TAAATCTCTGAAAGAACCGGTTTTCCAGCCGCTGCGTAAAGGTACCTTCCGTCAGCA GGAACGT

ATCCGTAAATCTCTGCGTGGTTGCTACTGGAACTTCTACCACGCGCTGATGATCAAA TACCGTGC

GAAAGTTGTTCACGAAGAATCTGTTGGTTCTTCTGGTCTGGTTGGTCAGTGGCTGCG TGCGTTCC

AGAAAGACCTGAAAAAAGCGGACGTTCTGCCGAAAAAAGGTGGTAAAAACGGTGTTG ACAAAA

AAAAACGTGAATCTTCTGCGCAGGACACCCTGTGGGGTGGTGCGTTCTCTAAAAAAG AAGAACA GCAGATCGCGTTCGAAGTTCAGGCGGCGGGTTCTTCTCAGTTCTGCCTGAAATGCGGTTG GTGGT

TCCAGCTGGGTATGCGTGAAGTTAACCGTGTTCAGGAATCTGGTGTTGTTCTGGACT GGAACCGT

TCTATCGTTACCTTCCTGATCGAATCTTCTGGTGAAAAAGTTTACGGTTTCTCTCCG CAGCAGCT

GGAAAAAGGTTTCCGTCCGGACATCGAAACCTTCAAAAAAATGGTTCGTGACTTCAT GCGTCCG

CCGATGTTCGACCGTAAAGGTCGTCCGGCGGCGGCGTACGAACGTTTCGTTCTGGGT CGTCGTC

ACCGTCGTTACCGTTTCGACAAAGTTTTCGAAGAACGTTTCGGTCGTTCTGCGCTGT TCATCTGC

CCGCGTGTTGGTTGCGGTAACTTCGACCACTCTTCTGAACAGTCTGCGGTTGTTCTG GCGCTGAT

CGGTTACATCGCGGACAAAGAAGGTATGTCTGGTAAAAAACTGGTTTACGTTCGTCT GGCGGAA

CTGATGGCGGAATGGAAACTGAAAAAACTGGAACGTTCTCGTGTTGAAGAACAGTCT TCTGCGC

AGTAA

SE ATGGCGGAATCTAAACAGATGCAGTGCCGTAAATGCGGTGCGTCTATGAAATACGAAGTT ATCG

Q GTCTGGGTAAAAAATCTTGCCGTTACATGTGCCCGGACTGCGGTAACCACACCTCTGCGC GTAA

no AATCCAGAACAAAAAAAAACGTGACAAAAAATACGGTTCTGCGTCTAAAGCGCAGTCTCA GCG

N TATCGCGGTTGCGGGTGCGCTGTACCCGGACAAAAAAGTTCAGACCATCAAAACCTACAA ATAC

O: CCGGCGGACCTGAACGGTGAAGTTCACGACTCTGGTGTTGCGGAAAAAATCGCGCAGGCG ATCC 58 AGGAAGACGAAATCGGTCTGCTGGGTCCGTCTTCTGAATACGCGTGCTGGATCGCGTCTC AGAA

ACAGTCTGAACCGTACTCTGTTGTTGACTTCTGGTTCGACGCGGTTTGCGCGGGTGG TGTTTTCG

CGTACTCTGGTGCGCGTCTGCTGTCTACCGTTCTGCAGCTGTCTGGTGAAGAATCTG TTCTGCGT

GCGGCGCTGGCGTCTTCTCCGTTCGTTGACGACATCAACCTGGCGCAGGCGGAAAAA TTCCTGG

CGGTTTCTCGTCGTACCGGTCAGGACAAACTGGGTAAACGTATCGGTGAATGCTTCG CGGAAGG

TCGTCTGGAAGCGCTGGGTATCAAAGACCGTATGCGTGAATTCGTTCAGGCGATCGA CGTTGCG

CAGACCGCGGGTCAGCGTTTCGCGGCGAAACTGAAAATCTTCGGTATCTCTCAGATG CCGGAAG

CGAAACAGTGGAACAACGACTCTGGTCTGACCGTTTGCATCCTGCCGGACTACTACG TTCCGGA

AGAAAACCGTGCGGACCAGCTGGTTGTTCTGCTGCGTCGTCTGCGTGAAATCGCGTA CTGCATG

GGTATCGAAGACGAAGCGGGTTTCGAACACCTGGGTATCGACCCGGGTGCGCTGTCT AACTTCT

CTAACGGTAACCCGAAACGTGGTTTCCTGGGTCGTCTGCTGAACAACGACATCATCG CGCTGGC

GAACAACATGTCTGCGATGACCCCGTACTGGGAAGGTCGTAAAGGTGAACTGATCGA ACGTCTG

GCGTGGCTGAAACACCGTGCGGAAGGTCTGTACCTGAAAGAACCGCACTTCGGTAAC TCTTGGG

CGGACCACCGTTCTCGTATCTTCTCTCGTATCGCGGGTTGGCTGTCTGGTTGCGCGG GTAAACTG

AAAATCGCGAAAGACCAGATCTCTGGTGTTCGTACCGACCTGTTCCTGCTGAAACGT CTGCTGG

ACGCGGTTCCGCAGTCTGCGCCGTCTCCGGACTTCATCGCGTCTATCTCTGCGCTGG ACCGTTTC

CTGGAAGCGGCGGAATCTTCTCAGGACCCGGCGGAACAGGTTCGTGCGCTGTACGCG TTCCACC

TGAACGCGCCGGCGGTTCGTTCTATCGCGAACAAAGCGGTTCAGCGTTCTGACTCTC AGGAATG

GCTGATCAAAGAACTGGACGCGGTTGACCACCTGGAATTCAACAAAGCGTTCCCGTT CTTCTCT

GACACCGGTAAAAAAAAAAAAAAAGGTGCGAACTCTAACGGTGCGCCGTCTGAAGAA GAATAC

ACCGAAACCGAATCTATCCAGCAGCCGGAAGACGCGGAACAGGAAGTTAACGGTCAG GAAGGT

AACGGTGCGTCTAAAAACCAGAAAAAATTCCAGCGTATCCCGCGTTTCTTCGGTGAA GGTTCTC

GTTCTGAATACCGTATCCTGACCGAAGCGCCGCAGTACTTCGACATGTTCTGCAACA ACATGCG

TGCGATCTTCATGCAGCTGGAATCTCAGCCGCGTAAAGCGCCGCGTGACTTCAAATG CTTCCTGC

AGAACCGTCTGCAGAAACTGTACAAACAGACCTTCCTGAACGCGCGTTCTAACAAAT GCCGTGC

GCTGCTGGAATCTGTTCTGATCTCTTGGGGTGAATTCTACACCTACGGTGCGAACGA AAAAAAA

TTCCGTCTGCGTCACGAAGCGTCTGAACGTTCTTCTGACCCGGACTACGTTGTTCAG CAGGCGCT GGAAATCGCGCGTCGTCTGTTCCTGTTCGGTTTCGAATGGCGTGACTGCTCTGCGGGTGA ACGTG

TTGACCTGGTTGAAATCCACAAAAAAGCGATCTCTTTCCTGCTGGCGATCACCCAGG CGGAAGT

TTCTGTTGGTTCTTACAACTGGCTGGGTAACTCTACCGTTTCTCGTTACCTGTCTGT TGCGGGTAC

CGACACCCTGTACGGTACCCAGCTGGAAGAATTCCTGAACGCGACCGTTCTGTCTCA GATGCGT

GGTCTGGCGATCCGTCTGTCTTCTCAGGAACTGAAAGACGGTTTCGACGTTCAGCTG GAATCTTC

TTGCCAGGACAACCTGCAGCACCTGCTGGTTTACCGTGCGTCTCGTGACCTGGCGGC GTGCAAA

CGTGCGACCTGCCCGGCGGAACTGGACCCGAAAATCCTGGTTCTGCCGGTTGGTGCG TTCATCG

CGTCTGTTATGAAAATGATCGAACGTGGTGACGAACCGCTGGCGGGTGCGTACCTGC GTCACCG

TCCGCACTCTTTCGGTTGGCAGATCCGTGTTCGTGGTGTTGCGGAAGTTGGTATGGA CCAGGGTA

CCGCGCTGGCGTTCCAGAAACCGACCGAATCTGAACCGTTCAAAATCAAACCGTTCT CTGCGCA

GTACGGTCCGGTTCTGTGGCTGAACTCTTCTTCTTACTCTCAGTCTCAGTACCTGGA CGGTTTCCT

GTCTCAGCCGAAAAACTGGTCTATGCGTGTTCTGCCGCAGGCGGGTTCTGTTCGTGT TGAACAGC

GTGTTGCGCTGATCTGGAACCTGCAGGCGGGTAAAATGCGTCTGGAACGTTCTGGTG CGCGTGC

GTTCTTCATGCCGGTTCCGTTCTCTTTCCGTCCGTCTGGTTCTGGTGACGAAGCGGT TCTGGCGCC

GAACCGTTACCTGGGTCTGTTCCCGCACTCTGGTGGTATCGAATACGCGGTTGTTGA CGTTCTGG

ACTCTGCGGGTTTCAAAATCCTGGAACGTGGTACCATCGCGGTTAACGGTTTCTCTC AGAAACGT

GGTGAACGTCAGGAAGAAGCGCACCGTGAAAAACAGCGTCGTGGTATCTCTGACATC GGTCGT

AAAAAACCGGTTCAGGCGGAAGTTGACGCGGCGAACGAACTGCACCGTAAATACACC GACGTT

GCGACCCGTCTGGGTTGCCGTATCGTTGTTCAGTGGGCGCCGCAGCCGAAACCGGGT ACCGCGC

CGACCGCGCAGACCGTTTACGCGCGTGCGGTTCGTACCGAAGCGCCGCGTTCTGGTA ACCAGGA

AGACCACGCGCGTATGAAATCTTCTTGGGGTTACACCTGGGGTACCTACTGGGAAAA ACGTAAA

CCGGAAGACATCCTGGGTATCTCTACCCAGGTTTACTGGACCGGTGGTATCGGTGAA TCTTGCCC

GGCGGTTGCGGTTGCGCTGCTGGGTCACATCCGTGCGACCTCTACCCAGACCGAATG GGAAAAA

GAAGAAGTTGTTTTCGGTCGTCTGAAAAAATTCTTCCCGTCTTAA

SE ATGGAAAAACGTATCAACAAAATCCGTAAAAAACTGTCTGCGGACAACGCGACCAAACCG GTT

Q TCTCGTTCTGGTCCGATGAAAACCCTGCTGGTTCGTGTTATGACCGACGACCTGAAAAAA CGTCT

no GGAAAAACGTCGTAAAAAACCGGAAGTTATGCCGCAGGTTATCTCTAACAACGCGGCGAA CAA

N CCTGCGTATGCTGCTGGACGACTACACCAAAATGAAAGAAGCGATCCTGCAGGTTTACTG GCAG

O: GAATTCAAAGACGACCACGTTGGTCTGATGTGCAAATTCGCGCAGCCGGCGTCTAAAAAA ATCG 59 ACCAGAACAAACTGAAACCGGAAATGGACGAAAAAGGTAACCTGACCACCGCGGGTTTCG CGT

GCTCTCAGTGCGGTCAGCCGCTGTTCGTTTACAAACTGGAACAGGTTTCTGAAAAAG GTAAAGC

GTACACCAACTACTTCGGTCGTTGCAACGTTGCGGAACACGAAAAACTGATCCTGCT GGCGCAG

CTGAAACCGGAAAAAGACTCTGACGAAGCGGTTACCTACTCTCTGGGTAAATTCGGT CAGCGTG

CGCTGGACTTCTACTCTATCCACGTTACCAAAGAATCTACCCACCCGGTTAAACCGC TGGCGCA

GATCGCGGGTAACCGTTACGCGTCTGGTCCGGTTGGTAAAGCGCTGTCTGACGCGTG CATGGGT

ACCATCGCGTCTTTCCTGTCTAAATACCAGGACATCATCATCGAACACCAGAAAGTT GTTAAAG

GTAACCAGAAACGTCTGGAATCTCTGCGTGAACTGGCGGGTAAAGAAAACCTGGAAT ACCCGTC

TGTTACCCTGCCGCCGCAGCCGCACACCAAAGAAGGTGTTGACGCGTACAACGAAGT TATCGCG

CGTGTTCGTATGTGGGTTAACCTGAACCTGTGGCAGAAACTGAAACTGTCTCGTGAC GACGCGA

AACCGCTGCTGCGTCTGAAAGGTTTCCCGTCTTTCCCGGTTGTTGAACGTCGTGAAA ACGAAGTT

GACTGGTGGAACACCATCAACGAAGTTAAAAAACTGATCGACGCGAAACGTGACATG GGTCGT

GTTTTCTGGTCTGGTGTTACCGCGGAAAAACGTAACACCATCCTGGAAGGTTACAAC TACCTGC CGAACGAAAACGACCACAAAAAACGTGAAGGTTCTCTGGAAAACCCGAAAAAACCGGCGA AAC

GTCAGTTCGGTGACCTGCTGCTGTACCTGGAAAAAAAATACGCGGGTGACTGGGGTA AAGTTTT

CGACGAAGCGTGGGAACGTATCGACAAAAAAATCGCGGGTCTGACCTCTCACATCGA ACGTGA

AGAAGCGCGTAACGCGGAAGACGCGCAGTCTAAAGCGGTTCTGACCGACTGGCTGCG TGCGAA

AGCGTCTTTCGTTCTGGAACGTCTGAAAGAAATGGACGAAAAAGAATTCTACGCGTG CGAAATC

CAGCTGCAGAAATGGTACGGTGACCTGCGTGGTAACCCGTTCGCGGTTGAAGCGGAA AACCGTG

TTGTTGACATCTCTGGTTTCTCTATCGGTTCTGACGGTCACTCTATCCAGTACCGTA ACCTGCTGG

CGTGGAAATACCTGGAAAACGGTAAACGTGAATTCTACCTGCTGATGAACTACGGTA AAAAAG

GTCGTATCCGTTTCACCGACGGTACCGACATCAAAAAATCTGGTAAATGGCAGGGTC TGCTGTA

CGGTGGTGGTAAAGCGAAAGTTATCGACCTGACCTTCGACCCGGACGACGAACAGCT GATCATC

CTGCCGCTGGCGTTCGGTACCCGTCAGGGTCGTGAATTCATCTGGAACGACCTGCTG TCTCTGGA

AACCGGTCTGATCAAACTGGCGAACGGTCGTGTTATCGAAAAAACCATCTACAACAA AAAAATC

GGTCGTGACGAACCGGCGCTGTTCGTTGCGCTGACCTTCGAACGTCGTGAAGTTGTT GACCCGTC

TAACATCAAACCGGTTAACCTGATCGGTGTTGACCGTGGTGAAAACATCCCGGCGGT TATCGCG

CTGACCGACCCGGAAGGTTGCCCGCTGCCGGAATTCAAAGACTCTTCTGGTGGTCCG ACCGACA

TCCTGCGTATCGGTGAAGGTTACAAAGAAAAACAGCGTGCGATCCAGGCGGCGAAAG AAGTTG

AACAGCGTCGTGCGGGTGGTTACTCTCGTAAATTCGCGTCTAAATCTCGTAACCTGG CGGACGA

CATGGTTCGTAACTCTGCGCGTGACCTGTTCTACCACGCGGTTACCCACGACGCGGT TCTGGTTT

TCGAAAACCTGTCTCGTGGTTTCGGTCGTCAGGGTAAACGTACCTTCATGACCGAAC GTCAGTA

CACCAAAATGGAAGACTGGCTGACCGCGAAACTGGCGTACGAAGGTCTGACCTCTAA AACCTA

CCTGTCTAAAACCCTGGCGCAGTACACCTCTAAAACCTGCTCTAACTGCGGTTTCAC CATCACCA

CCGCGGACTACGACGGTATGCTGGTTCGTCTGAAAAAAACCTCTGACGGTTGGGCGA CCACCCT

GAACAACAAAGAACTGAAAGCGGAAGGTCAGATCACCTACTACAACCGTTACAAACG TCAGAC

CGTTGAAAAAGAACTGTCTGCGGAACTGGACCGTCTGTCTGAAGAATCTGGTAACAA CGACATC

TCTAAATGGACCAAAGGTCGTCGTGACGAAGCGCTGTTCCTGCTGAAAAAACGTTTC TCTCACC

GTCCGGTTCAGGAACAGTTCGTTTGCCTGGACTGCGGTCACGAAGTTCACGCGGACG AACAGGC

GGCGCTGAACATCGCGCGTTCTTGGCTGTTCCTGAACTCTAACTCTACCGAATTCAA ATCTTACA

AATCTGGTAAACAGCCGTTCGTTGGTGCGTGGCAGGCGTTCTACAAACGTCGTCTGA AAGAAGT

TTGGAAACCGAACGCG

SE ATGAAACGTATCAACAAAATCCGTCGTCGTCTGGTTAAAGACTCTAACACCAAAAAAGCG GGTA

Q AAACCGGTCCGATGAAAACCCTGCTGGTTCGTGTTATGACCCCGGACCTGCGTGAACGTC TGGA

no AAACCTGCGTAAAAAACCGGAAAACATCCCGCAGCCGATCTCTAACACCTCTCGTGCGAA CCTG

N AACAAACTGCTGACCGACTACACCGAAATGAAAAAAGCGATCCTGCACGTTTACTGGGAA GAA

O: TTCCAGAAAGACCCGGTTGGTCTGATGTCTCGTGTTGCGCAGCCGGCGCCGAAAAACATC GACC 60 AGCGTAAACTGATCCCGGTTAAAGACGGTAACGAACGTCTGACCTCTTCTGGTTTCGCGT GCTCT

CAGTGCTGCCAGCCGCTGTACGTTTACAAACTGGAACAGGTTAACGACAAAGGTAAA CCGCACA

CCAACTACTTCGGTCGTTGCAACGTTTCTGAACACGAACGTCTGATCCTGCTGTCTC CGCACAAA

CCGGAAGCGAACGACGAACTGGTTACCTACTCTCTGGGTAAATTCGGTCAGCGTGCG CTGGACT

TCTACTCTATCCACGTTACCCGTGAATCTAACCACCCGGTTAAACCGCTGGAACAGA TCGGTGGT

AACTCTTGCGCGTCTGGTCCGGTTGGTAAAGCGCTGTCTGACGCGTGCATGGGTGCG GTTGCGTC

TTTCCTGACCAAATACCAGGACATCATCCTGGAACACCAGAAAGTTATCAAAAAAAA CGAAAA

ACGTCTGGCGAACCTGAAAGACATCGCGTCTGCGAACGGTCTGGCGTTCCCGAAAAT CACCCTG CCGCCGCAGCCGCACACCAAAGAAGGTATCGAAGCGTACAACAACGTTGTTGCGCAGATC GTTA

TCTGGGTTAACCTGAACCTGTGGCAGAAACTGAAAATCGGTCGTGACGAAGCGAAAC CGCTGCA

GCGTCTGAAAGGTTTCCCGTCTTTCCCGCTGGTTGAACGTCAGGCGAACGAAGTTGA CTGGTGG

GACATGGTTTGCAACGTTAAAAAACTGATCAACGAAAAAAAAGAAGACGGTAAAGTT TTCTGG

CAGAACCTGGCGGGTTACAAACGTCAGGAAGCGCTGCTGCCGTACCTGTCTTCTGAA GAAGACC

GTAAAAAAGGTAAAAAATTCGCGCGTTACCAGTTCGGTGACCTGCTGCTGCACCTGG AAAAAAA

ACACGGTGAAGACTGGGGTAAAGTTTACGACGAAGCGTGGGAACGTATCGACAAAAA AGTTGA

AGGTCTGTCTAAACACATCAAACTGGAAGAAGAACGTCGTTCTGAAGACGCGCAGTC TAAAGC

GGCGCTGACCGACTGGCTGCGTGCGAAAGCGTCTTTCGTTATCGAAGGTCTGAAAGA AGCGGAC

AAAGACGAATTCTGCCGTTGCGAACTGAAACTGCAGAAATGGTACGGTGACCTGCGT GGTAAAC

CGTTCGCGATCGAAGCGGAAAACTCTATCCTGGACATCTCTGGTTTCTCTAAACAGT ACAACTGC

GCGTTCATCTGGCAGAAAGACGGTGTTAAAAAACTGAACCTGTACCTGATCATCAAC TACTTCA

AAGGTGGTAAACTGCGTTTCAAAAAAATCAAACCGGAAGCGTTCGAAGCGAACCGTT TCTACAC

CGTTATCAACAAAAAATCTGGTGAAATCGTTCCGATGGAAGTTAACTTCAACTTCGA CGACCCG

AACCTGATCATCCTGCCGCTGGCGTTCGGTAAACGTCAGGGTCGTGAATTCATCTGG AACGACC

TGCTGTCTCTGGAAACCGGTTCTCTGAAACTGGCGAACGGTCGTGTTATCGAAAAAA CCCTGTA

CAACCGTCGTACCCGTCAGGACGAACCGGCGCTGTTCGTTGCGCTGACCTTCGAACG TCGTGAA

GTTCTGGACTCTTCTAACATCAAACCGATGAACCTGATCGGTATCGACCGTGGTGAA AACATCC

CGGCGGTTATCGCGCTGACCGACCCGGAAGGTTGCCCGCTGTCTCGTTTCAAAGACT CTCTGGGT

AACCCGACCCACATCCTGCGTATCGGTGAATCTTACAAAGAAAAACAGCGTACCATC CAGGCGG

CGAAAGAAGTTGAACAGCGTCGTGCGGGTGGTTACTCTCGTAAATACGCGTCTAAAG CGAAAA

ACCTGGCGGACGACATGGTTCGTAACACCGCGCGTGACCTGCTGTACTACGCGGTTA CCCAGGA

CGCGATGCTGATCTTCGAAAACCTGTCTCGTGGTTTCGGTCGTCAGGGTAAACGTAC CTTCATGG

CGGAACGTCAGTACACCCGTATGGAAGACTGGCTGACCGCGAAACTGGCGTACGAAG GTCTGC

CGTCTAAAACCTACCTGTCTAAAACCCTGGCGCAGTACACCTCTAAAACCTGCTCTA ACTGCGGT

TTCACCATCACCTCTGCGGACTACGACCGTGTTCTGGAAAAACTGAAAAAAACCGCG ACCGGTT

GGATGACCACCATCAACGGTAAAGAACTGAAAGTTGAAGGTCAGATCACCTACTACA ACCGTTA

CAAACGTCAGAACGTTGTTAAAGACCTGTCTGTTGAACTGGACCGTCTGTCTGAAGA ATCTGTT

AACAACGACATCTCTTCTTGGACCAAAGGTCGTTCTGGTGAAGCGCTGTCTCTGCTG AAAAAAC

GTTTCTCTCACCGTCCGGTTCAGGAAAAATTCGTTTGCCTGAACTGCGGTTTCGAAA CCCACGCG

GACGAACAGGCGGCGCTGAACATCGCGCGTTCTTGGCTGTTCCTGCGTTCTCAGGAA TACAAAA

AATACCAGACCAACAAAACCACCGGTAACACCGACAAACGTGCGTTCGTTGAAACCT GGCAGT

CTTTCTACCGTAAAAAACTGAAAGAAGTTTGGAAACCG

SE AAAATTCcatGCAAAATGCTCCGGTTTCATGTCATCAAAATGATGACGTAATTAAGCATT GATAAT

Q TGAGATCCCTCTCCCTGACAGGATGATTACATAAATAATAGTGACAAAAATAAATTATTT ATTTA

no TCCAGAAAATGAATTGGAAAATCAGGAGAGCGTTTTCAATCCTACCTCTGGCGCAGTTGA TATG

N TcaaaCAGGTtgccgtcactgcgtcttttactggctcttctcgctaaccaaaccggtaac cccgcttattaaaagcattctgtaacaaagcgggaccaaagc O: catgacaaaaacgcgtaacaaaagtgtctataatcacggcagaaaagtccacattgatta tttgcacggcgtcacactttgctatgccatagcatttttatccataa 61 gattagcggatcctacctgacgctttttatcgcaactctctactgtttctccatacccgt ttttttgggctagcaccgcctatctcgtgtgagataggcggagatacga actttaagAAGGAGatataccATGGGTAAAATGTATTACCTTGGTTTAGACATTGGCACG AATTCCGTGG

GCTACGCGGTGACCGACCCCTCATACCACCTGCTGAAGTTTAAGGGGGAACCAATGT GGGGTGC

GCACGTATTTGCCGCCGGTAATCAGAGCGCGGAACGACGCTCGTTCCGCACATCGCG TCGTCGT TTGGACCGACGCCAACAGCGCGTTAAACTGGTACAGGAGATTTTTGCCCCGGTGATTAGT CCGA

TCGACCCACGCTTCTTCATTCGTCTGCATGAATCCGCCCTGTGGCGCGATGACGTCG CGGAGACG

GATAAACATATCTTTTTCAATGATCCTACCTATACCGATAAGGAATATTATAGCGAT TACCCGAC

TATCCATCACCTGATCGTTGATCTGATGGAAAGCTCTGAGAAACACGATCCGCGGCT GGTGTAC

CTTGCAGTGGCGTGGTTAGTGGCACACCGTGGTCATTTTCTGAACGAGGTGGACAAG GATAATA

TTGGAGATGTGTTGTCGTTCGACGCATTTTATCCGGAGTTTCTCGCGTTCCTGTCGG ACAACGGT

GTATCACCGTGGGTGTGCGAAAGCAAAGCGCTGCAGGCGACCTTGCTGAGCCGTAAC TCAGTGA

ACGACAAATATAAAGCCCTTAAGTCTCTGATCTTCGGATCCCAGAAACCTGAAGATA ACTTCGA

TGCCAATATTTCGGAAGATGGACTCATTCAACTGCTGGCCGGCAAAAAGGTAAAAGT TAACAAA

CTGTTCCCTCAGGAATCGAACGATGCATCCTTCACATTGAATGATAAAGAAGACGCG ATAGAAG

AAATCCTGGGTACGCTTACACCAGATGAATGTGAATGGATTGCGCATATACGCCGCC TTTTTGA

CTGGGCTATCATGAAACATGCTCTGAAAGATGGCAGGACTATTAGCGAGTCAAAAGT CAAACTG

TATGAGCAGCACCATCACGATCTGACCCAACTTAAATACTTCGTGAAAACCTACCTT GCAAAAG

AATACGACGATATTTTCCGCAACGTGGATAGCGAAACAACGAAAAACTATGTAGCGT ATTCCTA

TCATGTGAAAGAGGTGAAAGGCACTCTGCCTAAAAATAAGGCAACGCAAGAAGAGTT TTGTAA

GTATGTCCTGGGCAAGGTTAAAAACATTGAATGCTCTGAAGCAGACAAGGTTGACTT TGATGAG

ATGATTCAGCGTCTTACCGACAACTCTTTTATGCCTAAGCAGGTTTCGGGCGAAAAC CGCGTTAT

TCCTTATCAGTTATATTATTATGAACTGAAGACAATTCTGAATAAAGCAGCCTCGTA CCTGCCTT

TCCTGACGCAGTGTGGAAAAGATGCAATTTCGAACCAGGACAAACTACTGTCGATCA TGACGTT

CCGTATTCCTTACTTCGTCGGACCCTTGCGAAAAGATAATTCGGAACATGCATGGCT CGAACGA

AAGGCCGGTAAGATTTATCCGTGGAACTTTAACGACAAAGTGGACTTGGATAAATCA GAAGAA

GCGTTCATTCGCCGAATGACCAATACCTGTACCTATTATCCCGGCGAAGATGTTTTA CCGTTGGA

TTCGCTGATCTATGAGAAATTTATGATTTTAAATGAAATCAATAATATTCGTATTGA CGGCTACC

CGATTAGTGTTGACGTTAAACAGCAGGTTTTTGGCTTGTTCGAAAAAAAACGACGCG TAACCGT

GAAAGATATTCAGAACCTGCTGCTGTCTCTCGGAGCTCTGGACAAACACGGGAAGCT GACAGGC

ATCGATACCACTATCCACTCAAACTATAATACGTATCACCATTTTAAATCTCTCATG GAACGCGG

CGTCCTGACCCGGGATGACGTGGAACGCATCGTTGAAAGGATGACCTACAGCGACGA TACTAA

GCGTGTGCGTCTGTGGCTGAATAACAACTATGGTACTTTAACCGCCGACGATGTGAA ACACATT

TCGCGTCTGCGCAAACACGATTTTGGCCGTTTATCCAAAATGTTCTTAACAGGTCTG AAGGGTGT

CCATAAGGAGACCGGTGAACGTGCCTCCATACTGGATTTCATGTGGAACACGAACGA TAACCTG

ATGCAGCTCCTTTCCGAATGCTACACGTTCAGTGATGAAATCACAAAGCTGCAAGAG GCGTATT

ATGCAAAAGCCCAGTTGTCTTTAAACGATTTTTTAGACTCGATGTACATCTCTAACG CGGTGAAA

CGTCCGATTTACAGAACTCTGGCAGTGGTGAACGATATTCGAAAAGCATGTGGGACG GCCCCTA

AACGCATTTTCATCGAAATGGCTCGTGATGGTGAATCAAAAAAAAAGAGAAGTGTTA CACGTCG

CGAGCAGATCAAAAACCTGTACCGCTCGATTCGTAAAGATTTCCAGCAGGAAGTTGA TTTTCTG

GAAAAGATCCTGGAAAATAAATCTGATGGTCAACTTCAGTCAGATGCTTTGTATCTT TACTTTGC

ACAATTAGGGCGCGATATGTACACGGGCGATCCAATAAAGCTGGAGCACATCAAAGA TCAGAG

TTTCTATAACATAGACCATATTTACCCGCAGTCTATGGTGAAAGACGATTCCCTAGA TAACAAA

GTGCTGGTGCAAAGCGAAATTAACGGCGAGAAAAGCTCGCGATACCCTTTGGACGCC GCGATCC

GCAATAAAATGAAGCCCCTTTGGGACGCTTACTATAATCATGGCCTGATCTCCTTAA AGAAATA

CCAGCGTCTAACGCGCTCGACCCCGTTTACCGATGATGAAAAATGGGACTTTATTAA TCGCCAG

TTAGTGGAAACCCGTCAATCTACCAAAGCGCTGGCCATTTTGTTGAAGCGTAAGTTT CCAGACA CCGAAATTGTGTATTCGAAGGCGGGGTTATCGTCCGACTTCAGACATGAATTCGGCCTTG TAAA

AAGTCGCAATATTAATGATTTGCACCACGCTAAAGACGCATTCTTGGCTATCGTTAC CGGCAAT

GTGTACCATGAAAGATTCAATCGCAGATGGTTTATGGTGAACCAGCCGTACTCAGTT AAAACTA

AAACTCTTTTTACCCACAGCATAAAGAATGGCAACTTCGTTGCCTGGAACGGCGAAG AAGATCT

CGGTCGTATTGTAAAAATGCTGAAGCAAAACAAAAATACCATTCACTTCACGCGCTT CTCCTTC

GATCGCAAAGAAGGATTATTTGATATCCAACCTCTGAAAGCCAGCACCGGCTTAGTC CCACGAA

AAGCCGGTCTGGATGTCGTTAAATACGGCGGATATGACAAATCTACCGCGGCCTATT ACCTGCT

GGTGAGGTTCACGCTCGAGGACAAGAAAACCCAGCACAAGCTGATGATGATTCCTGT AGAAGG

CCTGTACAAGGCTCGCATTGATCATGACAAGGAATTTCTTACCGATTATGCGCAAAC GACTATA

AGCGAAATCCTACAGAAAGATAAACAGAAAGTGATCAATATTATGTTTCCAATGGGT ACGAGG

CATATAAAACTCAATTCAATGATTAGTATCGATGGCTTCTATCTTAGTATCGGCGGA AAGTCCTC

TAAAGGTAAGTCAGTTCTATGTCACGCAATGGTTCCACTGATCGTCCCTCACAAAAT CGAATGTT

ACATTAAAGCAATGGAAAGCTTCGCCCGGAAGTTTAAAGAAAACAACAAGCTGCGCA TCGTAG

AAAAATTCGATAAAATCACCGTTGAAGACAACCTGAATCTCTACGAGCTCTTTCTCC AAAAACT

GCAGCATAATCCCTATAATAAGTTTTTTTCGACACAGTTTGACGTACTGACGAACGG CCGTTCTA

CTTTCACAAAACTGTCGCCGGAGGAACAGGTACAGACGCTCTTGAACATTTTAAGTA TCTTTAA

AACATGCCGCAGTTCGGGTTGCGACCTGAAATCCATCAACGGCAGTGCCCAGGCAGC GCGCATC

ATGATTAGCGCTGACTTAACTGGACTGTCGAAAAAATATTCAGATATTAGGTTGGTT GAACAGT

CAGCTTCTGGTTTGTTCGTATCCAAAAGTCAGAACTTACTGGAGTATCTCTAAGAAA TCATCCTT

AGCGAAAGCTAAGGATTTTTTTTATCTGAAATTTATTATATCGCGTTGATTATTGAT GCTGTTTTT

AGTTTTAACGGCAATTAATATATGTGTTATTAATTGAATGAATTTTATCATTCATAA TAAGTATG

TGTAGGATCAAGCTCAGGTTAAATATTCACTCAGGAAGTTATTACTCAGGAAGCAAA GAGGATT

ACAGAATTATCTCATAACAAGTGTTAAGGGATGTTATTTCC

SE AAAATTCcatGCAAAATGCTCCGGTTTCATGTCATCAAAATGATGACGTAATTAAGCATT GATAAT

Q TGAGATCCCTCTCCCTGACAGGATGATTACATAAATAATAGTGACAAAAATAAATTATTT ATTTA

no TCCAGAAAATGAATTGGAAAATCAGGAGAGCGTTTTCAATCCTACCTCTGGCGCAGTTGA TATG

N TcaaaCAGGTtgccgtcactgcgtcttttactggctcttctcgctaaccaaaccggtaac cccgcttattaaaagcattctgtaacaaagcgggaccaaagc O: catgacaaaaacgcgtaacaaaagtgtctataatcacggcagaaaagtccacattgatta tttgcacggcgtcacactttgctatgccatagcatttttatccataa 62 gattagcggatcctacctgacgctttttatcgcaactctctactgtttctccatacccgt ttttttgggctagcaccgcctatctcgtgtgagataggcggagatacga actttaagAAGGAGatataccATGTCATCGCTCACGAAATTCACTAACAAATACTCTAAA CAGCTCACCA

TTAAGAATGAACTCATCCCAGTTGGCAAAACACTGGAGAACATCAAAGAGAATGGTC TGATAG

ATGGCGACGAACAGCTGAATGAGAATTATCAGAAGGCGAAAATTATTGTGGATGATT TTCTGCG

GGACTTCATTAATAAAGCACTGAATAATACGCAGATCGGGAACTGGCGCGAACTGGC GGATGC

CCTTAATAAAGAGGATGAAGATAACATCGAGAAATTGCAGGATAAAATTCGGGGAAT CATTGT

ATCCAAATTTGAAACGTTTGATCTGTTTAGCAGCTATTCTATTAAGAAAGATGAAAA GATTATTG

ACGACGACAATGATGTTGAAGAAGAGGAACTGGATCTGGGCAAGAAGACCAGCTCAT TTAAAT

ACATATTTAAAAAAAACCTGTTTAAGTTAGTGTTGCCATCCTACCTGAAAACCACAA ACCAGGA

CAAGCTGAAGATTATTAGCTCGTTTGATAATTTTTCAACGTACTTCCGCGGGTTCTT TGAAAACC

GGAAAAACATTTTTACCAAGAAACCGATCTCCACAAGTATTGCGTATCGCATTGTTC ATGATAA

CTTCCCGAAATTCCTTGATAACATTCGTTGTTTTAATGTGTGGCAGACGGAATGCCC GCAACTAA

TCGTGAAAGCAGATAACTATCTGAAAAGCAAAAATGTTATAGCGAAAGATAAAAGTT TGGCAA

ACTATTTTACCGTGGGCGCGTATGACTATTTCCTGTCTCAGAATGGTATAGATTTTT ACAACAAT ATTATAGGTGGACTGCCAGCGTTCGCCGGCCATGAGAAAATCCAAGGTCTCAATGAATTC ATCA ATCAAGAGTGCCAAAAAGACAGCGAGCTGAAAAGTAAGCTGAAAAACCGTCACGCGTTCA AAA TGGCGGTACTGTTCAAACAGATACTCAGCGATCGTGAAAAAAGTTTTGTAATTGATGAGT TCGA GTCGGATGCTCAAGTTATTGACGCCGTTAAAAACTTTTACGCCGAACAGTGCAAAGATAA CAAT

CATATTCATTGAAGGGAAATACCTGTCGAGCGTTAGTCAAAAACTCTATAGCGATTG GTCAAAA

TTACGTAACGACATTGAGGATTCGGCTAACTCTAAACAAGGCAATAAAGAGCTGGCC AAGAAG

ATCAAAACCAACAAAGGGGATGTAGAAAAAGCGATCTCGAAATATGAGTTCTCGCTG TCGGAA

CTGAACTCGATTGTACATGATAACACCAAGTTTTCTGACCTCCTTAGTTGTACACTG CATAAGGT

GGCTTCTGAGAAACTGGTGAAGGTCAATGAAGGCGACTGGCCGAAACATCTCAAGAA TAATGA

AGAGAAACAAAAAATCAAAGAGCCGCTTGATGCTCTGCTGGAGATCTATAATACACT TCTGATT

TTTAACTGCAAAAGCTTCAATAAAAACGGCAACTTCTATGTCGACTATGATCGTTGC ATCAATG

AACTGAGTTCGGTCGTGTATCTGTATAATAAAACACGTAACTATTGCACTAAAAAAC CCTATAA

CACGGACAAGTTCAAACTCAATTTTAACAGTCCGCAGCTCGGTGAAGGCTTTTCCAA GTCGAAA

GAAAATGACTGTCTGACTCTTTTGTTTAAAAAAGACGACAACTATTATGTAGGCATT ATCCGCA

AAGGTGCAAAAATCAATTTTGATGATACACAAGCAATCGCCGATAACACCGACAATT GCATCTT

TAAAATGAATTATTTCCTACTTAAAGACGCAAAAAAATTTATCCCGAAATGTAGCAT TCAGCTG

AAAGAAGTCAAGGCCCATTTTAAGAAATCTGAAGATGATTACATTTTGTCTGATAAA GAGAAAT

TTGCTAGCCCGCTGGTCATTAAAAAGAGCACATTTTTGCTGGCAACTGCACATGTGA AAGGGAA

AAAAGGCAATATCAAGAAATTTCAGAAAGAATATTCGAAAGAAAACCCCACTGAGTA TCGCAA

TTCTTTAAACGAATGGATTGCTTTTTGTAAAGAGTTCTTAAAAACTTATAAAGCGGC TACCATTT

TTGATATAACCACATTGAAAAAGGCAGAGGAATATGCTGATATTGTAGAATTCTACA AGGATGT

CGATAATCTGTGCTACAAACTGGAGTTCTGCCCGATTAAAACCTCGTTTATAGAAAA CCTGATA

GATAACGGCGACCTGTATCTGTTTCGCATCAATAACAAAGACTTCAGCAGTAAATCG ACCGGCA

CCAAGAACCTTCATACGTTATATTTACAAGCTATATTCGATGAACGTAATCTGAACA ATCCGAC

AATTATGCTGAATGGGGGAGCAGAACTGTTCTATCGTAAAGAAAGTATTGAGCAGAA AAACCG

TATCACACACAAAGCCGGTTCAATTCTCGTGAATAAGGTGTGTAAAGACGGTACAAG CCTGGAT

GATAAGATACGTAATGAAATTTATCAATATGAGAATAAATTTATTGATACCCTGTCT GATGAAG

CTAAAAAGGTGTTACCGAATGTCATTAAAAAGGAAGCTACCCATGACATTACAAAAG ATAAAC

GTTTCACTAGTGACAAATTCTTCTTTCACTGCCCCCTGACAATTAATTATAAGGAAG GCGATACC

AAGCAGTTCAATAACGAAGTGCTGAGTTTTCTGCGTGGAAATCCTGACATCAACATT ATCGGCA

TTGACCGCGGAGAGCGTAATTTAATCTATGTAACGGTTATAAACCAGAAAGGCGAGA TTCTGGA

TTCGGTTTCATTCAATACCGTGACCAACAAGAGTTCAAAAATCGAGCAGACAGTCGA TTATGAA

GAGAAATTGGCAGTCCGCGAGAAAGAGAGGATTGAAGCAAAACGTTCCTGGGACTCT ATCTCA

AAAATTGCGACACTAAAGGAAGGTTATCTGAGCGCAATAGTTCACGAGATCTGTCTG TTAATGA

TTAAACACAACGCGATCGTTGTCTTAGAGAATCTTAATGCAGGCTTTAAGCGTATTC GTGGCGGT

TTATCAGAAAAAAGTGTTTATCAAAAATTCGAAAAAATGTTGATTAACAAACTGAAC TATTTTG

TCAGCAAGAAGGAATCCGACTGGAATAAACCGTCTGGTCTGCTGAATGGACTGCAGC TTTCGGA

TCAGTTTGAAAGCTTCGAAAAACTGGGTATTCAGTCTGGTTTTATTTTTTACGTGCC GGCTGCAT

ATACCTCAAAGATTGATCCGACCACGGGCTTCGCCAATGTTCTGAATCTGTCGAAGG TACGCAA

TGTTGATGCGATCAAAAGCTTTTTTTCTAACTTCAACGAAATTAGTTATAGCAAGAA AGAAGCC

CTTTTCAAATTCTCATTCGATCTGGATTCACTGAGTAAGAAAGGCTTTAGTAGCTTT GTGAAATT TAGTAAGAGTAAATGGAACGTCTACACCTTTGGAGAACGTATCATAAAGCCAAAGAATAA GCA

AGGTTATCGGGAGGACAAAAGAATCAACTTGACCTTCGAGATGAAGAAGTTACTTAA CGAGTAT

AAGGTTTCTTTTGATCTTGAAAATAACTTGATTCCGAATCTCACGAGTGCCAACCTG AAGGATAC

TTTTTGGAAAGAGCTATTCTTTATCTTCAAGACTACGCTGCAGCTCCGTAACAGCGT TACTAACG

GTAAAGAAGATGTGCTCATCTCTCCGGTCAAAAATGCGAAGGGTGAATTCTTCGTTT CGGGAAC

GCATAACAAGACTCTTCCGCAAGATTGCGATGCGAACGGTGCATACCATATTGCGTT GAAAGGT

CTGATGATACTCGAACGTAACAACCTTGTACGTGAGGAGAAAGATACGAAAAAGATT ATGGCG

ATTTCAAACGTGGATTGGTTCGAGTACGTGCAGAAACGTAGAGGCGTTCTGTAAGAA ATCATCC

TTAGCGAAAGCTAAGGATTTTTTTTATCTGAAATTTATTATATCGCGTTGATTATTG ATGCTGTTT

TTAGTTTTAACGGCAATTAATATATGTGTTATTAATTGAATGAATTTTATCATTCAT AATAAGTA

TGTGTAGGATCAAGCTCAGGTTAAATATTCACTCAGGAAGTTATTACTCAGGAAGCA AAGAGGA

TTACAGAATTATCTCATAACAAGTGTTAAGGGATGTTATTTCC

SE AATCAGGAGAGCGTTTTCAATCCTACCTCTGGCGCAGTTGATATGTCAAACAGGTTGCCG TCACT

Q GCGTCTTTTACTGGCTCTTCTCGCTAACCAAACCGGTAACCCCGCTTATTAAAAGCATTC TGTAA

no CAAAGCGGGACCAAAGCCATGACAAAAACGCGTAACAAAAGTGTCTATAATCACGGCAGA AAA

N GTCCACATTGATTATTTGCACGGCGTCACACTTTGCTATGCCATAGCATTTTTATCCATA AGATT

O: AGCGGATCCTACCTGACGCTTTTTATCGCAACTCTCTACTGTTTCTCCATACCCGTTTTT TTGGGC

63 TAGCAGTAATACGACTCACTATAGGGGTCTCATCTCGTGTGAGATAGGCGGAGATACGAA CTTT

AAGAGGAGGATATACCATGCACCATCATCATCACCATAACAACTACGACGAATTCAC CAAACTG

TACCCGATCCAGAAAACCATCCGTTTCGAACTGAAACCGCAGGGTCGTACCATGGAA CACCTGG

AAACCTTCAACTTCTTCGAAGAAGACCGTGACCGTGCGGAAAAATACAAAATCCTGA AAGAAG

CGATCGACGAATACCACAAAAAATTCATCGACGAACACCTGACCAACATGTCTCTGG ACTGGAA

CTCTCTGAAACAGATCTCTGAAAAATACTACAAATCTCGTGAAGAAAAAGACAAAAA AGTTTTC

CTGTCTGAACAGAAACGTATGCGTCAGGAAATCGTTTCTGAATTCAAAAAAGACGAC CGTTTCA

AAGACCTGTTCTCTAAAAAACTGTTCTCTGAACTGCTGAAAGAAGAAATCTACAAAA AAGGTAA

CCACCAGGAAATCGACGCGCTGAAATCTTTCGACAAATTCTCTGGTTACTTCATCGG TCTGCACG

AAAACCGTAAAAACATGTACTCTGACGGTGACGAAATCACCGCGATCTCTAACCGTA TCGTTAA

CGAAAACTTCCCGAAATTCCTGGACAACCTGCAGAAATACCAGGAAGCGCGTAAAAA ATACCC

GGAATGGATCATCAAAGCGGAATCTGCGCTGGTTGCGCACAACATCAAAATGGACGA AGTTTTC

TCTCTGGAATACTTCAACAAAGTTCTGAACCAGGAAGGTATCCAGCGTTACAACCTG GCGCTGG

GTGGTTACGTTACCAAATCTGGTGAAAAAATGATGGGTCTGAACGACGCGCTGAACC TGGCGCA

CCAGTCTGAAAAATCTTCTAAAGGTCGTATCCACATGACCCCGCTGTTCAAACAGAT CCTGTCTG

AAAAAGAATCTTTCTCTTACATCCCGGACGTTTTCACCGAAGACTCTCAGCTGCTGC CGTCTATC

GGTGGTTTCTTCGCGCAGATCGAAAACGACAAAGACGGTAACATCTTCGACCGTGCG CTGGAAC

TGATCTCTTCTTACGCGGAATACGACACCGAACGTATCTACATCCGTCAGGCGGACA TCAACCG

TGTTTCTAACGTTATCTTCGGTGAATGGGGTACCCTGGGTGGTCTGATGCGTGAATA CAAAGCG

GACTCTATCAACGACATCAACCTGGAACGTACCTGCAAAAAAGTTGACAAATGGCTG GACTCTA

AAGAATTCGCGCTGTCTGACGTTCTGGAAGCGATCAAACGTACCGGTAACAACGACG CGTTCAA

CGAATACATCTCTAAAATGCGTACCGCGCGTGAAAAAATCGACGCGGCGCGTAAAGA AATGAA

ATTCATCTCTGAAAAAATCTCTGGTGACGAAGAATCTATCCACATCATCAAAACCCT GCTGGAC

TCTGTTCAGCAGTTCCTGCACTTCTTCAACCTGTTCAAAGCGCGTCAGGACATCCCG CTGGACGG

TGCGTTCTACGCGGAATTCGACGAAGTTCACTCTAAACTGTTCGCGATCGTTCCGCT GTACAACA AAGTTCGTAACTACCTGACCAAAAACAACCTGAACACCAAAAAAATCAAACTGAACTTCA AAA

ACCCGACCCTGGCGAACGGTTGGGACCAGAACAAAGTTTACGACTACGCGTCTCTGA TCTTCCT

GCGTGACGGTAACTACTACCTGGGTATCATCAACCCGAAACGTAAAAAAAACATCAA ATTCGAA

CAGGGTTCTGGTAACGGTCCGTTCTACCGTAAAATGGTTTACAAACAGATCCCGGGT CCGAACA

AAAACCTGCCGCGTGTTTTCCTGACCTCTACCAAAGGTAAAAAAGAATACAAACCGT CTAAAGA

AATCATCGAAGGTTACGAAGCGGACAAACACATCCGTGGTGACAAATTCGACCTGGA CTTCTGC

CACAAACTGATCGACTTCTTCAAAGAATCTATCGAAAAACACAAAGACTGGTCTAAA TTCAACT

TCTACTTCTCTCCGACCGAATCTTACGGTGACATCTCTGAATTCTACCTGGACGTTG AAAAACAG

GGTTACCGTATGCACTTCGAAAACATCTCTGCGGAAACCATCGACGAATACGTTGAA AAAGGTG

ACCTGTTCCTGTTCCAGATCTACAACAAAGACTTCGTTAAAGCGGCGACCGGTAAAA AAGACAT

GCACACCATCTACTGGAACGCGGCGTTCTCTCCGGAAAACCTGCAGGACGTTGTTGT TAAACTG

AACGGTGAAGCGGAACTGTTCTACCGTGACAAATCTGACATCAAAGAAATCGTTCAC CGTGAAG

GTGAAATCCTGGTTAACCGTACCTACAACGGTCGTACCCCGGTTCCGGACAAAATCC ACAAAAA

ACTGACCGACTACCACAACGGTCGTACCAAAGACCTGGGTGAAGCGAAAGAATACCT GGACAA

AGTTCGTTACTTCAAAGCGCACTACGACATCACCAAAGACCGTCGTTACCTGAACGA CAAAATC

TACTTCCACGTTCCGCTGACCCTGAACTTCAAAGCGAACGGTAAAAAAAACCTGAAC AAAATGG

TTATCGAAAAATTCCTGTCTGACGAAAAAGCGCACATCATCGGTATCGACCGTGGTG AACGTAA

CCTGCTGTACTACTCTATCATCGACCGTTCTGGTAAAATCATCGACCAGCAGTCTCT GAACGTTA

TCGACGGTTTCGACTACCGTGAAAAACTGAACCAGCGTGAAATCGAAATGAAAGACG CGCGTC

AGTCTTGGAACGCGATCGGTAAAATCAAAGACCTGAAAGAAGGTTACCTGTCTAAAG CGGTTCA

CGAAATCACCAAAATGGCGATCCAGTACAACGCGATCGTTGTTATGGAAGAACTGAA CTACGGT

TTCAAACGTGGTCGTTTCAAAGTTGAAAAACAGATCTACCAGAAATTCGAAAACATG CTGATCG

ACAAAATGAACTACCTGGTTTTCAAAGACGCGCCGGACGAATCTCCGGGTGGTGTTC TGAACGC

GTACCAGCTGACCAACCCGCTGGAATCTTTCGCGAAACTGGGTAAACAGACCGGTAT CCTGTTC

TACGTTCCGGCGGCGTACACCTCTAAAATCGACCCGACCACCGGTTTCGTTAACCTG TTCAACAC

CTCTTCTAAAACCAACGCGCAGGAACGTAAAGAATTCCTGCAGAAATTCGAATCTAT CTCTTAC

TCTGCGAAAGACGGTGGTATCTTCGCGTTCGCGTTCGACTACCGTAAATTCGGTACC TCTAAAAC

CGACCACAAAAACGTTTGGACCGCGTACACCAACGGTGAACGTATGCGTTACATCAA AGAAAA

AAAACGTAACGAACTGTTCGACCCGTCTAAAGAAATCAAAGAAGCGCTGACCTCTTC TGGTATC

AAATACGACGGTGGTCAGAACATCCTGCCGGACATCCTGCGTTCTAACAACAACGGT CTGATCT

ACACCATGTACTCTTCTTTCATCGCGGCGATCCAGATGCGTGTTTACGACGGTAAAG AAGACTA

CATCATCTCTCCGATCAAAAACTCTAAAGGTGAATTCTTCCGTACCGACCCGAAACG TCGTGAA

CTGCCGATCGACGCGGACGCGAACGGTGCGTACAACATCGCGCTGCGTGGTGAACTG ACCATGC

GTGCGATCGCGGAAAAATTCGACCCGGACTCTGAAAAAATGGCGAAACTGGAACTGA AACACA

AAGACTGGTTCGAATTCATGCAGACCCGTGGTGACTAAGAAATCATCCTTAGCGAAA GCTAAGG

ATTTTTTTTATCTGAAATGTAGGGAGACCCTCAGGTTAAATATTCACTCAGGAAGTT ATTACTCA

GGAAGCAAAGAGGATTACA

SE AAAATTCcatGCAAAATGCTCCGGTTTCATGTCATCAAAATGATGACGTAATTAAGCATT GATAAT

Q TGAGATCCCTCTCCCTGACAGGATGATTACATAAATAATAGTGACAAAAATAAATTATTT ATTTA

no TCCAGAAAATGAATTGGAAAATCAGGAGAGCGTTTTCAATCCTACCTCTGGCGCAGTTGA TATG

N TcaaaCAGGTtgccgtcactgcgtcttttactggctcttctcgctaaccaaaccggtaac cccgcttattaaaagcattctgtaacaaagcgggaccaaagc O: catgacaaaaacgcgtaacaaaagtgtctataatcacggcagaaaagtccacattgatta tttgcacggcgtcacactttgctatgccatagcatttttatccataa gattagcggatcctacctgacgctttttatcgcaactctctactgtttctccatacccgt ttttttgggctagcaccgcctatctcgtgtgagataggcggagatacga actttaagAAGGAGatataccATGACTAAAACATTTGATTCAGAGTTTTTTAATTTGTAC TCGCTGCAAAA

AACGGTACGCTTTGAGTTAAAACCCGTGGGAGAAACCGCGTCATTTGTGGAAGACTT TAAAAAC

GAGGGCTTGAAACGTGTTGTGAGCGAAGATGAAAGGCGAGCCGTCGATTACCAGAAA GTTAAG

GAAATAATTGACGATTACCATCGGGATTTCATTGAAGAAAGTTTAAATTATTTTCCG GAACAGG

TGAGTAAAGATGCTCTTGAGCAGGCGTTTCATCTTTATCAGAAACTGAAGGCAGCAA AAGTTGA

GGAAAGGGAAAAAGCGCTGAAAGAATGGGAAGCGCTGCAGAAAAAGCTACGTGAAAA AGTGG

TGAAATGCTTCTCGGACTCGAATAAAGCCCGCTTCTCAAGGATTGATAAAAAGGAAC TGATTAA

GGAAGACCTGATAAATTGGTTGGTCGCCCAGAATCGCGAGGATGATATCCCTACGGT CGAAACG

TTTAACAACTTCACCACATATTTTACCGGCTTCCATGAGAATCGTAAAAATATTTAC TCCAAAGA

TGATCACGCCACCGCTATTAGCTTTCGCCTTATTCATGAAAATCTTCCAAAGTTTTT TGACAACG

TGATTAGCTTCAATAAGTTGAAAGAGGGTTTCCCTGAATTAAAATTTGATAAAGTGA AAGAGGA

TTTAGAAGTAGATTATGATCTGAAGCATGCGTTTGAAATAGAATATTTCGTTAACTT CGTGACCC

AAGCGGGCATAGATCAGTATAATTATCTGTTAGGAGGGAAAACCCTGGAGGACGGGA CGAAAA

AACAAGGGATGAATGAGCAAATTAATCTGTTCAAACAACAGCAAACGCGAGATAAAG CGCGTC

AGATTCCCAAACTGATCCCCCTGTTCAAACAGATTCTTAGCGAAAGGACTGAAAGCC AGTCCTT

TATTCCTAAACAATTTGAAAGTGATCAGGAGTTGTTCGATTCACTGCAGAAGTTACA TAATAACT

GCCAGGATAAATTCACCGTGCTGCAACAAGCCATTCTCGGTCTGGCAGAGGCGGATC TTAAGAA

GGTCTTCATCAAAACCTCTGATTTAAATGCCTTATCTAACACCATTTTCGGGAATTA CAGCGTCT

TTTCCGATGCACTGAACCTGTATAAAGAAAGCCTGAAAACGAAAAAAGCGCAGGAGG CTTTTG

AGAAACTACCGGCCCATTCTATTCACGACCTCATTCAATACTTGGAACAGTTCAATT CCAGCCTG

GACGCGGAAAAACAACAGAGCACCGACACCGTCCTGAACTACTTCATCAAGACCGAT GAATTA

TATTCTCGCTTCATTAAATCCACTAGCGAGGCTTTCACTCAGGTGCAGCCTTTGTTC GAACTGGA

AGCCCTGTCATCTAAGCGCCGCCCACCGGAATCGGAAGATGAAGGGGCAAAAGGGCA GGAAGG

CTTCGAGCAGATCAAGCGTATTAAAGCTTACCTGGATACGCTTATGGAAGCGGTACA CTTTGCA

AAGCCGTTGTATCTTGTTAAGGGTCGTAAAATGATCGAAGGGCTCGATAAAGACCAG TCCTTTT

ATGAAGCGTTTGAAATGGCGTACCAAGAACTTGAATCGTTAATCATTCCTATCTATA ACAAAGC

GCGGAGCTATCTGTCGCGGAAACCTTTCAAGGCCGATAAATTCAAGATTAATTTTGA CAACAAC

ACGCTACTGAGCGGATGGGATGCGAACAAGGAAACTGCTAACGCGTCCATTCTGTTT AAGAAAG

ACGGGTTATATTACCTTGGAATTATGCCGAAAGGTAAGACCTTTCTCTTTGACTACT TTGTATCG

AGCGAGGATTCAGAGAAACTGAAACAGCGTCGCCAGAAGACCGCCGAAGAAGCTCTG GCGCAG

GATGGTGAAAGTTACTTCGAAAAAATTCGTTATAAACTGTTACCAGGGGCTTCAAAG ATGTTAC

CGAAAGTCTTTTTTAGCAACAAAAATATTGGCTTTTACAACCCGTCGGATGACATTT TACGCATT

CGCAACACAGCCTCTCACACCAAAAACGGGACCCCTCAGAAAGGCCACTCAAAAGTT GAGTTTA

ACCTGAATGATTGTCATAAGATGATTGATTTCTTCAAATCATCAATTCAGAAACACC CGGAATG

GGGGTCTTTTGGCTTTACGTTTTCTGATACCAGTGATTTTGAAGACATGAGTGCCTT CTACCGGG

AAGTAGAAAACCAGGGTTACGTAATTAGCTTTGACAAAATCAAAGAGACCTATATAC AGAGCC

AGGTGGAACAGGGTAATCTCTACTTATTCCAGATTTATAACAAGGATTTCTCGCCCT ACAGCAA

AGGCAAACCAAACCTGCATACTCTGTACTGGAAAGCCCTGTTTGAAGAAGCGAACCT GAATAAC

GTAGTGGCGAAGTTGAACGGTGAAGCGGAAATCTTCTTCCGTCGTCACTCCATTAAG GCCTCTG

ATAAAGTTGTCCATCCGGCAAATCAGGCCATTGATAATAAGAATCCACACACGGAAA AAACGC

AGTCAACCTTTGAATATGACCTCGTTAAAGACAAACGCTACACGCAAGATAAGTTCT TTTTCCAC GTCCCAATCAGCCTCAACTTTAAAGCACAAGGGGTTTCAAAGTTTAATGATAAAGTCAAT GGGT

TCCTCAAGGGCAACCCGGATGTCAACATTATAGGTATAGACAGGGGCGAACGCCATC TGCTTTA

CTTTACCGTAGTGAATCAGAAAGGTGAAATACTGGTTCAGGAATCATTAAATACCTT GATGTCG

GACAAAGGGCACGTTAATGATTACCAGCAGAAACTGGATAAAAAAGAACAGGAACGT GATGCT

GCGCGTAAATCGTGGACCACGGTTGAGAACATTAAAGAGCTGAAAGAGGGGTATCTA AGCCAT

GTGGTACACAAACTGGCGCACCTCATCATTAAATATAACGCAATAGTCTGCCTAGAA GACTTGA

ATTTTGGCTTTAAACGCGGCCGCTTCAAAGTGGAAAAACAAGTTTATCAAAAATTTG AAAAGGC

GCTTATAGATAAACTGAATTATCTGGTTTTTAAAGAAAAGGAACTTGGTGAGGTAGG GCACTAC

TTGACAGCTTATCAACTGACGGCCCCGTTCGAATCATTCAAAAAACTGGGCAAACAG TCTGGCA

TTCTGTTTTACGTGCCGGCAGATTATACTTCAAAAATCGATCCAACAACTGGCTTTG TGAACTTC

CTGGACCTGAGATATCAGTCTGTAGAAAAAGCTAAACAACTTCTTAGCGATTTTAAT GCCATTC

GTTTTAACAGCGTTCAGAATTACTTTGAATTCGAAATTGACTATAAAAAACTTACTC CGAAACGT

AAAGTCGGAACCCAAAGTAAATGGGTAATTTGTACGTATGGCGATGTCAGGTATCAG AACCGTC

GGAATCAAAAAGGTCATTGGGAGACCGAAGAAGTGAACGTGACCGAAAAGCTGAAGG CTCTGT

TCGCCAGCGATTCAAAAACTACAACTGTGATCGATTACGCAAATGATGATAACCTGA TAGATGT

GATTTTAGAGCAGGATAAAGCCAGCTTTTTTAAAGAACTGTTGTGGCTCCTGAAACT TACGATG

ACCTTACGACATTCCAAGATCAAATCGGAAGATGATTTTATTCTGTCACCGGTCAAG AATGAGC

AGGGTGAATTCTATGATAGTAGGAAAGCCGGCGAAGTGTGGCCGAAAGACGCCGACG CCAATG

GCGCCTATCATATCGCGCTCAAAGGGCTTTGGAATTTGCAGCAGATTAACCAGTGGG AAAAAGG

TAAAACCCTGAATCTGGCTATCAAAAACCAGGATTGGTTTAGCTTTATCCAAGAGAA ACCGTAT

CAGGAATGAGAAATCATCCTTAGCGAAAGCTAAGGATTTTTTTTATCTGAAATTTAT TATATCGC

TTATCATTCATAATAAGTATGTGTAGGATCAAGCTCAGGTTAAATATTCACTCAGGA AGTTATTA CTCAGGAAGCAAAGAGGATTACAGAATTATCTCATAACAAGTGTTAAGGGATGTTATTTC C

SE AATCAGGAGAGCGTTTTCAATCCTACCTCTGGCGCAGTTGATATGTCAAACAGGTTGCCG TCACT

Q GCGTCTTTTACTGGCTCTTCTCGCTAACCAAACCGGTAACCCCGCTTATTAAAAGCATTC TGTAA

no CAAAGCGGGACCAAAGCCATGACAAAAACGCGTAACAAAAGTGTCTATAATCACGGCAGA AAA

N GTCCACATTGATTATTTGCACGGCGTCACACTTTGCTATGCCATAGCATTTTTATCCATA AGATT

O: AGCGGATCCTACCTGACGCTTTTTATCGCAACTCTCTACTGTTTCTCCATACCCGTTTTT TTGGGC 65 TAGCAGTAATACGACTCACTATAGGGGTCTCATCTCGTGTGAGATAGGCGGAGATACGAA CTTT

AAGAGGAGGATATACCATGCACCATCATCATCACCATCATACAGGCGGTCTTCTTAG TATGGAC

GCGAAAGAGTTCACAGGTCAGTATCCGTTGTCGAAAACATTACGATTCGAACTTCGG CCCATCG

GCCGCACGTGGGATAACCTGGAGGCCTCAGGCTACTTAGCGGAAGACCGCCATCGTG CCGAATG

TTATCCTCGTGCGAAAGAGTTATTGGATGACAACCATCGTGCCTTCCTGAATCGTGT GTTGCCAC

AAATCGATATGGATTGGCACCCGATTGCGGAGGCCTTTTGTAAGGTACATAAAAACC CTGGTAA

TAAAGAACTTGCCCAGGATTACAACCTTCAGTTGTCAAAGCGCCGTAAGGAGATCAG CGCATAT

CTTCAGGATGCAGATGGCTATAAAGGCCTGTTCGCGAAGCCCGCCTTAGACGAAGCT ATGAAAA

TTGCGAAAGAAAACGGGAACGAAAGTGATATTGAGGTTCTCGAAGCGTTTAACGGTT TTAGCGT

ATACTTCACCGGTTATCATGAGTCACGCGAGAACATTTATAGCGATGAGGATATGGT GAGCGTA

GCCTACCGAATTACTGAGGATAATTTCCCGCGCTTTGTCTCAAACGCTTTGATCTTT GATAAATT

AAACGAAAGCCATCCGGATATTATCTCTGAAGTATCGGGCAATCTTGGAGTTGATGA CATTGGT

AAGTACTTTGACGTGTCGAACTATAACAATTTTCTTTCCCAGGCCGGTATAGATGAC TACAATCA CATTATTGGCGGCCATACAACCGAAGACGGACTGATACAAGCGTTTAATGTCGTATTGAA CTTA

CGTCACCAAAAAGACCCTGGCTTTGAAAAAATTCAGTTCAAACAGCTCTACAAACAA ATCCTGA

GCGTGCGTACCAGCAAAAGCTACATCCCGAAACAGTTTGACAACTCTAAGGAGATGG TTGACTG

CATTTGCGATTATGTCAGCAAAATAGAGAAATCCGAAACAGTAGAACGGGCCCTGAA ACTAGTC

CGTAATATCAGTTCTTTCGACTTGCGCGGGATCTTTGTCAATAAAAAGAACTTGCGC ATACTGAG

CAACAAACTGATAGGAGATTGGGACGCGATCGAAACCGCATTGATGCATAGTTCTTC ATCAGAA

AACGATAAGAAAAGCGTATATGATAGCGCGGAGGCTTTTACGTTGGATGACATCTTT TCAAGCG

TGAAAAAATTTTCTGATGCCTCTGCCGAAGATATTGGCAACAGGGCGGAAGACATCT GTAGAGT

GATAAGTGAGACGGCCCCTTTTATCAACGATCTGCGAGCGGTGGACCTGGATAGCCT GAACGAC

GATGGTTATGAAGCGGCCGTCTCAAAAATTCGGGAGTCGCTGGAGCCTTATATGGAT CTTTTCC

ATGAACTGGAAATTTTCTCGGTTGGCGATGAGTTCCCAAAATGCGCAGCATTTTACA GCGAACT

GGAGGAAGTCAGCGAACAGCTGATCGAAATTATTCCGTTATTCAACAAGGCGCGTTC GTTCTGC

ACCCGGAAACGCTATAGCACCGATAAGATTAAAGTGAACTTAAAATTCCCGACCTTG GCGGACG

GGTGGGACCTGAACAAAGAGAGAGACAACAAAGCCGCGATTCTGCGGAAAGACGGTA AGTATT

ATCTGGCAATTCTGGATATGAAGAAAGATCTGTCAAGCATTAGGACCAGCGACGAAG ATGAATC

CAGCTTCGAAAAGATGGAGTATAAACTGTTACCGAGTCCAGTAAAAATGCTGCCAAA GATATTC

GTAAAATCGAAAGCCGCTAAGGAAAAATATGGCCTGACAGATCGTATGCTTGAATGC TACGATA

AAGGTATGCATAAGTCGGGTAGTGCGTTTGATCTTGGCTTTTGCCATGAACTCATTG ATTATTAC

AAGCGTTGTATCGCGGAGTACCCAGGCTGGGATGTGTTCGATTTCAAGTTTCGCGAA ACTTCCG

ATTATGGGTCCATGAAAGAGTTCAATGAAGATGTGGCCGGAGCCGGTTACTATATGA GTCTGAG

AAAAATTCCGTGCAGCGAAGTGTACCGTCTGTTAGACGAGAAATCGATTTATCTATT TCAAATTT

ATAACAAAGATTACTCTGAAAATGCACATGGTAATAAGAACATGCATACCATGTACT GGGAGG

GTCTCTTTTCCCCGCAAAACCTGGAGTCGCCCGTTTTCAAGTTGTCGGGTGGGGCAG AACTTTTC

TTTCGAAAATCCTCAATCCCTAACGATGCCAAAACAGTACACCCGAAAGGCTCAGTG CTGGTTC

CACGTAATGATGTTAACGGTCGGCGTATTCCAGATTCAATCTACCGCGAACTGACAC GCTATTTT

AACCGTGGCGATTGCCGAATCAGTGACGAAGCCAAAAGTTATCTTGACAAGGTTAAG ACTAAA

AAAGCGGACCATGACATTGTGAAAGATCGCCGCTTTACCGTGGATAAAATGATGTTC CACGTCC

CGATTGCGATGAACTTTAAGGCGATCAGTAAACCGAACTTAAACAAAAAAGTCATTG ATGGCAT

CATTGATGATCAGGATCTGAAAATCATTGGTATTGATCGTGGCGAGCGGAACTTAAT TTACGTC

ACGATGGTTGACAGAAAAGGGAATATCTTATATCAGGATTCTCTTAACATCCTCAAT GGCTACG

ACTATCGTAAAGCTCTGGATGTGCGCGAATATGACAACAAGGAAGCGCGTCGTAACT GGACTAA

AGTGGAGGGCATTCGCAAAATGAAGGAAGGCTATCTGTCATTAGCGGTCTCGAAATT AGCGGAT

ATGATTATCGAAAATAACGCCATCATCGTTATGGAGGACCTGAACCACGGATTCAAA GCGGGCC

GCTCAAAGATTGAAAAACAAGTTTATCAGAAATTTGAGAGTATGCTGATTAACAAAC TGGGCTA

TATGGTGTTAAAAGACAAGTCAATTGACCAATCAGGTGGCGCGCTGCATGGATACCA GCTGGCG

AACCATGTTACCACCTTAGCATCAGTTGGAAAGCAGTGTGGGGTTATCTTTTATATA CCGGCAGC

GTTCACTAGTAAAATAGATCCGACCACTGGTTTCGCCGATCTCTTTGCCCTGAGTAA CGTTAAAA

ACGTAGCGAGCATGCGTGAATTCTTTTCCAAAATGAAATCTGTCATTTATGATAAAG CTGAAGG

CAAATTCGCATTCACCTTTGATTACTTGGATTACAACGTGAAGAGCGAATGTGGTCG TACGCTGT

GGACCGTTTACACCGTTGGTGAGCGCTTCACCTATTCCCGTGTGAACCGCGAATATG TACGTAA

AGTCCCCACCGATATTATCTATGATGCCCTCCAGAAAGCAGGCATTAGCGTCGAAGG AGACTTA

AGGGACAGAATTGCCGAAAGCGATGGCGATACGCTGAAGTCTATTTTTTACGCATTC AAATACG CGCTAGATATGCGCGTTGAGAATCGCGAGGAAGACTACATTCAATCACCTGTGAAAAATG CCTC

TGGGGAATTTTTTTGTTCAAAAAATGCTGGTAAAAGCCTCCCACAAGATAGCGATGC AAACGGT

GCATATAACATTGCCCTGAAAGGTATTCTTCAATTACGCATGCTGTCTGAGCAGTAC GACCCCA

ACGCGGAATCTATTAGACTTCCGCTGATAACCAATAAAGCCTGGCTGACATTCATGC AGTCTGG

CATGAAGACCTGGAAAAATTAGGAAATCATCCTTAGCGAAAGCTAAGGATTTTTTTT ATCTGAA

ATGTAGGGAGACCCTCAGGTTAAATATTCACTCAGGAAGTTATTACTCAGGAAGCAA AGAGGAT

TACA

SE AAAATTCcatGCAAAATGCTCCGGTTTCATGTCATCAAAATGATGACGTAATTAAGCATT GATAAT

Q TGAGATCCCTCTCCCTGACAGGATGATTACATAAATAATAGTGACAAAAATAAATTATTT ATTTA

no TCCAGAAAATGAATTGGAAAATCAGGAGAGCGTTTTCAATCCTACCTCTGGCGCAGTTGA TATG

N TcaaaCAGGTtgccgtcactgcgtcttttactggctcttctcgctaaccaaaccggtaac cccgcttattaaaagcattctgtaacaaagcgggaccaaagc O: catgacaaaaacgcgtaacaaaagtgtctataatcacggcagaaaagtccacattgatta tttgcacggcgtcacactttgctatgccatagcatttttatccataa

66 gattagcggatcctacctgacgctttttatcgcaactctctactgtttctccatacccgt ttttttgggctagcaccgcctatctcgtgtgagataggcggagatacga actttaagAAGGAGatataccatgGATAGTTTGAAAGATTTCACCAATCTGTACCCTGTC AGTAAGACATTG

