Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
MICROBIAL ERGOTHIONEINE BIOSYNTHESIS
Document Type and Number:
WIPO Patent Application WO/2022/174177
Kind Code:
A1
Abstract:
The present disclosure relates to engineered microbial host cells comprising exogenous genes coding for proteins responsible for converting histidine and cysteine into ergothioneine in greater efficiency than the wild-type cells. Also provided in this disclosure are methods for producing ergothioneine using the engineered microbial host cells of the present disclosure.

Inventors:
HAN JIXIANG (US)
CLARKSON SONYA (US)
NUNN DAVID (US)
Application Number:
PCT/US2022/016404
Publication Date:
August 18, 2022
Filing Date:
February 15, 2022
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
CONAGEN INC (US)
International Classes:
A61K31/4172; C12N1/20; C12N9/02; C12N9/88; C12P13/04
Foreign References:
US10544437B22020-01-28
Other References:
BORODINA IRINA ET AL: "The biology of ergothioneine, an antioxidant nutraceutical", NUTRITION RESEARCH REVIEWS, vol. 33, no. 2, 1 December 2020 (2020-12-01), GB, pages 190 - 217, XP055922049, ISSN: 0954-4224, Retrieved from the Internet DOI: 10.1017/S0954422419000301
TANAKA NAOYUKI ET AL: "Gram-scale fermentative production of ergothioneine driven by overproduction of cysteine in Escherichia coli", SCIENTIFIC REPORTS, vol. 9, no. 1, 1 December 2019 (2019-12-01), pages 1895, XP055922144, Retrieved from the Internet DOI: 10.1038/s41598-018-38382-w
REECK ET AL., CELL, vol. 50, 1987, pages 667
SAMBROOK, J.FRITSCH, E. F.MANIATIS, T.: "Molecular Cloning: A Laboratory Manual", 1989, COLD SPRING HARBOR LABORATORY
SILHAVY, T. J.BENNAN, M. L.ENQUIST, L. W.: "Experiments with Gene Fusions", 1984, COLD SPRING HARBOR LABORATORY
AUSUBEL, F. M. ET AL.: "Current Protocols in Molecular Biolog", 1987, GREENE PUBLISHING AND WILEY-INTERSCIENCE
IVERSON, ACS SYNTH. BIOL., vol. 5, 2016, pages 99 - 103
LIU ET AL.: "Enhancement of Sulfur Conversion Rate in the Production of L-Cysteine by Engineered Escherichia coli", J. AGRIC. FOOD CHEM., vol. 68, 2020, pages 250 - 257
TANAKA ET AL.: "Gram-scale fermentative production of ergothioneine driven by overproduction of cysteine in Escherichia coli", SCIENTIFIC REPORTS, vol. 9, 2020
Attorney, Agent or Firm:
GE, Zhiyun et al. (US)
Download PDF:
Claims:
CLAIMS

What is claimed is:

1. An engineered microbial host cell capable of producing ergothioneine, wherein the host cell comprises a) a first exogenous nucleic acid sequence coding for an Egtl enzyme capable of converting L-histidine and/or L-cysteine to hercynylcysteine sulfoxide; b) a second exogenous nucleic acid sequence coding for an Egt2 enzyme capable of converting hercynylcystenie sulfoxide to 2-sulfenohercynine; and c) a third exogenous nucleic acid sequence coding for a methionine transporter having at least 70% amino acid sequence identity to SEQ ID NO: 96.

2. The engineered microbial host cell of claim 1, wherein the methionine transporter is a YjeH protein comprising the amino acid sequence set forth in SEQ ID NO: 96.

3. The engineered microbial host cell of claim 1 or claim 2, wherein the third exogenous nucleic acid sequence has at least 70% sequence identity to SEQ ID NO: 95.

4. The engineered microbial host cell of any one of claims 1-3, wherein the third exogenous nucleic acid sequence comprises the nucleic acid sequence of SEQ ID NO: 95.

5. The engineered microbial host cell of any one of claims 1-4, wherein the first exogenous nucleic acid sequence encodes a heterologous enzyme Egtl comprising an amino acid sequence having at least 70% sequence identity to SEQ ID NO: 18.

6. The engineered microbial host cell of claim 5, wherein the heterologous enzyme Egtl comprises the amino acid sequence of SEQ ID NO: 18.

7. The engineered microbial host cell of any one of claims 1-6, wherein the second exogenous nucleic acid sequence encodes a heterologous enzyme Egt2 comprising an amino acid sequence having at least 70% identity to SEQ ID NO: 90.

8. The engineered microbial host cell of claim 7, wherein the heterologous enzyme Egt2 comprises the amino acid sequence of SEQ ID NO: 90.

9. The engineered microbial host cell of any one of claims 1-8, wherein the first exogenous nucleic acid sequence encodes a heterologous enzyme Egtl comprising the amino acid sequence of SEQ ID NO: 18 and the second exogenous nucleic acid sequence encodes a heterologous enzyme Egt2 comprising the amino acid sequence of SEQ ID NO: 90.

10. The engineered microbial host cell of any one of claims 1-9, wherein the first exogenous nucleic acid sequence comprises the nucleic acid sequence of SEQ ID NO: 17 and the second exogenous nucleic acid sequence comprises the nucleic acid sequence of SEQ ID NO: 89.

11. The engineered microbial host cell for any one of claims 1-4, wherein the first exogenous nucleic acid sequence encodes a heterologous enzyme Egtl comprising an amino acid sequence having at least 70% sequence identity to SEQ ID NO: 20.

12. The engineered microbial host cell of claim 11, wherein the heterologous enzyme Egtl comprises the amino acid sequence of SEQ ID NO: 20.

13. The engineered microbial host cell of claim 11 or claim 12, wherein the second exogenous nucleic acid sequence encodes a heterologous enzyme Egt2 comprising an amino acid sequence having at least 70% identity to SEQ ID NO: 90.

14. The engineered microbial host cell of claim 13, wherein the heterologous enzyme Egt2 comprises the amino acid sequence of SEQ ID NO: 90.

15. The engineered microbial host cell of any one of claims 11-14, wherein the first exogenous nucleic acid sequence encodes a heterologous enzyme Egtl comprising the amino acid sequence of SEQ ID NO: 20 and the second exogenous nucleic acid sequence encodes a heterologous enzyme Egt2 comprising the amino acid sequence of SEQ ID NO: 90.

16. The engineered microbial host cell of any one of claims 11-15, wherein the first exogenous nucleic acid sequence comprises the nucleic acid sequence of SEQ ID NO: 19 and the second exogenous nucleic acid sequence comprises the nucleic acid sequence of SEQ ID NO: 89.

17. The engineered microbial host cell for any one of claims 1-4, wherein the first exogenous nucleic acid sequence encodes a heterologous enzyme Egtl comprising an amino acid sequence having at least 70% sequence identity to SEQ ID NO: 138.

18. The engineered microbial host cell of claim 17, wherein the heterologous enzyme Egtl comprises the amino acid sequence of SEQ ID NO: 138.

19. The engineered microbial host cell of claim 17 or claim 18, wherein the second exogenous nucleic acid sequence encodes a heterologous enzyme Egt2 comprising an amino acid sequence having at least 70% identity to SEQ ID NO: 4.

20. The engineered microbial host cell of claim 19, wherein the heterologous enzyme Egt2 comprises the amino acid sequence of SEQ ID NO: 4.

21. The engineered microbial host cell of any one of claims 17-20, wherein the first exogenous nucleic acid sequence encodes a heterologous enzyme Egtl comprising the amino acid sequence of SEQ ID NO: 138 and the second exogenous nucleic acid sequence encodes a heterologous enzyme Egt2 comprising the amino acid sequence of SEQ ID NO: 4.

22. The engineered microbial host cell of any one of claims 17-21, wherein the first exogenous nucleic acid sequence comprises the nucleic acid sequence of SEQ ID NO:

137 and the second exogenous nucleic acid sequence comprises the nucleic acid sequence of SEQ ID NO: 3.

23. The engineered microbial host cell of any one of claims 1-22, wherein the first exogenous nucleic acid sequence and the second exogenous nucleic acid sequence are on a self-replicating plasmid.

24. The engineered microbial host cell of any one of claims 1-23, wherein the first exogenous nucleic acid sequence and the second exogenous nucleic acid sequence are integrated into the host chromosomal DNA.

25. The engineered microbial host cell of any one of claims 1-24, wherein the first exogenous nucleic acid sequence and the second exogenous nucleic acid sequence are under a constitutive promoter.

26. The engineered microbial host cell of any one of claims 1-25, wherein the first exogenous nucleic acid sequence and the second exogenous nucleic acid sequence are under an inducible promoter.

27. The engineered microbial host cell of any one of claims 1-26, wherein the host cell is a bacterial cell selected from a group consisting of Escherichia, Salmonella, Bacillus, Acinetobacter, Streptomyces, Corynebacterium, Methylosinus, Methylomona, Rhodococcus, Pseudomonas, Rhodobacter, Synechocystis, Arthrobotlys, Brevibacteria, Microbacterium, Arthrobacter, Citrobacter, Klebsiella, Pantoea, and Clostridium.

28. The engineered microbial host cell of any one of claims 1-27, wherein the host cell is a fungal cell selected from the group consisting of Saccharomyces, Zygosaccharomyces, Kluyveromyces, Candida, Hansenula, Debaryomyces, Mucor, Pichia, Torulopsis, and Aspergillus.

29. The engineered microbial host cell of any one of claims 1-28, wherein the host cell is an Escherichia coli cell.

30. The engineered microbial host cell of any one of claims 1-28, wherein the host cell is a Saccharomyces cerevisiae cell.

31. The engineered microbial host cell of any one of claims 1-28, wherein the host cell is a Pichia pastoris cell.

32. The engineered microbial host cell of any one of claims 1-31, further comprising a mutation in tnaA gene, wherein the mutation is deletion, frameshift or point mutation and wherein such mutation leads to decrease or elimination of tryptophanase activity, and wherein the tnaA gene comprises a nucleic acid sequence having at least 70% sequence identity to SEQ ID NO: 97.

33. The engineered microbial host cell of any one of claims 1-32, further comprising a mutation in sdaA gene, wherein the mutation is deletion, frameshift or point mutation and wherein the sdaA gene comprises a nucleic acid sequence having at least 70% sequence identity to SEQ ID NO: 99.

34. The engineered microbial host cell of any one of claims 1-33, further comprising a mutation in yhaM gene, wherein the mutation is deletion, frameshift or point mutation and wherein the yhaM gene comprises a nucleic acid sequence having at least 70% sequence identity to SEQ ID NO: 115.

35. The engineered microbial host cell of any one of claims 1-34, further comprising a mutation in one or more of genes associated with serine biosynthesis selected from the group consisting of serA gene with a nucleic acid sequence having at least 70% sequence identity to SEQ ID NO: 101; serB gene with a nucleic acid sequence having at least 70% sequence identity to SEQ ID NO: 102; and serC gene with a nucleic acid sequence having at least 70% sequence identity to SEQ ID NO: 105; wherein the mutation involves the use of a constitutively active promoter to upregulate the gene expression.

36. The engineered microbial host cell of any one of claims 1-35, further comprising a mutation in cysM gene coding for cysteine synthase A with an amino acid sequence having at least 70% sequence identity to SEQ ID NO: 108, wherein the mutation involves the use of a constitutively active promoter to upregulate the gene expression.

37. The engineered microbial host cell of any one of claims 1-36, further comprising a mutation in nrdH gene encoding a glutaredoxin-like protein having an amino acid sequence having at least 70% sequence identity to SEQ ID NO: 110, wherein the mutation involves the use of a constitutively active promoter to upregulate the gene expression.

38. The engineered microbial host cell of any one of claims 1-37, further comprising an exogenous cysE gene, wherein the cysE gene encodes a serine acetyltransferase comprising an amino acid sequence having at least 70% sequence identity to SEQ ID NO: 112.

39. The engineered microbial host cell of any one of claims 1 -38, further comprising an exogenous ydeE gene, wherein the ydeE gene encodes an EamA domain-containing protein comprising an amino acid sequence having at least 70% sequence identity to SEQ ID NO: 114.

40. The engineered microbial host cell of any one of claims 1-39, further comprising an exogenous cysB gene on a plasmid vector under an inducible promoter, wherein the cysB gene encodes a HTH-type transcriptional regulator comprising an amino acid sequence having at least 70% identity SEQ ID NO: 118.

41. The engineered microbial host cell of any one of claims 1-40, further comprising an exogenous gene encoding for a protein selected from a group consisting of CysA, CysP, CysT and CysW and wherein the transporter proteins CysA, CysP, CysT and CysW comprise amino acid sequence having at least 70% identity to SEQ ID NOS: 122, 124, 126 and 128 respectively.

42. The engineered microbial host cell of any one of claims 1-41, further comprising a mutation in metJ gene wherein the mutation is deletion, frameshift or point mutation and wherein the metJ gene comprises a nucleic acid sequence having at least 70% sequence identity to SEQ ID NO: 143.

43. The engineered microbial host cell of any one of claims 1-42, further comprising a mutation in metJ gene wherein the mutation is deletion, frameshift or point mutation and wherein the metJ gene comprises a nucleic acid sequence as in SEQ ID NO: 143.

44. A method for producing ergothioneine comprising:

(a) culturing an engineered microbial host cell capable of producing ergothioneine, wherein the host cell comprises a) a first exogenous nucleic acid sequence coding for an Egtl enzyme capable of converting L-histidine and/or L-cysteine to hercynylcysteine sulfoxide; b) a second exogenous nucleic acid sequence coding for an Egt2 enzyme capable of converting hercynylcystenie sulfoxide to 2- sulfenohercynine; and c) a third exogenous nucleic acid sequence coding for a methionine transporter having at least 70% amino acid sequence identity to SEQ ID NO: 96;

(b) expressing the Egtl enzyme, the Egt2 enzyme, and the methionine transporter;

(c) feeding the engineered microbial host cell at least one substrate selected from the group consisting of histidine, methionine, cysteine and combinations thereof; and

(d) collecting ergothioneine.

45. The method of claim 44, wherein the methionine transporter is a YjeH protein comprising the amino acid sequence set forth in SEQ ID NO: 96.

46. The method of claim 44 or claim 45, wherein the third exogenous nucleic acid sequence has at least 70% sequence identity to SEQ ID NO: 95.

47. The method of any one of claims 44-46, wherein the third exogenous nucleic acid sequence comprises the nucleic acid sequence of SEQ ID NO: 95.

48. The method of any one of claims 44-47, wherein the first exogenous nucleic acid sequence encodes a heterologous enzyme Egtl comprising an amino acid sequence having at least 70% sequence identity to SEQ ID NO: 18.

49. The method of claim 48, wherein the heterologous enzyme Egtl comprises the amino acid sequence of SEQ ID NO: 18.

50. The method of any one of claims 44-49, wherein the second exogenous nucleic acid sequence encodes a heterologous enzyme Egt2 comprising an amino acid sequence having at least 70% identity to SEQ ID NO: 90.

