Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METTL3 INHIBITORY COMPOUNDS
Document Type and Number:
WIPO Patent Application WO/2022/074379
Kind Code:
A1
Abstract:
The present invention relates to compounds of formula (I) that function as inhibitors of METTL3 (N6-adenosine-methyltransferase 70 kDa subunit) enzyme activity: X-Y-Z (I) wherein X, Y and Z are each as defined herein. The present invention also relates to processes for the preparation of these compounds, to pharmaceutical compositions comprising them, and to their use in the treatment of proliferative disorders, such as cancer, and autoimmune diseases, as well as other diseases or conditions in which METTL3 activity is implicated.

Inventors:
HARDICK DAVID JAMES (GB)
BLACKABY WESLEY PETER (GB)
THOMAS ELIZABETH JANE (GB)
BROOKFIELD FREDERICK ARTHUR (GB)
SHEPHERD JON (GB)
BUBERT CHRISTIAN (GB)
RIDGILL MARK PETER (GB)
Application Number:
PCT/GB2021/052573
Publication Date:
April 14, 2022
Filing Date:
October 05, 2021
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
STORM THERAPEUTICS LTD (GB)
International Classes:
C07D471/04; A61K31/437; A61P25/00; A61P29/00; A61P31/00; A61P35/02
Domestic Patent References:
WO2021111124A12021-06-10
WO2020201773A12020-10-08
WO2001094341A12001-12-13
WO2000047212A12000-08-17
WO1997022596A11997-06-26
WO1997030035A11997-08-21
WO1997032856A11997-09-12
WO1998013354A11998-04-02
WO1999002166A11999-01-21
WO2000040529A12000-07-13
WO2000041669A22000-07-20
WO2001092224A12001-12-06
WO2002004434A12002-01-17
WO2002008213A12002-01-31
Foreign References:
US20100317673A12010-12-16
EP2058309A12009-05-13
Other References:
REGISTRY, CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US, 7 July 2011 (2011-07-07), XP002798995
BEDI RAJIV K. ET AL: "SmallMolecule Inhibitors of METTL3, the Major Human Epitranscriptomic Writer", CHEMMEDCHEM COMMUNICATIONS, vol. 15, no. 9, 6 May 2020 (2020-05-06), DE, pages 744 - 748, XP055755327, ISSN: 1860-7179, DOI: 10.1002/cmdc.202000011
MOROZ-OMORI ELENA V. ET AL: "Abstract", BIORXIV, 25 September 2020 (2020-09-25), pages 1 - 23, XP055755334, DOI: 10.1101/2020.09.25.311803
YANKOVA ELIZA ET AL: "Small-molecule inhibition of METTL3 as a strategy against myeloid leukaemia", NATURE, NATURE PUBLISHING GROUP UK, LONDON, vol. 593, no. 7860, 26 April 2021 (2021-04-26), pages 597 - 601, XP037463731, ISSN: 0028-0836, [retrieved on 20210426], DOI: 10.1038/S41586-021-03536-W
BARBIERI ITZELEPIS KPANDOLFINI LSHI JMILLAN-ZAMBRANO GROBSON SCASPRIS DMIGLIORI VBANNISTER AJHAN N, NATURE, vol. 552, no. 7683, 7 December 2017 (2017-12-07), pages 126 - 131
CHANDOLA UDAS RPANDA B, BRIEF FUNCT GENOMICS, vol. 14, no. 3, May 2015 (2015-05-01), pages 169 - 79
CHENG MGAO QWU MLIANG YZHU FZHANG YZHANG XLI YSHENG LZHANG H, ONCOGENE, 2019
FRY NJLAW BAILKAYEVA ORCARRAWAY KRHOLLEY CLMANSFIELD KD, ONCOTARGET, vol. 9, no. 58, 27 July 2018 (2018-07-27), pages 31231 - 31243
KORANDA JLDORE LSHI HPATEL MJVAASJO LORAO MNCHEN KLU ZYI YCHI W, NEURON, vol. 99, no. 2, 25 July 2018 (2018-07-25), pages 283 - 292
LI HBTONG JZHU SBATISTA PJDUFFY EEZHAO JBAILIS WCAO GKROEHLING LCHEN Y, NATURE, vol. 548, no. 7667, 17 August 2017 (2017-08-17), pages 338 - 342
LI XTANG JHUANG WWANG FLI PQIN CQIN ZZOU QWEI JHUA L, ONCOTARGET, vol. 8, no. 56, 10 October 2017 (2017-10-10), pages 96103 - 96116
LI YWANG YZHANG ZZAMUDIO AVZHAO JC, RNA, vol. 21, no. 8, August 2015 (2015-08-01), pages 1511 - 8
LIN SCHOE JDU PTRIBOULET RGREGORY RI, MOL CELL, vol. 62, no. 3, 5 May 2016 (2016-05-05), pages 335 - 345
LIU JYUE YHAN DWANG XFU YZHANG LJIA GYU MLU ZDENG X, NAT CHEM BIOL., vol. 10, no. 2, February 2014 (2014-02-01), pages 93 - 5
MEYER KDPATIL DPZHOU JZINOVIEV ASKABKIN MAELEMENTO OPESTOVA TAQIAN SBJAFFREY SR, CELL, vol. 163, no. 4, 5 November 2015 (2015-11-05), pages 999 - 1010
MEYER KDJAFFREY SR, NAT REV MOL CELL BIOL, vol. 15, no. 5, May 2014 (2014-05-01), pages 313 - 26
MEYER KDSALETORE YZUMBO PELEMENTO OMASON CEJAFFREY SR, CELL, vol. 149, no. 7, 22 June 2012 (2012-06-22), pages 1635 - 46
NIU YZHAO XWU YSLI MMWANG XJYANG YG, GENOMICS PROTEOMICS BIOINFORMATICS, vol. 11, no. 1, February 2013 (2013-02-01), pages 8 - 17
PING XLSUN BFWANG LXIAO WYANG XWANG WJADHIKARI SSHI YLV YCHEN YS, CELL RES, vol. 24, no. 2, February 2014 (2014-02-01), pages 177 - 89
SLEDZ PJINEK M, ELIFE, 14 September 2016 (2016-09-14), pages 5
VU LPPICKERING BFCHENG YZACCARA SNGUYEN DMINUESA GCHOU TCHOW ASALETORE YMACKAY M, NAT MED, vol. 23, no. 11, November 2017 (2017-11-01), pages 1369 - 1376
WANG XFENG JXUE YGUAN ZZHANG DLIU ZGONG ZWANG QHUANG JTANG C, NATURE, vol. 534, no. 7608, 23 June 2016 (2016-06-23), pages 575 - 8
WANG PDOXTADER KANAM Y, MOL CELL, vol. 63, no. 2, 21 July 2016 (2016-07-21), pages 306 - 317
WINKLER RGILLIS ELASMAN LSAFRA MGEULA SSOYRIS CNACHSHON ATAI-SCHMIEDEL JFRIEDMAN NLE-TRILLING VU T K, NATURE IMMUNOLOGY, 2018
YUE YLIU JHE C, GENES DEV, vol. 29, no. 13, 1 July 2015 (2015-07-01), pages 1343 - 55
GEON-WOO KIMHASAN IMAMMOHSIN KHANALEEM SIDDIQUI, J BIOL CHEM, 27 July 2020 (2020-07-27)
YIMENG GAORADOVAN VASICYUANBIN SONGRHEA TENGCHENGYANG LIURANA GBYLIGIULIA BIANCONRAMAN NELAKANTIKIRSTEN LOBBENERIKO KUDO, IMMUNITY, vol. 52, no. 6, 16 June 2020 (2020-06-16), pages 887 - 1132
ROSA M RUBIODANIEL P DEPLEDGECHRISTOPHER BIANCOLETITIA THOMPSONIAN MOHR, GENES DEV, vol. 32, no. 23-24, 1 December 2018 (2018-12-01), pages 1472 - 1484
JERRY MARCH: "Advanced Organic Chemistry", 2001, JOHN WILEY AND SONS, pages: 131 - 133
L. W. DEADY, SYN. COMM., vol. 7, 1977, pages 509 - 514
"Methods in Enzymology", vol. 42, 1985, ACADEMIC PRESS, pages: 309 - 396
H. BUNDGAARD: "A Textbook of Drug Design and Development", 1991, article "Design and Application of Pro-drugs", pages: 113 - 191
H. BUNDGAARD, ADVANCED DRUG DELIVERY REVIEWS, vol. 8, 1992, pages 1 - 38
H. BUNDGAARD ET AL., JOURNAL OF PHARMACEUTICAL SCIENCES, vol. 77, 1988, pages 285
N. KAKEYA ET AL., CHEM. PHARM. BULL., vol. 32, 1984, pages 692
T. HIGUCHIV. STELLA: "Pro-Drugs as Novel Delivery Systems", A.C.S. SYMPOSIUM SERIES, vol. 14
"Bioreversible Carriers in Drug Design", 1987, PERGAMON PRESS
J. MED. CHEM., vol. 47, 2004, pages 6658 - 6661
STERN ET AL., CRITICAL REVIEWS IN ONCOLOGY/HAEMATOLOGY, vol. 54, 2005, pages 11 - 29
TETRAHEDRON, vol. 70, no. 17, 2014, pages 2761 - 2765
Attorney, Agent or Firm:
HGF LIMITED (GB)
Download PDF:
Claims:
CLAIMS

1. A compound of the formula (I), or a pharmaceutically acceptable salt thereof, wherein:

X is selected from: , and wherein: R1a, R1c and R1e are selected from hydrogen, halo, C1-4alkyl, C2-3alkenyl and -O-Ci. 4alkyl R1b, R1d and R1f are selected from:

(i) C1-4alkyl or C1-4alkoxy, each of which being optionally subsutited by halo, cyano, hydroxy, C3-6cycloalkyl, C1-4alkoxy, C1-4haloalkoxy, aryl or heteroaryl; or

(ii) a group of the formula:

—(CR1cR1d)p-NR1eR1f; wherein p is an integer selected from 0, 1, 2 or 3 R1c and R1d are independently selected from:

(i) hydrogen (including deuterium),

(ii) C1-6alkyl which is optionally substituted by one more substituents selected from cyano, oxo, hydroxy, C1-4alkoxy, halo, C1-4haloalkoxy, C3-6cycloalkyl, -O-C3-6cycloalkyl, NR1caR1da or -S(O)0-2R1caR1da, wherein R1ca and R1da are H or C1-2alkyl; and wherein C3-6cycloalkyl and -O-C3-6cycloalkyl are optionally further subsitutued with halo, cyano or hydroxy;

(iii) C3-4cycloalkyl or 3 to 5 membered heterocyclyl, each of which is optionally substituted by C1-4alkyl, C1-4haloalkyl, cyano, hydroxy, C1-2alkoxy, halo, C1-2haloalkoxy, NR1caR1da or -S(O)0-2R1caR1da, wherein R1ca and R1da are H or C1-2alkyl; and; or R1c and R1d are linked together such that, together with the carbon atom to which they are attached, they form a 3- to 6-membered cycloalkyl or heterocyclic ring, or a spirocyclic ring system, each of which is optionally substituted by one or more substituents selected from C1-2alkyl, C1-2haloalkyl, cyano, hydroxy, C1-2alkoxy, halo, C1-2haloalkoxy, NR1caR1da or -S(O)o- 2R1caR1da, wherein R1ca and R1da are H or C1-2alkyl; R1e and R1f are each independently selected from:

(i) hydrogen (including deuterium);

(ii) C1-6alkyl which is optionally substituted by one more substituents selected from cyano, oxo, hydroxy, C1-2alkoxy, halo, C1-2haloalkoxy, NR1eaR1fa or -S(O)0-2R1eaR1fa, wherein R1ea and R1fa are H or C1-2alkyl;

(iii) a group with the formula:

—(CR1gR1h)q—T1 wherein: q is 0, 1 , 2, 3, 4, 5 or 6; R1g and R1h are independently selected from: a) hydrogen; b) C1-6alkyl which is optionally substituted by one more substituents selected from cyano, oxo, hydroxy, C1-4alkoxy, halo, C1-4- haloalkoxy, -O-C3-6cycloalkyl, NR1gaR1ha or -S(O)0-2R1gaR1ha, wherein R1ga and R1ha are H or C1-2alkyl; and wherein -O-C3- 6cycloalkyl is optionally subsitutued with halo, cyano or hydroxy; c) an aryl-C1-6alkyl , heteroarylC1-6alkyl, C3-6cycloalkyl or C3-6 cycloalkylC1-6alkyl group, each of which is optionally substituted by one or more substituents selected from C1-2alkyl, cyano, C1- 2haloalkyl, hydroxy, C1-2alkoxy, halo, C1-2haloalkoxy, NR1gaR1ha or -S(O)0-2R1gaR1ha, wherein R1ga and R1ha are H or C1-2alkyl; or d) or R1g and R1h are optionally linked together such that, together with the carbon atom to which they are attached, they form a 3- to 6-membered cycloalkyl or heterocyclic ring which is optionally substituted by one or more substituents selected from C1-2alkyl, cyano, C1-2haloalkyl, hydroxy, C1-2alkoxy, halo, C1-2haloalkoxy, NR1gaR1ha or -S(O)0-2R1gaR1ha, wherein R1ga and R1ha are H or C1- 2alkyl; and T1 is selected from hydrogen, cyano, hydroxy, NR1tR2t or S(O)0-2R1tR2t (wherein R1t and R2t are H or C1-4alkyl), C3-8cycloalkyl, C2- 3alkenyl, C2-3alkynyl, aryl, heterocyclyl, heteroaryl, a spirocyclic carbocyclic or heterocyclic ring system, a bridged C3-8cycloalkyl, a bridged bicyclic Cs-^cycloalkyl, or a bridged heterocyclic ring system, each of which is optionally substituted by one or more substituents selected from C1-2alkyl, C1-2haloalkyl, cyano, hydroxy, C1-2alkoxy, halo, C1-2haloalkoxy, NR3tR4t or -S(O)0-2R3tR4t, wherein R3t and R4t are H or C1-2alkyl; or R1e and R1f are linked such that, together with the nitrogen atom to which they are attached, they form a mono- or bicyclic-heterocyclic ring, which is optionally substituted by one or more substituents selected from C1-4alkyl, C1-4haloalkyl, cyano, hydroxy, C1-4alkoxy, halo, C1-4haloalkoxy, NR1iR1j or - S(O)0-2R1iR1j, wherein R1i and R1j are H or C1-4alkyl, and/or the mono- or bicyclic hetereocyclic ring formed by R1e and R1f is optionally spiro-fused to a C3-6cycloalkyl or a heterocyclic ring, which in turn is optionally substituted by one or more substituents selected from C1-4alkyl, C1-4haloalkyl, cyano, hydroxy, C1-4alkoxy, halo, C1-4haloalkoxy, NR1iR1j or -S(O)0-2R1iR1j, wherein

R1i and R1j are H or C1-4alkyl; R1a’ is selected from hydrogen, halo and methyl; R2a, R2b and R2c are selected from hydrogen, halo or a group of the formula:

-L2a-L2b-Q2 wherein L2a is absent or C1-3alkylene optionally substituted by C1-2 alkyl or oxo;

L2b is absent or selected from O, S, SO, SO2, N(Rn), C(O), C(O)O, OC(O), C(O)N(Rn), N(Rn)C(O), N(Rn)C(O)N(Ro), S(O)2N(Rn), or N(Rn)SO2, wherein Rn and Ro are each independently selected from hydrogen or C1-2alkyl; and Q2 is hydrogen, cyano, C1-6alkyl, C3-6cycloalkyl, aryl, heterocyclyl or heteroaryl, each of which is optionally substituted by one or more substituents selected from halo, trifluoromethyl, trifluoromethoxy, amino, cyano, hydroxy, amino, carboxy, carbamoyl, sulphamoyl, C1-4alkyl, NRpRq, ORp, C(O)Rp, C(O)ORp, OC(O)Rp, C(O)N(Rp)Rq, N(Rr)C(O)Rp, S(O)yRp (where y is 0, 1 or 2), SO2N(Rp)Rq, N(Rr)SO2Rpor (CH2)zNRpRq (where z is 1, 2 or 3), wherein Rpand Rq are each independently selected from hydrogen or C1-4alkyl;

Y is selected from:

wherein:

R3a1 , R3b1 , R3c1 , R3d1 , R3e1 , R3f1 , R3g1 , R3h1 , R3i1 , R3j1 , R3k1 , R3i1 , R3m1 , R3n1 , R3o1 , R3p1 ,

R3q1, R3r1 and R3s1 are independently selected from hydrogen (including deuterium), C1-6alkyl, C3-4 cycloalkyl, hydroxy, and halo; and wherein C1-6alkyl, or C3-4 cycloalkyl is optionally substituted with one or more substituents selected from halo, amino, cyano, and hydroxy;

R3a2, R3b2, R3c2, R3d2, R3e2, R3f2, R3g2, R3h2, R3i2, R3j2, R3k2, R3l2, R3m2, R3n2, R3o2, R3p2, R3q2, R3r2 and R3s2 are hydrogen or halo; with the proviso that R3a1, R3b1 , R3i1 , R3l1 , R3o1 , R3r1, R3a2, R3b2, R3i2, R3l2, R3o2 and R3s1 cannot be halo when n=1 or when n=2 and the carbon atom to which they are attached is linked to an oxygen or nitrogen atom; or R3a1 and R3a2, R3b1 and R3b2, R3c1 and R3c2, R3d1 and R3d2, R3e1 and R3e2, R3f1 and R3f2, R3g1 and R3g2, R3h1 and R3h2, R3i1 and R3i2, R3j1 and R3j2, R3k1 and R3k2, R3l1 and R3l2, R3m1 and R3m2, R3n1 and R3n2, R3o1 and R3o2, R3p1 and R3p2, R3q1 and R3q2, or R3r1 and R3r2 or R3s1 and R3s2 may be linked such that, together with the carbon atom to which they are attached, they form a spiro-fused C3-4cycloalkyl which is optionally substituted with one or more substituents selected from halo, methyl, amino, cyano, and hydroxy; n is 0, 1 or 2; and

Z is selected from:

wherein: R4 is selected from hydrogen, halo, cyano, C1-4 alkyl, C1-4 haloalkyl, C1-4alkoxy, C1-4 haloalkoxy (e.g. hydrogen, halo, cyano and methyl);

R5 is selected from hydrogen, halo, cyano, C1-4 alkyl, C1-4 haloalkyl, C1-4alkoxy, C1-4 haloalkoxy (e.g. hydrogen, halo, cyano and methyl); R6 is selected from hydrogen, halo, cyano, C1-4 alkyl, C1-4 haloalkyl, C1-4alkoxy, C1-4 haloalkoxy (e.g. hydrogen, halo, cyano and methyl); R12 is selected from hydrogen, halo, cyano, C1-4 alkyl, C1-4 haloalkyl, C1-4alkoxy, C1-4 haloalkoxy (e.g. hydrogen, halo, cyano and C1-4 alkyl); R13 is selected from hydrogen, halo, cyano, C1-4 alkyl, C1-4 haloalkyl, C1-4alkoxy, C1-4 haloalkoxy (e.g. hydrogen, halo, cyano, methoxy and methyl); either: a) R7, R9 and R11 are independently selected from hydrogen, NH2, halo, cyano, C1-4 alkoxy, C1-4 haloalkoxy and C1-6 alkyl; and R8 and R10 are independently selected from halo, cyano, C1-4 alkoxy, C1-4 haloalkoxy, C1-6 alkyl, -CH2OCH3, -CH2SO2CH3, -SO2CH3, - NHC(O)CH3 and -C(O)NRv1 Rv2, wherein Rv1 and Rv2 are independently selected from hydrogen and methyl; or b) R8, R9, R10 and R11 are independently selected from hydrogen, NH2, halo, cyano, C1-4 alkoxy, C1-4 haloalkoxy and C1-6 alkyl, -CH2OCH3, - CH2SO2CH3, -SO2CH3, -NHC(O)CH3 and -C(O)NRv1 Rv2, wherein Rv1 and Rv2 are independently selected from hydrogen and methyl with the proviso that at least one of R8, R9, R10 and R11 is C1-4 alkoxy or C1-4 haloalkoxy;

R11N is independently selected from hydrogen and C1-6 alkyl;

RZ1 and RZ1a selected from hydrogen, C1-4alkyl, cyano, halo, C1-4haloalkyl, C1- 4haloalkoxy, C1-4alkoxy, C3-6cycloalkyl and -O-C3-6cycloalkyl, wherein C3-6cycloalkyl and -O-C3-6cycloalkyl are optionally subsitutued by one or more of halo, methyl or methoxy;

RZ2 and RZ2a are selected from hydrogen, C1-4alkyl, cyano, halo, NH2 and C1-4alkoxy;

RZ3a is selected from hydrogen, C1-4alkyl, cyano, halo, NH2 and C1-4alkoxy;

RZi2b is selected from hydrogen, C1-4alkyl, cyano, halo, NH2 and C1-4alkoxy;

RZi2e is selected from hydrogen, C1-4alkyl, cyano, halo, NH2 and C1-4alkoxy; RZ2N is selected from hydrogen or C1-4alkyl RY5N is selected from hydrogen or C1-4alkyl

RZ9 is selected from hydrogen, halo, cyano, C1-4 alkyl, C1-4 haloalkyl, C1-4alkoxy, C1-4 haloalkoxy;

RZ10 is selected from hydrogen, halo, cyano, C1-4 alkyl, C1-4 haloalkyl, C1-4alkoxy, C1-4 haloalkoxy; RZ11 is selected from hydrogen, halo, cyano, C1-4 alkyl, C1-4 haloalkyl, C1-4alkoxy, C1-4 haloalkoxy;

RZ12 is selected from hydrogen, halo, cyano, C1-4 alkyl, C1-4 haloalkyl, C1-4alkoxy, C1-4 haloalkoxy; RZ13 is selected from hydrogen, halo, cyano, C1-4 alkyl, C1-4 haloalkyl, C1-4alkoxy, C1-4 haloalkoxy; RZ14 is selected from hydrogen, halo, cyano, C1-4 alkyl, C1-4 haloalkyl, C1-4alkoxy, C1-4 haloalkoxy; RZ15 is selected from hydrogen, halo, cyano, C1-4 alkyl, C1-4 haloalkyl, C1-4alkoxy, C1-4 haloalkoxy; RZ16 is selected from hydrogen, halo, cyano, C1-4 alkyl, C1-4 haloalkyl, C1-4alkoxy, C1-4 haloalkoxy;;

A5 is selected from CR16 and N;

A6 is selected from CR17 and N;

A7 is selected from CR18 and N;

R15 is selected from hydrogen, halo, cyano, methoxy and methyl; R16 and R18, are selected from hydrogen, halo, cyano, C1-4 alkyl, C1-4 alkoxy, C1- 4haloalkyl, C1-4haloalkoxy, C3-4cycloalkyl, a 3- to 4-membered heterocyclyl and C3-4- cycloalkoxy; R17 is selected from hydrogen, halo, cyano, C1-4 alkyl, C1-4 haloalkyl, C1-4 alkoxy, C1-4 haloalkoxy, C2-4 alkenyl, C2-4 alkynyl, phenyl, a 5- or 6-membered or heteroaryl, C3- 6cycloalkyl, -O-C3-6cycloalkyl, heterocyclyl, -O-heterocyclyl (carbon-linked), - (OCH2CH2)m-OCH3 wherein m is an integer from 1 to 6, NRqRr, wherein Rq and Rr are each independently hydrogen, C1-5 alkyl, C3-6cycloalkyl, a 3- to 6- membered carbon- linked heterocyclyl, or Rq and Rr are linked together such that, together with the nitrogen atom to which they are attached, they form a 3- to 6-membered heterocyclic ring; wherein any C1-5alkyl, C1-4 alkoxy, C2-4alkenyl, C2-4alkynyl , phenyl, 5- or e- membered or heteroaryl, C3-6cycloalkyl, -O-C3-6cycloalkyl, heterocyclyl or -O- heterocyclyl (carbon-linked)is optionally further substituted by one or more substituents selected from C1-2alkyl, cyano, C1-2haloalkyl, hydroxy, C1-2alkoxy, halo, C1-2haloalkoxy, NR1eaR1fa or -S(O)0-2R1eaR1fa, wherein R1ea and R1fa are H or C1-2alkyl; R19 is selected from hydrogen, halo, cyano and C1-4 alkyl; R22 is selected from hydrogen, halo, cyano, C1-4 alkyl, C1-4 haloalkyl, C1-4alkoxy, C1-4 haloalkoxy.

2. A compound according to claim 1 , or a pharmaceutically acceptable salt thereof, wherein R1b, R1d and R1f are a group of the formula:

—(CR1cR1d)p-NR1eR1f; wherein p is an integer selected from 1 or 2; R1c and R1d are independently selected from: (i) hydrogen (including deuterium),

(ii) C1-3alkyl which is optionally substituted by one more substituents selected from cyano, oxo, hydroxy, C1-3alkoxy, halo, C1-43haloalkoxy, -O-C3-4cycloalkyl, or NH2; wherein -O-C3-6cycloalkyl is optionally subsitutued with halo, cyano or hydroxy,

(iii) or R1c and R1d are linked together such that, together with the carbon atom to which they are attached, they form a 3- to 5-membered cycloalkyl or heterocyclic ring, or a spirocyclic ring system, each of which is optionally substituted by one or more substituents selected from C1-2alkyl, C1-2haloalkyl, cyano, hydroxy, C1-2alkoxy, halo, C1-2haloalkoxy, NR1caR1da or -S(O)0-2R1caR1da, wherein R1ca and R1da are H or C1-2alkyl; R1eis selected from:

(i) hydrogen (including deuterium);

(ii) C1-3alkyl which is optionally substituted by one more substituents selected from cyano, oxo, hydroxy, C1-2alkoxy, halo, C1-2haloalkoxy and NH2; and R1f is selected from:

(i) C1-6alkyl which is optionally substituted by one more substituents selected from cyano, oxo, hydroxy, C1-2alkoxy, halo, C1-2haloalkoxy and NH2;

(ii) a group with the formula:

—(CR1gR1h)q—T1 wherein: q is 1 , 2 or 3; R1g and R1h are independently selected from: a) hydrogen (including deuterium); or b) C1-6alkyl which is optionally substituted by one more substituents selected from cyano, oxo, hydroxy, C1-4alkoxy, halo, C1-4haloalkoxy, -O-C3-6cycloalkyl, NR1caR1da or-S(O)0-2R1caR1da, wherein R1ca and R1da are H or C1-2alkylNR1gaR1ha or -S(O)0-2R1gaR1ha, wherein R1ga and R1ha are H or C1-2alkyl; and wherein -O-C3-6cycloalkyl is optionally subsitutued with halo, cyano or hydroxy; c) or R1g and R1h are optionally linked together such that, together with the carbon atom to which they are attached, they form a 3- to 4- membered cycloalkyl or heterocyclic ring which is optionally substituted by one or more substituents selected from C1-2alkyl, C1- 2haloalkyl, cyano, hydroxy, C1-2alkoxy, halo, C1-2haloalkoxy, NR1gaR1ha or -S(O)0-2R1gaR1ha, wherein R1ga and R1ha are H or C1- 2alkyl; and T1 is selected from hydrogen, halo, C1-4alkyl, C1-4haloalkyl, cyano, hydroxy, NR1tR2t or -S(O)0-2R1tR2t (wherein R1t and R2t are H or C1-4alkyl) , C3- 8cycloalkyl, C2-3alkenyl, C2-3alkynyl, aryl, heterocyclyl, a mono- or bicyclic heteroaryl, a spirocyclic carbocyclic or heterocyclic ring system, a bridged C3- 8cycloalkyl, a bridged bicyclic C5-12cycloalkyl, or a bridged heterocyclic ring system, each of which is optionally substituted by one or more substituents selected from C1-2alkyl, C1-2haloalkyl, cyano, hydroxy, C1-2alkoxy, halo, C1-2- haloalkoxy, C3-6cycloalkyl, NR3tR4t or -S(O)0-2R3tR4t, wherein R3t and R4t are H or C1-2alkyl; or R1e and R1f are linked such that, together with the nitrogen atom to which they are attached, they form a mono- or bicyclic-heterocyclic ring, which is optionally substituted by one or more substituents selected from C1-4alkyl, C1-4haloalkyl, C3- 6cycloalkyl, cyano, hydroxy, C1-4alkoxy, halo, C1-4haloalkoxy, NR1iR1j or -S(O)0- 2R1iR1j, wherein R1i and R1j are H or C1-4alkyl, and/or the mono- or bicyclic hetereocyclic ring formed by R1e and R1f is optionally spiro-fused to a C3-6cycloalkyl or a heterocyclic ring; which in turn is optionally substituted by one or more substituents selected from C1-4alkyl, C1-4haloalkyl, C3-6cycloalkyl, cyano, hydroxy, C1-4alkoxy, halo, C1-4haloalkoxy, NR1iR1j or -S(O)0-2R1iR1j, wherein R1i and R1j are H or C1-4alkyl; wherein any alkyl, alkoxy or C3-6cycloalkyl is further optionally substituted by one or more substituents selected from cyano, hydroxy, halo, NR1kR1l or -S(O)0-2R1kR1l, wherein R1k and R1l are H or C1-4alkyl. A compound according to any one of the preceding claims, or a pharmaceutically acceptable salt thereof, wherein R1b, R1d and R1f are a group of the formula:

—(CR1cR1d)p-NR1eR1f; wherein p is 1 ; R1c and R1d are independently selected from hydrogen (including deuterium) or C1-2alkyl; R1e is selected from hydrogen (including deuterium) or C1-2alkyl; and R1f is a group with the formula:

—(CR1gR1h)q—T1 wherein: q is 1 or 2; R1g and R1h are independently selected from hydrogen (including deuterium) or C1-2alkyl; and T1 is selected from C3-4cycloalkyl, heterocyclyl, a mono- or bicyclic heteroaryl, a spirocyclic carbocyclic or heterocyclic ring system, a bridged C3-8cycloalkyl, a bridged bicyclic C5-12cycloalkyl, or a bridged heterocyclic ring system, each of which is optionally substituted by one or more substituents selected from C1-2alkyl, C1-2haloalkyl, cyano, hydroxy, C1-2alkoxy, halo, C1-2haloalkoxy or C3-6cycloalkyl; or R1e and R1f are linked such that, together with the nitrogen atom to which they are attached, they form a mono- or bicyclic-heterocyclic ring, which is optionally substituted by one or more substituents selected from C1-2alkyl, C1-2haloalkyl, C3-6cycloalkyl, cyano, hydroxy, C1-2alkoxy, halo or C1- 2haloalkoxy, and/or the mono- or bicyclic hetereocyclic ring formed by R1e and R1f is optionally spiro-fused to a C3-6cycloalkyl or a heterocyclic ring; which in turn is optionally substituted by one or more substituents selected from C1-2alkyl, C1-2haloalkyl, C3-6cycloalkyl, cyano, hydroxy, C1-2alkoxy, halo or C1-2haloalkoxy, wherein any alkyl, alkoxy or C3-6cycloalkyl is further optionally substituted by one or more substituents selected from cyano, hydroxy, halo, NR1kR1l or -S(O)0-2R1kR1l, wherein R1kand R1l are H or C1- 4alkyl.

4. A compound according to any one of the preceding claims, or a pharmaceutically acceptable salt thereof, wherein R1a, R1c, R1e R2a, R2b and R2c are hydrogen.

5. A compound according to any one of the preceding claims, or a pharmaceutically acceptable salt thereof, wherein R1b, R1d and R1f are selected from: and

6. A compound according to any one of the preceding claims, or a pharmaceutically acceptable salt thereof, wherein X is: and R1a, R1a’, R1b, and R2a are as defned in any of the preceding claims.

7. A compound according to any one of the preceding claims, or a pharmaceutically acceptable salt thereof, wherein Y is selected from: R3b2, R3e1, R3e2, R3i1 , R3i2, R3j1 , R3j2, R3i1 and R3i2, are as defined in any one of the preceding claims.

8. A compound according to any one of the preceding claims, or a pharmaceutically acceptable salt thereof, wherein, R3a1, R3h1 , R3c1, R3d1, R3e1, R3f1, R3g1, R3b1 , R3i1, R3j1 ,

R3ki, R3l1, R3m1, R3n1, R3o1 , R3p1, R3q1, R3r1 and R3s1 are independently selected from hydrogen and C1-6alkyl; and wherein Ci -ealkyl is optionally substituted with one or more hydroxy substituents and/or

R3a2, R3b2, R3c2, R3d2, R3e2, R3f2, R3g2, R3h2, R3i2, R3j2, R3k2, R3l2, R3m2, R3n2, R3o2, R3p2, R3q2, Rsr2 and R3S2 are hydrogen.

9. A compound according to any one of the preceding claims, or a pharmaceutically acceptable salt thereof, wherein n is 1.

10. A compound according to any one of the preceding claims, or a pharmaceutically acceptable salt thereof, wherein Y is selected from: A compound according to any one of the preceding claims, or a pharmaceutically acceptable salt thereof, wherein

A5 is CR16 ;

A6 is CR17;

A7 is CR18; and

(i) R4, R5, R6, R7, R9, R11, RZ2, RZ2a, RZ3a, RZi1b, RZi2e, RZ9, RZ10, RZ11, RZ12, RZ13, RZ14, RZ15 and RZ16 are independently selected from hydrogen, methyl, cyano or halo; and RY5N, and R11N are selected from methyl or hydrogen;

(ii) R8 is seleced from hydrogen, cyano, -CH2OCH3, -CH2SO2CH3, -SO2CH3, - NHC(O)CH3 and -C(O)NRv1 Rv2, wherein Rv1 and Rv2 are independently selected from hydrogen and methyl;

(iii) R10 is selected from C1-4 alkoxy or C1-4 haloalkoxy;

(iv) RZ1 and RZ1a are selected from hydrogen, C1-4alkyl, cyano, halo, C1-4haloalkyl, C1-4haloalkoxy, C1-4alkoxy, C3-6cycloalkyl and -O-C3-6cycloalkyl;

(v) R12, R13, R16 , R18, R19, R20, R21 , R22, R23, R24 and R30 are independently selected from hydrogen, halo, cyano and methyl;

(vi) R17 is selected from hydrogen, halo, cyano, C1-4 alkyl, C1-4 haloalkyl, C1-4 alkoxy, C1-4 haloalkoxy, C2-4 alkenyl, C2-4 alkynyl, phenyl a 5- or 6-membered or heteroaryl, C3-6cycloalkyl, -O-C3-6cycloalkyl, heterocyclyl, -(OCH2CH2)m- OCH3 wherein m is an integer from 1 to 6, NRqRr, wherein Rq and Rr are each independently hydrogen, C1-4 alkyl or Rq and Rr are linked together such that, together with the nitrogen atom to which they are attached, they form a 3- to 6-membered heterocyclic ring; ; wherein any C1-4 alkyl, C2-4 alkenyl, C2-4 alkynyl, phenyl, 5- or 6-membered or heteroaryl, C3-6cycloalkyl, -O-C3- 6cycloalkyl, heterocyclyl or -O-heterocyclyl (carbon-linked) is optionally further substituted by one or more substituents selected from C1-2alkyl, cyano, C1-2haloalkyl, hydroxy, C1-2alkoxy, halo, C1-2haloalkoxy, NR1eaR1fa or -S(O)o- 2R1eaR1fa, wherein R1ea and R1fa are H or C1-2alkyl.

12. A compound according to any one of the preceding claims, or a pharmaceutically acceptable salt thereof, wherein Z is selected from: wherein A5, A6, A7, R4, R5, R6, R7, R8, RB5N, RY5N, RZ1 , RZ2, RZ10, RZ12, RZ13, RZ14, RZ15,

RZ16, RZ2a, RZ3a, RZ1a, RZi2b and RZi2e are as defined in any one of the preceding claims. 13. A compound according to any one of the preceding claims, or a pharmaceutically acceptable salt thereof, wherein Z is: wherein A5, A6, RZ1 , RZ2 and RZi2b are as defined in any one of the preceding claims.

14. A compound according to any one of the preceding claims, or a pharmaceutically acceptable salt thereof, wherein A6 is CR17; and wherein R17 is selected from selected from hydrogen, halo, cyano, C1-5 alkyl, C1-4 haloalkyl, C1-4 alkoxy, C1-4 haloalkoxy, C2-4 alkenyl, C2-4 alkynyl, phenyl, a 5- or 6- membered or heteroaryl, C3-6cycloalkyl, -O-C3-6cycloalkyl, heterocyclyl, -O- heterocyclyl (carbon-linked), -(OCH2CH2)m-OCH3 wherein m is an integer from 1 to 6, NRqRr, wherein Rq and Rr are each independently hydrogen, C1-4 alkyl, C3-6cycloalkyl, a 3- to 6- membered carbon-linked heterocyclyl, or Rq and Rr are linked together such that, together with the nitrogen atom to which they are attached, they form a 3- to 6-membered heterocyclic ring; wherein any C1-5alkyl, C1-4 alkoxy, C2-4alkenyl, C2-4alkynyl , phenyl, 5- or 6-membered or heteroaryl, C3-6cycloalkyl, -O-C3-6cycloalkyl, heterocyclyl or -O-heterocyclyl (carbon-linked) is optionally further subsitutued by one or more substituents selected from C1-2alkyl, cyano, C1-2haloalkyl, hydroxy, C1-2alkoxy, halo, C1-2haloalkoxy, NR1eaR1fa or -S(O)0-2R1eaR1fa, wherein R1ea and R1fa are H or C1-2alkyl; optionally wherein R17 is is selected from hydrogen, halo, C1-4 alkoxy or C1-4 haloalkoxy.

15. A compound according to claim 14, or a pharmaceutically acceptable salt thereof, wherein A5 is R16 , and R16 is selected from hydrogen, halo, cyano and C1-4 alkyl.

16. A compound according to any one of the preceding claims, or a pharmaceutically acceptable salt thereof, wherein: X is

Y is selected from: and ; and

Z is selected from:

wherein

(i) R1a, R1a’, R1b, and R2a are as defined in any one of the preceding claims;

(ii) R3a1, R3a2, R3i1 , R3i2, R3l1 , R3l2, R3r1 , R3r2, are as defined in any one of the preceding claims;

(iii) A5, A6, A7, R8, R9, R10, R11 , RZ1 , RZ2, RZi2b, RZ10, RZ12, RZ13, RZ14, RZ15, RZ16, RY5N ,

RZ2a, RZ3a, and RZi2e are as defined in any one of the preceding claims. 7. A compound according to claim 16, or a pharmaceutically acceptable salt thereof, wherein:

wherein:

(i) R1a, R1a’, R1b, and R2a are as defined in any one of the preceding claims;

(ii) R3a1, R3a2, R3i1 and R3i2 are as defined in any one of the preceding claims;

(iii) A5, A6, RZ1, RZ2 and Rzi1b are as defined in any one of the preceding claims; R8 is selected from hydrogen, cyano, -CH2OCH3, -CH2SO2CH3, -SO2CH3, - NHC(O)CH3 and -C(O)N Rv1 Rv2, wherein Rv1 and Rv2 are independently selected from hydrogen and methyl, , R9 and R11 are as defined in any preceding claim; R10 is C1-4alkoxy or C1-4haloalkoxy.

18. A compound, or a pharmaceutically acceptable salt thereof, and, in particular, selecyted from:

N-[(6-{[(cyclohexylmethyl)amino]methyl}imidazo[1,2-a]pyridin-2-yl)methyl]-1,2-dimethyl-

6-oxo-1,6-dihydropyrimidine-4-carboxamide;

N-({6-methylimidazo[1,2-a]pyridin-2-yl}methyl)-4-oxo-4H-quinolizine-2-carboxamide;

N-[(6-{[(cyclohexylmethyl)amino]methyl}imidazo[1,2-a]pyridin-2-yl)methyl]-4-oxo-4H- quinolizine-2-carboxamide; N-[(6-{[(cyclohexylmethyl)amino]methyl}imidazo[1,2-a]pyridin-2-yl)methyl]quinoxaline-2- carboxamide;

N-[(6-{[(cyclohexylmethyl)amino]methyl}imidazo[1,2-a]pyridin-2-yl)methyl]-1H- pyrazolo[3,4-b]pyridine-4-carboxamide;

N-[(6-{[(cyclohexylmethyl)amino]methyl}imidazo[1,2-a]pyridin-2-yl)methyl]quinoline-3- carboxamide;

N-[(6-{[(cyclobutylmethyl)amino]methyl}imidazo[1,2-a]pyridin-2-yl)methyl]imidazo[1,5- a]pyridine-8-carboxamide;

N-[(6-{[(cyclobutylmethyl)amino]methyl}imidazo[1,2-a]pyridin-2-yl)methyl]imidazo[1,5- a]pyridine-5-carboxamide;

N-[(6-{[(cyclobutylmethyl)amino]methyl}imidazo[1,2-a]pyridin-2-yl)methyl]-3H- imidazo[4,5-b]pyridine-6-carboxamide;

N-[(6-{[(cyclobutylmethyl)amino]methyl}imidazo[1,2-a]pyridin-2-yl)methyl]-1H-pyrrolo[2,3- b]pyridine-5-carboxamide;

N-{[6-({[(3,3-difluorocyclobutyl)methyl]amino}methyl)imidazo[1,2-a]pyridin-2-yl]methyl}-

1H-pyrrolo[2,3-b]pyridine-5-carboxamide;

N-[(6-{[(cyclobutylmethyl)amino]methyl}imidazo[1,2-a]pyridin-2-yl)methyl]-1-methyl-1H- pyrrolo[2,3-b]pyridine-5-carboxamide

N-[(6-{[(cyclobutylmethyl)amino]methyl}imidazo[1,2-a]pyridin-2-yl)methyl]-1H-indole-5- carboxamide;

N-[(6-{[(cyclobutylmethyl)amino]methyl}imidazo[1,2-a]pyridin-2-yl)methyl]-5H-pyrrolo[2,3- b]pyrazine-2-carboxamide;

N-[(6-{[({3-fluorobicyclo[1.1.1]pentan-1-yl}methyl)amino]methyl}imidazo[1,2-a]pyridin-2- yl)methyl]-5-oxo-5H-[1,3]thiazolo[3,2-a]pyrimidine-7-carboxamide;

4-[1-[(6-methylimidazo[1,2-a]pyridin-2-yl)methyl]triazol-4-yl]isoquinoline;

1-({6-methylimidazo[1,2-a]pyridin-2-yl}methyl)-4-{1H-pyrrolo[2,3-b]pyridin-5-yl}-1H-1,2,3- triazole;

(cyclobutylmethyl)({2-[(4-{6-methoxyimidazo[1,5-a]pyridin-8-yl}-1H-1,2,3-triazol-1- yl)methyl]imidazo[1,2-a]pyridin-6-yl}methyl)amine;

(cyclobutylmethyl)({2-[(4-{imidazo[1,5-a]pyridin-8-yl}-1H-1,2,3-triazol-1- yl)methyl]imidazo[1,2-a]pyridin-6-yl}methyl)amine;

({2-[(4-{6-chloroimidazo[1,5-a]pyridin-8-yl}-1H-1,2,3-triazol-1-yl)methyl]imidazo[1,2- a]pyridin-6-yl}methyl)(cyclobutylmethyl)amine;

(cyclobutylmethyl)({2-[(4-{1-fluoroimidazo[1,5-a]pyridin-8-yl}-1H-1,2,3-triazol-1- yl)methyl]imidazo[1,2-a]pyridin-6-yl}methyl)amine;

({3-fluorobicyclo[1.1.1]pentan-1-yl}methyl)({2-[(4-{6-methoxyimidazo[1,5-a]pyridin-8-yl}-

1 H-1 ,2,3-triazol-1-yl)methyl]imidazo[1 ,2-a]pyridin-6-yl}methyl)amine; (cyclobutylmethyl)({2-[(4-{[1,2,4]triazolo[4,3-a]pyridin-8-yl}-1H-1,2,3-triazol-1- yl)methyl]imidazo[1,2-a]pyridin-6-yl}methyl)amine;

({bicyclo[1.1.1]pentan-1-yl}methyl)({2-[(4-{6-methoxyimidazo[1,5-a]pyridin-8-yl}-1H-1,2,3- triazol-1-yl)methyl]imidazo[1,2-a]pyridin-6-yl}methyl)amine;

2-({2-[(4-{imidazo[1 ,5-a]pyridin-8-yl}-1 H-1 ,2,3-triazol-1-yl)methyl]imidazo[1 ,2-a]pyridin-6- yl}methyl)-2-azaspiro[3.3]heptane;

2-({2-[(4-{6-methoxyimidazo[1,5-a]pyridin-8-yl}-1H-1,2,3-triazol-1-yl)methyl]imidazo[1,2- a]pyridin-6-yl}methyl)-2-azaspiro[3.3]heptane;

N-(cyclobutylmethyl)-1-[2-[[4-(4-isoquinolyl)triazol-1-yl]methyl]imidazo[1,2-a]pyridin-6- yl]methanamine; bis(cyclobutylmethyl)[(2-{[4-(isoquinolin-4-yl)-1H-1,2,3-triazol-1-yl]methyl}imidazo[1,2- a]pyridin-6-yl)methyl]amine;

(cyclobutylmethyl)({2-[(4-{1H-pyrrolo[2,3-b]pyridin-5-yl}-1H-1,2,3-triazol-1- yl)methyl]imidazo[1,2-a]pyridin-6-yl}methyl)amine;

(cyclobutylmethyl)({2-[(4-{1H-pyrrolo[2,3-b]pyridin-5-yl}-1H-imidazol-1- yl)methyl]imidazo[1,2-a]pyridin-6-yl}methyl)amine; cyclobutylmethyl)({2-[(4-{imidazo[1,5-a]pyridin-5-yl}-1H-1,2,3-triazol-1- yl)methyl]imidazo[1,2-a]pyridin-6-yl}methyl)amine;

({3-fluorobicyclo[1.1.1]pentan-1-yl}methyl)({2-[(4-{3-methylimidazo[1,5-a]pyridin-8-yl}-1H- 1,2,3-triazol-1-yl)methyl]imidazo[1,2-a]pyridin-6-yl}methyl)amine;

3-{1-[(6-{[({bicyclo[1.1.1]pentan-1-yl}methyl)amino]methyl}imidazo[1,2-a]pyridin-2- yl)methyl]-1H-1,2,3-triazol-4-yl}-5-methoxypyridine-2-carbonitrile;

3-{1-[(6-{[(cyclobutylmethyl)amino]methyl}imidazo[1,2-a]pyridin-2-yl)methyl]-1H-1,2,3- triazol-4-yl}-5-methoxypyridine-2-carbonitrile;

3-[1-({6-[(4,4-dimethylpiperidin-1-yl)methyl]imidazo[1,2-a]pyridin-2-yl}methyl)-1H-1,2,3- triazol-4-yl]-5-methoxypyridine-2-carbonitrile;

3-(1-{[6-({6-azaspiro[3.4]octan-6-yl}methyl)imidazo[1,2-a]pyridin-2-yl]methyl}-1H-1,2,3- triazol-4-yl)-5-methoxypyridine-2-carbonitrile;

3-{1-[(6-{[({3-fluorobicyclo[1.1.1]pentan-1-yl}methyl)amino]methyl}imidazo[1,2-a]pyridin-

2-yl)methyl]-1H-1,2,3-triazol-4-yl}-5-methoxypyridine-2-carbonitrile;

3-(1-{[6-({6-azaspiro[3.4]octan-6-yl}methyl)imidazo[1,2-a]pyridin-2-yl]methyl}-1H-1,2,3- triazol-4-yl)-5-fluoropyridine-2-carbonitrile;

5-fluoro-3-{1-[(6-{[({3-fluorobicyclo[1.1.1]pentan-1-yl}methyl)amino]methyl}imidazo[1,2- a]pyridin-2-yl)methyl]-1H-1,2,3-triazol-4-yl}pyridine-2-carbonitrile;

({3-fluorobicyclo[1.1.1]pentan-1-yl}methyl)[(2-{[4-(6-methoxypyrazin-2-yl)-1H-1,2,3- triazol-1-yl]methyl}imidazo[1,2-a]pyridin-6-yl)methyl]amine; ({3-fluorobicyclo[1.1.1]pentan-1-yl}methyl)[(2-{[4-(5-methoxypyridin-3-yl)-1H-1,2,3-triazol-

1-yl]methyl}imidazo[1,2-a]pyridin-6-yl)methyl]amine;

N-[(6-{[(cyclobutylmethyl)amino]methyl}imidazo[1,2-a]pyridin-2-yl)methyl]-5- methoxypyridine-3-carboxamide;

({3-fluorobicyclo[1.1.1]pentan-1-yl}methyl)[(2-{[4-(4-methoxypyridin-3-yl)-1H-1,2,3-triazol- 1-yl]methyl}imidazo[1,2-a]pyridin-6-yl)methyl]amine;

({3-fluorobicyclo[1.1.1]pentan-1-yl}methyl)[(2-{[4-(6-methoxypyridin-3-yl)-1H-1,2,3-triazol-

1-yl]methyl}imidazo[1,2-a]pyridin-6-yl)methyl]amine;

3-{1-[(6-{[({3-fluorobicyclo[1.1.1]pentan-1-yl}methyl)amino]methyl}imidazo[1,2-a]pyridin-

2-yl)methyl]-1H-1,2,3-triazol-4-yl}-5-methoxypyridine-2-carboxamide;

(cyclobutylmethyl)[(2-{[4-(1-methyl-1H-indazol-7-yl)-1H-1,2,3-triazol-1- yl]methyl}imidazo[1,2-a]pyridin-6-yl)methyl]amine;

3-{1-[(6-{[({3-fluorobicyclo[1.1.1]pentan-1-yl}methyl)amino]methyl}imidazo[1,2-a]pyridin- 2-yl)methyl]-1H-1,2,3-triazol-4-yl}-5-(morpholin-4-yl)pyridine-2-carbonitrile;

({3-fluorobicyclo[1.1.1]pentan-1-yl}methyl)({[2-({4-[5-(morpholin-4-yl)pyridin-3-yl]-1H- 1,2,3-triazol-1-yl}methyl)imidazo[1,2-a]pyridin-6-yl]methyl})amine.

19. A pharmaceutical composition comprising a compound according to any one of claims 1 to 18, or a pharmaceutically acceptable salt thereof, and one or more pharmaceutically acceptable excipients.

20. A compound according to any one of claims 1 to 18, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition according to claim 19, for use in therapy.

21. A compound according to any one of claims 1 to 18, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition according to claim 19, for use in the treatment of cancer.

22. A compound according to any one of claims 1 to 18, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition according to claim 19, for use in the treatment of leukaemia.

23. A compound according to any one of claims 1 to 18, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition according to claim 19, for use in the treatment of an autoimmune disease, a neurological disease, an inflammatory disease or an infectious disease. 24. A method of treating a proliferative disorder, said method comprising administering to a subject in need thereof a therapeutically effective amount of a compound according to any one of claims 1 to 18, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition according to claim 19.

25. A combination comprising a compound according to any one of claims 1 to 18, or a pharmaceutically acceptable salt there, with one or more additional therapeutic agents.

Description:
METTL3 INHIBITORY COMPOUNDS

FIELD OF THE INVENTION

[0001] The present invention relates to certain compounds that function as inhibitors of METTL3 (N6-adenosine-methyltransferase 70 kDa subunit) activity. The present invention also relates to processes for the preparation of these compounds, to pharmaceutical compositions comprising them, and to their use in the treatment of proliferative disorders, such as cancer, autoimmune, neurological, infectious and inflammatory diseases, as well as other diseases or conditions in which METTL3 activity is implicated.

BACKGROUND OF THE INVENTION

[0002] N6-methyladenosine (m6A) is the most common and abundant covalent modification of messenger RNA, modulated by ‘writers’, ‘erasers’ and ‘readers’ of this mark (Meyer & Jaffrey 2014, Niu Y et al, 2013, Yue et al 2015). Approximately 0.1 to 0.5% of all mRNA adenosines are m6A modified (Li Y et al 2015). In vitro data have shown that m6A influences fundamental aspects of mRNA biology, mainly mRNA expression, splicing, stability, localisation and translation (Meyer et al, 2015; Sledz & Jinek 2016). M6A modifications are tissue specific and there is significant variability in their occurrence profiles in non-diseased tissues (eg brain, heart, kidney) and diseased tissues and cells (lung, renal, breast, and leukeamic cancer cells) (Meyer et al 2012).

[0003] The m6A modifications and its erasers and writers such as FTO, ALKBH5, methyltransferese like 3 (METTL3) and METTL14 are associated with major diseases such as solid organ cancers, leukaemia, type 2 diabetes, neuropsychiatric behavioural and depressive disorders (Chandola et al 2015; Koranda et al 2018).

[0004] The RNA methyltransferase, METTL3, is the major, but not the sole enzyme, that catalyses m6A modification of RNA. It exists as a hetero-trimeric complex with METTL14 (Liu et al 2014, Wang et al 2016) and Wilm's Tumour Associated Protein (WTAP) (Ping et al 2014). Catalytic activity resides in METTL3, which transfers a methyl group from the co-factor S- adenosyl methionine to the substrate RNA and METTL14 facilitates substrate RNA binding. WTAP localises the complex in specific nuclear regions and also localises RNA substrates to the complex (Wang X et al 2016).

[0005] METTL3 has been reported to play a role in many aspects of the development of cancer (Fry et al 2018). Genetic knockdown of METTL3 in lung cancer cell lines (A549, H1299 and H1792) and HeLa cells leads to decreased growth, survival and invasion of human lung cancer cells (Lin S et al 2016). METTL3 is significantly up-regulated in human bladder cancer (Cheng et al 2019). Knockdown of METTL3 drastically reduced bladder cancer cell proliferation, invasion, and survival in vitro and tumorigenicity in vivo. AF4/FMR2 family member 4 (AFF4), two key regulators of NF-KB pathway (IKBKB and RELA) and MYC were further identified as direct targets of METTL3-mediated m6A modification. In renal carcinoma cell lines (CAK-1, CAK-2 and ACHN), genetic knockdown reduced cell proliferation via the phosphatidinylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signalling pathway (Li X et al 2017).

[0006] Recently Barbieri et al (2017), defined a set of RNA-modifying enzymes that are necessary for AML leukaemia and identified a key leukaemic pathway for the METTL3 RNA methyltransferase. In this pathway, METTL3 is stably recruited by the CCAAT-box binding transcription factor CEBPZ to promoters of a specific set of active genes, resulting in m6A methylation of the respective mRNAs and increased translation. One important target is SP1, an oncogene in several cancers, which regulates c-MYC expression. Consistent with these findings, it has been reported that METTL3 can methylate its targets co-transcriptionally.

[0007] The pathway described by Barbieri et al., is critical for AML leukaemia, as three of its components are required for AML cell growth: (i) the m6A RNA methyltransferase METTL3; (ii) the transcription factor CEBPZ, which targets this enzyme to promoters; and (iii) SP1 , whose translation is dependent upon the m6A modification by METTL3. Together, the observations of Barbieri et al define METTL3 enzymatic activity as a new candidate target for the treatment of AML.

[0008] In separate, independent studies it has been reported that METTL3 plays an essential role in controlling myeloid differentiation of mammalian normal hematopoietic and leukemic cells (Vu et al 2017). Forced expression of wild type METTL3, but not a mutant METTL3 (with defect in catalytic activity), significantly promotes cell proliferation and inhibits cell differentiation of human cord blood-derived CD34+ haematopoietic stem/progenitor cells (HSPCs). Genetic knockdown of METTL3 has the opposite effects. METTL3 is highly expressed in AML compared to normal HSPCs or other types of cancers. Knockdown of METTL3 in human AML cell lines significantly induces cell differentiation and apoptosis and inhibits leukemia progression in mice xeno-transplanted with MOLM-13 AML cells. The biological function of METTL3 is likely attributed to the promotion of translation of its mRNA targets such as MYC, BCL-2, and PTEN in an m6A-dependent manner.

[0009] Recently, METTL3 mediated m6A modification has been demonstrated to play an important role in T cell homeostasis and signal dependent induction of mRNA degradation in CD4 positive T cell lineages (Li et al 2017). Deletion of METTL3 in mouse T cells disrupts T cell homeostasis and differentiation. In a lymphopenic mouse adoptive transfer model, naive Mettl3-deficient T cells failed to undergo homeostatic expansion and remained in the naive state for up to 12 weeks, thereby preventing colitis. Consistent with these observations, the mRNAs of SOCS family genes encoding the STAT signalling inhibitory proteins SOCS1, SOCS3 and CISH were marked by m6A, exhibited slower mRNA decay and showed increased mRNAs and levels of protein expression in Mettl3-deficient naive T cells. This increased SOCS family activity consequently inhibited IL-7-mediated STAT5 activation and T cell homeostatic proliferation and differentiation. Thus METTL3 mediated m6A methylation has important roles for inducible degradation of Socs mRNAs in response to IL-7 signalling in order to reprogram naive T cells for proliferation and differentiation, pointing to a role in auto-immunity.

[0010] Recent studies have revealed that depletion of METTL3 leads to alterations in the propagation of diverse viruses (Winkler et al). Following viral infection or stimulation of cells with an inactivated virus, deletion of the m6A ‘writer’ METTL3 led to an increase in the induction of interferon-stimulated genes. Consequently, propagation of different viruses was suppressed in an interferon-signaling-dependent manner. Significantly, the mRNA of IFNB, was m6A modified and was stabilized following repression of METTL3. m6A serves as a negative regulator of interferon response by dictating the fast turnover of interferon mRNAs and consequently facilitating viral propagation.