AGATTTGAATTAAAGCCCGTTGGAAAGACTTTAGAAAATATCGAGAAAGCAGGTATT TTGAAAG

AGGATGAGCATCGTGCAGAAAGTTATCGGAGGGTGAAGAAAATAATTGATACTTATC ATAAGG

TATTTATCGATTCTTCTCTTGAAAATATGGCTAAAATGGGTATTGAGAATGAAATAA AAGCAAT

GCTCCAAAGTTTCTGCGAATTGTATAAAAAAGATCATCGCACTGAGGGTGAAGACAA GGCATTA

GATAAAATTCGAGCAGTACTTCGTGGCCTGATTGTTGGGGCTTTCACTGGTGTTTGC GGAAGAC

GGGAAAATACAGTCCAAAACGAGAAGTACGAGAGTTTGTTCAAAGAAAAGTTGATAA AAGAAA

TTTTACCTGATTTTGTGCTCTCTACTGAGGCTGAAAGCTTGCCTTTCTCTGTTGAAG AAGCTACG

AGGTCACTGAAGGAGTTTGATAGCTTTACATCCTACTTTGCTGGTTTTTACGAGAAT AGAAAGA

ATATATACTCGACGAAACCTCAATCCACTGCCATTGCTTATCGTCTTATTCATGAGA ACTTGCCG

AAGTTCATTGATAATATTCTTGTTTTTCAGAAGATCAAAGAGCCTATAGCCAAAGAG CTGGAAC

ATATTCGTGCGGACTTTTCTGCCGGGGGGTACATAAAAAAGGATGAGAGATTGGAGG ATATTTT

TTCGTTGAACTATTATATCCACGTGTTATCTCAGGCTGGGATCGAAAAATATAACGC ATTGATTG

GGAAGATTGTGACAGAAGGAGATGGAGAGATGAAAGGGCTCAATGAACACATCAACC TTTACA

ACCAACAAAGAGGCAGAGAGGATCGGCTCCCTCTTTTTAGGCCTCTTTATAAACAGA TATTGAG

TGACAGAGAGCAATTATCATACTTGCCTGAGAGTTTTGAAAAAGATGAGGAGCTCCT CAGGGCT

CTAAAAGAGTTCTATGATCATATCGCAGAAGACATTCTCGGACGTACTCAACAGTTG ATGACTT

CTATTTCAGAATATGATTTATCTCGGATATACGTAAGGAACGATAGCCAATTGACTG ATATATCA

AAAAAAATGTTGGGAGATTGGAATGCTATCTACATGGCTAGAGAACGAGCATATGAC CACGAG

CAGGCTCCCAAAAGAATCACGGCGAAATACGAGAGGGACAGGATTAAAGCTCTTAAA GGAGAA

GAGAGTATAAGTCTGGCAAATCTTAATAGTTGTATTGCCTTTCTGGACAATGTTAGA GATTGCCG

TGTAGATACTTATCTTTCCACACTGGGCCAGAAGGAAGGACCACATGGTCTATCTAA TCTCGTTG

AGAACGTTTTTGCCTCATACCATGAAGCAGAGCAATTGTTGAGCTTTCCATACCCCG AAGAGAA

TAATCTGATTCAGGACAAGGACAATGTGGTGTTAATTAAGAATCTTCTCGACAATAT CAGTGAT

CTGCAGAGGTTCTTGAAACCTCTTTGGGGTATGGGAGACGAACCCGATAAAGATGAA AGATTTT

ATGGAGAGTATAATTATATCCGAGGAGCTCTAGATCAGGTGATCCCTCTGTACAATA AGGTAAG

GAACTACCTCACTCGGAAGCCTTATTCGACCAGAAAAGTAAAACTCAATTTTGGGAA TTCTCAA

TTGCTTAGTGGTTGGGATAGAAATAAGGAAAAGGATAATAGCTGTGTGATTTTGCGT AAGGGGC

AGAACTTCTATTTGGCTATTATGAACAATAGGCACAAAAGAAGTTTCGAAAACAAGG TGTTGCC CGAGTATAAGGAGGGAGAACCTTACTTCGAAAAGATGGATTATAAATTTTTGCCTGATCC TAAT

AAAATGCTTCCTAAGGTTTTTCTTTCGAAAAAAGGAATAGAGATATACAAACCAAGT CCGAAGC

TTTTAGAACAATATGGACATGGAACTCACAAAAAGGGAGATACCTTTAGTATGGATG ATTTGCA

CGAACTGATCGATTTCTTCAAACACTCAATCGAGGCTCATGAAGATTGGAAGCAATT CGGATTC

AAATTTTCTGATACGGCTACTTATGAGAATGTATCTAGTTTCTATAGAGAAGTTGAG GATCAGG

GGTATAAGCTCTCTTTCCGAAAAGTTTCGGAATCTTATGTCTATTCATTAATAGATC AAGGCAAG

TTGTATTTATTTCAGATATACAACAAGGACTTTTCTCCCTGCAGCAAAGGGACACCT AATCTGCA

TACCTTGTATTGGAGAATGCTTTTTGACGAGCGCAATTTGGCAGATGTCATATACAA ACTGGATG

TAAGCCTATCAAAAAGAAAAGTCGACAAAAAAAAGGAGAGGAGAGTCTGTTTGAGTA TGATTT

AGTCAAGGATAGGCACTATACGATGGATAAGTTCCAGTTTCATGTGCCTATTACTAT GAATTTTA

AATGTTCTGCAGGAAGCAAAGTCAATGATATGGTTAATGCTCATATTCGAGAGGCAA AGGATAT

GCATGTCATTGGAATTGATCGTGGAGAACGCAATCTGCTGTATATATGCGTGATAGA TAGTCGA

GGGACGATTTTGGATCAAATTTCTCTGAATACGATTAACGATATAGACTATCATGAT TTATTGGA

GAGTCGAGACAAAGACCGTCAGCAGGAGCGCCGAAACTGGCAAACTATCGAAGGGAT CAAGGA

GCTAAAACAAGGCTACCTTAGTCAGGCGGTTCATCGGATAGCCGAACTGATGGTGGC TTATAAG

GCTGTAGTTGCTTTGGAGGATTTGAATATGGGGTTCAAACGTGGGCGGCAGAAAGTA GAAAGTT

CTGTTTATCAGCAGTTTGAGAAACAGCTGATAGATAAGCTCAACTATCTTGTGGACA AGAAGAA

AAGGCCTGAAGATATTGGAGGATTGTTGAGAGCCTATCAATTTACGGCCCCATTTAA GAGTTTT

AAGGAAATGGGAAAGCAAAACGGCTTCTTGTTTTATATCCCGGCTTGGAACACGAGC AACATAG

ATCCGACTACTGGATTTGTTAATTTATTTCATGCCCAGTATGAAAATGTAGATAAAG CGAAGAG

CTTCTTTCAAAAGTTTGATTCAATTAGTTACAACCCGAAGAAAGACTGGTTTGAGTT TGCATTCG

ATTATAAAAACTTTACTAAAAAGGCTGAAGGAAGTCGTTCTATGTGGATATTATGCA CACATGG

TTCCCGAATAAAGAATTTTAGAAATTCCCAGAAGAATGGTCAATGGGATTCCGAAGA ATTCGCC

TTGACGGAGGCTTTTAAGTCTCTTTTTGTGCGATATGAGATAGATTATACCGCTGAT TTGAAAAC

AGCTATTGTGGACGAAAAGCAAAAAGACTTCTTCGTGGATCTTCTGAAGCTATTCAA ATTGACA

GTACAGATGCGCAACAGCTGGAAAGAGAAGGATTTGGATTATCTAATCTCTCCTGTA GCAGGGG

CTGATGGCCGTTTCTTCGATACAAGAGAGGGAAATAAAAGTCTGCCTAAGGATGCAG ATGCCAA

TGGAGCTTATAATATTGCCCTAAAAGGACTTTGGGCTCTACGCCAGATTCGGCAAAC TTCAGAA

GGCGGTAAACTCAAATTGGCGATTTCCAATAAGGAATGGCTACAGTTTGTGCAAGAG AGATCTT

ACGAGAAAGACtgaGAAATCATCCTTAGCGAAAGCTAAGGATTTTTTTTATCTGAAA TTTATTATA

TCGCGTTGATTATTGATGCTGTTTTTAGTTTTAACGGCAATTAATATATGTGTTATT AATTGAATG

AATTTTATCATTCATAATAAGTATGTGTAGGATCAAGCTCAGGTTAAATATTCACTC AGGAAGTT

ATTACTCAGGAAGCAAAGAGGATTACAGAATTATCTCATAACAAGTGTTAAGGGATG TTATTTC

C

SE AAAATTCcatGCAAAATGCTCCGGTTTCATGTCATCAAAATGATGACGTAATTAAGCATT GATAAT

Q TGAGATCCCTCTCCCTGACAGGATGATTACATAAATAATAGTGACAAAAATAAATTATTT ATTTA

no TCCAGAAAATGAATTGGAAAATCAGGAGAGCGTTTTCAATCCTACCTCTGGCGCAGTTGA TATG

N TcaaaCAGGTtgccgtcactgcgtcttttactggctcttctcgctaaccaaaccggtaac cccgcttattaaaagcattctgtaacaaagcgggaccaaagc O: catgacaaaaacgcgtaacaaaagtgtctataatcacggcagaaaagtccacattgatta tttgcacggcgtcacactttgctatgccatagcatttttatccataa

67 gattagcggatcctacctgacgctttttatcgcaactctctactgtttctccatacccgt ttttttgggctagcaccgcctatctcgtgtgagataggcggagatacga actttaagAAGGAGatataccATGAACAACGGCACAAATAATTTTCAGAACTTCATCGGG ATCTCAAGTT TGCAGAAAACGCTGCGCAATGCTCTGATCCCCACGGAAACCACGCAACAGTTCATCGTCA AGAA

CGGAATAATTAAAGAAGATGAGTTACGTGGCGAGAACCGCCAGATTCTGAAAGATAT CATGGA

TGACTACTACCGCGGATTCATCTCTGAGACTCTGAGTTCTATTGATGACATAGATTG GACTAGCC

TGTTCGAAAAAATGGAAATTCAGCTGAAAAATGGTGATAATAAAGATACCTTAATTA AGGAAC

AGACAGAGTATCGGAAAGCAATCCATAAAAAATTTGCGAACGACGATCGGTTTAAGA ACATGT

TTAGCGCCAAACTGATTAGTGACATATTACCTGAATTTGTCATCCACAACAATAATT ATTCGGCA

TCAGAGAAAGAGGAAAAAACCCAGGTGATAAAATTGTTTTCGCGCTTTGCGACTAGC TTTAAAG

ATTACTTCAAGAACCGTGCAAATTGCTTTTCAGCGGACGATATTTCATCAAGCAGCT GCCATCGC

ATCGTCAACGACAATGCAGAGATATTCTTTTCAAATGCGCTGGTCTACCGCCGGATC GTAAAAT

CGCTGAGCAATGACGATATCAACAAAATTTCGGGCGATATGAAAGATTCATTAAAAG AAATGA

GTCTGGAAGAAATATATTCTTACGAGAAGTATGGGGAATTTATTACCCAGGAAGGCA TTAGCTT

CTATAATGATATCTGTGGGAAAGTGAATTCTTTTATGAACCTGTATTGTCAGAAAAA TAAAGAA

AACAAAAATTTATACAAACTTCAGAAACTTCACAAACAGATTCTATGCATTGCGGAC ACTAGCT

ATGAGGTCCCGTATAAATTTGAAAGTGACGAGGAAGTGTACCAATCAGTTAACGGCT TCCTTGA

TAACATTAGCAGCAAACATATAGTCGAAAGATTACGCAAAATCGGCGATAACTATAA CGGCTAC

AACCTGGATAAAATTTATATCGTGTCCAAATTTTACGAGAGCGTTAGCCAAAAAACC TACCGCG

ACTGGGAAACAATTAATACCGCCCTCGAAATTCATTACAATAATATCTTGCCGGGTA ACGGTAA

AAGTAAAGCCGACAAAGTAAAAAAAGCGGTTAAGAATGATTTACAGAAATCCATCAC CGAAAT

AAATGAACTAGTGTCAAACTATAAGCTGTGCAGTGACGACAACATCAAAGCGGAGAC TTATATA

CATGAGATTAGCCATATCTTGAATAACTTTGAAGCACAGGAATTGAAATACAATCCG GAAATTC

ACCTAGTTGAATCCGAGCTCAAAGCGAGTGAGCTTAAAAACGTGCTGGACGTGATCA TGAATGC

GTTTCATTGGTGTTCGGTTTTTATGACTGAGGAACTTGTTGATAAAGACAACAATTT TTATGCGG

AACTGGAGGAGATTTACGATGAAATTTATCCAGTAATTAGTCTGTACAACCTGGTTC GTAACTA

CGTTACCCAGAAACCGTACAGCACGAAAAAGATTAAATTGAACTTTGGAATACCGAC GTTAGCA

GACGGTTGGTCAAAGTCCAAAGAGTATTCTAATAACGCTATCATACTGATGCGCGAC AATCTGT

ATTATCTGGGCATCTTTAATGCGAAGAATAAACCGGACAAGAAGATTATCGAGGGTA ATACGTC

AGAAAATAAGGGTGACTACAAAAAGATGATTTATAATTTGCTCCCGGGTCCCAACAA AATGATC

CCGAAAGTTTTCTTGAGCAGCAAGACGGGGGTGGAAACGTATAAACCGAGCGCCTAT ATCCTAG

AGGGGTATAAACAGAATAAACATATCAAGTCTTCAAAAGACTTTGATATCACTTTCT GTCATGA

TCTGATCGACTACTTCAAAAACTGTATTGCAATTCATCCCGAGTGGAAAAACTTCGG TTTTGATT

TTAGCGACACCAGTACTTATGAAGACATTTCCGGGTTTTATCGTGAGGTAGAGTTAC AAGGTTA

CAAGATTGATTGGACATACATTAGCGAAAAAGACATTGATCTGCTGCAGGAAAAAGG TCAACT

GTATCTGTTCCAGATATATAACAAAGATTTTTCGAAAAAATCAACCGGGAATGACAA CCTTCAC

ACCATGTACCTGAAAAATCTTTTCTCAGAAGAAAATCTTAAGGATATCGTCCTGAAA CTTAACG

GCGAAGCGGAAATCTTCTTCAGGAAGAGCAGCATAAAGAACCCAATCATTCATAAAA AAGGCT

CGATTTTAGTCAACCGTACCTACGAAGCAGAAGAAAAAGACCAGTTTGGCAACATTC AAATTGT

GCGTAAAAATATTCCGGAAAACATTTATCAGGAGCTGTACAAATACTTCAACGATAA AAGCGAC

AAAGAGCTGTCTGATGAAGCAGCCAAACTGAAGAATGTAGTGGGACACCACGAGGCA GCGACG

AATATAGTCAAGGACTATCGCTACACGTATGATAAATACTTCCTTCATATGCCTATT ACGATCAA

TTTCAAAGCCAATAAAACGGGTTTTATTAATGATAGGATCTTACAGTATATCGCTAA AGAAAAA

GACTTACATGTGATCGGCATTGATCGGGGCGAGCGTAACCTGATCTACGTGTCCGTG ATTGATA

CTTGTGGTAATATAGTTGAACAGAAAAGCTTTAACATTGTAAACGGCTACGACTATC AGATAAA ACTGAAACAACAGGAGGGCGCTAGACAGATTGCGCGGAAAGAATGGAAAGAAATTGGTAA AAT

TAAAGAGATCAAAGAGGGCTACCTGAGCTTAGTAATCCACGAGATCTCTAAAATGGT AATCAAA

TACAATGCAATTATAGCGATGGAGGATTTGTCTTATGGTTTTAAAAAAGGGCGCTTT AAGGTCG

AACGGCAAGTTTACCAGAAATTTGAAACCATGCTCATCAATAAACTCAACTATCTGG TATTTAA

AGATATTTCGATTACCGAGAATGGCGGTCTCCTGAAAGGTTATCAGCTGACATACAT TCCTGAT

AAACTTAAAAACGTGGGTCATCAGTGCGGCTGCATTTTTTATGTGCCTGCTGCATAC ACGAGCA

AAATTGATCCGACCACCGGCTTTGTGAATATCTTTAAATTTAAAGACCTGACAGTGG ACGCAAA

ACGTGAATTCATTAAAAAATTTGACTCAATTCGTTATGACAGTGAAAAAAATCTGTT CTGCTTTA

CATTTGACTACAATAACTTTATTACGCAAAACACGGTCATGAGCAAATCATCGTGGA GTGTGTA

TACATACGGCGTGCGCATCAAACGTCGCTTTGTGAACGGCCGCTTCTCAAACGAAAG TGATACC

ATTGACATAACCAAAGATATGGAGAAAACGTTGGAAATGACGGACATTAACTGGCGC GATGGC

CACGATCTTCGTCAAGACATTATAGATTATGAAATTGTTCAGCACATATTCGAAATT TTCCGTTT

AACAGTGCAAATGCGTAACTCCTTGTCTGAACTGGAGGACCGTGATTACGATCGTCT CATTTCAC

CTGTACTGAACGAAAATAACATTTTTTATGACAGCGCGAAAGCGGGGGATGCACTTC CTAAGGA

TGCCGATGCAAATGGTGCGTATTGTATTGCATTAAAAGGGTTATATGAAATTAAACA AATTACC

GAAAATTGGAAAGAAGATGGTAAATTTTCGCGCGATAAACTCAAAATCAGCAATAAA GATTGG

TTCGACTTTATCCAGAATAAGCGCTATCTCTAAGAAATCATCCTTAGCGAAAGCTAA GGATTTTT

TTTATCTGAAATTTATTATATCGCGTTGATTATTGATGCTGTTTTTAGTTTTAACGG CAATTAATA

TATGTGTTATTAATTGAATGAATTTTATCATTCATAATAAGTATGTGTAGGATCAAG CTCAGGTT

AAATATTCACTCAGGAAGTTATTACTCAGGAAGCAAAGAGGATTACAGAATTATCTC ATAACAA

GTGTTAAGGGATGTTATTTCC

SE AATCAGGAGAGCGTTTTCAATCCTACCTCTGGCGCAGTTGATATGTCAAACAGGTTGCCG TCACT

Q GCGTCTTTTACTGGCTCTTCTCGCTAACCAAACCGGTAACCCCGCTTATTAAAAGCATTC TGTAA

no CAAAGCGGGACCAAAGCCATGACAAAAACGCGTAACAAAAGTGTCTATAATCACGGCAGA AAA

N GTCCACATTGATTATTTGCACGGCGTCACACTTTGCTATGCCATAGCATTTTTATCCATA AGATT

O: AGCGGATCCTACCTGACGCTTTTTATCGCAACTCTCTACTGTTTCTCCATACCCGTTTTT TTGGGC 68 TAGCAGTAATACGACTCACTATAGGGGTCTCATCTCGTGTGAGATAGGCGGAGATACGAA CTTT

AAGAGGAGGATATACCATGCACCATCATCATCACCATACCAATAAATTCACTAACCA GTATTCT

CTCTCTAAGACCCTGCGCTTTGAACTGATTCCGCAGGGGAAAACCTTGGAGTTCATT CAAGAAA

AAGGCCTCTTGTCTCAGGATAAACAGAGGGCTGAATCTTACCAAGAAATGAAGAAAA CTATTGA

TAAGTTTCATAAATATTTCATTGATTTAGCCTTGTCTAACGCCAAATTAACTCACTT GGAAACGT

ATCTGGAGTTATACAACAAATCTGCCGAAACTAAGAAAGAACAGAAATTTAAAGACG ATTTGA

AAAAAGTACAGGACAATCTGCGTAAAGAAATTGTCAAATCCTTCAGTGACGGCGATG CTAAAA

GCATTTTTGCCATTCTGGACAAAAAAGAGTTGATTACTGTGGAATTAGAAAAGTGGT TTGAAAA

CAATGAGCAGAAAGACATCTACTTCGATGAGAAATTCAAAACTTTCACCACCTATTT TACAGGA

TTTCATCAAAACCGGAAGAACATGTACTCAGTAGAACCGAACTCCACGGCCATTGCG TATCGTT

TGATCCATGAGAATCTGCCTAAATTTCTGGAGAATGCGAAAGCCTTTGAAAAGATTA AGCAGGT

CGAATCGCTGCAAGTGAATTTTCGTGAACTCATGGGCGAATTTGGTGACGAAGGTCT AATCTTC

GTTAACGAACTGGAAGAAATGTTTCAGATTAATTACTACAATGACGTGCTATCGCAG AACGGTA

TCACAATCTACAATAGTATTATCTCAGGGTTCACAAAAAACGATATAAAATACAAAG GCCTGAA

CGAGTATATCAATAACTACAACCAAACAAAGGACAAAAAGGATAGGCTTCCGAAACT GAAGCA

GTTATACAAACAGATTTTATCTGACAGAATCTCCCTGAGCTTTCTGCCGGATGCTTT CACTGATG GGAAGCAGGTTCTGAAAGCGATTTTCGATTTTTATAAGATTAACTTACTGAGCTACACGA TTGA

AGGTCAAGAAGAATCTCAAAACTTACTGCTCTTGATCCGTCAAACCATTGAAAATCT ATCATCG

TTCGATACGCAGAAAATCTACCTCAAAAACGATACTCACCTGACTACGATCTCTCAG CAGGTTTT

CGGGGATTTTAGTGTATTTTCAACAGCTCTGAACTACTGGTATGAAACCAAAGTCAA TCCGAAA

TTCGAGACGGAATATTCTAAGGCCAACGAAAAAAAACGTGAGATTCTTGATAAAGCT AAAGCC

GTATTTACTAAACAGGATTACTTTTCTATTGCTTTCCTGCAGGAAGTTTTATCGGAG TATATCCTG

ACCCTGGATCATACATCTGATATCGTTAAAAAACACAGCAGCAATTGCATCGCTGAC TATTTCA

AAAACCACTTTGTCGCCAAAAAAGAAAACGAAACAGACAAGACTTTCGATTTCATTG CTAACAT

CACCGCAAAATACCAGTGTATTCAGGGTATCTTGGAAAACGCCGACCAATACGAAGA CGAACT

GAAACAAGATCAGAAGCTGATCGATAATTTAAAATTCTTCTTAGATGCAATCCTGGA GCTGCTG

CACTTCATCAAACCGCTTCATTTAAAGAGCGAGTCCATTACCGAAAAGGACACCGCC TTCTATG

ACGTTTTTGAAAATTATTATGAAGCCCTCTCCTTGCTGACTCCGCTGTATAATATGG TACGCAAT

TACGTAACCCAGAAACCATATTCTACCGAAAAAATTAAACTGAACTTTGAAAACGCA CAGCTGC

TCAACGGTTGGGACGCGAATAAAGAAGGTGACTACCTCACCACCATCCTGAAAAAAG ATGGTA

ACTATTTTCTGGCAATTATGGATAAGAAACATAATAAAGCATTCCAGAAATTTCCTG AAGGGAA

AGAAAATTACGAAAAGATGGTGTACAAACTCTTACCTGGAGTTAACAAAATGTTGCC GAAAGTA

TTTTTTAGTAATAAGAACATCGCGTACTTTAACCCGTCCAAAGAACTGCTGGAAAAT TATAAAA

AGGAGACGCATAAGAAAGGGGATACCTTTAACCTGGAACATTGCCATACCTTAATAG ACTTCTT

CAAGGATTCCCTGAATAAACACGAGGATTGGAAATATTTCGATTTTCAGTTTAGTGA GACCAAG

TCATACCAGGATCTTAGCGGCTTTTATCGCGAAGTAGAACACCAAGGCTATAAAATT AACTTCA

AAAACATCGACAGCGAATACATCGACGGTTTAGTTAACGAGGGCAAACTGTTTCTGT TCCAGAT

CTATTCAAAGGATTTTAGCCCGTTCTCTAAAGGCAAACCAAATATGCATACGTTGTA CTGGAAA

GCACTGTTTGAAGAGCAAAACCTGCAGAATGTGATTTATAAACTGAACGGCCAAGCT GAGATTT

TTTTCCGTAAAGCCTCGATTAAACCGAAAAATATCATCCTTCATAAGAAGAAAATAA AGATCGC

TAAAAAACACTTCATAGATAAAAAAACCAAAACCTCCGAAATAGTGCCTGTTCAAAC AATTAAG

AACTTGAATATGTACTACCAGGGCAAGATATCGGAAAAGGAGTTGACTCAAGACGAT CTTCGCT

ATATCGATAACTTTTCGATTTTTAACGAAAAAAACAAGACGATCGACATCATCAAAG ATAAACG

CTTCACTGTAGATAAGTTCCAGTTTCATGTGCCGATTACTATGAACTTCAAAGCTAC CGGGGGTA

GCTATATCAACCAAACGGTGTTGGAATACCTGCAGAATAACCCGGAAGTCAAAATCA TTGGGCT

GGACCGCGGAGAACGTCACCTTGTGTACTTGACCTTAATCGATCAGCAAGGCAACAT CTTAAAA

CAAGAATCGCTGAATACCATTACGGATTCAAAGATTAGCACCCCGTATCATAAGCTG CTCGATA

ACAAGGAGAATGAGCGCGACCTGGCCCGTAAAAACTGGGGCACGGTGGAAAACATTA AGGAGT

TAAAGGAGGGTTATATTTCCCAGGTAGTGCATAAGATCGCCACTCTCATGCTCGAGG AAAATGC

GATCGTTGTCATGGAAGACTTAAACTTCGGATTTAAACGTGGGCGATTTAAAGTAGA GAAACAA

ATCTACCAGAAGTTAGAAAAAATGCTGATTGACAAATTAAATTACTTGGTCCTAAAA GACAAAC

AGCCGCAAGAATTGGGTGGATTATACAACGCCCTCCAACTTACCAATAAATTCGAAA GTTTTCA

GAAAATGGGTAAACAGTCAGGCTTTCTTTTTTATGTTCCTGCGTGGAACACATCCAA AATCGACC

CTACAACCGGCTTCGTCAATTACTTCTATACTAAATATGAAAACGTCGACAAAGCAA AAGCATT

CTTTGAAAAGTTCGAAGCAATACGTTTTAACGCTGAGAAAAAATATTTCGAGTTCGA AGTCAAG

AAATACTCAGACTTTAACCCCAAAGCTGAGGGCACACAGCAAGCGTGGACAATCTGC ACCTACG

GCGAGCGCATCGAAACGAAGCGTCAAAAAGATCAGAATAACAAATTTGTTTCAACAC CTATCA

ACCTGACCGAGAAGATTGAAGACTTCTTAGGTAAAAATCAGATTGTTTATGGCGACG GTAACTG TATAAAATCTCAAATAGCCTCAAAGGATGATAAAGCATTTTTCGAAACATTATTATATTG GTTCA

AAATGACACTGCAGATGCGCAATAGTGAGACGCGTACAGATATTGATTATCTTATCA GCCCGGT

CATGAACGACAACGGTACTTTTTACAACTCCAGAGACTATGAAAAACTTGAGAATCC AACTCTC

CCCAAAGATGCTGATGCGAACGGTGCTTATCACATCGCGAAAAAAGGTCTGATGCTG CTGAACA

AAATCGACCAAGCCGATCTGACTAAGAAAGTTGACCTAAGCATTTCAAATCGGGACT GGTTACA

GTTTGTTCAAAAGAACAAATGAGAAATCATCCTTAGCGAAAGCTAAGGATTTTTTTT ATCTGAA

ATGTAGGGAGACCCTCAGGTTAAATATTCACTCAGGAAGTTATTACTCAGGAAGCAA AGAGGAT

TACA

SE AAAATTCcatGCAAAATGCTCCGGTTTCATGTCATCAAAATGATGACGTAATTAAGCATT GATAAT

Q TGAGATCCCTCTCCCTGACAGGATGATTACATAAATAATAGTGACAAAAATAAATTATTT ATTTA

no TCCAGAAAATGAATTGGAAAATCAGGAGAGCGTTTTCAATCCTACCTCTGGCGCAGTTGA TATG

N TcaaaCAGGTtgccgtcactgcgtcttttactggctcttctcgctaaccaaaccggtaac cccgcttattaaaagcattctgtaacaaagcgggaccaaagc O: catgacaaaaacgcgtaacaaaagtgtctataatcacggcagaaaagtccacattgatta tttgcacggcgtcacactttgctatgccatagcatttttatccataa

69 gattagcggatcctacctgacgctttttatcgcaactctctactgtttctccatacccgt ttttttgggctagcaccgcctatctcgtgtgagataggcggagatacga actttaagAAGGAGatataccATGGAACAGGAATATTATCTGGGCTTGGACATGGGCACC GGTTCCGTCG

GCTGGGCTGTTACTGACAGTGAATATCACGTTCTAAGAAAGCATGGTAAGGCATTGT GGGGTGT

AAGACTTTTCGAATCTGCTTCCACTGCTGAAGAGCGTAGAATGTTTAGAACGAGTCG ACGTAGG

CTAGACAGGCGCAATTGGAGAATCGAAATTTTACAAGAAATTTTTGCGGAAGAGATA TCTAAGA

AAGACCCAGGCTTTTTCCTGAGAATGAAGGAATCTAAGTATTACCCTGAGGATAAAA GAGATAT

AAATGGTAACTGTCCCGAATTGCCTTACGCATTATTTGTGGACGATGATTTTACCGA TAAGGATT

ACCATAAAAAGTTCCCAACTATCTACCATTTACGCAAAATGTTAATGAATACAGAGG AAACCCC

AGACATAAGACTAGTTTATCTGGCAATACACCATATGATGAAACATAGAGGCCATTT CTTACTTT

CCGGGGATATCAACGAAATCAAAGAGTTTGGTACCACATTTAGTAAGTTACTGGAAA ACATAAA

GAATGAAGAATTGGATTGGAACTTAGAACTCGGAAAAGAAGAATACGCGGTTGTCGA ATCTAT

CCTGAAGGATAATATGCTGAATAGGTCGACCAAAAAAACTAGGCTGATCAAAGCACT GAAAGC

CAAATCTATCTGCGAAAAAGCTGTTTTAAATTTACTTGCTGGTGGCACTGTTAAGTT ATCAGACA

TTTTTGGTTTGGAAGAATTGAACGAAACCGAGCGTCCAAAAATTAGTTTCGCTGATA ATGGCTA

CGATGATTACATTGGTGAGGTGGAAAACGAGTTGGGCGAACAATTTTATATTATAGA GACAGCT

AAGGCAGTCTATGACTGGGCTGTTTTAGTAGAAATCCTTGGTAAATACACATCTATC TCCGAAG

CGAAAGTTGCTACTTACGAAAAGCACAAGTCCGATCTCCAGTTTTTGAAGAAAATTG TCAGGAA

ATATCTGACTAAGGAAGAATATAAAGATATTTTCGTTAGTACCTCTGACAAACTGAA AAATTAC

TCCGCTTACATCGGGATGACCAAGATTAATGGCAAAAAAGTTGATCTGCAAAGCAAA AGGTGTT

CGAAGGAAGAATTTTATGATTTCATTAAAAAGAATGTCTTAAAAAAATTAGAAGGTC AGCCAGA

ATACGAATATTTGAAAGAAGAACTGGAAAGAGAGACATTCTTACCAAAACAAGTCAA CAGAGA

TAATGGGGTAATTCCATATCAAATTCACCTCTACGAATTAAAAAAAATTTTAGGCAA TTTACGC

GATAAAATTGACCTTATCAAAGAAAATGAGGATAAGCTGGTTCAACTCTTTGAATTC AGAATAC

CCTATTATGTGGGCCCACTGAACAAGATTGATGACGGCAAAGAAGGTAAATTCACAT GGGCCGT

CCGCAAATCCAATGAAAAAATTTACCCATGGAACTTTGAAAATGTAGTAGATATTGA AGCGTCT

GCGGAGAAATTTATTCGAAGAATGACTAATAAATGCACTTACTTGATGGGAGAGGAT GTTCTGC

CTAAAGACAGCTTATTATACAGCAAGTACATGGTTCTAAACGAACTTAACAACGTTA AGTTGGA

CGGTGAGAAATTAAGTGTAGAATTGAAACAAAGATTGTATACTGACGTCTTCTGCAA GTACAGA

AAAGTGACAGTTAAAAAAATTAAGAATTACTTGAAGTGCGAAGGTATAATTTCTGGA AACGTAG AGATTACTGGTATTGATGGTGATTTCAAAGCATCCCTAACAGCTTACCACGATTTCAAGG AAAT

CCTGACAGGAACTGAACTCGCAAAAAAAGATAAAGAAAACATTATTACTAATATTGT TCTTTTC

GGTGATGACAAGAAATTGTTGAAGAAAAGACTGAATAGACTTTACCCCCAGATTACT CCCAATC

AACTTAAGAAAATTTGTGCTTTGTCTTACACAGGATGGGGTCGTTTTTCAAAAAAGT TCTTAGAA

GAGATTACCGCACCTGATCCAGAAACAGGCGAAGTATGGAATATAATTACCGCCTTA TGGGAAT

CGAACAATAATCTTATGCAACTTCTGAGCAATGAATATCGTTTCATGGAAGAAGTTG AGACTTA

CAACATGGGCAAACAGACGAAGACTTTATCCTATGAAACTGTGGAAAATATGTATGT ATCACCT

TCTGTCAAGAGACAAATTTGGCAAACCTTAAAAATTGTCAAAGAATTAGAAAAGGTA ATGAAG

GAGTCTCCTAAACGTGTGTTTATTGAAATGGCTAGAGAAAAACAAGAGTCAAAAAGA ACCGAG

TCAAGAAAGAAGCAGTTAATCGATTTATATAAGGCTTGTAAAAACGAAGAGAAAGAT TGGGTT

AAAGAATTGGGGGACCAAGAGGAACAAAAACTACGGTCGGATAAGTTGTATTTATAC TATACG

CAAAAGGGACGATGTATGTATTCCGGCGAGGTAATAGAATTGAAGGATTTATGGGAC AATACA

AAATATGACATAGACCATATATATCCCCAATCAAAAACGATGGACGATAGCTTGAAC AATAGA

GTACTCGTGAAAAAAAAATATAATGCGACCAAATCTGATAAGTATCCTCTGAATGAA AATATCA

GACATGAAAGAAAGGGGTTCTGGAAGTCCTTGTTAGATGGTGGGTTTATAAGCAAAG AAAAGT

ACGAGCGTCTAATAAGAAACACGGAGTTATCGCCAGAAGAACTCGCTGGTTTTATTG AGAGGCA

AATCGTGGAAACGAGACAATCTACCAAAGCCGTTGCTGAGATCCTAAAGCAAGTTTT CCCAGAG

TCGGAGATTGTCTATGTCAAAGCTGGCACAGTGAGCAGGTTTAGGAAAGACTTCGAA CTATTAA

AGGTAAGAGAAGTGAACGATTTACATCACGCAAAGGACGCTTACCTAAATATCGTTG TAGGTAA

CTCATATTATGTTAAATTTACCAAGAACGCCTCTTGGTTTATAAAGGAGAACCCAGG TAGAACA

TATAACCTGAAAAAGATGTTCACCTCTGGTTGGAATATTGAGAGAAACGGAGAAGTC GCATGGG

AAGTTGGTAAGAAAGGGACTATAGTGACAGTAAAGCAAATTATGAACAAAAATAATA TCCTCG

TTACAAGGCAGGTTCATGAAGCAAAGGGCGGCCTTTTTGACCAACAAATTATGAAGA AAGGGA

AAGGTCAAATTGCAATAAAAGAAACCGATGAGAGACTAGCGTCAATAGAAAAGTATG GTGGCT

ATAATAAAGCTGCGGGTGCATACTTTATGCTTGTTGAATCAAAAGACAAGAAAGGTA AGACTAT

TAGAACTATAGAATTTATACCCCTGTACCTTAAAAACAAAATTGAATCGGATGAGTC AATCGCG

TTAAATTTTCTAGAGAAAGGAAGGGGTTTAAAAGAACCAAAGATCCTGTTAAAAAAG ATTAAG

ATTGACACCTTGTTCGATGTAGATGGATTTAAAATGTGGTTATCTGGCAGAACAGGC GATAGAC

TTTTGTTTAAGTGCGCTAATCAATTAATTTTGGATGAGAAAATCATTGTCACAATGA AAAAAATA

GTTAAGTTTATTCAGAGAAGACAAGAAAACAGGGAGTTGAAATTATCTGATAAAGAT GGTATCG

ACAATGAAGTTTTAATGGAAATCTACAATACATTCGTTGATAAACTTGAAAATACCG TATATCG

AATCAGGTTAAGTGAACAAGCCAAAACATTAATTGATAAACAAAAAGAATTTGAAAG GCTATC

ACTGGAAGACAAATCCTCCACCCTATTTGAAATTTTGCATATATTCCAGTGCCAATC TTCAGCAG

CTAATTTAAAAATGATTGGCGGACCTGGGAAAGCCGGCATCCTAGTGATGAACAATA ATATCTC

CAAGTGTAACAAAATATCAATTATTAACCAATCTCCGACAGGTATTTTTGAAAATGA AATAGAC

TTGCTTAAGATATAAGAAATCATCCTTAGCGAAAGCTAAGGATTTTTTTTATCTGAA ATTTATTA

TATCGCGTTGATTATTGATGCTGTTTTTAGTTTTAACGGCAATTAATATATGTGTTA TTAATTGAA

TGAATTTTATCATTCATAATAAGTATGTGTAGGATCAAGCTCAGGTTAAATATTCAC TCAGGAAG

TTATTACTCAGGAAGCAAAGAGGATTACAGAATTATCTCATAACAAGTGTTAAGGGA TGTTATT

TCC

SE AATCAGGAGAGCGTTTTCAATCCTACCTCTGGCGCAGTTGATATGTCAAACAGGTTGCCG TCACT

Q GCGTCTTTTACTGGCTCTTCTCGCTAACCAAACCGGTAACCCCGCTTATTAAAAGCATTC TGTAA E) CAAAGCGGGACCAAAGCCATGACAAAAACGCGTAACAAAAGTGTCTATAATCACGGCAGA AAA N GTCCACATTGATTATTTGCACGGCGTCACACTTTGCTATGCCATAGCATTTTTATCCATA AGATT

O: AGCGGATCCTACCTGACGCTTTTTATCGCAACTCTCTACTGTTTCTCCATACCCGTTTTT TTGGGC 70 TAGCAGTAATACGACTCACTATAGGGGTCTCATCTCGTGTGAGATAGGCGGAGATACGAA CTTT AAGAGGAGGATATACCATGCACCATCATCATCACCATTCTTTCGACTCTTTCACCAACCT GTACT CTCTGTCTAAAACCCTGAAATTCGAAATGCGTCCGGTTGGTAACACCCAGAAAATGCTGG ACAA CGCGGGTGTTTTCGAAAAAGACAAACTGATCCAGAAAAAATACGGTAAAACCAAACCGTA CTT CGACCGTCTGCACCGTGAATTCATCGAAGAAGCGCTGACCGGTGTTGAACTGATCGGTCT GGAC GAAAACTTCCGTACCCTGGTTGACTGGCAGAAAGACAAAAAAAACAACGTTGCGATGAAA GCG TACGAAAACTCTCTGCAGCGTCTGCGTACCGAAATCGGTAAAATCTTCAACCTGAAAGCG GAAG ACTGGGTTAAAAACAAATACCCGATCCTGGGTCTGAAAAACAAAAACACCGACATCCTGT TCGA AGAAGCGGTTTTCGGTATCCTGAAAGCGCGTTACGGTGAAGAAAAAGACACCTTCATCGA AGTT GAAGAAATCGACAAAACCGGTAAATCTAAAATCAACCAGATCTCTATCTTCGACTCTTGG AAAG GTTTCACCGGTTACTTCAAAAAATTCTTCGAAACCCGTAAAAACTTCTACAAAAACGACG GTAC CTCTACCGCGATCGCGACCCGTATCATCGACCAGAACCTGAAACGTTTCATCGACAACCT GTCT ATCGTTGAATCTGTTCGTCAGAAAGTTGACCTGGCGGAAACCGAAAAATCTTTCTCTATC TCTCT GTCTCAGTTCTTCTCTATCGACTTCTACAACAAATGCCTGCTGCAGGACGGTATCGACTA CTACA ACAAAATCATCGGTGGTGAAACCCTGAAAAACGGTGAAAAACTGATCGGTCTGAACGAAC TGA TCAACCAGTACCGTCAGAACAACAAAGACCAGAAAATCCCGTTCTTCAAACTGCTGGACA AACA GATCCTGTCTGAAAAAATCCTGTTCCTGGACGAAATCAAAAACGACACCGAACTGATCGA AGCG CTGTCTCAGTTCGCGAAAACCGCGGAAGAAAAAACCAAAATCGTTAAAAAACTGTTCGCG GACT TCGTTGAAAACAACTCTAAATACGACCTGGCGCAGATCTACATCTCTCAGGAAGCGTTCA ACAC CATCTCTAACAAATGGACCTCTGAAACCGAAACCTTCGCGAAATACCTGTTCGAAGCGAT GAAA TCTGGTAAACTGGCGAAATACGAAAAAAAAGACAACTCTTACAAATTCCCGGACTTCATC GCGC TGTCTCAGATGAAATCTGCGCTGCTGTCTATCTCTCTGGAAGGTCACTTCTGGAAAGAAA AATAC TACAAAATCTCTAAATTCCAGGAAAAAACCAACTGGGAACAGTTCCTGGCGATCTTCCTG TACG AATTCAACTCTCTGTTCTCTGACAAAATCAACACCAAAGACGGTGAAACCAAACAGGTTG GTTA CTACCTGTTCGCGAAAGACCTGCACAACCTGATCCTGTCTGAACAGATCGACATCCCGAA AGAC TCTAAAGTTACCATCAAAGACTTCGCGGACTCTGTTCTGACCATCTACCAGATGGCGAAA TACTT CGCGGTTGAAAAAAAACGTGCGTGGCTGGCGGAATACGAACTGGACTCTTTCTACACCCA GCCG GACACCGGTTACCTGCAGTTCTACGACAACGCGTACGAAGACATCGTTCAGGTTTACAAC AAAC TGCGTAACTACCTGACCAAAAAACCGTACTCTGAAGAAAAATGGAAACTGAACTTCGAAA ACTC TACCCTGGCGAACGGTTGGGACAAAAACAAAGAATCTGACAACTCTGCGGTTATCCTGCA GAAA GGTGGTAAATACTACCTGGGTCTGATCACCAAAGGTCACAACAAAATCTTCGACGACCGT TTCC AGGAAAAATTCATCGTTGGTATCGAAGGTGGTAAATACGAAAAAATCGTTTACAAATTCT TCCC GGACCAGGCGAAAATGTTCCCGAAAGTTTGCTTCTCTGCGAAAGGTCTGGAATTCTTCCG TCCGT CTGAAGAAATCCTGCGTATCTACAACAACGCGGAATTCAAAAAAGGTGAAACCTACTCTA TCGA CTCTATGCAGAAACTGATCGACTTCTACAAAGACTGCCTGACCAAATACGAAGGTTGGGC GTGC TACACCTTCCGTCACCTGAAACCGACCGAAGAATACCAGAACAACATCGGTGAATTCTTC CGTG ACGTTGCGGAAGACGGTTACCGTATCGACTTCCAGGGTATCTCTGACCAGTACATCCACG AAAA AAACGAAAAAGGTGAACTGCACCTGTTCGAAATCCACAACAAAGACTGGAACCTGGACAA AGC GCGTGACGGTAAATCTAAAACCACCCAGAAAAACCTGCACACCCTGTACTTCGAATCTCT GTTC TCTAACGACAACGTTGTTCAGAACTTCCCGATCAAACTGAACGGTCAGGCGGAAATCTTC TACC

GTCCGAAAACCGAAAAAGACAAACTGGAATCTAAAAAAGACAAAAAAGGTAACAAAG TTATCG

ACCACAAACGTTACTCTGAAAACAAAATCTTCTTCCACGTTCCGCTGACCCTGAACC GTACCAA

AAACGACTCTTACCGTTTCAACGCGCAGATCAACAACTTCCTGGCGAACAACAAAGA CATCAAC

ATCATCGGTGTTGACCGTGGTGAAAAACACCTGGTTTACTACTCTGTTATCACCCAG GCGTCTGA

CATCCTGGAATCTGGTTCTCTGAACGAACTGAACGGTGTTAACTACGCGGAAAAACT GGGTAAA

AAAGCGGAAAACCGTGAACAGGCGCGTCGTGACTGGCAGGACGTTCAGGGTATCAAA GACCTG

AAAAAAGGTTACATCTCTCAGGTTGTTCGTAAACTGGCGGACCTGGCGATCAAACAC AACGCGA

TCATCATCCTGGAAGACCTGAACATGCGTTTCAAACAGGTTCGTGGTGGTATCGAAA AATCTAT

CTACCAGCAGCTGGAAAAAGCGCTGATCGACAAACTGTCTTTCCTGGTTGACAAAGG TGAAAAA

AACCCGGAACAGGCGGGTCACCTGCTGAAAGCGTACCAGCTGTCTGCGCCGTTCGAA ACCTTCC

AGAAAATGGGTAAACAGACCGGTATCATCTTCTACACCCAGGCGTCTTACACCTCTA AATCTGA

CCCGGTTACCGGTTGGCGTCCGCACCTGTACCTGAAATACTTCTCTGCGAAAAAAGC GAAAGAC

GACATCGCGAAATTCACCAAAATCGAATTCGTTAACGACCGTTTCGAACTGACCTAC GACATCA

AAGACTTCCAGCAGGCGAAAGAATACCCGAACAAAACCGTTTGGAAAGTTTGCTCTA ACGTTGA

ACGTTTCCGTTGGGACAAAAACCTGAACCAGAACAAAGGTGGTTACACCCACTACAC CAACATC

ACCGAAAACATCCAGGAACTGTTCACCAAATACGGTATCGACATCACCAAAGACCTG CTGACCC

AGATCTCTACCATCGACGAAAAACAGAACACCTCTTTCTTCCGTGACTTCATCTTCT ACTTCAAC

CTGATCTGCCAGATCCGTAACACCGACGACTCTGAAATCGCGAAAAAAAACGGTAAA GACGAC

TTCATCCTGTCTCCGGTTGAACCGTTCTTCGACTCTCGTAAAGACAACGGTAACAAA CTGCCGGA

AAACGGTGACGACAACGGTGCGTACAACATCGCGCGTAAAGGTATCGTTATCCTGAA CAAAATC

TCTCAGTACTCTGAAAAAAACGAAAACTGCGAAAAAATGAAATGGGGTGACCTGTAC GTTTCTA

ACATCGACTGGGACAACTTCGTTGAAATCATCCTTAGCGAAAGCTAAGGATTTTTTT TATCTGAA

ATGTAGGGAGACCCTCAGGTTAAATATTCACTCAGGAAGTTATTACTCAGGAAGCAA AGAGGAT

TACA

SE AATCAGGAGAGCGTTTTCAATCCTACCTCTGGCGCAGTTGATATGTCAAACAGGTTGCCG TCACT

Q GCGTCTTTTACTGGCTCTTCTCGCTAACCAAACCGGTAACCCCGCTTATTAAAAGCATTC TGTAA

no CAAAGCGGGACCAAAGCCATGACAAAAACGCGTAACAAAAGTGTCTATAATCACGGCAGA AAA

N GTCCACATTGATTATTTGCACGGCGTCACACTTTGCTATGCCATAGCATTTTTATCCATA AGATT

O: AGCGGATCCTACCTGACGCTTTTTATCGCAACTCTCTACTGTTTCTCCATACCCGTTTTT TTGGGC 71 TAGCAGTAATACGACTCACTATAGGGGTCTCATCTCGTGTGAGATAGGCGGAGATACGAA CTTT

AAGAGGAGGATATACCATGCACCATCATCATCACCATAACAAATTCGAAAACTTCAC CGGTCTG

TACCCGATCTCTAAAACCCTGCGTTTCGAACTGATCCCGCAGGGTAAAACCCTGGAA TACATCG

AAAAATCTGAAATCCTGGAAAACGACAACTACCGTGCGGAAAAATACGAAGAAGTTA AAGACA

TCATCGACGGTTACCACAAATGGTTCATCAACGAAACCCTGCACGACCTGCACATCA ACTGGTC

TGAACTGAAAGTTGCGCTGGAAAACAACCGTATCGAAAAATCTGACGCGTCTAAAAA AGAACT

GCAGCGTGTTCAGAAAATCAAACGTGAAGAAATCTACAACGCGTTCATCGAACACGA AGCGTTC

CAGTACCTGTTCAAAGAAAACCTGCTGTCTGACCTGCTGCCGATCCAGATCGAACAG TCTGAAG

ACCTGGACGCGGAAAAAAAAAAACAGGCGGTTGAAACCTTCAACCGTTTCTCTACCT ACTTCAC

CGGTTTCCACGAAAACCGTAAAAACATCTACTCTAAAGAAGGTATCTCTACCTCTGT TACCTACC

GTATCGTTCACGACAACTTCCCGAAATTCCTGGAAAACATGAAAGTTTTCGAAATCC TGCGTAA

CGAATGCCCGGAAGTTATCTCTGACACCGCGAACGAACTGGCGCCGTTCATCGACGG TGTTCGT ATCGAAGACATCTTCCTGATCGACTTCTTCAACTCTACCTTCTCTCAGAACGGTATCGAC TACTA

CAACCGTATCCTGGGTGGTGTTACCACCGAAACCGGTGAAAAATACCGTGGTATCAA CGAATTC

ACCAACCTGTACCGTCAGCAGCACCCGGAATTCGGTAAATCTAAAAAAGCGACCAAA ATGGTTG

TTCTGTTCAAACAGATCCTGTCTGACCGTGACACCCTGTCTTTCATCCCGGAAATGT TCGGTAAC

GACAAACAGGTTCAGAACTCTATCCAGCTGTTCTACAACCGTGAAATCTCTCAGTTC GAAAACG

AAGGTGTTAAAACCGACGTTTGCACCGCGCTGGCGACCCTGACCTCTAAAATCGCGG AATTCGA

CACCGAAAAAATCTACATCCAGCAGCCGGAACTGCCGAACGTTTCTCAGCGTCTGTT CGGTTCTT

GGAACGAACTGAACGCGTGCCTGTTCAAATACGCGGAACTGAAATTCGGTACCGCGG AAAAAG

TTGCGAACCGTAAAAAAATCGACAAATGGCTGAAATCTGACCTGTTCTCTTTCACCG AACTGAA

CAAAGCGCTGGAATTCTCTGGTAAAGACGAACGTATCGAAAACTACTTCTCTGAAAC CGGTATC

TTCGCGCAGCTGGTTAAAACCGGTTTCGACGAAGCGCAGTCTATCCTGGAAACCGAA TACACCT

CTGAAGTTCACCTGAAAGACCAGCAGACCGACATCGAAAAAATCAAAACCTTCCTGG ACGCGCT

GCAGAACCTGATGCACCTGCTGAAATCTCTGTGCGTTTCTGAAGAAGCGGACCGTGA CGCGGCG

TTCTACAACGAATTCGACATGCTGTACAACCAGCTGAAACTGGTTGTTCCGCTGTAC AACAAAG

TTCGTAACTACATCACCCAGAAACTGTTCCGTTCTGACAAAATCAAAATCTACTTCG AAAACAA

AGGTCAGTTCCTGGGTGGTTGGGTTGACTCTCAGACCGAAAACTCTGACAACGGTAC CCAGGCG

GGTGGTTACATCTTCCGTAAAGAAAACGTTATCAACGAATACGACTACTACCTGGGT ATCTGCT

CTGACCCGAAACTGTTCCGTCGTACCACCATCGTTTCTGAAAACGACCGTTCTTCTT TCGAACGT

CTGGACTACTACCAGCTGAAAACCGCGTCTGTTTACGGTAACTCTTACTGCGGTAAA CACCCGT

ACACCGAAGACAAAAACGAACTGGTTAACTCTATCGACCGTTTCGTTCACCTGTCTG GTAACAA

CATCCTGATCGAAAAAATCGCGAAAGACAAAGTTAAATCTAACCCGACCACCAACAC CCCGTCT

GGTTACCTGAACTTCATCCACCGTGAAGCGCCGAACACCTACGAATGCCTGCTGCAG GACGAAA

ACTTCGTTTCTCTGAACCAGCGTGTTGTTTCTGCGCTGAAAGCGACCCTGGCGACCC TGGTTCGT

GTTCCGAAAGCGCTGGTTTACGCGAAAAAAGACTACCACCTGTTCTCTGAAATCATC AACGACA

TCGACGAACTGTCTTACGAAAAAGCGTTCTCTTACTTCCCGGTTTCTCAGACCGAAT TCGAAAAC

TCTTCTAACCGTACCATCAAACCGCTGCTGCTGTTCAAAATCTCTAACAAAGACCTG TCTTTCGC

GGAAAACTTCGAAAAAGGTAACCGTCAGAAAATCGGTAAAAAAAACCTGCACACCCT GTACTT

CGAAGCGCTGATGAAAGGTAACCAGGACACCATCGACATCGGTACCGGTATGGTTTT CCACCGT

GTTAAATCTCTGAACTACAACGAAAAAACCCTGAAATACGGTCACCACTCTACCCAG CTGAACG

AAAAATTCTCTTACCCGATCATCAAAGACAAACGTTTCGCGTCTGACAAATTCCTGT TCCACCTG

TCTACCGAAATCAACTACAAAGAAAAACGTAAACCGCTGAACAACTCTATCATCGAA TTCCTGA

CCAACAACCCGGACATCAACATCATCGGTCTGGACCGTGGTGAACGTCACCTGATCT ACCTGAC

CCTGATCAACCAGAAAGGTGAAATCCTGCGTCAGAAAACCTTCAACATCGTTGGTAA CACCAAC

TACCACGAAAAACTGAACCAGCGTGAAAAAGAACGTGACAACGCGCGTAAATCTTGG GCGACC

ATCGGTAAAATCAAAGAACTGAAAGAAGGTTTCCTGTCTCTGGTTATCCACGAAATC GCGAAAA

TCATGGTTGAAAACAACGCGATCGTTGTTCTGGAAGACCTGAACTTCGGTTTCAAAC GTGGTCG

TTTCAAAGTTGAAAAACAGATCTACCAGAAATTCGAAAAAATGCTGATCGACAAACT GAACTAC

CTGGTTTTCAAAGACAAAAAAGCGAACGAAGCGGGTGGTGTTCTGAAAGGTTACCAG CTGGCG

GAAAAATTCGAATCTTTCCAGAAAATGGGTAAACAGTCTGGTTTCCTGTTCTACGTT CCGGCGGC

GTACACCTCTAAAATCGACCCGACCACCGGTTTCGTTAACATGCTGAACCTGAACTA CACCAAC

ATGAAAGACGCGCAGACCCTGCTGTCTGGTATGGACAAAATCTCTTTCAACGCGGAC GCGAACT

ACTTCGAATTCGAACTGGACTACGAAAAATTCAAAACCAACCAGACCGACCACACCA ACAAAT GGACCATCTGCACCGTTGGTGAAAAACGTTTCACCTACAACTCTGCGACCAAAGAAACCA CCAC

CGTTAACGTTACCGAAGACCTGAAAAAACTGCTGGACAAATTCGAAGTTAAATACTC TAACGGT

GACAACATCAAAGACGAAATCTGCCGTCAGACCGACGCGAAATTCTTCGAAATCATC CTGTGGC

TGCTGAAACTGACCATGCAGATGCGTAACTCTAACACCAAAACCGAAGAAGACTTCA TCCTGTC

TCCGGTTAAAAACTCTAACGGTGAATTCTTCCGTTCTAACGACGACGCGAACGGTAT CTGGCCG

GCGGACGCGGACGCGAACGGTGCGTACCACATCGCGCTGAAAGGTCTGTACCTGGTT AAAGAA

TGCTTCAACAAAAACGAAAAATCTCTGAAAATCGAACACAAAAACTGGTTCAAATTC GCGCAG

ACCCGTTTCAACGGTTCTCTGACCAAAAACGGTTAAGAAATCATCCTTAGCGAAAGC TAAGGAT

TTTTTTTATCTGAAATGTAGGGAGACCCTCAGGTTAAATATTCACTCAGGAAGTTAT TACTCAGG

AAGCAAAGAGGATTACA

SE AATCAGGAGAGCGTTTTCAATCCTACCTCTGGCGCAGTTGATATGTCAAACAGGTTGCCG TCACT

Q GCGTCTTTTACTGGCTCTTCTCGCTAACCAAACCGGTAACCCCGCTTATTAAAAGCATTC TGTAA

no CAAAGCGGGACCAAAGCCATGACAAAAACGCGTAACAAAAGTGTCTATAATCACGGCAGA AAA

N GTCCACATTGATTATTTGCACGGCGTCACACTTTGCTATGCCATAGCATTTTTATCCATA AGATT

O: AGCGGATCCTACCTGACGCTTTTTATCGCAACTCTCTACTGTTTCTCCATACCCGTTTTT TTGGGC

72 TAGCAGTAATACGACTCACTATAGGGGTCTCATCTCGTGTGAGATAGGCGGAGATACGAA CTTT

AAGAGGAGGATATACCATGCACCATCATCATCACCATACCCAGTTCGAAGGTTTCAC CAACCTG

TACCAGGTTTCTAAAACCCTGCGTTTCGAACTGATCCCGCAGGGTAAAACCCTGAAA CACATCC

AGGAACAGGGTTTCATCGAAGAAGACAAAGCGCGTAACGACCACTACAAAGAACTGA AACCGA

TCATCGACCGTATCTACAAAACCTACGCGGACCAGTGCCTGCAGCTGGTTCAGCTGG ACTGGGA

AAACCTGTCTGCGGCGATCGACTCTTACCGTAAAGAAAAAACCGAAGAAACCCGTAA CGCGCT

GATCGAAGAACAGGCGACCTACCGTAACGCGATCCACGACTACTTCATCGGTCGTAC CGACAAC

CTGACCGACGCGATCAACAAACGTCACGCGGAAATCTACAAAGGTCTGTTCAAAGCG GAACTGT

TCAACGGTAAAGTTCTGAAACAGCTGGGTACCGTTACCACCACCGAACACGAAAACG CGCTGCT

GCGTTCTTTCGACAAATTCACCACCTACTTCTCTGGTTTCTACGAAAACCGTAAAAA CGTTTTCT

CTGCGGAAGACATCTCTACCGCGATCCCGCACCGTATCGTTCAGGACAACTTCCCGA AATTCAA

AGAAAACTGCCACATCTTCACCCGTCTGATCACCGCGGTTCCGTCTCTGCGTGAACA CTTCGAAA

ACGTTAAAAAAGCGATCGGTATCTTCGTTTCTACCTCTATCGAAGAAGTTTTCTCTT TCCCGTTCT

ACAACCAGCTGCTGACCCAGACCCAGATCGACCTGTACAACCAGCTGCTGGGTGGTA TCTCTCG

TGAAGCGGGTACCGAAAAAATCAAAGGTCTGAACGAAGTTCTGAACCTGGCGATCCA GAAAAA

CGACGAAACCGCGCACATCATCGCGTCTCTGCCGCACCGTTTCATCCCGCTGTTCAA ACAGATCC

TGTCTGACCGTAACACCCTGTCTTTCATCCTGGAAGAATTCAAATCTGACGAAGAAG TTATCCAG

TCTTTCTGCAAATACAAAACCCTGCTGCGTAACGAAAACGTTCTGGAAACCGCGGAA GCGCTGT

TCAACGAACTGAACTCTATCGACCTGACCCACATCTTCATCTCTCACAAAAAACTGG AAACCAT

CTCTTCTGCGCTGTGCGACCACTGGGACACCCTGCGTAACGCGCTGTACGAACGTCG TATCTCTG

AACTGACCGGTAAAATCACCAAATCTGCGAAAGAAAAAGTTCAGCGTTCTCTGAAAC ACGAAG

ACATCAACCTGCAGGAAATCATCTCTGCGGCGGGTAAAGAACTGTCTGAAGCGTTCA AACAGAA

AACCTCTGAAATCCTGTCTCACGCGCACGCGGCGCTGGACCAGCCGCTGCCGACCAC CCTGAAA

AAACAGGAAGAAAAAGAAATCCTGAAATCTCAGCTGGACTCTCTGCTGGGTCTGTAC CACCTGC

TGGACTGGTTCGCGGTTGACGAATCTAACGAAGTTGACCCGGAATTCTCTGCGCGTC TGACCGG

TATCAAACTGGAAATGGAACCGTCTCTGTCTTTCTACAACAAAGCGCGTAACTACGC GACCAAA

AAACCGTACTCTGTTGAAAAATTCAAACTGAACTTCCAGATGCCGACCCTGGCGTCT GGTTGGG ACGTTAACAAAGAAAAAAACAACGGTGCGATCCTGTTCGTTAAAAACGGTCTGTACTACC TGGG

TATCATGCCGAAACAGAAAGGTCGTTACAAAGCGCTGTCTTTCGAACCGACCGAAAA AACCTCT

GAAGGTTTCGACAAAATGTACTACGACTACTTCCCGGACGCGGCGAAAATGATCCCG AAATGCT

CTACCCAGCTGAAAGCGGTTACCGCGCACTTCCAGACCCACACCACCCCGATCCTGC TGTCTAA

CAACTTCATCGAACCGCTGGAAATCACCAAAGAAATCTACGACCTGAACAACCCGGA AAAAGA

ACCGAAAAAATTCCAGACCGCGTACGCGAAAAAAACCGGTGACCAGAAAGGTTACCG TGAAGC

GCTGTGCAAATGGATCGACTTCACCCGTGACTTCCTGTCTAAATACACCAAAACCAC CTCTATCG

ACCTGTCTTCTCTGCGTCCGTCTTCTCAGTACAAAGACCTGGGTGAATACTACGCGG AACTGAAC

CCGCTGCTGTACCACATCTCTTTCCAGCGTATCGCGGAAAAAGAAATCATGGACGCG GTTGAAA

CCGGTAAACTGTACCTGTTCCAGATCTACAACAAAGACTTCGCGAAAGGTCACCACG GTAAACC

GAACCTGCACACCCTGTACTGGACCGGTCTGTTCTCTCCGGAAAACCTGGCGAAAAC CTCTATC

AAACTGAACGGTCAGGCGGAACTGTTCTACCGTCCGAAATCTCGTATGAAACGTATG GCGCACC

GTCTGGGTGAAAAAATGCTGAACAAAAAACTGAAAGACCAGAAAACCCCGATCCCGG ACACCC

TGTACCAGGAACTGTACGACTACGTTAACCACCGTCTGTCTCACGACCTGTCTGACG AAGCGCG

TGCGCTGCTGCCGAACGTTATCACCAAAGAAGTTTCTCACGAAATCATCAAAGACCG TCGTTTC

ACCTCTGACAAATTCTTCTTCCACGTTCCGATCACCCTGAACTACCAGGCGGCGAAC TCTCCGTC

TAAATTCAACCAGCGTGTTAACGCGTACCTGAAAGAACACCCGGAAACCCCGATCAT CGGTATC

GACCGTGGTGAACGTAACCTGATCTACATCACCGTTATCGACTCTACCGGTAAAATC CTGGAAC

AGCGTTCTCTGAACACCATCCAGCAGTTCGACTACCAGAAAAAACTGGACAACCGTG AAAAAG

AACGTGTTGCGGCGCGTCAGGCGTGGTCTGTTGTTGGTACCATCAAAGACCTGAAAC AGGGTTA

CCTGTCTCAGGTTATCCACGAAATCGTTGACCTGATGATCCACTACCAGGCGGTTGT TGTTCTGG

AAAACCTGAACTTCGGTTTCAAATCTAAACGTACCGGTATCGCGGAAAAAGCGGTTT ACCAGCA

GTTCGAAAAAATGCTGATCGACAAACTGAACTGCCTGGTTCTGAAAGACTACCCGGC GGAAAA

AGTTGGTGGTGTTCTGAACCCGTACCAGCTGACCGACCAGTTCACCTCTTTCGCGAA AATGGGT

ACCCAGTCTGGTTTCCTGTTCTACGTTCCGGCGCCGTACACCTCTAAAATCGACCCG CTGACCGG

TTTCGTTGACCCGTTCGTTTGGAAAACCATCAAAAACCACGAATCTCGTAAACACTT CCTGGAA

GGTTTCGACTTCCTGCACTACGACGTTAAAACCGGTGACTTCATCCTGCACTTCAAA ATGAACCG

TAACCTGTCTTTCCAGCGTGGTCTGCCGGGTTTCATGCCGGCGTGGGACATCGTTTT CGAAAAAA

ACGAAACCCAGTTCGACGCGAAAGGTACCCCGTTCATCGCGGGTAAACGTATCGTTC CGGTTAT

CGAAAACCACCGTTTCACCGGTCGTTACCGTGACCTGTACCCGGCGAACGAACTGAT CGCGCTG

CTGGAAGAAAAAGGTATCGTTTTCCGTGACGGTTCTAACATCCTGCCGAAACTGCTG GAAAACG

ACGACTCTCACGCGATCGACACCATGGTTGCGCTGATCCGTTCTGTTCTGCAGATGC GTAACTCT

AACGCGGCGACCGGTGAAGACTACATCAACTCTCCGGTTCGTGACCTGAACGGTGTT TGCTTCG

ACTCTCGTTTCCAGAACCCGGAATGGCCGATGGACGCGGACGCGAACGGTGCGTACC ACATCGC

GCTGAAAGGTCAGCTGCTGCTGAACCACCTGAAAGAATCTAAAGACCTGAAACTGCA GAACGG

TATCTCTAACCAGGACTGGCTGGCGTACATCCAGGAACTGCGTAACTAGAAATCATC CTTAGCG

AAAGCTAAGGATTTTTTTTATCTGAAATGTAGGGAGACCCTCAGGTTAAATATTCAC TCAGGAA

GTTATTACTCAGGAAGCAAAGAGGATTACA

SE AATCAGGAGAGCGTTTTCAATCCTACCTCTGGCGCAGTTGATATGTCAAACAGGTTGCCG TCACT

Q GCGTCTTTTACTGGCTCTTCTCGCTAACCAAACCGGTAACCCCGCTTATTAAAAGCATTC TGTAA

no CAAAGCGGGACCAAAGCCATGACAAAAACGCGTAACAAAAGTGTCTATAATCACGGCAGA AAA

N GTCCACATTGATTATTTGCACGGCGTCACACTTTGCTATGCCATAGCATTTTTATCCATA AGATT O: AGCGGATCCTACCTGACGCTTTTTATCGCAACTCTCTACTGTTTCTCCATACCCGTTTTT TTGGGC

73 TAGCAGTAATACGACTCACTATAGGGGTCTCATCTCGTGTGAGATAGGCGGAGATACGAA CTTT

AAGAGGAGGATATACCATGCACCATCATCATCACCATGCGGTTAAATCTATCAAAGT TAAACTG

CGTCTGGACGACATGCCGGAAATCCGTGCGGGTCTGTGGAAACTGCACAAAGAAGTT AACGCG

GGTGTTCGTTACTACACCGAATGGCTGTCTCTGCTGCGTCAGGAAAACCTGTACCGT CGTTCTCC

GAACGGTGACGGTGAACAGGAATGCGACAAAACCGCGGAAGAATGCAAAGCGGAACT GCTGG

AACGTCTGCGTGCGCGTCAGGTTGAAAACGGTCACCGTGGTCCGGCGGGTTCTGACG ACGAACT

GCTGCAGCTGGCGCGTCAGCTGTACGAACTGCTGGTTCCGCAGGCGATCGGTGCGAA AGGTGAC

GCGCAGCAGATCGCGCGTAAATTCCTGTCTCCGCTGGCGGACAAAGACGCGGTTGGT GGTCTGG

GTATCGCGAAAGCGGGTAACAAACCGCGTTGGGTTCGTATGCGTGAAGCGGGTGAAC CGGGTT

GGGAAGAAGAAAAAGAAAAAGCGGAAACCCGTAAATCTGCGGACCGTACCGCGGACG TTCTGC

GTGCGCTGGCGGACTTCGGTCTGAAACCGCTGATGCGTGTTTACACCGACTCTGAAA TGTCTTCT

GTTGAATGGAAACCGCTGCGTAAAGGTCAGGCGGTTCGTACCTGGGACCGTGACATG TTCCAGC

AGGCGATCGAACGTATGATGTCTTGGGAATCTTGGAACCAGCGTGTTGGTCAGGAAT ACGCGAA

ACTGGTTGAACAGAAAAACCGTTTCGAACAGAAAAACTTCGTTGGTCAGGAACACCT GGTTCAC

CTGGTTAACCAGCTGCAGCAGGACATGAAAGAAGCGTCTCCGGGTCTGGAATCTAAA GAACAG

ACCGCGCACTACGTTACCGGTCGTGCGCTGCGTGGTTCTGACAAAGTTTTCGAAAAA TGGGGTA

AACTGGCGCCGGACGCGCCGTTCGACCTGTACGACGCGGAAATCAAAAACGTTCAGC GTCGTAA

CACCCGTCGTTTCGGTTCTCACGACCTGTTCGCGAAACTGGCGGAACCGGAATACCA GGCGCTG

TGGCGTGAAGACGCGTCTTTCCTGACCCGTTACGCGGTTTACAACTCTATCCTGCGT AAACTGAA

CCACGCGAAAATGTTCGCGACCTTCACCCTGCCGGACGCGACCGCGCACCCGATCTG GACCCGT

TTCGACAAACTGGGTGGTAACCTGCACCAGTACACCTTCCTGTTCAACGAATTCGGT GAACGTC

GTCACGCGATCCGTTTCCACAAACTGCTGAAAGTTGAAAACGGTGTTGCGCGTGAAG TTGACGA

CGTTACCGTTCCGATCTCTATGTCTGAACAGCTGGACAACCTGCTGCCGCGTGACCC GAACGAA

CCGATCGCGCTGTACTTCCGTGACTACGGTGCGGAACAGCACTTCACCGGTGAATTC GGTGGTG

CGAAAATCCAGTGCCGTCGTGACCAGCTGGCGCACATGCACCGTCGTCGTGGTGCGC GTGACGT

TTACCTGAACGTTTCTGTTCGTGTTCAGTCTCAGTCTGAAGCGCGTGGTGAACGTCG TCCGCCGT

ACGCGGCGGTTTTCCGTCTGGTTGGTGACAACCACCGTGCGTTCGTTCACTTCGACA AACTGTCT

GACTACCTGGCGGAACACCCGGACGACGGTAAACTGGGTTCTGAAGGTCTGCTGTCT GGTCTGC

GTGTTATGTCTGTTGACCTGGGTCTGCGTACCTCTGCGTCTATCTCTGTTTTCCGTG TTGCGCGTA

AAGACGAACTGAAACCGAACTCTAAAGGTCGTGTTCCGTTCTTCTTCCCGATCAAAG GTAACGA

CAACCTGGTTGCGGTTCACGAACGTTCTCAGCTGCTGAAACTGCCGGGTGAAACCGA ATCTAAA

GACCTGCGTGCGATCCGTGAAGAACGTCAGCGTACCCTGCGTCAGCTGCGTACCCAG CTGGCGT

ACCTGCGTCTGCTGGTTCGTTGCGGTTCTGAAGACGTTGGTCGTCGTGAACGTTCTT GGGCGAAA

CTGATCGAACAGCCGGTTGACGCGGCGAACCACATGACCCCGGACTGGCGTGAAGCG TTCGAA

AACGAACTGCAGAAACTGAAATCTCTGCACGGTATCTGCTCTGACAAAGAATGGATG GACGCG

GTTTACGAATCTGTTCGTCGTGTTTGGCGTCACATGGGTAAACAGGTTCGTGACTGG CGTAAAG

ACGTTCGTTCTGGTGAACGTCCGAAAATCCGTGGTTACGCGAAAGACGTTGTTGGTG GTAACTC

TATCGAACAGATCGAATACCTGGAACGTCAGTACAAATTCCTGAAATCTTGGTCTTT CTTCGGTA

AAGTTTCTGGTCAGGTTATCCGTGCGGAAAAAGGTTCTCGTTTCGCGATCACCCTGC GTGAACAC

ATCGACCACGCGAAAGAAGACCGTCTGAAAAAACTGGCGGACCGTATCATCATGGAA GCGCTG

GGTTACGTTTACGCGCTGGACGAACGTGGTAAAGGTAAATGGGTTGCGAAATACCCG CCGTGCC AGCTGATCCTGCTGGAAGAACTGTCTGAATACCAGTTCAACAACGACCGTCCGCCGTCTG AAAA