51. The method of claim 50, wherein the heterologous enzyme Egt2 comprises the amino acid sequence of SEQ ID NO: 90.

52. The method of any one of claims 44-51, wherein the first exogenous nucleic acid sequence encodes a heterologous enzyme Egtl comprising the amino acid sequence of SEQ ID NO: 18 and the second exogenous nucleic acid sequence encodes a heterologous enzyme Egt2 comprising the amino acid sequence of SEQ ID NO: 90.

53. The method of claim 52, wherein the first exogenous nucleic acid sequence comprises the nucleic acid sequence of SEQ ID NO: 17 and the second exogenous nucleic acid sequence comprises the nucleic acid sequence of SEQ ID NO: 89.

54. The method of any one of claims 44-47, wherein the first exogenous nucleic acid sequence encodes a heterologous enzyme Egtl comprising an amino acid sequence having at least 70% sequence identity to SEQ ID NO: 20.

55. The method of claim 54, wherein the heterologous enzyme Egtl comprises the amino acid sequence of SEQ ID NO: 20.

56. The method of claim 54 or claim 55, wherein the second exogenous nucleic acid sequence encodes a heterologous enzyme Egt2 comprising an amino acid sequence having at least 70% identity to SEQ ID NO: 90.

57. The method of claim 56, wherein the heterologous enzyme Egt2 comprises the amino acid sequence of SEQ ID NO: 90.

58. The method of any one of claims 54-57, wherein the first exogenous nucleic acid sequence encodes a heterologous enzyme Egtl comprising the amino acid sequence of SEQ ID NO: 20 and the second exogenous nucleic acid sequence encodes a heterologous enzyme Egt2 comprising the amino acid sequence of SEQ ID NO: 90.

59. The method of claim 58, wherein the first exogenous nucleic acid sequence comprises the nucleic acid sequence of SEQ ID NO: 19 and the second exogenous nucleic acid sequence comprises the nucleic acid sequence of SEQ ID NO: 89.

60. The method of any one of claims 44-47, wherein the first exogenous nucleic acid sequence encodes a heterologous enzyme Egtl comprising an amino acid sequence having at least 70% sequence identity to SEQ ID NO: 138.

61. The method of claim 60, wherein the heterologous enzyme Egtl comprises the amino acid sequence of SEQ ID NO: 138.

62. The method of any one of claim 60 or claim 61, wherein the second exogenous nucleic acid sequence encodes a heterologous enzyme Egt2 comprising an amino acid sequence having at least 70% identity to SEQ ID NO: 4.

63. The method of claim 62, wherein the heterologous enzyme Egt2 comprises the amino acid sequence of SEQ ID NO: 4.

64. The method of any one of claims 60-63, wherein the first exogenous nucleic acid sequence encodes a heterologous enzyme Egtl comprising the amino acid sequence of SEQ ID NO: 138 and the second exogenous nucleic acid sequence encodes a heterologous enzyme Egt2 comprising the amino acid sequence of SEQ ID NO: 4.

65. The method of claim 64, wherein the first exogenous nucleic acid sequence comprises the nucleic acid sequence of SEQ ID NO: 137 and the second exogenous nucleic acid sequence comprises the nucleic acid sequence of SEQ ID NO: 3.

Description:
MICROBIAL ERGOTHIONEINE BIOSYNTHESIS

RELATED APPLICATION

[001] This application claims the benefit under 35 U.S.C. § 119(e) to U.S. Provisional Application No. 63/200,115, entitled “MICROBIAL ERGOTHIONEINE BIOSYNTHESIS”, filed on February 15, 2021; the contents of which are incorporated herein by reference in their entirety.

REFERENCE TO SEQUENCE LISTING SUBMITTED AS A TEXT FILE VIA EFS-WEB

[002] The application contains a sequence listing which has been submitted in ASCII format via EFS-Web and is hereby incorporated by reference in its entirety. Said ASCII copy, created on February 14, 2022, is named C149770048WO00-SEQ-ZJG and is 494.533 bytes in size.

FIELD OF INVENTION

[003] The present invention relates to a method of producing ergothioneine using engineered microbial host cells. This invention provides methods for constructing engineered microbial host cells useful in ergothioneine production. The invention also relates to recombinant nucleic acid constructs including vectors and recombinant host cells comprising the recombinant nucleic acid constructs useful in ergothioneine production.

BACKGROUND

[004] Ergothioneine is a trimethylated and sulphurized histidine derivative that can be found in many unicellular and multicellular organisms. Its biosynthesis, however, occurs only in certain bacteria belonging to mycobacteria, methylobacteria, cyanobacteria and fungi such as Neurospora crassa. Other bacteria such as Bacillus, Corynebacterium, Escherichia, Lactobacillus, Pseudomonas, Streptococcus, and Vibrio and other fungi belonging to the groups Ascomycetes and Deuteromycetes cannot synthesize ergothioneine. Animals also do not have the capacity to synthesize ergothioneine and they depend on dietary sources. The higher plants acquire ergothioneine from their environment.

[005] Ergothioneine exists predominantly in its thione form with high redox potential (—60 mV) at physiological pH. Thus, unlike other thiol antioxidants such as glutathione, ergothioneine is characterized by its slow degradation and resistance to disulfide formation under physiological conditions. Ergothioneine is preferentially accumulated in certain cells and tissues such as liver, kidney, central nervous system, bone marrow and blood cells, which are often predisposed to high levels of oxidative stress and inflammation. Several lines of evidence in vitro and in vivo show that ergothioneine acts as an antioxidant, cation chelator, bioenergetics factor, and immune regulator. Thus, ergothioneine may play a role in mitigating inflammatory, cardiovascular disease, cognitive impairment, depression, dementia and other epiphenomena of aging. There is a growing interest in genetically engineering microbial host cells to produce ergothioneine in commercial quantities for pharmaceutical and nutraceutical applications in humans.

[006] Mushrooms are traditionally considered as a source for ergothioneine production. However, their slow growth, low content of ergothioneine and time-consuming purification procedures lead to a high manufacturing cost. Therefore, alternative and sustainable sources of ergothioneine are necessary. One such reliable and practical method is a fermentation process using ergothioneine-producing microbes such as mycobacteria and cyanobacteria. But their ergothioneine productivities are very low (1.18 mg/g of dry mass after 4 weeks of cultivation of Mycobacterium avium and 0.8 mg/g of dry mass of Oscillatoria sp.). Thus, genetic and metabolic engineering involving microorganisms traditionally used in industrial fermentation is necessary for commercial scale production of ergothioneine. So far, several such efforts have been made, but the titer for ergothioneine production in those systems are still low.

SUMMARY

[007] Described herein ware methods for ergothioneine production by using a combination of bioinformatics and synthetic biology. An ergothioneine biosynthetic pathway was constructed in a host organism to produce ergothioneine suitable for industrial scale production.

[008] The present disclosure provides, among other things, a method for producing ergothioneine using genetically engineered microorganisms. The genetically engineered microorganisms according to the present disclosure has the ability to produce ergothioneine by using the amino acids produced internally within the genetically engineered microorganisms or by using the amino acids added to the growth medium. In a preferred embodiment, the present disclosure provides genetically engineered microorganisms with the ability to produce ergothioneine without the need for exogenously supplied amino acid.

[009] In one embodiment, the present disclosure provides methods for introducing ergothioneine biosynthetic pathway into an industrially useful microorganism which does not have any genes coding for proteins functional in ergothioneine biosynthetic pathway. The industrially useful microorganism suitable for the present disclosure includes a number of bacterial and fungal species. The list of bacterial species suitable for the present disclosure includes, but not limited to, Escherichia, Salmonella, Bacillus, Acinetobacter, Streptomyces, Corynebacterium, Methylosinus; Methylomonas, Rhodococcus, Pseudomonas, Rhodobacter, Synechocystis, Arthrobotlys, Brevibacteria, Microbacterium, Arthrobacte, Citrobacter, Klebsiella, Pantoea, and Clostridium. The list of fungal species suitable for the present disclosure includes, but not limited to, Saccharomyces, Zygosaccharomyces, Kluyveromyces, Candida, Hansenula, Debaryomyces, Mucor, Pichia, Torulopsis, and Aspergillus.

[010] The genes suitable for building an ergothioneine pathway with an industrially useful microorganism can be derived from bacterial and fungal species reported to have the natural ability to produce ergothioneine. In one aspect of the present disclosure, the bacterial genes coding for proteins reported to be involved in the ergothioneine biosynthesis in bacterial cells including, but not limited, EgtB, EgtC, EgtD, and EgtE are introduced into a microorganism which, to begin with, does not have any genes coding for ergothioneine biosynthesis. In another aspect of the present disclosure, the fungal genes coding for proteins reported to be involved in the ergothioneine biosynthesis including, but not limited, Egtl, Egt2 and variants thereof are introduced into a microorganism which, to begin with, does not have any genes coding for ergothioneine biosynthesis. In yet another aspect of the present disclosure, the anaerobic bacterial genes coding for proteins reported to be involved in the ergothioneine biosynthesis including, but not limited, EnaA, EnaB and variants thereof are introduced into a microorganism which, to begin with, does not have any genes coding for ergothioneine biosynthesis. In a preferred aspect, the present disclosure introduces two different fungal genes, namely egtl and egt2 coding for proteins Egtl and Egt2 proteins respectively involved in ergothioneine biosynthesis, into a microorganism which, to begin with, does not have any genes coding for ergothioneine biosynthesis. The fungal genes coding for ergothioneine biosynthesis are obtained from different species and the selection of individual enzyme is based on higher enzymatic activity for that particular enzyme as well as the combined activity of both enzymes.

[Oil] In an embodiment, the present disclosure provides a screening method for selecting fungal genes coding Egtl and Egt2 proteins for building an ergothioneine biosynthetic pathway in an industrially useful microorganism which, to begin with, does not have any genes coding for ergothioneine biosynthesis. In one aspect of this embodiment, the nucleotide sequence of a fungal gene coding for Egtl protein involved in ergothioneine pathway is used to conduct a blast search in the nucleotide database to identify homologous genes and a pool of genes coding for Egtl protein is identified. In the same way, the nucleotide sequence of a fungal gene coding for Egt2 protein involved in ergothioneine pathway is used to conduct a blast search in the nucleotide database to identify homologous genes and a pool of genes coding for Egt2 protein is identified. The members of the gene pools coding for Egtl or Egt2 proteins are used in a number of different combinations to transform an industrially useful microorganism and the transformants are assayed for the relative ergothioneine production to identify the highly efficient Egtl and Egt2 proteins. In a preferred aspect of the present disclosure, the screening for the efficient Egtl and Egt2 proteins is conducted in two steps. In the first step of the screening, the nucleotide sequence of the fungal gene coding for the Egtl protein used in the initial screening step is cloned into a plasmid vector along with one of the nucleotide sequence coding for Egt2 protein selected from the pool of genes for Egt2 protein and the resulting plasmid is used to transform an industrially useful microorganism. The transformants are assayed for the level of ergothioneine production. The transformants having higher ergothioneine production are selected as having the nucleotide sequence coding for Egt2 protein with high level of enzyme activity and are grouped under Tier 1 nucleotide sequence coding for Egt2 protein. In the same way the nucleotide sequence of the fungal gene coding for the Egt2 protein used in the initial screening step is cloned into a plasmid vector along with one of the nucleotide sequence coding for Egtl protein selected from the pool of genes for Egtl protein and the resulting plasmid is used to transform an industrially useful microorganism. The transformants are assayed for the level of ergothioneine production. The transformants having higher ergothioneine production are selected as having the nucleotide sequence coding for Egtl protein with high level of enzyme activity and are grouped under Tier 1 nucleotide sequence coding for Egtl protein.

[012] In the second level of screening, a set of nucleotide sequences coding for Egtl protein with high level of activity selected from Tier 1 are combined with a set of nucleotide sequences coding for Egt2 protein with high level of activity to come out with a defined number of permutations. For example, when four nucleotide sequences coding for Egtl protein are combined with four nucleotide sequences coding for Egt2 protein in a permutation complex, sixteen different Egtl-Egt2 pairings are possible. The nucleotide sequence coding for Egtl protein and the nucleotide sequence coding for Egt2 protein in each of the pair is cloned into a plasmid expression vector and used to transform an industrially useful microbial cell. The resulting transformants are screened for ergothioneine production. The transformant showing the highest ergothioneine production is considered to have the Egtl and Egt2 protein with highest level of enzyme activity in combination. [013] In one aspect of this embodiment, once a best performing ergothioneine strain is identified through plasmid transformation, the corresponding nucleotide sequences coding for Egtl and Egt2 proteins are integrated into the host chromosomal DNA to achieve stable integration and to avoid using antibiotics in the growth medium to maintain the self-replicating plasmid. In one aspect of this embodiment, the nucleotide sequences coding for Egtl and Egt2 proteins are under the control of a constitutively active promoter. In another aspect of this embodiment, the nucleotide sequences coding for Egtl and Egt2 proteins are under the control of an inducible promoter.

[014] Once a stably transformed industrially useful microorganism with an exogenous ergothioneine pathway is obtained, further improvement in ergothioneine production is achieved through other genetic manipulations aimed at increasing the pool size of substrates used in ergothioneine production. Since ergothioneine is a thiol derived from histidine, to further improve the ergothioneine production, it is necessary to increase the pool size of the co substrate molecules such as methionine and cysteine.

[015] In one of aspect of this embodiment, the industrial microbial strain engineered to have the exogenous pathway for ergothioneine biosynthesis is subjected to further genetic engineering to increase the uptake of methionine from the culture medium. In one aspect of the present disclosure, the industrial microbial strain engineered to have the exogenous ergothioneine pathway is further transformed with a nucleotide sequence coding for the transporter YjeH to increase the pool size of methionine which is necessary to supply S- adenosylmethionine required for the conversion of L-histidine to trimethyl histidine hercynine within the microbial cells.

[016] Cysteine is yet another co-substrate in the biosynthesis of ergothioneine from L- histidine within the microbial cells. In another embodiment of the present disclosure, the industrial microbial strain engineered to have the exogenous pathway for ergothioneine biosynthesis is subjected to further genetic engineering to increase the pool size of the cysteine within the microbial cell.

[017] Since cysteine is derived from serine, in one aspect of the present disclosure, serine pool within the host microbial cell is increased by means of enhancing the activity of D-3- phosphogly cerate dehydrogenase (SerA) and phosphoserine phosphatase (SerB and SerC) responsible for the conversion of 3-p-glycerate into L-serine. In one aspect of this embodiment, the activity of these enzymes is improved by means of expressing these genes using a constitutive promoter. In another aspect of this embodiment, the degradation of serine within the microbial cell is reduced by means of mutating the gene sdaA coding for the L- serine hydratase 1 wherein the mutation is deletion, frameshift or point mutation decreasing or eliminating L-serine hydratase 1.

[018] L-serine is converted into L-cysteine in a two-step enzyme reaction. In the first step of this reaction, the seine acetylytransferase enzyme (CysE) converts L-serine into o-acetyl serine which in turn is converted into L-cysteine by the enzyme cysteine synthase B (CysM). In one aspect of this embodiment, the activity of the CysE and CysM enzymes are increased by means of expressing these enzymes using a constitutive promoter. In another aspect of this embodiment, the degradation of L-cysteine to pyruvate, ammonium and hydrogen sulfide within the microbial cell is reduced by means of mutating the tnaA gene coding for L-cysteine desulfhydrase and yhaM gene coding for L-cysteine desulfidase, wherein the mutation is deletion, frameshift or point mutation decreasing or eliminating the function of these enzymes.

