Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHODS OF SELECTING MICROALGAE & PRODUCTS THEREOF
Document Type and Number:
WIPO Patent Application WO/2023/118520
Kind Code:
A1
Abstract:
The present invention relates to a method of selecting microalgae with reduced pigment content, in particular Chrorella strains such as C. vulgaris and resulting new microalgae strains and products therefrom.

Inventors:
URAN MINE (CH)
MOROSINOTTO TOMAS (IT)
BELLAN ALESSANDRA (IT)
Application Number:
PCT/EP2022/087636
Publication Date:
June 29, 2023
Filing Date:
December 22, 2022
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
ALVER WORLD SA (CH)
International Classes:
A01H1/00; C12N1/12
Domestic Patent References:
WO2021240232A12021-12-02
WO2020105001A12020-05-28
Other References:
SCHÜLER LISA ET AL: "Isolation and Characterization of Novel Chlorella Vulgaris Mutants With Low Chlorophyll and Improved Protein Contents for Food Applications", vol. 8, 19 May 2020 (2020-05-19), XP055774628, Retrieved from the Internet DOI: 10.3389/fbioe.2020.00469
FAO: "Trends and challenges", 2017, FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED STATES, article "The future of food and agriculture"
VAN HUIS ET AL.: "Edible insects - Future prospects for food and feed security", 2014, FAO
HENCHION ET AL., FOODS, vol. 6, no. 7, 2017
VRENNA ET AL., SUSTAINABILITY, vol. 13, no. 5, 2021, pages 2848
KUSMAYADI ET AL., CHEMOSPHERE, vol. 271, 2021, pages 129800
KOYANDE ET AL., FOOD SCIENCE, 2019
HUMAN WELLNESS, vol. 8, no. 1, pages 16 - 24
CAPORGNO ET AL., FRONTIERS IN NUTRITION, vol. 5, 2018, pages 58
IBRAHIM ET AL., AJVS, vol. 65, no. 1, 2020, pages 16 - 30
FAO/WHO/UNU: "Consultation on Energy and Protein Requirements", AMINO ACID SCORING PATTERNS, 1981
LAFARGA, ALGAL RESEARCH, vol. 41, 2019, pages 101566
ANDRADE, MOJFPT, vol. 6, no. 1, 2018
BARKIA ET AL., MARINE DRUGS, vol. 17, no. S, 2019
MILLEDGE, REV. ENVIRON. SCI. BIOTECHNOL., 2011
BECKER, BIOTECHNOLOGY ADVANCES, vol. 25, no. 2, 2007, pages 207 - 210
RODRIGUEZ-GARCIA ET AL., FOOD CHEM., vol. 108, 2008, pages 1023 - 1026
FRANSISCUS ET AL., AIP CONFERENCE PROCEEDINGS, vol. 1840, 2017, pages 030005
IWAMOTO: "Handbook of Microalgal Culture", 2003, BLACKWELL PUBLISHING LTD, pages: 253 - 263
FATEMEH ET AL., JOURNAL OF APPLIED SCIENCES AND ENVIRONMENTAL MANAGEMENT, vol. 20, no. 1, 2016, pages 133
KHAN ET AL.: "Recent Advances in Microalgal Biotechnology", 2016, article "Heterotrophic Growth of Micro Algae"
BOEING ET AL.: "Annals of nutrition & metabolism", 12TH EUROPEAN NUTRITION CONFERENCE (FENS), BERLIN, GERMANY, vol. 67, 20 October 2015 (2015-10-20), pages 1 - 601
BRENNAN ET AL., RENEWABLE AND SUSTAINABLE ENERGY REVIEWS, vol. 14, no. 2, 2010, pages 557 577
NIKODINOVIC RUNIC ET AL., ADVANCES IN APPLIED MICROBIOLOGY, vol. 84, 2013, pages 139 - 200
HU ET AL., BIOTECHNOLOGY ADVANCES, vol. 36, 2018, pages 54 - 67
OGBONNA ET AL., JOURNAL OF APPLIED PHYCOLOGY, vol. 9, 1997, pages 359 - 366
HEE ET AL., SCI. REP., vol. 9, 2019, pages 19383
SUTHERLAND ET AL., NEW BIOTECHNOLOGY, vol. 65, 2021, pages 61 - 68
RAJA ET AL., BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES, vol. 7, no. 4, 2018, pages 740 - 747
PRUVOST ET AL., BIORESOURCE TECHNOLOGY, vol. 102, no. 1, pages 150 - 158
PERIN ET AL., BIOTECHNOLOGY FOR BIOFUELS, vol. 8, 2015, pages 161
DASAN ET AL.: "IOP Conf. Series: Earth and Environmental Science", vol. 721, 2021, IOP PUBLISHING, pages: 012013
SINGH ET AL.: "Development of suitable photobioreactor for algae production-A review", RENEWABLE AND SUSTAINABLE ENERGY REVIEWS, vol. 16, no. 4, 2012, XP055040940, DOI: 10.1016/j.rser.2012.01.026
BRADFORD, ANAL BIOCHEM., vol. 72, 7 May 1976 (1976-05-07), pages 248 - 54
WELLBURN, PLANT PHYSIOLOGY, vol. 144, 1994, pages 307 - 13
Attorney, Agent or Firm:
REUTELER & CIE SA (CH)
Download PDF:
Claims:
Claims:

1. A method for the selection of microalgae, wherein said method comprises the following steps: a. Providing a plurality of microalgae strains belonging to the same green algae and blue-green algae genus to a microalgae heterotrophic culture solid medium; b. Growing said plurality of strains in said heterotrophic culture medium under heterotrophic culture conditions for about 10 to about 60 days; c. Selecting a first sub-set of strains based on their reduced coloration; d. Subjecting said first sub-set of strains with a reduced coloration to a growing step in microalgae heterotrophic culture medium under heterotrophic culture conditions for about 1 to about 10 days; e. Selecting a second sub-set from said first sub-set of strains based on a heterotrophic growth rate not lower than 80% of the growth rate of the parental strain under the same conditions; f. Growing said second sub-set under autotrophic culture medium under autotrophic culture conditions for about 1 to about 15 days; g. Selecting a third sub-set from said second sub-set of strains based on an autotrophic growth rate not higher than 60% of the growth rate of the parental strain under the same conditions; h. Optionally further subjecting said third subset of strains or strains from step e) to a random mutagenesis to obtained a genetically mutated strain set; i. Optionally subjecting said mutated strain set to steps b) to g) to obtain a final sub-set of mutated strains; j. Collecting the isolated strains.

2. A method according to claim 1 wherein the plurality of microalgae strains provided under step a) was obtained from a random mutagenesis on a parental strain (UTEX30).

3. A method according to claim 1 o 2 wherein the plurality of microalgae strains is provided at a concentration of about 15*106 cells, divided in l*104 cells per plate.

4. A method according to any one of the preceding claims wherein step b) is carried out until single colonies appear.

52 A method according to any one of the preceding claims wherein the microalgae is from the phylum Chlorophyta, in particular Chlorella such as Chlorella vulgaris. A method according to any one of the preceding claims wherein the isolated strains have a chlorophyll content in a range of 3.6 pg of chlorophyll/OD to 0.09 pg of chlorophyll/OD, preferably 1.31 to 0.09 pg of chlorophyll/OD. A method according to any one of the preceding claims wherein step h) is carried out by contacting the third sub-set with a mutagenic agent such as EMS (Ethyl Methane Sulfonate). A method according to any one of the preceding claims wherein the parental strain is Chlorella vulgaris UTEX30. A method according to any one of the preceding claims wherein said method further comprises a drying step of the harvested microalgae material. A strain of microalgae belonging to green algae and blue-green algae of Chrorella genus, in particular C. vulgaris obtainable from a method according to any one of claims 1 to 5 wherein the chlorophyll content of the strain is below 2% w/w. A microorganism which is, or has the identifying characteristics of, a strain of C. vulgaris deposited with the Culture Collection of Algae and Protozoa from SAMS (Scottish Association for Marine Science) under an accession number selected from CCAP 211/137, CCAP 211/138 and CCAP 211/139, or a mutant strain derived therefrom. A microorganism according to claim 11 which has the identifying characteristics of, a strain of C. vulgaris deposited with the Culture Collection of Algae and Protozoa from SAMS (Scottish Association for Marine Science) under the accession number CCAP 211/137 or a mutant strain derived therefrom. A strain of C. vulgaris genus comprising the gene sequences of SEQ ID NO: 14 to 20 or a mutant strain derived therefrom, said mutant presenting not less than 30 % w/w protein and having a low chlorophyl content when cultivated under heterotrophic conditions (e.g. less than 3%, for example 2%).

53 Use of a strain according to any one of claims 10 to 13 for the preparation of a food or a feed product. A composition comprising a microalgal material derived from the strain according to any one of claims 10 to 13 or a strain obtainable from a method according to any one of claims 1 to 9. A composition according to claim 15, wherein said composition is a food or a feed product or ingredient. A composition according to claim 15, wherein said composition is a cosmetic product or cosmetic ingredient. A food or a feed product comprising a microalgae material derived from the strain according to any one of claims 11 to 13 or a strain obtainable from a method according to any one of claims 1 to 9.

54

Description:
METHODS OF SELECTING MICRO ALGAE & PRODUCTS THEREOF

Field of the invention

The present invention relates to a method for selecting microalgae with reduced pigment content, in particular Chlorella strains such as C. vulgaris and resulting new microalgae strains and products therefrom.

Background

Society is becoming increasingly conscious of sustainable nutrition as the world’s population keeps rising (FAO, 2017: The future of food and agriculture. Trends and challenges. Rome: Food and Agriculture Organization of the United States'). The unpredictability of the future of food production with respect to water and land usage, in addition to the changing in consumer preferences, brings the need for additional food sources having a high nutritional quality (van Huis et al., 2014, Edible insects - Future prospects for food and feed security. Rome: FAO). As the negative impact of animal rearing on the environment such as shortage of water, stripping the land of nutrients, and increase of pollution (antibiotics for livestock) became fully aware in our society, a more environmentally friendly lifestyle has been targeted by vegetarian and vegan population. Thus, there is a growing need for especially protein-rich foods since vegans do not have access to animal proteins (e.g., eggs) (van Huis et al, 2014, supra; FAO, 2017, supra; Henchion et al 2017; Foods, 6 (7). DOI: 10.3390/foods6070053). Current protein sources are not fulfilling the growing demand for low environmental impact and high protein sources (Henchion et al, 2017, supra).

For decades, microalgae have been recognized as superfood for being both healthy and sustainable (Vrenna et al., 2021, Sustainability 13 (5), p. 2848. DOI: 10.3390/sul3052848; Kusmayadi et al., 2021, Chemosphere 271, p. 129800. DOI: 10.1016/j. chemosphere.2021.129800; Koyande et al. 2019, Food Science and Human Wellness, 8 (1), 16-24. DOI: 10.1016/j.fshw.2019.03.001). Microalgae-based proteins require less land and water compared to animal-based proteins and for their cultivation, non-arable land is used (Caporgno et al., 2018, Frontiers in nutrition, 5, p. 58. DOI: 10.3389/fnut.2018.00058). Today, microalgae are considered as promising sustainable alternative protein sources for the future. Microalgae are rich sources of protein (more than 50%) and have well-balanced amino acid profiles regarding the recommendations of the WHO/FAO/UNU (Vieira et al., 2020, New and Future Developments in Microbial Biotechnology and Bioengineering, 54: Elsevier, 19 30; FAO/WHO/UNU Expert Consultation on Energy and Protein Requirements. AMINO ACID SCORING PATTERNS (1981). With assistance of A. Harper. Rome. Available online at http://www ao.org/3 3013EM3013E00.htm, checked on 28/06/2021).

Several microalgae species are widely used as nutritional supplements in tablet, capsule, or powdered form due to their taste, color, smell, and cost (Lafarga, 2019, Algal Research, 41, 101566. DOI: 10. 1 16 j. algal.2 19. 1 1566). The bacterium Spirulina and the microalgae Chlorella are two of the commercially important species on the market today (Nilesh Hemantkumar et al., 2020 Milada Vitova (Ed.): Microalgae - From Physiology to Application: IntechOperi), especially due to their high protein contents (Andrade, 2018, MOJFPT 6 (1). DOI: 10.15406/mojfpt.2018.06.00144). Microalgae contain also other healthy compounds besides proteins that can be used for several applications (Barkia et al, 2019 Marine drugs, 17 (5). DOI: 10.3390/mdl7050304; Milledge, 2011, Rev. Environ. Sci. BiotechnoL, 10.1007/sl 1157-010-9214-7). Even if large-scale cultivation of Chlorella vulgaris is a consequence of the interest on the protein fraction accumulated and the content of essential amino acids, other beneficial nutrients such as vitamins (B-complex and ascorbic acid), minerals (potassium, sodium, magnesium, iron, and calcium), and pigments (P-carotene and chlorophyll) can be exploited using these microalgae (Becker, 2007, Biotechnology advances, 25 (2), 207 210. DOI: 10.1016/f biotechadv.2006.11.002; Rodriguez-Garcia et al., 2008, FoodChem., 108, 1023-1026).

On the other hand, as obtained from a microalga, Chlorella products have a green color, a bitter taste and a strong smell because of their chlorophyll content. Their application in the food industry is limited, especially in those products where the color of the microalgae cannot be masked with other ingredients, like in dairy products. In some food products, microalgae are also used as natural food colorants thanks to their pigments (Becker, 2007, supra; Caporgno et al., 2018, Frontiers in nutrition 5, 58. DOI: 10.3389/fnut.2018.00058).

C. vulgaris is growing fast and therefore cultivation techniques can be tailored to optimize protein content and biomass yield (Fransiscus et al, 2017, AIP conference Proceedings, 1840, 030005). The reason is that different growth conditions cause C. vulgaris to modify the yield of biomass concerning protein, lipid, carbohydrate, and/or pigment content (Ibrahim et al., 2020, AJVS 65, (1), 16. DOI: 10.5455/ajvs.94847). Depending on the strain, C. vulgaris can be grown autotrophically, heterotrophically or mixotrophically (Iwamoto,2003 Amos Richmond (Ed.): Handbook of Microalgal Culture. Oxford, UK: Blackwell Publishing Ltd, 253-263, Fatemeh et al., 2016, Journal of Applied Sciences and Environmental Management, 20 (1), 133. DOI: 10.4314/jasem.v20il.l6). Autotrophically, C. vulgaris are usually grown in open pond systems (photosynthetically) for large-scale biomass production (autotrophic conditions) as open pond systems are cheap in maintenance (Ibrahim et al., 2020, supra.). Heterotrophic (dark) growth conditions are found to reduce the chlorophyll content (Khan et al., 2016, Heterotrophic Growth of Micro Algae. In J. Liu, Z. Sun, H. Gerken (Eds.): Recent Advances in Microalgal Biotechnology) which can be a promising solution regarding the customer acceptance (Boeing et al.,2015, 12th European Nutrition Conference (FENS), Berlin, Germany, October 20-23, 2015: Abstracts. In Annals of nutrition & metabolism 67 Suppl 1, 1 601. DOI: 10.1159/000440895). The heterotrophic growth technique is a process in which microalgae are grown on an organic carbon source, such as glucose, glutamate, and glycerol as well as on additional nutrients (Brennan et al., 2010 Renewable and Sustainable Energy Reviews, 14 (2), 557-577. DOI: 10.1016/j.rser.2009.10.009; Nikodinovic-Runic et al., 2013 Advances in applied microbiology, 84, 139-200. DOI: 10.1016/B978-0-12-407673- 0.00004-7). Heterotrophic growth techniques instead of open pond systems allow to achieve a faster growth, higher dry biomass productivity, high yield of different components like proteins or lipids (Ibrahim et al., 2020, supra.,' Hu et al, 2018, Biotechnology Advances 36, 54-67). Chlorophyll content is also reduced in heterotrophic conditions due to the absence of light Khan et al, 2016, supra). Microalgae cells first grown heterotrophically significantly accumulate chlorophyll when later on exposed to light (Ogbonna et al, 1997, Journal of Applied Phycology, 9, 359-366, doi: 10.1023/A: 1007981930676).

By using microalgae as a new food and feed platform, there is an opportunity to increase the supply of essential products to address global demands in a more efficient and environmentally sustainable way. It is therefore needed to enhance the nutritional content, productivity and organoleptic profile of algae to support the development of this new form of crop. Traditionally, screening microalgae for potential heterotrophy has relied on growth assays to assess their ability to metabolise organic carbon in the absence of light (Hee et al, 2019, Sci. Rep. 9, 19383). While these assays are informative, they can often imply laborious extensive laboratory equipment. Several platforms have been developed for the selection of heterotrophic microalgae having interesting properties (Jareonsin et al., 2021, 9: 628597; Sutherland et al., 2021, New BIOTECHNOLOGY, 65 (2021) 61-68).

However, there is still a need to develop new methods for the rapid assessment of microalgal heterotrophic metabolism allowing a cost-effective screening of algae with interesting physiological profile since organoleptic factors such as color, taste and smell can be decisive for the acceptability of foods supplemented with microalgae. Consequently, there is a need for cost-effective innovative techniques for the selection of interesting of heterotrophic algae strains, in particular from C. vulgaris species and for the provision with new strains with lower chlorophyll content with suitable taste for food applications and adapted to large scale production.

Summary of the Invention

An object of this invention is to provide a method for selecting microalgae strains belonging to green algae and blue-green algae genus, in particular Chlorella strains such as C. vulgaris which present a low chlorophyll content (e.g. <5%).

It is advantageous to provide a method which allows the selection of microalgae strains which present a low chlorophyll content not directly on their chlorophyll content but for their inability to grow photo-autotrophically.

It is advantageous to provide a method which allows the selection of microalgae strains presenting a high biomass productivity (e.g. high growth rate) under heterotrophic growth conditions.

It is advantageous to provide a method which allows the production of microalgae suitable for human consumption as food ingredient and/or a food supplement and has a reduced chlorophyll content.

It is advantageous to provide a method which allows the production of microalgae suitable for human consumption without exogenous DNA addition.

It is advantageous to provide a method which allows the production of microalgae with a constitutive reduction in chlorophyll in absence of specific treatment (ex. nutrient depletion) to modulate chlorophyll content.

Objects of this invention have been achieved by providing a method according to claim 1 and products thereof.

Objects of this invention have been achieved by providing a strain according to claim 9.

Objects of this invention have been achieved by providing a microorganism which is, or has the identifying characteristics of, a strain of C. vulgaris according to claim 10. Objects of this invention have been achieved by providing a use of a strain according to claim 11.

Objects of this invention have been achieved by providing a food product according to claim 15.

Disclosed herein, according to a first aspect of the invention, is a method for the selection of microalgae, wherein said method comprises the following steps: a) Providing a plurality of microalgae strains belonging to the same green algae and bluegreen algae genus to a microalgae heterotrophic culture solid medium; b) Growing said plurality of strains in said heterotrophic culture medium under heterotrophic culture conditions for about 10 to about 60 days; c) Selecting a first sub-set of strains based on their reduced coloration; d) Subjecting said first sub-set of strains with a reduced coloration to a growing step in microalgae heterotrophic culture medium under heterotrophic culture conditions for about 1 to 10 days; e) Selecting a second sub-set from said first sub-set of strains based on a heterotrophic growth rate not lower than the 80% of the growth rate of the parental strain in the same conditions; f) Growing said second sub-set under autotrophic culture medium under autotrophic culture conditions for about 1 to about 15 days; g) Selecting a third sub-set from said second sub-set of strains based on an autotrophic growth rate not higher than 60% of growth rate the parental strain; h) Optionally further subjecting said third subset of strains to a random mutagenesis to obtained a genetically mutated strain set; i) Optionally subjecting said mutated strain set to steps b) to g) to obtain a final sub-set of mutated strains. j) Collecting the isolated strains.

It is advantageous to provide a high-protein microalgae product suitable for human consumption with reduced chlorophyll pigment. The method of the invention advantageously reduces the pigments content without affecting the protein content.

Disclosed herein, according to a further aspect of the invention, are new strains of microalgae belonging to green algae and blue-green algae of Chlorella genus, in particular C. vulgaris. Disclosed herein, according to a further aspect of the invention, is a high-protein microalgae product suitable for human consumption and containing not more than 2 % w/w chlorophyll content.

Disclosed herein, according to a further aspect of the invention, is a composition for food or a food additive, comprising one or more microalgae strains according to the invention.

The invention is based on the unexpected finding that the method of selecting microalgae according to the invention allows to isolate microalgae strains with interesting physiological profile with nutritional advantages such as being suitable for human consumption. Their low chlorophyll content results in an algal biomass easy to manipulate without problem of chlorophyll degradation which leads to a not suitable smell and color.

Other features and advantages of the invention will be apparent from the claims, detailed description, and figures.

Description of the figures

Figure 1 illustrates steps a) to i) of a method according to the invention and the resulting selected strains as described in Example 1. A: schematic representation of the steps of the method; B: illustration of the selection steps of the method; Bl: selecting a first sub-set of strains based on their reduced coloration based on levels of parental strain B2: selecting a second sub-set from said first sub-set of strains based on a heterotrophic growth rate not lower than 80% with respect to the parent strain; B3: selecting a third sub-set from said second subset of strains based on an autotrophic growth rate not higher than 60% of the WT; D: chlorophyll content of the resulting third sub-set of strains before second round of mutagenesis expressed in micrograms of chlorophyll per unit of optical density at 664 nm; D: characterization of the selected strains based on their pigment content in the dark and in light conditions as described in Example 2. L stands for “light” (growth in autotrophic condition).

Detailed description

"Microalgae" refers to microscopic eukaryotic single cells composed of a nucleus, one or more chloroplasts, mitochondria, Golgi bodies, endoplasmic reticulum and other organelles.

Microalgae suitable in the context to the invention belong to the phylum Chlorophyta, preferably Chlorella genus, more preferably Chlorella vulgaris. Those include species such as Chlorella protothecoides, Chlorella ellipsoidea. Chlorella minulissima. Chlorella zofinienesi. Chlorella luteoviridis, Chlorella kessleri. Chlorella sorokiniana. Chlorella fusca var. vacuolata Chlorella sp., Chlorella cf. minutissima or Chlorella emersonii. Other species of Chlorella can be selected from the group consisting of anitrata, Antarctica, aureoviridis, Candida, capsulate, desiccate, ellipsoidea (including strain CCAP 211/42), emersonii, fusca (including var. vacuolata), glucotropha, infusionum (including var. actophila and var. auxenophila), kessleri (including any of UTEX strains 397,2229,398), lobophora (including strain SAG 37.88), luteoviridis (including strain SAG 2203 and var. aureoviridis and lutescens), miniata, cf. minutissima, minutissima (including UTEX strain 2341), mutabilis, nocturna, ovalis, parva, photophila, pringsheimii, protothecoides (including any of UTEX strains 1806, 411 , 264, 256, 255, 250, 249, 31, 29, 25 or CCAP 211/8D, or CCAP 211/17 and var. acidicola , regularis (including var. minima, and umbricala , reisiglii (including strain CCP 11/8), saccharophila (including strain CCAP 211/31, CCAP 211/32 and var. ellipsoidea), salina, simplex, sorokiniana (including strain SAG 211.40B), sp. (including UTEX strain 2068 and CCAP 211/92), sphaerica, stigmatophora, trebouxioides, vanniellii, vulgaris (including strains CCAP 211/1 IK, CCAP 211/80 and f. tertia and var. autotrophica, viridis, vulgaris, vulgaris f. tertia, vulgaris f. viridis), xanthella, and zofingiensis.

Therefore, the microalgal material can be non-green such as yellow, or yellow-white (due to the microalgae mutation).

The expression “microalgal material” includes both a microalgal powder (dried microalgae without further treatment) and microalgal flour (lysed microalgae) which can be used microalgal paste and powder as food and feed, such as described in Raja et al., 2018, Beni-Suef University Journal of Basic and Applied Sciences, 7(4), 740- 747.

The expression “Chlorophyll” refers to the principal pigment involved in photosynthesis. It allows for the photosynthetic organism to absorb the energy of the light in order to convert CO2 into carbohydrates necessary for its growth. This pigment can be found in different forms: Chlorophyll a, b, c and d (and sometimes but rarely e). It is formed by a central magnesium atom surrounded by a porphyrin ring (nitrogen containing structure). The content of chlorophyll in microalgae can be determined by different methods, most of them involving the extraction of the pigments for example with organic solvents such as acetone, methanol, ethanol, etc., followed by a quantification using spectrophotometric analysis. Several methods can be found in the literature, such as the method described by Pruvost et al, Bioresource Technology, 102(1), 150 158. doi: 10.1016/j.biortech.2010.06.153.

The expression “reduced coloration” means a lower intensity in the pigmentation as seen by eye. The “reduced coloration” can be measured by evaluation of the basal chlorophyll fluorescence of the sample (F0 parameter) or by pigment extraction and subsequent absorbance analysis in the visible spectrum compared to the parental strain.

The expression “microalgal material” means microalgal paste, powder or fresh biomass from the microalgae.

The expression “identifying characteristics” means the features exhibited by the strains of the invention under heterotrophic cultivation, namely a reduction in pigments content, comparable protein content and comparable growth with respect to the parental strain.

The expression “heterotrophic fermentation conditions” refers to conditions for cell growth and propagation using an external carbon source under dark conditions. Several examples of microalgae growth under heterotrophic conditions, using different organic carbon sources, are summarized in the literature (Hu et al., 2018, Biotechnology Advances 36, 54 67).

A “microalgae culture medium" suitable for heterotrophic fermentation conditions comprises i) a carbon source and ii) nutrients for microalgal growth. According to the present invention, typical heterotrophic fermentation conditions comprise dark at 21 °C (and shaking in case of liquid cultures).

Nutrients for microalgae growth suitable for heterotrophic fermentation conditions are known to the skilled person and can be found for example under https://utex.org/pages/algal-culture- media (University of Texas at Austin for its algal culture collection (UTEX)).

The microalgal biomass is itself a finished food ingredient and may be used in foodstuffs without further, or with only minimal, modification. Alternatively, after concentration, microalgal biomass can be processed to produce different food or feed products containing microalgae as an ingredient aiming to increase the nutritional value (pasta, beverages, drinks, meat substitutes, etc.) and/or as food supplements (in form of capsules, pills, etc).

Referring to the figures, in particular first to Figure 1, is provided an illustration of a method for the selection of microalgae. The illustrated method for the production of microalgae generally comprises the steps of: providing a plurality of microalgae strains belonging to the same green algae and blue-green algae genus which were obtained by treating the parent strain from the said green algae and blue-green algae genus with an mutagenic agent such as EMS (Ethyl Methane Sulfonate) and plated to a microalgae heterotrophic culture medium (a), growing said plurality of strains in said heterotrophic culture medium under heterotrophic culture conditions (b), selecting a first sub-set of strains based on their reduced coloration (c), subjecting said first sub-set of strains with a reduced coloration to a growing step in microalgae heterotrophic culture medium under heterotrophic culture conditions for about 1- 10 days (d), selecting a second sub-set from said first sub-set of strains based on a heterotrophic growth rate not lower than 80% with respect to the growth rate of the parental strain in the same conditions (e), growing said second sub-set under autotrophic culture medium under autotrophic culture conditions for about 1 to 15 days (f), selecting a third subset from said second sub-set of strains based on an autotrophic growth rate not higher than 60% with respect to the growth rate of the parental strain in the same conditions from said first sub-set of strains based on a heterotrophic growth rate not lower than 80% with respect to the growth rate of the parental strain in the same conditions (g). The third subset of strains can then be subjected to further random mutagenesis to obtain a genetically mutated strain set (i) and said mutated strain set is subjected to one or more step sequence b) to g) as previously described to obtain a final sub-set of mutated strains (h).

More specifically, the steps of the embodiment illustrated in Figure 1 comprise the following steps: a) Providing a plurality of microalgae strains belonging to the same green algae and bluegreen algae genus to a microalgae heterotrophic solid culture medium; b) Growing said plurality of strains in said heterotrophic culture medium under heterotrophic culture conditions for about 10 to about 60 days (e.g. about 30 days); c) Selecting a first sub-set of strains based on their reduced coloration compared to a control strain (e.g. parental); d) Subjecting said first sub-set of strains with a reduced coloration to a growing step in microalgae heterotrophic culture medium under heterotrophic culture conditions for about 1 to about 10 days (e.g. about 5 days); e) Selecting a second sub-set from said first sub-set of strains based on a heterotrophic growth rate not lower than 80% with respect to the parental strain Chlorella vulgaris UTEX 30; f) Growing said second sub-set under autotrophic culture medium under autotrophic culture conditions for about 1 to about 15 days (e.g. about 5 days); g) Selecting a third sub-set from said second sub-set of strains based on an autotrophic growth rate not higher than 60% with respect to the growth rate of the parental strain in the same conditions; h) Optionally further subjecting said third subset of strains or a strain from step e) to a random mutagenesis to obtained a genetically mutated strain set; i) Optionally subjecting said mutated strain set to steps b) to g) to obtain a final sub-set of mutated strains. j) Collecting the isolated strains.

According to a particular embodiment, the second round of mutagenesis is used to push the pigment reduction on strains, already with a deficiency in chlorophyll accumulation, to reduce the number of colonies to be screened to needed mutations leading to white ones. This reduces the time-consuming step of transformation and screening.

According to another particular embodiment, the plurality of microalgae strains under step a) is provided in the form of mutated strains obtained from mutagenesis of a natural strain.

According to another particular embodiment, mutagenesis of a natural strain (parental) is obtained by contacting the third sub-set with a mutagenic agent such as EMS (Ethyl Methane Sulfonate).

According to a particular embodiment, the plurality of microalgae strains is provided at a concentration of about 15*10 6 cells, divided in l*10 4 cells per plate.

According to a particular embodiment, step b) is carried out until single colonies appear. The appearance of single colonies can be checked by visual inspection where pale and more colored colonies appear.

According to a particular embodiment, step b) is carried by visual observation or by quantifying the chlorophyll fluorescence, e.g. with a fluorescence camera (FluorCam FC 800 video-imaging apparatus (Photon Systems Instruments, Brno, Czech Republic) as described in Perin et al., 2015, Biotechnology for Biofuels, 8:161 DOI 10.1186/sl3068-015-0337-5.

According to a particular embodiment, step h) is carried out by contacting the third sub-set with a mutagenic agent such as EMS (Ethyl Methane Sulfonate).

According to a particular aspect of the invention, the microalgae is any microalgae suitable for mammal an in particular human consumption.

According to a particular aspect of the invention, the microalgae is from the phylum Chlorophyta.

According to a particular aspect of the invention, the microalgae is Chlorella.

According to a particular aspect of the invention, the microalgae is Chlorella vulgaris.

According to a further particular aspect of the invention, the parental strain is Chlorella vulgaris UTEX30.

According to a particular aspect of the invention, the plurality of microalgae strains provided under step a) was obtained from a random mutagenesis on a parental strain (UTEX30).

According to another particular aspect of the invention, the method of the invention further comprises one or more step of further selecting a sub-set of strains from said collected and isolated strains under step j), said step being selected from k) selecting strains based on their lowest chlorophyll content per cell; 1) selecting strains for their fastest growing rate in nutrient limitation conditions; m) selecting strains for their growing yield in a photobioreactor. Typically, a photobioreactor such as described in Dasan et al., 2021, IOP Conf. Series: Earth and Environmental Science 721, 012013 IOP Publishing doi: 10.1088/1755-

1315/721/1/012013 or in Singh et al, 2012, Development of suitable photobioreactor for algae production-A review, Renewable and Sustainable Energy Reviews, 16(4) can be used.

According to a further particular aspect, the chlorophyll content on chlorophyll a is evaluated based on OD at 664 nm and the chlorophyll content on chlorophyll b is evaluated based on OD at 646.8 nm.

According to a particular aspect of the invention, the method of the invention further comprises a drying step of the harvested microalgae material.

Another particular aspect of the invention, is to provide a method or a process for selecting a microalgae material, wherein the said microalgal material contains at least 10% of proteins. According to another particular aspect of the invention, is provided a strain of microalgae belonging to green algae and blue-green algae of Chlorella genus, in particular C. vulgaris obtainable from a method according to the invention wherein the chlorophyll content of the strain is below 2% w/w.

According to another particular aspect of the invention, is provided a C. vulgaris strain according to the invention.

According to a further particular aspect of the invention, is provided a microorganism which is, or has the identifying characteristics of, a strain of C. vulgaris deposited with the Culture Collection of Algae and Protozoa from SAMS (Scottish Association for Marine Science) under an accession number selected from CCAP 211/137, CCAP 211/138 and CCAP 211/139, or a mutant strain derived therefrom.

According to a further particular aspect of the invention, is provided a microorganism which is, or has the identifying characteristics of, a strain of C. vulgaris deposited with the Culture Collection of Algae and Protozoa from SAMS (Scottish Association for Marine Science) under the accession number CCAP 211/137 or a mutant strain derived therefrom.