[0011] METTL3-dependent m6A on HBV and HCV viral genome regulates recognition of the viral genome by RIG-I RNA sensor. Depletion of METTL3 enhances viral dsRNA recognition and induces an anti-viral immune response (Kim et al.).

[0012] Therefore METTL3 inhibitors may provide a novel therapeutic approach to a range of infectious and inflammatory diseases. In particular, they provide a potential treatments for viral diseases (e.g. DNA and RNA virsues).

[0013] Furthermore, METTL3-dependent m6A on endogenous mRNAs regulates recognition of by MAVS-dependent RNA sensors. Depletion of METTL3 enhances endogenous dsRNA recognition and induces an auto-immune response (Gao et al.). This implies that an antitumour immune response might be enhanced by METTL3 inhibition.

[0014] Thus, METTL3 inhibitors may also provide a novel therapeutic approach to enhance an anti-tumour immune response.

References

[0015] Barbieri I, Tzelepis K, Pandolfini L, Shi J, Millan-Zambrano G, Robson SC, Aspris D, Migliori V, Bannister AJ, Han N, De Braekeleer E, Ponstingl H, Hendrick A, Vakoc CR, Vassiliou GS, Kouzarides T. Nature. 2017 Dec 7;552(7683):126-131.

[0016] Chandola II, Das R, Panda B. Brief Funct Genomics. 2015 May;14(3):169-79. [0017] Cheng M, Gao Q, Wu M, Liang Y, Zhu F, Zhang Y, Zhang X, Li Y, Sheng L, Zhang H, Xiong Q, Yuan Q, Oncogene (2019; e-publication ahead of print).

[0018] Fry NJ, Law BA, llkayeva OR, Carraway KR, Holley CL, Mansfield KD. Oncotarget. 2018 Jul 27;9(58):31231-31243.

[0019] Koranda JL, Dore L, Shi H, Patel MJ, Vaasjo LO, Rao MN, Chen K, Lu Z, Yi Y, Chi W, He C, Zhuang X. Neuron. 2018 July 25; 99(2): 283-292.

[0020] Li HB, Tong J, Zhu S, Batista PJ, Duffy EE, Zhao J, Bailis W, Cao G, Kroehling L, Chen Y, Wang G, Broughton JP, Chen YG, Kluger Y, Simon MD, Chang HY, Yin Z, Flavell RA. Nature. 2017 Aug 17;548 (7667): 338-342

[0021] Li X, Tang J, Huang W, Wang F, Li P, Qin C, Qin Z, Zou Q, Wei J, Hua L, Yang H, Wang Z. Oncotarget. 2017 Oct 10;8(56):96103-96116.

[0022] Li Y, Wang Y, Zhang Z, Zamudio AV, Zhao JC. RNA. 2015 Aug;21(8):1511-8.

[0023] Lin S, Choe J, Du P, Triboulet R, Gregory Rl. Mol Cell. 2016 May 5;62(3):335-345.

[0024] Liu J, Yue Y, Han D, Wang X, Fu Y, Zhang L, Jia G, Yu M, Lu Z, Deng X, Dai Q, Chen W, He C. Nat Chem Biol. 2014 Feb;10(2):93-5.

[0025] Meyer KD, Patil DP, Zhou J, Zinoviev A, Skabkin MA, Elemento O, Pestova TA, Qian SB, Jaffrey SR. Cell. 2015 Nov 5; 163(4): 999-1010.

[0026] Meyer KD, Jaffrey SR. Nat Rev Mol Cell Biol. 2014 May;15(5):313-26.

[0027] Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR. Cell. 2012 Jun 22;149(7):1635-46.

[0028] Niu Y, Zhao X, Wu YS, Li MM, Wang XJ, Yang YG. Genomics Proteomics Bioinformatics. 2013 Feb;11(1):8-17.

[0029] Ping XL, Sun BF, Wang L, Xiao W, Yang X, Wang WJ, Adhikari S, Shi Y, Lv Y, Chen YS, Zhao X, Li A, Yang Y, Dahal U, Lou XM, Liu X, Huang J, Yuan WP, Zhu XF, Cheng T, Zhao YL, Wang X, Rendtlew Danielsen JM, Liu F, Yang YG. Cell Res. 2014 Feb;24(2):177- 89.

[0030] Sledz P, Jinek M. Elife. 2016 Sep 14;5.

[0031] Vu LP, Pickering BF, Cheng Y, Zaccara S, Nguyen D, Minuesa G, Chou T, Chow A, Saletore Y, MacKay M, Schulman J, Famulare C, Patel M, Klimek VM, Garrett-Bakelman FE, Melnick A, Carroll M, Mason CE, Jaffrey SR, Kharas MG. Nat Med. 2017 Nov;23(11):1369-1376. [0032] Wang X, Feng J, Xue Y, Guan Z, Zhang D, Liu Z, Gong Z, Wang Q, Huang J, Tang C, Zou T, Yin P. Nature. 2016 Jun 23; 534(7608): 575-8

[0033] Wang P, Doxtader KA, Nam Y. Mol Cell. 2016 Jul 21;63(2):306-317.

[0034] Winkler R, Gillis E, Lasman L, Safra M, Geula S, Soyris C, Nachshon A, Tai- Schmiedel J, Friedman N, Le-Trilling Vu T K, Trilling M, Mandelboim M, Hanna, J H, Schwartz S, Stern-Ginossar N. Nature Immunology (2018, e-publication ahead of print).

[0035] Yue Y, Liu J, He C. Genes Dev. 2015 Jul 1 ;29(13):1343-55.

Geon-Woo Kim, Hasan Imam, Mohsin Khan, Aleem Siddiqui, J Biol Chem, (27 Jul 2020; online publication ahead of print).

[0036] Yimeng Gao, Radovan Vasic, Yuanbin Song, Rhea Teng, Chengyang Liu , Rana Gbyli, Giulia Biancon, Raman Nelakanti, Kirsten Lobben, Eriko Kudo, Wei Liu, Anastasia Ardasheva, Xiaoying Fu, Xiaman Wang, Poorval Joshi, Veronica Lee, Burak Dura, Gabriella Viero, Akiko Iwasaki, Rong Fan, Andrew Xiao, Richard A Flavell, Hua-Bing Li, Toma Tebaldi, Stephanie Halene; Immunity (16 June 2020; Volume 52; 6; p887-1132).

[0037] Rosa M Rubio, Daniel P Depledge, Christopher Bianco, Letitia Thompson, Ian Mohr; Genes Dev. 2018 Dec 1;32(23-24): 1472-1484.

[0038] An object of this invention is to provide inhibitors of METTL3 activity.

SUMMARY OF THE INVENTION

[0039] In one aspect, the present invention provides a compound as defined herein, or a pharmaceutically acceptable salt thereof.

[0040] In another aspect, the present invention provides a pharmaceutical composition as defined herein which comprises a compound as defined herein, or a pharmaceutically acceptable salt thereof, and one or more pharmaceutically acceptable excipients.

[0041] In another aspect, the present invention provides a compound as defined herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition as defined herein, for use in therapy.

[0042] In another aspect, the present invention provides a compound as defined herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition as defined herein, for use in the treatment of a proliferative condition. [0043] In another aspect, the present invention provides a compound as defined herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition as defined herein, for use in the treatment of cancer. In a particular embodiment, the cancer is a human cancer.

[0044] In another aspect, the present invention provides a compound as defined herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition as defined herein, for use in the inhibition of METTL3 activity.

[0045] In another aspect, the present invention provides a compound as defined herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition as defined herein, for use in promoting an immune response (e.g. anti-viral or anti-tumour immune response).

[0046] In another aspect, the present invention provides a compound as defined herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition as defined herein, for use in increasing an innate immune response in a subject.

[0047] In another aspect, the present invention provides a compound as defined herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition as defined herein, for use in increasing or enhancing an anti-tumour immune response during immune-oncology therapy.

[0048] In another aspect, the present invention provides a compound as defined herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition as defined herein, for use in the treatment of an autoimmune disease.

[0049] In another aspect, the present invention provides a compound as defined herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition as defined herein, for use in the treatment of a neurological disease.

[0050] In another aspect, the present invention provides a compound as defined herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition as defined herein, for use in the treatment of an infectious disease.

[0051] In another aspect, the present invention provides a compound as defined herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition as defined herein, for use in the treatment of a viral infection. Suitably, the viral infection is a RNA viral infection. Suitably, the viral infection is human papillomavirus (HPV) or hepatitis.

[0052] In another aspect, the present invention provides a compound as defined herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition as defined herein, for use in the treatment of an inflammatory disease. [0053] In another aspect, the present invention provides the use of a compound as defined herein, or a pharmaceutically acceptable salt thereof, in the manufacture of a medicament for use in the treatment of a proliferative condition.

[0054] In another aspect, the present invention provides the use of a compound as defined herein, or a pharmaceutically acceptable salt thereof, in the manufacture of a medicament for use in the treatment of cancer. In a particular embodiment, the medicament is for use in the treatment of human cancers.

[0055] In another aspect, the present invention provides the use of a compound as defined herein, or a pharmaceutically acceptable salt thereof, in the manufacture of a medicament for the inhibition of METTL3 activity.

[0056] In another aspect, the present invention provides the use of a compound as defined herein, or a pharmaceutically acceptable salt thereof, in the manufacture of a medicament for promoting an immune response (e.g. anti-viral or anti-tumour immune response).

[0057] In another aspect, the present invention provides the use of a compound as defined herein, or a pharmaceutically acceptable salt thereof, in the manufacture of a medicament for for use in increasing an innate immune response in a subject.

[0058] In another aspect, the present invention provides the use of a compound as defined herein, or a pharmaceutically acceptable salt thereof, in the manufacture of a medicament for use in increasing or enhancing an anti-tumour immune response during immune-oncology therapy.

[0059] In another aspect, the present invention provides the use of a compound as defined herein, or a pharmaceutically acceptable salt thereof, in the manufacture of a medicament for use in the treatment of an autoimmune disease.

[0060] In another aspect, the present invention provides the use of a compound as defined herein, or a pharmaceutically acceptable salt thereof, in the manufacture of a medicament for use in the treatment of a neurological disease.

[0061] In another aspect, the present invention provides the use of a compound as defined herein, or a pharmaceutically acceptable salt thereof, in the manufacture of a medicament for use in the treatment of an infectious disease.

[0062] In another aspect, the present invention provides the use of a compound as defined herein, or a pharmaceutically acceptable salt thereof, in the manufacture of a medicament for use in the treatment of a viral infection. Suitably, the viral infection is a RNA viral infection. Suitably, the viral infection is human papillomavirus (HPV) or hepatitis. [0063]Inanotheraspect,the presentinvention providesthe use ofa compoundasdefined herein,orapharmaceuticallyacceptablesaltthereof,inthemanufac tureofamedicamentfor useinthetreatmentofaninflammatorydisease.

[0064]In anotheraspect,the presentinvention provides a method ofinhibiting METTL3 activityinvitroorin vivo,saidmethodcomprisingcontactingacellwithaneffectiveamoun tofa compound as defined herein, or a pharmaceutically acceptable salt thereof, or a pharmaceuticalcompositionasdefinedherein.

[0065]In another aspect, the present invention provides a method of inhibiting cell proliferationinvitroorinvivo,saidmethodcomprisingcontactinga cellwithaneffectiveamount ofacompoundasdefinedherein,orapharmaceuticallyacceptablesalt ,ora pharmaceutical compositionasdefinedherein.

[0066]Inanotheraspect,the presentinventionprovidesa methodofinhibitingmetastasisin vitroorinvivo,saidmethodcomprisingcontactingacellwithaneffec tiveamountofacompound asdefinedherein,orapharmaceuticallyacceptablesalt,orapharmac euticalcompositionas definedherein.

[0067]Inanotheraspect,the presentinvention providesa methodofpromotingan immune response (e.g.anti-viraloranti-tumourimmune response)ina subjectinneedthereof,said method comprising administering to the subject a therapeutically effective amountofa compound as defined herein,ora pharmaceutically acceptable salt,ora pharmaceutical compositionasdefinedherein.

[0068]In anotheraspect,the presentinvention provides a method ofincreasing an innate immune response inasubjectinneedthereof,said method comprising administeringtothe subject a therapeutically effective amount of a compound as defined herein, or a pharmaceuticallyacceptablesalt,orapharmaceuticalcompositiona sdefinedherein.

[0069]Inanotheraspect,thepresentinventionprovidesamethodo fincreasingorenhancing ananti-tumourimmune response during immune-oncologytherapy,said methodcomprising administeringtoasubjectinneedthereofatherapeuticallyeffectiv eamountofacompoundas defined herein,ora pharmaceutically acceptable salt,ora pharmaceuticalcomposition as definedherein.

[0070]Inanotheraspect,the presentinventionprovidesa method oftreating a proliferative disorder,said method comprisingadministeringtoa subjectinneedthereofatherapeutically effectiveamountofacompoundasdefinedherein,orapharmaceuticall yacceptablesalt,ora pharmaceuticalcompositionasdefinedherein. [0071] In another aspect, the present invention provides a method of treating cancer, said method comprising administering to a subject in need thereof a therapeutically effective amount of a compound as defined herein, or a pharmaceutically acceptable salt, or a pharmaceutical composition as defined herein.

[0072] In another aspect, the present invention provides a method of treating an autoimmune disease, said method comprising administering to a subject in need thereof a therapeutically effective amount of a compound as defined herein, or a pharmaceutically acceptable salt, or a pharmaceutical composition as defined herein.

[0073] In another aspect, the present invention provides a method of treating a neurological disease, said method comprising administering to a subject in need thereof a therapeutically effective amount of a compound as defined herein, or a pharmaceutically acceptable salt, or a pharmaceutical composition as defined herein.

[0074] In another aspect, the present invention provides a method of treating an infectious disease, said method comprising administering to a subject in need thereof a therapeutically effective amount of a compound as defined herein, or a pharmaceutically acceptable salt, or a pharmaceutical composition as defined herein.

[0075] In another aspect, the present invention provides a method of treating a viral infection, said method comprising administering to a subject in need thereof a therapeutically effective amount of a compound as defined herein, or a pharmaceutically acceptable salt, or a pharmaceutical composition as defined herein. Suitably, the viral infection is a RNA viral infection. Suitably, the viral infection is human papillomavirus (HPV) or hepatitis.

[0076] In another aspect, the present invention provides a method of treating an inflammatory disease, said method comprising administering to a subject in need thereof a therapeutically effective amount of a compound as defined herein, or a pharmaceutically acceptable salt, or a pharmaceutical composition as defined herein.

[0077] In one aspect, the present invention provides a combination comprising a compound as defined herein, or a pharmaceutically acceptable salt thereof, with one or more additional therapeutic agents.

[0078] The present invention further provides a method of synthesising a compound, or a pharmaceutically acceptable salt, as defined herein.

[0079] In another aspect, the present invention provides a compound as defined herein, or a pharmaceutically acceptable salt, obtainable by, or obtained by, or directly obtained by a method of synthesis as defined herein. [0080] In another aspect, the present invention provides novel intermediates as defined herein which are suitable for use in any one of the synthetic methods as set out herein.

[0081] Preferred, suitable, and optional features of any one particular aspect of the present invention are also preferred, suitable, and optional features of any other aspect.

DETAILED DESCRIPTION OF THE INVENTION

Definitions

[0082] Unless otherwise stated, the following terms used in the specification and claims have the following meanings set out below.

[0083] It is to be appreciated that references to “treating” or “treatment” include prophylaxis as well as the alleviation of established symptoms of a condition. “Treating” or “treatment” of a state, disorder or condition therefore includes: (1) preventing or delaying the appearance of clinical symptoms of the state, disorder or condition developing in a human that may be afflicted with or predisposed to the state, disorder or condition but does not yet experience or display clinical or subclinical symptoms of the state, disorder or condition, (2) inhibiting the state, disorder or condition, i.e., arresting, reducing or delaying the development of the disease or a relapse thereof (in case of maintenance treatment) or at least one clinical or subclinical symptom thereof, or (3) relieving or attenuating the disease, i.e., causing regression of the state, disorder or condition or at least one of its clinical or subclinical symptoms.

[0084] A “therapeutically effective amount” means the amount of a compound that, when administered to a mammal for treating a disease, is sufficient to effect such treatment for the disease. The "therapeutically effective amount" will vary depending on the compound, the disease and its severity and the age, weight, etc., of the mammal to be treated.

[0085] In this specification the term “alkyl” includes both straight and branched chain alkyl groups. References to individual alkyl groups such as “propyl” are specific for the straight chain version only and references to individual branched chain alkyl groups such as “isopropyl” are specific for the branched chain version only. For example, “C 1-6 alkyl” includes C 1-4 alkyl, C 1-3 alkyl, propyl, isopropyl and t-butyl. A similar convention applies to other radicals, for example “phenyl(C 1-6 alkyl)” includes phenyl(C 1-4 alkyl), benzyl, 1-phenylethyl and 2-phenylethyl.

[0086] The term "(m-nC)" or “Cm-n”, or "(m-nC) group" or “Cm-n” used alone or as a prefix, refers to any group having m to n carbon atoms.

[0087] The term "alkenyl", as used herein, refers to an aliphatic group containing at least one double bond and is intended to include both "unsubstituted alkenyls" and "substituted alkenyls", the latter of which refers to alkenyl moieties having substituents replacing a hydrogen on one or more carbons of the alkenyl group. Such substituents may occur on one or more carbons that are included or not included in one or more double bonds. Moreover, such substituents include all those contemplated for alkyl groups, as discussed below, except where stability is prohibitive. For example, substitution of alkenyl groups by one or more alkyl, carbocyclyl, aryl, heterocyclyl, or heteroaryl groups is contemplated.

[0088] The term "alkynyl", as used herein, refers to an aliphatic group containing at least one triple bond and is intended to include both "unsubstituted alkynyls" and "substituted alkynyls", the latter of which refers to alkynyl moieties having substituents replacing a hydrogen on one or more carbons of the alkynyl group. Such substituents may occur on one or more carbons that are included or not included in one or more triple bonds. Moreover, such substituents include all those contemplated for alkyl groups, as discussed above, except where stability is prohibitive. For example, substitution of alkynyl groups by one or more alkyl, carbocyclyl, aryl, heterocyclyl, or heteroaryl groups is contemplated.

[0089] An “alkylene” group is an alkyl group that is positioned between and serves to connect two other chemical groups. Thus, “ C 1-3 alkylene” means a linear saturated divalent hydrocarbon radical of one to three carbon atoms or a branched saturated divalent hydrocarbon radical of three atoms, for example, methylene, ethylene, propylene, and the like.

[0090] The term “C m-n cycloalkyl” means a hydrocarbon ring containing from m to n carbon atoms, for example “C 3-6 cycloalkyl” means a hydrocarbon ring containing from 3 to 6 carbon atoms, for example, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl. The term “C m-n cycloalkyl” also encompasses non-aromatic saturated or partially saturated monocyclic, fused, bridged, or spiro bicyclic carbocyclic ring system(s). The term “C m-n cycloalkyl” includes both monovalent species and divalent species. Monocyclic “C m-n cycloalkyl” rings contain from about 3 to 12 (suitably from 3 to 8, most suitably from 5 to 6) ring carbon atoms. Bicyclic “C m- n cycloalkyl” contain from 7 to 17 ring carbon atoms, suitably 7 to 12 ring carbon atoms. Bicyclic “C m-n cycloalkyl” rings may be fused, spiro (e.g. spiro[3,3]heptane), or bridged ring systems (e.g. bicyclo[2.2.1]hept-2-ene and bicyclo[1.1.1]pentanyl).

[0091] The term “halo” or “halogeno” refers to fluoro, chloro, bromo and iodo.

[0092] The term “heterocyclyl”, “heterocyclic” or “heterocycle” means a non-aromatic saturated or partially saturated monocyclic, fused, bridged, or spiro bicyclic heterocyclic ring system(s). The term heterocyclyl includes both monovalent species and divalent species. Monocyclic heterocyclic rings contain from about 3 to 12 (suitably from 3 to 7, most suitably from 5 to 6) ring atoms, with from 1 to 5 (suitably 1 , 2 or 3) heteroatoms selected from nitrogen, oxygen or sulfur in the ring. Bicyclic heterocycles contain from 7 to 17 member atoms, suitably 7 to 12 member atoms, in the ring. Bicyclic heterocycles contain from about 7 to about 17 ring atoms, suitably from 7 to 12 ring atoms. Bicyclic heterocyclic(s) rings may be fused, spiro, or bridged ring systems. Examples of heterocyclic groups include cyclic ethers such as oxiranyl, oxetanyl, tetrahydrofuranyl, dioxanyl, and substituted cyclic ethers. Heterocycles containing nitrogen include, for example, azetidinyl, pyrrolidinyl, piperidinyl, piperazinyl, tetrahydrotriazinyl, tetrahydropyrazolyl, and the like. Typical sulfur containing heterocycles include tetrahydrothienyl, dihydro-1 , 3-dithiol, tetrahydro-2/7-thiopyran, and hexahydrothiepine. Other heterocycles include dihydro-oxathiolyl, tetrahydro-oxazolyl, tetrahydro-oxadiazolyl, tetrahydrodioxazolyl, tetrahydro-oxathiazolyl, hexahydrotriazinyl, tetrahydro-oxazinyl, morpholinyl, thiomorpholinyl, tetrahydropyrimidinyl, dioxolinyl, octahydrobenzofuranyl, octahydrobenzimidazolyl, and octahydrobenzothiazolyl. For heterocycles containing sulfur, the oxidized sulfur heterocycles containing SO or SO 2 groups are also included. Examples include the sulfoxide and sulfone forms of tetrahydrothienyl and thiomorpholinyl such as tetrahydrothiene 1,1 -dioxide and thiomorpholinyl 1,1 -dioxide. A suitable value for a heterocyclyl group which bears 1 or 2 oxo (=O) or thioxo (=S) substituents is, for example, 2-oxopyrrolidinyl, 2-thioxopyrrolidinyl, 2-oxoimidazolidinyl, 2-thioxoimidazolidinyl, 2-oxopiperidinyl, 2,5-dioxopyrrolidinyl, 2,5-dioxoimidazolidinyl or 2,6-dioxopiperidinyl. Particular heterocyclyl groups are saturated monocyclic 3 to 7 membered heterocyclyls containing 1, 2 or 3 heteroatoms selected from nitrogen, oxygen or sulfur, for example azetidinyl, tetrahydrofuranyl, tetrahydropyranyl, pyrrolidinyl, morpholinyl, tetrahydrothienyl, tetrahydrothienyl 1,1-dioxide, thiomorpholinyl, thiomorpholinyl 1,1-dioxide, piperidinyl, homopiperidinyl, piperazinyl or homopiperazinyl. As the skilled person would appreciate, any heterocycle may be linked to another group via any suitable atom, such as via a carbon or nitrogen atom. However, reference herein to piperidino or morpholino refers to a piperidin-1-yl or morpholin-4-yl ring that is linked via the ring nitrogen.

[0093] By “bridged ring systems” is meant ring systems in which two rings share more than two atoms, see for example Advanced Organic Chemistry, by Jerry March, 4 th Edition, Wiley Interscience, pages 131-133, 1992. Examples of bridged heterocyclyl ring systems include, aza-bicyclo[2.2.1]heptane, 2-oxa-5-azabicyclo[2.2.1]heptane, aza-bicyclo[2.2.2]octane, aza- bicyclo[3.2.1]octane, quinuclidine, 6-azabicyclo[3.1.1]heptane, 8-azabicyclo[3.2.1]octane, bicyclo[3.2.1]octane, 7-oxabicyclo[2.2.1]hept-2-ene and 3-oxa-8-azabicyclo[3.2.1]octane .

[0094] The term “heteroaryl” or “heteroaromatic” means an aromatic mono-, bi-, or polycyclic ring incorporating one or more (for example 1-4, particularly 1 , 2 or 3) heteroatoms selected from nitrogen, oxygen or sulfur. The term heteroaryl includes both monovalent species and divalent species. Examples of heteroaryl groups are monocyclic and bicyclic groups containing from five to twelve ring members, and more usually from five to ten ring members. The heteroaryl group can be, for example, a 5- or 6-membered monocyclic ring or a 9- or 10- membered bicyclic ring, for example a bicyclic structure formed from fused five and six membered rings or two fused six membered rings. Each ring may contain up to about four heteroatoms typically selected from nitrogen, sulfur and oxygen. Typically the heteroaryl ring will contain up to 3 heteroatoms, more usually up to 2, for example a single heteroatom. In one embodiment, the heteroaryl ring contains at least one ring nitrogen atom. The nitrogen atoms in the heteroaryl rings can be basic, as in the case of an imidazole or pyridine, or essentially non-basic as in the case of an indole or pyrrole nitrogen. In general the number of basic nitrogen atoms present in the heteroaryl group, including any amino group substituents of the ring, will be less than five.

[0095] Examples of heteroaryl include furyl, pyrrolyl, thienyl, oxazolyl, isoxazolyl, imidazolyl, pyrazolyl, thiazolyl, isothiazolyl, oxadiazolyl, thiadiazolyl, triazolyl, tetrazolyl, pyridyl, pyridazinyl, pyrimidinyl, pyrazinyl, 1,3, 5- triazenyl, benzofuranyl, indolyl, isoindolyl, benzothienyl, benzoxazolyl, benzimidazolyl, benzothiazolyl, benzothiazolyl, indazolyl, purinyl, benzofurazanyl, quinolyl, isoquinolyl, quinazolinyl, quinoxalinyl, cinnolinyl, pteridinyl, naphthyridinyl, carbazolyl, phenazinyl, benzisoquinolinyl, pyridopyrazinyl, thieno[2,3-b]furanyl, 2H-furo[3,2-b]-pyranyl, 5H-pyrido[2,3-d]-o-oxazinyl, 1H-pyrazolo[4,3-d]-oxazolyl, 4H-imidazo[4,5-d]thiazolyl, pyrazino[2,3-d]pyridazinyl, imidazo[2,1-b]thiazolyl, imidazo[1,2-b][1,2,4]triazinyl. “Heteroaryl” also covers partially aromatic bi- or polycyclic ring systems wherein at least one ring is an aromatic ring and one or more of the other ring(s) is a non-aromatic, saturated or partially saturated ring, provided at least one ring contains one or more heteroatoms selected from nitrogen, oxygen or sulfur. Examples of partially aromatic heteroaryl groups include for example, tetrahydroisoquinolinyl, tetrahydroquinolinyl, 2-oxo- 1,2,3,4-tetrahydroquinolinyl, dihydrobenzthienyl, dihydrobenzfuranyl, 2,3-dihydro- benzo[1,4]dioxinyl, benzo[1 ,3]dioxolyl, 2,2-dioxo-1,3-dihydro-2-benzothienyl, 4, 5,6,7- tetrahydrobenzofuranyl, indolinyl, 1,2,3,4-tetrahydro-1 ,8-naphthyridinyl, 1,2,3,4-tetrahydropyrido[2,3-b]pyrazinyl and 3,4-dihydro-2H -pyrido[3,2-b][1,4]oxazinyl.

[0096] Examples of five membered heteroaryl groups include but are not limited to pyrrolyl, furanyl, thienyl, imidazolyl, furazanyl, oxazolyl, oxadiazolyl, oxatriazolyl, isoxazolyl, thiazolyl, isothiazolyl, pyrazolyl, triazolyl and tetrazolyl groups.

[0097] Examples of six membered heteroaryl groups include but are not limited to pyridyl, pyrazinyl, pyridazinyl, pyrimidinyl and triazinyl.

[0098] A bicyclic heteroaryl group may be, for example, a group selected from: a benzene ring fused to a 5- or 6-membered ring containing 1, 2 or 3 ring heteroatoms; a pyridine ring fused to a 5- or 6-membered ring containing 1 , 2 or 3 ring heteroatoms; a pyrimidine ring fused to a 5- or 6-membered ring containing 1 or 2 ring heteroatoms; a pyrrole ring fused to a 5- or 6-membered ring containing 1, 2 or 3 ring heteroatoms; a pyrazole ring fused to a 5- or 6-membered ring containing 1 or 2 ring heteroatoms; a pyrazine ring fused to a 5- or 6-membered ring containing 1 or 2 ring heteroatoms; an imidazole ring fused to a 5- or 6-membered ring containing 1 or 2 ring heteroatoms; an oxazole ring fused to a 5- or 6-membered ring containing 1 or 2 ring heteroatoms; an isoxazole ring fused to a 5- or 6-membered ring containing 1 or 2 ring heteroatoms; a thiazole ring fused to a 5- or 6-membered ring containing 1 or 2 ring heteroatoms; an isothiazole ring fused to a 5- or 6-membered ring containing 1 or 2 ring heteroatoms; a thiophene ring fused to a 5- or 6-membered ring containing 1, 2 or 3 ring heteroatoms; a furan ring fused to a 5- or 6-membered ring containing 1 , 2 or 3 ring heteroatoms; a cyclohexyl ring fused to a 5- or 6-membered heteroaromatic ring containing 1, 2 or 3 ring heteroatoms; and a cyclopentyl ring fused to a 5- or 6-membered heteroaromatic ring containing 1 , 2 or 3 ring heteroatoms.

[0099] Particular examples of bicyclic heteroaryl groups containing a six membered ring fused to a five membered ring include but are not limited to benzfuranyl, benzthiophenyl, benzimidazolyl, benzoxazolyl, benzisoxazolyl, benzthiazolyl, benzisothiazolyl, isobenzofuranyl, indolyl, isoindolyl, indolizinyl, indolinyl, isoindolinyl, purinyl (e.g., adeninyl, guaninyl), indazolyl, benzodioxolyl and pyrazolopyridinyl groups.

[00100] Particular examples of bicyclic heteroaryl groups containing two fused six membered rings include but are not limited to quinolinyl, isoquinolinyl, chromanyl, thiochromanyl, chromenyl, isochromenyl, chromanyl, isochromanyl, benzodioxanyl, quinolizinyl, benzoxazinyl, benzodiazinyl, pyridopyridinyl, quinoxalinyl, quinazolinyl, cinnolinyl, phthalazinyl, naphthyridinyl and pteridinyl groups.

[00101] The term “aryl” means a cyclic or polycyclic aromatic ring having from 5 to 12 carbon atoms. The term aryl includes both monovalent species and divalent species. Examples of aryl groups include, but are not limited to, phenyl, biphenyl, naphthyl and the like. In particular embodiment, an aryl is phenyl.

[00102] The term "optionally substituted" refers to either groups, structures, or molecules that are substituted and those that are not substituted. [00103] Where optional substituents are chosen from “one or more” groups it is to be understood that this definition includes all substituents being chosen from one of the specified groups or the substituents being chosen from two or more of the specified groups.

[00104] The phrase “compound of the invention” means those compounds which are disclosed herein, both generically and specifically.

Compounds of the invention

[00105] In one aspect, the present invention relates to compounds of the formula (I), or a pharmaceutically acceptable salt thereof, wherein:

X is selected from: , and wherein:

R 1a , R 1b , R 1c , R 1d , R 1e and R 1f , are independently selected from hydrogen, cyano, halo or a group of the formula: -L 1a -L 1b -Q 1 wherein

L 1a is absent or selected from C 1-3 alkylene and C 3-5 cycloalkylene, wherein C 1- 3 alkylene and C 3-5 cycloalkylene are optionally substituted by one or more substituents selected from aryl, aryl-(1-2C)alkyl, heteroaryl, aryl-(1-2C)alkyl, C 1-3 alkyl, cyano, C 1-3 alkoxy, halo, hydroxy, C 1-3 haloalkoxy, -O-C 3-4 cycloalkyl, NH 2 or oxo; wherein any -O-C 3-6 cycloalkyl aryl, aryl-(1-2C)alkyl, heteroaryl, aryl-(1-2C)alkyl or C 1- 3 alkyl is optionally further substituted by one or more substituents selected from cyano, hydroxy, C 1-3 alkoxy, halo, C 1-3 haloalkoxy, -O-C 3-4 cycloalkyl, or NH 2 ; wherein - O-C 3-6 cycloalkyl is optionally further subsitutued with halo, cyano or hydroxy; ; or C 1- 3 alkylene is optionally spiro-fused to a a 3- to 5-membered cycloalkyl or heterocyclic ring, or a spirocyclic ring system, each of which is optionally substituted by one or more substituents selected from C 1-2 alkyl, C 1-2 haloalkyl, cyano, hydroxy, C 1-2 alkoxy, halo or C 1-2 haloalkoxy; L 1b is absent or selected from O, S, SO, SO 2 , N(R r ), C(O), C(O)O, OC(O), C(O)N(R r ), N(R r )C(O), N(R r )C(O)N(R s ), S(O) 2 N(R r ), or N(R r )SO 2 , wherein R r and R s are each independently selected from hydrogen or C 1-3 alkyl, wherein C 1-3 alkyl is optionally further substituted by cyano, hydroxy, C 1-2 alkoxy, halo, C 1-2 haloalkoxy, NH 2 , C 3-6- cycloalkyl or a 3 to 6 membered heterocyclyl, wherein the C 3-6 cycloalkyl or a 3 to 6 membered heterocyclyl in turn are optionally further substituted by halo, hydroxy, C 1- 2 alkoxy or C 1-2 haloalkoxy; and

Q 1 is hydrogen, cyano, C 1-6 alkyl, C 3-8 cycloalkyl (including a spirocyclic carbocyclic and a bridged C 3-8 cycloalkyl), C 2-3 alkenyl, C 2-3 alkynyl, aryl, heterocyclyl (including a mono- or bicyclic-heterocyclic ring system, a spirocyclic heterocyclic ring system, or a bridged heterocyclic ring system) or heteroaryl; and wherein Q 1 is optionally substituted by one or more substituents selected from C 1-4 alkyl, halo, trifluoromethyl, trifluoromethoxy, amino, oxo, cyano, hydroxy, carboxy, carbamoyl, sulphamoyl, NR t R u , OR t , C(O)R t , C(O)OR t , OC(O)R t , C(O)N(R t )R u , N(R t )C(O)R u , -S(O) 0-2 R t R u , S(O) y R t (where y is 0, 1 or 2), SO 2 N(R t )R u , N(R t )SO 2 R u or (CH 2 ) z NR t R u (where z is 1 , 2 or 3), wherein C 1-4 alkyl is in turn optionally substituted by one more substituents selected from cyano, hydroxy, C 1-2 alkoxy, halo, C 1-2 haloalkoxy, -O-C 3 cycloalkyl, wherein -O-C 3 cycloalkyl is optionally subsitutued with halo, cyano or hydroxy; and wherein R t and R u are each independently selected from hydrogen or C 1-4 alkyl; ortionally substituted by one or more groups of the formula:

-L 1c -L 1d -Z 1 wherein

L 1c is absent or C 1-3 alkylene optionally substituted by C 1-2 alkyl or oxo;

L 1d is absent or selected from C(O), O, C(O)O, OC(O), C(O)N(R v ), N(R v )C(O), N(R v )C(O)N(R w ), S(O) 2 N(R v ), or N(R v )SO 2 , wherein R v and R w are each independently selected from hydrogen or C 1-2 alkyl; and

Z 1 is C 3-8 cycloalkyl (including a spirocyclic carbocyclic and a bridged C 3-8 cycloalkyl), heterocyclyl (including a mono- or bicyclic-heterocyclic ring system, a spirocyclic heterocyclic ring system, or a bridged heterocyclic ring system), aryl or heteroaryl, ; wherein Z 1 is optionally substituted by one or more substituents selected from C 1- 4 alkyl, C 3-6 cycloalkyl, heterocyclyl, halo, C 1-4 haloalkyl, C 1-4 haloalkoxy, C 1-4 alkoxy, cyano, hydroxyl, NR t1 R u1 , OR t1 , C(O)R t1 , C(O)OR t1 , OC(O)R t1 , C(O)N(R t1 )R u1 , N(R t1 )C(O)R u1 , -S(O) 0-2 R t1 R u1 , S(O) y R t1 (where y is 0, 1 or 2), SO 2 N(R t1 )R u1 , N(R t1 )SO 2 R u1 or (CH 2 ) z NR t1 R u1 (where z is 1, 2 or 3), wherein R t1 and R u1 are each independently selected from hydrogen or C 1-4 alkyl; and when Z 1 is C 3-8 cycloalkyl or heterocyclyl, Z 1 is optionally spiro-fused to a C 3-6 cycloalkyl or heterocyclyl ring;

R 1a’ is selected from hydrogen, halo and methyl; R 2a , R 2b and R 2c are selected from hydrogen, halo or a group of the formula:

-L 2a -L 2b -Q 2 wherein L 2a is absent or C 1-3 alkylene optionally substituted by C 1-2 alkyl or oxo; L 2b is absent or selected from O, S, SO, SO 2 , N(R n ), C(O), C(O)O, OC(O), C(O)N(R n ), N(R n )C(O), N(R n )C(O)N(R o ), S(O) 2 N(R n ), or N(R n )SO 2 , wherein R n and R o are each independently selected from hydrogen or C 1-2 alkyl; and

Q 2 is hydrogen, cyano, C 1-6 alkyl, C 3-6 cycloalkyl, aryl, heterocyclyl or heteroaryl, each of which is optionally substituted by one or more substituents selected from halo, trifluoromethyl, trifluoromethoxy, amino, cyano, hydroxy, amino, carboxy, carbamoyl, sulphamoyl, C 1-4 alkyl, NR p R q , OR p , C(O)R p , C(O)OR p , OC(O)R p , C(O)N(R p )R q , N(R r )C(O)R p , S(O) y R p (where y is 0, 1 or 2), SO 2 N(R p )R q , N(R r )SO 2 R p or (CH 2 ) z NR p R q (where z is 1, 2 or 3), wherein R p and R q are each independently selected from hydrogen or C 1-4 alkyl;

Y is selected from:

wherein:

R 3a1 , R 3b1 , R 3c1 , R 3d1 , R 3e1 , R 3f1 , R 3g1 , R 3h1 , R 3i1 , R 3j1 , R 3k1 , R 3l1 , R 3m1 , R 3n1 , R 3o1 , R 3p1 , R 3q1 , R 3r1 and R 3s1 are independently selected from hydrogen (including deuterium), C 1-6 alkyl, C 3-4 cycloalkyl, hydroxy, and halo; and wherein C 1-6 alkyl, or C 3-4 cycloalkyl is optionally substituted with one or more substituents selected from halo, amino, cyano, and hydroxy;

R 3a2 , R 3b2 , R 3c2 , R 3d2 , R 3e2 , R 3f2 , R 3g2 , R 3h2 , R 3i2 , R 3j2 , R 3k2 , R 3l2 , R 3m2 , R 3n2 , R 3o2 , R 3p2 , R 3q2 , R 3r2 and R 3s2 are hydrogen or halo; with the proviso that R 3a1 , R 3b1 , R 3i1 , R 3l1 , R 3o1 , R 3r1 , R 3a2 , R 3b2 , R 3i2 , R 3l2 , R 3o2 and R 3s1 cannot be halo when n=1 or when n=2 and the carbon atom to which they are attached is linked to an oxygen or nitrogen atom; or R 3a1 and R 3a2 , R 3b1 and R 3b2 , R 3c1 and R 3c2 , R 3d1 and R 3d2 , R 3e1 and R 3e2 , R 3f1 and R 3f2 , R 3g1 and R 3g2 , R 3h1 and R 3h2 , R 3i1 and R 3i2 , R 3j1 and R 3j2 , R 3k1 and R 3k2 , R 3l1 and R 3l2 , R 3m1 and R 3m2 , R 3n1 and R 3n2 , R 3o1 and R 3o2 , R 3p1 and R 3p2 , R 3q1 and R 3q2 , or R 3r1 and R 3r2 or R 3s1 and R 3s2 may be linked such that, together with the carbon atom to which they are attached, they form a spiro-fused C 3-4 cycloalkyl which is optionally substituted with one or more substituents selected from halo, methyl, amino, cyano, and hydroxy; n is 0, 1 or 2; and

Z is selected from one of the following structures: i) wherein:

B 1 is A 5 , wherein A 5 is selected from CR 16 and N, wherein R 16 is selected from hydrogen, halo, cyano, C 1-4 alkyl, C 2-4 alkenyl, C 2-4 alkynyl, a 5- or 6-membered heteroaryl, C 1-4 alkoxy, C 1-4 haloalkyl, C 1-4 haloalkoxy, C 3-4 cycloalkyl, a 3- to 4-membered heterocyclyl and C 3-4 - cycloalkoxy;

B 2 is A 6 , wherein A 6 is selected from N or CR 17 , wherein R 17 , R H2 , R H4 and R H5 are selected from hydrogen, hydroxy, halo, cyano, C 1-5 alkyl, C 1-4 haloalkyl, C 1-4 alkoxy, C 1-4 haloalkoxy, C 2-4 alkenyl, C 2-4 alkynyl, phenyl, a 5- or 6-membered or heteroaryl, C 3-6 cycloalkyl, -O-C 3- 6 cycloalkyl, heterocyclyl, -O-heterocyclyl (carbon-linked), -(OCH 2 CH 2 )m-NR q R r , - (OCH 2 CH 2 )m-OCH 3 wherein m is an integer from 1 to 6, NR q R r , -C(O)-NR q R r , -C(O)OR q , wherein R q and R r are each independently hydrogen, C 1-5 alkyl, C 3-6 cycloalkyl, a 3- to 6- membered carbon-linked heterocyclyl, or R q and R r are linked together such that, together with the nitrogen atom to which they are attached, they form a 3- to 6-membered heterocyclic ring; wherein any C 1-5 alkyl, C 1-4 alkoxy, C 2-4 alkenyl, C 2-4 alkynyl, phenyl, 5- or 6-membered or heteroaryl, C 3-6 cycloalkyl, -O-C 3-6 cycloalkyl, heterocyclyl or -O-heterocyclyl (carbon-linked)is optionally further substituted by one or more substituents selected from C 1-2 alkyl, cyano, C 1- 2 haloalkyl, hydroxy, C 1-2 alkoxy, halo, C 1-2 haloalkoxy, NR 1ea R 1fa or -S(O) 0-2 R 1ea R 1fa , whereinR 1ea and R 1fa are H or C 1-2 alkyl;

B 3 is N or CR z1 , wherein R z1 is selected from hydrogen, C 1-4 alkyl, cyano, halo, C 1-4 haloalkyl, C 1-4 haloalkoxy, C 1-4 alkoxy, C 3-6 cycloalkyl and -O-C 3-6 cycloalkyl, wherein C 3-6 cycloalkyl and - O-C 3-6 cycloalkyl are optionally substituted by one or more of halo, methyl or methoxy;

B 4 is selected from C or N;

B 5 is selected from CR Zi1b or NR B5N , wherein: R Zi1b is selected from hydrogen, C 1-4 alkyl, cyano, halo, NH 2 and C 1-4 alkoxy; and R B5N is selected from hydrogen or C 1-4 alkyl;

B 7 is N, NR Z2N or CR Z2 , wherein R Z2 is selected from hydrogen, C 1-4 alkyl, cyano, halo, NH 2 and C 1-4 alkoxy; and R Z2N is selected from hydrogen or C 1-4 alkyl;

B 8 is selected from C or N; with the proviso that no more than four of B 1 to B 8 are N.

Y 2 is A 7 , wherein A 7 is selected from CR 18 and N; wherein R 18 is selected from hydrogen, halo, cyano, C 1-4 alkyl, C 1-4 alkoxy, C 1-4 haloalkyl, C 1-4 haloalkoxy, C 3-4 cycloalkyl, a 3- to 4- membered heterocyclyl and C 3-4 cycloalkoxy;

Y 3 is N or CR z1a wherein R z1a , is selected from hydrogen, hydroxy, C 1-4 alkyl, cyano, halo, C 1- 4 haloalkyl, C 1-4 haloalkoxy, C 1-4 alkoxy, C 3-6 cycloalkyl and -O-C 3-6 cycloalkyl, wherein C 3- 6 cycloalkyl and -O-C 3-6 cycloalkyl are optionally subsitutued by one or more of halo, methyl or methoxy;

Y 4 is C or N

Y 5 is C-R Y5 or NR Y5N , wherein:

R Y5 is selected from hydrogen, C 1-4 alkyl, cyano, halo, NH 2 and C 1-4 alkoxy;

R Y5N is selected from hydrogen or C 1-4 alkyl;

Y 6 is C-R Zi2e or N, wherein R Zi2e is selected from hydrogen, C 1-4 alkyl, cyano, halo, NH 2 and C 1-4 alkoxy

Y 7 is O, S, CR Z2a or N, wherein R Z2a is selected from hydrogen, C 1-4 alkyl, cyano, halo, NH 2 and C 1-4 alkoxy;

Y 8 IS C or N;

Y 9 is CR Z3a or N; wherein

R Z3a is selected from hydrogen, C 1-4 alkyl, cyano, halo, NH 2 and C 1-4 alkoxy; with the proviso that no more than four of Y 1 to Y 8 are N.

X 1 is N or C-R Z9 , wherein R Z9 is selected from hydrogen, halo, cyano, C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 alkoxy, C 1-4 haloalkoxy;

X 2 is selected from N or CR 4 wherein: R 4 is selected from hydrogen, halo, cyano, C1-4 alkyl, C1-4 haloalkyl, C1-4alkoxy, C1-4 haloalkoxy (e.g. hydrogen, halo, cyano and methyl);

X 3 is N;

X 4 is N or C;

X 5 is selected from N, CR 5 and CR x5a R x5b wherein:

R 5 is selected from hydrogen, halo, cyano, C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 alkoxy, C 1-4 haloalkoxy (e.g. hydrogen, halo, cyano and methyl);

Rx 5a and R x5b are independently selected from hydrogen, halo, cyano, C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 alkoxy, C 1-4 haloalkoxy (e.g. hydrogen, halo, cyano and methyl); either:

X 6 is A 1 and X 7 is A 2 ; or

X 6 is A 8 and X 7 is A 9 or A 11 , wherein:

A1 is selected from CR 12 and N; wherein R 12 is selected from selected from hydrogen, halo, cyano, C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 alkoxy and C 1-4 haloalkoxy (e.g. hydrogen, halo, cyano and C 1-4 alkyl); A 2 is selected from CR 13 and N; wherein R 13 selected from hydrogen, halo, cyano, C 1- 4 alkyl, C 1-4 haloalkyl, C 1-4 alkoxy, C 1-4 haloalkoxy (e.g. hydrogen, halo, cyano, methoxy and methyl);

A 8 is selected from CR 19 R 20 and NR 21 ; wherein:

R 19 and R 20 are independently selected from hydrogen, halo, cyano, C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 alkoxy, C 1-4 haloalkoxy (e.g hydrogen, halo, cyano and C 1-4 alkyl);

R 21 is hydrogen or C 1-4 alkyl; A 9 is selected from CR 22 R 23 and NR 24 ; wherein: R 22 and R 23 are independently selected from selected from hydrogen, halo, cyano, C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 alkoxy, C 1-4 haloalkoxy (e.g. hydrogen, halo, cyano and methyl); R 24 is selected from hydrogen or C 1-4 alkyl A 11 is selected from CR 28 R 29 and NR 30 ; wherein: R 28 and R 29 are selected from hydrogen, halo, methoxy and methyl; R 30 is selected from hydrogen or C 1-4 alkyl.

Xs is selected from CR 6 , N or CR X6a R X6b ; wherein: R 6 is selected from hydrogen, halo, cyano, C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 alkoxy and C 1-4 haloalkoxy;

Rxea and Rxeb are each independently selected from hydrogen, halo, cyano, C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 alkoxy and C 1-4 haloalkoxy;

Xg is N or C; with the proviso that no more than four of X 2 to X 9 are N. (iv)

Z 10 is N or C-R Z10 , wherein R Z10 is selected from hydrogen, halo, cyano, C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 alkoxy, C 1-4 haloalkoxy;;

Z 11 is N or C-R Z11 , wherein R Z11 is selected from hydrogen, halo, cyano, C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 alkoxy, C 1-4 haloalkoxy;;

Z 12 is N or C-R Z12 , wherein R Z12 is selected from hydrogen, halo, cyano, C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 alkoxy, C 1-4 haloalkoxy;

Z 13 is N or C-R Z13 , wherein R Z13 is selected from hydrogen, halo, cyano, C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 alkoxy, C 1-4 haloalkoxy;

Z 14 is N or C-R Z14 , wherein R Z14 is selected from hydrogen, halo, cyano, C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 alkoxy, C 1-4 haloalkoxy;

Z 15 is N or C-R Z15 , wherein R Z15 is selected from hydrogen, halo, cyano, C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 alkoxy, C 1-4 haloalkoxy;

Z 16 is N or C-R Z16 , wherein R Z16 is selected from hydrogen, halo, cyano, C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 alkoxy, C 1-4 haloalkoxy; with the proviso that no more than three of Z 10 to Z 16 are N;

(V)

Q 7 is CR 7 or N;

Q 8 is CR 8 or N;

Q 9 is CR 9 or N;

Q 10 is CR 10 or N;

Q 11 is CR 11 or N;

Q 11a is NR 11N Or CR 11a R 11b , wherein: R 7 , R 8 , R 9 , R 10 , R 11 , R 11a and R 11b are each independently selected from hydrogen, NH 2 , heterocyclyl, halo, cyano, C 1-4 alkoxy, C 1-4 haloalkoxy, C 1-6 alkyl, -CH 2 OCH 3 , - CH 2 SO 2 CH 3 , -SO 2 CH 3 , -NHC(O)CH 3 and -C(O)NR v1 R v2 , wherein R v1 and R v2 are independently selected from hydrogen and methyl; and R 11N is selected from hydrogen, NH 2 , halo, cyano, and C 1-6 alkyl; or R 9 and R 10 may be linked together such that, together to the atoms to which they are attached, they form a fused 5- or 6-membered saturated or unsaturated ring system, or R 10 and R 11 may be linked together such that, together to the atoms to which they are attached, they form a fused 5- or 6-membered saturated or unsaturated ring system, wherein either of the fused 5- or 6-membered saturated or unsaturated ring systems, or the heterocyclyl, may be optionally subsitutued by one or more substituents selected from C 1-2 alkyl, cyano, C 1-2 haloalkyl, hydroxy, C 1-2 alkoxy, halo, C 1-2 - haloalkoxy, NR 1ia R 1ja or -S(O) 0-2 R 1ia R 1j a, wherein R 1ia and R 1ja are H or C 1-2 alkyl; with the proviso that no more than three of Q 7 to Q 11 are N; wherein the compound is subject to the following provisos:

(i) Z is not one of the following structures:

wherein:

R 4 , is selected from hydrogen, halo, cyano and methyl;

R 5 is selected from hydrogen, halo, cyano and methyl;

R 6 is selected from hydrogen, halo, cyano and methyl; R 8 , R 9 , R 10 and R 11 are independently selected from hydrogen, NH 2 , halo, cyano, and C 1-6 alkyl; or R 9 and R 10 may be linked together to form a fused 5- or 6-membered saturated or unsaturated ring system or R 10 and R 11 may be linked together to form a fused 5- or 6-membered saturated or unsaturated ring system; wherein either of the fused 5- or 6-membered saturated or unsaturated ring system may be optionally subsitutued by one or more substituents selected from C 1-2 alkyl, cyano, C 1-2 haloalkyl, hydroxy, C 1-

2 alkoxy, halo, C 1-2 haloalkoxy, NR 1ia R 1ja or -S(O) 0-2 R 1ia R 1ja , wherein R 1ia and R 1ja are H or C 1-2 alky; R z1 and R z1 a are selected from hydrogen, C 1-4 alkyl, cyano, halo, C 1-4 haloalkyl, C 1- 4haloalkoxy, C 1-4 alkoxy, C 3-6 cycloalkyl and -O-C 3-6 cycloalkyl, wherein C 3-6 cycloalkyl and -O-C 3-6 cycloalkyl are optionally subsitutued by one or more of halo, methyl or methoxy;

R z2 and R z2a are selected from hydrogen, C 1-4 alkyl, cyano, halo, NH 2 and C 1-4 alkoxy;

R z3a is selected from hydrogen, C 1-4 alkyl, cyano, halo, NH 2 and C 1-4 alkoxy

A 1 is selected from CR 12 and N;

A 2 is selected from CR 13 and N;

A 5 is selected from CR 16 and N;

A 6 is selected from CR 17 and N;

A 7 is selected from CR 18 and N;

A 8 is selected from CR 19 R 20 and NR 21 ; A 9 is selected from CR 22 R 23 and NR 24 ; A 11 is selected from CR 28 R 29 and NR 30 ;

R 12 is selected from hydrogen, halo, cyano and C 1-4 alkyl; R 13 is selected from hydrogen, halo, cyano, methoxy and methyl; R 16 is selected from hydrogen, halo, cyano, C 1-4 alkyl, C 1-4 alkoxy, C 1-4 haloalkyl, C 1- 4 haloalkoxy, C 3-4 cycloalkyl, a 3- to 4-membered heterocyclyl and C 3-4 cycloalkoxy; R 17 is selected from hydrogen, hydroxy, halo, cyano, C 1-5 alkyl, C 1-4 haloalkyl, C 1-4 alkoxy, C 1-4 haloalkoxy, C 2-4 alkenyl, C 2-4 alkynyl, phenyl, a 5- or 6-membered or heteroaryl, C 3-6 cycloalkyl, -O-C 3-6 cycloalkyl, heterocyclyl, -O-heterocyclyl (carbon- linked), -(OCH 2 CH 2 ) m -NR q R r , -(OCH 2 CH 2 ) m -OCH 3 wherein m is an integer from 1 to 6, NR q R r , -C(O)-NR q R r , -C(O)OR q ; wherein R q and R r are each independently hydrogen, C 1-5 alkyl, C 3-6 cycloalkyl, a 3- to 6- membered carbon-linked heterocyclyl, wherein C 1-5 alkyl, C 3-6 cycloalkyl, a 3- to 6- membered carbon-linked heterocyclyl may be optionally substituted by one or more substituents selected from C 1-2 alkyl, cyano, C 1-2 haloalkyl, hydroxy, C 1-2 alkoxy, halo, C 1-2 haloalkoxy, NR 1ea R 1fa or -S(O) 0-2 R 1ea R 1fa , wherein R 1ea and R 1fa are H or C 1-2 alkyl; or Rq and R r are linked together such that, together with the nitrogen atom to which they are attached, they form a 3- to 6-membered heterocyclic ring, which may be optionally substituted by one or more substituents selected from C 1-2 alkyl, cyano, C 1- 2 haloalkyl, hydroxy, C 1-2 alkoxy, halo, C 1-2 haloalkoxy; wherein any C 1- salkyl, C 1-4 alkoxy, C 2-4 alkenyl, C 2-4 alkynyl, phenyl, 5- or 6-membered or heteroaryl, C 3-6 cycloalkyl, -O-C 3-6 cycloalkyl, heterocyclyl or -O-heterocyclyl (carbon-linked)is optionally further substituted by one or more substituents selected from C 1-2 alkyl, cyano, C 1-2 haloalkyl, hydroxy, C 1-2 alkoxy, halo, C 1-2 haloalkoxy, NR 1ea R 1fa or -S(O) 0-2 R 1ea R 1fa , wherein R 1ea and R 1fa are H or C 1-2 alkyl;

R 18 is selected from hydrogen, halo, cyano, C 1-4 alkyl, C 2-4 alkenyl, C 2-4 alkynyl, a 5- or 6-membered heteroaryl, C 1-4 alkoxy, C 1-4 haloalkyl, C 1-4 haloalkoxy, C 3-4 cycloalkyl, a

3- to 4-membered heterocyclyl and C 3-4 cycloalkoxy;

R 19 and R 20 are selected from hydrogen, halo, cyano and C 1-4 alkyl; R 22 and R 23 are selected from hydrogen, halo, cyano and methyl; R 28 and R 29 are selected from hydrogen, methoxy and methyl;

R 21 , R 24 and R 30 are hydrogen; and

(ii) the compound is not:

4-[1-[(6-methylimidazo[1,2-a]pyridin-2-yl)methyl]triazol- 4- yl]isoquinoline; tert-butyl N-[[2-[[4-(4-isoquinolyl)triazol-1-yl]methyl]imidazo[1,2-a]p yridin-6- yl]methyl]carbamate;

N-(cyclobutylmethyl)-1-[2-[[4-(4-isoquinolyl)triazol-1- yl]methyl]imidazo[1,2-a]pyridin- 6-yl]methanamine.