[019] In another aspect of this embodiment, the activity of L-cysteine exporter is upregulated using the constitutive promoter to drive the expression of the corresponding gene ydeD. In yet another embodiment of the present embodiment, a constitutive promoter is used to upregulate the expression of cysB gene coding for the transcriptional regulator CysB protein, a positive regulator of gene expression for the cysteine regulon, a system of 10 or more loci involved in the biosynthesis of L-cysteine from inorganic sulfate.

[020] In yet another aspect of the present disclosure, the ergothioneine producing strain having exogenous egtl and egt2 gene is expected to have a disruption in the metJ gene coding for a transcriptional repressor controlling the methionine biosynthesis. With the disruption of metJ gene, the methionine pool size within the ergothioneine producing microbial strain is expected to increase with a consequent increase in the production of ergothioneine.

[021] The present disclosure, in some aspects, provide engineered microbial host cells capable of producing ergothioneine, wherein the host cell comprises a) a first exogenous nucleic acid sequence coding for an Egtl enzyme capable of converting L-histidine and/or L- cysteine to hercynylcysteine sulfoxide; b) a second exogenous nucleic acid sequence coding for an Egt2 enzyme capable of converting hercynylcystenie sulfoxide to 2-sulfenohercynine; and c) a third exogenous nucleic acid sequence coding for a methionine transporter having at least 70% (e.g., at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 99%) amino acid sequence identity to SEQ ID NO: 96. In some embodiments, the methionine transporter is a YjeH protein comprising the amino acid sequence set forth in SEQ ID NO: 96. [022] In some embodiments, the third exogenous nucleic acid sequence has at least 70% (e.g., at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 99%) sequence identity to SEQ ID NO: 95. In some embodiments, the third exogenous nucleic acid sequence comprises the nucleic acid sequence of SEQ ID NO: 95.

[023] In some embodiments, the first exogenous nucleic acid sequence encodes a heterologous enzyme Egtl comprising an amino acid sequence having at least 70% (e.g., at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 99%) sequence identity to SEQ ID NO: 18. In some embodiments, the heterologous enzyme Egtl comprises the amino acid sequence of SEQ ID NO: 18. In some embodiments, the second exogenous nucleic acid sequence encodes a heterologous enzyme Egt2 comprising an amino acid sequence having at least 70% (e.g., at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 99%) identity to SEQ ID NO: 90. In some embodiments, the heterologous enzyme Egt2 comprises the amino acid sequence of SEQ ID NO: 90. In some embodiments, the first exogenous nucleic acid sequence encodes a heterologous enzyme Egtl comprising the amino acid sequence of SEQ ID NO: 18 and the second exogenous nucleic acid sequence encodes a heterologous enzyme Egt2 comprising the amino acid sequence of SEQ ID NO: 90. In some embodiments, the first exogenous nucleic acid sequence has at least 70% (e.g., at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 99%) sequence identity to SEQ ID NO: 17 and the second exogenous nucleic acid sequence has at least 70% (e.g., at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 99%) sequence identity to SEQ ID NO: 89. In some embodiments, the first exogenous nucleic acid sequence comprises the nucleic acid sequence of SEQ ID NO: 17 and the second exogenous nucleic acid sequence comprises the nucleic acid sequence of SEQ ID NO: 89.

[024] In some embodiments, the first exogenous nucleic acid sequence encodes a heterologous enzyme Egtl comprising an amino acid sequence having at least 70% (e.g., at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 99%) sequence identity to SEQ ID NO: 20. In some embodiments, the heterologous enzyme Egtl comprises the amino acid sequence of SEQ ID NO: 20. In some embodiments, the second exogenous nucleic acid sequence encodes a heterologous enzyme Egt2 comprising an amino acid sequence having at least 70% (e.g., at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 99%) identity to SEQ ID NO: 90. In some embodiments, the heterologous enzyme Egt2 comprises the amino acid sequence of SEQ ID NO: 90. In some embodiments, the first exogenous nucleic acid sequence encodes a heterologous enzyme Egtl comprising the amino acid sequence of SEQ ID NO: 20 and the second exogenous nucleic acid sequence encodes a heterologous enzyme Egt2 comprising the amino acid sequence of SEQ ID NO: 90. In some embodiments, the first exogenous nucleic acid sequence has at least 70% (e.g., at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 99%) sequence identity to SEQ ID NO: 19 and the second exogenous nucleic acid sequence has at least 70% (e.g., at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 99%) sequence identity to SEQ ID NO: 89. In some embodiments, the first exogenous nucleic acid sequence comprises the nucleic acid sequence of SEQ ID NO: 19 and the second exogenous nucleic acid sequence comprises the nucleic acid sequence of SEQ ID NO: 89.

[025] In some embodiments, the first exogenous nucleic acid sequence encodes a heterologous enzyme Egtl comprising an amino acid sequence having at least 70% (e.g., at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 99%) sequence identity to SEQ ID NO: 138. In some embodiments, the heterologous enzyme Egtl comprises the amino acid sequence of SEQ ID NO: 138. In some embodiments, the second exogenous nucleic acid sequence encodes a heterologous enzyme Egt2 comprising an amino acid sequence having at least 70% (e.g., at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 99%) identity to SEQ ID NO: 4. In some embodiments, the heterologous enzyme Egt2 comprises the amino acid sequence of SEQ ID NO: 4. In some embodiments, the first exogenous nucleic acid sequence encodes a heterologous enzyme Egtl comprising the amino acid sequence of SEQ ID NO: 138 and the second exogenous nucleic acid sequence encodes a heterologous enzyme Egt2 comprising the amino acid sequence of SEQ ID NO: 4. In some embodiments, the first exogenous nucleic acid sequence has at least 70% (e.g., at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 99%) sequence identity to SEQ ID NO: 137 and the second exogenous nucleic acid sequence has at least 70% (e.g., at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 99%) sequence identity to SEQ ID NO: 3. In some embodiments, the first exogenous nucleic acid sequence comprises the nucleic acid sequence of SEQ ID NO: 137 and the second exogenous nucleic acid sequence comprises the nucleic acid sequence of SEQ ID NO: 3.

[026] In some embodiments, the first exogenous nucleic acid sequence and the second exogenous nucleic acid sequence are on a self-replicating plasmid. In some embodiments, the first exogenous nucleic acid sequence and the second exogenous nucleic acid sequence are integrated into the host chromosomal DNA. In some embodiments, the first exogenous nucleic acid sequence and the second exogenous nucleic acid sequence are under a constitutive promoter. In some embodiments, the first exogenous nucleic acid sequence and the second exogenous nucleic acid sequence are under an inducible promoter.

[027] In some embodiments, the host cell is a bacterial cell selected from a group consisting of Escherichia, Salmonella, Bacillus, Acinetobacter, Streptomyces, Corynebacterium, Methylosinus, Methylomona, Rhodococcus, Pseudomonas, Rhodobacter, Synechocystis, Arthrobotlys, Brevibacteria, Microbacterium, Arthrobacter, Citrobacter, Klebsiella, Pantoea, and Clostridium. In some embodiments, the host cell is a fungal cell selected from the group consisting of Saccharomyces, Zygosaccharomyces, Kluyveromyces, Candida, Hansenula, Debaryomyces, Mucor, Pichia, Torulopsis, and Aspergillus. In some embodiments, the host cell is an Escherichia coli cell. In some embodiments, the host cell is a Saccharomyces cerevisiae cell. In some embodiments, the host cell is a Pichia pastoris cell.

[028] In some embodiments, the engineered microbial host cell further comprises a mutation in tnaA gene, wherein the mutation is deletion, frameshift or point mutation and wherein such mutation leads to decrease or elimination of tryptophanase activity, and wherein the tnaA gene comprises a nucleic acid sequence having at least 70% sequence (e.g., at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 99%) identity to SEQ ID NO: 97. In some embodiments, the tnaA gene comprises the nucleic acid sequence of SEQ ID NO: 97.

[029] In some embodiments, the engineered microbial host cell further comprises a mutation in sdaA gene, wherein the mutation is deletion, frameshift or point mutation and wherein the sdaA gene comprises a nucleic acid sequence having at least 70% (e.g., at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 99%) sequence identity to SEQ ID NO: 99. In some embodiments, the sdaA gene comprises the nucleic acid sequence of SEQ ID NO: 99.

[030] In some embodiments, the engineered microbial host cell further comprises a mutation in yhaM gene, wherein the mutation is deletion, frameshift or point mutation and wherein the yhaM gene comprises a nucleic acid sequence having at least 70% (e.g., at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 99%) sequence identity to SEQ ID NO: 115. In some embodiments, the yhaM gene the nucleic acid sequence of SEQ ID NO: 115.

[031] In some embodiments, the engineered microbial host cell further comprises a mutation in one or more of genes associated with serine biosynthesis selected from the group consisting of serA gene with a nucleic acid sequence having at least 70% (e.g., at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 99%) sequence identity to SEQ ID NO: 101; serB gene with a nucleic acid sequence having at least 70% (e.g., at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 99%) sequence identity to SEQ ID NO: 102; and serC gene with a nucleic acid sequence having at least 70% (e.g., at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 99%) sequence identity to SEQ ID NO: 105; wherein the mutation involves the use of a constitutively active promoter to upregulate the gene expression. In some embodiments, the serA gene comprises the nucleic acid sequence of SEQ ID NO: 101; the serB gene comprises the nucleic acid sequence of SEQ ID NO: 102; and serC gene comprises the nucleic acid sequence of SEQ ID NO: 105

[032] In some embodiments, the engineered microbial host cell further comprises a mutation in cysM gene coding for cysteine synthase A with an amino acid sequence having at least 70% (e.g., at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 99%) sequence identity to SEQ ID NO: 108, wherein the mutation involves the use of a constitutively active promoter to upregulate the gene expression. In some embodiments, the cysteine synthase A comprises the amino acid sequence of SEQ ID NO: 108.

[033] In some embodiments, the engineered microbial host cell further comprises a mutation in nrdH gene encoding a Glutaredoxin-like protein having an amino acid sequence having at least 70% (e.g., at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 99%) sequence identity to SEQ ID NO: 110, wherein the mutation involves the use of a constitutively active promoter to upregulate the gene expression. In some embodiments, the Glutaredoxin-like protein comprises the amino acid sequence of SEQ ID NO: 110.

[034] In some embodiments, the engineered microbial host cell further comprises an exogenous cysE gene, wherein the cysE gene encodes a serine acetyltransferase comprising an amino acid sequence having at least 70% (e.g., at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 99%) sequence identity to SEQ ID NO: 112. In some embodiments, the serine acetyltransferase comprises the amino acid sequence of SEQ ID NO: 112.

[035] In some embodiments, the engineered microbial host cell further comprises an exogenous ydeE gene, wherein the ydeE gene encodes a EamA domain-containing protein comprising an amino acid sequence having at least 70% (e.g., at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 99%) sequence identity to SEQ ID NO: 114. In some embodiments, the EamA domain-containing protein comprises the amino acid sequence of SEQ ID NO: 114.

[036] In some embodiments, the engineered microbial host cell further comprises an exogenous cysB gene on a plasmid vector under an inducible promoter, wherein the cysB gene encodes a HTH-type transcriptional regulator comprising an amino acid sequence having at least 70% (e.g., at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 99%) identity SEQ ID NO: 118. In some embodiments, the HTH-type transcriptional regulator comprises the amino acid sequence of SEQ ID NO: 118.

[037] In some embodiments, the engineered microbial host cell further comprises an exogenous gene encoding for a protein selected from a group consisting of CysA, CysP, CysT and CysW and wherein the transporter proteins CysA, CysP, CysT and CysW comprise amino acid sequence having at least 70% (e.g., at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 99%) identity to SEQ ID NOS: 122, 124, 126 and 128 respectively. In some embodiments, the transporter proteins CysA, CysP, CysT and CysW comprises the amino acid sequence of SEQ ID NOs: 122, 124, 126 and 128 respectively.

[038] In some embodiments, the engineered microbial host cell further comprises a mutation in metJ gene wherein the mutation is deletion, frameshift or point mutation and wherein the metJ gene comprises a nucleic acid sequence having at least 70% (e.g., at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 99%) sequence identity to SEQ ID NO: 143. In some embodiments, the metJ gene comprises the nucleic acid sequence of SEQ ID NO: 143.

[039] Other aspects of the present disclosure provide methods for producing ergothioneine comprising:

(a) culturing an engineered microbial host cell capable of producing ergothioneine, wherein the host cell comprises a) a first exogenous nucleic acid sequence coding for an Egtl enzyme capable of converting L-histidine and/or L-cysteine to hercynylcysteine sulfoxide; b) a second exogenous nucleic acid sequence coding for an Egt2 enzyme capable of converting hercynylcystenie sulfoxide to 2- sulfenohercynine; and c) a third exogenous nucleic acid sequence coding for a methionine transporter having at least 70% (e.g., at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 99%) amino acid sequence identity to SEQ ID NO: 96;

(b) expressing the Egtl enzyme, the Egt2 enzyme, and the methionine transporter; (c) feeding the engineered microbial host cell at least one substrate selected from the group consisting of histidine, methionine, cysteine and combinations thereof; and

(d) collecting ergothioneine.

[040] In some embodiments, the methionine transporter is a YjeH protein comprising the amino acid sequence set forth in SEQ ID NO: 96.

[041] In some embodiments, the third exogenous nucleic acid sequence has at least 70% (e.g., at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 99%) sequence identity to SEQ ID NO: 95. In some embodiments, the third exogenous nucleic acid sequence comprises the nucleic acid sequence of SEQ ID NO: 95.

[042] In some embodiments, the first exogenous nucleic acid sequence encodes a heterologous enzyme Egtl comprising an amino acid sequence having at least 70% (e.g., at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 99%) sequence identity to SEQ ID NO: 18. In some embodiments, the heterologous enzyme Egtl comprises the amino acid sequence of SEQ ID NO: 18. In some embodiments, the second exogenous nucleic acid sequence encodes a heterologous enzyme Egt2 comprising an amino acid sequence having at least 70% (e.g., at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 99%) identity to SEQ ID NO: 90. In some embodiments, the heterologous enzyme Egt2 comprises the amino acid sequence of SEQ ID NO: 90. In some embodiments, the first exogenous nucleic acid sequence encodes a heterologous enzyme Egtl comprising the amino acid sequence of SEQ ID NO: 18 and the second exogenous nucleic acid sequence encodes a heterologous enzyme Egt2 comprising the amino acid sequence of SEQ ID NO: 90. In some embodiments, the first exogenous nucleic acid sequence has at least 70% (e.g., at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 99%) sequence identity to SEQ ID NO: 17 and the second exogenous nucleic acid sequence has at least 70% (e.g., at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 99%) sequence identity to SEQ ID NO: 89. In some embodiments, the first exogenous nucleic acid sequence comprises the nucleic acid sequence of SEQ ID NO: 17 and the second exogenous nucleic acid sequence comprises the nucleic acid sequence of SEQ ID NO: 89.