According to a particular embodiment, is provided a microorganism which is, or has the identifying characteristics of, a strain of C. vulgaris deposited with the Culture Collection of Algae and Protozoa from SAMS (Scottish Association for Marine Science) under the accession number CCAP 211/137 or a mutant strain derived therefrom, wherein the said microorganism or mutant strain presents i) a loss of a plastid ribosomal protein (PRPS1), ii) a loss of a photosystem II reaction center subunit W (PSBW1), iii) a loss of a phytoene desaturase (PDS1) and iv) a loss of a Protein activity of BC1 complex kinase 1 (ABC1K1) comparted to WT, parental strain (UTEX30).

According to a particular embodiment, is provided a strain of C. vulgaris genus comprising the sequences of SEQ ID NO: 14 to 20 or a mutant strain derived therefrom, said mutant presenting not less than 30 % w/w protein and having a low chlorophyl content when cultivated under heterotrophic conditions (e.g. less than 3%, for example 2%).

According to a further particular aspect of the invention, is provided a microorganism which is, or has the identifying characteristics of, a strain of C. vulgaris deposited with the Culture Collection of Algae and Protozoa from SAMS (Scottish Association for Marine Science) under the accession number CCAP 211/138 or a mutant strain derived therefrom.

According to a further particular aspect of the invention, is provided a microorganism which is, or has the identifying characteristics of, a strain of C. vulgaris deposited with the Culture Collection of Algae and Protozoa from SAMS (Scottish Association for Marine Science) under the accession number CCAP 211/139 or a mutant strain derived therefrom.

According to another particular aspect of the invention, is provided a composition comprising a microalgal material derived from the strain of the invention or a strain obtainable from a method of the invention.

According to another further particular aspect of the invention, the microalgal material derived from a strain of the invention or a strain obtainable from a method of the invention has a chlorophyll content in a range of 3.6 pg of chlorophyll/OD to 0.09 pg of chlorophyll/OD, preferably 1.31 to 0.09 pg of chlorophyll/OD.

According to another particular aspect of the invention, the composition is a food or a feed product or ingredient.

According to another particular aspect of the invention, the composition is a cosmetic product or cosmetic ingredient.

According to another particular aspect of the invention, is provided a use of a strain or a composition according to the invention for the preparation of a food or a feed product.

According to another particular aspect of the invention, is provided a food or a feed product comprising a microalgae material according to the invention.

According to another further particular aspect of the invention, is provided a high-protein microalgae product suitable for human or mammalian consumption and containing not more than 2 % w/w chlorophyll content. The invention is based on the unexpected finding that the method of selecting microalgae according to the invention allows to isolate microalgae strains with interesting physiological profile with nutritional advantages such as being suitable for human consumption. Microalgae strains according to the invention are low chlorophyll content strains, so they exhibit a strong reduction in photosynthesis and they need to be grown in heterotrophy. The reduction in chlorophyll content ensures a microalgae biomass without a bad smell and a brown color, usually due to chlorophyll photooxidation and degradation therefore those are particularly useful for human consumption.

Examples illustrating the invention will be described hereinafter in a more detailed manner and by reference to the embodiments represented in the Figures.

EXAMPLES

Example 1: Method of selection of strains according to the invention

The method of the invention was used to isolate strains according the invention as follows. The main steps of the method are illustrated under Figure 1.

- Providing a plurality of microalgae strains belonging to the same green algae and bluegreen algae genus to a microalgae heterotrophic culture medium (step a)

A green algae train was chosen as parental strain based on its protein content (around 30% (w/w)) and its growth rate in heterotrophic conditions (0.36193 d' 1 ): Chlorella vulgaris strain UTEX30 (UTEX Culture Collection of Algae, 205 W. 24th St., Biological Labs 218, The University of Texas at Austin (A6700) Austin, TX 78712 USA).

Protein content is measured by Bradford assay (Bradford, 1976, Anal Biochem., May 7;72:248-54), using acidified Coomassie Brilliant Blue G-250. The binding of the dye to proteins allows a color change in the visible spectrum. The growth rate in heterotrophic condition is evaluated with a growth curve, monitoring daily the optical density at 750 nm. An increase in this parameter is symptomatic of cell duplication and biomass production. Parental strain and mutated strains have been inoculated at the same starting optical density. Acetate was added to the medium to provide a carbon source for growth in the dark.

Mutations were performed on the parental strain as described below to lead to a plurality of mutated microalgae strains belonging to the same green algae and blue-green algae genus.

The starting material are parent strain cells grown for 5 days in dark Tris-acetate- phosphate medium (TAP) medium starting from OD at 750 nm: 0.2. Then, 15*10 6 cells (l*10 4 cells per plate, considering the 90% of mortality, this correspond to 1’000 colony per plate) from the parent strain resuspended in 500 pl of Tris-acetate-phosphate medium (TAP) medium are treated with a mutagen 300 mM EMS (Ethyl Methane sulfonate).

- Growing said plurality of strains in said heterotrophic culture medium under heterotrophic culture conditions for about 1 hour (step b)

The plurality of strains obtained in situ by mutagenesis is incubated for about 1 hour in the dark to ensure the mutagen action. Then, the plates were washed with 1 ml of TAP combined with Kanamycin (KAN) (50 pg/ml) and Ampicillin (Amp) (100 pg/ml) (5’000g 8 min), followed by 1 h of recovery in TAP + Kan+ Amp (Fig. lAa). Approximately 3 weeks after mutagenesis, single colonies appeared, and they were collected in a plate in order to have a spot from each colony (Fig. lAb). Among those strains are ElbO and Elbl further used below as parental strains for the further steps of selection.

- Selecting a first sub-set of strains based on their reduced coloration compared to a control strain (e.g. parental) (step c)

A first sub-set of strains was selected based on their reduced coloration. This selection can be made by visual observation.

16 strains were isolated in a first sub-set of strains. As can be seen from Fig. 1B1, the chlorophyll content of strains E3a4 is only 43% of the parental line; E3b0, 23%, and ElbO (not shown and deposited under the accession number CCAP 211/139), 20% while for E3bl, it is equivalent to parental line. Therefore, E3bl was discarded from the first subset.

- Subjecting said first sub-set of strains with a reduced coloration to a growing step in microalgae heterotrophic culture medium under heterotrophic culture conditions for about 5 days (step d)

The first subset of strains was incubated for about 5 days in the dark under heterotrophic culture conditions as detailed above. The growth rate in heterotrophic condition has been evaluated with a growth curve. The growth has been measured considering the optical density at 750 nm. An increase in this parameter is symptomatic of cell duplication and biomass production. Parental strain and pale strains have been inoculated at the same optical density in dark (0.2). To ensure the carbon source acetate was added. The growth has been monitored for 5 days.

- Selecting a second sub-set from said first sub-set of strains based on a heterotrophic growth rate not lower than 80% of the growth of the parent under the same conditions (step e) As can be seen on Figure 1B2, strains E3a4 and E3b0 which exhibit lower chlorophyll contents than the control strain (parental UTEX 30) all have a growth curve comparable to the growth curve of parental strain (UTEX30) and therefore, those were selected in a second subset of 14 strains.

- Growing said second sub-set under autotrophic culture medium under autotrophic culture conditions for about 5 days (step f)

The second subset of strains was incubated for about 5 days in the light under autotrophic culture conditions. The procedure is the same described for dark conditions, just with the exposure of the culture at 150 pmol of photons m’ 2 s -1 , instead of dark.

- Selecting a third sub-set from said second sub-set of strains based on a heterotrophic growth rate not higher than 60% of the growth of the parent under the same conditions (step g)

As can be seen on Figure 1B3, strain E3b0 show less growth than the parental strain (UTEX30) and was thus retained. E3a4 was instead discarded.

- Subjecting said third subset of strains to mutagenesis to obtained a genetically mutated strain set (step h)

The third subset was composed of 3 strains (Ela, Elbo, El bl) which have been selected for all criteria from steps b) to e) or g) of the screening method (Fig. ID) were then subjected to mutagenesis as described above to obtain further mutated strains.

- Subjecting said mutated strain set to steps b) to h) to obtain a final sub-set of mutated strains (step i)

The obtained 3 mutated strains were subjected to a 2 nd round of steps b) to g) to lead to a final sub-set of about 60’000 mutated strains and 30’000 were retained in the screening.

Said mutated strain tested in nutrient depletion condition to isolate the fastest

The 3 isolated mutants after the third set of screening have been subjected to a growth test to select the fasted growing in limited nutrient condition (half nutrient concentration). 2 strains were then finally selected.

Selected strains tested in bioreactor

The selected strains have been tested in a bioreactor to check protein content and chlorophyll content. A summary of the final sub-set of mutated strains is provided under Table 1 below.

Table 1

*ElbO is deposited under accession number CCAP 211/138.

Example 3: Characterization of the selected strains

The 3 selected strains obtained in Example 1 were further characterized as follows in terms of pigment content under dark and light conditions.

For this purpose, chlorophylls (a and b) and carotenoids were extracted by incubating the pellet obtained from 1 mL of a strain culture of the strains from the final subset of mutated strains obtained under Example 2 with DMF (dimethylformamide) overnight at 4°C in the dark. Pigments content was quantified from the extract due to the solubilization of cells with DMF using a spectrophotometer a Cary 100 spectrophotometer (Agilent Technologies, California, USA) using specific extinction coefficients Wellburn 1994, Plant physiology, 144, 307-13).

Fig. IE represents the quantification of the pigments of various strains listed in Table 1 above. Among those, El_3b0 a.6, E4_lbl (deposited under accession number CCAP 211/137), El 3b0 b.2 strains were selected.

Example 4: Characterization of the selected strains

The strain of the invention E4 l_bl (CCAP 211/137) is the result of a double mutagenesis round by EMS treatment (steps a) and i)), so the control which was used for genetic sequence comparison is the wild type (WT) strain Chlorella vulgaris UTEX30. The first round of mutagenesis on the WT generated a parental strain Elbl obtained under step e), which is the second control that was used, because it is the strain subjected to the second round of mutagenesis to obtain E4 l_bl. The sequences of the strains obtained by a method of the invention were characterized as described below.

Liquid culture of the strains has been run for 5 days in dark and TAP medium (the same used in the patent experiments), starting from OD750 of 0,2. 50 ml of culture has been centrifuged for each sample. After supernatant removal, cells disruption has been done using a Mini Bead Beater (Biospec Products) at 3500 RPM for 20s in the presence of glass beads (150-212 pm diameter) alternated with a passage in liquid nitrogen. This cycle has been repeated 3 times. After that, 200 pl of Lysis buffer (100 mM Tris-HCl pH8, 50 mM EDTA and 500 mM NaCl) has been added. Mini Bead Beater has been repeated 4 times alternated with 1 minute in ice. 35 pl of 20% Sodium dodecyl sulfate 20% has been addend and incubated at 65°C for 5 minutes. After addition of 130 pl of Potassium Acetate 5M, the solution has been incubated at 4°C for 5 minutes. After lysis, the mixture has been centrifuged for 10 minutes at 10’ 000g to ensure the separation between the debris and the DNA. Supernatant has been collected and mixed with 500 pl of 100% isopropanol. The mixture has been incubated at -20°C for 10 minutes, then centrifuged again for 10 minutes to precipitate the DNA. A step of wash has been added with ethanol 70%. After another centrifuge the DNA pellet has been left to dry under an air flux and then resuspended in DEPC water. The DNA has been treated with RNase A (ThermoFisher scientific) to remove the RNA contamination, following the manufacturer protocol. After another precipitation passage with 0,1 V/V Sodium acetate 3M pH 5.2 and 0,7 V/V isopropanol, DNA pellet has been washed with ethanol 70%, dried under an air flux and solubilized in DEPC water. Total DNA concentration and purity were determined by 100 UV-VIS spectrophotometer (Cary Series, Agilent Technologies). Samples (at least 10 pg of DNA each one) have been subjected to an Illumina sequencing system to obtain the sequences which were further analyzed.

As already know from literature, chemical mutagenesis results in strains with thousands point mutation. The main part of them is silent or not correlated with the interesting traits selected. A sequence analysis, in particular alignment of the gene sequences and alignment of the proteins with a prediction of translation based on the gene sequence highlighted is the key mutation which leads to the loss of this protein in E4_lbl (white strain).

In the case of E4 l_bl the comparison between the two controls (both the WT and the parental strain El bl) and the analysis of the function associated with the gene mutated, highlight 4 key mutations on genes correlated with the pigment biosynthesis. During the first round of mutagenesis on the WT, the loss of a plastid ribosomal protein (PRPS1) and a photosystem II reaction center subunit W (PSBW1), results in Elbl strain, with a low chlorophyll content with respect to the WT, but still green. The second round of mutagenesis on Elbl results in the loss of a phytoene desaturase (PDS1) and a Protein activity of BC1 complex kinase 1 (ABC1K1), which combined with the mutations already present results in the white strain E4 l_bl.

Therefore, the specific combination of these 4 mutations results in the white phenotype selected after step j). They are all occurring in the genes involved at different level in photosynthesis and pigments accumulation. The comparison between the sequences of the genome in specific regions of the genes of PRPS1, PSBW1_1, PDS1, ABC1K1, HSP90C_l and RPL13 from the WT (SEQ ID NO: 1 to 7) and the mutant E4 l_bl (SEQ ID NO: 14 to 20) and from the control mutant El_bl (SEQ ID NO: 8 to 13) and the mutant E4 l_bl (SEQ ID NO: 14 to 20) tends to show that the phytoene desaturase could play one of the key roles in the whitening process, indeed it is the only common mutation in which E4 l_bl differs from the two controls. PDS1 protein sequences for the controls and the mutant E4 l_b 1 are provided under SEQ ID NO: 21-23.

Therefore, a method according to the invention allows the selection of strains with an advantageous phenotype which leads to keep the advantageous levels of protein content from the parent (i.e. not less than 30 % w/w protein), while having a low chlorophyl content when cultivated under heterotrophic conditions (e.g. less than 3 %, for example 2%).

Further, the phenotype is considered to be stable since there are indications of an absence of reversion of the phenotype in light since no growth under light conditions has been observed.

LIST OF SEQUENCES

PRPS1 UTEX30 (Chorella vulgaris)

SEQ ID NO: 1

ATGCAGGCAATTTCAGCTCGTTTTGTCGCGCCTGTGGCGCCTGCCCAGCGCCGGCAC CAG

GTCGCCAGGCGCCAGCAGCGCCTGCAGCCCCTGGCAGTGGCGCAAATGGAGGAGCCG CA

AGTGCAGGCGGAGGCCCAGGAGGCCGAGGGCGACTGGGACAAGGAGTCTGCCTACGC CC

GCTTTGAGCAGCTGCTGGAGTCCAACACATACAACTTTCGGGCGGGGGACAAGGTGT GGC

AAACCCAACTTCACCAGCGGCGGCGGCGGCACTGCTGCTACAACCGCTCGCCGGCCT GCT

TGCATCCACTCACTGGTGCCTATCCCGTGCTCACATGGTGCAGGTGCTAGGCACTGT TGTG

CGTGTTGACCAGCGCGGCGCGTATGTGGACATTGGCGGCAAATCGACGGCGTTTTGC CCC

ACTGCCGAGATGGCACTGGCCACCATCCCTCGGGTGCGTGCGTGCTGCTGCTGCTTT GCT

GTATGGCGAGCCACACATGCATGCTGCTTTCTGTTCTCTGGCAGCACTACTGACAGC CTG

GATCACAGTTCAGGGGAGTGGAGCTGCTGTCACTCACAGCCGATGATCAGCCTATGG CTA

GCAGCAGTGGCATTGTGCTGTTTGCATCGTCCAGCAGCGATGTGTCAGCTCGTCAGC CTT

GGGTCCACACATACTCACGGCTGCAGCTGCAGCAGCAACATTAGTAGCAGCTGGCGC ATC

AGAACGGCCACGGCACAACCAAGCTCACAACAGCATGCACGCGGCCGCCAAGCAGCG TG

CCAATCCCTGCCCGCCTATGCCGCCACCCTGCCACCCACTACCCGCATACCACCCGC CGC

CATCCGCCTCACACCCCTGCTTTGTCCCCCCGTGTACATGCACTCTCACTCTTCTTA TCCAC

ATGCATGCTTGTTCCTGTGCACGCAGGCCACCCAGGTTGTCGGCACCTCCACCTGCC GAG

ACTTTGTCATCATCCGGGAGGAGCGTAACGGGGATCTCACCCTCTCCCTCAAACGCC TGG

AGCTCCAGGTGGGTGCTGCAGCTGGTGCAGGGGTGGGGCGAGGCGGTGGTGGTGGTG GT

GGTGGTGGTGGCCTCGGGGTGGTTGTGGTAATGTCGGTGTGGTGGTGGCGGTGGTGG CGG

TGTGGTGGTGGTGATGGTGGTGGTGGCATCGGGGTGGTTGTGGTAATGTCGGTGTGG TGG

TGGTGGTGGTGTTTGGTGGTGATTGGTGTGCACACAGGGTGGGGTGGGGCTTGTGTA GGC

GGCTCAGGGTGCAAGGATGGCGCTACGACAGATGGCATGGATGGATGGAAGCCTGGC AG

AGATGTGTCGGCGCTTGAGACGATGTCATCTCACGTTCAGCCTTCGTCAGCCTTGGC CAG

CTCGCCAGCGCTGCATGGATGGAGCAGCAGTTGTGCAATGCCAGCCAGCAGGCATGC TGC

TTCCGGCGTTGGTGACGCTGTGCGAGGGCAGTCTGCCTGCACTGCACCGCATGCTCT CTC

ACAACGGCGTCCCAGCGGGCACCTCTCAGCAGGCCAGCTGGGCAGTGCCCATGTGTT CTG

CCACCCATTTGCTCATCAGCATCAGCATCAGCATTAACAGCACCCTTGTCGCTGCGC CTGC

ATCACTTTTCTGTTTGCTCATGTGCCGCCTTTGTACCGCCCTGCCGTCGCTGTTTGT ACCGC

AGGTGGCCTGGCAGCGCCTGCGGCAGTACATGGAGGATGACGTGGCTGTGGAGGGCA CC

GTGGTGGGCACCAACCGGGGAGGCATCCTGGTGGACATTGAGAACATCCGCGGCTTC TGC

CCCGGCAGCCAGCTTGGCAAGCGGGTGGTGGAGTTTGAGGAGCTGATGAACCTGAAG AT

GAACTTCAAGGTGGGCGGCTGGGCGGTAGGGTGATCAGTAGTGTAAGCTTCAAGTGT ATG

TCGTTGGGTGTGTAGGGAGCGAATGTGAGGAGCAAGCGCCCCCGTGTGTGTGTCTCT GGA

GTGGTTTGGCACGGAGCTGTGCAAGGGGTGGGTGCAGACTGGGAGTGTGGGCCGTCC CT

GTCCCTTCAATCGCCCTTTGGCACCTGCTCACCCGTCTTCATCCTTCCGGGAACCGA ATTC

TCATCCTCGTCCCTCACCCCCCCTCCCCCCTCACAGATCACTGAGGTGGATGAGGAG AAG

ACGCGCCTCATGCTGTCAAACAAGCGGGTGGCGGCAGAGGAGCGCGCATCCAGCTTC AA

GGTGGGCCCAGGGGAGGGGAGACCCAGCGGCAGCGGCAGCGGCAGGGGGGTGGTCGG C

AGCAGCAGGGGTGGTACGGTGCCTGTGCAGCGCTTGCACTTGCACTTTGTTCTTGTA CTTT

GCAGCGCTGCAAATGCACTGTGCAGCTTCTCCTCGTGTGGTGTGCGCGCTGTGCCCT TGCT

TCCTTCACTGCTGCTCCCAGCAGAGGCTGGCGCCCTGTGCACGTGTACCGCCTTCTG GCTG

GAGCGCCTGCCTGCCTGCCTTGACCTCCCTCCCTCCCTCATCACCCCTCACCCCGGC CAAC

ACACACACAACACACACACATATACTCACACACGCAGGTGGGCGATGTGGTGGAGGG CA

GCGTGATGAGTGTGAAGCCCTACGGCGCCTTCATCGAGTTTGGCGGCACCTCTGGCC TGC

TGCACATCAGCCAGATCACCCACGACCGCATCACTGACGGTGGCGGGGGGGGGGGCT GA

GGGCCCCCGCGTCATTGGTGAGGGTGGGGGGGGGGGGGGGGCGGGGGGGGGGGGGGG G

GTGCGGAGGGGTTGATGTGAGTGTGGTTGGTTGCGGTGGTGGTGATGGGTGGAGGGG TG

GAGGATGGTGTGGGTTGGGTGGGTGGTGGCGGTATGGGTGGCAGGCAGGATGGGTGG CG

AGGGCAGGGGGGCACCGCATCAAGTCAGGGGTGGTAGGGCGGCAGGTTGGTGCACTG TG

GTGCCTCTTGTTGTCTGGACGTTCACACTCCTACTCGGGCACTTGGCAGGTTGCACT GCCC CGACTCGCTGCCTGGCTGCTGGCTTCCACCCTCCCTGCCTCACATCTCCTCCTTCCTTTC CT

CCCCCCGCGCCGCAGGTGATGGTGCTGAGCCAGGACCGTGAGCGGGGCCGCATCGCG CT

GTGCACCAAGAAGCTGGAGCCCACACCAGGAGACATGCTCAGGGACCCGGGTAGGTG GC

TGGCTGGCTGACTGACCTCTTCTGACTGAGCCCTGCTTCTGCTCTGCTTCTCTACTT CTTGC

CTACTTCTCCTCCAGCCGGTGGCTTTGTTCAGCCTGCATCCAATGGCCAGCTGACCT GGCT

GGTGTCCTGATGTTGTGGCCTGCTGCCTGCTGTGGCAGCCCGCTGTGTGGCTGCACC TCCT

TGTGGCCGCGCCCGCCACTCCACCCTGCCCCCTTCCCCCCCTTGAACCTGCATCTCT TCCT

TTTACTCTTTCAAATCCAACATCCATCCAACAGTCTATCTAAAGACAAACTGTGTCT CTTC

CCCTCCCCCCCCTCACCCCCCCTGCAGCCCTGGTGTACGAGAAGGCGGAGGAGATGG CAG

CCATCTTCAGGCAGCGCGTGGCGGCGGCAGAGGCGGCGGCACGTGCCGACAGCGGCA GC

GAGGAGGGCGCAGCAGCCGAGGCAAGCGCCTGA

PSBW1 1 UTEX30 (Chorella vulgaris)

SEQ ID NO: 2

ATGCGGCCCGCAGTCGTAGCGCTGCTGCTTCTCGCGTGCGGAACGAGCCTGGTGGCC GCC

CAGCGTGCCGGCGGCGGTGATTTCGAACCCACGCCTGCCACGAGTGCTGACGGCGCC TCA

GCCGACTCGTCCAATGGTGTGGGCCTATCATTTGACGAAACAACTGGCACCACCGGT GTT

GCGGGCATTGCTCCCGCACCCGCACCCGCACCTTCCGATGGCTTTGCGGTAGACGGT CTC

GGCCCCTCGCCAGCCCTGTCTGACATGGAGTCTCCTGGACAGCTTGATCGGCCCTCC GGG

CCTGGAGCCGTCATTGAACCCGCCATGGTACCGATGCCTGCCCCCCGGCAATCGCCG CCA

CCTCCGCTGCCATCCCCGCCCCCTCCGCCCCCTCCGGTAGGCTGCGTACACTGCCTG CATT

CAAGCTGGCAGTTCAGGTGCTGCTGTCACTCCTCTGCTGTCACTCCATACTGGTGAC AACC

CATGTGCCTGTTGCCCTGCCACGCTGTCCCTGCAGCCATCCGGCATCTTAATTACCA TGGT

GGTTCGACTGGCAGACACATCTTCACCGATGCCGTCGGACCTCACTGCCAGGGTTGT GGC

AACGTTCTCTGCTCTCAGCCCAGACCACCCCTGGACCTTGATGGAGCAGCAGGTACG GAC

TCACTCACTCCCTGGCTGTGCTGTGCTGCGGCCTCAGTGCCGCATTGCGTGTCGGCC GCAG

TGGGCAGGAAAGGCAGCAGAGGGTGCAGGCAACGACTGCTTTGTTTGTGCTTTGCAA AG

GAGTGTGCCACCTCCCGTGTAGTGTCCATGCTCACTGCTGCACGTTACTACCAATCC CTGC

AGCCCTCGTACCCAGGCCGGGCGCCCAACGACCCTAGGATGCTGGATGCAGCGCCCA CC

CCAACAGCCTCCTCCAGCCCCTCCCCTCCCTCCCGTGAAGACGACACCAAGGTGACA GTG

GACCCCCTGGCAATCAACGGGCTGGGCCGCAAGCTGCGCCAGGCAGCAGCGCCAACC GC

GCCGGCGCTGGCGTTGTCGGAGAAGGGGCAGTGCTATTCGACCAAGCATGCGCTGGC TCC

GGACGAGGCCATTTGTGGGCTCTGGTGCGAGGCGCAGCTGGCGGCAGGCACGGTGGA TG

CTGCGGAATACGGCACGCGGTTTTATGAAAATAAGGGTGAGATTTGTGGGTGCGGAA AG

CAGTGGCGGAGGGCTCCTGTGCTGGCCGTTGTGCGTGTGTGGTGTCGTGCACGCCCC AGG

GAAGGAGAGCAGTCACCAACTGCCCACGTGGCTTATGCCGAGTTCTGTCACATCCCT AAT

TTCACCACTTTGCCCCCCACGAACAGGTGTCAAGTGCTGCGGTTGCAATGCAAATAA GCG

CGGTGGTGACACCGGCAAAGCTGCCGCTGCAAACACAGACGCGCCCGGACCTGGCGC CG

CCCCGGACGCTCCAGGCACCGCAGCCGCCCCAGACAAGCCTGACAGCAAGCCAGATG CA

CCGGAGACAAAGCCCAACGAGCCCAAAGCCACGCCAGATGAGGTTGCTGCCACGGTA AG

CGCCCCCACACCAAGCCCCGCCACCAATGGCAGCCTTGCTGGTGGCGAGCAGGAGCA GC

CGAAGGTGGACGAGGGTGCAGATGGTGTCTATCTCTTTGCTTCCACTCGCGTCATGG ACA

CTGAGGCAGAGCGTGAGCTGAATGCCACTATGCGCGCGGCAGCTGACGCTGGAAGGC TC

ATGAACAGCTTGAAGTACACTGCAGGTGGGCTGCTGCTAGCAGCACTGCTGGCCTGC TTG

TGTGCTGTGTATGCTTAAACTCTCCTTGCACTTGCACTTCCTGCTGGTGGGGGCAGC ACGG

GCTCCCGCCAAGCCTTACATATCAAATGCCTGCACCTGGCCTTGCTTTCCAGCAAAA TAG

CACAAAACAAGCCCGCCTCACACCCAGCTGACCTTCATCCATCCATGTTGGCTTGCC TGT

GCTGTGCAGGTCTGACTGCCACCTCTGCCGAAATTGTGTTCCTTGGCAGCGGGGAAT TTA

ACATCACTCCACCTGCTGCAAGGTACAAGCGGCCTGCCTATGGCGATGTCTCCTCGG AAT

CCGCCCAGGAGCCCCCCTCAGCCCCCCCCACCACCACCAGCGACGGCGGCAGCAGCA AC

GGCATGATGCTGGGCATCATTGTGGGCAGCGTGGCTGCGGCGCTGATTGCGGTGACT GTC

GGCATCGTATGTGTTGTGCGCCGCAAGCGCAACAGCAAAGGGAAGCTGGAAGGGCAG GG

TTTGGCACGCAAGTGGGAGTCGGAACGCCAGCTGGGTGAGTGCCGCTATTCCTGTTG AGC

AGCTCTTTTGCGCCGCAAACGCGATAGCGAGGAAGAGTGGGTTTGGTCATGTCAAGT GCC TCCTTGTGCCCACCTTGACATCACATCTTCTCTGCTGCTTTCAGCTTTGATCTCCCGTGC TG

CGCCTCTGACATCTGTCCATCCCCCCTCCATCCCTCTCGCAGCCGAGGAGGAGCGCA AGA

GGCAGCAGGAGGAGCGGCGGGCAGCCAGCGAGGCCGCCAACGACCGCTACTGGGCTC GC

GTGCACTCCCAGTCGGTGCGCAGCCAGAAGCTGGAGCGGGTGCGCTCAGCCCTGGGC AT

GGGCCCAAAGGATCACCTCGGAGCGGCGGCGGCCAGGATGGAGGCGGCCGAAGCTGC CG

CAGTAGAGACTGCAAAGGGCGCGGCTGCTGCAACCCCAGCGTCTGGCTCCAGCAGCA AG

GCCATGGGCAGCAAGCCCGCTACGCCTGCCGCCGCCTCACGAGCTGCTGCTACCCCC ACC

ATTGCCCTCTCCGCGCACAGTTCATCTGTGGGGGAGGCGCCTCTGAACAGTGTGGCG GTG

CAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCGGCTCCACAGCAGC A

GCGGGCCGACTCCCAGCTGGGCCACTCGTGACCCCGGTGCTGAGCCCAAGTCTAGCA GCG

TGTTTGGAAAGTGGTTTGGCAGGGGATGACAACAGTCGCCCCGCTTGCCGCCTTACG TTG

CATCTCCACGCGACCCTCCAACCTACTTTGCAGCTGATCGAATCAGCTGAACTCATT TGGA

ATGTAAACTCACGCCCTCCATCAGTATAAGACAGCAACGCAAACTTGCGGCGAAAAT GC

ACGAGCGGGGAGAGCGGGAGACGGTGCCGCCCTTGCGCAGTTGCATGCAGCGCCGCC TG

GCCTCGTCCTGCGCAATGGCAGCCTGCTGAGTGACTCTCCTGGGGGCATATTCAGAG GGA

GGACGCCCTTCGAACTGCTTTTCGCCCAAACCGGGCCAGAGTCGGCTGGCGACAGGA ATG

GCTGCCAGTATGCACACATTCTGGTGGCAGAGCTCGTTGGAATGCAGGCAGAGCATC GAC

TCGCATTCTTCAAGTAGGCGCATTCTTTGCCAGCTCCCCCAGCTTCTCTGGGCGTTT CAAT

CCCACCACCCATTGCGCAACACACCCACCGACAGCCTGCCGTGGCCCAAGGGCAGCG CCT

CCTCCCCCTCAGGCATCCCTCGCCGCGTCTGCGACGCACCCACTCGCTGAACGTGTG TTAC

AGTCGCCAGCAGCCGCAGCAAGACGCTGAGAAGGGCCTGGGCCCCACCACGGAGCGC CC

TGGCTCACTATCAGGCAACGCGACTTTCTGCGCCCCCTCAGCGATATGGCGTTCCAG CTG

GAGTTCCGGCACGACTGCCAGTGAGTCTGAGGAAGGGCTGTGAGGTTGTCGCCGGGT TGG

CGACTCATCGCTTGCTGTGCTCCCTGGCGCTCCTGCAGGAATTTGGGATGTCCCAAC TACC

AGTGCAATCTGTGCAAGCTCAGCCAGCGGCGACGCTGCCCCTCCAACTTTGCTGCCA AGT

ACCTGGCGCCGTGCGACGTCGTTGAGGCCAAGTGCGGCGCACAGATTTATGTGGTGG TCA

CAGACGCAAACACAGGGCAGCTGGTGCAGCAGGGACTGGAGGACCTGGGCCTGCTGG TG

AGTGCAGGCAGCCGACCAACCACCTGCAGTGTGCTCACACCTAGCGGGGCAAACTCA GC

TTGCTTTGCCGTGTCCGTTCACTCGAGGCTGGTGCCGGGATGTCTCGGGATGTTTGT GCCT

ATGCGCCGGCAGACATTGGCCGTGCAGCTGTTGACCATGCCCCCGCACCCCTTGCAT GCC

TGCGCTGTGTGTAGATCAGCATTGTGGATGGCCGCAAGCTCGAGGCGGAGGGCAGCA GT

GAGGAGGGCATTGAAAGCTGCGAGCTGCTGGCAAACAAGCAGGGCCAGCCGCTGCTG GC

ACACGGGCGCTCTGGCAGCTACACAGACTCCAAGCGTGTCATGGTTCCCATGATTCA CGG

CCAGGCACTGCTGCCAGACCTCAAAATCACGGACTCCAGCGAGGCGCTGCTGACGGG GC

GTGCGTCAGTTTTTGTGGCGGATTGACGATCTGCTGCGGTAGCATCAGAAGCAGTGT TGC

GATATGCCACGGCAGTCAAGGCATGCGAGTTGTGACGCCTGCCTGCTGATGAGCAGG CGT

CGCCTGCAGTCATTCCTCATTGCTCACTTCCTGCCTCTCCATTTCGTGATGCGCCGC GCGG

TGACAGGTGGCAACCGCGAGAGTCAAAGGCGCCGCCAAGCTTGAGATACCTCATGTG GA

CGACCATGTCAGCAAGATTGATTGTGTAGGCCTGCAGGTGCGCGCGAGAGCGGGGAC CTT

TGTGAGGGCACGAATGGATGTGGGCACGGGTGCTGTGTGGTGGCGATTGCCTTGCGG ACA

GGCCATGCTTTGCATTGTTTTGGCAATTGGTCTGGCAGCAGGCAGGGCAGAGTGACA CGG

TGGCCAGTCTGGAGACCAAACGCAGCTTGCAGCACGGGCGTACCGTGGGCTAGCTGG CG

GGCAGTGCAGGGCTGTGCTGCGGTTTGTGTGCAGAGGAACCAGGAGGCCCAAGCATG CT

CGCCTCGCGTGTGTGTGTGCTGCTGCTGTTTCGACAGCGCAATCGGTGCGATTGCCG TGGC

TATTCCACCCCGCCGCGTCTGCCGCCACTGCCTGCTCTCACCTCGCTGCTTGGCTCG CCCC

CCTGACTGCAACAGACCCAAAAGAAGTTGGAAGACATCCGGGCGGCGGCTGTAGCGG CA

GGCGTGCCCGATCTCAACCTGCCCCACAACACCGTTACCAAGGGTGCGCTGCTGCGG CTG

CTGTGTTTTGATCCTACCCTGTGCTGCTCTGCCTGTCTGCCTGTCTGCCAACAGAGC TGAT

GTGTTGGAGAATGTGCACTTGTGTGCCTGAACTTTCTCTGGTGTGATCAGCGACGTG TTGT

GACCGCCTACAAGCACCAGCCTGCATTCTTTTCCAGCACCCACCTCCCTCCTCCCTC CCTT

TCTCCCTTCCTCCCTCCTTCCCTCCCTCCCTCCTTCCGCTCTCCAGTCGGCCAGTTC CGGGA

TCTGGTGGAGACAGCTGAGCGCAACAAAGCGTTGAGAGAGACGTTGAAGCAGGTGCT GC

GCCTGACAAAGGGGTGGGACGTGGCTCGGGACCACGTGCGCAAGGCAGTTGAGACAG AC

ATGCAGCTGAGGGTGTACCACCCTGATGGCCGCACTGAGGTGGGCCTGGTGTTCAAG TGC

GGCTCGTACAACGTCATAGACATCAACCGCCCAGTGGGTGAGTGCTGCGGCGGGGGT GG GGGGGTGAGTGTGCTGTGTGGTTGGTGTGGCGGCAGTGCGTGGTGTGGCGTGGTCTGGAA