[00106] In another aspect, the present invention relates to compounds of the formula (I), or a pharmaceutically acceptable salt thereof,

X - Y - Z

(I) wherein:

X is selected from:

wherein:

R 1a , R 1c and R 1e are selected from hydrogen, halo, C 1-4 alkyl, C 2-3 alkenyl and -O-C 1- 4 alkyl R 1c , R 1d and R 1f are selected from:

(i) C 1-4 alkyl or C 1-4 alkoxy, each of which being optionally subsutited by halo, cyano, hydroxy, C 3-6 cycloalkyl, C 1-4 alkoxy, C 1-4 haloalkoxy, aryl or heteroaryl; or

(ii) a group of the formula:

—(CR 1c R 1d ) p -NR 1e R 1f ; wherein p is an integer selected from 0, 1, 2 or 3

R 1c and R 1d are independently selected from:

(i) hydrogen (including deuterium),

(ii) C 1-6 alkyl which is optionally substituted by one more substituents selected from cyano, oxo, hydroxy, C 1-4 alkoxy, halo, C 1-4 haloalkoxy, C 3-6 cycloalkyl, -O-C 3-6 cycloalkyl, NR 1ca R 1da or -S(O) 0-2 R 1ca R 1da , wherein R 1ca and R 1da are H or C 1-2 alkyl; and wherein C 3-6 cycloalkyl and -O-C 3-6 cycloalkyl are optionally further subsitutued with halo, cyano or hydroxy;

(iii) C 3-4 cycloalkyl or 3 to 5 membered heterocyclyl, each of which is optionally substituted by C 1-4 alkyl, C 1-4 haloalkyl, cyano, hydroxy, C 1- 2alkoxy, halo, C 1-2 haloalkoxy, NR 1ca R 1da or -S(O) 0-2 R 1ca R 1da , wherein R 1ca and R 1da are H or C 1-2 alkyl; and;

(iv) or R 1c and R 1d are linked together such that, together with the carbon atom to which they are attached, they form a 3- to 6- membered cycloalkyl or heterocyclic ring, or a spirocyclic ring system, each of which is optionally substituted by one or more substituents selected from C 1-2 alkyl, C 1-2 haloalkyl, cyano, hydroxy, C 1-2 alkoxy, halo, C 1-2 haloalkoxy, N R 1ca R 1da or -S(O) 0-2 R 1ca R 1da , wherein R 1ca and R 1da are H or C 1-2 alkyl;

R 1e and R 1f are each independently selected from:

(i) hydrogen (including deuterium);

(ii) C 1-6 alkyl which is optionally substituted by one more substituents selected from cyano, oxo, hydroxy, C 1-2 alkoxy, halo, C 1-2 - haloalkoxy, NR 1ea R 1fa or -S(O) 0-2 R 1ea R 1fa , wherein R 1ea and R 1fa are H or C 1-2 alkyl;

(iii) a group with the formula:

— (CR 1g R 1h ) q — T 1 wherein: q is 0, 1, 2, 3, 4, 5 or 6;

R 1g and R 1h are independently selected from: a) hydrogen (including deuterium); b) C 1-6 alkyl which is optionally substituted by one more substituents selected from cyano, oxo, hydroxy, C 1-4 alkoxy, halo, C 1-4 haloalkoxy, -O-C 3-6 cycloalkyl, NR 1ga R 1ha or -S(O) 0- 2 R 1ga R 1ha , wherein R 1ga and R 1ha are H or C 1-2 alkyl; and wherein -O-C 3-6 cycloalkyl is optionally subsitutued with halo, cyano or hydroxy; c) an aryl-C 1-6 alkyl, heteroarylC 1-6 alkyl, C 3-6 cycloalkyl or C 3-6- cycloalkylC 1-6 alkyl group, each of which is optionally substituted by one or more substituents selected from C 1-2- alkyl, cyano, C 1-2 haloalkyl, hydroxy, C 1-2 alkoxy, halo, C 1-2- haloalkoxy, NR 1ga R 1ha or -S(O) 0-2 R 1ga R 1ha , wherein R 1ga and R 1ha are H or C 1-2 alkyl; or d) or R 1g and R 1h are optionally linked together such that, together with the carbon atom to which they are attached, they form a 3- to 6-membered cycloalkyl or heterocyclic ring which is optionally substituted by one or more substituents selected from C 1-2 alkyl, cyano, C 1-2 haloalkyl, hydroxy, C 1-2 alkoxy, halo, C 1-2 haloalkoxy, NR 1ga R 1ha or -S(O) 0-2 R 1ga R 1ha , wherein R 1ga and R 1ha are H or C 1-2 alkyl; and T 1 is selected from hydrogen, cyano, hydroxy, NR 1t R 2t or S(O) 0-2 R 1t R 2t (wherein R 1t and R 2t are H or C 1-4 alkyl), C 3- 8 cycloalkyl, C 2-3 alkenyl, C 2-3 alkynyl, aryl, heterocyclyl, heteroaryl, a spirocyclic carbocyclic or heterocyclic ring system, a bridged C 3- 8 cycloalkyl, a bridged bicyclic C 5-12 cycloalkyl, or a bridged heterocyclic ring system, each of which is optionally substituted by one or more substituents selected from C 1-2 alkyl, C 1-2 haloalkyl, cyano, hydroxy, C 1-2 alkoxy, halo, C 1-2 haloalkoxy, NR 3t R 4t or -S(O) 0- 2 R 3t R 4t , wherein R 3t and R 4t are H or C 1-2 alkyl; or R 1e and R 1f are linked such that, together with the nitrogen atom to which they are attached, they form a mono- or bicyclic-heterocyclic ring, which is optionally substituted by one or more substituents selected from C 1-4 alkyl, C 1- 4 haloalkyl, cyano, hydroxy, C 1-4 alkoxy, halo, C 1-4 haloalkoxy, N R 1i R 1j or -S(O) 0- 2 R 1i R 1j , wherein R 1i and R 1j are H or C 1-4 alkyl, and/or the mono- or bicyclic hetereocyclic ring formed by R 1e and R 1f is optionally spiro-fused to a C 3- 6 cycloalkyl or a heterocyclic ring, which in turn is optionally substituted by one or more substituents selected from C 1-4 alkyl, C 1-4 haloalkyl, cyano, hydroxy, C 1- 4 alkoxy, halo, C 1-4 haloalkoxy, NR 1i R 1j or -S(O) 0-2 R 1i R 1j , wherein R 1i and R 1j are H or C 1-4 alkyl;

R 1a’ is selected from hydrogen, halo and methyl;

R 2a , R 2b and R 2c are selected from hydrogen, halo or a group of the formula:

-L 2a L 2b -Q 2 wherein: L 2a is absent or C 1-3 alkylene optionally substituted by C 1-2 alkyl or oxo; L 2b is absent or selected from O, S, SO, SO 2 , N(R n ), C(O), C(O)O, OC(O), C(O)N(R n ), N(R n )C(O), N(R n )C(O)N(R o ), S(O) 2 N(R n ), or N(R n )SO 2 , wherein R n and R o are each independently selected from hydrogen or C 1-2 alkyl; and

Q 2 is hydrogen, cyano, C 1-6 alkyl, C 3-6 cycloalkyl, aryl, heterocyclyl or heteroaryl, each of which is optionally substituted by one or more substituents selected from halo, trifluoromethyl, trifluoromethoxy, amino, cyano, hydroxy, amino, carboxy, carbamoyl, sulphamoyl, C 1-4 alkyl, NR p R q , OR p , C(O)R p , C(O)OR p , OC(O)R p , C(O)N(R p )R q , N(R r )C(O)R p , S(O) y R p (where y is 0, 1 or 2), SO 2 N(R p )R q , N(R r )SO 2 R p or (CH 2 ) z NR p R q (where z is 1, 2 or 3), wherein R p and R q are each independently selected from hydrogen or C 1-4 alkyl;

Y is selected from:

wherein:

R 3a1 , R 3b1 , R 3c1 , R 3d1 , R 3e1 , R 3f1 , R 3g1 , R 3h1 , R 3i1 , R 3j1 , R 3k1 , R 3i1 , R 3m1 , R 3n1 , R 3o1 , R 3p1 ,

R 3q1 , R 3r1 and R 3s1 are independently selected from hydrogen (including deuterium), C 1-6 alkyl, C 3-4 cycloalkyl, hydroxy, and halo; and wherein C 1-6 alkyl, or C 3-4 cycloalkyl is optionally substituted with one or more substituents selected from halo, amino, cyano, and hydroxy;

R 3a2 , R 3b2 , R 3c2 , R 3d2 , R 3e2 , R 3f2 , R 3g2 , R 3h2 , R 3i2 , R 3j2 , R 3k2 , R 3l2 , R 3m2 , R 3n2 , R 3o2 , R 3p2 , R 3q2 , R 3r2 and R 3s2 are hydrogen or halo; with the proviso that R 3a1 , R 3b1 , R 3i1 , R 3l1 , R 3o1 , R 3r1 , R 3a2 , R 3b2 , R 3i2 , R 3l2 , R 3o2 and R 3s1 cannot be halo when n=1 or when n=2 and the carbon atom to which they are attached is linked to an oxygen or nitrogen atom; or R 3a1 and R 3a2 , R 3b1 and R 3b2 , R 3c1 and R 3c2 , R 3d1 and R 3d2 , R 3e1 and R 3e2 , R 3f1 and R 3f2 , R 3g1 and R 3g2 , R 3h1 and R 3h2 , R 3i1 and R 3i2 , R 3j1 and R 3j2 , R 3k1 and R 3k2 , R 3l1 and R 3l2 , R 3m1 and R 3m2 , R 3n1 and R 3n2 , R 3o1 and R 3o2 , R 3p1 and R 3p2 , R 3q1 and R 3q2 , or R 3r1 and R 3r2 or R 3s1 and R 3s2 may be linked such that, together with the carbon atom to which they are attached, they form a spiro-fused C 3-4 cycloalkyl which is optionally substituted with one or more substituents selected from halo, methyl, amino, cyano, and hydroxy; n is 0, 1 or 2; and

Z is selected from:

wherein:

R 4 is selected from hydrogen, halo, cyano, C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 alkoxy, C 1-4 haloalkoxy (e.g. hydrogen, halo, cyano and methyl);

R 5 is selected from hydrogen, halo, cyano, C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 alkoxy, C 1-4 haloalkoxy (e.g. hydrogen, halo, cyano and methyl); R 6 is selected from hydrogen, halo, cyano, C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 alkoxy, C 1-4 haloalkoxy (e.g. hydrogen, halo, cyano and methyl); R 12 is selected from hydrogen, halo, cyano, C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 alkoxy, C 1-4 haloalkoxy (e.g. hydrogen, halo, cyano and C 1-4 alkyl); R 13 is selected from hydrogen, halo, cyano, C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 alkoxy, C 1-4 haloalkoxy (e.g. hydrogen, halo, cyano, methoxy and methyl); R 7 , R 9 and R 11 are independently selected from hydrogen, NH 2 , halo, cyano, C 1-4 alkoxy, C 1-4 haloalkoxy and C 1-6 alkyl; R 8 and R 10 are independently selected from halo, cyano, C 1-4 alkoxy, C 1-4 haloalkoxy, C 1-6 alkyl, -CH 2 OCH 3 , -CH 2 SO 2 CH 3 , -SO 2 CH 3 , -NHC(O)CH 3 and - C(O)NR v1 R v2 , wherein R v1 and R v2 are independently selected from hydrogen and methyl;

R 11N is selected from hydrogen and C 1-6 alkyl; R Z1 and R Z1 a selected from hydrogen, C 1-4 alkyl, cyano, halo, C 1-4 haloalkyl, C 1- 4 haloalkoxy, C 1-4 alkoxy, C 3-6 cycloalkyl and -O-C 3-6 cycloalkyl, wherein C 3-6 cycloalkyl and -O-C 3-6 cycloalkyl are optionally subsitutued by one or more of halo, methyl or methoxy;

R Z2 and R Z2a are selected from hydrogen, C 1-4 alkyl, cyano, halo, NH 2 and C 1-4 alkoxy;

R Z3a is selected from hydrogen, C 1-4 alkyl, cyano, halo, NH 2 and C 1-4 alkoxy;

R Zi1b is selected from hydrogen, C 1-4 alkyl, cyano, halo, NH 2 and C 1-4 alkoxy;

R Zi2e is selected from hydrogen, C 1-4 alkyl, cyano, halo, NH 2 and C 1-4 alkoxy;

R Y5N is C 1-4 alkyl R Z2N is selected from hydrogen or C 1-4 alkyl

R Z9 is selected from hydrogen, halo, cyano, C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 alkoxy, C 1-4 haloalkoxy;

R Z10 is selected from hydrogen, halo, cyano, C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 alkoxy, C 1-4 haloalkoxy; R Z11 is selected from hydrogen, halo, cyano, C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 alkoxy, C 1-4 haloalkoxy;

R Z12 is selected from hydrogen, halo, cyano, C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 alkoxy, C 1-4 haloalkoxy;

R Z13 is selected from hydrogen, halo, cyano, C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 alkoxy, C 1-4 haloalkoxy;

R Z14 is selected from hydrogen, halo, cyano, C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 alkoxy, C 1-4 haloalkoxy;

R Z15 is selected from hydrogen, halo, cyano, C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 alkoxy, C 1-4 haloalkoxy;

R Z16 is selected from hydrogen, halo, cyano, C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 alkoxy, C 1-4 haloalkoxy;;

A 5 is selected from CR 16 and N;

A 6 is selected from CR 17 and N; A 7 is selected from CR 18 and N;

R 15 is selected from hydrogen, halo, cyano, methoxy and methyl; R 16 and R 18 , are selected from hydrogen, halo, cyano, C 1-4 alkyl, C 1-4 alkoxy, C 1- 4haloalkyl, C 1-4 haloalkoxy, C 3-4 cycloalkyl, a 3- to 4-membered heterocyclyl and C 3-4 - cycloalkoxy; R 17 is selected from hydrogen, halo, cyano, C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 alkoxy, C 1-4 haloalkoxy, C 2-4 alkenyl, C 2-4 alkynyl, phenyl, a 5- or 6-membered or heteroaryl, C 3- 6 cycloalkyl, -O-C 3-6 cycloalkyl, heterocyclyl, -O-heterocyclyl (carbon-linked), - (OCH 2 CH 2 )m-OCH 3 wherein m is an integer from 1 to 6, NR q R r , wherein R q and R r are each independently hydrogen, C 1-5 alkyl, C 3-6 cycloalkyl, a 3- to 6- membered carbon- linked heterocyclyl, or R q and R r are linked together such that, together with the nitrogen atom to which they are attached, they form a 3- to 6-membered heterocyclic ring; wherein any C 1-5 alkyl, C 1-4 alkoxy, C 2-4 alkenyl, C 2-4 alkynyl , phenyl, 5- or 6- membered or heteroaryl, C 3-6 cycloalkyl, -O-C 3-6 cycloalkyl, heterocyclyl or -O- heterocyclyl (carbon-linked)is optionally further substituted by one or more substituents selected from C 1-2 alkyl, cyano, C 1-2 haloalkyl, hydroxy, C 1-2 alkoxy, halo, C 1-2 haloalkoxy, NR 1ea R 1fa or -S(O) 0-2 R 1ea R 1fa , wherein R 1ea and R 1fa are H or C 1-2 alkyl; R 19 is selected from hydrogen, halo, cyano and C 1-4 alkyl; and R 22 is selected from hydrogen, halo, cyano, C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 alkoxy, C 1-4 haloalkoxy (e.g. hydrogen, halo, cyano and methyl).

[00107] In another aspect, the present invention relates to compounds of the formula (I), or a pharmaceutically acceptable salt thereof,

X - Y - Z

(l) wherein:

X is selected from: , and wherein:

R 1a , R 1c and R 1e are selected from hydrogen, halo, C 1-4 alkyl, C 2-3 alkenyl and -O-C 1- 4 alkyl

R 1b , R 1d and R 1f are selected from:

(i) C 1-4 alkyl or C 1-4 alkoxy, each of which being optionally subsutited by halo, cyano, hydroxy, C 3-6 cycloalkyl, C 1-4 alkoxy, C 1-4 haloalkoxy, aryl or heteroaryl; or

(ii) a group of the formula:

—(CR 1c R 1d ) p -NR 1e R 1f ; wherein p is an integer selected from 0, 1, 2 or 3; R 1c and R 1d are independently selected from:

(i) hydrogen (including deuterium),

(ii) C 1-6 alkyl which is optionally substituted by one more substituents selected from cyano, oxo, hydroxy, C 1-4 alkoxy, halo, C 1-4 haloalkoxy, C 3-6 cycloalkyl, -O-C 3-6 cycloalkyl, NR 1ca R 1da or -S(O) 0-2 R 1ca R 1da , wherein R 1ca and R 1da are H or C 1-2 alkyl; and wherein C 3-6 cycloalkyl and -O-C 3-6 cycloalkyl are optionally further subsitutued with halo, cyano or hydroxy;

(iii) C 3-4 cycloalkyl or 3 to 5 membered heterocyclyl, each of which is optionally substituted by C 1-4 alkyl, C 1-4 haloalkyl, cyano, hydroxy, C 1- 2alkoxy, halo, C 1-2 haloalkoxy, NR 1ca R 1da or -S(O) 0-2 R 1ca R 1da , wherein R 1ca and R 1da are H or C 1-2 alkyl; and; (iv) or R 1c and R 1d are linked together such that, together with the carbon atom to which they are attached, they form a 3- to 6-membered cycloalkyl or heterocyclic ring, or a spirocyclic ring system, each of which is optionally substituted by one or more substituents selected from C 1-2 alkyl, C 1-2 haloalkyl, cyano, hydroxy, C 1-2 alkoxy, halo, C 1-2 haloalkoxy, NR 1ca R 1d a or -S(O) 0-2 R 1ca R 1da , wherein R 1ca and R 1da are H or C 1-2 alkyl;

R 1e and R 1f are each independently selected from:

(i) hydrogen (including deuterium);

(ii) C 1-6 alkyl which is optionally substituted by one more substituents selected from cyano, oxo, hydroxy, C 1-2 alkoxy, halo, C 1-2 haloalkoxy, NR 1ea R 1fa or -S(O) 0-2 R 1ea R 1fa , wherein R 1ea and R 1fa are H or C 1-2 alkyl;

(iii) a group with the formula:

—(CR 1g R 1h ) q —T 1 wherein: q is 0, 1 , 2, 3, 4, 5 or 6; R 1g and R 1h are independently selected from: a) hydrogen (including deuterium); b) C 1-6 alkyl which is optionally substituted by one more substituents selected from cyano, oxo, hydroxy, C 1-4 alkoxy, halo, C 1-4- haloalkoxy, -O-C 3-6 cycloalkyl, NR 1ga R 1ha or -S(O) 0-2 R 1ga R 1ha , wherein R 1ga and R 1ha are H or C 1-2 alkyl; and wherein -O-C 3- 6 cycloalkyl is optionally subsitutued with halo, cyano or hydroxy; c) an aryl-C 1-6 alkyl , heteroarylC 1-6 alkyl, C 3-6 cycloalkyl or C 3-6 cycloalkylC 1-6 alkyl group, each of which is optionally substituted by one or more substituents selected from C 1-2 alkyl, cyano, C 1- 2 haloalkyl, hydroxy, C 1-2 alkoxy, halo, C 1-2 haloalkoxy, NR 1ga R 1ha or -S(O) 0-2 R 1ga R 1ha , wherein R 1ga and R 1ha are H or C 1-2 alkyl; or d) or R 1g and R 1h are optionally linked together such that, together with the carbon atom to which they are attached, they form a 3- to 6-membered cycloalkyl or heterocyclic ring which is optionally substituted by one or more substituents selected from C 1-2 alkyl, cyano, C 1-2 haloalkyl, hydroxy, C 1-2 alkoxy, halo, C 1-2 haloalkoxy, NR 1ga R 1ha or -S(O) 0 -2R 1ga R 1ha , wherein R 1ga and R 1ha are H or C 1- 2 alkyl; and T 1 is selected from hydrogen, cyano, hydroxy, NR 1t R 2t or S(O) 0-2 R 1t R 2t (wherein R 1t and R 2t are H or C 1-4 alkyl), C 3-8 cycloalkyl, C 2- 3 alkenyl, C 2-3 alkynyl, aryl, heterocyclyl, heteroaryl, a spirocyclic carbocyclic or heterocyclic ring system, a bridged C 3-8 cycloalkyl, a bridged bicyclic C 5-12 cycloalkyl, or a bridged heterocyclic ring system, each of which is optionally substituted by one or more substituents selected from C 1-2 alkyl, C 1-2 haloalkyl, cyano, hydroxy, C 1-2 alkoxy, halo, C 1-2 haloalkoxy, NR 3t R 4t or -S(O) 0-2 R 3t R 4t , wherein R 3t and R 4t are H or C 1-2 alkyl; or R 1e and R 1f are linked such that, together with the nitrogen atom to which they are attached, they form a mono- or bicyclic-heterocyclic ring, which is optionally substituted by one or more substituents selected from C 1-4 alkyl, C 1- 4 haloalkyl, cyano, hydroxy, C 1-4 alkoxy, halo, C 1-4 haloalkoxy, N R 1i R 1j or -S(O) 0- 2 R 1i R 1j , wherein R 1i and R 1j are H or C 1-4 alkyl, and/or the mono- or bicyclic hetereocyclic ring formed by R 1e and R 1f is optionally spiro-fused to a C 3- 6 cycloalkyl or a heterocyclic ring, which in turn is optionally substituted by one or more substituents selected from C 1-4 alkyl, C 1-4 haloalkyl, cyano, hydroxy, C 1- 4 alkoxy, halo, C 1-4 haloalkoxy, NR 1i R 1j or -S(O) 0-2 R 1i R 1j , wherein R 1i and R 1j are H or C 1-4 alkyl;

R 1a’ is selected from hydrogen, halo and methyl;

R 2a , R 2b and R 2c are selected from hydrogen, halo or a group of the formula:

-L 2a -L 2b -Q 2 wherein L 2a is absent or Cisalkylene optionally substituted by C 1-2 alkyl or oxo; L 2b is absent or selected from O, S, SO, SO 2 , N(R n ), C(O), C(O)O, OC(O), C(O)N(R n ), N(R n )C(O), N(R n )C(O)N(R o ), S(O) 2 N(R n ), or N(R n )SO 2 , wherein R n and R o are each independently selected from hydrogen or C 1-2 alkyl; and

Q 2 is hydrogen, cyano, C 1-6 alkyl, C 3-6 cycloalkyl, aryl, heterocyclyl or heteroaryl, each of which is optionally substituted by one or more substituents selected from halo, trifluoromethyl, trifluoromethoxy, amino, cyano, hydroxy, amino, carboxy, carbamoyl, sulphamoyl, C 1-4 alkyl, NR p R q , OR p , C(O)R p , C(O)OR p , OC(O)R p , C(O)N(R p )R q , N(R r )C(O)R p , S(O) y R p (where y is 0, 1 or 2), SO 2 N(R p )R q , N(R r )SO 2 R p or (CH 2 ) z NR p R q (where z is 1, 2 or 3), wherein R p and R q are each independently selected from hydrogen or C 1-4 alkyl;

Y is selected from:

wherein:

R 3a1 , R 3b1 , R 3c1 , R 3d1 , R 3e1 , R 3f1 , R 3g1 , R 3h1 , R 3i1 , R 3j1 , R 3k1 , R 3i1 , R 3m1 , R 3n1 , R 3o1 , R 3p1 , R 3q1 , R 3r1 and R 3s1 are independently selected from hydrogen (including deuterium), C 1-6 alkyl, C 3-4 cycloalkyl, hydroxy, and halo; and wherein C 1-6 alkyl, or C 3-4 cycloalkyl is optionally substituted with one or more substituents selected from halo, amino, cyano, and hydroxy;

R 3a2 , R 3b2 , R 3c2 , R 3d2 , R 3e2 , R 3f2 , R 3g2 , R 3h2 , R 3i2 , R 3j2 , R 3k2 , R 3l2 , R 3m2 , R 3n2 , R 3o2 , R 3p2 , R 3q2 , R 3r2 and R 3s2 are hydrogen or halo; with the proviso that R 3a1 , R 3b1 , R 3i1 , R 3l1 , R 3o1 , R 3r1 , R 3a2 , R 3b2 , R 3i2 , R 3l2 , R 3o2 and R 3s1 cannot be halo when n=1 or when n=2 and the carbon atom to which they are attached is linked to an oxygen or nitrogen atom; or R 3a1 and R 3a2 , R 3b1 and R 3b2 , R 3c1 and R 3c2 , R 3d1 and R 3d2 , R 3e1 and R 3e2 , R 3f1 and R 3f2 , R 3g1 and R 3g2 , R 3h1 and R 3h2 , R 3i1 and R 3i2 , R 3j1 and R 3j2 , R 3k1 and R 3k2 , R 3l1 and R 3l2 , R 3m1 and R 3m2 , R 3n1 and R 3n2 , R 3o1 and R 3o2 , R 3p1 and R 3p2 , R 3q1 and R 3q2 , or R 3r1 and R 3r2 or R 3s1 and R 3s2 may be linked such that, together with the carbon atom to which they are attached, they form a spiro-fused C 3-4 cycloalkyl which is optionally substituted with one or more substituents selected from halo, methyl, amino, cyano, and hydroxy; n is 0, 1 or 2; and

Z is selected from:

and wherein:

R 4 is selected from hydrogen, halo, cyano, C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 alkoxy, C 1-4 haloalkoxy (e.g. hydrogen, halo, cyano and methyl);

R 5 is selected from hydrogen, halo, cyano, C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 alkoxy, C 1-4 haloalkoxy (e.g. hydrogen, halo, cyano and methyl);

R 6 is selected from hydrogen, halo, cyano, C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 alkoxy, C 1-4 haloalkoxy (e.g. hydrogen, halo, cyano and methyl); R 12 is selected from hydrogen, halo, cyano, C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 alkoxy, C 1-4 haloalkoxy (e.g. hydrogen, halo, cyano and C 1-4 alkyl); R 13 is selected from hydrogen, halo, cyano, C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 alkoxy, C 1-4 haloalkoxy (e.g. hydrogen, halo, cyano, methoxy and methyl); either: a) R 7 , R 9 and R 11 are independently selected from hydrogen, NH 2 , halo, cyano, C 1-4 alkoxy, C 1-4 haloalkoxy and C 1-6 alkyl; R 8 and R 10 are independently selected from halo, cyano, C 1-4 alkoxy, C 1-4 haloalkoxy, C 1-6 alkyl, -CH 2 OCH 3 , -CH 2 SO 2 CH 3 , -SO 2 CH 3 , - NHC(O)CH 3 and -C(O)NR v1 R v2 , wherein R v1 and R v2 are independently selected from hydrogen and methyl; or b) R 8 , R 9 , R 10 and R 11 are independently selected from hydrogen, NH 2 , halo, cyano, C 1-4 alkoxy, C 1-4 haloalkoxy and C 1-6 alkyl, -CH 2 OCH 3 , - CH 2 SO 2 CH 3 , -SO 2 CH 3 , -NHC(O)CH 3 and -C(O)NR v1 R v2 , wherein R v1 and R v2 are independently selected from hydrogen and methyl with the proviso that at least one of R 8 , R 9 , R 10 and R 11 is C 1-4 alkoxy or C 1-4 haloalkoxy;

R 11N is selected from hydrogen and C 1-6 alkyl; R Z1 and R Z1a selected from hydrogen, C 1-4 alkyl, cyano, halo, C 1-4 haloalkyl, C 1- 4haloalkoxy, C 1-4 alkoxy, C 3-6 cycloalkyl and -O-C 3-6 cycloalkyl, wherein C 3-6 cycloalkyl and -O-C 3-6 cycloalkyl are optionally subsitutued by one or more of halo, methyl or methoxy;

R Z2 and R Z2a are selected from hydrogen, C 1-4 alkyl, cyano, halo, NH 2 and C 1-4 alkoxy;

R Z3a is selected from hydrogen, C 1-4 alkyl, cyano, halo, NH 2 and C 1-4 alkoxy;

R Zi1b is selected from hydrogen, C 1-4 alkyl, cyano, halo, NH 2 and C 1-4 alkoxy;

R Zi2e is selected from hydrogen, C 1-4 alkyl, cyano, halo, NH 2 and C 1-4 alkoxy;

R Y5N is C 1-4 alkyl R Z2N is selected from hydrogen or C 1-4 alkyl

R Z9 is selected from hydrogen, halo, cyano, C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 alkoxy, C 1-4 haloalkoxy;

R Z10 is selected from hydrogen, halo, cyano, C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 alkoxy, C 1-4 haloalkoxy; R Z11 is selected from hydrogen, halo, cyano, C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 alkoxy, C 1-4 haloalkoxy;

R Z12 is selected from hydrogen, halo, cyano, C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 alkoxy, C 1-4 haloalkoxy;

R Z13 is selected from hydrogen, halo, cyano, C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 alkoxy, C 1-4 haloalkoxy;

R Z14 is selected from hydrogen, halo, cyano, C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 alkoxy, C 1-4 haloalkoxy;

R Z15 is selected from hydrogen, halo, cyano, C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 alkoxy, C 1-4 haloalkoxy;

R Z16 is selected from hydrogen, halo, cyano, C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 alkoxy, C 1-4 haloalkoxy;;

A 5 is selected from CR 16 and N;

A 6 is selected from CR 17 and N;

A 7 is selected from CR 18 and N;

R 15 is selected from hydrogen, halo, cyano, methoxy and methyl; R 16 and R 18 are selected from hydrogen, halo, cyano, C 1-4 alkyl, C 1-4 alkoxy, C 1- 4haloalkyl, C 1-4 haloalkoxy, C 3-4 cycloalkyl, a 3- to 4-membered heterocyclyl and C 3-4 - cycloalkoxy; R 17 is selected from hydrogen, halo, cyano, C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 alkoxy, C 1-4 haloalkoxy, C 2-4 alkenyl, C 2-4 alkynyl, phenyl, a 5- or 6-membered or heteroaryl, C 3- 6 cycloalkyl, -O-C 3-6 cycloalkyl, heterocyclyl, -O-heterocyclyl (carbon-linked), - (OCH 2 CH 2 ) m -OCH 3 wherein m is an integer from 1 to 6, NR q R r , wherein R q and R r are each independently hydrogen, C 1-5 alkyl, C 3-6 cycloalkyl, a 3- to 6- membered carbon- linked heterocyclyl, or R q and R r are linked together such that, together with the nitrogen atom to which they are attached, they form a 3- to 6-membered heterocyclic ring; wherein any C 1-5 alkyl, C 1-4 alkoxy, C 2-4 alkenyl, C 2-4 alkynyl , phenyl, 5- or 6- membered or heteroaryl, C 3-6 cycloalkyl, -O-C 3-6 cycloalkyl, heterocyclyl or -O- heterocyclyl (carbon-linked)is optionally further substituted by one or more substituents selected from C 1-2 alkyl, cyano, C 1-2 haloalkyl, hydroxy, C 1-2 alkoxy, halo, C 1-2 haloalkoxy, NR 1ea R 1fa or -S(O) 0-2 R 1ea R 1fa , wherein R 1ea and R 1fa are H or C 1-2 alkyl; R 19 is selected from hydrogen, halo, cyano and C 1-4 alkyl; and R 22 is selected from hydrogen, halo, cyano, C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 alkoxy, C 1-4 haloalkoxy (e.g. hydrogen, halo, cyano and methyl).

[00108] Particular compounds of the invention include, for example, compounds of formula (I), or pharmaceutically acceptable salts thereof, wherein, unless otherwise stated, each of X, Y, Z, R 1a , R 1b , R 1c ,R 1d , R 1e , R 1f ,R 1a’ , R 2a , R 2b , R 2c , R 3a1 , R 3a2 , R 3b1 , R 3b2 , R 3c1 , R 3c2 ,

R 3d1 , R 3d2 , R 3e1 , R 3e2 , R 3f1 , R 3f2 , R 3g1 , R 3g2 , R 3h1 , R 3h2 , R 3i1 , R 3i2 , R 3j1 , R 3j2 , R 3k1 , R 3k2 , R 3l1 , R 3l2 , R 3m1 ,R 3m2 , R 3n1 , R 3n2 , R 3oI , R 3o2 , R 3p1 , R 3p2 , R 3q1 , R 3q2 , R 3r1 , R 3r2 , R 3s1 , R 3s2 , n, R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 11N , R 12 , R 13 , R 16 , R 17 , R 18 , R 19 , R 20 , R 21 , R 22 , R 23 , R 24 , R 25 , R 26 , R 28 , R 29 , R 30 , R Z1 , R Z1a , R Z2 , R Z2a , R Z3a , R Zi1b , R Zi2e , A 5 , A 6 , A 7 , R Z2N , R Y5N , R 11N and any associated substituent groups has any of the meanings defined hereinbefore or in any one of paragraphs (1) to (176) hereinafter: -

(1) R 1a , R 1c and R 1e are selected from hydrogen, halo, C 1-4 alkyl, C 2-3 alkenyl and -O-C 1- 4 alkyl;

(2) R 1a , R 1c and R 1e are selected from hydrogen, fluoro, bromo, chloro, methyl, ethyl, propyl, butyl, ethenyl, -O-methyl, -O-ethyl, -O-propyl and -O-butyl;

(3) R 1a , R 1c and R 1e are selected from hydrogen, fluoro, bromo, chloro, methyl, ethyl, -O- methyl, ethenyl and -O-ethyl;

(4) R 1a , R 1c and R 1e are selected from hydrogen, fluoro, bromo, methyl, ethenyl and -O- methyl;

(5) R 1a , R 1c and R 1e are hydrogen;

(6) R 1b , R 1d and R 1f are selected from:

(i) C 1-4 alkyl or C 1-4 alkoxy, each of which being optionally subsutited by halo, cyano, hydroxy, C 3-6 cycloalkyl, C 1-4 alkoxy, C 1-4 haloalkoxy, aryl or heteroaryl; or

(ii) a group of the formula:

— (CR 1c R 1d ) p - NR 1e R 1f ; wherein p is an integer selected from 0, 1, 2 or 3 R 1c and R 1d are independently selected from:

(i) hydrogen (including deuterium),

(ii) C 1-6 alkyl which is optionally substituted by one more substituents selected from cyano, oxo, hydroxy, C 1-4 alkoxy, halo, C 1-4 haloalkoxy, C 3- 6 cycloalkyl, -O-C 3-6 cycloalkyl, NR 1ca R 1da or -S(O) 0-2 R 1ca R 1da , wherein R 1ca and R 1da are H or C 1-2 alkyl; and wherein C 3-6 cycloalkyl and -O-C 3- 6 cycloalkyl are optionally further subsitutued with halo, cyano or hydroxy;

(iii) C 3-4 cycloalkyl or 3 to 5 membered heterocyclyl, each of which is optionally substituted by C 1-4 alkyl, C 1-4 haloalkyl, cyano, hydroxy, C 1- 2 alkoxy, halo, C 1-2 haloalkoxy, NR 1ca R 1da or -S(O) 0-2 R 1ca R 1da , wherein R 1ca and R 1da are H or C 1-2 alkyl; and;

(iv) or R 1c and R 1d are linked together such that, together with the carbon atom to which they are attached, they form a 3- to 6-membered cycloalkyl or heterocyclic ring, or a spirocyclic ring system, each of which is optionally substituted by one or more substituents selected from C 1-2 alkyl, C 1-2 haloalkyl, cyano, hydroxy, C 1-2 alkoxy, halo, C 1-2- haloalkoxy, NR 1ca R 1da or -S(O) 0-2 R 1ca R 1da , wherein R 1ca and R 1da are H or C 1-2 alkyl; R 1e and R 1f are each independently selected from:

(i) hydrogen (including deuterium);

(ii) C 1-6 alkyl which is optionally substituted by one more substituents selected from cyano, oxo, hydroxy, C 1-2 alkoxy, halo, C 1-2 haloalkoxy, NR 1ea R 1fa or -S(O) 0-2 R 1ea R 1fa , wherein R 1ea and R 1fa are H or C 1-2 alkyl;

(iii) a group with the formula:

—(CR 1g R 1h ) q —T 1 wherein: q is 0, 1 , 2, 3, 4, 5 or 6; R 1g and R 1h are independently selected from: a) hydrogen (including deuterium); b) C 1-6 alkyl which is optionally substituted by one more substituents selected from cyano, oxo, hydroxy, C 1-4 alkoxy, halo, C 1-4 haloalkoxy, -O-C 3-6 cycloalkyl, NR 1ga R 1ha or -S(O)o- 2R 1ga R 1ha , wherein R 1ga and R 1ha are H or C 1-2 alkyl; and wherein -O-C 3-6 cycloalkyl is optionally subsitutued with halo, cyano or hydroxy; c) an aryl-C 1-6 alkyl, heteroarylC 1-6 alkyl, C 3-6 cycloalkyl or C 3-6 cycloalkylC 1-6 alkyl group, each of which is optionally substituted by one or more substituents selected from C 1-2 alkyl, cyano, C 1- 2 haloalkyl, hydroxy, C 1-2 alkoxy, halo, C 1-2 haloalkoxy, NR 1ga R 1ha or -S(O) 0-2 R 1ga R 1ha , wherein R 1ga and R 1ha are H or C 1-2 alkyl; or d) or R 1g and R 1h are optionally linked together such that, together with the carbon atom to which they are attached, they form a 3- to 6-membered cycloalkyl or heterocyclic ring which is optionally substituted by one or more substituents selected from C 1-2 alkyl, cyano, C 1-2 haloalkyl, hydroxy, C 1-2 alkoxy, halo, C 1-2 haloalkoxy, NR 1ga R 1ha or -S(O) 0-2 R 1ga R 1ha , wherein R 1ga and R 1ha are H or C 1-2 alkyl; and T1 is selected from hydrogen, cyano, hydroxy, NR 1t R 2t or S(O) 0-2 R 1t R 2t (wherein R 1t and R 2t are H or C 1-4 alkyl), C 3-8 cycloalkyl, C 2- 3 alkenyl, C 2-3 alkynyl, aryl, heterocyclyl, heteroaryl, a spirocyclic carbocyclic or heterocyclic ring system, a bridged C 3-8 cycloalkyl, a bridged bicyclic C 5-12 cycloalkyl, or a bridged heterocyclic ring system, each of which is optionally substituted by one or more substituents selected from C 1-2 alkyl, C 1-2 haloalkyl, cyano, hydroxy, C 1-2 alkoxy, halo, C 1-2 haloalkoxy, NR 3t R 4t or -S(O) 0-2 R 3t R 4t , wherein R 3t and R 4t are H or C 1-2 alkyl; or R 1e and R 1f are linked such that, together with the nitrogen atom to which they are attached, they form a mono- or bicyclic-heterocyclic ring, which is optionally substituted by one or more substituents selected from C 1-4 alkyl, C 1- 4 haloalkyl, cyano, hydroxy, C 1-4 alkoxy, halo, C 1-4 haloalkoxy, NR 1i R 1j or -S(O) 0- 2 R 1i R 1j , wherein R 1i and R 1j are H or C 1-4 alkyl, and/or the mono- or bicyclic hetereocyclic ring formed by R 1e and R 1f is optionally spiro-fused to a C 3- 6 cycloalkyl or a heterocyclic ring, which in turn is optionally substituted by one or more substituents selected from C 1-4 alkyl, C 1-4 haloalkyl, cyano, hydroxy, C 1- 4 alkoxy, halo, C 1-4 haloalkoxy, NR 1i R 1j or -S(O) 0-2 R 1i R 1j , wherein R 1i and R 1j are H or C 1-4 alkyl;

(7) R 1b , R 1d and R 1f are selected from: (i) C 1-4 alkyl optionally subsutited by halo, cyano, hydroxy, C 3-6 cycloalkyl, a 3 to 6 membered heterocyclyl, C 1-4 alkoxy, C 1-4 haloalkoxy, aryl or heteroaryl; or

(ii) a group of the formula:

—(CR 1c R 1d ) p -NR 1e R 1f ; wherein p is an integer selected from 1 or 2; R 1c and R 1d are independently selected from:

(i) hydrogen (including deuterium),

(ii) C 1-3 alkyl which is optionally substituted by one more substituents selected from cyano, oxo, hydroxy, C 1-4 alkoxy, halo, C 1-4 haloalkoxy, - O-C 3-6 cycloalkyl, NR 1ca R 1da or -S(O) 0-2 R 1ca R 1da , wherein R 1ca and R 1da are H or C 1-2 alkyl; and wherein C 3-6 cycloalkyl and -O-C 3-6 cycloalkyl are optionally subsitutued with halo, cyano or hydroxy;

(iii) C 3-4 cycloalkyl or 3 to 5 membered heterocyclyl, each of which is optionally substituted by C 1-4 alkyl, C 1-4 haloalkyl, cyano, hydroxy, C 1- 2 alkoxy, halo, C 1-2 haloalkoxy, NR 1ca R 1da or -S(O) 0-2 R 1ca R 1da , wherein R 1ca and R 1da are H or C 1-2 alkyl; and;

(iv) or R 1c and R 1d are linked together such that, together with the carbon atom to which they are attached, they form a 3- to 5-membered cycloalkyl or heterocyclic ring, or a spirocyclic ring system, each of which is optionally substituted by one or more substituents selected from C 1-2 alkyl, C 1-2 haloalkyl, cyano, hydroxy, C 1-2 alkoxy, halo, C 1-2 - haloalkoxy, NR 1ca R 1da or -S(O) 0-2 R 1ca R 1da , wherein R 1ca and R 1da are H or C 1-2 alkyl; R 1e and R 1f are each independently selected from:

(i) hydrogen (including deuterium);

(ii) C 1-6 alkyl which is optionally substituted by one more substituents selected from cyano, oxo, hydroxy, C 1-2 alkoxy, halo, C 1-2 haloalkoxy, NR 1ea R 1fa or -S(O) 0-2 R 1ea R 1fa , wherein R 1ea and R 1fa are H or C 1-2 alkyl;

(iii) a group with the formula:

—(CR 1g R 1 h ) q —T 1 wherein: q is 0, 1, 2 or 3; R 1g and R 1h are independently selected from: a) hydrogen (including deuterium); or b) C 1-3 alkyl which is optionally substituted by one more substituents selected from cyano, oxo, hydroxy, C 1-3 alkoxy, halo, C 1-4 haloalkoxy, -O-C 3-4 cycloalkyl, wherein -O-C 3- 4 cycloalkyl is optionally subsitutued with halo, cyano or hydroxy, NR 1ca R 1da or -S(O) 0-2 R 1ca R 1da , wherein R 1ca and R 1da are H or C 1-2 alkylNR 1ga R 1ha or -S(O) 0-2 R 1ga R 1ha , wherein R 1ga and R 1ha are H or C 1-2 alkyl; c) or R 1g and R 1h are optionally linked together such that, together with the carbon atom to which they are attached, they form a 3- to 6-membered cycloalkyl or heterocyclic ring which is optionally substituted by one or more substituents selected from C 1-2 alkyl, C 1-2 haloalkyl, cyano, hydroxy, C 1- 2 alkoxy, halo, C 1-2 haloalkoxy, NR 1ga R 1ha or -S(O) 0-2 R 1ga R 1ha , wherein R 1ga and R 1ha are H or C 1-2 alkyl; and T 1 is selected from hydrogen, halo, C 1-4 alkyl, C 1-4 haloalkyl, cyano, hydroxy, NR 1t R 2t or -S(O) 0-2 R 1t R 2t (wherein R 1t and R 2t are H or C 1-4 alkyl), C 3-8 cycloalkyl, C 2-3 alkenyl, C 2-3 alkynyl, aryl, heterocyclyl, a mono- or bicyclic heteroaryl, a spirocyclic carbocyclic or heterocyclic ring system, a bridged C 3-8 cycloalkyl, a bridged bicyclic C 5-12 cycloalkyl, or a bridged heterocyclic ring system, each of which is optionally substituted by one or more substituents selected from C 1-2 alkyl, C 1-2 haloalkyl, cyano, hydroxy, C 1-2 alkoxy, halo, C 1-2 - haloalkoxy, C 3-6 cycloalkyl, NR 3t R 4t or -S(O) 0-2 R 3t R 4t , wherein R 3t and R 4t are H or C 1-2 alkyl;

(iv) or R 1e and R 1f are linked such that, together with the nitrogen atom to which they are attached, they form a mono- or bicyclic-heterocyclic ring, which is optionally substituted by one or more substituents selected from C 1-4 alkyl, C 1-4 haloalkyl, C 3-6 cycloalkyl, cyano, hydroxy, C 1-4 alkoxy, halo, C 1-4 haloalkoxy, NR 1i R 1j or -S(O) 0-2 R 1i R 1j , wherein R 1i and R 1j are H or C 1-4 alkyl, and/or the mono- or bicyclic hetereocyclic ring formed by R 1e and R 1f is optionally spiro-fused to a C 3-6 cycloalkyl or a heterocyclic ring, which in turn is optionally substituted by one or more substituents selected from C 1-4 alkyl, C 1-4 haloalkyl, C 3-6 cycloalkyl, cyano, hydroxy, C 1-4 alkoxy, halo, C 1-4 haloalkoxy, NR 1i R 1j or -S(O) 0- 2 R 1i R 1j , wherein R 1i and R 1j are H or C 1-4 alkyl; wherein any alkyl, alkoxy or C 3-6 cycloalkyl is further optionally substituted by one or more substituents selected from cyano, hydroxy, halo, NR 1k R 1l or -S(O) 0-2 R 1k R 1l , wherein R 1k and R 1l are H or C 1-4 alkyl;

(8) R 1b , R 1d and R 1f are a group of the formula:

—(CR 1c R 1d ) p -NR 1e R 1f ; wherein p is an integer selected from 1 or 2; R 1c and R 1d are independently selected from:

(i) hydrogen (including deuterium); or

(ii) C 1-3 alkyl which is optionally substituted by one more substituents selected from cyano, oxo, hydroxy, C 1-3 alkoxy, halo, C 1-3 haloalkoxy, - O-C 3-4 cycloalkyl, or NH 2 ; wherein -O-C 3-6 cycloalkyl is optionally subsitutued with halo, cyano or hydroxy,

(iii) C 3-4 cycloalkyl which is optionally substituted by C 1-4 alkyl, C 1-4 haloalkyl, cyano, hydroxy, C 1-2 alkoxy, halo, C 1-2 haloalkoxy or NR 1ca R 1da ; and;

(iv) or R 1c and R 1d are linked together such that, together with the carbon atom to which they are attached, they form a 3- to 5-membered cycloalkyl or heterocyclic ring, or a spirocyclic ring system, each of which is optionally substituted by one or more substituents selected from C 1-2 alkyl, C 1-2 haloalkyl, cyano, hydroxy, C 1-2 alkoxy, halo, C 1-2 - haloalkoxy, NR 1ca R 1da or -S(O) 0-2 R 1ca R 1da , wherein R 1ca and R 1da are H or C 1-2 alkyl; R 1e and R 1f are each independently selected from:

(i) hydrogen (including deuterium);

(ii) C 1-6 alkyl which is optionally substituted by one more substituents selected from cyano, oxo, hydroxy, C 1-2 alkoxy, halo, C 1-2 haloalkoxy, NH 2 ;

(iii) a group with the formula: —(CR 1g R 1 h ) q —T 1 wherein: q is 0, 1 , 2 or 3; R 1g and R 1h are independently selected from: a) hydrogen (including deuterium); or b) C 1-6 alkyl which is optionally substituted by one more substituents selected from cyano, oxo, hydroxy, C 1-4 alkoxy, halo, C 1-4 haloalkoxy, -O-C 3- 6 cycloalkyl, NR 1ca R 1da or -S(O) 0-2 R 1ca R 1da , wherein R 1ca and R 1da are H or Ci.

2 alkylNR 1ga R 1ha or -S(O) 0-2 R 1ga R 1ha , wherein R 1ga and R 1ha are H or C 1-2 alkyl; and wherein -O-C 3- 6 cycloalkyl is optionally subsitutued with halo, cyano or hydroxy, c) or R 1g and R 1h are optionally linked together such that, together with the carbon atom to which they are attached, they form a 3- to 6- membered cycloalkyl or heterocyclic ring which is optionally substituted by one or more substituents selected from C 1-2 alkyl, C 1-2- haloalkyl, cyano, hydroxy, C 1-2 alkoxy, halo, C 1- 2 haloalkoxy, NR 1ga R 1ha or -S(O) 0-2 R 1ga R 1ha , wherein R 1ga and R 1ha are H or C 1-2 alkyl; and T 1 is selected from hydrogen, halo, C 1-4 alkyl, C 1-4 haloalkyl, cyano, hydroxy, NR 1t R 2t or -S(O) 0-2 R 1t R 2t (wherein R 1t and R 2 t are H or C 1-4 alkyl) , C 3-8 cycloalkyl, C 2-3 alkenyl, C 2-3 alkynyl, aryl, heterocyclyl, a mono- or bicyclic heteroaryl, a spirocyclic carbocyclic or heterocyclic ring system, a bridged C 3- 6 cycloalkyl, a bridged bicyclic C 5-12 cycloalkyl, or a bridged heterocyclic ring system, each of which is optionally substituted by one or more substituents selected from C 1-2 alkyl, C 1-2 haloalkyl, cyano, hydroxy, C 1-2 alkoxy, halo, C 1-2 haloalkoxy, C 3-6 cycloalkyl, NR 3t R 4t or -S(O) 0-2 R 3t R 4t , wherein R 3t and R 4t are H or C 1-2 alkyl; (iv) or R 1e and R 1f are linked such that, together with the nitrogen atom to which they are attached, they form a mono- or bicyclic-heterocyclic ring, which is optionally substituted by one or more substituents selected from C 1-4 alkyl, C 1- 4 haloalkyl, C 3-6 cycloalkyl, cyano, hydroxy, C 1-4 alkoxy, halo, C 1-4 haloalkoxy, NR 1i R 1j or -S(O) 0-2 R 1i R 1j , wherein R 1i and R 1j are H or C 1-4 alkyl, and/or the mono- or bicyclic hetereocyclic ring formed by R 1e and R 1f is optionally spiro-fused to a C 3-6 cycloalkyl or a heterocyclic ring, which in turn is optionally substituted by one or more substituents selected from C 1-4 alkyl, C 1-4 haloalkyl, C 3-6 cycloalkyl, cyano, hydroxy, C 1-4 alkoxy, halo, C 1-4 haloalkoxy, NR 1i R 1j or -S(O) 0-2 R 1i R 1j , wherein R 1i and R 1j are H or C 1-4 alkyl; wherein any alkyl, alkoxy or C 3-6 cycloalkyl is further optionally substituted by one or more substituents selected from cyano, hydroxy, halo, NR 1k R 1l or -S(O) 0-2 R 1k R 1l , wherein R 1k and R 1l are H or C 1-4 alkyl.

(9) R 1b , R 1d and R 1f are a group of the formula:

— (CR 1c R 1d ) p - NR 1e R 1f ; wherein p is an integer selected from 1 or 2; R 1c and R 1d are independently selected from:

(i) hydrogen (including deuterium),

(ii) C 1-3 alkyl which is optionally substituted by one more substituents selected from cyano, oxo, hydroxy, C 1-3 alkoxy, halo, C 1-43 haloalkoxy, -O-C 3-4 cycloalkyl, or NH 2 ; wherein -O-C 3-6 cycloalkyl is optionally subsitutued with halo, cyano or hydroxy,

(iii) or R 1c and R 1d are linked together such that, together with the carbon atom to which they are attached, they form a 3- to 5-membered cycloalkyl or heterocyclic ring, or a spirocyclic ring system, each of which is optionally substituted by one or more substituents selected from C 1-2 alkyl, C 1-2 haloalkyl, cyano, hydroxy, C 1-2 alkoxy, halo, C 1-2 haloalkoxy, NR 1ca R 1da or -S(O) 0-2 R 1ca R 1da , wherein R 1ca and R 1da are H or C 1-2 alkyl; R 1 e e is selected from:

(i) hydrogen (including deuterium);

(ii) C 1-3 alkyl which is optionally substituted by one more substituents selected from cyano, oxo, hydroxy, C 1-2 alkoxy, halo, C 1-2 haloalkoxy and NH 2 ; and R 1f is selected from:

(i) C 1-6 alkyl which is optionally substituted by one more substituents selected from cyano, oxo, hydroxy, C 1-2 alkoxy, halo, C 1-2 haloalkoxy and NH 2 ;

(ii) a group with the formula:

—(CR 1g R 1 h ) q —T 1 wherein: q is 1 , 2 or 3; R 1g and R 1h are independently selected from: a) hydrogen (including deuterium); or b) C 1-6 alkyl which is optionally substituted by one more substituents selected from cyano, oxo, hydroxy, C 1-4 alkoxy, halo, C 1-4 haloalkoxy, -O-C 3- 6 cycloalkyl, NR 1ca R 1da or -S(O) 0-2 R 1ca R 1da , wherein R 1ca and R 1da are H or C 1- 2 alkylNR 1ga R 1ha or -S(O) 0-2 R 1ga R 1ha , wherein R 1ga and R 1ha are H or C 1-2 alkyl; and wherein -O-C 3-6 cycloalkyl is optionally subsitutued with halo, cyano or hydroxy; c) or R 1g and R 1h are optionally linked together such that, together with the carbon atom to which they are attached, they form a 3- to 4-membered cycloalkyl or heterocyclic ring which is optionally substituted by one or more substituents selected from C 1-2 alkyl, C 1-2 haloalkyl, cyano, hydroxy, C 1-2 alkoxy, halo, C 1-2 haloalkoxy, NR 1ga R 1ha or -S(O) 0-2 R 1ga R 1ha , wherein R 1ga and R 1ha are H or C 1-2 alkyl; and T 1 is selected from hydrogen, halo, C 1-4 alkyl, C 1-4 haloalkyl, cyano, hydroxy, NR 1t R 2t or -S(O) 0-2 R 1t R 2t (wherein R 1t and R 2t are H or C 1-4 alkyl) , C 3- 8 cycloalkyl, C 2-3 alkenyl, C 2-3 alkynyl, aryl, heterocyclyl, a mono- or bicyclic heteroaryl, a spirocyclic carbocyclic or heterocyclic ring system, a bridged C 3- 8 cycloalkyl, a bridged bicyclic C 5-12 cycloalkyl, or a bridged heterocyclic ring system, each of which is optionally substituted by one or more substituents selected from C 1-2 alkyl, C 1-2 haloalkyl, cyano, hydroxy, C 1-2 alkoxy, halo, C 1-2- haloalkoxy, C 3-6 cycloalkyl, NR 3t R 4t or -S(O) 0-2 R 3t R 4t , wherein R 3t and R 4t are H or C 1-2 alkyl; or R 1e and R 1f are linked such that, together with the nitrogen atom to which they are attached, they form a mono- or bicyclic-heterocyclic ring, which is optionally substituted by one or more substituents selected from C 1-4 alkyl, C 1-4 haloalkyl, C 3- 6 cycloalkyl, cyano, hydroxy, C 1-4 alkoxy, halo, C 1-4 haloalkoxy, NR 1i R 1j or -S(O) 0- 2 R 1i R 1j , wherein R 1i and R 1j are H or C 1-4 alkyl, and/or the mono- or bicyclic hetereocyclic ring formed by R 1e and R 1f is optionally spiro-fused to a C 3-6 cycloalkyl or a heterocyclic ring; which in turn is optionally substituted by one or more substituents selected from C 1-4 alkyl, C 1-4 haloalkyl, C 3-6 cycloalkyl, cyano, hydroxy, C 1-4 alkoxy, halo, C 1-4 haloalkoxy, NR 1i R 1j or -S(O) 0-2 R 1i R 1j , wherein R 1i and R 1j are H or C 1-4 alkyl; wherein any alkyl, alkoxy or C 3-6 cycloalkyl is further optionally substituted by one or more substituents selected from cyano, hydroxy, halo, NR 1k R 1l or -S(O) 0-2 R 1k R 1l , wherein R 1k and R 1l are H or C 1-4 alkyl.

(10) R 1b , R 1d and R 1f are a group of the formula:

— (CR 1c R 1d ) p - NR 1e R 1f wherein p is an integer selected from 1 or 2; R 1c and R 1d are independently selected from:

(i) hydrogen (including deuterium);

(ii) C 1-3 alkyl which is optionally substituted by one more substituents selected from cyano, oxo, hydroxy, C 1-3 alkoxy, halo, C 1-3 haloalkoxy, -O-C 3-4 cycloalkyl, or NH 2 ; wherein -O-C 3-6 cycloalkyl is optionally subsitutued with halo, cyano or hydroxy,

(iii) or R 1c and R 1d are linked together such that, together with the carbon atom to which they are attached, they form a 3- to 5-membered cycloalkyl or heterocyclic ring, or a spirocyclic ring system, each of which is optionally substituted by one or more substituents selected from C 1-2 alkyl, C 1-2 haloalkyl, cyano, hydroxy, C 1-2 alkoxy, halo or C 1-2 haloalkoxy; R 1e is selected from:

(i) hydrogen (including deuterium);

(ii) C 1-3 alkyl which is optionally substituted by one more substituents selected from cyano, oxo, hydroxy, C 1-2 alkoxy, halo, C 1-2 haloalkoxy and NH 2 ; R 1f is a group with the formula:

—(CR 1g R 1 h ) q —T 1 wherein: q is 1 , 2 or 3; R 1g and R 1h are independently selected from: a) hydrogen (including deuterium); or b) C 1-3 alkyl which is optionally substituted by one more substituents selected from cyano, oxo, hydroxy, C 1- 4 alkoxy, halo, C 1-4 haloalkoxy, -O-C 3-6 cycloalkyl, wherein -O-C 3-6 cycloalkyl is optionally subsitutued with halo, cyano or hydroxy; c) or R 1g and R 1h are optionally linked together such that, together with the carbon atom to which they are attached, they form a 3- to 4-membered cycloalkyl or heterocyclic ring which is optionally substituted by one or more substituents selected from C 1-2 alkyl, C 1-2- haloalkyl, cyano, hydroxy, C 1-2 alkoxy, halo or C 1-2- haloalkoxy; and T 1 is selected from halo, C 1-4 alkyl, C 1-4 haloalkyl, cyano, hydroxy, NR 1t R 2t or -S(O) 0-2 R 1t R 2t (wherein R 1t and R 2t are H or C 1-4 alkyl), C 3-8 cycloalkyl, C 2- 3 alkenyl, C 2-3 alkynyl, aryl, heterocyclyl, a mono- or bicyclic heteroaryl, a spirocyclic carbocyclic or heterocyclic ring system, a bridged C 3-8 cycloalkyl, a bridged bicyclic C 5-12 cycloalkyl, or a bridged heterocyclic ring system, each of which is optionally substituted by one or more substituents selected from C 1- 2 alkyl, C 1-2 haloalkyl, cyano, hydroxy, C 1-2 alkoxy, halo, C 1-2 haloalkoxy, C 3- 6 cycloalkyl, NR 3t R 4t or -S(O) 0-2 R 3t R 4t , wherein R 3t and R 4t are H or C 1-2 alkyl; or R 1e and R 1f are linked such that, together with the nitrogen atom to which they are attached, they form a mono- or bicyclic-heterocyclic ring, which is optionally substituted by one or more substituents selected from C 1-4 alkyl, C 1-4 haloalkyl, C 3- 6 cycloalkyl, cyano, hydroxy, C 1-4 alkoxy, halo, C 1-4 haloalkoxy, NR 1i R 1j or -S(O) 0-2 R 1i R 1j , wherein R 1i and R 1j are H or C 1-4 alkyl, and/or the mono- or bicyclic hetereocyclic ring formed by R 1e and R 1f is optionally spiro-fused to a C 3-6 cycloalkyl or a heterocyclic ring, which in turn is optionally substituted by one or more substituents selected from C 1-4 alkyl, C 1-4 haloalkyl, C 3-6 cycloalkyl, cyano, hydroxy, C 1-4 alkoxy, halo, C 1- 4haloalkoxy, NR 1i R 1j or -S(O) 0-2 R 1i R 1j , wherein R 1i and R 1j are H or C 1-4 alkyl; wherein any alkyl, alkoxy or C 3-6 cycloalkyl is further optionally substituted by one or more substituents selected from cyano, hydroxy, halo, NR 1k R 1l or -S(O) 0-2 R 1k R 1l , wherein R 1k and R 1l are H or C 1-4 alkyl.