CAACCAGCTGATGCAGTGGTCTCACCGTGGTGTTTTCCAGGAACTGATCAACCAGGC GCAGGTT

CACGACCTGCTGGTTGGTACCATGTACGCGGCGTTCTCTTCTCGTTTCGACGCGCGT ACCGGTGC

GCCGGGTATCCGTTGCCGTCGTGTTCCGGCGCGTTGCACCCAGGAACACAACCCGGA ACCGTTC

CCGTGGTGGCTGAACAAATTCGTTGTTGAACACACCCTGGACGCGTGCCCGCTGCGT GCGGACG

ACCTGATCCCGACCGGTGAAGGTGAAATCTTCGTTTCTCCGTTCTCTGCGGAAGAAG GTGACTTC

CACCAGATCCACGCGGACCTGAACGCGGCGCAGAACCTGCAGCAGCGTCTGTGGTCT GACTTCG

ACATCTCTCAGATCCGTCTGCGTTGCGACTGGGGTGAAGTTGACGGTGAACTGGTTC TGATCCCG

CGTCTGACCGGTAAACGTACCGCGGACTCTTACTCTAACAAAGTTTTCTACACCAAC ACCGGTGT

TACCTACTACGAACGTGAACGTGGTAAAAAACGTCGTAAAGTTTTCGCGCAGGAAAA ACTGTCT

GAAGAAGAAGCGGAACTGCTGGTTGAAGCGGACGAAGCGCGTGAAAAATCTGTTGTT CTGATG

CGTGACCCGTCTGGTATCATCAACCGTGGTAACTGGACCCGTCAGAAAGAATTCTGG TCTATGG

TTAACCAGCGTATCGAAGGTTACCTGGTTAAACAGATCCGTTCTCGTGTTCCGCTGC AGGACTCT

GCGTGCGAAAACACCGGTGACATCTAAGAAATCATCCTTAGCGAAAGCTAAGGATTT TTTTTAT

CTGAAATGTAGGGAGACCCTCAGGTTAAATATTCACTCAGGAAGTTATTACTCAGGA AGCAAAG

AGGATTACA

SE AATCAGGAGAGCGTTTTCAATCCTACCTCTGGCGCAGTTGATATGTCAAACAGGTTGCCG TCACT

Q GCGTCTTTTACTGGCTCTTCTCGCTAACCAAACCGGTAACCCCGCTTATTAAAAGCATTC TGTAA

no CAAAGCGGGACCAAAGCCATGACAAAAACGCGTAACAAAAGTGTCTATAATCACGGCAGA AAA

N GTCCACATTGATTATTTGCACGGCGTCACACTTTGCTATGCCATAGCATTTTTATCCATA AGATT

O: AGCGGATCCTACCTGACGCTTTTTATCGCAACTCTCTACTGTTTCTCCATACCCGTTTTT TTGGGC

74 TAGCAGTAATACGACTCACTATAGGGGTCTCATCTCGTGTGAGATAGGCGGAGATACGAA CTTT

AAGAGGAGGATATACCATGCACCATCATCATCACCATGCGACCCGTTCTTTCATCCT GAAAATC

GAACCGAACGAAGAAGTTAAAAAAGGTCTGTGGAAAACCCACGAAGTTCTGAACCAC GGTATC

GCGTACTACATGAACATCCTGAAACTGATCCGTCAGGAAGCGATCTACGAACACCAC GAACAG

GACCCGAAAAACCCGAAAAAAGTTTCTAAAGCGGAAATCCAGGCGGAACTGTGGGAC TTCGTT

CTGAAAATGCAGAAATGCAACTCTTTCACCCACGAAGTTGACAAAGACGTTGTTTTC AACATCC

TGCGTGAACTGTACGAAGAACTGGTTCCGTCTTCTGTTGAAAAAAAAGGTGAAGCGA ACCAGCT

GTCTAACAAATTCCTGTACCCGCTGGTTGACCCGAACTCTCAGTCTGGTAAAGGTAC CGCGTCTT

CTGGTCGTAAACCGCGTTGGTACAACCTGAAAATCGCGGGTGACCCGTCTTGGGAAG AAGAAA

AAAAAAAATGGGAAGAAGACAAAAAAAAAGACCCGCTGGCGAAAATCCTGGGTAAAC TGGCG

GAATACGGTCTGATCCCGCTGTTCATCCCGTTCACCGACTCTAACGAACCGATCGTT AAAGAAA

TCAAATGGATGGAAAAATCTCGTAACCAGTCTGTTCGTCGTCTGGACAAAGACATGT TCATCCA

GGCGCTGGAACGTTTCCTGTCTTGGGAATCTTGGAACCTGAAAGTTAAAGAAGAATA CGAAAAA

GTTGAAAAAGAACACAAAACCCTGGAAGAACGTATCAAAGAAGACATCCAGGCGTTC AAATCT

CTGGAACAGTACGAAAAAGAACGTCAGGAACAGCTGCTGCGTGACACCCTGAACACC AACGAA

TACCGTCTGTCTAAACGTGGTCTGCGTGGTTGGCGTGAAATCATCCAGAAATGGCTG AAAATGG

ACGAAAACGAACCGTCTGAAAAATACCTGGAAGTTTTCAAAGACTACCAGCGTAAAC ACCCGC

GTGAAGCGGGTGACTACTCTGTTTACGAATTCCTGTCTAAAAAAGAAAACCACTTCA TCTGGCG

TAACCACCCGGAATACCCGTACCTGTACGCGACCTTCTGCGAAATCGACAAAAAAAA AAAAGA

CGCGAAACAGCAGGCGACCTTCACCCTGGCGGACCCGATCAACCACCCGCTGTGGGT TCGTTTC

GAAGAACGTTCTGGTTCTAACCTGAACAAATACCGTATCCTGACCGAACAGCTGCAC ACCGAAA AACTGAAAAAAAAACTGACCGTTCAGCTGGACCGTCTGATCTACCCGACCGAATCTGGTG GTTG

GGAAGAAAAAGGTAAAGTTGACATCGTTCTGCTGCCGTCTCGTCAGTTCTACAACCA GATCTTC

CTGGACATCGAAGAAAAAGGTAAACACGCGTTCACCTACAAAGACGAATCTATCAAA TTCCCGC

TGAAAGGTACCCTGGGTGGTGCGCGTGTTCAGTTCGACCGTGACCACCTGCGTCGTT ACCCGCA

CAAAGTTGAATCTGGTAACGTTGGTCGTATCTACTTCAACATGACCGTTAACATCGA ACCGACC

GAATCTCCGGTTTCTAAATCTCTGAAAATCCACCGTGACGACTTCCCGAAATTCGTT AACTTCAA

ACCGAAAGAACTGACCGAATGGATCAAAGACTCTAAAGGTAAAAAACTGAAATCTGG TATCGA

ATCTCTGGAAATCGGTCTGCGTGTTATGTCTATCGACCTGGGTCAGCGTCAGGCGGC GGCGGCG

TCTATCTTCGAAGTTGTTGACCAGAAACCGGACATCGAAGGTAAACTGTTCTTCCCG ATCAAAG

GTACCGAACTGTACGCGGTTCACCGTGCGTCTTTCAACATCAAACTGCCGGGTGAAA CCCTGGT

TAAATCTCGTGAAGTTCTGCGTAAAGCGCGTGAAGACAACCTGAAACTGATGAACCA GAAACTG

AACTTCCTGCGTAACGTTCTGCACTTCCAGCAGTTCGAAGACATCACCGAACGTGAA AAACGTG

TTACCAAATGGATCTCTCGTCAGGAAAACTCTGACGTTCCGCTGGTTTACCAGGACG AACTGAT

CCAGATCCGTGAACTGATGTACAAACCGTACAAAGACTGGGTTGCGTTCCTGAAACA GCTGCAC

AAACGTCTGGAAGTTGAAATCGGTAAAGAAGTTAAACACTGGCGTAAATCTCTGTCT GACGGTC

GTAAAGGTCTGTACGGTATCTCTCTGAAAAACATCGACGAAATCGACCGTACCCGTA AATTCCT

GCTGCGTTGGTCTCTGCGTCCGACCGAACCGGGTGAAGTTCGTCGTCTGGAACCGGG TCAGCGT

TTCGCGATCGACCAGCTGAACCACCTGAACGCGCTGAAAGAAGACCGTCTGAAAAAA ATGGCG

AACACCATCATCATGCACGCGCTGGGTTACTGCTACGACGTTCGTAAAAAAAAATGG CAGGCGA

AAAACCCGGCGTGCCAGATCATCCTGTTCGAAGACCTGTCTAACTACAACCCGTACG AAGAACG

TTCTCGTTTCGAAAACTCTAAACTGATGAAATGGTCTCGTCGTGAAATCCCGCGTCA GGTTGCGC

TGCAGGGTGAAATCTACGGTCTGCAGGTTGGTGAAGTTGGTGCGCAGTTCTCTTCTC GTTTCCAC

GCGAAAACCGGTTCTCCGGGTATCCGTTGCTCTGTTGTTACCAAAGAAAAACTGCAG GACAACC

GTTTCTTCAAAAACCTGCAGCGTGAAGGTCGTCTGACCCTGGACAAAATCGCGGTTC TGAAAGA

AGGTGACCTGTACCCGGACAAAGGTGGTGAAAAATTCATCTCTCTGTCTAAAGACCG TAAACTG

GTTACCACCCACGCGGACATCAACGCGGCGCAGAACCTGCAGAAACGTTTCTGGACC CGTACCC

ACGGTTTCTACAAAGTTTACTGCAAAGCGTACCAGGTTGACGGTCAGACCGTTTACA TCCCGGA

ATCTAAAGACCAGAAACAGAAAATCATCGAAGAATTCGGTGAAGGTTACTTCATCCT GAAAGA

CGGTGTTTACGAATGGGGTAACGCGGGTAAACTGAAAATCAAAAAAGGTTCTTCTAA ACAGTCT

TCTTCTGAACTGGTTGACTCTGACATCCTGAAAGACTCTTTCGACCTGGCGTCTGAA CTGAAAGG

TGAAAAACTGATGCTGTACCGTGACCCGTCTGGTAACGTTTTCCCGTCTGACAAATG GATGGCG

GCGGGTGTTTTCTTCGGTAAACTGGAACGTATCCTGATCTCTAAACTGACCAACCAG TACTCTAT

CTCTACCATCGAAGACGACTCTTCTAAACAGTCTATGTAAGAAATCATCCTTAGCGA AAGCTAA

CAGGAAGCAAAGAGGATTACA

SE AATCAGGAGAGCGTTTTCAATCCTACCTCTGGCGCAGTTGATATGTCAAACAGGTTGCCG TCACT

Q GCGTCTTTTACTGGCTCTTCTCGCTAACCAAACCGGTAACCCCGCTTATTAAAAGCATTC TGTAA

no CAAAGCGGGACCAAAGCCATGACAAAAACGCGTAACAAAAGTGTCTATAATCACGGCAGA AAA

N GTCCACATTGATTATTTGCACGGCGTCACACTTTGCTATGCCATAGCATTTTTATCCATA AGATT

O: AGCGGATCCTACCTGACGCTTTTTATCGCAACTCTCTACTGTTTCTCCATACCCGTTTTT TTGGGC

75 TAGCAGTAATACGACTCACTATAGGGGTCTCATCTCGTGTGAGATAGGCGGAGATACGAA CTTT

AAGAGGAGGATATACCATGCACCATCATCATCACCATCCGACCCGTACCATCAACCT GAAACTG GTTCTGGGTAAAAACCCGGAAAACGCGACCCTGCGTCGTGCGCTGTTCTCTACCCACCGT CTGG

TTAACCAGGCGACCAAACGTATCGAAGAATTCCTGCTGCTGTGCCGTGGTGAAGCGT ACCGTAC

CGTTGACAACGAAGGTAAAGAAGCGGAAATCCCGCGTCACGCGGTTCAGGAAGAAGC GCTGGC

GTTCGCGAAAGCGGCGCAGCGTCACAACGGTTGCATCTCTACCTACGAAGACCAGGA AATCCTG

GACGTTCTGCGTCAGCTGTACGAACGTCTGGTTCCGTCTGTTAACGAAAACAACGAA GCGGGTG

ACGCGCAGGCGGCGAACGCGTGGGTTTCTCCGCTGATGTCTGCGGAATCTGAAGGTG GTCTGTC

TGTTTACGACAAAGTTCTGGACCCGCCGCCGGTTTGGATGAAACTGAAAGAAGAAAA AGCGCC

GGGTTGGGAAGCGGCGTCTCAGATCTGGATCCAGTCTGACGAAGGTCAGTCTCTGCT GAACAAA

CCGGGTTCTCCGCCGCGTTGGATCCGTAAACTGCGTTCTGGTCAGCCGTGGCAGGAC GACTTCGT

TTCTGACCAGAAAAAAAAACAGGACGAACTGACCAAAGGTAACGCGCCGCTGATCAA ACAGCT

GAAAGAAATGGGTCTGCTGCCGCTGGTTAACCCGTTCTTCCGTCACCTGCTGGACCC GGAAGGT

AAAGGTGTTTCTCCGTGGGACCGTCTGGCGGTTCGTGCGGCGGTTGCGCACTTCATC TCTTGGGA

ATCTTGGAACCACCGTACCCGTGCGGAATACAACTCTCTGAAACTGCGTCGTGACGA ATTCGAA

GCGGCGTCTGACGAATTCAAAGACGACTTCACCCTGCTGCGTCAGTACGAAGCGAAA CGTCACT

CTACCCTGAAATCTATCGCGCTGGCGGACGACTCTAACCCGTACCGTATCGGTGTTC GTTCTCTG

CGTGCGTGGAACCGTGTTCGTGAAGAATGGATCGACAAAGGTGCGACCGAAGAACAG CGTGTT

ACCATCCTGTCTAAACTGCAGACCCAGCTGCGTGGTAAATTCGGTGACCCGGACCTG TTCAACT

GGCTGGCGCAGGACCGTCACGTTCACCTGTGGTCTCCGCGTGACTCTGTTACCCCGC TGGTTCGT

ATCAACGCGGTTGACAAAGTTCTGCGTCGTCGTAAACCGTACGCGCTGATGACCTTC GCGCACC

CGCGTTTCCACCCGCGTTGGATCCTGTACGAAGCGCCGGGTGGTTCTAACCTGCGTC AGTACGC

GCTGGACTGCACCGAAAACGCGCTGCACATCACCCTGCCGCTGCTGGTTGACGACGC GCACGGT

ACCTGGATCGAAAAAAAAATCCGTGTTCCGCTGGCGCCGTCTGGTCAGATCCAGGAC CTGACCC

TGGAAAAACTGGAAAAAAAAAAAAACCGTCTGTACTACCGTTCTGGTTTCCAGCAGT TCGCGGG

TCTGGCGGGTGGTGCGGAAGTTCTGTTCCACCGTCCGTACATGGAACACGACGAACG TTCTGAA

GAATCTCTGCTGGAACGTCCGGGTGCGGTTTGGTTCAAACTGACCCTGGACGTTGCG ACCCAGG

CGCCGCCGAACTGGCTGGACGGTAAAGGTCGTGTTCGTACCCCGCCGGAAGTTCACC ACTTCAA

AACCGCGCTGTCTAACAAATCTAAACACACCCGTACCCTGCAGCCGGGTCTGCGTGT TCTGTCTG

TTGACCTGGGTATGCGTACCTTCGCGTCTTGCTCTGTTTTCGAACTGATCGAAGGTA AACCGGAA

ACCGGTCGTGCGTTCCCGGTTGCGGACGAACGTTCTATGGACTCTCCGAACAAACTG TGGGCGA

AACACGAACGTTCTTTCAAACTGACCCTGCCGGGTGAAACCCCGTCTCGTAAAGAAG AAGAAGA

ACGTTCTATCGCGCGTGCGGAAATCTACGCGCTGAAACGTGACATCCAGCGTCTGAA ATCTCTG

CTGCGTCTGGGTGAAGAAGACAACGACAACCGTCGTGACGCGCTGCTGGAACAGTTC TTCAAAG

GTTGGGGTGAAGAAGACGTTGTTCCGGGTCAGGCGTTCCCGCGTTCTCTGTTCCAGG GTCTGGGT

GCGGCGCCGTTCCGTTCTACCCCGGAACTGTGGCGTCAGCACTGCCAGACCTACTAC GACAAAG

CGGAAGCGTGCCTGGCGAAACACATCTCTGACTGGCGTAAACGTACCCGTCCGCGTC CGACCTC

TCGTGAAATGTGGTACAAAACCCGTTCTTACCACGGTGGTAAATCTATCTGGATGCT GGAATAC

CTGGACGCGGTTCGTAAACTGCTGCTGTCTTGGTCTCTGCGTGGTCGTACCTACGGT GCGATCAA

CCGTCAGGACACCGCGCGTTTCGGTTCTCTGGCGTCTCGTCTGCTGCACCACATCAA CTCTCTGA

AAGAAGACCGTATCAAAACCGGTGCGGACTCTATCGTTCAGGCGGCGCGTGGTTACA TCCCGCT

GCCGCACGGTAAAGGTTGGGAACAGCGTTACGAACCGTGCCAGCTGATCCTGTTCGA AGACCTG

GCGCGTTACCGTTTCCGTGTTGACCGTCCGCGTCGTGAAAACTCTCAGCTGATGCAG TGGAACC

ACCGTGCGATCGTTGCGGAAACCACCATGCAGGCGGAACTGTACGGTCAGATCGTTG AAAACAC CGCGGCGGGTTTCTCTTCTCGTTTCCACGCGGCGACCGGTGCGCCGGGTGTTCGTTGCCG TTTCC

TGCTGGAACGTGACTTCGACAACGACCTGCCGAAACCGTACCTGCTGCGTGAACTGT CTTGGAT

GCTGGGTAACACCAAAGTTGAATCTGAAGAAGAAAAACTGCGTCTGCTGTCTGAAAA AATCCGT

CCGGGTTCTCTGGTTCCGTGGGACGGTGGTGAACAGTTCGCGACCCTGCACCCGAAA CGTCAGA

CCCTGTGCGTTATCCACGCGGACATGAACGCGGCGCAGAACCTGCAGCGTCGTTTCT TCGGTCG

TTGCGGTGAAGCGTTCCGTCTGGTTTGCCAGCCGCACGGTGACGACGTTCTGCGTCT GGCGTCTA

CCCCGGGTGCGCGTCTGCTGGGTGCGCTGCAGCAGCTGGAAAACGGTCAGGGTGCGT TCGAACT

GGTTCGTGACATGGGTTCTACCTCTCAGATGAACCGTTTCGTTATGAAATCTCTGGG TAAAAAAA

AAATCAAACCGCTGCAGGACAACAACGGTGACGACGAACTGGAAGACGTTCTGTCTG TTCTGCC

GGAAGAAGACGACACCGGTCGTATCACCGTTTTCCGTGACTCTTCTGGTATCTTCTT CCCGTGCA

ACGTTTGGATCCCGGCGAAACAGTTCTGGCCGGCGGTTCGTGCGATGATCTGGAAAG TTATGGC

GTCTCACTCTCTGGGTTAAGAAATCATCCTTAGCGAAAGCTAAGGATTTTTTTTATC TGAAATGT

AGGGAGACCCTCAGGTTAAATATTCACTCAGGAAGTTATTACTCAGGAAGCAAAGAG GATTACA

SE AATCAGGAGAGCGTTTTCAATCCTACCTCTGGCGCAGTTGATATGTCAAACAGGTTGCCG TCACT

Q GCGTCTTTTACTGGCTCTTCTCGCTAACCAAACCGGTAACCCCGCTTATTAAAAGCATTC TGTAA

no CAAAGCGGGACCAAAGCCATGACAAAAACGCGTAACAAAAGTGTCTATAATCACGGCAGA AAA

N GTCCACATTGATTATTTGCACGGCGTCACACTTTGCTATGCCATAGCATTTTTATCCATA AGATT

O: AGCGGATCCTACCTGACGCTTTTTATCGCAACTCTCTACTGTTTCTCCATACCCGTTTTT TTGGGC

76 TAGCAGTAATACGACTCACTATAGGGGTCTCATCTCGTGTGAGATAGGCGGAGATACGAA CTTT

AAGAGGAGGATATACCATGCACCATCATCATCACCATACCAAACTGCGTCACCGTCA GAAAAA

ACTGACCCACGACTGGGCGGGTTCTAAAAAACGTGAAGTTCTGGGTTCTAACGGTAA ACTGCAG

AACCCGCTGCTGATGCCGGTTAAAAAAGGTCAGGTTACCGAATTCCGTAAAGCGTTC TCTGCGT

ACGCGCGTGCGACCAAAGGTGAAATGACCGACGGTCGTAAAAACATGTTCACCCACT CTTTCGA

ACCGTTCAAAACCAAACCGTCTCTGCACCAGTGCGAACTGGCGGACAAAGCGTACCA GTCTCTG

CACTCTTACCTGCCGGGTTCTCTGGCGCACTTCCTGCTGTCTGCGCACGCGCTGGGT TTCCGTAT

CTTCTCTAAATCTGGTGAAGCGACCGCGTTCCAGGCGTCTTCTAAAATCGAAGCGTA CGAATCT

AAACTGGCGTCTGAACTGGCGTGCGTTGACCTGTCTATCCAGAACCTGACCATCTCT ACCCTGTT

CAACGCGCTGACCACCTCTGTTCGTGGTAAAGGTGAAGAAACCTCTGCGGACCCGCT GATCGCG

CGTTTCTACACCCTGCTGACCGGTAAACCGCTGTCTCGTGACACCCAGGGTCCGGAA CGTGACC

TGGCGGAAGTTATCTCTCGTAAAATCGCGTCTTCTTTCGGTACCTGGAAAGAAATGA CCGCGAA

CCCGCTGCAGTCTCTGCAGTTCTTCGAAGAAGAACTGCACGCGCTGGACGCGAACGT TTCTCTGT

CTCCGGCGTTCGACGTTCTGATCAAAATGAACGACCTGCAGGGTGACCTGAAAAACC GTACCAT

CGTTTTCGACCCGGACGCGCCGGTTTTCGAATACAACGCGGAAGACCCGGCGGACAT CATCATC

AAACTGACCGCGCGTTACGCGAAAGAAGCGGTTATCAAAAACCAGAACGTTGGTAAC TACGTT

AAAAACGCGATCACCACCACCAACGCGAACGGTCTGGGTTGGCTGCTGAACAAAGGT CTGTCTC

TGCTGCCGGTTTCTACCGACGACGAACTGCTGGAATTCATCGGTGTTGAACGTTCTC ACCCGTCT

TGCCACGCGCTGATCGAACTGATCGCGCAGCTGGAAGCGCCGGAACTGTTCGAAAAA AACGTTT

TCTCTGACACCCGTTCTGAAGTTCAGGGTATGATCGACTCTGCGGTTTCTAACCACA TCGCGCGT

CTGTCTTCTTCTCGTAACTCTCTGTCTATGGACTCTGAAGAACTGGAACGTCTGATC AAATCTTTC

CAGATCCACACCCCGCACTGCTCTCTGTTCATCGGTGCGCAGTCTCTGTCTCAGCAG CTGGAATC

TCTGCCGGAAGCGCTGCAGTCTGGTGTTAACTCTGCGGACATCCTGCTGGGTTCTAC CCAGTACA

TGCTGACCAACTCTCTGGTTGAAGAATCTATCGCGACCTACCAGCGTACCCTGAACC GTATCAA CTACCTGTCTGGTGTTGCGGGTCAGATCAACGGTGCGATCAAACGTAAAGCGATCGACGG TGAA

AAAATCCACCTGCCGGCGGCGTGGTCTGAACTGATCTCTCTGCCGTTCATCGGTCAG CCGGTTAT

CGACGTTGAATCTGACCTGGCGCACCTGAAAAACCAGTACCAGACCCTGTCTAACGA ATTCGAC

ACCCTGATCTCTGCGCTGCAGAAAAACTTCGACCTGAACTTCAACAAAGCGCTGCTG AACCGTA

CCCAGCACTTCGAAGCGATGTGCCGTTCTACCAAAAAAAACGCGCTGTCTAAACCGG AAATCGT

TTCTTACCGTGACCTGCTGGCGCGTCTGACCTCTTGCCTGTACCGTGGTTCTCTGGT TCTGCGTCG

TGCGGGTATCGAAGTTCTGAAAAAACACAAAATCTTCGAATCTAACTCTGAACTGCG TGAACAC

GTTCACGAACGTAAACACTTCGTTTTCGTTTCTCCGCTGGACCGTAAAGCGAAAAAA CTGCTGC

GTCTGACCGACTCTCGTCCGGACCTGCTGCACGTTATCGACGAAATCCTGCAGCACG ACAACCT

GGAAAACAAAGACCGTGAATCTCTGTGGCTGGTTCGTTCTGGTTACCTGCTGGCGGG TCTGCCG

GACCAGCTGTCTTCTTCTTTCATCAACCTGCCGATCATCACCCAGAAAGGTGACCGT CGTCTGAT

CGACCTGATCCAGTACGACCAGATCAACCGTGACGCGTTCGTTATGCTGGTTACCTC TGCGTTCA

AATCTAACCTGTCTGGTCTGCAGTACCGTGCGAACAAACAGTCTTTCGTTGTTACCC GTACCCTG

TCTCCGTACCTGGGTTCTAAACTGGTTTACGTTCCGAAAGACAAAGACTGGCTGGTT CCGTCTCA

GATGTTCGAAGGTCGTTTCGCGGACATCCTGCAGTCTGACTACATGGTTTGGAAAGA CGCGGGT

CGTCTGTGCGTTATCGACACCGCGAAACACCTGTCTAACATCAAAAAATCTGTTTTC TCTTCTGA

AGAAGTTCTGGCGTTCCTGCGTGAACTGCCGCACCGTACCTTCATCCAGACCGAAGT TCGTGGTC

TGGGTGTTAACGTTGACGGTATCGCGTTCAACAACGGTGACATCCCGTCTCTGAAAA CCTTCTCT

AACTGCGTTCAGGTTAAAGTTTCTCGTACCAACACCTCTCTGGTTCAGACCCTGAAC CGTTGGTT

CGAAGGTGGTAAAGTTTCTCCGCCGTCTATCCAGTTCGAACGTGCGTACTACAAAAA AGACGAC

CAGATCCACGAAGACGCGGCGAAACGTAAAATCCGTTTCCAGATGCCGGCGACCGAA CTGGTTC

ACGCGTCTGACGACGCGGGTTGGACCCCGTCTTACCTGCTGGGTATCGACCCGGGTG AATACGG

TATGGGTCTGTCTCTGGTTTCTATCAACAACGGTGAAGTTCTGGACTCTGGTTTCAT CCACATCA

ACTCTCTGATCAACTTCGCGTCTAAAAAATCTAACCACCAGACCAAAGTTGTTCCGC GTCAGCA

GTACAAATCTCCGTACGCGAACTACCTGGAACAGTCTAAAGACTCTGCGGCGGGTGA CATCGCG

CACATCCTGGACCGTCTGATCTACAAACTGAACGCGCTGCCGGTTTTCGAAGCGCTG TCTGGTA

ACTCTCAGTCTGCGGCGGACCAGGTTTGGACCAAAGTTCTGTCTTTCTACACCTGGG GTGACAAC

GACGCGCAGAACTCTATCCGTAAACAGCACTGGTTCGGTGCGTCTCACTGGGACATC AAAGGTA

TGCTGCGTCAGCCGCCGACCGAAAAAAAACCGAAACCGTACATCGCGTTCCCGGGTT CTCAGGT

TTCTTCTTACGGTAACTCTCAGCGTTGCTCTTGCTGCGGTCGTAACCCGATCGAACA GCTGCGTG

AAATGGCGAAAGACACCTCTATCAAAGAACTGAAAATCCGTAACTCTGAAATCCAGC TGTTCGA

CGGTACCATCAAACTGTTCAACCCGGACCCGTCTACCGTTATCGAACGTCGTCGTCA CAACCTG

GGTCCGTCTCGTATCCCGGTTGCGGACCGTACCTTCAAAAACATCTCTCCGTCTTCT CTGGAATT

CAAAGAACTGATCACCATCGTTTCTCGTTCTATCCGTCACTCTCCGGAATTCATCGC GAAAAAAC

GTGGTATCGGTTCTGAATACTTCTGCGCGTACTCTGACTGCAACTCTTCTCTGAACT CTGAAGCG

AACGCGGCGGCGAACGTTGCGCAGAAATTCCAGAAACAGCTGTTCTTCGAACTGTAA GAAATCA

TCCTTAGCGAAAGCTAAGGATTTTTTTTATCTGAAATGTAGGGAGACCCTCAGGTTA AATATTCA

CTCAGGAAGTTATTACTCAGGAAGCAAAGAGGATTACA

SE AATCAGGAGAGCGTTTTCAATCCTACCTCTGGCGCAGTTGATATGTCAAACAGGTTGCCG TCACT

Q GCGTCTTTTACTGGCTCTTCTCGCTAACCAAACCGGTAACCCCGCTTATTAAAAGCATTC TGTAA

no CAAAGCGGGACCAAAGCCATGACAAAAACGCGTAACAAAAGTGTCTATAATCACGGCAGA AAA

N GTCCACATTGATTATTTGCACGGCGTCACACTTTGCTATGCCATAGCATTTTTATCCATA AGATT O: AGCGGATCCTACCTGACGCTTTTTATCGCAACTCTCTACTGTTTCTCCATACCCGTTTTT TTGGGC

77 TAGCAGTAATACGACTCACTATAGGGGTCTCATCTCGTGTGAGATAGGCGGAGATACGAA CTTT

AAGAGGAGGATATACCATGCACCATCATCATCACCATAAACGTATCCTGAACTCTCT GAAAGTT

GCGGCGCTGCGTCTGCTGTTCCGTGGTAAAGGTTCTGAACTGGTTAAAACCGTTAAA TACCCGCT

GGTTTCTCCGGTTCAGGGTGCGGTTGAAGAACTGGCGGAAGCGATCCGTCACGACAA CCTGCAC

CTGTTCGGTCAGAAAGAAATCGTTGACCTGATGGAAAAAGACGAAGGTACCCAGGTT TACTCTG

TTGTTGACTTCTGGCTGGACACCCTGCGTCTGGGTATGTTCTTCTCTCCGTCTGCGA ACGCGCTG

AAAATCACCCTGGGTAAATTCAACTCTGACCAGGTTTCTCCGTTCCGTAAAGTTCTG GAACAGTC

TCCGTTCTTCCTGGCGGGTCGTCTGAAAGTTGAACCGGCGGAACGTATCCTGTCTGT TGAAATCC

GTAAAATCGGTAAACGTGAAAACCGTGTTGAAAACTACGCGGCGGACGTTGAAACCT GCTTCAT

CGGTCAGCTGTCTTCTGACGAAAAACAGTCTATCCAGAAACTGGCGAACGACATCTG GGACTCT

AAAGACCACGAAGAACAGCGTATGCTGAAAGCGGACTTCTTCGCGATCCCGCTGATC AAAGAC

CCGAAAGCGGTTACCGAAGAAGACCCGGAAAACGAAACCGCGGGTAAACAGAAACCG CTGGA

ACTGTGCGTTTGCCTGGTTCCGGAACTGTACACCCGTGGTTTCGGTTCTATCGCGGA CTTCCTGG

TTCAGCGTCTGACCCTGCTGCGTGACAAAATGTCTACCGACACCGCGGAAGACTGCC TGGAATA

CGTTGGTATCGAAGAAGAAAAAGGTAACGGTATGAACTCTCTGCTGGGTACCTTCCT GAAAAAC

CTGCAGGGTGACGGTTTCGAACAGATCTTCCAGTTCATGCTGGGTTCTTACGTTGGT TGGCAGGG

TAAAGAAGACGTTCTGCGTGAACGTCTGGACCTGCTGGCGGAAAAAGTTAAACGTCT GCCGAAA

CCGAAATTCGCGGGTGAATGGTCTGGTCACCGTATGTTCCTGCACGGTCAGCTGAAA TCTTGGTC

TTCTAACTTCTTCCGTCTGTTCAACGAAACCCGTGAACTGCTGGAATCTATCAAATC TGACATCC

AGCACGCGACCATGCTGATCTCTTACGTTGAAGAAAAAGGTGGTTACCACCCGCAGC TGCTGTC

TCAGTACCGTAAACTGATGGAACAGCTGCCGGCGCTGCGTACCAAAGTTCTGGACCC GGAAATC

GAAATGACCCACATGTCTGAAGCGGTTCGTTCTTACATCATGATCCACAAATCTGTT GCGGGTTT

CCTGCCGGACCTGCTGGAATCTCTGGACCGTGACAAAGACCGTGAATTCCTGCTGTC TATCTTCC

CGCGTATCCCGAAAATCGACAAAAAAACCAAAGAAATCGTTGCGTGGGAACTGCCGG GTGAAC

CGGAAGAAGGTTACCTGTTCACCGCGAACAACCTGTTCCGTAACTTCCTGGAAAACC CGAAACA

CGTTCCGCGTTTCATGGCGGAACGTATCCCGGAAGACTGGACCCGTCTGCGTTCTGC GCCGGTTT

GGTTCGACGGTATGGTTAAACAGTGGCAGAAAGTTGTTAACCAGCTGGTTGAATCTC CGGGTGC

GCTGTACCAGTTCAACGAATCTTTCCTGCGTCAGCGTCTGCAGGCGATGCTGACCGT TTACAAAC

GTGACCTGCAGACCGAAAAATTCCTGAAACTGCTGGCGGACGTTTGCCGTCCGCTGG TTGACTT

CTTCGGTCTGGGTGGTAACGACATCATCTTCAAATCTTGCCAGGACCCGCGTAAACA GTGGCAG

ACCGTTATCCCGCTGTCTGTTCCGGCGGACGTTTACACCGCGTGCGAAGGTCTGGCG ATCCGTCT

GCGTGAAACCCTGGGTTTCGAATGGAAAAACCTGAAAGGTCACGAACGTGAAGACTT CCTGCGT

CTGCACCAGCTGCTGGGTAACCTGCTGTTCTGGATCCGTGACGCGAAACTGGTTGTT AAACTGG

AAGACTGGATGAACAACCCGTGCGTTCAGGAATACGTTGAAGCGCGTAAAGCGATCG ACCTGC

CGCTGGAAATCTTCGGTTTCGAAGTTCCGATCTTCCTGAACGGTTACCTGTTCTCTG AACTGCGT

CAGCTGGAACTGCTGCTGCGTCGTAAATCTGTTATGACCTCTTACTCTGTTAAAACC ACCGGTTC

TCCGAACCGTCTGTTCCAGCTGGTTTACCTGCCGCTGAACCCGTCTGACCCGGAAAA AAAAAAC

TCTAACAACTTCCAGGAACGTCTGGACACCCCGACCGGTCTGTCTCGTCGTTTCCTG GACCTGAC

CCTGGACGCGTTCGCGGGTAAACTGCTGACCGACCCGGTTACCCAGGAACTGAAAAC CATGGCG

GGTTTCTACGACCACCTGTTCGGTTTCAAACTGCCGTGCAAACTGGCGGCGATGTCT AACCACCC

GGGTTCTTCTTCTAAAATGGTTGTTCTGGCGAAACCGAAAAAAGGTGTTGCGTCTAA CATCGGTT TCGAACCGATCCCGGACCCGGCGCACCCGGTTTTCCGTGTTCGTTCTTCTTGGCCGGAAC TGAAA

TACCTGGAAGGTCTGCTGTACCTGCCGGAAGACACCCCGCTGACCATCGAACTGGCG GAAACCT

CTGTTTCTTGCCAGTCTGTTTCTTCTGTTGCGTTCGACCTGAAAAACCTGACCACCA TCCTGGGTC

GTGTTGGTGAATTCCGTGTTACCGCGGACCAGCCGTTCAAACTGACCCCGATCATCC CGGAAAA

AGAAGAATCTTTCATCGGTAAAACCTACCTGGGTCTGGACGCGGGTGAACGTTCTGG TGTTGGT

TTCGCGATCGTTACCGTTGACGGTGACGGTTACGAAGTTCAGCGTCTGGGTGTTCAC GAAGACA

CCCAGCTGATGGCGCTGCAGCAGGTTGCGTCTAAATCTCTGAAAGAACCGGTTTTCC AGCCGCT

GCGTAAAGGTACCTTCCGTCAGCAGGAACGTATCCGTAAATCTCTGCGTGGTTGCTA CTGGAAC

TTCTACCACGCGCTGATGATCAAATACCGTGCGAAAGTTGTTCACGAAGAATCTGTT GGTTCTTC

TGGTCTGGTTGGTCAGTGGCTGCGTGCGTTCCAGAAAGACCTGAAAAAAGCGGACGT TCTGCCG

AAAAAAGGTGGTAAAAACGGTGTTGACAAAAAAAAACGTGAATCTTCTGCGCAGGAC ACCCTG

TGGGGTGGTGCGTTCTCTAAAAAAGAAGAACAGCAGATCGCGTTCGAAGTTCAGGCG GCGGGTT

CTTCTCAGTTCTGCCTGAAATGCGGTTGGTGGTTCCAGCTGGGTATGCGTGAAGTTA ACCGTGTT

CAGGAATCTGGTGTTGTTCTGGACTGGAACCGTTCTATCGTTACCTTCCTGATCGAA TCTTCTGG

TGAAAAAGTTTACGGTTTCTCTCCGCAGCAGCTGGAAAAAGGTTTCCGTCCGGACAT CGAAACC

TTCAAAAAAATGGTTCGTGACTTCATGCGTCCGCCGATGTTCGACCGTAAAGGTCGT CCGGCGG

CGGCGTACGAACGTTTCGTTCTGGGTCGTCGTCACCGTCGTTACCGTTTCGACAAAG TTTTCGAA

GAACGTTTCGGTCGTTCTGCGCTGTTCATCTGCCCGCGTGTTGGTTGCGGTAACTTC GACCACTC

TTCTGAACAGTCTGCGGTTGTTCTGGCGCTGATCGGTTACATCGCGGACAAAGAAGG TATGTCT

GGTAAAAAACTGGTTTACGTTCGTCTGGCGGAACTGATGGCGGAATGGAAACTGAAA AAACTG

GAACGTTCTCGTGTTGAAGAACAGTCTTCTGCGCAGTAAGAAATCATCCTTAGCGAA AGCTAAG

AGGAAGCAAAGAGGATTACA

SE AATCAGGAGAGCGTTTTCAATCCTACCTCTGGCGCAGTTGATATGTCAAACAGGTTGCCG TCACT

Q GCGTCTTTTACTGGCTCTTCTCGCTAACCAAACCGGTAACCCCGCTTATTAAAAGCATTC TGTAA

no CAAAGCGGGACCAAAGCCATGACAAAAACGCGTAACAAAAGTGTCTATAATCACGGCAGA AAA

N GTCCACATTGATTATTTGCACGGCGTCACACTTTGCTATGCCATAGCATTTTTATCCATA AGATT

O: AGCGGATCCTACCTGACGCTTTTTATCGCAACTCTCTACTGTTTCTCCATACCCGTTTTT TTGGGC

78 TAGCAGTAATACGACTCACTATAGGGGTCTCATCTCGTGTGAGATAGGCGGAGATACGAA CTTT

AAGAGGAGGATATACCATGCACCATCATCATCACCATGCGGAATCTAAACAGATGCA GTGCCGT

AAATGCGGTGCGTCTATGAAATACGAAGTTATCGGTCTGGGTAAAAAATCTTGCCGT TACATGT

GCCCGGACTGCGGTAACCACACCTCTGCGCGTAAAATCCAGAACAAAAAAAAACGTG ACAAAA

AATACGGTTCTGCGTCTAAAGCGCAGTCTCAGCGTATCGCGGTTGCGGGTGCGCTGT ACCCGGA

CAAAAAAGTTCAGACCATCAAAACCTACAAATACCCGGCGGACCTGAACGGTGAAGT TCACGA

CTCTGGTGTTGCGGAAAAAATCGCGCAGGCGATCCAGGAAGACGAAATCGGTCTGCT GGGTCCG

TCTTCTGAATACGCGTGCTGGATCGCGTCTCAGAAACAGTCTGAACCGTACTCTGTT GTTGACTT

CTGGTTCGACGCGGTTTGCGCGGGTGGTGTTTTCGCGTACTCTGGTGCGCGTCTGCT GTCTACCG

TTCTGCAGCTGTCTGGTGAAGAATCTGTTCTGCGTGCGGCGCTGGCGTCTTCTCCGT TCGTTGAC

GACATCAACCTGGCGCAGGCGGAAAAATTCCTGGCGGTTTCTCGTCGTACCGGTCAG GACAAAC

TGGGTAAACGTATCGGTGAATGCTTCGCGGAAGGTCGTCTGGAAGCGCTGGGTATCA AAGACCG

TATGCGTGAATTCGTTCAGGCGATCGACGTTGCGCAGACCGCGGGTCAGCGTTTCGC GGCGAAA

CTGAAAATCTTCGGTATCTCTCAGATGCCGGAAGCGAAACAGTGGAACAACGACTCT GGTCTGA CCGTTTGCATCCTGCCGGACTACTACGTTCCGGAAGAAAACCGTGCGGACCAGCTGGTTG TTCT

GCTGCGTCGTCTGCGTGAAATCGCGTACTGCATGGGTATCGAAGACGAAGCGGGTTT CGAACAC

CTGGGTATCGACCCGGGTGCGCTGTCTAACTTCTCTAACGGTAACCCGAAACGTGGT TTCCTGGG

TCGTCTGCTGAACAACGACATCATCGCGCTGGCGAACAACATGTCTGCGATGACCCC GTACTGG

GAAGGTCGTAAAGGTGAACTGATCGAACGTCTGGCGTGGCTGAAACACCGTGCGGAA GGTCTG

TACCTGAAAGAACCGCACTTCGGTAACTCTTGGGCGGACCACCGTTCTCGTATCTTC TCTCGTAT

CGCGGGTTGGCTGTCTGGTTGCGCGGGTAAACTGAAAATCGCGAAAGACCAGATCTC TGGTGTT

CGTACCGACCTGTTCCTGCTGAAACGTCTGCTGGACGCGGTTCCGCAGTCTGCGCCG TCTCCGGA

CTTCATCGCGTCTATCTCTGCGCTGGACCGTTTCCTGGAAGCGGCGGAATCTTCTCA GGACCCGG

CGGAACAGGTTCGTGCGCTGTACGCGTTCCACCTGAACGCGCCGGCGGTTCGTTCTA TCGCGAA

CAAAGCGGTTCAGCGTTCTGACTCTCAGGAATGGCTGATCAAAGAACTGGACGCGGT TGACCAC

CTGGAATTCAACAAAGCGTTCCCGTTCTTCTCTGACACCGGTAAAAAAAAAAAAAAA GGTGCGA

ACTCTAACGGTGCGCCGTCTGAAGAAGAATACACCGAAACCGAATCTATCCAGCAGC CGGAAG

ACGCGGAACAGGAAGTTAACGGTCAGGAAGGTAACGGTGCGTCTAAAAACCAGAAAA AATTCC

AGCGTATCCCGCGTTTCTTCGGTGAAGGTTCTCGTTCTGAATACCGTATCCTGACCG AAGCGCCG

CAGTACTTCGACATGTTCTGCAACAACATGCGTGCGATCTTCATGCAGCTGGAATCT CAGCCGC

GTAAAGCGCCGCGTGACTTCAAATGCTTCCTGCAGAACCGTCTGCAGAAACTGTACA AACAGAC

CTTCCTGAACGCGCGTTCTAACAAATGCCGTGCGCTGCTGGAATCTGTTCTGATCTC TTGGGGTG

AATTCTACACCTACGGTGCGAACGAAAAAAAATTCCGTCTGCGTCACGAAGCGTCTG AACGTTC

TTCTGACCCGGACTACGTTGTTCAGCAGGCGCTGGAAATCGCGCGTCGTCTGTTCCT GTTCGGTT

TCGAATGGCGTGACTGCTCTGCGGGTGAACGTGTTGACCTGGTTGAAATCCACAAAA AAGCGAT

CTCTTTCCTGCTGGCGATCACCCAGGCGGAAGTTTCTGTTGGTTCTTACAACTGGCT GGGTAACT

CTACCGTTTCTCGTTACCTGTCTGTTGCGGGTACCGACACCCTGTACGGTACCCAGC TGGAAGAA

TTCCTGAACGCGACCGTTCTGTCTCAGATGCGTGGTCTGGCGATCCGTCTGTCTTCT CAGGAACT

GAAAGACGGTTTCGACGTTCAGCTGGAATCTTCTTGCCAGGACAACCTGCAGCACCT GCTGGTT

TACCGTGCGTCTCGTGACCTGGCGGCGTGCAAACGTGCGACCTGCCCGGCGGAACTG GACCCGA

AAATCCTGGTTCTGCCGGTTGGTGCGTTCATCGCGTCTGTTATGAAAATGATCGAAC GTGGTGAC

GAACCGCTGGCGGGTGCGTACCTGCGTCACCGTCCGCACTCTTTCGGTTGGCAGATC CGTGTTCG

TGGTGTTGCGGAAGTTGGTATGGACCAGGGTACCGCGCTGGCGTTCCAGAAACCGAC CGAATCT

GAACCGTTCAAAATCAAACCGTTCTCTGCGCAGTACGGTCCGGTTCTGTGGCTGAAC TCTTCTTC

TTACTCTCAGTCTCAGTACCTGGACGGTTTCCTGTCTCAGCCGAAAAACTGGTCTAT GCGTGTTC

TGCCGCAGGCGGGTTCTGTTCGTGTTGAACAGCGTGTTGCGCTGATCTGGAACCTGC AGGCGGG

TAAAATGCGTCTGGAACGTTCTGGTGCGCGTGCGTTCTTCATGCCGGTTCCGTTCTC TTTCCGTCC

GTCTGGTTCTGGTGACGAAGCGGTTCTGGCGCCGAACCGTTACCTGGGTCTGTTCCC GCACTCTG

GTGGTATCGAATACGCGGTTGTTGACGTTCTGGACTCTGCGGGTTTCAAAATCCTGG AACGTGGT

ACCATCGCGGTTAACGGTTTCTCTCAGAAACGTGGTGAACGTCAGGAAGAAGCGCAC CGTGAAA

AACAGCGTCGTGGTATCTCTGACATCGGTCGTAAAAAACCGGTTCAGGCGGAAGTTG ACGCGGC

GAACGAACTGCACCGTAAATACACCGACGTTGCGACCCGTCTGGGTTGCCGTATCGT TGTTCAG

TGGGCGCCGCAGCCGAAACCGGGTACCGCGCCGACCGCGCAGACCGTTTACGCGCGT GCGGTTC

GTACCGAAGCGCCGCGTTCTGGTAACCAGGAAGACCACGCGCGTATGAAATCTTCTT GGGGTTA

CACCTGGGGTACCTACTGGGAAAAACGTAAACCGGAAGACATCCTGGGTATCTCTAC CCAGGTT

TACTGGACCGGTGGTATCGGTGAATCTTGCCCGGCGGTTGCGGTTGCGCTGCTGGGT CACATCC GTGCGACCTCTACCCAGACCGAATGGGAAAAAGAAGAAGTTGTTTTCGGTCGTCTGAAAA AATT CTTCCCGTCTTAAGAAATCATCCTTAGCGAAAGCTAAGGATTTTTTTTATCTGAAATGTA GGGAG ACCCTCAGGTTAAATATTCACTCAGGAAGTTATTACTCAGGAAGCAAAGAGGATTACA

SE AATCAGGAGAGCGTTTTCAATCCTACCTCTGGCGCAGTTGATATGTCAAACAGGTTGCCG TCACT

Q GCGTCTTTTACTGGCTCTTCTCGCTAACCAAACCGGTAACCCCGCTTATTAAAAGCATTC TGTAA

no CAAAGCGGGACCAAAGCCATGACAAAAACGCGTAACAAAAGTGTCTATAATCACGGCAGA AAA

N GTCCACATTGATTATTTGCACGGCGTCACACTTTGCTATGCCATAGCATTTTTATCCATA AGATT

O: AGCGGATCCTACCTGACGCTTTTTATCGCAACTCTCTACTGTTTCTCCATACCCGTTTTT TTGGGC

79 TAGCAGTAATACGACTCACTATAGGGGTCTCATCTCGTGTGAGATAGGCGGAGATACGAA CTTT

AAGAGGAGGATATACCATGCACCATCATCATCACCATGAAAAACGTATCAACAAAAT CCGTAA

AAAACTGTCTGCGGACAACGCGACCAAACCGGTTTCTCGTTCTGGTCCGATGAAAAC CCTGCTG

GTTCGTGTTATGACCGACGACCTGAAAAAACGTCTGGAAAAACGTCGTAAAAAACCG GAAGTT

ATGCCGCAGGTTATCTCTAACAACGCGGCGAACAACCTGCGTATGCTGCTGGACGAC TACACCA

AAATGAAAGAAGCGATCCTGCAGGTTTACTGGCAGGAATTCAAAGACGACCACGTTG GTCTGAT

GTGCAAATTCGCGCAGCCGGCGTCTAAAAAAATCGACCAGAACAAACTGAAACCGGA AATGGA

CGAAAAAGGTAACCTGACCACCGCGGGTTTCGCGTGCTCTCAGTGCGGTCAGCCGCT GTTCGTT

TACAAACTGGAACAGGTTTCTGAAAAAGGTAAAGCGTACACCAACTACTTCGGTCGT TGCAACG

TTGCGGAACACGAAAAACTGATCCTGCTGGCGCAGCTGAAACCGGAAAAAGACTCTG ACGAAG

CGGTTACCTACTCTCTGGGTAAATTCGGTCAGCGTGCGCTGGACTTCTACTCTATCC ACGTTACC

AAAGAATCTACCCACCCGGTTAAACCGCTGGCGCAGATCGCGGGTAACCGTTACGCG TCTGGTC

CGGTTGGTAAAGCGCTGTCTGACGCGTGCATGGGTACCATCGCGTCTTTCCTGTCTA AATACCAG

GACATCATCATCGAACACCAGAAAGTTGTTAAAGGTAACCAGAAACGTCTGGAATCT CTGCGTG

AACTGGCGGGTAAAGAAAACCTGGAATACCCGTCTGTTACCCTGCCGCCGCAGCCGC ACACCAA

AGAAGGTGTTGACGCGTACAACGAAGTTATCGCGCGTGTTCGTATGTGGGTTAACCT GAACCTG

TGGCAGAAACTGAAACTGTCTCGTGACGACGCGAAACCGCTGCTGCGTCTGAAAGGT TTCCCGT

CTTTCCCGGTTGTTGAACGTCGTGAAAACGAAGTTGACTGGTGGAACACCATCAACG AAGTTAA

AAAACTGATCGACGCGAAACGTGACATGGGTCGTGTTTTCTGGTCTGGTGTTACCGC GGAAAAA

CGTAACACCATCCTGGAAGGTTACAACTACCTGCCGAACGAAAACGACCACAAAAAA CGTGAA

GGTTCTCTGGAAAACCCGAAAAAACCGGCGAAACGTCAGTTCGGTGACCTGCTGCTG TACCTGG

AAAAAAAATACGCGGGTGACTGGGGTAAAGTTTTCGACGAAGCGTGGGAACGTATCG ACAAAA

AAATCGCGGGTCTGACCTCTCACATCGAACGTGAAGAAGCGCGTAACGCGGAAGACG CGCAGT

CTAAAGCGGTTCTGACCGACTGGCTGCGTGCGAAAGCGTCTTTCGTTCTGGAACGTC TGAAAGA

AATGGACGAAAAAGAATTCTACGCGTGCGAAATCCAGCTGCAGAAATGGTACGGTGA CCTGCG

TGGTAACCCGTTCGCGGTTGAAGCGGAAAACCGTGTTGTTGACATCTCTGGTTTCTC TATCGGTT

CTGACGGTCACTCTATCCAGTACCGTAACCTGCTGGCGTGGAAATACCTGGAAAACG GTAAACG

TGAATTCTACCTGCTGATGAACTACGGTAAAAAAGGTCGTATCCGTTTCACCGACGG TACCGAC

ATCAAAAAATCTGGTAAATGGCAGGGTCTGCTGTACGGTGGTGGTAAAGCGAAAGTT ATCGACC

TGACCTTCGACCCGGACGACGAACAGCTGATCATCCTGCCGCTGGCGTTCGGTACCC GTCAGGG

TCGTGAATTCATCTGGAACGACCTGCTGTCTCTGGAAACCGGTCTGATCAAACTGGC GAACGGT

CGTGTTATCGAAAAAACCATCTACAACAAAAAAATCGGTCGTGACGAACCGGCGCTG TTCGTTG

CGCTGACCTTCGAACGTCGTGAAGTTGTTGACCCGTCTAACATCAAACCGGTTAACC TGATCGGT

GTTGACCGTGGTGAAAACATCCCGGCGGTTATCGCGCTGACCGACCCGGAAGGTTGC CCGCTGC CGGAATTCAAAGACTCTTCTGGTGGTCCGACCGACATCCTGCGTATCGGTGAAGGTTACA AAGA

AAAACAGCGTGCGATCCAGGCGGCGAAAGAAGTTGAACAGCGTCGTGCGGGTGGTTA CTCTCG

TAAATTCGCGTCTAAATCTCGTAACCTGGCGGACGACATGGTTCGTAACTCTGCGCG TGACCTGT

TCTACCACGCGGTTACCCACGACGCGGTTCTGGTTTTCGAAAACCTGTCTCGTGGTT TCGGTCGT

CAGGGTAAACGTACCTTCATGACCGAACGTCAGTACACCAAAATGGAAGACTGGCTG ACCGCG

AAACTGGCGTACGAAGGTCTGACCTCTAAAACCTACCTGTCTAAAACCCTGGCGCAG TACACCT

CTAAAACCTGCTCTAACTGCGGTTTCACCATCACCACCGCGGACTACGACGGTATGC TGGTTCGT

CTGAAAAAAACCTCTGACGGTTGGGCGACCACCCTGAACAACAAAGAACTGAAAGCG GAAGGT

CAGATCACCTACTACAACCGTTACAAACGTCAGACCGTTGAAAAAGAACTGTCTGCG GAACTGG

ACCGTCTGTCTGAAGAATCTGGTAACAACGACATCTCTAAATGGACCAAAGGTCGTC GTGACGA

AGCGCTGTTCCTGCTGAAAAAACGTTTCTCTCACCGTCCGGTTCAGGAACAGTTCGT TTGCCTGG

ACTGCGGTCACGAAGTTCACGCGGACGAACAGGCGGCGCTGAACATCGCGCGTTCTT GGCTGTT

CCTGAACTCTAACTCTACCGAATTCAAATCTTACAAATCTGGTAAACAGCCGTTCGT TGGTGCGT

GGCAGGCGTTCTACAAACGTCGTCTGAAAGAAGTTTGGAAACCGAACGCGTAAGAAA TCATCCT

TAGCGAAAGCTAAGGATTTTTTTTATCTGAAATGTAGGGAGACCCTCAGGTTAAATA TTCACTCA

GGAAGTTATTACTCAGGAAGCAAAGAGGATTACA

SE AATCAGGAGAGCGTTTTCAATCCTACCTCTGGCGCAGTTGATATGTCAAACAGGTTGCCG TCACT

Q GCGTCTTTTACTGGCTCTTCTCGCTAACCAAACCGGTAACCCCGCTTATTAAAAGCATTC TGTAA

no CAAAGCGGGACCAAAGCCATGACAAAAACGCGTAACAAAAGTGTCTATAATCACGGCAGA AAA

N GTCCACATTGATTATTTGCACGGCGTCACACTTTGCTATGCCATAGCATTTTTATCCATA AGATT

O: AGCGGATCCTACCTGACGCTTTTTATCGCAACTCTCTACTGTTTCTCCATACCCGTTTTT TTGGGC 80 TAGCAGTAATACGACTCACTATAGGGGTCTCATCTCGTGTGAGATAGGCGGAGATACGAA CTTT

AAGAGGAGGATATACCATGCACCATCATCATCACCATAAACGTATCAACAAAATCCG TCGTCGT

CTGGTTAAAGACTCTAACACCAAAAAAGCGGGTAAAACCGGTCCGATGAAAACCCTG CTGGTTC

GTGTTATGACCCCGGACCTGCGTGAACGTCTGGAAAACCTGCGTAAAAAACCGGAAA ACATCCC

GCAGCCGATCTCTAACACCTCTCGTGCGAACCTGAACAAACTGCTGACCGACTACAC CGAAATG

AAAAAAGCGATCCTGCACGTTTACTGGGAAGAATTCCAGAAAGACCCGGTTGGTCTG ATGTCTC

GTGTTGCGCAGCCGGCGCCGAAAAACATCGACCAGCGTAAACTGATCCCGGTTAAAG ACGGTA

ACGAACGTCTGACCTCTTCTGGTTTCGCGTGCTCTCAGTGCTGCCAGCCGCTGTACG TTTACAAA

CTGGAACAGGTTAACGACAAAGGTAAACCGCACACCAACTACTTCGGTCGTTGCAAC GTTTCTG

AACACGAACGTCTGATCCTGCTGTCTCCGCACAAACCGGAAGCGAACGACGAACTGG TTACCTA

CTCTCTGGGTAAATTCGGTCAGCGTGCGCTGGACTTCTACTCTATCCACGTTACCCG TGAATCTA

ACCACCCGGTTAAACCGCTGGAACAGATCGGTGGTAACTCTTGCGCGTCTGGTCCGG TTGGTAA

AGCGCTGTCTGACGCGTGCATGGGTGCGGTTGCGTCTTTCCTGACCAAATACCAGGA CATCATC

CTGGAACACCAGAAAGTTATCAAAAAAAACGAAAAACGTCTGGCGAACCTGAAAGAC ATCGCG

TCTGCGAACGGTCTGGCGTTCCCGAAAATCACCCTGCCGCCGCAGCCGCACACCAAA GAAGGTA

TCGAAGCGTACAACAACGTTGTTGCGCAGATCGTTATCTGGGTTAACCTGAACCTGT GGCAGAA

ACTGAAAATCGGTCGTGACGAAGCGAAACCGCTGCAGCGTCTGAAAGGTTTCCCGTC TTTCCCG

CTGGTTGAACGTCAGGCGAACGAAGTTGACTGGTGGGACATGGTTTGCAACGTTAAA AAACTGA

TCAACGAAAAAAAAGAAGACGGTAAAGTTTTCTGGCAGAACCTGGCGGGTTACAAAC GTCAGG

AAGCGCTGCTGCCGTACCTGTCTTCTGAAGAAGACCGTAAAAAAGGTAAAAAATTCG CGCGTTA

CCAGTTCGGTGACCTGCTGCTGCACCTGGAAAAAAAACACGGTGAAGACTGGGGTAA AGTTTAC GACGAAGCGTGGGAACGTATCGACAAAAAAGTTGAAGGTCTGTCTAAACACATCAAACTG GAA

GAAGAACGTCGTTCTGAAGACGCGCAGTCTAAAGCGGCGCTGACCGACTGGCTGCGT GCGAAA

GCGTCTTTCGTTATCGAAGGTCTGAAAGAAGCGGACAAAGACGAATTCTGCCGTTGC GAACTGA

AACTGCAGAAATGGTACGGTGACCTGCGTGGTAAACCGTTCGCGATCGAAGCGGAAA ACTCTAT

CCTGGACATCTCTGGTTTCTCTAAACAGTACAACTGCGCGTTCATCTGGCAGAAAGA CGGTGTTA

AAAAACTGAACCTGTACCTGATCATCAACTACTTCAAAGGTGGTAAACTGCGTTTCA AAAAAAT

CAAACCGGAAGCGTTCGAAGCGAACCGTTTCTACACCGTTATCAACAAAAAATCTGG TGAAATC

GTTCCGATGGAAGTTAACTTCAACTTCGACGACCCGAACCTGATCATCCTGCCGCTG GCGTTCGG

TAAACGTCAGGGTCGTGAATTCATCTGGAACGACCTGCTGTCTCTGGAAACCGGTTC TCTGAAA

CTGGCGAACGGTCGTGTTATCGAAAAAACCCTGTACAACCGTCGTACCCGTCAGGAC GAACCGG

CGCTGTTCGTTGCGCTGACCTTCGAACGTCGTGAAGTTCTGGACTCTTCTAACATCA AACCGATG

AACCTGATCGGTATCGACCGTGGTGAAAACATCCCGGCGGTTATCGCGCTGACCGAC CCGGAAG

GTTGCCCGCTGTCTCGTTTCAAAGACTCTCTGGGTAACCCGACCCACATCCTGCGTA TCGGTGAA

TCTTACAAAGAAAAACAGCGTACCATCCAGGCGGCGAAAGAAGTTGAACAGCGTCGT GCGGGT

GGTTACTCTCGTAAATACGCGTCTAAAGCGAAAAACCTGGCGGACGACATGGTTCGT AACACCG

CGCGTGACCTGCTGTACTACGCGGTTACCCAGGACGCGATGCTGATCTTCGAAAACC TGTCTCGT

GGTTTCGGTCGTCAGGGTAAACGTACCTTCATGGCGGAACGTCAGTACACCCGTATG GAAGACT

GGCTGACCGCGAAACTGGCGTACGAAGGTCTGCCGTCTAAAACCTACCTGTCTAAAA CCCTGGC

GCAGTACACCTCTAAAACCTGCTCTAACTGCGGTTTCACCATCACCTCTGCGGACTA CGACCGTG

TTCTGGAAAAACTGAAAAAAACCGCGACCGGTTGGATGACCACCATCAACGGTAAAG AACTGA

AAGTTGAAGGTCAGATCACCTACTACAACCGTTACAAACGTCAGAACGTTGTTAAAG ACCTGTC

TGTTGAACTGGACCGTCTGTCTGAAGAATCTGTTAACAACGACATCTCTTCTTGGAC CAAAGGTC

GTTCTGGTGAAGCGCTGTCTCTGCTGAAAAAACGTTTCTCTCACCGTCCGGTTCAGG AAAAATTC

GTTTGCCTGAACTGCGGTTTCGAAACCCACGCGGACGAACAGGCGGCGCTGAACATC GCGCGTT

CTTGGCTGTTCCTGCGTTCTCAGGAATACAAAAAATACCAGACCAACAAAACCACCG GTAACAC

CGACAAACGTGCGTTCGTTGAAACCTGGCAGTCTTTCTACCGTAAAAAACTGAAAGA AGTTTGG

AAACCGGAAATCATCCTTAGCGAAAGCTAAGGATTTTTTTTATCTGAAATGTAGGGA GACCCTC

AGGTTAAATATTCACTCAGGAAGTTATTACTCAGGAAGCAAAGAGGATTACA

SE tgccgtcactgcgtcttttactggctcttctcgctaaccaaaccggtaaccccgcttatt aaaagcattctgtaacaaagcgggaccaaagccatgacaaaaacg

Q cgtaacaaaagtgtctataatcacggcagaaaagtccacattgattatttgcacggcgtc acactttgctatgccatagcatttttatccataagattagcggatcct no acctgacgctttttatcgcaactctctactgtttctccatacccgtttttttgggctagc accgcctatctcgtgtgagataggcggagatacgaactttaagAAG

N GAGatatacc

O:

81

SE TGCCGTCACTGCGTCTTTTACTGGCTCTTCTCGCTAACCAAACCGGTAACCCCGCTTATT AAAAG Q CATTCTGTAACAAAGCGGGACCAAAGCCATGACAAAAACGCGTAACAAAAGTGTCTATAA TCA

ID CGGCAGAAAAGTCCACATTGATTATTTGCACGGCGTCACACTTTGCTATGCCATAGCATT TTTAT N CCATAAGATTAGCGGATCCTACCTGACGCTTTTTATCGCAACTCTCTACTGTTTCTCCAT ACCCGT

O: TTTTTTGGGTAGCGGATCCTACCTGAC

82

SE AATCAGGAGAGCGTTTTCAATCCTACCTCTGGCGCAGTTGATATGTCAAACAGGTTTCTA GAGC

Q ACAGCTAACACCACGTCGTCCCTATCTGCTGCCCTAGGTCTATGAGTGGTTGCTGGATAA CTTTA no CGGGCATGCATAAGGCTCGTAATATATATTCAGGGAGACCACAACGGTTTCCCTCTACAA ATAA

N TTTTGTTTAACTTTTACTAGAGCTAGCAGTAATACGACTCACTATAGGGGTCTCATCTCG TGTGA

0: GATAGGCGGAGATACGAACTTTAAGAGGAGGATATACCA

83

SE GTTTGAGAGATATGTAAATTCAAAGGATAATCAAAC

Q

no

N

0:

84

SE actacattttttaagacctaattttgagt

Q

no

N

0:

85

SE ctcaaaactcattcgaatctctactctttgtagat

Q

no

N

0:

86

SE CTCTAGCAGGCCTGGCAAATTTCTACTGTTGTAGAT

Q

no

N

0:

87

SE CCGTCTAAAACTCATTCAGAATTTCTACTAGTGTAGAT

Q

no

N

0:

88

SE GTCTAGGTACTCTCTTTAATTTCTACTATTGT

Q

no

N

0:

89

SE gttaagttatatagaataatttctactgttgtaga Q

no

N

0:

90

SE gtttaaaaccactttaaaatttctactattgta

Q

no

N

0:

91

SE GTTTGAGAATGATGTAAAAATGTATGGTACACAGAAATGTTTTAATACCATATTTTTACA TCACT

Q CTCAAACATACATCTCTTGTTACTGTTTATCGTATCCAGATTAAATTTCACGTTTTT

no

N

0:

92

SE CTCTACAACTGATAAAGAATTTCTACTTTTGTAGAT

Q

no

N

0:

93

SE GTCTGGCCCCAAATTTTAATTTCTACTGTTGTAGAT

Q

no

N

0:

94

SE GTCAAAAGACCTTTTTAATTTCTACTCTTGTAGAT

Q

no

N

0:

95

SE GTCTAGAGGACAGAATTTTTCAACGGGTGTGCCAATGGCCACTTTCCAGGTGGCAAAGCC CGTT

Q GAGCTTCTACGGAAGTGGCAC

no

N

0:

96 SE CGAGGTTCTGTCTTTTGGTCAGGACAACCGTCTAGCTATAAGTGCTGCAGGGGTGTGAGA AACT

Q CCTATTGCTGGACGATGTCTCTTTTAACGAGGCATTAGCAC

no

N

0:

97

SE GAACGAGGGACGTTTTGTCTCCAATGATTTTGCTATGACGACCTCGAACTGTGCCTTCAA GTCTG

Q AGGCGAAAAAGAAATGGAAAAAAGTGTCTCATCGCTCTACCTCGTAGTTAGAGG

no

N

0:

98

SE AATTACTGATGTTGTGATGAAGG

Q

no

N

0:

99

SE TATACCATAAGGATTTAAAGACT

Q

no

N

0:

10

0

SE GTCTTTACTCTCACCTTTCCACCTG

Q

no

N

0:

10

1

SE ATTTGAAGGTATCTCCGATAAGTAAAACGCATCAAAG

Q

no

N

0:

10

2

SE GTTTGAAGATATCTCCGATAAATAAGAAGCATCAAAG

Q

no N

0:

10

3

SE

Q

ID

N

0:

10

4

SE AAAGAACGCTCGCTCAGTGTTCTGACCTTTCGAGCGCCTGTTCAGGGCGAAAACCCTGGG AGGC

Q GCTCGAATCATAGGTGGGACAAGGGATTCGCGGCGAAAA

ID

N

0:

10

5

SE GTTTGAGAATGATGTAAAAATGTATGGTACACAGAAATGTTTTAATACCATATTTTTACA TCACT

Q CTCAAACATACATCTCTTGTTACTGTTTATCGTATCCAGATTAAATTTCACGTTTTT

ID

N

0:

10

6

SE GTCTAGAGGACAGAATTTTTCAACGGGTGTGCCAATGGCCACTTTCCAGGTGGCAAAGCC CGTT

Q GAGCTTCTACGGAAGTGGCAC

ID

N

0:

10

7

SE MSIYQEFVNKYSLSKTLRFELIPQGKTLENIKARGLILDDEKRAKDYKKAKQIIDKYHQF FIEEILSSVC

Q ISEDLLQNYSDWFKLKKSDDDNLQKDFKSAKDTIKKQISEYIKDSEKFKNLFNQNLIDAK KGQESDL

ID IL N WLKQSKDNGIELFKANSDITDIDEALEIIKSFKGWTTYFKGFHENRKNVYSSNDIPTSII YRIVDDNLPK

0: FLENKAKYESLKDKAPEAINYEQIKKDLAEELTFDIDYKTSEVNQRVFSLDEVFEIANFN YLNQSGI 10 TK

8 FNTIIGGKFWGENTKRKGINEYINLYSQQINDKTLKKYKMSVLFKQILSDTESKSFVIDK LEDDSDV VT

TMQSFYEQIAAFKTVEEKSIKETLSLLFDDLKAQKLDLSKIYFKNDKSLTDLSQQVF DDYSVIGTAVL EY ITQQIAPKNLDNPSKKEQELIAKKTEKAKYLSLETI^

EIAQNKDNLAQISIKYQNQGKKDLLQASAEDDVKAIKDLLDQTNNLLHKLKIFHISQSED KANILDK DEH

FYL EECYFELAMWLYNKIPJvTYITQKPYSDEKFKLNFENSTLANGWDKNKEPDNTAILFIKD DKY YL

GVMNKKNNKIFDDKAIKENKGEGYKKIW TKN

GSPQKGYEKFEFNIEDCRKFIDFYKQSISKHPEWKDFGFRFSDTQRYNSIDEFYREV ENQGYKLTFENI S

ESYIDSVVNQGKLYLFQIYN DFSAYSKGPJ'NLHTLYWKALFDERNLQDVVYKLNGEAELFYRKQS IPKK

ITFffAKEAIANKNKDNPKKES EYDLIKD

D

VHILSIDRGEPJiLAYYTLVDGKGNIIKQDTFNIIGNDPJVKTNYHDKLAAIEKDRD SAPJ DWKKINNI KEM

KEGYLSQVVHEIAKLVIEYNAIV EDLNFGFKRGRFKVEKQWQKLEKMLIEKLNYL KDNEFDK TGG

VLRAYQLTAPFETFKKMGKQTGIIYYVPAGFTSKICPVTGFVNQLYPKYESVSKSQE FFSKFDKICYN LD

KGYFEFSFDYKNFGDKAAKGKWTIASFGSRLINFRNSDKNHNWDTREVYPTKELEKL LKDYSIEYG HGEC

IKAAICGESDKKFFAKLTSVLNTILQMRNSKTGTELDYLISPVADVNGNFFDSRQAP KNMPQDADAN GAY

HIGLKGLMLLGRIKNNQEGKKLNLVIKNEEYFEFVQNRNN

SE MSIYQEFVNKYSLSKTLRFELIPQGKTLENIKARGLILDDEKRAKDYKKAKQIIDKYHQF FIEEILSSVC

Q ISEDLLQNYSDWFKLKKSDDDNLQKDFKSAKDTIKKQISEYIKDSEKFKNLFNQNLIDAK KGQESDL

no IL

N WLKQSKDNGIELFKANSDITDIDEALEIIKSFKGWTTYFKGFHENRKNVYSSDDIPTSII YRIVDDNLPK

0: FLENKAKYESLKDKAPEAINYEQIKKDLAEELTFDIDYKTSEVNQRVFSLDEVFEIANFN YLNQSGI 10 TK

9 FNTIIGGKFWGENTKRKGINEYINLYSQQINDKTLKKYKMSVLFKQILSDTESKSFVIDK LEDDSDV VT

TMQSFYEQIAAFKTVEEKSIKETLSLLFDDLKAQKLDLSKIYFKNDKSLTDLSQQVF DDYSVIGTAVL EY

ITQQVAPKNLDNPSKKEQDLIAKKTEKAKYLSLETIKLALEEFN HRDIDKQCRFEEILA FAAIPMIF D

EIAQNKDNLAQISLKYQNQGKKDLLQASAEEDVKAIKDLLDQTN LLHRLKIFHISQSEDKANILDK DEH

FYL EECYFELAMWLYNKIR YITQKPYSDEKFKLNFENSTLANGWDKNKEPDNTAILFIKDDKY YL

GVMNKKNNKIFDDKAIKENKGEGYKKIW TKN GNPQKGYEKFEFNIEDCRKFIDFYKESISKHPEWKDFGFRFSDTQRYNSIDEFYREVENQ GYKLTFENI S

ESYIDSVVNQGKLYLFQIYN DFSAYSKGPJ'NLHTLYWKALFDERNLQDVWKLNGEAELFYRKQS IPKK

ITHPAKEAIANKN DNPKKES EYDLIKDKJ FTEDKFFFHCPITINFKSSGAN F D

VHILSIDRGERHLAYYTLVDGKGNIIKQDTFNIIGNDRMKTNYHDKLAAIEKDRDSA RKDWKKINNI KEM

KEGYLSQVVHEIAKLVIEHNAIV EDLNFGFKRGRFKVEKQWQKLEKMLIEKLNYLVFKDNEFDK TGG

VLRAYQLTAPFETFKKMGKQTGIIYYVPAGFTSKICPVTGFVNQLYPKYESVSKSQE FFSKFDKICYN LD

KGYFEFSFDYKNFGDKAAKGKWTIASFGSRLINFRNSDKNHNWDTREVYPTKELEKL LKDYSIEYG HGEC

IKAAICGESDKKFFAKLTSVLNTILQMRNSKTGTELDYLISPVADVNGNFFDSRQAP KNMPQDADAN GAY

HIGLKGLMLLDRIKNNQEGKKLNLVIKNEEYFEFVQNRNN

SE MDKKYSIGLDIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAE ATRLKRT

Q ARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVA YHEKYPTI

no YHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQL FEENPINA

N SGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAK LQLSKDTY

O: DDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQD LTLLKAL 11 WQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLL RKQRTF