GTGTGTGTGGCCTGCTGTGAGCGTGCGTGCGTTCGTGGGTCTGTGTGGCTAGTGGAA GTA

TTTGCTGAGCTCATTCCGAGCTGGAATGGCAGTGCAACTGAGGTGGGGAGTGTGGCG CTG

CTTGCACTGGCTGTGCTTCGCCTGTTACCTTGACGCTGCCTCTGCCCGCCTGCTTGC CTGC

CTGCCTACCTGCCTGCCCGCCTGCAGGCCTGATGCGCCGCAAGCAGAACCCGCAGCA GTC

CAACCAAGAGTTGGTGGATGTGATCTGGCTGCCGCTGGACACAGCTTCTTTCCCTGA CGC

TGTCAAACGCATGCTGCCTCAGGCCTCCACCGACTGGCGCAAGGAGGGCCACCCCGG CTG

GGCGCTGCTGCCGCTCACCATAGGGCACATGCCGCCGTACAGTGAGGGCGGCAAGCC CTC

CAGCCAAACCTCATCCTTCACCTTCACCATCCGCATGGCGCCAGCAGCCGCAGCGCC AGC

GCCCAGCCCAGTGCAGCAGCCGGTGCCGCCGGGCGGCATCCCTGTTTCGCCTCGCGG TGC

TGCGAGACGCAATGGCATGACCCCTCCTCCGATGCCTATGAGTGCTGCAATGAATGG CAT

CAACGGCGGCGGTGGCAGCAGCCTGCCTGGCTTCCCTGGCAGCAGCGGCGGGCTGCC GCT

GGGCCTCAACCTTGGCGGTGCATTGGGAGGCCTGGGCTTGCCGCAAGGCCCACCGCA GCT

GCCAGCCGGTTTTGTGCCGGGTGGTAGTGGCGGCGGCCTGGATGCGCTTCGCATGCC TCC

TGTCACTGGCCTGTCGCCCATGAGCGGTGCGCTGCCTTCAGACCTGCTGTTTGGCTC ACAG

CAGCAGATGGGAGCACCGCCGCAGGTTCCGCAGCCGCAGCAGCAGCAGCAGCAGCAG TT

TGGCGGCATGCCTGGGCTGGGAGGGCTGGGCGGCGAGCTGCCACCTGGACTGGCTGG TCT

GGATGCAGCCACAGTGCAGGGGCTGATGCAGATGCCCACACTCGACCTGTACAGCGC TG

GCAGCGCTCCTGGAATCGTACCGCAGCGCGGATCCAGCCAGGCAGCCGCCGCGGTGC AG

CAGGCGCAGGCAGCGGTGGCCGCCGCTGCGGCGGCGGGAGGGCACACGCCTGGACAG CG

GGGCAGCGGCAGCCCTGCAGGAGCAGGCAGCATCCTTCCCCCTGAGCTGGCGCATCT GCT

GAAGGATGACAGCATGTCACCCTTTGAGGATCCCAACTTCCAGCAGCTGATGTCACT GAT

GTCCGGAGGAGGGCCAGCCGGCAGCGGGGGCCAGGGCCCCAGCCCAGCCCCGCCCGG CA

GCGCCGCAGCCGCAGCCGCAGCCGCAGCGGCAGCAGCAGCCTCAGCAGCGCGGGGGC CT

GCCTCTGGTTTGGGCAGGCGCGAGAGCAAGCACGCAAAGCGCAAAGCAGGTGTGTGC CT

TGGAGAGAGTGTAGCTGCCTCCTTCCGGGATTGTGCTCTGGCTGTTGCCGCCGTTGC TGCC

TGCGCATTGCAGCTTGCTGCGACGGTTGACGGCGCTATCAGTGCATGCTGCCTGCAC TGG

CCAGTGCTTCCTGTTGCTTAAACGCAGCTGCACATCGCCGCATTCCTTCCTTCAGTA CCTC

ACCTCACCTCACCTCCCCTTCAACCCTCACCCCACCTCCCCCAGACACCTCCCTTGA AAGC

TGGATGGACATGAACAAAGGCCTTGACGACATGGCCATGCCAGGTGGCCATGGTGCG GT

GGCACCCCTGGAGTCACTCTTCACCTCCATGCTGCCAGGCGGTGAAGAGGGTGCAGG TGA

CGACAGCAGCGGCCCCGCACCACCAAGGGCCGCGGGCTTCTTCCCTGCCCCAGGCAG CG

GCAAAAGCGGCGCGCCCCCCGTCAAGCGCAGCAGCTCGCAGTCGCCTGGCGGCACGC CG

CCGCTGGCCGACGGTGGTGCAGCTTCTGGGGCCGCGCAGCCGATGCCGATGGATGTG CCG

CAGCCTTCTGGATCCTCCCAGCAGCAGCAGGCGTCGAGGGGTGCGCAGCTCGCCAGT GCC

CAGGGCCCCCCCTCGACAGGGGCGGCCCCCATGCAGGCAGAGGGCAGCGCGGCAGCG GC

AGCGGCTGCGGGTGGCCTTGCCCCTGCGCCTGCGCCGCTGGTCACCACCATCACGCT GGA

GCAGATGCAGCAGCAGTTTGCCCGCGCGATGCGGCAGGAAATCAGCTTTGCTGAGCT GG

AGGTCTTTTTGAAGCAGTATAACCTGCTGCCCTCTGGCCAGCCGGCCAATGGCGGCA CCG

GCCCGCAGGCAGCCATGGCGGCCATGGCGGCGGCTGCTGGTGGCATGGGCCCCGCGC CC

GACATGGACAGAGACGGCTCGCGGGGGCTTGAAGACATGCAGACAATCGAGCGTGCC CT

GCCCGTGTGA

PDS1 UTEX30 (Chorella vulgaris)

SEQ ID NO: 3

ATGAGCAGCGCAGGCGTGTCGGCCACCGTTTGCAGGCGCCAGGGGGGCTTCAAGGCC GC

AATGCGTGGCCAGGCCGTGGCGCAGCAACACCACGCCCGTGCTGGCCGCAGCAGCCT GC

GTGTGGTAGCCCGTGACTTCCCCAAACCCGATTTCGAGAAGGAGAAGACGTTTCAGG AGA

TGGCCGCCATCTCTGCTGCCGTCAAGGCGGCGCCCCGCCCCAAGGAGCCGCTCACGG TTG

TGATTGCGGGAGCGGGCCTCGCCGGTCTCTCCACTGCAAAGTACTTGGTGGATGCTG GCC

ACAAGCCCATCGTGCTGGAGGCTCGCGACGTGCTGGGAGGCAAGGTGTGCTCGACAC GG

AGCCTCGCCGCAAAAGCTGGCACAGCTGGTGTCCCTCGCATCTCTCTCTCCGCTTCC TGGG

AGCCGTACATGCCATAATACCTGCACTGTCACGTCCTGGTGCAGGTGGCTGCATGGA AGG

ACGAGGATGGCGACTGGTACGAGACAGGTCTGCACATCTTCTTTGGAGCGTACCCCA ACC TGATGAACCTTTTCAAGGAGCTGAACATTGAGGACCGGTGAGGACTGTGTGGCTGGCACC

TGTCCATCAAAGCGTGTGTGTACCTGTGTAGGATTATCTTGGATCTGTGCAAGGCTC GCG

ATTTTGTGTATGGTCGTGCTTTGCGAAGAGCAACGCATGGTTAAGTGCATGGCAAGG CCA

ATGGCATGCATGCAGAGCGGAAGCGCAAGCAGTGCGCCGACCCTCGAGTCACATTGG TC

AGCGCAGGCTGGTCACAAGGTCTTGAATTGAATGCCATCATTCCATATGCATCCCTT CTCC

CCACACACATCCCCACAGGCTGCAGTGGAAGCAGCACAGCATGATCTTTGCAGTGCG CGA

CTCCCCCGGAGAGTTCTCCCGCTTTGACTTCCCCGACCTGCCTGCCCCACTCAACGG CATC

GTGGCCATCCTGCGCAACAACCAGGTGCAGTCGGCTGGTTGCCTGAGGCTTTTTAAA ATG

ATGGGGCTATGACGGCCAGCTTGCAATTTTGCTTGCAAACCTGGCAGCCTCGCCTGT TGC

AGCTCGCCCTGCTGCTGGCATGCTGAGTGCTGCTTGCCACCCTTTTGTGCCCTGTGC CTCC

AGCTGCTGCCAGTCCACTCCACGCCGGTTCTCAGCCTCTTCCTCCCTTCCTGCAACA CACT

GTCTGCCCACACCCATCTTTGTACCACACCCACACCACTACCTACCGCAGATGCTTT CGTG

GCCCGAGAAGATCCAGTTTGCTCTGGGCCTGCTGCCCGCCATTGTGTACGGGCAGCC GTA

TGTGGAGGCGCAGGACGACAAGACTGTGACCGAGTGGATGGTCAAGCAGGGCGTGCC TG

CGCGCGTCAACGACGAGGTGTTCATCGCCATGGCCAAGGCACTCAACTTCATTGATC CCG

ATGAGCTGTCCATGATCTGTGTGCTCATAGCCCTCAACAGGTTCCTGCAGGTAGGTG GGC

TGAGCCAGAAGGGCGGGTGGCTGGCTGGATGGGGCAGGATGCAGCAGCTGGGGTGGC TG

GCTGGCTGGCTGGGTGGAGGATGCAGTGCATGGGTGGTGGCCACTGTGCGCTGGGTG GG

CTGGGATGTGCACACACGGTGCTACTGCGCTGCACTTCTTCTCGAGGCTCCGCAGCG CTG

GTGGCGGCGTCCGGGCTTGGTGGTCAGCTTGTGTGATGCCTTGGTGCCGCCTGCCCT TCCA

CGCACTCATGCAGGAGCGACACGGCAGCAAGATGGCTTTCCTGGATGGCTGCCCGCC TGA

GCGCCTGTGCCAGCCCATGGTGGACTATGTGACTGGTGAGGGCGGGGTGGGCGGTGG CA

GTGTTGGTGGGGCCAGTTTGTGGGCGGCAGACTGTCGAGCAGCCAGCCAGGCGCTGT TTC

GCTTCCCCTGTTTCTCTTTAACTGCCCTCCCTCACACTATGTGCCGTGCGTCACCCT CTGCC

GTGCTGTGCTGTGCCCCATGCTGTGCCGTGCAGCGCGGGGAGGGGAGGTGCGCATGA AG

GCCGGCATCAAAAACATCGAGCTCAATGAGGACGGCAGCGTCAAGTGAGCGAGACTG GG

GCTGGGGCGGGCTGTGGTCCTTGTGTGTGGTGGGGTGGAGGGGCAGGGCGGGGGAGA GC

ATGCCAGGAAGGGAAGGCACAGCAGGAATCCACAGGGGCAGCAGCAGGCCCCCGTCC CT

CTGTCCCACAAGCACACCTCCTCTTCCTGTCTGTTGTTTTGCAGGCAGTACAACCTG CTGA

GCGGGGAGTCCATCACCGCCGACCTCTACGTGTCAGCCGTGCCCGTGGACATCTTCA AGA

GGCTGCTGCCTGCCCCCTGGTACCAGCAGCAGTTCTTCAGCAAGCTGGACAAGCTGG TGG

GCGTGCCGGTCATCAACATCCACATCTGGTTTGATCGCAAGCTGACCACGGGTGCGC ACC

TCTTCAACACACAGACACGCATGCACTGCTCGCTCTGCTGTCTCGCTCTGCTCGCTC TGTT

GTGCCACACAGTGTTGTATGCTCCCACCTGTGCCTGGGCCTATACCACCCATGCTGC CGGC

TGCCGGTGCGCTGTTTGGGGCCGGTGCCTGCTGCTGGCTGCGGGGGCACAGCCGCCC CTC

TGCTGCGCATCACCAACCGATGGCAACTTCGCCCCTGTGCCCGCCTCATTGCTTGCC CGCA

GTCATCCCTGCCTGCACTTCTCTGCCCTCACCCCTCACCCCTCCGCCCACCCCCCTG CCGC

CGCAGTCGACCACCTGCTGTTCTCCCGCTCCCCGCTGCTGTCTGTGTACGCCGACAT GTCA

ACCACCTGCCGCGAATACTTTGACACCGAGAGGAGCATGCTGGAGCTGGTCTTTGCA CCT

GCGGAGAAGTGGATTGGACGGCCGGATGAGGAGATCATTGCGGCAACCATGAAGGTG GG

GGGCCTGGGTTGGGGCGCAGAGCGTGGTCTTGGTGGTGGCCTGGGGTTCAAGGGGGC GG

CACTAGCACTGCTCCAGCTGGCCTGTGTATGGTCATCCCGCATCGCTAAGTTGCGCT CTCC

TGAGCCCTTTTAAGGCCACCCAGGATGAATTTCTCACCCTGTACTTCTCACCTTGTA CCTT

CACCCTGTACCGCTGCAGGAGCTGGAGAACCTGTTCCCCACCGAGATTGCGGCAGAC GGC

AGCAAGGCACAGATCCGCAAGTACAAAGTGGTGAAGACGCCGCTCAGCGTCTACAAG AC

GGTGCCCGAGTGCGAGCCCTGCAGGTGCCCTTGTTTGCTGCTGTGCTTGTGCGGGGG CCT

GCCTGTGGCGCGGAGCGTGAGGCGTTGAGCTGTTTGGAAGGTGGAAACAGCTTTCCT TGG

CACTGCTTCTCCTGTTGAGGGGTCACTGGCGTGAAGGCACATGGCGTTTGGTTCAAT CAA

TGCCTCGCCTGCCCCGCCTGAATGCTGCAATCGTTATTTTGGCTCAGCGCGCAAGGG CTGT

GGGCTGATCTGCCTCCACTGAACGCCTGCAGGCCCACCCAGCGCACCCCCATCCGCA ACT

TCTACCTGGCGGGTGACTACACCAAGCAGCGGTACCTGGCATCCATGGAGGGGGCGA CCT

TCAGCGGCAAGCTGTGCGCGCAGGCCATTGCGGGTGAGTGAGCGAGGAGCGGAGGGG AG

CGAAGGCTGGCAAGGGAGGACACCAGACAGAGAGGCACAAGTAACTGCCGTTGTGCT GT

CTGGGTTCCTGTTTCGCACTGCTCCCACTCTGCACATTCTCTTTGCCGCCTCTGCCT GCAGA GGACTGGAACACCTCAGCCGTGAAGCCCAGCCAGCCTGCCAAGGAGAAGGCACTGGCGT

GA

ABC1K1 UTEX30 (Chorella vulgaris)

SEQ ID NO: 4

ATGAACGAGCGGTGCGCACGGAGCCTGGCCGGCGGTGCCTCCACCTCTGGCAGGGCC TCC

CAGCACTTTGCACCGCTTGTGCGGGCCCCTGCGGCTGCCCAGCCACGGCACAGGGCC AGC

CGGCGAGGATTGACCGTGCAAGTGCGCGCAGCGGCCACCGTCGTCGAGAGGTGGGTT GG

CCGCCGCCAGCGCCCCGGGCCACGCCCCGGTGGCAGGTGGGCCGGCCCTAGATGATG CA

CCCCCACACAAACCCACAACAACACAAAACCACACACCACAAAACAAAACAGAACCA G

AACAAAACCAAACCGAACCGCGCCTGAACTTGACCCCCGCTAGCACTTTTTTCTGCA GGC

CCTTTTGGCAGAACCTCCCCTGGTTCAGCACCCAGCGCGATGCCTATGAGCAGCTGC AGA

TGGAGGTGCGCATTGGGGCAGCATTTTGTGGTGCACCTGCTGCTCAGGCCGGCATCT GTT

CCCATGAGCACTAGGCTTCGGCTGCCTGTAGCCCGCCGTTGCTTCCTGTACAACCCC TTCT

CCCCCCTCTCTACCTTCAAATCATCCCATGCACTTAACTCTCCCTGCACACAGATGG GCTA

CTGCAACATCCGGCAGCAGTACTCCCCCGAGCTCGTGCGGCAGCGTGCCATTGGCTC CCC

AAAAGCCTTTGTGGCTCTGATGGGCCGTGGCGCACAAATAGGCACAGAGGTTGGCCG CTT

CCTGTTTGCGCTGTGGGCAGACGGGCTGTCGGGGCAGGCAGACGACAGCGTGACGGT CA

AGAAGCGGGCAACTGAGCTGCGGGACCTGCTCACCCGCCTGGGACCCACGTTCATCA AG

GCCGGACAGGTGGGAACACATACCGTAGGGGGGGTTGCTGGGCTGTGATCGGGGCGT TT

GCCCTGAGGAGCTGTGATTTGATCCGCGGGTGTTGGCAGGGACCCATAAGCCACCTT CCC

TTTTCCCCTGCCGACTGCCCTTTGCCACGCTGTCGGATCAGGAACCGCAGGCAGCCA CAG

CACAGCTGCCATTGACCTTTGCAGCCTGCTGGTGGATATGGTAGTGGTGCCCATCTC CATG

CTGTTGTGTCCCATCACCTGCGCAGGTGCTTGCAAACCGCCCAGACATTTTGAGGGA GGA

CTACATGAATGAGCTGTGTGTGCTGCAAGACGATGTGCCGCCGTTTGCTGATGAACA GGT

GAGGGGAGGCTGGCTGGGACAGTTGCCGGCTGGGCCAGCGATTGGCGGCTGGCAAGC CA

TGGGGAGAGGGGGAGCACCACTGTAGCAGGGACTGGCGCCTGTCATTTGAGCAGCCC AG

TCGCTGCTCCGCTACAGCTGTGCCCGCAACACAGCCCGAGGTTTTCTGACAGCTGTA ACC

ATACCTACTCCCTCCCCTTGCGCTCTGTTTTCACTCTCGCCGCCGCTCCACTCCTCC CTTCG

TTGCAGGCATTTGGCCTAATCGAGGCCTCCCTTGGACGTCCGCTGGGCGAAGTGTTT AGC

TCGATCAGCGAGCGGCCCATTGCCGCCGCTTCGCTCGGCCAGGTGTACAAGGCAGTG CTG

CGGGATACCGGGGAGGAGGTGGCGGTCAAGGTGGGTCGTGTGGAATGATGTACAGGC TG

GCACACCTTTGGTGGCTGGTCTGGGGCCGCTACAAGCAGTCTGGCAAGCGGTGGCAC GCC

ACGGCAGCCAGCCATATTCACGTCAGCAGCATATGTCTTGCCGTCGACACCAGGATG CAT

ACCTTGAATAGCAGTGCTGAGCATGCCGCCGCCGTGCCGCCTTCTTCTCCATCTGTG TGGC

TTTGTGTGGTGCGTGTACTGCAGGTGCAGCGGCCGGGTGTGGAGCCACTCATCTTCC GGG

ACATCTTCATCTTCCGCACCCTGGGCTCCTTTATCAACGGCTGGTGAGTGTAGTGGA AAA

AAGCTTCCTTGTAAAGGTTCGGTTATGGATTAAGGTAGAGGACGAACGCCTTCAGAG TGC

TGGTATCAATGCATGTTTGCTGGCACATATGCACGCCATGTGCTGCCCGTCCCCTAC CTCA

CCGCCTCACGTTTCACCCTCCCTTACCTCACCCTCTCAAGCCTCTCCGCACCTCCCG TCCTC

CCTCAGGTCCCTGCGCCGCCTGGGCTGCAACGCCGAGCTGATTGTGGATGAGTTTGG TGA

GAAGCTGCTGGAGGAGCTGGACTACGTGCAGGAGGCGCGCAACATACTGGTGAGGGA GG

GAGGTGACAGGCAAGGACGATTGAGCGGGCAGCTGCGAGGGAGAGTTGTGAGGTACC CC

AAGACAGCTGGGGTGTCGAGTAGCCGGGGGTTGGAGGCAAGAAGGACGGTTGGGCGC GA

GCTGCGAGGGATTCAGGAGGTGGTGAGGCAGCGGCAAGGGAGGGAAAGGCAGGCATC G

TGCTGGGGCGACGTGGAGCTTACATGTTGCGGGGCAACGTTGGGAGCAAGCGTGGCT GC

AAGGCGGACGTTCGCTGCACTCAAGTCTGCACCTGACACCTCCGCTCCCTGCGCCCT CGT

GCCTCACCCCCTCTCCCCTTGCCGCTCTTCTCCTCCTCCTCAGGACTTTTACGCCAA CTTTG

AAGGCGACCCGCTGGTGAAGATTCCGTGGGTGCGGCGCGACCTCAGCGGCCCACAGG TG

AGCAGCTGCCTGGCAGTAGTCAGTGTTCGGGCTGCTGCTTGGCAACAATCCATACTC AGG

CTCAGTTTGCAGGCTGCTGCTGCTGCTGCCGCGCCCCATGGGGCGGGGCTGCTGTCG GTG

CTGTCGTGGATGAGTTGCTGACATCAAAGTTTTTGCGCATACGGCGACTCGTACAAT CGA

CCAGCGATCCATATTGCCAGCTTGTGACTGCTTGGGGCTGCATCAGAGCCAGTCAGC TGG

CTCCTTCAGGACACATTTGACACCCAACACACCCACTTGAGCCAAACAACCGTATAG CCT CACGCTCTGCTGTCCTGCTGCTTTTTCCCTGGTATCATGTCTGCAGGTGCTGGTGATGGA G TGGATTGACGGCATCCGCTGCACCGACGTCGATGCGATCAAAGCCAGCGGCCTGGACCTC CCCTCCTTCATTCGCACGGGGGTGGTGTCGGGCCTGCGCCAGCTGCTGGAGTTTGGACTG TTTCACGGAGACCCCCACCCGGGTGCGCAGCAGCACTTGCTAGTGGCAGCAGCGTGATTT GGCAGCAACACGGTGTCATCTACAGCGGTATGCTGCCCTGCACGCATCCCAATCGTCTGT GGTTGGGGACCCACCAAGACGGAAGGATGCATGTCAGTTGGTTGCACTGTCATGACAGG CAGCAACAATTCACCAGAGCTGTTGCCTCTTTCTCGCTGCTGTATTGTACGGGTGCGCCG T GTGATTCCCTGTCACCCTGAGCCCCTGCTCCCTTTCACCTGCAGGCAACATCTTTGCGCT G AGGGACGGCCGCATCGCGTACGTGGATTTCGGAAACGTCGCGGAGCTGAGCCAGAGCAA CAAGGTGGGTGGCCGTGCTAGCACGCTGGCGTCATTGTAGGTGCTTTCAGGACGTTCCGG GGCGATTGCTGGAGTAGCAAGCATTGAATCACGCTGCAGTTACTCAGCAGCCCACCCCAC CACTGTGGCACGCACGCTGCACCCACGCATCTCCCGTTTTGTGCACGCCTCTCCCTGTGA T CCCGCTAGCCCAGCCGTACCTGACCGCAACACACGTCCTCACCACCTGCCCCCCTCCCCC CCCCCTTCCCATTGCTGCAGGAGATCCTCATCGATGCCGTGGTGCACGCTGTGAACAAGG ACTACCCAGGCATGGCGGGTGACTTCATCAAGCTCGGGTTCCTCGCCCAGGGTGAGATCC TTCTCCCGTCTCTTTCTCCCCTCCTCCCCTCCCTTCTCCCCTCCCTTCTCCCTTCCCTTT CTG CAGCATAATGAACGGAAACGCATGTTAATTTGTGTGCATTGCGACTCTAGTGGGGCGTCA GCTGACAGACGGTTCTCAGCTTTACTGCAGCGGCTTGAGCTGTCAGGCTGTCGTGTCTGT T ATGCGCGCCTCCCTGGTTTCGAAGGTTGGGCCGACTTGCTTGCTGACTGCCTGCCTGGTT T GGTGGCTTTGTGTTGATTGCAGGCACCAACGTGCAGCCCCTGGTGCCGGCTCTGGAGAAG ATCTGGGCCGATAGCCTGGGCCAGTCCCTGGCTGACTTCAACTTCAGGTGCGGGGTGGTC CTGCTGCCGCTGCTGTTGGCGGCGGTGGCTGCACTACTGCTGGTCGTGAGCAGGCAGCCG GCGGGCAGTCCTTCGAAGTGCACTGGGCAATTACGCTGGGGAGGCTGTTGCACAGAACA AAGCACCTGCTGCTTGAAGCTGGAGGCGCATCAGCTCTGGTCATCCACACCTGCGATGGT ACCGCCCCCCTGCAGGACCGTCACCTCCAAGTTCAACGAGCTGGTGTACCAGTATCCCAT CCGCATCCCAGAGCGGTACTCGCTCGTCATCCGGTGAGGGGCGGTACCCTGTACTGCGGC TCTGCTTGCTTGAGGGCCAGTGGACGCGGGACTGTTTCACTCACGCTCGCGCGGCAGGCA GCCACCCAGCCAGCTGTGGTCCCTTGCCTGGACCTGGAGCAGTCACATCACACACCCAAA CAGCACACCGACCAACTTGCCATACACGCCCCTGCTCCTAAACCCACCTCCTCCCATGCC CCTGCTCCTAACTCCAGCTTTTGCTGCTGCCTCCACCCCTCCTGCCCGCCTTTGCCCGCC C GCCTGCAGCTCGCTGCTCACCCAGGAAGGCATTTGCCTCACCCTCAACCCCGAGTTTCAC T TCCTGGAGGTGGCCTACCCTTATGTGGCCCGCAGGCTGCTCACAGATGAAGACCCCGCAC TGCGGTCACGCCTCGTGCAGGTGGGCATGGGACGCTGCTGCGCCTTGCTTTGATTGGAAG ATATGAGCTGGTCAATCAAGTGCTGGCCCTGCTGTGTCTTGCTGTGCGATGCCATGCTTG C TGGCTGGAGAATGCCTGAGATGCACCATGCCGTGCATGCCGTGTTCTGCCTGCTGCTGAC CTTGTTCAAAACCCATTTCCATTGCCACCCCTCCGACACCCCTGCTCCTCTCCTTCAAAC C

CGCCCCACCACACTTGCTCCACTGCCGCTTCAGGTGCTGTTCTCCGACAACCGCTTC CAGT GGGACCGCCTGGAGAACCTGCTGCGCCTGGCAAAGGAGGGCATCGGCGGCCCCGGTGGC GTCGGTGCCGCAGCCCTGCCTGGCGGCCTCGACCTGTCTGCCACCGTCACTGACGGTGCT CGGGTGAGGCGTGCATGCATGCTTTGCGTGATGCATTTTGGCTGTTTGTTTCCAGTGCTG T TCAGATGAACTCGCATCGTTCCGGGTCCTTCTGCTTCGCCATTTGGCGCTGTGGTTTGGC T TGCTGCCTCGCCAAGCTGCCTTGTTGGCCTCGTCAGCCTCTCAGTCTAGCGTCTGCTGCC A CCACAGGTTGTGCTGCTGGACGACGAGTTGCGCCGCCAGCTGCTGCGCGCGTTCACAGAG GATGATCGCCTGCATGTGGAGGAGCTGGCACGCCTCTTCCGTATGGTCCAGGTGCGTTGC CTGTTGTGTTTGCGTGTACATGTTGTGTGTGCAACAAACTATTGCACGAGACATGGTGGG T GTGGAAGAATTGTGCATGGTCCCTGTAACATGAGACCGATGAGCAGCTGCTGCACTGCTA TCGTCTCAGGCAGCCTGTGCGCGCCATGTTGCAAAAAGCGTGCGTACCCCCGCCTGGCCC GAGCTGGTTGGCTGTTGCTTGGCGGCAAGCCGGCTGAGTGTGTTGGCTTGTCTGCCTGCC T GCCTGATGTGCAGAGCGACATTGACATGCCACGTATGGTGCAGTCGGGCGTCCGGCAGCT GCCTACCCTGGCCCGCCAGCTGGCGCTGGGATGGTCTGACAAGGTGCTGGCTTCATGA HSP90C 1 UTEX30 (Chorella vulgaris)