(11) R 1b , R 1d and R 1f are a group of the formula:

— (CR 1c R 1d ) p - NR 1e R 1f ; wherein p is an integer selected from 1 or 2; R 1c and R 1d are independently selected from:

(i) hydrogen (including deuterium),

(ii) C 1-3 alkyl which is optionally substituted by one more substituents selected from cyano, oxo, hydroxy, C 1-3 alkoxy, halo, C 1-3 haloalkoxy, -O-C 3-4 cycloalkyl, or NH 2 ; wherein -O-C 3-6 cycloalkyl is optionally subsitutued with halo, cyano or hydroxy,

(iii) or R 1c and R 1d are linked together such that, together with the carbon atom to which they are attached, they form a 3- to 5-membered cycloalkyl or heterocyclic ring, or a spirocyclic ring system, each of which is optionally substituted by one or more substituents selected from C 1-2 alkyl, C 1-2 haloalkyl, cyano, hydroxy, C 1-2 alkoxy, halo or C 1-2 haloalkoxy; R 1e is selected from:

(i) hydrogen (including deuterium);

(ii) C 1-3 alkyl which is optionally substituted by one more substituents selected from cyano, oxo, hydroxy, C 1-2 alkoxy, halo, C 1-2 haloalkoxy and NH 2 ; R 1f is a group with the formula:

—(CR 1g R 1 h ) q —T 1 wherein: q is 1 or 2; R 1g and R 1h are independently selected from: a) hydrogen (including deuterium); or b) C 1-3 alkyl, which is optionally substituted by one more substituents selected from cyano, oxo, hydroxy, C 1-2 alkoxy, halo, C 1-2 haloalkoxy, -O-C 3 cycloalkyl, wherein -O-C 3 cycloalkyl is optionally subsitutued with halo, cyano or hydroxy; and T 1 is selected from C 1-4 alkyl, C 3-8 cycloalkyl, aryl, heterocyclyl, heteroaryl, a spirocyclic carbocyclic or heterocyclic ring system, a bridged C 3-8 cycloalkyl, a bridged bicyclic C 5-12 cycloalkyl, or a bridged heterocyclic ring system, each of which is optionally substituted by one or more substituents selected from C 1- 2 alkyl, C 1-2 haloalkyl, cyano, hydroxy, C 1-2 alkoxy, halo, C 1-2 haloalkoxy or C 3- 6 cycloalkyl,; or R 1e and R 1f are linked such that, together with the nitrogen atom to which they are attached, they form a mono- or bicyclic-heterocyclic ring, which is optionally substituted by one or more substituents selected from C 1-2 alkyl, C 1-2 haloalkyl, C 3- 6 cycloalkyl, cyano, hydroxy, C 1-2 alkoxy, halo, C 1-2 haloalkoxy, NR 1i R 1j or-S(O) 0-2 R 1i R 1j , wherein R 1i and R 1j are H or C 1-2 alkyl, and/or the mono- or bicyclic hetereocyclic ring formed by R 1e and R 1f is optionally spiro-fused to a C 3-6 cycloalkyl or a heterocyclic ring, which in turn is optionally substituted by one or more substituents selected from C 1-2 alkyl, C 3-6 cycloalkyl, cyano, hydroxy, C 1-2 alkoxy, halo, C 1-2 haloalkoxy, NR 1i R 1j or - S(O) 0-2 R 1i R 1j , wherein R 1i and R 1j are H or C 1-2 alkyl; wherein any alkyl, alkoxy or C 3-6 cycloalkyl is further optionally substituted by one or more substituents selected from cyano, hydroxy, halo, NR 1k R 1l or -S(O) 0-2 R 1k R 1l , wherein R 1k and R 1l are H or C 1-4 alkyl.

(12) R 1b , R 1d and R 1f are a group of the formula:

— (CR 1c R 1d ) p - NR 1e R 1f ; wherein p is an integer selected from 1 or 2; R 1c and R 1d are independently selected from:

(i) hydrogen (including deuterium) or

(ii) C 1-3 alkyl which is optionally substituted by one more substituents selected from cyano, oxo, hydroxy, C 1-2 alkoxy, halo, C 1-2 haloalkoxy, -O- C 3 cycloalkyl; R 1e is selected from hydrogen (including deuterium) or C 1-2 alkyl; and R 1f is a group with the formula: —(CR 1g R 1 h ) q —T 1 wherein: q is 1 or 2; R 1g and R 1h are independently selected from: a) hydrogen (including deuterium); or b) C 1-2 alkyl, which is optionally substituted by one more substituents selected from cyano, oxo, hydroxy, C 1-2 alkoxy, halo or C 1-2 haloalkoxy; and T 1 is selected from C 1-4 alkyl, C 3-8 cycloalkyl, aryl, heterocyclyl, a mono- or bicyclic heteroaryl, a spirocyclic carbocyclic or heterocyclic ring system, a bridged C 3-8 cycloalkyl, a bridged bicyclic C 5-12 cycloalkyl, or a bridged heterocyclic ring system, each of which is optionally substituted by one or more substituents selected from C 1-2 alkyl, C 1-2 haloalkyl, cyano, hydroxy, C 1- 2 alkoxy, halo, C 1-2 haloalkoxy or C 3-6 cycloalkyl; or R 1e and R 1f are linked such that, together with the nitrogen atom to which they are attached, they form a mono- or bicyclic-heterocyclic ring, which is optionally substituted by one or more substituents selected from C 1-2 alkyl, C 1-2 haloalkyl, C 3- 6 cycloalkyl, cyano, hydroxy, C 1-2 alkoxy, halo or C 1-2 haloalkoxy, and/or the mono- or bicyclic hetereocyclic ring formed by R 1e and R 1f is optionally spiro-fused to a C 3- 6 cycloalkyl or a heterocyclic ring, which in turn is optionally substituted by one or more substituents selected from C 1-2 alkyl, C 1-2 haloalkyl, C 3-6 cycloalkyl, cyano, hydroxy, C 1-2 alkoxy, halo or C 1-2 haloalkoxy; wherein any alkyl, alkoxy or C 3-6 cycloalkyl is further optionally substituted by one or more substituents selected from cyano, hydroxy, halo, NR 1k R 1l or -S(O) 0-2 R 1k R 1l , wherein R 1k and R 1l are H or C 1-4 alkyl.

(13) R 1b , R 1d and R 1f are a group of the formula:

— (CR 1c R 1d ) p - NR 1e R 1f ; wherein: p is an integer selected from 1 or 2; R 1c and R 1d are independently selected from hydrogen (including deuterium) or C 1- 2 alkyl; R 1e is selected from hydrogen (including deuterium) or C 1-2 alkyl; and R 1f is a group with the formula:

—(CR 1g R 1h ) q —T 1 wherein: q is 1 or 2; R 1g and R 1h are independently selected from hydrogen (including deuterium) or C 1-2 alkyl; and T 1 is selected from C 1-4 alkyl, C 3-4 cycloalkyl, heterocyclyl, a mono- or bicyclic heteroaryl, a spirocyclic carbocyclic or heterocyclic ring system, a bridged C 3-8 cycloalkyl, a bridged bicyclic C 5-12 cycloalkyl, or a bridged heterocyclic ring system, each of which is optionally substituted by one or more substituents selected from C 1-2 alkyl, C 1-2 haloalkyl, cyano, hydroxy, C 1- 2 alkoxy, halo, C 1-2 haloalkoxy or C 3-6 cycloalkyl; or R 1e and R 1f are linked such that, together with the nitrogen atom to which they are attached, they form a mono- or bicyclic-heterocyclic ring, which is optionally substituted by one or more substituents selected from C 1-2 alkyl, C 1-2 haloalkyl, C 3- 6 cycloalkyl, cyano, hydroxy, C 1-2 alkoxy, halo or C 1-2 haloalkoxy, and/or the mono- or bicyclic hetereocyclic ring formed by R 1e and R 1f is optionally spiro-fused to a C 3- 6 cycloalkyl or a heterocyclic ring, which in turn is optionally substituted by one or more substituents selected from C 1-2 alkyl, C 1-2 haloalkyl, C 3-6 cycloalkyl, cyano, hydroxy, C 1-2 alkoxy, halo or C 1-2 haloalkoxy; wherein any alkyl, alkoxy or C 3-6 cycloalkyl is further optionally substituted by one or more substituents selected from cyano, hydroxy, halo, NR 1k R 1l or -S(O) 0-2 R 1k R 1l , wherein R 1k and R 1l are H or C 1-4 alkyl.

(14) R 1b , R 1d and R 1f are a group of the formula:

— (CR 1c R 1d ) p - NR 1e R 1f ; wherein p is 1 ; R 1c and R 1d are independently selected from hydrogen (including deuterium) or C 1- 2 alkyl; R 1e is selected from hydrogen (including deuterium) or C 1-2 alkyl; and R 1f is a group with the formula:

—(CR 1g R 1h ) q —T 1 wherein: q is 1 or 2; R 1g and R 1h are independently selected from hydrogen (including deuterium) or C 1-2 alkyl; and T 1 is selected from C 3-4 cycloalkyl, heterocyclyl, a mono- or bicyclic heteroaryl, a spirocyclic carbocyclic or heterocyclic ring system, a bridged C 3- 8 cycloalkyl, a bridged bicyclic C 5-12 cycloalkyl, or a bridged heterocyclic ring system, each of which is optionally substituted by one or more substituents selected from C 1-2 alkyl, C 1-2 haloalkyl, cyano, hydroxy, C 1-2 alkoxy, halo, C 1-2- haloalkoxy or C 3-6 cycloalkyl; or R 1e and R 1f are linked such that, together with the nitrogen atom to which they are attached, they form a mono- or bicyclic-heterocyclic ring, which is optionally substituted by one or more substituents selected from C 1-2 alkyl, C 1-2 haloalkyl, C 3- 6 cycloalkyl, cyano, hydroxy, C 1-2 alkoxy, halo or C 1-2 haloalkoxy, and/or the mono- or bicyclic hetereocyclic ring formed by R 1e and R 1f is optionally spiro-fused to a C 3- 6 cycloalkyl or a heterocyclic ring; which in turn is optionally substituted by one or more substituents selected from C 1-2 alkyl, C 1-2 haloalkyl, C 3-6 cycloalkyl, cyano, hydroxy, C 1-2 alkoxy, halo or C 1-2 haloalkoxy, wherein any alkyl, alkoxy or C 3- 6 cycloalkyl is further optionally substituted by one or more substituents selected from cyano, hydroxy, halo, NR 1k R 1l or -S(O) 0-2 R 1k R 1l , wherein R 1k and R 1l are H or C 1-4 alkyl.

(15) R 1b , R 1d and R 1f are a group of the formula:

— (CR 1c R 1d ) p - NR 1e R 1f ; wherein p is 1 ; R 1c and R 1d are independently selected from hydrogen (including deuterium) or C 1- 2 alkyl; R 1e is selected from hydrogen (including deuterium) or C 1-2 alkyl; and R 1f is a group with the formula:

—(CR 1g R 1h ) q —T 1 wherein: q is 1 ; R 1g and R 1h are independently selected from hydrogen (including deuterium) or C 1-2 alkyl; and T 1 is selected from C 3-4 cycloalkyl, heterocyclyl, a spirocyclic carbocyclic or heterocyclic ring system, a bridged C 3-8 cycloalkyl, a bridged bicyclic C 5- 12 cycloalkyl, or a bridged heterocyclic ring system, each of which is optionally substituted by one or more substituents selected from C 1-2 alkyl, C 1-2 haloalkyl, cyano, hydroxy, C 1-2 alkoxy, halo, C 1-2 haloalkoxy or C 3-6 cycloalkyl, wherein any alkyl or alkoxy is optionally further substituted by one or more substituents selected from cyano, hydroxy or halo.

(16) R 1b , R 1d and R 1f are a group of the formula:

— (CR 1c R 1d ) p - NR 1e R 1f ; wherein p is 1 ; R 1c and R 1d are independently selected from hydrogen (including deuterium) or C 1-2 alkyl; and R 1e and R 1f are linked such that, together with the nitrogen atom to which they are attached, they form a mono- or bicyclic-heterocyclic ring, which is optionally substituted by one or more substituents selected from C 1-2 alkyl, C 1- 2 haloalkyl, C 3-6 cycloalkyl, cyano, hydroxy, C 1-2 alkoxy, halo or C 1-2 haloalkoxy, and/or the mono- or bicyclic hetereocyclic ring formed by R 1e and R 1f is optionally spiro-fused to a C 3-6 cycloalkyl or a heterocyclic ring, which in turn is optionally substituted by one or more substituents selected from C 1-2 alkyl, C 1- 2haloalkyl, cyano, hydroxy, C 1-2 alkoxy, halo or C 1-2 haloalkoxy.

(17) R 1b , R 1d and R 1f are a group of the formula: wherein T 1 is as defined herein.

(18) R 1b , R 1d and R 1f are a group of the formula: wherein T 1 is selected from C 3-4 cycloalkyl, heterocyclyl, a spirocyclic carbocyclic or heterocyclic ring system, a bridged C 3-8 cycloalkyl, a bridged bicyclic C 5-12 cycloalkyl, or a bridged heterocyclic ring system, each of which is optionally substituted by one or more substituents selected from C 1-2 alkyl, C 1-2 haloalkyl, cyano, hydroxy, C 1-

2alkoxy, halo or C 1-2 haloalkoxy.

(19) R 1b , R 1d and R 1f are selected from:

(20) R 1b , R 1d and R 1f are selected from:

(21) R 1b , R 1d and R 1f are selected from :

and

(22) R 1b , R 1d and R 1f are selected from:

(23) R 1b , R 1d and R 1f are selected from: (24) R 1b , R 1d and R 1f are selected from: (25) R 1b ,, R 1d and R 1f are selected from: (26) R 1b , R 1d and R 1f are selected from: and

(27) R 1b , R 1d and R 1f are:

(28) R 1a’ , is selected from hydrogen, halo and methyl;

(29) R 1a’ is selected from hydrogen and methyl;

(30) R 1a’ is hydrogen;

(31) R 2a , R 2b and R 2c are selected from hydrogen, halo or a group of the formula:

-L 2a -L 2b -Q 2 wherein L 2a is absent or C 1-3 alkylene optionally substituted by C 1-2 alkyl or oxo; L 2b is absent or selected from O, S, SO, SO 2 , N(R n ), C(O), C(O)O, OC(O), C(O)N(R n ), N(R n )C(O), N(R n )C(O)N(R o ), S(O) 2 N(R n ), or N(R n )SO 2 , wherein R n and R o are each independently selected from hydrogen or C 1-2 alkyl; and Q 2 is hydrogen, cyano, C 1-6 alkyl, C 3-6 cycloalkyl, aryl, heterocyclyl or heteroaryl, each of which is optionally substituted by one or more substituents selected from halo, trifluoromethyl, trifluoromethoxy, amino, cyano, hydroxy, amino, carboxy, carbamoyl, sulphamoyl, C 1-4 alkyl, NR p R q , OR p , C(O)R p , C(O)OR p , OC(O)R p , C(O)N(R p )Rq, N(R r )C(O)R p , S(O) y R p (where y is 0, 1 or 2), SO 2 N(R p )R q , N(R r )SO 2 R p or (CH 2 ) z NR p R q (where z is 1 , 2 or 3), wherein R p and R q are each independently selected from hydrogen or C 1-4 alkyl;

(32) R 2a , R 2b and R 2c are hydrogen;

(33) X is , wherein R 1a , R 1b , R 1a’ and R 2a are as herein defined; (34) X is , wherein R 1c , R 1d and R 2b are as herein defined;

(35) X is , wherein R 1e , R 1f and R 2c are as herein defined;

(36) X is selected from and

(37) X is (38) R 3a1 , R 3b1 , R 3c1 , R 3d1 , R 3e1 , R 3f1 , R 3g1 , R 3h1 , R 3i1 , R 3j1 , R 3k1 , R 3I1 , R 3m1 , R 3n1 , R 3o1 , R 3p1 , R 3q1 , R 3r1 and R 3s1 are independently selected from hydrogen, C 1-6 alkyl, C 3-4 cycloalkyl, hydroxy, and halo; and wherein C 1-6 alkyl, or C 3-4 cycloalkyl is optionally substituted with one or more substituents selected from halo, amino, cyano, and hydroxy; and R 3a2 , R 3b2 , R 3c2 , R 3d2 , R 3e2 , R 3f2 , R 3g2 , R 3h2 , R 3i2 , R 3j2 , R 3k2 , R 3l2 , R 3m2 , R 3n2 , R 3o2 , R 3p2 R 3q2 , R 3r2 and R 3s2 are hydrogen;

(39) R 3a1 , R 3b1 , R 3c1 , R 3d1 , R 3e1 , R 3f1 , R 3g1 , R 3h1 , R 3i1 , R 3j1 , R 3k1 , R 3I1 , R 3m1 , R 3n1 , R 3o1 , R 3p1 , R 3q1 , R 3r1 and R 3s1 are independently selected from hydrogen and C 1-6 alkyl; and wherein C 1-6 alkyl is optionally substituted with one or more hydroxy substituents;

(40) R 3a1 , R 3b1 , R 3c1 , R 3d1 , R 3e1 , R 3f1 , R 3g1 , R 3h1 , R 3i1 , R 3j1 , R 3k1 , R 3I1 , R 3m1 , R 3n1 , R 3o1 , R 3p1 , R 3q1 , R 3r1 and R 3s1 are independently selected from hydrogen and methyl; and wherein methyl is optionally substituted with one or more hydroxy substituents;

(41) R 3a1 , R 3b1 , R 3c1 , R 3d1 , R 3e1 , R 3f1 , R 3g1 , R 3h1 , R 3i1 , R 3j1 , R 3k1 , R 3I1 , R 3m1 , R 3n1 , R 3o1 , R 3p1 , R 3q1 , R 3r1 and R 3s1 are independently selected from hydrogen and methyl; and wherein methyl is substituted with a hydroxy substituent;

(42) R 3a2 , R 3b2 , R 3c2 , R 3d2 , R 3e2 , R 3f2 , R 3g2 , R 3h2 , R 3i2 , R 3j2 , R 3k2 , R 3l2 , R 3m2 , R 3n2 , R 3o2 , R 3p2 , R 3q2 , R 3r2 and R 3s2 are hydrogen;

(43) R 3a1 and R 3a2 , R 3b1 and R 3b2 , R 3c1 and R 3c2 , R 3d1 and R 3d2 , R 3e1 and R 3e2 , R 3f1 and R 3f2 , R 3g1 and R 3g2 , R 3h1 and R 3h2 , R 3i1 and R 3i2 , R 3j1 and R 3j2 , R 3k1 and R 3k2 , R 3r1 and R 3l2 , R 3m1 and R 3m2 , R 3n1 and R 3n2 , R 3o1 and R 3o2 , R 3p1 and R 3p2 , R 3q1 and R 3q2 ,

R 3r1 and R 3r2 , and R 3s1 and R 3s2 are hydrogen.

(44) R 3a1 and R 3a2 , R 3b1 and R 3b2 , R 3c1 and R 3c2 , R 3d1 and R 3d2 , R 3e1 and R 3e2 , R 3f1 and R 3f2 , R 3g1 and R 3g2 , R 3h1 and R 3h2 , R 3i1 and R 3i2 , R 3ji and R 3j2 , R 3k1 and R 3k2 , R 3r1 and R 3l2 , R 3m1 and R 3m2 , R 3n1 and R 3n2 , R 3o1 and R 3o2 , R 3p1 and R 3p2 , and R 3q1 and R 3q2 , R 3r1 and R 3r2 , and R 3s1 and R 3s2 are linked to form a spiro-fused C 3-4 cycloalkyl which is optionally substituted with one or more substituents selected from halo, amino, cyano, and hydroxy;

(45) n is 0, 1 or 2;

(46) n is 1 ; (47) Y is wherein R 3a1 , R 3a2 and n are as herein defined;

(48) Y is wherein n is 1, and R 3a1 , R 3a2 are as herein defined;

(49) Yis wherein n is herein defined;

(50) Yis wherein R 3b1 , R 3b2 and n are as herein defined;

(51) Yis wherein R 3c1 , R 3c2 and n are as herein defined;

(52) Yis wherein R 3d1 , R 3d2 and n are as herein defined; (53) Y is wherein R 3e1 , R 3e2 and n are as herein defined;

(54) Yis

(55) Yis wherein R 3f1 , R 3f2 and n are as herein defined;

(56) Yis wherein R 3g1 , R 3g2 and n are as herein defined;

(57) Yis wherein R 3h1 , R 3h2 and n are as herein defined (58) Y is wherein R 3i1 , R 3j2 and n are as herein defined;

(59) Y is wherein R 3j2 , R 3j2 and n are as herein defined;

(60) Y is wherein R 3k1 , R 3k2 and n are as herein defined;

(61) Y is wherein R 3l1 , R 3l1 and n are as herein defined;

(62) Y is wherein R 3m1 , R 3m2 and n are as herein defined; (63) Y is wherein R 3n1 , R 3n2 and n are as herein defined;

(64) Y is wherein R 3o1 , R 3o2 and n are as herein defined;

(65) Y is wherein R 3p1 , R 3p2 and n are as herein defined;

(66) Y is wherein R 3q1 , R 3q2 and n are as herein defined;

(67) Y is wherein R 3r1 , R 3r2 and n are as herein defined; (68) wherein R 3s1 , R 3s2 and n are as herein defined;

(69) Y is selected from: ; wherein R 3a1 , R 3a2 ,

R 3b1 , R 3b2 , R 3e1 , R 3e2 , R 3i1 , R 3i2 , R 3j1 , R 3j2 , R 3i1 and R 3i2 , are as defined herein;

(70) Y is selected from:

(71) Y is selected from

(72) Y is

(73) Z is selected from:

wherein:

R 4 is selected from hydrogen, halo, cyano, C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 alkoxy, C 1-4 haloalkoxy (e.g. hydrogen, halo, cyano and methyl);

R 5 is selected from hydrogen, halo, cyano, C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 alkoxy, C 1-4 haloalkoxy (e.g. hydrogen, halo, cyano and methyl);

R 6 is selected from hydrogen, halo, cyano, C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 alkoxy, C 1-4 haloalkoxy (e.g. hydrogen, halo, cyano and methyl); R 12 is selected from hydrogen, halo, cyano, C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 alkoxy, C 1-4 haloalkoxy (e.g. hydrogen, halo, cyano and C 1-4 alkyl); R 13 is selected from hydrogen, halo, cyano, C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 alkoxy, C 1-4 haloalkoxy (e.g. hydrogen, halo, cyano, methoxy and methyl); R 7 , R 9 and R 11 are independently selected from hydrogen, NH 2 , halo, cyano, C 1-4 alkoxy, C 1-4 haloalkoxy and C 1-6 alkyl; R 8 and R 10 are independently selected from halo, cyano, C 1-4 alkoxy, C 1-4 haloalkoxy, C 1-6 alkyl, -CH 2 OCH 3 , -CH 2 SO 2 CH 3 , -SO 2 CH 3 , -NHC(O)CH 3 and - C(O)NR v1 R v2 , wherein R v1 and R v2 are independently selected from hydrogen and methyl;

R 11N are independently selected from hydrogen and C 1-6 alkyl;

R Z1 and R Z1a selected from hydrogen, C 1-4 alkyl, cyano, halo, C 1-4 haloalkyl, C 1- 4haloalkoxy, C 1-4 alkoxy, C 3-6 cycloalkyl and -O-C 3-6 cycloalkyl, wherein C 3-6 cycloalkyl and -O-C 3-6 cycloalkyl are optionally subsitutued by one or more of halo, methyl or methoxy;

R Z2 and R Z2a are selected from hydrogen, C 1-4 alkyl, cyano, halo, NH 2 and C 1-4 alkoxy;

R Z3a is selected from hydrogen, C 1-4 alkyl, cyano, halo, NH 2 and C 1-4 alkoxy; R Zi1b is selected from hydrogen, C 1-4 alkyl, cyano, halo, NH 2 and C 1-4 alkoxy;

R Zi1e is selected from hydrogen, C 1-4 alkyl, cyano, halo, NH 2 and C 1-4 alkoxy; R Z2N is selected from hydrogen or C 1-4 alkyl

R Y5N is selected from hydrogen or C 1-4 alkyl

R Z9 is selected from hydrogen, halo, cyano, C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 alkoxy, C 1-4 haloalkoxy;

R Z10 is selected from hydrogen, halo, cyano, C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 alkoxy, C 1-4 haloalkoxy; R Z11 is selected from hydrogen, halo, cyano, C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 alkoxy, C 1-4 haloalkoxy;

R Z12 is selected from hydrogen, halo, cyano, C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 alkoxy, C 1-4 haloalkoxy;

R Z13 is selected from hydrogen, halo, cyano, C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 alkoxy, C 1-4 haloalkoxy;

R Z14 is selected from hydrogen, halo, cyano, C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 alkoxy, C 1-4 haloalkoxy;

R Z15 is selected from hydrogen, halo, cyano, C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 alkoxy, C 1-4 haloalkoxy;

R Z16 is selected from hydrogen, halo, cyano, C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 alkoxy, C 1-4 haloalkoxy;;

A 5 is selected from CR 16 and N;

A 6 is selected from CR 17 and N;

A 7 is selected from CR 18 and N;

R 15 is selected from hydrogen, halo, cyano, methoxy and methyl; R 16 and R 18 , are selected from hydrogen, halo, cyano, C 1-4 alkyl, C 1-4 alkoxy, C 1- 4haloalkyl, C 1-4 haloalkoxy, C 3-4 cycloalkyl, a 3- to 4-membered heterocyclyl and C 3-4 - cycloalkoxy; R 17 is selected from hydrogen, halo, cyano, C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 alkoxy, C 1-4 haloalkoxy, C 2-4 alkenyl, C 2-4 alkynyl, phenyl, a 5- or 6-membered or heteroaryl, C 3- 6 cycloalkyl, -O-C 3-6 cycloalkyl, heterocyclyl, -O-heterocyclyl (carbon-linked), - (OCH 2 CH 2 )m-OCH 3 wherein m is an integer from 1 to 6, NR q R r , wherein R q and R r are each independently hydrogen, C 1-5 alkyl, C 3-6 cycloalkyl, a 3- to 6- membered carbon- linked heterocyclyl, or R q and R r are linked together such that, together with the nitrogen atom to which they are attached, they form a 3- to 6-membered heterocyclic ring; wherein any C 1- salkyl, C 1-4 alkoxy, C 2-4 alkenyl, C 2-4 alkynyl , phenyl, 5- or 6- membered or heteroaryl, C 3-6 cycloalkyl, -O-C 3-6 cycloalkyl, heterocyclyl or -O- heterocyclyl (carbon-linked)is optionally further substituted by one or more substituents selected from C 1-2 alkyl, cyano, C 1-2 haloalkyl, hydroxy, C 1-2 alkoxy, halo, C 1-2 haloalkoxy, NR 1ea R 1fa or -S(O) 0-2 R 1ea R 1fa , wherein R 1ea and R 1fa are H or C 1-2 alkyl; R 19 and R 20 , R 25 and R 26 are selected from hydrogen, halo, cyano and C 1-4 alkyl; R 22 and R 23 are selected from hydrogen, halo, cyano, C 1-4 alkyl, C 1-4 haloalkyl, C 1- 4 alkoxy, C 1-4 haloalkoxy (e.g. hydrogen, halo, cyano and methyl; R 28 and R 29 are selected from hydrogen, halo, methoxy and methyl; and R 21 , R 24 , and R 30 are independently selected from hydrogen or C 1-4 alkyl

(74) Z is selected from wherein X 2 , X 3 , X 4 , X 5 , X 6 , X 7 , X 8 and X 9 are as defined herein;

(75) Z is

0 wherein X 2 , X 4 , X 5 , X 6 , X 7 , X 8 and X 9 are as defined herein;

(76) wherein X 2 , X 4 , X 5 , X 6 , X 7 , X 8 and X 9 are as defined herein;

(77) Z is wherein X 2 , X 3 , X 4 , X 5 , X 6 , X 7 , X 8 and X 9 are as defined herein; wherein

X 1 is N or CR Z9 ;

X 2 is CR 4 :

X 3 is N;

X 4 is C;

X 5 is CR 5 :

X 6 is A 1 , wherein A 1 is CR 12 X 7 is A 2 , wherein A 2 is CR 13

X 8 is N or CR 6 ,

X 9 is N or C; wherein R Z9 , R 4 , R 5 , R 6 , R 12 and R 13 are as defined herein.

(79) R 13 are as herein defined; (80) Z is: wherein R 4 , R 5 , R 6 , R 12 , R 13 and

R Z9 are as herein defined;

(81) Z is: wherein R 4 , R 5 , R 6 , R 19 , R 22 and

R Z9 are as herein defined;

(82) Z is: wherein R 4 , R 5 , R 6 , R 12 , R 13 and

R Z9 are as herein defined;

(83) Z is wherein Q 7 , Q 8 , Q 9 , Q 10 and Q 11 are as defined herein;

(84) Z is wherein Q 8 , Q 9 , Q 10 and Q 11 are as defined herein;

(84a) Z is selected from: wherein R 8 , R 9 , R 10 and R 11 are as herein defined;

(85) Z is selected from:

and wherein R 8 , R 9 , R 10 and R 11 are as herein defined;

(86) Z is wherein R 8 , R 9 , R 10 and R 11 are as herein defined;

(87) Z is wherein: R 8 is selected from cyano, -CH 2 OCH 3 , -CH 2 SO 2 CH 3 , -SO 2 CH 3 , -NHC(O)CH 3 and -C(O)NR v1 R v2 , wherein R v1 and R v2 are independently selected from hydrogen and methyl, ,

R 10 is C 1-4 alkoxy or C 1-4 haloalkoxy;

R 9 and R 11 are as herein defined;

(87a) Z is wherein:

R 8 is selected from hydrogen, cyano, -CH 2 OCH 3 , -CH 2 SO 2 CH 3 , -SO 2 CH 3 , - NHC(O)CH 3 and -C(O)NR v1 R v2 , wherein R v1 and R v2 are independently selected from hydrogen and methyl, ,

R 10 is C 1-4 alkoxy or C 1-4 haloalkoxy;

R 9 and R 11 are as herein defined;

(88) Z is wherein R 8 is cyano and R 10 is C 1-4 alkoxy;

(88a) Z is or wherein R 8 is hydrogen or cyano; R 9 is hydrogen; and

R 10 is selected from C 1-4 alkoxy and heterocyclyl.

(88b) wherein R 8 is hydrogen or cyano; R 9 is hydrogen; and

R 10 is methoxy.

(89) Z is

(89a) Z is or

(89b) Zis or

(89c) Z is (90) Z is wherein Q 8 , Q 9 , Q 10 and Q 11a are as defined herein;

(91) Z is wherein R 7 , R 9 and R 11N are as herein defined;

(92) Z is wherein B 1 , B 2 , B 3 , B 4 , B 5 , B 7 and B 8 are as defined herein;

(93) Z is: wherein B 1 is A 5 , wherein A 5 is N or C R 16 ;

B 2 is A 6 , wherein A 6 is CR 17

B 3 is N or CR Z1 ;

B 4 is N or C;

B 5 is selected from CR zi1b or NR B5N B 7 is N, N R Z2N or CR Z2 ;

B 8 is selected from C or N; wherein R 16 , R 17 , R Z1 , CR zi1b , R B5N , R Z2 are as defined herein;

(94) Z is: wherein

B 1 is A 5 , wherein A 5 is C R 16 ;

B 2 is A 6 , wherein A 6 is C R 17

B 3 is CR Z1 ;

B 4 is N or C;

B 5 is selected from CR zi1b or N R B5N

B 7 is N, NH or CR Z2 ;

B 8 is C; wherein R 16 , R 17 , R Z1 , CR zi1b , R B5N , R Z2 are as defined herein;

(95) Z is: wherein R Z1 , R Z2 ,R zi1b , A 5 and A 6 are as herein defined;

(96)

(97) Z is: wherein R Z1 , R Z2 ,R zi1b , A 5 and A 6 are as herein defined; (98) Z is wherein A 5 , A 6 , R Z1 , R Z2N are R zi1b are as herein defined;

(99) Z is wherein A 5 , A 6 , R Z1 , R Z2N are R zi1b are as herein defined;

(100) Z is: wherein R Z1 , R Z2 and A 6 are as herein defined;

(101) Z is wherein

Y 2 is A 7 , wherein A 7 is CR 18 ;

Y 3 is N or CR Z1a ;

Y 4 is C or N

Y 5 is N R Y5N ; Y 6 is C-R Zi2e or N;

Y 7 is CR Z2a or N;

Y 8 is C or N;

Yg is CR Z3a or N; wherein R 18 , R z1a , R Y5N , R Zi2e , R Z2a and R Z3a are as defined herein;

(102) Z is wherein

Y 2 is A 7 , wherein A 7 is CR 18 ;

Y 4 is C or N

Y 5 is NR Y5N ;

Y 6 is C-R Zi2e or N;

Y 7 is CR Z2a or N;

Y 8 is C or N;

Yg is C R Z3a or N; wherein R 18 , R z1a , R Y5N , R Zi2e , R Z2a and R Z3a are as defined herein;

(103) Z is wherein

Y 2 is A 7 , wherein A 7 is CR 18 ;

Y 4 is N

Y 5 is C-R Y5 ;

Y 8 is C-R Zi2e ;

Y 7 is O or S;

Y 8 is C; Y 9 is N; wherein R 18 , R Y5 , R Zi2e are as defined herein;

(104) Z is wherein A7, R Z1a , R Z2a and R Z3a are as herein defined, and R Y5N is C 1-4 alkyl;

(105) Z is: wherein R Y5N , R Z1a , R Z2a , R Zi2e and A 7 are as herein defined;

(106) Z is wherein R Y5N , R Z1a , R Z2a , R Zi2e and A 7 are as herein defined; N

(107) Z is wherein R Y5N , R Z2a , R Zi2e and A 7 are as herein defined; (108) Z is: wherein R Y5N , R Z1a , R Z2a , R Z3a , R Zi2e and A 7 are as herein defined;

(109) Z is: wherein A 7 andR Zi2e are as defined herein;

(110) Z is wherein Z 10 , Z 11 , Z 12 , Z 13 , Z 14 , Z 15 and Z 16 are as defined herein;

(111) Z is wherein

Z 10 is CR Z10 , Z 11 is N;

Z 12 is CR Z12 ;

Z 13 is CR Z13 ;

Z 14 is N or CR Z14 ;

Z 15 is N or CR Z15 ;

Z 16 is CR Z16 ; wherein R Z10 , R Z12 , R Z13 , R Z14 , R Z15 and R Z16 are as defined herein;

(112) Z is wherein

Z 10 is CR Z10 , Z 11 is CR Z10 or N;

Z 12 is CR Z12 ;

Z 13 is CR Z13 ;

Z 14 is N;

Z 15 is N or CR Z15 ;

Z 16 is CR Z16 ; wherein R Z10 , R Z12 , R Z13 , R Z14 , R Z15 andR Z16 are as defined herein; (113) Z is: , wherein Z 10 , Z 12 , Z 13 , Z 14 , Z 15 and Z 16 are as herein defined;

(114) Z is: wherein Z 13 , Z 14 , Z 15 and Z 16 are as herein defined;

(115) Z is: wherein R Z10 , R Z12 , R Z13 , R Z14 , R Z15 and R Z16 are as herein defined;

(116) Z is: , wherein Z 10 , Z 11 , Z 12 , Z 13 , Z 15 and Z 16 are as herein defined,

(117) Z is: wherein R Z10 , R Z11 , R Z12 , R Z13 , R Z15 and R Z16 are as herein defined;

(118) Z is selected from: wherein B 1 , B 2 , B 3 , B 4 , B 5 , B 7 , B 8 ,Y 2 , Y 3 , Y 4 , Y 5 , Y 6 , Y 7 , Y 8 , Y 9 , X 1 , X 2 , X 3 , X 4 , X 5 , X 6 , X 7 , X 8 and X 9 are as defined herein;

(119) Z is selected from:

wherein:

A 5 , A 6 , A 7 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 11N , R 12 , R 13 , R 19 , R 22 , R B5N , R Y5N , R Z1 , R Z2 , R Z9 , R Z10 , R Z11 , R Z12 , R Z13 , R Z14 , R Z15 , R Z16 , R Z2a , R Z3a , R Z1a , R Zi1 b and R Zi2e are as defined herein;

(120) Z is selected from:

wherein A 5 , A 6 , A 7 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 11N , R 12 , R 13 , R 19 , R 22 , R Z1 , R Z2 , R Z9 , R Z10 , R Z1 1 , R Z12 , R Z13 , R Z14 , R Z15 , R Z16 , R Z2a , R Z3a , R Z1a , R Zi1b and R Zi2e are as defined herein;

(121) Z is selected from:

wherein A 5 , A 6 , A 7 , R 8 , R 9 , R 10 , R 11 , R Y5N , R Z1 , R Z2 , R Z10 , R Z12 , R Z13 , R Z14 , R Z15 , R Z16 ,

R Z1a , R Z2a , R Z3a , R zi1b and R Zi2e are as defined herein;

(122) Z is selected from:

and wherein A 5 , A 6 , A 7 , R 8 , R 9 , R 10 , R 11 , R Y5N , R Z1 , R Z2 , R Z10 , R Z12 , R Z13 , R Z14 , R Z15 , R Z16 , R Z2a ,

R Z3a , R Z1a , R Zi2b and R Zi2e are as defined herein.

(123) Z is selected from:

wherein A 5 , A 6 , A 7 , R 8 , R 9 , R 10 , R 11 , R Y5N , R Z1 , R Z2 , R Z10 , R Z12 , R Z13 , R Z14 , R Z15 , R Z16 ,, R Z2a ,

R Z3a , R Z1a , R Zi2b and R Zi2e are as defined herein. (124) Z is selected from: wherein R 8 , R 10 , R 17 , R 18 and R Z1 , are as herein defined.

(125) Z is selected from:

; and

(126) Z is selected from: and

(127) R 4 , R 5 and R 6 are independently selected from hydrogen and halo; (128) R 4 , R 5 and R 6 are hydrogen;

(129) when Z is , then R 7 , R 9 are independently selected from hydrogen, methyl, halo and cyano; and and R 11N is selected from hydrogen and methyl;

(129a) when Z is , then R 8 , R 9 , R 10 and R 11 are independently selected from hydrogen, heterocyclyl, NH 2 , halo, cyano, C 1-4 alkoxy, C 1-4 haloalkoxy and C 1-6 alkyl, -CH 2 OCH 3 , -CH 2 SO 2 CH 3 , -SO 2 CH 3 , -NHC(O)CH 3 and - C(O)NR v1 R v2 , wherein R v1 and R v2 are independently selected from hydrogen and methyl; with the proviso that at least one of R 8 , R 9 , R 10 and R 10 is hydroxy, NR v1 R v2 , heterocyclyl, C 1-4 alkoxy or C 1-4 haloalkoxy;

(130) when Z is , then R 8 , R 9 , R 10 and R 11 are independently selected from hydrogen, NH 2 , halo, cyano, C 1-4 alkoxy, C 1-4 haloalkoxy and C 1-6 alkyl, -CH 2 OCH 3 , -CH 2 SO 2 CH 3 , -SO 2 CH 3 , -NHC(O)CH 3 and -C(O)NR v1 R v2 , wherein R v1 and R v2 are independently selected from hydrogen and methyl with the proviso that at least one of R 8 , R 9 , R 10 and R 11 is C 1-4 alkoxy or C 1-4 haloalkoxy; (130a) when Z is , then R 8 , R 9 and R 11 are independently selected from hydrogen, NH 2 , halo, cyano, C 1-4 alkoxy, C 1.4 haloalkoxy, C 1-3 alkyl, - CH 2 OCH 3 , -CH 2 SO 2 CH 3 , -SO 2 CH 3 , -NHC(O)CH 3 and -C(O)NR v1 R v2 , wherein R v1 and Rv2 are independently selected from hydrogen and methyl; and

R10 is selected from heterocyclyl, C 1-4 alkoxy or C 1-4 haloalkoxy.

(131) when Z is , then R 8 , R 9 and R 11 are independently selected from hydrogen, NH2, halo, cyano, C 1-4 alkoxy, C 1-4 haloalkoxy, C 1-3 alkyl, - CH 2 OCH 3 , -CH 2 SO 2 CH 3 , -SO 2 CH 3 , -NHC(O)CH 3 and -C(O)NR v1 R v2 , wherein R v1 and R v2 are independently selected from hydrogen and methyl; and R 10 is selected from C 1-4 alkoxy or C 1-4 haloalkoxy.

(132) when Z is , then R 8 is cyano, -CH 2 OCH 3 , -

CH 2 SO 2 CH 3 , -SO 2 CH 3 , -NHC(O)CH 3 and -C(O)NR v1 R v2 , wherein R v1 and R v2 are independently selected from hydrogen and methyl; R 9 is hydrogen; R 10 is C 1-4 alkoxy; and R 11 is hydrogen.

(133) when Z is , then R 8 is cyano; R 9 is hydrogen; R 10 is C 1-4 alkoxy or C 1-4 haloalkoxy; and R 11 is hydrogen.

(133a) when Z i s , then R 8 is hydrogen or cyano; R 9 is hydrogen; R 10 is selected from C 1-4 alkoxy or heterocyclyl; and R 11 is hydrogen.

(133b) when Z is , then R 8 is hydrogen or cyano; R 9 is hydrogen; R 10 is C 1-4 alkoxy; and R 11 is hydrogen. (133c) when Z is then R 8 is hydrogen or cyano; R 9 is hydrogen; R 10 is C 1-4 alkoxy; and R 11 is hydrogen.

(134) R Z1 and R Z1a are selected from hydrogen, C 1-4 alkyl, cyano, halo, C 1-4 haloalkyl, C 1-4 haloalkoxy, C 1-4 alkoxy, C 3-6 cycloalkyl and -O-C 3-6 cycloalkyl, wherein C 3-6 cycloalkyl and -O-C 3-6 cycloalkyl are optionally subsitutued by one or more of halo, methyl or methoxy;

(135) R Z1 and R Z1a are selected from hydrogen, C 1-2 alkyl, cyano, halo, C 1-2 haloalkyl, C 1-2 haloalkoxy, C 1-2 alkoxy;

(136) R Z1 and R Z1a are selected from hydrogen, C 1-2 alkyl, cyano and halo;

(137) R Z1 and R Z1a are hydrogen;

(138) R Z2 , R Z2a , R Z3a , R zi1b and R Zi2e are independently selected from hydrogen, C 1- 4alkyl, cyano, halo or C 1-4 alkoxy;

(139) R Z2 , R Z2a , R Z3a , R zi1b and R Zi2e are independently selected from hydrogen, cyano or halo;

(140) R Z2 , R Z2a , R Z3a , R zi1b and R Zi2e are hydrogen;

(141) R Y5N , R Z2N , and R 11N are selected from hydrogen or methyl;

(142) R Y5N , R Z2N , and R 11N are hydrogen;

(143) R Y5N is methyl;

(144) R Z4 , R Z5 , R Z6 , R Z7 , R Z8 , R Z9 , R Z10 , R Z11 , R Z12 , R Z13 , R Z14 , R Z15 , and R Z16 are independently selected from hydrogen, halo and cyano;

(145) R Z4 , R Z5 , R Z6 , R Z7 , R Z8 , R Z9 , R Z10 , R Z11 , R Z12 , R Z13 , R Z14 , R Z15 , and R Z16 are independently selected from hydrogen and halo;

(146) R Z4 , R Z5 , R Z6 , R Z7 , R Z8 , R Z9 , R Z10 , R Z11 , R Z12 , R Z13 , R Z14 , R Z15 , and R Z16 are hydrogen ;

(147) R 12 , R 13 , R 16 , R 19 , R 20 , R 21 , R 22 and R 23 are independently selected from hydrogen, halo, cyano and methyl;

(148) R 12 , R 13 , R 16 , R 19 , R 20 , R 21 , R 22 and R 23 are hydrogen; (149) R 12 is selected from hydrogen, halo, cyano and C 1-4 alkyl;

(150) R 12 is selected from hydrogen and halo;

(151) R 12 is selected from hydrogen and chloro;

(152) R 12 is hydrogen;

(153) R 13 is selected from hydrogen, halo, methoxy, cyano and methyl;

(154) R 13 is selected from hydrogen, methoxy and methyl;

(155) R 13 is hydrogen;

(156) R 16 and R 18 are selected from hydrogen, halo, cyano, C 1-4 alkyl, C 1-4 alkoxy, C 1-4 haloalkyl and C 1-4 haloalkoxy;

(157) R 16 and R 18 are selected from hydrogen, halo, cyano and C 1-4 alkyl;

(158) R 16 and R 18 are selected from hydrogen and halo;

(159) R 16 and R 18 are hydrogen;

(160) R 17 is selected from hydrogen, halo, cyano, C 1-5 alkyl, C 1-4 haloalkyl, C 1-4 alkoxy, C 1-4 haloalkoxy, C 2-4 alkenyl, C 2-4 alkynyl, phenyl, a 5- or 6-membered or heteroaryl, C 3-6 cycloalkyl, -O-C 3-6 cycloalkyl, heterocyclyl, -O-heterocyclyl (carbon- linked), -(OCH 2 CH 2 )m-OCH 3 wherein m is an integer from 1 to 6, NR q R r , wherein R q and R r are each independently hydrogen, C 1-4 alkyl, C 3-6 cycloalkyl, a 3- to 6- membered carbon-linked heterocyclyl, or R q and R r are linked together such that, together with the nitrogen atom to which they are attached, they form a 3- to 6- membered heterocyclic ring; wherein any C 1-5 alkyl, C 1-4 alkoxy, C 2-4 alkenyl, C 2-4 alkynyl , phenyl, 5- or 6-membered or heteroaryl, C 3-6 cycloalkyl, -O-C 3-6 cycloalkyl, heterocyclyl or -O-heterocyclyl (carbon-linked) is optionally further subsitutued by one or more substituents selected from C 1-2 alkyl, cyano, C 1-2 haloalkyl, hydroxy, C 1-2 alkoxy, halo, C 1-2 haloalkoxy, NR 1ea R 1fa or -S(O) 0-2 R 1ea R 1fa , wherein R 1ea and R 1fa are H or C 1-2 alkyl.

(161) R 17 is selected from hydrogen, halo, cyano, C 1-2 alkyl, C 1-2 haloalkyl, C 1-2 alkoxy, C 1-2 haloalkoxy, C 2-3 alkenyl, C 2-3 alkynyl, phenyl a 5- or 6-membered or heteroaryl, C 3-6 cycloalkyl, -O-C 3-6 cycloalkyl, heterocyclyl, -O-heterocyclyl (carbon- linked), -(OCH 2 CH 2 )m-OCH 3 wherein m is an integer from 1 to 6, NR q R r , wherein R q and R r are each independently hydrogen, C 1-2 alkyl or R q and R r are linked together such that, together with the nitrogen atom to which they are attached, they form a 3- to 6-membered heterocyclic ring; wherein any C 1- alkyl, C 2-4 alkenyl, C 2-4 alkynyl, phenyl, 5- or 6-membered or heteroaryl, C 3-6 cycloalkyl, -O-C 3-6 cycloalkyl, heterocyclyl or -O-heterocyclyl (carbon- linked) is optionally further substituted by one or more substituents selected from C 1- 2alkyl, cyano, C 1-2 haloalkyl, hydroxy, C 1-2 alkoxy, halo, C 1-2 haloalkoxy, NR 1ea R 1fa or - S(O) 0-2 R 1ea R 1fa , wherein R 1ea and R 1fa are H or C 1-2 alkyl. (162) R 17 is selected from hydrogen, halo, cyano, C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 alkoxy, C 1-4 haloalkoxy, C 2-4 alkenyl, C 2-4 alkynyl, phenyl, a 5- or 6-membered heteroaryl, C 3-6 cycloalkyl, -O-C 3-6 cycloalkyl, heterocyclyl, -O-heterocyclyl (carbon- linked), -(OCH 2 CH 2 )m-OCH 3 wherein m is 1 , 2 or 3, NR q R r , wherein R q and R r are each independently hydrogen, C 1-4 alkyl; or R q and R r are linked together such that, together with the nitrogen atom to which they are attached, they form a 3- to 6- membered heterocyclic ring; wherein any C 1-4 alkyl, C 2-4 alkenyl, C 2-4 alkynyl, phenyl, 5- or 6-membered or heteroaryl, C 3-6 cycloalkyl, -O-C 3-6 cycloalkyl, heterocyclyl or -O-heterocyclyl (carbon- linked) is optionally further substituted by one or more substituents selected from C 1- 2alkyl, C 1-2 haloalkyl, cyano, hydroxy, C 1-2 alkoxy, halo and C 1-2 haloalkoxy.

(163) R 17 is selected from hydrogen, halo, cyano, C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 alkoxy, C 1-4 haloalkoxy, C 2-4 alkenyl, C 2-4 alkynyl, C 3-6 cycloalkyl, -O-C 3-4 cycloalkyl, heterocyclyl, -(OCH 2 CH 2 )m-OCH 3 wherein m is 1 , 2 or 3, NR q R r , wherein R q and R r are each independently hydrogen or C 1-2 alkyl; wherein any C 1-4 alkyl, C 2-4 alkenyl, C 2-4 alkynyl, C 3-6 cycloalkyl, -O-C 3- 4cycloalkyl, heterocyclyl, system is optionally further substituted by one or more substituents selected from C 1-2 alkyl, C 1-2 haloalkyl, cyano, hydroxy, C 1-2 alkoxy, halo and C 1-2 haloalkoxy.

(164) R 17 is selected from hydrogen, halo, cyano, C 1-4 alkyl, C 1-4 alkoxy, C 2-4 alkenyl, C 2-4 alkynyl and a 5- or 6-membered aryl or heteroaryl; wherein any C 1-4 alkyl, C 2-4 alkenyl, C 2-4 alkynyl, 5- or 6-membered aryl or heteroaryl is optionally further substituted by one or more substituents selected from C 1-2 alkyl, C 1-2 haloalkyl, cyano, hydroxy, C 1-2 alkoxy, halo and C 1-2 haloalkoxy.

(165) R 17 is selected from hydrogen, halo, C 1-4 alkoxy, C 2-4 alkynyl and 5- or 6- membered aryl or heteroaryl.

(166) R 17 is selected from hydrogen, C 1-4 alkoxy, bromo, ethynyl, and pyrazoly.

(167) R 19 is selected from hydrogen, halo or C 1-4 alkyl;

(168) R 19 is hydrogen or methyl;

(169) R 19 is hydrogen;

(170) R 21 , R 24 and R 30 , are independently selected from hydrogen or methyl;

(171) R 21 , R 24 and R 30 , are hydrogen;

(172) R 22 is selected from hydrogen, halo, cyano and methyl;

(173) R 22 is hydrogen or methyl;

(174) R 22 is hydrogen; (175) R 28 and R 29 are selected from hydrogen or halo, methoxy and methyl;

(176) R 28 and R 29 are hydrogen;

[00109] In an embodiment: when X 6 is A 1 , A 1 is CR 12 ; when X 7 is A 2 , A 2 is CR 13 ;

Bi is A 5 , wherein A 5 is CR 16 ;

B2 is A 6 , wherein A 6 is CR 17 ;

Y2 is A 7 , wherein A 7 is CR 18 ; when X 6 is A 8 , A 8 is CR 19 R 20 ; when X 7 is A 9 , A 9 is CR 22 R 23 ; when X 7 is A 11 , A 11 is CR 28 R 29 ; and wherein R 12 , R 13 , R 16 , R 17 , R 18 , R 19 , R 20 , R 21 , R 22 , R 23 , R 28 and R 29 are as defined herein.

[00110] In an embodiment: A 1 is CR 12 ; A 2 is CR 13 ; A 5 is CR 16 ; A 6 is CR 17 ; A 7 is CR 18 ; A 8 is CR 19 R 20 ; A 9 is CR 22 R 23 ; A 11 is CR 28 R 29 ; wherein R 12 , R 13 , R 16 , R 17 , R 18 , R 19 , R 20 , R 21 , R 22 , R 23 , R 28 and R 29 are as defined herein

[00111] In an embodiment:

(i) R 4 , R 5 , R x5a , R x5b , R Y5 , R 6 , R 7 , R 9 , R 11 , R 11a , R 11b , R Z2 , R Z2a , R Z3a , R zi1b , R Zi2e ,

R Z9 , R Z10 , R Z11 , R Z12 , R Z13 , R Z14 , R Z15 and R Z16 are independently selected from hydrogen, methyl, cyano or halo; and

R B5N , R Y5N , R Z2N and R 11N are selected from methyl or hydrogen;

(ii) R 8 is seleced from cyano, -CH 2 OCH 3 , -CH 2 SO 2 CH 3 , -SO 2 CH 3 , -NHC(O)CH 3 and -C(O)NR v1 R v2 , wherein R v1 and R v2 are independently selected from hydrogen and methyl;

(iii) R 10 is selected from C 1-4 alkoxy or C 1-4 haloalkoxy;

(iv) R Z1 and R Z1a are selected from hydrogen, C 1-4 alkyl, cyano, halo, C 1-4 haloalkyl, C 1-4 haloalkoxy, C 1-4 alkoxy, C 3-6 cycloalkyl and -O- C 3-6 cycloalkyl;

(v) R 12 , R 13 , R 16 , R 18 , R 19 , R 20 , R 21 , R 22 , R 23 , R 24 and R 30 are independently selected from hydrogen, halo, cyano and methyl;

(vi) R 17 is selected from hydrogen, halo, cyano, C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 alkoxy, C 1-4 haloalkoxy, C 2-4 alkenyl, C 2-4 alkynyl, phenyl a 5- or 6-membered or heteroaryl, C 3-6 cycloalkyl, -O-C 3-6 cycloalkyl, heterocyclyl, -(OCH 2 CH 2 )m-OCH 3 wherein m is an integer from 1 to 6, NR q R r , wherein R q and R r are each independently hydrogen, C 1-4 alkyl or R q and R r are linked together such that, together with the nitrogen atom to which they are attached, they form a 3- to 6- membered heterocyclic ring; ; wherein any C 1-4 alkyl, C 2-4 alkenyl, C 2-4 alkynyl, phenyl, 5- or 6-membered or heteroaryl, C 3-6 cycloalkyl, -O-C 3-6 cycloalkyl, heterocyclyl or -O-heterocyclyl (carbon-linked) is optionally further substituted by one or more substituents selected from C 1-2 alkyl, cyano, C 1-2 haloalkyl, hydroxy, C 1- 2alkoxy, halo, C 1-2 haloalkoxy, NR 1ea R 1fa or -S(O) 0-2 R 1ea R 1fa , wherein R 1ea and R 1fa are H or C 1-2 alkyl.

(vii) R 21 , R 24 and R 30 , are independently selected from hydrogen or methyl; (viii) R 28 and R 29 are selected from hydrogen or halo, methoxy and methyl.