0 DNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWM TRKSEETITP

WNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTWNELTKVKYVTEG MRKPAFLS

GEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLL KIIKDKDFLDN

EENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKL INGIRDKQSG

KTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAI KKGILQTVKVV

DELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPV ENTQLQNEKL

YLYYLQNGRDMYVDQELDINRLSDYDVDHIWQSFLKDDSIDNKVLTRSDKNRGKSDN VPSEEVVK

KMKNY WRQLLN AKLITQRKFDNLTK AERGGL SELDK AGFIKRQL VETRQITKH V AQILD SRMNTKY

DENDKLIREVKVITLKSKLVSDFRKDFQFYKVREIN YHHAHDAYLNAVVGTALIKKYPKLESEFVY

GDYKWDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGE TGEIVWDKGR

DFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFD SPTVAYSVL

VVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKY SLFELENGRKR

MLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEI IEQISEFSKR

VILADANLDKVLSAYN HRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATL

IHQSITGLYETRIDLSQLGGD

SE PKKKRKV

Q

ID

N 0:

11

1

SE KRPAATKKAGQAKKKK

Q

ID

N

0:

11

2

SE PAAKRVKLD

Q

ID

N

0:

11

3

SE RQRRNELKRSP

Q

ID

N

0:

11

4

SE NQSSNFGPMKGGNFGGRSSGPYGGGGQYFAKPRNQGGY

Q

ID

N

0:

11

5

SE RMRIZFKNKGKDTAELRRRRVEVSVELRKAKKDEQILKRRNV

Q

ID

N

0:

11

6

SE VSRKRPRP

Q

ID

N 0:

11

7

SE PPKKARED

Q

ID

N

0:

11

8

SE PQPKKKPL

Q

ID

N

0:

11

9

SE SALIKKKKKMAP

Q

ID

N

0:

12

0

SE DRLRR

Q

ID

N

0:

12

1

SE PKQKKRK

Q

ID

N

0:

12

2

SE RKLKKKIKKL

Q

ID

N 0:

12

3

SE REKKKFLKRR

Q

ID

N

0:

12

4

SE KRKGDEVDGVDEVAKKKSKK

Q

ID

N

0:

12

5

SE RKCLQAGMNLEARKTKK

Q

ID

N

0:

12

6

SE ATGGGTAAGATGTATTATCTGGGTTTGGATATAGGCACTAACTCTGTGGGATATGCAGTA ACTG

Q ATCCCTCGTATCACTTGTTAAAGTTCAAAGGCGAACCCATGTGGGGAGCACATGTATTTG CTGC

ID GGGTAATCAGAGTGCCGAAAGGCGATCTTTCAGAACATCCAGGAGGCGATTAGATAGGAG ACA N GCAAAGAGTAAAGCTTGTGCAAGAGATCTTTGCTCCTGTCATTTCACCTATAGACCCTCG TTTTT

0: TTATAAGATTGCACGAATCGGCTCTATGGAGAGACGATGTTGCCGAAACAGATAAACATA TCTT 12 TTTCAATGATCCCACTTATACAGACAAGGAATACTACTCCGACTACCCGACAATTCATCA TTTGA

7 TCGTCGATCTTATGGAGAGCTCTGAAAAGCATGACCCCCGACTTGTCTATTTGGCTGTAG CTTGG

TTAGTTGCTCATAGAGGTCATTTCTTGAATGAAGTAGATAAAGACAATATAGGTGAT GTACTTTC

TTTTGATGCTTTCTACCCGGAATTTTTGGCCTTTTTGTCAGACAATGGCGTCAGTCC CTGGGTCTG

TGAGTCGAAGGCCCTTCAAGCTACTCTGCTGTCTAGGAATAGCGTCAACGACAAATA TAAAGCA

TTAAAATCGCTGATATTCGGATCGCAAAAACCGGAAGATAACTTTGACGCTAACATC TCTGAAG

ATGGTTTAATCCAATTGCTGGCGGGTAAGAAAGTTAAAGTAAACAAACTATTCCCAC AAGAGTC

CAACGATGCTAGCTTTACGTTGAATGATAAAGAAGACGCTATTGAAGAAATTCTAGG TACTTTA

ACGCCTGACGAGTGCGAATGGATCGCTCATATTCGCAGATTGTTCGATTGGGCCATC ATGAAAC

ACGCGCTAAAGGATGGCAGGACGATATCTGAATCAAAAGTGAAGCTATACGAGCAGC ATCATC

ATGACTTGACTCAGTTAAAGTACTTTGTGAAGACCTACCTAGCTAAAGAGTATGATG ATATCTTC

AGAAACGTAGACTCCGAGACAACTAAAAATTATGTAGCTTATTCTTACCATGTGAAG GAAGTGA

AAGGCACATTACCAAAAAATAAAGCAACGCAAGAAGAATTTTGTAAATACGTCCTTG GCAAAG TCAAAAACATTGAATGTTCCGAAGCAGACAAGGTTGATTTTGATGAAATGATACAACGAC TTAC

GGACAATTCTTTTATGCCAAAGCAAGTCTCAGGTGAAAATAGAGTAATACCATACCA GTTGTAC

TACTATGAATTAAAGACAATTTTAAACAAAGCCGCCTCATATCTACCTTTTTTGACA CAATGCGG

TAAAGATGCTATTTCTAACCAAGACAAATTACTGTCTATAATGACATTTCGCATACC ATATTTCG

TCGGCCCTTTAAGGAAAGATAATTCAGAACATGCCTGGTTGGAACGTAAAGCGGGTA AAATTTA

CCCGTGGAACTTTAATGATAAAGTAGATCTTGATAAATCGGAGGAAGCCTTTATCCG TAGGATG

ACCAATACTTGCACGTATTACCCAGGAGAAGACGTGTTACCATTAGATTCACTTATC TATGAAA

AGTTTATGATCTTGAATGAGATAAACAATATTAGGATTGACGGATACCCCATTTCTG TTGATGTG

AAACAACAAGTATTTGGTTTATTTGAGAAGAAAAGGCGAGTAACAGTTAAGGATATT CAAAATC

TACT ATT ATCTCTTGGAGCGTTGGATAAACACGGTAAGCTGACTGGTATTGACACGACAATACA

CTCTAATTATAACACTTATCATCATTTTAAATCTCTTATGGAGCGGGGAGTATTGAC CAGAGATG

ATGTGGAAAGAATAGTGGAAAGAATGACATATTCTGACGATACTAAGAGGGTCAGAC TGTGGT

TAAATAATAATTATGGAACTCTAACAGCTGACGATGTTAAGCATATCTCAAGACTCA GAAAACA

CGATTTCGGCCGTTTGTCTAAAATGTTTTTGACAGGATTGAAAGGTGTTCATAAGGA GACAGGC

GAGAGAGCAAGTATACTGGATTTTATGTGGAATACTAACGACAATTTAATGCAACTA CTGTCCG

AATGTTACACATTCTCGGATGAGATCACCAAATTACAAGAGGCCTACTACGCAAAAG CTCAATT

ATCGCTAAATGACTTCTTGGACTCTATGTATATATCAAACGCCGTTAAGAGACCTAT TTATCGGA

CCTTAGCGGTAGTAAATGATATTAGAAAGGCATGCGGGACGGCACCTAAAAGAATTT TCATCGA

GATGGCGCGAGATGGAGAGTCTAAGAAGAAAAGATCTGTGACTCGTAGAGAGCAAAT TAAAAA

TCTCTATAGATCAATTCGTAAAGACTTTCAACAAGAAGTTGATTTTCTGGAAAAGAT ATTGGAA

AATAAGAGTGACGGGCAGCTTCAGTCTGACGCTTTATATTTGTATTTTGCTCAATTA GGCAGAGA

CATGTACACAGGTGATCCAATCAAATTAGAACATATTAAAGACCAATCTTTTTACAA CATTGAT

CATATTTATCCTCAATCGATGGTGAAAGATGACAGTTTGGATAACAAGGTACTAGTC CAAAGCG

AAATCAATGGCGAAAAGAGTTCGCGCTATCCATTAGACGCAGCCATTAGAAACAAAA TGAAGC

CGTTGTGGGATGCCTACTATAATCATGGATTAATTTCTCTTAAGAAATACCAGCGTT TGACGAGA

TCTACTCCATTTACGGACGACGAGAAGTGGGATTTTATCAATCGTCAGCTAGTTGAA ACTAGGC

AATCTACTAAAGCTTTAGCAATATTGTTAAAGCGTAAGTTTCCAGATACTGAAATAG TTTACTCA

AAGGCTGGACTATCCAGCGATTTTAGACATGAATTCGGCCTGGTTAAGAGTAGGAAT ATTAATG

ATCTACACCATGCTAAAGATGCCTTTCTCGCAATAGTTACTGGGAACGTTTATCATG AAAGATTT

AATAGAAGATGGTTTATGGTTAACCAGCCATACTCTGTGAAAACTAAGACATTGTTT ACCCATTC

AATTAAGAATGGCAACTTTGTCGCTTGGAATGGAGAAGAAGATCTTGGACGTATCGT AAAGATG

TTGAAACAAAACAAGAACACAATCCACTTCACCAGGTTTTCCTTTGATAGGAAGGAG GGATTGT

TCGATATTCAACCTCTCAAAGCTTCTACCGGATTGGTTCCACGAAAAGCAGGGTTGG ATGTTGTT

AAATATGGAGGATACGATAAAAGCACTGCCGCGTATTATTTATTAGTACGTTTTACA CTCGAGG

ATAAGAAGACTCAACACAAATTGATGATGATTCCTGTTGAAGGTCTCTACAAAGCAC GTATTGA

CCATGATAAAGAGTTTTTAACAGATTATGCTCAGACCACGATCAGCGAAATTCTTCA AAAGGAC

AAGCAGAAAGTGATCAACATCATGTTCCCTATGGGCACGAGACATATCAAACTGAAT TCGATGA

TTTCTATTGATGGATTCTATCTTTCTATTGGTGGGAAGAGTAGCAAAGGTAAGTCAG TACTATGT

CATGCTATGGTGCCATTAATCGTCCCACACAAGATAGAATGTTATATCAAGGCTATG GAATCGT

TTGCAAGAAAATTCAAAGAAAATAATAAATTGAGGATCGTTGAAAAGTTTGATAAAA TAACTGT

TGAAGATAACTTGAACTTATACGAGCTTTTTCTACAAAAGTTGCAACATAACCCATA TAATAAA

TTTTTCTCTACACAATTTGATGTGTTGACGAACGGTAGAAGTACATTCACCAAATTG TCTCCAGA GGAGCAAGTCCAGACTTTACTTAATATACTGAGTATATTTAAAACTTGTCGTTCTTCTGG GTGTG ATTTAAAATCAATAAATGGTTCCGCTCAAGCGGCTAGAATTATGATATCCGCTGATTTAA CTGGC TTATCAAAAAAGTATTCAGATATTAGATTAGTTGAGCAAAGCGCATCAGGTCTATTTGTT TCAAA ATCTCAAAATCTCTTGGAATACTTGCCAAAAAAGAAAAGGAAAGTTTAG

SE ATGAGTAGTTTAACAAAGTTTACCAATAAATATAGTAAGCAACTAACTATAAAGAACGAA TTGA

Q TACCGGTCGGTAAGACTTTGGAAAACATAAAAGAAAATGGGTTGATTGATGGAGACGAGC AAT

no TGAATGAGAATTATCAAAAAGCAAAGATAATAGTAGATGATTTTTTGAGAGACTTTATTA ATAA

N AGCTCTAAATAACACTCAAATTGGTAACTGGAGAGAGCTAGCCGACGCCTTGAACAAGGA AGA

O: TGAGGATAATATTGAGAAATTACAAGATAAGATTAGAGGGATTATCGTGTCTAAGTTTGA GACT 12 TTTGATCTGTTCAGTTCGTATTCGATTAAAAAGGACGAGAAAATCATCGATGATGATAAC GATG 8 TGGAAGAAGAGGAGCTAGACCTTGGGAAGAAGACATCTAGCTTCAAATACATATTCAAGA AAA

ATTTGTTCAAACTTGTCCTTCCTTCATATTTAAAAACAACAAATCAAGATAAGTTAA AAATCATT

TCTTCCTTCGATAATTTTAGTACTTATTTTCGTGGTTTTTTCGAAAACAGGAAAAAT ATATTCACT

AAAAAGCCTATATCTACCTCTATAGCTTATAGAATTGTTCACGATAATTTCCCAAAA TTTCTAGA

TAATATCAGGTGTTTTAATGTTTGGCAAACCGAGTGTCCTCAGTTAATAGTCAAGGC CGACAACT

ACCTTAAAAGCAAGAATGTGATTGCAAAAGATAAGTCTTTGGCTAACTATTTTACAG TCGGTGC

CTATGATTATTTTCTGAGTCAAAATGGTATCGATTTCTATAACAACATTATTGGCGG CTTACCAG

CTTTTGCCGGGCATGAGAAGATTCAGGGTTTGAACGAATTTATCAATCAAGAATGTC AAAAGGA

TTCTGAATTAAAGTCTAAGCTCAAGAATAGGCACGCTTTCAAAATGGCAGTCTTATT CAAACAA

ATCCTTTCAGACAGAGAAAAGTCATTTGTGATTGACGAGTTCGAATCAGACGCTCAG GTAATTG

ATGCTGTTAAAAATTTTTACGCGGAACAATGCAAAGATAATAACGTCATATTTAATT TATTGAAT

CTGATCAAGAATATTGCTTTTTTGTCGGATGATGAGTTAGACGGCATTTTCATAGAG GGTAAATA

CCTGTCCTCTGTGTCTCAAAAATTGTATAGTGATTGGTCAAAGTTGAGAAATGATAT TGAAGATT

CGGCTAATTCTAAACAGGGTAACAAAGAATTAGCGAAGAAAATCAAAACTAACAAGG GTGATG

TTGAAAAGGCTATAAGTAAGTACGAGTTCAGTTTATCTGAACTAAATTCAATTGTTC ATGATAAC

ACAAAATTTTCCGATCTTTTATCATGCACATTACATAAAGTTGCAAGTGAAAAATTA GTCAAAGT

AAACGAAGGTGATTGGCCAAAACATCTAAAAAACAACGAGGAAAAACAGAAGATAAA AGAAC

CTCTTGACGCTTTATTGGAAATATACAATACTCTATTAATATTTAACTGTAAAAGTT TTAACAAA

AATGGTAATTTCTATGTCGACTACGATCGCTGCATTAATGAGTTGTCCAGTGTTGTG TACTTGTA

TAATAAAACTCGTAATTATTGTACGAAAAAGCCGTACAACACTGACAAATTTAAGTT GAATTTC

AACTCCCCACAACTGGGTGAGGGCTTCTCTAAAAGTAAAGAGAATGATTGCCTTACA TTATTAT

TTAAAAAAGATGATAATTATTATGTCGGAATCATAAGAAAGGGGGCAAAGATCAACT TCGATG

ACACTCAGGCCATAGCAGACAACACAGATAACTGTATATTCAAAATGAATTATTTTT TGCTGAA

GGATGCTAAAAAATTTATCCCCAAATGTTCAATACAATTAAAAGAGGTTAAGGCCCA TTTCAAA

AAGTCGGAAGATGACTATATTTTGTCCGATAAGGAAAAATTCGCTAGTCCGCTTGTT ATTAAAA

AATCCACATTTCTTCTCGCTACGGCTCATGTGAAAGGAAAGAAGGGCAATATTAAGA AATTTCA

GAAAGAATACTCCAAAGAAAATCCTACGGAGTATAGAAATAGTCTGAACGAATGGAT AGCATT

CTGCAAAGAGTTCTTGAAGACCTATAAAGCTGCCACCATCTTTGATATTACAACTTT GAAAAAG

GCCGAGGAATACGCTGACATTGTGGAATTCTATAAGGATGTAGATAATCTTTGTTAC AAGTTAG

AATTTTGCCCTATCAAAACTTCTTTTATCGAAAATCTTATAGATAATGGCGATTTAT ACCTGTTTA

GAATTAATAACAAGGACTTTTCTTCAAAAAGTACAGGCACGAAAAACTTACACACAT TATACTT

GCAGGCTATATTTGACGAGCGAAACTTAAACAACCCCACGATAATGTTGAATGGAGG TGCAGA GTTATTCTACAGAAAAGAATCTATAGAACAGAAAAATCGGATCACGCACAAAGCCGGTAG TAT

CTTAGTGAATAAAGTGTGCAAAGATGGTACAAGTCTAGATGACAAAATCCGTAACGA AATTTAC

CAGTATGAAAACAAATTCATTGATACTCTTTCGGACGAAGCTAAAAAGGTTCTGCCA AACGTTA

TTAAGAAAGAGGCTACGCATGATATAACAAAAGATAAACGTTTCACTAGCGACAAAT TCTTCTT

TCATTGTCCTTTAACAATCAACTACAAGGAAGGTGACACCAAACAATTTAATAATGA AGTGCTC

TCATTCCTTAGAGGTAACCCCGATATCAATATTATCGGCATTGATAGAGGAGAAAGA AACCTAA

TCTATGTAACAGTCATTAACCAAAAAGGCGAAATATTGGATAGCGTCTCCTTCAATA CTGTCAC

CAATAAGTCATCGAAGATAGAACAAACTGTTGATTACGAAGAAAAATTGGCCGTTAG AGAAAA

GGAACGTATCGAAGCGAAGAGATCTTGGGATAGCATATCCAAGATTGCCACCTTGAA GGAGGG

TTATCTAAGCGCGATCGTACATGAAATCTGCTTATTAATGATTAAGCATAATGCTAT TGTCGTGT

TAGAAAACCTGAATGCCGGTTTTAAAAGGATTAGAGGTGGTTTGTCAGAAAAGTCAG TATATCA

AAAGTTTGAAAAGATGCTTATTAATAAACTCAACTACTTCGTTAGCAAGAAAGAAAG TGATTGG

AATAAACCGTCAGGTTTGCTCAATGGTCTTCAGTTAAGTGATCAATTTGAGTCTTTC GAAAAATT

CCGGATTTGCCAACGTCTTGAATTTGTCCAAGGTCAGAAATGTTGACGCCATCAAAA GTTTTTTT

AGCAACTTCAATGAAATCTCTTATTCCAAAAAGGAAGCCCTTTTCAAGTTTTCTTTT GACCTAGA

CTCGTTATCGAAGAAAGGATTTTCATCTTTCGTAAAGTTTAGCAAGTCCAAGTGGAA TGTATACA

CATTCGGCGAGAGAATTATCAAGCCCAAGAACAAACAGGGCTATAGAGAAGACAAGA GAATCA

ACTTGACTTTTGAGATGAAAAAATTACTCAACGAATACAAGGTTTCATTTGATTTGG AGAACAA

CTTGATTCCCAATTTGACATCAGCTAACTTGAAGGATACGTTCTGGAAGGAGTTATT CTTTATAT

TCAAAACGACATTACAACTGCGTAATAGTGTTACAAACGGTAAAGAAGATGTATTAA TCTCACC

TGTAAAGAATGCCAAAGGAGAATTTTTCGTATCCGGTACTCACAATAAGACACTACC ACAGGAT

TGCGACGCTAACGGTGCGTATCATATTGCGTTGAAAGGATTAATGATACTTGAAAGA AATAACC

TTGTTCGCGAAGAAAAAGACACCAAGAAGATCATGGCTATTAGCAATGTTGATTGGT TTGAATA

CGTGCAAAAGAGGAGAGGTGTTTTGTAA

SE ATGAACAATTATGACGAGTTCACAAAGCTATACCCTATCCAAAAAACTATCAGGTTCGAA TTGA

Q AACCACAAGGGAGAACAATGGAACATCTGGAGACATTCAACTTTTTTGAAGAGGACAGAG ACA

no GAGCGGAGAAATACAAAATTTTAAAAGAGGCCATCGATGAATATCACAAAAAGTTTATCG ACG

N AGCATTTAACAAACATGTCTTTGGACTGGAATTCACTTAAACAAATTTCTGAGAAATATT ATAA

O: GTCTCGGGAGGAAAAAGACAAAAAGGTCTTTTTGTCCGAGCAAAAGAGAATGAGACAAGA AAT 12 TGTCTCGGAGTTTAAAAAAGATGATCGGTTCAAAGATTTGTTTAGCAAGAAATTGTTTTC TGAAT

9 TGTTGAAGGAGGAGATATACAAGAAAGGCAACCATCAAGAAATAGATGCTTTGAAATCGT TTG

ACAAGTTCAGCGGTTACTTCATTGGTTTACATGAAAATAGGAAGAACATGTATAGCG ACGGCGA

TGAGATCACCGCTATATCGAATAGAATCGTTAACGAAAATTTTCCGAAATTTTTGGA TAATTTGC

AAAAATACCAGGAAGCTAGGAAAAAGTACCCTGAATGGATAATAAAGGCGGAATCAG CTTTGG

TGGCTCACAACATAAAGATGGATGAAGTCTTCTCGCTGGAATATTTTAACAAAGTAT TAAATCA

GGAAGGAATCCAAAGATACAACTTAGCCTTGGGTGGATACGTAACCAAATCAGGTGA GAAAAT

GATGGGCTTAAATGATGCACTTAATCTAGCTCACCAATCCGAAAAGTCCTCTAAAGG GAGGATA

CACATGACACCATTGTTTAAGCAAATCCTTTCGGAGAAAGAATCTTTTTCATATATC CCCGATGT

TTTCACTGAGGATAGTCAATTGTTGCCCAGCATTGGTGGATTTTTTGCACAAATAGA AAATGATA

AAGATGGTAACATCTTCGATAGAGCCTTGGAATTGATAAGCTCCTATGCAGAATACG ATACGGA

ACGAATATACATTAGACAAGCTGACATCAACAGAGTAAGCAATGTTATTTTTGGTGA GTGGGGA ACTTTAGGTGGATTAATGCGGGAGTACAAAGCTGACTCAATCAATGATATTAATTTGGAA CGTA

CGTGCAAAAAAGTCGATAAGTGGCTTGATAGTAAGGAGTTTGCTCTGTCGGATGTAC TAGAAGC

AATTAAGAGAACAGGAAACAATGATGCATTTAATGAATATATTAGTAAAATGAGGAC GGCTAG

AGAAAAGATAGACGCCGCACGTAAGGAAATGAAGTTTATTTCCGAGAAAATATCTGG CGATGA

AGAGTCGATTCACATCATCAAGACCCTACTCGATTCTGTTCAGCAATTTCTCCATTT TTTTAACCT

CTTCAAAGCAAGACAAGACATTCCCTTAGATGGGGCTTTTTATGCCGAATTTGATGA AGTTCATT

CAAAGTTGTTTGCTATTGTTCCTCTTTACAATAAGGTCCGTAATTACCTTACTAAAA ATAACTTG

AACACCAAGAAAATAAAGTTAAACTTCAAGAATCCGACTCTTGCCAACGGGTGGGAT CAGAAT

AAAGTTTATGATTATGCTAGCTTAATATTTCTAAGAGATGGGAATTATTACTTAGGA ATCATCAA

TCCAAAGCGTAAGAAAAACATTAAATTTGAACAAGGGTCAGGCAATGGCCCATTCTA TAGAAA

AATGGTGTATAAGCAAATACCAGGACCTAACAAGAACTTGCCTCGCGTATTTTTAAC TTCAACA

AAGGGTAAAAAAGAATATAAACCAAGCAAAGAAATTATTGAAGGTTACGAAGCAGAT AAACAC

ATCAGAGGTGATAAGTTCGATCTGGATTTCTGCCATAAATTGATTGACTTTTTTAAG GAATCTAT

AGAAAAACATAAGGACTGGTCCAAATTTAATTTCTACTTCTCACCTACAGAAAGTTA TGGTGAC

ATTTCAGAATTTTATTTAGACGTTGAGAAACAAGGATATAGGATGCATTTTGAAAAT ATTTCAGC

GGAAACCATCGACGAATACGTTGAGAAGGGTGATTTATTCTTGTTCCAAATTTACAA TAAAGAC

TTCGTTAAAGCTGCAACCGGAAAGAAGGATATGCATACCATATATTGGAACGCTGCA TTCTCGC

CAGAAAACTTACAAGATGTCGTTGTAAAGCTTAATGGAGAAGCTGAGCTGTTCTATA GAGACAA

GAGTGATATAAAAGAGATTGTGCATCGGGAAGGTGAAATTCTGGTGAACAGAACTTA CAATGG

TCGTACACCCGTTCCAGACAAAATACATAAAAAACTGACCGATTATCATAATGGTAG GACAAAG

GACTTGGGCGAGGCCAAGGAGTACCTCGATAAAGTTAGATATTTCAAGGCACACTAT GATATTA

CGAAAGACAGGAGATATTTAAACGATAAAATTTACTTTCATGTCCCTTTGACCCTTA ACTTTAAA

GCTAATGGTAAAAAGAATTTGAACAAAATGGTAATTGAGAAGTTTTTATCGGACGAA AAAGCTC

ACATAATCGGAATCGACCGCGGAGAGAGAAATTTACTGTATTATAGTATCATCGACA GAAGTGG

AAAGATTATTGATCAGCAATCTTTGAACGTCATTGATGGGTTTGACTATCGGGAAAA GTTAAAT

CAAAGGGAAATTGAAATGAAGGATGCGAGACAATCATGGAATGCCATTGGTAAAATT AAAGAT

CTCAAGGAGGGGTACTTATCAAAAGCTGTACACGAGATAACTAAAATGGCTATCCAA TATAATG

CAATTGTTGTAATGGAAGAATTGAATTATGGTTTTAAACGCGGCAGGTTTAAAGTCG AAAAACA

AATATACCAAAAGTTTGAAAACATGTTAATTGATAAGATGAACTATCTTGTTTTCAA AGATGCA

CCTGATGAGAGTCCTGGCGGTGTGCTGAACGCCTATCAATTAACAAACCCATTAGAG TCCTTTG

CTAAACTGGGTAAACAAACTGGCATTCTATTTTATGTTCCAGCCGCTTACACCTCAA AGATCGAT

CCAACGACCGGTTTTGTAAACTTATTTAATACTTCTTCCAAAACAAACGCGCAAGAA CGCAAAG

AATTCCTACAAAAATTTGAATCAATATCCTATAGCGCAAAAGATGGAGGTATATTCG CTTTCGCT

TTTGACTACAGAAAGTTTGGCACTTCCAAGACAGATCATAAAAATGTGTGGACCGCT TATACCA

ACGGAGAAAGGATGCGTTATATTAAAGAAAAAAAGAGGAACGAACTATTTGATCCAT CGAAAG

AAATTAAAGAAGCTTTGACAAGCAGCGGAATCAAATATGATGGAGGTCAAAACATAC TTCCAG

ATATTCTCAGATCTAATAATAACGGTCTTATTTACACGATGTATTCATCTTTTATCG CTGCCATCC

AAATGCGTGTGTATGATGGCAAGGAAGATTATATTATATCTCCTATTAAAAATTCAA AGGGTGA

ATTTTTTCGCACGGATCCAAAAAGAAGAGAGCTTCCAATTGACGCCGATGCTAACGG TGCTTAC

AATATTGCATTGCGTGGTGAACTTACTATGAGAGCCATCGCCGAAAAGTTTGATCCG GACAGTG

AAAAAATGGCGAAATTGGAGCTAAAGCACAAGGATTGGTTTGAATTCATGCAGACCC GTGGCG

ATTGA SE ATGACTAAAACGTTCGACTCCGAGTTTTTTAATCTCTATTCCTTGCAAAAGACCGTTAGG TTTGA

Q ATTGAAACCAGTTGGTGAAACTGCCTCATTTGTCGAAGACTTTAAAAACGAGGGATTGAA AAGA

no GTGGTTAGTGAAGATGAAAGAAGGGCAGTAGACTATCAAAAGGTTAAAGAAATCATTGAC GAT

N TACCACAGAGATTTTATAGAAGAATCTCTGAACTATTTTCCAGAGCAGGTTTCAAAAGAT GCTCT

O: AGAGCAAGCGTTTCATTTGTATCAAAAGTTGAAAGCAGCGAAGGTGGAAGAAAGGGAAAA AGC 13 TTTAAAAGAATGGGAAGCATTACAGAAAAAATTGCGAGAAAAAGTCGTCAAATGTTTCAG CGA 0 CTCTAATAAAGCTCGCTTTTCTAGAATCGATAAAAAAGAATTGATTAAGGAAGATTTAAT AAAT

TGGCTGGTAGCACAAAACAGAGAGGATGATATTCCTACTGTTGAAACGTTCAATAAT TTTACTA

CTTACTTCACTGGTTTCCATGAGAACAGGAAGAATATTTACTCTAAAGATGATCACG CTACTGCT

ATAAGTTTTAGGTTGATTCACGAAAACTTGCCTAAATTTTTTGACAATGTCATCAGT TTTAACAA

GTTGAAAGAAGGTTTCCCGGAATTAAAATTCGACAAAGTTAAAGAAGATTTAGAAGT AGATTAC

GACTTGAAGCATGCGTTTGAAATTGAATATTTCGTTAATTTCGTCACACAAGCTGGT ATCGACCA

ATATAATTACCTGCTTGGAGGCAAAACTCTAGAAGACGGTACGAAGAAACAAGGAAT GAATGA

ACAGATTAATTTATTTAAGCAACAACAAACTCGCGATAAAGCTAGACAGATTCCAAA ACTGATT

CCACTTTTCAAACAGATTCTATCTGAGAGAACTGAATCTCAGAGTTTTATCCCTAAG CAGTTCGA

GTCTGATCAGGAACTATTCGATTCCCTGCAGAAATTGCATAACAACTGTCAAGATAA GTTTACC

GTTTTGCAACAGGCGATCTTGGGATTGGCTGAGGCAGATCTTAAAAAGGTCTTTATT AAAACTA

GTGATCTAAACGCATTGTCTAACACTATTTTTGGAAATTATTCTGTGTTCTCAGACG CGCTCAAT

TTATATAAAGAGTCGCTAAAAACTAAAAAGGCTCAAGAAGCTTTTGAAAAGTTGCCT GCACATA

GTATTCATGATTTAATCCAATACTTAGAACAATTTAATTCGTCTCTCGATGCTGAAA AGCAACAG

TCTACCGATACTGTATTAAACTACTTTATTAAAACCGACGAATTATATAGTCGTTTC ATTAAATC

CACCTCTGAGGCATTCACCCAAGTACAACCTCTCTTTGAACTGGAAGCTTTGAGCTC CAAAAGA

AGACCCCCAGAAAGTGAAGATGAGGGGGCTAAAGGCCAAGAAGGTTTCGAACAAATT AAGAGA

ATCAAAGCTTATCTAGACACTCTAATGGAGGCTGTCCACTTTGCTAAGCCTTTGTAT CTTGTCAA

GGGTAGAAAGATGATAGAGGGTCTAGACAAGGATCAAAGCTTCTACGAAGCGTTTGA AATGGC

CTACCAGGAGTTGGAGTCTTTAATCATCCCCATTTACAATAAGGCCAGATCTTACCT GTCTAGGA

AGCCATTTAAAGCGGATAAATTCAAAATTAATTTTGACAATAATACACTTCTATCTG GGTGGGA

TGCTAACAAGGAGACGGCTAACGCCAGCATATTGTTTAAGAAGGATGGTTTATACTA CCTGGGA

ATCATGCCAAAAGGCAAAACTTTCTTGTTCGATTATTTCGTTAGTTCAGAAGATTCT GAAAAGTT

GAAACAACGGAGACAGAAAACCGCAGAGGAAGCGCTCGCACAGGATGGAGAATCCTA TTTTGA

AAAAATACGGTATAAACTCCTACCAGGTGCTAGTAAGATGTTGCCAAAGGTATTTTT TAGCAAT

AAAAATATTGGGTTTTACAATCCCTCAGATGATATTCTACGAATTCGGAATACGGCC TCTCATAC

TAAGAATGGTACTCCCCAGAAGGGTCATTCCAAGGTAGAATTTAACTTGAATGACTG TCACAAA

TCTGATACGTCGGACTTTGAAGATATGAGTGCTTTCTACCGAGAAGTTGAAAATCAA GGTTACG

TTATAAGTTTTGATAAAATAAAAGAAACTTACATTCAGTCTCAAGTTGAGCAAGGTA ACTTATA

TTTATTTCAAATTTACAACAAAGATTTTAGTCCGTATTCAAAGGGAAAGCCAAACCT GCACACTT

TATACTGGAAAGCTCTGTTTGAAGAGGCTAATTTGAATAACGTAGTGGCTAAGCTAA ACGGCGA

AGCAGAAATCTTTTTCAGAAGACACAGTATCAAAGCATCTGATAAAGTGGTACATCC TGCTAAT

CAAGCTATAGATAATAAGAATCCCCATACTGAGAAGACGCAGTCCACATTTGAATAT GACTTGG

GCTCAGGGCGTTTCAAAGTTTAATGATAAGGTAAATGGATTCTTAAAGGGCAATCCC GACGTTA ATATAATCGGTATAGATCGAGGTGAGAGACATCTTTTATACTTTACCGTGGTGAATCAAA AAGG

AGAAATATTAGTGCAAGAGTCCTTGAATACATTAATGTCTGACAAGGGTCATGTCAA CGATTAT

CAACAGAAATTGGACAAGAAGGAACAGGAAAGGGACGCTGCCAGGAAGTCCTGGACG ACAGT

AGAAAATATTAAAGAATTAAAAGAAGGTTATTTATCACATGTGGTTCATAAACTTGC ACATTTA

ATCATCAAATATAACGCAATAGTGTGCTTGGAAGATCTTAATTTTGGCTTCAAGAGG GGTAGGT

TCAAGGTCGAAAAACAGGTCTACCAGAAGTTCGAGAAAGCTCTGATCGATAAATTGA ATTATCT

TGTTTTCAAAGAAAAAGAATTAGGAGAAGTTGGTCATTATCTTACAGCATACCAACT CACTGCA

CCATTTGAAAGCTTCAAAAAGCTAGGCAAGCAATCTGGGATTTTGTTCTATGTTCCG GCTGATTA

TACATCAAAGATAGATCCTACCACAGGCTTTGTAAATTTTTTAGATCTTAGGTACCA ATCCGTTG

AAAAAGCTAAACAGTTGCTGTCCGATTTTAATGCGATAAGATTTAATAGTGTTCAGA ATTATTTT

GAGTTCGAAATTGATTATAAAAAATTGACACCAAAACGTAAAGTAGGAACACAATCT AAATGG

GTTATTTGTACCTATGGAGATGTTAGATACCAAAACAGAAGAAATCAGAAAGGTCAC TGGGAA

ACTGAAGAAGTTAACGTTACTGAAAAACTTAAAGCTCTATTTGCGAGCGATTCAAAA ACGACGA

CGGTGATCGATTATGCAAATGATGATAACCTTATTGATGTAATTCTGGAACAAGATA AGGCATC

ATTTTTTAAAGAACTACTATGGTTGTTAAAGCTAACCATGACCCTAAGGCACTCCAA GATAAAG

TCAGAGGATGATTTTATCCTCTCTCCAGTGAAAAACGAACAAGGTGAGTTTTACGAC TCAAGAA

AGGCGGGTGAAGTCTGGCCTAAGGATGCTGATGCCAATGGAGCTTATCACATCGCTC TGAAGGG

GCTATGGAACTTACAGCAAATTAACCAATGGGAAAAAGGTAAAACTTTAAACCTCGC CATAAA

GAACCAGGATTGGTTCAGCTTTATCCAAGAAAAACCATATCAAGAATAA

SE ATGCACACAGGAGGTCTACTCTCGATGGATGCTAAGGAATTTACCGGTCAATATCCGCTG TCCA

Q AAACTTTGCGTTTTGAGCTTAGACCTATTGGCCGAACGTGGGATAACCTAGAGGCTTCTG GTTAT

no TTGGCGGAAGATAGACATAGAGCTGAGTGTTATCCCCGAGCTAAAGAATTGCTGGATGAT AACC

N ACAGGGCGTTCCTGAATAGAGTTCTACCGCAAATCGATATGGATTGGCATCCAATTGCTG AAGC

O: TTTCTGCAAGGTGCACAAAAATCCAGGTAATAAAGAATTGGCTCAGGATTATAATTTGCA GCTT 13 AGTAAGAGAAGAAAAGAAATTTCCGCTTATTTGCAGGATGCTGATGGATACAAGGGGTTG TTCG 1 CGAAACCTGCCCTGGACGAAGCTATGAAAATAGCTAAGGAAAACGGCAATGAATCTGATA TTG

AAGTTTTGGAAGCCTTCAATGGATTTTCCGTTTATTTCACTGGTTATCATGAGAGTA GGGAGAAT

ATATACTCAGACGAAGATATGGTATCCGTCGCCTATCGCATAACTGAAGATAATTTT CCAAGGT

TCGTGTCGAACGCGTTAATTTTTGATAAACTAAATGAATCGCACCCGGATATTATTT CGGAAGTG

TCCGGTAATCTGGGGGTAGACGATATTGGTAAATATTTTGATGTGTCCAACTACAAT AATTTCCT

TAGTCAAGCAGGAATTGATGACTACAACCATATTATAGGAGGGCATACAACTGAAGA CGGTCTC

ATTCAAGCTTTTAACGTAGTGTTAAACCTAAGGCACCAAAAAGACCCAGGTTTTGAG AAAATTC

AATTTAAGCAACTCTACAAGCAGATACTGAGCGTTAGGACTAGTAAGTCATATATCC CAAAGCA

ATTCGATAACTCAAAGGAAATGGTCGACTGTATATGCGACTACGTCTCAAAAATAGA AAAATCT

GAAACAGTAGAAAGAGCTCTGAAATTGGTAAGAAATATATCTTCTTTTGATTTAAGA GGTATTT

TCGTAAATAAAAAAAACCTTCGAATTTTGTCTAATAAGTTAATTGGAGACTGGGACG CAATAGA

GACAGCTTTGATGCACAGTTCCAGCAGTGAAAACGATAAGAAATCAGTGTATGACTC TGCAGAG

GCATTCACCCTTGATGATATCTTCAGTTCTGTGAAAAAGTTCAGCGACGCCTCCGCT GAGGATAT

AGGAAACCGCGCTGAAGACATATGTCGTGTTATCTCAGAAACAGCTCCTTTCATTAA CGACTTA

AGGGCTGTAGATTTGGATTCTTTAAATGATGACGGCTATGAAGCGGCCGTGTCTAAA ATACGGG

AATCTCTTGAACCCTACATGGATCTATTTCACGAATTGGAGATCTTTAGCGTGGGTG ATGAGTTT

CCTAAATGTGCTGCCTTTTATAGCGAGTTGGAAGAGGTCTCAGAACAACTGATTGAA ATCATTC CTTTATTTAACAAAGCAAGAAGTTTTTGCACAAGGAAAAGGTATTCAACCGACAAAATCA AAGT

CAATTTAAAATTCCCTACTCTGGCAGATGGATGGGATCTAAATAAAGAAAGGGATAA CAAAGCC

GCAATTCTAAGAAAAGACGGTAAATACTACCTGGCAATTTTAGACATGAAGAAAGAT CTCAGTA

GTATTCGTACGAGCGATGAGGACGAGTCTTCTTTTGAAAAGATGGAATATAAATTGC TCCCTTCT

CCTGTGAAAATGCTTCCAAAAATTTTTGTTAAATCGAAAGCCGCCAAAGAAAAGTAC GGGTTGA

CCGATAGAATGTTAGAATGCTACGATAAAGGTATGCATAAGTCGGGTAGTGCTTTTG ATTTGGG

TTTTTGTCATGAATTGATCGATTACTATAAGCGCTGCATTGCCGAGTACCCAGGCTG GGATGTTT

TCGACTTTAAATTTCGTGAGACAAGCGATTACGGATCCATGAAAGAATTTAATGAAG ACGTCGC

TGGCGCAGGTTACTATATGTCACTTAGAAAGATTCCATGTTCCGAAGTTTATCGTTT ACTGGACG

AGAAGTCAATTTACTTGTTTCAAATATATAATAAGGATTATAGCGAAAACGCACATG GGAATAA

GAATATGCATACGATGTATTGGGAGGGCTTGTTCTCACCACAAAATTTGGAATCACC AGTCTTC

AAATTGTCCGGAGGCGCAGAACTTTTTTTCAGAAAGTCATCTATTCCTAATGACGCT AAAACGG

TACATCCGAAAGGTTCAGTTCTTGTTCCCAGAAACGACGTCAATGGTAGAAGAATAC CAGACTC

GATCTACAGAGAGTTGACAAGGTATTTTAACCGTGGGGATTGCAGGATCAGTGATGA AGCTAAG

TCTTACCTGGACAAGGTCAAGACAAAAAAAGCGGACCATGACATTGTTAAGGATAGA AGATTT

ACTGTAGATAAGATGATGTTCCATGTTCCGATTGCCATGAATTTTAAAGCTATAAGT AAACCAA

ATCTTAATAAGAAAGTTATTGATGGCATAATAGATGATCAAGATTTGAAAATCATCG GTATCGA

TCGTGGTGAGAGAAATCTTATTTATGTGACCATGGTCGATAGGAAGGGGAATATATT GTATCAA

GACAGTCTTAATATTTTAAATGGATACGATTACCGCAAAGCTTTAGACGTGAGGGAA TATGATA

ACAAAGAAGCTAGAAGGAATTGGACTAAAGTAGAAGGTATTAGAAAAATGAAAGAAG GTTATT

TATCTTTAGCTGTTAGTAAATTGGCCGATATGATCATCGAAAATAATGCTATAATCG TAATGGAA

GATTTGAATCACGGGTTTAAGGCAGGTCGTTCCAAAATTGAAAAGCAGGTGTATCAA AAATTCG

AATCAATGTTAATCAACAAGTTAGGATACATGGTGCTAAAAGACAAGTCCATTGACC AGTCTGG

TGGAGCCCTTCATGGTTACCAATTAGCCAATCATGTTACGACCTTAGCTAGCGTGGG TAAACAA

TGATTTATTCGCTCTCTCTAATGTGAAGAATGTCGCTTCTATGAGAGAGTTCTTCTC CAAAATGA

AGTCAGTAATATATGACAAGGCGGAAGGCAAATTCGCCTTTACATTTGATTATTTGG ATTATAA

CGTTAAAAGCGAATGTGGACGTACCTTATGGACTGTGTATACAGTTGGTGAACGCTT CACCTAC

TCTAGAGTAAACCGAGAGTATGTTCGGAAAGTCCCAACAGATATCATCTATGATGCA TTACAAA

AAGCTGGTATTAGCGTCGAAGGTGACCTTAGAGATAGAATCGCGGAAAGCGACGGTG ACACAT

TAAAGTCTATATTCTACGCTTTTAAATACGCGTTGGATATGAGAGTCGAAAACAGAG AGGAAGA

CTATATACAGTCACCTGTGAAGAATGCTTCTGGTGAGTTCTTTTGTTCAAAAAACGC CGGAAAGT

CTTTGCCGCAGGATTCAGATGCAAATGGTGCCTATAATATAGCTCTGAAAGGGATCC TACAACT

CAGAATGTTGAGCGAACAATACGATCCAAATGCAGAATCGATTAGATTGCCACTTAT AACTAAC

AAGGCATGGTTAACTTTTATGCAATCCGGTATGAAAACTTGGAAGAATTAA

SE ATGGATTCTCTTAAGGATTTCACTAATTTATATCCAGTCTCGAAAACATTGCGGTTCGAA TTGAA

Q ACCAGTTGGGAAAACTCTAGAAAACATTGAAAAAGCCGGTATATTGAAAGAAGATGAACA CAG

no AGCGGAATCCTACCGCCGGGTAAAAAAGATAATTGACACATACCATAAAGTGTTTATTGA CAGC

N TCCTTAGAGAACATGGCTAAAATGGGGATAGAAAATGAAATCAAGGCTATGCTGCAGTCT TTTT

O: GTGAACTCTATAAGAAAGACCACAGGACAGAAGGAGAAGATAAAGCTCTTGATAAAATTA GAG 13 CTGTTCTTAGAGGTTTAATCGTTGGGGCTTTCACTGGTGTATGTGGAAGACGAGAAAACA CAGT 2 ACAAAATGAAAAGTACGAGAGTTTGTTCAAAGAAAAATTGATAAAGGAAATTTTGCCAGA TTTC GTGTTGTCCACCGAGGCTGAGTCTCTTCCATTCAGCGTTGAAGAAGCAACAAGGAGCTTA AAAG

AGTTTGACTCATTCACTTCTTATTTTGCTGGTTTTTACGAAAATAGAAAGAATATTT ATTCCACG

AAACCGCAAAGTACTGCGATAGCCTACAGATTAATTCATGAAAACTTGCCTAAATTT ATAGATA

ATATTTTGGTCTTCCAGAAGATTAAAGAACCAATCGCTAAAGAACTTGAGCACATAA GAGCAGA

TTTTAGCGCAGGCGGATATATCAAAAAAGATGAACGGCTAGAAGACATATTCTCATT AAATTAC

TACATTCATGTCCTTTCTCAAGCTGGTATAGAAAAATATAATGCTTTAATCGGGAAG ATAGTGAC

GGAAGGTGATGGTGAAATGAAAGGTCTTAATGAACATATTAACTTATATAACCAACA GAGGGG

TCGAGAGGATAGGTTGCCCTTGTTTAGGCCTCTATACAAGCAAATCCTGTCCGATAG AGAGCAA

TTGTCTTATTTACCTGAATCATTTGAAAAAGATGAAGAGCTGCTTAGAGCACTTAAG GAATTTTA

CGATCACATCGCCGAAGACATCTTGGGTAGAACACAGCAATTGATGACTTCAATTTC TGAATAC

GACTTGTCCCGTATTTATGTCAGAAATGATTCTCAACTTACAGACATCTCGAAGAAA ATGCTAG

GAGATTGGAACGCCATTTATATGGCTAGAGAACGAGCCTACGACCACGAACAGGCTC CTAAAC

GTATTACTGCTAAATACGAACGTGATAGAATCAAGGCCTTAAAAGGTGAAGAGTCAA TTTCATT

GGCGAATCTGAACAGCTGTATAGCTTTCTTGGACAATGTAAGGGATTGTCGAGTTGA CACATAC

CTATCAACTTTGGGGCAGAAAGAGGGTCCTCATGGCTTAAGTAACTTGGTGGAAAAC GTCTTCG

CCTCATATCATGAAGCAGAACAGTTATTGTCGTTTCCTTACCCCGAAGAGAACAACC TTATTCAG

GACAAAGACAATGTAGTTTTGATCAAAAACCTATTGGATAATATAAGTGATTTACAA CGTTTCC

TTAAACCTTTGTGGGGAATGGGCGATGAACCTGACAAAGACGAAAGGTTTTACGGTG AATACAA

CTATATTAGAGGAGCGCTTGACCAGGTAATACCTTTGTACAATAAAGTAAGGAACTA CTTGACT

CGTAAACCATATTCTACTAGAAAAGTTAAATTGAACTTTGGTAATTCACAGCTGCTG AGTGGTTG

GGATCGTAATAAAGAAAAAGATAACTCCTGTGTTATCTTGCGAAAAGGACAAAACTT TTACTTG

GCAATTATGAACAACCGTCACAAAAGGTCCTTCGAGAACAAAGTTCTGCCTGAATAC AAAGAA

GGTGAACCATATTTTGAAAAAATGGACTATAAATTCCTGCCAGATCCTAATAAAATG TTGCCTA

AGGTCTTCTTGTCTAAAAAAGGTATAGAAATATATAAACCATCCCCGAAGTTGCTGG AGCAATA

TGGTCATGGAACGCACAAAAAAGGTGACACTTTTAGTATGGATGACTTGCACGAGTT GATTGAT

TTTTTTAAACATTCCATTGAAGCGCACGAAGATTGGAAACAATTTGGTTTCAAGTTC TCTGACAC

AGCCACTTACGAAAATGTATCGTCCTTTTATAGAGAAGTGGAAGATCAGGGTTATAA ACTGTCA

TTCCGTAAGGTTAGTGAAAGCTATGTGTACTCGTTGATCGATCAAGGGAAGCTTTAT CTTTTTCA

AATCTATAATAAAGATTTCTCTCCTTGTTCAAAGGGCACACCTAATCTTCATACACT ATACTGGA

GAATGCTTTTCGATGAAAGAAATTTGGCTGATGTGATCTATAAATTAGACGGTAAAG CTGAGAT

TTTTTTCAGAGAGAAATCCCTGAAAAACGACCATCCAACTCATCCGGCAGGTAAACC GATTAAA

AAGAAATCCCGGCAAAAAAAGGGCGAAGAGAGTTTATTCGAGTATGATTTAGTTAAG GACAGA

CATTATACAATGGACAAATTTCAATTTCATGTGCCCATTACTATGAACTTTAAGTGT AGTGCAGG

GTCTAAGGTTAATGATATGGTAAACGCACATATTAGAGAAGCTAAAGATATGCACGT CATCGGT

ATTGATCGCGGAGAAAGAAATTTACTTTACATTTGCGTTATCGATTCTAGGGGCACC ATCTTGGA

TCAAATCTCTTTGAACACTATAAATGATATTGACTATCATGATCTACTAGAGAGTCG GGATAAA

GACAGGCAACAAGAAAGAAGAAATTGGCAAACAATTGAAGGTATTAAAGAATTAAAG CAAGG

CTATCTAAGCCAGGCTGTACACAGAATTGCCGAATTAATGGTAGCATATAAAGCTGT CGTAGCT

CTAGAAGACTTGAACATGGGTTTCAAAAGAGGGCGCCAGAAGGTCGAAAGTAGTGTT TATCAA

CAATTTGAAAAACAGTTAATAGATAAGTTGAATTATCTAGTGGATAAAAAAAAGCGT CCTGAGG

ACATTGGCGGTTTATTAAGAGCCTACCAATTCACTGCGCCATTTAAATCGTTCAAAG AAATGGG

TAAACAAAACGGTTTTCTATTCTACATCCCCGCATGGAATACCTCAAATATAGATCC AACTACCG GTTTCGTCAACTTATTTCATGCTCAATATGAGAATGTGGACAAAGCAAAATCATTCTTTC AAAAA

TTTGATAGCATTAGCTACAATCCTAAAAAAGATTGGTTTGAATTTGCGTTCGATTAT AAAAATTT

CACCAAGAAGGCTGAAGGTTCCAGATCTATGTGGATATTGTGCACCCACGGAAGTAG AATTAAG

AACTTCCGTAATTCACAGAAAAACGGCCAGTGGGACAGCGAAGAATTCGCCCTAACC GAAGCTT

TCAAAAGTCTTTTCGTAAGATACGAGATAGACTATACAGCTGATCTAAAGACAGCTA TTGTGGA

TGAGAAGCAAAAAGACTTCTTTGTCGACCTTCTTAAGTTGTTCAAGTTAACTGTGCA GATGAGA

AATAGTTGGAAGGAAAAAGACCTAGATTACTTGATTAGCCCAGTCGCTGGTGCAGAT GGCAGAT

TTTTTGATACACGTGAAGGCAATAAATCACTACCAAAAGACGCGGACGCTAATGGCG CATACAA

CATCGCATTGAAGGGTTTGTGGGCTCTCAGGCAGATTAGGCAGACAAGTGAGGGTGG TAAGCTT

AAGCTGGCGATTTCTAATAAGGAATGGTTACAGTTTGTTCAAGAAAGATCCTACGAA AAAGATT

AA

SE ATGAACAATGGTACTAATAATTTTCAAAACTTCATAGGGATTTCTAGCCTTCAAAAGACA TTGA

Q GAAATGCTTTAATTCCAACAGAAACGACTCAACAATTCATAGTGAAAAATGGTATTATAA AAGA

no AGACGAGTTGCGTGGCGAGAATAGACAAATTTTGAAAGATATCATGGATGACTACTACAG AGG

N GTTCATCTCCGAAACATTGTCTTCTATTGACGACATTGACTGGACCAGCTTATTCGAAAA AATGG

O: AAATACAGCTGAAGAACGGAGATAACAAGGACACTCTTATAAAGGAGCAAACGGAATATA GAA 13 AGGCTATACACAAAAAGTTTGCTAATGACGATAGATTTAAAAACATGTTTAGTGCGAAGT TAAT

3 TTCTGATATTCTACCCGAGTTTGTCATTCATAATAATAACTACTCTGCATCTGAAAAAGA GGAGA

AGACCCAGGTTATAAAGTTGTTTTCAAGATTTGCCACATCATTTAAAGACTACTTCA AGAACAG

GGCGAATTGCTTCTCTGCTGATGATATTAGCTCTTCCAGCTGTCATAGAATTGTTAA CGATAATG

ATAAACAAGATTAGTGGTGATATGAAAGATAGCCTTAAAGAAATGAGCCTTGAAGAG ATATATT

CATATGAGAAGTACGGTGAATTTATAACTCAAGAAGGAATTTCTTTTTATAACGATA TTTGTGGT

AAGGTTAATTCTTTTATGAATTTGTATTGCCAGAAGAACAAGGAAAATAAGAATCTA TATAAAC

TACAAAAGTTGCATAAACAGATTTTGTGTATAGCTGATACATCCTACGAAGTTCCGT ATAAATTT

GAATCTGATGAGGAAGTTTATCAATCGGTAAACGGTTTTCTTGACAACATTTCCAGC AAACATA

TCGTTGAGAGACTACGTAAAATTGGAGACAACTATAATGGTTACAATCTAGATAAAA TATACAT

AGTGTCCAAGTTTTATGAGTCTGTCTCTCAAAAGACATATCGTGATTGGGAGACCAT TAATACTG

CACTTGAAATTCATTATAACAACATATTGCCTGGTAACGGGAAGAGTAAAGCTGATA AGGTTAA

AAAGGCCGTCAAAAACGACTTGCAAAAGTCTATTACCGAGATAAATGAATTAGTGTC AAACTAC

AAACTATGCTCAGATGATAATATTAAAGCGGAAACATACATCCACGAAATTTCCCAC ATACTGA

ATAACTTTGAAGCTCAGGAGCTTAAATATAACCCGGAAATACACTTGGTTGAGAGCG AGTTAAA

AGCATCTGAGTTGAAAAATGTATTAGACGTCATCATGAATGCGTTTCATTGGTGTTC AGTTTTCA

TGACTGAAGAATTAGTCGACAAAGATAACAATTTTTATGCCGAATTAGAGGAAATAT ATGATGA

AATTTATCCCGTAATTAGTTTATACAATCTAGTTAGAAATTATGTTACACAAAAGCC GTATAGTA

CCAAGAAAATAAAGCTTAATTTCGGAATACCTACGCTTGCTGATGGTTGGTCAAAAA GTAAAGA

ATATAGCAATAATGCAATAATTTTAATGAGAGATAACCTATATTATTTGGGTATTTT TAACGCTA

AGAACAAACCAGACAAGAAAATAATTGAAGGTAATACATCTGAAAACAAGGGCGACT ATAAAA

AGATGATATACAATTTGCTCCCAGGTCCTAATAAAATGATTCCTAAGGTTTTCCTGA GTAGCAAG

ACTGGCGTTGAAACTTACAAGCCTAGTGCGTATATCCTGGAGGGTTATAAACAGAAC AAGCATA

TCAAATCCTCTAAGGACTTCGATATCACCTTTTGCCATGACTTAATCGATTATTTTA AAAATTGT

ATCGCAATTCATCCAGAATGGAAAAATTTCGGATTTGATTTTAGTGATACCAGCACT TACGAGG ATATCTCTGGGTTCTACAGAGAAGTGGAGTTGCAGGGCTACAAAATCGATTGGACTTACA TATC

TGAAAAGGACATAGATTTGCTGCAGGAGAAAGGTCAGCTATATTTGTTTCAAATCTA CAACAAA

GACTTTTCTAAAAAGTCTACCGGTAATGACAATCTGCACACAATGTACTTGAAGAAC TTATTCTC

CGAGGAGAACTTAAAGGACATTGTACTCAAGTTGAATGGAGAAGCCGAGATTTTTTT TAGAAAG

AGCAGTATAAAGAATCCTATAATCCACAAGAAGGGCTCAATTCTCGTGAATAGGACG TATGAGG

CAGAAGAAAAGGACCAATTTGGGAATATACAAATTGTAAGAAAAAACATCCCAGAAA ATATCT

ACCAGGAATTATATAAGTATTTTAATGACAAATCTGATAAGGAACTGTCTGACGAAG CCGCTAA

GCTCAAGAATGTTGTGGGCCACCATGAAGCTGCTACTAATATAGTGAAGGACTACAG ATATACC

TACGATAAATATTTCCTGCATATGCCAATTACTATAAACTTCAAAGCAAATAAAACA GGTTTTAT

AAATGATAGAATCCTGCAGTATATTGCTAAAGAAAAGGATTTACATGTAATTGGGAT TGATAGA

GGTGAACGCAATCTGATCTATGTCAGCGTAATAGATACTTGTGGTAATATTGTGGAA CAAAAGT

CCTTTAATATTGTGAACGGATATGATTACCAAATCAAGTTGAAACAACAAGAGGGAG CACGCCA

AATTGCCCGTAAGGAATGGAAAGAGATAGGTAAGATCAAGGAAATTAAGGAAGGTTA TCTTTC

ATTAGTTATTCACGAAATTTCGAAGATGGTAATCAAATACAACGCAATAATTGCTAT GGAGGAC

CTGTCATATGGATTTAAGAAAGGTAGATTCAAGGTTGAGAGACAGGTATACCAGAAA TTTGAAA

CTATGTTGATCAACAAATTAAATTACTTAGTCTTTAAGGACATATCAATAACGGAAA ACGGCGG

GCTTTTAAAAGGGTATCAACTTACATACATACCTGATAAGTTGAAAAATGTGGGTCA TCAGTGT

GGGTGCATCTTTTATGTTCCAGCCGCTTACACATCAAAAATCGATCCTACTACTGGG TTCGTAAA

CATATTTAAATTTAAAGATCTAACCGTTGATGCAAAAAGAGAGTTTATCAAGAAATT TGATAGC

ATTAGGTACGATTCAGAAAAAAATCTATTCTGTTTTACTTTTGACTACAACAACTTT ATAACGCA

GAATACAGTGATGTCAAAATCGTCCTGGTCAGTGTATACTTATGGTGTTAGAATTAA GAGACGT

TTCGTAAACGGTCGTTTTTCTAACGAGTCCGATACAATCGACATCACTAAAGATATG GAAAAAA

CTTTGGAAATGACAGATATAAACTGGAGAGATGGTCACGACCTTAGACAAGATATAA TCGATTA

TGAAATCGTACAGCATATTTTTGAAATTTTTCGCTTAACAGTTCAGATGCGTAACTC TCTTAGTG

AGCTAGAAGATAGAGATTATGATAGACTTATCTCGCCTGTTCTTAACGAAAATAATA TCTTCTAT

GACTCGGCAAAAGCCGGTGATGCACTTCCAAAAGATGCTGATGCAAATGGCGCGTAC TGCATCG

CATTGAAGGGGCTCTACGAGATTAAACAAATCACCGAAAACTGGAAAGAAGATGGTA AATTTT

CTAGGGATAAGTTGAAAATCAGTAATAAAGATTGGTTCGATTTTATACAAAATAAGC GATACTT

ATAG

SE ATGACCAATAAGTTTACTAATCAATACTCATTGTCTAAAACGTTAAGATTCGAGTTAATT CCCCA

Q GGGAAAGACACTAGAATTTATTCAAGAAAAAGGTCTTCTCTCTCAGGATAAACAAAGAGC AGA

no ATCATACCAGGAGATGAAAAAAACCATAGATAAATTTCATAAGTACTTCATCGACTTGGC ACTA

N TCGAACGCCAAGCTAACACATTTGGAAACCTACCTGGAGTTGTATAATAAATCGGCAGAG ACGA

O: AAAAGGAACAAAAATTCAAGGATGACCTGAAGAAGGTTCAAGATAATCTGCGAAAGGAAA TAG 13 TGAAGTCGTTTAGTGATGGTGATGCAAAGTCAATCTTTGCTATTTTAGACAAGAAGGAAT TAAT 4 AACCGTGGAACTTGAAAAGTGGTTTGAAAATAACGAACAGAAAGATATTTACTTCGACGA AAA

ATTTAAAACGTTTACTACGTACTTTACAGGGTTCCATCAGAACCGCAAAAACATGTA CTCCGTTG

AACCAAACTCTACTGCAATCGCCTACAGATTAATACACGAAAATTTGCCTAAGTTTT TAGAAAA

TGCAAAGGCTTTTGAAAAGATAAAGCAAGTCGAATCGTTACAGGTAAACTTTCGCGA ATTAATG

GGCGAATTTGGAGATGAAGGTCTTATTTTTGTCAATGAATTAGAGGAAATGTTTCAA ATTAATTA

TTATAACGATGTCTTGAGTCAGAACGGCATTACTATCTACAACTCAATTATCAGTGG TTTCACTA

AGAATGATATAAAATATAAAGGTTTGAATGAATACATTAATAATTATAATCAAACTA AAGATAA GAAGGACAGGCTTCCGAAATTGAAGCAATTGTACAAGCAGATTCTAAGTGATAGGATTAG TTTG

TCTTTCTTGCCAGACGCATTTACTGATGGCAAGCAAGTCTTAAAGGCTATATTCGAT TTCTACAA

GATTAACCTACTTTCGTACACAATTGAAGGTCAAGAAGAATCTCAAAATCTGCTGCT TTTGATTA

GGCAAACTATAGAAAATTTGTCGTCCTTTGACACTCAAAAAATTTACCTGAAGAATG ATACACA

CCTGACTACAATATCACAGCAGGTCTTTGGGGATTTTTCTGTCTTCTCCACGGCCCT AAACTATT

GGTATGAGACAAAAGTTAATCCAAAATTTGAAACAGAATATAGTAAGGCGAATGAAA AAAAGA

GAGAAATTTTGGATAAAGCGAAGGCAGTATTCACAAAACAAGACTATTTTTCTATCG CATTTCT

CCAAGAAGTCTTATCCGAATATATTTTGACACTCGATCACACCTCTGATATAGTTAA GAAACATT

CGTCCAACTGCATCGCAGATTACTTCAAGAATCACTTCGTGGCTAAGAAAGAAAACG AAACGGA

TAAAACTTTTGACTTCATTGCTAACATAACCGCTAAATACCAATGTATTCAGGGCAT ATTAGAAA

ATGCAGACCAGTACGAAGACGAGTTAAAACAGGACCAAAAGTTAATAGATAATCTAA AGTTTTT

CTTAGATGCTATACTTGAGTTATTACATTTTATAAAGCCATTGCATCTAAAATCGGA AAGTATTA

CTGAAAAAGACACTGCGTTCTATGATGTGTTCGAAAATTATTATGAGGCTTTATCTT TATTGACC

CCCCTTTACAACATGGTCCGCAATTATGTTACTCAGAAGCCTTACTCTACTGAAAAG ATCAAATT

AAACTTTGAAAATGCTCAGTTGCTGAATGGTTGGGATGCCAATAAGGAAGGTGACTA CCTGACG

ACTATTCTAAAAAAAGACGGTAATTATTTCTTAGCAATCATGGATAAAAAACATAAC AAGGCAT

TTCAAAAATTTCCAGAAGGAAAAGAAAACTATGAAAAGATGGTTTATAAATTGTTGC CTGGAGT

TAATAAAATGTTGCCAAAAGTTTTTTTTAGCAATAAGAACATAGCTTACTTTAATCC ATCTAAGG

AACTGCTCGAGAACTACAAGAAGGAAACACATAAAAAAGGTGATACATTTAATTTGG AACATT

GCCATACTCTGATTGATTTTTTTAAGGACTCTCTTAATAAACATGAAGACTGGAAAT ATTTTGAT

TTTCAATTTTCGGAAACTAAATCATACCAAGATCTAAGTGGATTTTACAGAGAAGTT GAACACC

AAGGTTATAAGATTAACTTCAAGAATATAGATTCTGAATACATTGATGGTCTTGTAA ACGAGGG

TAAACTATTCCTGTTCCAAATCTACTCTAAGGACTTCTCACCTTTTTCCAAAGGAAA ACCTAATA

TGCATACGTTGTACTGGAAGGCTCTATTTGAAGAACAAAATTTGCAAAATGTAATCT ACAAACT

GAACGGCCAAGCTGAAATATTCTTCAGAAAAGCCTCAATTAAGCCAAAAAACATTAT TCTTCAT

AAAAAGAAGATCAAGATTGCGAAGAAACATTTTATTGATAAGAAGACCAAGACTTCC GAAATT

GTACCAGTACAAACAATCAAGAATCTCAATATGTATTATCAAGGCAAGATAAGTGAG AAAGAG

TTAACCCAGGATGATTTACGTTATATAGACAATTTCTCTATATTCAACGAGAAGAAC AAAACAA

TAGACATTATCAAAGATAAAAGGTTTACTGTTGACAAATTTCAATTTCATGTGCCTA TCACAATG

AACTTTAAGGCCACAGGTGGTTCGTACATTAATCAAACTGTTTTAGAATATCTGCAA AATAACC

CAGAGGTCAAGATCATCGGTCTTGATAGGGGTGAGAGACATCTGGTGTATCTAACAC TCATTGA

TCAACAAGGCAACATCTTGAAGCAAGAATCATTGAACACTATCACAGACTCCAAGAT CTCGACT

CCATATCACAAACTCCTTGACAATAAAGAAAACGAAAGGGATCTTGCCAGAAAAAAT TGGGGT

ACAGTTGAAAATATTAAGGAACTAAAAGAAGGTTACATTTCGCAAGTAGTTCACAAG ATTGCAA

CACTCATGTTGGAAGAAAACGCAATCGTTGTCATGGAAGATTTAAATTTCGGATTTA AGAGAGG

AAGATTTAAAGTAGAAAAGCAAATCTACCAGAAGTTGGAGAAGATGTTAATTGACAA ATTGAA

CTACTTAGTGCTGAAAGACAAACAGCCTCAAGAATTGGGCGGTCTATACAACGCTTT ACAACTG

ACAAATAAATTTGAGTCATTCCAAAAGATGGGTAAGCAGAGTGGTTTTTTGTTTTAT GTTCCGGC

ATGGAACACATCCAAAATCGATCCAACTACAGGCTTCGTGAATTATTTCTACACTAA ATATGAA

AATGTGGATAAAGCAAAAGCTTTCTTTGAGAAGTTCGAGGCGATCCGTTTTAACGCT GAAAAGA

AGTACTTCGAGTTCGAGGTCAAAAAGTATTCAGATTTTAACCCCAAGGCTGAAGGCA CCCAGCA

AGCATGGACTATTTGCACGTACGGTGAGCGAATCGAAACTAAAAGGCAAAAGGATCA AAATAA TAAGTTTGTAAGCACACCCATTAACTTGACAGAAAAGATAGAAGATTTTCTTGGAAAAAA CCAA ATTGTATATGGTGACGGTAACTGTATCAAGTCACAAATTGCTTCTAAAGACGATAAGGCC TTCTT CGAAACTCTGCTATACTGGTTTAAAATGACGTTGCAAATGAGAAACAGTGAAACTAGAAC TGAT ATCGACTATTTAATATCACCCGTGATGAACGATAATGGTACCTTTTACAATTCAAGAGAT TACGA GAAATTGGAGAACCCCACACTACCAAAAGACGCAGACGCTAATGGTGCCTACCATATTGC TAAA AAGGGACTGATGTTGTTGAACAAGATAGATCAAGCCGACTTAACTAAAAAAGTTGATTTG TCAA TTTCGAATAGAGATTGGTTGCAATTCGTCCAGAAAAATAAGTAA

SE ATGGAACAGGAATACTACTTGGGTTTGGATATGGGAACTGGTTCAGTCGGTTGGGCTGTT ACGG

Q ACTCCGAGTACCACGTGTTGAGAAAACACGGAAAGGCTTTATGGGGTGTCAGACTATTCG AATC

no AGCATCGACCGCGGAAGAGAGAAGAATGTTTAGAACTTCAAGAAGAAGGCTGGATCGTAG GAA

N TTGGCGGATAGAAATTTTACAAGAAATATTCGCCGAAGAAATCTCTAAAAAAGATCCAGG ATTT

O: TTTCTACGTATGAAGGAATCCAAATACTATCCGGAAGATAAACGTGATATTAATGGCAAT TGTC 13 CAGAGTTACCCTATGCTTTATTTGTGGACGACGATTTCACCGATAAAGATTACCATAAGA AGTTC 5 CCAACAATTTACCATCTGAGAAAGATGTTAATGAACACTGAAGAAACCCCGGATATAAGA CTGG

TCTATCTAGCCATTCATCATATGATGAAACACAGGGGACACTTCTTGCTATCAGGGG ATATAAA

TGAAATTAAAGAATTTGGTACAACATTTTCTAAATTATTGGAAAATATTAAAAACGA AGAATTA

GATTGGAATTTAGAATTAGGCAAGGAGGAATACGCAGTTGTCGAATCGATTCTGAAA GATAACA

TGTTGAACAGATCAACGAAAAAAACAAGGCTGATCAAGGCTTTAAAAGCGAAATCAA TATGCG

AAAAAGCAGTATTGAATTTGTTAGCTGGGGGGACTGTCAAGTTGTCTGATATTTTCG GATTGGA

AGAATTGAATGAAACAGAGAGACCGAAGATATCCTTCGCCGATAATGGCTACGATGA TTATATA

GGCGAAGTCGAAAATGAGCTGGGCGAACAATTCTACATTATCGAGACTGCCAAGGCT GTTTATG

ATTGGGCGGTGTTAGTCGAAATCCTTGGCAAATACACTTCCATCTCCGAAGCTAAGG TGGCAAC

CTACGAAAAGCATAAAAGTGATTTGCAATTCCTTAAGAAAATTGTCCGAAAGTACTT GACCAAA

GAAGAGTACAAGGATATTTTCGTATCAACATCGGACAAACTGAAGAATTATTCAGCT TATATTG

GCATGACGAAAATTAATGGTAAGAAAGTTGATTTGCAATCCAAGAGATGTTCTAAAG AAGAATT

TTACGATTTCATTAAAAAAAATGTCCTAAAAAAGTTGGAGGGACAACCTGAATATGA GTATTTA

AAGGAAGAACTGGAAAGAGAAACTTTCCTACCAAAGCAAGTTAATCGTGATAATGGC GTTATTC

CATACCAAATACACTTGTACGAATTAAAGAAGATCTTGGGTAACTTGAGGGACAAAA TTGATTT

AATCAAGGAAAATGAAGACAAACTGGTACAATTATTTGAATTTAGAATACCTTACTA CGTGGGC

CCTTTAAACAAAATAGACGATGGTAAGGAAGGGAAGTTCACATGGGCAGTCAGAAAG TCCAAT

GAAAAAATTTACCCATGGAATTTCGAAAACGTTGTAGATATTGAAGCTTCTGCTGAG AAATTTA

TTAGGAGAATGACAAATAAATGCACTTATCTTATGGGGGAAGACGTGTTGCCTAAAG ATAGTTT

ATTATATTCAAAGTATATGGTCTTAAATGAATTAAACAATGTTAAATTAGATGGTGA AAAACTTT

CCGTCGAATTGAAACAAAGATTGTATACAGATGTATTCTGCAAATATAGAAAAGTAA CTGTAAA

GAAGATTAAAAACTACCTTAAATGTGAAGGCATTATCAGCGGAAATGTTGAGATCAC TGGTATC

GATGGTGATTTTAAGGCATCTTTAACCGCATATCACGACTTTAAGGAAATATTGACG GGTACTG

AGCTTGCTAAAAAAGACAAAGAGAACATTATCACCAATATCGTGCTCTTCGGAGACG ACAAGA

AATTATTGAAAAAGAGATTGAACCGCCTATACCCTCAGATTACCCCTAACCAATTGA AGAAAAT

CTGCGCTCTGTCTTATACTGGATGGGGTCGTTTTAGCAAGAAGTTTCTAGAAGAAAT TACTGCTC

CGGATCCTGAAACTGGGGAAGTCTGGAATATAATTACCGCGCTATGGGAATCGAATA ATAATTT

AATGCAATTACTATCTAATGAATACAGATTTATGGAAGAAGTCGAAACTTACAATAT GGGAAAA

CAAACAAAAACTTTGAGCTACGAAACAGTAGAGAATATGTATGTCTCACCATCTGTA AAGCGGC AGATCTGGCAAACCTTGAAGATAGTTAAAGAATTAGAAAAAGTGATGAAGGAAAGTCCAA AAA