SEQ ID NO: 5

ATGGCAAGTGCGGCGGCCTGCGCACGACGTGGCGGTAGCGCTGCCAGTGGCTTTGGC TTG

AACTCGCATCGCCGGCGCGTCTTTCAGATCAGCCTGCGGCGTGGAGGGATGACGCTG CGG

CTCAGGTGTGTGGCTCACCGGCGTGCGATCGGCGAAGCTGTGAGGCTGGCTGTGCGT TGC

AAGCTGACGGCAACAGCCTGCGTCATCTGGGTAGCGATCGGGACGTGACACGAATAA CG

TGCAGCGGGCGGTCAAAGGAGCTTGCAGCGGGAGGCAGCCCCCGGGCTGCCAGGCCA TC

AACGAAGCCACCGTTGTCAGGGACAAGGCATGCAACGCGCTGCAGTGGCGACCTGGC CC

TGCCGGGCAGTTGTCGCCGCCGTCACCGCCCTGCCGCTGCCCACGCTCCCATTGTGT ATCT

CATACGTGCAGGGACCTCATCAAACAGGTCCGGCAATGCAAGACCGCAGCCGAAGAG CG

TAATGTTGTCGCCAAGGAGGGTGCGGCTCTGCGGCAGGCCTTCAAGGAGCAGGATGG CA

CCTACCGGCATAGGTGGGCCAGCAACACTCTCGATTACGCCACTTCCTTGCTTTCAT GCTG

GATCGCAAATTCTGTACATTCTTGGCCGTGGCTGGACCCAGTGTATACTGTACTGAC CGCT

GCCTGTACCGGAGCCTACCTGGAATGCCCCCCCCCCCCCTTTGCAGGAATGTTGCCA AGC

TGATGTACATCCACATGCTGGGCTACCCCACACATTTTGGGCAGATGGAGACGTTGA AGC

TCATTGCCTCCAACGGATATCCCGACAAGGTGGGTAGGCTGCTGCCCTGCCCGCGTG GTA

GGCTGGGTGGGCTGGGTGGCTAGTCGACCCAAGATCGGCATGTTGATACGGGAAGGT GG

TTGTCGATACAGGCCGGGTGCTGGTGGTGCTGGAGGGCGCCACCGCAGACCTGTTGC CTA

TGTCGCAGGGGCTCAGGCGGCAGCGGCCCGTGGCTCACCGGCTGGTCTGCGCACAAC AG

CAGCACCAGCAGCAGGAGGCCCAGTGCCGCCTGCCGAGAGTTCACAGCAGCGGTGTG CA

CGCCTGCCGCTCACTCCCTCTCATTCCCTCCTTGCTGCTGCTTCTGCTCTCCCCCCC CCCCT

GTGCAGCGTGTGGGCTACTTGGGCCTCATGATTTTGCTGGACGAGCGGCAGGAGGTG CTG

ATGCTGGTGACCAACAGCCTGAAGAACGACTTGAACAGCCGCAACCAGTACACTGTG GG

CCTGGCGCTGTGTGCGCTGGGCAACATCTGCTCCGCAGAGATGGCTCGAGATCTGGG ACC

AGAGGTGGAGCGGCTGCTGGTCAGCCCCAACCCTTACCTGCGCAAGAAGGCGGCGCT GT

GTGCCAGCAGGTGAGCTGGAACAGCAGCGGGGTCAGGGAGGTGGGTGGCGGTCAGGG GC

AGCGGAATTTGCAGAGGCAGGAGGGAAATGGAGACTGCAGTGTCGCTGCCTCTTGTC GA

GTGCCTGTGTCTGGATGCGTCCTGTTGGGGGTAGCAGTTGTTTAAAGCCATTGTTTA AAGC

ATGGCTTGGAGGTTGGGCTGTTGGAAAGGCCCTGCCTGCCGCCGCCATGGCGCCCCC TCT

CAAGCATCATGCCTTGCCACCACTTCCTGGCGCACCTACCCATTCTGCCTTCATGCG CCGC

CATCACTTCCCGCCACTGCCTGCTGGCCCACTGCCCGCAGGGTGCTGCGCAAGTGCC CCG

AGATGTTGGACAGTTTCCTTGAAAAGGCTCCCCGCCTGCTGGACGACCGCAGCCACT CTG

TGCTGCTGGCCGGGTCCACGCTGATGCTGGACATCTGTGCCCAGGAGCCGGCGGCGG CAG

GCTACTACCGCAGCCACGTGCCTGTGCTGTGCCGCATACTGCGCAGCCTGATCATGG CGG

GGTTTGCTCCCGGTGGGTGCCCTGGTGGGGTGGGTGGGTGTGTGTGTATGGTGTGTG TGT

GATGGTGGTTGGTGGTGGCAGCAAGGTGGCTGATTGGGTGGCAGGGGCCCTGCCTGG TTC

TTTTGGTGCTGGAGCAGACACACTGCACCTGTGAGTGCTGATGACATCGCAGATCAG GCA

TCGGTGTGAAGTAGCAGCAGCCCCACGTTTTCGTTGCTAGTGTTCATGACCCCGCCT CACC

CTCTCTCTCCCGGCTTCAATTCGCTAACCATGCACTCACTTGAAACCCCTCCGTCTT CCCTC

CCCCCCCCCCCCCCCCCTTCCAGACTACGATGTGGGTGGCATCAACGACCCCTTCCT GCA

GGTCAGCCTGCTGCGCCTGCTGAGGGTGCTGGGACACGGCAACGCAGAGGCCTCCGA CG

CCATGAGCGATGTGTTGGCCCAGGTGGCCACCAACACAGACTCCGCACGCAACCCCG GC

AATGCAATCCTCTACGAGTGTGTGCAGGTGAGTGGGGGGTGGGGTGGGGGGACTGTG TG

TGGTGGTGGTGGTGGGGGCGGCATGGTGGGTGCAGTGTGGCATGGTGCGGCAGGTTG TGT

GGTGCTGCCTTTGAGCTTCCCAGCCAACCAGCCATTCGTTGAGCCGTACCAGAGGCA ACT

CATCACAGCCGTTGTTTCAACACATCATCACCTGACCCTGACCCGCTGACAGGACTG TTA

CCACCACCACCTCTGCTGACCCATCCCCACCCCCCCCCTGCCCCTCTCCTGTGCCTG TGCC

TGTGCCTGTTGTGCCTGCAGACCATCATGGCTGTTGAGAGCATTGGCGGGCTCCGCG TGC

TGGCCGTCAACATTCTGGGCCGCTTCCTGGCCAACAAGGACAACAACATTCGATACG TGA

GTGAGCAGCGCGGCGGGCTGGCACGTTGACACATGCTAGGGCTGTGTGGTTGTGGGT GTC

AAGGGGGGGCAGGGAGGGAGGGAGGGAGGGGCGAGGGTTGATGAGCTCTGCACTGGG C

TGAGCAGCAGGCAGCGCGGCAGTGTGCCCGGGGCTGCCTTCCTCTGCCTTCCTCTCC GCT

CCTTTCCCTTGCTCCCTCCTCCTGCCTCCTCTCACACCACCCGCCGCTGCCACGTAA CCTTC

TTCGTATCGACAATCCCCCCCTTGCCCCACTTACCCAGGTGGCCCTCAACACTCTGT CCCG GGTGGTGGGTGTGGATGCTGCCGCGGTGCAGCGCCACAGGGCAACCATTGTGGAGTGTGT

CAAGGACGCAGACATATCTATCCGCCGCAGGGCGCTGGAGCTGGTGTATGCGCTGGT GA

GGGTGAGGGTGAGGGTGTGTGTGTGAAGGGGGGGGGAAGGGGTTTGCCAATGTGTGG TG

TGGTGTGGTGGTGCCGCCTTGAGGCGCCGGGGACCCGCTTGCTCTGCCCCTGGTGAC GGC

TTGGAAGCTGCTCAATGCTCAATCACACCCTTCCACCTCTCTTTCAATTGATCCCTG CGAG

CATCCCCCCCCCCCCCCCCCCCCCCCCCGCCCCATCACCACAGACCTGGAGATCCGC ATC

CGTGCCGACAAGGAGGCCAACACGGTGGTGATTGAGGACACTGGTGTGGGCATGACC CG

CGAGGAGCTGATCGGCACACTGGGCACCATTGCAAAGTCGGGTGGGTGCTGCCTTTA ATT

GGCTGGCTGGCCGGGTTGATTGTGCTGGGTGCTGCTGGGTGGCTGCGTGAGTGAGTG CTG

CTGTGTGCTGCCGGGTGACTGGCAGATTATTGTCTGTCTGTCTGGCTAGCTGGACAG ACA

ACTTATGGTGGTGATGGTGTGTGTGTGTGGGGGAAGTGATGCCGAAGGAGGCGAGTG GTT

GGCCAGCTCTTGCCGCCACTGCTGGCAACCCCTCCCTGCACCGCCGACTGCGGTACC GCC

CTCGTGTCTCGATGTGCCAGCACCGCTCACGTCCTGCTGTTGCACCGCCTGTATGGT ACTG

TACCGCAGGTACCGCCAAGTTCATGGAGGCGATGAAGGAGAAGAAGGATGCAAACCT GA

TTGGCCAGGTGGGTGCTGGGGCTGGGGCGTGACCAGAGGCAGTGTCTGTCATGCCTT TTG

ATGTTTTCGTATGCCAAAGCCTCTGTGAGGGCTGGGTGGCAGGTCCATGACAGGTGG GCG

CGCGGGCGGTGTGTCGCTGTCAAGTAAACAAGTCTACCTGCGGCGATGTTGGGCTGC ACC

GTCCTGTCCCTTTCGTTCCGGCGGGAATGCATTGCACCTGCTCGTTCACGCATTCAC CCCT

CTTCCGTTGCTGTGTGCTTGCGTGCGCTCTTGCCGCAGTTTGGTGTTGGGTTCTACT CTGCC

TTCCTGGTTGCCGACAAGGTGCGCCCTCCATGCCTGCTCCTGCCGTTGTACTGCTGC CGTA

CCGGTGTCATAATGTGTTTGCTTGCTTGCTTGCCTGCCCTGCTCTGCTTCCGAGGTA CAGT

GGCACCTGTCCTGCTTGCCCGCATGGCGCCTCCCCAGCCTGCCTTAGACAGAGAAAC ATG

TTCACTCTCTTCACCTGTCAGCTGTCATCAGCTGTAAAGCATTAGAAGCTGGCAGCA ATCC

CTCAATCCCTGATGAACTCCTAGGATCGCCTCCCACCTGTGACAGGTCAGCGTGTCG ACC

AAATCCAACAAGGACGGCTCCCAGTGGCTGTGGGAGTCTGCTGCTGGCGCACACAGC TAC

ACAAGTGAGTAGGGCGGCTGGTGGTGGTGCTGGTGGTGGTGCTGGTGGTGCTGGTGG CGT

GGAAGGTGGTGGTGTGAATGCTGGTGGCGTGGAAGGTGGTGTGAACGCTGGTGGCGT GG

AAGGTGGTGGTGTGAATGCTGGTGGCGTGGAAGGTGGTGTGAATGCTGGTGGCGTGG AA

GGTGGTGGTGTGAATGCTGGTGGCGTGGAAGGTGGCGGTGCTGGGCATGAGAGCACT GC

TGCTGCCGCTGCGGCTGGTGCTGCCTCCCTTGGCAATTGGCGCCCGCTGCCCTCCCG GCCT

GGTCCCCACATATCAGCAACAGCCAGCCAGGGTTTACATCAGGTGTTGGCGGGTGCC ATC

CCTGTCCGCTGCAGTCCAGGACAACAGTGCTGCTGACACCACTGGCAACTGTTGACG CAG

CCAAGCAAGCAAGCTGACGCCCCTGCTTGCTCTGCCGCGTTTACACTGTAGTCAAGG AGG

ACGCCGCTGCCGACATCCCTCGCGGCACCCGCATCACACTGCACCTGAAGCCTGATG CCA

CGGAGTTTTCCGATCCAGCCAAGCTGGAGGTGGGTGCTGGGTACTGGGTGCTGGGGA GA

AGGGGTGTGGCAGTGACGTGCTCGGCGGAGGCATGTGTGTTCGGTTCATCTGTTTTT GGG

GTATGCCTACTGGGTTGCTGACCAGGACTGTCTGCTCACTGTTTGTGTGGGGTGTGC TGCA

AAACGCGCTCATGGCAGTGTGTGCTGCGCTGAATCTTGTGTACATCTGTGCCGCCGC CTGT

GTACTGCCCCATCTGTACCGCCTCCCCTGTACCCGTACCTGCAGTCCCTCATCAAGC AGTA

CAGCGAGTTCATATCCTTCCCCATCAAGCTCTGGGTCAAGACGACCAAGTCAGAGCA GGT

GCGCTGTGCGCTGCTGCTCCGTCTGCCGGCGCCGTGCCCGCTGGTGCTTTCCATTTG TTGC

TTGGCGTGCCCAAGTGCTCATGTGCTCGGCTGGTGGTGCTGCATGTGGTGTGGCAGT GAG

GCAGTGTGACTGTGCGCCTGTGTGCTGCATGATGCTGGGACGCTGACCTCGTGAGCT TGC

ACTGTGTGCTGTCTGGTCTTCCCAGCCTTGCGTCCTCCCGCTGCCACCCTTGCCGCC TGCT

GTCGCTCGCTTGCTGCCCAAAAACAGTCCCCTCGCTCGCAAGTGGCTGTGTGCTGCG ATT

GATACTCGATTCAACTGTTCAACCATTTAACAATTTCAACTGTTCAACCATTTCAAC CATT

CAACTTGCAGGTAGTAGACGAGGAGGCCACCGCCAAGGCGCAGGTGGAGGCAGAGGA G

AAGGCCCGGGCAGAGGGCAAGGAGGAGGCGGCGGTGGACGCTGTGCAGCCAGGTGCG C

ATGCAGCGCGAGAAAGACAGGGCGGCAGTGTGCTGCTGCTGCTTGTTACGGGGGCTG AT

AATCTTGCTGCTGCTGCTGCTGCTTCGTCACTTGTGCGTATCTGTGTCGCAGTCCAT CTTCG

GTCCACCCAGGAAGCCTGACTTGCAGCTTGTGCTGCAGAGGGGATGCAGCCGCTAAG TGT

GTGTTTCAATTTTGCACGGCCGCCCGCCCACCTTCTCACCCTCCCTTCCTCTCCCTC CCCTG

CCACTTTCCCTCCCTCCCTGCCTGTCTCGCAGTCATGAAGACTGTGACCCATGAGGA GGA

GCAGTGGCGGGTGCAGAACGACAACAAGCCGCTGTGGGTGCGCAGCCCCAAGAGTGT GG

CTAAGGACGAGTACGACGCTTTCTTCAAGACCACCTTCCGGTGAGTGTGATGCATCC ACT CCGTGGATGCATGGTTGGTGTGTGGGGGGGTGGAGGGGTGGATGGGGTGGGTGAGCCCG

GTGCAGTGGAGGTCCTTCTAAATGTGACAGCTGTTTCAATACTGTTTCAACATTGAA ATA

GCTGTGTTGAAGTGTGTGGACACCAACAGTTGAAAACAGTACGAAGTGGGCGCGAGG TG

GTTGGGCTGGGTGTGGGCGGGAGTGACGCGGGCAGCAGGCAGAAAGGAGCACTCTCC TT

AGCTCAAAGTGTGTGCCCCCCCCCTGTCTGCTGCCACTCCCAGCTCTGCATCCCGCC TCCC

TGACAGCCCTCGCCCCGAGCTTTATCTCCCTTGCCCCTCCTCCTTCACCTGTATGCA GGGA

GTTCATTGAACCGCTGGGTGTGGCTCACTTCAACGTGGAGGGCACGATTGAGGTGGG TGG

GTGGGTGGGTGGGTGAGAGAGAGGGGAGGGGAAGTGTGAGGGGCAGTGGGTGTGTTT GG

GGGTTTTGGGTTGGTGGTGGGAATGAGGGTGGTGTGCTGATGTGTGTGTGAGAGGGG AG

GTGTTGGTGGGAGAGTTGAGTGTTGGGTGTGAGGGGTGGTGTGCTGGTTTCTGGGTG TGT

GGTCGCTCGCGTGGTTGATTGGTGGTTCAGCAAGAAACGGCGGCAAAGAGCTGAAGC TT

GAGCTTCCGAGGAGAGTTGTGTGGGTGCCTTGACCGGCACTGAGGCTGCGGCCGCCG CCG

TGGCGTAGTGCTGAGCGGTACGCCGCTCGTACCGCTGTCGCCTGGCGCACGCACACG ACG

ACGTGCCCCTCTCCCCTCCTCTCTAGCGACCATCACCCTCGCCCCTTGCATCCCCTT GCCC

CTCCACACCGACATTCCCCTCCTTTCCCTTCCCCTCCACCTCCCTCCCATCACGGGT GCAC

TGACATCTGGCCCTTTCCCTTCCTCTCCCCCCCTCTTTCTCCCCCCACCCCCTCCAT CCCCG

CAGTTTTCCTCCATGCTGTTTGTCCCCGGCATGGCGCCCTTTGACCAGGACCGCTCC ATGG

CCAAGAGCAGGAACATCCGCCTGTATGTGAAGAGGGTGTTCATCTCGGGTGGGTGGG GCT

GACTGGCTGTGTGTGTGGGTGTTTGGGTGTGGGTGTGGGTGGGTGGGTGTGGGGCAA TGG

TGGGGCAATGGTGGGGCTGACTGGGTGGGGGCAGTCTGGGTGAGGCTGGATAGGTGG GG

TGGGTGTTTCGGTGTGGTGGGATGAGGGGTTGGGCGCGGTGGGTGGGTTTGGGTGTG GGT

GTGGGTAGGCGTGGGGCTGGGGCTGACTGGGTGGCGTGGGGGTGGGGCGGGGGCTGA CT

GGGTGGGGTGGGGGTGGGGCGGGGCGACAAGGAAGGGGGTGGGGGTATGGGTGGATG A

CGGCTTCTCAACGGGCTGTTGAGAGGAGGGCAAAGGGGAGAGGTGTGGTGAGAAGGC AG

GCTGGCAGTGTGTGAAGGGTGGTGGCTGGAAGGGTGGGTCGGGGAGGCCGTGGTGGT GG

CAGGGCAGGGTGAGGCTGGGGCATCGAGCAGCAGGGCGGCGTGCGCAGAGGTGCAGA A

AGCTGGGAGTGGTACCTGCCCCACCCATTCTGTTGTACTCGCCCCCGCCCTTGGGTT GGCG

TCTGCATGCCTGCACCCCTCCCCTCCACTCACACACCACCCTCTCGCTTGAAATGTA CTCG

CTCAACCCTCTACCCTCTACCCTCTACCCTTTGCCCTTTGCCCTCCCACCCTTGCCC TTCCC

CTCACCCACGCTCTTGCTAATTCATGCACCTTTTAACTTCCCCCCCACCAACCCACC CACC

CACCCAAGCAGATGAGTTTGACGAGGATCTGATGCCCCGCTACCTCAGCTTCATCAA GGG

AGTGGTGGACTCATCAGACCTGCCCCTCAATGTGTCCCGGGAGATCCTGCAGGTGGG TGC

TGGGGTGCTTGATTGGTTGGTTGGGTGCTGGTGGTGTGGTGGGTGCTGGGTGGCTGA AGG

GTGGGGGTGCGTGAGCGGCTGTGCTGAGAAGGAGTGCATCGGATTTGGTTTCTAGGG TTC

AGGGTTGCACAGTCGTGTGTGTCCCCTTTGAGCTCTTGGGGGCGGCAAGCCTCGATG CAG

CTATCTCGGGCTGCTGACCCAGCACTGCCTGCGTGATAATGCGTGCGTGGCTGAATG TGT

GAGGCAAGCGTTTGTTGCCCACCGTCGCTTTTCGGAGACATCAGCACAATTGTTCGT TCTA

ATTCTTATTCATTTCTTATCCGTAGTCAATCTCACTTCCTCAGCACTCCTCCCACCC CTGCC

GCTCTACAGGAGAACCGCGTGGTGCGGCTGATTCGCCGCCAGCTGGTCAAGCGCTCC ATT

GACATGATCAGCGACATTGCTGGCAGGGAGGACAAGAAGGTCCGTCAGTGGTGGTTC GT

AAGCGGCGGGAGAGGTGCTGTGCGATGTTTTGAGAGTGGCAGAGTGCCTCGGTGCTG TCT

GGTGCTGATGGATGCGCTGCACCCATCGCCGCCGGCCGCTGAGTTGCGTGTGGAGTG GCC

TGACGGCGCTGCCTATGATGGCGGATGTGCCACCACTGGGAAGTACAATTATACCAT TGT

ATCTCTAACTATTTGTACCGCTGTACCGCCACGTCACATGTACTTCTGCGTGTACTG CCTG

TACTGCCACCCCCGCAGGAGTATGCCGCCTTCTGGGAGTCCTTTGGCAAATTCATCA AGC

TGGGCTGCATCGATGATGCGGTGAGTGCATGCCCGAGGGTGGGAAGGAGAGGGGGGG AG

GAGAGGGAGGGAGGGAAGCAAGAGAGGGAGGGAGAGCAAGCCCTCAGCTGGGTTGCC A

GCCTGCTGAAGTGAGCACACCGAGAGGCCAGCAGTATGTGTGGTGGTGGTGGTGCTG TTG

ACGGCTGCACCACGTAGCCACAGCTCACACTGGCACGCAGATCTCCCAGCCCTGCAG CCG

CCCCCACTCGCTTGCGCTGTGTGCCCGCTTCCCAGCCATACCCCGCCAAAACCCAAA CTG

CACCGCTGCTGCCACCCAGCCCTCCCACTTCCACCTCCACCCCCATCAACCCGCACC ATTG

ACCTGCCACCCTCGTGTTCCGCTCCCTCCCCCCCCTCCCTGTTGCAGGACAACCGCA AGTC

GCTGGCCCCCCTGCTGCGCTTCTCTTCCTCTGCCATTGCCGCCGAGAAGGGGCTCAC CTCC

CTGTCTGAGTATGTGGAGAGGAAGAAGGAGGGCCAGACGCAGATCTACTACCTGGCT GG

TGGGTTAGGGTTTGGTGGGTGCTGGTGTGCCGGGCTGCTGTGTGTGCTTGCAGGAGT GGT GGGTGCTGGTTGCTTTGGTGGGTGCTGGTTTAATGGGTGATGGTTGGTTTGATGGGTTGT G TTGGTTTGGTGGGTGCTGGTTTGCCGGGCTGCTGTGGTGCTTGCAGGAATCGCGGGGACT GATTGGCTTGATGGTTCTCACCGCTTGCACCTGTCAATACCGGCCGTCATCAAGTAATCC C CTTGCCTTGCCTTCAAACCTCCCTCCTTCCTACCTCCCCTCCCCCCCTCTTCCCCCCTCT CC CCCCCTGCAGCCGACACCCGTGCCGGCGCTGAGGCCTCCCCTTATGTCGAGTCACTGGTC AGCAAGGGCTACGAGGTGCTGTACCTCACTGAGCCGATCGACGAGGTGGCGGTACAGAC CATGGAGGTGAGGCGGTACGGTACGGTGCCACATTGACGCTGGGGCGGCATGTTGCTGA AGCGCGCCAAACGTAACAAAAGCATCAAAGATGTTGCAATGTCCCTAGCTTTCAAAACA AAAATTGATTACAATTTGTGTCTGCCAGCTGCACTGAACTGGTTGCGTGTTGCGTGTGCC C TGCTTTGCTCTCCTCTCTGCTGGTCGTGCTTTCACCCCCCCCCCCCCCCCTTCCGCGGCT TG TGAGCTTGGCGCCTTGATGCCTTGTCATTGCCCTGCTCCTCGTTCTTGCTTTCCACCTGG AC CCGACATCCGCTGGTGCACTCAACCTCCTCATCCTCACTCACGCCCCCTTCACAGGAGTT T GAGGGCTTGAAGCTGGTTGATGTGAGCAGGGAGGACCTGAACCTGGACGACTCAGGTGC GTGCATGGTGTGTGTGTGTGGTGCATGAGTTGCGTGGGTGTGTTTGCGTGTGGGTGGGTG GATGGGTTTGGTGGTGGTGGGGTTCTAGGGAATGGGGGGGCGGGCGGGCTGCACTGCTG CCTCTGCAGCCCCTCAGCCTGACAGCCTCAGCAACTGCTGCCGCGTCTGCCGCCGTCGCG TGCCTGGTGTCTGAACACTGAACGAACCCGGGCTGCTTGCGGCCATCAGACAGGAAGGA AGCAGGCCTCGAGGGGCCCATTTCGCCCCCCCTTGTTCAGCAGCATCACCTGTTCAGGCT CTCGTTGAGACTCACTGTGTCAACCCCTCTGCCACCCACTCATCGCCCCACTGCCTGCGT G TGCGGCTGCAGAGGAGGACAAGGCTGCGCTGCAGAGTGCAACCGAGGAGTTCAAGGGCC TGACTGCTTACATCAAAAAGGTGTGTGTGCGTTTTTCGTGTGTGTGTGTGCGTGTGTGTG C GTGTGTGATGGGGAGTGAGGTGGGCTTTTTGTGGACTTTTCAACACAACAAAGCAGTCTT GTTCGGCAGATTAATTCTCCAGCCGCATTGTTCCAAGTGCAATGCTGTGAAAGAGTGAGG

TTGACACTCCCCCCTCTTCACCCCTCTCCCCTCACCTCCCCCCGCCCTTCCAACCCC CGCA GGTCTTGGGCGACAAGGTGGAGAAGGTGAGCGTCACCAGCCGGCTCACCGACTCACCGG CAGTGGTGGTGGCCTCCAAGTTTGGGTGGAGCGCCAACATGGAGCGCATCATGAGGGCG CAGGTGAGGGCGACTGTCTTGTTTTGGTGGGTGCTGAGGGGGGTGGGGGTGGCTGTCTTG CTTTGGTGGGTGCTGAGGGGGGGTGGGGGGTGGCATCTGCGTTTGTAGGGGGGCGATGTT GCGTGGAGTAACTGCTTTGGTGGGTGGAGCGCACACGCTGCGTGGCCCAAGGCGGCGCG GCTCCTGTGTCTGCCACCTTGTGCTTGCATGACGCACGGCTTTAGATTGCACCCTGACGC C TCAACACCCCTCTCTCCTGTCTCGACTTCACCCTCAACCACCACCTACCCTCTTCCTCAC C CCCCTCCCCTTCTGCCACCAGACCATGGGTGACGCTCGTTCAGCTGAATACATGAGGGGC CGGCGCATCATGGAGCTCAACCCGCAGGTGGGTGCTGGGTGGTTTGGGGGGTGTGGGGG CTGCTGGTGGTTTGGGTGGTGTGGGGGCTGCTGGTGGTTTGGTGGTTTGGTGGGTGCTGT T TGTTTGGTGGGTGCTGATTAATTGGTTTGGTGGGTGCCTGCCTGCCTCCCTGCTTCTTCA G TTGCCCTACCTGGGGTTGACTGATACATGCGCTCGTTTGTTGACTGCGCAGTCAATGGCT T TCTAGCTTGCTACGCAGCTCCGCTGCGAAGTGATTCATACCGACAAGGCTTTCACCGCTT T CAATCCGTGGCCCCCTGCCTGTTGTGAATCTGCAGCACCCCATCATCCAGTCGCTGAAGG GCAAAGTGGAGCTGGAGAGCCGGGAGGCAAGGGAGCAGGTGCAGCTGTTGTACGAAGCC GCACTGCTGGCGGGAGGCTTCATGATCGAATCTCCAAAGGATTTTGCGGCCCGCATCTAT CAGATGATGGAGCAGCAGCAGCAGCAGCAGGGAGGCGGCAGCGCAGGAGACGGCGGCG CAGCCGCCGCCTCTGCCTCCGCCGCGCCCGCTGCTAAGAAGGCGCCTGCTGGTGGTGCCA AGAAGGCGGCTGGCGGCGGCAAGAAGGCGGCGGCGAAGAAGGCGGCCCCTGCTGCTGA

GCCTGCTGCTGAGCCTGTTGACCCGGAGGTGCTGTAG

PRPL1 1 UTEX30 (Chorella vulgaris)

SEQ ID NO: 6

ATGGCGGCGCTTGTGGCGAGCCTGCCGGCCATGCAAGTCGCGCAGCCGTTCCGTGTG GCT AGCGCGCCCAGCCATCGCGTTCAGGCCCTCCAGCAGCAGCGCCGGCAGCAGCGACTGGT CGTCAGGGCCCAGGCGGCAGCCGTGGATGTGGCCGCCCTTGAGGCCGAGTCGCTGGCCA GCATTGCCGCCAAACCAGCAGCAGCAGCAACAACAGCAACCTCGGCACGCCGACGCAAC TCGTCCCGCCGCCTGACGGGCCTGCTGGCAAAGGTGCCGGGCAAGGACACGGCGCTGCC GCCGCTGGACGCCATCAAGCTCTGCCTCGACACCGCCACAGCCAAGTTCACGGAAACCGT TGAGGTGCACGCCAAGCTCAACATCGACCCCAAGTACACAGACCAGCAGCTGCGCGCCA CCGTGTCGCTCCCAAAGGGCACCGGCAAGTCGCTGCGCGTGGCGGTGGTGTGCCAGGGTG

AGAATGAGAAGCTTGCACGCGACGCAGGCGCAGACTTTGTGGGTGCCGAGGACCTGC TT

GAGACCATCGGCGGCGGCATGATGGACTTTGACAAGCTGGTGGCCACTCCCGATATG ATG

CCCAAGCTGGCCAAGCTGGGCCGCGTGTTGGGCCCTCGCGGACTCATGCCCAACCCC AAG

GCCGGCACGGTGGCGACCGACGTGGCAGCGGTGCGTCGCTGTGGCTGGCCTTGTTGG TAA

TGCAGTTGTGGGAGACAGCAACGTGGGGCTGGTCAGAAGGAAAGTGGTCTGGTTCTT ATG

CAACATACCATCGATCATCTGCCGCTTACCGCCATTCTGTGCAGGCTGTTAAGGACT TCAA

GGGCGGCAAGGTGGAGTACCGGGCCGACAAGGCAGGCAACGTGCATGTTGGGTTTGG CA

AGGCCTCTTTCAAGGCAGAGGATCTGCTGGAGAACCTCAAGGCATTGCAGGACAGCA TC

GACGCGAACCGACCGAGGTGCGAAGTTTGCATGCCAGCGTCCTCCGCTTCAGATCAC TGC

ATCACAGCTGCTGCACAACAGAGTGCCGTATCAAGCTTCGTCCTGATCTGGAACTAC GTT

TCACTGCTACTGCAGCGGTGCCAAGGGCGTCTACTGGAAGACCATGACCGTGTGCAC CAC

CATGGGCCCGGGCGTGCGTGTCAGCTACTCGGCACTCCGGGACATGAAGAGCGAGTG A

PRPL13 UTEX30 (Chorella vulgaris)