[043] In some embodiments, the first exogenous nucleic acid sequence encodes a heterologous enzyme Egtl comprising an amino acid sequence having at least 70% (e.g., at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 99%) sequence identity to SEQ ID NO: 20. In some embodiments, the heterologous enzyme Egtl comprises the amino acid sequence of SEQ ID NO: 20. In some embodiments, the second exogenous nucleic acid sequence encodes a heterologous enzyme Egt2 comprising an amino acid sequence having at least 70% (e.g., at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 99%) identity to SEQ ID NO: 90. In some embodiments, the heterologous enzyme Egt2 comprises the amino acid sequence of SEQ ID NO: 90. In some embodiments, the first exogenous nucleic acid sequence encodes a heterologous enzyme Egtl comprising the amino acid sequence of SEQ ID NO: 20 and the second exogenous nucleic acid sequence encodes a heterologous enzyme Egt2 comprising the amino acid sequence of SEQ ID NO: 90. In some embodiments, the first exogenous nucleic acid sequence has at least 70% (e.g., at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 99%) sequence identity to SEQ ID NO: 19 and the second exogenous nucleic acid sequence has at least 70% (e.g., at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 99%) sequence identity to SEQ ID NO: 89. In some embodiments, the first exogenous nucleic acid sequence comprises the nucleic acid sequence of SEQ ID NO: 19 and the second exogenous nucleic acid sequence comprises the nucleic acid sequence of SEQ ID NO: 89.

[044] In some embodiments, the first exogenous nucleic acid sequence encodes a heterologous enzyme Egtl comprising an amino acid sequence having at least 70% (e.g., at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 99%) sequence identity to SEQ ID NO: 138. In some embodiments, the heterologous enzyme Egtl comprises the amino acid sequence of SEQ ID NO: 138. In some embodiments, the second exogenous nucleic acid sequence encodes a heterologous enzyme Egt2 comprising an amino acid sequence having at least 70% (e.g., at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 99%) identity to SEQ ID NO: 4. In some embodiments, the heterologous enzyme Egt2 comprises the amino acid sequence of SEQ ID NO: 4. In some embodiments, the first exogenous nucleic acid sequence encodes a heterologous enzyme Egtl comprising the amino acid sequence of SEQ ID NO: 138 and the second exogenous nucleic acid sequence encodes a heterologous enzyme Egt2 comprising the amino acid sequence of SEQ ID NO: 4. In some embodiments, the first exogenous nucleic acid sequence has at least 70% (e.g., at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 99%) sequence identity to SEQ ID NO: 137 and the second exogenous nucleic acid sequence has at least 70% (e.g., at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 99%) sequence identity to SEQ ID NO: 3. In some embodiments, the first exogenous nucleic acid sequence comprises the nucleic acid sequence of SEQ ID NO: 137 and the second exogenous nucleic acid sequence comprises the nucleic acid sequence of SEQ ID NO: 3.

BRIEF DESCRIPTION OF THE DRAWINGS

[045] The following drawings form part of the present specification and are included to further demonstrate certain aspects of the present disclosure, which can be better understood by reference to one or more of these drawings in combination with the detailed description of specific embodiments presented herein.

[046] FIG. 1 illustrates the ergothioneine biosynthetic pathway. In the bacterial system, a set of five genes ( egtABCDE ) are involved in the biosynthesis of ergothioneine from L-histidine. In the fungal system, only two enzymes namely Egtl and Egt2 enzymes are involved in the biosynthesis of ergothioneine from L-histidine. Similarly, in the anoxygenic bacterium Chlorobium lumicola, only two enzymes namely EanA and EanB are involved in the biosynthesis of ergothioneine from L-histidine.

[047] FIG. 2 shows the map of a plasmid carrying the genes coding for Egtl and Egt2 enzymes from Schizosaccharomyces pompe.

[048] FIG. 3 shows a plasmid map carrying the genes coding for Egtl enzyme from Ajellomyces dermatitidis and Egt2 enzyme from Talaromyces stipitatus.

[049] FIG. 4 shows the sequence alignment of Egtl amino acid sequences from 25 different species.

[050] FIG. 5 shows the sequence alignment of Egt2 amino acid sequences from 15 different species.

[051] FIG. 6 shows ergothioneine production from Escherichia coli cells transformed with plasmid vectors carrying various genes involved in the ergothioneine biosynthesis. The strains SI, S2 and S3 are transformants carrying the eanA and eanB genes from Chlorobium lumicola coding for EanA and EanB proteins, respectively. The strains S4, S5 and S6 are transformants carrying the eanA and eanB 3 genes from Chlorobium lumicola coding for EanA and EanB 3 proteins respectively. EanB3 is a variant of EanB protein. The strains S7, S8 and S9 are transformants carrying the plasmid carrying the genes coding for Egtl and Egt2 proteins from Schizosaccharomyces pompe shown in FIG. 2. The strains S10, Sll and S12 are transformants carrying three bacterial genes coding for EgtB, EgtC and EgtE proteins reported to be functional in the ergothioneine biosynthesis. The strains S14, S15 and S16 are transformants carrying four bacterial genes coding for EgtB, EgtC, EgtD and EgtE reported to be present in the ergothioneine biosynthesis.

[052] FIG. 7 shows ergothioneine production in two different strains of Escherichia coli, namely, JM109 and MG1655, transformed with three different plasmid constructs. C13 is an E. coli strain transformed with a Tier 2 plasmid construct carrying the genes coding for Egtl protein from Ajellomyces dermatitidis (SEQ ID No: 18) and Egt2 proteins from Talaromyces stipitatus (SEQ ID NO: 90). C14 is an E. coli strain transformed with a Tier 2 plasmid construct carrying the genes coding for Egtl protein from Aspergillus niger (SEQ ID No: 20) and Egt2 proteins from Talaromyces stipitatus (SEQ ID No: 90). Ck+ is an E. coli strain transformed with a plasmid carrying the genes coding for Egtl and Egt2 proteins from Schizosaccharomyces pompe.

[053] FIG. 8 shows ergothioneine production by a C 13 E. coli strain (Tier 2 construct as in Table 3) in a 3L fermenter. WCW: wet cell weight. Shown in the graph on the right side are the titer for ergothioneine production in three different fermenter runs.

[054] FIG. 9 shows ergothioneine production by C13 E. coli strain (Tier 2 construct as in Table 3) in a 5,000 L fermenter

[055] FIG. 10 shows the map of a plasmid carrying the yjeH gene.

[056] FIG. 11 shows ergothioneine production in E. coli strains ET1 and ET2 transformed with the plasmid carrying yjeH gene. VecO is an empty plasmid vector without yjeH gene. Ergothioneine production was performed both with tube culture and flask culture. ET1 is an E. coli MG1655 strain transformed with a Tier 2 plasmid construct carrying the genes coding for Egtl protein from Ajellomyces dermatitidis and Egt2 protein from Talaromyces stipitatus.

ET2 is an E. coli JM109 strain transformed with a Tier 2 plasmid construct carrying the genes coding for Egtl protein from Ajellomyces dermatitidis and Egt2 protein from Talaromyces stipitatus. [057] While the disclosure is susceptible to various modifications and alternative forms, specific embodiments thereof have been shown by way of example in the drawings and are herein described below in detail. It should be understood, however, that the description of specific embodiments is not intended to limit the disclosure to cover all modifications, equivalents and alternatives falling within the spirit and scope of the disclosure as defined by the appended claims.

DETAILED DESCRIPTION

[058] Although ergothioneine was discovered one hundred years ago, only during the last decade there has been significant progress in gaining insight into the ergothioneine biosynthetic pathways in a few selected microbial organisms. However, the microbial organisms with native ergothioneine biosynthetic pathway are not suitable for commercial applications as the ergothioneine production using these organisms are not scalable. As such there is a growing need in the art for constructing recombinant microorganisms for ergothioneine production by means of introducing the known ergothioneine pathway into those microorganisms which are already in industrial use but are devoid of any ergothioneine biosynthetic pathway.

[059] In mycobacteria, a gene cluster ( egtABCDE ) is responsible for five enzymatic steps that convert histidine to ergothioneine. Briefly, L-histidine is first methylated into hercynine by an S-adenosylmethionine (SAM)-dependent methyltransferase (EgtD), followed by adding g- glutamylcysteine to form hercynyl g-glutamylcysteine sulfoxide intermediate by a formylglycine-generating enzyme-like protein (EgtB). The g-glutamylcysteine is formed from cysteine and glutamate by a g-glutamyl cysteine synthetase (EgtA). Glutamate is released from the intermediate by a glutamine amidotransferase (EgtC) to generate hercynlcysteine sulfoxide that is converted into ergothioneine by a pyridoxal 5-phosphate-dependent b-lyase (EgtE). Genes homologous to Mycobacterium egtABCDE are also found in Methylobacterium aquaticum strain 22A and other Methylobacterium species, although not clustered in the chromosome or even located on the plasmid. Similarly, homologs of egtABCDE five-gene cluster also exists in the genome database of Streptomyces coelicolor, whereas only orthologs of egtB, egtC and egtD are found in cyanobacterial species. The crystal structures of EgtB, EgtC and EgtD have been recently determined. US Patent No 10,544,437 has descried in detail the process of using exogenous genes egtB, egtC, egtD and egtE to transform Escherichia coli, Saccharomyces cerevisiae, or Pichia pastoris for the purpose of producing ergothioneine. The disclosure in the US Patent No. 10,544,437 is incorporated herein by reference.

[060] Since the first fungal ergothioneine biosynthetic gene, egtl was identified in N. crassa, several genes from filamentous fungi and other fungal species have been characterized. In N. crassa and Schizosaccharomyces pombe, two genes, egtl and egt2, are responsible for the biosynthesis of Ergothioneine. Egtl contains multiple domains functionally homologous to EgtD and EgtB of M. smegmatis and Egt2 is a homolog of EgtE from M. smegmatis. Egtl is responsible for both trimethylation of histidine to hercynine and sulfoxidation of the hercynine to hercynylcysteine sulfoxide. Egt2 catalyzes the final step in ergothioneine biosynthesis that converts hercynylcysteine sulfoxide to 2-sulfenohercynine, which is reduced to ergothioneine non-enzymatically. Both N. crassa and S. pombe directly use cysteine rather than g- glutamylcysteine to produce ergothioneine. These two fungal species seem to lack g-glutamyl cysteine synthetase and glutamine amidotransferase genes as found in mycobacteria. In S. pombe , knockout of egtl results in a loss of ergothioneine biosynthesis. However, when egt2 is knocked out, small amounts of ergothioneine is still produced, indicating an unrelated pyridoxal 5 -phosphate-binding enzyme may exist. This is supported by a blast search that shows homologs of Egt2 are not only found in bacteria such as in cyanobacteria and proteobacteria but also in fungi such as in Saccharomyces cerevisiae, Leishmania donovani, and Dictyostelium discoideum. These candidates may represent unidentified enzymes that do not have homology with EgtE, but have homology to enzymes with a C-S lyase activity in other organisms. Taken together, as homologs of EgtB and EgtD not only occur in a number of diverse bacterial phyla including Actinobacterial, Proteobacterial, and Cyanobacterial species but also in fungi including N. crassa and S. pombe. The EgtB and EgtD genes appear to be a gene signature common to ergothioneine biosynthesis in microbes.

[061] The present disclosure provides, among other things, a method for producing ergothioneine using genetically engineered microorganisms. The genetically engineered microorganisms according to the present disclosure has the ability to produce ergothioneine by using the amino acids produced internally within the genetically engineered microorganisms or by using the amino acids added to the growth medium. In a preferred embodiment, the present disclosure provided genetically engineered microorganisms with the ability to produce ergothioneine without the need for exogenously supplied amino acid.

[062] In one embodiment, the present disclosure provides methods for introducing ergothioneine biosynthetic pathway into an industrially useful microorganism which does have any genes coding for proteins functional in ergothioneine biosynthetic pathway. The industrially useful microorganism suitable for the present disclosure includes a number of bacterial and fungal species. In a preferred embodiment of the present disclosure, the list of bacterial species includes, but not limited to, Escherichia, Salmonella, Bacillus, Acinetobacter, Streptomyces, Corynebacterium, Methylosinus, Methylomons, Rhodococcus, Pseudomonas, Rhodobacter, Synechocystis, Arthrobotlys, Brevibacteria, Microbacterium, Arthrobacter, Citrobacter, Klebsiella, Pantoea, and Clostridium. In another preferred embodiment of the present disclosure, the list of fungal species includes, but not limited to, Saccharomyces, Zygosaccharomyces, Kluyveromyces, Candida, Hansenula, Debaryomyces, Mucor, Pichia, Torulopsis, and Aspergillus.

[063] The genes suitable for building an ergothioneine pathway with an industrially useful microorganism can be derived from bacterial and fungal species reported to have the natural ability to produce ergothioneine. In one aspect of the present disclosure, the bacterial genes coding for proteins reported to be involved in the ergothioneine biosynthesis including, but not limited, EgtA, EgtB, EgtC, EgtD, and EgtD are introduced into a microorganism which, to begin with, does not have any genes coding for ergothioneine biosynthesis. In another aspect of the present disclosure, the fungal genes coding for proteins reported to be involved in the ergothioneine biosynthesis including, but not limited, Egtl and Egt2 are introduced into a microorganism which, to begin with, does not have any genes coding for ergothioneine biosynthesis. In yet another aspect of the present disclosure, the anaerobic bacterial genes coding for proteins reported to be involved in the ergothioneine biosynthesis including, but not limited, EnaA and EnaB are introduced into a microorganism which, to begin with, does not have any genes coding for ergothioneine biosynthesis. In a preferred aspect, the present disclosure introduces fungal gene coding for proteins involved in ergothioneine derived from different species into a microorganism which, to begin with, does not have any genes coding for ergothioneine biosynthesis and the selection of fungal genes from different species is based on a selection-criteria for higher enzymatic activity.

[064] In an embodiment, the present disclosure the provides a screening method for selecting fungal genes coding Egtl and Egt2 proteins for building an ergothioneine pathway in an industrially useful microorganism which, to begin with, does not have any genes coding for ergothioneine biosynthesis. In one aspect of this embodiment, the nucleotide sequence of a fungal gene coding for Egtlprotein involved in ergothioneine pathway is used to conduct a blast search in the nucleotide data based to identify homologous genes and a pool of genes coding for Egtl protein is identified. In the same way, the nucleotide sequence of a fungal gene coding for Egt2protein involved in ergothioneine pathway is used to conduct a blast search in the nucleotide data based to identify homologous genes and a pool of genes coding for Egt2 protein is identified. The members of the gene pools coding for Egtl or Egt2 proteins are used in a number of different combinations to transform an industrially useful microorganism and the transformants are assayed for the relative ergothioneine production to identify the highly efficient Egtl and Egt2 proteins. In a preferred aspect of the present disclosure, the screening for the efficient Egtl and Egt2 proteins is conducted in two steps. In the first step of the screening, the nucleotide sequence of the fungal gene coding for the Egtl protein used in the initial screening step is cloned into a plasmid vector along with one of the nucleotide sequence coding for Egt2 protein in the pool of genes for Egt2 protein and the resulting plasmid is used to transform an industrially useful microorganism. The transformants are assayed for the level of ergothioneine production. The transformants having higher ergothioneine production are selected as having the nucleotide sequence coding for Egt2 protein with high level of enzyme activity and grouped under Tier 1 for nucleotide sequence coding for Egt2 protein. In the same way the nucleotide sequence of the fungal gene coding for the Egt2 protein used in the initial screening step is cloned into a plasmid vector along with one of the nucleotide sequence coding for Egtl protein in the pool of genes for Egtl protein and the resulting plasmid is used to transform an industrially useful microorganism. The transformants are assayed for the level of ergothioneine production. The transformants having higher ergothioneine production are selected as having the nucleotide sequence coding for Egtl protein with high level of enzyme activity and grouped under Tier 1 for nucleotide sequence coding for Egtl protein.