AACTTATAGATCTATATAAAGCCTGCAAAAATGAAGAAAAAGATTGGGTAAAGGAAT TAGGTG

ACCAGGAAGAGCAAAAATTGAGATCTGACAAGCTGTACTTGTATTATACGCAAAAGG GCCGGT

GTATGTATTCGGGTGAGGTAATAGAATTGAAAGATTTATGGGATAACACTAAGTATG ACATTGA

CCATATTTACCCCCAGTCTAAGACAATGGACGATTCATTAAATAACCGAGTTCTTGT CAAAAAG

AAGTACAATGCCACAAAGAGCGATAAGTACCCATTGAACGAAAATATAAGACATGAA CGAAAA

GGTTTCTGGAAATCATTGTTGGACGGTGGATTTATTTCCAAAGAAAAATACGAGAGA TTGATTA

GAAACACTGAACTATCTCCAGAGGAGTTAGCTGGCTTTATCGAAAGACAAATTGTTG AAACTAG

ACAGTCTACAAAAGCAGTTGCAGAAATCTTAAAACAAGTATTTCCAGAATCCGAAAT TGTGTAC

GTCAAAGCCGGAACAGTAAGTAGATTTAGAAAAGACTTTGAATTATTGAAAGTACGA GAGGTT

AACGACCTACATCATGCTAAGGATGCTTATTTAAATATAGTCGTTGGTAATTCGTAT TACGTGAA

ATTCACAAAAAACGCATCTTGGTTCATCAAGGAGAATCCTGGTAGGACATACAACTT GAAAAAG

ATGTTTACATCAGGATGGAATATCGAAAGAAATGGTGAGGTTGCGTGGGAGGTAGGC AAGAAG

GGAACCATTGTTACTGTAAAGCAAATTATGAATAAAAACAATATACTTGTTACGAGA CAGGTGC

ACGAAGCCAAAGGAGGGTTGTTTGACCAGCAAATCATGAAGAAAGGTAAAGGTCAGA TAGCAA

TAAAAGAGACTGATGAGCGTTTAGCTAGTATAGAAAAATATGGGGGCTACAATAAGG CAGCTG

GTGCTTACTTCATGTTGGTCGAATCAAAGGATAAAAAAGGGAAGACGATCCGGACCA TAGAGTT

TATCCCTCTGTACTTGAAGAATAAGATTGAGTCTGACGAAAGCATCGCATTGAATTT CTTGGAA

AAGGGGCGCGGTCTAAAGGAGCCAAAAATATTGTTAAAGAAAATTAAAATAGACACC CTATTC

GACGTCGATGGGTTTAAGATGTGGCTTAGTGGTCGTACTGGGGACAGATTATTATTC AAGTGTG

CCAATCAGTTAATCCTTGACGAGAAAATCATTGTTACAATGAAAAAAATTGTTAAGT TTATTCA

AAGGCGACAAGAAAATAGAGAACTAAAGTTGAGTGATAAGGATGGAATCGATAATGA AGTGTT

AATGGAGATTTATAACACTTTTGTCGACAAATTGGAGAATACGGTGTACAGAATTAG GCTATCT

GAACAGGCTAAAACCCTAATTGATAAACAGAAGGAGTTTGAGCGACTTTCTCTTGAA GACAAAT

CTTCAACTCTTTTCGAGATCCTACATATCTTTCAGTGTCAATCTTCTGCAGCTAATT TGAAAATGA

TTGGAGGTCCTGGTAAGGCTGGTATATTAGTCATGAACAACAACATATCTAAGTGTA ATAAGAT

TAGTATAATTAACCAATCACCGACAGGTATCTTTGAAAATGAAATTGATTTACTTAA A

SE ATGAAATCATTCGACTCGTTCACCAACTTGTACTCCCTGTCTAAAACATTGAAATTTGAA ATGCG

Q ACCTGTTGGTAACACCCAAAAGATGTTAGATAATGCAGGAGTTTTCGAAAAGGATAAACT GATC

no CAGAAAAAATACGGTAAAACGAAACCATATTTCGATAGGTTGCATCGGGAATTTATAGAA GAA

N GCTTTGACTGGTGTAGAATTAATTGGCTTAGATGAGAATTTCCGTACTCTAGTCGATTGG CAAAA

O: AGATAAAAAGAACAATGTTGCCATGAAGGCATACGAAAATAGTCTACAAAGACTAAGAAC AGA 13 GATCGGGAAAATTTTCAATTTGAAGGCAGAAGACTGGGTGAAGAACAAATATCCAATATT GGGT 6 CTTAAGAATAAGAATACTGATATATTGTTCGAGGAGGCCGTTTTCGGTATTCTTAAGGCA AGAT

ATGGTGAAGAGAAAGACACGTTTATTGAAGTTGAGGAGATTGATAAAACCGGTAAGT CCAAAA

TCAACCAGATCTCTATCTTCGACAGTTGGAAGGGCTTCACTGGTTATTTTAAGAAGT TCTTCGAA

ACTAGGAAGAACTTCTATAAAAACGATGGTACTTCCACGGCTATTGCTACAAGAATT ATCGACC

AAAACCTTAAGCGTTTTATTGATAACCTATCAATTGTTGAAAGTGTTCGACAGAAAG TAGATTTG

GCTGAAACTGAAAAATCTTTTAGTATCTCCTTATCCCAGTTTTTCTCTATAGATTTT TATAATAAA

TGTTTGCTGCAAGATGGCATTGACTACTATAATAAAATAATTGGTGGAGAGACATTG AAAAACG

GAGAGAAGCTGATTGGCCTTAATGAGTTGATAAATCAATATAGACAAAATAATAAGG ACCAGA AAATCCCTTTCTTTAAATTGCTAGACAAACAGATTTTGTCTGAAAAGATCCTATTCTTGG ATGAA

ATAAAGAACGATACTGAATTGATTGAAGCTTTGTCCCAGTTTGCTAAAACAGCTGAA GAAAAGA

CAAAGATTGTGAAAAAATTGTTTGCTGATTTCGTAGAAAACAATTCTAAATATGATC TAGCCCA

GATTTATATAAGTCAAGAAGCTTTCAATACAATAAGTAATAAGTGGACAAGTGAAAC AGAAACT

TTTGCTAAGTATTTATTCGAAGCCATGAAGTCTGGTAAACTTGCCAAATACGAAAAA AAAGATA

ACAGTTATAAATTTCCAGACTTTATAGCCCTTTCACAGATGAAGTCTGCCTTATTGT CGATATCC

TTAGAAGGTCATTTTTGGAAGGAAAAATATTATAAGATAAGCAAGTTCCAAGAAAAG ACTAATT

GGGAACAATTTTTGGCTATATTTCTATATGAGTTCAATTCATTATTTTCCGATAAAA TCAACACT

AAGGATGGAGAGACTAAGCAAGTTGGCTACTATTTGTTCGCAAAAGATCTGCACAAT TTGATTC

TATCAGAACAAATAGATATACCAAAAGATTCAAAGGTAACTATAAAGGATTTCGCAG ATTCCGT

CCTCACCATTTATCAAATGGCTAAATATTTTGCCGTTGAAAAAAAGAGAGCGTGGTT AGCAGAA

TACGAGTTGGACTCGTTTTATACTCAGCCAGATACTGGATACTTGCAATTCTACGAT AATGCATA

CGAAGACATTGTACAGGTATACAATAAACTTAGAAATTACTTAACCAAGAAGCCCTA CAGTGAA

GAAAAATGGAAGCTGAACTTTGAAAATTCGACTTTGGCAAATGGTTGGGATAAAAAT AAAGAA

AGTGACAACTCCGCAGTGATTTTGCAAAAGGGTGGGAAATATTACTTGGGTTTAATC ACAAAAG

GCCACAATAAGATTTTTGATGATAGATTTCAAGAAAAATTCATAGTTGGTATAGAAG GTGGCAA

ATACGAGAAAATTGTCTATAAATTCTTCCCTGATCAAGCCAAAATGTTCCCAAAAGT TTGCTTTT

CTGCTAAAGGATTGGAGTTTTTCCGGCCTAGCGAGGAGATCCTTCGTATCTACAACA ATGCTGA

ATTCAAAAAAGGAGAAACCTATAGCATAGATTCTATGCAAAAACTGATAGATTTTTA TAAGGAT

TGTTTAACAAAGTACGAAGGCTGGGCCTGCTATACATTTAGACATTTAAAGCCCACA GAAGAAT

ACCAAAATAACATTGGTGAATTCTTTCGGGACGTTGCCGAAGACGGCTATAGGATCG ATTTTCA

AGGTATCTCAGATCAATATATCCACGAAAAGAACGAGAAGGGTGAGCTGCACCTTTT CGAAATT

CATAATAAGGACTGGAATTTGGATAAGGCGAGAGATGGTAAATCGAAGACCACTCAA AAGAAC

TTGCATACTTTATATTTTGAGTCCTTGTTTTCTAATGATAACGTCGTCCAAAATTTT CCAATAAAG

TTGAATGGACAAGCGGAAATTTTCTATCGGCCTAAGACAGAGAAAGACAAATTAGAA TCAAAG

AAAGATAAAAAGGGAAATAAAGTCATTGATCACAAACGATACTCTGAGAATAAAATA TTTTTCC

ACGTACCATTGACACTCAACAGGACTAAGAATGACTCTTATAGATTTAATGCTCAGA TTAATAA

TTTTTTGGCAAATAACAAGGATATTAACATAATTGGGGTGGATAGAGGTGAAAAGCA CTTGGTA

TATTACTCTGTCATCACTCAGGCTTCTGATATATTGGAAAGCGGGTCTCTAAATGAA TTGAACGG

TGTTAACTACGCCGAAAAGCTAGGTAAAAAAGCTGAAAACAGAGAGCAGGCTCGGCG CGATTG

GCAAGATGTTCAAGGAATTAAAGACCTTAAAAAAGGCTACATTAGTCAAGTAGTTAG AAAGTTA

GCCGATCTTGCTATTAAACATAACGCAATCATTATTCTGGAGGACCTAAATATGCGT TTTAAGCA

AGTTAGGGGTGGCATAGAAAAAAGTATTTATCAGCAGCTTGAGAAGGCTTTGATAGA TAAGTTA

TCGTTCCTAGTTGACAAAGGTGAAAAAAATCCTGAACAAGCTGGTCATCTGTTGAAA GCTTATC

AGCTGAGCGCACCTTTTGAAACATTTCAAAAAATGGGAAAACAAACAGGTATTATTT TCTATAC

TCAAGCGAGTTATACAAGTAAATCTGACCCAGTGACAGGATGGAGACCACACCTTTA TCTAAAA

ATAGATTTGAATTGACTTACGATATTAAAGATTTTCAGCAAGCAAAAGAATACCCAA ATAAGAC AGTGTGGAAAGTATGCTCCAATGTGGAGAGATTTAGATGGGATAAAAATCTCAATCAAAA CAA GGGTGGTTACACACATTATACTAATATAACTGAAAATATTCAAGAATTGTTTACTAAGTA CGGA ATTGACATAACCAAAGACTTACTAACTCAGATTTCAACTATTGACGAAAAACAAAATACC TCAT TTGCCAAGAAGAACGGAAAAGATGATTTCATCCTATCTCCAGTGGAACCATTTTTTGACT CAAG

AAAAGATAATGGTAATAAGTTGCCTGAGAACGGAGATGATAACGGCGCTTATAATAT CGCTCGG

AAGGGTATTGTAATTCTTAATAAAATATCTCAGTACTCTGAAAAGAACGAAAACTGC GAGAAAA

TGAAGTGGGGCGACTTGTATGTATCTAATATAGATTGGGATAATTTCGTTACTCAAG CCAACGC

GAGACATTGA

SE ATGGAAAATTTTAAAAACCTATATCCAATTAATAAGACACTTAGATTCGAGCTTAGGCCA TACG

Q GCAAAACACTAGAAAATTTTAAGAAGTCAGGCCTATTAGAAAAAGACGCCTTTAAGGCAA ATTC

no CAGAAGATCAATGCAGGCAATTATTGATGAGAAATTTAAAGAGACTATCGAGGAAAGGTT GAA

N ATACACTGAATTCTCTGAGTGCGATCTGGGAAACATGACTTCCAAGGATAAAAAGATTAC CGAT

O: AAGGCTGCTACCAACCTCAAAAAGCAAGTCATCTTATCGTTTGATGATGAAATTTTTAAT AACTA 13 CTTAAAGCCGGACAAAAACATTGACGCCCTATTCAAAAATGATCCGTCCAACCCCGTAAT TTCA

7 ACTTTTAAGGGTTTTACCACGTACTTTGTAAATTTTTTTGAGATTCGTAAACATATCTTC AAAGG

AGAATCGTCGGGTTCCATGGCCTATAGGATAATTGATGAAAATCTTACGACTTACTT AAACAAT

ATCGAAAAGATAAAAAAGTTACCAGAAGAATTAAAGTCTCAATTGGAAGGTATTGAC CAAATA

GACAAATTAAATAACTATAATGAGTTCATAACTCAAAGCGGTATCACACATTACAAT GAAATTA

TCGGTGGTATATCTAAAAGTGAGAACGTAAAAATACAGGGAATAAACGAGGGGATCA ATCTAT

ACTGTCAGAAGAATAAAGTAAAATTACCAAGACTAACGCCATTATACAAAATGATTC TGTCTGA

TAGAGTTTCCAACTCGTTCGTGCTTGATACTATAGAAAATGATACTGAATTAATTGA GATGATTA

GCGACTTGATTAATAAAACAGAAATATCTCAAGACGTAATAATGTCAGACATTCAGA ACATTTT

CATAAAATATAAACAGCTTGGTAATTTACCGGGGATAAGTTACTCTAGCATCGTGAA TGCTATTT

GCTCCGATTATGACAATAATTTTGGTGACGGAAAAAGAAAAAAATCATATGAGAACG ATAGGA

AGAAACACCTTGAAACAAACGTATACTCAATTAACTATATATCGGAACTGTTAACAG ACACCGA

TGTATCATCTAATATAAAAATGAGATATAAGGAACTTGAACAAAATTACCAGGTGTG TAAGGAG

AATTTCAATGCTACCAACTGGATGAACATTAAGAATATTAAACAGAGTGAAAAGACA AACTTGA

TTAAAGATCTACTAGATATACTGAAATCAATACAGAGATTCTACGATCTGTTTGATA TAGTTGAT

GAAGACAAAAATCCTAGTGCTGAGTTTTACACGTGGCTAAGTAAAAATGCGGAAAAG TTAGATT

TCGAGTTCAACTCTGTTTATAATAAATCTAGGAATTATTTAACTAGAAAGCAGTATT CTGATAAA

AAGATAAAATTGAACTTCGACTCCCCTACGTTGGCAAAGGGTTGGGATGCAAACAAA GAAATC

GATAACTCCACCATAATAATGCGTAAGTTTAACAATGATAGGGGGGATTACGATTAT TTTTTGG

GAATTTGGAACAAATCTACCCCAGCGAATGAAAAAATTATTCCCCTTGAAGACAATG GTCTTTT

TGAAAAAATGCAGTATAAATTATATCCAGACCCATCCAAGATGCTTCCAAAGCAATT TCTGTCA

AAAATTTGGAAGGCTAAACACCCTACTACTCCTGAATTTGATAAGAAGTATAAGGAG GGCCGAC

ACAAAAAGGGTCCAGATTTTGAAAAAGAATTCCTGCATGAATTGATAGATTGTTTTA AGCATGG

TTTGGTAAATCATGATGAAAAATATCAGGATGTCTTTGGATTCAATTTGAGAAATAC AGAGGAT

TACAACTCATATACAGAATTTCTCGAGGACGTCGAACGTTGCAATTATAATCTCAGT TTCAACAA

GATCGCAGACACTTCAAACTTAATTAACGACGGAAAATTGTACGTTTTTCAAATCTG GTCGAAA

GACTTTAGTATTGATTCAAAGGGTACAAAAAACCTAAATACAATATATTTCGAAAGT CTATTCTC

GGAAGAAAACATGATCGAAAAAATGTTCAAACTGTCAGGCGAAGCTGAAATATTCTA CCGTCCC

GCAAGCCTTAATTATTGTGAGGATATCATTAAAAAAGGACATCACCATGCAGAGTTA AAAGATA

AATTCGATTACCCAATAATTAAAGATAAAAGATACTCCCAGGATAAGTTCTTTTTCC ATGTACCT

ATGGTTATTAACTACAAGTCGGAAAAACTAAACTCGAAGTCATTAAATAATAGAACT AACGAGA

ACTTGGGACAATTCACACATATAATTGGTATTGATCGTGGCGAAAGACATTTAATAT ATCTGACT GTTGTTGATGTTTCAACAGGAGAAATTGTTGAACAGAAACATCTTGATGAAATTATAAAC ACAG

ATACAAAAGGCGTTGAGCATAAAACTCATTATCTAAATAAATTGGAGGAAAAGTCGA AGACTC

GCGATAACGAGAGAAAGAGTTGGGAAGCAATTGAAACCATAAAAGAGCTTAAAGAAG GTTACA

TTAGTCACGTCATCAATGAAATACAAAAGTTACAAGAAAAGTATAACGCTTTGATTG TAATGGA

AAATCTAAATTATGGTTTTAAGAATTCAAGAATCAAAGTCGAAAAGCAGGTCTATCA GAAATTT

GAAACGGCACTTATTAAAAAGTTTAACTACATTATTGATAAAAAGGACCCAGAAACT TATATTC

ATGGTTACCAACTGACGAACCCAATCACAACATTGGACAAAATTGGAAACCAAAGTG GAATTGT

TTTATACATTCCAGCTTGGAATACATCCAAAATAGACCCTGTCACGGGGTTTGTCAA CTTGTTAT

ATGCCGACGATTTAAAGTATAAAAACCAAGAACAAGCAAAGTCTTTTATTCAAAAGA TTGATAA

TATTTATTTCGAAAACGGTGAATTTAAATTCGACATAGATTTTTCTAAATGGAACAA CCGTTATT

CAATAAGTAAAACTAAATGGACACTCACCTCATACGGCACTCGTATCCAAACCTTTC GGAATCC

CCAAAAAAATAACAAATGGGATTCTGCAGAATACGACTTGACCGAGGAATTTAAATT AATTCTT

AATATAGACGGTACACTCAAAAGTCAAGACGTGGAGACATACAAGAAGTTTATGTCG TTATTCA

AGCTTATGCTTCAGTTGAGGAACTCCGTTACAGGCACTGATATTGATTACATGATTT CACCAGTA

ACGGATAAGACTGGGACTCATTTCGATTCTAGGGAAAATATTAAAAATTTACCTGCT GACGCAG

ACGCAAACGGCGCATACAATATAGCAAGAAAAGGGATTATGGCCATTGAGAATATTA TGAATG

GCATATCAGATCCATTAAAGATAAGCAATGAAGACTACTTAAAATACATTCAGAATC AGCAAGA

ATAA

SE ATGACCCAGTTTGAAGGTTTCACCAATTTGTACCAAGTAAGTAAAACCTTGAGGTTCGAA TTGA

Q TCCCACAGGGCAAGACATTGAAGCATATTCAAGAGCAAGGATTTATAGAAGAAGATAAAG CGA

no GAAACGATCACTATAAAGAGTTAAAACCCATTATTGACAGGATCTATAAAACATACGCCG ATCA

N ATGCCTTCAATTAGTGCAATTAGATTGGGAAAACTTGAGCGCTGCCATCGATTCCTACAG GAAG

O: GAAAAAACAGAAGAAACAAGAAATGCCTTAATCGAGGAACAAGCAACCTATAGAAACGCT ATA 13 CACGATTACTTCATCGGTAGAACTGATAATCTAACAGATGCAATAAATAAGAGACATGCT GAGA 8 TATATAAAGGACTATTTAAAGCAGAATTATTCAACGGAAAGGTGTTGAAACAGTTAGGTA CCGT

TACAACTACTGAGCATGAAAATGCCTTGCTGAGAAGCTTTGACAAGTTTACTACCTA CTTTTCGG

GTTTCTACGAAAATCGCAAAAATGTATTTTCTGCGGAAGATATTTCAACTGCAATCC CTCATAGG

ATTGTTCAAGATAATTTCCCTAAGTTTAAAGAGAACTGTCACATTTTTACAAGGTTA ATTACTGC

GGTTCCAAGTCTAAGAGAACATTTTGAGAATGTAAAAAAAGCGATTGGTATATTTGT ATCCACT

GTACAACCAATTGTTAGGTGGTATATCGAGGGAGGCTGGTACGGAAAAGATTAAAGG ATTAAA

TGAAGTTCTTAATTTGGCCATACAAAAAAATGATGAAACCGCGCACATTATCGCATC TTTACCA

CATAGGTTTATACCGTTATTCAAGCAAATATTATCTGATCGTAATACCTTATCGTTC ATATTAGA

GGAGTTTAAATCTGACGAAGAAGTTATACAATCTTTTTGCAAGTATAAGACGCTATT GAGAAAC

GAAAACGTTCTGGAAACAGCCGAAGCACTGTTCAATGAATTAAACAGTATCGACTTG ACTCATA

TTTTTATATCGCATAAAAAGTTGGAGACAATTTCTTCAGCATTGTGCGATCACTGGG ACACTTTA

AGGAACGCACTATATGAACGTAGGATCTCAGAATTGACAGGTAAGATAACGAAGTCT GCTAAA

GAGAAAGTGCAGAGATCCCTAAAACACGAGGATATAAATTTGCAGGAGATAATTTCA GCTGCA

GGTAAAGAGTTGTCTGAAGCGTTCAAGCAAAAGACTTCCGAAATCTTGTCACACGCA CACGCCG

CATTAGATCAACCTTTACCCACTACTTTGAAAAAACAAGAAGAGAAGGAGATATTAA AATCACA

ACTTGATTCTTTACTTGGCCTTTATCATCTTTTAGATTGGTTCGCTGTTGACGAGAG CAATGAAGT

GGATCCAGAGTTTTCCGCAAGATTGACCGGTATAAAGTTGGAAATGGAACCTTCGTT ATCATTTT ACAACAAAGCTAGGAACTATGCTACAAAAAAACCTTATTCTGTCGAAAAATTTAAACTGA ACTT

CCAAATGCCTACTCTAGCAAGTGGCTGGGATGTTAATAAAGAAAAGAACAATGGCGC TATTTTG

TTTGTAAAAAATGGCCTATACTATCTTGGAATTATGCCTAAACAAAAAGGTCGCTAC AAGGCTT

TGTCATTTGAACCTACTGAAAAGACTAGCGAAGGTTTCGATAAGATGTATTACGATT ATTTCCCG

GATGCCGCTAAAATGATCCCCAAGTGCTCTACTCAATTGAAGGCAGTAACTGCTCAT TTCCAAA

CGCATACCACGCCAATACTGCTTTCTAACAACTTTATAGAACCACTAGAAATAACGA AAGAAAT

TTACGACCTAAATAACCCAGAGAAAGAACCAAAAAAGTTCCAGACGGCCTACGCCAA AAAGAC

AGGGGACCAAAAAGGTTACCGCGAGGCGTTATGTAAATGGATTGATTTTACTAGGGA CTTTTTA

TCAAAATACACTAAAACGACGTCTATTGATCTTAGCTCCTTACGCCCGTCCTCCCAA TACAAGGA

TCTAGGTGAGTATTACGCAGAGTTGAACCCGCTATTATACCATATTTCCTTCCAAAG GATTGCTG

AAAAGGAAATTATGGACGCTGTTGAAACTGGGAAATTGTACCTGTTTCAGATTTATA ATAAGGA

CTTCGCAAAGGGTCACCATGGTAAGCCTAACCTTCACACTTTGTACTGGACCGGACT ATTCTCGC

CTGAAAATTTGGCTAAAACAAGTATCAAGTTAAACGGTCAGGCCGAGTTATTTTATA GACCCAA

ATCTAGAATGAAAAGAATGGCCCATAGATTAGGCGAAAAGATGTTAAACAAGAAATT AAAGGA

CCAAAAAACCCCGATACCAGACACTCTATACCAAGAACTGTACGACTATGTGAATCA CAGGCTT

AGTCACGATTTATCAGATGAAGCGAGGGCTTTATTGCCAAATGTCATCACCAAGGAA GTATCAC

ATGAAATAATTAAGGATAGAAGGTTCACATCTGATAAATTCTTTTTTCATGTCCCAA TTACATTG

AATTATCAAGCAGCGAACTCACCATCTAAATTTAATCAGCGCGTCAACGCCTATTTG AAAGAAC

ATCCCGAAACACCAATCATCGGCATAGATCGAGGTGAGAGAAACTTAATATATATAA CTGTGAT

TGATTCTACAGGAAAAATCCTGGAGCAACGATCTTTAAATACCATACAACAGTTTGA TTATCAA

AAAAAGTTGGATAACAGAGAAAAAGAACGTGTTGCCGCTAGGCAGGCTTGGTCTGTG GTAGGA

ACAATTAAGGACTTAAAGCAGGGCTATCTGTCCCAAGTTATTCATGAAATAGTCGAT CTGATGA

TACATTATCAGGCAGTTGTCGTGTTGGAAAATTTGAATTTTGGCTTTAAATCAAAAA GAACTGGC

ATAGCAGAAAAAGCTGTGTACCAGCAGTTTGAAAAGATGTTAATCGATAAGCTAAAC TGCCTTG

TTCTTAAAGATTACCCCGCAGAAAAAGTAGGTGGTGTTCTTAATCCATATCAGTTGA CAGACCA

ATTTACATCCTTTGCGAAAATGGGTACGCAAAGCGGGTTCTTATTCTACGTACCGGC CCCCTATA

CTTCTAAGATCGACCCACTAACAGGTTTTGTGGACCCTTTTGTTTGGAAGACGATAA AGAACCA

CGAGTCACGCAAACATTTCTTAGAGGGCTTTGATTTCTTGCACTACGACGTGAAAAC TGGTGATT

TTATCTTACACTTTAAAATGAACAGAAATCTCTCTTTCCAACGTGGACTGCCCGGAT TCATGCCG

GCTTGGGACATCGTTTTTGAAAAGAATGAAACGCAGTTTGACGCCAAAGGTACACCA TTTATAG

CGGGTAAGAGAATTGTGCCGGTCATAGAAAACCATAGATTTACAGGTAGATATAGGG ATCTGTA

CCCTGCTAATGAATTGATTGCATTACTCGAAGAGAAAGGAATTGTGTTTCGAGATGG ATCGAAT

ATTTTACCTAAGTTGTTGGAAAATGATGATTCACACGCAATTGATACTATGGTTGCC CTCATAAG

ATCGGTATTGCAAATGAGAAACTCAAATGCTGCTACGGGAGAGGATTATATAAACAG CCCCGTT

CGCGATCTTAATGGTGTTTGTTTTGATTCACGTTTTCAGAACCCCGAATGGCCAATG GATGCCGA

CGCAAACGGAGCATATCATATTGCTCTTAAAGGCCAACTACTATTAAATCACTTAAA GGAATCC

AAAGACCTAAAATTGCAAAACGGGATATCTAATCAGGATTGGCTGGCTTACATACAA GAACTAC

GTAACTAG

SE ATGGCCGTTAAGTCAATCAAAGTGAAACTTAGACTGGATGACATGCCAGAGATTCGTGCG GGGT

Q TATGGAAACTTCATAAGGAAGTTAACGCAGGGGTAAGATATTATACCGAATGGTTATCAT TACT

no TCGACAAGAGAATTTGTACAGAAGGTCCCCGAACGGCGACGGTGAGCAAGAATGCGATAA GAC

N GGCTGAAGAATGTAAGGCAGAACTTTTGGAGCGCCTGAGAGCCCGTCAGGTTGAAAATGG CCA TAGAGGTCCTGCGGGATCTGATGATGAGCTTTTACAGCTAGCTAGACAATTGTATGAATT GTTG

GTCCCTCAGGCTATTGGGGCTAAAGGAGACGCTCAACAAATCGCCAGAAAGTTCTTG TCACCTC

TGGCTGACAAAGATGCCGTGGGAGGATTAGGTATCGCTAAAGCAGGTAATAAACCAA GATGGG

TTAGAATGAGAGAAGCAGGCGAACCTGGTTGGGAAGAAGAGAAAGAAAAGGCCGAAA CTAGA

AAAAGCGCTGACAGAACCGCAGATGTTTTACGGGCCTTGGCTGATTTTGGACTGAAG CCTTTGA

TGAGAGTGTATACTGATTCAGAAATGTCTTCCGTTGAATGGAAGCCCCTAAGGAAGG GACAAGC

GGTCAGAACCTGGGATAGGGATATGTTTCAACAGGCTATTGAAAGGATGATGTCATG GGAATCC

TGGAATCAAAGAGTAGGTCAAGAATACGCTAAACTGGTCGAACAAAAGAATAGATTT GAACAA

AAAAATTTTGTAGGTCAAGAACATTTAGTACATTTGGTTAATCAACTTCAACAAGAT ATGAAAG

AGGCATCTCCTGGTTTGGAATCAAAAGAACAAACAGCACACTATGTTACCGGCCGAG CTTTGCG

AGGTTCTGACAAAGTATTTGAAAAGTGGGGGAAATTAGCTCCCGATGCCCCCTTTGA TCTATAT

GATGCTGAAATTAAAAACGTTCAAAGAAGGAACACTAGACGTTTTGGATCCCATGAT CTTTTTG

CAAAGCTAGCTGAGCCAGAATACCAGGCTCTATGGCGTGAAGACGCCTCGTTTTTGA CTAGATA

CGCAGTATACAATTCAATACTCAGAAAACTAAACCATGCCAAGATGTTTGCTACATT CACCCTG

CCCGATGCTACCGCTCATCCTATTTGGACTAGATTTGACAAGTTGGGGGGGAATCTA CATCAGT

ACACATTTTTATTTAATGAATTCGGTGAAAGAAGACACGCTATTAGATTCCACAAGC TCCTAAA

GGTTGAAAACGGCGTTGCGAGAGAAGTTGATGATGTAACAGTTCCCATTTCTATGTC GGAGCAA

TTGGATAATCTATTGCCTAGAGACCCTAATGAACCAATTGCTTTGTACTTTCGTGAC TACGGTGC

AGAACAACACTTTACAGGTGAATTCGGCGGAGCCAAGATTCAATGTAGACGTGATCA ACTCGCA

CACATGCATAGAAGAAGAGGCGCTCGTGATGTTTATTTAAATGTGTCTGTTAGAGTT CAATCCC

AATCGGAGGCTAGAGGTGAAAGAAGGCCACCATACGCAGCAGTTTTTAGGTTAGTAG GTGATA

ATCATAGGGCATTTGTCCACTTCGACAAATTAAGTGATTATTTAGCAGAGCACCCTG ATGATGG

AAAGTTGGGCAGTGAGGGATTATTAAGTGGGTTGAGGGTAATGTCTGTAGATCTTGG TCTTCGT

ACTTCTGCGAGTATCTCTGTCTTTAGAGTAGCACGTAAGGATGAGTTGAAACCTAAT AGCAAAG

CAACTTTTGAAATTGCCAGGAGAAACGGAGTCCAAGGACTTGAGGGCAATTAGAGAG GAACGT

CAGCGTACATTGCGACAGCTGAGAACTCAATTGGCTTATTTGAGGTTGTTGGTTAGG TGTGGTTC

CGAGGATGTTGGCAGAAGAGAAAGGTCTTGGGCCAAATTGATAGAACAACCAGTGGA CGCCGC

AAATCACATGACACCAGATTGGAGAGAAGCTTTCGAAAATGAACTCCAGAAATTAAA GAGCCT

ACATGGCATATGCTCTGATAAAGAGTGGATGGATGCCGTATACGAATCCGTTCGTAG AGTCTGG

CGCCACATGGGTAAGCAAGTACGGGACTGGAGAAAGGATGTTCGTTCCGGCGAAAGA CCGAAG

ATAAGGGGGTATGCAAAGGACGTTGTAGGCGGTAATTCTATTGAACAGATTGAGTAT TTGGAAA

GGCAGTACAAATTTCTTAAATCCTGGAGCTTCTTCGGCAAAGTGTCAGGACAAGTCA TCAGGGC

TGAAAAAGGTTCCAGATTTGCTATTACGCTAAGGGAACATATTGATCATGCGAAAGA AGATAGA

CTGAAAAAACTAGCAGATAGAATAATTATGGAAGCACTTGGTTACGTCTATGCACTT GATGAAA

GAGGCAAGGGGAAATGGGTAGCTAAATACCCGCCTTGTCAACTTATTTTATTAGAAG AATTAAG

CGAGTACCAATTTAACAACGATAGACCTCCATCCGAAAATAATCAGCTGATGCAATG GTCCCAT

AGGGGTGTTTTTCAAGAATTGATAAATCAAGCTCAAGTACACGATTTGCTGGTAGGT ACTATGT

ACGCAGCGTTTTCGAGCCGTTTTGATGCAAGAACTGGTGCCCCAGGTATCAGATGTC GACGTGT

TCCGGCCAGATGTACACAGGAACATAACCCTGAGCCATTTCCGTGGTGGCTTAATAA GTTTGTT

GTCGAGCACACATTAGACGCATGCCCTCTGAGAGCAGATGACCTTATACCCACTGGA GAAGGCG

AAATATTTGTTAGTCCATTCTCTGCAGAAGAAGGTGACTTTCACCAGATACATGCAG ACTTAAAT GCAGCACAGAATCTCCAACAAAGGTTGTGGTCGGATTTTGATATTTCGCAAATAAGACTA AGAT

GCGATTGGGGAGAGGTTGATGGAGAATTGGTGCTGATTCCAAGATTAACCGGAAAGC GAACTG

CCGATTCCTATTCTAACAAGGTGTTTTACACAAATACTGGTGTTACCTATTACGAAA GAGAAAG

GGGTAAGAAGAGACGTAAAGTATTTGCTCAAGAAAAATTGTCAGAAGAGGAGGCAGA ACTGTT

AGTAGAAGCAGACGAAGCCAGAGAAAAATCAGTTGTGCTTATGCGTGACCCTTCCGG CATTATA

AATCGTGGTAATTGGACACGACAAAAAGAATTTTGGTCTATGGTCAATCAACGTATC GAAGGCT

ACCTAGTTAAGCAAATCAGGTCTAGGGTTCCACTACAAGATAGCGCATGTGAAAATA CGGGTGA

TATATAA

SE ATGGCTACTAGATCTTTCATTTTAAAAATTGAACCTAATGAAGAAGTGAAGAAGGGTCTC TGGA

Q AAACTCACGAAGTACTTAATCATGGCATTGCCTATTATATGAATATCCTGAAGCTTATTC GTCAA

no GAAGCTATATACGAGCATCATGAGCAAGATCCTAAGAACCCTAAGAAAGTAAGCAAAGCG GAA

N ATTCAGGCTGAATTGTGGGACTTCGTCTTGAAGATGCAGAAGTGTAACAGTTTTACGCAC GAAG

O: TTGATAAAGATGTGGTGTTTAATATTTTGAGGGAGCTATATGAGGAGTTGGTGCCCTCGA GTGTC 14 GAAAAAAAAGGAGAAGCTAATCAGCTGTCAAATAAATTTTTATATCCTCTGGTGGATCCA AACT 0 CTCAATCAGGTAAAGGCACTGCCAGTAGTGGTCGAAAACCGAGATGGTATAATTTGAAAA TCGC

AGGTGATCCATCGTGGGAAGAAGAAAAAAAAAAATGGGAAGAAGATAAAAAAAAAGA TCCCC

TTGCCAAAATACTAGGTAAGCTAGCCGAGTATGGACTTATACCATTATTCATTCCTT TCACGGAC

TCTAATGAACCAATTGTGAAGGAAATCAAATGGATGGAAAAATCACGTAATCAGTCT GTTAGGA

GGTTGGACAAAGATATGTTTATACAGGCTCTTGAGAGGTTTTTGTCGTGGGAGTCCT GGAATTTG

AAAGTGAAAGAAGAATATGAAAAAGTGGAAAAGGAGCATAAGACGTTGGAAGAAAGG ATTAA

GGAAGATATTCAGGCCTTTAAGAGTCTGGAACAGTACGAAAAAGAAAGACAGGAACA GTTATT

GAGAGATACTCTAAACACTAATGAATATAGGCTTTCCAAGAGGGGCTTGCGAGGATG GAGAGA

GATAATTCAGAAATGGTTGAAAATGGATGAGAACGAGCCATCGGAGAAATATCTAGA GGTGTT

TAAAGATTACCAAAGAAAGCACCCTCGCGAAGCTGGTGATTACTCTGTTTATGAATT CCTTTCGA

AGAAGGAAAATCACTTCATCTGGCGAAATCATCCAGAGTACCCATATTTATATGCTA CATTTTGC

GAAATTGACAAGAAAAAAAAAGATGCTAAACAGCAAGCGACATTCACCCTCGCTGAT CCCATC

AACCACCCATTATGGGTCAGGTTCGAAGAGAGATCAGGCTCGAACCTGAATAAGTAC AGGATCT

TGACTGAGCAATTGCATACTGAGAAGTTAAAAAAGAAATTGACGGTCCAACTTGACA GATTGAT

TTATCCCACTGAATCTGGTGGATGGGAGGAGAAAGGTAAGGTTGATATTGTCCTATT GCCTTCTC

GTCAATTTTACAACCAAATATTTCTGGACATCGAAGAGAAGGGTAAACATGCTTTTA CCTATAA

GGATGAGAGTATTAAATTTCCATTGAAGGGAACGCTTGGCGGCGCTAGAGTTCAGTT CGATAGA

GATCATTTGAGAAGATACCCGCATAAAGTGGAATCTGGTAATGTAGGTCGGATCTAC TTTAACA

TGACGGTAAATATTGAACCTACCGAGTCACCAGTCAGTAAGTCTTTAAAGATTCATA GGGATGA

TTTCCCTAAATTTGTCAACTTCAAGCCTAAGGAACTAACCGAGTGGATCAAAGACAG TAAAGGC

AAAAAGTTAAAGAGCGGTATTGAGTCCCTGGAGATAGGTCTTAGAGTCATGTCTATC GATTTGG

GTCAAAGACAAGCAGCCGCAGCATCTATTTTCGAAGTTGTTGACCAAAAACCGGATA TCGAGGG

AACTGCCAGGAGAAACACTAGTAAAATCTAGAGAGGTCTTGCGTAAAGCACGTGAGG ACAATC

TCAAATTAATGAATCAGAAGTTAAATTTCCTTAGGAACGTGTTGCATTTCCAACAGT TCGAGGA

CATAACTGAACGCGAGAAAAGAGTCACTAAGTGGATCTCAAGACAAGAAAATAGTGA TGTGCC

ATTAGTGTATCAAGACGAACTTATTCAAATAAGAGAGCTAATGTATAAACCATATAA AGACTGG

GTGGCATTCTTAAAACAATTACACAAGCGGCTTGAAGTAGAAATAGGAAAAGAAGTA AAGCAT TGGAGGAAGAGTCTGTCCGATGGTCGCAAAGGCCTGTACGGGATATCACTTAAAAATATT GATG

AAATTGACAGAACACGAAAATTTTTGTTAAGATGGTCATTGAGACCAACCGAACCAG GTGAGGT

TAGAAGGTTGGAACCAGGCCAAAGGTTTGCCATCGATCAATTAAACCATCTTAACGC ACTGAAA

GAAGATAGATTGAAGAAGATGGCGAACACTATTATTATGCACGCTCTAGGTTATTGC TATGATG

TGAGAAAGAAAAAATGGCAAGCCAAGAACCCTGCATGCCAAATTATTTTGTTTGAAG ATCTTTC

TAATTACAATCCATACGAAGAGCGTTCACGTTTTGAAAACTCTAAATTGATGAAATG GTCTAGA

AGAGAGATTCCGAGACAGGTCGCTCTACAAGGGGAGATTTACGGTCTTCAAGTCGGT GAGGTTG

GTGCTCAATTTTCTTCCAGATTTCATGCAAAAACTGGGTCTCCAGGCATTAGGTGTT CGGTCGTT

ACTAAGGAAAAGTTACAGGACAACCGTTTCTTCAAAAATTTGCAACGTGAAGGCCGT TTAACAC

TTGATAAGATAGCTGTCCTTAAGGAAGGCGATCTGTACCCAGATAAAGGTGGTGAGA AATTCAT

ATCTTTGAGTAAAGACAGGAAACTGGTTACAACACACGCCGACATTAACGCAGCTCA GAACTTG

CAAAAGAGATTCTGGACAAGGACCCACGGCTTCTATAAGGTGTACTGTAAAGCTTAT CAAGTAG

ATGGACAAACGGTTTATATTCCTGAATCAAAGGACCAGAAACAAAAAATTATAGAAG AATTTG

GTGAAGGATACTTTATCTTGAAGGATGGAGTTTATGAGTGGGGCAATGCAGGTAAGT TAAAGAT

AAAGAAAGGTTCATCAAAGCAATCAAGTAGCGAACTGGTCGATTCGGATATTTTAAA GGATAGC

TTTGATCTAGCTAGTGAATTGAAGGGAGAAAAGTTAATGTTATACAGAGATCCCAGT GGGAATG

TATTTCCATCTGATAAGTGGATGGCCGCCGGAGTGTTTTTTGGCAAATTAGAGAGAA TCTTGATT

TCTAAACTGACCAATCAATACTCAATTTCGACCATCGAAGACGACTCTTCAAAACAA TCCATGT

GA

SE ATGCCTACTCGCACCATCAATCTGAAGTTAGTTTTGGGGAAGAACCCAGAAAATGCGACT CTAA

Q GACGGGCACTATTCTCTACACATAGACTTGTCAACCAAGCGACTAAGAGAATTGAAGAAT TTTT

no ACTGTTGTGTAGAGGAGAAGCTTATCGTACCGTAGATAATGAAGGTAAAGAAGCTGAGAT CCCA

N CGCCATGCTGTTCAAGAAGAGGCGCTTGCTTTTGCAAAAGCTGCACAACGACATAACGGC TGTA

O: TCTCCACATATGAGGACCAGGAAATCTTGGATGTGCTTAGACAATTGTATGAAAGATTAG TACC 14 TAGCGTCAATGAAAACAACGAGGCTGGGGATGCCCAAGCCGCTAACGCTTGGGTGAGTCC ATTA 1 ATGAGTGCAGAGTCCGAAGGTGGACTATCGGTCTATGATAAAGTGTTAGACCCGCCGCCA GTAT

GGATGAAACTCAAAGAAGAGAAAGCGCCTGGTTGGGAAGCTGCTTCTCAGATTTGGA TACAGTC

CGACGAAGGTCAATCGCTGCTAAATAAACCGGGTAGCCCACCACGTTGGATTAGAAA ACTTAGA

TCTGGTCAACCGTGGCAAGATGACTTCGTTTCAGACCAAAAAAAAAAGCAAGATGAA CTAACG

AAAGGTAACGCACCACTCATAAAACAATTGAAAGAGATGGGCCTCTTGCCTTTAGTT AATCCCT

TTTTTAGACATTTGTTGGATCCCGAGGGTAAGGGTGTATCCCCATGGGACAGATTGG CCGTAAG

GGCCGCGGTGGCGCACTTCATCTCTTGGGAAAGTTGGAACCACAGAACAAGAGCTGA GTATAAC

AGTTTGAAACTGCGAAGAGATGAATTTGAGGCCGCATCTGATGAATTCAAGGACGAT TTTACAT

TGCTACGACAATATGAGGCTAAGCGACATAGTACGCTTAAGTCAATTGCCTTAGCTG ATGACTC

TAACCCGTACCGAATTGGTGTAAGGTCCTTGAGAGCCTGGAATAGGGTTAGAGAAGA ATGGATT

GACAAAGGCGCAACCGAGGAACAAAGGGTTACCATCCTTAGTAAGCTTCAAACACAA TTACGG

GGTAAATTCGGTGATCCAGACCTATTTAATTGGCTAGCCCAAGATAGACACGTACAC CTGTGGT

CCCCGAGAGATTCCGTCACGCCCCTCGTAAGGATTAATGCCGTCGACAAAGTGCTTA GAAGACG

TAAGCCTTATGCACTGATGACTTTTGCACATCCGAGATTCCATCCAAGATGGATTCT ATACGAAG

CGCCTGGTGGTTCTAACTTGCGACAATACGCTTTAGATTGTACTGAAAATGCTCTGC ATATTACA

CTTCCATTACTCGTCGACGACGCCCATGGTACATGGATTGAGAAAAAAATCCGCGTA CCACTCG

CTCCTAGTGGACAAATACAAGATTTAACTTTAGAAAAACTTGAAAAGAAAAAAAACA GATTAT ACTATAGATCAGGATTCCAACAATTTGCTGGATTAGCCGGTGGTGCTGAGGTGTTGTTTC ATAGG

CCGTATATGGAACATGATGAGAGATCAGAAGAATCTCTGTTGGAAAGGCCAGGCGCT GTGTGGT

TCAAATTAACCTTAGATGTTGCTACCCAAGCACCACCTAACTGGTTAGATGGTAAAG GCAGAGT

TAGGACACCTCCAGAAGTTCATCATTTCAAAACCGCTCTGTCAAATAAATCTAAACA TACGAGA

ACCTTGCAACCAGGATTGAGAGTCCTTTCTGTTGATTTGGGTATGAGAACATTTGCT TCTTGTTC

TGTTTTCGAATTGATCGAAGGTAAACCTGAAACAGGTAGAGCATTCCCTGTTGCTGA CGAAAGA

TCAATGGATAGTCCAAATAAGTTATGGGCCAAGCACGAGAGAAGCTTTAAACTAACT CTGCCTG

GAGAAACACCGAGCAGAAAGGAGGAAGAAGAGAGAAGCATTGCTAGGGCAGAGATTT ACGCG

CTGAAAAGAGATATTCAAAGACTGAAATCACTCCTAAGATTAGGTGAGGAAGATAAT GATAAT

AGAAGAGATGCTTTGTTAGAGCAATTCTTTAAAGGATGGGGTGAAGAGGACGTAGTT CCTGGTC

AAGCTTTCCCTAGAAGCCTCTTTCAGGGATTAGGCGCTGCACCCTTTAGGTCAACAC CCGAATTG

TGGAGACAGCACTGTCAGACGTATTACGACAAAGCGGAAGCTTGCCTGGCAAAGCAT ATTTCCG

ACTGGAGGAAGAGAACTAGACCTCGTCCGACTTCGAGAGAGATGTGGTATAAGACAA GATCTT

ACCATGGTGGCAAAAGTATTTGGATGCTAGAATACTTAGATGCTGTCCGCAAATTAC TACTTTCA

TGGTCGTTAAGAGGTCGTACTTACGGAGCTATTAATAGACAAGACACCGCTCGTTTT GGTTCCTT

AGCTTCTAGATTGTTGCATCATATCAACTCTTTAAAGGAAGACCGCATCAAAACCGG TGCAGAT

AGTATTGTGCAGGCCGCAAGGGGCTATATTCCTCTCCCACATGGCAAGGGTTGGGAA CAGCGTT

ATGAACCCTGTCAGTTGATATTATTTGAAGATCTAGCTAGGTACAGATTTCGTGTAG ACAGACCT

CGGAGAGAGAATTCGCAATTGATGCAGTGGAATCATCGAGCTATAGTAGCAGAAACG ACGATG

CAAGCTGAACTATACGGTCAAATAGTCGAAAATACCGCTGCTGGTTTCTCCTCAAGA TTTCATGC

TGCAACTGGTGCTCCTGGTGTCAGATGTCGCTTTTTGTTAGAACGAGATTTCGATAA TGACCTAC

CAAAGCCGTACTTACTGAGAGAACTAAGTTGGATGTTAGGTAACACAAAGGTTGAAT CAGAGG

AAGAAAAATTGCGTCTTCTAAGCGAGAAAATTAGACCAGGTTCATTAGTCCCTTGGG ATGGGGG

TGAACAATTCGCGACATTACACCCGAAAAGACAAACTCTTTGTGTCATTCACGCAGA TATGAAC

GCTGCTCAAAACCTGCAACGCAGATTTTTCGGAAGGTGTGGGGAAGCCTTTCGCCTT GTGTGTC

AGCCACATGGTGATGATGTTTTGAGGCTAGCGTCTACACCAGGTGCAAGACTTTTGG GTGCATT

ACAACAACTGGAAAATGGTCAGGGAGCTTTCGAATTAGTTCGTGATATGGGTAGCAC ATCACAA

ATGAATCGTTTCGTCATGAAGTCGTTGGGCAAAAAAAAGATCAAGCCATTACAAGAC AATAACG

GGGATGATGAACTAGAAGACGTGCTATCTGTTTTACCTGAAGAAGATGATACCGGAC GAATTAC

TGTATTTCGGGACTCTTCGGGTATATTCTTCCCTTGTAACGTTTGGATCCCGGCAAA ACAGTTCT

GGCCTGCGGTCCGTGCTATGATTTGGAAGGTTATGGCATCACATTCATTGGGTTAG

SE ATGACAAAGTTAAGGCATAGACAGAAGAAGTTAACTCACGATTGGGCGGGGTCTAAAAAG AGA

Q GAAGTTCTAGGGAGCAATGGTAAATTACAGAATCCATTGCTAATGCCCGTCAAAAAAGGT CAGG

no TGACAGAATTTCGAAAAGCATTTTCCGCATACGCCCGAGCAACCAAAGGGGAAATGACGG ATG

N GCAGAAAAAATATGTTTACTCACTCATTTGAACCATTCAAGACCAAGCCTTCGTTACATC AGTGC

O: GAACTGGCTGACAAAGCCTACCAGAGCTTGCATTCATATTTACCGGGTTCTTTGGCGCAT TTTCT 14 TTTATCTGCCCATGCACTTGGTTTTAGGATTTTTAGCAAATCAGGGGAAGCCACTGCATT CCAAG 2 CGTCCTCAAAGATTGAAGCTTACGAAAGCAAGTTAGCTAGCGAGCTTGCTTGTGTTGATT TGTCT

ATTCAGAACTTGACTATTTCAACTTTGTTCAACGCATTAACGACTTCCGTAAGAGGT AAAGGTGA

GGAGACATCGGCAGATCCACTGATAGCTAGATTTTACACCTTACTTACCGGTAAACC ACTAAGC

AGAGACACTCAGGGCCCAGAACGAGATTTAGCCGAGGTGATAAGCAGAAAAATTGCA AGTTCT

TTTGGAACTTGGAAGGAGATGACTGCCAATCCACTTCAATCTCTTCAATTTTTTGAA GAGGAGTT GCATGCGCTAGATGCAAATGTTAGTTTGTCACCTGCCTTCGATGTTCTGATTAAGATGAA CGACC

TGCAGGGTGACTTGAAGAACAGAACGATAGTTTTTGATCCAGATGCTCCTGTGTTTG AATATAA

TGCTGAGGATCCTGCTGACATCATCATTAAACTGACAGCTAGATATGCGAAAGAAGC AGTGATT

AAAAATCAAAATGTCGGGAATTATGTTAAGAACGCTATTACGACAACTAACGCAAAC GGACTA

GGTTGGTTGCTGAACAAAGGCCTTTCCTTATTGCCTGTCTCCACTGATGACGAACTA TTGGAGTT

TATTGGGGTCGAGAGATCCCATCCTAGCTGTCATGCGTTGATAGAACTTATCGCTCA GTTAGAA

GCACCTGAACTGTTCGAAAAAAATGTTTTTTCTGATACTCGTTCCGAGGTTCAAGGT ATGATAGA

TTCAGCTGTAAGCAATCATATCGCCAGGCTGTCAAGCTCTCGTAATTCATTGAGCAT GGACTCAG

AGGAACTTGAGAGATTGATAAAATCTTTTCAAATTCATACACCACATTGTTCATTAT TTATAGGG

GCTCAATCCTTATCTCAACAATTGGAAAGCCTACCCGAAGCATTGCAGTCAGGAGTG AACAGTG

CTGATATTCTGCTCGGCTCAACCCAATACATGTTGACAAATTCTTTGGTCGAGGAGT CAATCGCT

ACGTATCAGAGAACCTTAAATAGAATTAACTACCTGTCCGGCGTTGCAGGACAGATT AACGGTG

CTATTAAGAGGAAAGCTATTGATGGTGAGAAGATACATTTACCCGCTGCTTGGTCAG AGTTAAT

TTCTTTACCCTTTATTGGGCAACCAGTGATTGATGTTGAATCAGATTTAGCCCACTT AAAGAACC

AATACCAGACATTGTCTAACGAATTTGATACGCTGATTTCCGCACTGCAAAAGAATT TCGACTTA

AATTTTAATAAAGCCTTGCTTAATCGAACACAACATTTCGAGGCTATGTGTAGATCA ACAAAAA

AGAATGCCCTTTCTAAGCCTGAGATCGTTAGTTATAGAGATTTGCTAGCCAGGTTGA CTTCTTGT

CTTTATAGGGGCTCTCTAGTCTTGAGGAGGGCGGGTATAGAAGTACTGAAAAAGCAC AAGATAT

TTGAGTCCAACTCTGAATTAAGAGAGCACGTTCATGAAAGAAAACACTTCGTATTTG TTTCTCCG

CTCGATAGAAAAGCCAAGAAGCTCCTACGTTTGACTGACTCTAGGCCTGATTTATTG CACGTAA

TTGATGAAATACTACAACATGATAATTTAGAGAACAAGGATAGAGAATCTTTGTGGT TAGTTCG

ATCTGGTTATTTACTGGCCGGCCTACCAGACCAACTCTCCTCTTCCTTTATAAATCT TCCAATCAT

TACTCAAAAAGGCGATCGTCGCTTGATAGATCTCATTCAATACGACCAAATTAATAG AGATGCT

TTTGTGATGTTGGTAACTTCCGCTTTTAAGTCGAACTTAAGTGGGCTGCAGTACAGA GCAAACA

AACAATCTTTTGTGGTTACGCGCACTTTGTCACCATATTTGGGATCTAAATTGGTTT ATGTGCCC

AAAGATAAAGATTGGCTGGTCCCTTCCCAAATGTTCGAGGGGAGATTTGCGGACATT TTGCAAT

CCGATTATATGGTGTGGAAGGACGCTGGAAGATTGTGTGTTATTGACACAGCTAAGC ATTTGTC

TAACATTAAAAAATCTGTATTCTCAAGTGAAGAAGTCCTCGCGTTTTTAAGAGAATT GCCACAC

CGTACGTTTATCCAAACTGAGGTCAGGGGTTTAGGGGTGAATGTGGACGGTATTGCA TTTAATA

ACGGGGATATACCCTCTCTGAAGACGTTTAGCAATTGCGTGCAAGTCAAAGTGAGTC GGACAAA

CACTAGTCTGGTCCAAACATTAAATAGATGGTTTGAAGGCGGTAAGGTCTCGCCGCC TAGCATC

CAATTTGAGAGAGCATATTACAAAAAAGATGATCAAATCCACGAGGACGCTGCAAAA AGGAAG

ATAAGGTTTCAAATGCCAGCTACAGAGTTGGTACACGCGTCAGACGACGCAGGATGG ACCCCCT

CCTATTTACTTGGTATCGATCCCGGTGAATATGGTATGGGTTTGTCATTGGTCTCAA TAAATAAT

GGCGAAGTTTTAGATAGCGGATTTATACACATAAATTCATTGATAAATTTCGCTTCT AAGAAATC

AAATCATCAAACCAAAGTTGTTCCGAGGCAGCAATACAAGTCACCATACGCCAACTA TCTAGAA

CAATCTAAAGATTCTGCAGCAGGAGACATAGCTCATATTTTGGATAGACTTATCTAC AAGTTGA

ACGCCCTACCCGTTTTCGAAGCTCTATCTGGCAATAGTCAAAGCGCAGCGGATCAGG TTTGGAC

AAAAGTCCTCAGCTTCTACACCTGGGGAGATAATGATGCACAAAATTCAATTCGTAA GCAACAT

TGGTTCGGTGCTTCACACTGGGACATTAAAGGCATGTTGAGGCAACCGCCAACAGAA AAAAAG

CCCAAACCATACATTGCCTTTCCCGGTTCACAAGTTTCTTCTTATGGTAATTCTCAA AGGTGTTC

ATGTTGTGGACGTAACCCAATTGAACAATTGCGCGAAATGGCGAAGGACACATCCAT TAAGGA GTTGAAGATTAGAAATTCAGAAATTCAATTGTTCGACGGTACTATAAAGTTATTTAATCC AGAC

CCGTCAACGGTCATAGAAAGAAGAAGACATAATTTAGGGCCATCAAGAATTCCTGTA GCTGATA

GAACTTTCAAAAATATAAGTCCAAGCTCACTAGAATTCAAAGAACTAATAACGATTG TGTCACG

GTCTATACGTCATTCCCCAGAATTTATTGCTAAAAAAAGAGGTATAGGTAGTGAGTA CTTTTGTG

CTTATAGTGATTGTAATTCCTCCTTAAATTCAGAAGCAAATGCGGCTGCGAACGTTG CCCAAAA

GTTCCAAAAGCAATTGTTTTTCGAATTATAG

SE ATGAAAAGAATCTTGAACTCTTTAAAGGTTGCCGCCCTGCGTTTGTTATTTAGAGGTAAA GGATC

Q TGAACTTGTCAAGACTGTTAAATACCCTTTGGTCTCGCCGGTTCAGGGTGCAGTTGAGGA GTTAG

no CTGAGGCGATCCGCCATGATAACCTACATCTGTTTGGTCAAAAAGAAATTGTTGACCTTA TGGA

N AAAGGATGAAGGTACGCAAGTTTACTCAGTGGTTGATTTCTGGTTAGATACCCTTCGTTT GGGG

O: ATGTTTTTCAGTCCATCAGCAAACGCATTAAAAATCACGCTGGGTAAGTTTAATTCTGAT CAGGT 14 TAGCCCTTTTAGGAAAGTGTTAGAGCAGTCTCCATTCTTCTTGGCTGGTAGGCTGAAGGT TGAAC

3 CGGCAGAACGTATATTATCTGTCGAGATCCGTAAGATTGGGAAGAGGGAAAACAGAGTTG AGA

ACTATGCTGCTGACGTAGAAACGTGTTTTATAGGCCAATTAAGTTCAGATGAGAAAC AGTCAAT

ACAAAAATTAGCTAATGATATCTGGGATAGTAAAGATCATGAAGAGCAAAGAATGTT AAAGGC

AGATTTCTTCGCTATCCCTTTGATTAAGGATCCAAAGGCTGTGACCGAAGAGGATCC TGAAAAT

GAAACTGCTGGTAAACAAAAACCCTTGGAGTTGTGTGTCTGCCTTGTCCCAGAACTT TACACAA

GAGGATTCGGGTCAATAGCCGATTTTTTGGTTCAACGCTTAACTCTTTTAAGGGATA AAATGTCT

ACAGATACTGCAGAAGATTGTTTAGAATATGTCGGGATTGAGGAGGAAAAAGGTAAC GGCATG

AACTCATTGTTGGGAACGTTCTTAAAGAATTTGCAAGGCGATGGATTTGAGCAGATT TTCCAATT

TATGTTAGGGAGCTATGTCGGTTGGCAAGGGAAGGAAGATGTTTTAAGAGAGAGATT AGACTTA

TTGGCTGAAAAAGTGAAGAGGTTACCGAAACCAAAATTTGCTGGCGAATGGTCTGGT CATAGGA

TGTTCTTGCATGGCCAATTGAAGTCTTGGTCTTCAAATTTTTTTAGACTATTTAACG AGACAAGG

GAACTTCTAGAGTCTATTAAGTCAGATATACAGCATGCCACAATGCTAATATCATAT GTAGAAG

AAAAAGGTGGTTATCATCCTCAATTACTTAGTCAATATAGAAAACTTATGGAACAAC TACCAGC

TTTGCGTACCAAGGTATTGGACCCTGAGATTGAAATGACACATATGTCCGAAGCAGT TCGCTCTT

ATATAATGATACATAAATCTGTTGCGGGTTTTTTACCGGATTTATTAGAATCATTAG ATAGAGAC

AAGGATCGTGAGTTTCTGCTTAGTATTTTTCCAAGAATCCCAAAAATTGATAAAAAA ACCAAGG

AAATTGTAGCTTGGGAACTGCCGGGAGAACCAGAAGAAGGTTATTTATTTACTGCTA ATAACTT

GTTCAGAAACTTCTTAGAGAATCCGAAACATGTCCCGAGATTTATGGCCGAAAGGAT CCCAGAA

GATTGGACTCGATTACGCTCTGCTCCTGTCTGGTTCGATGGAATGGTAAAACAATGG CAAAAAG

TCGTTAACCAGTTAGTAGAATCACCAGGTGCTTTATATCAATTTAACGAATCCTTCT TGAGACAA

AGGTTACAGGCCATGTTAACTGTGTATAAGAGGGACTTACAAACTGAAAAATTTCTT AAACTTT

TGGCGGATGTTTGTAGGCCTCTTGTAGATTTTTTTGGTTTGGGTGGAAATGATATTA TTTTTAAG

AGCTGTCAAGACCCAAGAAAACAATGGCAAACCGTTATTCCTCTCTCTGTTCCGGCA GATGTCT

ATACTGCTTGCGAAGGTTTGGCGATTAGACTAAGGGAGACATTAGGATTCGAATGGA AGAATTT

GAAAGGTCACGAGAGAGAAGATTTCTTAAGATTGCACCAGTTATTGGGCAATTTACT TTTCTGG

ATTCGTGATGCTAAATTGGTAGTAAAATTAGAGGATTGGATGAACAACCCATGTGTT CAGGAAT

ATGTAGAAGCCCGGAAAGCTATCGATCTTCCACTAGAAATATTCGGTTTTGAAGTGC CTATCTTC

CTGAATGGCTATCTATTTTCGGAGTTGAGACAATTAGAACTTTTGCTTAGGAGAAAA AGTGTGA

TGACTAGCTACAGTGTAAAGACTACTGGATCTCCTAATAGGCTATTTCAGCTAGTTT ATTTACCT

CTAAACCCTAGTGACCCCGAAAAGAAGAACTCAAATAACTTTCAAGAACGTTTGGAT ACCCCAA CTGGTTTGTCCCGTCGTTTCCTAGACCTAACCCTTGATGCATTCGCAGGTAAGTTACTTA CCGAT

CCAGTTACACAAGAATTGAAGACAATGGCAGGTTTTTACGATCATCTTTTTGGATTC AAATTGCC

ATGTAAACTCGCCGCCATGTCGAATCATCCAGGTTCTTCTTCAAAGATGGTTGTGTT AGCGAAAC

CCAAAAAAGGTGTTGCTTCTAATATAGGGTTTGAACCGATCCCAGATCCCGCTCATC CCGTATTT

AGGGTTAGATCCAGTTGGCCAGAGTTGAAGTACCTCGAGGGGCTATTGTATTTGCCA GAAGACA

CACCTTTGACCATCGAATTAGCAGAGACCTCCGTATCGTGCCAAAGTGTCTCGTCAG TTGCATTC

GATTTGAAAAACTTGACAACGATCTTAGGTCGTGTGGGAGAATTTAGGGTCACAGCT GATCAAC

CCTTTAAACTAACGCCTATAATCCCGGAGAAAGAAGAATCTTTTATTGGTAAAACTT ATTTGGGT

CTCGACGCGGGTGAAAGGAGCGGCGTCGGTTTCGCTATTGTTACAGTGGACGGAGAT GGGTACG

AAGTGCAAAGATTGGGGGTCCACGAGGATACACAGCTTATGGCCTTGCAGCAAGTTG CTAGTAA

ATCCTTAAAAGAGCCAGTATTTCAGCCTCTAAGAAAAGGCACCTTTAGACAACAAGA AAGAATA

CGGAAATCCTTACGTGGTTGCTACTGGAATTTTTATCATGCCTTGATGATAAAATAT AGGGCCAA

AGTAGTACATGAGGAATCTGTCGGAAGTAGTGGTCTTGTGGGTCAATGGTTGAGGGC TTTTCAG

AAGGATTTGAAGAAAGCCGATGTTCTCCCCAAGAAGGGCGGTAAAAACGGTGTAGAT AAGAAG

AAGAGAGAGTCCTCAGCTCAAGACACTCTTTGGGGTGGTGCTTTCTCTAAAAAGGAG GAGCAAC

AGATTGCGTTTGAGGTGCAAGCTGCAGGTTCTTCGCAATTTTGTTTGAAGTGCGGAT GGTGGTTC

CAACTAGGCATGCGTGAAGTAAACAGGGTACAAGAATCGGGCGTCGTGTTAGATTGG AATAGA

AGCATAGTTACCTTTTTAATAGAATCATCCGGCGAAAAAGTTTATGGTTTCTCCCCA CAGCAATT

AGAGAAGGGTTTCAGACCAGACATCGAAACTTTTAAAAAGATGGTAAGAGACTTTAT GAGACCT

CCTATGTTTGATAGAAAAGGCAGACCGGCCGCAGCTTACGAGAGATTTGTTTTAGGA AGGAGAC

ATCGAAGGTACAGGTTTGATAAAGTATTTGAGGAAAGATTTGGGAGGTCTGCTCTTT TCATTTGT

CCTAGAGTAGGTTGTGGAAATTTTGACCACAGCTCCGAACAGTCCGCGGTTGTTTTG GCCTTGAT

CGGATATATTGCCGATAAGGAGGGAATGTCAGGTAAGAAGTTGGTTTATGTACGGCT GGCCGAA

CTTATGGCCGAATGGAAACTAAAAAAATTAGAAAGATCCAGAGTTGAAGAACAATCA TCCGCT

CAATAA

SE ATGGCAGAAAGCAAACAAATGCAGTGTAGGAAATGTGGAGCTAGTATGAAGTACGAAGTC ATC

Q GGTTTGGGTAAAAAGTCATGTAGATACATGTGTCCCGATTGTGGCAACCATACCTCGGCA AGAA

no AGATACAAAACAAAAAAAAAAGAGATAAAAAATATGGGTCAGCCAGTAAAGCCCAATCTC AAA

N GAATTGCTGTAGCAGGTGCTCTTTACCCTGACAAAAAAGTACAAACTATCAAAACCTATA AATA

O: TCCAGCAGACTTGAATGGTGAGGTGCATGATAGCGGTGTTGCCGAGAAAATCGCACAAGC AAT 14 ACAAGAGGACGAGATTGGACTTTTGGGACCAAGCTCAGAATATGCATGCTGGATTGCATC TCAA 4 AAACAGTCTGAGCCTTACAGTGTAGTCGATTTCTGGTTTGATGCAGTGTGCGCAGGGGGA GTCT

TCGCCTACTCTGGCGCTAGATTATTGAGTACAGTTTTACAGTTATCCGGTGAGGAAT CGGTGCTT

AGAGCTGCCTTAGCCTCGTCTCCATTCGTTGACGATATAAACTTAGCGCAAGCCGAA AAGTTTTT

GGCGGTTAGCAGGCGTACAGGTCAAGATAAGTTAGGTAAGAGAATTGGGGAGTGCTT TGCAGA

AGGAAGATTGGAAGCTTTAGGGATAAAAGATAGAATGAGGGAATTTGTTCAAGCTAT CGATGTT

GCACAGACCGCCGGACAACGTTTCGCTGCCAAATTGAAGATATTCGGTATAAGTCAG ATGCCAG

AAGCTAAGCAATGGAATAACGATTCCGGACTGACTGTCTGTATACTACCTGATTATT ATGTTCCC

GAAGAGAATCGCGCGGACCAACTTGTAGTGTTGTTAAGAAGACTTCGCGAGATTGCA TATTGCA

TGGGTATTGAAGATGAAGCGGGTTTCGAACATCTTGGAATAGATCCTGGTGCTCTTT CGAATTTT

TCAAACGGTAACCCTAAGAGAGGATTTCTAGGGAGGCTGTTAAATAACGATATTATT GCGTTGG

CAAACAATATGAGTGCGATGACTCCATATTGGGAAGGGCGTAAGGGTGAACTCATAG AAAGGC TTGCGTGGTTAAAGCACAGGGCAGAAGGGCTGTATCTTAAAGAACCTCATTTCGGTAACT CCTG