SEQ ID NO: 7

ATGGCAGCGGCTGCGGGCACCATGCAGGCGGCCTGCCTCTCGCAGCAGCGTTGCAGC GTG

GTGAGTGGCCCTGCCCGCCGGCTGACCAGCTCGATGCGTGCACGTGGTTCATGTGTT CAC

CATTCCCGACGCTGCGCTGCAGGCGAAGAGCTTTGCCGGCAGCAAGGTGGCGCCGTT CAG

GCCTCAGCGGGCGGTGGCCCGGCAGCAGAGCGCCATTGTGTGCGCAGGTGAGACTTG CA

GCCGGCTGCGGAGCCCAATGCGTGGTCCATTGACGCAGGCCGCCACTGGCCGCCACT GCT

GCCGCTGCACTCCATTAATCAACTCGTGCCTTCGTGCAGCGGCCACAGCGGAGCTGA AGA

AGATGGGGCCGGATCTGTGGAACGACACATACTACCCCACCGCATCAGACGCCGCAA AT

GTGTTCAAGCAGTGGTGCGTTAGCAGCTGTGGCTGTGAACCGCTGTCGCTGCGTGTG CCC

CTCTTGTTGCCTGGCGTCACCTGCTGGTGTCAAGTCAAGGCGTGGAGAGCCAGCGGA TAG

TGATTCGCAGGACTGCAGCTCAAAACTTTGTTGGACCCGCATTGTTGGCCAGCATTT GCTG

CGGCATGAAGGCTAGCCACGGCCAGCATCAGCAGCACGGGAAGCAACAGGATGGGCA GC

AGGAGCAGCTCGCAGTGCTCATGCCCGGATTCGCATCAAAGCAGCCATGCAGCTGTG TCA

TACCAGCCGTCCAGTCTGCAGGGTCTCTCATCCAGCGCAGCATTTTCTGTTTGAGGT TGCA

CAACTCCCAGCTGCCGCCGCCACTCTCCCTCTCTTTTGCATCTGCTTTGACCTCTGT TGTAT

GTGTGCTGCTACTGCAGGTACATCATTGATGCTGAGGGGCAGACTCTGGGGCGGGTG GCC

AGCCTGGCAGCCTTTTACATCCGCGGCAAAAACATGAGCTCATACACGCCCTCGGTC AAC

ATGGGTGGATACGGTGGGTTTGGCTTGGAGTTACACTTGGATTGGGCTGCTCTGTGC TGT

GCAGTGCATGCTGGCTGTAATTGCTGGCCTGCATTTGCTGGCATGCTCTCTGCTGTG CTGT

GCTGCGTTGCATGCCGGCCCAGCTGTCTCTGCCTGGAAACGGGGCCCAGCCATCAGC CAT

CAGAAGCCCTCAACGTGGCGTACCCAGCTCAAGCAAACAGCAACCGTCCAAGAAGAG TT

GCAGCAACTTCAGCACAGCGAGCAGCAGCGTCTGGGGACGGGGGCAAGCTGCACCCG CA

GTTCTGCGCTGCGTCGGCGCGGTCATCAGCAGGACCAGCTGGGGCTTGCCGAGCTGG CTT

GCGTTGCTGCTCTTGAGCGGCGCCGCCATCCCGGTCGACACACACCACGCCTGGTCA CTC

CTCATCGCATGCCTCCTTGCCCTTGCCTGACCTCATCGTCACCTCCTCTGCCTGCCT GTCTG

TCCCTGCTCGCAGTTGTGATCATCAACGCCGACAAGGTGTCTGTGACCGGCCGCAAG GAG

ACCGAGAAGATGTACTTCAGGCACACCATCGGGCGCCCGGGAGGCATGCGCATGGAA TC

ACTGCGCGACCTGCGGCAAGTGAGTGTACCGCCACCTTGTAGTGCACTGTACTGCGC TAC

ACAAGTTTGCTTTGTATTGAAATGTACAATCTGCATGTGCTGCCGTGTGCCGCCGCT TTGC

GGGCTGTGAGGTGGTTTGTAGTTTGCTGTGGGGCCAGTGTGTGGGGAGCTGCGTGTT GAT

GTGTGTTGTGCTCAATTGCTGGGGGAGCGAAATGGCGGATGCCAGAACGGCTTGGCG TGC

CAGACCAACGGCAGCTGGCTGCTAGCTGAAAGCCGCTGGCCAGGCATGCTTTCATCT GCT

GTGCATGCGCGCCTCTCAAGCCATCTGCATGCGTTGAGCTGTGTCTGCCTGCTGCCT GTGC

CCTCCCTTCCTTCCCTCCCCCTCTGCCTGCAGCGCCTGCCAGAGCGTATCCTGGAGA AGTG

TGTGAAGGGCATGCTGCCCAAGGGGCGCATTGCCAGCCCGCTGTTCAACCACCTGAA GGT

TTACAAGGGAGCTGCCCACCCTCACGAGGCGCAGAGGCCCCTGGATATCACCAGCCG CAT

CAGCAAGAAGGCCTCAGAGTCACTCTGA PRPSl Elbl

SEQ ID NO: 8

ATGCAGGCAATTTCAGCTCGTTTTGTCGCGCCTGTGGCGCCTGCCCAGCGCCGGCAC CAG

GTCGCCAGGCGCCAGCAGCGCCTGCAGCCCCTGGCAGTGGCGCAAATGGAGGAGCCG CA

AGTGCAGGCGGAGGCCCAGGAGGCCGAGGGCGACTGGGACAAGGAGTCTGCCTACGC CC

GCTTTGAGCAGCTGCTGGAGTCCAACACATACAACTTTCGGGCGGGGGACAAGGTGT GGC

AAACCCAACTTCACCAGCGGCGGCGGCGGCACTGCTGCTACAACCGCTCGCCGGCCT GCT

TGCATCCACTCACTGGTGCCTATCCCGTGCTCACATGGTGCAGGTGCTAGGCACTGT TGTG

CGTGTTGACCAGCGCGGCGCGTATGTGGACATTGGCGGCAAATCGACGGGCGTTTTG CCC

CACTGCCGAGATGGCACTGGCCACCATCCCTCGGGTGCGTGCGTGCTGCTGCTGCTT TGCT

GTATGGCGAGCCACACATGCATGCTGCTTTCTGTTCTCTGGCAGCACTACTGACAGC CTG

GATCACAGTTCAGGGGAGTGGAGCTGCTGTCACTCACAGCCGATGATCAGCCTATGG CTA

GCAGCAGTGGCATTGTGCTGTTTGCATCGTCCAGCAGCGATGTGTCAGCTCGTCAGC CTT

GGGTCCACACATACTCACGGCTGCAGCTGCAGCAGCAACATTAGTAGCAGCTGGCGC ATC

AGAACGGCCACGGCACAACCAAGCTCACAACAGCATGCACGCGGCCGCCAAGCAGCG TG

CCAATCCCTGCCCGCCTATGCCGCCACCCTGCCACCCACTACCCGCATACCACCCGC CGC

CATCCGCCTCACACCCCTGCTTTGTCCCCCCGTGTACATGCACTCTCACTCTTCTTA TCCAC

ATGCATGCTTGTTCCTGTGCACGCAGGCCACCCAGGTTGTCGGCACCTCCACCTGCC GAG

ACTTTGTCATCATCCGGGAGGAGCGTAACGGGGATCTCACCCTCTCCCTCAAACGCC TGG

AGCTCCAGGTGGGTGCTGCAGCTGGTGCAGGGGTGGGGCGAGGCGGTGGTGGTGGTG GT

GGTGGTGGTGGCCTCGGGGTGGTTGTGGTAATGTCGGTGTGGTGGTGGCGGTGGTGG CGG

TGTGGTGGTGGTGATGGTGGTGGTGGCATCGGGGTGGTTGTGGTAATGTCGGTGTGG TGG

TGGTGGTGGTGTTTGGTGGTGATTGGTGTGCACACAGGGTGGGGTGGGGCTTGTGTA GGC

GGCTCAGGGTGCAAGGATGGCGCTACGACAGATGGCATGGATGGATGGAAGCCTGGC AG

AGATGTGTCGGCGCTTGAGACGATGTCATCTCACGTTCAGCCTTCGTCAGCCTTGGC CAG

CTCGCCAGCGCTGCATGGATGGAGCAGCAGTTGTGCAATGCCAGCCAGCAGGCATGC TGC

TTCCGGCGTTGGTGACGCTGTGCGAGGGCAGTCTGCCTGCACTGCACCGCATGCTCT CTC

ACAACGGCGTCCCAGCGGGCACCTCTCAGCAGGCCAGCTGGGCAGTGCCCATGTGTT CTG

CCACCCATTTGCTCATCAGCATCAGCATCAGCATTAACAGCACCCTTGTCGCTGCGC CTGC

ATCACTTTTCTGTTTGCTCATGTGCCGCCTTTGTACCGCCCTGCCGTCGCTGTTTGT ACCGC

AGGTGGCCTGGCAGCGCCTGCGGCAGTACATGGAGGATGACGTGGCTGTGGAGGGCA CC

GTGGTGGGCACCAACCGGGGAGGCATCCTGGTGGACATTGAGAACATCCGCGGCTTC TGC

CCCGGCAGCCAGCTTGGCAAGCGGGTGGTGGAGTTTGAGGAGCTGATGAACCTGAAG AT

GAACTTCAAGGTGGGCGGCTGGGCGGTAGGGTGATCAGTAGTGTAAGCTTCAAGTGT ATG

TCGTTGGGTGTGTAGGGAGCGAATGTGAGGAGCAAGCGCCCCCGTGTGTGTGTCTCT GGA

GTGGTTTGGCACGGAGCTGTGCAAGGGGTGGGTGCAGACTGGGAGTGTGGGCCGTCC CT

GTCCCTTCAATCGCCCTTTGGCACCTGCTCACCCGTCTTCATCCTTCCGGGAACCGA ATTC

TCATCCTCGTCCCTCACCCCCCCTCCCCTCACAGATCACTGAGGTGGATGAGGAGAA GAC

GCGCCTCATGCTGTCAAACAAGCGGGTGGCGGCAGAGGAGCGCGCATCCAGCTTCAA GG

TGGGCCCAGGGGAGGGGAGACCCAGCGGCAGCGGCAGCGGCAGGGGGGTGGTCGGCA G

CAGCAGGGGTGGTACGGTGCCTGTGCAGCGCTTGCACTTGCACTTTGTTCTTGTACT TTGC

AGCGCTGCAAATGCACTGTGCAGCTTCTCCTCGTGTGGTGTGCGCGCTGTGCCCTTG CTTC

CTTCACTGCTGCTCCCAGCAGAGGCTGGCGCCCTGTGCACGTGTACCGCCTTCTGGC TGG

AGCGCCTGCCTGCCTGCCTTGACCTCCCTCCCTCCCTCATCACCCCTCACCCCGGCC AACA

CACACACAACACACACACATATACTCACACACGCAGGTGGGCGATGTGGTGGAGGGC AG

CGTGATGAGTGTGAAGCCCTACGGCGCCTTCATCGAGTTTGGCGGCACCTCTGGCCT GCT

GCACATCAGCCAGATCAGCCACGACCGCATCACCAACGTGGAGAAGGTGCTGGCTGA GG

GCGACCGCATCAAGGTGAGGGTGTGTGTGTGTGTGTGGGGGGGTGCGGAGGGGTTGA TT

GGTTGGTTGGTTGCGGTGGTGGTATGGGTGGAGGGGTGGAGGTGGTGTGGTTGGGTG GGT

GGTGGCGGTATGGGTGGCAGGCAGGATGGGTGGCGAGGGCAGGGGGCACCGCATCAA GT

CAGGGGTGGTAGGGCGGCAGGTTGGTGCACTGTGGTGCCTCTTGTTGTCTGGACGTT CAC

ACTCCTACTCGGGCACTTGGCAGGTTGCACTGCCCCGACTCGCTGCCTGGCTGCTGG CTTC

CACCCTCCCTGCCTCACATCTCCTCCTTCCTTTCCTCCCCCCGCGCCGCAGGTGATG GTGC

TGAGCCAGGACCGTGAGCGGGGCCGCATCGCGCTGTGCACCAAGAAGCTGGAGCCCA CA CCAGGAGACATGCTCAGGGACCCGGGTAGGTGGCTGGCTGGCTGACTGACCTCTTCTGAC TGAGCCCTGCTTCTGCTCTGCTTCTCTACTTCTTGCCTACTTCTCCTCCAGCCGGTGGCT TT GTTCAGCCTGCATCCAATGGCCAGCTGACCTGGCTGGTGTCCTGATGTTGTGGCCTGCTG C

CTGCTGTGGCAGCCCGCTGTGTGGCTGCACCTCCTTGTGGCCGCGCCCGCCACTCCA CCCT GCCCCCTTCCCCCCTTGAACCTGCATCTCTTCCTTTTACTCTTTCAAATCCAACATCCAT CC AACAGTCTATCTAAAGACAAACTGTGTCTCTTCCCCTCCCCCCTCACCCCCCTGCAGCCC T

GGTGTACGAGAAGGCGGAGGAGATGGCAGCCATCTTCAGGCAGCGCGTGGCGGCGGC AG AGGCGGCGGCACGTGCCGACAGCGGCAGCGAGGAGGGCGCAGCAGCCGAGGCAAGCGC CTGA

PSBWl l Elbl

SEQ ID NO: 9

ATGGCCGAAGCAGAGCCGCTGCCCAGCGAACTGGCCGCCTGCCCTCCTGCGGCGCTC GAG

GTCTGCCGCTTCGCCGCCCTTCTTCGTCGCCGTACCCGAGCGCCACAACCCGCTTCA TGTC

CTCCCCTCCCTTTGCTCCTCCTGTCGCTTTGTCCCATGCAGGCGTATGTGCAGCGCC GCAT ACGACAGTTCAAATTCCCTTCCCGAGCTGCGGCAGCACCTTGGCGATCATGCAGCCACGA GCCTGGAGACGGCCACGCTCGCCTTGCTTGCCACAGGCGGCGGTGGCCCAGCAGCACAG

GCAGGCAGGGCGCCGCCGTCAGCGGGCCCTGCCGAGCTGGCGCTGGTATTTCGGCAC GAT TGTCGGTAAGTGGACTGCCCTGCTCGTCTCCAGCCGTGCCTGCCTGTCTCCCACACCCTT G CCTCCATCAATCTCTCCCCAGTTCGAGTGGCAAGCCTGATACTCGCGGCTGTTGCAGGCA

CGTGAGCTGCGCAGACGTGCACTGCCTGCTGTGTGCCCAGAGCCAGAACAGGCGCTG CCC CCGCACCTTCAGCCCCAAGTACTTGGCAGGAGATGTGCTGAAGGCGGGGTGTGGCGCCAC ACTCAGGTGCGGCTCGACTCACCTCATGCCTGCTTTGCGGAGACACCAGCAGTTTTTAAT C

CGTCTCGATGTGCTGCTGTGGAGCGAGGGTGGCGGCTTGACGTGTGAAGGCGCGCCA GCG GCTGCTCACAGTTAGATCCAGGCCGCCGACTGTCCTAAGGACCAGATACCAGACCTCCAG ACACAACACATGCTACACCCAGCACTCCCGCCACCCAACACCCGCCAAACCCCACACTGC

TTGCAGGGTGGAGCTTGTGGACAAGTACAGCGGCAGACTGGTGGAGCTGCAGGAGCC GC TCAAGCTTCAGGTGACCCTGCTAACCGGCGAGCGCCGCTGAGCACAGCTTACCTGCACCT CAGCTCAACATGCCTGCAAGCGCTGCGTAGATGCGGCTGGCAGTCTAGGCCGCCCGGTCT

CATGATGTGCACAAGGACACCTAGCGCTCCTGCTGGCAGCATGCTCCTCCTCATACC TCG CTGTCCACCTGCAGCTGTGCGTGGTGGACGGCCGGCAGTGTGAAGCCCTCACAGCTGGCG GCGCCGCAGTGCCGCCCTCCGACCTGAGCCAGGCCATGCTGCTGCTCAACCAGCAGAAGC

AGCCGCTGCTCACGTCCAAGCAGGCGGGCAGTGACGGCGAGGGCAAGGTCCTGCTGG AG CTCAGCAAGGGTTGTGCTGTGCTGCAAGACCTGGTGGTGACTGGTAAGTTTGTCTGCTTG GCGGGGGCACGACACTGGGAAAGCCCTTGCTTTCCAGGTTGCTGCGCCACCCTTCTACGT

CGACCGACCATCCCAGTGATCATTTCGGGTCACCCTGCCAGAGACTTGACCTGATGC CAG CCAAGCATGGCCCTCAGGCCGCGCATCTGCTCTCCGCTGACCATCCACCTGCAGGCAGCA GCGAGGCACTGCTGTCTGGGCAGCGGCCGCCCTTTGCGCTGTGGTGCTGCGTGGCCACGG

GAGACGGGCAGGCGCATAGCAAAATTGCGTCCGCGGTGTCAGAGGGCTTTGTGGTGA GT CAGGGTGCAGGGTGCGGTTGCCATGCAAGGACGGACGGCGCTGCTTCCTGTGCCGTTGAG CGGCGAGCCGGGCGCGGCAAAAGGCCCTGAGGTGATGCTTTAGGAGGCTCATAGCAATA

GATTCTTTCTTGCTGCGTCAGGTGGCCACACCCGGGTTCGCTCCGCCAGCAAGCGAG ACA TCCCCAAGCTCTCAGACCACGTGTCCAAGCTGGTCAACGTGGGCAATGCAACGCAGGTGG GCAGTCCAACACAGCGCTGCCAGCACCAAGGCAGAGGTCGATTATCTTAGCAGAGTCTGC

CCTACGTACACCTTCATTGTCCTGCTTTGCCTGCCCCCAGGCCAAGCTGCGGGATCT CAAC AGGGCGGCGCTGGAGGCTCGGATGCAGGACGAGCTGCAGCTGCCGATGGCCTCTGCCAT GACAGGTGAGCAGCAGCAGCAGCAGCAGGCAGCGGCAGCAGGCAGCTGCTGGAGGGTA

TGAGTCGCTTGAGGACTCGTGCATGCCTGCTGCCATCTTTAGGTGGCGTCCCTCCTT TCAA

GGCGACCTATGACCTCATTCGTACTGTTCGCATGCATGTCAACACAAGGGCTACCTG CCG GCTCATCAGCCGGTTGCGTCCCGTGGTTGTGCTGCCCACTGCCCGTTGCCTTCCTTCCTC C TTTGAAGTGGGCGAGTTCAAGCAGCTGGTTGAGTGGGCGCAGCAGGAGGCGGTGCGCTG

TGACTTAGTGAAGAAGATGCTCAAGCTGACCAGGGGCTGGGAGGAGGCGCGGGACCA TG CCTTGAAGGTGTGCAAATCTTCTAGATCTGATCTTCTAGAGGGTACTGCTGCCCTGCAGC A GTCTCAACAGCAGGCTGGGCAGAGCAGAGGCTCAGCTTGCGATTTAAGATCCAGTCATGA GCAGGCTAATGCATGCCGTGCATGCCTGGGACGTTTGCACCCAGCATACCGTTCACGTTC

TCAATGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGCACGCAGGCGGTGGCTG ATG

ACAGCCGCCTCCGCGCTTTCTTCACCGACTCCTCACAAGCTGCGGGCCTGCTAATTG CCAG

CGCCGAGGGTGTGCCGCAGCTGGACCGCCCGCTGGGTAAGTAGTTGCACCTGGTGAT GCA

AGCAGCAGCAGATCAGGGACAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCT G

CAGCGGCAGCAGTAGCGGTAGGAGGAAAGCAGAATGAGGAGAGCAGCTTTGACAAGC C

CTAGATGTGTGCTCGCAGCGATTCCATGTGCTGCATGTCACGTCATGTTTCCTTCCT GATT

CAATCCTCCCCCGCTGACGCCTGCTGCTGCAGCCGTGCTGCACAAGGCAACAGACGG CGG

CGGCCAGCCGACGCTGCGAGCCACGCTGCTGCCGAAGCCGGAGGGCCAGCACACCGA CG

GGGCAGCGGCGGCGGAGCAGGCAGAAGACTCCCCGCAGGCTGCGCAGCGGCAGGGAG A

CGAGGTGGACATGAGGCATGTGCAGGGCATGCTGCAGCACGCGCAGGCTTGCTGGGC GC

GGCGTGGGCATCCAGGCTGGGCGCTTCTTCAAATGGACACCCCTGCCTTCCAGCTGG CCT

GCTCTCACCACCAGCAGGCAAGCGACTGCTACCGCCAGCGTTGCCGGTGCACAGTCG GCG

GGCGTTCAAAGTGTGTGTGTTGTGCTGGGAGATCAAGGCTGCCCTAATTCACACGCC CAA

ATGTCTCTTTGAGAGAGCAGAGCCAATGACTTGAGTTCCCATTGTTGCAGGTGCTTC TGCC

ACCTCAAGTAGCCGCCGCTGCAACACCCTTTACGCCTCACACCTCTGGCGCCGGACC TCC

AGGCACCTGCCATGCCTTGCCAGCTCTGCCCGCCCTCCTCCCGGCTGCCTTTGCGGC TGGT

CCTGCAGTCTTGCCGCCGCCGCCACCTCCGGGCCAGCTGCCTGGGTCTGCCCAGGGC AGC

CCCCGGACACCCACGGGCCAGGTGCAGCTGCGGATGCTTCAGGAGTTTGCGTCCCTG GGA

GTGCAGGTGCGCTGTGACTTGCTGTGCTGTACCGCGCTGTGCTGTCTTGTGCTGTGC TGTG

CGGTGCGGTGCGGGTGGTGCGGTGCGGTGCGGTGCTGTGCTGCGGGCAATACAACGC AG

TGCCGACTGGGTGCACCTGGCACATCCAGCCTGCAGTGTGCCATGCCTTGGGTTGGT TTTT

TGCATGTGCACATGGTGCCTTACTCTGTGTGTTGTGATTGGTGTTGAACTGCCTTCC AGCC

TCAGATGCAGGGCCACCTACACCCAGAGGCGGCTCCCTTGCCAGGCCCCTCGCCCTT TGA

AGAACTGCTGCCATCGCCTACCACAGCAGCCGCACCGGGCAAAGGCCTTCAAGCCAC GC

AGCGCAGCCTCCAGCCTCCAGCTGTGTGCGAAGTCGTTGACAGTTCGCCTGCTGCGC TCA

CTTGGCGGGCCCGCGCCACCCCAGGCCATGATGCAACAGGCTGATGGAACCGTGGAC GG

CAGAGGCAGCTTGGACGGCCGTTGCAGCGGCGGCAATGGCGCCGGCGGCGGCAGGAG TG

CGGCAGTGCCGCTGCATCTGCAGCTGCTGTCATCGGGGGAGTCATCTTCTGGGCAGG TCG

AGCTTGGCGGCCTGGGCAGCGGCGATCCCTCAGTGCTGCCAGCACCAGCACAAGCGC CA

GAGGCGCTGGCAAGGCCTGGGGTGCAGCTGGGCCTGGCAGGTGTGGAAGGTGCCGGC GT

GTCTGCTGCGCAGGGTGTTGAGCAAGGCATCGCGCCTCTGCCTTCAGATGCCCAGCC CCG

TTTGAGCCCGGTGAGCTATGGCGGCTGCTTATAAGAAGCCCTGCCTTGTCAGCTGTA CAT

GGATGTGTTTGTTCTCTTGCTTGTCTGGGCACCCTGCTTTGCTGACCCTTGACTGTC AGGC

CAGGTGTGTTGAGCGACGCACGATAGCACAGCTGCTCATTTATCTGCTGCCGCTTGC TCTG

TGTGTGAGTTGCAGGCTCGGCGGCTCACCAGGATGCCGTCCATCAGCCTGTTTGGCA CAC

CGCTGAACTGGAACGCAGTGGCAGAGATGGATGCGGCAACTGGTGCAGTGGCCGCTG CA

GACGGTGTGGCTGGCCAGGGCGACAGGCAGGTGAGCTTTTGCTGCGGCGCGGAGCTC TG

CTGCTAGGTAAGGTCTCCACACCTGTTTCTACCAAAGATCAGCAAGGAAGAGGCGAA GG

CTGCTCTTCATTGCCTGCCATGGCTGCTCTCGTTGTTCGTGCACTTTGCGTGGCAGA GCTG

AAGGGTACCGGCACAGCAGCTGTAGCACAGCATACAGATAGAGCGCCGCTCCTCTCT GA

AGAGCCTGTCGTTGCGGCACGTTCCTTAAAATGGCAATTACCTTGGCACCTGCAATT TGC

AGGTGTCCCGTGTGCAGTCGCTGCATGACATGATGAGAGGGGCAGAGGCAGGCCCAC CT

GTGGACTGGGAGGAGCTGCTGCGGGTGGGTGCCGCCTGCCGCCTGCCTTTGCATTGG CCG

CCCGGCTGGCTGTCGTTGGCTGCTTGATTGGCGGCATGGCTGCCTTGTTGGCCGTCA TTGG

CTGCACGGCTTGCAAGCAAGCGTAGCAGCAGCGATGTCCTCCCAGGCCTCAGGCATC GCA

GCTGTTTGCTTGCTCAGAAGGTTTGCAAGAGAAAGAACATCATGCTGCTGCTGCTGC GCT

GCTCACTGTGCAGGACGCATACCGCTCAGATGGCAGCGGTGAGGCGAGGCTGCCGCT AG

TGGAACTTGGAGCAAGCGGCGGCGCCTGCGACCCTAGCCCATCTGCTCTGCTGCGCA TGC

TGAGCCATGCATCAGGTCAGCTGGGTTCCAGGCCTGCTTGCGTGCGAGTGCGCCCTT GTG

CCTGGGACAGCTGGTTGTTGAAGCAGCAGCAGCAGCCTGGCCAGCTTCAGCGCTGAG CGT

GCCGTTCCCAAGCCTGAAGCCGACGTCTTGCCTGTCCCGTTGCTTGCGCCGCGCGCA ACA

GCTGCGCAGGAGTTTGGCACGGGCTCGTTTTCTGGGGACTGGGAGACCCCGGAGTCG CTG

CTAGGATTGGTGAGAGGCCTGCTTGCCAATGCACATGCGCTGCCATGCTGCATCTGT CCC

TGACTGCTGTTGTGACGTGATGAGATGGTCCCATTGCACACCATTTCTTTCTACAAT CACT GAACAAGCAACTGTTCAGCCAGCACAGAGAGTCCCTACGGGCTTGCAACTGCCCGATGTG

TCCTCCCCTGCACACGCCCCTGCCCTGCACGCAGATGCCGGCAGACCAGCTGCTGCA GCC

GGCAGCGGCACAGGCTGGCGCCGCTGGGCTGGAGTGTGGGGCCTCGCCCGACCGTAA GA

GGCAAACCCTGAGGCTGCTCACTCCAGAATGGACCAAGCGGCTGTCGCTCTCCGCTG CCG

ACTGGGCAGCACTGCTGCAGATCCAGCCGGGGCCCCAGCAGCAGCAACAGGTCAACG AG

CAGCTTGGACTGGCGTCAGAGGAGGGGCCGCTGGCTGCACCTACGCCGCTGCCGGGC GA

GCGGCCCAGCAGGCATCGGCACAGTGATCGCTCACGAAAGCACAGGCGTCGTTGGTG CG

CAGCTGGGCTGGTCAAGCTTTGCTCAGCTGCCACCGGGTGCTGCCAAGGGAGAGCGC AA GCGCATTCTCAGCCCTTGCGTCAGCGGGCTGCAGGGCGAATAG

PDSl Elbl

SEQ ID NO: 10

ATGCGTGGCCAGGCCGTGGCGCAGCAACACCACGCCCGTGCTGGCCGCAGCAGCCTG CG

TGTGGTAGCCCGTGACTTCCCCAAACCCGATTTCGAGAAGGAGAAGACGTTTCAGGA GAT

GGCCGCCATCTCTGCTGCCGTCAAGGCGGCGCCCGCCCCAAGGAGCCGCTCACGGTT GTG

ATTGCGGGAGCGGGCCTCGCCGGTCTCTCCACTGCAAAGTACTTGGTGGATGCTGGC CAC

AAGCCCATCGTGCTGGAGGCTCGCGACGTGCTGGGAGGCAAGGTGTGCTCGACACGG AG

CCTCGCCGCAAAAGCTGGCACAGCTGGTGTCCCTCGCATCTCTCTCTCCGCTTCCTG GGAG

CCGTACATGCCATAATACCTGCACTGTCACGTCCTGGTGCAGGTGGCTGCATGGAAG GAC

GAGGATGGCGACTGGTACGAGACAGGTCTGCACATCTTCTTTGGAGGCGTACCCCAA CCT

GATGAACCTTTTCAAGGAGCTGAACATTGAGGACCGGTGAGGACTGTGTGGCTGGCA CCT

GTCCATCAAAGCGTGTGTGTACCTGTGTAGGATTATCTTGGATCTGTGCAAGGCTCG CGA

TTTTGTGTATGGTCGTGCTTTTGCGAAGAGCAACGCATGGTTAAGTGCATGGCAAGG CCA

ATGGCATGCATGCAGAGCGGAAGCGCAAGCAGTGCGCCGACCCTCGAGTCACATTGG TC

AGCGCAGGCTGGTCACAAGGTCTTGAATTGAATGCCATCATTCCATATGCATCCCTT CTCC

CCACACACATCCCCACAGGCTGCAGTGGAAGCAGCACAGCATGATCTTTGCAGTGCG CGA

CTCCCCGGAGAGTTCTCCCGCTTTGACTTCCCGACCTGCCTGCCCCACTCAACGGCA TCGT

GGCCATCCTGCGCAACAACCAGGTGCAGTCGGCTGGTTGCCTGAGGCTTTTTAAAAT GAT

GGGGCTATGACGGCCAGCTTGCAATTTTGCTTGCAAACCTGGCAGCCTCGCCTGTTG CAG

CTCGCCCTGCTGCTGGCATGCTGAGTGCTGCTTGCCACCCTTTTGTGCCCTGTGCCT CCAG

CTGCTGCCAGTCCACTCCACGCCGGTTCTCAGCCTCTTCCTCCCTTCCTGCAACACA CTGT

CTGCCCACACCCATCTTTGTACCACACCCACACCACTACCTACCGCAGATGCTTTCG TGGC

CCGAGAAGATCCAGTTTGCTCTGGGCCTGCTGCCCGCCATTGTGTACGGGCAGCCGT ATG

TGGAGGCGCAGGACGACAAGACTGTGACCGAGTGGATGGTCAAGCAGGGCGTGCCTG CG

CGCGTCAACGACGAGGTGTTCATCGCCATGGCCAAGGCACTCAACTTCATTGATCCC GAT

GAGCTGTCCATGATCTGTGTGCTCATAGCCCTCAACAGGTTCCTGCAGGTAGGTGGG CTG

AGCCAGAAGGGCGGGTGGCTGGCTGGATGGGGCAGGATGCAGCAGCTGGGGTGGCTG GC

TGGCTGGCTGGGTGGAGGATGCAGTGCATGGGTGGTGGCCACTGTGCGCTGGGTGGG CTG

GGATGTGCACACACGGTGCTACTGCGCTGCACTTCTTCTCGAGGCTCCGCAGCGCTG GTG

GCGGCGTCCGGGCTTGGTGGTCAGCTTGTGTGATGCCTTGGTGCCGCCTGCCCTTCC ACGC

ACTCATGCAGGAGCGACACGGCAGCAAGATGGCTTTCCTGGATGGCTGCCCGCCTGA GCG

CCTGTGCCAGCCCATGGTGGACTATGTGACTGGTGAGGGCGGGGTGGGCGGTGGCAG TGT

TGGTGGGGCCAGTTTGTGGGCGGCAGACTGTCGAGCAGCCAGCCAGGCGCTGTTTCG CTT

CCCCTGTTTCTCTTTAACTGCCCTCCCTCACACTATGTGCCGTGCGTCACCCTCTGC CGTGC

TGTGCTGTGCCCCATGCTGTGCCGTGCAGCGGGGGAGGGGAGGTGCGCATGAAGGCC GG

CATCAAAAACATCGAGCTCAATGAGGACGGCAGCGTCAAGTGAGCGAGACTGGGGCT GG

GGCGGGCTGTGGTCCTTGTGTGTGGTGGGGTGGAGGGGCAGGGCGGGGGAGAGCATG CC

AGGAAGGGAAGGCACAGCAGGAATCCACAGGGGCAGCAGCAGGCCCCCGTCCCTCTG TC

CCACAAGCACACCTCCTCTTCCTGTCTGTTGTTTTGCAGGCAGTACAACCTGCTGAG CGGG

GAGTCCATCACCGCCGACCTCTACGTGTCAGCCGTGCCCGTGGACATCTTCAAGAGG CTG

CTGCCTGCCCCCTGGTACCAGCAGCAGTTCTTCAGCAAGCTGGACAAGCTGGTGGGC GTG

CCGGTCATCAACATCCACATCTGGTTTGATCGCAAGCTGACCACGGGTGCGCACCTC TTC

AACACACAGACACGCATGCACTGCTCGCTCTGCTGTCTCGCTCTGCTCGCTCTGTTG TGCC ACACAGTGTTGTATGCTCCCACCTGTGCCTGGGCCTATACCACCCATGCTGCCGGCTGCC G GTGCGCTGTTTGGGGCCGGTGCCTGCTGCTGGCTGCGGGGGCACAGCCGCCCCTCTGCTG

CGCATCACCAACCGATGGCAACTTCGCCCCTGTGCCCGCCTCATTGCTTGCCCGCAG TCAT

CCCTGCCTGCACTTCTCTGCCCTCACCCCTCACCCCTCCGCCCACCCCCCTGCCGCC GCAG

TCGACCACCTGCTGTTCTCCCGCTCCCCGCTGCTGTCTGTGTACGCCGACATGTCAA CCAC

CTGCCGCGAATACTTTGACACCGAGAGGAGCATGCTGGAGCTGGTCTTTGCACCTGC GGA

GAAGTGGATTGGACGGCCGGATGAGGAGATCATTGCGGCAACCATGAAGGTGGGGGG CC

TGGGTTGGGGCGCAGAGCGTGGTCTTGGTGGTGGCCTGGGGTTCAAGGGGGCGGCAC TA

GCACTGCTCCAGCTGGCCTGTGTATGGTCATCCCGCATCGCTAAGTTGCGCTCTCCT GAGC

CCTTTTAAGGCCACCCAGGATGAATTTCTCACCCTGTACTTCTCACCTTGTACCTTC ACCC

TGTACCGCTGCAGGAGCTGGAGAACCTGTTCCCCACCGAGATTGCGGCAGACGGCAG CA

AGGCACAGATCCGCAAGTACAAAGTGGTGAAGACGCCGCTCAGCGTCTACAAGACGG TG

CCCGAGTGCGAGCCCTGCAGGTGCCCTTGTTTGCTGCTGTGCTTGTGGGGGGGCCTG CCT

GTGGCGCGGAGCGTGAGGCGTTGAGCTGTTTGGAAGGTGGAAACAGCTTTCCTTGGC ACT

GCTTCTCCTGTTGAGGGGTCACTGGCGTGAAGGCACATGGCGTTTGGTTCAATCAAT GCC

TCGCCTGCCCCGCCTGAATGCTGCAATCGTTATTTTGGCTCAGCGCGCAAGGGCTGT GGG

CTGATCTGCCTCCACTGAACGCCTGCAGGCCCACCCAGCGCACCCCCATCCGCAACT TCT

ACCTGGCGGGTGACTACACCAAGCAGCGGTACCTGGCATCCATGGAGGGGCGACCTT CA

GCGGCAAGCTGTGCGCGCAGGCCATTGCGGGTGAGTGAGCGAGGAGCGGAGGGGAGC G

AAGGCTGGCAAGGGAGGACACCAGACAGAGAGGCACAAGTAACTGCCGTTGTGCTGT CT

GGGTTCCTGTTTCGCACTGCTCCCACTCTGCACATTCTCTTTGCCGCCTCTGCCTGC AGAG

GACTGGAACACCTCAGCCGTGAAGCCCAGCCAGCCTGCCAAGGAGAAGGCACTGGCG TG A

HSP90C_l_Elbl

SEQ ID NO: 11

ATGGTCGCCTCGGTCCTTCGTGCGGTGCGCTAACTCCTCATCATCATATGCAAACTG CAGA

AGACTGCTGTGCCGACATGCTGCTGGCTGGCCGAGCCGCTGCCGCAACTGCGTGGAA ACC

ATCGCGCTTTGTGCCGTGCATGTCTACGCTGCAGGCTTCCGCCGTGGCCCGTATGGC CGCT

TCGTCCCAATGCAAGGCCGCCGTGGTGCGTGGTGTCGTTGCCAGGCCACGCTTTGCT GCC

GCCGCCGCTGCCCGATCCGCCGCCAGCGGGCAGAGCTTGCGCCAGGCTCGCGACCGT TTG

TGCGGCTGCTGCCACTGCCGAGCCCGAGACCTTTCAGTACCAAGCAGAGGTGAGATG CGG

CGCGGCCACACATGGCAGCCTTGGCCACAGTTTGGGGCACAGGAGCAGCGGCGCCGG CG

ATCGGCCCGAAACCGGAAACTTCTCCGCTGCTCACCCTTGATTTGACACCCGCTGCG ATG

GCCGCCTGGCCCGCAGCTGACCTCAGCGACCTCTAGCCTTACATCTGCTCGAGACCG CGG

TGCTGCCTGCCGTTTTTGGCGCTCTCTGCATCACCTCAACCTGCTCTCTCCAGCACC CACC

TCCCATTGCTTATCCGCCTGGCTCACTGCTGGCCGTCCTGCCTGCTTTCCACATCCA ATGC

ACTGCTCCCCGCTCCAGCCTTCACTCCTTGCAAGCGTCCACCTGCAACGCTCAACAG CAC

AACAGCATACAGCTACTTACACGCACCTTTCGCATGACAGGCCGCTCTTCCTTGCCG CCTC

ACATCCTTCCGCTTAATCTCACCTCACCCCTTCTTGCTTAGTGTCACCTCACCCCAG CCCA

CCTCACGCTACGCCACTTCACCTCACCTCACGCTACGCCGCCTCACCTCACCCCTCC CTTA

TATCAACCCCACCCCACCCCACCCCACCCCACCCCCCCCTCACACCCAGGTGGACCG CCT

CATGGACCTGATAGTCAACTCCCTCTACTCCAACAGGGATGTGTTTCTGAGGGAGCT GGT

GTCCAACGCCAGCGACGCACTGGACAAGATCCGCCTGATGGCGCTGCAGGACTCTGA GG

AATACAAGAGCGGCACGGGTGGGTGGGTGGCTGGGTGGGGTGGAGTAACTGGTTGGA GG

GTGCTGGGCTGGGTGGGTGGGTGGGTGGCCTCTGAGGCTCGCTGCTGTGTTCTCCTG AGA

TACCCCTCACACACAGCCACAGCTACTAACCGCATCCCTCTACCCGCGCCCCCCCCC CCC

CATCACCACAGACCTGGAGATCCGCATCCGTGCCGACAAGGAGGCCAACACGGTGGT GA

TTGAGGACACTGGTGTGGGCATGACCCGCGAGGAGCTGATCGGCACACTGGGCACCA TT

GCAAAGTCGGGTGGGTGCTGCCTTTAATTGGCTGGCTGGCCGGGTTGATTGTGCTGG GTG

CTGCTGGGTGGCTGCGTGAGTGAGTGCTGCTGTGTGCTGCCGGGTGACTGGCAGATT ATT

GTCTGTCTGTCTGGCTAGCTGGACAGACAACTTATGGTGGTGATGGTGTGTGTGTGT GGG

GGAAGTGATGCCGAAGGAGGCGAGTGGTTGGCCAGCTCTTGCCGCCACTGCTGGCAA CC

CCTCCCTGCACCGCCGACTGCGGTACCGCCCTCGTGTCTCGATGTGCCAGCACCGCT CAC

GTCCTGCTGTTGCACCGCCTGTATGGTACTGTACCGCAGGTACCGCCAAGTTCATGG AGG CGATGAAGGAGAAGAAGGATGCAAACCTGATTGGCCAGGTGGGTGCTGGGGCTGGGGCG