[065] In the second level of screening a set of nucleotide sequences coding for Egtl protein with high level of activity are combined with a set of nucleotide sequences coding for Egtl protein with high level of activity to come out with a defined number of permutations. For example, when four nucleotide sequences coding for Egtl protein are combined with four nucleotide sequences coding for Egt2 protein in a permutation complex, sixteen different Egtl- Egt2 pairing are possible. The nucleotide sequence coding for Egtl protein and the nucleotide sequence coding for Egt2 protein in each of the pair is cloned into a plasmid expression and used to transform an industrially useful microbial cell. The resulting transformants are screened for ergothioneine production. The transformant showing the highest ergothioneine production is considered to have the Egtl and Egt2 protein with highest level of enzyme activity in combination. [066] In one aspect of this embodiment, once a best performing ergothioneine is identified through plasmid transformation, the corresponding nucleotide sequences coding for Egtl and Egt2 proteins are integrated into the host chromosomal DNA to achieve stable integration and to avoid using antibiotics in the growth medium to maintain the self-replicating plasmid. In one aspect of this embodiment, the nucleotide sequences coding for Egtl and Egt2 proteins are under the control of a constitutively active promoter. In another aspect of this embodiment, the nucleotide sequences coding for Egtl and Egt2 proteins are under the control of an inducible promoter.

[067] Once a stably transformed industrially useful microorganism with an exogenous ergothioneine pathway is obtained, further improvement in ergothioneine production is achieved through other genetic manipulations aimed at increasing the pool size of substrates used in ergothioneine production. Since ergothioneine is a thiol derived from histidine, to further improve the ergothioneine production, it is necessary to increase the pool size of the co substrate molecules such as methionine and cysteine.

[068] In one of aspect of this embodiment, the industrial microbial strain engineered to have the exogenous pathway for ergothioneine biosynthesis is subjected to further genetic engineering to increase the uptake of methionine from the culture medium. In one aspect of the present disclosure, the industrial microbial strain engineered to have the exogenous ergothioneine pathway is further transformed with a nucleotide sequence coding for the transporter YjeH to increase the pool size of methionine which is necessary to supply S- adenosylmethionine required for the conversion of L-histidine to trimethyl histidine hercynine within the microbial cells.

[069] Cysteine is yet another co-substrate in the biosynthesis of ergothioneine from L- histidine within the microbial cells. In another embodiment of the present disclosure, the industrial microbial strain engineered to have the exogenous pathway for ergothioneine biosynthesis is subjected to further genetic engineering to increase the pool size of the cysteine within the microbial cell.

[070] Since cysteine is derived from serine, in one aspect of the present disclosure, serine pool is increased by means of increasing the activity of D-3-phosphoglycerate dehydrogenase (SerA) and phosphoserine phosphatase (SerB and SerC) responsible for the conversion of 3-p- glycerate into L-serine. In one aspect of this embodiment, the activity of these enzymes is improved by means of expressing these genes using a constitutive promoter. In another aspect of this embodiment, the degradation of serine within the microbial cell is reduced by means of mutating the gene sdaA coding for the L- serine hydratase 1 wherein the mutation is deletion, frameshift or point mutation decreasing or eliminating L- serine hydratase 1.

[071] L-serine is converted into L-cysteine in a two-step enzyme reaction. In the first step of this reaction, the seine acetylytransferase enzyme (Cys E) converts L-serine into o-acetyl serine which in turn is converted into L-cysteine by the enzyme cysteine synthase B (CysM).

In one aspect of this embodiment, the activity of the CysE and CysM enzymes coded by cysE and cysM genes are increased by means of expressing these enzymes using a constitutive promoter. In another aspect of the present disclosure, the activity of NrdH enzyme encoded by nrdH gene is increased by means of expressing this enzyme using a constitutive promoter. In yet another aspect of this embodiment, the degradation of L-cysteine to pyruvate, ammonium and hydrogen sulfide within the microbial cell is reduced by means of mutating the tnaA gene coding for L-cysteine desulfhydrase and yhaM gene coding for L-cysteine desulfidase, wherein the mutation is deletion, frameshift or point mutation, decreasing or eliminating the function of these enzymes.

[072] In another aspect of this embodiment, the activity of L-cysteine exporter is upregulated using the constitutive promoter to drive the expression of the corresponding gene ydeD.

[073] In yet another embodiment of the present disclosure, a native promote is used to upregulate the expression of cysB gene coding for the transcriptional regulator CysB protein, a positive regulator of gene expression for the cysteine regulon, a system of 10 or more loci involved in the biosynthesis of L-cysteine from inorganic sulfate.

[074] In yet another aspect of the present disclosure, the ergothioneine producing strain having exogenous egtl and egt2 gene is expected to have a disruption in the metJ gene coding for a transcriptional repressor controlling the methionine biosynthesis. With the disruption of metJ gene, the methionine pool size within the ergothioneine producing microbial strain is expected to increase with a consequent increase in the production of ergothioneine.

[075] A transcriptional repressor protein (MetJ) involved in methionine metabolism is encoded by metJ gene and the disruption of this gene is effective in further increasing the production of ergothioneine. Accordingly, in one aspect of the present disclosure, in the microbial cells expressing heterologous ergothioneins biosynthetic genes, the metJ gene is disrupted so that there is no expression of MetJ protein.

Definitions

[076] A host cell according to the present disclosure is any cell that is suitable for the expression of any exogenous protein functional in the ergothioneine biosynthetic pathway. Such a host cell expressing heterologous protein functional in the ergothioneine biosynthetic pathway results from the transformation of the host cell with a recombinant plasmid comprising at least one polynucleotide sequence coding for a protein functional in the ergothioneine biosynthetic pathway and such a host cell is referred as a engineered microbial host cell in the present disclosure. The list of host cells suitable for the present disclosure includes, but is not limited to, bacterial cells, and fungal cells including yeast cells. Bacterial cells suitable for the present disclosure include, without limitation, Escherichia spp., Streptomyces spp., Zymomonas spp., Acetobacter spp., Citrobacter spp., Synechocystis spp., Rhizobium spp., Clostridium spp., Corynebacterium spp., Streptococcus spp., Xanthomonas spp., Lactobacillus spp., Lactococcus spp., Bacillus spp., Alcaligenes spp., Pseudomonas spp., Aeromonas spp., Azotobacter spp., Comamonas spp., Mycobacterium spp., Rhodococcus spp., Gluconobacter spp., Ralstonia spp., Acidithiobacillus spp., Microlunatus spp., Geobacter spp., Geobacillus spp., Arthrobacter spp., Flavobacterium spp., Serratia spp., Saccharopolyspora spp., Thermus spp., Stenotrophomonas spp., Chromobacterium spp., Sinorhizobium spp., Saccharopolyspora spp., Agrobacterium spp., Pantoea spp, and Vibrio natriegens. Yeast cells suitable for the present disclosure include, without limitation, engineered Saccharomyces spp., Schizosaccharomyces, Hansenula, Candida, Kluyveromyces, Yarrowia, Candida boidinii, and Pichia.

[077] The term a cell culture refers to any cell or cells including the recombinant host cells that are in a culture. Culturing is the process in which cells are grown under controlled conditions, typically outside of their natural environment. For example, cells, such as yeast cells, may be grown as a cell suspension in liquid nutrient broth. A cell culture includes, but is not limited to, a bacterial cell culture, fungal cell culture and a yeast cell culture.

[078] In some embodiments, cells are cultured at a temperature of 16°C to 40°C. For example, cells may be cultured at a temperature of 16°C, 17°C, 18°C, 19°C, 20°C, 21°C, 22°C, 23°C, 24°C, 25°C, 26°C, 27°C, 28°C, 29°C, 30°C, 31°C, 32°C, 33°C, 34°C, 35°C, 36°C, 37°C, 38°C, 39°C or 40°C.

[079] In some embodiments, cells are cultured for a period of 12 hours to 72 hours, or more. For example, cells may be cultured for a period of 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, or 72 hours. Typically, cells, such as bacterial cells, are cultured for a period of 12 to 24 hours. In some embodiments, cells are cultured for 12 to 24 hours at a temperature of 37°C. In some embodiments, cells are cultured for 12 to 24 hours at a temperature of 16°C.

[080] In some embodiments, cells are cultured to a density of 1 x 10 8 (OD 6 oo< 1) to 2 x 10 11 (OD ~ 200) viable cells/ml cell culture medium. In some embodiments, cells are cultured to a density of 1 x 10 8 , 2 x 10 8 , 3 x 10 8 , 4 x 10 8 , 5 x 10 8 , 6 x 10 8 , 7 x 10 8 , 8 x 10 8 , 9 x 10 8 , 1 x 10 9 , 2 X 10 9 , 3 X 10 9 , 4 X 10 9 , 5 x 10 9 , 6 x 10 9 , 7 x 10 9 , 8 x 10 9 , 9 x 10 9 , 1 x 10 10 , 2 x 10 10 , 3 x 10 10 , 4 x 10 10 , 5 x 10 10 , 6 x 10 10 , 7 x 10 10 , 8 x 10 10 , 9 x 10 10 , 1 x 10 11 , or 2 x 10 11 viable cells/ml. (Conversion factor: OD 1 = 8 x 10 8 cells/ml).

[081] To induce protein expression by the host cell, 0.5 mM isopropyl b-D-l- thiogalactopyranoside (IPTG) was added and the culture was further grown at 16°C for 22 hr. Cells were harvested by centrifugation (3,000 x g; 10 min; 4°C). The cell pellets were collected and were either used immediately or stored at -80°C.

[082] The terms “nucleic acid” and “nucleotide” are used according to their respective ordinary and customary meanings as understood by a person of ordinary skill in the art, and are used without limitation to refer to deoxyribonucleotides or ribonucleotides and polymers thereof in either single- or double- stranded form. Unless specifically limited, the term encompasses nucleic acids containing known analogues of natural nucleotides that have similar binding properties as the reference nucleic acid and are metabolized in a manner similar to naturally-occurring nucleotides. Unless otherwise indicated, a particular nucleic acid sequence also implicitly encompasses conservatively modified or degenerate variants thereof ( e.g ., degenerate codon substitutions) and complementary sequences, as well as the sequence explicitly indicated.

[083] The term “isolated” is used according to its ordinary and customary meaning as understood by a person of ordinary skill in the art, and when used in the context of an isolated nucleic acid or an isolated polypeptide, is used without limitation to refer to a nucleic acid or polypeptide that, by the hand of man, exists apart from its native environment and is therefore not a product of nature. An isolated nucleic acid or polypeptide can exist in a purified form or can exist in a non-native environment such as, for example, in a transgenic host cell.

[084] The term “degenerate variant” refers to a nucleic acid sequence having a residue sequence that differs from a reference nucleic acid sequence by one or more degenerate codon substitutions. Degenerate codon substitutions can be achieved by generating sequences in which the third position of one or more selected (or all) codons is substituted with mixed base and/or deoxyinosine residues. A nucleic acid sequence and all of its degenerate variants will express the same acid or polypeptide.

[085] The terms “polypeptide,” “protein,” and “peptide” are used according to their respective ordinary and customary meanings as understood by a person of ordinary skill in the art; the three terms are sometimes used interchangeably, and are used without limitation to refer to a polymer of amino acids, or amino acid analogs, regardless of its size or function. Although “protein” is often used in reference to relatively large polypeptides, and “peptide” is often used in reference to small polypeptides, usage of these terms in the art overlaps and varies. The term “polypeptide” as used herein refers to peptides, polypeptides, and proteins, unless otherwise noted. The terms “protein,” “polypeptide,” and “peptide” are used interchangeably herein when referring to a polypeptide product. Thus, exemplary polypeptides include polypeptide products, naturally occurring proteins, homologs, orthologs, paralogs, fragments and other equivalents, variants, and analogs of the foregoing.

[086] The terms “polypeptide fragment” and “fragment,” when used in reference to a reference polypeptide, are used according to their ordinary and customary meanings to a person of ordinary skill in the art, and are used without limitation to refer to a polypeptide in which amino acid residues are deleted as compared to the reference polypeptide itself, but where the remaining amino acid sequence is usually identical to the corresponding positions in the reference polypeptide. Such deletions can occur at the amino-terminus or carboxy-terminus of the reference polypeptide, or alternatively both.

[087] The term “functional fragment” of a polypeptide or protein refers to a peptide fragment that is a portion of the full length polypeptide or protein, and has substantially the same biological activity, or carries out substantially the same function as the full length polypeptide or protein ( e.g ., carrying out the same enzymatic reaction).

[088] The term “functional variant” further includes conservatively substituted variants. The term “conservatively substituted variant” refers to a peptide having an amino acid sequence that differs from a reference peptide by one or more conservative amino acid substitutions, and maintains some or all of the activity of the reference peptide. A “conservative amino acid substitution” is a substitution of an amino acid residue with a functionally similar residue. Examples of conservative substitutions include the substitution of one non-polar (hydrophobic) residue such as isoleucine, valine, leucine or methionine for another; the substitution of one charged or polar (hydrophilic) residue for another such as between arginine and lysine, between glutamine and asparagine, between threonine and serine; the substitution of one basic residue such as lysine or arginine for another; or the substitution of one acidic residue, such as aspartic acid or glutamic acid for another; or the substitution of one aromatic residue, such as phenylalanine, tyrosine, or tryptophan for another. Such substitutions are expected to have little or no effect on the apparent molecular weight or isoelectric point of the protein or polypeptide. The phrase “conservatively substituted variant” also includes peptides wherein a residue is replaced with a chemically-derivatized residue, provided that the resulting peptide maintains some or all of the activity of the reference peptide as described herein. [089] The term “variant,” in connection with the polypeptides of the subject technology, further includes a functionally active polypeptide having an amino acid sequence at least 75%, at least 76%, at least 77%, at least 78%, at least 79%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, and even 100% identical to the amino acid sequence of a reference polypeptide.

[090] The term “homologous” in all its grammatical forms and spelling variations refers to the relationship between polynucleotides or polypeptides that possess a “common evolutionary origin,” including polynucleotides or polypeptides from super families and homologous polynucleotides or proteins from different species (Reeck et ah, Cell 50:667, 1987). Such polynucleotides or polypeptides have sequence homology, as reflected by their sequence similarity, whether in terms of percent identity or the presence of specific amino acids or motifs at conserved positions. For example, two homologous polypeptides can have amino acid sequences that are at least 75%, at least 76%, at least 77%, at least 78%, at least 79%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, and even 100% identical.