GGCCGATCATAGGTCACGAATTTTCTCAAGGATCGCAGGCTGGTTATCTGGTTGCGC TGGCAAG

TTGAAAATTGCGAAAGACCAAATTTCTGGAGTACGTACAGATCTATTTCTGCTAAAA AGACTGC

TGGACGCAGTTCCGCAATCGGCGCCATCCCCCGATTTTATTGCGTCAATTTCGGCAC TTGACAGG

TTTTTAGAAGCTGCAGAATCGAGCCAGGACCCTGCTGAACAAGTGAGGGCTCTCTAC GCTTTTC

ACTTGAACGCACCTGCAGTCCGAAGTATAGCCAATAAAGCAGTGCAAAGGTCCGACA GCCAAG

AATGGCTGATAAAAGAACTAGACGCTGTTGACCATTTAGAATTTAACAAAGCGTTCC CATTTTTC

TCTGACACAGGAAAAAAAAAAAAAAAAGGTGCTAATAGCAACGGTGCTCCATCGGAA GAAGAG

TACACTGAAACGGAATCAATACAACAACCTGAGGACGCGGAACAGGAAGTAAACGGA CAAGA

AGGGAACGGAGCGTCTAAAAATCAAAAGAAATTTCAAAGAATACCTAGATTCTTCGG TGAAGG

CTCCAGATCTGAATACAGAATTTTAACGGAAGCTCCACAGTATTTCGATATGTTTTG TAATAACA

TGAGGGCTATATTTATGCAGTTAGAAAGTCAACCCCGTAAAGCTCCCAGAGATTTTA AATGTTTC

CTACAAAATCGATTACAAAAATTATACAAACAGACTTTCTTGAATGCACGAAGCAAC AAGTGTC

GCGCTCTGCTTGAGTCAGTTTTAATCTCTTGGGGAGAATTTTATACATACGGTGCCA ACGAAAAG

AAATTTAGATTAAGACATGAAGCTTCAGAACGCAGCAGTGACCCAGATTACGTAGTT CAGCAAG

CCTTGGAAATCGCGCGTCGTCTATTCCTTTTTGGCTTCGAATGGAGAGATTGCTCCG CTGGTGAA

AGAGTGGATTTGGTTGAAATTCACAAAAAGGCTATCAGTTTTTTGTTGGCTATTACT CAAGCTGA

GGTCTCTGTTGGTTCATACAATTGGCTTGGCAACTCAACAGTATCGAGATATTTATC CGTTGCGG

GAACTGATACCTTATACGGTACCCAATTGGAAGAATTCCTGAACGCTACAGTGTTGA GTCAAAT

GCGTGGTCTGGCCATTAGATTGAGTTCTCAAGAACTTAAGGACGGTTTTGATGTGCA GCTCGAG

TCTTCCTGCCAGGACAATCTGCAACACCTATTGGTGTATAGGGCTTCGAGAGATTTG GCGGCTTG

CAAGCGCGCTACTTGTCCAGCCGAACTCGATCCTAAGATTTTAGTTTTACCGGTAGG TGCATTCA

TCGCTTCCGTAATGAAAATGATAGAAAGAGGTGACGAACCTTTAGCTGGTGCTTATT TACGGCA

TAGGCCACACTCTTTCGGATGGCAAATTAGGGTCCGCGGTGTTGCTGAGGTAGGGAT GGATCAG

GGTACAGCATTGGCCTTTCAAAAGCCAACAGAGTCAGAACCTTTTAAAATTAAGCCC TTCTCTG

CACAGTATGGACCAGTTCTGTGGTTGAACAGTAGTAGTTATTCTCAATCACAATATT TGGACGGT

TTTCTATCTCAACCAAAAAATTGGAGTATGAGGGTGTTGCCTCAGGCGGGTTCAGTT CGCGTCG

AACAACGAGTTGCTTTGATATGGAACTTACAAGCAGGCAAGATGAGACTAGAACGCT CCGGTGC

GAGGGCCTTTTTCATGCCTGTACCGTTTTCATTTAGGCCATCCGGCAGTGGGGACGA AGCAGTTT

TGGCGCCCAACCGGTACTTGGGTCTGTTCCCTCATTCCGGAGGTATAGAATACGCTG TAGTGGAT

GTCCTGGATTCTGCTGGATTTAAAATTCTTGAAAGAGGCACTATTGCTGTCAATGGT TTCTCTCA

GAAAAGGGGAGAGCGCCAAGAAGAAGCCCATCGTGAAAAACAAAGAAGGGGGATAAG TGATA

TAGGGCGAAAGAAGCCTGTGCAGGCAGAAGTCGATGCGGCGAACGAATTGCATAGAA AGTACA

CTGATGTTGCCACAAGATTAGGTTGTAGAATCGTCGTTCAATGGGCACCACAACCTA AACCAGG

GACAGCACCGACAGCGCAAACTGTTTACGCGAGGGCTGTTAGGACAGAAGCTCCGAG GAGCGG

CAACCAAGAAGATCATGCAAGAATGAAAAGTTCTTGGGGTTACACCTGGGGTACGTA TTGGGA

GAAACGAAAACCAGAAGATATTTTAGGGATTTCTACACAGGTGTATTGGACAGGAGG TATAGG

CGAATCCTGTCCTGCTGTAGCAGTCGCTTTATTAGGTCATATTAGAGCAACTTCAAC ACAAACGG

AGTGGGAAAAGGAAGAAGTTGTCTTTGGAAGACTGAAGAAGTTCTTTCCGAGTTAA

SE ATGGAGAAGAGAATTAATAAGATACGGAAAAAATTATCTGCGGATAATGCAACAAAGCCA GTC

Q TCTCGTTCAGGCCCCATGAAAACCCTGCTTGTAAGAGTAATGACGGATGATTTAAAAAAG AGGT

no TGGAAAAGCGTAGAAAAAAACCAGAAGTGATGCCGCAAGTGATCTCAAATAACGCAGCTA ATA N ATCTAAGGATGCTACTTGATGATTATACAAAAATGAAAGAAGCAATCCTGCAAGTTTACT GGCA O: GGAATTCAAGGATGACCATGTTGGACTAATGTGCAAATTCGCACAACCAGCGTCTAAGAA AATT 14 GACCAAAATAAATTGAAACCCGAAATGGACGAAAAAGGGAATTTAACAACTGCCGGGTTT GCC 5 TGCTCGCAATGTGGGCAACCATTATTTGTTTATAAATTAGAGCAGGTTTCGGAAAAAGGA AAGG CTTACACAAATTACTTCGGCAGATGTAATGTTGCCGAACACGAAAAACTCATATTGTTAG CTCA GTTGAAGCCTGAGAAAGACTCTGATGAGGCCGTTACTTACTCGTTGGGGAAGTTTGGTCA AAGA GCTCTCGATTTTTATTCTATTCATGTGACAAAGGAGTCCACACATCCCGTCAAGCCCTTG GCACA AATTGCGGGTAATAGATACGCTTCGGGTCCAGTTGGGAAGGCCCTTTCTGATGCATGTAT GGGC ACAATTGCTAGCTTTCTTAGTAAATACCAGGATATCATAATAGAGCATCAAAAAGTTGTA AAGG GTAACCAAAAGAGATTAGAATCGCTGCGTGAGTTGGCGGGTAAAGAAAACTTGGAATATC CAT CTGTCACTCTGCCTCCTCAACCTCATACTAAGGAAGGTGTAGATGCGTACAATGAAGTTA TCGCT AGAGTCCGTATGTGGGTGAATTTAAATTTGTGGCAAAAATTGAAGTTATCGCGTGATGAT GCAA AACCTCTTCTTAGACTAAAGGGCTTTCCTAGCTTCCCTGTAGTGGAAAGACGCGAAAATG AAGT CGATTGGTGGAATACAATTAACGAAGTCAAAAAACTGATCGATGCAAAGCGAGATATGGG TCG AGTTTTTTGGTCTGGTGTTACAGCTGAAAAAAGGAATACGATCTTAGAAGGTTACAACTA CTTG CCAAATGAGAACGATCATAAAAAAAGAGAAGGCAGTTTAGAAAATCCAAAAAAGCCAGCT AAG AGACAATTTGGTGATTTGCTACTTTACCTAGAAAAAAAGTACGCCGGAGATTGGGGGAAA GTCT TTGACGAAGCTTGGGAGAGAATAGATAAAAAAATAGCAGGATTGACGTCACACATTGAAA GAG AAGAGGCGAGAAATGCAGAAGATGCTCAGTCCAAAGCTGTCCTCACCGACTGGTTGAGAG CCA AAGCGTCCTTTGTTCTCGAACGCCTAAAAGAAATGGATGAGAAGGAATTTTATGCCTGCG AAAT CCAGCTACAAAAATGGTACGGAGACTTGAGAGGTAACCCCTTTGCCGTGGAAGCAGAGAA CCG TGTTGTAGATATCTCCGGTTTCTCAATCGGTAGCGATGGACACTCCATTCAGTATCGCAA CTTGT TGGCCTGGAAATATTTGGAAAACGGTAAGAGGGAATTCTATTTACTTATGAATTATGGCA AGAA AGGTAGAATCAGGTTTACTGACGGAACAGACATTAAAAAGAGTGGTAAGTGGCAAGGCCT TTT GTACGGTGGTGGCAAGGCCAAAGTAATAGACTTAACATTTGACCCCGACGACGAACAACT GAT AATACTGCCTTTAGCTTTTGGTACTCGACAGGGGCGAGAGTTCATTTGGAATGATCTTTT GTCAC TCGAGACTGGTTTGATAAAACTTGCAAATGGAAGAGTCATCGAGAAGACAATTTACAACA AAA AGATAGGTCGCGATGAGCCTGCACTATTTGTGGCCTTGACCTTTGAGAGAAGGGAAGTTG TCGA CCCATCCAATATTAAACCAGTCAACCTAATCGGTGTAGATAGAGGTGAAAACATCCCAGC TGTT ATCGCTCTGACAGACCCTGAAGGTTGCCCTTTGCCAGAATTTAAAGATTCGTCTGGTGGA CCAA CAGATATATTACGTATTGGGGAAGGCTATAAAGAGAAACAACGTGCTATTCAGGCTGCAA AAG AAGTTGAACAGAGGAGAGCTGGAGGTTACAGTAGAAAATTCGCCAGTAAAAGTAGAAACT TAG CAGATGACATGGTTAGAAACTCTGCCCGGGATTTGTTCTATCATGCGGTTACTCACGATG CAGTC TTAGTCTTTGAAAATCTATCGCGCGGTTTTGGTAGGCAAGGCAAGAGGACTTTTATGACA GAGA GACAATATACAAAAATGGAAGATTGGTTAACCGCGAAGCTCGCATATGAAGGTCTTACTT CGAA AACGTACCTCAGCAAAACGCTGGCTCAATATACTTCTAAAACTTGTTCAAATTGTGGTTT TACTA TTACCACGGCAGACTACGACGGGATGTTGGTGAGATTGAAGAAGACGAGCGATGGTTGGG CAA CAACATTGAATAATAAGGAATTAAAAGCAGAAGGACAGATTACGTATTACAATCGTTATA AAC GCCAAACGGTTGAGAAAGAGTTGTCAGCCGAGTTGGATAGACTAAGTGAAGAGAGCGGTA ACA ATGATATCTCAAAGTGGACTAAAGGGAGGCGGGATGAAGCCCTCTTTTTACTAAAGAAGA GATT CTCACATAGACCTGTGCAAGAACAATTCGTTTGTTTAGATTGTGGCCATGAGGTTCATGC AGAC GAACAGGCTGCGTTAAATATTGCGAGAAGCTGGCTATTTCTAAATTCTAATTCAACAGAG TTCA AGAGCTATAAATCCGGAAAACAACCTTTCGTAGGCGCGTGGCAAGCCTTCTATAAAAGGA GATT AAAAGAGGTTTGGAAACCAAATGCA

SE ATGAAAAGAATTAACAAAATTAGAAGGAGGCTGGTCAAAGATTCTAATACCAAGAAAGCT GGT

Q AAGACTGGTCCGATGAAAACCCTATTAGTCAGAGTTATGACCCCAGATTTGAGAGAAAGA TTGG

no AGAACCTCAGGAAAAAGCCCGAAAACATCCCACAACCCATTAGTAACACATCAAGAGCTA ATT

N TAAACAAGTTATTAACTGACTACACTGAAATGAAAAAAGCAATATTGCATGTTTACTGGG AAGA

O: GTTCCAGAAAGATCCTGTTGGGTTGATGTCTAGAGTTGCTCAACCGGCCCCAAAGAATAT AGAT 14 CAAAGGAAACTTATTCCTGTGAAGGACGGCAATGAAAGATTAACCAGCTCCGGTTTCGCT TGCT

6 CCCAGTGCTGCCAACCCCTGTATGTATACAAACTGGAACAAGTAAATGATAAAGGTAAGC CACA

TACTAACTACTTTGGTAGGTGTAATGTATCCGAGCATGAAAGATTGATCTTGTTAAG TCCCCATA

AACCAGAAGCTAATGATGAGTTAGTAACTTATAGTTTAGGTAAGTTCGGACAACGAG CTTTAGA

TTTCTATAGCATCCATGTTACAAGAGAAAGCAATCACCCCGTCAAACCACTGGAACA AATCGGT

GGTAATAGTTGTGCGTCAGGTCCAGTAGGCAAAGCTTTATCAGACGCTTGCATGGGT GCCGTGG

AAAGAGACTCGCTAACTTAAAAGATATTGCAAGTGCCAATGGTTTAGCTTTTCCTAA AATTACCT

TGCCACCTCAGCCACATACAAAGGAGGGAATTGAAGCTTACAATAATGTAGTAGCCC AAATAGT

TATTTGGGTGAACCTTAACCTATGGCAAAAGTTAAAAATTGGTAGAGACGAAGCCAA ACCCCTG

CAGAGGCTGAAGGGTTTTCCCTCCTTCCCCTTAGTAGAGAGACAAGCTAATGAAGTG GACTGGT

GGGATATGGTGTGCAATGTTAAAAAATTGATTAATGAGAAGAAAGAGGATGGTAAAG TGTTTTG

GCAGAATCTTGCTGGCTACAAGAGACAGGAAGCTTTACTGCCTTATTTATCTTCTGA GGAAGAT

AGGAAAAAAGGTAAAAAATTTGCTAGATATCAATTCGGAGACCTACTTCTGCATTTA GAAAAAA

AACATGGCGAAGATTGGGGTAAAGTTTATGATGAAGCCTGGGAAAGAATTGATAAGA AGGTAG

AAGGTCTCTCCAAACATATTAAATTAGAGGAAGAACGTAGGTCCGAAGACGCTCAAT CAAAGG

CAGCATTAACTGATTGGTTGAGAGCAAAAGCCTCTTTCGTTATTGAAGGATTAAAAG AAGCCGA

CAAAGATGAATTTTGTAGATGTGAGTTAAAGTTGCAAAAGTGGTATGGAGACCTCCG TGGTAAA

CCTTTTGCTATTGAGGCTGAAAATTCTATACTCGATATCTCTGGATTTTCAAAACAA TATAACTG

CGCATTTATATGGCAGAAAGATGGTGTTAAAAAGCTAAATCTATACTTAATTATCAA TTACTTTA

AAGGTGGTAAATTGCGTTTTAAGAAGATAAAGCCTGAAGCCTTTGAGGCAAACCGTT TTTACAC

TGTTATCAATAAAAAATCTGGGGAAATCGTACCAATGGAAGTTAATTTCAATTTCGA TGATCCT

AATCTTATTATTTTACCTCTTGCTTTCGGCAAAAGGCAAGGTAGGGAGTTTATTTGG AATGATTT

ATTGTCGCTGGAAACGGGGTCTCTCAAACTCGCAAACGGTAGGGTGATAGAAAAAAC ATTATAC

AACAGGAGAACTCGGCAGGATGAGCCAGCTCTTTTTGTGGCTCTGACATTCGAGAGA AGGGAA

GTTTTAGATTCATCTAACATCAAACCAATGAATTTAATAGGTATTGACCGGGGTGAA AATATAC

CTGCAGTTATTGCTTTAACTGATCCTGAGGGATGTCCTCTTAGCAGATTCAAGGACT CGTTGGGT

AACCCTACTCACATCTTAAGGATTGGAGAAAGTTACAAGGAGAAACAAAGGACAATA CAAGCT

GCTAAAGAAGTAGAACAAAGGAGGGCGGGTGGATATAGTCGGAAATATGCCAGCAAG GCCAA

GAATTTAGCTGACGACATGGTTAGGAATACAGCTAGAGACCTTTTATACTATGCCGT CACCCAG

GATGCCATGTTGATATTTGAAAATTTAAGTAGAGGCTTCGGTAGACAAGGTAAGCGC ACCTTCA

TGGCAGAGAGACAATATACTAGAATGGAAGATTGGTTGACTGCCAAATTGGCATACG AAGGTCT

ACCTAGTAAGACGTACTTATCTAAAACACTAGCGCAGTATACTTCCAAGACATGCAG TAATTGT

GGTTTCACAATCACTTCTGCCGATTACGATCGCGTCTTGGAAAAACTAAAAAAAACA GCGACAG

GTTGGATGACTACTATTAATGGGAAAGAATTGAAGGTCGAAGGACAAATAACTTACT ATAATAG ATATAAACGGCAAAACGTTGTAAAAGACCTGTCAGTCGAACTCGATCGACTTAGTGAAGA ATCT

GTTAATAATGATATTAGTTCGTGGACAAAAGGTAGATCCGGTGAAGCTTTGAGCCTC CTGAAAA

AACGTTTTAGCCATAGGCCTGTCCAAGAAAAGTTTGTATGTTTAAACTGTGGTTTTG AGACCCAT

GCAGACGAGCAGGCCGCTCTTAATATTGCTAGATCATGGTTATTTTTAAGATCTCAG GAATACA

AGAAGTACCAGACTAACAAGACAACAGGCAACACAGATAAGCGAGCATTCGTTGAGA CTTGGC

AATCTTTTTATAGAAAGAAATTGAAGGAAGTCTGGAAACCA

SE ATGGGAAAAATGTATTATCTAGGCCTGGACATAGGGACCAATTCAGTAGGCTACGCTGTC ACTG

Q ACCCCTCCTACCATTTGCTGAAGTTCAAGGGGGAACCCATGTGGGGAGCACACGTGTTTG CGGC

no CGGCAACCAGAGCGCAGAGCGGAGAAGCTTCCGCACCTCCAGGAGAAGGCTGGATCGCAG GCA

N GCAGCGTGTGAAGCTGGTCCAAGAGATATTTGCCCCAGTGATTTCCCCCATCGATCCGCG CTTCT

O: TTATTAGGCTCCACGAGTCCGCTCTCTGGCGCGACGACGTGGCCGAAACTGATAAACATA TTTTC 14 TTTAATGACCCAACATACACTGACAAGGAGTACTATTCAGATTACCCAACAATTCACCAT TTGAT

7 CGTGGACCTTATGGAAAGTTCGGAGAAGCATGATCCTCGACTTGTCTATTTGGCCGTGGC GTGG

CTCGTGGCACATAGGGGCCACTTCTTGAACGAGGTGGACAAGGATAACATCGGGGAT GTGTTAT

CTTTCGACGCTTTCTATCCTGAATTCCTTGCTTTTCTGTCTGACAATGGCGTCAGCC CGTGGGTCT

GCGAATCCAAGGCCCTCCAGGCTACGCTATTGTCAAGAAATAGCGTGAACGACAAGT ACAAGG

GGACGGGCTGATTCAGCTCCTCGCTGGGAAAAAGGTCAAGGTCAATAAGCTGTTTCC ACAGGAG

TCAAATGACGCGAGCTTCACCCTTAACGACAAAGAGGATGCCATTGAAGAGATCCTG GGGACA

CTCACCCCAGACGAGTGCGAGTGGATAGCCCATATTAGGCGCCTCTTTGATTGGGCC ATAATGA

AACATGCGCTTAAGGACGGGCGCACGATATCCGAAAGCAAGGTCAAATTGTACGAGC AGCACC

ACCATGATCTGACCCAGCTAAAATATTTTGTAAAAACATATCTGGCCAAGGAGTACG ATGATAT

CTTCCGCAACGTGGATAGTGAGACCACCAAAAACTACGTCGCGTACTCATACCACGT GAAAGAA

GTTAAGGGCACGCTGCCTAAGAACAAGGCAACACAAGAGGAGTTCTGCAAGTACGTT CTCGGG

AAAGTTAAAAATATAGAGTGCAGCGAGGCCGACAAAGTGGATTTTGACGAGATGATT CAACGC

CTGACCGACAATTCGTTTATGCCTAAACAGGTGAGTGGAGAGAATCGCGTGATTCCA TATCAGC

TCTATTACTATGAACTCAAGACTATTCTGAATAAGGCCGCTAGCTATTTACCCTTCC TTACGCAG

TGCGGGAAGGATGCCATTTCTAACCAGGATAAACTCTTGAGTATAATGACATTTCGA ATTCCCT

ATTTCGTGGGTCCGCTTCGTAAGGATAACAGTGAGCACGCTTGGCTGGAGCGGAAGG CTGGCAA

AATTTATCCATGGAATTTCAACGACAAGGTGGATCTGGACAAATCCGAAGAAGCCTT TATCCGC

AGGATGACCAATACTTGCACATACTATCCTGGGGAGGATGTCCTTCCACTGGACTCT CTGATCTA

CGAAAAGTTCATGATTTTGAATGAAATTAACAACATAAGGATCGATGGGTATCCTAT TTCCGTC

GACGTGAAGCAGCAGGTGTTCGGGCTCTTTGAGAAGAAGCGACGGGTGACCGTGAAG GATATT

CAGAATCTTCTCTTATCGCTGGGAGCCCTGGATAAACACGGAAAACTGACCGGGATA GATACTA

CGATTCATTCTAATTACAACACGTATCACCATTTTAAGTCACTGATGGAGAGGGGCG TCCTAAC

AAGAGATGACGTGGAGAGAATAGTGGAACGAATGACATATTCTGATGACACCAAGAG AGTGCG

GCTTTGGCTGAATAACAACTACGGCACTCTGACGGCGGATGATGTAAAGCATATTTC CCGACTC

CGTAAGCATGACTTCGGGCGGCTGTCTAAGATGTTTCTAACAGGCCTCAAGGGTGTG CATAAGG

AAACTGGGGAGCGCGCTAGCATCCTGGATTTTATGTGGAACACCAATGATAACCTGA TGCAGCT

CCTGTCAGAATGCTACACATTTTCGGACGAAATCACCAAGCTGCAGGAGGCTTACTA TGCCAAG

GCCCAACTAAGCTTGAATGATTTCCTGGATTCTATGTACATCAGCAACGCCGTAAAA CGACCAA

TTTATAGGACACTGGCAGTGGTTAACGACATTAGGAAAGCATGCGGAACAGCTCCCA AGCGAAT CTTTATCGAGATGGCCCGCGACGGCGAGAGTAAGAAGAAAAGGTCAGTGACTAGGCGGGA GCA

GATCAAGAACCTTTACCGCTCTATCCGAAAAGACTTCCAGCAAGAGGTTGATTTCCT TGAGAAG

ATCTTAGAGAACAAGTCAGATGGACAGCTCCAATCCGATGCTCTGTATCTGTACTTC GCTCAGCT

GGGACGAGATATGTACACTGGCGACCCCATTAAACTAGAACATATCAAGGACCAATC GTTTTAT

AATATCGACCACATCTACCCTCAGTCCATGGTGAAAGACGATAGTCTGGACAATAAG GTGCTCG

TCCAAAGTGAGATTAACGGAGAAAAGTCGAGCAGATATCCTTTGGACGCTGCGATCC GCAACA

AGATGAAGCCCCTGTGGGATGCTTACTACAATCATGGACTGATCAGCCTGAAGAAGT ATCAGAG

ACTGACCCGGAGTACCCCTTTCACAGACGATGAGAAGTGGGATTTTATCAATAGACA ACTGGTG

GAAACCAGGCAGTCCACGAAAGCTCTGGCCATTCTTCTGAAGAGAAAGTTTCCAGAC ACAGAG

ATCGTCTATTCAAAGGCCGGCCTCAGTTCCGACTTTAGACATGAGTTCGGACTCGTT AAATCACG

AAATATAAACGATCTCCACCATGCAAAGGACGCATTCCTCGCGATTGTGACTGGAAA TGTCTAT

CACGAAAGATTTAATAGGCGGTGGTTCATGGTTAACCAGCCATACTCAGTGAAGACC AAGACCC

TTTTCACTCACTCTATTAAAAATGGCAACTTCGTGGCTTGGAATGGTGAGGAGGATC TTGGAAG

AATTGTGAAGATGTTAAAACAGAATAAGAATACCATCCACTTTACTAGATTCAGCTT TGACCGA

AAAGAGGGGCTATTCGATATTCAACCGTTAAAGGCTTCAACAGGTCTCGTTCCACGA AAGGCCG

GACTGGACGTAGTGAAATACGGCGGCTATGATAAGAGCACCGCAGCTTACTACCTCC TTGTGCG

ATTTACGCTCGAGGATAAGAAGACCCAACACAAGCTGATGATGATTCCCGTGGAGGG ACTGTAC

AAAGCTCGAATTGACCATGATAAAGAGTTTCTCACAGATTACGCACAAACCACCATC TCTGAGA

TTCTCCAGAAAGACAAACAAAAAGTTATAAACATAATGTTTCCAATGGGTACAAGGC ATATTAA

ACTGAACAGCATGATCTCCATTGATGGCTTTTATTTGTCCATTGGAGGAAAGTCTAG TAAAGGC

AAGTCTGTCCTCTGCCATGCCATGGTACCCCTAATCGTCCCACACAAGATTGAATGC TACATCAA

GGCTATGGAGAGTTTTGCTCGGAAATTTAAAGAGAATAATAAGCTGCGTATTGTGGA AAAATTC

GACAAGATAACCGTTGAAGACAATCTGAATCTGTACGAGCTCTTTCTGCAGAAGCTG CAGCATA

ACCCCTATAATAAGTTCTTCTCCACACAGTTCGATGTACTGACCAACGGGCGATCAA CTTTCACA

GATCTTCAGGATGCGACTTGAAGAGCATTAACGGGAGCGCACAGGCAGCTAGGATCA TGATCTC AGCTGACCTGACAGGGCTGAGTAAAAAATACTCCGACATTCGGCTTGTAGAGCAAAGCGC CAGT GGGTTGTTCGTTAGTAAGTCGCAGAACCTGCTGGAATACCTGTAA

SE ATGTCTTCTTTGACGAAGTTTACAAACAAATACTCTAAGCAGCTTACAATTAAGAACGAA CTGA

Q TTCCCGTAGGAAAGACTCTGGAAAACATCAAAGAGAATGGGCTGATAGACGGCGACGAAC AAC

no TGAATGAGAACTATCAGAAGGCCAAAATTATCGTGGATGACTTCCTGAGGGATTTTATTA ACAA

N GGCCCTGAATAATACCCAGATCGGCAATTGGCGGGAACTGGCCGACGCTCTGAACAAAGA AGA

O: TGAGGACAATATCGAAAAATTACAAGACAAAATCAGGGGCATTATTGTCAGTAAGTTCGA GAC 14 ATTCGATCTGTTCTCTTCGTACTCCATTAAGAAGGACGAGAAAATCATCGATGATGACAA TGAC 8 GTTGAGGAAGAAGAACTGGACTTGGGTAAAAAGACCTCATCCTTCAAGTATATTTTTAAA AAAA

ATCTGTTTAAATTAGTGCTCCCCAGTTATTTAAAGACAACTAACCAGGACAAGCTTA AGATTATC

TCCTCTTTTGACAACTTTAGCACCTATTTTAGAGGCTTCTTTGAAAATCGCAAGAAT ATTTTCACT

AAGAAGCCCATAAGCACCTCTATTGCCTACAGAATCGTACATGATAACTTCCCAAAA TTTTTGG

ATAACATTAGATGTTTTAATGTATGGCAGACCGAATGTCCTCAGTTAATTGTGAAGG CGGATAA

CTACCTCAAATCCAAGAATGTGATCGCCAAAGATAAGTCTCTTGCTAACTACTTTAC GGTCGGA

GCCTACGATTACTTCTTATCTCAAAACGGTATTGACTTTTACAATAACATTATCGGG GGATTGCC

TGCCTTCGCCGGCCATGAGAAAATTCAGGGCTTAAACGAGTTCATAAATCAGGAATG TCAAAAG GACTCAGAGCTGAAATCAAAGCTTAAGAATCGACACGCATTTAAAATGGCGGTCTTGTTC AAAC

AGATCCTCAGCGATAGAGAGAAAAGCTTCGTTATTGATGAATTCGAGAGCGACGCAC AGGTGAT

TGATGCCGTGAAGAACTTCTATGCGGAACAGTGTAAAGACAATAATGTTATTTTCAA CCTATTA

AACTTGATTAAGAATATCGCGTTTTTAAGTGACGATGAACTCGACGGTATCTTTATA GAAGGCA

AGTACCTGTCCTCTGTCAGCCAAAAACTCTACTCAGATTGGTCCAAGCTAAGAAATG ACATCGA

GGACAGTGCTAACAGCAAACAGGGCAATAAAGAGCTGGCAAAGAAAATCAAGACTAA TAAAG

GGGATGTGGAGAAGGCGATATCTAAATATGAGTTCTCCCTCTCCGAACTGAACTCCA TCGTCCA

CGATAATACCAAGTTTAGTGATCTGTTGTCGTGTACACTGCACAAAGTGGCCAGTGA AAAACTC

GTCAAGGTGAACGAAGGCGATTGGCCCAAACACCTGAAAAATAATGAGGAGAAACAG AAGATC

AAAGAACCTTTGGATGCGTTGCTCGAAATATATAACACACTGTTGATCTTCAACTGT AAAAGCTT

CAACAAGAACGGGAACTTTTATGTAGACTACGATCGATGTATAAATGAACTGAGCAG CGTCGTT

TACCTGTACAACAAGACTCGCAATTATTGTACGAAAAAACCATATAACACCGATAAG TTCAAGC

TTAATTTCAACAGTCCCCAGCTGGGAGAAGGGTTCAGCAAATCAAAAGAAAACGATT GCCTGAC

ATTACTCTTTAAAAAGGATGATAATTATTATGTTGGGATTATTAGGAAAGGCGCTAA GATCAAC

TTTGACGACACACAGGCCATAGCTGACAACACTGATAACTGCATCTTTAAAATGAAT TACTTTCT

GTTGAAGGACGCCAAAAAATTCATTCCAAAATGCTCTATTCAGCTCAAGGAGGTTAA GGCCCAT

TTCAAGAAGTCTGAAGATGACTACATCCTCTCTGACAAGGAAAAATTCGCTAGTCCT CTGGTTAT

CAAAAAAAGTACCTTCTTGCTGGCTACAGCTCACGTGAAAGGCAAGAAAGGGAACAT TAAGAA

GTTCCAAAAGGAATACAGCAAAGAGAATCCAACCGAGTACAGAAATTCTCTGAACGA ATGGAT

CGCATTCTGTAAAGAATTTCTAAAGACGTACAAGGCCGCTACCATTTTCGATATTAC CACCTTGA

AAAAAGCCGAGGAGTACGCCGACATCGTCGAATTCTATAAAGACGTGGATAACCTGT GTTACAA

ATTGGAATTCTGCCCAATTAAGACCTCTTTCATTGAAAACCTCATCGACAATGGGGA CCTCTACT

TATTTAGAATTAACAATAAGGATTTTTCTTCGAAATCTACCGGAACTAAAAATCTGC ACACACTG

TATCTGCAAGCAATCTTCGATGAACGTAATCTCAACAACCCTACAATAATGCTGAAC GGCGGTG

CTGAACTGTTCTACCGTAAAGAGAGTATTGAACAGAAGAATCGAATCACACACAAAG CGGGCA

GTATTCTCGTCAATAAGGTGTGCAAAGACGGGACCAGCCTGGACGATAAGATCAGGA ATGAAA

TATATCAGTATGAGAACAAGTTTATCGACACCTTGTCGGATGAGGCAAAGAAGGTGC TACCTAA

CGTTATCAAGAAGGAAGCTACCCATGACATAACCAAGGATAAGCGGTTCACTTCTGA CAAGTTC

TTCTTCCACTGTCCTCTGACCATTAACTACAAGGAAGGAGACACTAAACAATTCAAT AATGAAG

TACTTAGCTTTTTGCGGGGTAATCCCGATATTAACATAATTGGTATCGACCGGGGAG AACGGAA

CCTGATATACGTGACAGTAATTAATCAGAAAGGAGAAATCCTGGATTCCGTATCCTT CAATACC

GTGACTAATAAATCTAGTAAAATCGAGCAGACGGTCGACTACGAGGAAAAGTTAGCA GTCAGA

GAGAAGGAGAGAATCGAGGCCAAACGTTCCTGGGATAGTATCAGCAAGATTGCTACT CTGAAA

GAAGGATATCTGTCCGCTATCGTCCATGAGATCTGTTTGTTGATGATCAAGCACAAT GCTATAGT

GGTTCTGGAGAACCTGAACGCAGGCTTCAAGCGAATTAGAGGGGGCCTGTCGGAAAA AAGCGT

TTACCAGAAGTTTGAAAAGATGCTAATCAATAAGTTAAATTACTTTGTAAGTAAAAA AGAAAGC

GATTGGAATAAGCCATCAGGACTTTTAAACGGGCTGCAACTGAGCGACCAGTTTGAG TCATTCG

AAAAACTGGGTATTCAGAGTGGTTTCATATTCTACGTACCTGCCGCTTACACTTCAA AGATCGAT

CCTACAACTGGTTTTGCGAATGTCCTGAATCTGTCTAAGGTGAGGAATGTGGACGCA ATCAAGT

CTTTCTTCAGCAACTTCAACGAGATATCTTACAGCAAGAAAGAGGCTCTGTTTAAAT TCAGTTTT

GATCTGGATAGCCTGAGCAAGAAAGGATTCTCTTCTTTCGTAAAGTTTTCTAAGTCC AAATGGA

ACGTCTACACGTTCGGAGAGAGAATCATTAAACCAAAGAACAAGCAGGGGTATCGGG AAGACA AAAGGATCAATCTGACTTTCGAAATGAAGAAACTATTGAATGAGTACAAAGTCTCATTCG ATTT

GGAGAACAATCTGATCCCCAATCTGACCAGCGCTAACCTCAAAGACACATTCTGGAA GGAGCTG

TTTTTCATCTTTAAGACCACCCTGCAGCTACGGAATAGTGTCACAAATGGGAAAGAG GATGTAC

TGATCTCACCTGTGAAAAACGCCAAGGGGGAGTTCTTTGTGTCCGGCACCCATAACA AAACCCT

GCCTCAGGACTGTGACGCGAACGGGGCCTACCACATCGCGCTAAAGGGGTTAATGAT TCTCGAA

CGTAATAATCTGGTGCGCGAAGAAAAAGACACAAAGAAAATTATGGCCATCAGCAAC GTTGAC

TGGTTTGAGTACGTGCAGAAGCGTCGAGGAGTTTTGTAA

SE ATGAACAACTATGACGAGTTCACTAAACTTTACCCCATTCAGAAAACCATCAGATTTGAA CTGA

Q AGCCTCAGGGTCGTACCATGGAACACTTGGAAACTTTCAACTTTTTCGAGGAGGACAGGG ATAG

no AGCTGAGAAATACAAGATCTTGAAAGAGGCCATCGACGAGTATCACAAAAAATTCATCGA TGA

N GCATCTCACCAACATGTCGCTGGATTGGAACAGTCTCAAGCAGATTTCCGAGAAGTACTA TAAA

O: TCTCGGGAGGAGAAAGATAAAAAGGTGTTTTTGAGCGAGCAAAAGCGAATGCGACAGGAG ATA 14 GTCTCTGAATTTAAGAAAGATGATCGGTTTAAAGACCTATTTTCCAAAAAGCTTTTTTCA GAGCT

9 GCTGAAGGAAGAGATCTATAAAAAAGGCAATCACCAAGAAATTGATGCCCTGAAATCATT CGA

CAAATTCAGTGGGTATTTCATAGGACTGCATGAGAACCGGAAGAATATGTATAGTGA TGGAGAC

GAGATCACAGCCATAAGCAATCGAATCGTTAACGAGAATTTCCCGAAGTTCCTGGAT AACCTGC

AGAAGTATCAAGAGGCTAGGAAAAAGTACCCTGAGTGGATCATCAAGGCTGAATCAG CTCTGG

TGGCTCACAATATCAAGATGGATGAAGTCTTTAGTCTTGAGTACTTTAATAAAGTCC TTAACCAG

GAGGGCATCCAGCGCTATAACCTGGCTCTCGGTGGCTACGTCACAAAAAGCGGAGAA AAGATG

ATGGGTCTCAACGATGCACTGAATTTGGCTCATCAGTCGGAGAAGTCATCTAAGGGA CGCATAC

ACATGACACCACTGTTTAAACAAATCCTGAGCGAAAAGGAATCATTTTCCTACATTC CCGACGT

ATTCACCGAGGACTCACAACTGCTGCCTAGTATAGGGGGGTTTTTCGCTCAGATAGA GAACGAC

AAAGATGGCAACATTTTTGACAGAGCCTTGGAGTTGATTTCATCTTACGCCGAGTAC GATACGG

AGCGCATTTATATTCGCCAGGCGGATATCAACAGGGTTTCCAATGTGATCTTTGGCG AGTGGGG

AACGCTGGGCGGGCTGATGCGGGAATACAAAGCCGACTCGATCAATGACATCAACCT GGAGAG

AACATGCAAGAAGGTCGATAAATGGTTGGATAGCAAAGAGTTCGCCCTGAGTGACGT CTTGGA

AGCTATCAAAAGAACCGGAAATAATGACGCGTTCAACGAGTATATCTCTAAAATGAG GACCGC

GAGAGAAAAAATTGATGCAGCAAGGAAGGAGATGAAGTTTATATCTGAGAAGATCTC AGGCGA

TGAAGAGTCCATCCATATTATTAAAACTCTTCTGGACTCAGTGCAGCAATTCCTGCA CTTTTTTA

ACCTCTTCAAGGCCAGGCAGGATATACCGTTAGACGGGGCTTTTTATGCCGAGTTTG ATGAAGT

TCATTCGAAACTTTTTGCTATAGTGCCTCTCTATAATAAAGTTCGCAATTACCTGAC AAAGAATA

ACTTAAACACAAAGAAAATCAAGCTCAACTTCAAAAACCCAACACTGGCAAACGGAT GGGATC

AGAACAAGGTATATGATTACGCCTCATTGATTTTCCTCCGGGACGGGAATTACTATC TGGGGAT

CATCAACCCTAAGCGCAAAAAGAACATTAAGTTCGAACAGGGATCTGGCAATGGTCC CTTCTAT

AGGAAAATGGTATACAAACAGATTCCTGGCCCCAACAAGAATCTCCCACGCGTCTTT CTGACGT

CCACTAAGGGAAAGAAGGAGTACAAGCCGTCTAAAGAAATTATCGAGGGCTATGAGG CAGACA

AGCATATTAGGGGTGACAAGTTTGACCTAGACTTTTGTCATAAGCTTATCGACTTTT TCAAGGAG

TCCATAGAGAAGCACAAAGATTGGTCAAAGTTTAATTTCTATTTTTCTCCAACAGAG TCCTACGG

GGATATCTCTGAGTTCTATCTGGATGTTGAAAAGCAGGGGTACAGAATGCACTTCGA AAATATC

TCAGCAGAAACTATCGATGAGTACGTAGAGAAAGGAGATCTGTTTCTTTTCCAAATC TACAATA

AGGATTTTGTGAAGGCCGCCACTGGGAAGAAGGACATGCACACTATTTACTGGAACG CTGCATT

TTCCCCTGAAAATCTGCAGGACGTAGTAGTGAAATTAAATGGTGAGGCAGAACTGTT TTACCGC GATAAATCAGACATCAAGGAAATAGTGCACCGGGAAGGCGAGATTCTTGTTAACCGAACA TAT

AATGGCAGGACACCTGTCCCTGATAAAATTCATAAGAAACTGACCGATTACCACAAC GGTCGAA

CCAAGGATCTGGGCGAGGCCAAGGAATACCTCGATAAGGTGAGGTACTTCAAAGCCC ATTATG

ACATCACCAAGGACCGAAGATACCTTAACGACAAAATCTACTTCCATGTCCCACTCA CCTTGAA

CTTCAAAGCTAACGGTAAGAAGAACCTCAATAAAATGGTGATTGAAAAATTTCTGTC CGATGAG

AAGGCCCATATCATCGGCATTGATCGCGGCGAGAGAAATCTCCTTTACTATTCTATC ATTGATCG

GTCGGGAAAGATTATCGACCAACAATCACTGAATGTCATCGACGGATTCGACTATAG AGAGAA

GCTGAACCAACGGGAAATCGAGATGAAGGACGCGCGCCAGTCCTGGAACGCTATCGG CAAAAT

TAAAGATTTGAAAGAAGGTTACCTCTCCAAAGCAGTGCACGAAATTACCAAAATGGC AATCCAG

TACAATGCTATTGTGGTAATGGAGGAGTTAAATTACGGATTTAAGCGCGGGAGGTTC AAGGTTG

AAAAGCAAATTTACCAAAAATTTGAGAACATGTTGATTGATAAGATGAACTACCTGG TGTTCAA

GGACGCACCTGACGAGTCGCCAGGCGGCGTGTTAAATGCATATCAGCTGACAAATCC ACTGGAG

AGCTTTGCCAAGCTAGGAAAGCAGACTGGCATTCTCTTTTACGTCCCTGCAGCGTAT ACATCCAA

AATTGACCCCACCACTGGCTTCGTCAATCTGTTTAACACCTCCTCCAAAACCAACGC ACAAGAA

CGGAAAGAATTTTTGCAAAAGTTTGAGTCCATTAGCTACTCTGCCAAAGACGGCGGG ATCTTTG

CTTTCGCATTCGACTACAGGAAATTCGGGACGAGTAAGACAGACCACAAGAACGTCT GGACCGC

GTACACTAATGGGGAACGCATGCGCTACATCAAAGAGAAAAAGAGGAATGAACTTTT TGACCC

TTCAAAGGAAATCAAGGAAGCTCTCACCTCAAGCGGTATCAAATACGATGGCGGGCA GAATATT

TTGCCAGATATCCTCAGATCGAACAATAATGGACTTATCTATACTATGTACTCCTCC TTCATTGC

AGCAATTCAAATGAGAGTGTACGATGGAAAGGAGGATTACATTATATCGCCAATTAA GAACTCC

AAAGGCGAATTCTTCCGCACGGATCCTAAGCGAAGAGAACTCCCAATCGACGCTGAT GCGAAC

GGCGCCTATAATATAGCCCTGCGGGGTGAATTAACAATGCGCGCTATTGCCGAGAAG TTCGACC

CCGATTCAGAAAAAATGGCTAAGCTTGAGCTGAAACACAAAGATTGGTTCGAATTCA TGCAGAC

AAGAGGCGACTAA

SE ATGACTAAGACCTTCGATTCCGAGTTCTTCAACCTTTATTCCCTGCAGAAAACTGTAAGG TTTGA

Q GCTGAAGCCGGTGGGCGAGACAGCCAGCTTCGTAGAGGATTTCAAGAATGAGGGTCTCAA ACG

no GGTAGTTAGTGAGGATGAGAGGAGAGCAGTGGACTATCAGAAGGTGAAAGAGATCATCGA TGA

N CTATCACCGGGATTTCATAGAGGAGTCGTTGAATTACTTCCCTGAGCAAGTATCCAAAGA CGCG

O: CTGGAACAGGCCTTTCATCTTTACCAGAAACTGAAGGCAGCGAAGGTTGAGGAGCGGGAA AAG 15 GCCTTGAAAGAGTGGGAAGCCCTGCAGAAAAAGCTCAGAGAAAAGGTTGTCAAATGCTTC AGC 0 GACAGCAACAAAGCCAGGTTCAGTAGGATCGATAAGAAAGAACTGATCAAAGAAGACTTG ATC

AATTGGCTGGTTGCACAGAACCGGGAAGATGATATTCCCACCGTAGAGACCTTCAAC AACTTCA

CAACTTACTTCACCGGCTTCCATGAGAATCGTAAAAACATCTACAGTAAAGATGATC ATGCAAC

CGCCATCTCCTTCCGGTTGATCCACGAGAATCTCCCCAAGTTCTTTGACAACGTGAT AAGTTTCA

ATAAGTTGAAAGAGGGATTTCCCGAACTCAAGTTCGATAAAGTGAAGGAGGATCTGG AAGTGG

ATTATGACCTTAAGCACGCTTTCGAGATAGAGTACTTCGTGAACTTTGTGACTCAGG CCGGCATC

GATCAGTATAACTACCTCCTCGGGGGTAAGACGCTCGAGGACGGTACTAAGAAGCAA GGAATG

AATGAGCAAATTAATCTATTTAAACAGCAGCAGACCAGGGATAAGGCTAGACAGATC CCCAAG

CTTATTCCTCTTTTTAAACAGATCCTAAGTGAAAGGACAGAAAGTCAAAGCTTCATA CCTAAGC

AATTTGAAAGTGATCAGGAGCTGTTTGACTCCCTGCAAAAGCTGCACAACAATTGCC AGGACAA

GTTTACCGTGCTGCAGCAGGCTATCCTCGGACTGGCTGAGGCGGATCTTAAGAAGGT ATTCATT

AAGACTAGCGACCTCAATGCCCTTAGTAACACCATCTTTGGAAATTACTCCGTTTTC AGCGATGC CCTCAATCTATACAAAGAGAGCTTGAAGACTAAAAAAGCTCAGGAAGCTTTTGAAAAATT ACCG

GCACATTCTATACACGACCTTATACAATACTTAGAGCAGTTCAACAGCAGCCTCGAC GCTGAGA

AACAGCAATCCACAGACACCGTCCTGAATTACTTCATCAAAACCGATGAACTGTACT CCCGATT

TATCAAGAGCACTTCAGAAGCCTTCACGCAAGTTCAGCCTCTGTTCGAGCTGGAGGC ACTGTCC

AGCAAGAGACGACCGCCAGAGTCTGAAGACGAGGGAGCCAAGGGTCAAGAGGGGTTT GAACA

GATAAAGCGAATTAAGGCTTACTTGGATACTCTCATGGAGGCGGTGCATTTCGCTAA GCCTTTGT

TGAAATGGCCTACCAGGAATTGGAATCCTTGATCATTCCAATCTATAATAAAGCCCG GAGTTAT

CTGAGCAGGAAGCCCTTCAAAGCCGACAAGTTCAAAATAAATTTTGACAATAATACG CTACTGT

CTGGTTGGGACGCTAACAAGGAAACAGCCAATGCTTCCATCCTGTTTAAGAAAGACG GCCTGTA

CTACCTGGGAATTATGCCAAAAGGCAAAACTTTTTTGTTCGATTACTTTGTGTCATC AGAGGATA

GCGAGAAGTTAAAGCAAAGACGGCAGAAGACCGCCGAAGAAGCCCTCGCACAAGACG GAGAA

TCATATTTCGAGAAAATTCGATATAAGCTCCTGCCTGGCGCATCAAAGATGTTGCCA AAAGTCTT

CTTTTCCAACAAAAACATCGGCTTTTATAACCCCAGCGATGATATCCTTCGCATCCG GAACACCG

CCTCACATACCAAAAATGGAACTCCACAGAAGGGCCACTCGAAGGTTGAATTCAACC TTAACGA

TTGTCACAAAATGATTGATTTTTTTAAGAGCTCCATTCAGAAACACCCCGAATGGGG GTCCTTTG

GCTTCACCTTTTCTGATACTTCAGACTTCGAGGACATGTCCGCCTTCTACAGGGAGG TGGAGAAC

CAGGGCTATGTCATCTCCTTCGACAAAATAAAAGAGACATACATTCAGAGCCAGGTC GAGCAGG

GAAATCTGTACCTGTTTCAGATCTATAACAAGGATTTCAGTCCCTATAGCAAGGGCA AGCCCAA

TTTACATACCCTGTACTGGAAGGCCCTGTTCGAAGAGGCAAACCTTAACAATGTAGT TGCTAAG

CTGAATGGGGAAGCAGAGATCTTCTTCCGAAGGCACAGCATCAAGGCAAGCGACAAA GTTGTA

CATCCTGCTAACCAGGCCATCGATAACAAGAACCCGCATACAGAAAAGACACAGTCA ACCTTTG

AATACGACCTCGTGAAGGACAAGAGGTACACACAAGATAAATTCTTCTTCCACGTGC CCATCAG

CTTGAATTTTAAAGCGCAGGGAGTGAGCAAATTTAACGACAAGGTCAACGGCTTCCT GAAGGGA

AACCCCGACGTGAATATCATCGGAATTGATCGCGGTGAAAGACATCTCCTCTACTTT ACTGTGGT

GAACCAGAAGGGTGAGATCCTAGTACAGGAGAGCCTGAACACCCTTATGAGTGATAA GGGCCA

TGTGAATGATTACCAGCAGAAGCTGGACAAGAAGGAACAGGAAAGGGACGCAGCGCG GAAGT

CCTGGACCACTGTTGAGAATATCAAAGAACTGAAGGAGGGATATCTTAGCCATGTGG TACACAA

ACTTGCACATCTGATTATCAAGTATAATGCCATAGTCTGCCTGGAAGACTTGAACTT CGGTTTCA

AGCGAGGAAGGTTTAAAGTGGAGAAGCAGGTGTACCAGAAGTTTGAGAAAGCCCTTA TTGATA

AGCTAAACTACCTTGTCTTTAAGGAAAAAGAACTCGGCGAAGTTGGCCACTATTTAA CCGCCTA

CCAACTAACCGCCCCTTTCGAGTCTTTTAAGAAACTGGGAAAGCAGAGCGGAATACT CTTCTAT

GTGCCTGCAGACTACACCTCTAAGATCGACCCCACTACCGGCTTTGTAAACTTTCTA GATCTCCG

CTATCAGTCAGTAGAAAAAGCCAAACAGCTCTTGTCAGATTTTAACGCCATCCGATT TAATTCCG

TCCAAAATTACTTCGAGTTCGAAATCGACTATAAAAAACTTACCCCCAAGAGAAAGG TTGGGAC

GCAGTCTAAGTGGGTAATCTGCACTTACGGTGACGTGAGATACCAGAACCGCCGAAA CCAGAA

AGGTCATTGGGAAACCGAGGAAGTGAATGTGACTGAGAAGCTCAAGGCCCTCTTCGC TAGCGA

CAGTAAAACAACAACAGTTATCGATTACGCCAATGACGATAATCTTATAGACGTGAT CTTGGAA

CAAGACAAAGCCTCTTTTTTTAAGGAATTGTTGTGGTTGCTGAAACTTACAATGACC CTTAGGCA

CAGCAAGATCAAATCAGAGGATGACTTCATCCTCAGCCCGGTGAAGAATGAACAGGG AGAGTT

CTACGATTCACGGAAGGCTGGAGAGGTGTGGCCCAAGGATGCCGACGCGAACGGGGC CTACCA

CATAGCTCTAAAAGGTCTGTGGAACCTGCAACAAATCAATCAATGGGAGAAAGGTAA GACACT GAACCTGGCCATCAAAAATCAAGATTGGTTCTCATTCATCCAGGAAAAGCCTTATCAAGA GTGA

SE ATGCATACGGGAGGCCTTTTATCAATGGACGCAAAAGAGTTCACCGGGCAGTATCCATTA TCTA

Q AGACACTCCGCTTCGAGCTGAGGCCCATTGGCAGGACCTGGGACAACCTGGAGGCGTCGG GCTA

no CCTGGCTGAGGACAGACATCGCGCAGAATGCTATCCGAGAGCTAAGGAGCTTTTGGACGA CAAT

N CATCGCGCGTTCCTTAACCGGGTGCTCCCACAGATCGATATGGACTGGCACCCGATCGCT GAGG

O: CTTTTTGCAAGGTCCATAAGAACCCTGGGAACAAAGAGCTCGCCCAGGACTACAACTTGC AGCT 15 GAGCAAGCGACGGAAAGAGATTTCTGCCTACCTTCAAGACGCCGATGGCTACAAAGGGCT CTTC 1 GCAAAGCCCGCATTGGATGAGGCCATGAAAATCGCCAAGGAGAACGGGAATGAAAGTGAC ATC

GAAGTTCTCGAAGCGTTTAACGGATTTAGCGTGTACTTTACCGGCTATCATGAGTCA AGGGAGA

ATATTTATAGCGATGAGGACATGGTCTCTGTGGCCTACCGGATTACCGAGGATAATT TCCCGAG

GTTTGTTTCAAATGCACTAATATTCGACAAGTTAAATGAGAGCCACCCAGACATCAT CTCGGAG

GTCAGCGGCAACCTCGGAGTTGACGATATTGGCAAATACTTCGACGTGAGCAACTAT AACAACT

TCCTCTCACAGGCTGGCATCGACGACTATAATCATATTATAGGCGGCCACACTACTG AGGATGG

TCTCATTCAGGCATTCAATGTAGTCTTGAATCTTAGGCACCAGAAGGACCCTGGGTT TGAAAAG

ATACAGTTCAAGCAGCTGTATAAGCAGATATTATCCGTGCGAACATCTAAAAGTTAC ATCCCCA

AACAGTTTGATAACTCAAAGGAGATGGTGGATTGCATATGCGATTATGTGTCAAAAA TTGAAAA

GAGCGAGACTGTGGAGCGGGCTCTGAAGCTCGTCAGGAACATTAGCTCCTTTGACCT TAGAGGA

ATTTTCGTCAATAAAAAGAATCTGAGGATCCTGAGCAATAAGCTAATAGGAGATTGG GACGCCA

TAGAGACAGCATTGATGCATTCCAGCTCAAGCGAGAATGATAAGAAGTCTGTCTACG ATAGCGC

TGAAGCCTTCACGCTGGACGATATCTTCTCTTCCGTGAAAAAATTTAGTGATGCGTC CGCAGAA

GATATCGGGAATCGAGCCGAAGATATCTGCAGGGTAATTTCAGAGACCGCCCCTTTC ATCAATG

ACCTGCGCGCCGTGGACCTGGATAGCCTGAATGACGATGGTTACGAAGCTGCAGTTT CTAAGAT

CAGGGAGTCTCTGGAGCCATATATGGACTTGTTTCACGAACTTGAGATCTTTAGCGT GGGCGAC

GAGTTCCCGAAATGCGCAGCTTTCTATAGCGAGTTAGAGGAGGTCAGCGAGCAATTA ATCGAGA

TCATACCCCTGTTTAATAAGGCACGGAGCTTTTGTACTCGCAAGCGCTACAGCACCG ACAAGAT

TAAAGTTAATCTGAAATTTCCAACTCTCGCAGACGGGTGGGACCTAAACAAGGAACG CGATAAT

AAAGCCGCCATCCTTAGAAAGGACGGAAAGTACTATCTTGCCATCCTAGATATGAAA AAAGATC

TGAGTTCCATTCGTACTAGCGATGAAGACGAATCTTCTTTCGAAAAAATGGAGTATA AGCTGCT

CCCCTCGCCAGTCAAGATGCTACCCAAGATCTTTGTGAAGAGCAAAGCAGCCAAGGA AAAGTA

CGGGCTGACGGACAGGATGCTGGAGTGCTACGATAAGGGAATGCATAAATCAGGGTC AGCTTTT

GACTTGGGCTTTTGCCATGAGCTAATCGATTACTACAAGCGCTGTATCGCCGAGTAT CCAGGAT

GGGACGTTTTCGACTTTAAATTTCGGGAGACTTCTGATTATGGTTCAATGAAGGAGT TCAACGA

AGATGTCGCTGGTGCCGGTTACTACATGAGCCTTCGCAAGATTCCTTGTTCCGAAGT CTACCGGC

TACTGGACGAGAAATCTATATATTTGTTCCAGATATATAACAAGGACTACAGTGAGA ATGCACA

TGGGAATAAGAATATGCATACTATGTATTGGGAAGGTCTCTTTTCACCCCAAAATTT GGAGTCA

CCCGTGTTCAAACTTAGCGGTGGCGCAGAGCTGTTCTTTAGGAAATCCAGTATACCC AATGACG

CCAAGACAGTCCACCCAAAGGGTAGCGTCCTGGTGCCCAGAAACGATGTGAACGGCA GGAGAA

TCCCTGACAGCATTTACCGAGAACTTACCAGGTACTTCAACCGCGGCGACTGTAGAA TCTCTGA

TGAGGCAAAGTCTTATCTGGATAAGGTGAAGACTAAGAAGGCAGATCATGACATTGT GAAAGA

CCGCCGCTTTACTGTCGACAAAATGATGTTTCACGTGCCTATCGCAATGAATTTTAA GGCAATCT

CAAAACCGAATCTGAACAAGAAGGTGATAGATGGCATTATCGATGACCAGGACCTCA AGATCA

TCGGAATCGACAGAGGTGAGCGAAACCTGATATACGTCACAATGGTAGATCGGAAGG GTAATA TTCTGTACCAGGATTCACTAAACATCCTCAATGGATATGACTATCGAAAAGCTCTCGATG TCAG

GGAATACGACAACAAGGAGGCGCGACGGAATTGGACAAAGGTGGAAGGCATACGGAA GATGA

AGGAAGGCTATCTGTCACTAGCTGTCTCCAAATTGGCTGATATGATTATAGAGAACA ACGCCAT

TATCGTGATGGAAGATCTCAACCATGGATTCAAGGCAGGAAGAAGTAAAATTGAGAA GCAGGT

GTATCAGAAGTTCGAAAGCATGCTTATTAATAAGTTGGGTTATATGGTCTTAAAGGA CAAGTCT

ATCGATCAGAGCGGCGGCGCACTCCATGGGTATCAGCTGGCTAACCATGTCACCACA CTAGCAT

CCGTAGGCAAACAGTGTGGCGTGATTTTCTACATTCCTGCTGCGTTCACTTCTAAGA TCGATCCT

ACCACGGGATTCGCAGACCTGTTCGCACTGAGCAATGTTAAAAACGTGGCCTCCATG AGGGAGT

TCTTTAGCAAAATGAAAAGCGTGATTTATGACAAGGCCGAGGGCAAGTTCGCTTTCA CATTTGA

CTACCTGGACTACAATGTGAAATCAGAGTGCGGGAGAACCCTGTGGACCGTATACAC GGTAGG

GGAAAGATTCACTTACAGTCGAGTTAATCGGGAGTATGTCCGTAAAGTGCCAACTGA CATCATC

TACGATGCCCTTCAGAAGGCTGGCATAAGTGTTGAGGGGGATCTAAGGGACAGGATC GCTGAAT

CGGATGGCGATACTCTCAAATCAATCTTCTACGCCTTCAAGTATGCCCTCGACATGA GGGTAGA

GAACCGGGAGGAGGACTATATACAGTCTCCCGTGAAGAATGCGTCGGGAGAGTTCTT CTGCTCA

AAAAACGCCGGGAAATCTTTGCCGCAGGATTCTGATGCAAATGGGGCTTATAACATT GCTCTCA

AAGGCATCCTGCAGCTGCGCATGCTATCTGAACAATATGACCCAAACGCTGAAAGCA TTAGATT

GCCATTGATCACCAATAAGGCTTGGCTGACTTTCATGCAGAGCGGTATGAAGACATG GAAAAAC

TAA

SE ATGGATTCCCTTAAGGACTTCACAAATCTTTACCCCGTGAGTAAAACCCTGAGATTTGAA CTCAA

Q GCCCGTGGGAAAGACTCTCGAGAATATCGAGAAGGCCGGGATTTTGAAGGAAGACGAGCA TCG

no GGCGGAAAGTTACAGACGGGTGAAGAAGATTATAGATACTTATCACAAGGTCTTTATAGA CAGC

N TCTTTAGAGAACATGGCAAAGATGGGCATCGAGAACGAAATCAAGGCCATGCTGCAGTCC TTCT

O: GCGAGCTGTATAAAAAGGATCATCGGACCGAAGGCGAAGACAAGGCGCTGGATAAGATCA GGG 15 CAGTGCTGCGCGGCCTCATTGTGGGTGCCTTCACTGGGGTGTGCGGGCGGAGAGAGAACA CTGT 2 GCAGAATGAGAAATACGAGAGTTTGTTCAAAGAGAAACTCATCAAGGAAATCCTGCCCGA CTTC

GTCTTAAGCACAGAAGCCGAATCTCTCCCATTTTCTGTCGAGGAGGCCACGCGTTCC CTTAAAG

AGTTCGACAGTTTCACTTCATACTTTGCCGGATTTTATGAAAACCGTAAAAATATAT ACTCCACT

AAACCACAGTCAACTGCAATAGCTTACAGGTTAATCCACGAAAACCTGCCAAAATTC ATCGACA

ATATACTCGTCTTTCAAAAAATCAAGGAACCAATCGCGAAGGAACTTGAACACATCC GGGCTGA

CTTTAGTGCGGGAGGATACATCAAAAAAGACGAGCGCCTGGAGGATATATTTTCACT AAATTAT

TATATTCATGTACTGAGCCAGGCTGGCATAGAAAAGTACAACGCTCTAATTGGGAAA ATCGTGA

CAGAAGGTGACGGGGAAATGAAAGGGCTAAACGAACATATTAACTTATATAACCAAC AGCGGG

GTCGAGAAGATCGTCTGCCCCTGTTCAGACCTCTGTATAAGCAAATACTCTCCGACA GAGAGCA

GCTATCATATCTGCCCGAGTCCTTTGAGAAAGATGAAGAGCTGCTCCGGGCGCTCAA GGAGTTC

TATGATCATATAGCCGAGGACATTTTGGGCAGAACTCAGCAACTCATGACGTCTATT TCTGAAT

ATGATCTGTCTCGTATCTATGTCAGGAATGATAGCCAGCTGACCGATATATCCAAGA AGATGCT

GGGGGACTGGAACGCCATTTATATGGCGAGGGAGCGAGCATACGATCACGAGCAGGC ACCCAA

GAGAATCACAGCCAAATATGAGAGAGACCGCATTAAGGCGCTGAAGGGCGAAGAAAG TATCAG

TCTGGCCAATCTGAACTCCTGCATAGCTTTCCTTGATAACGTGAGGGATTGCAGAGT TGATACTT

ACCTGAGTACCCTGGGCCAGAAGGAAGGGCCTCACGGCCTCTCTAATCTAGTGGAGA ATGTATT

TGCCTCCTACCACGAAGCTGAGCAGCTGCTGTCATTTCCGTACCCAGAGGAAAATAA TTTAATA

CAGGATAAGGACAACGTAGTGCTTATCAAAAATCTACTGGATAACATTTCCGACCTC CAGCGCT TTCTCAAACCACTTTGGGGGATGGGCGACGAGCCTGATAAGGATGAGCGCTTTTACGGCG AGTA

CAACTACATCAGGGGCGCCTTGGACCAGGTGATTCCCCTCTATAATAAAGTCAGGAA TTACCTG

ACCCGAAAGCCATACAGTACAAGAAAGGTGAAATTAAATTTCGGCAATAGTCAGCTG CTGTCTG

GTTGGGACCGAAATAAGGAGAAAGACAACAGCTGCGTAATTCTCAGAAAAGGACAGA ACTTTT

ATTTGGCCATCATGAATAACAGACACAAGAGATCTTTCGAGAACAAAGTGCTCCCTG AGTATAA

GGAGGGGGAACCCTACTTCGAGAAGATGGACTATAAATTCCTTCCTGATCCAAATAA AATGCTG

CCTAAAGTATTTCTGTCAAAAAAAGGTATAGAAATCTACAAACCTTCACCTAAGCTA CTTGAAC

AGTATGGCCACGGCACCCATAAAAAAGGGGACACGTTCAGCATGGACGACCTACACG AACTGA

TTGACTTCTTTAAGCACAGCATAGAAGCTCATGAGGACTGGAAACAGTTCGGATTCA AATTCTC

AGATACCGCGACCTACGAAAACGTGTCTAGTTTTTACCGGGAAGTCGAGGACCAGGG CTACAAG

CTCAGCTTCAGAAAAGTTAGCGAATCTTACGTCTACTCCCTTATAGATCAAGGTAAG CTGTATCT

CTTTCAAATCTACAACAAGGACTTTTCCCCATGTAGCAAGGGCACCCCCAATCTGCA CACTCTCT

ACTGGCGGATGCTGTTCGACGAGCGTAACCTGGCAGACGTGATCTACAAATTAGATG GTAAAGC

TGAGATCTTCTTTCGTGAAAAGAGCCTAAAGAACGATCACCCCACTCACCCCGCCGG AAAGCCC

ATTAAGAAGAAAAGTAGGCAGAAGAAAGGAGAAGAATCGCTATTTGAGTACGACCTC GTCAAG

GATCGGCATTATACAATGGATAAGTTCCAGTTCCATGTGCCAATAACTATGAATTTC AAGTGCA

GTGCTGGCAGTAAGGTGAATGACATGGTAAACGCTCATATCCGGGAGGCAAAGGACA TGCATG

TTATTGGAATTGATAGGGGTGAGCGTAATCTCCTCTACATCTGTGTTATTGACTCCC GCGGCACA

ATCCTCGATCAGATTTCCTTGAATACAATTAATGATATAGACTACCATGACTTGCTT GAGTCTCG

CGACAAAGATAGACAGCAGGAGAGAAGAAATTGGCAGACCATCGAAGGCATCAAGGA ACTCA

AGCAAGGCTACCTTTCTCAGGCAGTGCATCGAATAGCCGAGCTGATGGTGGCTTATA AAGCCGT

CGTGGCACTAGAAGACCTAAATATGGGATTTAAACGAGGCAGGCAGAAGGTGGAATC ATCCGT

ATACCAGCAGTTCGAAAAACAGTTGATAGACAAACTCAATTACCTTGTAGACAAGAA GAAGCG

GCCTGAGGACATAGGGGGCCTGCTTAGAGCGTATCAATTTACAGCCCCATTCAAGTC TTTCAAA

GAAATGGGTAAACAGAACGGTTTTCTGTTTTACATCCCAGCGTGGAACACCAGCAAT ATAGATC

CAACCACTGGCTTCGTCAATCTGTTTCATGCTCAGTATGAAAATGTGGACAAGGCCA AATCCTTC

TTTCAGAAATTTGACAGCATCTCCTATAACCCAAAGAAAGACTGGTTTGAATTCGCC TTTGACTA

TAAGAATTTCACTAAGAAGGCCGAGGGATCAAGAAGCATGTGGATATTGTGCACGCA TGGCTCA

CGTATAAAGAACTTTAGAAACTCGCAAAAAAACGGGCAGTGGGACTCAGAAGAATTC GCACTC

ACCGAGGCTTTCAAATCCCTCTTCGTCCGGTATGAGATCGATTACACCGCCGATCTG AAGACGG

CAATCGTCGACGAGAAACAGAAAGACTTCTTTGTAGATCTACTTAAGCTCTTTAAGC TAACCGTT

CAGATGCGAAACAGTTGGAAAGAAAAGGATCTCGACTATCTCATTAGTCCAGTGGCT GGCGCGG

ATGGTAGATTTTTCGATACCCGGGAAGGTAACAAGTCCCTTCCCAAAGACGCCGACG CGAATGG

TGCCTACAATATTGCACTAAAGGGGCTCTGGGCGCTGCGGCAAATTAGACAGACATC TGAAGGG

GGCAAGCTTAAGCTGGCTATTTCTAATAAAGAGTGGTTGCAGTTTGTGCAGGAAAGG AGTTATG

AGAAGGACTAG

SE ATGAACAACGGCACCAACAACTTCCAGAACTTCATCGGCATATCGTCTCTGCAGAAAACA CTTA

Q GGAATGCCCTGATTCCAACTGAGACAACACAGCAGTTTATTGTGAAGAATGGGATCATCA AAGA

no GGACGAATTGCGCGGGGAGAATAGGCAGATCCTGAAGGACATCATGGACGATTACTACAG GGG

N TTTTATCTCCGAAACGCTGAGCTCGATTGACGATATTGACTGGACGTCCCTCTTTGAGAA GATGG

O: AAATCCAACTTAAAAATGGCGATAATAAAGATACCCTGATAAAGGAACAAACCGAATATA GAA 15 AGGCTATACACAAAAAATTCGCAAATGACGACCGCTTTAAGAACATGTTTTCTGCAAAAC TGAT TAGCGATATTCTGCCCGAGTTTGTGATTCACAATAATAACTATTCCGCTTCGGAGAAGGA GGAA AAGACTCAGGTGATTAAACTGTTTTCTCGGTTCGCCACTTCTTTCAAAGATTATTTCAAA AATCG CGCCAACTGTTTTTCCGCTGACGACATCTCCTCCTCTTCCTGCCACCGGATCGTAAACGA CAATG CCGAGATCTTTTTTAGTAACGCCCTTGTGTATCGGAGGATAGTGAAGAGCCTGTCCAATG ATGA CATAAACAAAATTTCTGGCGATATGAAGGATAGCCTCAAAGAGATGAGCCTTGAAGAAAT TTAC TCCTACGAGAAGTATGGGGAGTTCATCACCCAGGAGGGGATTTCCTTCTATAATGACATC TGTG GCAAGGTGAACAGCTTCATGAACCTGTACTGCCAGAAGAATAAGGAAAACAAAAATCTGT ACA AGCTTCAGAAGTTACATAAGCAGATCCTGTGTATCGCGGATACCTCATATGAGGTTCCTT ATAA GTTCGAGAGTGATGAAGAAGTGTACCAGTCTGTAAATGGATTCTTAGACAATATTTCGTC CAAA CATATAGTGGAGAGACTGAGAAAGATCGGGGACAATTACAATGGGTACAATCTCGACAAG ATT TATATCGTGTCGAAGTTTTACGAATCTGTGAGCCAGAAAACATACAGGGATTGGGAAACC ATTA ATACCGCGCTTGAAATTCACTACAATAATATTCTGCCTGGCAACGGAAAAAGCAAGGCCG ATAA GGTAAAAAAGGCAGTCAAAAATGACCTTCAGAAAAGTATCACCGAAATCAATGAGTTGGT GAG CAACTACAAATTGTGTTCAGACGATAATATTAAAGCGGAAACGTACATACATGAAATTAG CCAT ATTCTGAATAACTTTGAGGCGCAGGAACTTAAGTACAACCCTGAAATTCATCTCGTCGAA AGCG AATTGAAGGCCTCTGAATTGAAAAACGTTCTTGACGTGATAATGAACGCTTTCCATTGGT GCTCT GTGTTTATGACTGAAGAGCTGGTTGATAAGGACAACAACTTTTATGCTGAACTTGAGGAA ATCT ACGACGAGATCTACCCTGTGATTAGCTTGTATAACCTCGTCAGAAACTACGTTACCCAGA AGCC GTACAGCACGAAAAAAATAAAGCTGAACTTTGGTATTCCGACTCTCGCCGATGGATGGAG CAAG TCGAAGGAATATTCCAACAATGCCATCATTCTTATGCGAGACAATCTGTATTACCTCGGC ATCTT TAACGCCAAAAACAAGCCGGATAAGAAAATCATTGAAGGGAATACGAGCGAGAATAAGGG CG ACTATAAGAAAATGATCTACAACTTACTGCCAGGTCCCAATAAAATGATTCCTAAGGTGT TTCT GTCATCGAAAACAGGTGTAGAAACATATAAGCCCAGCGCATACATCCTGGAAGGCTACAA GCA AAACAAACACATCAAAAGCAGCAAGGACTTTGATATCACATTCTGCCACGATCTAATCGA CTAC TTCAAAAATTGCATCGCCATTCACCCTGAGTGGAAGAACTTCGGCTTTGACTTCTCCGAC ACCAG TACCTACGAAGACATTTCTGGATTCTACCGTGAGGTTGAGCTGCAGGGTTATAAAATTGA CTGG ACATACATCAGTGAAAAAGACATCGATCTACTGCAGGAGAAGGGGCAGCTCTATCTCTTC CAGA TTTATAATAAGGATTTCAGCAAGAAGTCCACTGGAAACGACAATCTGCATACAATGTATC TTAA GAACTTGTTTAGCGAAGAGAATTTGAAAGATATCGTTCTAAAGTTAAACGGGGAAGCCGA GATT TTCTTTCGAAAGTCTTCCATTAAGAATCCAATTATTCACAAGAAGGGCAGTATCCTGGTC AACAG AACCTATGAGGCCGAGGAAAAGGACCAGTTCGGTAATATACAAATTGTGCGCAAGAACAT CCC CGAGAACATTTACCAGGAGCTCTATAAATACTTCAACGACAAAAGCGATAAGGAGCTTTC CGAC GAGGCTGCCAAGCTGAAAAACGTGGTGGGACACCATGAAGCAGCCACCAACATCGTCAAA GAT TATCGTTATACATATGACAAATATTTTCTGCACATGCCTATTACAATAAACTTTAAGGCA AACAA GACCGGGTTCATCAATGACCGGATACTCCAGTACATCGCAAAAGAGAAGGACCTGCATGT GATC GGCATCGACCGCGGTGAAAGAAATCTCATTTACGTCAGCGTTATCGACACTTGTGGAAAC ATTG TGGAGCAGAAGTCCTTCAACATTGTTAACGGCTATGACTATCAGATCAAGCTCAAACAGC AGGA AGGTGCTCGTCAGATTGCGAGGAAAGAATGGAAAGAGATCGGCAAGATCAAGGAGATCAA AGA AGGGTATCTGAGCTTGGTCATTCACGAGATCTCCAAAATGGTCATCAAGTACAACGCTAT TATC GCGATGGAAGACCTCTCTTACGGCTTTAAGAAGGGGCGCTTTAAAGTGGAGCGCCAGGTC TATC AGAAGTTCGAGACTATGCTTATCAATAAGCTGAATTACTTGGTCTTTAAGGATATCAGTA TCACC GAGAACGGAGGACTGCTGAAAGGTTACCAGCTCACATATATTCCCGATAAGCTCAAGAAT GTGG GCCACCAATGCGGTTGTATTTTTTACGTTCCAGCTGCCTACACATCTAAGATCGATCCTA CCACC

GGATTCGTCAATATATTTAAATTTAAAGATCTAACCGTTGATGCCAAGCGTGAGTTT ATTAAGAA

ATTTGATTCAATCAGGTACGACAGCGAAAAGAACCTCTTCTGTTTCACTTTCGACTA CAACAACT

TCATCACACAAAATACTGTGATGAGCAAGTCATCATGGAGCGTTTATACTTATGGTG TAAGGAT

AAAAAGGCGCTTTGTTAATGGAAGGTTTTCCAATGAAAGCGATACAATAGACATCAC AAAAGA

CATGGAGAAGACACTGGAGATGACAGATATTAATTGGAGGGACGGGCATGACCTTAG ACAGGA

CATCATCGACTACGAAATCGTCCAACACATTTTTGAGATATTCAGACTCACTGTCCA GATGCGA

AACAGCCTGTCGGAACTCGAAGACCGGGACTACGATAGACTGATCTCCCCGGTGTTA AACGAAA

ATAATATTTTCTACGATTCTGCTAAGGCAGGAGACGCTCTTCCTAAAGATGCGGACG CCAATGG

CGCTTACTGTATAGCGTTGAAGGGATTGTATGAGATTAAACAGATCACTGAGAATTG GAAAGAA

GACGGTAAATTCTCCAGAGACAAGCTGAAAATCTCCAACAAAGACTGGTTTGATTTT ATTCAAA

ATAAGCGCTACCTGTAA

SE ATGACAAACAAATTTACTAATCAGTACAGCCTGTCAAAGACCCTCCGCTTCGAACTGATT CCAC

Q AAGGGAAGACCCTTGAATTCATCCAGGAAAAGGGTTTATTATCCCAGGATAAACAACGCG CAG

no AAAGCTATCAAGAGATGAAGAAGACGATCGATAAATTTCATAAGTATTTCATAGATTTAG CCCT

N GAGCAACGCTAAATTGACCCACCTGGAAACCTATTTGGAGCTGTACAACAAGTCAGCCGA GACA

O: AAGAAAGAGCAGAAGTTTAAGGACGACCTGAAAAAAGTACAGGACAATTTGCGAAAAGAG ATC 15 GTCAAGTCTTTTTCCGACGGAGACGCCAAGTCAATATTTGCCATCCTGGACAAAAAGGAA CTCA 4 TCACTGTGGAGTTGGAGAAGTGGTTTGAGAATAATGAGCAGAAGGACATCTATTTTGACG AAAA