[00112] In an embodiment:

(i) R 4 , R 5 , R x5a , R x5b , R Y5 , R 6 , R 7 , R 9 , R 11 , R 11a , R 11b , R Z2 , R Z2a , R Z3a , R zi1b , R Zi2e ,

R Z9 , R Z10 , R Z11 , R Z12 , R Z13 , R Z14 , R Z15 and R Z16 are independently selected from hydrogen, methyl, cyano or halo; and

R B5N , R Y5N , R Z2N and R 11N are selected from methyl or hydrogen;

(ii) R 8 , R 9 and R 11 are independently selected from hydrogen, NH 2 , halo, cyano, C 1-4 alkoxy, C 1-4 haloalkoxy, C 1-3 alkyl, -CH 2 OCH 3 , -CH 2 SO 2 CH 3 , -SO 2 CH 3 , - NHC(O)CH 3 and -C(O)NR v1 R v2 , wherein R v1 and R v2 are independently selected from hydrogen and methyl;

(iii) R 10 is selected from C 1-4 alkoxy or C 1-4 haloalkoxy;

(iv) R Z1 and R Z1a are selected from hydrogen, C 1-4 alkyl, cyano, halo, C 1-4 haloalkyl, C 1-4 haloalkoxy, C 1-4 alkoxy, C 3-6 cycloalkyl and -O-C 3-6 cycloalkyl;

(v) R 12 , R 13 , R 16 , R 18 , R 19 , R 20 , R 21 , R 22 , R 23 , R 24 and R 30 are independently selected from hydrogen, halo, cyano and methyl;

(vi) R 17 is selected from hydrogen, halo, cyano, C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 alkoxy, C 1-4 haloalkoxy, C 2-4 alkenyl, C 2-4 alkynyl, phenyl a 5- or 6-membered or heteroaryl, C 3-6 cycloalkyl, -O-C 3-6 cycloalkyl, heterocyclyl, -(OCH 2 CH 2 )m-OCH 3 wherein m is an integer from 1 to 6, NR q R r , wherein R q and R r are each independently hydrogen, C 1-4 alkyl or R q and R r are linked together such that, together with the nitrogen atom to which they are attached, they form a 3- to 6- membered heterocyclic ring; ; wherein any C 1-4 alkyl, C 2-4 alkenyl, C 2-4 alkynyl, phenyl, 5- or 6-membered or heteroaryl, C 3-6 cycloalkyl, -O-C 3-6 cycloalkyl, heterocyclyl or -O-heterocyclyl (carbon-linked) is optionally further substituted by one or more substituents selected from C 1-2 alkyl, cyano, C 1-2 haloalkyl, hydroxy, C 1- 2alkoxy, halo, C 1-2 haloalkoxy, NR 1ea R 1fa or -S(O) 0-2 R 1ea R 1fa , wherein R 1ea and R 1fa are H or C 1-2 alkyl.

(vii) R 21 , R 24 and R 30 , are independently selected from hydrogen or methyl; (viii) R 28 and R 29 are selected from hydrogen or halo, methoxy and methyl.

[00113] In an embodiment:

(i) R 4 , R 5 , R x5a , R x5b , R Y5 , R B5N , R Y5N , R 6 , R 7 , R 8 , R 9 , R 10 , R 11a , R 11b , R z2 , R z2a , R z3a

R zi1b , R Zi2e , R Z9 , R Z10 , R Z11 , R Z12 , R Z13 , R Z14 , R Z15 and R Z16 are hydrogen; R Z2N and R 11N are selected from methyl or hydrogen;

(ii) R 8 is cyano;

(iii) R 10 is methoxy;

(iv) R Z1 and R Z1a are selected from hydrogen, cyano, halo, C 1-2 haloalkyl, C 1-2 haloalkoxy, C 1-2 alkoxy, C 3-6 cycloalkyl and -O-C 3-6 cycloalkyl;

(v) R 12 , R 13 , R 16 , R 18 , R 19 , R 20 , R 21 , R 22 , R 23 , R 24 and R 30 are hydrogen;

(vi) R 17 is selected from hydrogen, halo, cyano, C 1-2 alkyl, C 1-2 haloalkyl, C 1-2 alkoxy, C 1-2 haloalkoxy, C 2-3 alkenyl, C 2-3 alkynyl, phenyl a 5- or 6-membered or heteroaryl, C 3-6 cycloalkyl, -O-C 3-6 cycloalkyl, heterocyclyl, -(OCH 2 CH 2 )m-OCH 3 wherein m is an integer from 1 to 6, NR q R r , wherein R q and R r are each independently hydrogen, C 1- 2 alkyl or R q and R r are linked together such that, together with the nitrogen atom to which they are attached, they form a 3- to 6-membered heterocyclic ring; wherein any C 1- 4 alkyl, C 2-4 alkenyl, C 2-4 alkynyl, phenyl, 5- or 6-membered or heteroaryl, C 3-6 cycloalkyl, - O-C 3-6 cycloalkyl, heterocyclyl or -O-heterocyclyl (carbon-linked) is optionally further substituted by one or more substituents selected from C 1-2 alkyl, cyano, C 1-2 haloalkyl, hydroxy, C 1-2 alkoxy, halo, C 1-2 haloalkoxy, NR 1ea R 1fa or -S(O) 0-2 R 1ea R 1fa , wherein R 1ea and R 1f a are H or C 1-2 alkyl

(vii) R 21 , R 24 and R 30 , are hydrogen;

(viii) R 28 and R 29 are hydrogen.

[00114] Suitably, a heteroaryl or heterocyclyl group as defined herein is a monocyclic heteroaryl or heterocyclyl group comprising one, two or three heteroatoms selected from N, O or S. [00115] Suitably, a heteroaryl is a 5- or 6-membered heteroaryl ring comprising one, two or three heteroatoms selected from N, O or S.

[00116] Suitably, a heterocyclyl group is a 4-, 5- or 6-membered heterocyclyl ring comprising one, two or three heteroatoms selected from N, O or S. Most suitably, a heterocyclyl group is a 5- or 6-membered ring comprising one, two or three heteroatoms selected from N, O or S [e.g. morpholinyl (e.g. 4-morpholinyl), oxetane, methyloxetane (e.g. 3-methyloxetane), pyrrolidinone (e.g. pyrrolidin-2-one)].

[00117] Suitably, an aryl group is phenyl.

[00118] Suitably, X is as defined in any one of paragraphs (33) to (37) above. More suitably, X is as defined in any one of paragraphs (33) or (36) to (37) above. Most suitably, X is as defined in paragraph (33) or (37).

[00119] Suitably, R 1a , R 1c and R 1e are as defined in any one of paragraphs (1) to (5) above. Most suitably, R 1a , R 1c and R 1e are as defined in paragraph (5).

[00120] Suitably, R 1b , R 1d and R 1f are as defined in any one of paragraphs (6) to (18) above. More suitably, R 1b , R 1d and R 1f are as defined in paragraph (16), (17) or (18). Most suitably, R 1b , R 1d and R 1f are as defined in paragraph (18).

[00121] Suitably, R 1b , R 1d and R 1f are as defined in any one of paragraphs (19) to (27) above. More suitably, R 1b , R 1d and R 1f are as defined in any one of paragraphs (25) to (27). Most suitably, R 1b , R 1d and R 1f are as defined in paragraph (27).

[00122] Suitably, R 1a’ is as defined in any one of paragraphs (28) to (30) above. Most suitably, R 1a’ is as defined in paragraph (30) above.

[00123] Suitably, R 2a , R 2b and R 2c are as defined in any one of paragraphs (31) and (32) above. Most suitably, R 2a , R 2b and R 2c are as defined in paragraph (32).

[00124] Suitably, Y is as defined in any one of paragraphs (47) to (72) above. Suitably, Y is as defined in any one of paragraphs (47), (48), (49), (50), (53), (58), (59) and (61). Suitably, Y is as defined in any one of paragraphs (69) to (72). Suitably, Y is as defined in paragraphs (71) to (72) above. Most suitably, Y is as defined in paragraph (72)

[00125] Suitably, n is as defined in any one of paragraphs (45) and (46) above. Most suitably, n is as defined in paragraph (46), i.e. n is 1.

[00126] Suitably, R 3a1 , R 3b1 , R 3c1 , R 3d1 , R 3e1 , R 3f1 , R 3g1 , R 3h1 , R 3i1 , R 3j1 , R 3k1 , R 3l1 , R 3m1 , R 3n1 , R 3o1 , R 3p1 , R 3q1 , R 3r1 and R 3s1 are as defined in any one of (38) to (41), and paragraphs (43) and (44) above. Most suitably, R 3a1 , R 3b1 , R 3c1 , R 3d1 , R 3e1 , R 3f1 , R 3g1 , R 3b1 , R 3i1 , R 3j1 , R 3 ki, R 3l1 ,

R 3m1 , R 3n1 , R 3o1 , R 3p1 , R 3q1 , R 3r1 and R 3s1 are as defined in paragraph (41) above). [00127] Suitably, R 3a2 , R 3b2 , R 3c2 , R 3d2 , R 3e2 , R 3f2 , R 3g2 , R 3h2 , R 3i2 , R 3j2 , R 3k2 , R 3i2 , R 3m2 , R 3n2 , R 3o2 ,

R 3p2 , R 3q2 , R 3r2 and R 3s2 are as defined in any one of paragraphs (42), (43) and (44) above. Most suitably, R 3a2 , R 3b2 , R 3c2 , R 3d2 , R 3e2 , R 3f2 , R 3g2 , R 3h2 , R 3i2 , R 3j2 , R 3k2 , R 3i2 , R 3m2 , R 3n2 , R 3o2 ,

R 3p2 , R 3q2 , R 3r2 and R 3s2 are as defined in paragraph (42).

[00128] Suitably, Z is as defined in any one of paragraphs from (73) to (126) above. Suitably, Z is as defined in any one of paragraphs from (119) to (126) above. Suitably, Z is as defined in any one of paragraphs from (123) to (126) above. Most suitably, Z is as defined in paragraph (126) above.

[00129] Suitably, Z may also be as defined in any one of paragraphs (84a), (87a), (88a), (88b), (89a), (89b) or (89c) above.

[00130] Suitably, R 4 is as defined in any one of paragraphs (127) and (128) above. Most suitably, R 4 is as defined in paragraph (128).

[00131] Suitably, R 5 is as defined in any one of paragraphs (127) and (128) above . Most suitably, R 5 is as defined in paragraph (128).

[00132] Suitably, R 6 is as defined in any one of paragraphs (127) and (128) above above. Most suitably, R 6 is as defined in paragraph (128).

[00133] Suitably, R 7 , R 9 and R 11N are as defined in paragraph (129).

[00134] Suitably, R 8 , R 9 , R 10 and R 11 are as defined in any one of paragraphs (130) to (133). More suitably, R 8 , R 9 , R 10 and R 11 are as defined in any one of paragraphs (131) to (133) Suitably, R 8 , R 9 , R 10 and R 11 are as defined in paragraphs (132) or (133).

[00135] Suitably, R 8 , R 9 , R 10 and R 11 may also be as defined in any one of paragraphs (129a), (130a), (133a), (133b) or (133c) above. R 8 , R 9 , R 10 and R 11 may more suitably be defined in any one of paragraphs (133a), (133b) or (133c).

[00136] Suitably, R Z1 and R Z1a are as defined in any one of paragraphs (134) to (137) above. Most suitably, R Z1 and R Z1a are as defined in paragraph (137).

[00137] Suitably, R Z2 and R Z2a are as defined in any one of paragraphs (138) to (140) above. Most suitably, R Z2 and R Z2a are as defined in paragraph (140).

[00138] Suitably, R Z3a is as defined in any one of paragraphs (138) to (140) above. Most suitably, R Z2 and R Z2a are as defined in paragraph (140).

[00139] Suitably, R zi1b and R Zi2e are as defined in any one of paragraphs (138) to (140) above. Most suitably, R zi1b and R Zi2e are as defined in paragraph (140), i.e. R zi1b and R Zi2e are hydrogen. [00140] Suitably, R Z2N , and R 11N are as defined in any one of paragraphs (141) and (142). Most suitably, R Z2N and R 11N are as defined in paragraph (142).

[00141] Suitably, R Y5N is as defined in any one of paragraphs (141), (142) and (143). Most suitably, R Y5N is as defined in paragraph (142) or (143).

[00142] Suitably, R Z4 , R Z5 , R Z6 , R Z7 , R Z8 , R Z9 , R Z10 , R Z11 , R Z12 , R Z13 , R Z14 , R Z15 , and R Z16 are as defined in any one of paragraphs (144), (145) and (146). Most suitably, R Z4 , R Z5 , R Z6 , R Z7 ,

R Z8 , R Z9 , R Z10 , R Z11 , R Z12 , R Z13 , R Z14 , R Z15 , and R Z16 are as defined in paragraph (146).

[00143] Suitably, R 12 is as defined in any one of paragraphs (147), (148) and (149) to (152). Most suitably, R 12 is as defined in paragraph (152).

[00144] Suitably, R 13 is as defined in any one of paragraphs (147), (148) and (153) to (155). Most suitably, R 13 is as defined in paragraph (155).

[00145] Suitably, A 5 is CR 16 , and R 16 is as defined in any one of paragraphs (147), (148) and (156) to (159). Most suitably, R 16 is as defined in paragraph (159).

[00146] Suitably, A 6 is CR 17 and R 17 is as defined in any one of paragraphs (160) to (166). More suitably, R 17 is as defined in any one of paragraphs (163) to (166). Most suitably, R 17 is as defined in paragraph (166).

[00147] Suitably, A 7 is CR 18 , and R 18 is as defined in any one of paragraphs (147), (148) and (156) to (159). Most suitably, R 18 is as defined in paragraph (159).

[00148] Suitably, R 19 is as defined in any one of in any one of paragraphs (147), (148) and (167) to (169). Most suitably, R 19 is as defined in paragraph (169).

[00149] Suitably, R 21 is as defined in any one of in any one of paragraphs (147), (148) and

(170) to (171). Most suitably, R 19 is as defined in paragraph (171).

[00150] Suitably, R 22 is as defined in any one of in any one of paragraphs (147), (148) and (172) to (174). Most suitably, R 22 is as defined in paragraph (174).

[00151] Suitably, R 24 and R 30 are as defined in any one of in any one of paragraphs (170) to

(171). Most suitably, R 24 and R 30 are as defined in paragraph (171).

[00152] Suitably, R 28 and R 29 are as defined in any one of in any one of paragraphs (175) to (176). Most suitably, R 28 and R 29 are as defined in paragraph (176).

[00153] In an embodiment,

X is:

wherein

(i) R 1a , R 1a’ , R 1b , and R 2a are as defined herein;

(ii) R 3 ai, R 3a2 , R 3i1 and R 3i2 are as defined herein;

(iii) A 5 , A 6 , A 7 , R 8 , R 9 , R 10 , R 11 , R Z1 , R Z 2, R Zi1 b , R Z10 , R Z12 , R Z13 , R Z14 , R Z15 , R Z16 , R Y5N ,

R Z2a , R Z3a , and R Zi2e are as defined herein. [00154] In an embodiment,

X is:

Z is selected from: wherein

(i) R 1a , R 1a’ , R 1b , and R 2a are as defined herein;

(ii) R 3a1 , R 3a2 , R 3i1 and R 3i2 are as defined herein;

(iii) R 8 , R 9 , R 10 , R 11 , A 5 , A 6 , R Z1 , R Z2 and R zi1b are as defined herein.

[00155] In an embodiment,

Z is selected from: wherein

(i) R 1a , R 1a’ , R 1b , and R 2a are as defined herein;

(ii) R 3a1 , R 3a2 , R 3i1 and R 3i2 are as defined herein;

(iii) R 8 is selected from cyano, -CH 2 OCH 3 , -CH 2 SO 2 CH 3 , -SO 2 CH 3 , -NHC(O)CH 3 and -C(O)NR v1 R v2 , wherein R v1 and R v2 are independently selected from hydrogen and methyl; or R 8 is hydrogen; R 9 and R 11 are as herein defined; R 10 is C 1-4 alkoxy or C 1-4 haloalkoxy.

[00156] In an embodiment,

X is:

Z is selected from: wherein

(i) R 1a , R 1a’ , R 1b , and R 2a are as defined herein;

(ii) R 3a1 , R 3a2 , R 3i1 , R 3i2 , R 3l1 , R 3l2 , R 3r1 , R 3r2 , are as defined herein;

(iii) A 5 , A 6 , R Z1 , R Z2 and R zi1b are as defined herein.

[00157] In an embodiment,

X is:

Z is selected from: wherein

(i) R 1a , R 1a’ , R 1b , and R Za are as defined herein;

(ii) R 3a1 , R 3a2 , R 3i1 , R 3i2 , R 3l1 , R 3l2 , R 3r1 , R 3r2 , R 8 , R 10 , R 17 , R 18 and R Z1 are as defined herein; (iii) R 8 , R 10 , R 17 , R 18 and R Z1 are as defined herein.

[00158] In a particular group of compounds of the invention, Y is as defined in paragraph (47), i.e. the compounds have the structural formula (II) (a sub-definition of formula (1)) shown below: wherein X, R 3a1 , R 3a2 , n and Z each having any one of the meanings defined herein; or a pharmaceutically acceptable salt thereof.

[00159] In an embodiment of the compounds of formula (II):

X is as defined in any one of paragraphs (33) to (35) or (36) to (37) above, suitably X is as defined in paragraph (33) or (37); and R 1b , R 1d and R 1f are each as defined in any one of paragraphs (6) to (18) or (19) to (27) above

R 3a1 is as defined in any one of paragraphs from (38) to (41), and paragraphs (43) and (44) above;

R 3a2 is as defined in any one of paragraphs (42), (43) and (44) above; n is as defined in any one of paragraphs (45) and (46) above; and

Suitably, Z is as defined in any one of paragraphs from (119) to (126) above. Suitably, Z is as defined in any one of paragraphs from (123) to (126) above.

[00160] In a particular group of the compounds of formula (II):

X is as defined in paragraph (33), (34) or (35) above and R 1b , R 1d and R 1f are each as defined in any one of paragraphs (6) to (18) or (25) to (27) above;

R 3a1 is as defined in paragraph (41) above;

R 3a2 is as defined in paragraph (42) above; n is as defined in paragraph (46) above; and

Z is as defined in any one of paragraphs (123) to (126) above.

[00161] In an embodiment of the compounds of formula (II):

X is as defined in paragraph (33) above and R 1b , R 1d and R 1f are each as defined in any one of paragraphs (16) to (18) or (25) to (27) above;

R 3a1 is as defined in paragraph (41) above;

R 3a2 is as defined in paragraph (42) above; n is as defined in paragraph (46) above; and

Z is as defined in paragraph (126) above.

[00162] In a particular group of compounds of the invention, Y is as defined in paragraph (58), i.e. the compounds have the structural formula (III) (a sub-definition of formula (1)) shown below: wherein X, R 3i1 , R 3i2 , n and Z each having any one of the meanings defined herein; or a pharmaceutically acceptable salt thereof.

[00163] In an embodiment of the compounds of formula (III):

X is as defined in any one of paragraphs (33) to (35) or (36) to (37) above, suitably X is as defined in paragraph (33) or (37); and R 1b , R 1d and R 1f are each as defined in any one of paragraphs (6) to (18) or (19) to (27) above R 3i1 is as defined in any one of paragraphs from (38) to (41), and paragraphs (43) and (44) above; R 3i2 is as defined in any one of paragraphs (42), (43) and (44) above; n is as defined in any one of paragraphs (45) and (46) above; and

Suitably, Z is as defined in any one of paragraphs from (119) to (126) above. Suitably, Z is as defined in any one of paragraphs from (123) to (126) above.

[00164] In a particular group of the compounds of formula (III):

X is as defined in paragraph (33), (34) or (35) above and R 1b , R 1d and R 1f are each as defined in any one of paragraphs (6) to (18) or (25) to (27) above; R 3i1 is as defined in paragraph (41) above; R 3i2 is as defined in paragraph (42) above; n is as defined in paragraph (46) above; and

Z is as defined in any one of paragraphs (123) to (126) above.

[00165] In an embodiment of the compounds of formula (III):

X is as defined in paragraph (33) above and R 1b , R 1d and R 1f are each as defined in any one of paragraphs (16) to (18) or (25) to (27) above; R 3i1 is as defined in paragraph (41) above; R 3i2 is as defined in paragraph (42) above; n is as defined in paragraph (46) above; and

Z is as defined in paragraph (126) above. [00166] In a particular group of compounds of the invention, X is as defined in paragraph (33), i.e. the compounds have the structural formula (IV) (a sub-definition of formula (I)) shown below: wherein R 1a , R 1b , R 1a’ , R 2a , Y and Z each having any one of the meanings defined herein; or a pharmaceutically acceptable salt thereof.

[00167] In an embodiment of the compounds of formula (IV): R 1a is as defined in any one of paragraphs (1) to (5) above; R 1b is as defined in any one of paragraphs (6) to (18) or (19) to (27) above; R 1a’ is as defined in any one of paragraphs (28) to (30) above; R 2a is as defined in any one of paragraphs (31) and (32) above;

Y is as defined in any one of paragraphs (47) to (72) above; and

Z is as defined in any one of paragraphs from (119) to (126) above.

[00168] In an embodiment of the compounds of formula (IV): R 1a is as defined in any one of paragraphs (3) to (5) above; R 1b is as defined in any one of paragraphs (16) to (18) or (25) to (27) above ; R 1a’ is as defined in any one of paragraphs (28) to (30) above; R 2a is as defined in any one of paragraphs (31) and (32) above;

Y is as defined in any one of paragraphs (69) to (72) above; and

Z is as defined in any one of paragraphs from (123) to (126) above.

[00169] In an embodiment of the compounds of formula (IV): R 1a is as defined in paragraph (5) above; R 1b is as defined in paragraph ((18) above; R 1a’ is as defined in paragraph (30) above; R 2a is as defined in paragraph (32) above;

Y is as defined in any one of paragraphs (71) to (72) above; and

Z is as defined in any one of paragraphs from (123) to (126) above.

[00170] In an embodiment of the compounds of formula (IV): R 1a is as defined in any one of paragraphs (3) to (5) above; R 1b is as defined in any one of paragraphs (16) to (18) or (25) to (27) above ; R 1a’ is as defined in any one of paragraphs (28) to (30) above; R 2a is as defined in any one of paragraphs (31) and (32) above;

Y is as defined in any one of paragraphs (69) to (72) above; and

Z is as defined in any one of paragraphs from (84a), (87a), (88a), (88b), (89a), (89b) or (89c) above.

[00171] In an embodiment of the compounds of formula (IV): R 1a is as defined in paragraph (5) above; R 1b is as defined in paragraph (18) above; R 1a’ is as defined in paragraph (30) above; R 2a is as defined in paragraph (32) above;

Y is as defined in any one of paragraphs (71) to (72) above; and

Z is as defined in any one of paragraphs (84a), (87a), (88a), (88b), (89a), (89b) or (89c) above.

[00172] In a particular group of compounds of the invention, X is as defined in paragraph (33) and Y is as defined in paragraph (47), i.e. the compounds have the structural formula (V) (a sub-definition of formula (I)) shown below: wherein R 1a , R 1b , R 1a’ , R 2a , R 3a1 , R 3a2 , n and Z each having any one of the meanings defined herein; or a pharmaceutically acceptable salt thereof.

[00173] In an embodiment of the compounds of formula (V): R 1a is as defined in any one of paragraphs (1) to (5) above; R 1b is as defined in any one of paragraphs (6) to (18) above or (19) to (27); R 1a’ is as defined in any one of paragraphs (28) to (30) above; R 2a is as defined in any one of paragraphs (31) and (32) above;

R 3a1 is as defined in any one of paragraphs from (38) to (41), and paragraphs (43) and (44) above;

R 3a2 is as defined in any one of paragraphs (42), (43) and (44) above; n is as defined in any one of paragraphs (45) and (46) above; and

Z is as defined in any one of paragraphs from (119) to (126) above .

[00174] In a particular group of the compounds of formula (V): R 1a is as defined in any one of paragraphs (1) to (5) above; R 1b is as defined in paragraph (10) to (18) above, or (25) to (27); R 1a’ is as defined in any one of paragraphs (28) to (30) above; R 2a is as defined in any one of paragraphs (31) and (32) above;

R 3a1 is as defined in any one of paragraphs from (38) to (41), and paragraphs (43) and (44) above;

R 3a2 is as defined in any one of paragraphs (42), (43) and (44) above; n is as defined in any one of paragraphs (45) and (46) above; and

Z is as defined in any one of paragraphs (123) to (126) above.

[00175] In an embodiment of the compounds of formula (V): R 1a is as defined in paragraph (6) above; R 1a’ is as defined in paragraph (17) above; R 1b is as defined in any one of paragraphs (16), (17) or (18) or above, or R 1b is as defined in any one of paragraphs (26) or (27); R 2a is as defined in paragraph (19) above;

R 3a1 is as defined in paragraph (41) above; R 3a2 is as defined in paragraph (42) above; n is as defined in paragraph (46) above; and

Z is as defined in paragraph (126) above.

[00176] In an embodiment of the compounds of formula (V): R 1a is as defined in any one of paragraphs (1) to (5) above; R 1b is as defined in any one of paragraphs (6) to (18) above or (19) to (27); R 1a’ is as defined in any one of paragraphs (28) to (30) above; R 2a is as defined in any one of paragraphs (31) and (32) above;

R 3a1 is as defined in any one of paragraphs from (38) to (41), and paragraphs (43) and (44) above;

R 3a2 is as defined in any one of paragraphs (42), (43) and (44) above; n is as defined in any one of paragraphs (45) and (46) above; and

Z is as defined in any one of paragraphs (84a), (87a), (88a), (88b), (89a), (89b) or (89c) above.

[00177] In a particular group of the compounds of formula (V): R 1a is as defined in any one of paragraphs (1) to (5) above; R 1b is as defined in paragraph (10) to (18) above, or (25) to (27); R 1a’ is as defined in any one of paragraphs (28) to (30) above; R 2a is as defined in any one of paragraphs (31) and (32) above;

R 3a1 is as defined in any one of paragraphs from (38) to (41), and paragraphs (43) and (44) above;

R 3a2 is as defined in any one of paragraphs (42), (43) and (44) above; n is as defined in any one of paragraphs (45) and (46) above; and

Z is as defined in any one of paragraphs (84a), (87a), (88a), (88b), (89a), (89b) or (89c) above.

[00178] In an embodiment of the compounds of formula (V): R 1a is as defined in paragraph (6) above; R 1a’ is as defined in paragraph (17) above; R 1b is as defined in any one of paragraphs (16), (17) or (18) or above, or R 1b is as defined in any one of paragraphs (26) or (27); R 2a is as defined in paragraph (19) above; R 3a1 is as defined in paragraph (41) above;

R 3a2 is as defined in paragraph (42) above; n is as defined in paragraph (46) above; and

Z is as defined in any one of paragraphs (84a), (87a), (88a), (88b), (89a), (89b) or (89c) above.

[00179] In a particular group of compounds of the invention, X is as defined in paragraph (20), R 1a’ is as defined in paragraph (17) and Y is as defined in paragraph (36), i.e. the compounds have the structural formula (VI) (a sub-definition of formula (I)) shown below: wherein R 1a , R 1b , R 2a , R 3i1 , R 3i2 , n and Z each having any one of the meanings defined herein; or a pharmaceutically acceptable salt thereof.

[00180] In an embodiment of the compounds of formula (VI): R 1a is as defined in any one of paragraphs (1) to (5) above; R 1b is as defined in any one of paragraphs (6) to (18) above or (19) to (27) above; R 1a’ is as defined in any one of paragraphs (28) to (30) above;

R 2a is as defined in any one of paragraphs (31) and (32) above; R 3i1 is as defined in any one of paragraphs from (38) to (41), and paragraphs (43) and (44) above;

R 3i2 is as defined in any one of paragraphs (42), (43) and (44) above; n is as defined in any one of paragraphs (45) and (46) above; and

Z is as defined in any one of paragraphs from (119) to (126) above .

[00181] In a particular group of the compounds of formula (VI): R 1a is as defined in any one of paragraphs (1) to (5) above; R 1b is as defined in paragraph (10) to (18) above, or (25) to (27) above; R 1a’ is as defined in any one of paragraphs (28) to (30) above; R 2a is as defined in any one of paragraphs (31) and (32) above; R 3i1 is as defined in any one of paragraphs from (38) to (41), and paragraphs (43) and (44) above;

R 3i2 is as defined in any one of paragraphs (42), (43) and (44) above; n is as defined in any one of paragraphs (45) and (46) above; and

Z is as defined in any one of paragraphs (123) to (126) above.

[00182] In an embodiment of the compounds of formula (VI): R 1a is as defined in paragraph (6) above; R 1a’ is as defined in paragraph (17) above; R 1b is as defined in any one of paragraphs (16), (17) or (18) or above, or R 1b is as defined in any one of paragraphs (26) or (27); R 2a is as defined in paragraph (19) above; R 3i1 is as defined in paragraph (41) above;

R 3i2 is as defined in paragraph (42) above; n is as defined in paragraph (46) above; and

Z is as defined in paragraph (126) above.

[00183] In an embodiment of the compounds of formula (VI): R 1a is as defined in any one of paragraphs (1) to (5) above; R 1b is as defined in any one of paragraphs (6) to (18) above or (19) to (27) above; R 1a’ is as defined in any one of paragraphs (28) to (30) above; R 2a is as defined in any one of paragraphs (31) and (32) above; R 3i1 is as defined in any one of paragraphs from (38) to (41), and paragraphs (43) and (44) above;

R 3i2 is as defined in any one of paragraphs (42), (43) and (44) above; n is as defined in any one of paragraphs (45) and (46) above; and

Z is as defined in any one of paragraphs (84a), (87a), (88a), (88b), (89a), (89b) or (89c) above.

[00184] In a particular group of the compounds of formula (VI): R 1a is as defined in any one of paragraphs (1) to (5) above; R 1b is as defined in paragraph (10) to (18) above, or (25) to (27) above; R 1a’ is as defined in any one of paragraphs (28) to (30) above; R 2a is as defined in any one of paragraphs (31) and (32) above; R 3i1 is as defined in any one of paragraphs from (38) to (41), and paragraphs (43) and (44) above;

R 3i2 is as defined in any one of paragraphs (42), (43) and (44) above; n is as defined in any one of paragraphs (45) and (46) above; and

Z is as defined in any one of paragraphs (84a), (87a), (88a), (88b), (89a), (89b) or (89c) above

[00185] In an embodiment of the compounds of formula (VI): R 1a is as defined in paragraph (6) above; R 1a’ is as defined in paragraph (17) above; R 1b is as defined in any one of paragraphs (16), (17) or (18) or above, or R 1b is as defined in any one of paragraphs (26) or (27); R 2a is as defined in paragraph (19) above; R 3i1 is as defined in paragraph (41) above; R 3i2 is as defined in paragraph (42) above; n is as defined in paragraph (46) above; and

Z is as defined in any one of paragraphs (84a), (87a), (88a), (88b), (89a), (89b) or (89c) above.

[00186] In a particular group of compounds of the invention, X is as defined in paragraph (20), Rw is as defined in paragraph (17) and Y is as defined in paragraph (36), i.e. the compounds have the structural formula (VII) (a sub-definition of formula (I)) shown below: wherein R 1a , R 1b , R 2a , R 3i1 , R 3i2 , n and Z each having any one of the meanings defined herein; or a pharmaceutically acceptable salt thereof.

[00187] In an embodiment of the compounds of formula (VII): R 1a is as defined in any one of paragraphs (1) to (5) above; R 1b is as defined in any one of paragraphs (6) to (18), or (19) to (27) above; R 2a is as defined in any one of paragraphs (31) to (32) above;

Y is as defined in any one of paragraphs (69) to (72) above; R 8 , R 9 , R 10 and R 11 are as defined in any one of paragraphs (130) to (133) above;

[00188] In an embodiment of the compounds of formula (VII): R 1a is as defined in any one of paragraphs (1) to (5) above; R 1b is as defined in paragraph (10) to (18) above, or (25) to (27) above; R 1a’ is as defined in any one of paragraphs (28) to (30) above; R 2a is as defined in any one of paragraphs (31) and (32) above;

Y is as defined in any one of paragraphs (69) to (72) above; R 8 , R 9 , R 10 and R 11 are as defined in any one of paragraphs (132) to (133) above;

[00189] In particular group of the compounds of formula (VII): R 1a is as defined paragraph (5) above; R 1b is as defined in any one of paragraphs (16), (17) or (18) or above, or R 1b is as defined in any one of paragraphs (26) or (27); R 2a is as defined in paragraph (32) above;

Y is as defined in paragraph (72) above; R 8 , R 9 , R 10 and R 11 are as defined in paragraph (133) above;

[00190] In an embodiment of the compounds of formula (VII):

Rw is as defined in any one of paragraphs (1) to (5) above; R 1b is as defined in any one of paragraphs (6) to (18), or (19) to (27) above; R 2a is as defined in any one of paragraphs (31) to (32) above;

Y is as defined in any one of paragraphs (69) to (72) above; R 8 , R 9 , R 10 and R 11 are as defined in any one of paragraphs (129a), (130a), (133a), (133b) or (133c) above; [00191] In an embodiment of the compounds of formula (VII): R 1a is as defined in any one of paragraphs (1) to (5) above; R 1b is as defined in paragraph (10) to (18) above, or (25) to (27) above; R 1a’ is as defined in any one of paragraphs (28) to (30) above;

R 2a is as defined in any one of paragraphs (31) and (32) above;

Y is as defined in any one of paragraphs (69) to (72) above; R 8 , R 9 , R 10 and R 11 are as defined in any one of paragraphs (129a), (130a), (133a), (133b) or (133c) above;

[00192] In particular group of the compounds of formula (VII): R 1a is as defined paragraph (5) above; R 1b is as defined in any one of paragraphs (16), (17) or (18) or above, or R 1b is as defined in any one of paragraphs (26) or (27);

R 2a is as defined in paragraph (32) above;

Y is as defined in paragraph (72) above; R 8 , R 9 , R 10 and R 11 are as defined in paragraph (129a), (130a), (133a), (133b) or (133c) above;

[00193] In a particular group of compounds of the invention, X is as defined in paragraph (20), Rw is as defined in paragraph (17) and Y is as defined in paragraph (36), i.e. the compounds have the structural formula (VII) (a sub-definition of formula (I)) shown below: wherein R 1a , R 1b , R 2a , R 3i1 , R 3i2 , n and Z each having any one of the meanings defined herein; or a pharmaceutically acceptable salt thereof. [00194] In an embodiment of the compounds of formula (VIII): R 1a is as defined in any one of paragraphs (1) to (5) above; R 1b is as defined in any one of paragraphs (6) to (18), or (19) to (27) above; R 2a is as defined in any one of paragraphs (31) to (32) above;

Y is as defined in any one of paragraphs (69) to (72) above;

A 5 is CR 16 , and R 16 is as defined in any one of paragraphs (147), (148) and (156) to (159). above;

A 6 is CR 17 and R 17 is as defined in any one of paragraphs (160) to (166) above;

R Z1 is as defined in any one of paragraphs (134) to (137) above;

R Z2 is as defined in any one of paragraphs (138) to (140) above; and

R Zi2b is as defined in any one of paragraphs (138) to (140) above.

[00195] In an particular group of the compounds of formula (VIII): R 1a is as defined in any one of paragraphs (1) to (5) above; R 1b is as defined in paragraph (10) to (18) above, or (25) to (27) above; R 1a’ is as defined in any one of paragraphs (28) to (30) above;

R 2a is as defined in any one of paragraphs (31) and (32) above;

Y is as defined in any one of paragraphs (69) to (72) above;

A 5 is CR 16 , and R 16 is as defined in any one of paragraphs (156) to (159). above;

A 6 is CR 17 and R 17 is as defined in any one of paragraphs (163) to (166) above;

R Z1 is as defined in any one of paragraphs (135) to (137) above;

R Z2 is as defined in any one of paragraphs (139) to (140) above; and

R Zi2b is as defined in any one of paragraphs (139) to (140) above.

[00196] In particular group of the compounds of formula (VIII): R 1a is as defined paragraph (5) above; R 1b is as defined in any one of paragraphs (16), (17) or (18) or above, or R 1b is as defined in any one of paragraphs (26) or (27);

R 2a is as defined in paragraph (32) above;

Y is as defined in paragraph (72) above;; A 5 is CR 16 , and R 16 is as defined in paragraph (159) above;

A 6 is CR 17 and R 17 is as defined in paragraph (166) above;

R Z1 is as defined in paragraph (137) above;

R Z2 is as defined in paragraph (140) above, i.e. R Z2 is hydrogen; and

R Zi2b is as defined in in paragraph (140) above, i.e. R zi1b is hydrogen.

[00197] In certain embodiments of the invention, when

[00198] In certain embodiments of the invention, when and

[00199] Particular compounds of the present invention include any of the compounds exemplified in the present application, or a pharmaceutically acceptable salt thereof, and, in particular, any of the following:

N-[(6-{[(cyclohexylmethyl)amino]methyl}imidazo[1,2-a]pyri din-2-yl)methyl]-1,2-dimethyl-6- oxo-1,6-dihydropyrimidine-4-carboxamide;

N-({6-methylimidazo[1,2-a]pyridin-2-yl}methyl)-4-oxo-4H-q uinolizine-2-carboxamide;

N-[(6-{[(cyclohexylmethyl)amino]methyl}imidazo[1,2-a]pyri din-2-yl)methyl]-4-oxo-4H- quinolizine-2-carboxamide;

N-[(6-{[(cyclohexylmethyl)amino]methyl}imidazo[1,2-a]pyri din-2-yl)methyl]quinoxaline-2- carboxamide;

N-[(6-{[(cyclohexylmethyl)amino]methyl}imidazo[1,2-a]pyri din-2-yl)methyl]-1H-pyrazolo[3,4- b]pyridine-4-carboxamide;

N-[(6-{[(cyclohexylmethyl)amino]methyl}imidazo[1,2-a]pyri din-2-yl)methyl]quinoline-3- carboxamide;

N-[(6-{[(cyclobutylmethyl)amino]methyl}imidazo[1,2-a]pyri din-2-yl)methyl]imidazo[1,5- a]pyridine-8-carboxamide;

N-[(6-{[(cyclobutylmethyl)amino]methyl}imidazo[1,2-a]pyri din-2-yl)methyl]imidazo[1,5- a]pyridine-5-carboxamide;

N-[(6-{[(cyclobutylmethyl)amino]methyl}imidazo[1,2-a]pyri din-2-yl)methyl]-3H-imidazo[4,5- b]pyridine-6-carboxamide;

N-[(6-{[(cyclobutylmethyl)amino]methyl}imidazo[1,2-a]pyri din-2-yl)methyl]-1H-pyrrolo[2,3- b]pyridine-5-carboxamide;

N-{[6-({[(3,3-difluorocyclobutyl)methyl]amino}methyl)imid azo[1,2-a]pyridin-2-yl]methyl}-1H- pyrrolo[2,3-b]pyridine-5-carboxamide;

N-[(6-{[(cyclobutylmethyl)amino]methyl}imidazo[1,2-a]pyri din-2-yl)methyl]-1-methyl-1H- pyrrolo[2,3-b]pyridine-5-carboxamide N-[(6-{[(cyclobutylmethyl)amino]methyl}imidazo[1,2-a]pyridin -2-yl)methyl]-1H-indole-5- carboxamide;

N-[(6-{[(cyclobutylmethyl)amino]methyl}imidazo[1,2-a]pyri din-2-yl)methyl]-5H-pyrrolo[2,3- b]pyrazine-2-carboxamide;

N-[(6-{[({3-fluorobicyclo[1.1.1]pentan-1-yl}methyl)amino] methyl}imidazo[1,2-a]pyridin-2- yl)methyl]-5-oxo-5H-[1,3]thiazolo[3,2-a]pyrimidine-7-carboxa mide;

4-[1-[(6-methylimidazo[1,2-a]pyridin-2-yl)methyl]triazol- 4-yl]isoquinoline;

1-({6-methylimidazo[1,2-a]pyridin-2-yl}methyl)-4-{1H-pyrr olo[2,3-b]pyridin-5-yl}-1H-1,2,3- triazole;

(cyclobutylmethyl)({2-[(4-{6-methoxyimidazo[1,5-a]pyridin -8-yl}-1H-1,2,3-triazol-1- yl)methyl]imidazo[1,2-a]pyridin-6-yl}methyl)amine;

(cyclobutylmethyl)({2-[(4-{imidazo[1,5-a]pyridin-8-yl}-1H -1,2,3-triazol-1-yl)methyl]imidazo[1,2- a]pyridin-6-yl}methyl)amine;

({2-[(4-{6-chloroimidazo[1,5-a]pyridin-8-yl}-1H-1,2,3-tri azol-1-yl)methyl]imidazo[1,2-a]pyridin- 6-yl}methyl)(cyclobutylmethyl)amine;

(cyclobutylmethyl)({2-[(4-{1-fluoroimidazo[1,5-a]pyridin- 8-yl}-1H-1,2,3-triazol-1- yl)methyl]imidazo[1,2-a]pyridin-6-yl}methyl)amine;

({3-fluorobicyclo[1.1.1]pentan-1-yl}methyl)({2-[(4-{6-met hoxyimidazo[1,5-a]pyridin-8-yl}-1H- 1,2,3-triazol-1-yl)methyl]imidazo[1,2-a]pyridin-6-yl}methyl) amine;

(cyclobutylmethyl)({2-[(4-{[1,2,4]triazolo[4,3-a]pyridin- 8-yl}-1H-1,2,3-triazol-1- yl)methyl]imidazo[1,2-a]pyridin-6-yl}methyl)amine;

({bicyclo[1.1.1]pentan-1-yl}methyl)({2-[(4-{6-methoxyimid azo[1,5-a]pyridin-8-yl}-1H-1,2,3- triazol-1-yl)methyl]imidazo[1,2-a]pyridin-6-yl}methyl)amine;

2-({2-[(4-{imidazo[1,5-a]pyridin-8-yl}-1H-1,2,3-triazol-1 -yl)methyl]imidazo[1,2-a]pyridin-6- yl}methyl)-2-azaspiro[3.3]heptane;

2-({2-[(4-{6-methoxyimidazo[1,5-a]pyridin-8-yl}-1H-1,2,3- triazol-1-yl)methyl]imidazo[1,2- a]pyridin-6-yl}methyl)-2-azaspiro[3.3]heptane;

N-(cyclobutylmethyl)-1-[2-[[4-(4-isoquinolyl)triazol-1-yl ]methyl]imidazo[1,2-a]pyridin-6- yl]methanamine; bis(cyclobutylmethyl)[(2-{[4-(isoquinolin-4-yl)-1H-1,2,3-tri azol-1-yl]methyl}imidazo[1,2- a]pyridin-6-yl)methyl]amine;

(cyclobutylmethyl)({2-[(4-{1H-pyrrolo[2,3-b]pyridin-5-yl} -1H-1,2,3-triazol-1- yl)methyl]imidazo[1,2-a]pyridin-6-yl}methyl)amine;

(cyclobutylmethyl)({2-[(4-{1H-pyrrolo[2,3-b]pyridin-5-yl} -1H-imidazol-1-yl)methyl]imidazo[1,2- a]pyridin-6-yl}methyl)amine; cyclobutylmethyl)({2-[(4-{imidazo[1,5-a]pyridin-5-yl}-1H-1,2 ,3-triazol-1-yl)methyl]imidazo[1,2- a]pyridin-6-yl}methyl)amine; ({3-fluorobicyclo[1.1.1]pentan-1-yl}methyl)({2-[(4-{3-methyl imidazo[1,5-a]pyridin-8-yl}-1H- 1,2,3-triazol-1-yl)methyl]imidazo[1,2-a]pyridin-6-yl}methyl) amine;

3-{1-[(6-{[({bicyclo[1.1.1]pentan-1-yl}methyl)amino]methy l}imidazo[1,2-a]pyridin-2-yl)methyl]- 1H-1 ,2,3-triazol-4-yl}-5-methoxypyridine-2-carbonitrile.

[00200] Particular compounds of the present invention include any of the compounds exemplified in the present application, or a pharmaceutically acceptable salt thereof, and, in particular, any of the following:

N-[(6-{[(cyclohexylmethyl)amino]methyl}imidazo[1,2-a]pyri din-2-yl)methyl]-1,2-dimethyl-6- oxo-1,6-dihydropyrimidine-4-carboxamide;

N-({6-methylimidazo[1,2-a]pyridin-2-yl}methyl)-4-oxo-4H-q uinolizine-2-carboxamide;

N-[(6-{[(cyclohexylmethyl)amino]methyl}imidazo[1,2-a]pyri din-2-yl)methyl]-4-oxo-4H- quinolizine-2-carboxamide;

N-[(6-{[(cyclohexylmethyl)amino]methyl}imidazo[1,2-a]pyri din-2-yl)methyl]quinoxaline-2- carboxamide;

N-[(6-{[(cyclohexylmethyl)amino]methyl}imidazo[1,2-a]pyri din-2-yl)methyl]-1H-pyrazolo[3,4- b]pyridine-4-carboxamide;

N-[(6-{[(cyclohexylmethyl)amino]methyl}imidazo[1,2-a]pyri din-2-yl)methyl]quinoline-3- carboxamide;

N-[(6-{[(cyclobutylmethyl)amino]methyl}imidazo[1,2-a]pyri din-2-yl)methyl]imidazo[1,5- a]pyridine-8-carboxamide;

N-[(6-{[(cyclobutylmethyl)amino]methyl}imidazo[1,2-a]pyri din-2-yl)methyl]imidazo[1,5- a]pyridine-5-carboxamide;

N-[(6-{[(cyclobutylmethyl)amino]methyl}imidazo[1,2-a]pyri din-2-yl)methyl]-3H-imidazo[4,5- b]pyridine-6-carboxamide;

N-[(6-{[(cyclobutylmethyl)amino]methyl}imidazo[1,2-a]pyri din-2-yl)methyl]-1H-pyrrolo[2,3- b]pyridine-5-carboxamide;

N-{[6-({[(3,3-difluorocyclobutyl)methyl]amino}methyl)imid azo[1,2-a]pyridin-2-yl]methyl}-1H- pyrrolo[2,3-b]pyridine-5-carboxamide;

N-[(6-{[(cyclobutylmethyl)amino]methyl}imidazo[1,2-a]pyri din-2-yl)methyl]-1-methyl-1H- pyrrolo[2,3-b]pyridine-5-carboxamide

N-[(6-{[(cyclobutylmethyl)amino]methyl}imidazo[1,2-a]pyri din-2-yl)methyl]-1H-indole-5- carboxamide;

N-[(6-{[(cyclobutylmethyl)amino]methyl}imidazo[1,2-a]pyri din-2-yl)methyl]-5H-pyrrolo[2,3- b]pyrazine-2-carboxamide;

N-[(6-{[({3-fluorobicyclo[1.1.1]pentan-1-yl}methyl)amino] methyl}imidazo[1,2-a]pyridin-2- yl)methyl]-5-oxo-5H-[1,3]thiazolo[3,2-a]pyrimidine-7-carboxa mide; 4-[1-[(6-methylimidazo[1,2-a]pyridin-2-yl)methyl]triazol-4-y l]isoquinoline;

1-({6-methylimidazo[1,2-a]pyridin-2-yl}methyl)-4-{1H-pyrr olo[2,3-b]pyridin-5-yl}-1H-1,2,3- triazole;

(cyclobutylmethyl)({2-[(4-{6-methoxyimidazo[1,5-a]pyridin -8-yl}-1H-1,2,3-triazol-1- yl)methyl]imidazo[1,2-a]pyridin-6-yl}methyl)amine;

(cyclobutylmethyl)({2-[(4-{imidazo[1,5-a]pyridin-8-yl}-1H -1,2,3-triazol-1-yl)methyl]imidazo[1,2- a]pyridin-6-yl}methyl)amine;

({2-[(4-{6-chloroimidazo[1,5-a]pyridin-8-yl}-1H-1,2,3-tri azol-1-yl)methyl]imidazo[1,2-a]pyridin-

6-yl}methyl)(cyclobutylmethyl)amine;

(cyclobutylmethyl)({2-[(4-{1-fluoroimidazo[1,5-a]pyridin- 8-yl}-1H-1,2,3-triazol-1- yl)methyl]imidazo[1,2-a]pyridin-6-yl}methyl)amine;

({3-fluorobicyclo[1.1.1]pentan-1-yl}methyl)({2-[(4-{6-met hoxyimidazo[1,5-a]pyridin-8-yl}-1H-

1,2,3-triazol-1-yl)methyl]imidazo[1,2-a]pyridin-6-yl}meth yl)amine;

(cyclobutylmethyl)({2-[(4-{[1,2,4]triazolo[4,3-a]pyridin- 8-yl}-1H-1,2,3-triazol-1- yl)methyl]imidazo[1,2-a]pyridin-6-yl}methyl)amine;

({bicyclo[1.1.1]pentan-1-yl}methyl)({2-[(4-{6-methoxyimid azo[1,5-a]pyridin-8-yl}-1H-1,2,3- triazol-1-yl)methyl]imidazo[1,2-a]pyridin-6-yl}methyl)amine;

2-({2-[(4-{imidazo[1,5-a]pyridin-8-yl}-1H-1,2,3-triazol-1 -yl)methyl]imidazo[1,2-a]pyridin-6- yl}methyl)-2-azaspiro[3.3]heptane;

2-({2-[(4-{6-methoxyimidazo[1,5-a]pyridin-8-yl}-1H-1,2,3- triazol-1-yl)methyl]imidazo[1,2- a]pyridin-6-yl}methyl)-2-azaspiro[3.3]heptane;

N-(cyclobutylmethyl)-1-[2-[[4-(4-isoquinolyl)triazol-1-yl ]methyl]imidazo[1,2-a]pyridin-6- yl]methanamine; bis(cyclobutylmethyl)[(2-{[4-(isoquinolin-4-yl)-1H-1,2,3-tri azol-1-yl]methyl}imidazo[1,2- a]pyridin-6-yl)methyl]amine;

(cyclobutylmethyl)({2-[(4-{1H-pyrrolo[2,3-b]pyridin-5-yl} -1H-1,2,3-triazol-1- yl)methyl]imidazo[1,2-a]pyridin-6-yl}methyl)amine;

(cyclobutylmethyl)({2-[(4-{1H-pyrrolo[2,3-b]pyridin-5-yl} -1H-imidazol-1-yl)methyl]imidazo[1,2- a]pyridin-6-yl}methyl)amine; cyclobutylmethyl)({2-[(4-{imidazo[1,5-a]pyridin-5-yl}-1H-1,2 ,3-triazol-1-yl)methyl]imidazo[1,2- a]pyridin-6-yl}methyl)amine;

({3-fluorobicyclo[1.1.1]pentan-1-yl}methyl)({2-[(4-{3-met hylimidazo[1,5-a]pyridin-8-yl}-1H- 1,2,3-triazol-1-yl)methyl]imidazo[1,2-a]pyridin-6-yl}methyl) amine;

3-{1-[(6-{[({bicyclo[1.1.1]pentan-1-yl}methyl)amino]methy l}imidazo[1,2-a]pyridin-2-yl)methyl]-

1H-1,2,3-triazol-4-yl}-5-methoxypyridine-2-carbonitrile

3-{1-[(6-{[(cyclobutylmethyl)amino]methyl}imidazo[1,2-a]p yridin-2-yl)methyl]-1H-1,2,3-triazol-

4-yl}-5-methoxypyridine-2-carbonitrile; 3-[1-({6-[(4,4-dimethylpiperidin-1-yl)methyl]imidazo[1,2-a]p yridin-2-yl}methyl)-1H-1,2,3- triazol-4-yl]-5-methoxypyridine-2-carbonitrile;

3-(1-{[6-({6-azaspiro[3.4]octan-6-yl}methyl)imidazo[1,2-a ]pyridin-2-yl]methyl}-1H-1,2,3- triazol-4-yl)-5-methoxypyridine-2-carbonitrile;

3-{1-[(6-{[({3-fluorobicyclo[1.1.1]pentan-1-yl}methyl)ami no]methyl}imidazo[1,2-a]pyridin-2- yl)methyl]-1H-1,2,3-triazol-4-yl}-5-methoxypyridine-2-carbon itrile;

3-(1-{[6-({6-azaspiro[3.4]octan-6-yl}methyl)imidazo[1,2-a ]pyridin-2-yl]methyl}-1H-1,2,3- triazol-4-yl)-5-fluoropyridine-2-carbonitrile;

5-fluoro-3-{1-[(6-{[({3-fluorobicyclo[1.1.1]pentan-1-yl}m ethyl)amino]methyl}imidazo[1,2- a]pyridin-2-yl)methyl]-1H-1,2,3-triazol-4-yl}pyridine-2-carb onitrile;

({3-fluorobicyclo[1.1.1]pentan-1-yl}methyl)[(2-{[4-(6-met hoxypyrazin-2-yl)-1H-1,2,3-triazol-1- yl]methyl}imidazo[1,2-a]pyridin-6-yl)methyl]amine;

({3-fluorobicyclo[1.1.1]pentan-1-yl}methyl)[(2-{[4-(5-met hoxypyridin-3-yl)-1H-1,2,3-triazol-1- yl]methyl}imidazo[1,2-a]pyridin-6-yl)methyl]amine;

N-[(6-{[(cyclobutylmethyl)amino]methyl}imidazo[1,2-a]pyri din-2-yl)methyl]-5-methoxypyridine- 3-carboxamide;

({3-fluorobicyclo[1.1.1]pentan-1-yl}methyl)[(2-{[4-(4-met hoxypyridin-3-yl)-1H-1,2,3-triazol-1- yl]methyl}imidazo[1,2-a]pyridin-6-yl)methyl]amine;

({3-fluorobicyclo[1.1.1]pentan-1-yl}methyl)[(2-{[4-(6-met hoxypyridin-3-yl)-1H-1,2,3-triazol-1- yl]methyl}imidazo[1,2-a]pyridin-6-yl)methyl]amine;

3-{1-[(6-{[({3-fluorobicyclo[1.1.1]pentan-1-yl}methyl)ami no]methyl}imidazo[1,2-a]pyridin-2- yl)methyl]-1H-1 ,2,3-triazol-4-yl}-5-methoxypyridine-2-carboxamide;

(cyclobutylmethyl)[(2-{[4-(1-methyl-1H-indazol-7-yl)-1H-1 ,2,3-triazol-1-yl]methyl}imidazo[1,2- a]pyridin-6-yl)methyl]amine;

3-{1-[(6-{[({3-fluorobicyclo[1.1.1]pentan-1-yl}methyl)ami no]methyl}imidazo[1,2-a]pyridin-2- yl)methyl]-1H-1,2,3-triazol-4-yl}-5-(morpholin-4-yl)pyridine -2-carbonitrile;

({3-fluorobicyclo[1.1.1]pentan-1-yl}methyl)({[2-({4-[5-(m orpholin-4-yl)pyridin-3-yl]-1H-1,2,3- triazol-1-yl}methyl)imidazo[1,2-a]pyridin-6-yl]methyl})amine .

[00201] Further compounds of the invention include the following compound or a pharmaceutically acceptable salt thereof:

3-[1-({5-[({(3-methylbicyclo[1.1.1]pent-1-yl)methyl}amino )methyl]-1,3a-diaza-2- indenyl}methyl)-1H-1,2,3-triazol-4-yl]-5-methoxy-2-pyridinec arbonitrile.

[00202] In certain embodiments of the invention, the compound is not:

4-[1-[(6-methylimidazo[1,2-a]pyridin-2-yl)methyl]triazol- 4- yl]isoquinoline; tert-butyl N-[[2-[[4-(4-isoquinolyl)triazol-1-yl]methyl]imidazo[1,2-a]p yridin-6- yl]methyl]carbamate; N-(cyclobutylmethyl)-1-[2-[[4-(4-isoquinolyl)triazol-1- yl]methyl]imidazo[1,2-a]pyridin-6- yl]methanamine.