TGACCAGAGGCAGTGTCTGTCATGCCTTTTGATGTTTTCGTATGCCAAAGCCTCTGT GAGG

GCTGGGTGGCAGGTCCATGACAGGTGGGCGCGCGGGCGGTGTGTCGCTGTCAAGTAA AC

AAGTCTACCTGCGGCGATGTTGGGCTGCACCGTCCTGTCCCTTTCGTTCCGGCGGGA ATGC

ATTGCACCTGCTCGTTCACGCATTCACCCCTCTTCCGTTGCTGTGTGCTTGCGTGCG CTCTT

GCCGCAGTTTGGTGTTGGGTTCTACTCTGCCTTCCTGGTTGCCGACAAGGTGCGCCC TCCA

TGCCTGCTCCTGCCGTTGTACTGCTGCCGTACCGGTGTCATAATGTGTTTGCTTGCT TGCTT

GCCTGCCCTGCTCTGCTTCCGAGGTACAGTGGCACCTGTCCTGCTTGCCCGCATGGC GCCT

CCCCAGCCTGCCTTAGACAGAGAAACATGTTCACTCTCTTCACCTGTCAGCTGTCAT CAGC

TGTAAAGCATTAGAAGCTGGCAGCAATCCCTCAATCCCTGATGAACTCCTAGGATCG CCT

CCCACCTGTGACAGGTCAGCGTGTCGACCAAATCCAACAAGGACGGCTCCCAGTGGC TGT

GGGAGTCTGCTGCTGGCGCACACAGCTACACAAGTGAGTAGGGCGGCTGGTGGTGGT GC

TGGTGGTGGTGCTGGTGGTGCTGGTGGCGTGGAAGGTGGTGGTGTGAATGCTGGTGG CGT

GGAAGGTGGTGTGAACGCTGGTGGCGTGGAAGGTGGTGGTGTGAATGCTGGTGGCGT GG

AAGGTGGTGTGAATGCTGGTGGCGTGGAAGGTGGTGGTGTGAATGCTGGTGGCGTGG AA

GGTGGCGGTGCTGGGCATGAGAGCACTGCTGCTGCCGCTGCGGCTGGTGCTGCCTCC CTT

GGCAATTGGCGCCCGCTGCCCTCCCGGCCTGGTCCCCACATATCAGCAACAGCCAGC CAG

GGTTTACATCAGGTGTTGGCGGGTGCCATCCCTGTCCGCTGCAGTCCAGGACAACAG TGC

TGCTGACACCACTGGCAACTGTTGACGCAGCCAAGCAAGCAAGCTGACGCCCCTGCT TGC

TCTGCCGCGTTTACACTGTAGTCAAGGAGGACGCCGCTGCCGACATCCCTCGCGGCA CCC

GCATCACACTGCACCTGAAGCCTGATGCCACGGAGTTTTCCGATCCAGCCAAGCTGG AGG

TGGGTGCTGGGTACTGGGTGCTGGGGAGAAGGGGTGTGGCAGTGACGTGCTCGGCGG AG

GCATGTGTGTTCGGTTCATCTGTTTTTGGGGTATGCCTACTGGGTTGCTGACCAGGA CTGT

CTGCTCACTGTTTGTGTGGGGTGTGCTGCAAAACGCGCTCATGGCAGTGTGTGCTGC GCT

GAATCTTGTGTACATCTGTGCCGCCGCCTGTGTACTGCCCCATCTGTACCGCCTCCC CTGT

ACCCGTACCTGCAGTCCCTCATCAAGCAGTACAGCGAGTTCATATCCTTCCCCATCA AGCT

CTGGGTCAAGACGACCAAGTCAGAGCAGGTGCGCTGTGCGCTGCTGCTCCGTCTGCC GGC

GCCGTGCCCGCTGGTGCTTTCCATTTGTTGCTTGGCGTGCCCAAGTGCTCATGTGCT CGGC

TGGTGGTGCTGCATGTGGTGTGGCAGTGAGGCAGTGTGACTGTGCGCCTGTGTGCTG CAT

GATGCTGGGACGCTGACCTCGTGAGCTTGCACTGTGTGCTGTCTGGTCTTCCCAGCC TTGC

GTCCTCCCGCTGCCACCCTTGCCGCCTGCTGTCGCCGCTTGCTGCCCAAAAACAGTC CCCT

CGCTCGCAAGTGGCTGTGTGCTGCGATTGATACTCGATTCAACTGTTCAACCATTTA ACAA

TTTCAACTGTTCAACCATTTCAACCATTCAACTTGCAGGTAGTAGACGAGGAGGCCA CCG

CCAAGGCGCAGGTGGAGGCAGAGGAGAAGGCCCGGGCAGAGGGCAAGGAGGAGGCGG C

GGTGGACGCTGTGCAGCCAGGTGCGCATGCAGCGCGAGAAAGACAGGGCGGCAGTGT GC

TGCTGCTGCTTGTTACGGGGGCTGATAATCTTGCTGCTGCTGCTGCTGCTTCGTCAC TTGT

GCGTATCTGTGTCGCAGTCCATCTTCGGTCCACCCAGGAAGCCTGACTTGCAGCTTG TGCT

GCAGAGGGGATGCAGCCGCTAAGTGTGTGTTTCAATTTTGCACGGCCGCCCGCCCAC CTT

CTCACCCTCCCTTCCTCTCCCTCCCCTGCCACTTTCCCTCCCTCCCTGCCTGTCTCG CAGTC

ATGAAGACTGTGACCCATGAGGAGGAGCAGTGGCGGGTGCAGAACGACAACAAGCCG CT

GTGGGTGCGCAGCCCCAAGAGTGTGGCTAAGGACGAGTACGACGCTTTCTTCAAGAC CAC

CTTCCGGTGAGTGTGATGCATCCACTCCGTGGATGCATGGTTGGTGTGTGGGGGTGG AGG

GGTGGATGGGGTGGGTGAGCCCGGTGCAGTGGAGGTCCTTCTAAATGTGACAGCTGT TTC

AATACTGTTTCAACATTGAAATAGCTGTGTTGAAGTGTGTGGACACCAACAGTTGAA AAC

AGTACGAAGTGGGCGCGAGGTGGTTGGGCTGGGTGTGGGCGGGAGTGACGCGGGCAG CA

GGCAGAAAGGAGCACTCTCCTTAGCTCAAAGTGTGTGCCCCCCCTGTCTGCTGCCAC TCC

CAGCTCTGCATCCCGCCTCCCTGACAGCCCTCGCCCCGAGCTTTATCTCCCTTGCCC CTCC

TCCTTCACCTGTATGCAGGGAGTTCATTGAACCGCTGGGTGTGGCTCACTTCAACGT GGA

GGGCACGATTGAGGTGGGTGGGTGGGTGGGTGGGTGAGAGAGGGGGAGGGGAAGTGT G

AGGGGCAGTGGGTGTGTTTGGGGGTTTTGGGTTGGTGGTGGGAATGAGGGTGGTGTG CTG

ATGTGTGTGTGAGAGGGGAGGTGTTGGTGGGAGAGTTGAGTGTTGGGTGTGAGGGGT GG

TGTGCTGGTTTCTGGGTGTGTGGTCGCTCGCGTGGTTGATTGGTGGTTCAGCAAGAA ACG

GCGGCAAAGAGCTGAAGCTTGAGCTTCCGAGGAGAGTTGTGTGGGTGCCTTGACCGG CA

CTGAGGCTGCGGCCGCCGCCGTGGCGTAGTGCTGAGCGGTACGCCGCTCGTACCGCT GTC

GCCTGGGCGCACGCACACGACGACGTGCCCCTCTCCCCTCCTCTCTAGCGACCATCA CCC TCGCCCCTTGCATCCCCTTGCCCCTCCACACCGACATTCCCCTCCTTTCCCTTCCCCTCC AC

CTCCCTCCCATCACGGGTGCACTGACATCTGGCCCTTTCCCTTCCTCTCCCCCCTCT TTCTC

CCCCCCACCCCTCCATCCCCGCAGTTTTCCTCCATGCTGTTTGTCCCCGGCATGGCG CCCT

TTGACCAGGACCGCTCCATGGCCAAGAGCAGGAACATCCGCCTGTATGTGAAGAGGG TG

TTCATCTCGGGTGGGTGGGGCTGACTGGCTGTGTGTGTGGGTGTTTGGGTGTGGGTG TGG

GTGGGTGGGTGTGGGGCAATGGTGGGGCAATGGTGGGGCTGACTGGGTGGGGGCAGT CT

GGGTGAGGCTGGATAGGTGGGGTGGGTGTTTCGGTGTGGTGGGATGAGGGGTTGGGC GC

GGTGGGTGGGTTTGGGTGTGGGTGTGGGTAGGCGTGGGGCTGGGGCTGACTGGGTGG CG

TGGGGGTGGGGCGGGGGCTGACTGGGTGGGGTGGGGGTGGGGCGGGCGACAAGGAAG G

GGTGGGGGTATGGGTGGATGACGGCTTCTCAACGGGCTGTTGAGAGGAGGGCAAAGG GG

AGAGGTGTGGTGAGAAGGCAGGCTGGCAGTGTGTGAAGGGTGGTGGCTGGAAGGGTG GG

TCGGGAGGCCGTGGTGGTGGCAGGGCAGGGTGAGGCTGGGGCATCGAGCAGCAGGGC GG

CGTGCGCAGAGGTGCAGAAAGCTGGGAGTGGTACCTGCCCCACCCATTCTGTTGTAC TCG

CCCCCGCCCTTGGGTTGGCGTCTGCATGCCTGCACCCCTCCCCTCCACTCACACACC ACCC

TCTCGCTTGAAATGTACTCGCTCAACCCTCTACCCTCTACCCTCTACCCTTTGCCCT TTGCC

CTCCCACCCTTGCCCTTCCCCTCACCCACGCTCTTGCTAATTCATGCACCTTTTAAC TTCCC

CCACCAACCCACCCACCCACCCAAGCAGATGAGTTTGACGAGGATCTGATGCCCCGC TAC

CTCAGCTTCATCAAGGGAGTGGTGGACTCATCAGACCTGCCCCTCAATGTGTCCCGG GAG

ATCCTGCAGGTGGGTGCTGGGGTGCTTGATTGGTTGGTTGGGTGCTGGTGGTGTGGT GGG

TGCTGGGTGGCTGAAGGGTGGGGGTGCGTGAGCGGCTGTGCTGAGAAGGAGTGCATC GG

ATTTGGTTTCTAGGGTTCAGGGTTGCACAGTCGTGTGTGTCCCCTTTGAGCTCTTGG GGCG

GCAAGCCTCGATGCAGCTATCTCGGGCTGCTGACCCAGCACTGCCTGCGTGATAATG CGT

GCGTGGCTGAATGTGTGAGGCAAGCGTTTGTTGCCCACCGTCGCTTTCGGAGACATC AGC

ACAATTGTTCGTTCTAATTCTTATTCATTTCTTATCCGTAGTCAATCTCACTTCCTC AGCAC

TCCTCCCACCCCTGCCGCTCTACAGGAGAACCGCGTGGTGCGGCTGATTCGCCGCCA GCT

GGTCAAGCGCTCCATTGACATGATCAGCGACATTGCTGGCAGGGAGGACAAGAAGGT CC

GTCAGTGGTGGTTCGTAAGCGGCGGGAGAGGTGCTGTGCGATGTTTTGAGAGTGGCA GA

GTGCCTCGGTGCTGTCTGGTGCTGATGGATGCGCTGCACCCATCGCCGCCGGCCGCT GAG

TTGCGTGTGGAGTGGCCTGACGGCGCTGCCTATGATGGCGGATGTGCCACCACTGGG AAG

TACAATTATACCATTGTATCTCTAACTATTTGTACCGCTGTACCGCCACGTCACATG TACT

TCTGCGTGTACTGCCTGTACTGCCACCCCCGCAGGAGTATGCCGCCTTCTGGGAGTC CTTT

GGCAAATTCATCAAGCTGGGCTGCATCGATGATGCGGTGAGTGCATGCCCGAGGGTG GG

AAGGAGAGGGGGGGGAGGAGAGGGAGGGGGGGAAGCAAGAGAGGGAGGGAGAGCAAG

CCCTCAGCTGGGTTGCCAGCCTGCTGAAGTGAGCACACCGAGAGGCCAGCAGTATGT GTG

GTGGTGGTGGTGCTGTTGACGGCTGCACCACGTAGCCACAGCTCACACTGGCACGCA GAT

CTCCCAGCCCTGCAGCCGCCCCCACTCGCTTGCGCTGTGTGCCCGCTTCCCAGCCAT ACCC

CGCCAAAACCCAAACTGCACCGCTGCTGCCACCCAGCCCTCCCACTTCCACCTCCAC CCC

CATCAACCCGCACCATTGACCTGCCACCCTCGTGTTCCGCTCCCTCCCCCCCTCCCT GTTG

CAGGACAACCGCAAGTCGCTGGCCCCCCTGCTGCGCTTCTCTTCCTCTGCCATTGCC GCCG

AGAAGGGGCTCACCTCCCTGTCTGAGTATGTGGAGAGGAAGAAGGAGGGCCAGACGC AG

ATCTACTACCTGGCTGGTGGGTTAGGGTTTGGTGGGTGCTGGTGTGCCGGGCTGCTG TGT

GTGCTTGCAGGAGTGGTGGGTGCTGGTTGCTTTGGTGGGTGCTGGTTTGATGGGTGA TGG

TTGGTTTGATGGGTTGTGTTGGTTTGGTGGGTGCTGGTGTGCCGGGCTGCTGTGTGT GCTT

GCAGGAGTGGTGGGTGCTGGTTGCTTTGGTGGGTGCTGGTTTAATGGGTGATGGTTG GTT

TGATGGGTTGTGTTGGTTTGGTGGGTGCTGGTTTGCCGGGCTGCTGTGGTGCTTGCA GGAA

TCGCGGGGACTGATTGGCTTGATGGTTCTCACCGCTTGCACCTGTCAATACCGGCCG TCAT

CAAGTAATCCCCTTGCCTTGCCTTCAAACCTCCCTCCTTCCTACCTCCCCTCCCCCC CCTTC

CCCCTCTCCCCCCCTGCAGCCGACACCCGTGCCGGCGCTGAGGCCTCCCCTTATGTC GAGT

CACTGGTCAGCAAGGGCTACGAGGTGCTGTACCTCACTGAGCCGATCGACGAGGTGG CG

GTACAGACCATGGAGGTGAGGCGGTACGGTGCGGTGCCACATTGACGCTGGGGCGGC AT

GTTGCTGAAGCGCGCCAAACGTAACAAAAGCATCAAAGATGTTGCAATGTCCCTAGC TTT

CAAAACAAAAATTGATTACAATTTGTGTCTGCCAGCTGCACTGAACTGGTTGCGTGT TGC

GTGTGCCCTGCTTTGCTCTCCTCTCTGCTGGTCGTGCTTTCACCCCCCCCTTCCGCG GCTTG

TGAGCTTGGCGCCTTGATGCCTTGTCATTGCCCTGCTCCTCGTTCTTGCTTTCCACC TGGAC

CCGACATCCGCTGGTGCACTCAACCTCCTCATCCTCACTCACGCCCCCTTCACAGGA GTTT GAGGGCTTGAAGCTGGTTGATGTGAGCAGGGAGGACCTGAACCTGGACGACTCAGGTGC

GTGCATGGTGTGTGTGTGTGGTGCATGAGTTGCGTGGGTGTGTTTGCGTGTGGGTGG GTG

GATGGGTTTGGTGGTGGTGGGGTTCTAGGGAATGGGGGGCGGGCGGGCTGCACTGCT GC

CTCTGCAGCCCCTCAGCCTGACAGCCTCAGCAACTGCTGCCGCGTCTGCCGCCGTCG CGT

GCCTGGTGTCTGAACACTGAACGAACCCGGGCTGCTTGCGGCCATCAGACAGGAAGG AA

GCAGGCCTCGAGGGGCCCATTTCGCCCCCCTTGTTCAGCAGCATCACCTGTTCAGGC TCTC

GTTGAGACTCACTGTGTCAACCCCTCTGCCACCCACTCATCGCCCCACTGCCTGCGT GTGC

GGCTGCAGAGGAGGACAAGGCTGCGCTGCAGAGTGCAACCGAGGAGTTCAAGGGCCT GA

CTGCTTACATCAAAAAGGTGTGTGTGCGTTTTTCGTGTGTGTGTGTGCGTGTGTGTG CGTG

TGTGATGGGGAGTGAGGTGGGCTTTTTGTGGACTTTTCAACACAACAAAGCAGTCTT GTT

CGGCAGATTAATTCTCCAGCCGCATTGTTCCAAGTGCAATGCTGTGAAAGAGTGAGG TTG

ACACTCCCCCTCTTCACCCCTCTCCCCTCACCTCCCCCGCCCTTCCAACCCCCGCAG GTCT

TGGGCGACAAGGTGGAGAAGGTGAGCGTCACCAGCCGGCTCACCGACTCACCGGCAG TG

GTGGTGGCCTCCAAGTTTGGGTGGAGCGCCAACATGGAGCGCATCATGAGGGCGCAG GT

GAGGGCGACTGTCTTGTTTTGGTGGGTGCTGAGGGGGGTGGGGGTGGCTGTCTTGCT TTG

GTGGGTGCTGAGGGGGGTGGGGGTGGCATCTGCGTTTGTAGGGGGCGATGTTGCGTG GA

GTAACTGCTTTGGTGGGTGGAGCGCACACGCTGCGTGGCCCAAGGCGGCGCGGCTCC TGT

GTCTGCCACCTTGTGCTTGCATGACGCACGGCTTTAGATTGCACCCTGACGCCTCAA CACC

CCTCTCTCCTGTCTCGACTTCACCCTCAACCACCACCTACCCTCTTCCTCACCCCCT CCCCT

TCTGCCACCAGACCATGGGTGACGCTCGTTCAGCTGAATACATGAGGGGCCGGCGCA TCA

TGGAGCTCAACCCGCAGGTGGGTGCTGGGTGGTTTGGGGGGTGTGGGGGCTGCTGGT GGT

TTGGGTGGTGTGGGGGCTGCTGGTGGTTTGGTGGTTTGGTGGGTGCTGTTTGTTTGG TGGG

TGCTGATTAATTGGTTTGGTGGGTGCCTGCCTGCCTCCCTGCTTCTTCAGTTGCCCT ACCTG

GGGTTGACTGATACATGCGCTCGTTTGTTGACTGCGCAGTCAATGGCTTTCTAGCTT GCTA

CGCAGCTCCGCTGCGAAGTGATTCATACCGACAAGGCTTTCACCGCTTTCAATCCGT GGC

CCCCTGCCTGTTGTGAATCTGCAGCACCCCATCATCCAGTCGCTGAAGGGCAAAGTG GAG

CTGGAGAGCCGGGAGGCAAGGGAGCAGGTGCAGCTGTTGTACGAAGCCGCACTGCTG GC

GGGAGGCTTCATGATCGAATCTCCAAAGGATTTTGCGGCCCGCATCTATCAGATGAT GGA

GCAGCAGCAGCAGCAGCAGGGAGGCGGCAGCGCAGGAGACGGCGGCGCAGCCGCCGC C

TCTGCCTCCGCCGCGCCCGCTGCTAAGAAGGCGCCTGCTGGTGGTGCCAAGAAGGCG GCT

GGCGGCGGCAAGAAGGCGGCGGCGAAGAAGGCGGCCCCTGCTGCTGAGCCTGCTGCT GA

GCCTGTTGACCCGGAGGTGCTGTAGAGGAGCCATGCTGCGCAATCTTTTGTGTTGCT TGGT

TTGTGTCGTGTCGAGTTACAGCAGTGCCCAACTCCCCATTCAACCCTCTTGTTTGCC CCTC

TCAAAGCAGTTTCCATGCCCCCATTTAATGTCTCGCTCATACACACGGCCCGGTGTG CAAC

TCAGGCGCGACGGACTTGCAGGGACGGTGATAGGTGGTGCAGGAAGGGGCTTGAACC CA

GAAGCAGTTGTGAGGGTAGCTGATGGTGCAGAGGAGGCAGCGGAGTGGCAGGTCTGC GG

CAGTTGGGCAACAGCTTCTTGTCTGGTCAACCACCCCGCAACCGACTTGTTTGACCG TCGC

GAGACCAGTGCCAGAAACTCGGGGCGTCAGCGCGCACGCTCCTGCGAGTTGCACACC GA

TCATGCAACCGCCACCGCGTCGAGAAAGAGCTGCGTGATTTTTGCTTCAGCCTTGCC GCG

TGTCAGTCGTTTTGGCCCAGTCTGCCCGCGTTTGTCCGCCATCCAGTTTCCGCTTAA CATT

ACTCCCCTGAGTGTGCAACCAAGGCCGCCACAGCAAAAGACCGCTCTTTGCACGCCG CCT

CTTCCGCCTCTCCGCTCCGCCGTAAACCAAGTCCCGCCCCTGATCGGCCCATCTCCT TTCC

TGGGACTTGCTCCCGCGATGATGCACGCGTCGCCGCCGGCATTGCCCAAGCTCGCGC TAC

GGCCGCTGCGCCTTCCCCAGGCCACTGACACAGCACGGCTGGCCGCTGGAACGCGGC GG

GCTGCGGCACACGGCCCTAGACGGCGAGCTGCACCTGTGAGGGCGTCGGGCGGCTCT GCT

CCCGACGTCGCCGTCAGCCTCAGCTCGACGGCGCCACGTTCGCCAGCGCGCAGCGGC GCA

GAAGGAAGACACCTGGAGCCTGGAGGAGGGCAGCCTGGAGAGTGTAGAGCTGGATCA G

AACAAAGAGCAGGGCCGAAGGTGTGCTGCCGCCGCTGGCGCTACTGCCGTTTGCCAG ATT

GCTCCGGCGCACGTACCAGCTTTGCTGCACCAGCAAGAGAAGGCTCCGCCGGTCCCC CTT

GTACCTGTCGCTCATTGAAGGAGCAGCGTTGTTGGCAGATTGCATGAATGCATGCCG GTG

TTGCCCCCTGTGTGTGCCGCAGGCACATGCGGGAGCTTTCAAACTTCACGTTCCGCC GCTG

GGCTTTCCACCGCTCCACATCCCGATACGTGAGCTAGCTAGCTAGGACAGCGGCTGC AGC

AGTGCCGCAGTGCTGTTGCTTGTGAATTCTGCCTTTCACGCGCGCATGTTTGCCGTG TGCC

GCCATTGCTGCCTTCGGGCTGGACTAACAGCCTCGTCCGGCCACCCATTCACTTCAA CCCG

CTTTCTCTCTCTCTGCCACACCTACCGATCCTCCTGTCCCGGTGTGCTTGCACCTTA CAGCT TGCCCACATGTGCTTACACCTGCCTGCACCCGCACCTGCGCCCGATGTGTTGCCTGCCTG C

AGGTGCGGCACATGTCTGGCATCTTCCAGTCGCGCGATCGTGCGCGGCCTGGCCCAG CCG

CTGCTGTCTGTCGGCGGCACCGCCACCGCCGTGTGCCTTTACGAGCAGGCTCTGCAG GAC

GGCTACCTTCCCGCCTACTTCCCCTCCCTGGTGCTTCCCACGCTGCCCTTTGACATC ACCTC

CTTTGCACTGTCTTTGCTGCTGGTGTTCAGGTGCGGTGGTGGTGCTGACACGTGCCT GCTT

GTGTCTGTGTGTATGTGTGTGCGCACAGTCTGTGTGGTTGCAGACAAACTTGCTGGG CAG

CCCAGTTGAGGTTGACGGGTGTGATTTGGGCGCGACCAGCTGCAAGCGGCATTCAGC AGG

GGCACCACCATCACACACACACTCACACTCACTCACCTGTCCCCCTCCTACCCCCCC TTTG

CAGGACCAACACCTCTTACGACCGCTGGCAGCAGGCCATGAGCGCTTGGGGGACATC GG

CACCCGCAGCAGGGACACCCTGCGACAGCTGCTGGCCTCCTCCTCGCGCACCGGCAA CGG

GCAGGGGCGGACCTGCTGCCATGCTGGCAGCCGCCTCAACCGGCAGGTGTGCGCCTC TCT

CTCTCCCTTTCTCTCCCACCATCCTCACCTCTCGATTTGGTCACTGGTCTCTCGTCA CCCCC

CATTTGCCTCTGCCGCCTCTGAATCCTATCCCTGGCCAGCGTGCCGTTTCTGTCTTG CCGCT

GTGGCAGCTGCAGTTGGACGAATGACTCCATTGACTCGTTGCCAGCTCACTCAAGCT GCT

TTCGTTCTTTTCCCTGCCTTTCCTTCCCCTCTTCCTTGTCGGCAGGTGGCTGGTGGC CTTTT

CTCGATCGCTCAAGGCGCAGCTGACAGAGGACTCTGATGTCGGAGCAGAGTTGCAGG TG

GGTCTAGGGTTGTCTGGAGGGGGGTGTGTGTGGCATGTTGTGGTGTGTTTGCGGTGC ATG

GGTGTCAAGCCATTGGATGGCTGATTCTAAACCGCTGCCTCCACCATTGCCACTTGG TGCT

GCTGCCACCCCTGGTTGCCTCGACTCCCACCGCCGCCTGCCTTACCTCTGATCCCTT ACCC

CTGCAGGGCGTGCTGACCCCCACCGAAATGGCGCTGCTGCTGGCGGCCAACCACCGC CCC

ATGTTTGTGCTGGCAGTGCTGACGGAGCTGGCTGAAGCCGCCCCCTGCGCGACTCAC AGC

GCAACCGAATCGACGAGGTGTGTCGGCAGGGTGGCGGCCTGTCAATTAGGCAGGCAG GC

AGGCAGGCAGCAGCAGCAGACGGCACAAACCCTGGGTGATAAACTGGAAAAGTCGGG A

GTTGTCAGCGGATCCGTATCCAGCTCTGCACATGGCTGTACTGTACTGTCCACTGCT CACT

CTCCTGTTGCGTGTGCTCCTTGTAGCATCTTAAAACCGCGCTTTGTCTCCAATCCCC TCCC

GCAGAACTTCACCTTCCTTGAGGATCAGCTGGGCAAGTGTGAGCGGCTACTCAGGAC CCC

CATCCCCCTCTCCTACACACGGTGAGCATGCAGGCTGAGAGGCAACCAGGCAGGCAA GA

TGCATGCAGGCAGGCAGGCAGCGGGGCAGGCAGGCAGGGGCGCAGGGAAACACTGGC A

GGCAGGGAGGGGAGGCAAGGAGGCGGGATGAGAAGCCCTTTTCCACCCCCGCGCATG CT

CACCTCCTCACCATGTCCCACACACATCCCGCCTCTCCGTTGCGGCCCCATATCAAC CTCC

CTCCCCTTCCACCCCTTCCACCCCCTGCAGCCACACCTCCCGTTTCATGGTCATCTG GCTC

TCATGCCTGCCCCTGGGCCTATGGTCTGCCTGCCGCTGGGGCACCGTCCCCCTCACC ATCG

TCATCTCCTTCCTGCTGCTGGGCATCGAGGAGATTGGAGGTGAGGTTGTTGTGCCCA GCT

GAGGCTGCTTTGGGGTTTTGTTGTTGACTGCCGACTGACCGCTTCCCTTGCCTGCTG CCGC

ACCGTGCCTGCCTGTGACCCTGCTGTTGAGCTGGCTGGCAGACCTGTCAAGGCTGTC GGG

CTTGCAGCTTACGTTGCTACCTGCCTGCCTGCTGACCGGTGGCTTGGGCTGCAACTG CCCA

CCGTATTTCCTGTTCCCTTCAAGGACGCTGTACTCACATGTGTCATTCCTCTGCTTC CCTGT

GCCCCTCCCCCCCCCCTCAACCCCTGTAGTTGCTATCGAAGAGCCCTTTGGCATCCT GCCG

CTGGAGGAGCTGTGCCGTGAACTGGAGTTCAGCCTGTCTGACATCCTAGAACAGGCA GTC

AGCAGCAAGACAGCCGCCAAAGAAGCCGCTGCAGCCACCCAGCAGGCCGCCGCCGCG CT

GGCGGCAGCCTCTGCCGCTGCTGCAGCGGAAGCCGCGGCCGCCGCCTCGGCCGCAGC CTC

CACCGCGGCGGCTGCGGCGCCGACAAGGATGCGGCTGCTGCTGCCGCGGCTGCGACT GC

GTCCAGCAATGTGGCTCCCTTTGTGCTGGGTACCATTGGCCTGGGGCGCAGCAAGGC CGC

CTCCAGGCAGGCGATGCCAGCTTCAGCCATCTTTGCCAGCTATGATGACTCCGAAGC TTG

A

PRPL1 1 Elbl

SEQ ID NO: 12

ATGCGGGCTGGAAAGTCAGTCCATCAATGTCCGCCAGCGCCGTGCCACCACATCCCA TCC

CATCGTCCCAGCAGCATGGCGGCGCTGGTGGCGTGCAGGCCATGCAAGTGGCGCAGC CCT

TCTGTGCGGCCAGCGCGCCCAGCCATGTGTACAGGCCCTCCAGCAGCAGCGCCGGCA GCA

GCGGTTTGTCGTCAGGGCCCAGGCGGCAGCCGTGGATGTGGCCGCCCTTGAGGCCGA AGC

GCTGGCAAGCATCGCCGCCAACCCAGCAGCAGCAGCAACAGCAGCAACCTCGGCACG CC

GACGCAACTCGTCCCGCCGCCTGACGGGCCTGCTGGCAAATGTGCCGGGCAAGGATA CG GCGCTGCCGCCGCTCGATGCCATCAAGCTCTGCCTCGACACGGCCACAGCCAAGTTCACG