GTTCAAGACATTTACTACTTACTTCACCGGATTTCACCAAAACCGGAAGAACATGTA CTCTGTTG

AGCCGAACTCAACCGCCATCGCCTACCGCCTTATTCACGAAAATCTGCCAAAGTTTC TCGAGAA

TGCTAAAGCCTTTGAGAAAATTAAGCAGGTCGAGTCGCTCCAGGTGAACTTTCGAGA GCTGATG

GGTGAATTCGGGGACGAGGGCCTGATTTTCGTGAATGAACTCGAAGAGATGTTTCAG ATCAACT

ACTATAATGATGTACTCTCACAGAACGGGATCACTATCTACAACAGCATTATCTCTG GATTCACT

AAGAACGATATCAAGTATAAAGGGCTGAATGAATACATCAACAATTATAATCAGACT AAGGAC

AAAAAGGACAGGCTGCCTAAATTGAAACAGCTGTATAAGCAGATCCTCAGTGATAGA ATTAGCT

TGTCATTTCTCCCAGATGCCTTCACTGACGGAAAGCAGGTGCTTAAGGCGATATTCG ATTTCTAT

AAGATCAACCTCCTCTCTTATACAATCGAGGGCCAGGAGGAGTCACAGAACCTCCTG CTCCTGA

TTCGACAAACTATTGAAAATCTGTCCTCTTTCGATACGCAGAAGATATACCTGAAAA ATGACAC

CCATCTCACTACAATATCCCAACAGGTATTCGGAGATTTCTCCGTCTTCAGTACAGC CCTGAATT

ACTGGTACGAGACAAAGGTGAACCCTAAGTTCGAAACAGAGTACAGCAAGGCGAACG AAAAGA

AGAGGGAGATCCTGGACAAAGCCAAAGCCGTTTTCACCAAGCAAGATTACTTTAGCA TCGCATT

TCTGCAGGAAGTCCTGTCTGAGTACATACTGACACTCGATCACACAAGCGACATAGT TAAGAAG

CACTCTTCCAATTGTATCGCGGACTACTTCAAAAATCATTTTGTCGCGAAAAAGGAG AACGAGA

CAGATAAGACCTTCGATTTTATCGCGAATATTACCGCAAAGTATCAATGCATTCAGG GTATCTTG

GAGAACGCCGACCAGTACGAAGACGAGCTTAAACAGGATCAGAAGCTCATCGACAAC CTAAAG

TTCTTTTTGGACGCTATACTGGAACTCCTTCATTTTATTAAGCCACTACATCTGAAG AGTGAGTC

TAACCCCTCTGTATAACATGGTGAGAAACTATGTGACACAGAAACCTTATAGTACCG AGAAGAT TAAGTTGAACTTCGAGAACGCACAATTGCTGAATGGGTGGGATGCAAACAAAGAGGGTGA TTA CCTCACAACAATCCTCAAGAAAGATGGCAATTACTTCCTGGCCATTATGGATAAAAAACA TAAC AAGGCATTTCAGAAATTTCCCGAGGGGAAGGAAAATTATGAAAAGATGGTATACAAGTTG CTG CCCGGGGTGAACAAAATGCTCCCGAAGGTGTTTTTCTCGAATAAGAATATCGCGTACTTT AACC

CGTCCAAGGAACTGTTGGAAAATTATAAAAAGGAAACACACAAGAAGGGGGACACTT TTAATT

TGGAGCACTGCCACACACTCATTGACTTCTTTAAAGATAGTCTCAACAAACATGAGG ATTGGAA

ATATTTTGACTTTCAGTTTAGCGAGACCAAGTCTTATCAGGATCTGTCGGGATTTTA TAGGGAAG

TTGAGCACCAGGGTTACAAGATAAATTTCAAGAACATCGATAGCGAGTACATTGACG GACTGGT

GAACGAAGGGAAGCTGTTCCTGTTTCAGATTTACAGCAAAGATTTCTCTCCTTTCTC AAAAGGCA

AGCCGAACATGCATACCCTGTATTGGAAGGCCCTGTTCGAGGAGCAAAACCTTCAGA ATGTGAT

TTACAAGCTGAACGGTCAGGCCGAGATTTTTTTTAGGAAGGCCTCTATCAAGCCCAA AAACATC

ATTCTGCACAAGAAAAAGATAAAGATCGCCAAAAAACACTTCATTGATAAAAAGACA AAGACT

TCTGAGATCGTACCTGTTCAGACAATCAAGAATCTCAACATGTATTATCAGGGGAAG ATTAGCG

AGAAAGAGCTGACACAGGACGATTTGAGGTACATCGACAACTTCTCTATCTTTAACG AGAAGAA

CAAGACAATCGATATCATCAAGGACAAGCGGTTTACCGTCGATAAATTCCAGTTCCA TGTGCCT

ATCACGATGAATTTCAAGGCCACCGGTGGGAGTTATATCAACCAGACTGTGCTGGAG TATCTGC

AGAACAACCCCGAAGTAAAAATTATTGGCCTGGACAGAGGAGAGCGGCATCTGGTGT ACTTGA

CCCTCATCGATCAGCAGGGAAATATCCTGAAACAAGAATCTCTGAATACTATTACGG ACTCCAA

AATCAGCACACCTTACCACAAGCTGCTTGATAATAAAGAGAATGAGAGGGACTTGGC CCGCAA

AAATTGGGGCACCGTCGAGAATATTAAGGAATTGAAAGAAGGATACATCTCACAGGT GGTTCA

CAAAATCGCAACCCTGATGTTAGAAGAGAACGCTATTGTGGTGATGGAGGACTTAAA CTTCGGA

TTTAAAAGAGGAAGATTTAAAGTCGAGAAACAGATTTATCAGAAACTGGAAAAAATG CTCATT

GACAAATTAAATTACCTGGTGCTGAAAGATAAACAGCCACAGGAGCTGGGTGGCCTG TATAATG

CTCTGCAGCTGACCAACAAGTTCGAGTCGTTTCAGAAAATGGGCAAGCAGTCAGGCT TCCTTTTT

TACGTGCCCGCTTGGAACACCTCAAAAATCGACCCTACAACAGGCTTTGTGAATTAT TTCTATAC

CAAGTATGAAAACGTGGACAAGGCAAAGGCCTTTTTCGAGAAGTTTGAAGCAATCAG GTTCAAT

GCCGAGAAAAAATACTTTGAGTTCGAGGTCAAAAAATATAGCGACTTCAACCCTAAG GCCGAA

GGCACGCAACAAGCCTGGACAATATGCACGTATGGGGAGAGAATTGAGACTAAGCGG CAGAAG

GATCAGAATAACAAATTCGTGAGCACACCGATTAACCTGACAGAGAAGATAGAGGAC TTCCTC

GGCAAGAATCAGATCGTGTACGGCGACGGCAATTGCATCAAGTCACAAATTGCATCT AAAGATG

ACAAAGCATTCTTCGAAACACTGCTGTATTGGTTCAAGATGACACTCCAGATGCGAA ATAGCGA

AACAAGAACAGATATTGACTACCTCATCAGCCCTGTGATGAATGATAACGGCACGTT TTACAAT

TCCCGGGACTATGAAAAATTAGAGAACCCGACACTGCCAAAAGACGCCGACGCAAAT GGTGCA

TATCACATCGCAAAGAAAGGTTTGATGCTGTTGAACAAAATTGATCAGGCTGATCTG ACAAAAA

AGGTCGATCTGAGTATCAGTAACCGCGACTGGTTGCAGTTTGTCCAGAAGAACAAAT AA

SE ATGGAACAAGAGTACTATCTGGGCCTGGACATGGGCACCGGGAGTGTCGGATGGGCAGTC ACC

Q GACTCAGAGTACCACGTCCTCAGAAAGCACGGTAAGGCACTTTGGGGAGTGCGACTCTTC GAGT

no CCGCTAGTACTGCTGAAGAGAGGAGGATGTTTCGAACTTCCAGGCGCAGGCTGGATCGGC GAA

N ACTGGAGAATAGAGATTCTCCAGGAGATATTTGCTGAAGAGATTTCAAAGAAGGATCCTG GTTT

O: TTTCCTGCGCATGAAAGAATCTAAGTATTACCCCGAAGATAAACGCGACATCAACGGCAA TTGT 15 CCTGAACTGCCCTATGCTCTGTTTGTCGACGACGATTTCACCGACAAAGATTACCACAAG AAATT 5 CCCCACCATATACCACCTGAGAAAGATGTTGATGAACACCGAGGAGACACCCGACATACG TCTG

GTTTACCTGGCTATCCATCATATGATGAAGCACCGCGGGCATTTCCTGCTGTCTGGA GACATCAA

TGAGATAAAGGAATTTGGTACTACGTTCTCCAAGTTGTTAGAAAACATTAAGAATGA AGAGTTG

GACTGGAATCTTGAACTGGGAAAGGAAGAGTATGCAGTTGTAGAGTCGATTTTGAAA GATAAC ATGTTAAACCGGTCAACTAAGAAAACCAGGTTAATTAAGGCACTAAAGGCCAAATCGATA TGC

GAGAAGGCTGTGCTAAATCTGCTGGCTGGAGGCACCGTGAAACTGTCTGATATTTTC GGCCTGG

AAGAGCTCAATGAAACCGAGCGGCCTAAAATTTCTTTCGCCGATAACGGATACGATG ACTATAT

TGGGGAGGTGGAAAACGAGCTCGGAGAACAATTCTACATTATTGAAACCGCTAAGGC AGTCTAT

GACTGGGCCGTGCTCGTCGAGATTTTAGGCAAGTACACCAGCATTAGCGAAGCAAAG GTGGCTA

CCTATGAAAAGCACAAATCTGACCTCCAGTTTCTGAAAAAGATTGTGCGCAAATACT TAACAAA

AGAAGAGTACAAGGACATCTTTGTGAGCACATCAGATAAGCTCAAGAATTACTCAGC ATACATT

GGAATGACAAAGATTAACGGGAAGAAGGTGGATCTCCAAAGCAAACGTTGTTCAAAG GAGGAG

TTTTACGATTTCATAAAGAAGAACGTGCTGAAGAAACTGGAGGGACAACCGGAGTAC GAGTATT

TAAAGGAGGAGCTCGAGCGAGAAACTTTCCTGCCCAAGCAAGTGAACAGAGACAATG GTGTCA

TTCCTTACCAGATTCACTTATATGAGCTGAAGAAAATCCTGGGGAACTTGAGAGACA AGATAGA

CCTCATCAAGGAAAATGAAGATAAGTTGGTCCAGTTGTTCGAATTCAGAATCCCATA TTACGTC

GGCCCGCTCAATAAGATCGACGACGGCAAGGAAGGCAAATTCACTTGGGCGGTGCGA AAAAGC

AACGAAAAAATATACCCATGGAACTTTGAGAACGTCGTTGACATCGAGGCCAGCGCC GAGAAA

TTTATAAGACGCATGACTAATAAGTGTACTTACCTCATGGGCGAGGATGTTCTGCCC AAGGACA

GCCTGCTGTATTCCAAGTACATGGTGCTTAACGAGCTGAATAATGTAAAGTTAGATG GTGAGAA

GCTCAGCGTGGAGCTTAAACAGAGGCTGTACACTGATGTGTTTTGCAAGTATCGGAA AGTTACC

GTTAAGAAGATAAAGAATTACCTGAAATGCGAAGGGATCATTTCCGGCAACGTGGAA ATTACC

GGAATCGACGGCGATTTTAAGGCGTCGTTGACCGCTTATCATGATTTCAAGGAGATT TTAACCG

GCACGGAGCTCGCGAAGAAAGACAAGGAGAACATAATCACGAATATAGTTCTGTTTG GGGACG

ATAAAAAACTTCTTAAAAAACGACTCAATCGACTGTATCCGCAGATTACCCCCAACC AGCTGAA

GAAGATTTGCGCTCTGAGCTATACCGGGTGGGGCCGGTTCTCTAAGAAATTCCTCGA GGAGATC

ACAGCACCAGACCCAGAGACTGGTGAGGTGTGGAATATTATTACAGCTCTGTGGGAA TCCAATA

ATAACCTTATGCAATTGTTGAGCAATGAATATAGGTTCATGGAGGAAGTGGAAACCT ACAATAT

GGGCAAGCAGACAAAGACCCTATCTTACGAGACCGTTGAGAATATGTATGTCTCCCC TTCAGTG

AAACGGCAAATCTGGCAAACTTTGAAGATCGTGAAGGAGCTCGAAAAGGTGATGAAA GAGAGC

CCGAAGAGGGTTTTTATTGAAATGGCCAGAGAGAAACAGGAGAGCAAGAGAACAGAG TCTAGG

AAGAAGCAGCTAATCGATTTGTATAAAGCCTGCAAGAACGAGGAAAAAGACTGGGTC AAGGAG

CTAGGCGATCAGGAAGAACAGAAGTTGCGCTCTGATAAGCTGTACTTATATTATACC CAGAAAG

GACGGTGCATGTACTCAGGTGAGGTCATTGAGCTGAAAGATCTGTGGGACAATACTA AGTATGA

TATTGATCACATCTACCCTCAGTCAAAAACTATGGACGACTCCCTCAACAACAGGGT GTTGGTT

AAGAAGAAATACAATGCTACAAAGTCCGATAAATACCCTCTTAACGAAAACATCCGG CACGAA

AGAAAGGGCTTCTGGAAGTCCCTGCTGGATGGGGGTTTTATCAGTAAAGAAAAGTAT GAGAGG

CTGATCCGAAATACCGAGCTCTCCCCCGAGGAACTGGCTGGCTTTATCGAAAGGCAG ATCGTAG

AGACTAGGCAATCTACAAAGGCAGTCGCTGAGATCCTGAAGCAAGTGTTTCCTGAGT CAGAAAT

CGTGTACGTCAAAGCTGGCACAGTGTCACGGTTCCGAAAGGACTTTGAGTTGTTAAA AGTTCGG

GAGGTGAATGACCTGCACCACGCTAAAGACGCCTATCTGAATATCGTTGTGGGGAAC TCCTATT

ATGTTAAGTTTACTAAGAATGCGTCCTGGTTTATTAAGGAGAACCCGGGGCGCACCT ATAACCT

GAAGAAGATGTTCACCTCCGGCTGGAACATAGAACGGAACGGAGAAGTCGCGTGGGA GGTGGG

TAAGAAAGGGACCATTGTGACCGTCAAACAGATTATGAACAAAAACAACATATTGGT AACTCG

CCAGGTGCATGAGGCCAAAGGGGGCCTCTTTGATCAGCAGATTATGAAAAAGGGCAA AGGACA

GATCGCAATCAAGGAAACCGACGAGCGCCTGGCATCCATTGAGAAGTACGGAGGCTA CAACAA GGCGGCAGGTGCGTACTTCATGCTCGTCGAGTCCAAAGATAAGAAAGGCAAAACTATTAG AAC

AATCGAGTTCATCCCTCTATATTTGAAAAATAAGATCGAAAGTGACGAAAGCATCGC CCTTAAC

TTCTTGGAGAAGGGCCGGGGCTTAAAGGAACCAAAGATTCTGCTCAAGAAGATCAAG ATCGAC

ACACTCTTCGATGTGGATGGTTTTAAGATGTGGCTGTCAGGCAGGACAGGGGATCGC TTGCTGT

TCAAATGCGCAAATCAGTTGATTCTGGACGAAAAGATCATTGTGACGATGAAGAAGA TCGTTAA

ATTCATTCAGCGGAGACAGGAAAACAGAGAACTGAAACTCTCCGATAAGGATGGAAT TGACAA

TGAAGTCCTCATGGAGATTTACAATACCTTTGTGGACAAGCTTGAGAACACAGTCTA TCGGATC

CGACTGTCCGAACAGGCAAAGACTCTGATCGACAAACAGAAAGAATTCGAAAGACTA AGCTTA

GAGGACAAAAGTTCAACTCTCTTTGAAATTCTCCACATCTTCCAATGTCAAAGTAGT GCAGCCA

ACTTGAAGATGATCGGGGGTCCCGGCAAGGCTGGAATCTTAGTCATGAACAACAACA TCTCCAA

ATGTAACAAAATCTCCATCATAAACCAGTCTCCCACCGGCATTTTCGAGAACGAAAT TGATTTA

CTCAAG

SE ATGAAATCTTTCGATTCTTTCACCAACCTCTACTCCCTTAGCAAAACCCTTAAGTTTGAA ATGAG

Q GCCGGTGGGGAATACACAGAAGATGCTTGACAATGCTGGCGTCTTTGAAAAGGACAAATT AATC

no CAGAAGAAGTATGGTAAAACAAAGCCATATTTTGACCGATTGCATCGGGAATTCATTGAA GAGG

N CTCTTACAGGAGTAGAATTGATCGGACTGGACGAGAACTTCCGTACCTTAGTAGACTGGC AGAA

O: GGACAAGAAGAACAACGTGGCAATGAAGGCCTATGAGAACTCACTCCAGCGCCTTAGAAC CGA 15 GATCGGAAAGATCTTTAATCTTAAGGCGGAAGATTGGGTAAAAAATAAGTACCCGATCCT GGGA

6 CTGAAAAACAAAAACACAGACATCCTGTTTGAAGAAGCCGTCTTTGGTATCTTGAAGGCC AGGT

ATGGAGAGGAGAAAGACACGTTTATAGAGGTAGAGGAGATTGATAAAACAGGCAAGA GTAAG

ATTAATCAGATCAGTATCTTTGATTCTTGGAAGGGGTTCACAGGCTACTTTAAGAAG TTTTTCGA

AACCAGGAAAAATTTCTATAAGAACGATGGCACCTCCACAGCTATCGCGACACGCAT CATAGAT

CAGAATCTGAAACGGTTCATTGATAATCTGAGCATTGTTGAATCCGTGCGCCAGAAG GTCGACC

TAGCTGAGACTGAGAAGTCTTTCTCTATATCACTCTCCCAGTTCTTCTCAATAGATT TTTATAATA

AGTGCCTTCTGCAAGATGGCATAGACTACTATAACAAGATCATCGGCGGCGAAACTC TCAAAAA

CGGTGAAAAGCTCATTGGCCTGAATGAGCTCATCAACCAATATAGACAAAATAACAA GGATCA

GAAAATCCCATTCTTTAAGCTGCTAGATAAACAGATCCTATCAGAAAAAATCCTGTT CCTCGAC

GAAATCAAAAACGACACCGAACTCATCGAGGCTCTCTCGCAGTTTGCCAAGACGGCT GAGGAG

AAGACGAAGATTGTGAAAAAGCTGTTTGCAGACTTTGTGGAGAACAACTCTAAATAC GATTTGG

CTCAGATTTATATCTCCCAGGAAGCATTTAACACAATCTCCAATAAGTGGACTAGCG AGACTGA

AACCTTCGCCAAATACCTGTTCGAGGCCATGAAAAGCGGCAAGCTCGCCAAATACGA GAAGAA

GGACAATTCCTATAAGTTTCCCGATTTCATCGCATTATCTCAGATGAAGTCCGCGCT ACTTAGCA

TTAGCCTGGAAGGCCATTTTTGGAAGGAGAAATACTATAAGATTTCCAAATTCCAAG AAAAGAC

CAATTGGGAGCAGTTCTTGGCTATTTTTCTATACGAGTTCAACTCTTTGTTCAGTGA CAAGATCA

ACACTAAGGACGGTGAGACCAAACAAGTGGGGTACTACCTCTTCGCCAAAGATCTTC ATAACCT

GATACTGTCCGAACAGATCGACATACCCAAGGATTCAAAGGTGACCATCAAGGATTT TGCGGAT

TCGGTATTGACGATCTATCAGATGGCGAAGTATTTCGCTGTCGAGAAAAAGCGGGCA TGGCTGG

CCGAATACGAGTTGGACTCCTTCTATACTCAACCCGATACAGGGTACCTGCAGTTTT ACGATAAT

GCATACGAGGATATAGTCCAGGTGTACAATAAACTCAGGAACTACCTCACTAAGAAA CCATACT

CCGAAGAAAAATGGAAACTTAATTTTGAGAATAGTACACTGGCCAATGGATGGGACA AGAACA

AGGAATCAGACAACTCCGCTGTAATTCTCCAGAAGGGTGGCAAGTATTATCTGGGAC TGATAAC

AAAGGGCCATAACAAGATTTTCGATGACCGTTTTCAGGAGAAGTTTATAGTGGGCAT AGAGGGT GGCAAGTATGAAAAAATAGTCTACAAGTTCTTTCCCGATCAGGCGAAGATGTTCCCCAAA GTAT

GCTTCAGTGCTAAAGGCCTCGAGTTTTTCCGGCCATCTGAAGAGATACTCCGCATCT ATAATAAC

GCAGAGTTTAAAAAGGGAGAGACGTACTCAATCGACTCGATGCAGAAACTCATTGAC TTCTACA

AAGATTGTCTCACAAAATACGAGGGCTGGGCTTGCTACACGTTTCGGCACTTGAAGC CAACCGA

GGAATATCAAAACAACATCGGGGAGTTCTTCCGTGACGTCGCCGAAGACGGCTATAG AATTGAC

TTTCAGGGCATAAGTGATCAGTATATTCACGAGAAGAATGAGAAAGGTGAGTTGCAT CTTTTCG

AAATCCACAATAAAGACTGGAATCTTGACAAGGCTCGCGATGGAAAATCAAAGACTA CCCAGA

AGAATCTTCATACACTTTACTTCGAGTCCCTCTTTTCCAACGACAACGTCGTACAGA ATTTCCCA

ATAAAACTGAACGGCCAGGCCGAAATTTTTTACAGGCCCAAAACCGAAAAAGATAAA CTGGAA

TCCAAGAAAGACAAGAAGGGAAATAAGGTGATAGATCACAAAAGGTATTCCGAGAAC AAGATT

TTTTTCCACGTACCTCTTACCCTGAACAGAACGAAGAACGACTCTTATAGATTCAAT GCCCAGAT

AAACAACTTTCTCGCAAACAACAAAGATATCAATATTATCGGCGTCGATAGAGGTGA GAAGCAC

TTGGTATATTATTCTGTGATCACGCAAGCATCCGATATCTTGGAGTCCGGTTCTTTG AACGAACT

GAATGGTGTCAACTACGCCGAGAAACTCGGTAAGAAAGCTGAGAATCGGGAGCAGGC TAGAAG

GGACTGGCAGGACGTTCAGGGTATCAAGGACCTGAAGAAGGGCTACATTTCTCAGGT GGTTCGA

AAACTGGCTGATTTGGCCATTAAGCACAATGCAATCATCATTTTAGAAGATTTGAAC ATGCGGT

TTAAACAAGTCAGGGGGGGGATAGAGAAATCAATTTACCAACAGCTGGAAAAAGCTC TGATTG

AGCCTATCAACTGAGCGCACCTTTCGAGACATTCCAGAAGATGGGAAAGCAAACCGG CATCATT

TTCTATACCCAGGCTTCCTATACATCCAAGTCTGATCCAGTGACTGGGTGGAGACCC CATCTCTA

CCTCAAGTACTTTTCTGCCAAAAAAGCTAAGGACGACATTGCTAAGTTCACAAAAAT CGAGTTC

GTGAACGACAGGTTCGAGCTGACTTATGACATAAAAGATTTCCAGCAGGCCAAGGAG TACCCA

AACAAGACAGTTTGGAAAGTGTGTTCCAATGTGGAGAGGTTTCGGTGGGACAAGAAT CTGAATC

AGAATAAAGGGGGATATACTCACTACACCAACATTACCGAGAACATCCAAGAGTTGT TCACCAA

ATACGGCATCGACATTACTAAAGATCTGCTGACACAGATCTCCACCATCGATGAGAA GCAGAAC

ACATCTTTCTTCCGGGATTTCATCTTTTATTTTAACTTGATCTGTCAGATTAGAAAT ACCGACGAC

AGTGAGATAGCTAAAAAAAACGGGAAAGACGATTTCATTCTCTCTCCCGTGGAGCCG TTTTTTG

ACTCCCGCAAAGACAATGGCAATAAGCTTCCGGAAAACGGGGACGATAACGGCGCCT ACAACA

TCGCTCGTAAGGGAATCGTTATCCTCAATAAAATAAGCCAGTATTCCGAGAAGAACG AGAATTG

TGAAAAAATGAAGTGGGGGGACCTTTACGTCAGCAACATCGATTGGGATAACTTTGT GACACAA

GCCAATGCGAGACACTAG

SE ATGGAAAACTTCAAAAACCTCTACCCCATCAACAAGACCTTGAGGTTTGAGCTCCGGCCA TATG

Q GGAAGACACTGGAGAACTTCAAAAAGTCCGGTCTGCTGGAAAAGGATGCTTTTAAGGCTA ACTC

no TAGGAGGTCTATGCAGGCCATTATCGATGAGAAATTCAAGGAGACCATAGAGGAGCGTCT GAA

N ATATACTGAGTTTTCCGAGTGTGACCTAGGAAATATGACCAGTAAGGACAAAAAGATCAC CGAC

O: AAGGCAGCGACAAACCTGAAGAAACAGGTGATTTTAAGCTTTGATGATGAGATTTTCAAT AACT 15 ACTTGAAGCCGGACAAAAACATCGACGCTCTGTTCAAGAATGATCCAAGCAACCCGGTCA TCTC

7 TACTTTCAAGGGCTTCACCACATACTTTGTAAATTTCTTCGAAATACGGAAACACATCTT CAAGG

GAGAGTCTTCCGGTAGCATGGCTTACAGAATAATCGATGAGAACCTAACTACATATC TAAACAA

TATCGAGAAGATCAAGAAATTGCCTGAAGAACTGAAATCTCAGCTTGAGGGAATCGA TCAAATT

GACAAACTGAACAACTATAACGAGTTCATCACCCAGTCCGGCATTACTCATTATAAC GAAATTA

TTGGAGGGATTTCGAAGTCTGAAAATGTCAAAATTCAAGGCATTAACGAAGGGATTA ATCTTTA CTGTCAAAAGAATAAAGTGAAGCTACCACGCTTAACTCCTCTGTATAAGATGATTCTCTC TGATC

GGGTCTCTAATTCCTTTGTGCTGGATACCATTGAAAATGATACCGAGTTAATTGAAA TGATCTCT

GATCTGATAAATAAGACAGAGATAAGTCAGGATGTTATTATGTCCGACATCCAAAAT ATTTTCA

TCAAATATAAACAACTCGGCAACTTGCCGGGGATTAGCTACTCATCTATAGTGAATG CTATCTGT

TCGGATTACGACAATAACTTTGGTGACGGCAAACGTAAAAAAAGCTATGAGAATGAT CGCAAA

AAACACCTCGAGACTAACGTGTATAGCATTAACTATATCTCAGAGTTACTGACAGAC ACCGACG

TCTCCAGCAACATAAAGATGCGGTACAAAGAGCTGGAGCAGAATTATCAGGTATGCA AGGAAA

ATTTCAACGCCACTAACTGGATGAACATCAAAAACATTAAGCAGTCTGAGAAAACCA ATCTGAT

CAAGGACCTTCTTGACATCCTCAAGAGCATCCAGCGGTTTTATGATTTGTTTGACAT CGTGGATG

AAGACAAAAATCCTAGTGCTGAGTTCTATACCTGGCTGTCTAAAAACGCGGAGAAAC TGGACTT

CGAGTTTAATTCAGTGTACAACAAGAGCAGGAACTACCTCACGAGAAAGCAGTACTC CGATAA

AAAGATTAAGTTGAACTTCGATAGTCCTACTCTCGCCAAGGGGTGGGATGCGAACAA AGAAATT

GATAATAGCACAATTATCATGAGGAAGTTCAACAACGACCGGGGCGATTACGATTAC TTCTTGG

GGATCTGGAATAAGAGCACACCTGCCAACGAAAAGATCATCCCATTAGAGGATAATG GACTGTT

TGAAAAAATGCAATATAAGCTGTATCCCGATCCTAGTAAAATGCTGCCAAAGCAATT CCTTTCT

AAGATCTGGAAAGCTAAACATCCAACTACACCCGAGTTTGATAAGAAGTACAAAGAA GGTCGG

CACAAGAAGGGGCCTGATTTTGAGAAAGAGTTTCTGCACGAGTTGATCGATTGCTTT AAGCATG

GATTGGTAAACCACGACGAAAAATATCAGGATGTGTTCGGGTTCAATCTGCGCAACA CGGAAG

ACTACAACTCTTATACAGAGTTTCTGGAGGACGTCGAAAGGTGCAACTATAATCTTA GTTTCAAT

AAAATCGCTGACACGTCTAACTTGATAAATGATGGGAAACTCTATGTTTTTCAGATC TGGAGCA

AGGATTTCAGCATAGATAGCAAGGGAACAAAAAACTTGAACACAATATACTTTGAAT CCCTCTT

CTCGGAGGAAAATATGATCGAGAAGATGTTCAAGCTCTCAGGGGAAGCCGAAATATT CTATCGT

CCAGCAAGTTTGAATTATTGTGAAGATATTATCAAGAAGGGACACCACCACGCCGAA CTGAAGG

ACAAATTCGACTATCCCATCATCAAGGACAAGCGATATAGCCAGGACAAATTTTTTT TTCATGTC

CCCATGGTTATCAACTACAAAAGCGAGAAGTTAAACTCCAAATCACTTAACAATAGG ACGAACG

AAAATTTAGGCCAATTCACGCACATCATCGGTATCGACCGCGGAGAGCGACATCTCA TCTACCT

GACCGTGGTGGATGTGTCCACCGGTGAGATCGTTGAGCAAAAGCACCTGGATGAAAT TATAAAT

ACAGATACAAAAGGCGTCGAGCATAAAACTCATTATCTCAATAAATTAGAAGAGAAG TCCAAG

ACGCGGGATAATGAAAGAAAGTCCTGGGAAGCAATCGAGACGATTAAGGAGCTGAAA GAAGG

CTATATTAGCCACGTGATCAATGAAATCCAGAAATTGCAGGAAAAGTATAACGCACT GATAGTG

ATGGAGAACCTCAATTATGGGTTTAAGAACTCGCGTATCAAAGTGGAAAAGCAGGTC TACCAGA

AATTCGAGACCGCCCTGATTAAAAAGTTTAATTACATCATTGACAAGAAAGATCCTG AAACCTA

CATTCATGGATACCAACTGACGAATCCAATCACTACACTCGATAAAATTGGTAACCA GAGCGGT

ATTGTGTTGTACATTCCGGCTTGGAATACAAGCAAGATTGATCCAGTCACTGGTTTC GTTAACCT

CCTGTATGCAGACGATTTGAAATACAAGAACCAGGAGCAGGCTAAAAGCTTTATCCA GAAAATC

GATAATATCTACTTCGAAAATGGTGAGTTTAAATTTGATATAGATTTCAGCAAATGG AACAACC

GCTACTCAATTAGCAAGACGAAATGGACACTGACAAGCTACGGAACCCGGATACAGA CGTTCC

GAAACCCCCAGAAAAATAACAAGTGGGACAGCGCCGAGTATGACCTGACCGAAGAGT TTAAAT

TAATCCTGAACATCGATGGTACTCTGAAATCTCAGGATGTGGAAACCTATAAGAAAT TCATGTC

TTTATTCAAGCTGATGTTGCAGCTGCGAAACTCCGTTACTGGAACAGACATTGACTA CATGATTA

GCCCTGTGACAGATAAAACTGGAACCCACTTTGATTCACGGGAGAATATCAAGAACC TGCCCGC

CGATGCTGATGCGAACGGAGCTTACAACATTGCTAGGAAGGGCATCATGGCAATCGA GAATATT ATGAACGGCATTAGCGACCCTCTGAAGATCAGTAATGAGGACTACCTGAAGTACATTCAG AACC AACAAGAGTAA

SE ATGACCCAGTTTGAGGGTTTCACCAATCTTTATCAGGTGTCAAAAACACTCAGATTTGAG CTCAT

Q CCCACAGGGTAAAACTTTAAAGCATATTCAAGAGCAGGGCTTTATAGAGGAAGACAAAGC CAG

no AAACGACCATTATAAGGAACTAAAACCGATCATTGACCGCATCTACAAAACCTATGCCGA CCAA

N TGCCTTCAGCTCGTCCAACTCGATTGGGAGAATCTGAGCGCCGCTATTGACAGCTACAGG AAGG

O: AGAAGACCGAGGAGACTAGAAACGCCCTGATCGAGGAGCAGGCGACCTATAGAAACGCTA TTC 15 ACGATTATTTTATCGGCCGCACCGACAATTTGACAGATGCCATCAACAAGCGGCACGCCG AAAT 8 TTATAAGGGGTTATTTAAGGCCGAGCTGTTCAATGGAAAAGTACTGAAACAGCTGGGCAC CGTA

ACAACCACCGAACACGAGAATGCTCTGTTGAGGTCCTTCGACAAGTTTACTACCTAC TTTAGCG

GCTTCTACGAAAACCGTAAAAACGTGTTTTCCGCGGAGGATATTTCAACAGCCATTC CTCATAG

GATCGTGCAGGATAATTTCCCCAAGTTTAAGGAGAACTGCCATATCTTTACCAGACT TATCACTG

CTGTGCCAAGTTTACGAGAACACTTCGAGAATGTTAAGAAGGCTATAGGCATATTCG TTTCCAC

CTCCATCGAAGAAGTATTCAGTTTTCCATTCTACAATCAGTTACTCACGCAGACCCA GATAGATC

TCTACAATCAGCTGCTCGGAGGCATTTCTAGAGAAGCAGGCACGGAAAAGATCAAGG GCTTAA

ATGAAGTACTCAATCTTGCAATTCAGAAGAACGATGAGACAGCACACATTATTGCAT CTCTCCC

TCACAGATTCATTCCCCTGTTCAAACAGATCCTGTCCGATCGCAACACACTAAGCTT TATACTTG

AGGAGTTTAAGTCAGATGAGGAAGTGATCCAGAGCTTCTGTAAGTATAAGACTTTGC TCCGTAA

TGAAAACGTGCTTGAGACAGCAGAGGCTCTCTTTAACGAGTTGAATTCCATCGACCT GACACAC

ATTTTTATCAGCCATAAAAAGCTGGAAACGATTAGCTCTGCCTTGTGCGACCACTGG GACACCC

TGCGTAACGCCCTCTATGAAAGGCGCATTTCCGAGCTCACCGGGAAGATCACAAAAA GTGCCAA

GGAAAAAGTCCAGAGGTCCCTTAAACATGAAGACATCAACCTACAAGAGATCATCTC TGCGGCT

GGGAAAGAGCTGTCAGAAGCATTTAAACAGAAGACTTCCGAGATCCTGAGCCACGCA CACGCC

GCATTAGACCAGCCCCTGCCTACAACTCTTAAAAAACAGGAGGAGAAGGAGATTTTA AAGAGC

CAGCTGGACTCATTACTCGGCCTGTATCATCTCCTGGACTGGTTCGCCGTGGACGAA TCCAACGA

GGTGGACCCAGAATTTAGCGCCAGGCTGACAGGAATTAAACTGGAAATGGAGCCAAG TTTGAG

CTTTTACAACAAGGCTCGGAACTATGCCACTAAAAAGCCCTACAGCGTGGAAAAGTT CAAGCTG

AATTTTCAGATGCCGACCCTGGCTTCCGGGTGGGATGTTAATAAGGAAAAGAATAAT GGGGCTA

TACTGTTCGTCAAAAATGGTCTCTACTACCTGGGAATCATGCCCAAACAGAAGGGCA GGTACAA

AGCCCTTTCGTTTGAGCCGACCGAAAAAACCAGCGAAGGCTTTGATAAGATGTATTA CGACTAT

TTCCCAGATGCAGCCAAGATGATCCCAAAATGTAGCACTCAGTTGAAGGCGGTAACC GCTCACT

TTCAGACACACACCACTCCTATCTTGCTCTCCAACAACTTTATTGAGCCGCTGGAGA TCACGAAG

GAAATCTACGACCTTAACAACCCAGAGAAGGAACCCAAGAAATTCCAAACAGCTTAT GCTAAG

AAGACTGGGGATCAAAAGGGCTATCGAGAGGCTTTGTGTAAGTGGATTGACTTTACA CGGGATT

TCCTGAGTAAGTATACCAAGACCACATCTATTGACCTGTCCTCACTGAGACCTTCCT CACAATAT

AAGGATCTCGGAGAGTATTATGCCGAACTCAACCCTCTACTCTATCACATCTCTTTC CAGAGGAT

CGCCGAAAAGGAAATTATGGACGCCGTCGAGACAGGCAAGCTGTACCTCTTCCAGAT TTACAAC

AAGGATTTCGCAAAGGGCCACCACGGAAAACCCAATTTGCACACTTTGTACTGGACA GGGCTCT

TCTCTCCCGAAAATTTGGCCAAAACTTCAATAAAACTGAACGGGCAAGCCGAGCTGT TCTATCG

GCCCAAGTCACGTATGAAGCGGATGGCCCACCGGCTGGGCGAGAAGATGCTCAACAA GAAACT

GAAGGATCAGAAGACGCCCATACCAGACACTCTTTACCAAGAGCTGTATGACTACGT GAATCAC

AGACTGAGTCACGACCTGTCTGATGAAGCCCGGGCTCTTCTTCCAAATGTGATTACC AAAGAAG TTTCCCACGAAATTATCAAGGACCGGCGCTTCACCTCTGACAAATTCTTTTTCCACGTCC CAATC

ACCCTCAACTACCAGGCAGCCAATTCCCCTTCAAAGTTTAACCAGCGTGTGAATGCC TACCTGA

AAGAGCATCCGGAGACCCCCATCATAGGGATAGACAGAGGAGAGCGGAATCTTATCT ACATTA

CTGTGATTGACAGCACAGGTAAGATCTTGGAGCAGAGATCTTTAAATACAATCCAGC AGTTTGA

CTACCAGAAGAAACTGGATAACCGAGAGAAGGAAAGGGTTGCTGCAAGACAGGCCTG GTCAGT

GGTCGGCACCATCAAAGACCTGAAGCAGGGCTACTTATCCCAAGTAATTCACGAAAT TGTCGAT

CTTATGATTCATTATCAAGCCGTTGTTGTGCTGGAGAACCTGAATTTTGGCTTCAAA AGCAAACG

AACAGGTATCGCCGAGAAAGCCGTGTATCAGCAGTTCGAAAAGATGCTCATAGACAA GCTGAA

CTGCTTAGTGCTGAAGGATTATCCTGCTGAGAAGGTCGGCGGCGTACTTAACCCATA CCAGCTG

ACCGATCAGTTCACTAGTTTCGCCAAGATGGGAACGCAAAGTGGCTTCCTTTTCTAC GTGCCCGC

TCCCTACACGAGTAAGATCGACCCTCTGACCGGCTTCGTCGACCCATTCGTCTGGAA GACCATC

AAGAATCACGAATCACGGAAACACTTCTTAGAGGGGTTTGACTTCCTGCACTACGAC GTGAAGA

CAGGGGACTTCATCTTACACTTTAAGATGAATCGAAACCTCTCCTTCCAGCGGGGCC TGCCTGGT

TTCATGCCCGCATGGGACATCGTGTTTGAGAAAAACGAGACACAGTTTGACGCTAAG GGAACCC

CCTTTATTGCGGGGAAGCGGATTGTCCCAGTCATCGAAAACCATCGGTTCACCGGGC GATACCG

GGATCTGTACCCGGCCAACGAGCTCATCGCGCTGCTGGAGGAGAAGGGTATTGTGTT TAGGGAT

GGATCCAACATTCTGCCTAAGTTGCTGGAAAATGATGATTCGCACGCCATTGATACC ATGGTTG

CACTGATTAGATCCGTACTGCAGATGAGGAATAGCAATGCTGCAACCGGGGAGGATT ATATTAA

TTCCCCAGTGCGAGATCTGAATGGTGTCTGTTTTGACTCGCGCTTTCAGAATCCAGA ATGGCCAA

TGGATGCAGACGCTAACGGGGCGTACCACATTGCTCTGAAAGGCCAGCTACTCCTGA ACCACCT

CAAGGAGAGCAAAGATCTGAAGCTGCAGAACGGCATTTCCAACCAAGACTGGCTCGC CTACAT

ACAAGAACTGCGCAATTAA

SE ATGGCTGTCAAATCCATCAAGGTTAAATTACGGCTTGATGACATGCCCGAGATCCGCGCC GGGC

Q TCTGGAAACTCCATAAAGAAGTGAATGCTGGCGTTAGATACTACACAGAATGGCTCTCCC TGCT

no GCGCCAGGAAAATTTGTACCGCCGGTCACCTAATGGAGATGGAGAGCAGGAATGCGATAA AAC

N AGCAGAAGAGTGCAAAGCCGAATTGCTGGAGCGACTGCGGGCACGGCAGGTTGAGAATGG ACA

O: CCGAGGTCCGGCGGGATCGGACGACGAGCTGCTCCAGCTCGCCAGACAATTATATGAACT GCTG 15 GTGCCTCAGGCTATTGGGGCAAAGGGTGACGCACAGCAGATTGCTAGAAAATTTCTGTCT CCCC

9 TCGCCGACAAAGACGCTGTCGGCGGCCTTGGGATAGCCAAAGCCGGCAACAAACCCCGAT GGG

TGCGCATGAGGGAGGCTGGTGAGCCTGGCTGGGAGGAAGAAAAGGAAAAGGCCGAAA CCAGA

AAGTCCGCCGACAGGACCGCGGACGTACTCCGAGCATTGGCCGATTTTGGGCTGAAG CCCTTAA

TGCGAGTCTACACCGATAGTGAAATGTCTAGCGTGGAGTGGAAGCCATTACGCAAAG GGCAGG

CAGTGCGGACGTGGGACCGTGACATGTTCCAGCAAGCCATCGAGCGAATGATGAGCT GGGAGA

GCTGGAACCAGAGAGTGGGGCAGGAGTATGCCAAGCTGGTCGAGCAGAAAAACCGGT TTGAGC

AAAAAAATTTTGTAGGTCAGGAACACCTGGTGCATCTCGTTAACCAGCTCCAGCAAG ATATGAA

GGAAGCTTCGCCTGGATTAGAGAGCAAAGAGCAGACTGCACACTATGTAACCGGAAG AGCACT

GAGGGGCAGTGACAAAGTGTTCGAAAAATGGGGAAAACTGGCTCCCGATGCCCCCTT TGACCTG

TACGACGCAGAAATAAAAAACGTGCAGCGGCGAAACACCAGGCGATTTGGTAGCCAT GATCTG

TTCGCCAAATTGGCAGAGCCGGAATATCAGGCTCTTTGGCGAGAAGACGCATCATTT CTCACTA

GGTACGCGGTCTATAACTCCATTTTGAGGAAATTGAACCACGCAAAAATGTTTGCCA CCTTCAC

GTTGCCTGACGCCACCGCTCATCCCATTTGGACACGGTTTGATAAGCTGGGCGGCAA TCTGCATC

AGTATACATTCCTGTTTAACGAGTTTGGAGAGCGAAGACATGCGATACGATTCCACA AGCTACT GAAGGTCGAAAATGGCGTGGCACGTGAGGTGGACGATGTCACCGTGCCCATCAGCATGAG CGA

ACAGCTGGATAATTTGTTGCCGCGGGACCCAAATGAACCTATAGCCCTTTATTTTAG GGACTAC

GGGGCGGAGCAACATTTCACTGGGGAGTTTGGCGGCGCAAAAATTCAGTGCCGACGC GACCAG

CTCGCCCACATGCATAGAAGACGCGGGGCCCGGGACGTATACCTTAACGTCTCTGTG AGGGTGC

AGTCCCAGTCAGAGGCAAGAGGGGAACGCAGACCACCTTACGCAGCAGTATTCAGGC TGGTAG

GCGATAACCACCGGGCGTTTGTACACTTTGATAAACTTTCTGACTACCTGGCCGAAC ACCCGGA

TGACGGCAAATTAGGATCGGAGGGGCTGCTTAGCGGCCTGCGTGTGATGAGCGTCGA TCTGGGG

CTACGGACCTCTGCTTCCATCTCTGTGTTCCGTGTGGCCCGAAAGGACGAGTTGAAA CCTAATTC

GAAGGGCCGTGTACCATTCTTTTTCCCTATTAAGGGAAATGATAATCTCGTCGCGGT GCACGAG

CGTTCCCAACTGCTGAAACTGCCTGGCGAGACCGAGTCCAAAGATCTCAGAGCAATC CGGGAGG

AGCGACAACGTACACTTAGGCAACTCCGCACCCAGCTGGCCTATCTGCGCTTGCTGG TGCGGTG

CGGCTCCGAGGATGTAGGGAGAAGAGAGCGAAGCTGGGCAAAGCTGATAGAGCAACC AGTTGA

CGCCGCGAATCACATGACCCCCGACTGGCGCGAAGCGTTTGAAAATGAGCTGCAGAA GTTGAA

ATCTCTGCATGGGATTTGCTCAGATAAGGAGTGGATGGACGCCGTATACGAGTCTGT TCGCCGG

GTATGGCGGCACATGGGGAAGCAGGTGAGAGATTGGAGAAAGGACGTTCGCTCTGGG GAACGG

CCGAAAATTCGGGGATACGCAAAGGATGTCGTGGGCGGCAATAGCATTGAGCAGATC GAGTAC

CTGGAAAGGCAATACAAATTTCTGAAATCTTGGTCTTTCTTTGGGAAGGTAAGCGGA CAAGTTA

TCAGAGCCGAAAAGGGATCTCGCTTTGCTATCACATTGAGGGAACACATTGATCACG CCAAAGA

AGACAGGTTGAAAAAGTTGGCTGATCGCATTATCATGGAAGCACTCGGTTACGTCTA CGCCCTT

GATGAGCGCGGTAAAGGGAAGTGGGTAGCCAAGTATCCCCCATGTCAGCTGATCCTG CTCGAGG

AACTTTCTGAGTATCAGTTCAATAACGACCGTCCTCCCTCCGAAAATAATCAGCTCA TGCAATGG

TCCCACCGGGGTGTGTTCCAAGAACTGATCAATCAGGCTCAGGTGCACGACCTCCTC GTAGGCA

CTATGTATGCAGCCTTTAGCTCCCGTTTTGACGCGCGCACAGGCGCCCCTGGAATAC GATGTAG

GCGAGTTCCCGCACGGTGCACTCAAGAACATAACCCGGAGCCTTTCCCATGGTGGCT CAATAAG

TTTGTTGTGGAGCATACCCTCGACGCTTGCCCATTGAGGGCGGATGACTTGATTCCC ACAGGCG

AGGGGGAGATCTTCGTGAGCCCATTTTCTGCCGAAGAAGGGGATTTCCACCAAATAC ATGCCGA

CTTGAATGCTGCCCAAAATCTGCAGCAAAGGCTGTGGTCAGACTTCGACATCTCGCA AATCAGA

CTGCGGTGTGACTGGGGCGAAGTAGACGGCGAGCTGGTGCTGATACCTAGACTGACG GGTAAG

CGTACCGCCGATAGCTATAGTAATAAGGTTTTTTATACGAATACGGGGGTGACATAT TACGAGC

GTGAGAGAGGCAAGAAGCGTCGGAAGGTGTTCGCGCAGGAGAAGCTGAGCGAAGAGG AGGCG

GAGCTACTGGTAGAGGCAGATGAGGCAAGAGAAAAGTCCGTCGTCCTGATGCGGGAT CCTAGC

GGGATTATTAACAGAGGTAATTGGACACGGCAGAAAGAATTCTGGAGCATGGTGAAT CAAAGA

ATCGAGGGTTACCTGGTGAAGCAAATTCGAAGCCGGGTGCCCCTTCAAGACAGCGCA TGTGAAA

ACACTGGGGACATCTAG

SE ATGGCTACTCGGTCCTTCATCCTGAAAATCGAGCCAAATGAAGAGGTGAAAAAGGGCCTG TGGA

Q AGACCCATGAGGTACTTAACCACGGCATAGCATACTATATGAATATCCTAAAACTTATAC GGCA

no GGAGGCTATCTACGAGCATCACGAGCAAGATCCTAAAAATCCAAAGAAGGTTAGTAAGGC TGA

N AATCCAGGCTGAATTGTGGGACTTCGTGCTGAAGATGCAGAAATGCAACAGTTTCACGCA TGAA

O: GTTGATAAGGACGTCGTGTTTAATATACTCCGGGAGCTGTACGAAGAACTGGTACCAAGC TCTG 16 TGGAAAAGAAAGGAGAGGCCAACCAGCTAAGTAATAAGTTCCTCTATCCTCTCGTGGACC CCAA 0 TTCACAGAGCGGCAAAGGTACCGCATCTTCTGGGAGGAAACCACGCTGGTACAACTTGAA GATC

GCTGGCGATCCCAGCTGGGAGGAGGAAAAGAAGAAATGGGAAGAGGATAAAAAGAAA GACCC CCTGGCCAAAATCTTAGGCAAGCTCGCCGAGTACGGTCTGATTCCACTTTTCATCCCGTT CACAG

ATAGCAATGAGCCGATCGTCAAGGAGATTAAGTGGATGGAAAAGAGCCGCAATCAGA GTGTGC

GGAGGCTGGACAAAGACATGTTTATTCAGGCCCTGGAACGCTTCCTTAGCTGGGAAA GCTGGAA

CCTGAAGGTTAAGGAAGAGTACGAAAAAGTCGAGAAGGAGCATAAGACTTTGGAGGA GCGCAT

CAAAGAAGACATCCAGGCCTTTAAGTCTCTAGAACAGTATGAGAAAGAACGGCAGGA ACAGCT

GCTGCGTGATACACTGAACACAAACGAATATCGCCTGAGCAAGAGGGGACTCAGAGG CTGGAG

AGAAATCATTCAAAAGTGGCTCAAAATGGATGAAAATGAGCCGTCTGAAAAATACCT TGAAGTT

TTCAAGGACTACCAGCGGAAGCACCCTAGAGAAGCCGGCGACTATAGTGTTTACGAA TTCTTGA

GCAAGAAGGAGAATCATTTTATATGGAGGAATCACCCGGAGTACCCATATCTGTACG CAACCTT

CTGCGAAATCGACAAGAAAAAAAAAGACGCCAAGCAACAGGCTACATTTACTCTGGC CGACCC

TATCAATCACCCTCTATGGGTCCGGTTTGAGGAGCGCTCCGGAAGCAATCTGAATAA ATATCGT

ATTCTGACTGAACAGTTACACACAGAGAAGCTCAAGAAGAAACTTACGGTGCAGCTG GACCGC

CTGATATACCCAACAGAGTCCGGAGGATGGGAAGAGAAAGGAAAGGTTGACATCGTA CTGCTT

CCATCTCGTCAGTTTTACAACCAGATATTCCTGGACATCGAGGAGAAGGGGAAACAC GCCTTCA

CATACAAGGACGAGTCCATAAAGTTCCCACTGAAGGGTACTTTAGGCGGTGCTAGGG TGCAGTT

CGACCGCGATCACCTGAGACGGTACCCCCACAAGGTGGAGAGCGGGAACGTGGGACG AATCTA

CTTTAATATGACAGTGAACATTGAACCCACAGAGAGTCCAGTTAGTAAATCCCTGAA AATTCAC

CGTGACGACTTTCCGAAATTTGTGAATTTCAAGCCAAAGGAGCTTACGGAGTGGATC AAGGATT

CAAAGGGAAAGAAGCTGAAATCTGGTATCGAATCTCTCGAGATCGGTCTCCGTGTCA TGAGCAT

CGATCTGGGACAGCGCCAGGCAGCTGCCGCCAGTATATTCGAGGTGGTAGACCAAAA GCCTGA

CATCGAGGGAAAGCTCTTCTTCCCAATCAAAGGCACAGAGCTGTATGCGGTGCACCG GGCGTCC

TTTAATATAAAGCTGCCCGGTGAAACCCTGGTGAAGTCACGGGAGGTGCTTAGAAAA GCGCGA

GAGGATAACCTCAAACTGATGAACCAAAAACTGAACTTTCTGAGGAACGTCCTGCAC TTTCAGC

AGTTCGAAGATATTACCGAACGCGAAAAGAGAGTAACCAAGTGGATATCTCGTCAAG AGAACA

GCGACGTCCCGTTAGTCTATCAGGACGAACTCATCCAAATACGGGAGTTGATGTATA AGCCCTA

CAAGGATTGGGTCGCCTTTCTTAAGCAGCTTCACAAACGCCTAGAGGTCGAAATAGG TAAAGAG

GTGAAACATTGGCGGAAGTCGCTCAGCGACGGGAGGAAGGGACTTTATGGCATCTCT TTGAAGA

ACATTGACGAAATCGATAGAACCAGAAAATTTTTGTTGAGATGGTCCCTCCGACCCA CCGAGCC

TGGAGAGGTGAGGCGGTTAGAACCAGGACAGAGGTTCGCTATCGATCAGCTGAATCA CCTCAAT

GCTCTGAAGGAGGACCGCCTCAAGAAAATGGCCAATACAATCATAATGCACGCCCTT GGCTACT

GCTACGACGTCCGAAAGAAGAAGTGGCAGGCCAAGAATCCCGCCTGTCAAATTATCC TTTTTGA

GGATCTTAGCAATTACAACCCCTATGAAGAGCGGTCCAGATTCGAAAATAGTAAGCT CATGAAG

TGGAGCCGCAGGGAGATCCCGCGCCAAGTGGCCCTTCAGGGGGAAATTTATGGGCTG CAGGTA

GGCGAGGTCGGGGCCCAATTCTCCTCGCGCTTTCATGCGAAAACTGGAAGTCCTGGA ATCCGGT

GCTCAGTGGTGACAAAGGAGAAGTTGCAAGACAATCGGTTTTTTAAAAACTTACAGC GGGAGG

GAAGGCTGACCCTGGATAAGATAGCCGTACTTAAGGAAGGAGATCTGTACCCTGACA AAGGCG

GTGAAAAGTTCATTAGCTTGAGCAAGGACCGAAAACTTGTGACCACCCACGCTGACA TCAATGC

GGCACAGAACCTGCAGAAGAGATTTTGGACTCGCACCCACGGATTCTACAAAGTTTA CTGCAAA

GCATATCAAGTAGACGGACAGACCGTATACATCCCCGAGTCCAAAGATCAGAAGCAG AAAATT

ATTGAAGAGTTTGGGGAAGGGTACTTTATCCTGAAGGATGGTGTCTACGAATGGGGC AACGCTG

GTAAACTTAAAATTAAGAAGGGCAGCTCTAAACAGTCCTCCAGCGAGTTAGTTGATT CTGATAT

TCTGAAAGACAGTTTCGACCTGGCCAGCGAACTTAAAGGGGAAAAATTAATGCTGTA CCGGGAC CCCAGCGGAAACGTCTTTCCATCCGATAAGTGGATGGCCGCTGGAGTGTTCTTTGGCAAG TTAG AGAGGATTCTCATAAGTAAGCTGACCAACCAATACTCAATCTCCACAATCGAGGATGACT CATC CAAGCAGTCTATGTGA

SE ATGCCTACACGCACTATCAACCTGAAACTGGTTCTTGGCAAGAATCCAGAGAATGCTACC CTTC

Q GTCGGGCACTATTTTCAACGCATAGACTGGTGAATCAGGCTACCAAACGGATTGAAGAGT TCCT

no CTTGCTTTGTCGGGGGGAAGCATATAGGACGGTGGATAATGAGGGGAAAGAGGCTGAAAT TCC

N GAGACACGCCGTGCAGGAGGAAGCTCTTGCGTTTGCAAAGGCCGCTCAACGGCACAATGG TTGC

O: ATCTCTACTTATGAAGACCAGGAAATCCTGGATGTGCTCCGGCAACTGTATGAAAGGCTG GTGC 16 CTTCTGTGAATGAAAATAATGAAGCAGGGGACGCTCAAGCCGCAAACGCGTGGGTGTCGC CACT 1 GATGTCCGCCGAGTCCGAGGGAGGGCTCAGCGTTTACGACAAGGTGCTGGACCCACCCCC AGTG

TGGATGAAACTCAAAGAGGAAAAAGCTCCGGGCTGGGAGGCTGCTTCCCAGATCTGG ATCCAG

TCCGACGAAGGGCAGTCCCTTCTTAACAAGCCTGGTTCGCCCCCGCGGTGGATTAGG AAACTGA

GGTCAGGCCAGCCTTGGCAGGACGATTTTGTTAGCGACCAGAAAAAGAAGCAGGACG AGCTGA

CAAAGGGGAATGCGCCACTGATCAAACAATTAAAGGAAATGGGCTTATTGCCTCTTG TGAATCC

CTTTTTTAGACATCTGCTTGACCCGGAGGGGAAGGGGGTGTCACCTTGGGACAGACT CGCTGTT

AGGGCCGCTGTCGCTCATTTCATATCATGGGAATCATGGAACCACCGGACACGCGCC GAATACA

ATAGTTTGAAGCTGCGGAGGGATGAGTTCGAAGCAGCTTCCGACGAATTCAAGGACG ACTTCAC

GCTGCTTCGGCAGTACGAGGCTAAGAGGCACTCCACACTGAAGAGTATAGCTTTAGC CGATGAT

TCAAACCCTTATAGGATCGGCGTACGCTCCCTCCGCGCTTGGAACCGCGTCCGCGAG GAGTGGA

TCGACAAGGGAGCGACCGAGGAGCAGCGGGTCACCATTCTCAGCAAGTTGCAGACCC AACTAA

GGGGCAAATTTGGAGATCCTGACTTGTTCAACTGGCTGGCGCAGGACCGGCACGTGC ACCTCTG

GAGCCCTAGAGATAGTGTTACCCCACTGGTTAGGATCAACGCTGTTGACAAAGTATT GCGACGG

AGAAAACCGTACGCCTTGATGACTTTTGCCCACCCAAGATTCCACCCTCGGTGGATA CTTTACGA

AGCCCCAGGGGGCAGCAATCTCCGCCAGTATGCACTGGATTGTACCGAAAATGCTCT GCACATT

ACACTGCCTCTGCTGGTTGACGATGCACATGGCACATGGATTGAGAAAAAAATTAGG GTTCCTC

TTGCCCCCAGCGGCCAGATTCAGGACCTGACACTAGAAAAGCTCGAGAAGAAGAAAA ATCGTC

TCTACTACCGTTCTGGGTTCCAGCAGTTTGCCGGCCTGGCCGGAGGTGCCGAGGTGC TTTTCCAT

CGACCATACATGGAGCACGATGAGAGGAGCGAGGAGAGCTTATTAGAACGCCCTGGT GCTGTTT

GGTTCAAACTCACCTTGGACGTGGCAACCCAGGCCCCTCCAAACTGGTTGGACGGAA AGGGCCG

CGTCCGAACGCCCCCCGAGGTTCACCACTTCAAGACAGCCCTCAGTAACAAGTCTAA GCACACA

CGGACCCTCCAGCCCGGACTCAGAGTGTTATCCGTGGATCTGGGAATGCGCACCTTC GCCTCTTG

CTCCGTATTTGAGCTGATCGAGGGCAAACCAGAGACTGGCAGAGCGTTCCCTGTGGC CGACGAA

CGTTCCATGGATTCACCAAACAAGCTGTGGGCCAAGCACGAAAGATCCTTTAAACTC ACGCTCC

CCGGCGAAACCCCCAGTCGGAAAGAAGAGGAGGAACGGAGCATTGCAAGAGCCGAAA TCTATG

CGTTGAAAAGAGATATTCAGAGATTAAAAAGTCTTCTGCGCCTGGGGGAAGAGGATA ACGATA

ATAGACGCGATGCACTTCTTGAGCAATTTTTCAAGGGCTGGGGCGAGGAAGACGTGG TTCCAGG

TCAGGCCTTTCCCCGGAGTCTGTTCCAGGGGCTGGGGGCCGCCCCATTCAGATCCAC CCCTGAGT

TGTGGAGACAACACTGTCAAACCTATTATGATAAAGCAGAGGCGTGCCTGGCTAAAC ACATCAG

CGATTGGCGCAAGAGAACCAGGCCTAGGCCTACCTCACGTGAGATGTGGTACAAGAC ACGCTCT

TATCACGGCGGAAAGTCAATCTGGATGCTGGAATACCTCGACGCTGTGAGGAAACTG CTCTTAT

CCTGGAGCCTCAGAGGCCGGACCTACGGGGCTATCAACAGACAGGACACAGCAAGGT TCGGGA

GCTTAGCCAGCCGGCTCCTTCACCACATTAACTCACTCAAAGAGGATCGAATAAAGA CCGGAGC CGACTCGATCGTGCAGGCAGCCCGAGGGTACATCCCCCTGCCTCATGGGAAGGGCTGGGA GCA

GCGATATGAACCCTGCCAGCTGATCTTGTTTGAGGACCTTGCCCGTTATAGATTTCG CGTTGATA

GACCTCGCCGTGAGAATTCTCAGCTGATGCAGTGGAACCACAGAGCGATCGTGGCTG AGACCAC

TATGCAGGCCGAGCTGTATGGACAGATCGTGGAGAACACCGCCGCAGGGTTCAGTTC TCGGTTT

CATGCTGCCACCGGAGCTCCCGGCGTCCGGTGCCGCTTCCTCTTAGAGCGTGATTTT GACAATGA

CCTCCCAAAGCCCTATCTGCTGAGGGAACTGAGCTGGATGCTGGGGAACACAAAAGT AGAATC

GGAGGAGGAGAAGCTACGGCTCCTCTCCGAAAAGATACGTCCAGGCTCTCTGGTACC ATGGGAC

GGAGGAGAGCAGTTCGCGACACTGCATCCTAAGAGACAGACGTTATGTGTGATTCAC GCCGATA

TGAACGCCGCTCAGAATCTGCAGCGAAGATTCTTTGGCCGCTGCGGCGAAGCCTTCA GGCTGGT

ATGTCAGCCCCACGGGGATGATGTGCTGCGGCTGGCCTCAACCCCTGGGGCTAGACT CTTGGGG

GCACTCCAGCAGCTGGAAAATGGCCAAGGGGCTTTCGAACTCGTTCGGGACATGGGC AGCACA

AGCCAGATGAACAGATTCGTCATGAAGAGCCTGGGAAAGAAAAAGATCAAACCCTTA CAGGAC

AATAATGGCGACGACGAACTGGAGGACGTGTTGTCCGTGCTGCCAGAGGAAGACGAC ACAGGC

CGCATCACTGTCTTCCGCGACTCAAGTGGGATATTCTTTCCTTGCAACGTGTGGATT CCGGCCAA

ACAGTTCTGGCCTGCCGTCAGAGCCATGATTTGGAAAGTGATGGCTAGTCATTCATT GGGATGA

SE ATGACAAAGCTGAGGCACAGACAAAAGAAGCTTACACACGACTGGGCAGGGAGCAAGAAA CG

Q TGAGGTCCTTGGGTCAAATGGAAAACTGCAGAACCCCTTGCTCATGCCTGTAAAGAAGGG GCAG

no GTAACAGAATTTAGAAAAGCATTCTCCGCGTACGCTCGGGCAACTAAGGGGGAAATGACC GAT

N GGACGGAAGAACATGTTCACCCATTCTTTCGAGCCATTCAAAACAAAGCCGTCATTGCAC CAAT

O: GCGAGCTGGCCGATAAGGCTTACCAGTCTTTGCATAGTTACCTCCCCGGTTCCCTGGCCC ATTTC 16 TTGCTTTCCGCACACGCACTGGGCTTTCGTATTTTCTCTAAATCTGGGGAGGCAACTGCC TTCCA 2 GGCCAGCTCAAAAATCGAGGCCTATGAGTCCAAGCTCGCTTCGGAGCTAGCCTGTGTCGA TTTG

AGTATCCAGAATTTGACGATTAGTACTCTTTTCAACGCTCTCACAACTTCAGTTCGG GGCAAGGG

GGAGGAAACTTCAGCAGATCCCCTTATCGCACGGTTCTACACTCTCCTGACGGGCAA GCCCCTG

AGCCGAGACACACAGGGCCCAGAACGGGACTTGGCAGAGGTCATCTCCAGAAAGATC GCCTCG

TCCTTCGGCACATGGAAGGAAATGACTGCCAACCCTCTGCAGAGCCTCCAGTTCTTC GAAGAAG

AGCTTCATGCACTAGATGCCAACGTGTCTTTATCTCCAGCTTTTGATGTGTTAATCA AGATGAAT

GATCTCCAAGGTGATCTGAAGAACCGTACTATAGTGTTCGACCCAGATGCACCCGTG TTCGAGT

ACAACGCTGAGGATCCAGCCGATATCATCATAAAGCTGACAGCTCGGTATGCGAAGG AGGCCG

TCATCAAGAATCAGAACGTGGGCAATTATGTGAAAAACGCCATTACCACCACTAATG CCAATGG

GCTGGGGTGGCTCCTCAATAAAGGGCTTTCACTACTGCCAGTTTCTACTGACGATGA GCTGCTCG

AATTCATTGGGGTGGAGAGAAGCCATCCCAGCTGTCACGCGCTGATAGAGCTGATTG CCCAGCT

AGAGGCGCCGGAACTGTTTGAGAAGAATGTGTTTAGTGACACCCGTTCCGAGGTTCA GGGTATG

ATCGACAGTGCAGTGTCGAACCACATTGCTCGGCTGTCCAGCAGCCGAAACTCCCTG AGCATGG

ACAGCGAGGAATTGGAACGCTTGATTAAATCTTTCCAGATTCATACTCCCCATTGTT CTCTGTTC

ATAGGCGCTCAGTCCTTATCTCAGCAGCTGGAGAGCTTACCTGAGGCGCTGCAGTCC GGAGTGA

ACAGCGCTGATATCTTATTAGGCAGCACACAGTATATGCTGACCAACTCTCTCGTTG AAGAGTC

AATTGCAACATATCAAAGGACATTAAATAGGATCAATTACCTGAGTGGGGTGGCTGG GCAGATT

AACGGTGCTATCAAAAGAAAGGCAATCGACGGCGAAAAAATACACCTGCCTGCCGCC TGGAGT

GAGCTCATCTCCTTACCTTTCATTGGACAGCCGGTGATTGATGTGGAGAGCGACCTG GCACACTT

AAAAAACCAGTACCAGACCCTGTCCAATGAATTTGACACCCTCATTTCGGCCCTGCA GAAGAAC

TTCGATTTGAATTTCAACAAAGCACTCCTTAACCGCACGCAGCATTTCGAGGCAATG TGCCGGA GCACAAAAAAAAATGCTTTATCTAAGCCCGAGATCGTGTCCTACAGAGATCTGCTGGCGC GGCT

GACCAGTTGCCTTTATCGAGGCTCGCTGGTTCTCAGAAGGGCGGGAATCGAAGTTCT GAAAAAG

CACAAAATCTTTGAGTCGAATAGTGAGCTGAGAGAACACGTCCACGAGCGAAAGCAC TTCGTGT

TCGTTAGTCCATTGGACAGAAAGGCAAAAAAACTGTTGCGCCTGACCGATTCCCGCC CTGACTT

GCTCCATGTGATCGATGAGATCCTGCAACATGACAATCTGGAGAATAAGGACAGAGA GTCCCTT

TGGCTGGTCCGGTCTGGGTACCTCCTTGCTGGTCTGCCGGACCAGCTGAGTTCTTCG TTTATCAA

TCTCCCCATAATCACGCAAAAGGGCGATCGCCGGCTGATTGACCTGATTCAGTATGA CCAGATC

AATCGCGATGCTTTCGTAATGTTGGTGACAAGTGCTTTCAAAAGCAATCTCTCTGGG TTGCAGTA

CCGCGCTAACAAGCAGTCTTTCGTGGTCACCCGCACCCTGTCTCCTTACCTGGGTAG TAAGCTCG

TATACGTCCCTAAAGACAAAGATTGGCTGGTCCCATCCCAGATGTTTGAGGGAAGAT TCGCCGA

TATTCTGCAGAGTGACTACATGGTCTGGAAGGATGCCGGACGCCTGTGCGTGATCGA CACTGCC

AAACATCTCTCTAACATTAAAAAAAGCGTGTTTAGTAGCGAAGAAGTCCTTGCTTTT CTTCGAGA

GCTGCCTCACCGGACCTTCATCCAGACCGAGGTACGGGGGTTAGGAGTGAACGTCGA TGGAATC

GCATTTAATAACGGGGATATCCCGAGCTTGAAGACATTCTCGAATTGTGTGCAGGTG AAGGTGA

GTAGGACTAATACTAGTCTCGTGCAGACTCTAAACAGGTGGTTCGAGGGTGGCAAAG TGTCACC

TCCCTCTATTCAGTTCGAAAGAGCTTACTACAAAAAAGACGATCAGATTCACGAGGA CGCAGCC

AAGAGAAAGATACGCTTCCAGATGCCAGCAACGGAATTAGTGCACGCCAGCGATGAC GCTGGT

TGGACCCCCAGCTACCTGCTGGGCATCGACCCCGGTGAGTACGGAATGGGTCTCAGT TTGGTGT

CCATCAACAATGGAGAGGTCCTGGATTCTGGATTCATCCACATTAATTCCCTGATCA ATTTCGCG

TCCAAAAAAAGCAATCACCAGACCAAAGTAGTCCCCCGCCAGCAGTACAAGTCCCCC TACGCG

AATTATCTCGAGCAGTCAAAGGATTCAGCAGCAGGGGATATAGCTCACATTCTGGAT CGGCTAA

TCTACAAATTGAACGCCTTGCCTGTGTTCGAGGCGCTGTCTGGCAACAGTCAGAGTG CTGCTGAT

CAGGTATGGACCAAAGTTCTATCCTTCTATACATGGGGAGACAACGACGCACAGAAC AGTATAC

GGAAGCAGCACTGGTTCGGTGCCTCACACTGGGATATTAAGGGGATGCTGCGCCAAC CCCCAAC

CGAAAAAAAACCCAAACCATATATAGCCTTTCCCGGGAGTCAAGTGTCATCCTATGG AAATAGT

CAAAGGTGTAGTTGTTGCGGCCGCAATCCCATTGAGCAGTTGCGTGAGATGGCAAAG GACACGA

GTATCAAGGAGCTGAAAATCCGAAATAGTGAGATCCAACTATTCGATGGTACAATCA AGCTGTT

TAACCCCGACCCTTCCACCGTCATCGAGAGGCGGCGGCATAACCTAGGACCCTCACG CATTCCT

GTGGCAGACCGAACTTTCAAGAATATTAGCCCTTCTTCGTTAGAGTTCAAGGAGCTC ATTACTAT

CGTTTCTCGAAGCATCCGCCATAGCCCCGAATTTATTGCTAAGAAACGGGGTATCGG GTCTGAG

TACTTTTGTGCTTATTCTGACTGCAACTCCTCACTGAACTCAGAGGCCAATGCCGCG GCCAATGT

GGCACAGAAGTTTCAGAAGCAACTCTTTTTCGAACTCTGA

SE ATGAAACGTATTCTGAACTCTCTGAAAGTCGCCGCACTGAGGCTGCTGTTTCGAGGAAAG GGCT

Q CAGAGCTGGTGAAGACCGTCAAGTACCCTCTGGTTTCGCCCGTCCAGGGTGCTGTGGAAG AACT

no CGCCGAAGCAATACGCCACGACAACCTACATTTATTTGGGCAGAAGGAAATCGTAGATCT GATG

N GAGAAGGACGAGGGCACCCAGGTCTACTCGGTGGTGGACTTTTGGCTCGACACACTCCGT CTAG

O: GGATGTTCTTCAGTCCAAGTGCTAATGCCCTTAAGATCACTCTGGGGAAGTTTAACAGCG ACCA 16 AGTTTCCCCTTTCAGGAAGGTTCTGGAGCAGTCCCCTTTCTTTCTCGCGGGTAGACTCAA AGTGG

3 AGCCCGCTGAACGTATCCTCAGCGTGGAGATCCGCAAGATCGGTAAGAGGGAGAATAGAG TGG

AGAACTACGCCGCAGATGTAGAGACTTGTTTTATCGGTCAGCTGTCTAGTGATGAAA AGCAGTC

TATCCAGAAGCTCGCTAACGATATCTGGGACTCTAAGGATCACGAAGAGCAAAGGAT GCTTAAG

GCGGATTTCTTTGCCATTCCCCTCATCAAAGACCCAAAGGCAGTGACCGAGGAAGAT CCCGAGA ATGAAACCGCAGGCAAACAGAAGCCTCTCGAATTATGTGTGTGCTTAGTGCCCGAGTTGT ACAC