[00203] In certain embodiments of the invention, Z is notone of the following structures: and wherein: R 4 , is selected from hydrogen, halo, cyano and methyl;

Rs is selected from hydrogen, halo, cyano and methyl; R 6 is selected from hydrogen, halo, cyano and methyl; R 8 , R 9 , R 10 and R 11 are independently selected from hydrogen, NH 2 , halo, cyano, and

C 1-6 alkyl; or R 9 and R 10 may be linked together to form a fused 5- or 6-membered saturated or unsaturated ring system or R 10 and R 11 may be linked together to form a fused 5- or 6-membered saturated or unsaturated ring system; wherein either of the fused 5- or 6-membered saturated or unsaturated ring system may be optionally subsitutued by one or more substituents selected from C 1-2 alkyl, cyano, C 1-2 haloalkyl, hydroxy, C 1- 2alkoxy, halo, C 1-2 haloalkoxy, NR 1ia R 1j a or -S(O) 0-2 RiiaR 1j a, wherein R 1ia and R 1ja are H or C 1-2 alky;

R Z1 and R Z1a are selected from hydrogen, C 1-4 alkyl, cyano, halo, C 1-4 haloalkyl, C 1- 4haloalkoxy, C 1-4 alkoxy, C 3-6 cycloalkyl and -O-C 3-6 cycloalkyl, wherein C 3-6 cycloalkyl and -O-C 3-6 cycloalkyl are optionally subsitutued by one or more of halo, methyl or methoxy;

R Z2 and R Z2a are selected from hydrogen, C 1-4 alkyl, cyano, halo, NH 2 and C 1-4 alkoxy;

R Z3a is selected from hydrogen, C 1-4 alkyl, cyano, halo, NH 2 and C 1-4 alkoxy

A 1 is selected from CR 12 and N; A 2 is selected from CR 13 and N;

A 5 is selected from CR 16 and N;

A 6 is selected from CR 17 and N;

A? is selected from CR 18 and N;

As is selected from CR 19 R 20 and NR 21 ; A 9 is selected from CR 22 R 23 and NR 24 ; A 11 is selected from CR 28 R 29 and NR 30 ; R 12 is selected from hydrogen, halo, cyano and C 1-4 alkyl; R 13 is selected from hydrogen, halo, cyano, methoxy and methyl; R 16 is selected from hydrogen, halo, cyano, C 1-4 alkyl, C 1-4 alkoxy, C 1-4 haloalkyl, C 1- 4 haloalkoxy, C 3-4 cycloalkyl, a 3- to 4-membered heterocyclyl and C 3-4 cycloalkoxy; R 17 is selected from hydrogen, hydroxy, halo, cyano, C 1-5 alkyl, C 1-4 haloalkyl, C 1-4 alkoxy, C 1-4 haloalkoxy, C 2-4 alkenyl, C 2-4 alkynyl, phenyl, a 5- or 6-membered or heteroaryl, C 3-6 cycloalkyl, -O- C 3-6 cycloalkyl, heterocyclyl, -O-heterocyclyl (carbon- linked), -(OCH 2 CH 2 )m-NR q R r , -(OCH 2 CH 2 )m-OCH 3 wherein m is an integer from 1 to 6, NRqRr, -C(O)-NR q Rr, -C(O)OR q ; wherein R q and R r are each independently hydrogen, C 1-5 alkyl, C 3-6 cycloalkyl, a 3- to 6- membered carbon-linked heterocyclyl, wherein C 1-5 alkyl, C 3-6 cycloalkyl, a 3- to 6- membered carbon-linked heterocyclyl may be optionally substituted by one or more substituents selected from C 1-2 alkyl, cyano, C 1-2 haloalkyl, hydroxy, C 1-2 alkoxy, halo, C 1-2 haloalkoxy, NR 1ea R 1fa or -S(O) 0-2 R 1ea R 1fa , wherein R 1ea and R 1fa are H or C 1-2 alkyl; or R q and R r are linked together such that, together with the nitrogen atom to which they are attached, they form a 3- to 6-membered heterocyclic ring, which may be optionally substituted by one or more substituents selected from C 1-2 alkyl, cyano, C 1- 2haloalkyl, hydroxy, C 1-2 alkoxy, halo, C 1-2 haloalkoxy; wherein any C 1-5 alkyl, C 1-4 alkoxy, C 2-4 alkenyl, C 2-4 alkynyl, phenyl, 5- or 6-membered or heteroaryl, C 3-6 cycloalkyl, -O-C 3-6 cycloalkyl, heterocyclyl or -O-heterocyclyl (carbon-linked)is optionally further substituted by one or more substituents selected from C 1-2 alkyl, cyano, C 1-2 haloalkyl, hydroxy, C 1-2 alkoxy, halo, C 1-2 haloalkoxy, NR 1da R 1fa or -S(O) 0-2 R 1ea R 1fa , wherein R 1ea and R 1fa are H or C 1-2 alkyl; R 18 is selected from hydrogen, halo, cyano, C 1-4 alkyl, C 2-4 alkenyl, C 2-4 alkynyl, a 5- or 6-membered heteroaryl, C 1-4 alkoxy, C 1-4 haloalkyl, C 1-4 haloalkoxy, C 3-4 cycloalkyl, a 3- to 4-membered heterocyclyl and C 3-4 cycloalkoxy; R 19 and R20 are selected from hydrogen, halo, cyano and C 1-4 alkyl; R 22 and R 23 are selected from hydrogen, halo, cyano and methyl; R 28 and R 29 are selected from hydrogen, methoxy and methyl; R 21 , R 24 and R 30 are hydrogen.

[00204] Particular compounds of the present invention include any of the compounds exemplified in the present application, or a pharmaceutically acceptable salt thereof, and, in particular, any of the following:

[00205] The various functional groups and substituents making up the compounds of the formula (I) are typically chosen such that the molecular weight of the compound of the formula (I) does not exceed 1000. More usually, the molecular weight of the compound will be less than 900, for example less than 800, or less than 750, or less than 700, or less than 650. More preferably, the molecular weight is less than 600 and, for example, is 550 or less.

[00206] A suitable pharmaceutically acceptable salt of a compound of the invention is, for example, an acid-addition salt of a compound of the invention which is sufficiently basic, for example, an acid-addition salt with, for example, an inorganic or organic acid, for example hydrochloric, hydrobromic, sulfuric, phosphoric, trifluoroacetic, formic, citric methane sulfonate or maleic acid. In addition, a suitable pharmaceutically acceptable salt of a compound of the invention which is sufficiently acidic is an alkali metal salt, for example a sodium or potassium salt, an alkaline earth metal salt, for example a calcium or magnesium salt, an ammonium salt or a salt with an organic base which affords a pharmaceutically acceptable cation, for example a salt with methylamine, dimethylamine, trimethylamine, piperidine, morpholine or tris-(2-hydroxyethyl)amine.

[00207] Compounds that have the same molecular formula but differ in the nature or sequence of bonding of their atoms or the arrangement of their atoms in space are termed “isomers”. Isomers that differ in the arrangement of their atoms in space are termed “stereoisomers”. Stereoisomers that are not mirror images of one another are termed “diastereomers” and those that are non-superimposable mirror images of each other are termed “enantiomers”. When a compound has an asymmetric center, for example, it is bonded to four different groups, a pair of enantiomers is possible. An enantiomer can be characterized by the absolute configuration of its asymmetric center and is described by the R- and S-sequencing rules of Cahn and Prelog, or by the manner in which the molecule rotates the plane of polarized light and designated as dextrorotatory or levorotatory (i.e., as (+) or (-)-isomers respectively). A chiral compound can exist as either individual enantiomer or as a mixture thereof. A mixture containing equal proportions of the enantiomers is called a “racemic mixture”.

[00208] The compounds of this invention may possess one or more asymmetric centers; such compounds can therefore be produced as individual (R)- or (S)-stereoisomers or as mixtures thereof. Unless indicated otherwise, the description or naming of a particular compound in the specification and claims is intended to include both individual enantiomers and mixtures, racemic or otherwise, thereof. The methods for the determination of stereochemistry and the separation of stereoisomers are well-known in the art (see discussion in Chapter 4 of “Advanced Organic Chemistry”, 4th edition J. March, John Wiley and Sons, New York, 2001), for example by synthesis from optically active starting materials or by resolution of a racemic form. Some of the compounds of the invention may have geometric isomeric centres (E- and Z- isomers). It is to be understood that the present invention encompasses all optical, diastereoisomers and geometric isomers and mixtures thereof that possess antiproliferative activity.

[00209]The present invention also encompasses compounds of the invention as defined herein which comprise one or more isotopic substitutions. For example, H may be in any isotopic form, including 1 H, 2 H(D), and 3 H (T); C may be in any isotopic form, including 12 C, 13 C, and 14 C; and O may be in any isotopic form, including 16 O and 18 O; and the like. [00210] It is also to be understood that certain compounds of the formula (I) (and compounds of formula (II), (III) and (IV)) may exist in solvated as well as unsolvated forms such as, for example, hydrated forms. It is to be understood that the invention encompasses all such solvated forms that possess antiproliferative activity.

[00211] It is also to be understood that certain compounds of the formula (I) (and compounds of formula (II), (III) and (IV)) may exhibit polymorphism, and that the invention encompasses all such forms that possess antiproliferative activity.

[00212] Compounds of the formula (I) (and compounds of formula (II), (III) and (IV)) may exist in a number of different tautomeric forms and references to compounds of the formula (I) include all such forms. For the avoidance of doubt, where a compound can exist in one of several tautomeric forms, and only one is specifically described or shown, all others are nevertheless embraced by formula (I). Examples of tautomeric forms include keto-, enol-, and enolate-forms, as in, for example, the following tautomeric pairs: keto/enol (illustrated below), imine/enamine, amide/imino alcohol, amidine/amidine, nitroso/oxime, thioketone/enethiol, and nitro/aci-nitro.

[00213] Compounds of the formula (I) containing an amine function may also form N-oxides. A reference herein to a compound of the formula (I) that contains an amine function also includes the N-oxide. Where a compound contains several amine functions, one or more than one nitrogen atom may be oxidised to form an N-oxide. Particular examples of N-oxides are the N-oxides of a tertiary amine or a nitrogen atom of a nitrogen-containing heterocycle. N- Oxides can be formed by treatment of the corresponding amine with an oxidizing agent such as hydrogen peroxide or a per-acid (e.g. a peroxycarboxylic acid), see for example Advanced Organic Chemistry, by Jerry March, 4 th Edition, Wiley Interscience, pages. More particularly, N-oxides can be made by the procedure of L. W. Deady (Syn. Comm. 1977, 7, 509-514) in which the amine compound is reacted with m-chloroperoxybenzoic acid (mCPBA), for example, in an inert solvent such as dichloromethane.

[00214] The compounds of formula (I) may be administered in the form of a pro-drug which is broken down in the human or animal body to release a compound of the invention. A pro- drug may be used to alter the physical properties and/or the pharmacokinetic properties of a compound of the invention. A pro-drug can be formed when the compound of the invention contains a suitable group or substituent to which a property-modifying group can be attached. Examples of pro-drugs include in vivo cleavable ester derivatives that may be formed at a carboxy group or a hydroxy group in a compound of the formula (I) and in-vivo cleavable amide derivatives that may be formed at a carboxy group or an amino group in a compound of the formula (I).

[00215] Accordingly, the present invention includes those compounds of the formula I as defined hereinbefore when made available by organic synthesis and when made available within the human or animal body by way of cleavage of a pro-drug thereof. Accordingly, the present invention includes those compounds of the formula (I) that are produced by organic synthetic means and also such compounds that are produced in the human or animal body by way of metabolism of a precursor compound, that is a compound of the formula (I) may be a synthetically-produced compound or a metabolically-produced compound.

[00216] A suitable pharmaceutically acceptable pro-drug of a compound of the formula (I) is one that is based on reasonable medical judgement as being suitable for administration to the human or animal body without undesirable pharmacological activities and without undue toxicity.

[00217] Various forms of pro-drug have been described, for example in the following documents :- a) Methods in Enzymology, Vol. 42, p. 309-396, edited by K. Widder, et al. (Academic Press, 1985); b) Design of Pro-drugs, edited by H. Bundgaard, (Elsevier, 1985); c) A Textbook of Drug Design and Development, edited by Krogsgaard-Larsen and H. Bundgaard, Chapter 5 “Design and Application of Pro-drugs”, by H. Bundgaard p. 113-191 (1991); d) H. Bundgaard, Advanced Drug Delivery Reviews, 8, 1-38 (1992); e) H. Bundgaard, et al., Journal of Pharmaceutical Sciences, 77, 285 (1988); f) N. Kakeya, et al., Chem. Pharm. Bull., 32, 692 (1984); g) T. Higuchi and V. Stella, “Pro-Drugs as Novel Delivery Systems”, A.C.S. Symposium Series, Volume 14; and h) E. Roche (editor), “Bioreversible Carriers in Drug Design”, Pergamon Press, 1987.

[00218] A suitable pharmaceutically acceptable pro-drug of a compound of the formula (I) that possesses a carboxy group is, for example, an in vivo cleavable ester thereof. An in vivo cleavable ester of a compound of the formula (I) containing a carboxy group is, for example, a pharmaceutically acceptable ester which is cleaved in the human or animal body to produce the parent acid. Suitable pharmaceutically acceptable esters for carboxy include C 1-6 alkyl esters such as methyl, ethyl and tert-butyl, C 1-6 alkoxymethyl esters such as methoxymethyl esters, C 1-6 alkanoyloxymethyl esters such as pivaloyloxymethyl esters,

3-phthalidyl esters, C 3-8 cycloalkylcarbonyloxy- C 1-6 alkyl esters such as cyclopentylcarbonyloxymethyl and 1 -cyclohexylcarbonyloxyethyl esters,

2-oxo-1,3-dioxolenylmethyl esters such as 5-methyl-2-oxo-1,3-dioxolen-4-ylmethyl esters and C 1-6 alkoxycarbonyloxy- C 1-6 alkyl esters such as methoxycarbonyloxymethyl and 1- methoxycarbonyloxyethyl esters.

[00219] A suitable pharmaceutically acceptable pro-drug of a compound of the formula (I) that possesses a hydroxy group is, for example, an in vivo cleavable ester or ether thereof. An in vivo cleavable ester or ether of a compound of the formula (I) containing a hydroxy group is, for example, a pharmaceutically acceptable ester or ether which is cleaved in the human or animal body to produce the parent hydroxy compound. Suitable pharmaceutically acceptable ester forming groups for a hydroxy group include inorganic esters such as phosphate esters (including phosphoramidic cyclic esters). Further suitable pharmaceutically acceptable ester forming groups for a hydroxy group include C 1-10 alkanoyl groups such as acetyl, benzoyl, phenylacetyl and substituted benzoyl and phenylacetyl groups, C 1- 10 alkoxycarbonyl groups such as ethoxycarbonyl, N,N-(C 1-6 ) 2 carbamoyl,2-dialkylaminoacetyl and 2-carboxyacetyl groups. Examples of ring substituents on the phenylacetyl and benzoyl groups include aminomethyl, N-alkylaminomethyl, N,N-dialkylaminomethyl, morpholinomethyl, piperazin-1 -ylmethyl and 4-(C 1-4 alkyl)piperazin-1-ylmethyl. Suitable pharmaceutically acceptable ether forming groups for a hydroxy group include α-acyloxyalkyl groups such as acetoxymethyl and pivaloyloxymethyl groups.

[00220] A suitable pharmaceutically acceptable pro-drug of a compound of the formula (I) that possesses a carboxy group is, for example, an in vivo cleavable amide thereof, for example an amide formed with an amine such as ammonia, a C 1-4 alkylamine such as methylamine, a (C 1-4 alkyl) 2 amine such as dimethylamine,N-ethyl-N-methylamine or diethylamine, a C 1-4 alkoxy- C 2-4 alkylamine such as 2-methoxyethylamine, a phenyl-C 1- 4alkylamine such as benzylamine and amino acids such as glycine or an ester thereof.

[00221] A suitable pharmaceutically acceptable pro-drug of a compound of the formula (I) that possesses an amino group is, for example, an in vivo cleavable amide derivative thereof. Suitable pharmaceutically acceptable amides from an amino group include, for example an amide formed with C 1-10 alkanoyl groups such as an acetyl, benzoyl, phenylacetyl and substituted benzoyl and phenylacetyl groups. Examples of ring substituents on the phenylacetyl and benzoyl groups include aminomethyl,N-alkylaminomethyl, N,N- dialkylaminomethyl, morpholinomethyl, piperazin-1-ylmethyl and

4-(C 1-4 alkyl)piperazin-1-ylmethyl. [00222] The in vivo effects of a compound of the formula (I) may be exerted in part by one or more metabolites that are formed within the human or animal body after administration of a compound of the formula (I). As stated hereinbefore, the in vivo effects of a compound of the formula (I) may also be exerted by way of metabolism of a precursor compound (a pro- drug).

[00223] Though the present invention may relate to any compound or particular group of compounds defined herein by way of optional, preferred or suitable features or otherwise in terms of particular embodiments, the present invention may also relate to any compound or particular group of compounds that specifically excludes said optional, preferred or suitable features or particular embodiments.

[00224] Suitably, the present invention excludes any individual compounds not possessing the biological activity defined herein.

Synthesis

[00225] The compounds of the present invention can be prepared by any suitable technique known in the art. Particular processes for the preparation of these compounds are described further in the accompanying examples.

[00226] In the description of the synthetic methods described herein and in any referenced synthetic methods that are used to prepare the starting materials, it is to be understood that all proposed reaction conditions, including choice of solvent, reaction atmosphere, reaction temperature, duration of the experiment and workup procedures, can be selected by a person skilled in the art.

[00227] It is understood by one skilled in the art of organic synthesis that the functionality present on various portions of the molecule must be compatible with the reagents and reaction conditions utilised.

[00228] It will be appreciated that during the synthesis of the compounds of the invention in the processes defined herein, or during the synthesis of certain starting materials, it may be desirable to protect certain substituent groups to prevent their undesired reaction. The skilled chemist will appreciate when such protection is required, and how such protecting groups may be put in place, and later removed.

[00229] For examples of protecting groups see one of the many general texts on the subject, for example, ‘Protective Groups in Organic Synthesis’ by Theodora Green (publisher: John Wiley & Sons). Protecting groups may be removed by any convenient method described in the literature or known to the skilled chemist as appropriate for the removal of the protecting group in question, such methods being chosen so as to effect removal of the protecting group with the minimum disturbance of groups elsewhere in the molecule.

[00230] Thus, if reactants include, for example, groups such as amino, carboxy or hydroxy it may be desirable to protect the group in some of the reactions mentioned herein.

[00231] By way of example, a suitable protecting group for an amino or alkylamino group is, for example, an acyl group, for example an alkanoyl group such as acetyl, an alkoxycarbonyl group, for example a methoxycarbonyl, ethoxycarbonyl or t-butoxycarbonyl group, an arylmethoxycarbonyl group, for example benzyloxycarbonyl, or an aroyl group, for example benzoyl. The deprotection conditions for the above protecting groups necessarily vary with the choice of protecting group. Thus, for example, an acyl group such as an alkanoyl or alkoxycarbonyl group or an aroyl group may be removed by, for example, hydrolysis with a suitable base such as an alkali metal hydroxide, for example lithium or sodium hydroxide. Alternatively an acyl group such as a tert-butoxycarbonyl group may be removed, for example, by treatment with a suitable acid as hydrochloric, sulfuric or phosphoric acid or trifluoroacetic acid and an arylmethoxycarbonyl group such as a benzyloxycarbonyl group may be removed, for example, by hydrogenation over a catalyst such as palladium-on-carbon, or by treatment with a Lewis acid for example boron tris(trifluoroacetate). A suitable alternative protecting group for a primary amino group is, for example, a phthaloyl group which may be removed by treatment with an alkylamine, for example dimethylaminopropylamine, or with hydrazine.

[00232] A suitable protecting group for a hydroxy group is, for example, an acyl group, for example an alkanoyl group such as acetyl, an aroyl group, for example benzoyl, or an arylmethyl group, for example benzyl. The deprotection conditions for the above protecting groups will necessarily vary with the choice of protecting group. Thus, for example, an acyl group such as an alkanoyl or an aroyl group may be removed, for example, by hydrolysis with a suitable base such as an alkali metal hydroxide, for example lithium, sodium hydroxide or ammonia. Alternatively an arylmethyl group such as a benzyl group may be removed, for example, by hydrogenation over a catalyst such as palladium-on-carbon.

[00233] A suitable protecting group for a carboxy group is, for example, an esterifying group, for example a methyl or an ethyl group which may be removed, for example, by hydrolysis with a base such as sodium hydroxide, or for example a f-butyl group which may be removed, for example, by treatment with an acid, for example an organic acid such as trifluoroacetic acid, or for example a benzyl group which may be removed, for example, by hydrogenation over a catalyst such as palladium-on-carbon.

[00234] Resins may also be used as a protecting group. [00235] The methodology employed to synthesise a compound of formula I will vary depending on the nature of the variable groups. Suitable processes for their preparation are described further in the accompanying Examples.

[00236] Once a compound of formula I has been synthesised by any one of the processes defined herein, the processes may then further comprise the additional steps of:

(i) removing any protecting groups present;

(ii) converting the compound formula I into another compound of formula I;

(iii) forming a pharmaceutically acceptable salt, hydrate or solvate thereof; and/or

(iv) forming a prodrug thereof.

[00237] The resultant compounds of formula I can be isolated and purified using techniques well known in the art.

Biological Activity

[00238] The METTL3 enzyme and cell assays described in accompanying Example section may be used to measure the pharmacological effects of the compounds of the present invention.

[00239] Although the pharmacological properties of the compounds of formula I vary with structural change, as expected, the compounds of the invention were found to be active in these METTL3 assays.

[00240] In general, the compounds of the invention demonstrate an IC 50 of 10 μM or less in the METTL3 enzyme assay described herein, with preferred compounds of the invention demonstrating an IC 50 of 5 μM or less and the most preferred compounds of the invention demonstrating an IC 50 of 2 μM or less.

[00241] In the METTL3 cell assay described in the Example section, the compounds of formula (I) suitably possess an activity of less than 10 μM, with preferred compounds of the invention demonstrating an IC 50 of 5 μM or less and the most preferred compounds demonstrating an activity of 2 μM or less.

Pharmaceutical Compositions

[00242] According to a further aspect of the invention there is provided a pharmaceutical composition which comprises a compound of the invention as defined hereinbefore, or a pharmaceutically acceptable salt thereof, and one or more pharmaceutically acceptable excipients. [00243] The compositions of the invention may be in a form suitable for oral use (for example as tablets, lozenges, hard or soft capsules, aqueous or oily suspensions, emulsions, dispersible powders or granules, syrups or elixirs), for topical use (for example as creams, ointments, gels, or aqueous or oily solutions or suspensions), for administration by inhalation (for example as a finely divided powder or a liquid aerosol), for administration by insufflation (for example as a finely divided powder) or for parenteral administration (for example as a sterile aqueous or oily solution for intravenous, subcutaneous, intramuscular, intraperitoneal or intramuscular dosing or as a suppository for rectal dosing).

[00244] The compositions of the invention may be obtained by conventional procedures using conventional pharmaceutical excipients, well known in the art. Thus, compositions intended for oral use may contain, for example, one or more colouring, sweetening, flavouring and/or preservative agents.

[00245] An effective amount of a compound of the present invention for use in therapy is an amount sufficient to treat or prevent a proliferative condition and/or treat or prevent an autoimmune disease referred to herein, slow its progression and/or reduce the symptoms associated with the condition and/or disease.

[00246] The amount of active ingredient that is combined with one or more excipients to produce a single dosage form will necessarily vary depending upon the individual treated and the particular route of administration. For example, a formulation intended for oral administration to humans will generally contain, for example, from 0.5 mg to 0.5 g of active agent (more suitably from 0.5 to 100 mg, for example from 1 to 30 mg) compounded with an appropriate and convenient amount of excipients which may vary from about 5 to about 98 percent by weight of the total composition.

[00247] The size of the dose for therapeutic or prophylactic purposes of a compound of the formula (I) will naturally vary according to the nature and severity of the conditions, the age and sex of the animal or patient and the route of administration, according to well known principles of medicine.

[00248] In using a compound of the invention for therapeutic or prophylactic purposes it will generally be administered so that a daily dose in the range, for example, 0.1 mg/kg to 75 mg/kg body weight is received, given if required in divided doses. In general lower doses will be administered when a parenteral route is employed. Thus, for example, for intravenous or intraperitoneal administration, a dose in the range, for example, 0.1 mg/kg to 30 mg/kg body weight will generally be used. Similarly, for administration by inhalation, a dose in the range, for example, 0.05 mg/kg to 25 mg/kg body weight will be used. Oral administration may also be suitable, particularly in tablet form. Typically, unit dosage forms will contain about 0.5 mg to 0.5 g of a compound of this invention.

Therapeutic Uses and Applications

[00249] The present invention provides compounds that function as inhibitors of METTL3 activity.

[00250] The present invention therefore provides a method of inhibiting METTL3 activity in vitro or in vivo, said method comprising contacting a cell with an effective amount of a compound, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition as defined herein.

[00251] The present invention also provides a method of treating a disease or disorder in which METTL3 activity is implicated in a patient in need of such treatment, said method comprising administering to said patient a therapeutically effective amount of a compound, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition as defined herein. Suitably, the disease or disorder in which METTL3 activity is implicated is cancer, such as lung cancer, renal cancer, solid organ cancer, pancreactic cancer or leukaemia, type 2 diabetes, a neuropsychiatric behavioural disorder, infection (e.g. viral infection) or a depressive disorder.

[00252] The present invention provides a method of inhibiting cell proliferation, in vitro or in vivo, said method comprising contacting a cell with an effective amount of a compound, or a pharmaceutically acceptable salt thereof, as defined herein.

[00253] The present invention provides a method of treating a proliferative disorder, said method comprising administering to a subject in need thereof a therapeutically effective amount of a compound, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition as defined herein.

[00254] The present invention provides a method of treating cancer, said method comprising administering to a subject in need thereof a therapeutically effective amount of a compound, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition as defined herein. Suitably the cancer is lung cancer, renal cancer, solid organ cancer, pancreatic cancer or leukaemia suitably AML leukaemia or chronic myeloid leukaemia.

[00255] The present invention provides a method of treating leukaemia, said method comprising administering to a subject in need thereof a therapeutically effective amount of a compound, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition as defined herein.

[00256] The present invention provides a method of treating AML leukaemia, said method comprising administering to a subject in need thereof a therapeutically effective amount of a compound, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition as defined herein.

[00257] The present invention provides a method of treating an autoimmune disease, said method comprising administering to a subject in need thereof a therapeutically effective amount of a compound, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition as defined herein. Suitably the autoimmune disease is colitis, multiple sclerosis, rheumatoid arthritis, lupus, cirrhosis, or dermatitis.

[00258] The present invention provides a method of treating a neurological disease, said method comprising administering to a subject in need thereof a therapeutically effective amount of a compound, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition as defined herein.

[00259] The present invention provides a method of treating an infectious disease, said method comprising administering to a subject in need thereof a therapeutically effective amount of a compound, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition as defined herein.

[00260] The present invention provides a method of treating an inflammatory disease, said method comprising administering to a subject in need thereof a therapeutically effective amount of a compound, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition as defined herein.

[00261] The present invention provides a compound, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition as defined herein for use in therapy.

[00262] The present invention provides a compound, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition as defined herein for use in the treatment of a proliferative condition.

[00263] The present invention provides a compound, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition as defined herein for use in the treatment of cancer. In a particular embodiment, the cancer is human cancer. Suitably the cancer is lung cancer, renal cancer, solid organ cancer, pancreatic cancer or leukaemia suitably AML leukaemia or chronic myeloid leukaemia.

[00264] The present invention provides a compound, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition as defined herein for use in the treatment of leukaemia.

[00265] The present invention provides a compound, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition as defined herein for use in the treatment of AML leukaemia.

[00266] The present invention provides a compound, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition as defined herein for use in the inhibition of METTL3 activity.

[00267] The present invention provides a compound, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition as defined herein for use in the treatment of an autoimmune disease. Suitably the autoimmune disease is colitis, multiple sclerosis, rheumatoid arthritis, lupus, cirrhosis, or dermatitis.

[00268] The present invention provides a compound, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition as defined herein for use in the treatment of an neurological disease.

[00269] The present invention provides a compound, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition as defined herein for use in the treatment of an infectious disease.

[00270] The present invention provides a compound, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition as defined herein for use in the treatment of an inflammatory disease.

[00271] The present invention provides a compound, or a pharmaceutically acceptable salt thereof, as defined herein for use in the treatment of a disease or disorder in which METTL3 activity is implicated. Suitably, the disease or disorder in which METTL3 activity is implicated is cancer, such as lung cancer, renal cancer, solid organ cancer, pancreatic cancer or leukaemia, type 2 diabetes, a neuropsychiatric behavioural disorder or a depressive disorder.

[00272] The present invention provides a use of a compound, or a pharmaceutically acceptable salt thereof, as defined herein in the manufacture of a medicament for the treatment of a proliferative condition.

[00273] The present invention provides a use of a compound, or a pharmaceutically acceptable salt thereof, as defined herein in the manufacture of a medicament for the treatment of cancer. Suitably, the medicament is for use in the treatment of human cancers. Suitably the cancer is lung cancer, renal cancer, solid organ cancer, pancreatic cancer or leukaemia suitably AML leukaemia or chronic myeloid leukaemia.

[00274] The present invention provides a use of a compound, or a pharmaceutically acceptable salt thereof, as defined herein in the manufacture of a medicament for the treatment of leukaemia.

[00275] The present invention provides a use of a compound, or a pharmaceutically acceptable salt thereof, as defined herein in the manufacture of a medicament for the treatment of AML leukaemia.

[00276] The present invention provides a use of a compound, or a pharmaceutically acceptable salt thereof, as defined herein in the manufacture of a medicament for the treatment of an autoimmune disease. Suitably the autoimmune disease is colitis, multiple sclerosis, rheumatoid arthritis, lupus, cirrhosis, or dermatitis.

[00277] The present invention provides a use of a compound, or a pharmaceutically acceptable salt thereof, as defined herein in the manufacture of a medicament for the treatment of a neurological disease.

[00278] The present invention provides a use of a compound, or a pharmaceutically acceptable salt thereof, as defined herein in the manufacture of a medicament for the treatment of an inflammatory disease.

[00279] The present invention provides a use of a compound, or a pharmaceutically acceptable salt thereof, as defined herein in the manufacture of a medicament for the treatment of an infectious disease.

[00280] The present invention provides a use of a compound, or a pharmaceutically acceptable salt thereof, as defined herein in the manufacture of a medicament for the inhibition of METTL3 activity.

[00281] The present invention provides a use of a compound, or a pharmaceutically acceptable salt thereof, as defined herein in the manufacture of a medicament for the treatment of a disease or disorder in which METTL3 activity is implicated. Suitably, the disease or disorder in which METTL3 activity is implicated is cancer, such as lung cancer, renal cancer, solid organ cancer, pancreatic cancer or leukaemia, type 2 diabetes, a neuropsychiatric behavioural disorder or a depressive disorder.

[00282] The term "proliferative disorder" are used interchangeably herein and pertain to an unwanted or uncontrolled cellular proliferation of excessive or abnormal cells which is undesired, such as, neoplastic or hyperplastic growth, whether in vitro or in vivo. Examples of proliferative conditions include, but are not limited to, pre-malignant and malignant cellular proliferation, including but not limited to, malignant neoplasms and tumours, cancers, leukemias, psoriasis, bone diseases, fibroproliferative disorders (e.g., of connective tissues), and atherosclerosis. Any type of cell may be treated, including but not limited to, lung, colon, breast, ovarian, prostate, liver, pancreas, brain and skin. [00283] The anti-proliferative effects of the compounds of the present invention have particular application in the treatment of human cancers (by virtue of their inhibition of METTL3 activity).

[00284] The anti-cancer effect may arise through one or more mechanisms, including but not limited to, the regulation of cell proliferation, the inhibition of angiogenesis (the formation of new blood vessels), the inhibition of metastasis (the spread of a tumour from its origin), the inhibition of invasion (the spread of tumour cells into neighbouring normal structures), or the promotion of apoptosis (programmed cell death).

[00285] In a particular embodiment of the invention, the proliferative condition to be treated is cancer.

Routes of Administration

[00286] The compounds of the invention or pharmaceutical compositions comprising these compounds may be administered to a subject by any convenient route of administration, whether systemically/ peripherally or topically (i.e., at the site of desired action).

[00287] Routes of administration include, but are not limited to, oral (e.g, by ingestion); buccal; sublingual; transdermal (including, e.g., by a patch, plaster, etc.); transmucosal (including, e.g., by a patch, plaster, etc.); intranasal (e.g., by nasal spray); ocular (e.g., by eye drops); pulmonary (e.g., by inhalation or insufflation therapy using, e.g., via an aerosol, e.g., through the mouth or nose); rectal (e.g., by suppository or enema); vaginal (e.g., by pessary); parenteral, for example, by injection, including subcutaneous, intradermal, intramuscular, intravenous, intra-arterial, intracardiac, intrathecal, intraspinal, intracapsular, subcapsular, intraorbital, intraperitoneal, intratracheal, subcuticular, intraarticular, subarachnoid, and intrasternal; by implant of a depot or reservoir, for example, subcutaneously or intramuscularly.

Combination Therapies

[00288] The antiproliferative treatment defined hereinbefore may be applied as a sole therapy or may involve, in addition to the compound of the invention, conventional surgery or radiotherapy or chemotherapy. Such chemotherapy may include one or more of the following categories of anti-tumour agents:-

(i) other antiproliferative/antineoplastic drugs and combinations thereof, as used in medical oncology, such as alkylating agents (for example cis-platin, oxaliplatin, carboplatin, cyclophosphamide, nitrogen mustard, melphalan, chlorambucil, busulphan, temozolamide and nitrosoureas); antimetabolites (for example gemcitabine and antifolates such as fluoropyrimidines like 5-fluorouracil and tegafur, raltitrexed, methotrexate, cytosine arabinoside, and hydroxyurea); antitumour antibiotics (for example anthracyclines like adriamycin, bleomycin, doxorubicin, daunomycin, epirubicin, idarubicin, mitomycin-C, dactinomycin and mithramycin); antimitotic agents (for example vinca alkaloids like vincristine, vinblastine, vindesine and vinorelbine and taxoids like taxol and taxotere and polokinase inhibitors); and topoisomerase inhibitors (for example epipodophyllotoxins like etoposide and teniposide, amsacrine, topotecan and camptothecin);

(ii) cytostatic agents such as antioestrogens (for example tamoxifen, fulvestrant, toremifene, raloxifene, droloxifene and iodoxyfene), antiandrogens (for example bicalutamide, flutamide, nilutamide and cyproterone acetate), LHRH antagonists or LHRH agonists (for example goserelin, leuprorelin and buserelin), progestogens (for example megestrol acetate), aromatase inhibitors (for example as anastrozole, letrozole, vorazole and exemestane) and inhibitors of 5α-reductase such as finasteride;

(iii) anti-invasion agents [for example c-Src kinase family inhibitors like 4- (6- chIoro-2,3- methylenedioxyanilino)-7-[2-(4-methylpiperazin-1-yl)ethoxy]- 5-tetrahydropyran-4- yloxyquinazoline (AZD0530; International Patent Application WO 01/94341), N-(2-chloro-6- methylphenyl)-2-{6-[4-(2-hydroxyethyl)piperazin-1-yl]-2-meth ylpyrimidin-4-ylamino}thiazole- 5-carboxamide (dasatinib, BMS-354825; J. Med. Chem., 2004, 47, 6658-6661) and bosutinib (SKI-606), and metalloproteinase inhibitors like marimastat, inhibitors of urokinase plasminogen activator receptor function or antibodies to Heparanase];

(iv) inhibitors of growth factor function: for example such inhibitors include growth factor antibodies and growth factor receptor antibodies (for example the anti-erbB2 antibody trastuzumab [Herceptin™], the anti-EGFR antibody panitumumab, the anti-erbB1 antibody cetuximab [Erbitux, C225] and any growth factor or growth factor receptor antibodies disclosed by Stern et al. (Critical reviews in oncology/haematology, 2005, Vol. 54, pp11-29); such inhibitors also include tyrosine kinase inhibitors, for example inhibitors of the epidermal growth factor family (for example EGFR family tyrosine kinase inhibitors such as N-(3-chloro-4- fluorophenyl)-7-methoxy-6-(3-morpholinopropoxy)quinazolin-4- amine (gefitinib, ZD1839), N- (3-ethynylphenyl)-6,7-bis(2-methoxyethoxy)quinazolin-4-amine (erlotinib, OSI-774) and 6- acrylamido-N-(3-chloro-4-fluorophenyl)-7-(3-morpholinopropox y)-quinazolin-4-amine (Cl 1033), erbB2 tyrosine kinase inhibitors such as lapatinib); inhibitors of the hepatocyte growth factor family; inhibitors of the insulin growth factor family; inhibitors of the platelet-derived growth factor family such as imatinib and/or nilotinib (AMN107); inhibitors of serine/threonine kinases (for example Ras/Raf signalling inhibitors such as farnesyl transferase inhibitors, for example sorafenib (BAY 43-9006), tipifarnib (R115777) and lonafarnib (SCH66336)), inhibitors of cell signalling through MEK and/or AKT kinases, c-kit inhibitors, abl kinase inhibitors, PI3 kinase inhibitors, Plt3 kinase inhibitors, CSF-1R kinase inhibitors, IGF receptor (insulin-like growth factor) kinase inhibitors; aurora kinase inhibitors (for example AZD1152, PH739358, VX-680, MLN8054, R763, MP235, MP529, VX-528 AND AX39459) and cyclin dependent kinase inhibitors such as CDK2 and/or CDK4 inhibitors;

(v) antiangiogenic agents such as those which inhibit the effects of vascular endothelial growth factor, [for example the anti-vascular endothelial cell growth factor antibody bevacizumab (Avastin™) and for example, a VEGF receptor tyrosine kinase inhibitor such as vandetanib (ZD6474), vatalanib (PTK787), sunitinib (SU11248), axitinib (AG-013736), pazopanib (GW 786034) and 4-(4-fluoro-2-methylindol-5-yloxy)-6-methoxy-7-(3-pyrrolidin -1- ylpropoxy)quinazoline (AZD2171; Example 240 within WO 00/47212), compounds such as those disclosed in International Patent Applications WO97/22596, WO 97/30035, WO 97/32856 and WO 98/13354 and compounds that work by other mechanisms (for example linomide, inhibitors of integrin αvβ3 function and angiostatin)];

(vi) vascular damaging agents such as Combretastatin A4 and compounds disclosed in International Patent Applications WO 99/02166, WO 00/40529, WO 00/41669, WO 01/92224, WO 02/04434 and WO 02/08213;

(vii) an endothelin receptor antagonist, for example zibotentan (ZD4054) or atrasentan;

(viii) antisense therapies, for example those which are directed to the targets listed above, such as ISIS 2503, an anti-ras antisense;

(ix) gene therapy approaches, including for example approaches to replace aberrant genes such as aberrant p53 or aberrant BRCA1 or BRCA2, GDEPT (gene-directed enzyme pro-drug therapy) approaches such as those using cytosine deaminase, thymidine kinase or a bacterial nitroreductase enzyme and approaches to increase patient tolerance to chemotherapy or radiotherapy such as multi-drug resistance gene therapy;

(x) immunotherapy approaches, including for example ex-vivo and in-vivo approaches to increase the immunogenicity of patient tumour cells, such as transfection with cytokines such as interleukin 2, interleukin 4 or granulocyte-macrophage colony stimulating factor, approaches to decrease T-cell anergy, approaches using transfected immune cells such as cytokine-transfected dendritic cells, approaches using cytokine-transfected tumour cell lines and approaches using anti-idiotypic antibodies; and

(xi) Agents used to treat AML leukaemia, including for example, cytarabine, FLT3 inhibitors, BCL2 inhibitors or I DH 1/2 inhibitors.

[00289] In a particular embodiment, the antiproliferative treatment defined hereinbefore may involve, in addition to the compound of the invention, conventional surgery or radiotherapy or chemotherapy.

[00290] Such conjoint treatment may be achieved by way of the simultaneous, sequential or separate dosing of the individual components of the treatment, Such combination products employ the compounds of this invention within the dosage range described hereinbefore and the other pharmaceutically-active agent within its approved dosage range.

[00291] According to this aspect of the invention there is provided a combination for use in the treatment of a cancer (for example a cancer involving a solid tumour) comprising a compound of the invention as defined hereinbefore, or a pharmaceutically acceptable salt thereof, and another anti-tumour agent.

[00292] According to this aspect of the invention there is provided a combination for use in the treatment of a proliferative condition, such as cancer (for example a cancer involving a solid tumour), comprising a compound of the invention as defined hereinbefore, or a pharmaceutically acceptable salt thereof, and any one of the anti-tumour agents listed herein above.

[00293] In a further aspect of the invention there is provided a compound of the invention or a pharmaceutically acceptable salt thereof, for use in the treatment of cancer in combination with another anti-tumour agent, optionally selected from one listed herein above.

[00294] Herein, where the term “combination” is used it is to be understood that this refers to simultaneous, separate or sequential administration. In one aspect of the invention “combination” refers to simultaneous administration. In another aspect of the invention “combination” refers to separate administration. In a further aspect of the invention “combination” refers to sequential administration. Where the administration is sequential or separate, the delay in administering the second component should not be such as to lose the beneficial effect of the combination.

[00295] According to a further aspect of the invention there is provided a pharmaceutical composition which comprises a compound of the invention, or a pharmaceutically acceptable salt thereof, in combination with an anti-tumour agent (optionally selected from one listed herein above), in association with a pharmaceutically acceptable diluent or carrier.

[00296] In another embodiment, the invention relates to a therapeutic combination comprising a compound as defined herein and another agent ised to treat AML leukeamia e.g., cytarabine, FLT3 inhibitors, BCL2 inhibitors or IDH1/2 inhibitors.

Examples

The following abbreviations have been used in the Examples:

DCE - 1 ,2-Dichloroethane DCM - Dichloromethane

DIBAL - Diisobutylaluminium hydride

DI PEA - N-ethyl-N-isopropyl-propan-2-amine

DMAP - 4-Dimethylaminopyridine

DMF - Dimethylformamide

HATU - [dimethylamino(triazolo[4,5-b]pyridin-3-yloxy)methylene]-dim ethyl- ammonium;hexafluorophosphate

HPLC - High-performance liquid chromatography

1 PA - Isopropanol

LCMS - Liquid chromatography mass spectrometry

RBF - Round bottomed flask

RM - Reaction mixture

RT - Retention Time

TFA - Trifluoroacetic acid

THF - Tetrahydrofuran

[00297] LCMS Method A refers to low pH analysis using a mobile phase consisting of 0.1% formic acid in a gradient of 5-100% MeCN in water over 1.2 min at a flow rate of 1.2 mL/min. The stationary phase consisted of a Kinetex Core-Shell C18, 2.1mmx50mm, 5 μm. The experiment was run at 40°C.

[00298] LCMS Method B refers to high pH analysis using a mobile phase consisting of

2 mM ammonium bicarbonate, buffered to pH 10 in a gradient of 5-100% MeCN in water over 2.1 min at a flow rate of 1.0 mL/min. The stationary phase consisted of a Phenomenex Gemini- NX C18, 2.0 x 50 mm, 3 μm. The experiment was run at 40°C.

[00299] LCMS Method C refers to high pH analysis using a mobile phase consisting of 2 mM ammonium bicarbonate, buffered to pH 10 in a gradient of 5-100% MeCN in water over

5.8 min at a flow rate of 0.6 mL/min. The stationary phase consisted of a Waters UPLC® BEH™ C18, 2.1 x 100 mm, 1.7 μm. The experiment was run at 40°C.

[00300] LCMS Method D refers to high pH analysis using a mobile phase consisting of 2 mM ammonium bicarbonate, buffered to pH 10 in a gradient of 5-100% MeCN in water over

5.9 min at a flow rate of 0.6 mL/min. The stationary phase consisted of a Phenomenex Gemini -NX C18, 2.0 x 100 mm, 3 μm. The experiment was run at 40°C.

[00301] LCMS Method E refers to low pH analysis using a mobile phase consisting of 0.1% formic acid in a gradient of 5-100% MeCN in water over 5.3 min at a flow rate of 0.6 mL/min. The stationary phase consisted of a Phenomenex Kinetix-XB C18, 2.1mm x 100 mm, 1.7 μm. The experiment was run at 40°C. [00302] LCMS Method F refers to high pH analysis using a mobile phase consisting of 2 mM ammonium bicarbonate, buffered to pH 10 in a gradient of 5-100% MeCN in water over 0.75 min at a flow rate of 1.0 mL/min. The stationary phase consisted of a Waters LIPLC® BEH™ C18, 2.1 x 100 mm, 1.7 μm. The experiment was run at 40°C.

[00303] LCMS Method G refers to low pH analysis using a mobile phase consisting of 0.1 % Formic acid in water (pH= 2.70) in a gradient of 3-100% of 0.1% formic acid in water: acetonitrile (10:90) over 3.00 min at a flow rate of 0.8 mL/min. The stationary phase consisted of C18, 50*2.1 mm, 1.6 μm column. The experiment was run at 35°C.

[00304] LCMS Method H refers to a high pH analysis using a mobile phase consisting of 5 mM ammonium bicarbonate, (pH 7.35) in a gradient of MeCN in water over 3.0 min at a flow rate of 0.5 mL/min. The stationary phase consisted of C18, 50*2.1mm, 2.5 pm. The experiment was run at 35°C.

[00305] LCMS Method I refers to a high pH analysis using a mobile phase consisting of 5 mM ammonium bicarbonate, (pH 7.35) in a gradient of MeCN in water over 3.0 min at a flow rate of 0.5 mL/min. The stationary phase consisted of C18, 50*2.1mm, 2.5 μm. The experiment was run at 35°C.

[00306] LCMS Method J refers to high pH analysis using a mobile phase consisting of 2 mM ammonium bicarbonate, buffered to pH10 in a gradient of 1-100% MeCN over 1.35 min at a flow rate of 1 mL/min. The stationary phase consisted of a Waters UPLC® BEH™ C18 2.1 x 30mm, 1.7 μm. The experiment was run at 40°C.

[00307] LCMS Method K refers to a Low pH analysis using a mobile phase consisting of 0.1 % Formic acid in water in a gradient of 5-100% of 0.1% formic acid in water: 0.1% formic acid in acetonitrile over 5.4 min at a flow rate of 0.6 mL/min. The stationary phase consisted of Phenomenex Kinetex Core-Shell C8 50 x 2.1 mm, 2.6 (protected by a “security Guard” column. The experiment was run at 40°C.

[00308] LCMS Method L refers to a Low pH analysis using a mobile phase consisting of 0.1 % Formic acid in water in a gradient of 5-100% of 0.1% formic acid in water: 0.1% formic acid in acetonitrile over 1.1 min at a flow rate of 0.9 mL/min. The stationary phase consisted of Waters UPLC® BEHTM C182.1 x 50mm, 1.7 μm. The experiment was run at 40°C.

[00309] LCMS Method M refers to a Low pH analysis using a mobile phase consisting of 0.1 % Formic acid in water in a gradient of 5-100% of 0.1% formic acid in water: 0.1% formic acid in acetonitrile over 2.25 min at a flow rate of 1.2 mL/min. The stationary phase consisted of Phenomenex Kinetex Core-Shell C850 x2.1 mm, 2.6 . The experiment was run at40°C. [00310] The following preparative HPLC Methodologies were used:

Preparative Method A refers to low pH purification using a mobile phase consisting of 0.1% Formic acid in a gradient of 10-95% MeCN in water over 14.4 min at a flow rate of 40 mL/min. The stationary phase consisted of a Waters Sunfire C18, 30 x 100 mm, 10 μm. Preparative Method B refers to high pH purification using a mobile phase consisting of 0.2% ammonium hydroxide in a gradient of 30-95% MeCN in water over 10 min at a flow rate of 40 mL/repmin. The stationary phase consisted of a Waters XBridge™ C18 OBD™, 30 x 100 mm, 10 μm.

Intermediate 1 : (6-{[(cyclohexylmethyl)amino]methyl}imidazo[1,2-a]pyridin-2- yl)methanamine trihydrochloride

Step 1 : tert-butyl N-({6-cyanoimidazo[1,2-a]pyridin-2-yl}methyl)carbamate

[00311] A suspension of 2-(aminomethyl)imidazo[1,2-a]pyridine-6-carbonitrile (2.60 g, 15.1 mmol) and N-ethyl-N-isopropyl-propan-2-amine (3.7 mL, 20.9 mmol) in THF (35 mL) and DCM (35 mL) was treated with N,N-dimethylpyridin-4-amine (0.085 g, 0.697 mmol) and tert- butoxycarbonyl tert-butyl carbonate (3.40 g, 15.6 mmol) at 0°C and the mixture was allowed to warm to ambient temperature and stirred at ambient temperature for 65 hours. The reaction mixture was concentrated under vacuum, the residue was suspended in water-CH 3 CN (1:1, 15 mL), and sonicated for 20 min. The solid was filtered, and then treated with water-MeCN again. The obtained solid was dried under vacuum to give the title compound (2.78 g, 63%) as an off white solid. The filtrate was purified by reverse phase chromatography (Biotage 400 g eluting with 5-100% (0.1% formic acid in MeCN) in 0.1% formic acid to provide a further crop of title compound (414 mg, 10%).

Method B: LC-MS (electrospray): m/z = 273.3 (M+H) + , RT = 1.38 min.

Step 2: tert-butyl N-({6-formylimidazo[1,2-a]pyridin-2-yl}methyl)carbamate [00312] A suspension of tert-butyl N-[(6-cyanoimidazo[1,2-a]pyridin-2- yl)methyl]carbamate (5.00 g, 18.4 mmol) and sodium phosphinate hydrate (15.57 g, 0.147 mol) in a mixture of water (50 mL), Pyridine (100 mL) and Acetic acid (50 mL) was treated with Raney nickel (50%, 18.97 g, 0.162 mol) and the mixture was heated at 100°C under a nitrogen atmosphere for an hour. The Raney nickel was removed by hot filtration through a bed of Celite (washing with water, followed by MeOH). The filtrate was concentrated under vacuum to remove the MeOH and the blue solution was extracted with DCM (50 mL x 4). The extracts evaporated under vacuum to afford a beige gum which was triturated with water to furnish a white solid. The solid was collected by filtration, washed with water followed by ether and dried under vacuum overnight to provide the title compound (4.13 g, 82%) as an off white solid.

Method B: LC-MS (electrospray): m/z = 276.2 (M+H) + , RT = 1.33 min.

Step 3: tert-butyl N-[(6-{[(cyclohexylmethyl)amino]methyl}imidazo[1,2-a]pyridin -2- yl)methyl]carbamate

[00313] A solution of tert-butyl N-[(6-formylimidazo[1 ,2-a]pyridin-2- yl)methyl]carbamate (340 mg, 0.988 mmol) and cyclohexylmethanamine (224 mg, 1.98 mmol) in ethanol (6.8 mL) was stirred at 50 ° C for an hour. The reaction mixture was cooled to 0 °C and NaBH4 (75 mg, 1.98 mmol) was added in portions. The reaction mixture was allowed to warm to ambient temperature and stirring was continued for 2 hours. The reaction mixture was partitioned between DCM (80 mL) and aqueous sodium hydrogen carbonate (sat, 30 mL). The organic layer was separated, washed with brine (30 mL), dried (MgSCU), concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (Biotage KP-NH 28 g, eluting with 0-20% MeOH in EtOAc) to afford the title compound (360 mg, 97%) as a pale yellow oil.

Method B: LC-MS (electrospray): m/z = 373.3 (M+H) + , RT = 1.76 min.

Step 4: (6-{[(cyclohexylmethyl)amino]methyl}imidazo[1,2-a]pyridin-2- yl)methanamine trihydrochloride [00314] To a solution of tert-butyl N-[[6-[(cyclohexylmethylamino)methyl]imidazo[1,2- a]pyridin-2-yl]methyl]carbamate (360 mg, 0.908 mmol) in Methanol (4.1379 mL) was added HCI (4M in dioxane , 2.4 mL, 9.6 mmol) at ambient temperature. The solution was stirred at 50 °C for 1 hour. The solution was cooled to ambient temperature, and concentrated to dryness under reduced pressure. The residue (pale yellow glass) was dissolved in MeOH (~3 mL) and diethyl ether (~ 20 mL) was added drop-wise to the stirred solution. The resulting precipitate was collected by filtration and dried in the vacuum oven at 40 °C for 4 hours to afford [the title compound (359 mg, 100%) as white solid.

Method B: LC-MS (electrospray): m/z = 273.3 (M+H) + , RT = 1.77 min.

[00315] The compounds in Table 1 were prepared in a similar manner to Intermediate 1.

Table 1

Intermediate 5: 1 ,2-dimethyl-6-oxo-1,6-dihydropyrimidine-4-carboxylic acid

Step 1 : 2-methyl-6-oxo-3,6-dihydropyrimidine-4-carboxylic acid

[00316] Sodium diethyl 2-oxobutanedioate (4.84 g, 23.0 mmol) was suspended in water (16 mL) and ethanol (4 mL) and sodium hydroxide (6.25M, 3.6 mL, 22.5 mmol) was added and the mixture was stirred at ambient temperature until partial dissolution, pale brown. A solution of acetamidine hydrochloride (1.81 g, 19.1 mmol) in water (16 mL) was added and the mixture heated at 80 °C for 2h, with addition of drops of NaOH (6.25M aqueous) to maintain pH at 11-12. The reaction mixture was cooled in an ice and concentrated hydrochloric acid was added slowly until ~pH 1, causing precipitation. The mixture was stirred briefly at ambient temperature, then the solids were collected by filtration, washed with water followed by Et20 and dried under suction to afford the title compound (3.50 g, 97% ) of the title compound as a pale grey solid.

Method B: LC-MS (electrospray): m/z = 155.2 (M+H) + , RT = 0.23 min.

Step 2: Methyl 1,2-dimethyl-6-oxo-1,6-dihydropyrimidine-4-carboxylate

[00317] To a suspension of methyl 2-methyl-6-oxo-1H-pyrimidine-4-carboxylate (374 mg, 2.22 mmol) and K 2 CO 3 (922 mg, 6.67 mmol) in acetonitrile (15 mL) was added iodomethane (0.28 mL, 4.45 mmol) at ambient temperature and the reaction mixture was stirred for 72 hours. The solids were collected by filtration and washed with Acetonitrile (15 mL). The filtrate was concentrated under reduced pressure to afford then title compound (410 mg, 96%) as a colorless oil that solidified upon standing.

Method B: LC-MS (electrospray): m/z = 183.2 (M+H) + , RT = 0.799 min.

Step 3: 1 ,2-dimethyl-6-oxo-1,6-dihydropyrimidine-4-carboxylic acid

[00318] To a solution of methyl 1,2-dimethyl-6-oxo-pyrimidine-4-carboxylate (107 mg, 0.587 mmol) in methanol (3 mL) was added potassium hydroxide (2M, 0.44 mL, 0.881 mmol) at ambient temperature. The reaction mixture was stirred at ambient temperature for 3 hours before hydrogen chloride (2M, 0.59 mL, 1.17 mmol) was added and the reaction mixture was concentrated to dryness under reduced pressure. The residue was triturated with ethanol (~10 mL). The solids were removed by filtration and washed with ethanol (~5 mL). The filtrate was concentrated under vacuum and triturated with acetonitrile (~3 mL) to afford the title compound (28 mg, 28%) as brown solid.

Intermediate 6: 4-Oxopyrido[1,2-a]pyrimidine-2-carboxylic acid

[00319] Methyl 4-oxopyrido[1,2-a]pyrimidine-2-carboxylate

[Tetrahedron (2014), 70(17), 2761-2765] (3.94 g, 19.3 mmol) was dissolved in hydrogen chloride solution (8M, 7.5 mL) at ambient temperature (An exotherm was noted on addition) and the mixture was heated at reflux at for 2 hours.

[00320] The mixture was cooled to ambient temperature and the precipitate was collected by filtration and dried under vacuum to give the title compound (3.00 g, 81%) as a white solid.

Method A: LC-MS (electrospray): m/z = 191.1 (M+H) + , RT = 0.32 min

Intermediate 7: 4-oxo-6,7,8,9-tetrahydropyrido[1,2-a]pyrimidine-2-carboxylic acid hydrochloride

[00321] A suspension of rhodium (504 mg, 4.90 mmol) in ethanol (20 mL) was placed under a nitrogen atmosphere. 4-oxopyrido[1,2-a]pyrimidine-2-carboxylate (Intermediate 6, 1000 mg, 2.66 mmol) was added. The mixture was placed under an atmosphere of hydrogen and the mixture was stirred at ambient temperature for 4 hours. The catalyst was removed by filtration and the filtrate was evaporated under vacuum to afford a brown gum which crystallised on standing to give the title compound (600 mg, 97%) as beige solid.

Method B: LC-MS (electrospray): m/z = 195.2 (M+H) + , RT = 0.28 min.(M+H) + , RT = 0.76 min. Intermediate 8: 4-oxo-4H-quinolizine-2-carboxylic acid

Step 1 : dimethyl 2-(triphenyl-λ^5-phosphanylidene)butanedioate

[00322] To a solution of dimethyl ({Z})-but-2-enedioate (2.5 mL, 20.0 mmol) in acetonitrile (25 mL) was added triphenylphosphonium-bromide (6.86 g, 20.0 mmol) and the mixture was heated at reflux for 2 hours (clear colourless solution). After cooling to ambient temperature, the reaction mixture was poured into water (200 mL). The cloudy mixture was washed with diethyl ether (2 x 50 mL). The clear aqueous layer was basified with NaOH (2M) and extracted with dichloromethane (2x 100 mL). The combined extracts were washed with brine (50 mL), dried (MgSO 4 ), filtered and concentrated under reduced pressure. The residue was triturated with ethyl acetate and dried in the vacuum oven at 40 °C for 2 hours to afford the title compound (5.10 g, 63%) as white solid.

Method A: LC-MS (electrospray): m/z = 407.0 (M+H) + , RT = 0.86 min.

Step 2: 1,4-dimethyl(2E)-2-[(pyridin-2-yl)methylidene]butanedioate

[00323] To a solution of pyridine-2-carbaldehyde (1.00 g, 9.34 mmol) in acetonitrile (20 mL) was added dimethyl 2-(triphenyl-λ^5-phosphanylidene)butanedioate (3.79 g, 9.34 mmol) at ambient temperature. The mixture was heated at reflux for 6 hours. After cooling to ambient temperature, the volatiles were removed under reduced pressure. The residue was dissolved in a small amount of dichloromethane and purified by chromatography on silica gel (Biotage KP-Sil 50 g, eluting with 0-50% EtOAc in heptane) to afford the title compound (2.12 g, 96%) as pale yellow oil.

Method A: LC-MS (electrospray): m/z = 236.0 (M+H) + , RT = 0.96 min.