GAAACGGTGGAGGTGCACGCCAAGCTCAACATCGACCCCAAGTACACGCGCCTGGTC TG

CGCGCCACCGTGTCGCTCCCAAAGGGCACCGGCAAGTCGCTGCGCGTGGCGGTGGTG TGC

CAGGGTGAGAATGAGAAGCTTGCACGCGACGCAGGCGCAGACTTTGTGGGTGCCGAG GA

CCTGATTGAGACCATCGGCGGCGGCATTATGGACTTTGACAAGCTGGTGGCCACTCC CGA

TATGATGCCCAAGCTGGCCAAGCTGGGCCGCGTGTTGGGCCCTCGCGGACTCATGCC CAA

CCCCAAGGCCGGCACGGTGGCGACCGACGTGGCAGCGGTGCGTCGCTGTGGCTGGCG TT

GTTGGTAGTGCAGTTGTGGGAGACGTGGGGCTGGTCAGAAGGAAAGTGGTCTGGTTC GTA

TGCAACATACCATCGATCTTCTGCTGCTTACCGCCATTCTGTGCAGGCTGTCGAGGA CTTC

AAGGGCGGCAAGGTGCAGCACCGAGCTGACAAGGCAGGCAATGTGCACGTTGGCTTT GG

CAAGGCCTCCTTCAAGGCAGAGGACCTGCTGGAGAACCTCAAGGCATTGCAGGACAG CA

TCGACGCGAACCGACCGAGGTGCGTTGCATGCTGCCTGCCTCATTGAGCCCTTGGGT CTTT

GCATCATAGTTGTATGTATTCATTTTGCTGCTCCAAGCTTTGTGCTGATCTGGACCA AGGT

CTCTCTGCCGCTGCAGCGGCGCCAAGGGCGTGTACTGGAAGACCATGACAGTGTGCA CCA

CCATGACCTGGAGCCAGTGGCCAGTTACAATTGA

PRPL13 Elbl

SEQ ID NO: 13

ATGGCAGCGGCTGCGGGCACCATGCAGGCGGCCTGCCTCTCGCAGCAGCGTTGCAGC GTG

GTGAGTGGCCCTGCCCGCCGGCTGACCAGCTCGATGCGTGCACGTGGTTCATGTGTT CAC

CATTCCCGACGCTGCGCTGCAGGCGAAGAGCTTTGCCGGCAGCAAGGTGGCGCCGTT CAG

GCCTCAGCGGGCGGTGGCCCGGCAGCAGAGCGCCATTGTGTGCGCAGGTGAGACTTG CA

GCCGGCTGCGGAGCCCAATGCGTGGTCCATTGACGCAGGCCGCCACTGGCCGCCACT GCT

GCCGCTGCACTCCATTAATCAACTCGTGCCTTCGTGCAGCGGCCACAGCGGAGCTGA AGA

AGATGGGGCCGGATCTGTGGAACGACACATACTACCCCACCGCATCAGACGCCGCAA AT

GTGTTCAAGCAGTGGTGCGTTAGCAGCTGTGGCTGTGAACCGCTGTCGCTGCGTGTG CCC

CTCTTGTTGCCTGGCGTCACCTGCTGGTGTCAAGTCAAGGCGTGGAGAGCCAGCGGA TAG

TGATTCGCAGGACTGCAGCTCAAAACTTTGTTGGACCCGCATTGTTGGCCAGCATTT GCTG

CGGCATGAAGGCTAGCCACGGCCAGCATCAGCAGCACGGGAAGCAACAGGATGGGCA GC

AGGAGCAGCTCGCAGTGCTCATGCCCGGATTCGCATCAAAGCAGCCATGCAGCTGTG TCA

TACCAGCCGTCCAGTCTGCAGGGTCTCTCATCCAGCGCAGCATTTTCTGTTTGAGGT TGCA

CAACTCCCAGCTGCCGCCGCCACTCTCCCTCTCTTTTGCATCTGCTTTGACCTCTGT TGTAT

GTGTGCTGCTACTGCAGGTACATCATTGATGCTGAGGGGCAGACTCTGGGGCGGGTG GCC

AGCCTGGCAGCCTTTTACATCCGCGGCAAAAACATGAGCTCATACACGCCCTCGGTC AAC

ATGGGTGGATACGGTGGGTTTGGCTTGGAGTTACACTTGGATTGGGCTGCTCTGTGC TGT

GCAGTGCATGCTGGCTGTAATTGCTGGCCTGCATTTGCTGGCATGCTCTCTGCTGTG CTGT

GCTGCGTTGCATGCCGGCCCAGCTGTCTCTGCCTGGAAACGGGGCCCAGCCATCAGC CAT

CAGAAGCCCTCAACGTGGCGTACCCAGCTCAAGCAAACAGCAACCGCCCAAGAAGAG TT

GCAGCAACTTCAGCACAGCGAGCAGCAGCGTCTGGGGACGGGGGCAAGCTGCACCCG CA

GTTCTGCGCTGCGTCGGCGCGGTCATCAGCAGGACCAGCTGGGGCTTGCCGAGCTGG CTT

GGCGTTGCTGCTCTTGAGCGGCGCCGCCATCCCGGTCGACACACACCACGCCTGGTC ACT

CCTCATCGCATGCCTCCTTGCCCTTGCCTGACCTCATCGTCACCTCCTCTGCCTGCC TGTCT

GTCCCTGCTCGCAGTTGTGATCATCAACGCCGACAAGGTGTCTGTGACCGGCCGCAA GGA

GACCGAGAAGATGTACTTCAGGCACACCATCGGGCGCCCGGGAGGCATGCGCATGGA AT

CACTGCGCGACCTGCGGCAAGTGAGTGTACCGCCACCTTGTAGTGCACTGTACTGCG CTA

CACAAGTTTGCTTTGTATTGAAATGTACAATCTGCATGTGCTGCCGTGTGCCGCCGC TTTG

CGGGCTGTGAGGTGGTTTGTAGTTTGCTGTGGGGCCAGTGTGTGGGGAGCTGCGTGT TGA

TGTGTGTTGTGCTCAATTGCTGGGGGAGCGAAATGGCGGATGCCAGAACGGCTTGGC GTG

CCAGACCAACGGCAGCTGGCTGCTAGCTGAAAGCCGCTGGCCAGGCATGCTTTCATC TGC

TGTGCATGCGCGCCTCTCAAGCCATCTGCATGCGTTGAGCTGTGTCTGCCTGCTGCC TGTG

CCCTCCCTTCCTTCCCTCCCCCTCTGCCTGCAGCGCCTGCCAGAGCGTATCCTGGAG AAGT

GTGTGAAGGGCATGCTGCCCAAGGGGCGCATTGCCAGCCCGCTGTTCAACCACCTGA AGG

TTTACAAGGGAGCTGCCCACCCTCACGAGGCGCAGAGGCCCCTGGATATCACCAGCC GCA

TCAGCAAGAAGGCCTCAGAGTCACTCTGA PRPSI CHL-white E4 Ibl

SEQ ID NO: 14

ATGCAGGCAATTTCAGCTCGTTTTGTCGCGCCTGTGGCGCCTGCCCAGCGCCGGCAC CAG

GTCGCCAGGCGCCAGCAGCGCCTGCAGCCCCTGGCAGTGGCGCAAATGGAGGAGCCG CA

AGTGCAGGCGGAGGCCCAGGAGGCCGAGGGCGACTGGGACAAGGAGTCTGCCTACGC CC

GCTTTGAGCAGCTGCTGGAGTCCAACACATACAACTTTCGGGCGGGGGACAAGGTGT GGC

AAACCCAACTTCACCAGCGGCGGCGGCGGCACTGCTGCTACAACCGCTCGCCGGCCT GCT

TGCATCCACTCACTGGTGCCTATCCCGTGCTCACATGGTGCAGGTGCTAGGCACTGT TGTG

CGTGTTGACCAGCGCGGCGCGTATGTGGACATTGGCGGCAAATCGACGGCGTTTTGC CCC

ACTGCCGAGATGGCACTGGCCACCATCCCTCGGGTGCGTGCGTGCTGCTGCTGCTTT GCT

GTATGGCGAGCCACACATGCATGCTGCTTTCTGTTCTCTGGCAGCACTACTGACAGC CTG

GATCACAGTTCAGGGGAGTGGAGCTGCTGTCACTCACAGCCGATGATCAGCCTATGG CTA

GCAGCAGTGGCATTGTGCTGTTTGCATCGTCCAGCAGCGATGTGTCAGCTCGTCAGC CTT

GGGTCCACACATACTCACGGCTGCAGCTGCAGCAGCAACATTAGTAGCAGCTGGCGC ATC

AGAACGGCCACGGCACAACCAAGCTCACAACAGCATGCACGCGGCCGCCAAGCAGCG TG

CCAATCCCTGCCCGCCTATGCCGCCACCCTGCCACCCACTACCCGCATACCACCCGC CGC

CATCCGCCTCACACCCCTGCTTTGTCCCCCCGTGTACATGCACTCTCACTCTTCTTA TCCAC

ATGCATGCTTGTTCCTGTGCACGCAGGCCACCCAGGTTGTCGGCACCTCCACCTGCC GAG

ACTTTGTCATCATCCGGGAGGAGCGTAACGGGGATCTCACCCTCTCCCTCAAACGCC TGG

AGCTCCAGGTGGGTGCTGCAGCTGGTGCAGGGGTGGGGCGAGGCGGTGGTGGTGGTG GT

GGTGGTGGTGGCCTCGGGGTGGTTGTGGTAATGTCGGTGTGGTGGTGGCGGTGGTGG CGG

TGTGGTGGTGGTGATGGTGGTGGTGGCATCGGGGTGGTTGTGGTAATGTCGGTGTGG TGG

TGGTGGTGGTGTTTGGTGGTGATTGGTGTGCACACAGGGTGGGGTGGGGCTTGTGTA GGC

GGCTCAGGGTGCAAGGATGGCGCTACGACAGATGGCATGGATGGATGGAAGCCTGGC AG

AGATGTGTCGGCGCTTGAGACGATGTCATCTCACGTTCAGCCTTCGTCAGCCTTGGC CAG

CTCGCCAGCGCTGCATGGATGGAGCAGCAGTTGTGCAATGCCAGCCAGCAGGCATGC TGC

TTCCGGCGTTGGTGACGCTGTGCGAGGGCAGTCTGCCTGCACTGCACCGCATGCTCT CTC

ACAACGGCGTCCCAGCGGGCACCTCTCAGCAGGCCAGCTGGGCAGTGCCCATGTGTT CTG

CCACCCATTTGCTCATCAGCATCAGCATCAGCATTAACAGCACCCTTGTCGCTGCGC CTGC

ATCACTTTTCTGTTTGCTCATGTGCCGCCTTTGTACCGCCCTGCCGTCGCTGTTTGT ACCGC

AGGTGGCCTGGCAGCGCCTGCGGCAGTACATGGAGGATGACGTGGCTGTGGAGGGCA CC

GTGGTGGGCACCAACCGGGGAGGCATCCTGGTGGACATTGAGAACATCCGCGGCTTC TGC

CCCGGCAGCCAGCTTGGCAAGCGGGTGGTGGAGTTTGAGGAGCTGATGAACCTGAAG AT

GAACTTCAAGGTGGGCGGCTGGGCGGTAGGGTGATCAGTAGTGTAAGCTTCAAGTGT ATG

TCGTTGGGTGTGTAGGGAGCGAATGTGAGGAGCAAGCGCCCCCGTGTGTGTGTCTCT GGA

GTGGTTTGGCACGGAGCTGTGCAAGGGGTGGGTGCAGACTGGGAGTGTGGGCCGTCC CT

GTCCCTTCAATCGCCCTTTGGCACCTGCTCACCCGTCTTCATCCTTCCGGGAACCGA ATTC

TCATCCTCGTCCCTCACCCCCCCTCCCCCCTCACAGATCACTGAGGTGGATGAGGAG AAG

ACGCGCCTCATGCTGTCAAACAAGCGGGTGGCGGCAGAGGAGCGCGCATCCAGCTTC AA

GGTGGGCCCAGGGGAGGGGAGACCCAGCGGCAGCGGCAGCGGCAGGGGGGTGGTCGG C

AGCAGCAGGGGTGGTACGGTGCCTGTGCAGCGCTTGCACTTGCACTTTGTTCTTGTA CTTT

GCAGCGCTGCAAATGCACTGTGCAGCTTCTCCTCGTGTGGTGTGCGCGCTGTGCCCT TGCT

TCCTTCACTGCTGCTCCCAGCAGAGGCTGGCGCCCTGTGCACGTGTACCGCCTTCTG GCTG

GAGCGCCTGCCTGCCTGCCTTGACCTCCCTCCCTCCCTCATCACCCCTCACCCCGGC CAAC

ACACACACAACACACACACATATACTCACACACGCAGGTGGGCGATGTGGTGGAGGG CA

GCGTGATGAGTGTGAAGCCCTACGGCGCCTTCATCGAGTTTGGCGGCACCTCTGGCC TGC

TGCACATCAGCCAGATCAGCCACGACCGCATCACCAACGTGGAGAAGGTGCTGGCTG AG

GGCGACCGCATCAAGGTGAGGGTGTGTGTGTGTGTGTGTGGGGGGGGGGGGGGGTGC GG

AGGGGTTGATTGGTTGGTTGGTTGCGGTGGTGGTATGGGTGGAGGGGTGGAGGTGGT GTG

GTTGGGTGGGTGGTGGCGGTATGGGTGGCAGGCAGGATGGGTGGCGAGGGCAGGGGG GC

ACCGCATCAAGTCAGGGGTGGTAGGGCGGCAGGTTGGTGCACTGTGGTGCCTCTTGT TGT

CTGGACGTTCACACTCCTACTCGGGCACTTGGCAGGTTGCACTGCCCCGACTCGCTG CCTG

GCTGCTGGCTTCCACCCTCCCTGCCTCACATCTCCTCCTTCCTTTCCTCCCCCCGCG CCGCA

GGTGATGGTGCTGAGCCAGGACCGTGAGCGGGGCCGCATCGCGCTGTGCACCAAGAA GC TGGAGCCCACACCAGGAGACATGCTCAGGGACCCGGGTAGGTGGCTGGCTGGCTGACTG

ACCTCTTCTGACTGAGCCCTGCTTCTGCTCTGCTTCTCTACTTCTTGCCTACTTCTC CTCCA

GCCGGTGGCTTTGTTCAGCCTGCATCCAATGGCCAGCTGACCTGGCTGGTGTCCTGA TGTT

GTGGCCTGCTGCCTGCTGTGGCAGCCCGCTGTGTGGCTGCACCTCCTTGTGGCCGCG CCCG

CCACTCCACCCTGCCCCCTTCCCCCCCTTGAACCTGCATCTCTTCCTTTTACTCTTT CAAAT

CCAACATCCATCCAACAGTCTATCTAAAGACAAACTGTGTCTCTTCCCCTCCCCCCC CTCA

CCCCCCCTGCAGCCCTGGTGTACGAGAAGGCGGAGGAGATGGCAGCCATCTTCAGGC AG

CGCGTGGCGGCGGCAGAGGCGGCGGCACGTGCCGACAGCGGCAGCGAGGAGGGCGCA G

CAGCCGAGGCAAGCGCCTGA

PSBWl l CHL-white E4 Ibl

SEQ ID NO: 15

ATGGCCGCACTGGAAGAGAGGCGGGGCGTGAGGGTGCCATCCGAGCTGCACGGCGTG CC

TCCCCGACCGCTCGAGGTGCGCAACTCGGCCAGCAGCTGCTGCGAGCCCACACGGCC GCC

CAAACGACGTGGGCCACGTTTGCGGAAGGGGGAAGCAAGAGTCCCCGCAGCTGCCCT AG

TCACCAGGCAGCTTCGCGGCGGCAGCGCCCCGACCGCCTTTACCCGAGGGGGATATT TCA

TCTGCCCGTCCTCCTCCTTCCCTCCCTCCCTTGCAGGAGTATGCCCGCGCACGCATC TTCC

AGTTTGCACAGGCCTTTGCGGCGCGCCTGAACCCCACTGTCGCGCCGGGAGTCGTGC AGC

AGGCGGCGCTCGACTGCGTGGCGGCGCTGCCACCCGCCGACTACACTGGCGTCTTGC TGG

AGCAGCGAGACCTGCAGCTCGTCTTCCGACACGATTGCCTGTGAGCCGCCGGTGGTC CCA

GCCGCTACAGTATGCTGCCGCTTCTGGCTTTGTTGTAGTTCACCAACGCGCCGCCAT CTTG

TCAGCGCACCGCTGCCGACTGCGGTCCCCTCCGCCTCACCCGCGCCCTTGCAGGAGC CTG

GGCTGCTTGGACGCGCAGTGTGTGCTGTGCGAGCACAACCCCCACCGCCGCTGCTCA GTC

AACTTCTCCCCAAAGTACCTGGTCAACGATGTGCTGAAGGTGGGGTGGCAGTGGCGG TAC

GGCAAGGGCTGGCAGGAAGAGTGGGGTGGTGGTACCACATCAGTGGGGTGCGGTGCG AA

GGCTGGCAGGAAGAGGGGGGTGGCGGTGGCGGTGCCGCAAAAGGGCTGGCAGGAAGC G

GGGGTGGCGGTACCACAGGGGCTGGCAGAAAGAGTGGGGTTGCGGTGCGTGGAGGGC TG

GCAGCAGGGCCCAATGGCCGCCCACCTGAGCCTGCATCTCTGTCCCGTGCCAGTCTA GCC

GCACTCCTCATTGCTCGCCCCCTTGTGCTGACCTCTCTGCCACTCCCTGCCTGCGCT CGCT

GTGGCTTCTGCTGTGGCAGGCCAAGTGTGATGCTCCCATTCGAGTCGAGCTGATTGA CAG

AGCTACCGGGCAGCCGATACAAGAGGACCTGCCAGACCTCGTGATGGAGGCACGCTG TG

CTGTGCTGCGCTGCGCTGCGCTGTGCTGTGCTTATGTGACGTGGTGTGGCGGTGACT CAG

GAACAGCGGCGGCGGTACTGGGCCTTGCTGGGCTGCAGCCGTGCAAGCTTTGCCTAC CAT

CCACTGACCTGTGTTGCCGCGCAGCGCTGCCTGCCTGAACCCAGATGGCGGTGCCGT CCC

GCCTGCTGTCTCATCACTCGCCGCCAAATCTCTCTGCCGCTGTGCCTGCCCCTGTGC CTGC

CAGTGGCAATCAACATGTTGCGAGCTGCCTGCCCCTGCCCCTCGCTCTGGCCTGCAG ATG

TGCGTGCTGGATGGCAACGCATATGACGCTAAGGTCACAGAGGCGGGGGAGGAGAGG GA

TGAGGACTTGGAGGCGTGTGCCCTGCTGCTGAACAACAAGGCCCAGGCGCTGCTGCA GA

CGGGGCCAGGTGCGGGTGTTTGGTGGCCTGAGGCAAGCCCGCGCTTGCTGGGAGAGC CT

GCGGTGGCGGCTGGTCAGGGGCGGTGGCCTGGGCTGCTCTGTGCTTGGCGTCAACTT CAA

GCTTGCCTGCTGGCTCCTGCTGGCGACTCAATGTGCCTTTCTGCTGCTGTGACCGCC TGCC

TGCCTGCCTGCCTGCCCTGTCCCTCCCTCCCTGCCTGCCTGGTTGCCACAGGCGCCA CTCA

CAACGCCAACAGCAAGGTGCAGATGTCACTGAGCAAGGGAGCAGCGGTGCTGCCTGA CC

TGCATGTGTCAGGTGAGTCAGCAGCACAGGCCCGGGTGGGTGGAGTAGAGGTCGTGG CA

GGCCAGAGTGGATGACGGTTGCGTGTGGCCAGCTGGCCGTGCCGTGTCTCTTTCCCC GTC

TGCCTCCCTGCCTCCCTGCCAGCTTGGCTGACTTTGCTCGTCCTCTGGCCTGACCTG CTGTC

TGCCCCTCCTCTTGTGCCGCTGTGTCCCCTGCCTGCCCCTCAACGCTCCCCTTTCAG ACTCC

TCTGAAGCGATGCTGTCAGGCCGCAAGCCGCCCTTCAGGCTGCTGGTGAAAGCCGTG CAC

CTGAGGGGGCAGGCCATCAGCGTGCGCCACGCCGTCTCAGAGGGCTTTGTGGTCGCC ACC

CGCCGCACCCGCACTGCCGGCAAGGTGAGAGGGTGGGCAGGTTGGACGAGCCCGTGT GT

GTCGGTGGATAGGGAAGGAAGTTTGCGTGCCCCAACTGGCTTGCCTGGCCTTGCTCG AGC

TCAGCCCTGGGATTCAAGAGCCTGCTCTGCTGCGCCTGTCAAGCCATCAGTCCCGCG TGC

GCTATGCCTTGTGCCTGCATTGCCTCCGCCACCCATCCATCAGCTGCTCATTAACAT GTCC

AGACAACAACTCTGCCCTACTTCTTACTCTTGTATTCTGTACTGCACACATGCACAC ATGT ACCGCTCCCGCAGGTCGAGATTCCCAACGTTGACGACCACATCTCCAAGCTGGAGCACAT

GGGCAAGGAGACTGTGAAGAAGCTGCAAGACATACGGGGCTCAGCTCTAGGTGCAGG CA

TCGACATCTCTGTGCCTGACAACACCATCAATAAGGGTGCGCTGCTGGTAGCTGGCT GAG

GCGGCACTGTTGGCGCCGGCTTATCGCTGCAGCAGGGTTGCGGCAGCAGCATGGCAT GCT

CTGTGCTGCTCGAAGGGGGCGGCCAGCCGACAAGCAATGATGCAGGGTGTGGCCGGC TG

CACCTGCAAGTTAGACCAGGCCGCCGGCCGCAGTCTGCCAGCCAGCATTTGTATAGC ATA

CCCTGGGCTGCATGCCCGCTCCTCTGACCTCATCCTGATGCCCAGCTGGCTGCTACG CAGC

CTTCACCCCAAATGTGTCCTGAACTGCGCCCCAAAGCGTCGTGCTCTCCCTCCCTGT GCAG

TCGGTGAGTTCCGCAAGCTGGCTCTGCTGGCCGAGGCTGACGGCCACTTGCGCCAGA AGC

TTCAGCAGGTGCTGAAGCTGTCCAAAGAGAAGTGGGAGGAGGCGCGGGACCATGCTA TG

CGCGCCGTGGTGGCTGACAACCGCATGCGCATCTGGTGCGTCGGCTCTCGTTCGGGG CAG

CAGCTGGCTGGTCGTGTTTGGAATGAGGGGCTATCCACATTGCTGCACAGGCTCGCT CTG

CGTGCTGGCTGGGCAGCTCATCCAGCAGCCGGCAAAGCACGTGGGAGACACCGAGCA GA

CAAGCCCTGTCAATGCAGGCCCAGCTGTCCAGCCTCCGGCAATGCAGCTCGCCAAAC ATG

CCCACCGCCCACGTTTCTCTTGCTTTCTTCCTGCCCTTCATTCCGCTACCTCCCACT CCCTT

GTTCGTCAACGCAGGTATGCCGACAAGGCCAACATGGACGTGGGCCTGCTGTTCACC TGC

CGCCTGGGTGACGTGGACCTCGACAGACCCGTGGGTGCGCTGTGCTGCGCTGTTTTT CGC

AAGTGCCGTGCTGGTAGTGCCGTGCTGGCCAGTGTCTGGGAGCGCCATGTCATGTCT GAC

GGTCGACTGGAGGGCTGTGTGCTCCGAAAGGGTATGATGCACAGGCCGGCTGCTGTC AG

AGGCTGCTGCGGCGGCCATGAATGGGTGGCATTGCCCAAGCTGCTGCTGTGGCGCTA CCA

CACCCAGGCCAGCCCCTGCCACAACCCACATGCACACTCCTAGCATGCACTTCCCGC GCG

CGCTGCACACCCAAAGCACCATGCCACCCGCACCCTGCAGGCCTGCTGACCAAGAAG GC

CCAGGAAGGCGCACAGACAACGATGGAGGCGACCCTGATGGCGCAGCAGACACCCGC CC

AGCGGGACCAGGTGGGTGCATTGCTGCCTGCCCCTCCCTGCCCTGCAGCGCTTGATG TAT

CCCTGCAGCTGGCTGGCTCCTGCATCACTTCGTTGGTTTCACTGCGCATACTGCGCT GTGC

TGCGCCTCTGTGTGTGCTGCATGCATCAGGCATGCTTTGAAGCCAGGCATGCCATGC TGG

CATGCGCTGCGTCCAGTCATGCTGCGATTCGTTTCTTCTGCTGACCTGCCACTGCAT CCAT

TCCCTCTGTGTGTTTGTGTGTGACTCTGTGTGTGTGTGTGTGTGACTGTGTGACTGT GTCCC

TGTGCAGGTGCGAGCCCTTCAGCCCCAGGGCGTGGGCGCCTGGTGGCAGCAAGGCCA CC

CCGGCTGGGCCATCTATCCGGTTGACAGCGAGCAGTTCCTCTCCACCGGCGCGCTGG ACA

GCGTCAGCCTGCCGCTGCCCGCAGACCAGCTGATGAGCGGGGGCAGCGGCTCGCATG GG

GGGCAGCCTGCCTATGCGCCTTCGCCCGCGGGACCGGTACCCGCCCTGCCGCCATCT GCG

GCCAACAACCCGTCCCTCGCCTCAGCGTTCTTGGCCGCGGGAGGCGAGGGTGGAGGA GG

AGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGGGACGG

AGGGGGTGGGCCGATGGATAATGAAGCGATTCTGAGGGCCATGTCGCCATATCTGCA CG

GTACGTGTGGGCGGCAGGGCGGGAGGGGAAGGAACGGCCTCTGGTGTGGGGCTGTTG GT

GACACTGCATGCTGCTACCGCTGGTGGAGGGGCACTGCTGCTGCTTTGCAGTCTTCT TGTG

GCTAAGCCGTGCGTCTGGCTGCAGTGCTGAGGTGCCTCGCTGCTGGCCCGCTGTGTG TGC

AGGGGGCCAGCCTCTGGGGCCCGGGCTGCCGCCTGGGCTGACAGGCCTGAACCCGCT GCT

GCCTGGGGGTGCGGCCCCTCCTCCCCTTCCCGGTGAGTAGCTGCTCGCTGTTTCCTG AGTG

CTGCTGCTGCTGCCATCATGGCATCTATGTTTTGTTTGTTTGACAGCTGCCTCGGCT GCAT

CGTCCAGACATGAGCAGCAATAGAGCGGCATGTTCAGCAGCTGCAGTGCCTTGCCTG CGC

TGCCCCTTGGTGCGACGCCAACGGGCCTGGAGTCTCTGCTCCTCCCGCTGCCCCTTG CTCG

GCTGCAGGCATGTCGGGTCACGCTTCTGCCTTTGCCGCTCCGCCGCCTCACAGCGGG GCG

GGGCCGGGGCCCGCACCTTTCGGCAGCTTGAATGCTGCCCACCTGCTGCCGCCGCTG CCA

CCGCTGCCGCTCAGCAAGCCTGACGATGGCGGTGGCCCGCCGCCGCCTTCTGGGCTG CTG

GCGCCTGGTGCTGGCAGCTCATTCAACCTCGCCAACCTGACTGGCTTGCTGGGTGGA GAC

TTGTCGCGGCTTCCCCAACTTGCCAGCCTGGCCCAGTTCCCCAGCTTTGCTCCGGTA GGAT

CTGGCTGCATTGGTGGTTTGTAGGTGGAGGTGGGGTGGCTAGCGGACGGCCAGGGGC GC

GCTGCCTGCCAGTGCTTGTACCGCTGCCAGAGGATGTCACTGCCTGGGCTGCTGTTG CTCG

CGCGCATGTGTGCGATTCGTTGGTGGCCGCTCAGCACCTGCACCTGCCGGCCCTCTC CTCC

TGCCGCCAACTCGGCAGGCAGGCTTTGCCCTTGCTGACTGACTGACTGACTGACTAA CCG

CCACTTGTTGCCTTGCCTTGCGGCAGGGCATGAGCGGTGACTTGGAGATGCTTTTGA GGG

AGAGCTCGCTACACCCTTTGGAGGGAGGTGCCCGCAGAGCTCCCTCCTTCAACCTGT CCA

AGATTGAGAGCTTGAACCTGCCAGATGAAATGATGATGGCGGCAATCTTGCAGCTGG AG CGCGGCGGCGGCGGCCTAGGGGCCAGCTTGCCCCCGCCGGCGGCGCGGGAGCAGAGCGC

AGGCGGTGCTGCTCTGGCGGCTGCTGTGGCGGCCGCGCAGCAGGACTTGGACGATCG GC

AGCAACAGCAGCAGCAGCAGCAGCAACAGCCGCCACAGCAGCAGCAGACACCGCAGC A

GCAGGAGGGGCAGGCCCCTGCTGATGACAGCGGCGGCGATGGCAGCAACCATGGAGC AG

CAGCGGCGCAAGCGGCGAGAAGAGAGGGCGGTGCTGACGACAGCACTGGCGGCGGTG A

GGGGCAGGATGGCGTGCAGTCGCCCGCGAAACGCATGAAGCTTTGA

PDSI CHL-white E4 Ibl

SEQ ID NO: 16

ATGGCCGCCATCTCTGCTGCCGTCAAGGCGGCGCCCCGCCCCAAGGAGCCGCTCACG GTT

GTGATTGCGGGAGCGGGCCTCGCCGGTCTCTCCACTGCAAAGTACTTGGTGGATGCT GGC

CACAAGCCCATCGTGCTGGAGGCTCGCGACGTGCTGGGAGGCAAGGTGTGCTCGACA CG

GAGCCTCGCCGCAAAAGCTGGCACAGCTGGTGTCCCTCGCATCTCTCTCTCCGCTTC CTGG

GAGCCGTACATGCCATAATACCTGCACTGTCACGTCCTGGTGCAGGTGGCTGCATGG AAG

GACGAGGATGGCGACTGGTACGAGACAGGTCTGCACATCTTCTTTGGAGCGTACCCC AAC

CTGATGAACCTTTTCAAGGAGCTGAACATTGAGGACCGGTGAGGACTGTGTGGCTGG CAC

CTGTCCATCAAAGCGTGTGTGTACCTGTGTAGGATTATCTTGGATCTGTGCAAGGCT CGCG

ATTTTGTGTATGGTCGTGCTTTGCGAAGAGCAACGCATGGTTAAGTGCATGGCAAGG CCA

ATGGCATGCATGCAGAGCGGAAGCGCAAGCAGTGCGCCGACCCTCGAGTCACATTGG TC

AGCGCAGGCTGGTCACAAGGTCTTGAATTGAATGCCATCATTCCATATGCATCCCTT CTCC

CCACACACATCCCCACAGGCTGCAGTGGAAGCAGCACAGCATGATCTTTGCAGTGCG CGA

CTCCCCCGGAGAGTTCTCCCGCTTTGACTTCCCCGACCTGCCTGCCCCACTCAACGG CATC

GTGGCCATCCTGCGCAACAACCAGGTGCAGTCGGCTGGTTGCCTGAGGCTTTTTAAA ATG

ATGGGGCTATGACGGCCAGCTTGCAATTTTGCTTGCAAACCTGGCAGCCTCGCCTGT TGC

AGCTCGCCCTGCTGCTGGCATGCTGAGTGCTGCTTGCCACCCTTTTGTGCCCTGTGC CTCC

AGCTGCTGCCAGTCCACTCCACGCCGGTTCTCAGCCTCTTCCTCCCTTCCTGCAACA CACT

GTCTGCCCACACCCATCTTTGTACCACACCCACACCACTACCTACCGCAGATGCTTT CGTG

GCCCGAGAAGATCCAGTTTGCTCTGGGCCTGCTGCCCGCCATTGTGTACGGGCAGCC GTA

TGTGGAGGCGCAGGACGACAAGACTGTGACCGAGTGGATGGTCAAGCAGGGCGTGCC TG

CGCGCGTCAACGACGAGGTGTTCATCGCCATGGCCAAGGCACTCAACTTCATTGATC CCG

ATGAGCTGTCCATGATCTGTGTGCTCATAGCCCTCAACAGGTTCCTGCAGGTAGGTG GGC

TGAGCCAGAAGGGCGGGTGGCTGGCTGGATGGGGCAGGATGCAGCAGCTGGGGTGGC TG

GCTGGCTGGCTGGGTGGAGGATGCAGTGCATGGGTGGTGGCCACTGTGCGCTGGGTG GG

CTGGGATGTGCACACACGGTGCTACTGCGCTGCACTTCTTCTCGAGGCTCCGCAGCG CTG

GTGGCGGCGTCCGGGCTTGGTGGTCAGCTTGTGTGATGCCTTGGTGCCGCCTGCCCT TCCA

CGCACTCATGCAGGAGCGACACGGCAGCAAGATGGCTTTCCTGGATGGCTGCCCGCC TGA

GCGCCTGTGCCAGCCCATGGTGGACTATGTGACTGGTGAGGGCGGGGTGGGCGGTGG CA

GTGTTGGTGGGGCCAGTTTGTGGGCGGCAGACTGTCGAGCAGCCAGCCAGGCGCTGT TTC

GCTTCCCCTGTTTCTCTTTAACTGCCCTCCCTCACACTATGTGCCGTGCGTCACCCT CTGCC

GTGCTGTGCTGTGCCCCATGCTGTGCCGTGCAGCGCGGGGAGGGGAGGTGCGCATGA AG

GCCGGCATCAAAAACATCGAGCTCAATGAGGACGGCAGCGTCAAGTGAGCGAGACTG GG

GCTGGGGCGGGCTGTGGTCCTTGTGTGTGGTGGGGTGGAGGGGCAGGGCGGGGGAGA GC

ATGCCAGGAAGGGAAGGCACAGCAGGAATCCACAGGGGCAGCAGCAGGCCCCCGTCC CT

CTGTCCCACAAGCACACCTCCTCTTCCTGTCTGTTGTTTTGCAGGCAGTACAACCTG CTGA

GCGGGGAGTCCATCACCGCCGACCTCTACGTGTCAGCCGTGCCCGTGGACATCTTCA AGA

GGCTGCTGCCTGCCCCCTGGTACCAGCAGCAGTTCTTCAGCAAGCTGGACAAGCTGG TGG

GCGTGCCGGTCATCAACATCCACATCTGGTTTGATCGCAAGCTGACCACGGGTGCGC ACC

TCTTCAACACACAGACACGCATGCACTGCTCGCTCTGCTGTCTCGCTCTGCTCGCTC TGTT

GTGCCACACAGTGTTGTATGCTCCCACCTGTGCCTGGGCCTATACCACCCATGCTGC CGGC

TGCCGGTGCGCTGTTTGGGGCCGGTGCCTGCTGCTGGCTGCGGGGGCACAGCCGCCC CTC

TGCTGCGCATCACCAACCGATGGCAACTTCGCCCCTGTGCCCGCCTCATTGCTTGCC CGCA

GTCATCCCTGCCTGCACTTCTCTGCCCTCACCCCTCACCCCTCCGCCCACCCCCCTG CCGC

CGCAGTCGACCACCTGCTGTTCTCCCGCTCCCCGCTGCTGTCTGTGTACGCCGACAT GTCA

ACCACCTGCCGCGAATACTTTGACACCGAGAGGAGCATGCTGGAGCTGGTCTTTGCA CCT GCGGAGAAGTGGATTGGACGGCCGGATGAGGAGATCATTGCGGCAACCATGAAGGTGGG GGGCCTGGGTTGGGGCGCAGAGCGTGGTCTTGGTGGTGGCCTGGGGTTCAAGGGGGCGG CACTAGCACTGCTCCAGCTGGCCTGTGTATGGTCATCCCGCATCGCTAAGTTGCGCTCTC C TGAGCCCTTTTAAGGCCACCCAGGATGAATTTCTCACCCTGTACTTCTCACCTTGTACCT T