CCGCGGGTTCGGTTCAATAGCGGACTTCCTGGTCCAGCGTCTGACACTATTAAGAGA CAAAATG

AGCACAGACACAGCAGAAGACTGCCTTGAGTATGTCGGCATAGAGGAGGAGAAGGGT AATGGG

ATGAACTCGCTGCTGGGGACGTTCCTCAAGAACCTGCAGGGAGACGGGTTCGAACAG ATCTTCC

AATTTATGCTCGGCAGTTACGTGGGATGGCAAGGTAAGGAAGACGTCCTACGCGAAC GGCTTGA

TTTGCTAGCGGAGAAGGTTAAAAGACTGCCGAAACCTAAGTTTGCCGGCGAGTGGTC CGGCCAT

CGGATGTTCCTGCATGGTCAATTGAAGAGCTGGTCCTCTAACTTTTTCCGCCTGTTT AACGAGAC

TAGGGAGCTCCTCGAAAGCATAAAATCCGACATCCAACACGCGACCATGTTAATCAG CTACGTC

GAAGAGAAAGGGGGATACCACCCACAACTCTTGTCACAGTACAGGAAACTAATGGAG CAGCTG

CCAGCTCTCAGAACAAAGGTGTTAGATCCAGAGATAGAAATGACTCACATGAGCGAG GCGGTA

AGGTCGTACATTATGATCCACAAGTCGGTAGCAGGATTTCTGCCTGACTTACTCGAG TCCCTCGA

TAGGGACAAGGACAGGGAATTCCTGCTGAGTATATTTCCAAGGATCCCCAAAATTGA CAAAAA

AACTAAGGAAATCGTGGCCTGGGAGCTCCCAGGCGAGCCCGAAGAAGGATACCTGTT CACTGC

CAATAATCTTTTTCGCAACTTTCTGGAGAATCCTAAACATGTTCCACGTTTCATGGC AGAAAGGA

TCCCGGAAGATTGGACGCGCCTGCGGTCCGCTCCCGTATGGTTTGACGGCATGGTGA AACAATG

GCAGAAAGTGGTAAACCAGCTGGTGGAGTCACCTGGAGCATTGTATCAGTTCAATGA AAGCTTT

CTCCGACAACGTTTACAGGCAATGCTGACAGTGTATAAGAGAGACCTGCAGACAGAG AAATTCC

TTAAGTTGTTGGCTGATGTCTGCAGGCCTCTGGTGGACTTCTTTGGGCTGGGGGGAA ACGATATC

ATCTTCAAAAGCTGCCAGGACCCGAGGAAACAATGGCAAACTGTCATTCCCTTGAGT GTCCCCG

CTGATGTGTACACCGCGTGTGAGGGGCTGGCAATCCGGCTTCGTGAGACATTGGGAT TTGAGTG

GAAGAACCTTAAGGGCCATGAAAGGGAGGACTTTCTAAGACTGCACCAGCTTTTAGG GAATCTG

CTTTTCTGGATTCGAGATGCCAAACTGGTGGTGAAATTGGAAGATTGGATGAATAAT CCCTGTG

TTCAGGAGTACGTTGAGGCTCGTAAGGCCATTGATCTCCCACTGGAGATCTTCGGCT TTGAGGTC

CCCATCTTCCTGAACGGATATCTGTTTAGTGAACTGAGGCAGTTAGAACTGCTGCTC CGCCGTAA

GTCGGTTATGACCAGCTATTCGGTTAAGACAACTGGCAGTCCAAACAGGCTTTTCCA GTTAGTCT

ACCTGCCATTAAATCCTTCCGACCCTGAGAAAAAAAATTCTAATAACTTTCAGGAAC GCCTGGA

CACCCCCACTGGCTTATCACGTCGCTTCCTGGACCTTACTCTGGACGCCTTCGCCGG CAAGTTGC

TGACAGACCCCGTGACTCAAGAGCTTAAAACTATGGCTGGGTTCTACGATCACCTGT TTGGTTTC

AAGCTCCCATGTAAGCTGGCAGCCATGTCTAACCACCCTGGCTCTAGCAGCAAGATG GTCGTGT

TGGCCAAACCTAAAAAAGGGGTTGCATCTAATATAGGATTCGAACCAATCCCTGATC CCGCGCA

CCCCGTATTCCGGGTGAGATCATCATGGCCAGAGCTGAAGTATCTGGAGGGGTTACT GTATCTT

CCAGAAGACACTCCACTGACAATAGAGCTCGCAGAGACAAGTGTTAGTTGTCAGAGC GTCAGTA

GCGTGGCATTCGATCTGAAAAATCTGACTACTATCCTTGGACGCGTGGGTGAGTTCC GTGTGAC

CGCAGACCAGCCTTTTAAGTTGACCCCCATCATCCCTGAGAAGGAGGAGTCCTTCAT AGGAAAA

ACATATCTAGGCCTTGATGCCGGGGAACGCTCAGGCGTAGGGTTCGCTATCGTCACA GTCGACG

GGGATGGGTACGAGGTACAGCGCCTGGGGGTGCATGAAGATACACAGCTGATGGCCC TACAGC

AGGTGGCCTCTAAAAGCTTGAAGGAGCCGGTGTTCCAGCCGCTCAGAAAGGGTACTT TTCGGCA

GCAGGAACGTATTAGAAAATCTCTCAGAGGATGTTATTGGAACTTCTATCACGCTCT GATGATT

AAGTACCGCGCCAAGGTAGTGCACGAAGAGAGCGTGGGCAGTTCCGGCCTGGTTGGG CAGTGG

TTACGAGCATTCCAGAAGGACCTCAAGAAAGCCGATGTGTTGCCAAAAAAGGGAGGC AAAAAC

GGAGTCGATAAGAAAAAGAGAGAGTCTTCTGCACAAGACACATTGTGGGGAGGGGCT TTTAGC

AAGAAGGAAGAACAGCAGATAGCTTTCGAAGTCCAAGCTGCTGGTTCTAGCCAGTTC TGCCTGA AGTGCGGATGGTGGTTCCAACTCGGAATGCGTGAGGTTAATCGCGTGCAGGAATCCGGCG TCGT GCTGGATTGGAATCGGAGTATTGTCACATTCCTGATTGAGAGCTCTGGCGAGAAAGTGTA TGGG TTCTCCCCTCAGCAACTCGAAAAGGGGTTCAGACCAGACATTGAAACCTTCAAGAAGATG GTTC GGGATTTCATGCGCCCGCCTATGTTTGACCGGAAGGGTCGCCCAGCAGCTGCCTACGAAA GGTT TGTCTTGGGACGCCGGCATCGGCGGTATAGATTCGACAAGGTTTTTGAAGAACGATTCGG ACGA TCCGCGCTATTCATTTGCCCGAGGGTTGGCTGTGGCAACTTTGACCACAGCAGCGAGCAG TCAG CCGTAGTGCTGGCTCTAATCGGATATATTGCCGACAAAGAGGGGATGAGCGGAAAAAAGC TAG TCTACGTGCGTCTGGCAGAACTAATGGCGGAATGGAAATTGAAGAAACTGGAGAGGAGTA GAG TTGAGGAGCAAAGCTCCGCTCAGTGA

SE ATGGCGGAGTCGAAGCAAATGCAGTGCAGGAAGTGTGGAGCCTCTATGAAGTACGAAGTG ATC

Q GGCCTCGGGAAGAAAAGCTGCAGATATATGTGTCCCGACTGCGGGAATCACACATCTGCA AGA

no AAGATTCAGAATAAGAAGAAAAGGGACAAGAAGTATGGATCTGCCAGTAAAGCACAAAGC CA

N ACGAATCGCAGTTGCAGGGGCCTTATACCCGGATAAAAAGGTTCAGACCATCAAGACTTA TAAG

O: TATCCAGCCGACCTGAATGGTGAGGTCCATGACTCAGGGGTGGCCGAAAAAATAGCCCAA GCA 16 ATCCAGGAGGATGAAATAGGGCTCCTCGGCCCCTCTTCCGAGTACGCCTGTTGGATCGCT AGCC 4 AGAAACAGAGCGAGCCCTACAGTGTTGTAGACTTTTGGTTTGACGCTGTGTGCGCCGGAG GCGT

GTTCGCCTATTCTGGGGCTAGATTGCTGTCTACCGTCCTGCAGCTATCTGGGGAGGA GAGCGTCC

TACGCGCAGCCCTGGCATCCTCCCCTTTTGTCGACGATATCAATCTGGCACAGGCCG AAAAATTT

CTGGCGGTGTCCAGGCGAACCGGCCAAGATAAGCTGGGGAAGCGCATTGGAGAGTGC TTCGCA

GAGGGCCGACTTGAGGCCCTAGGCATCAAGGACCGGATGCGTGAATTTGTCCAGGCT ATCGATG

TCGCTCAGACCGCTGGGCAGCGTTTTGCCGCGAAACTGAAAATCTTTGGGATTTCTC AGATGCCC

GAGGCAAAGCAGTGGAACAATGACAGCGGACTCACCGTGTGCATCCTGCCCGACTAT TACGTCC

CAGAAGAAAATCGCGCAGATCAGTTGGTCGTCCTGCTAAGACGACTGAGAGAGATAG CATACT

GTATGGGGATCGAAGATGAGGCCGGTTTTGAACATCTTGGAATTGATCCTGGCGCAC TATCAAA

TTTTTCCAATGGCAATCCTAAACGCGGATTTTTGGGCCGCCTGCTGAACAATGATAT TATTGCCT

TAGCGAACAACATGTCCGCCATGACGCCTTACTGGGAGGGCAGGAAGGGAGAACTGA TTGAAA

GATTGGCTTGGCTGAAGCACCGTGCAGAGGGGCTTTATCTGAAGGAACCGCATTTTG GAAATAG

TTGGGCCGACCATAGGTCTAGAATTTTTTCCAGAATAGCCGGGTGGCTTTCTGGGTG CGCTGGG

AAGCTAAAGATCGCCAAAGACCAGATCAGCGGAGTGCGTACTGATCTGTTCCTTCTG AAGAGAC

TGCTGGATGCGGTCCCGCAGTCCGCCCCTTCTCCCGACTTCATAGCCTCTATCTCTG CCTTGGAT

CGCTTCCTGGAGGCCGCAGAATCTAGTCAGGATCCTGCCGAACAGGTGAGGGCCCTA TACGCCT

TTCATCTGAACGCACCCGCGGTGCGAAGCATCGCCAACAAGGCAGTCCAGCGATCCG ACAGCCA

AGAATGGCTTATAAAGGAACTGGACGCTGTGGACCACCTGGAGTTTAACAAGGCCTT TCCCTTC

TTCTCTGATACGGGAAAGAAGAAAAAGAAAGGGGCTAACTCGAATGGCGCTCCGTCC GAGGAG

GAGTACACCGAGACTGAGAGCATCCAGCAGCCCGAGGACGCTGAGCAAGAGGTTAAT GGTCAG

GAAGGCAACGGGGCCTCGAAGAACCAGAAGAAGTTTCAGAGAATCCCCCGATTCTTC GGCGAG

GGGAGTCGCAGCGAGTATCGCATCCTCACTGAAGCCCCGCAGTACTTCGACATGTTC TGTAACA

ACATGCGGGCCATCTTTATGCAATTAGAATCCCAACCGCGTAAAGCTCCCAGGGATT TTAAGTG

TTTCCTGCAGAATCGGCTGCAGAAATTGTATAAGCAGACATTCCTGAACGCTCGATC CAACAAG

TGCCGGGCATTACTAGAGTCCGTATTGATTAGTTGGGGAGAGTTTTACACCTACGGG GCTAACG

AGAAAAAATTTCGACTGCGTCATGAAGCTTCTGAGCGCTCCTCGGACCCAGATTACG TGGTGCA

ACAGGCGCTGGAGATCGCTCGGAGGCTGTTTCTCTTCGGCTTTGAGTGGAGGGACTG TAGCGCA GGTGAAAGAGTGGATCTGGTCGAAATACATAAGAAAGCCATATCTTTCCTGTTGGCCATC ACTC

AGGCTGAGGTGTCTGTGGGCAGCTATAACTGGCTGGGCAATTCTACCGTGAGTCGGT ACCTGTC

CGTGGCAGGGACTGATACCCTTTACGGCACCCAGCTGGAAGAATTCTTAAATGCAAC CGTGTTA

TCTCAGATGCGGGGGCTGGCTATCAGGTTATCATCTCAGGAACTGAAGGATGGATTT GACGTAC

AGCTGGAGTCTAGTTGCCAGGATAATCTGCAACACTTGCTCGTGTACAGGGCTTCAC GAGACCT

TGCCGCCTGCAAGCGCGCTACTTGTCCAGCTGAGTTGGATCCTAAGATTCTGGTACT GCCCGTGG

GGGCCTTTATCGCTAGCGTGATGAAAATGATTGAAAGAGGGGATGAGCCTTTAGCTG GAGCTTA

TCTGAGACACAGACCCCATAGTTTCGGGTGGCAGATCCGCGTTCGAGGTGTGGCAGA GGTGGGA

ATGGACCAAGGGACCGCCCTGGCGTTCCAGAAACCGACCGAGAGCGAACCCTTCAAG ATAAAG

CCGTTTTCCGCTCAATACGGCCCCGTTCTATGGCTGAACAGCTCCAGTTATAGCCAG AGCCAGTA

CCTGGACGGGTTCCTATCACAGCCCAAGAACTGGAGTATGCGGGTGCTGCCACAGGC CGGCTCA

GTGCGGGTAGAACAGCGCGTCGCCTTGATTTGGAATCTCCAGGCCGGAAAGATGAGG CTGGAA

CGGAGCGGAGCGCGGGCTTTCTTCATGCCCGTCCCATTCAGTTTCCGCCCCAGTGGC AGCGGCG

ACGAGGCAGTCCTGGCTCCAAATAGGTACCTGGGACTCTTTCCACACAGCGGCGGCA TAGAGTA

CGCTGTGGTCGATGTTCTTGACTCTGCCGGCTTCAAAATACTCGAGAGAGGAACAAT AGCCGTC

AATGGCTTCTCCCAGAAACGAGGAGAAAGACAAGAGGAAGCCCATCGCGAAAAACAA AGACG

CGGTATCTCCGATATTGGGCGCAAGAAGCCAGTCCAGGCCGAAGTCGATGCGGCCAA CGAGCTC

CATCGAAAATACACCGATGTTGCTACTCGGCTGGGGTGTCGAATTGTCGTTCAATGG GCACCCC

AACCCAAACCAGGCACTGCGCCGACCGCTCAGACTGTGTACGCTAGGGCCGTGAGGA CTGAAG

CACCAAGATCCGGCAATCAGGAAGATCACGCCAGGATGAAATCTTCCTGGGGATACA CATGGG

GTACGTATTGGGAAAAAAGGAAGCCCGAGGACATCCTCGGCATTAGTACCCAGGTGT ATTGGAC

AGGCGGGATCGGCGAGTCCTGCCCGGCTGTCGCCGTCGCGCTATTGGGACACATCAG GGCCACC

TCAACCCAGACTGAATGGGAGAAAGAGGAAGTCGTGTTTGGGCGATTGAAAAAGTTC TTCCCAT

CCTGA

SE ATGGAGAAGCGCATCAATAAAATTCGCAAGAAGCTGTCTGCCGATAACGCCACAAAACCA GTT

Q AGTCGAAGCGGCCCAATGAAGACCCTGCTAGTTCGAGTGATGACTGATGATCTGAAGAAA AGG

no CTCGAAAAGCGACGCAAGAAGCCTGAGGTAATGCCTCAGGTTATAAGTAACAATGCAGCA AAC

N AATCTGCGGATGCTGCTTGACGATTACACAAAGATGAAGGAAGCCATTCTCCAGGTGTAT TGGC

O: AGGAGTTCAAGGATGATCACGTAGGCCTGATGTGTAAATTCGCGCAACCTGCAAGCAAGA AGA 16 TCGACCAAAACAAGCTGAAACCCGAGATGGATGAAAAAGGCAATTTAACAACCGCCGGAT TCG 5 CTTGTTCCCAGTGTGGGCAGCCACTGTTCGTGTACAAGTTAGAACAGGTGTCGGAAAAAG GAAA

GGCATACACTAACTACTTTGGACGGTGCAATGTTGCAGAACACGAAAAGCTGATACT GCTTGCC

CAGCTTAAGCCCGAAAAAGACAGCGACGAAGCGGTGACCTACAGCCTGGGAAAATTC GGGCAG

CGGGCACTGGACTTCTATTCTATCCACGTTACCAAGGAGAGCACCCACCCAGTGAAG CCGTTGG

CCCAAATCGCTGGAAACCGGTACGCCAGCGGACCAGTCGGCAAGGCCCTGTCCGATG CCTGTAT

GGGCACAATTGCTTCTTTCCTGTCCAAGTACCAGGACATCATAATCGAGCACCAAAA AGTTGTG

AAAGGGAATCAGAAACGCCTGGAATCCCTTCGAGAACTGGCCGGCAAGGAGAACCTT GAGTAC

CCGTCCGTGACCCTGCCTCCACAGCCACATACCAAAGAGGGCGTAGACGCGTATAAT GAGGTCA

TTGCCCGCGTTCGCATGTGGGTTAATTTAAACCTGTGGCAGAAATTAAAACTAAGCC GAGATGA

TGCTAAACCGTTACTGAGATTGAAGGGATTCCCTAGCTTTCCTGTGGTGGAGAGAAG GGAAAAC

GAGGTTGATTGGTGGAATACTATTAATGAGGTGAAAAAGCTTATTGACGCCAAGAGG GATATGG

GCAGGGTGTTCTGGAGCGGGGTGACTGCCGAAAAGAGAAATACCATCCTCGAGGGAT ACAATT ACCTCCCCAACGAGAATGATCATAAGAAAAGAGAGGGGAGCTTAGAGAATCCAAAGAAAC CTG

CAAAGAGGCAATTCGGTGATCTCCTGCTCTACCTCGAGAAGAAATACGCGGGGGACT GGGGAA

AAGTTTTTGACGAAGCCTGGGAGCGCATTGACAAGAAGATCGCCGGGCTGACGTCTC ACATTGA

ACGGGAAGAGGCACGGAATGCAGAGGACGCCCAGTCTAAGGCCGTGCTGACTGACTG GCTGCG

CGCAAAGGCCTCCTTCGTGCTCGAACGTCTGAAGGAAATGGATGAGAAAGAGTTTTA CGCGTGT

GAAATACAGCTGCAGAAGTGGTACGGCGATCTAAGGGGAAATCCCTTCGCAGTGGAA GCCGAG

AATAGGGTAGTTGACATCAGTGGGTTCTCCATCGGCAGTGATGGACATTCTATCCAG TATAGAA

ACCTGCTCGCCTGGAAGTACTTAGAGAACGGCAAGAGAGAGTTCTATCTGCTGATGA ACTACGG

GAAAAAAGGTAGAATTCGCTTTACAGATGGCACCGACATAAAGAAGTCCGGAAAGTG GCAAGG

CCTCTTATACGGAGGCGGCAAAGCAAAGGTGATAGACTTGACTTTTGACCCTGACGA CGAACAG

CTGATAATCTTGCCGCTGGCCTTTGGCACAAGACAAGGTAGGGAATTTATCTGGAAT GATCTTCT

TTCTCTCGAGACCGGACTCATCAAGCTCGCAAACGGAAGGGTCATCGAGAAGACAAT CTACAAT

AAAAAGATAGGCCGAGACGAGCCAGCCCTGTTTGTGGCTTTGACATTTGAGCGGAGA GAGGTC

GTAGATCCCAGCAACATCAAACCCGTGAACCTGATCGGTGTTGACAGGGGCGAGAAC ATCCCG

GCGGTTATCGCACTGACGGATCCAGAAGGATGTCCTCTGCCCGAGTTCAAAGATTCA TCGGGAG

GGCCAACCGACATTTTGAGGATAGGGGAGGGGTACAAGGAGAAGCAGCGAGCTATCC AGGCGG

CCAAAGAAGTGGAGCAACGAAGAGCTGGTGGTTATTCTCGCAAGTTCGCTTCCAAAA GTCGTAA

CCTGGCTGACGATATGGTGCGCAATTCTGCCCGTGACCTTTTCTACCACGCCGTTAC ACACGACG

CCGTGTTAGTGTTTGAAAATCTTAGTCGAGGCTTCGGGCGACAGGGGAAGCGGACCT TTATGAC

CGAGAGACAGTATACAAAAATGGAGGATTGGCTGACCGCCAAACTGGCGTATGAAGG ACTCAC

ATCCAAGACCTATCTCTCAAAAACTTTGGCCCAGTATACATCTAAGACGTGCAGTAA CTGTGGC

TTCACCATTACCACAGCTGACTACGATGGCATGCTGGTCCGCTTAAAAAAGACATCT GACGGCT

GGGCTACTACCCTCAACAATAAAGAGCTCAAAGCCGAAGGACAAATTACCTATTATA ACAGGTA

TAAAAGACAGACTGTCGAGAAGGAGTTGAGCGCGGAGCTGGACCGCCTATCAGAGGA GTCAGG

GAACAACGATATCTCTAAGTGGACTAAGGGACGCCGAGACGAGGCGTTGTTCTTGCT GAAAAA

GCGGTTCTCTCATCGACCCGTGCAGGAGCAGTTCGTGTGTCTGGACTGCGGCCACGA GGTTCAT

GCTGATGAGCAAGCTGCTCTAAATATTGCCCGTAGTTGGTTGTTCCTGAACAGCAAT TCAACAG

AGTTCAAGTCATACAAGAGCGGAAAGCAGCCGTTTGTGGGCGCATGGCAGGCATTTT ACAAAA

GACGCCTGAAGGAAGTGTGGAAGCCAAACGCC

SE ATGAAAAGGATTAACAAAATCCGAAGGCGGCTTGTAAAGGATTCTAACACCAAAAAGGCT GGC

Q AAGACGGGGCCCATGAAAACATTACTCGTTAGAGTTATGACCCCCGACCTCAGAGAGCGA CTGG

no AAAATTTACGCAAGAAGCCAGAGAACATACCTCAGCCAATTAGTAATACCTCTCGGGCAA ACCT

N AAACAAGTTGCTTACTGATTACACGGAGATGAAAAAGGCCATACTGCATGTGTACTGGGA GGA

O: GTTTCAAAAGGACCCTGTCGGGCTAATGAGCAGGGTGGCTCAGCCTGCACCTAAAAACAT CGAC 16 CAGCGGAAACTCATCCCAGTTAAGGACGGAAATGAGAGATTGACAAGTTCAGGTTTCGCC TGCT

6 CACAGTGCTGTCAACCGCTGTACGTTTATAAGTTAGAACAAGTGAATGACAAAGGAAAGC CTCA

CACAAATTATTTTGGCCGGTGTAATGTCTCTGAGCATGAGCGTCTGATTCTGTTGTC CCCGCATA

AACCGGAAGCTAATGACGAGCTCGTAACCTACAGCTTGGGGAAGTTTGGCCAAAGAG CATTGG

ACTTCTATTCAATCCATGTGACCCGCGAATCCAATCATCCCGTCAAGCCCTTGGAGC AGATAGG

GGGCAATAGTTGCGCTTCTGGCCCTGTGGGCAAAGCCCTGTCCGACGCCTGTATGGG AGCCGTG

GCTTCATTCCTGACCAAATATCAGGATATCATCTTGGAGCACCAGAAAGTGATCAAG AAAAATG

AAAAAAGGTTAGCAAACCTCAAGGATATTGCAAGCGCTAACGGCTTGGCTTTTCCTA AAATCAC ACTTCCACCTCAGCCTCACACAAAGGAAGGCATCGAGGCATACAACAATGTGGTGGCCCA GATC

GTCATCTGGGTTAACTTAAACCTGTGGCAGAAACTTAAAATTGGCAGGGATGAGGCA AAACCCT

TACAGCGCCTGAAAGGATTCCCCAGCTTTCCACTGGTGGAGCGCCAGGCTAACGAAG TGGACTG

GTGGGATATGGTGTGTAACGTCAAGAAGCTCATCAATGAAAAGAAAGAGGACGGTAA AGTCTT

CTGGCAGAACCTCGCCGGTTACAAACGGCAGGAGGCGCTGTTACCTTATCTGTCGAG TGAAGAG

GACCGGAAAAAAGGCAAGAAATTTGCTCGTTATCAGTTTGGTGATTTGCTCCTACAT TTGGAGA

AGAAGCACGGCGAGGACTGGGGAAAAGTATACGATGAGGCCTGGGAGAGGATTGACA AAAAG

GTGGAGGGACTGTCAAAGCACATCAAGCTCGAAGAAGAGCGCAGAAGCGAGGACGCC CAATCC

AAAGCAGCGCTGACTGACTGGCTGCGGGCGAAGGCCAGTTTTGTAATCGAAGGCCTT AAAGAA

GCCGACAAGGATGAATTCTGCAGATGCGAATTAAAACTCCAGAAGTGGTACGGCGAT CTCCGA

GGTAAGCCTTTCGCAATCGAGGCCGAGAATTCCATACTGGACATTAGTGGATTCAGT AAACAGT

ATAATTGTGCCTTTATATGGCAGAAGGATGGTGTCAAGAAACTCAACCTGTACCTTA TTATTAAT

TATTTCAAAGGCGGGAAACTGAGATTTAAGAAGATAAAGCCTGAAGCCTTTGAGGCG AACCGA

TTCTACACAGTTATTAACAAGAAATCTGGTGAAATTGTACCCATGGAGGTAAACTTC AACTTCG

ATGATCCCAATCTGATTATATTGCCACTAGCTTTTGGCAAGCGGCAGGGTAGGGAAT TCATTTGG

AACGATTTGCTTTCACTGGAAACAGGGTCCCTTAAGCTGGCAAACGGGAGAGTGATT GAAAAGA

CATTGTACAATCGGAGGACACGTCAGGATGAACCTGCCCTTTTCGTGGCTCTGACAT TCGAGCG

CAGGGAGGTTCTGGACTCTAGCAATATCAAGCCAATGAACCTGATCGGCATAGACCG AGGAGA

GAATATTCCGGCTGTGATCGCACTCACCGATCCCGAAGGATGTCCCCTTTCTCGGTT CAAGGACT

CCTTAGGCAATCCAACTCATATCCTGAGAATCGGCGAGTCATACAAGGAGAAGCAGC GAACAA

TTCAGGCCGCCAAGGAAGTCGAGCAGAGGCGAGCTGGCGGCTACAGCCGTAAATACG CTAGTA

AAGCTAAGAACCTGGCCGACGATATGGTGCGCAATACTGCTAGAGACCTGCTGTACT ATGCAGT

GACGCAGGACGCAATGCTGATATTCGAGAATCTGTCCAGAGGATTCGGAAGGCAGGG CAAGCG

GACGTTCATGGCCGAGCGCCAGTATACAAGGATGGAGGATTGGTTAACGGCCAAGCT TGCCTAT

GAGGGGCTACCTAGTAAGACCTATCTGTCTAAGACGCTGGCTCAATACACCAGTAAG ACCTGCT

CAAACTGTGGCTTTACAATCACTTCTGCTGATTATGATAGAGTGCTCGAGAAGCTAA AAAAAAC

TGCCACCGGCTGGATGACTACTATTAATGGGAAGGAACTGAAAGTGGAAGGACAGAT TACCTAT

TATAATCGCTACAAGCGTCAAAACGTCGTCAAGGACCTGTCGGTGGAATTGGACAGA CTCAGTG

AAGAGTCCGTGAACAATGATATCAGCTCCTGGACAAAAGGGCGCAGTGGGGAGGCAC TCAGCT

TGCTTAAAAAGAGGTTTTCACATCGGCCGGTCCAGGAGAAATTTGTCTGCCTGAACT GCGGATT

CGAGACACACGCCGACGAGCAGGCAGCACTGAACATTGCCAGATCCTGGCTGTTCCT TAGGTCC

CAGGAATATAAGAAGTACCAGACTAACAAAACCACGGGAAACACAGATAAAAGGGCC TTTGTC

GAAACTTGGCAATCCTTTTACCGGAAGAAGTTAAAGGAAGTGTGGAAGCCC

SE ATGGATAAGAAATACTCAATAGGCTTAGCAATCGGCACAAATAGCGTCGGATGGGCGGTG ATC

Q ACTGATGAATATAAGGTTCCGTCTAAAAAGTTCAAGGTTCTGGGAAATACAGACCGCCAC AGTA

no TCAAAAAAAATCTTATAGGGGCTCTTTTATTTGACAGTGGAGAGACAGCGGAAGCGACTC GTCT

N CAAACGGACAGCTCGTAGAAGGTATACACGTCGGAAGAATCGTATTTGTTATCTACAGGA GATT

O: TTTTCAAATGAGATGGCGAAAGTAGATGATAGTTTCTTTCATCGACTTGAAGAGTCTTTT TTGGT 16 GGAAGAAGACAAGAAGCATGAACGTCATCCTATTTTTGGAAATATAGTAGATGAAGTTGC TTAT

7 CATGAGAAATATCCAACTATCTATCATCTGCGAAAAAAATTGGTAGATTCTACTGATAAA GCGG

ATTTGCGCTTAATCTATTTGGCCTTAGCGCATATGATTAAGTTTCGTGGTCATTTTT TGATTGAGG

GAGATTTAAATCCTGATAATAGTGATGTGGACAAACTATTTATCCAGTTGGTACAAA CCTACAA TCAATTATTTGAAGAAAACCCTATTAACGCAAGTGGAGTAGATGCTAAAGCGATTCTTTC TGCA

CGATTGAGTAAATCAAGACGATTAGAAAATCTCATTGCTCAGCTCCCCGGTGAGAAG AAAAATG

GCTTATTTGGGAATCTCATTGCTTTGTCATTGGGTTTGACCCCTAATTTTAAATCAA ATTTTGATT

TGGCAGAAGATGCTAAATTACAGCTTTCAAAAGATACTTACGATGATGATTTAGATA ATTTATT

GGCGCAAATTGGAGATCAATATGCTGATTTGTTTTTGGCAGCTAAGAATTTATCAGA TGCTATTT

TACTTTCAGATATCCTAAGAGTAAATACTGAAATAACTAAGGCTCCCCTATCAGCTT CAATGATT

AAACGCTACGATGAACATCATCAAGACTTGACTCTTTTAAAAGCTTTAGTTCGACAA CAACTTCC

AGAAAAGTATAAAGAAATCTTTTTTGATCAATCAAAAAACGGATATGCAGGTTATAT TGATGGG

GGAGCTAGCCAAGAAGAATTTTATAAATTTATCAAACCAATTTTAGAAAAAATGGAT GGTACTG

AGGAATTATTGGTGAAACTAAATCGTGAAGATTTGCTGCGCAAGCAACGGACCTTTG ACAACGG

CTCTATTCCCCATCAAATTCACTTGGGTGAGCTGCATGCTATTTTGAGAAGACAAGA AGACTTTT

ATCCATTTTTAAAAGACAATCGTGAGAAGATTGAAAAAATCTTGACTTTTCGAATTC CTTATTAT

GTTGGTCCATTGGCGCGTGGCAATAGTCGTTTTGCATGGATGACTCGGAAGTCTGAA GAAACAA

TTACCCCATGGAATTTTGAAGAAGTTGTCGATAAAGGTGCTTCAGCTCAATCATTTA TTGAACGC

ATGACAAACTTTGATAAAAATCTTCCAAATGAAAAAGTACTACCAAAACATAGTTTG CTTTATG

AGTATTTTACGGTTTATAACGAATTGACAAAGGTCAAATATGTTACTGAAGGAATGC GAAAACC

AGCATTTCTTTCAGGTGAACAGAAGAAAGCCATTGTTGATTTACTCTTCAAAACAAA TCGAAAA

GTAACCGTTAAGCAATTAAAAGAAGATTATTTCAAAAAAATAGAATGTTTTGATAGT GTTGAAA

TTTCAGGAGTTGAAGATAGATTTAATGCTTCATTAGGTACCTACCATGATTTGCTAA AAATTATT

AAAGATAAAGATTTTTTGGATAATGAAGAAAATGAAGATATCTTAGAGGATATTGTT TTAACAT

TGACCTTATTTGAAGATAGGGAGATGATTGAGGAAAGACTTAAAACATATGCTCACC TCTTTGA

TGATAAGGTGATGAAACAGCTTAAACGTCGCCGTTATACTGGTTGGGGACGTTTGTC TCGAAAA

TTGATTAATGGTATTAGGGATAAGCAATCTGGCAAAACAATATTAGATTTTTTGAAA TCAGATG

GTTTTGCCAATCGCAATTTTATGCAGCTGATCCATGATGATAGTTTGACATTTAAAG AAGACATT

CAAAAAGCACAAGTGTCTGGACAAGGCGATAGTTTACATGAACATATTGCAAATTTA GCTGGTA

GCCCTGCTATTAAAAAAGGTATTTTACAGACTGTAAAAGTTGTTGATGAATTGGTCA AAGTAAT

GGGGCGGCATAAGCCAGAAAATATCGTTATTGAAATGGCACGTGAAAATCAGACAAC TCAAAA

GGGCCAGAAAAATTCGCGAGAGCGTATGAAACGAATCGAAGAAGGTATCAAAGAATT AGGAAG

TCAGATTCTTAAAGAGCATCCTGTTGAAAATACTCAATTGCAAAATGAAAAGCTCTA TCTCTATT

ATCTCCAAAATGGAAGAGACATGTATGTGGACCAAGAATTAGATATTAATCGTTTAA GTGATTA

TGATGTCGATCACATTGTTCCACAAAGTTTCCTTAAAGACGATTCAATAGACAATAA GGTCTTAA

CGCGTTCTGATAAAAATCGTGGTAAATCGGATAACGTTCCAAGTGAAGAAGTAGTCA AAAAGAT

GAAAAACTATTGGAGACAACTTCTAAACGCCAAGTTAATCACTCAACGTAAGTTTGA TAATTTA

ACGAAAGCTGAACGTGGAGGTTTGAGTGAACTTGATAAAGCTGGTTTTATCAAACGC CAATTGG

TTGAAACTCGCCAAATCACTAAGCATGTGGCACAAATTTTGGATAGTCGCATGAATA CTAAATA

CGATGAAAATGATAAACTTATTCGAGAGGTTAAAGTGATTACCTTAAAATCTAAATT AGTTTCT

GACTTCCGAAAAGATTTCCAATTCTATAAAGTACGTGAGATTAACAATTACCATCAT GCCCATG

ATGCGTATCTAAATGCCGTCGTTGGAACTGCTTTGATTAAGAAATATCCAAAACTTG AATCGGA

GTTTGTCTATGGTGATTATAAAGTTTATGATGTTCGTAAAATGATTGCTAAGTCTGA GCAAGAAA

TAGGCAAAGCAACCGCAAAATATTTCTTTTACTCTAATATCATGAACTTCTTCAAAA CAGAAATT

ACACTTGCAAATGGAGAGATTCGCAAACGCCCTCTAATCGAAACTAATGGGGAAACT GGAGAA

ATTGTCTGGGATAAAGGGCGAGATTTTGCCACAGTGCGCAAAGTATTGTCCATGCCC CAAGTCA ATATTGTCAAGAAAACAGAAGTACAGACAGGCGGATTCTCCAAGGAGTCAATTTTACCAA AAA

GAAATTCGGACAAGCTTATTGCTCGTAAAAAAGACTGGGATCCAAAAAAATATGGTG GTTTTGA

TAGTCCAACGGTAGCTTATTCAGTCCTAGTGGTTGCTAAGGTGGAAAAAGGGAAATC GAAGAAG

TTAAAATCCGTTAAAGAGTTACTAGGGATCACAATTATGGAAAGAAGTTCCTTTGAA AAAAATC

CGATTGACTTTTTAGAAGCTAAAGGATATAAGGAAGTTAAAAAAGACTTAATCATTA AACTACC

TAAATATAGTCTTTTTGAGTTAGAAAACGGTCGTAAACGGATGCTGGCTAGTGCCGG AGAATTA

CAAAAAGGAAATGAGCTGGCTCTGCCAAGCAAATATGTGAATTTTTTATATTTAGCT AGTCATT

ATGAAAAGTTGAAGGGTAGTCCAGAAGATAACGAACAAAAACAATTGTTTGTGGAGC AGCATA

AGCATTATTTAGATGAGATTATTGAGCAAATCAGTGAATTTTCTAAGCGTGTTATTT TAGCAGAT

GCCAATTTAGATAAAGTTCTTAGTGCATATAACAAACATAGAGACAAACCAATACGT GAACAAG

CAGAAAATATTATTCATTTATTTACGTTGACGAATCTTGGAGCTCCCGCTGCTTTTA AATATTTTG

ATACAACAATTGATCGTAAACGATATACGTCTACAAAAGAAGTTTTAGATGCCACTC TTATCCA

TCAATCCATCACTGGTCTTTATGAAACACGCATTGATTTGAGTCAGCTAGGAGGTGA CTGA

SE ATGGATAAGAAGTATTCAATTGGACTTGCGATTGGCACTAACAGTGTGGGCTGGGCGGTG ATTA

Q CAGACGAGTATAAGGTGCCGTCAAAAAAGTTTAAAGTTCTGGGCAACACTGATCGCCATT CCAT

no CAAGAAAAACCTAATCGGGGCCCTTCTTTTTGATAGTGGCGAAACGGCCGAGGCGACGCG TCTA

N AAACGTACCGCGCGGCGTCGCTACACCCGACGAAAAAACCGTATTTGTTACCTTCAGGAG ATCT

O: TCAGTAACGAAATGGCTAAGGTGGACGATTCATTCTTCCACCGTCTGGAGGAGTCCTTTT TAGTT 16 GAAGAAGACAAGAAGCATGAGCGACACCCAATTTTTGGTAACATTGTCGACGAAGTCGCC TATC 8 ACGAAAAATATCCGACCATTTATCACCTGCGCAAAAAACTGGTCGATAGCACGGATAAAG CGG

ATCTGCGGCTTATTTACCTGGCGCTTGCCCACATGATCAAGTTCCGCGGCCACTTCC TGATAGAA

GGAGACCTGAACCCGGATAATAGCGATGTAGACAAACTGTTTATTCAGCTGGTCCAG ACCTACA

ACCAGCTGTTTGAAGAAAATCCGATTAATGCGTCAGGCGTGGATGCGAAAGCGATAC TGAGTGC

CCGCCTGTCGAAATCTCGCCGTCTCGAAAATCTGATTGCACAGCTGCCCGGCGAAAA AAAAAAC

CCTGGCAGAGGATGCGAAGCTTCAACTGTCGAAGGACACCTATGACGATGATCTGGA TAATCTT

CTGGCACAAATCGGTGATCAGTATGCGGATTTATTCCTTGCAGCGAAAAACCTATCT GACGCAA

TTCTGTTGAGCGATATCCTCCGCGTCAACACCGAAATCACTAAAGCCCCCCTGTCAG CGTCGATG

ATTAAACGTTATGATGAGCACCATCAGGATCTGACCTTGCTAAAGGCGCTGGTGCGA CAGCAGC

TTCCCGAAAAATATAAAGAGATCTTTTTTGATCAATCGAAGAATGGTTATGCCGGAT ACATTGA

TGGCGGAGCCAGTCAGGAAGAATTTTACAAATTCATCAAACCGATCCTGGAAAAAAT GGATGG

CACAGAAGAACTGCTTGTGAAATTGAACCGGGAAGATTTACTGCGCAAACAGCGTAC GTTCGAC

AACGGCTCCATACCCCATCAGATTCACTTAGGTGAGCTGCATGCAATACTCCGTCGC CAGGAAG

ATTTTTATCCATTTTTAAAAGACAACCGTGAGAAGATTGAAAAAATTTTAACTTTTC GTATTCCA

TATTACGTCGGGCCTTTGGCCCGAGGTAACTCTCGATTCGCCTGGATGACGAGAAAA AGCGAGG

AGACCATCACTCCGTGGAATTTTGAAGAGGTTGTTGATAAAGGCGCGAGCGCCCAGT CGTTTAT

CGAACGTATGACCAACTTTGATAAAAATCTGCCGAATGAAAAAGTGCTTCCGAAGCA TTCTCTG

TTGTATGAATATTTCACTGTGTACAATGAGTTAACGAAAGTGAAATATGTGACCGAA GGCATGC

GGAAACCTGCTTTTCTGTCCGGAGAACAGAAAAAAGCAATTGTGGACCTGCTGTTCA AAACGAA

CCGGAAAGTAACTGTGAAGCAGCTGAAAGAGGACTACTTCAAAAAAATCGAATGCTT CGACTC

AGTAGAGATCTCTGGTGTTGAAGATCGCTTCAACGCGAGTCTGGGAACGTACCATGA TTTGTTG

AAAATCATCAAAGATAAAGACTTTCTGGATAACGAAGAGAATGAGGACATTCTTGAA GATATTG TTTTGACACTGACTCTGTTTGAGGATCGCGAAATGATTGAAGAGCGCCTGAAAACGTATG CCCA

TTTATTCGATGACAAAGTCATGAAGCAGCTGAAACGTCGCCGCTATACTGGGTGGGG CAGACTT

TCACGTAAATTGATCAATGGTATAAGAGACAAACAGAGCGGCAAAACTATCTTAGAT TTCCTGA

AGAGTGATGGATTTGCCAACCGGAATTTTATGCAGCTTATACATGATGACTCGCTAA CGTTTAA

AGAAGACATTCAGAAGGCGCAGGTCAGCGGCCAGGGTGATTCGCTGCATGAACACAT TGCAAA

TCTTGCCGGATCGCCAGCGATCAAAAAAGGCATCCTTCAGACAGTAAAAGTTGTGGA TGAACTG

GTGAAAGTAATGGGTCGTCACAAGCCAGAAAATATTGTGATCGAAATGGCCCGGGAA AATCAG

ACTACTCAAAAAGGTCAGAAAAATTCTCGCGAGCGTATGAAACGTATTGAAGAAGGC ATCAAA

GAGCTAGGCAGCCAGATATTAAAGGAACATCCGGTTGAGAACACTCAGCTGCAGAAT GAAAAA

CTGTATCTGTATTATCTTCAGAACGGCCGTGACATGTATGTTGATCAAGAACTGGAT ATCAATCG

CTTGTCCGATTATGACGTGGATCATATTGTTCCGCAAAGCTTTCTGAAAGACGATTC TATTGACA

ATAAAGTACTGACACGTTCGGACAAAAACCGTGGTAAAAGCGATAACGTACCGTCGG AAGAAG

TTGTTAAGAAAATGAAAAATTATTGGCGCCAACTCCTGAATGCTAAATTGATTACCC AGCGGAA

ATTTGATAACTTAACCAAAGCCGAGCGGGGTGGCTTAAGTGAACTGGATAAAGCGGG TTTTATT

AAACGCCAACTGGTAGAAACCCGCCAGATAACGAAACATGTAGCTCAAATCCTCGAT AGTCGC

ATGAATACGAAATATGACGAAAATGATAAATTGATCCGTGAAGTAAAAGTGATTACT CTTAAAA

GCAAATTGGTATCTGATTTTCGGAAAGATTTCCAATTCTATAAGGTGAGAGAAATTA ACAATTA

CCATCATGCACATGATGCGTATTTAAATGCAGTTGTTGGCACCGCCTTAATCAAAAA ATATCCG

AAATTAGAATCTGAGTTCGTGTATGGTGATTATAAAGTTTATGATGTTCGAAAAATG ATTGCTAA

GTCTGAACAGGAAATCGGCAAAGCGACCGCAAAGTATTTTTTTTATAGCAATATTAT GAATTTTT

TTAAAACTGAGATTACCCTGGCGAATGGCGAAATTCGCAAACGTCCTCTGATTGAAA CCAATGG

CGAAACCGGCGAGATAGTATGGGACAAGGGCCGTGATTTTGCGACCGTCCGGAAAGT CCTGTCA

ATGCCGCAGGTGAATATTGTCAAGAAAACAGAAGTTCAGACAGGCGGTTTTAGTAAA GAGTCTA

TTCTGCCCAAACGTAATTCGGATAAATTGATTGCCCGCAAGAAAGATTGGGATCCGA AGAAATA

TGGTGGATTCGATTCTCCGACGGTCGCCTATAGCGTTCTAGTCGTCGCCAAGGTCGA AAAAGGT

AAATCCAAAAAACTGAAATCTGTGAAAGAACTGTTAGGCATTACAATCATGGAACGT AGTAGTT

TTGAAAAGAACCCGATCGACTTCCTCGAGGCGAAAGGCTACAAAGAAGTCAAGAAGG ATTTGA

TTATTAAACTCCCAAAATATTCATTATTTGAGTTAGAAAACGGTAGGAAGCGTATGC TGGCGAG

TGCTGGGGAATTACAGAAAGGGAATGAGTTAGCACTGCCGTCAAAATATGTGAACTT TCTGTAT

CTGGCCTCCCATTACGAGAAACTGAAAGGTAGCCCGGAAGATAATGAACAGAAACAA CTATTT

GTCGAGCAACACAAACATTATCTGGATGAAATTATTGAACAGATTAGTGAATTCTCT AAACGTG

TTATTTTAGCGGATGCCAACCTTGACAAGGTGCTGAGCGCATATAATAAACACCGTG ATAAACC

CATTCGTGAACAGGCTGAAAATATCATACATCTGTTCACGTTAACCAACTTGGGAGC TCCTGCC

GCTTTTAAATATTTCGATACCACAATTGACCGCAAACGTTATACGTCTACAAAAGAG GTGCTCG

ATGCGACCCTGATCCACCAGTCTATTACAGGCCTGTATGAAACTCGTATCGACCTGT CACAACTG

GGCGGCGACTGA

SE ATGGACAAGAAATATTCAATCGGTTTAGCAATAGGAACTAACTCAGTAGGTTGGGCTGTA ATTA

Q CAGACGAATACAAGGTACCGTCCAAAAAGTTTAAGGTGTTGGGGAACACAGATAGACACT CTA

no TAAAAAAAAATTTAATAGGCGCTTTACTTTTCGATTCAGGCGAAACTGCAGAAGCGACAC GTCT

N GAAGAGAACCGCTAGACGTAGATACACGAGGAGAAAGAACAGAATATGTTACCTACAAGA AAT

O: TTTTTCTAATGAGATGGCTAAGGTGGATGATTCGTTTTTTCATAGACTCGAAGAATCTTT CTTAG 16 TTGAAGAAGATAAAAAACACGAAAGGCATCCTATCTTTGGAAACATAGTTGATGAGGTGG CTTA CCATGAAAAATATCCCACTATATATCACCTTAGAAAAAAGTTGGTTGATTCAACCGACAA AGCG

GATCTAAGGTTAATTTACCTCGCGTTGGCTCACATGATAAAATTTAGAGGACATTTC TTGATCGA

AGGTGATTTAAATCCCGATAACTCTGATGTAGATAAACTGTTCATCCAGTTGGTTCA AACATATA

ATCAGTTGTTCGAAGAGAACCCCATTAACGCATCAGGTGTTGATGCTAAAGCAATCT TATCAGC

AAGGTTGAGCAAGAGCAGACGTCTGGAAAACTTGATTGCCCAATTGCCAGGTGAAAA GAAGAA

CGGTCTTTTTGGAAATTTAATTGCACTTTCACTTGGGTTGACACCGAATTTTAAAAG CAATTTCG

ACCTCGCTGAGGATGCTAAACTCCAGTTATCTAAGGATACATATGACGATGATTTGG ATAATCT

ATTGGCCCAGATAGGTGATCAGTATGCAGATTTGTTTTTGGCAGCTAAGAATTTATC AGATGCA

ATTCTACTGAGCGATATTTTAAGGGTGAATACAGAAATAACTAAAGCACCTTTGTCT GCATCTAT

GATAAAAAGATACGATGAACACCATCAAGATCTCACACTATTAAAAGCTTTAGTTAG ACAACAA

TTACCAGAAAAATATAAAGAAATCTTTTTCGATCAGTCCAAGAACGGATACGCCGGC TATATAG

ATGGCGGTGCCTCCCAAGAAGAATTTTACAAATTTATCAAACCCATTTTGGAAAAGA TGGATGG

TACTGAAGAATTATTGGTCAAATTAAACAGGGAAGATTTATTAAGAAAACAAAGGAC CTTTGAT

AATGGTTCTATTCCACACCAAATCCATCTAGGGGAATTACATGCGATTCTTAGAAGA CAAGAAG

ATTTTTATCCATTCTTGAAAGATAACAGGGAAAAGATAGAGAAAATCTTAACTTTTA GAATTCC

CTACTACGTCGGGCCCTTAGCTAGGGGGAATTCTAGATTCGCCTGGATGACACGCAA ATCAGAA

GAAACAATTACGCCTTGGAATTTTGAAGAAGTTGTTGATAAAGGAGCCTCTGCTCAA TCTTTTAT

TGAACGAATGACCAATTTTGATAAGAATTTACCCAATGAAAAGGTCTTACCCAAACA TTCACTC

CTATACGAGTACTTTACTGTTTACAATGAGTTGACAAAAGTGAAGTATGTTACCGAG GGTATGC

GAAAACCTGCTTTCTTGAGTGGTGAACAAAAGAAGGCCATTGTTGACTTGTTATTCA AAACTAA

CAGAAAGGTCACTGTGAAGCAGCTTAAAGAAGATTATTTCAAAAAGATCGAATGTTT CGACTCG

GTAGAAATTAGTGGTGTGGAAGATAGATTTAATGCTTCTCTTGGAACATATCATGAT CTACTAA

AGATCATCAAAGATAAAGATTTCTTGGACAATGAAGAAAATGAAGATATTCTTGAAG ACATCGT

GTTGACACTTACATTGTTTGAGGACAGAGAAATGATTGAAGAAAGGCTGAAGACCTA CGCCCAT

TTGTTTGATGATAAAGTCATGAAACAGTTAAAGAGGAGAAGGTATACCGGATGGGGT AGGCTGT

CTCGCAAATTGATTAATGGTATTCGTGATAAACAATCGGGTAAAACAATCCTAGATT TCCTGAA

GTCCGATGGTTTCGCCAACAGGAATTTTATGCAATTGATTCATGACGATTCTTTGAC TTTTAAAG

AGGATATTCAGAAAGCACAGGTCTCAGGACAGGGCGATTCACTCCATGAACATATAG CTAACCT

GGCTGGCTCCCCTGCTATTAAGAAAGGTATCTTGCAAACCGTCAAAGTAGTAGACGA ACTTGTT

AAAGTTATGGGAAGACACAAACCTGAAAATATCGTTATTGAAATGGCTCGCGAAAAC CAGACA

ACACAAAAGGGTCAAAAGAATTCGAGAGAGAGAATGAAGCGTATCGAAGAAGGTATT AAAGA

ACTTGGGTCCCAAATACTTAAAGAACATCCAGTAGAAAACACTCAGCTTCAAAATGA AAAATTA

TACTTATATTATCTTCAGAATGGCCGCGATATGTATGTTGACCAAGAGTTAGATATA AATAGGTT

GTCTGATTACGACGTGGATCATATTGTACCTCAATCTTTTCTAAAAGATGATTCAAT TGATAATA

AGGTATTAACGAGAAGTGATAAAAATAGAGGTAAATCTGACAACGTGCCAAGCGAAG AGGTGG

TGAAGAAAATGAAAAATTATTGGCGTCAACTGTTGAACGCCAAGTTAATTACGCAGA GAAAGTT

TGATAATCTAACAAAAGCTGAAAGAGGAGGCCTATCTGAGTTAGATAAGGCCGGTTT TATCAAA

CGTCAGTTAGTTGAAACCAGGCAAATCACGAAGCACGTTGCCCAAATTCTAGATTCA AGGATGA

ATACCAAATACGATGAAAACGATAAACTGATTCGGGAAGTCAAGGTTATAACTCTAA AAAGCA

AACTAGTTTCAGATTTTCGCAAAGATTTTCAATTTTACAAAGTTCGAGAAATCAATA ATTATCAT

CATGCTCACGACGCGTACTTGAACGCGGTCGTTGGTACAGCTTTAATAAAGAAATAT CCTAAAC

TGGAATCGGAATTTGTATATGGGGATTACAAAGTATACGACGTGAGAAAGATGATCG CTAAATC TGAACAAGAAATTGGGAAAGCAACTGCCAAATATTTTTTTTACAGCAACATAATGAATTT TTTTA

AAACGGAAATTACATTGGCAAATGGCGAAATTAGAAAGCGCCCATTGATAGAGACCA ATGGAG

AGACTGGGGAAATCGTGTGGGATAAAGGACGTGATTTTGCCACAGTGAGGAAAGTGT TAAGTA

TGCCACAAGTTAATATTGTAAAAAAGACCGAGGTCCAAACGGGTGGATTTAGCAAAG AATCAA

TTTTACCTAAGAGAAATTCAGATAAATTAATTGCCCGCAAAAAGGATTGGGATCCTA AAAAATA

TGGTGGTTTTGATTCCCCAACAGTTGCTTACTCCGTCCTAGTTGTTGCTAAGGTTGA AAAAGGAA

AGTCTAAGAAACTTAAATCCGTAAAAGAGTTACTGGGAATTACAATAATGGAAAGAT CCTCTTT

CGAAAAGAACCCTATTGACTTCTTGGAGGCGAAAGGTTATAAAGAAGTCAAAAAAGA TTTGATC

ATAAAACTACCAAAGTATTCTCTATTTGAATTGGAAAACGGCAGAAAAAGGATGTTG GCAAGCG

CTGGTGAACTACAAAAGGGTAACGAATTGGCATTGCCGAGTAAATACGTGAATTTTC TATATTT

GGCATCACATTACGAAAAGTTAAAGGGATCACCCGAGGATAACGAGCAGAAACAACT GTTTGT

TGAACAACACAAACATTATCTTGATGAAATTATAGAACAAATTAGTGAGTTCAGTAA GAGAGTT

ATTTTAGCCGATGCAAATTTAGACAAAGTTTTATCTGCTTATAACAAACATAGAGAT AAGCCTAT

AAGGGAACAAGCCGAAAATATTATTCATTTGTTTACGTTAACAAATTTAGGGGCACC AGCAGCA

TTCAAGTACTTCGATACGACTATCGATCGTAAGCGTTACACATCTACCAAAGAAGTT CTTGATGC

AACTTTGATTCATCAATCTATAACAGGCTTATATGAAACTAGAATCGATCTGTCACA ACTTGGTG

GTGACTAA

SE ATGGACAAGAAGTACTCAATTGGGCTTGCTATCGGCACTAACAGCGTTGGCTGGGCGGTC ATCA

Q CAGACGAATATAAGGTCCCATCAAAGAAATTCAAAGTCCTTGGCAATACGGACCGACATT CAAT

no CAAGAAGAACCTGATTGGAGCTCTGCTGTTTGATTCCGGTGAAACCGCCGAGGCAACACG ATTG

N AAACGTACCGCTCGTAGGAGGTATACGCGGCGGAAAAATAGGATCTGCTATCTGCAGGAA ATA

O: TTTAGCAACGAAATGGCCAAGGTAGACGACAGCTTCTTCCACCGGCTCGAGGAATCTTTC CTCG 17 TGGAAGAAGACAAAAAGCACGAGCGCCACCCCATTTTCGGCAATATCGTGGACGAGGTAG CTT 0 ACCATGAAAAGTATCCAACTATTTACCACTTACGTAAGAAGTTAGTGGACAGCACCGATA AAGC

CGACCTTCGCCTGATTTACCTAGCACTTGCACACATGATTAAGTTCCGAGGCCACTT CTTGATAG

AGGGAGACCTGAATCCTGACAATTCCGATGTGGATAAATTGTTCATCCAGCTGGTAC AGACATA

CAATCAGTTGTTTGAGGAAAATCCGATTAATGCCAGTGGCGTGGACGCCAAGGCTAT CCTGTCT

GCTCGGCTTAGTAAGAGTAGACGCCTGGAAAATCTAATCGCACAGCTGCCCGGCGAA AAGAAA

AATGGACTGTTCGGTAATTTGATCGCCCTGAGCCTGGGCCTCACCCCTAACTTTAAG TCTAACTT

CGACCTGGCCGAAGATGCTAAGCTCCAGCTGTCCAAAGATACTTACGATGACGATCT CGATAAT

CTACTGGCTCAGATCGGGGACCAGTACGCTGACCTGTTTCTAGCTGCCAAGAACCTC AGTGACG

CCATTCTCCTGTCCGATATTCTGAGGGTTAACACTGAAATTACAAAGGCCCCGCTGA GCGCGAG

CATGATCAAAAGGTACGACGAGCATCACCAGGACCTCACGCTGCTGAAGGCCTTAGT CAGACA

GCAACTGCCCGAAAAGTACAAAGAAATCTTTTTCGACCAATCCAAGAACGGGTACGC CGGCTAC

ATTGATGGCGGGGCTTCACAAGAGGAGTTTTACAAGTTTATCAAGCCCATCCTGGAG AAAATGG

ACGGCACTGAAGAACTGCTTGTGAAACTCAATAGGGAAGACTTACTGAGGAAACAGC GCACAT

TCGATAATGGCTCCATACCCCACCAAATCCATCTGGGAGAGTTGCATGCCATCTTGC GAAGGCA

GGAGGACTTCTACCCCTTTCTTAAGGACAACAGGGAGAAAATCGAGAAAATTCTGAC TTTCCGT

ATCCCCTACTACGTGGGCCCACTTGCTCGCGGAAACTCACGATTCGCATGGATGACC AGAAAGT

CCGAGGAAACAATTACACCCTGGAATTTTGAGGAGGTAGTAGACAAGGGAGCCAGCG CTCAAT

CTTTCATTGAGAGGATGACGAATTTCGACAAGAACCTTCCAAACGAGAAAGTGCTTC CTAAGCA

CAGCCTGCTGTATGAGTATTTCACGGTGTACAACGAACTTACGAAGGTCAAGTATGT GACAGAG GGTATGCGGAAACCTGCTTTTCTGTCTGGTGAACAGAAGAAAGCTATCGTCGATCTCCTG TTTAA

AACCAACCGAAAGGTGACGGTGAAACAGTTGAAGGAGGATTACTTCAAGAAGATCGA GTGTTT

TGATTCTGTTGAAATTTCTGGGGTCGAGGATAGATTCAACGCCAGCCTGGGCACCTA CCATGATT

TGCTGAAGATTATCAAGGATAAGGATTTTCTGGATAATGAGGAGAATGAAGACATTT TGGAGGA

TATAGTGCTGACCCTCACCCTGTTCGAGGACCGGGAGATGATCGAGGAGAGACTGAA AACATAC

GCTCACCTGTTTGACGACAAGGTCATGAAGCAGCTTAAGAGACGCCGTTACACAGGC TGGGGAA

GATTATCCCGCAAATTAATCAACGGGATACGCGATAAACAAAGTGGCAAGACCATAC TCGACTT

CCTAAAGAGCGATGGATTCGCAAATCGCAATTTCATGCAGTTGATCCACGACGATAG CCTGACC

TTCAAAGAGGACATTCAGAAAGCGCAGGTGAGTGGTCAAGGGGATTCCCTGCACGAA CACATT

GCTAACTTGGCTGGATCACCAGCCATTAAGAAAGGCATACTGCAGACCGTTAAAGTG GTAGATG

AGCTTGTGAAAGTCATGGGAAGACATAAGCCAGAGAACATAGTGATCGAAATGGCCA GGGAAA

ATCAGACCACGCAAAAGGGGCAGAAGAACTCAAGAGAGCGTATGAAGAGGATCGAGG AGGGC

ATCAAGGAGCTGGGTAGCCAGATCCTTAAAGAGCACCCAGTTGAGAATACCCAGCTG CAGAAT

GAGAAACTTTATCTCTATTATCTCCAGAACGGAAGGGATATGTATGTCGACCAGGAA CTGGACA

TCAATCGGCTGAGTGATTATGACGTCGACCACATTGTGCCTCAAAGCTTTCTGAAGG ATGATTCC

ATCGACAATAAAGTTCTGACCCGGTCTGATAAAAATAGAGGCAAATCCGACAACGTA CCTAGCG

AAGAAGTCGTCAAAAAAATGAAGAACTATTGGAGGCAGTTGCTGAATGCCAAGCTGA TTACAC

AACGCAAGTTTGACAATCTCACCAAGGCAGAAAGGGGGGGCCTGTCAGAACTCGACA AAGCAG

GTTTCATTAAAAGGCAGCTAGTTGAAACTAGGCAGATTACTAAGCACGTGGCCCAGA TCCTCGA

CTCACGGATGAATACAAAGTATGATGAGAATGATAAGCTAATCCGGGAGGTGAAGGT GATTAC

TCTGAAATCTAAGCTGGTGTCAGATTTCAGAAAAGACTTCCAGTTCTACAAAGTCAG AGAGATC

AACAATTATCACCATGCCCACGATGCATATCTTAATGCAGTAGTGGGGACAGCTCTG ATCAAAA

AATATCCTAAACTGGAGTCTGAATTCGTTTATGGTGACTATAAAGTCTATGACGTCA GAAAAAT

GATCGCAAAGAGCGAGCAGGAGATAGGGAAGGCCACAGCAAAGTACTTCTTTTACAG TAATAT

GAGACTAACGGAGAGACAGGGGAGATTGTTTGGGATAAGGGCCGTGACTTCGCCACC GTTAGG

AAAGTGCTGTCCATGCCCCAGGTGAACATTGTGAAGAAGACAGAAGTGCAGACGGGT GGGTTC

TCAAAAGAGTCTATTCTGCCTAAGCGGAATAGTGACAAACTGATCGCACGTAAAAAG GACTGG

GATCCAAAAAAGTACGGCGGATTCGACAGTCCTACCGTTGCATATTCCGTGCTTGTG GTCGCTA

AGGTGGAGAAGGGAAAAAGCAAGAAACTGAAGTCAGTCAAAGAACTACTGGGCATAA CGATC

ATGGAGCGCTCCAGTTTCGAAAAAAACCCAATCGATTTTCTTGAAGCCAAGGGATAC AAGGAGG

TAAAGAAAGACCTTATCATTAAGCTGCCTAAGTACAGTCTGTTCGAACTGGAGAATG GGAGGAA

GCGCATGCTGGCATCAGCTGGAGAACTCCAAAAAGGGAACGAGTTGGCCCTCCCCTC AAAGTAT

GTCAATTTTCTCTACCTGGCTTCTCACTACGAGAAGTTAAAGGGGTCTCCAGAGGAT AATGAGC

AGAAACAGCTGTTTGTGGAACAGCACAAGCACTATTTGGACGAAATCATCGAACAAA TTTCCGA

GTTCAGTAAGAGGGTGATTCTGGCCGACGCAAACCTTGACAAAGTTCTGTCCGCATA CAATAAG

CACAGAGACAAACCAATCCGCGAGCAAGCCGAGAATATAATTCACCTTTTCACTCTG ACTAATC

TGGGGGCCCCCGCAGCATTTAAATATTTCGATACAACAATCGACCGGAAGCGGTATA CATCTAC

TAAGGAAGTCCTCGATGCGACACTGATCCACCAGTCAATTACAGGTTTATATGAAAC AAGAATC

GACCTGTCCCAGCTGGGCGGCGACTAG

SE AAAATTCcatGCAAAATGCTCCGGTTTCATGTCATCAAAATGATGACGTAATTAAGCATT GATAAT

Q TGAGATCCCTCTCCCTGACAGGATGATTACATAAATAATAGTGACAAAAATAAATTATTT ATTTA E ) TCCAGAAAATGAATTGGAAAATCAGGAGAGCGTTTTCAATCCTACCTCTGGCGCAGTTGA TATG N TcaaaCAGGTtgccgtcactgcgtcttttactggctcttctcgctaaccaaaccggtaac cccgcttattaaaagcattctgtaacaaagcgggaccaaagc O: catgacaaaaacgcgtaacaaaagtgtctataatcacggcagaaaagtccacattgatta tttgcacggcgtcacactttgctatgccatagcatttttatccataa 17 gattagcggatcctacctgacgctttttatcgcaactctctactgtttctccatacccgt ttttttgggctagcaccgcctatctcgtgtgagataggcggagatacga 1 actttaagAAGGAGatataccATGGAACAGGAATATTATCTGGGCTTGGACATGGGCACC GGTTCCGTCG GCTGGGCTGTTACTGACAGTGAATATCACGTTCTAAGAAAGCATGGTAAGGCATTGTGGG GTGT AAGACTTTTCGAATCTGCTTCCACTGCTGAAGAGCGTAGAATGTTTAGAACGAGTCGACG TAGG CTAGACAGGCGCAATTGGAGAATCGAAATTTTACAAGAAATTTTTGCGGAAGAGATATCT AAGA AAGACCCAGGCTTTTTCCTGAGAATGAAGGAATCTAAGTATTACCCTGAGGATAAAAGAG ATAT AAATGGTAACTGTCCCGAATTGCCTTACGCATTATTTGTGGACGATGATTTTACCGATAA GGATT ACCATAAAAAGTTCCCAACTATCTACCATTTACGCAAAATGTTAATGAATACAGAGGAAA CCCC AGACATAAGACTAGTTTATCTGGCAATACACCATATGATGAAACATAGAGGCCATTTCTT ACTTT CCGGGGATATCAACGAAATCAAAGAGTTTGGTACCACATTTAGTAAGTTACTGGAAAACA TAAA GAATGAAGAATTGGATTGGAACTTAGAACTCGGAAAAGAAGAATACGCGGTTGTCGAATC TAT CCTGAAGGATAATATGCTGAATAGGTCGACCAAAAAAACTAGGCTGATCAAAGCACTGAA AGC CAAATCTATCTGCGAAAAAGCTGTTTTAAATTTACTTGCTGGTGGCACTGTTAAGTTATC AGACA TTTTTGGTTTGGAAGAATTGAACGAAACCGAGCGTCCAAAAATTAGTTTCGCTGATAATG GCTA CGATGATTACATTGGTGAGGTGGAAAACGAGTTGGGCGAACAATTTTATATTATAGAGAC AGCT AAGGCAGTCTATGACTGGGCTGTTTTAGTAGAAATCCTTGGTAAATACACATCTATCTCC GAAG CGAAAGTTGCTACTTACGAAAAGCACAAGTCCGATCTCCAGTTTTTGAAGAAAATTGTCA GGAA ATATCTGACTAAGGAAGAATATAAAGATATTTTCGTTAGTACCTCTGACAAACTGAAAAA TTAC TCCGCTTACATCGGGATGACCAAGATTAATGGCAAAAAAGTTGATCTGCAAAGCAAAAGG TGTT CGAAGGAAGAATTTTATGATTTCATTAAAAAGAATGTCTTAAAAAAATTAGAAGGTCAGC CAGA ATACGAATATTTGAAAGAAGAACTGGAAAGAGAGACATTCTTACCAAAACAAGTCAACAG AGA TAATGGGGTAATTCCATATCAAATTCACCTCTACGAATTAAAAAAAATTTTAGGCAATTT ACGC GATAAAATTGACCTTATCAAAGAAAATGAGGATAAGCTGGTTCAACTCTTTGAATTCAGA ATAC CCTATTATGTGGGCCCACTGAACAAGATTGATGACGGCAAAGAAGGTAAATTCACATGGG CCGT CCGCAAATCCAATGAAAAAATTTACCCATGGAACTTTGAAAATGTAGTAGATATTGAAGC GTCT GCGGAGAAATTTATTCGAAGAATGACTAATAAATGCACTTACTTGATGGGAGAGGATGTT CTGC CTAAAGACAGCTTATTATACAGCAAGTACATGGTTCTAAACGAACTTAACAACGTTAAGT TGGA CGGTGAGAAATTAAGTGTAGAATTGAAACAAAGATTGTATACTGACGTCTTCTGCAAGTA CAGA AAAGTGACAGTTAAAAAAATTAAGAATTACTTGAAGTGCGAAGGTATAATTTCTGGAAAC GTAG AGATTACTGGTATTGATGGTGATTTCAAAGCATCCCTAACAGCTTACCACGATTTCAAGG AAAT CCTGACAGGAACTGAACTCGCAAAAAAAGATAAAGAAAACATTATTACTAATATTGTTCT TTTC GGTGATGACAAGAAATTGTTGAAGAAAAGACTGAATAGACTTTACCCCCAGATTACTCCC AATC AACTTAAGAAAATTTGTGCTTTGTCTTACACAGGATGGGGTCGTTTTTCAAAAAAGTTCT TAGAA GAGATTACCGCACCTGATCCAGAAACAGGCGAAGTATGGAATATAATTACCGCCTTATGG GAAT CGAACAATAATCTTATGCAACTTCTGAGCAATGAATATCGTTTCATGGAAGAAGTTGAGA CTTA CAACATGGGCAAACAGACGAAGACTTTATCCTATGAAACTGTGGAAAATATGTATGTATC ACCT TCTGTCAAGAGACAAATTTGGCAAACCTTAAAAATTGTCAAAGAATTAGAAAAGGTAATG AAG GAGTCTCCTAAACGTGTGTTTATTGAAATGGCTAGAGAAAAACAAGAGTCAAAAAGAACC GAG TCAAGAAAGAAGCAGTTAATCGATTTATATAAGGCTTGTAAAAACGAAGAGAAAGATTGG GTT AAAGAATTGGGGGACCAAGAGGAACAAAAACTACGGTCGGATAAGTTGTATTTATACTAT ACG

CAAAAGGGACGATGTATGTATTCCGGCGAGGTAATAGAATTGAAGGATTTATGGGAC AATACA

AAATATGACATAGACCATATATATCCCCAATCAAAAACGATGGACGATAGCTTGAAC AATAGA

GTACTCGTGAAAAAAAAATATAATGCGACCAAATCTGATAAGTATCCTCTGAATGAA AATATCA

GACATGAAAGAAAGGGGTTCTGGAAGTCCTTGTTAGATGGTGGGTTTATAAGCAAAG AAAAGT

ACGAGCGTCTAATAAGAAACACGGAGTTATCGCCAGAAGAACTCGCTGGTTTTATTG AGAGGCA

AATCGTGGAAACGAGACAATCTACCAAAGCCGTTGCTGAGATCCTAAAGCAAGTTTT CCCAGAG

TCGGAGATTGTCTATGTCAAAGCTGGCACAGTGAGCAGGTTTAGGAAAGACTTCGAA CTATTAA

AGGTAAGAGAAGTGAACGATTTACATCACGCAAAGGACGCTTACCTAAATATCGTTG TAGGTAA

CTCATATTATGTTAAATTTACCAAGAACGCCTCTTGGTTTATAAAGGAGAACCCAGG TAGAACA

TATAACCTGAAAAAGATGTTCACCTCTGGTTGGAATATTGAGAGAAACGGAGAAGTC GCATGGG

AAGTTGGTAAGAAAGGGACTATAGTGACAGTAAAGCAAATTATGAACAAAAATAATA TCCTCG

TTACAAGGCAGGTTCATGAAGCAAAGGGCGGCCTTTTTGACCAACAAATTATGAAGA AAGGGA

AAGGTCAAATTGCAATAAAAGAAACCGATGAGAGACTAGCGTCAATAGAAAAGTATG GTGGCT

ATAATAAAGCTGCGGGTGCATACTTTATGCTTGTTGAATCAAAAGACAAGAAAGGTA AGACTAT

TAGAACTATAGAATTTATACCCCTGTACCTTAAAAACAAAATTGAATCGGATGAGTC AATCGCG

TTAAATTTTCTAGAGAAAGGAAGGGGTTTAAAAGAACCAAAGATCCTGTTAAAAAAG ATTAAG

ATTGACACCTTGTTCGATGTAGATGGATTTAAAATGTGGTTATCTGGCAGAACAGGC GATAGAC

TTTTGTTTAAGTGCGCTAATCAATTAATTTTGGATGAGAAAATCATTGTCACAATGA AAAAAATA

GTTAAGTTTATTCAGAGAAGACAAGAAAACAGGGAGTTGAAATTATCTGATAAAGAT GGTATCG

ACAATGAAGTTTTAATGGAAATCTACAATACATTCGTTGATAAACTTGAAAATACCG TATATCG

AATCAGGTTAAGTGAACAAGCCAAAACATTAATTGATAAACAAAAAGAATTTGAAAG GCTATC

ACTGGAAGACAAATCCTCCACCCTATTTGAAATTTTGCATATATTCCAGTGCCAATC TTCAGCAG

CTAATTTAAAAATGATTGGCGGACCTGGGAAAGCCGGCATCCTAGTGATGAACAATA ATATCTC

CAAGTGTAACAAAATATCAATTATTAACCAATCTCCGACAGGTATTTTTGAAAATGA AATAGAC

TTGCTTAAGATATAAGAAATCATCCTTAGCGAAAGCTAAGGATTTTTTTTATCTGAA ATTTATTA

TATCGCGTTGATTATTGATGCTGTTTTTAGTTTTAACGGCAATTAATATATGTGTTA TTAATTGAA

TGAATTTTATCATTCATAATAAGTATGTGTAGGATCAAGCTCAGGTTAAATATTCAC TCAGGAAG

TTATTACTCAGGAAGCAAAGAGGATTACAGAATTATCTCATAACAAGTGTTAAGGGA TGTTATT

TCC

SE AATTCAAAGGATAATCAAAC

Q

no

N

O:

17

2

SE AATCTCTACTCTTTGTAGAT

Q

no

N

O: 17

3

SE AATTTCTACTGTTGTAGAT

Q

no

N

0:

17

4

SE AATTTCTACTAGTGTAGAT

Q

ID

N

0:

17

5

SE AATTTCTACTATTGT

Q

ID

N

0:

17

6

SE AATTTCTACTGTTGTAGA

Q

ID

N

0:

17

7

SE AATTTCTACTATTGTA

Q

ID

N

0:

17

8

SE AATTTCTACTTTTGTAGAT

Q

ID

N

0: 17

9

SE AATTTCTACTGTTGTAGAT

Q

no

N

0:

18

0

SE AATTTCTACTCTTGTAGAT

Q

ID

N

0:

18

1