Step 3: methyl 4-oxoquinolizine-2-carboxylate

[00324] To a solution of dimethyl (2E)-2-(2-pyridylmethylene)butanedioate (2.01 g, 8.54 mmol) in toluene (25 mL) was added 4-methylbenzenesulfonic acid (15 mg, 0.0854 mmol) and the reaction mixture was heated at reflux for 6 hours. After cooling to ambient temperature, the volatiles were removed under reduced pressure. The residue was dissolved in a small amount of dichloromethane and purified by chromatography on silica gel (Biotage KP-Sil 25 g, eluting with 0-100% EtOAc in heptane). To afford the title compound (1.17 g, 67%) as bright yellow solid.

Method A: LC-MS (electrospray): m/z = 204.0 (M+H) + , RT = 0.86 min.

Step 4: 4-oxo-4H-quinolizine-2-carboxylic acid

[00325] To a solution of methyl 4-oxoquinolizine-2-carboxylate (750 mg, 3.69 mmol) in methanol (5 mL) was added potassium hydroxide (2M, 2.8 mL, 5.54 mmol) at ambient temperature. The reaction mixture was stirred at ambient temperature for 1 hour, hydrogen chloride (2M, 3.7 mL, 7.38 mmol) was added to the reaction mixture (a bright yellow. precipitate formed immediately). The precipitate was collected by vacuum filtration, washed with water (~10 mL) and dried in the vacuum oven at 40 °C for 4 hours to afford the title compound (655 mg, 94%) as bright yellow solid.

Method A: LC-MS (electrospray): m/z = 189.9

Intermediate 9: 2-(azidomethyl)-6-methylimidazo[1,2-a]pyridine

[00326] A suspension of 2-(chloromethyl)-6-methyl-imidazo[1,2-a]pyridine hydrochloride (532 mg, 2.45 mmol), triethylamine (1 mL, 7.35 mmol) and Nal (111 mg, 0.74 mmol) were suspended in DMF (5 mL) before sodium azide (175 mg, 2.70 mmol) was added and the mixture was stirred at ambient temperature. For 16 hours. The reaction mixture was quenched with aqueous sodium hydrogen carbonate (sat, 20 mL) and extracted with chloroform/isopropanol (3:1, 4 x 30 mL) and the combined organic extracts were dried over sodium sulfate and evaporated under vacuum. The residue was purified by chromatography on silica gel (Biotage 28 g kp-NH, eluting with EtOAc/heptane 0-100%) to afford the title compound (291 mg, 63%) as a colourless oil.

Method B: LC-MS (electrospray): m/z = 188.2 (M+H) + , RT = 1.33 min.

Intermediate 10: tert-butyl N-[[2-(azidomethyl)imidazo[1,2-a]pyridin-6-yl]methyl]-N- (cyclobutylmethyl)carbamate

Step 1 : [(6-chloropyridin-3-yl)methyl](cyclobutylmethyl)amine

[00327] A solution of 1-cyclobutylmethanamine (1.80 g, 21.2 mmol) in DCE (30 mL). was treated with 6-chloropyridine-3-carbaldehyde (2.50 g, 17.7 mmol) followed by magnesium sulfate (1.06 g, 8.83 mmol) and the reaction was stirred at ambient temperature for 1.5 hours. Sodium borohydride (0.67 g, 17.7 mmol) and MeOH (0.5 mL) were added and the mixtue was stirred at ambient temperature for 17 hours. More Sodium borohydride (1.54 g, 40.7 mmol) and methanol (1.5 mL) were added and the mixture was stirred at ambient temperature for 5 hours and at 40 °C, for 1.5 hours. The mixture was poured into NaHCO 3 (sat, 50 mL) and stirred for 20 minutes. The phases were separated and the aqueous phase extracted with DCM (2x25 mL). The combined organics were washed with brine (25 mL). The combined aqueous phases were extracted with DCM (25 mL). All the organic phases were combined, dried MgSO 4 and concentrated, to give a yellow oil which was purified by chromatography on SiO 2 (Biotage Kp-Sil 50 g) eluting with EtOAc. to give the title compound (1.89 g, 46%) as a pale yellow oil.

Method C: LC-MS (electrospray): m/z = 210.9, (M+H) + , RT = 2.95 min.

Step 2: tert-butyl N-[(6-chloro-3-pyridyl)methyl]-N-(cyclobutylmethyl) carbamate

[00328] A solution of Di-tert-butyl dicarbonate (3.76 g, 17.2 mmol) in MeCN (30 mL) was added to a flask containing 1-(6-chloro-3-pyridyl)-N-(cyclobutylmethyl)methanamine (3.44 g, 14.4 mmol) and the mixture was refluxed at 80 °C for 2 hours. The mixture was cooled to ambient temperature and concentrated to a yellow oil which was purified by chromatography on SiO 2 (Biotage Kp-Sil 100 g) eluting with EtOAc in heptane (0-15%) to give the title compound (4.47 g, 100%) as a colourless oil.

Method C: LC-MS (electrospray): m/z = 311.2, (M+H) + , RT = 4.32 min.

Step 3: tert-butyl N-[(6-amino-3-pyridyl)methyl]-N-(cyclobutylmethyl)carbamate

[00329] An oven-dried 100 mL two-neck RBF was charged with tert-butyl N-[(6-chloro- 3-pyridyl)methyl]-N-(cyclobutylmethyl)carbamate (4.40 g, 14.2 mmol), XPhos (1350 mg, 2.83 mmol) and Pd 2 dba 3 (648 mg, 0.708 mmol). The flask was equipped with a reflux condensor and the assembly was flushed with nitrogen. THF (anhydrous, 47 mL) was added and the resulting solution was de-oxygenated by bubbling nitrogen for 30 minutes. [Bis(trimethylsilyl)amino]lithium (1M in THF, 21 mL, 21.2 mmol) was added with vigorous stirring dropwise over 5 minutes and the mixture was placed in a pre-heated heating block at 70 °C and stirred for 2 hours.

[00330] The mixture was cooled to ambient temperature, poured into NaHCO 3 (sat, 50 mL) and stirred for 5 minutes before the mixture was extracted with DCM (2x50 mL). The aqueous phase was diluted with brine (30 mL) and extracted with DCM (2x50 mL). The combined organics were washed with brine (30 mL). The brine washings were extracted with DCM (50 mL). All the organics were combined, dried (MgSO 4 ) and concentrated to give the crude product as a viscous brown oil which was purified by chromatography on SiO 2 (Biotage, Amino Duo D 55 g) eluting with EtOAc in heptane (0-100%) to give the title compound (3.25 g, 75%) as a light orange solid.

Method D: LC-MS (electrospray): m/z = 292.3, (M+H) + , RT = 4.24 min.

Step 4: tert-butyl N-[[2-(chloromethyl)imidazo[1,2-a]pyridin-6-yl]methyl]-N-

(cyclobutylmethyl)carbamate

[00331] A mixture of tert-butyl N-[(6-amino-3-pyridyl)methyl]-N- (cyclobutylmethyl)carbamate (3.16 g, 10.3 mmol) in DME (anhydrous, 45 mL) was treated with 1 ,3-dichloropropan-2-one (1.44 g, 11.3 mmol) and the mixture was heated, with stirring, at 80 °C for 1.5 hours. More 1,3-dichloropropan-2-one (260 mg, 2 mmol) was added and the mixture was heated at 80 °C for 30 minutes. The mixture was cooled to ambient temperature and washed with NaHCO 3 (sat, 2x15 mL). The aqueous was extracted with EtOAc (2x20 mL) and the combined organics were dried (MgSO 4 ) and concentrated to give the crude product as an orange-brown semi-solid. The product was purified by chromatography on neutral alumina (-250 g) eluting in a step gradient of EtOAc/heptane: 1:3 (500 mL), 1:2 (500 mL), 1 :1 (1.5 L) to give the title compound (1.90 g, 49%) as a light yellow solid.

Method C: LC-MS (electrospray): m/z = 364.2, (M+H) + , RT = 3.89 min.

Step 5: tert-butyl N-[[2-(azidomethyl)imidazo[1,2-a]pyridin-6-yl]methyl]-N-

(cyclobutylmethyl)carbamate [00332] A vial was charged with sodium azide (300 mg, 4.62 mmol), sodium iodide (28 mg, 0.185 mmol), tert-butyl N-[[2-(chloromethyl)imidazo[1,2-a]pyridin-6-yl]methyl]-N- (cyclobutylmethyl)carbamate (700 mg, 1.85 mmol) and DMF (3.7 mL). The resulting suspension was stirred at ambient temperature for 2 hours. The mixture was diluted with water (3 mL) and extracted with EtOAc (3x10 mL). The combined organics were washed with brine (5 mL), dried (MgSO 4 ) and concentrated to give the crude product as a yellow oil which partially solidifies on standing. The material was purified by chromatography on SiO 2 (Botage 25 g) eluting with EtOAc/heptane (0-50%). The product to give the title compound (719 mg, 99%) as a yellow oil. Method C: LC-MS (electrospray): m/z = 371.4, (M+H) + , RT = 3.91 min.

[00333] The compounds in Table 2 were prepared similatly to Intermediate 10 form the appropriate amine.

Table 2

Intermediate 14: 5-ethynyl-1H-pyrrolo[2,3-b]pyridine

Step 1 : trimethyl-[2-(1 H-pyrrolo[2,3-b]pyridin-5-yl)ethynyl]silane

[00334] 5-iodo-1H-pyrrolo[2,3-b]pyridine (500 mg, 2.05 mmol), Cul (39 mg, 0.20 mmol),

PdCl 2 dppf (75 mg, 0.10 mmol) and triethylamine (1 mL, 7.17 mmol) were combined in DMF- Anhydrous (2 mL) and the mixture sparged with nitrogen for 5 minutes. Ethynyl(trimethyl)silane (568 μl, 4.10 mmol) was added, the mixture further sparged briefly and the vessel sealed and heated at 100 °C for 2 hours.

[00335] The mixture was cooled to ambient emperature, diluted with NaHCO 3 (sat., 50 mL) and extracted with chloroform/isopropanol (3:1, 3 x 50 mL). The combined organic extracts were dried over sodium sulfate and evaporated under vacuum.

[00336] The residue was purified by chromatography on SiO 2 (eluting with 0-100% EtOAc/heptane) to afford crude title compound (459 mg, 65%) as a brown solid.

Method B: LC-MS (electrospray): m/z = 215.2, (M+H) + , RT = 1.75 min.

Step 2: 5-ethynyl-1H-pyrrolo[2,3-b]pyridine

[00337] Trimethyl-[2-(1H-pyrrolo[2,3-b]pyridin-5-yl)ethynyl]silane (459 mg, 2.14 mmol) and K 2 CO 3 (592 mg, 4.28 mmol) were combined in methanol (10 mL) and stirred at ambient temperature for 30 minutes.

[00338] The mixture was filtered and the residue rinsed with MeOH. The combined filtrate was evaporated under vacuum and purified by chromatography on SiO 2 (eluting with 0- 100% EtOAc/heptane) to afford the title compound (113 mg, 33% ) as a pale brown solid.

Method B: LC-MS (electrospray): m/z = 143.1 , (M+H) + , RT = 1.33 min.

Intermediate 15: 8-bromoimidazo[1 ,5-a]pyridine

[00339] A mixture of formaldehyde (37%, 16 mL, 0.22 mol) and ammonium acetate (20.7 g, 0.27 mol) in acetic acid (100 mL) was stirred at ambient temperature for 10 minutes before 3-bromopyridine-2-carbaldehyde (5.0 g, 26.9 mmol) was added portionwise over 2 hours and the mixture was stirred at ambient temperature for 3 hours.

[00340] The mixture was partitioned between water (100 mL) and DCM (100 mL) and the phases separated. The aqueous phase was washed with DCM (3 x 100 mL), and the combined organic phases passed through an Isolute phase separator and concentrated under vacuum.

[00341] The residue was purified chromatography on SiO 2 (eluting with 0-100% EtOAc/heptane) to the title compound (2.51 g, 46%) as an off-white solid.

Method C: LC-MS (electrospray): m/z = 196.9/198.9 (M+H) + , RT = 2.28 min

Intermediate 16: 8-bromo-6-chloro-imidazo[1,5-a]pyridine Step 1: (3-bromo-5-chloro-2-pyridyl)methanamine

[00342] DIBAL in DCM (1M, 14 mL, 13.8 mmol) was added to an ice-cooled solution of 3-bromo-5-chloropyridine-2-carbonitrile (1000 mg, 4.60 mmol) in DCE (10 mL). The mixture was warmed to ambient temperature and stirred for 2 hours.

[00343] The mixture was cooled to 0°C and quenched with NH 4 CI (sat.), basified using 2NaOH (2M) and extracted with DCM using a Telos phase separator. The organic phase was evaporated to dryness under reduced pressure to afford the title compound (690 mg, 99%) as a brown solid.

Method B: LC-MS (electrospray): m/z = 221.3/223.3 (M+H) + , RT = 1.31 mi

Step 2: tert-butyl N-[(3-bromo-5-chloro-2-pyridyl)methyl]carbamate

[00344] A mixture of (3-bromo-5-chloro-2-pyridyl)methanamine (700 mg, 3.16 mmol), boc anhydride (828 mg, 3.79 mmol) and triethylamine (1.1 mL, 7.90 mmol) in acetonitrile (20 mL) was stirred at reflux for 2 hours.

[00345] The mixture was evaporated to dryness, diluted with water and extracted with DCM using a Telos phase separator. The organics were evaporated to dryness and purified by chromatography on SiO 2 eluting with 0-100% EtOAc in heptane) to afford the title compound (640 mg, 63%) as an orange oil.

Step 3: 8-bromo-6-chloro-imidazo[1,5-a]pyridine [00346] A mixture of tert-butyl N-[(3-bromo-5-chloro-2-pyridyl)methyl]carbamate (640 mg, 1.99 mmol), trimethoxymethane (11 mL, 0.1 mol) and TFA (0.59 mL, 7.96 mmol) was stirred at 100 °C for 2 hours.

[00347] The mixture was evaporated to dryness and purified by chromatography on SiO2 (eluting with 0-100% EtOAc in heptane) to afford the title compound (340 mg, 74%) as an orange solid.

Method B: LC-MS (electrospray): m/z = 231.3/233.3 (M+H) + , RT = 1.49 min

Intermediate 22: 8-bromo-6-methoxy-imidazo[1,5-a]pyridine

[00348] Step 1 : 3-bromo-5-methoxy-pyridine-2-carbonitrile

[00349] Sodium methoxide (296 mg, 5.47 mmol) was added to an ice-cooled solution of 3-bromo-5-fluoropyridine-2-carbonitrile (1000 mg, 4.98 mmol) in Methanol (15 mL).The Reaction mixture was warmed to ambient temperature and stirred for 1.5 hours Sodium methoxide (296 mg, 5.47 mmol) was added and the RM was stirred at ambient temperature for 1 h, heated to 40°C for 4 h, then at over the weekend. Sodium methoxide (150 mg) was added and the mixture was stirred at 60°C for 4 hours. The mixture was evaporated under reduced pressure, water was added and the mixture was extracted with ethyl acetate. The combined organic extracts were washed with saturated brine, and dried over anhydrous magnesium sulfate. The solvent was evaporated under reduced pressure. The residue was purified by chromatography on SiO 2 (25 g SNAP Duo; 0-100% EtOAc in heptane) to the title compound (1130 mg, 106%) as a white powder.

Method A: LC-MS (electrospray): m/z = 213/ 215 (M+H) + , RT = 1.05 min

Step 2: (3-bromo-5-methoxy-2-pyridyl)methanamine

[00350] 1 M DIBAL in DCM (16 mL, 15.9 mmol) was added to an ice-cooled solution of

3-bromo-5-methoxy-pyridine-2-carbonitrile (1130 mg, 5.30 mmol) in DCE (11 mL). The mixture was warmed to ambient temperature and stirred for 16 hours. The mixture was cooled to 0°C, quenched with saturated NH 4 CI (aq), basified using 2 M NaOH and diluted with DCM. The organic phase was collected using a Telos phase separator and evaporated to dryness under reduced pressure to afford the title compound (840 mg, 69 %) as an orange oil.

Method B: LC-MS (electrospray): m/z = 217/ 219 (M+H) + , RT = 1.22 min

Step 3: tert-butyl N-[(3-bromo-5-methoxy-2-pyridyl)methyl]carbamate

[00351] A mixture of (3-bromo-5-methoxy-2-pyridyl)methanamine (830 mg, 3.82 mmol), boc anhydride (1001 mg, 4.59 mmol) and triethylamine (1.3 mL, 9.56 mmol) in Acetonitrile (26 mL) was stirred at reflux for 1 hours The mixture was evaporated to dryness, then water was added and the mixture was extracted with DCM using a Telos phase separator. The organics were evaporated to dryness to afford the title compound (1130 mg, 75 %) as a brown oil.

Method A: LC-MS (electrospray): m/z = 317/ 319 (M+H) + , RT = 1.20 min

Step 4: 8-bromo-6-methoxy-imidazo[1 ,5-a]pyridine [00352] A mixture of tert-butyl N-[(3-bromo-5-methoxy-2-pyridyl)methyl]carbamate (500 mg, 1.58 mmol), trimethoxymethane (8.6 mL, 78.8 mmol) and TFA (0.47 mL, 6.31 mmol) was stirred at 100 °C for 0.5 hours The mixture was evaporated to dryness and purified by chromatography on SiO 2 (eluting with 0-100% EtOAc in heptane, then 10% MeOH in EtOAc) to afford the title compound (191 mg, 53%) as a light sticky solid.

Method A: LC-MS (electrospray): m/z = 227/ 229 (M+H) + , RT = 0.80 min

Intermediate 24: 8-bromo-6-methoxy-imidazo[1,5-a]pyridine

Step 1 : N-[(3-bromo-2-pyridyl)methyl]acetamide

[00353] (3-bromo-2-pyridyl)methanamine dihydrochloride 6.11 g, 13.4 mmol) and triethylamine (11.2 mL, 80.4 mmol) were combined in DCM (50 mL) and cooled in an ice/water bath. Acetic anhydride (1.85 mL, 20.1 mmol) was added in a slow stream, and the the mixture was stirred whilst warming to ambient temperature and stirred for 2 hours.

[00354] The mixture was quenched with NaHCO 3 (sat., 100 mL) and the phases were separated. The aqueous was extracted with DCM (2 x 80 mL) and the combined organic layers dried over sodium sulfate and evaporated under vacuum.

[00355] The residue was purified by chromatography on SiO 2 (eluting with 0-100% EtOAc/heptane followed by 0-20% MeOH/EtOAc 0-20%) to afford the title compound (452 mg, 14%) as a pale yellow solid

Method A: LC-MS (electrospray): m/z = 228.9/230.9 (M+H) + , RT = 0.75 min

Step 2: 8-bromo-6-methoxy-imidazo[1,5-a]pyridine

[00356] N-[(3-bromo-2-pyridyl)methyl]acetamide (640 mg, 2.79 mmol) was suspended in toluene (10 mL) and POCl 3 (912 pl, 9.78 mmol) was added dropwise whilst stirring. The mixture was then heated at reflux for 3 hours.

[00357] The mixture was cooled to ambient temperature, then in an ice/water bath and quenched by slow addition of. NaHCO 3 (sat., 50 mL) under vigourous stirring. The mixture was further stirred for 10 minures, then extracted with EtOAc (3 x 50 mL). The combined extracts were washed with brine (50 mL), dried over sodium sulfate and evaporated under vacuum to afford the title compound (528 mg, 87%) as a very pale yellow solid.

Method A: LC-MS (electrospray): m/z = 211.0/213.0 (M+H) + , RT = 0.48 min

Intermediate 26: 8-bromo-6-methoxy-imidazo[1,5-a]pyridine

[00358] 3-bromo-5-fluoropyridine-2-carbonitrile (18.3 g, 91.0 mmol) and sodium methoxide (12.3 g, 227.6 mmol) were combined in methanol (150 mL) and the mixture was heated at reflux for 2 hours. Further sodium methoxide (3 g, 55.5 mmol) was added and the heating was continued for 3 hours.

[00359] The mixture was cooled to ambient temperature and concentrated under vacuum. The residue was suspended in NaHCO 3 (sat., 150 mL) and extracted with DCM (3 x 150 mL). The combined organics were dried over sodium sulfate and evaporated under vacuum.

[00360] The residue was purified by Biotage chromatography on SiO 2 (eluting with 20- 100% EtOAc/heptane) to afford the title compound (17.05 g, 88%) as a white solid.

Method A: LC-MS (electrospray): m/z = 213.0/215.0 (M+H) + , RT = 1.02 min Intermediate 36: 3-bromo-5-methoxypyridine-2-carboxamide

Step 1 : 3-bromo-5-methoxy-pyridine-2-carboxylic acid

[00361] 3-bromo-5-methoxy-pyridine-2-carbonitrile [Intermediate 22 Step 1] (2.0 g, 9.4 mmol) was suspended in NaOH (2M aqueous, 23 ml, 46 mmol) and the mixture heated at reflux for 1.5 hours during which time the solids dissolved.

[00362] The mixture was cooled in ice and acidified to ~pH1 by dropwise addition of c.HCI; precipitation occurs. The solids were collected by filtration, rinsed with a small volume of cold water, and Et 2 O, and dried under vacuum at 40°C to afford the title compound (2.0g, 91%) as a white solid.

Method A: LC-MS (electrospray): m/z = 231.9/233.0 (M+H) + , RT = 0.80 min.

Step 2: Methyl 3-bromo-5-methoxy-pyridine-2-carboxylate

[00363] Acetyl chloride (1.49 ml, 21.01 mmol) was added dropwise to ice-cold Methanol (40 ml) and the mixture stirred under cooling for 10 minutes. 3-bromo-5-methoxy-pyridine-2- carboxylic acid (975 mg, 4.20 mmol) was added in a single portion and the mixture was stirred and allowed to warm to room temperature and stirred for a further 2 hours.

[00364] The mixture was heated at reflux for an hour and left standing for 65 hours.

[00365] The mixture was evaporated under vacuum. The residue was suspended in sat. NaHCO 3 (sat. 100ml) and extracted with DCM (3 x 80ml). The organic extracts were dried over sodium sulfate and evaporated under vacuum to afford the title compound (996mg, 96%) as a white solid.

Method A: LC-MS (electrospray): m/z = 245.9/247.9 (M+H) + , RT = 0.98 min

Step 3: Methyl 5-methoxy-3-(2-trimethylsilylethynyl)pyridine-2-carboxylate

[00366] Methyl 3-bromo-5-methoxy-pyridine-2-carboxylate (990 mg, 4.0 mmol), Cul (77 mg, 0.40 mmol), PdCl 2 dppf (294 mg, 0.40 mmol) and triethylamine (2.5 ml, 17.9 mmol) were combined in DMF-Anhydrous (10 mL) and the mixture was sparged with nitrogen for 5 minutes. before ethynyl(trimethyl)silane (862 μl, 6.04 mmol) was added, the mixture was further sparged briefly with nitrogen and heated at 100 °C under a nitrogen atmosphere for 1.5 hours.

[00367] The mixture was cooled to room temperature, diluted with EtOAc (80 mL) and brine (80 mL) and filtered through Celite. The phases were separated and the organic phase was washed with brine (5 x 80ml), dried over sodium sulfate and evaporated under vacuum.

[00368] The residue was purified by chromatography on SiO 2 (eluting with EtOAc/heptane 0-100%) to afford the title compound (1.18 g, 92%) as a pale brown solid. Method A: LC-MS (electrospray): m/z = 264.0 (M+H) + , RT = 1.21 min.

Step 4: 3-Ethynyl-5-methoxypyridine-2-carboxylic acid

[00369] Methyl 5-methoxy-3-(2-trimethylsilylethynyl)pyridine-2-carboxylate (1 g, 3.15 mmol) and lithium hydroxide (151 mg, 6.30 mmol) were combined in THF (40 mL) and Water (10 mL) and stirred at room temperature for 18 hours.

[00370] The mixture was concentrated under vacuum and the residue was acidified HCI

(3M, ~pH1). The mixture was extracted with chloroform/isopropanol (3:1, 3 x 50ml) and the extracts were dried over sodium sulfate and evaporated under vacuum to afford the title compound (676mg, 94%) as a yellow solid.

Method A: LC-MS (electrospray): m/z = 178.0 (M+H) + , RT = 0.76 min.

Step 5: 3-Ethynyl-5-methoxypyridine-2-carboxamide

[00371] 3-Ethynyl-5-methoxy-pyridine-2-carboxylic acid (150 mg, 0.85 mmol) and triethylamine (572 μL, 8.47 mmol) were combined in THF-Anhydrous (5 mL) and cooled in an ice/water bath. Isobutyl chloroformate (154 pL, 1.19 mmol) was added slowly and the mixture stirred under cooling for 15 minutes.

[00372] Ammonia (28% aqueous, 1 mL, 14.8 mmol) was added and the mixture stirred whilst warming to room temperature and for a further 15 minutes.

[00373] The mixture was quenched with NaHCO 3 (sat., 30ml) and extracted with DCM (3 x 30 mL). The extracts were dried over sodium sulfate and evaporated under vacuum to afford the title compound (159 mg, 79%) as a pale brown residue.

Method A: LC-MS (electrospray): m/z = 177.1 (M+H) + , RT = 0.79 min.

Intermediate 38: tert-butyl 7-bromo-2H,3H,4H-pyrido[3,2-b][1,4]oxazine-4-carboxylate

[00374] 7-Bromo-3,4-dihydro-2H-pyrido[3,2-b][1,4]oxazine (1.1 g, 5.12 mmol) and DMAP (50 mg, 0.41 mmol) were combined in DCM (40 ml) and BOC 2 O (2.23 g, 10.2 mmol) was added, to give a yellow solution which was stirred at room temperature for 4 hours.

[00375] The mixture was evaporated under vacuum and the residue was purified by chromatography on SiO 2 (eluting with 0-100% EtOAc/heptane) to afford the title compound (1.54 g, 94%) as a white solid.

Method A: LC-MS (electrospray): m/z = 314.9/316.9 (M+H) + , RT = 1.18 min.

[00376] Intermediate 40: 3-Bromo-5-(morpholin-4-yl)pyridine-2-carbonitrile

[00377] 3-Bromo-5-fluoropyridine-2-carbonitrile (550 mg, 2.74 mmol), triethylamine (381 pL, 2.74 mmol) and morpholine (432 μL, 3.56 mmol) were combined in DMF (4 mL) and heated at 90°C for 2 hours.

[00378] The reaction mixture was cooled to room temperature, diluted with EtOAc (80 mL) and washed with brine (5 x 50 mL). The organic layer dried over sodium sulfate and evaporated under vacuum.

[00379] The residue was triturated with DCM/heptane and the solids collected by filtration to afford the title compound (655 mg, 88%) as a very pale yellow solid.

Method A: LC-MS (electrospray): m/z = 268.0/270.0 (M+H) + , RT = 1.02 min.

Intermediate 42: 5-Ethynylpyridin-3-ol

Step 1 : 3-bromo-5-[(tert-butyldimethylsilyl)oxy]pyridine

[00380] 5-bromopyridin-3-ol (1 g, 5.75 mmol) and 1H-imidazole (783 mg, 11.5 mmol) were combined in DMF (10mL), tert-butyl(chloro)dimethylsilane (1.13 g, 7.47 mmol) was added and the mixture was stirred at room temperature for 3 hours.

[00381] The mixture was diluted with EtOAc (80 mL) and washed with NaHCO 3 (sat., 50mL) and brine (5x50 mL). The organic layer was dried over sodium sulfate and evaporated under vacuum.

[00382] The residue was purified by chromatography on SiO 2 (eluting with 0-100% EtOAc/heptane) to afford the title compound (1.45g, 83%) as a colourless oil. Method A: LC-MS (electrospray): m/z = 278.9/289.9 (M+H) + , RT = 1.44 min.

[00383] The title compound was prepared from intermediate 42 using the procedures described for Intermediate 14 to give (114 mg, 12%) as brown solid.

Method A: LC-MS (electrospray): m/z = 119.9 (M+H) + , RT = 0.47 min. [00384] The compounds in Table 3 were prepared similarly to Intermediate 14 from the corresponding bromide or iodide, either commercial or described.

Table 3

Intermediate 20: tert-butyl N-{[2-(azidomethyl)imidazo[1,2-a]pyridin-6-yl]methyl}carbama te Step 1 : tert-butyl N-[(6-aminopyridin-3-yl)methyl]carbamate

[00385] A solution of 6-aminopyridine-3-carbonitrile (1.00 g, 8.39 mmol) and tert- butoxycarbonyl tert-butyl carbonate (3.66 g, 16.8 mmol) in MeOH (32 mL) was cooled to 0°C and treated with nickel (II) chloride (1.10 g, 8.39 mmol) followed by the the addition of sodium borohydride (2.86 g, 75.6 mmol) in small portions. The mixture was stirred and allowed to warm to ambient temperature overnight. [00386] The stir was continued for 24 hours before the black suspension was evaporated under vacuum, quenched by the addition of NaHCO 3 (sat) and EtOAc was added. The solids were removed by filtration through Celite (washing with EtOAc). The phases were separated and the aqueous extracted with EtOAc. The organics were washed with brine, dried (MgSO 4 ) and evaporated under vacuum to a brown foamwhich was purified by chromatography on SiO 2 (Biotage KPNH 28 g) eluting with 0-100% EtOAc in heptane to give the title compound (734 mg, 28%) as a beige foam along with an earlier eluting product (178 mg).

Method B: LC-MS (electrospray): m/z = 224.3 (M+H) + , RT = 1.24 min.

Step 2: tert-butyl N-[[2-(chloromethyl)imidazo[1,2-a]pyridin-6-yl]methyl]carbam ate

[00387] A solution of tert-butyl N-[(6-amino-3-pyridyl)methyl]carbamate (730 mg, 3.27 mmol) and1,3-dichloropropan-2-one (450 uL, 4.90 mmol) in MeCN (20 mL) was stirred at 80 °C for 20 hours.

[00388] The mixture was cooled to ambient temperature, evaporated to dryness and purified by chromatography on SiO 2 (Biotage; 28 g KP-NH) eluting with EtOAc in heptane 50-100% to afford the title compound (581 mg, 52%) as beige solid.

Method B: LC-MS (electrospray): m/z = 296.2 (M+H) + , RT = 1.53 min.

Step 3: tert-butyl N-{[2-(azidomethyl)imidazo[1 ,2-a]pyridin-6-yl]methyl}carbamate

[00389] A solution of tert-butyl N-[[2-(chloromethyl)imidazo[1,2-a]pyridin-6- yl]methyl]carbamate (581 mg, 1.96 mmol) and Nal (30 mg, 0.196 mmol) in DMF (4 mL) was treated with NaN3 (255 mg, 3.93 mmol) and the mixture was stirred at ambient temperature 17 hours.

[00390] The brown suspension was quenched with NaHCO 3 (sat, 10 mL) and extracted with chloroform/isopropanol (3:1 , 3 x 80 mL). The combined organic extracts were dried (Na 2 SO 4 ) and evaporated under vacuum. The residue was triturated with EtOAc/heptane and the solids were collected by filtration to afford the title compound (400 mg, 67%) as a beige solid.

[00391] Method B: LC-MS (electrospray): m/z = 303.2 (M+H) + , RT = 1.42 min. Intermediate 21 : [2-(azidomethyl)imidazo[1 ,2-a]pyridin-6-yl]methanol

Step 1 : methyl 2-(chloromethyl)imidazo[1,2-a]pyridine-6-carboxylate

[00392] Methyl 6-aminopyridine-3-carboxylate (5.3 g, 34.8 mmol) and 1,3- dichloropropan-2-one (6.63 g, 52.3 mmol) were combined in acetonitrile (50 mL) and the mixture heated at reflux for 6 hours. The reaction mixture was cooled to ambient temperature and the residue suspended in aqueous sodium hydrogen carbonate (sat, 80 mL). The mixture was extracted with 3:1 chloroform/isopropanol (3 x 100 mL) and the combined organic extracts dried over sodium sulfate and evaporated under vacuum. The residue was purified by Biotage Isolera™ chromatography (100 g kp-Sil, eluting with EtOAc/heptane 0-100%) to afford a crude material which was triturated with EtOAc/heptane. The solids were collected by filtration and dried under suction to afford 3.35 g (43%) of the title compound as a white solid.

Method B: LC-MS (electrospray): m/z = 225.1 (M+H) + , RT = 1.32 min

Step 2: [2-(chloromethyl)imidazo[1,2-a]pyridin-6-yl]methanol

[00393] A solution of methyl 2-(chloromethyl)imidazo[1,2-a]pyridine-6-carboxylate (700 mg, 3.12 mmol) in anhydrous THF (20 mL) and cooled in an ice/water bath. DIBAL (1M in PhMe, 8.6 mL, 8.6 mmol) was added slowly to give a yellow solution and the mixture stirred under cooling for 2 hours. The reaction mixture was quenched by dropwise addition of MeOH (5 mL), then diluted with DCM (70 mL) and aqueous sodium hydrogen carbonate (sat, 50 mL). The mixture was filtered through Celite and the residue rinsed well with DCM. The filtrates were phase-separated, the aqueous layer extracted with DCM (80 mL). The combined organic layers dried over sodium sulfate and evaporated under vacuum. The resultant residue was triturated with Et 2 O and the solids collected by filtration to afford (384 mg 60%) of the title compound as a pale yellow solid

[00394] MS16 IPC: LC-MS (electrospray): m/z = 196.8 (M+H) + , RT = 0.31 min

Step 3: [2-(azidomethyl)imidazo[1,2-a]pyridin-6-yl]methanol

[00395] [2-(chloromethyl)imidazo[1,2-a]pyridin-6-yl]methanol (380 mg, 1.93 mmol), Nal (29 mg, 0.19 mmol) and NaN 3 (300 mg, 4.61 mmol) were combined in DMF (2 mL) and the mixture stirred at ambient temperature for 3 hours. The reaction mixture was diluted with aqueous sodium hydrogen carbonate (sat, 30 mL) and extracted with DCM (3 x 50 mL). The combined organic extracts were dried over sodium sulfate and evaporated under vacuum. The solids were carefully triturated with EtOAc/heptane and the solids collected by filtration to afford 309 mg, 79%) of the title compound as a pale yellow solid

[00396] Method B: LC-MS (electrospray): m/z = 204.2 (M+H) + , RT = 1.10 min

Reference Example 1 : N-({6-methylimidazo[1,2-a]pyridin-2-yl}methyl)-1H-pyrazolo[4 ,3- c]pyridine-4-carboxamide

[00397] A solution of 1H-pyrazolo[4,3-c]pyridine-4-carboxylic acid (50 mg, 0.31 mmol), HATU (175 mg, 0.460 mmol) and DIPEA (0.054 mL, 0.307 mmol) in DMF (1 mL) was stirred at ambient emperature for 5 minutes before {6-methylimidazo[1,2-a]pyridin-2-yl}methanamine dihydrochloride (79 mg, 0.337 mmol) was added and the mixture was stirred at ambient temperature for 1 hour. [00398] The mixture was evaporated to dryness under reduced pressure and purified by preparative HPLC (Method B) to afford the title compound (18 mg, 19%) as an off-white powder.

Method D: LC-MS (electrospray): m/z = 307.2 (M+H) + , RT = 2.90 min Method C: LC-MS (electrospray): m/z = 423.4 (M+H) + , RT = 2.79 min

[00399] The compounds in Table 4 were prepared in a similar fashion to Example 1 using the appropriate carboxylic acid and aminomethyl imidazopyridine intermediate, or commercially available materials, including deprotection where necessary.

Table 4

Example 20: 4-[1-[(6-methylimidazo[1,2-a]pyridin-2-yl)methyl]triazol-4-y l]isoquinoline [00400] 2-(azidomethyl)-6-methyl-imidazo[1,2-a]pyridine Intermediate 9 (50 mg, 0.27 mmol), 4-ethynylisoquinoline (49 mg, 0.32 mmol) and sodium ascorbate (80 mg, 0.40 mmol) were combined in DMF (2 mL) and Water (0.5 mL), CuSO 4 (4 mg, 0.03 mmol) was added and the mixture was stirred at ambient temperature for 30 minutes during which time a precipitate formed.

[00401] The mixture was diluted with water (15 mL) and the solids were collected by filtration. The residue was purified by reverse phase chromatograpghy (Method B) to afford the title compound (24 mg (26%) as an off-white solid.

Method D: LC-MS (electrospray): m/z = 341.3 (M+H) + , RT = 3.33 min

[00402] The compounds in Table 5 were prepared in a similar manner to Example 20 using commercial building blocks or decribed intermediates Table 5

Example 22: (cyclobutylmethyl)({2-[(4-{6-methoxyimidazo[1,5-a]pyridin-8- yl}-1H-1,2,3-triazol- 1-yl)methyl]imidazo[1,2-a]pyridin-6-yl}methyl)amine [00403] Step 1: tert-butyl N-(cyclobutylmethyl)-N-[[2-[[4-(6-methoxyimidazo[1,5- a]pyridin-8-yl)triazol-1-yl]methyl]imidazo[1,2-a]pyridin-6-y l]methyl]carbamate

[00404] A mixture of 8-ethynyl-6-methoxy-imidazo[1 ,5-a]pyridine Intermediate 23 (150 mg, 0.810 mmol), tert-butyl N-[[2-(azidomethyl)imidazo[1,2-a]pyridin-6-yl]methyl]-N- (cyclobutylmethyl)carbamate Intermediate 10 (300 mg, 0.810 mmol), copper sulfate (26 mg, 0.162 mmol) and sodium ascorbate (177 mg, 0.891 mmol) in DMF (9 mL) and water (2 mL) was stirred at ambient temperature overnight.

[00405] The mixture was diluted with water and 10% MeOH in DCM. The organic phase was collected using a Telos phase separator, evaporated to dryness under reduced pressure and purified by chrmoatograpgy on SiO 2 (eluting with 0-100% EtOAc in heptane foolwed by 0- 20% MeOH in EtOAc) to afford the title compound (240 mg, 51%) as an orange solid. Method J: LC-MS (electrospray): m/z = 543.4 (M+H) + , RT = 0.63 min.

Step 2: (cyclobutylmethyl)({2-[(4-{6-methoxyimidazo[1,5-a]pyridin-8- yl}-1H-1,2,3-triazol-1- yl)methyl]imidazo[1,2-a]pyridin-6-yl}methyl)amine

[00406] HCI (4M in dioxane 1.0 mL, 4.11 mmol) was added to a solution of tert-butyl N- (cyclobutylmethyl)-N-[[2-[[4-(6-methoxyimidazo[1,5-a]pyridin -8-yl)triazol-1- yl]methyl]imidazo[1,2-a]pyridin-6-yl]methyl]carbamate (240 mg, 0.411 mmol) in methanol (1.5 mL) and the mixture was stirred at ambient temperature for 16 hours.

[00407] The mixture was evaporated to dryness and purified by preparative HPLC (Method B). The organic solvent was removed from the product-containing fractions. The solid formed in the aqueous suspension thus obtained was collected by vacuum filtration and dried under vacuum to afford the title compound (60 mg, 33%) as a white powder.

Method C: LC-MS (electrospray): m/z = 443.4 (M+H) + , RT = 2.69 min.

[00408] The compounds in Table 6 were prepared in a similar manner to Example 22 using commercial building blocks or decribed intermediates. Table 6

Example 31 : N-(cyclobutylmethyl)-1-[2-[[4-(4-isoquinolyl)triazol-1-yl]me thyl]imidazo[1 ,2- a]pyridin-6-yl]methanamine Step 1: tert-butyl N-[[2-[[4-(4-isoquinolyl)triazol-1-yl]methyl]imidazo[1,2-a]p yridin-6- yl]methyl]carbamate

[00409] Under nitrogen atmosphere, isoquinoline-4-carbaldehyde (100 mg, 0.636 mmol) was suspended in MeOH (anhydrous, 1 mL) and THF (anhydrous, 1 mL), dimethyl (1- diazo-2-oxopropyl)phosphonate (245 mg, 1.28 mmol) and K 2 C O 3 (264 mg, 1.91 mmol) were added to the reaction mixture and stirred for 5 hours.

[00410] Tert-butyl N-[[2-[[4-(4-isoquinolyl)triazol-1-yl]methyl]imidazo[1 ,2-a]pyridin-6- yl]methyl]carbamate

[00411] Intermediate 20 (193 mg, 0.636 mmol) and copper(1) iodide (25 mg, 0.131 mmol) were added and the mixture was stirred at ambient temperature for 2 hours.

[00412] Water was added and the mixture was extracted with CHCl 3 /IPA x 3. The organic extracts were combined, dried (MgSO 4 ) and evaporated under vacuum to give the crude material which was purified by chromatography on SiO 2 (KP-NH, eluting with 50 to 100% Heptane/EtOAc followed by 5% MeOH in EtOAc) to give the title compound (84 mg, 29%) as an off-white solid.

Method B: LC-MS (electrospray): m/z = 456.4 (M+H) + , RT = 1.42 min.

Step 2: N-(cyclobutylmethyl)-1-[2-[[4-(4-isoquinolyl)triazol-1-yl]me thyl]imidazo[1,2-a]pyridin- 6-yl]methanamine

[00413] To a solution of [2-[[4-(4-isoquinolyl)triazol-1-yl]methyl]imidazo[1,2-a]pyri din-6- yl]methanamine (13 mg, 0.0368 mmol) in DCE (1.0 mL) was added cyclobutanecarbaldehyde (3.1 mg, 0.0368 mmol) and the reaction was stirred at ambient temperature for 30 minutes, before sodium triacetoxyborhydride (16 mg, 0.0737 mmol) was added and the reaction was stirred at 40°C for 2 hours.

[00414] The reaction was cooled to ambient temperature and the solvent was removed in vacuo. Water (5 mL) and NaOH (1M, 2.0 mL) were added and the aqueous was extracted with IPA/ CHCl 3 (1:4, 3 x 3 mL). The organics were dried (Na 2 SO 4 ) and evaporated under reduced pressure to give a yellow gum, which was purified by preparative HPLC (Method B) to give the title compound (2.1 mg, 13%) as an off white solid along with the bis alkylated by- product.

Method C: LC-MS (electrospray): m/z = 424.4 (M+H) + , RT = 2.87 min.

Example 32: bis(cyclobutylmethyl)[(2-{[4-(isoquinolin-4-yl)-1H-1,2,3-tri azol-1- yl]methyl}imidazo[1,2-a]pyridin-6-yl)methyl]amine

[00415] The title compound was isolated during the prurification of Example 32 to give (6.4 mg, 35%) as an off white solid.

Method C: LC-MS (electrospray): m/z = 492.5 (M+H) + , RT = 4.60 min.

Example 33: (cyclobutylmethyl)({2-[(4-{1H-pyrrolo[2,3-b]pyridin-5-yl}-1H -1,2,3-triazol-1- yl)methyl]imidazo[1,2-a]pyridin-6-yl}methyl)amine

Step 1 : 2-[(5-iodopyrrolo[2,3-b]pyridin-1-yl)methoxy]ethyl-trimethyl -silane

[00416] 5-iodo-1H-pyrrolo[2,3-b]pyridine (430 mg, 1.76 mmol) was dissolved in DMF-

Anhydrous (6 mL) and NaH (60% wt in mineral oil, 211 mg, 8.81 mmol) was added - gas evolution. The mixture was stirred at ambient temperature for 10 minutes before [2- (chloromethoxy)ethyl](trimethyl)silane (588 mg, 3.52 mmol) was added and the mixture was stirred at ambient temperature for 30 minutes.

[00417] The mixture was quenched with NaHCO 3 (sat., 50 mL) and extracted with EtOAc (2 x 30 mL). The combined organic layers were washed with brine (5 x 20 mL), dried over sodium sulfate and evaporated under vacuum to a residue was purified by chromatography on SiO 2 (eluting with 0-50% EtOAc/heptane) to afford the title compound (539 mg, 73%) as a colourless oil.

Method B: LC-MS (electrospray): m/z = 375.1 (M+H) + , RT = 2.15 min.

Step 2: Trimethyl-[2-[1-(2-trimethylsilylethoxymethyl)pyrrolo[2,3-b] pyridin-5-yl]ethynyl]silane

[00418] 2-[(5-iodopyrrolo[2,3-b]pyridin-1-yl)methoxy]ethyl-trimethyl -silane (539 mg, 1.28 mmol), Cul (24 mg, 0.13 mmol), PdCl 2 dppf (93 mg, 0.13 mmol) and triethylamine (2 mL, 14.3 mmol) were combined in DMF-Anhydrous (5 mL) and the mixture sparged with nitrogen for 5 minutes. Ethynyl(trimethyl)silane (355 μl, 2.56 mmol) was added and the mixture further sparged briefly, the vessel sealed and the mixture was stirred at ambient temperature for 2 hours.

[00419] The reaction mixture was diluted with EtOAc (100 mL) washed with NaHCO 3 (sat., 50 mL) and brine (5 x 50 mL). The organic layer was dried over sodium sulfate and evaporated under vacuum.

[00420] The residue was purified by chromatography on SiO 2 (eluting with 0-50% EtOAc/heptane) to afford the title compound (476 mg, 97% ) as a black oil Method B: LC-MS (electrospray): m/z = 345.4 (M+H) + , RT = 2.49 min.

Step 3: 2-[(5-Ethynylpyrrolo[2,3-b]pyridin-1-yl)methoxy]ethyl-trimet hyl-silane

[00421] Trimethyl-[2-[1-(2-trimethylsilylethoxymethyl)pyrrolo[2,3-b] pyridin-5- yl]ethynyl]silane (470 mg, 1.36 mmol) was dissolved in methanol (20 mL), K 2 CO 3 (377 mg, 2.72 mmol) was added and the mixture was stirred at ambient temperature for 10 minutes.

[00422] The mixture was filtered, washing with MeOH, and the combined filtrates evaporated under vacuum. The residue was purified by chromatography on SiO 2 ( eluting with 0-100% EtOAc/heptane) to afford the title compound (355 mg, 84%) as a yellow oil Method B: LC-MS (electrospray): m/z = 273.3 (M+H) + , RT = 2.05 min.

Step 4: [2-[[4-[1-(2-trimethylsilylethoxymethyl)pyrrolo[2,3-b]pyridi n-5-yl]triazol-1- yl]methyl]imidazo[1 ,2-a]pyridin-6-yl]methanol

[00423] 2-[(5-Ethynylpyrrolo[2,3-b]pyridin-1-yl)methoxy]ethyl-trimet hyl-silane (355 mg, 1.15 mmol), [2-(azidomethyl)imidazo[1,2-a]pyridin-6-yl]methanol Intermediate 21, Step 3 (233 mg, 1.15 mmol) and sodium ascorbate (273 mg, 1.38 mmol) were combined in DMF (5 mL) and Water (1 mL). CuSO 4 (4 mg, 0.03 mmol) was added and the mixture was stirred at ambient temperature for an hour.

[00424] The mixture was diluted with chloroform/isopropanol (3:1, 30 mL) and Water

(10 mL) and the phases separated. The aqueous phase was extracted with chloroform/isopropanol (3:1 , 3 x 30 mL) and the combined organic layers were dried over sodium sulfate and evaporated under vacuum.

[00425] The residue was purified by chromatography on SiO 2 (kp-NH, eluting with 0- 100% EtOAc/heptane followed by 0-20% MeOH/EtOAc) to afford the title compound (372 mg, 62%) as a white solid.

Method B: LC-MS (electrospray): m/z = 476.3 (M+H) + , RT = 1.54 min.

Step 5: 2-[[4-[1-(2-trimethylsilylethoxymethyl)pyrrolo[2,3-b]pyridin -5-yl]triazol-1- yl]methyl]imidazo[1,2-a]pyridine-6-carbaldehyde

[00426] [2-[[4-[1-(2-trimethylsilylethoxymethyl)pyrrolo[2,3-b]pyridi n-5-yl]triazol-1- yl]methyl]imidazo[1,2-a]pyridin-6-yl]methanol (372 mg, 0.78 mmol) and Dess-Martin periodinane (995 mg, 2.35 mmol) were combined in DCE (15 mL) and the mixture was heated at reflux for 2 hours during which time an orange colouration was noted.

[00427] The mixture was cooled to ambient temperature and quenched with NaHCO (sat., 50 mL). The mixture was extracted with chloroform/isopropanol (3:1, 3 x 80 mL). The combined organic extracts were dried over sodium sulfate and evaporated under vacuum to afford a residue which was triturated with EtOAc/heptane and the solids were collected by filtration to afford the title compound (472 mg, 96%) as a pale brown solid.

Method B: LC-MS (electrospray): m/z = 474.3 (M+H) + , RT = 1.66 min.

Step 6: (cyclobutylmethyl)({2-[(4-{1H-pyrrolo[2,3-b]pyridin-5-yl}-1H -1,2,3-triazol-1- yl)methyl]imidazo[1 ,2-a]pyridin-6-yl}methyl)amine

[00428] 2-[[4-[1-(2-trimethylsilylethoxymethyl)pyrrolo[2,3-b]pyridin -5-yl]triazol-1- yl]methyl]imidazo[1,2-a]pyridine-6-carbaldehyde (200 mg, 0.42 mmol) and 1- cyclobutylmethanamine (72 mg, 0.84 mmol) were combined in 1,1,1,3,3,3-Hexafluoro-2- propanol (3 mL) and the mixture stirred at ambient temperature for 30 minutes

[00429] NaBH4 (160 mg, 4.22 mmol) and a few drops of MeOH were added- gas evolution - and the mixture was stirred briefly at ambient temperature.

[00430] The mixture was quenched with MeOH (40 mL) - gas evolution - and evaporated under vacuum. The residue was suspended in MeOH (10 mL) and treated with

HCI (4M in Dioxane 5 mL) and stirred at ambient temperature for 30 minures and heated at reflux for an hour.

[00431] The mixture was cooled to ambient temperature and evaporated under vacuum. The residue was suspended in water (2 mL) and treated with c.HCI (3 mL) and the mixture was incubated at ambient temperature for 16 hours. The mixture was heated at 90°C for 6 hours.

[00432] The reaction mixture was cooled to ambient temperature and evaporated under vacuum. The residue was suspended in water (2 mL) and treated with NaOH (2M) and incubated at ambient temperature for 2 days and then heated at 100 °C for an hour. [00433] The reaction mixture was cooled to ambient temperature and extracted with chloroform/isopropanol (3:1, 3 x 30 mL). The combined organic extracts were dried over sodium sulfate and evaporated under vacuum.

[00434] The residue was purified by reverse phase chromatography (30 g C18-Ultra, eluting with Water+0.1%NH 3 /Acetonitrile+0.1%NH 3 10-100%) to afford the title compound (9 mg, 5%) as a pale yellow solid.

Method E: LC-MS (electrospray): m/z = 413.3 (M+H) + , RT = 1.11 min. Example 34: (cyclobutylmethyl)({2-[(4-{1 H-pyrrolo[2,3-b]pyridin-5-yl}-1 H-imidazol-1- yl)methyl]imidazo[1,2-a]pyridin-6-yl}methyl)amine Step 1: [2-[(4-bromoimidazol-1-yl)methyl]imidazo[1,2-a]pyridin-6-yl] methanol

[00435] 4-bromo-1H-imidazole (500 mg, 3.30 mmol), [2-(chloromethyl)imidazo[1,2- a]pyridin-6-yl]methanol Intermediate 21 Step 2 (714 mg, 3.63 mmol), CS 2 CO 3 (3.22 g, 9.90 mmol) and Nal (49 mg, 0.33 mmol) were combined in DMF (10 mL) and the mixture was heated at 80°C for 2 hours.

[00436] The mixture was cooled to ambient temperature and diluted with water (50 mL). The mixture was extracted with chloroform/isopropanol (3:1, 3 x 50 mL) and the combined organic extracts were dried over sodium sulfate and evaporated under vacuum.

[00437] The residue was purified by chromatography on SiO 2 (kp-NH, eluting with 0- 100% EtOAc/heptane followed by 0-20% MeOH/EtOAc) to afford the title compound (983 mg,

91 %) as a white foam.

Method B: LC-MS (electrospray): m/z = 307.1/309.1 (M+H) + , RT = 1.14 min. Step 2: [2-[(4-bromoimidazol-1-yl)methyl]imidazo[1,2-a]pyridin-6-yl] methanol [00438] [2-[(4-bromoimidazol-1-yl)methyl]imidazo[1,2-a]pyridin-6-yl] methanol (1 g , 3.26 mmol) and MnO 2 (2.83 g, 32.6 mmol) were combined in DCE (40 mL) and the mixturewas heated at 80 °C for 2 hours.

[00439] Further MnC>2 (1 g, 11.5 mmol) added and heatingwas continued for 3 hours.

[00440] The mixture was cooled to ambient temperature and filtered through a plug of

Celite and the residue washed with MeOH. The combined fitrates were evaporated under vacuum to afford the title compound (910 mg, 86%) as a grey solid.

Method B: LC-MS (electrospray): m/z = 305.1/307.1 (M+H) + , RT = 1.20 min.

Step 3: [2-[(4-bromoimidazol-1-yl)methyl]imidazo[1,2-a]pyridin-6-yl] methanol

[00441] 2-[(4-bromoimidazol-1-yl)methyl]imidazo[1,2-a]pyridine-6-car baldehyde (900 mg, 2.95 mmol) and 1-cyclobutylmethanamine (502 mg, 5.90 mmol) were combined in 1 ,1,1,3,3,3-Hexafluoro-2-propanol (10 mL) and the mixture was stood at ambient temperature for 1.5 hours. NaBH 4 (334 mg, 8.85 mmol) was added with a few drops MeOH - gas evolution - and the mixture was stirred at ambient temperature for an hour.

[00442] The mixture was quenched with MeOH (30 mL) - gas evolution - and evaporated under vacuum.

[00443] The residue was partitioned between NaHCO 3 (sat., 20 mL) and chloroform/isopropanol (3:1 , 30 mL) and the phases separated. The aqueous was extracted with chloroform/isopropanol (3:1, 2 x 30 mL) and the combined organic extracts were dried over sodium sulfate and evaporated under vacuum to afford the title compound (1.10 g, 78%) as a pale yellow residue.

Method B: LC-MS (electrospray): m/z = 374.2/376.2 (M+H) + , RT = 1.40 min.

Step 4: tert-butyl N-[[2-[(4-bromoimidazol-1-yl)methyl]imidazo[1,2-a]pyridin-6- yl]methyl]-N- (cyclobutylmethyl)carbamate [00444] 1-[2-[(4-bromoimidazol-1-yl)methyl]imidazo[1,2-a]pyridin-6-y l]-N-

(cyclobutylmethyl)methanamine (1.1 g, 2.94 mmol) and Boc 2 O (962 mg, 4.41 mmol) were combined in acetonitrile (50 mL) and heated at reflux for 2 hours.

[00445] The mixture was cooled to ambient temperature and evaporated under vacuum.

[00446] The residue was dissolved in EtOAc (50 mL), washed with NaHCO 3 (sat., 50 mL) and brine (2 x 50 mL), dried over sodium sulfate and evaporated under vacuum. The residue was purified by chromatography on SiO 2 (kpNH, , eluting with 0-100% EtOAc/heptane) to give the title compound (1.1 g, 83%) as colourless oil.

Method A: LC-MS (electrospray): m/z = 474.25/476.25 (M+H) + , RT = 1.12 min.

Step 5: tert-Butyl N-(cyclobutylmethyl)-N-[[2-[[4-(1H-pyrrolo[2,3-b]pyridin-5-y l)imidazol-1- yl]methyl]imidazo[1 ,2-a]pyridin-6-yl]methyl]carbamate

[00447] 5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrrolo[2 ,3-b]pyridine (150 mg, 0.61 mmol), tert-butyl N-[[2-[(4-bromoimidazol-1-yl)methyl]imidazo[1,2-a]pyridin-6- yl]methyl]-N-(cyclobutylmethyl)carbamate (321 mg, 0.68 mmol), K 2 CO 3 (1.2M , 1.54 mL, 1.84 mmol) and PdCl 2 dppf (45 mg, 0.06 mmol) were combined in dioxane (6 mL) and the mixture was sparged with nitrogen for 5 minures. The vessel was sealed and the mixture was heated at 100 °C for 4 hours.

[00448] The reaction mixture was cooled to ambient temperature and left standing overnight.

[00449] The mixture was diluted with NaHCO 3 (sat., 40 mL) and extracted with DCM (3 x 50 mL) and chloroform/isopropanol (3: 1 , 30 mL). The combined organic extracts were dried over sodium sulfate and evaporated under vacuum.

[00450] The residue was purified by chromatography on SiO 2 (kp-NH, eluting with 0- 100% EtOAc/heptane followed by 0-20% MeOH/EtOAc) to afford the title compound (291 mg, 64%) as a brown solid

Method B: LC-MS (electrospray): m/z = 512.3 (M+H) + , RT = 1.65 min.

Step 6: tert-butyl 5-[1-[[6-[[tert-butoxycarbonyl(cyclobutylmethyl)amino]methyl ]imidazo[1,2- a]pyridin-2-yl]methyl]imidazol-4-yl]pyrrolo[2,3-b]pyridine-1 -carboxylate

[00451] tert-butyl N-(cyclobutylmethyl)-N-[[2-[[4-(1H-pyrrolo[2,3-b]pyridin-5- yl)imidazol-1-yl]methyl]imidazo[1,2-a]pyridin-6-yl]methyl]ca rbamate (290 mg, 0.57 mmol), di- tert-butyl dicarbonate (161 mg, 0.74 mmol) and DMAP (20 mg, 0.16 mmol) were combined in cetonitrile (20 mL) and heated at 80°C for an hour. Further di-tert-butyl dicarbonate (1 g, 4.59 mmol) was added added - gas evolution - and the heating was continued for 3 hours. The mixture was allowed to stand for 2 days at ambient temperature. The mixture was mixture was heated to 80°C for 2 hours. Further di-tert-butyl dicarbonate (3 g, 13.8 mmol) added - gas evolution - and the heating was continued for 3 hours.