[091] “Percent (%) amino acid sequence identity” with respect to the variant polypeptide sequences of the subject technology refers to the percentage of amino acid residues in a candidate sequence that are identical with the amino acid residues of a reference polypeptide, after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent sequence identity, and not considering any conservative substitutions as part of the sequence identity.

[092] Alignment for purposes of determining percent amino acid sequence identity can be achieved in various ways that are within the skill in the art, for instance, using publicly available computer software such as BLAST, BLAST-2, ALIGN, ALIGN-2 or Megalign (DNASTAR) software. Those skilled in the art can determine appropriate parameters for measuring alignment, including any algorithms needed to achieve maximal alignment over the full-length of the sequences being compared. For example, the % amino acid sequence identity may be determined using the sequence comparison program NCBI-BLAST2. The NCBI-BLAST2 sequence comparison program may be downloaded from ncbi.nlm.nih.gov. NCBI BLAST2 uses several search parameters, wherein all of those search parameters are set to default values including, for example, unmask yes, strand=all, expected occurrences 10, minimum low complexity length=15/5, multi-pass e-value=0.01, constant for multi-pass=25, drop off for final gapped alignment=25 and scoring matrix=BLOSUM62. In situations where NCBI-BLAST2 is employed for amino acid sequence comparisons, the % amino acid sequence identity of a given amino acid sequence A to, with, or against a given amino acid sequence B (which can alternatively be phrased as a given amino acid sequence A that has or comprises a certain % amino acid sequence identity to, with, or against a given amino acid sequence B) is calculated as follows: 100 times the fraction X/Y where X is the number of amino acid residues scored as identical matches by the sequence alignment program NCBI-BLAST2 in that program’s alignment of A and B, and where Y is the total number of amino acid residues in B . It will be appreciated that where the length of amino acid sequence A is not equal to the length of amino acid sequence B, the % amino acid sequence identity of A to B will not equal the % amino acid sequence identity of B to A.

[093] Techniques for determining amino acid sequence “similarity” are well known in the art. In general, “similarity” refers to the exact amino acid to amino acid comparison of two or more polypeptides at the appropriate place, where amino acids are identical or possess similar chemical and/or physical properties such as charge or hydrophobicity. A “percent similarity” may then be determined between the compared polypeptide sequences. Techniques for determining nucleic acid and amino acid sequence identity also are well known in the art and include determining the nucleotide sequence of the mRNA for that gene (usually via a cDNA intermediate) and determining the amino acid sequence encoded therein, and comparing this to a second amino acid sequence. In general, “identity” refers to an exact nucleotide to nucleotide or amino acid to amino acid correspondence of two polynucleotides or polypeptide sequences, respectively. Two or more polynucleotide sequences can be compared by determining their “percent identity”, as can two or more amino acid sequences. The programs available in the Wisconsin Sequence Analysis Package, Version 8 (available from Genetics Computer Group, Madison, Wis.), for example, the GAP program, are capable of calculating both the identity between two polynucleotides and the identity and similarity between two polypeptide sequences, respectively. Other programs for calculating identity or similarity between sequences are known by those skilled in the art.

[094] An amino acid position “corresponding to” a reference position refers to a position that aligns with a reference sequence, as identified by aligning the amino acid sequences. Such alignments can be done by hand or by using well-known sequence alignment programs such as ClustalW2, Blast 2, etc.

[095] Unless specified otherwise, the percent identity of two polypeptide or polynucleotide sequences refers to the percentage of identical amino acid residues or nucleotides across the entire length of the shorter of the two sequences.

[096] “Coding sequence” is used according to its ordinary and customary meaning as understood by a person of ordinary skill in the art, and is used without limitation to refer to a DNA sequence that encodes for a specific amino acid sequence.

[097] “Suitable regulatory sequences” is used according to its ordinary and customary meaning as understood by a person of ordinary skill in the art, and is used without limitation to refer to nucleotide sequences located upstream (5' non-coding sequences), within, or downstream (3' non-coding sequences) of a coding sequence, and which influence the transcription, RNA processing or stability, or translation of the associated coding sequence. Regulatory sequences may include promoters, translation leader sequences, introns, and polyadenylation recognition sequences.

[098] “Promoter” is used according to its ordinary and customary meaning as understood by a person of ordinary skill in the art, and is used without limitation to refer to a DNA sequence capable of controlling the expression of a coding sequence or functional RNA. In general, a coding sequence is located 3' to a promoter sequence. Promoters may be derived in their entirety from a native gene, or be composed of different elements derived from different promoters found in nature, or even comprise synthetic DNA segments. It is understood by those skilled in the art that different promoters may direct the expression of a gene in different cell types, or at different stages of development, or in response to different environmental conditions. Promoters that cause a gene to be expressed in most cell types at most times are commonly referred to as “constitutive promoters.” It is further recognized that since, in most cases, the exact boundaries of regulatory sequences have not been completely defined, DNA fragments of different lengths may have identical promoter activity.

[099] The term “operably linked” refers to the association of nucleic acid sequences on a single nucleic acid fragment so that the function of one is affected by the other. For example, a promoter is operably linked with a coding sequence when it is capable of affecting the expression of that coding sequence (i.e., that the coding sequence is under the transcriptional control of the promoter). Coding sequences can be operably linked to regulatory sequences in sense or antisense orientation. [100] The term “expression” as used herein, is used according to its ordinary and customary meaning as understood by a person of ordinary skill in the art, and is used without limitation to refer to the transcription and stable accumulation of sense (mRNA) or antisense RNA derived from the nucleic acid fragment of the subject technology. “Over-expression” refers to the production of a gene product in transgenic or recombinant organisms that exceeds levels of production in normal or non-transformed organisms.

[101] “Transformation” is used according to its ordinary and customary meaning as understood by a person of ordinary skill in the art, and is used without limitation to refer to the transfer of a polynucleotide into a target cell. The transferred polynucleotide can be incorporated into the genome or chromosomal DNA of a target cell, resulting in genetically stable inheritance, or it can replicate independent of the host chromosomal DNA. Host organisms containing the transformed nucleic acid fragments are referred to as “transgenic” or “recombinant” or “transformed” organisms.

[102] The terms “transformed,” “transgenic,” and “recombinant,” when used herein in connection with host cells, are used according to their ordinary and customary meanings as understood by a person of ordinary skill in the art, and are used without limitation to refer to a cell of a host organism, such as a plant or microbial cell, into which a heterologous nucleic acid molecule has been introduced. The nucleic acid molecule can be stably integrated into the genome of the host cell, or the nucleic acid molecule can be present as an extrachromosomal molecule. Such an extrachromosomal molecule can be auto-replicating. Transformed cells, tissues, or subjects are understood to encompass not only the end product of a transformation process, but also transgenic progeny thereof.

[103] The terms “recombinant,” “heterologous,” and “exogenous,” when used herein in connection with polynucleotides, are used according to their ordinary and customary meanings as understood by a person of ordinary skill in the art, and are used without limitation to refer to a polynucleotide (e.g., a DNA sequence or a gene) that originates from a source foreign to the particular host cell or, if from the same source, is modified from its original form. Thus, a heterologous gene in a host cell includes a gene that is endogenous to the particular host cell but has been modified through, for example, the use of site-directed mutagenesis or other recombinant techniques. The terms also include non-naturally occurring multiple copies of a naturally occurring DNA sequence. Thus, the terms refer to a DNA segment that is foreign or heterologous to the cell, or homologous to the cell but in a position or form within the host cell in which the element is not ordinarily found. [104] Similarly, the terms “recombinant,” “heterologous,” and “exogenous,” when used herein in connection with a polypeptide or amino acid sequence, means a polypeptide or amino acid sequence that originates from a source foreign to the particular host cell or, if from the same source, is modified from its original form. Thus, recombinant DNA segments can be expressed in a host cell to produce a recombinant polypeptide.

[105] The terms “plasmid,” “vector,” and “cassette” are used according to their ordinary and customary meanings as understood by a person of ordinary skill in the art, and are used without limitation to refer to an extra chromosomal element often carrying genes which are not part of the central metabolism of the cell, and usually in the form of circular double-stranded DNA molecules. Such elements may be autonomously replicating sequences, genome integrating sequences, phage or nucleotide sequences, linear or circular, of a single- or double-stranded DNA or RNA, derived from any source, in which a number of nucleotide sequences have been joined or recombined into a unique construction which is capable of introducing a promoter fragment and DNA sequence for a selected gene product along with appropriate 3’ untranslated sequence into a cell. “Transformation cassette” refers to a specific vector containing a foreign gene and having elements in addition to the foreign gene that facilitate transformation of a particular host cell. “Expression cassette” refers to a specific vector containing a foreign gene and having elements in addition to the foreign gene that allow for enhanced expression of that gene in a foreign host.

[106] Standard recombinant DNA and molecular cloning techniques used herein are well known in the art and are described, for example, by Sambrook, J., Fritsch, E. F. and Maniatis, T. Molecular Cloning: A Laboratory Manual, 2nd ed.; Cold Spring Harbor Laboratory: Cold Spring Harbor, N.Y., 1989 (hereinafter “Maniatis”); and by Silhavy, T. J., Bennan, M. L. and Enquist, L. W. Experiments with Gene Fusions; Cold Spring Harbor Laboratory: Cold Spring Harbor, N.Y., 1984; and by Ausubel, F. M. et ah, In Current Protocols in Molecular Biology, published by Greene Publishing and Wiley-Interscience, 1987; the entireties of each of which are hereby incorporated herein by reference to the extent they are consistent herewith.

[107] Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the disclosure belongs. Although any methods and materials similar to or equivalent to those described herein may be used in the practice or testing of the present disclosure, the preferred materials and methods are described below. [108] The disclosure will be more fully understood upon consideration of the following non limiting Examples.

EXAMPLES

Example 1

Selecting and screening Egtl and Egt 2 candidate enzymes

[109] Translated nucleotide databases were searched using SpEgtl and SpEgt2, respectively, as a protein query (tblastn). Uncharacterized proteins with full length mRNA were selected and aligned using Vector NTI software. The corresponding putative genes were synthesized and optimized to E. coli codon usage without Bsal, BsmBI, Bpil and Notl sites for cloning purpose. The synthesized genes were cloned in the modified pUC57 (pUC57-B sal- Free) vector (TierO). Then, Egtl and Egt2 genes were subcloned into EC088 and EC090 vector using Bsal reaction, providing DVK-Egtl-AE and DVK-Egt2-EF vectors (Tierl), respectively, according to the MoClo protocol (Iverson, et. al. ACS Synth. Biol. 2016, 5, 99-103). Finally, both subcloned Egtl and Egt2 genes were combined into EC062 vector, generating DVA- Egtl-Egt2-AF vectors (Tier2). The following screening strategy was used. The 25 Egtl candidates were screened using functional SpEgt2 gene; similarly, 15 Egl2 candidates were screened using functional SpEgtl gene. The best combinations of Egtl and Egt2 candidates were transformed into E. coli host such as MG1655 and JM109 for final ET production (Table 1).

[110] For the screening of Egtl and Egt2 candidates, the LB medium with or without the addition of histidine, cysteine, and methionine substrate was used. For the ergothioneine production, the modified minimum M9 medium was used with glucose as carbon source and yeast extract as nitrogen source, and with or without additional substrate such as histidine, cysteine, and methionine.

Example 2

Testing expression of candidate enzymes for ergothioneine biosynthesis

[111] As shown in FIG. 6, among all the strain lines tested, transformants expressing SpEgtl/SpEgt2 enzymes (S7, S8, and S9) produced the highest amount of ergothioneine (up to 257mg/L), while the strain lines expressing EgtDBCE enzymes (S14, S15, and S16) were able to yield a titer of 62 mg/L. However, other transformants carrying EanB and its homolog EanB3 (SI, S2, S3, S4, S5, S6) could only produce very limited amounts of ergothioneine (-15 mg/L).

Example 3

Screening of gene candidates for high ergothioneine production

[112] Two sequences encoding for Egtl and Egt2 from S. pombe, respectively were used as query sequences to blast in databases. Twenty-five (25) sequences for Egtl candidates and fifteen (15) sequences for Egt2 candidates were chosen based on their similarities. These sequences were optimized to E. coli codon usage without Bsal, BsmBI, Bpil and Notl sites for cloning purpose, and synthesized using GeneUniversal service. The synthesized genes were cloned in the modified pUC57 (pUC57-B sal- Free) vector (TierO). Then, Egtl and Egtl genes were subcloned into EC088 and EC090 vector using Bsal reaction, resulting DVK-Egtl-AE and DVK-Egt2-EF vectors (Tierl), respectively according to the MoClo protocol. Tierl parts used were listed in Table 1. Finally, both subcloned Egtl and Egt2 genes were combined into EC062 vector, generating DVA-Egtl-Egt2-AF vectors (Tier2, see FIG. 2). The screening strategy was used as follows. The 25 Egtl candidates were screened using functional SpEgt2 gene and 15 Egt2 candidates using functional SpEgtl gene. The best pairs of Egtl and Egl2 candidates were combined for final ET production (Table 2 and Table 3).

Example 4

Ergothioneine production in large volume fermentation

[113] The best pairs of Egtl and Egt2 candidates were first tested in shaking flasks with triplicates. Cells were cultivated in LB medium with appropriate antibiotics (carb 100 ) without the addition or feeding of any substrates. Samples were taken from 48h cell cultures and analyzed by HPLC. The results showed the strain C13 expressing both Egtl from Ajellomyces dermatitidis (SEQ ID NO: 18) and Egt2 from Talaromyces stipitatus (SEQ ID NO: 90) enzymes produced the highest titer of ergothioneine, compared to the C14 strain expressing Egtl from Aspergillus niger and Egt2 from Talaromyces stipitatus and ck-i- strain expressing Egtl and Egt2 enzymes from Saccharomyces pompe (FIG. 7). FIG. 8 shows the ergothioneine production with C13 E. coli strain in 3L fermenter. FIG. 9 shows the ergothioneine production with C13 E. coli strain in 5,000 L fermenter.

Example 5 HPLC Analysis [114] Samples were analyzed using a Dionex UPLC Ultimate 3000 (Sunnyvale, CA). The compounds were separated on a Luna Cl 8(2) column (particle size 5.0 pm, diameter x length = 4.6 x 250 mm; Phenomenex) and detected at 254 nm. The mobile phase consisted of 0.01% triethylamine in water (A) and acetonitrile (B). The isocratic elution (B=0.8% for 10 min) was used for the separation of sample components. The flow rate was 0.8 ml/min and the inject volume was 5 pi.