CACCCTGTACCGCTGCAGGAGCTGGAGAACCTGTTCCCCACCGAGATTGCGGCAGAC GGC AGCAAGGCACAGATCCGCAAGTACAAAGTGGTGAAGACGCCGCTCAGCGTCTACAAGAC GGTGCCCGAGTGCGAGCCCTGCAGGTGCCCTTGTTTGCTGCTGTGCTTGTGCGGGGGCCT GCCTGTGGCGCGGAGCGTGAGGCGTTGAGCTGTTTGGAAGGTGGAAACAGCTTTCCTTGG

CACTGCTTCTCCTGTTGAGGGGTCACTGGCGTGAAGGCACATGGCGTTTGGTTCAAT CAA TGCCTCGCCTGCCCCGCCTGAATGCTGCAATCGTTATTTTGGCTCAGCGCGCAAGGGCTG T GGGCTGATCTGCCTCCACTGAACGCCTGCAGGCCCACCCAGCGCACCCCCATCCGCAACT TCTACCTGGCGGGTGACTACACCAAGCAGCGGTACCTGGCATCCATGGAGGGGGCGACCT

TCAGCGGCAAGCTGTGCGCGCAGGCCATTGCGGGTGAGTGAGCGAGGAGCGGAGGGG AG CGAAGGCTGGCAAGGGAGGACACCAGACAGAGAGGCACAAGTAACTGCCGTTGTGCTGT CTGGGTTCCTGTTTCGCACTGCTCCCACTCTGCACATTCTCTTTGCCGCCTCTGCCTGCA GA GGACTGGAACACCTCAGCCGTGAAGCCCAGCCAGCCTGCCAAGGAGAAGGCACTGGCGT

GA

ABC1K1 CHL-white E4 Ibl

SEQ ID NO: 17

ATGAACGAGCGGTGCGCACGGAGCCTGGCCGGCGGTGCCTCCACCTCTGGCAGGGCC TCC CAGCACTTTGCACCGCTTGTGCGGGCCCCTGCGGCTGCCCAGCCACGGCACAGGGCCAGC CGGCGAGGATTGACCGTGCAAGTGCGCGCAGCGGCCACCGTCGTCGAGAGGTGGGTTGG CCGCCGCCAGCGCCCCGGGCCACGCCCCGGTGGCAGGTGGGCCGGCCCTAGATGATGCA

CCCCCACACAAACCCACAACAACACAAAACCACACACCACAAAACAAAACAGAACCA G AACAAAACCAAACCGAACCGCGCCTGAACTTGACCCCCGCTAGCACTTTTTTCTGCAGGC CCTTTTGGCAGAACCTCCCCTGGTTCAGCACCCAGCGCGATGCCTATGAGCAGCTGCAGA TGGAGGTGCGCATTGGGGCAGCATTTTGTGGTGCACCTGCTGCTCAGGCCGGCATCTGTT

CCCATGAGCACTAGGCTTCGGCTGCCTGTAGCCCGCCGTTGCTTCCTGTACAACCCC TTCT CCCCCCTCTCTACCTTCAAATCATCCCATGCACTTAACTCTCCCTGCACACAGATGGGCT A CTGCAACATCCGGCAGCAGTACTCCCCCGAGCTCGTGCGGCAGCGTGCCATTGGCTCCCC AAAAGCCTTTGTGGCTCTGATGGGCCGTGGCGCACAAATAGGCACAGAGGTTGGCCGCTT

CCTGTTTGCGCTGTGGGCAGACGGGCTGTCGGGGCAGGCAGACGACAGCGTGACGGT CA AGAAGCGGGCAACTGAGCTGCGGGACCTGCTCACCCGCCTGGGACCCACGTTCATCAAG GCCGGACAGGTGGGAACACATACCGTAGGGGGGGTTGCTGGGCTGTGATCGGGGCGTTT GCCCTGAGGAGCTGTGATTTGATCCGCGGGTGTTGGCAGGGACCCATAAGCCACCTTCCC

TTTTCCCCTGCCGACTGCCCTTTGCCACGCTGTCGGATCAGGAACCGCAGGCAGCCA CAG CACAGCTGCCATTGACCTTTGCAGCCTGCTGGTGGATATGGTAGTGGTGCCCATCTCCAT G CTGTTGTGTCCCATCACCTGCGCAGGTGCTTGCAAACCGCCCAGACATTTTGAGGGAGGA CTACATGAATGAGCTGTGTGTGCTGCAAGACGATGTGCCGCCGTTTGCTGATGAACAGGT

GAGGGGAGGCTGGCTGGGACAGTTGCCGGCTGGGCCAGCGATTGGCGGCTGGCAAGC CA TGGGGAGAGGGGGAGCACCACTGTAGCAGGGACTGGCGCCTGTCATTTGAGCAGCCCAG TCGCTGCTCCGCTACAGCTGTGCCCGCAACACAGCCCGAGGTTTTCTGACAGCTGTAACC ATACCTACTCCCTCCCCTTGCGCTCTGTTTTCACTCTCGCCGCCGCTCCACTCCTCCCTT CG

TTGCAGGCATTTGGCCTAATCGAGGCCTCCCTTGGACGTCCGCTGGGCGAAGTGTTT AGC TCGATCAGCGAGCGGCCCATTGCCGCCGCTTCGCTCGGCCAGGTGTACAAGGCAGTGCTG CGGGATACCGGGGAGGAGGTGGCGGTCAAGGTGGGTCGTGTGGAATGATGTACAGGCTG GCACACCTTTGGTGGCTGGTCTGGGGCCGCTACAAGCAGTCTGGCAAGCGGTGGCACGCC

ACGGCAGCCAGCCATATTCACGTCAGCAGCATATGTCTTGCCGTCGACACCAGGATG CAT ACCTTGAATAGCAGTGCTGAGCATGCCGCCGCCGTGCCGCCTTCTTCTCCATCTGTGTGG C TTTGTGTGGTGCGTGTACTGCAGGTGCAGCGGCCGGGTGTGGAGCCACTCATCTTCCGGG ACATCTTCATCTTCCGCACCCTGGGCTCCTTTATCAACGGCTGGTGAGTGTAGTGGAAAA

AAGCTTCCTTGTAAAGGTTCGGTTATGGATTAAGGTAGAGGACGAACGCCTTCAGAG TGC TGGTATCAATGCATGTTTGCTGGCACATATGCACGCCATGTGCTGCCCGTCCCCTACCTC A CCGCCTCACGTTTCACCCTCCCTTACCTCACCCTCTCAAGCCTCTCCGCACCTCCCGTCC TC CCTCAGGTCCCTGCGCCGCCTGGGCTGCAACGCCGAGCTGATTGTGGATGAGTTTGGTGA GAAGCTGCTGGAGGAGCTGGACTACGTGCAGGAGGCGCGCAACATACTGGTGAGGGAGG GAGGTGACAGGCAAGGACGATTGAGCGGGCAGCTGCGAGGGAGAGTTGTGAGGTACCCC AAGACAGCTGGGGTGTCGAGTAGCCGGGGGTTGGAGGCAAGAAGGACGGTTGGGCGCGA GCTGCGAGGGATTCAGGAGGTGGTGAGGCAGCGGCAAGGGAGGGAAAGGCAGGCATCG TGCTGGGGCGACGTGGAGCTTACATGTTGCGGGGCAACGTTGGGAGCAAGCGTGGCTGC AAGGCGGACGTTCGCTGCACTCAAGTCTGCACCTGACACCTCCGCTCCCTGCGCCCTCGT GCCTCACCCCCTCTCCCCTTGCCGCTCTTCTCCTCCTCCTCAGGACTTTTACGCCAACTT TG AAGGCGACCCGCTGGTGAAGATTCCGTGGGTGCGGCGCGACCTCAGCGGCCCACAGGTG AGCAGCTGCCTGGCAGTAGTCAGTGTTCGGGCTGCTGCTTGGCAACAATCCATACTCAGG CTCAGTTTGCAGGCTGCTGCTGCTGCTGCCGCGCCCCATGGGGCGGGGCTGCTGTCGGTG CTGTCGTGGATGAGTTGCTGACATCAAAGTTTTTGCGCATACGGCGACTCGTACAATCGA CCAGCGATCCATATTGCCAGCTTGTGACTGCTTGGGGCTGCATCAGAGCCAGTCAGCTGG CTCCTTCAGGACACATTTGACACCCAACACACCCACTTGAGCCAAACAACCGTATAGCCT CACGCTCTGCTGTCCTGCTGCTTTTTCCCTGGTATCATGTCTGCAGGTGCTGGTGATGGA G TGGATTGACGGCATCCGCTGCACCGACGTCGATGCGATCAAAGCCAGCGGCCTGGACCTC CCCTCCTTCATTCGCACGGGGGTGGTGTCGGGCCTGCGCCAGCTGCTGGAGTTTGGACTG TTTCACGGAGACCCCCACCCGGGTGCGCAGCAGCACTTGCTAGTGGCAGCAGCGTGATTT GGCAGCAACACGGTGTCATCTACAGCGGTATGCTGCCCTGCACGCATCCCAATCGTCTGT GGTTGGGGACCCACCAAGACGGAAGGATGCATGTCAGTTGGTTGCACTGTCATGACAGG CAGCAACAATTCACCAGAGCTGTTGCCTCTTTCTCGCTGCTGTATTGTACGGGTGCGCCG T GTGATTCCCTGTCACCCTGAGCCCCTGCTCCCTTTCACCTGCAGGCAACATCTTTGCGCT G AGGGACGGCCGCATCGCGTACGTGGATTTCGGAAACGTCGCGGAGCTGAGCCAGAGCAA

CAAGGTGGGTGGCCGTGCTAGCACGCTGGCGTCATTGTAGGTGCTTTCAGGACGTTC CGG GGCGATTGCTGGAGTAGCAAGCATTGAATCACGCTGCAGTTACTCAGCAGCCCACCCCAC CACTGTGGCACGCACGCTGCACCCACGCATCTCCCGTTTTGTGCACGCCTCTCCCTGTGA T CCCGCTAGCCCAGCCGTACCTGACCGCAACACACGTCCTCACCACCTGCCCCCCTCCCCC CCCCCTTCCCATTGCTGCAGGAGATCCTCATCGATGCCGTGGTGCACGCTGTGAACAAGG ACTACCCAGGCATGGCGGGTGACTTCATCAAGCTCGGGTTCCTCGCCCAGGGTGAGATCC TTCTCCCGTCTCTTTCTCCCCTCCTCCCCTCCCTTCTCCCCTCCCTTCTCCCTTCCCTTT CTG CAGCATAATGAACGGAAACGCATGTTAATTTGTGTGCATTGCGACTCTAGTGGGGCGTCA GCTGACAGACGGTTCTCAGCTTTACTGCAGCGGCTTGAGCTGTCAGGCTGTCGTGTCTGT T ATGCGCGCCTCCCTGGTTTCGAAGGTTGGGCCGACTTGCTTGCTGACTGCCTGCCTGGTT T GGTGGCTTTGTGTTGATTGCAGGCACCAACGTGCAGCCCCTGGTGCCGGCTCTGGAGAAG ATCTGGGCCGATAGCCTGGGCCAGTCCCTGGCTGACTTCAACTTCAGGTGCGGGGTGGTC CTGCTGCCGCTGCTGTTGGCGGCGGTGGCTGCACTACTGCTGGTCGTGAGCAGGCAGCCG GCGGGCAGTCCTTCGAAGTGCACTGGGCAATTACGCTGGGGAGGCTGTTGCACAGAACA AAGCACCTGCTGCTTGAAGCTGGAGGCGCATCAGCTCTGGTCATCCACACCTGCGATGGT ACCGCCCCCCTGCAGGACCGTCACCTCCAAGTTCAACGAGCTGGTGTACCAGTATCCCAT CCGCATCCCAGAGCGGTACTCGCTCGTCATCCGGTGAGGGGCGGTACCCTGTACTGCGGC TCTGCTTGCTTGAGGGCCAGTGGACGCGGGACTGTTTCACTCACGCTCGCGCGGCAGGCA GCCACCCAGCCAGCTGTGGTCCCTTGCCTGGACCTGGAGCAGTCACATCACACACCCAAA CAGCACACCGACCAACTTGCCATACACGCCCCTGCTCCTAAACCCACCTCCTCCCATGCC CCTGCTCCTAACTCCAGCTTTTGCTGCTGCCTCCACCCCTCCTGCCCGCCTTTGCCCGCC C GCCTGCAGCTCGCTGCTCACCCAGGAAGGCATTTGCCTCACCCTCAACCCCGAGTTTCAC T TCCTGGAGGTGGCCTACCCTTATGTGGCCCGCAGGCTGCTCACAGATGAAGACCCCGCAC TGCGGTCACGCCTCGTGCAGGTGGGCATGGGACGCTGCTGCGCCTTGCTTTGATTGGAAG

ATATGAGCTGGTCAATCAAGTGCTGGCCCTGCTGTGTCTTGCTGTGCGATGCCATGC TTGC TGGCTGGAGAATGCCTGAGATGCACCATGCCGTGCATGCCGTGTTCTGCCTGCTGCTGAC CTTGTTCAAAACCCATTTCCATTGCCACCCCTCCGACACCCCTGCTCCTCTCCTTCAAAC C CGCCCCACCACACTTGCTCCACTGCCGCTTCAGGTGCTGTTCTCCGACAACCGCTTCCAG T GGGACCGCCTGGAGAACCTGCTGCGCCTGGCAAAGGAGGGCATCGGCGGCCCCGGTGGC GTCGGTGCCGCAGCCCTGCCTGGCGGCCTCGACCTGTCTGCCACCGTCACTGACGGTGCT CGGGTGAGGCGTGCATGCATGCTTTGCGTGATGCATTTTGGCTGTTTGTTTCCAGTGCTG T TCAGATGAACTCGCATCGTTCCGGGTCCTTCTGCTTCGCCATTTGGCGCTGTGGTTTGGC T

TGCTGCCTCGCCAAGCTGCCTTGTTGGCCTCGTCAGCCTCTCAGTCTAGCGTCTGCT GCCA

CCACAGGTTGTGCTGCTGGACGACGAGTTGCGCCGCCAGCTGCTGCGCGCGTTCACA GAG

GATGATCGCCTGCATGTGGAGGAGCTGGCACGCCTCTTCCGTATGGTCCAGGTGCGT TGC

CTGTTGTGTTTGCGTGTACATGTTGTGTGTGCAACAAACTATTGCACGAGACATGGT GGGT

GTGGAAGAATTGTGCATGGTCCCTGTAACATGAGACCGATGAGCAGCTGCTGCACTG CTA

TCGTCTCAGGCAGCCTGTGCGCGCCATGTTGCAAAAAGCGTGCGTACCCCCGCCTGG CCC

GAGCTGGTTGGCTGTTGCTTGGCGGCAAGCCGGCTGAGTGTGTTGGCTTGTCTGCCT GCCT

GCCTGATGTGCAGAGCGACATTGACATGCCACGTATGGTGCAGTCGGGCGTCCGGCA GCT

GCCTACCCTGGCCCGCCAGCTGGCGCTGGGATGGTCTGACAAGGTGCTGGCTTCATG A

HSP90C_l_CHL-white E4 Ibl

SEQ ID NO: 18

ATGTCGGGTACGTTTGCCGCCTCTGAAATTGGACCAGCTGCCTTCTCCCGCCTTATG TGTG

CTCTGCTGATCTCCCACACCAACCTGCCTGTGCTGCCTCATACTCTCCTGCAGTGTA CAAC

GCCACGGTGCTGTTGCTTGGCAACTCGTGCGGCTGGGCCTGGCAGACTGTGCGCTCT GCT

CCCGCACCCACGCCTCCGCTGAAGGCCGCTATCCTCAACGTCACCTCCGACTTTGAC CAG

GTGCGTCGCCTGAAGGCCGCGGCAGCAGAAGCATTTCTTGGCCCGACAAAAGCTCTG GTT

CAGCTGTAGTGTTCCATGCAGGTCACGTACATGTGTTGTACGTCTCCCACCATTTGA ATTT

GCTGCCCCTGCCCCTCGCCCCTGTGCCCCCCACTCCCCCGCTCCTCGCAGCTCGCCT TCCT

GGTCGGCGACTTCCTGCAGCAGCCGGGCGTGGACCCCCAGGTGGAGCAGCGCTTCAA GC

AGTACCTGATGGACAGGGCCAGCCGCAGCTACCCGCGCTTTGAGTCGCTGCTGGACT GGC

TGCTGGCCGTCTACAAGTTTGTGTTCCCGTTCCTGGTGAGGGATTGGGAACTCAGCA GGC

AGCAGCCAGCGGGCAGCACTCACAGCGATCACACACGTCAACTGCGATGCTCTATTT GCA

CAGCCATCAGACACCCCTGCTCGGCTCTACGCTTTTGCAGTTTGCTGCTGTGGAACT CCTC

CTCTCTTTGCTGAAGCTGCCTGCCTGCCCACCTGCCCCAACCACCGACCTGTGCTGC CTGC

AGATTATCAGCCTGGCAGCCAAGCGCGGCAGCGGCAGCAGAGATCCGGGTGCAGAGC CA

GGAGGAGTTGAGTCGGATGCAGCAGAGGCAGCAGCGGGGGAGGCGGCAGGCGAGGAC G

GTGACATCTTGTCGCTGCGGGGGTCTGGGCTCCAGCTGCCGCCGCACTCCATCCTGG CCC

GCCAACCCAGCCTACAGCCAAACGGCTCCCTGCCTCGTGATGCAGCGAGCAGTGACG CA

GGCGGCAGCGGGGCAGCAAGCGCGCTCGCGCGGCAGCAGCAGCTGGCTGTGAGGAGC AG

CTTTGGGGGTGCGTTTAACGCAGCCCGCAGCACCAGCGGCGGCTTTGTGGGCCGGGG GGG

CAGTCAGAGCCCGCGGGGACCTGAGACGCCGGTGGACGGCGGCTTCCTGCGCCAGCT GC

CTGAGCACCCGCTGGCGCGACGTGCGTCAGGTGCGGCCAAACCAATGTATGTTCATT GGG

CTGCTGGTCAATCATGCCTGTGCCTGGGTATTGCTGGGCGGGGACCCAAAGCTGCGC ATC

CACGCTGCTCGTACTGCCTTTTTGCCAAATGTTCTGCAGTCAAGGCGCACCGACAGC GCCT GCCAGTGCCTGACGAGCTAGCTGGGCCTGTTCGGTTTTAG

PRPL1 1 CHL-white E4 Ibl

SEQ ID NO: 19

ATGGCGGCGCTGGTGGCGTGCAGGCCATGCAAGTGGCGCAGCCCTTCTGTGCGGCCA GCG

CGCCCAGCCATGTGTACAGGCCCTCCAGCAGCAGCGCCGGCAGCAGCGGTTTGTCGT CAG

GGCCCAGGCGGCAGCCGTGGATGTGGCCGCCCTTGAGGCCGAAGCGCTGGCAAGCAT CG

CCGCCAACCCAGCAGCAGCAGCAACAGCAGCAACCTCGGCACGCCGACGCAACTCGT CC

CGCCGCCTGACGGGCCTGCTGGCAAATGTGCCGGGCAAGGATACGGCGCTGCCGCCG CTC

GATGCCATCAAGCTCTGCCTCGACACGGCCACAGCCAAGTTCACGGAAACGGTGGAG GT

GCACGCCAAGCTCAACATCGACCCCAAGTACACGCGCCTGGTCTGCGCGCCACCGTG TCG

CTCCCAAAGGGCACCGGCAAGTCGCTGCGCGTGGCGGTGGTGTGCCAGGGTGAGAAT GA

GAAGCTTGCACGCGACGCAGGCGCAGACTTTGTGGGTGCCGAGGACCTGATTGAGAC CA

TCGGCGGCGGCATTATGGACTTTGACAAGCTGGTGGCCACTCCCGATATGATGCCCA AGC

TGGCCAAGCTGGGCCGCGTGTTGGGCCCTCGCGGACTCATGCCCAACCCCAAGGCCG GCA

CGGTGGCGACCGACGTGGCAGCGGTGCGTCGCTGTGGCTGGCGTTGTTGGTAGTGCA GTT

GTGGGAGACGTGGGGCTGGTCAGAAGGAAAGTGGTCTGGTTCGTATGCAACATACCA TC GATCTTCTGCTGCTTACCGCCATTCTGTGCAGGCTGTCGAGGACTTCAAGGGCGGCAAGG TGCAGCACCGAGCTGACAAGGCAGGCAATGTGCACGTTGGCTTTGGCAAGGCCTCCTTCA AGGCAGAGGACCTGCTGGAGAACCTCAAGGCATTGCAGGACAGCATCGACGCGAACCGA CCGAGGTGCGTTGCATGCTGCCTGCCTCATTGAGCCCTTGGGTCTTTGCATCATAGTTGT A TGTATTCATTTTGCTGCTCCAAGCTTTGTGCTGATCTGGACCAAGGTCTCTCTGCCGCTG C AGCGGCGCCAAGGGCGTGTACTGGAAGACCATGACAGTGTGCACCACCATGACCTGGAG CCAGTGGCCAGTTACAATTGA

PRPL13 CHL-white E4 Ibl

SEQ ID NO: 20

ATGGCAGCGGCTGCGGGCACCATGCAGGCGGCCTGCCTCTCGCAGCAGCGTTGCAGC GTG GTGAGTGGCCCTGCCCGCCGGCTGACCAGCTCGATGCGTGCACGTGGTTCATGTGTTCAC CATTCCCGACGCTGCGCTGCAGGCGAAGAGCTTTGCCGGCAGCAAGGTGGCGCCGTTCAG GCCTCAGCGGGCGGTGGCCCGGCAGCAGAGCGCCATTGTGTGCGCAGGTGAGACTTGCA GCCGGCTGCGGAGCCCAATGCGTGGTCCATTGACGCAGGCCGCCACTGGCCGCCACTGCT GCCGCTGCACTCCATTAATCAACTCGTGCCTTCGTGCAGCGGCCACAGCGGAGCTGAAGA AGATGGGGCCGGATCTGTGGAACGACACATACTACCCCACCGCATCAGACGCCGCAAAT GTGTTCAAGCAGTGGTGCGTTAGCAGCTGTGGCTGTGAACCGCTGTCGCTGCGTGTGCCC CTCTTGTTGCCTGGCGTCACCTGCTGGTGTCAAGTCAAGGCGTGGAGAGCCAGCGGATAG TGATTCGCAGGACTGCAGCTCAAAACTTTGTTGGACCCGCATTGTTGGCCAGCATTTGCT G CGGCATGAAGGCTAGCCACGGCCAGCATCAGCAGCACGGGAAGCAACAGGATGGGCAGC AGGAGCAGCTCGCAGTGCTCATGCCCGGATTCGCATCAAAGCAGCCATGCAGCTGTGTCA TACCAGCCGTCCAGTCTGCAGGGTCTCTCATCCAGCGCAGCATTTTCTGTTTGAGGTTGC A CAACTCCCAGCTGCCGCCGCCACTCTCCCTCTCTTTTGCATCTGCTTTGACCTCTGTTGT AT GTGTGCTGCTACTGCAGGTACATCATTGATGCTGAGGGGCAGACTCTGGGGCGGGTGGCC AGCCTGGCAGCCTTTTACATCCGCGGCAAAAACATGAGCTCATACACGCCCTCGGTCAAC ATGGGTGGATACGGTGGGTTTGGCTTGGAGTTACACTTGGATTGGGCTGCTCTGTGCTGT GCAGTGCATGCTGGCTGTAATTGCTGGCCTGCATTTGCTGGCATGCTCTCTGCTGTGCTG T GCTGCGTTGCATGCCGGCCCAGCTGTCTCTGCCTGGAAACGGGGCCCAGCCATCAGCCAT CAGAAGCCCTCAACGTGGCGTACCCAGCTCAAGCAAACAGCAACCGTCCAAGAAGAGTT GCAGCAACTTCAGCACAGCGAGCAGCAGCGTCTGGGGACGGGGGCAAGCTGCACCCGCA GTTCTGCGCTGCGTCGGCGCGGTCATCAGCAGGACCAGCTGGGGCTTGCCGAGCTGGCTT GCGTTGCTGCTCTTGAGCGGCGCCGCCATCCCGGTCGACACACACCACGCCTGGTCACTC CTCATCGCATGCCTCCTTGCCCTTGCCTGACCTCATCGTCACCTCCTCTGCCTGCCTGTC TG TCCCTGCTCGCAGTTGTGATCATCAACGCCGACAAGGTGTCTGTGACCGGCCGCAAGGAG ACCGAGAAGATGTACTTCAGGCACACCATCGGGCGCCCGGGAGGCATGCGCATGGAATC ACTGCGCGACCTGCGGCAAGTGAGTGTACCGCCACCTTGTAGTGCACTGTACTGCGCTAC ACAAGTTTGCTTTGTATTGAAATGTACAATCTGCATGTGCTGCCGTGTGCCGCCGCTTTG C GGGCTGTGAGGTGGTTTGTAGTTTGCTGTGGGGCCAGTGTGTGGGGAGCTGCGTGTTGAT

GTGTGTTGTGCTCAATTGCTGGGGGAGCGAAATGGCGGATGCCAGAACGGCTTGGCG TGC CAGACCAACGGCAGCTGGCTGCTAGCTGAAAGCCGCTGGCCAGGCATGCTTTCATCTGCT GTGCATGCGCGCCTCTCAAGCCATCTGCATGCGTTGAGCTGTGTCTGCCTGCTGCCTGTG C CCTCCCTTCCTTCCCTCCCCCTCTGCCTGCAGCGCCTGCCAGAGCGTATCCTGGAGAAGT G TGTGAAGGGCATGCTGCCCAAGGGGCGCATTGCCAGCCCGCTGTTCAACCACCTGAAGGT TTACAAGGGAGCTGCCCACCCTCACGAGGCGCAGAGGCCCCTGGATATCACCAGCCGCAT CAGCAAGAAGGCCTCAGAGTCACTCTGA

PDS1 (UTEX 30) (Chorella vulgaris)

SEQ ID NO: 21

MSSAGVSATVCRRQGGFKAAMRGQAVAQQHHARAGRSSLRVVARDFPKPDFEKEKTF QEMAAISAAVKAAPRP

KEPLTVVIAGAGLAGLSTAKYLVDAGHKPIVLEARDVLGGKVAAWKDEDGDWYETGL HIFFGAYPNLMNLFKELNI

EDRLQWKQHSMIFAVRDSPGEFSRFDFPDLPAPLNGIVAILRNNQMLSWPEKIQFAL GLLPAIVYGQPYVEAQDDK TVTEWMVKQGVPARVNDEVFIAMAKALNFIDPDELSM ICVLIALNRFLQERHGSKMAFLDGCPPERLCQPMVDY VTARGGEVRMKAGIKNIELNEDGSVKQYNLLSGESITADLYVSAVPVDIFKRLLPAPWYQ QQFFSKLDKLVGVPVINI HIWFDRKLTTVDHLLFSRSPLLSVYADMSTTCREYFDTERSMLELVFAPAEKWIGRPDEE IIAATMKELENLFPTEIAA DGSKAQIRKYKVVKTPLSVYKTVPECEPCRPTQRTPIRNFYLAGDYTKQRYLASMEGATF SGKLCAQAIAEDWNTSA VKPSQPAKEKALA

PDSl(Elbl)

SEQ ID NO: 22

MRGQAVAQQHHARAGRSSLRVVARDFPKPDFEKEKTFQEMAAISAAEPLTVVIAGAG LAGLSTAKYLVDAGHKPI VLEARDVLGGKAYPNLMNLFKELNIEDRCCQSTPRRFSASSSLPATHCLPTPIFVPHPHH YLPQM LSWPEKIQFALGL LPAIVYGQPYVEAQDDKTVTEWMVKQGVPARVNDEVFIAMAKALNFIDPDELSMICVLIA LNRFLQERHGSKMAF LDGCPPERLCQPMVDYVTGEGGVGGGSVGGASFGGGEVRMKAGIKNIELNEDGSVKQYNL LSGESITADLYVSAV PVDIFKRLLPAPWYQQQFFSKLDKLVGVPVINIHIWFDRKLTTVDHLLFSRSPLLSVYAD MSTTCREYFDTERSMLEL

VFAPAEKWIGRPDEEIIAATM KELENLFPTEIAADGSKAQIRKYKVVKTPLSVYKTVPECEPCRPTQRTPIRNFYLAGD YTKQRYLASM EGRPSAASCARRPLRDWNTSAVKPSQPAKEKALA

PDS1(E4 Ibl)

SEQ ID NO: 23

MAAISAAVKAAPRPKEPLTVVIAGAGLAGLSTAKYLVDAGHKPIVLEARDVLGGKVA AWKDEDGDWYETGLHIFFG AYPNLM NLFKELNIEDRLQWKQHSMIFAVRDSPGEFSRFDFPDLPAPLNGIVAILRNNQMLSWPEK IQFALGLLPAI VYGQPYVEAQDDKTVTEWMVKQGVPARVNDEVFIAMAKALNFIDPDELSM ICVLIALNRFLQERHGSKMAFLDG CPPERLCQPMVDYVTARGGEVRMKAGIKNIELNEDGSVKQYNLLSGESITADLYVSAVPV DIFKRLLPAPWYQQQF FSKLDKLVGVPVINIHIWFDRKLTTVDHLLFSRSPLLSVYADMSTTCREYFDTERSM LELVFAPAEKWIGRPDEEIIAAT

MKELENLFPTEIAADGSKAQIRKYKVVKTPLSVYKTVPECEPCRPTQRTPIRNFYLA GDYTKQRYLASM EGATFSGKL CAQAIAEDWNTSAVKPSQPAKEKALA

FOR RECEIVING OFFICE USE ONLY

FOR INTERNATIONAL BUREAU USE ONLY