[00452] The reaction mixture was cooled to ambient temperature and evaporated under vacuum.

[00453] The residue was dissolved in EtOAc (50 mL) and washed with. NaHCO 3 (sat., 2 x 30 mL) and brine (30 mL). The organic layer was dried over sodium sulfate and evaporated under vacuum.

[00454] The residue was purified by chromatography on SiO 2 (kp-NH, eluting with 0- 100% EtOAc/heptane followed by 0-20% MeOH/EtOAc) to afford the title compound (183 mg, 53%) as an orange residue

Method B: LC-MS (electrospray): m/z = 612.4 (M+H) + , RT = 1.92 min.

Step 7: (cyclobutylmethyl)({2-[(4-{1H-pyrrolo[2,3-b]pyridin-5-yl}-1H -imidazol-1- yl)methyl]imidazo[1,2-a]pyridin-6-yl}methyl)amine

[00455] tert-Butyl 5-[1-[[6-[[tert- butoxycarbonyl(cyclobutylmethyl)amino]methyl]imidazo[1,2-a]p yridin-2-yl]methyl]imidazol-4- yl]pyrrolo[2,3-b]pyridine-1-carboxylate (180 mg, 0.29 mmol) was dissolved in methanol (3 mL) and treated with HCI (4M in dioxane, 3 mL) and the mixture was heated at 70 °C for 2 hours. [00456] The mixture was cooled to ambient temperature and evaporated under vacuum. The residue was dissolved in MeOh and purified by ion exchange (SCS-2, washing with MeOH and eluting with ammonia in MeOH). The basic eluent was evaporated under vacuum.

[00457] The residue was purified by basic preparative HPLC (Method B) to afford the title compound (18 mg, 14%) as a white solid.

Method D: LC-MS (electrospray): m/z = 412.3 (M+H) + , RT = 3.42 min.

Example 35: (cyclobutylmethyl)({2-[(4-{imidazo[1 , 5-a]pyridin-5-yl}- 1 H- 1 ,2 , 3-triazol- 1 - yl)methyl]imidazo[1,2-a]pyridin-6-yl}methyl)amine

[00458] Under a nitrogen atmosphere, imidazo[1 ,5-a]pyridine-5-carbaldehyde (100 mg, 0.684 mmol) was suspended in methanol (dry, 2 mL) and THF (dry, 2 mL). Dimethyl (1-diazo- 2-oxopropyl)phosphonate (0.21 mL, 1.37 mmol) and potassium carbonate (284 mg, 2.05 mmol) were added and the mixture was stirred at ambient temperature for 3.5 hours.

[00459] tert-butyl N-[[2-(azidomethyl)imidazo[1 ,2-a]pyridin-6-yl]methyl]-N-

(cyclobutylmethyl)carbamate Intermediate 10 (253 mg, 0.684 mmol) and copper(1) iodide (26 mg, 0.137 mmol) were added, and the resulting mixture was stirred at ambient temperature for 24 hours.

[00460] The mixture was partitioned between water (30 mL) and DCM (30 mL), and the aqueous phase was extracted with DCM (4 x 30 mL) and chloroform/IPA (3:1, 3 x 30 mL). The combined organis were dried over Na 2 SO 4 and concentrated in vacuo.

[00461] The residue was dissolved in HCI (4M in dioxane, 5 mL) and methanol (0.5 mL), and stirred at ambient temperature for an hour.

[00462] The solvent was removed in vacuo.

[00463] The residue was purified by preparative HPLC (Method B) to give (31 mg of crude product.

[00464] The material was further purified by preparative HPLC (Method A). The product containing fractions were combined and the pH adjusted to pH 10 by addition of NaHCO 3 and then NaOH(aq). The mixture was extracted with CHCI 3 /IPA (3:1, 5 x 20 mL), and the combined organic layers were concentrated in vacuo. The resulting solid was freeze dried to give the tilte compound (9.3 mg, 3.3%) as a yellow solid.

Method C: LC-MS (electrospray): m/z = 413.4 (M+H) + , RT = 2.72 min.

EXAMPLES - Biochemical and Cell Activity

METTL3/14 methyltransferase assay

Biochemical assay - METTL3_14 RFMS

[00465] The enzymatic assay was established to determine IC50 values for inhibition of RNA methyltransferase activity. The enzyme used was full-length his-tagged METTL3 co- expressed with full length FLAG-tagged METTL14 in a baculovirus expression system. Enzymatic reactions were performed at room temperature in 384-well plates using a final reaction volume of 20 μL containing 20 mM TrisCl pH 7.6, 1 mM DTT, 0.01% Tween-20. 5 nM final concentration of METTL3/14 was pre-incubated with various compound concentrations for 10 minutes, followed by addition of 0.2 μM final concentration synthetic RNA substrate (5’P-uacacucgaucuggacuaaagcugcuc-3’) and 0.5 μM final concentration S- adenosyl-methionine (SAM). The reaction was incubated for further 60 minutes at room temperature, and then quenched by the addition of 40 pL 7.5% TCA with two internal product standards (D4-SAH and 13 C 10 -SAH). After termination, plates were sealed, centrifuged and stored at 4°C until analysis. Note: the lower limit of the assay is IC50 = 5nM.

Mass spectrometry analysis

[00466] RNA methyltransferase activity was measured label free using the RapidFire™ mass spectrometry (RF/MS) platform. Stopped and stable assay plates were analyzed on the Agilent RF300 integrated autosampler/solid-phase extraction (SPE) system coupled to an ABSciex 4000 mass spectrometer for the generation of the product S-adenosyl homocysteine (SAH) and normalized to the ratio of signal of the two internal product standards, respectively. Solvent A was water containing 0.1% (v/v) TCA. Solvent B was acetonitrile/0.1% ammonium acetate (8:2, v/v). More specifically, plates were centrifuged at 4350 rpm for 10 min, samples were aspirated under vacuum for 600 ms, then loaded onto a C18 solid-phase extraction cartridge and washed for 3 s with solvent A at a flow rate of 1.5 mL/min. Retained product and internal standards were eluted with solvent B at a flow rate of 1 mL/min for 3 s and finally the cartridge was reequilibrated with solvent A for 500 ms. The mass transition for the product (SAH) was 384.9/135.9 Da. Transitions of the two internal product standards (IS1 : D4-SAH and IS2: 13 C 10 -SAH) were 389.1/135.8 Da and 395.0/134.2 Da, respectively. Ratios of SAH/IS1 and SAH/IS2 were used for normalization of matrix effects. IC50 values were calculated based on dilution series of individual compounds. Potency of a compound was measured at varied inhibitor concentrations and normalized to control wells without RNA substrate and without inhibition (DMSO only). Results:

Caov3 CTG assay - Proliferation Assay

[00467] Cell culture: Caov-3 cells (HTB-75, Lot number: 70016791, ATCC) were grown in DMEM (11960-04431053-028, Gibco) supplemented with 10% fetal bovine serum (1600-44, Gibco), 1 mM sodium pyruvate (11360-039, Gibco) and 2mM Glutamax (35050-

038, Gibco) at 37°C with 5% CO2.

[00468] Cell treatment and cell growth assessment: 18 hours post-seeding in white 384- Viewplate (6007480, PerkinElmer) at 1500 cells/well, Caov3 cells were treated for 120 hours with compounds inhibiting the METTL3/14 activity (10 serial semi-log dilutions, 30 μM as top concentration). Upon treatment, Coav-3 cells were incubated for 10 min at RT with the CellTiter-Glo reagent (G7571, Promega). Measurement of the luminescence signal was performed on a microplate reader (Ensight, PerkinElmer). Kasumi Cell Assay

[00469] Cell culture: KASUMI-1 cells (ACC20, Leibniz-lnstitut DSMZ Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH) were grown in RPMI 1640 (31870- 025, Gibco) supplemented with 20% fetal bovine serum (F1524, Gibco), 1 mM sodium pyruvate (11360-039, Gibco) and 2mM Glutamax (35050-038, Gibco) in a 5% CO2 humidified incubator at 37°C.

[00470] Cell treatment and cell growth assessment: KASUMI-1 hours were seeded in ultra-low attachment 384-well culture plate (MS-9384WZ, SBio) at a final concentration of 250 000 cells/ml (35μL/well) and treated for 120 hours with compounds inhibiting the METTL3/14 activity (10 serial semi-log dilutions, 30 μM as top concentration). Upon treatment, Kasumil cells were incubated for 10 min at RT with the CellTiter-Glo reagent (G7571, Promega). Measurement of the luminescence signal was performed on a microplate reader (Ensight, PerkinElmer).

Numbered Paragraphs

The following numbered paragraphs serve to define particular aspects and embodiments of the invention.

Paragraph 1. A compound of the formula (I), or a pharmaceutically acceptable salt thereof,

X - Y - Z

(I) wherein:

X is selected from: , and wherein: R 1a , R 1c and R 1e are selected from hydrogen, halo, C 1-4 alkyl, C 2-3 alkenyl and -O-C 1- 4 alkyl R 1b , R 1d and R 1f are selected from:

(i) C 1-4 alkyl or C 1-4 alkoxy, each of which being optionally subsutited by halo, cyano, hydroxy, C 3-6 cycloalkyl, C 1-4 alkoxy, C 1-4 haloalkoxy, aryl or heteroaryl; or

(ii) a group of the formula: —(CR 1c R 1d ) p -NR 1e R 1f ; wherein p is an integer selected from 0, 1, 2 or 3 R 1c and R 1d are independently selected from:

(i) hydrogen (including deuterium),

(ii) C 1-6 alkyl which is optionally substituted by one more substituents selected from cyano, oxo, hydroxy, C 1-4 alkoxy, halo, C 1-4 haloalkoxy, C 3-6 cycloalkyl, -O-C 3-6 cycloalkyl, NR 1ca R 1da or -S(O) 0-2 R 1ca R 1da , wherein R 1ca and R 1da are H or C 1-2 alkyl; and wherein C 3-6 cycloalkyl and -O-C 3- 6 cycloalkyl are optionally further subsitutued with halo, cyano or hydroxy;

(iii) C 3-4 cycloalkyl or 3 to 5 membered heterocyclyl, each of which is optionally substituted by C 1-4 alkyl, C 1-4 haloalkyl, cyano, hydroxy, C 1-2 alkoxy, halo, C 1-2 haloalkoxy, NR 1ca R 1da or -S(O) 0-2 R 1ca R 1da , wherein R 1ca and R 1da are H or C 1-2 alkyl; and;

(iv) or R 1c and R 1d are linked together such that, together with the carbon atom to which they are attached, they form a 3- to 6-membered cycloalkyl or heterocyclic ring, or a spirocyclic ring system, each of which is optionally substituted by one or more substituents selected from C 1- 2alkyl, C 1-2 haloalkyl, cyano, hydroxy, C 1-2 alkoxy, halo, C 1- 2 haloalkoxy, NR 1ca R 1da or -S(O) 0-2 R 1ca R 1da , wherein R 1ca and R 1da are H or C 1-2 alkyl; R 1e and R 1f are each independently selected from:

(i) hydrogen (including deuterium);

(ii) C 1-6 alkyl which is optionally substituted by one more substituents selected from cyano, oxo, hydroxy, C 1-2 alkoxy, halo, C 1-2 haloalkoxy, NR 1ea R 1fa or -S(O) 0-2 R 1ea R 1fa , wherein R 1ea and R 1i a are H or C 1-2 alkyl;

(iii) a group with the formula:

—(CR 1g R 1h ) q —T 1 wherein: q is 0, 1 , 2, 3, 4, 5 or 6; R 1g and R 1h are independently selected from: a) hydrogen (including deuterium); b) C 1-6 alkyl which is optionally substituted by one more substituents selected from cyano, oxo, hydroxy, C 1- 4 alkoxy, halo, C 1-4 haloalkoxy, -O-C 3-6 cycloalkyl, NR 1ga R 1ha or -S(O) 0-2 R 1ga R 1ha , wherein R 1ga and R 1ha are H or C 1-2 alkyl; and wherein -O-C 3-6 cycloalkyl is optionally subsitutued with halo, cyano or hydroxy; c) an aryl-C 1-6 alkyl , heteroarylC 1-6 alkyl, C 3-6 cycloalkyl or C 3- 6 cycloalkylC 1-6 alkyl group, each of which is optionally substituted by one or more substituents selected from C 1-2 alkyl, cyano, C 1-2 haloalkyl, hydroxy, C 1-2 alkoxy, halo, C 1-2 haloalkoxy, NR 1ga R 1ha or -S(O) 0-2 R 1ga R 1ha , wherein R 1ga and R 1ha are H or C 1-2 alkyl; or d) or R 1g and R 1h are optionally linked together such that, together with the carbon atom to which they are attached, they form a 3- to 6-membered cycloalkyl or heterocyclic ring which is optionally substituted by one or more substituents selected from C 1-2 alkyl, cyano, C 1- 2 haloalkyl, hydroxy, C 1-2 alkoxy, halo, C 1-2 haloalkoxy, NR 1ga R 1ha or -S(O) 0-2 R 1ga R 1ha , wherein R 1ga and R 1ha are H or C 1-2 alkyl; and T1 is selected from hydrogen, cyano, hydroxy, NR 1t R 2t or -S(O) 0-2 R 1t R 2t (wherein R 1t and R 2t are H or C 1-4 alkyl), C 3-8 cycloalkyl, C 2-3 alkenyl, C 2-3 alkynyl, aryl, heterocyclyl, heteroaryl, a spirocyclic carbocyclic or heterocyclic ring system, a bridged C 3-8 cycloalkyl, a bridged bicyclic C 5- 12 cycloalkyl, or a bridged heterocyclic ring system, each of which is optionally substituted by one or more substituents selected from C 1-2 alkyl, C 1-2 haloalkyl, cyano, hydroxy, C 1- 2 alkoxy, halo, C 1-2 haloalkoxy, NR 3t R 4t or -S(O) 0-2 R 3t R 4t , wherein R 3t and R 4t are H or C 1-2 alkyl; or R 1e and R 1f are linked such that, together with the nitrogen atom to which they are attached, they form a mono- or bicyclic-heterocyclic ring, which is optionally substituted by one or more substituents selected from C 1-4 alkyl, C 1-4 haloalkyl, cyano, hydroxy, C 1- 4 alkoxy, halo, C 1-4 haloalkoxy, NR 1i R 1j or -S(O) 0-2 R 1i R 1j , wherein R 1i and R 1j are H or C 1- 4 alkyl, and/or the mono- or bicyclic hetereocyclic ring formed by R 1e and R 1f is optionally spiro-fused to a C 3-6 cycloalkyl or a heterocyclic ring, which in turn is optionally substituted by one or more substituents selected from C 1-4 alkyl, C 1-4 haloalkyl, cyano, hydroxy, C 1-4 alkoxy, halo, C 1-4 haloalkoxy, NR 1i R 1j or -S(O) 0-2 R 1i R 1j , wherein R 1i and R 1j are H or C 1-4 alkyl; R 1a’ is selected from hydrogen, halo and methyl; R 2a , R 2b and R 2c are selected from hydrogen, halo or a group of the formula:

-L 2a -L 2b -Q 2 wherein L 2a is absent or C 1-3 alkylene optionally substituted by C 1-2 alkyl or oxo; L 2b is absent or selected from O, S, SO, SO 2 , N(R n ), C(O), C(O)O, OC(O), C(O)N(R n ), N(R n )C(O), N(R n )C(O)N(R o ), S(O) 2 N(R n ), or N(R n )SO 2 , wherein R n and R o are each independently selected from hydrogen or C 1-2 alkyl; and

Q 2 is hydrogen, cyano, C 1-6 alkyl, C 3-6 cycloalkyl, aryl, heterocyclyl or heteroaryl, each of which is optionally substituted by one or more substituents selected from halo, trifluoromethyl, trifluoromethoxy, amino, cyano, hydroxy, amino, carboxy, carbamoyl, sulphamoyl, C 1-4 alkyl, NR p R q , OR p , C(O)R p , C(O)OR p , OC(O)R p , C(O)N(R p )R q , N(R r )C(O)R p , S(O) y R p (where y is 0, 1 or 2), SO 2 N(R p )R q , N(R r )SO 2 R p or (CH 2 ) z NR p R q (where z is 1, 2 or 3), wherein R p and R q are each independently selected from hydrogen or C 1-4 alkyl;

Y is selected from:

wherein:

R 3a1 , R 3b1 , R 3c1 , R 3d1 , R 3e1 , R 3f1 , R 3g1 , R 3h1 , R 3i1 , R 3j1 , R 3k1 , R 3i1 , R 3m1 , R 3n1 , R 3o1 , R 3p1 ,

R 3q1 , R 3r1 and R 3s1 are independently selected from hydrogen (including deuterium), C 1-6 alkyl, C 3-4 cycloalkyl, hydroxy, and halo; and wherein C 1-6 alkyl, or C 3-4 cycloalkyl is optionally substituted with one or more substituents selected from halo, amino, cyano, and hydroxy;

R 3a2 , R 3b2 , R 3c2 , R 3d2 , R 3e2 , R 3f2 , R 3g2 , R 3h2 , R 3i2 , R 3j2 , R 3k2 , R 3l2 , R 3m2 , R 3n2 , R 3o2 , R 3p2 , R 3q2 , R 3r2 and R 3s2 are hydrogen or halo; with the proviso that R 3a1 , R 3b1 , R 3i1 , R 3l1 , R 3o1 , R 3r1 , R 3a2 , R 3b2 , R 3i2 , R 3l2 , R 3o2 and R 3s1 cannot be halo when n=1 or when n=2 and the carbon atom to which they are attached is linked to an oxygen or nitrogen atom; or R 3a1 and R 3a2 , R 3b1 and R 3b2 , R 3c1 and R 3c2 , R 3d1 and R 3d2 , R 3e1 and R 3e2 , R 3f1 and R 3f2 , R 3g1 and R 3g2 , R 3h1 and R 3h2 , R 3i1 and R 3i2 , R 3j1 and R 3j2 , R 3k1 and R 3k2 , R 3r1 and R 3I2 , R 3m1 and R 3m2 , R 3n1 and R 3n2 , R 3o1 and R 3o2 , R 3p1 and R 3p2 , R 3q1 and R 3q2 , or R 3r1 and R 3r2 or R 3s1 and R 3s2 may be linked such that, together with the carbon atom to which they are attached, they form a spiro-fused C 3-4 cycloalkyl which is optionally substituted with one or more substituents selected from halo, methyl, amino, cyano, and hydroxy; n is 0, 1 or 2; and

Z is selected from:

wherein: R 4 is selected from hydrogen, halo, cyano, C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 alkoxy, C 1-4 haloalkoxy (e.g. hydrogen, halo, cyano and methyl);

R 5 is selected from hydrogen, halo, cyano, C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 alkoxy, C 1-4 haloalkoxy (e.g. hydrogen, halo, cyano and methyl); R 6 is selected from hydrogen, halo, cyano, C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 alkoxy, C 1-4 haloalkoxy (e.g. hydrogen, halo, cyano and methyl); R 12 is selected from hydrogen, halo, cyano, C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 alkoxy, C 1-4 haloalkoxy (e.g. hydrogen, halo, cyano and C 1-4 alkyl); R 13 is selected from hydrogen, halo, cyano, C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 alkoxy, C 1-4 haloalkoxy (e.g. hydrogen, halo, cyano, methoxy and methyl); R 7 , R 9 and R 11 are independently selected from hydrogen, NH 2 , halo, cyano, C 1-4 alkoxy, C 1-4 haloalkoxy and C 1-6 alkyl; R 8 and R 10 are independently selected from halo, cyano, C 1-4 alkoxy, C 1-4 haloalkoxy, C1-6 alkyl, -CH 2 OCH 3 , -CH 2 SO 2 CH 3 , -SO 2 CH 3 , -NHC(O)CH 3 and - C(O)NR v1 R v2 , wherein R v1 and R v2 are independently selected from hydrogen and methyl;

R 11N are independently selected from hydrogen and C 1-6 alkyl;

R Z1 and R Z1a selected from hydrogen, C 1-4 alkyl, cyano, halo, C 1-4 haloalkyl, C 1- 4haloalkoxy, C 1-4 alkoxy, C 3-6 cycloalkyl and -O-C 3-6 cycloalkyl, wherein C 3-6 cycloalkyl and -O-C 3-6 cycloalkyl are optionally subsitutued by one or more of halo, methyl or methoxy;

R Z2 and R Z2a are selected from hydrogen, C 1-4 alkyl, cyano, halo, NH 2 and C 1-4 alkoxy;

R Z3a is selected from hydrogen, C 1-4 alkyl, cyano, halo, NH 2 and C 1-4 alkoxy;

R Zi2b is selected from hydrogen, C 1-4 alkyl, cyano, halo, NH 2 and C 1-4 alkoxy;

R Zi2e is selected from hydrogen, C 1-4 alkyl, cyano, halo, NH 2 and C 1-4 alkoxy; R Z2N is selected from hydrogen or C 1-4 alkyl R Y5N is selected from hydrogen or C 1-4 alkyl

R Z9 is selected from hydrogen, halo, cyano, C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 alkoxy, C 1-4 haloalkoxy;

R Z10 is selected from hydrogen, halo, cyano, C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 alkoxy, C 1-4 haloalkoxy; R Z11 is selected from hydrogen, halo, cyano, C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 alkoxy, C 1-4 haloalkoxy;

R Z12 is selected from hydrogen, halo, cyano, C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 alkoxy, C 1-4 haloalkoxy;

R Z13 is selected from hydrogen, halo, cyano, C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 alkoxy, C 1-4 haloalkoxy;

R Z14 is selected from hydrogen, halo, cyano, C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 alkoxy, C 1-4 haloalkoxy;

R Z15 is selected from hydrogen, halo, cyano, C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 alkoxy, C 1-4 haloalkoxy;

R Z16 is selected from hydrogen, halo, cyano, C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 alkoxy, C 1-4 haloalkoxy;;

A 5 is selected from CR 16 and N;

A 6 is selected from CR 17 and N; A 7 is selected from CR 18 and N;

R 15 is selected from hydrogen, halo, cyano, methoxy and methyl; R 16 and R 18 , are selected from hydrogen, halo, cyano, C 1-4 alkyl, C 1-4 alkoxy, C 1- 4 haloalkyl, C 1-4 haloalkoxy, C 3-4 cycloalkyl, a 3- to 4-membered heterocyclyl and C 3-4- cycloalkoxy; R 17 is selected from hydrogen, halo, cyano, C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 alkoxy, C 1-4 haloalkoxy, C 2-4 alkenyl, C 2-4 alkynyl, phenyl, a 5- or 6-membered or heteroaryl, C 3- 6 cycloalkyl, -O-C 3-6 cycloalkyl, heterocyclyl, -O-heterocyclyl (carbon-linked), - (OCH 2 CH 2 )m-OCH 3 wherein m is an integer from 1 to 6, NR q R r , wherein R q and R r are each independently hydrogen, C 1-5 alkyl, C 3-6 cycloalkyl, a 3- to 6- membered carbon- linked heterocyclyl, or R q and R r are linked together such that, together with the nitrogen atom to which they are attached, they form a 3- to 6-membered heterocyclic ring; wherein any C 1- salkyl, C 1-4 alkoxy, C 2-4 alkenyl, C 2-4 alkynyl , phenyl, 5- or 6- membered or heteroaryl, C 3-6 cycloalkyl, -O-C 3-6 cycloalkyl, heterocyclyl or -O- heterocyclyl (carbon-linked)is optionally further substituted by one or more substituents selected from C 1-2 alkyl, cyano, C 1-2 haloalkyl, hydroxy, C 1-2 alkoxy, halo, C 1-2 haloalkoxy, NR 1ea R 1fa or -S(O) 0-2 R 1ea R 1fa , wherein R 1ea and R 1fa are H or C 1-2 alkyl; R 19 is selected from hydrogen, halo, cyano and C 1-4 alkyl; R 22 is selected from hydrogen, halo, cyano, C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 alkoxy, C 1-4 haloalkoxy.

Paragraph 2. A compound according to paragraph 1 , or a pharmaceutically acceptable salt thereof, wherein R 1b , R 1d and R 1f are a group of the formula:

—(CR 1c R 1d ) p -NR 1e R 1f ; wherein p is an integer selected from 1 or 2; R 1c and R 1d are independently selected from:

(i) hydrogen (including deuterium),

(ii) C 1-3 alkyl which is optionally substituted by one more substituents selected from cyano, oxo, hydroxy, C 1-3 alkoxy, halo, C 1-43 haloalkoxy, -O-C 3-4 cycloalkyl, or NH 2 ; wherein -O-C 3-6 cycloalkyl is optionally subsitutued with halo, cyano or hydroxy,

(iii) or R 1c and R 1d are linked together such that, together with the carbon atom to which they are attached, they form a 3- to 5-membered cycloalkyl or heterocyclic ring, or a spirocyclic ring system, each of which is optionally substituted by one or more substituents selected from C 1-2 alkyl, C 1-2 haloalkyl, cyano, hydroxy, C 1-2 alkoxy, halo, C 1-2 haloalkoxy, NR 1ca R 1da or -S(O) 0-2 R 1ca R 1da , wherein R 1ca and R 1da are H or C 1-2 alkyl; R 1e is selected from:

(i) hydrogen (including deuterium);

(ii) C 1-3 alkyl which is optionally substituted by one more substituents selected from cyano, oxo, hydroxy, C 1-2 alkoxy, halo, C 1-2 haloalkoxy and NH 2 ; and R 1f is selected from:

(i) C 1-6 alkyl which is optionally substituted by one more substituents selected from cyano, oxo, hydroxy, C 1-2 alkoxy, halo, C 1-2 haloalkoxy and NH 2 ;

(ii) a group with the formula:

—(CR 1g R 1h ) q —T 1 wherein: q is 1, 2 or 3; R 1g and R 1h are independently selected from: a) hydrogen (including deuterium); or b) C 1-6 alkyl which is optionally substituted by one more substituents selected from cyano, oxo, hydroxy, C 1- 4alkoxy, halo, C 1-4 haloalkoxy, -O-C 3-6 cycloalkyl, NR 1ca Rida or -S(O) 0-2 RicaR 1da , wherein R 1ca and R 1da are H or C 1-2 alkylNRig a R 1ha or -S(O) 0-2 R 1ga R 1ha , wherein R 1ga and R 1ha are H or C 1-2 alkyl; and wherein -O-C 3- 6 cycloalkyl is optionally subsitutued with halo, cyano or hydroxy; c) or R 1g and R 1h are optionally linked together such that, together with the carbon atom to which they are attached, they form a 3- to 4-membered cycloalkyl or heterocyclic ring which is optionally substituted by one or more substituents selected from C 1-2 alkyl, C 1-2 - haloalkyl, cyano, hydroxy, C 1-2 alkoxy, halo, C 1-2 - haloalkoxy, NR 1ga R 1ha or -S(O) 0-2 R 1ga R 1ha , wherein R 1ga and R 1ha are H or C 1-2 alkyl; and T 1 is selected from hydrogen, halo, C 1-4 alkyl, C 1-4 haloalkyl, cyano, hydroxy, NR 1t R 2t or -S(O) 0-2 R 1t R 2t (wherein R 1t and R 2t are H or C 1- 4 alkyl), C 3-8 cycloalkyl, C 2-3 alkenyl, C 2-3 alkynyl, aryl, heterocyclyl, a mono- or bicyclic heteroaryl, a spirocyclic carbocyclic or heterocyclic ring system, a bridged C 3-8 cycloalkyl, a bridged bicyclic C 5-12 cycloalkyl, or a bridged heterocyclic ring system, each of which is optionally substituted by one or more substituents selected from C 1-2 alkyl, C 1-2 - haloalkyl, cyano, hydroxy, C 1-2 alkoxy, halo, C 1-2 haloalkoxy, C 3- 6 cycloalkyl, NR 3t R 4t or -S(O) 0-2 R 3t R 4t , wherein R 3t and R 4t are H or C 1- 2alkyl; or R 1e and R 1f are linked such that, together with the nitrogen atom to which they are attached, they form a mono- or bicyclic-heterocyclic ring, which is optionally substituted by one or more substituents selected from C 1-4 alkyl, C 1-4 haloalkyl, C 3- 6 cycloalkyl, cyano, hydroxy, C 1-4 alkoxy, halo, C 1-4 haloalkoxy, NR 1i R 1j or -S(O)o- 2R 1i R 1j , wherein R 1i and R 1j are H or C 1-4 alkyl, and/or the mono- or bicyclic hetereocyclic ring formed by R 1e and R 1f is optionally spiro-fused to a C 3-6 cycloalkyl or a heterocyclic ring; which in turn is optionally substituted by one or more substituents selected from C 1-4 alkyl, C 1-4 haloalkyl, C 3-6 cycloalkyl, cyano, hydroxy, C 1-4 alkoxy, halo, C 1-4 haloalkoxy, NR 1i R 1j or -S(O) 0-2 R 1i R 1j , wherein R 1i and R 1j are H or C 1-4 alkyl; wherein any alkyl, alkoxy or C 3-6 cycloalkyl is further optionally substituted by one or more substituents selected from cyano, hydroxy, halo, NR 1k R 1l or -S(O) 0-2 R 1k R 1l , wherein R 1k and R 1l are H or C 1-4 alkyl.

Paragraph 3. A compound according to paragraph 1 or 2, or a pharmaceutically acceptable salt thereof, wherein R 1b , R 1d and R 1f are a group of the formula:

—(CR 1c R 1d ) p -NR 1e R 1f ; wherein p is 1 ; R 1c and R 1d are independently selected from hydrogen (including deuterium) or C 1-2 alkyl; R 1e is selected from hydrogen (including deuterium) or C 1-2 alkyl; and R 1f is a group with the formula: —(CR 1g R 1h ) q —T 1 wherein: q is 1 or 2; R 1g and R 1h are independently selected from hydrogen (including deuterium) or C 1-2 alkyl; and T 1 is selected from C 3-4 cycloalkyl, heterocyclyl, a mono- or bicyclic heteroaryl, a spirocyclic carbocyclic or heterocyclic ring system, a bridged C 3-8 cycloalkyl, a bridged bicyclic C5-i2cycloalkyl, or a bridged heterocyclic ring system, each of which is optionally substituted by one or more substituents selected from C 1-2 alkyl, C 1-2 haloalkyl, cyano, hydroxy, C 1-2 alkoxy, halo, C 1-2 haloalkoxy or C 3-6 cycloalkyl; or R 1e and R 1f are linked such that, together with the nitrogen atom to which they are attached, they form a mono- or bicyclic-heterocyclic ring, which is optionally substituted by one or more substituents selected from C 1-2 alkyl, C 1-2 haloalkyl, C 3-6 cycloalkyl, cyano, hydroxy, C 1-2 alkoxy, halo or C 1-2 haloalkoxy, and/or the mono- or bicyclic hetereocyclic ring formed by R 1e and R 1f is optionally spiro-fused to a C 3-6 cycloalkyl or a heterocyclic ring; which in turn is optionally substituted by one or more substituents selected from C 1-2 alkyl, C 1-2 haloalkyl, C 3-6 cycloalkyl, cyano, hydroxy, C 1-2 alkoxy, halo or C 1-2 haloalkoxy, wherein any alkyl, alkoxy or C 3-6 cycloalkyl is further optionally substituted by one or more substituents selected from cyano, hydroxy, halo, NR 1k R 1l or -S(O)o- 2R 1 k R 1 l , wherein R 1k and R 1l are H or C 1-4 alkyl.

Paragraph 4. A compound according to any one of the preceding paragraphs, or a pharmaceutically acceptable salt thereof, wherein R 1a , R 1c and R 1e are selected from hydrogen, fluoro, bromo, methyl, ethenyl and -O-methyl;.

Paragraph 5. A compound according to any one of the preceding paragraphs, or a pharmaceutically acceptable salt thereof, wherein R 1a , R 1c and R 1e are hydrogen.

Paragraph 6. A compound according to any one of the preceding paragraphs, or a pharmaceutically acceptable salt thereof, wherein R 2a , R 2b and R 2c are hydrogen. Paragraph 7. A compound according to any one of the preceding paragraphs, or a pharmaceutically acceptable salt thereof, wherein R 1b , R 1d and R 1f are selected from :

Paragraph 8. A compound according to any one of the preceding paragraphs, or a pharmaceutically acceptable salt thereof, wherein R 1b , R 1d and R 1f are selected from:

Paragraph 9. A compound according to any one of the preceding paragraphs, or a pharmaceutically acceptable salt thereof, wherein R 1b , R 1d and R 1f are selected from;

Paragraph 10. A compound according to any one of the preceding paragraphs, or a pharmaceutically acceptable salt thereof, wherein X is: and R 1a , R 1b , R 1a’ and R 2a are as defned in any of the preceding paragraphs. Paragraph 11. A compound according to any one of the preceding paragraphs, or a pharmaceutically acceptable salt thereof, wherein Y is selected from: ; wherein R 3a1 , R 3a2 , R 3b1 , R 3b2 , R 3e1 , R 3e2 , R 3i1 , R 3i2 , R 3j1 , R 3 j2, R 3i1 and R 3i2 , are as defined preceding paragraphs.

Paragraph 12. A compound according to any one of the preceding paragraphs, or a pharmaceutically acceptable salt thereof, wherein, R 3a1 , R 3 M, R 3c1 , R 3d1 , R 3e1 , R 3f1 , R 3g1 , R 3h1 , R 3i1 , R 3j1 , R 3k1 , R 3l1 , R 3m1 , R 3n1 , R 3o1 , R 3p1 , R 3q1 , R 3r1 and R 3s1 are independently selected from hydrogen and C 1-6 alkyl; and wherein C 1-6 alkyl is optionally substituted with one or more hydroxy substituents.

Paragraph 13. A compound according to any one of the preceding paragraphs, or a pharmaceutically acceptable salt thereof, wherein R 3a2 , R 3b2 , R 3c2 , R 3d2 , R 3e2 , R 3f2 , R 3g2 ,

R 3h2 , R 3i2 , R 3j2 , R 3k2 , R 3l2 , R 3m2 , R 3n2 , R 3o2 , R 3p2 , R 3q2 , R 3r2 and R 3s2 are hydrogen.

Paragraph 14. A compound according to any one of the preceding paragraphs, or a pharmaceutically acceptable salt thereof, wherein n is 1.

Paragraph 15. A compound according to any one of the preceding paragraphs, or a pharmaceutically acceptable salt thereof, wherein Y is selected from:

Paragraph 16. A compound according to any one of the preceding paragraphs, or a pharmaceutically acceptable salt thereof, wherein Y is

Paragraph 17. A compound according to any one of the preceding paragraphs, or a pharmaceutically acceptable salt thereof, wherein

A 5 is CR 16 ;

A 6 is CR 17 ;

A 7 is CR 18 ; and wherein R 12 , R 13 , R 16 , R 17 , R 18 , R 19 , and R 22 are as defined in any one of the preceding paragraphs.

Paragraph 18. A compound according to any one of the preceding paragraphs, or a pharmaceutically acceptable salt thereof, wherein:

(i) R 4 , R 5 , R 6 , R 7 , R 9 , R 11 , R Z2 , R Z2a , R Z3a , R Zi1b , R Zi2e , R Z9 , R Z10 , R Z11 , R Z12 , R Z13 , R Z14 , R Z15 and R Z16 are independently selected from hydrogen, methyl, cyano or halo; and

R B5N , R Y5N , and R 11N are selected from methyl or hydrogen;

(ii) R 8 is seleced from cyano, -CH 2 OCH 3 , -CH 2 SO 2 CH 3 , -SO 2 CH 3 , -NHC(O)CH 3 and -C(O)NR v1 R v2 , wherein R v1 and R v2 are independently selected from hydrogen and methyl;

(iii) R 10 is selected from C 1-4 alkoxy or C 1-4 haloalkoxy;

(iv) R Z1 and R Z1a are selected from hydrogen, C 1-4 alkyl, cyano, halo, C 1-4 haloalkyl, C 1-4 haloalkoxy, C 1-4 alkoxy, C 3-6 cycloalkyl and -O-C 3-6 cycloalkyl;

(v) R 12 , R 13 , R 16 , R 18 , R 19 and R 22 are independently selected from hydrogen, halo, cyano and methyl;

(vi) R 17 is selected from hydrogen, halo, cyano, C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 alkoxy, C 1-4 haloalkoxy, C 2-4 alkenyl, C 2-4 alkynyl, phenyl a 5- or 6-membered or heteroaryl, C 3-6 cycloalkyl, -O-C 3-6 cycloalkyl, heterocyclyl, -(OCH 2 CH 2 )m-OCH 3 wherein m is an integer from 1 to 6, NR q R r , wherein R q and R r are each independently hydrogen, C 1-4 alkyl or R q and R r are linked together such that, together with the nitrogen atom to which they are attached, they form a 3- to 6- membered heterocyclic ring; ; wherein any C 1-4 alkyl, C 2-4 alkenyl, C 2-4 alkynyl, phenyl, 5- or 6-membered or heteroaryl, C 3-6 cycloalkyl, -O-C 3-6 cycloalkyl, heterocyclyl or -O-heterocyclyl (carbon-linked) is optionally further substituted by one or more substituents selected from C 1-2 alkyl, cyano, C 1-2 haloalkyl, hydroxy, C 1- 2 alkoxy, halo, C 1-2 haloalkoxy, NR 1ea R 1fa or -S(O) 0-2 R 1ea R 1fa , wherein R 1ea and R 1fa are H or C 1-2 alkyl.

Paragraph 19. A compound according to any one of the preceding paragraphs, or a pharmaceutically acceptable salt thereof, wherein:

(i) R 4 , R 5 , R 6 , R 7 , R 9 , R 11 , R Z2 , R Z2a , R Z3a , R Zi1b , R Zi2e , R Z9 , R Z10 , R Z11 , R Z12 , R Z13 , R Z14 , R Z15 and R Z16 are hydrogen;

(ii) R 8 is cyano;

(iii) R 10 is methoxy;

(iv) R Z1 and R Z1a are selected from hydrogen, cyano, halo, C 1-2 haloalkyl, C 1-2 haloalkoxy, C 1-2 alkoxy, C 3-6 cycloalkyl and -O-C 3-6 cycloalkyl;

(v) R 12 , R 13 , R 16 , R 18 , R 19 and R 22 are hydrogen;

(vi) R 17 is selected from hydrogen, halo, cyano, C 1-2 alkyl, C 1-2 haloalkyl, C 1-2 alkoxy, C 1-2 haloalkoxy, C 2-3 alkenyl, C 2-3 alkynyl, phenyl a 5- or 6-membered or heteroaryl, C 3-6 cycloalkyl, -O-C 3-6 cycloalkyl, heterocyclyl, -(OCH 2 CH 2 )m-OCH 3 wherein m is an integer from 1 to 6, NR q R r , wherein R q and R r are each independently hydrogen, C 1- 2 alkyl or R q and R r are linked together such that, together with the nitrogen atom to which they are attached, they form a 3- to 6-membered heterocyclic ring; wherein any C 1- 4 alkyl, C 2-4 alkenyl, C 2-4 alkynyl, phenyl, 5- or 6-membered or heteroaryl, C 3-6 cycloalkyl, - O-C 3-6 cycloalkyl, heterocyclyl or -O-heterocyclyl (carbon-linked) is optionally further substituted by one or more substituents selected from C 1-2 alkyl, cyano, C 1-2 haloalkyl, hydroxy, C 1-2 alkoxy, halo, C 1-2 haloalkoxy, NR 1ea R 1fa or -S(O) 0-2 R 1ea R 1fa , wherein R 1ea and Rna are H or C 1-2 alkyl.

Paragraph 20. A compound according to any one of the preceding paragraphs, or a pharmaceutically acceptable salt thereof, wherein Z is selected from:

wherein A 5 , A 6 , A 7 , R 4 , R 5 , R 6 , R 7 , R 8 , R B5N , R Y5N , R Z1 , R Z2 , R Z10 , R Z12 , R Z13 , R Z14 , R Z15 , R Z16 , R Z2a , R Z3a , R Z1a , R Zi2b and R Zi2e are as defined in any one of the preceding paragraphs.

Paragraph 21. A compound according to any one of the preceding paragraphs, or a pharmaceutically acceptable salt thereof, wherein Z is: wherein A 5 , A 6 , R Z1 , R Z2 and R Zi2b are as defined in any one of the preceding paragraphs.

Paragraph 22. A compound according to any one of the preceding paragraphs, or a pharmaceutically acceptable salt thereof, wherein A 6 is CR 17 and wherein R 17 is selected from selected from hydrogen, halo, cyano, C 1-5 alkyl, C 1-4 haloalkyl, C 1-4 alkoxy, C 1-4 haloalkoxy, C 2-4 alkenyl, C 2-4 alkynyl, phenyl, a 5- or 6-membered or heteroaryl, C 3- 6 cycloalkyl, -O-C 3-6 cycloalkyl, heterocyclyl, -O-heterocyclyl (carbon-linked), - (OCH 2 CH 2 )m-OCH 3 wherein m is an integer from 1 to 6, NR q R r , wherein R q and R r are each independently hydrogen, C 1-4 alkyl, C 3-6 cycloalkyl, a 3- to 6- membered carbon- linked heterocyclyl, or R q and R r are linked together such that, together with the nitrogen atom to which they are attached, they form a 3- to 6-membered heterocyclic ring; wherein any C 1-5 alkyl, C 1-4 alkoxy, C 2-4 alkenyl, C 2-4 alkynyl , phenyl, 5- or 6-membered or heteroaryl, C 3-6 cycloalkyl, -O-C 3-6 cycloalkyl, heterocyclyl or -O-heterocyclyl (carbon- linked) is optionally further subsitutued by one or more substituents selected from C 1- 2 alkyl, cyano, C 1-2 haloalkyl, hydroxy, C 1-2 alkoxy, halo, C 1-2 haloalkoxy, NR 1ea R 1fa or - S(O) 0-2 R 1ea R 1fa , wherein R 1ea and R 1fa are H or C 1-2 alkyl.

Paragraph 23. A compound according to paragraph 21, or a pharmaceutically acceptable salt thereof, wherein R 17 is is selected from hydrogen, halo, C 1-4 alkoxy or C 1- 4 haloalkoxy.

Paragraph 24. A compound according to paragraph 21, or a pharmaceutically acceptable salt thereof, wherein A 5 is R 16 , and R 16 is selected from hydrogen, halo, cyano and C 1-4 alkyl.

Paragraph 25. A compound according to any one of the preceding paragraphs, or a pharmaceutically acceptable salt thereof, wherein Z is selected from:

Paragraph 26. A compound according to paragraph 1, or a pharmaceutically acceptable salt thereof, wherein:

X is

Y is selected from and ; and

Z is selected from:

wherein

(i) R 1a , R 1a’ , R 1b , and R 2a are as defined in any one of the preceding paragraphs;

(ii) R 3a1 , R 3a2 , R 3i1 , R 3i2 , R 3l1 , R 3l2 , R 3r1 , R 3r2 , are as defined in any one of the preceding paragraphs;

(iii) A 5 , A 6 , A 7 , R 8 , R 9 , R 10 , R 11 , R Z1 , R Z2 , R Zi2b , R Z10 , R Z12 , R Z13 , R Z14 , R Z15 , R Z16 , R Y5N ,

R Z2a , R Z3a , and R Zi2e are as defined in any one of the preceding paragraphs. Paragraph 27. A compound according to paragraph 26, or a pharmaceutically acceptable salt thereof, wherein: Y is o X r ; and

Z is selected from: and wherein

(i) R 1a , R 1a’ , R 1b , and R 2a are as defined in any one of the preceding paragraphs;

(ii) R 3a1 , R 3a2 , R 3i1 , R 3i2 , R 3l1 , R 3l2 , R 3r1 , R 3r2 , are as defined in any one of the preceding paragraphs;

(iii) R 8 , R 10 , R 17 , R 18 and R z1 , are as defined in any one of the preceding paragraphs.

Paragraph 28. A compound according to paragraph 26, or a pharmaceutically acceptable salt thereof, wherein:

wherein: (i) R 1a , R 1a’ , R 1b , and R 2a are as defined in any one of the preceding paragraphs;

(ii) R 3a1 , R 3a2 , R 3i1 and R 3i2 are as defined in any one of the preceding paragraphs;

(iii) A 5 , A 6 , R Z1 , R Z2 and R zi1b are as defined in any one of the preceding paragraphs. Paragraph 29. A compound according to paragraph 26, or a pharmaceutically acceptable salt thereof, wherein:

X is:

Z is selected from: wherein

(i) R 1a , R 1a’ , R 1b , and R 2a are as defined in any preceding paragraph;

(ii) R 3a1 , R 3a2 , R 3i1 and R 3i2 are as defined in any preceding paragraph;

(iii) R 8 is selected from cyano, -CH 2 OCH 3 , -CH 2 SO 2 CH 3 , -SO 2 CH 3 , -NHC(O)CH 3 and -C(O)NR v1 R v2 , wherein R v1 and R v2 are independently selected from hydrogen and methyl, , R 9 and R 11 are as defined in any preceding paragraph; R 10 is C 1-4 alkoxy or C 1-4 haloalkoxy.

Paragraph 30. A compound, or a pharmaceutically acceptable salt thereof, and, in particular, selecyted from:

N-[(6-{[(cyclohexylmethyl)amino]methyl}imidazo[1,2-a]pyri din-2-yl)methyl]-1,2-dimethyl-6- oxo-1,6-dihydropyrimidine-4-carboxamide;

N-({6-methylimidazo[1,2-a]pyridin-2-yl}methyl)-4-oxo-4H-q uinolizine-2-carboxamide;

N-[(6-{[(cyclohexylmethyl)amino]methyl}imidazo[1,2-a]pyri din-2-yl)methyl]-4-oxo-4H- quinolizine-2-carboxamide; N-[(6-{[(cyclohexylmethyl)amino]methyl}imidazo[1,2-a]pyridin -2-yl)methyl]quinoxaline-2- carboxamide;

N-[(6-{[(cyclohexylmethyl)amino]methyl}imidazo[1,2-a]pyri din-2-yl)methyl]-1H-pyrazolo[3,4- b]pyridine-4-carboxamide;

N-[(6-{[(cyclohexylmethyl)amino]methyl}imidazo[1,2-a]pyri din-2-yl)methyl]quinoline-3- carboxamide;

N-[(6-{[(cyclobutylmethyl)amino]methyl}imidazo[1,2-a]pyri din-2-yl)methyl]imidazo[1,5- a]pyridine-8-carboxamide;

N-[(6-{[(cyclobutylmethyl)amino]methyl}imidazo[1,2-a]pyri din-2-yl)methyl]imidazo[1,5- a]pyridine-5-carboxamide;

N-[(6-{[(cyclobutylmethyl)amino]methyl}imidazo[1,2-a]pyri din-2-yl)methyl]-3H-imidazo[4,5- b]pyridine-6-carboxamide;

N-[(6-{[(cyclobutylmethyl)amino]methyl}imidazo[1,2-a]pyri din-2-yl)methyl]-1H-pyrrolo[2,3- b]pyridine-5-carboxamide;

N-{[6-({[(3,3-difluorocyclobutyl)methyl]amino}methyl)imid azo[1,2-a]pyridin-2-yl]methyl}-1H- pyrrolo[2,3-b]pyridine-5-carboxamide;

N-[(6-{[(cyclobutylmethyl)amino]methyl}imidazo[1,2-a]pyri din-2-yl)methyl]-1-methyl-1H- pyrrolo[2,3-b]pyridine-5-carboxamide

N-[(6-{[(cyclobutylmethyl)amino]methyl}imidazo[1,2-a]pyri din-2-yl)methyl]-1H-indole-5- carboxamide;

N-[(6-{[(cyclobutylmethyl)amino]methyl}imidazo[1,2-a]pyri din-2-yl)methyl]-5H-pyrrolo[2,3- b]pyrazine-2-carboxamide;

N-[(6-{[({3-fluorobicyclo[1.1.1]pentan-1-yl}methyl)amino] methyl}imidazo[1,2-a]pyridin-2- yl)methyl]-5-oxo-5H-[1,3]thiazolo[3,2-a]pyrimidine-7-carboxa mide;

4-[1-[(6-methylimidazo[1,2-a]pyridin-2-yl)methyl]triazol- 4-yl]isoquinoline;

1-({6-methylimidazo[1,2-a]pyridin-2-yl}methyl)-4-{1H-pyrr olo[2,3-b]pyridin-5-yl}-1H-1,2,3- triazole;

(cyclobutylmethyl)({2-[(4-{6-methoxyimidazo[1,5-a]pyridin -8-yl}-1H-1,2,3-triazol-1- yl)methyl]imidazo[1,2-a]pyridin-6-yl}methyl)amine;

(cyclobutylmethyl)({2-[(4-{imidazo[1,5-a]pyridin-8-yl}-1H -1,2,3-triazol-1-yl)methyl]imidazo[1,2- a]pyridin-6-yl}methyl)amine;

({2-[(4-{6-chloroimidazo[1,5-a]pyridin-8-yl}-1H-1,2,3-tri azol-1-yl)methyl]imidazo[1,2-a]pyridin- 6-yl}methyl)(cyclobutylmethyl)amine;

(cyclobutylmethyl)({2-[(4-{1-fluoroimidazo[1,5-a]pyridin- 8-yl}-1H-1,2,3-triazol-1- yl)methyl]imidazo[1,2-a]pyridin-6-yl}methyl)amine;

({3-fluorobicyclo[1.1.1]pentan-1-yl}methyl)({2-[(4-{6-met hoxyimidazo[1,5-a]pyridin-8-yl}-1H- 1,2,3-triazol-1-yl)methyl]imidazo[1,2-a]pyridin-6-yl}methyl) amine; (cyclobutylmethyl)({2-[(4-{[1,2,4]triazolo[4,3-a]pyridin-8-y l}-1H-1,2,3-triazol-1- yl)methyl]imidazo[1,2-a]pyridin-6-yl}methyl)amine;

({bicyclo[1.1.1]pentan-1-yl}methyl)({2-[(4-{6-methoxyimid azo[1,5-a]pyridin-8-yl}-1H-1,2,3- triazol-1-yl)methyl]imidazo[1,2-a]pyridin-6-yl}methyl)amine;

2-({2-[(4-{imidazo[1,5-a]pyridin-8-yl}-1H-1,2,3-triazol-1 -yl)methyl]imidazo[1,2-a]pyridin-6- yl}methyl)-2-azaspiro[3.3]heptane;

2-({2-[(4-{6-methoxyimidazo[1,5-a]pyridin-8-yl}-1H-1,2,3- triazol-1-yl)methyl]imidazo[1,2- a]pyridin-6-yl}methyl)-2-azaspiro[3.3]heptane;

N-(cyclobutylmethyl)-1-[2-[[4-(4-isoquinolyl)triazol-1-yl ]methyl]imidazo[1,2-a]pyridin-6- yl]methanamine; bis(cyclobutylmethyl)[(2-{[4-(isoquinolin-4-yl)-1H-1,2,3-tri azol-1-yl]methyl}imidazo[1,2- a]pyridin-6-yl)methyl]amine;

(cyclobutylmethyl)({2-[(4-{1H-pyrrolo[2,3-b]pyridin-5-yl} -1H-1,2,3-triazol-1- yl)methyl]imidazo[1,2-a]pyridin-6-yl}methyl)amine;

(cyclobutylmethyl)({2-[(4-{1H-pyrrolo[2,3-b]pyridin-5-yl} -1H-imidazol-1-yl)methyl]imidazo[1,2- a]pyridin-6-yl}methyl)amine; cyclobutylmethyl)({2-[(4-{imidazo[1,5-a]pyridin-5-yl}-1H-1,2 ,3-triazol-1-yl)methyl]imidazo[1,2- a]pyridin-6-yl}methyl)amine;

({3-fluorobicyclo[1.1.1]pentan-1-yl}methyl)({2-[(4-{3-met hylimidazo[1,5-a]pyridin-8-yl}-1H- 1,2,3-triazol-1-yl)methyl]imidazo[1,2-a]pyridin-6-yl}methyl) amine;

3-{1-[(6-{[({bicyclo[1.1.1]pentan-1-yl}methyl)amino]methy l}imidazo[1,2-a]pyridin-2-yl)methyl]- 1 H-1 ,2,3-triazol-4-yl}-5-methoxypyridine-2-carbonitrile;

3-{1-[(6-{[({3-fluorobicyclo[1.1.1]pentan-1-yl}methyl)ami no]methyl}imidazo[1,2-a]pyridin-2- yl)methyl]-1H-1,2,3-triazol-4-yl}-5-methoxypyridine-2-carbon itrile;

3-{1-[(6-{[(cyclobutylmethyl)amino]methyl}imidazo[1,2-a]p yridin-2-yl)methyl]-1H-1,2,3-triazol-

4-yl}-5-methoxypyridine-2-carbonitrile;

3-(1-{[6-({6-azaspiro[3.4]octan-6-yl}methyl)imidazo[1,2-a ]pyridin-2-yl]methyl}-1H-1,2,3- triazol-4-yl)-5-methoxypyridine-2-carbonitrile;

3-[1-({6-[(4,4-dimethylpiperidin-1-yl)methyl]imidazo[1,2- a]pyridin-2-yl}methyl)-1H-1,2,3- triazol-4-yl]-5-methoxypyridine-2-carbonitrile.

Paragraph 31. A pharmaceutical composition comprising a compound according to any one of paragraphs 1 to 30, or a pharmaceutically acceptable salt thereof, and one or more pharmaceutically acceptable excipients. Paragraph 32. A compound according to any one of paragraphs 1 to 30, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition according to paragraph 31 , for use in therapy.

Paragraph 33. A compound according to any one of paragraphs 1 to 30, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition according to paragraph 31 , for use in the treatment of a proliferative condition.

Paragraph 34. A compound according to any one of paragraphs 1 to 30, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition according to paragraph 31 , for use in the treatment of cancer.

Paragraph 35. A compound according to any one of paragraphs 1 to 30, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition according to paragraph 31 , for use in the treatment of leukaemia.

Paragraph 36. A compound according to any one of paragraphs 1 to 30, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition according to paragraph 31 , for use in the treatment of AML leukaemia or chronic myeloid leukaemia.

Paragraph 37. A compound according to any one of paragraphs 1 to 30, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition according to paragraph 31, for use in the inhibition of METTL3 activity.

Paragraph 38. A compound according to any one of paragraphs 1 to 30, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition according to paragraph 31, for use in the treatment of an autoimmune disease, a neurological disease, an inflammatory disease or an infectious disease.

Paragraph 39. Use of a compound according to any one of paragraphs 1 to 30, or a pharmaceutically acceptable salt thereof, in the manufacture of a medicament for the treatment of a proliferative condition.

Paragraph 40. Use of a compound according to any one of paragraphs 1 to 30, or a pharmaceutically acceptable salt thereof, in the manufacture of a medicament for the treatment of cancer. Paragraph 41. Use of a compound according to any one of paragraphs 1 to 30, or a pharmaceutically acceptable salt thereof, in the manufacture of a medicament for the treatment of leukaemia.

Paragraph 42. Use of a compound according to any one of paragraphs 1 to 30, or a pharmaceutically acceptable salt thereof, in the manufacture of a medicament for the treatment of AML leukaemia or chronic myeloid leukaemia.

Paragraph 43. Use of a compound according to any one of paragraphs 1 to 30, or a pharmaceutically acceptable salt thereof, in the manufacture of a medicament for the treatment of an autoimmune disease, a neurological disease, an inflammatory disease or an infectious disease.

Paragraph 44. Use of a compound according to any one of paragraphs 1 to 30, or a pharmaceutically acceptable salt thereof, in the manufacture of a medicament for the inhibition of METTL3 activity.

Paragraph 45. A method of treating a proliferative disorder, said method comprising administering to a subject in need thereof a therapeutically effective amount of a compound according to any one of paragraphs 1 to 30, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition according to paragraph 31.

Paragraph 46. A method of treating cancer, said method comprising administering to a subject in need thereof a therapeutically effective amount of a compound according to any one of paragraphs 1 to 30, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition according to paragraph 31.

Paragraph 47. A method of treating leukaemia, said method comprising administering to a subject in need thereof a therapeutically effective amount of a compound according to any one of paragraphs 1 to 30, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition according to paragraph 31.

Paragraph 48. A method of treating AML leukaemia or chronic myeloid leukaemia, said method comprising administering to a subject in need thereof a therapeutically effective amount of a compound according to any one of 1 to 30, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition according to paragraph 31. Paragraph 49. A method of treating an autoimmune disease, a neurological disease, an inflammatory disease or an infectious disease, said method comprising administering to a subject in need thereof a therapeutically effective amount of a compound according to any one of paragraphs 1 to 30, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition according to paragraph 31.

Paragraph 50. A method of inhibiting METTL3 activity in vitro or in vivo, said method comprising contacting a cell with an effective amount of a compound according to any one of paragraphs 1 to 30, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition according to paragraph 31.

Paragraph 51. A method of inhibiting metastasis in vitro or in vivo, said method comprising contacting a cell with an effective amount of a compound according to any one paragraphs 1 to 30, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition according to paragraph 31.

Paragraph 52. A combination comprising a compound according to any one of paragraphs 1 to 30, or a pharmaceutically acceptable salt there, with one or more additional therapeutic agents.