Example 6

Increasing ergothioneine production by introducing gene for amino acid transporter yjeH

[115] As described above, hercynine is a vital intermediate toward ergothioneine biosynthesis. Since the synthesis of hercynine needs one molecular of L-histidine and three molecules of L-methionine, the synthetic steps of L-methionine or S-adenosylmethionine are very likely rate-limiting. Recently, Liu et al. reported that an efflux transporter functions as an exporter of L-methionine and other three branched-chain amino acids, which is important in the extracellular accumulation of amino acids in E. coli (Liu et al 2020, Enhancement of Sulfur Conversion Rate in the Production of L-Cysteine by Engineered Escherichia coli; J. Agric. Food Chem. 68: 250-257; Tanaka et al 2020 Gram-scale fermentative production of ergothioneine driven by overproduction of cysteine in Escherichia coli. Scientific Reports,

Vol. 9, Article number: 1895).

[116] In order to further increase ergothioneine yield, we co-expressed the transporter YjeH with E. coli W strains expressing fungal enzymes Egtl and Egt2 involved in ergothioneine production. Our data showed that co-expression of Egtl and Egt2 along with YjeH was able to increase the ergothioneine synthesis when compared to the ergothioneine with only Egtl and Egt2 enzyme. In fact, ergothioneine titers from co-expression of Egtl-Egt2-YjeH increased by 48.27% (FIG. 11), when compared to the control expressing only Egtl and Egt2.

Other embodiments

[117] All of the features disclosed in this specification may be combined in any combination. Each feature disclosed in this specification may be replaced by an alternative feature serving the same, equivalent, or similar purpose. Thus, unless expressly stated otherwise, each feature disclosed is only an example of a generic series of equivalent or similar features. From the above description, one skilled in the art can easily ascertain the essential characteristics of the present disclosure, and without departing from the spirit and scope thereof, can make various changes and modifications of the present disclosure to adapt it to various usages and conditions. Thus, other embodiments are also within the claims.

Equivalents and Scope

[118] Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the present disclosure described herein. The scope of the present disclosure is not intended to be limited to the above description, but rather is as set forth in the appended claims.

[119] The indefinite articles “a” and “an,” as used herein in the specification and in the claims, unless clearly indicated to the contrary, should be understood to mean “at least one.”

[120] The phrase “and/or,” as used herein in the specification and in the claims, should be understood to mean “either or both” of the elements so conjoined, i.e., elements that are conjunctively present in some cases and disjunctively present in other cases. Multiple elements listed with “and/or” should be construed in the same fashion, i.e., “one or more” of the elements so conjoined. Other elements may optionally be present other than the elements specifically identified by the “and/or” clause, whether related or unrelated to those elements specifically identified. Thus, as a non-limiting example, a reference to “A and/or B”, when used in conjunction with open-ended language such as “comprising” can refer, in one embodiment, to A only (optionally including elements other than B); in another embodiment, to B only (optionally including elements other than A); in yet another embodiment, to both A and B (optionally including other elements); etc.

[121] As used herein in the specification and in the claims, “or” should be understood to have the same meaning as “and/or” as defined above. For example, when separating items in a list, “or” or “and/or” shall be interpreted as being inclusive, i.e., the inclusion of at least one, but also including more than one, of a number or list of elements, and, optionally, additional unlisted items. Only terms clearly indicated to the contrary, such as “only one of’ or “exactly one of,” or, when used in the claims, “consisting of,” will refer to the inclusion of exactly one element of a number or list of elements. In general, the term “or” as used herein shall only be interpreted as indicating exclusive alternatives (i.e., “one or the other but not both”) when preceded by terms of exclusivity, such as “either,” “one of,” “only one of,” or “exactly one of.” “Consisting essentially of,” when used in the claims, shall have its ordinary meaning as used in the field of patent law.

[122] As used herein in the specification and in the claims, the phrase “at least one,” in reference to a list of one or more elements, should be understood to mean at least one element selected from any one or more of the elements in the list of elements, but not necessarily including at least one of each and every element specifically listed within the list of elements and not excluding any combinations of elements in the list of elements. This definition also allows that elements may optionally be present other than the elements specifically identified within the list of elements to which the phrase “at least one” refers, whether related or unrelated to those elements specifically identified. Thus, as a non-limiting example, “at least one of A and B” (or, equivalently, “at least one of A or B,” or, equivalently “at least one of A and/or B”) can refer, in one embodiment, to at least one, optionally including more than one,

A, with no B present (and optionally including elements other than B); in another embodiment, to at least one, optionally including more than one, B, with no A present (and optionally including elements other than A); in yet another embodiment, to at least one, optionally including more than one, A, and at least one, optionally including more than one, B (and optionally including other elements); etc.

[123] It should also be understood that, unless clearly indicated to the contrary, in any methods claimed herein that include more than one step or act, the order of the steps or acts of the method is not necessarily limited to the order in which the steps or acts of the method are recited.

[124] In the claims, as well as in the specification above, all transitional phrases such as “comprising,” “including,” “carrying,” “having,” “containing,” “involving,” “holding,” “composed of,” and the like are to be understood to be open-ended, i.e., to mean including but not limited to. Only the transitional phrases “consisting of’ and “consisting essentially of’ shall be closed or semi-closed transitional phrases, respectively, as set forth in the United States Patent Office Manual of Patent Examining Procedures, Section 2111.03. It should be appreciated that embodiments described in this document using an open-ended transitional phrase (e.g., “comprising”) are also contemplated, in alternative embodiments, as “consisting of’ and “consisting essentially of’ the feature described by the open-ended transitional phrase. For example, if the disclosure describes “a composition comprising A and B”, the disclosure also contemplates the alternative embodiments “a composition consisting of A and B” and “a composition consisting essentially of A and B”.

[125] Furthermore, the present disclosure encompasses all variations, combinations, and permutations in which one or more limitations, elements, clauses, and descriptive terms from one or more of the listed claims is introduced into another claim. For example, any claim that is dependent on another claim can be modified to include one or more limitations found in any other claim that is dependent on the same base claim. Where elements are presented as lists, e.g., in Markush group format, each subgroup of the elements is also disclosed, and any element(s) can be removed from the group. It should it be understood that, in general, where the present disclosure, or aspects of the present disclosure, is/are referred to as comprising particular elements and/or features, certain embodiments of the present disclosure or aspects of the present disclosure consist, or consist essentially of, such elements and/or features. For purposes of simplicity, those embodiments have not been specifically set forth in haec verba herein. It is also noted that the terms “comprising” and “containing” are intended to be open and permits the inclusion of additional elements or steps. Where ranges are given, endpoints are included. Furthermore, unless otherwise indicated or otherwise evident from the context and understanding of one of ordinary skill in the art, values that are expressed as ranges can assume any specific value or sub-range within the stated ranges in different embodiments of the present disclosure, to the tenth of the unit of the lower limit of the range, unless the context clearly dictates otherwise.

[126] This application refers to various issued patents, published patent applications, journal articles, and other publications, all of which are incorporated herein by reference. All references, patents and patent applications disclosed herein are incorporated by reference with respect to the subject matter for which each is cited, which in some cases may encompass the entirety of the document. If there is a conflict between any of the incorporated references and the instant specification, the specification shall control. In addition, any particular embodiment of the present disclosure that falls within the prior art may be explicitly excluded from any one or more of the claims. Because such embodiments are deemed to be known to one of ordinary skill in the art, they may be excluded even if the exclusion is not set forth explicitly herein.

Any particular embodiment of the present disclosure can be excluded from any claim, for any reason, whether or not related to the existence of prior art.

[127] Those skilled in the art will recognize or be able to ascertain using no more than routine experimentation many equivalents to the specific embodiments described herein. The scope of the present embodiments described herein is not intended to be limited to the above description, but rather as set forth in the appended claims. Those of ordinary skill in the art will appreciate that various changes and modifications to this description may be made without departing from the spirit or scope of the present disclosure, as defined in the following claims.

Sequences of Interest

<SEQ ID NO: 1; DNA; SpEgtl; Schizosaccharomyces pombe>

ATGACAGAAATAGAAAACATTGGCGCATTAGAAGTTCTCTTCTCTCCTGAATCCAT

CGAGCAGAGCCTCAAACGGTGTCAACTCCCCTCCACTTTATTATACGATGAAAAA

GGTTTACGACTGTTTGATGAGATTACGAATTTAAAAGAATACTACCTGTATGAAAG

TGAGCTTGATATTCTGAAGAAGTTCAGCGATTCCATTGCCAACCAGTTACTGTCTC

CAGATCTTCCTAACACGGTTATAGAATTAGGGTGTGGAAATATGCGCAAAACAAA

ACTTCTTTTAGATGCGTTTGAAAAGAAGGGCTGTGATGTGCATTTTTACGCCCTTG

ACCTTAATGAAGCCGAGTTGCAAAAAGGACTGCAGGAGCTTCGTCAAACTACCAA

TTATCAGCATGTTAAGGTGTCTGGTATTTGCGGTTGCTTTGAAAGATTGCTACAAT

GTTTGGACAGGTTTCGTAGTGAGCCCAATAGTCGAATTAGCATGTTGTACTTGGGT

GCTTCGATTGGTAATTTTGATAGGAAATCCGCAGCATCATTTTTACGTTCGTTTGCC

AGTCGTTTGAATATTCATGACAACCTTTTAATCTCCTTCGATCATAGAAACAAGGC

TGAGCTAGTCCAACTAGCTTACGATGATCCTTATCGTATTACTGAAAAGTTTGAAA

AGAATATTTTGGCTAGTGTCAATGCGGTTTTTGGTGAAAACCTTTTCGACGAAAAT

GATTGGGAATATAAAAGTGTCTACGATGAAGATCTCGGTGTTCATAGGGCCTACTT

ACAAGCCAAAAATGAAGTTACTGTTATTAAGGGTCCAATGTTTTTTCAATTTAAAC

CTAGTCATTTAATTTTGATCGAAGAAAGTTGGAAGAATAGCGATCAAGAATGTCG

TCAAATCATTGAGAAAGGTGATTTTAAATTAGTCTCTAAGTATGAAAGTACGATTG

CAGATTACTCGACCTATGTTATTACCAAACAATTTCCTGCTATGCTTCAACTCCCTC

TTCAGCCTTGTCCTTCGTTAGCAGAATGGGATGCTCTACGCAAAGTATGGCTTTTT

ATTACAAATAAATTGCTTAACAAAGATAACATGTACACCGCATGGATTCCTTTGAG

ACATCCTCCAATTTTTTACATCGGACATGTCCCTGTTTTTAATGATATTTATCTCAC

A A AG ATT GT C A A A A AC A A AGC A ACT GCT A AC A A A A A AC ATTTTT GGG A AT GGTTT

CAACGTGGTATAGATCCGGACATTGAAGATCCCTCCAAGTGCCATTGGCATTCTGA

AGTTCCTGAAAGCTGGCCTTCTCCTGACCAACTTCGTGAATATGAGAAAGAGTCTT

GGGAATATCATATTGTAAAGTTGTGCAAAGCAATGGATGAATTGTCTACTTCTGAA

AAGAGAATTCTCTGGCTTTGTTACGAACATGTAGCCATGCATGTGGAGACAACTCT

TTACATCTACGTACAGTCATTTCAAAATGCAAACCAGACTGTATCAATTTGCGGAT

CACTTCCTGAACCAGCTGAAAAACTTACGAAAGCTCCGTTATGGGTGAATGTACCT

GAAACGGAAATTGCAGTTGGTATGCCCTTGACAACACAATACACGAGTGTTGGAT

C A A ATTT GCA AT C ATCCG AT CTT AGT GCCC AT G A A A AT AC AG AT G A ACTTTTTT AT

TTTGCGTGGGATAATGAGAAACCAATGAGGAAGAAACTGGTTTCTAGCTTTTCTAT

TGCCAATCGTCCAATTTCTAACGGTGAATATTTAGATTTTATCAATAAAAAGTCAA

A A AC AG A A AGGGTGT AT CCA A AGC A AT GGGC GG AG ATT GAT GG A AC GCTTT AC AT

ACGAACCATGTACGGCTTATTACCCCTTGACGACTACTTGGGTTGGCCTGTTATGA

CTTCATACGACGATCTAAACAATTATGCGAGCTCCCAAGGATGCAGACTACCAAC

TGAGGATGAACTGAACTGTTTTTACGATCGGGTTCTCGAGAGAACTGATGAGCCTT

ATGTTAGTACCGAAGGAAAGGCAACTGGTTTTCAACAATTGCACCCTTTAGCCCTA

AGTGATAATTCAAGTAATCAAATATTCACAGGAGCATGGGAATGGACAAGTACAG

TTCTGGAGAAGCACGAGGATTTTGAACCTGAAGAGCTTTATCCAGATTATACACG

AGATTTCTTTGATGGAAAGCATAATGTCGTTTTGGGTGGTAGCTTTGCTACGGCTA

CGCGCATTTCAAATAGAAGAAGCTTCAGGAACTTTTACCAAGCTGGCTATAAATAT

GC ATGGATTGGAGCT AGACT AGTC AAAA ACT AA

< SEQ ID NO: 2; PRT; SpEgtl; Schizosaccharomyces pombe> MTEIENIG ALE VLF S PES IEQS LKRCQLPS TLLYDEKGLRLFDEITNLKE Y YLYES ELDIL KKFSDSIANQLLSPDLPNTVIELGCGNMRKTKLLLDAFEKKGCDVHFYALDLNEAELQ KGLQELRQTTN Y QH VKV S GIC GCFERLLQCLDRFRS EPN S RIS ML YLG AS IGNFDRKS A AS FLRS F AS RLNIHDNLLIS FDHRNK AEL V QL A YDDP YRITEKFEKNILAS VN A VF GEN LFDEND WE YKS V YDEDLG VHR A YLQ AKNE VT VIKGPMFF QFKPS HLILIEES WKN S D QECRQIIEKGDFKLVSKYESTIADYSTYVITKQFPAMLQLPLQPCPSLAEWDALRKVW LFITNKLLNKDNMYT AWIPLRHPPIFYIGHVPVFNDIYLTKIVKNKAT ANKKHFWEWF QRGIDPDIEDPSKCHWHSEVPESWPSPDQLREYEKESWEYHIVKLCKAMDELSTSEKRI LWLC YEH V AMH VETTLYIY V QS F QN AN QT V S IC GS LPEP AEKLTK APLW VN VPETEIA V GMPLTT Q YT S VGS NLQS S DLS AHENTDELF YFA WDNEKPMRKKL V S S FS IANRPIS N GE YLDFINKKS KTER V YPKQW AEIDGTL YIRTM Y GLLPLDD YLGWP VMT S YDDLNN Y ASSQGCRLPTEDELNCFYDRVLERTDEPYVSTEGKATGFQQLHPLALSDNSSNQIFTGA WEWTSTVLEKHEDFEPEELYPDYTRDFFDGKHNVVLGGSFATATRISNRRSFRNFYQA GYKY AWIGARLVKN

< SEQ ID NO: 3; DNA; SpEgt2; Schizosaccharomyces pombe>

ATGGCAGAGAACAACGTTTACGGCCACGAGATGAAGAAGCACTTCATGCTCGACC

CAGACTACGTTAACGTCAACAACGGCTCCTGCGGTACCGAATCCCTGGCTGTTTAC

AACAAGCACGTTCAGCTCCTGAAGGAGGCACAGTCCAAGCCAGATTTCATGTGTA

ACGCTTACATGCCTATGTACATGGAGGCAACCCGCAACGAAGTCGCTAAGCTTAT

CGGCGCAGACTCTTCCAACATCGTTTTCTGCAACTCCGCTACTGACGGCATCTCCA

CCGTTCTCCTGACCTTCCCATGGGAGCAGAACGATGAGATCCTCATGCTGAACGTC

GCATACCCAACCTGTACTTACGCTGCAGACTTCGCTAAGAACCAGCACAACCTTCG

TCTCGACGTGATCGATGTTGGTGTTGAAATCGACGAGGACCTGTTCCTCAAGGAGG

TCGAACAGCGCTTCCTGCAGTCTAAGCCTCGTGCATTCATCTGCGATATCCTTTCCT

CCATGCCAGTTATCCTCTTCCCATGGGAGAAGGTTGTCAAGCTGTGTAAGAAGTAC

AACATCGTTTCCATCATCGACGGCGCTCACGCAATCGGCCACATCCCTATGAACCT

CGCTAACGTTGACCCAGATTTCCTGTTCACCAACGCACACAAGTGGCTTAACTCTC

CAGCTGCATGCACCGTCCTCTACGTGTCCGCTAAGAACCACAACCTGATCGAGGC

ACTCCCTCTGTCCTACGGTTACGGCCTTCGCGAAAAGGAGTCCATCGCTGTTGACA

CCCTCACTAACCGTTTCGTTAACTCTTTCAAGCAGGACCTGCCAAAGTTCATCGCA

GTCGGCGAGGCTATCAAGTTCCGCAAGTCCATCGGTGGCGAAGAGAAGATCCAGC

AGTACTGTCACGAGATCGCACTCAAGGGCGCTGAAATCATCTCCAAGGAGCTGGG

TACCTCCTTCATCAAGCCACCTTACCCAGTTGCAATGGTTAACGTCGAGGTTCCAC

TTCGTAACATCCCTTCTATCGAAACCCAGAAGGTTTTCTGGCCAAAGTACAACACC

TTCCTCCGCTTCATGGAGTTCAAGGGCAAGTTCTACACTCGTCTGTCCGGCGCTGT

CTACCTCGAGGAATCCGATTTCTACTACATCGCAAAGGTGATCAAGGACTTCTGCT

CCCTGTAA

< SEQ ID NO: 4; PRT; SpEgt2; Schizosaccharomyces pombe>

M AENN V Y GHEMKKHFMLDPD Y VN VNN GS C GTES LA V YNKH V QLLKE AQS KPDFMC N A YMPM YME ATRNE V AKLIG ADS S NI VFCNS ATDGIS T VLLTFPWEQNDEILMLN V A YPTCTY AADFAKN QHNLRLD VID V GVEIDEDLFLKE VEQRFLQS KPRAFICDILS SMPV ILFPWEKVVKLCKKYNIVSIIDGAHAIGHIPMNLANVDPDFLFTNAHKWLNSPAACTV LY V S AKNHNLIE ALPLS Y GY GLREKES IA VDTLTNRFVN S FKQDLPKFIA V GE AIKFRK S IGGEEKIQQ YCHEIALKG AEIIS KELGTS FIKPP YP V AM VN VE VPLRNIPS IETQKVFWP KYNTFLRFMEFKGKFYTRLSGAVYLEESDFYYIAKVIKDFCSL < SEQ ID NO: 5; DNA; eanA; Chlorobium limicola>

ATGGCTTATTCCAAGACCAACCTGTCGGAATTGCCACTTGCAGATATAGATAACCA

CTTGACTGAAATAGGATTTGATACCACAATAAGTGAGATAATTACCGGTTTGACTG

CTAATGCGAAGTACATCCAGTCGAAGTATTTTTACGATAAAAGAGGCTCAGCACTT

TTCGAAAAAATCACCAGTCTGTCTGAATACTATCCATCGCGTACAGAAAAGGCTAT

TATTAGCCAACTTCCACCAGCTCTTATAGAAGACCTTGCTGACATAGATATTATCG

AGCTTGGTTGTGGTGACCATTCAAAGATTAGTTTGTTGATTCGCCGTATACCAGCA

GAGTCCGTACCGGGTTTAAGATATTTTCCTATCGATATTAGCCAAACGGCACTGAA

GCAGTCGATCGAAGACCTTCGTGATCTTTTCCCTGCGCTGAAAGTTAAAGGGATAC

TTGCAGATTATGTCCACCAAATGCATTTATTCCCTGAAGAACGTAAACGGCTGTTT

TGCTTTTTCGGTTCTACAATCGGGAACCTTAGCCGTGAGGAGACGCTTGATTTCAT

GCAGAACATGGGCACTACTATGCATCCGGGTGACATGCTTTTGGTTGGCATGGAC

AGAGTAAAGAATATAGCATTGCTGGAAAAGGCGTACAATGACGACCAATTTATCA

CAGCTATGTTTAACAAAAATATACTGCGGGTGATTAACGGCTTAATAAAATCCGAT

TTTAATCCCGATGATTTTGAACACCGGGCTTTCTATAATGCTGACTTCAACAGAAT

CGAGATGCACTTGGAAGCAACTGGGAATATTTCTGTCAAGTCCGCGTTCATGCCTG

AACTTATTCGGATCAAGAAAGGCGAAACAATCCATACTGAGAACAGTCACAAATT

CGAAAAGGCCGACATTCTGTTAATGGGTCAGCACGCCGGGTTAGCCATTAAAAAT

ATTTATTCGGACAAGAACGAATTATTTTCCTTGGCTCATTACGAAAAAAAATAA

< SEQ ID NO: 6; PRT; EanA; Chlorobium limicola>

MAY S KTNLS ELPL ADIDNHLTEIGFDTTIS EIITGLT AN AK YIQS KYF YDKRGS ALFEKIT S FS E Y YPS RTEKAIIS QFPP AFIEDF ADIDIIEFGC GDHS KIS FFIRRIP AES VPGFR YFPIDI S QT ALKQS IEDLRDLFP ALKVKGILAD Y VHQMHLFPEERKRLFCFF GS TIGNLS REETL DFMQNMGTTMHPGDMLLVGMDRVKNIALLEKAYNDDQFITAMFNKNILRVINGLIKS DFNPDDFEHRAFYNADFNRIEMHLEATGNISVKSAFMPELIRIKKGETIHTENSHKFEK ADILLMGQHAGLAIKNIYSDKNELFSLAHYEKK

< SEQ ID NO: 7; DNA; eanB Chlorobium limicola>

ATGCAGAACAAGAACTTCAGAGCACCCCAATCAGAAGCAATTGGCATTCTGTATA

AGTTAATCGAAACTGGATCTAAACACAAAAACATGTATGACCACACGGAAATCAC

TACCGATTCACTTCTGGCGTTATTAGGCAGCGAGAAGGTCAAAATAATCGATGTCC

GCT C AGC AG ATGC GT AT A AC GGCT GGCGT AT G AG AGGT G A AGT AC GCGGT GGGC A

TATAAAAGGCGCAAAATCCCTGCCGGCGAAATGGTTAACTGATCCGGAGTGGCTT

AACATAGTGAGATTCAAGCAGATACGGCCGGAGGACGCAATTGTTCTGTATGGAT

ACACACCCGAGGAATGCGAACAGACCGCGACGCGCTTCAAAGAAAACGGATATA

ACAACGTGAGTGTTTTTCATCGTTTCCATCCGGATTGGACAGGTAACGACGCGTTC

CCCATGGATCGGCTTGAGCAGTATAATCGTCTGGTCCCTGCGGAATGGGTGAATG

GCCTGATATCAGGCGAAGAAATTCCCGAATATGATAATGACACATTTATCGTCTGC

CATGCGCACTACCGTAACCGTGATGCCTACCTTTCTGGTCACATCCCTGGCGCTAC

TGATATGGACACTTTGGCACTTGAGTCCCCAGAAACCTGGAATCGGCGCACACCA

G AGG AGTT A A A A A AGGC GTT AG A AG A AC AT GGG AT A ACC GC AT CT ACC ACT GTGG

TCCTGTACGGAAAGTTTATGCACCCTGATAATGCTGACGAATTTCCAGGATCTGCA

GCTGGTCACATTGGAGCTATTCGTCTGGCCTTCATAATGATGTATGCGGGCGTCGA

GGATGTGCGTGTGTTAAACGGGGGCTACCAATCCTGGACAGATGCTGGATTTGCG ATTTCAAAGGATGACGTTCCGAAAACTACAGTACCTGAGTTCGGTGCTCCGATACC

CTCCCGGCCGGAGTTTGCGGTCGATATTGACGAGGCCAAAGAGATGCTGCAGTCT

GAGGATTCCGATTTGGTGTGCGTCCGCTCGTATCCTGAGTACATTGGAGAGGTTTC

GGGATATAACTATATAAAAAAGAAGGGGCGCATCCCAGGAGCTATCTTTGCCGAA

TGCGGGTCCGATGCTTATCACATGGAGAACTACCGCAACCATGACCATACTACGC

GTGAATACCACGAGATAGAGGATATATGGGCGAAGAGCGGAATCATACCCAAAA

AACACTTAGCCTTCTACTGCGGGACGGGATGGCGTGGATCTGAAGCGTGGTTTAAT

GCTTTGCTGATGGGATGGCCTCGGGTTTCGGTTTACGACGGCGGGTGGTTTGAGTG

GTCAAACGATCCGGAGAATCCTTACGAGACAGGCGTGCCAAAATAA

< SEQ ID NO: 8; PRT; EanB; Chlorobium limicola>

MQNKNFRAPQS E AIGIL YKLIET GS KHKNM YDHTEITTDS LL ALLGS EKVKIID VRS AD AYNGWRMRGEVRGGHIKGAKSLPAKWLTDPEWLNIVRFKQIRPEDAIVLYGYTPEEC EQT ATRFKEN G YNN V S VFHRFHPD WT GND AFPMDRLEQ YNRL VP AE W VN GLIS GEEI PEYDNDTFIVCHAHYRNRDAYLSGHIPGATDMDTLALESPETWNRRTPEELKKALEEH GITASTTVVLY GKFMHPDNADEFPGSAAGHIGAIRLAFIMMYAGVEDVRVLNGGY QS WTDAGFAISKDDVPKTTVPEFGAPIPSRPEFAVDIDEAKEMLQSEDSDLVCVRSYPEYI GE V S G YN YIKKKGRIPG AIF AEC GS D A YHMEN YRNHDHTTRE YHEIEDIW AKS GIIPKK HLAF Y CGT GWRGS E A WFN ALLMGWPR V S V YDGG WFE W S NDPENP YET G VPK

< SEQ ID NO: 9; DNA; J23100; Promoter sequence> TTGACGGCTAGCTCAGTCCTAGGTACAGTGCTAGC

< SEQ ID NO: 10; DNA; J23102; Promoter sequenco TTGACAGCTAGCTCAGTCCTAGGTACTGTGCTAGC

< SEQ ID NO: 11; DNA; RBS02; ribosome binding site> GT A AC ATTT A AT AGG AGG A ATT A

< SEQ ID NO: 12; DNA; J23106; Promoter sequence> TTTACGGCTAGCTCAGTCCTAGGTATAGTGCTAGC

< SEQ ID NO: 13; DNA; RBS06; ribosome binding site> ATT AACGAT ACT AAGGAGCGAAT

< SEQ ID NO: 14; DNA; RBS-B0034m; ribosome binding site> AG AG A A AG AGG AG A A AT ACT A

< SEQ ID NO: 15; DNA; AlEgtl; 1_XM_002844094.1; Microsporum canis>

ATGAGCCCGATTGCCACCAGCAATGTTGATATTGTGGATATTCGTCGCAATAGCCT

GGAAAGCAGCCTGGTTCAGGATATCTATCATGGTCTGCAGGCAAAAGAAAAAAGC

CTGCCGACCCTGCTGCTGTATGATACCAAAGGTCTGCGTCTGTTTGAAGATATTAC

CTATCTGGATGAATACTATCTGACCAATGCAGAAATTGAAGTGCTGACCGCCAAT

GCAGCCAAAATTGCAGCAATTATTCCGGAAAATTGTCAGCTGGTGGAACTGGGTA

GCGGCAATCTGCGTAAAATTGAAATTCTGCTGAATGAACTGGAACGCACCAAAAA

ATCAGTGGAATATTATGCCCTGGATCTGAGCCTGGAAGAACTGCATCGCACCTTTG

CAGAACTGCCGAGCAAAAGCTATCGCTATGTGAAATGCGGTGGTCTGTGGGGTAC CTATGATGATGGCCTGGCCTGGCTGAATAAGCTGGTGAATCGTAATAAGCCGACC

TGGGTTATGAGTCTGGGCAGCAGCATGGGTAATTTTAATCCGACCGAAGCCGCAG

GTTTTCTGAGTGGTTTTGCACGTAGTCTGGGCCCGGTTGATAGCATGGTTATTGCC

CTGGACCCTTGTAAAGCAAGTGAAAAAGTTTTTCGTGCATATAATGACAGTAAGG

GCGTTACCAAACAGTTTTATCTGAATGGCCTGAGCAATGCAAATACCATTCTGGGT

TTTGAAGCCTTTAAACTGGGTGAATGGGATGCCATTGGTGAATTTGATCAGACCCA

GGGTTGTCATCGTGCCTATTATGTGCCGCTGACCGATACCGTTATTCGCGATATTC

ATATTAAGAAAGGCGAAAAAATCTTCTTCGAACAGGCATTCAAATTTGGCGCAGA

TGAATGTGAAAAACTGTGGCGTGAAGCCGGTCTGCAGCCGACCCGTAAATTTGGT

GACGAATATAATATCTATATCCTGAGCAGCGCAAGTGCCACCATGAATCCGTATC

AGCTGCCGACCAAAGGCCCGGAATATGTGAAAGGCGTTGTGCCGGCCCTGGGCGA

TTTTGAAGCCGTGTGGAAACTGTGGGATACCGTGACCACCGCCATGGTGCCGCCG

AATGATCTGCTGAGCCGTCCGATTAATCTGCGTAATAGCCTGATTTTCTATCTGGG

TCATATTCCGGCATTCATGGATCGCCATCTGACCTGTGCCACCAGTGGTATTCCGA

CCGAACCGGCCAATTTTCATAGTATGTTTGAACGCGGTATTGATCCGGATGTTGAT

AATCCGGATCATTGTCATGATCATAGTGCAATTCCGGATGAATGGCCGGCAGTTGA

AACCCTGGTTGAATATCAGCAGAAAGTGCGTGTGCGCGCCAAAAGTCTGTATAGC

GATGCCAAAACCGGCGATCGCCGCATTGCAGAAGCCCTGTGGATTAGTTTTGAAC

ATGAAACCATGCATCTGGAAACCTTTCTGTATATGCTGCTGCAGAGTAGCAGCACC

ATGCCGCCGCCGCTGGTGCCTGAACCGGATTTTAAACAGCTGGCAAGCAATAGCG

CC G A A A A AGC AGTT CC G A ATG A AT GGTTT GAT ATT CC GG A AC AG ACCCT GG A A AT

TGGTCTGAATGAACCGGAAAGCGATGAAATTCCGAGTAATAGCTTTGGTTGGGAT

AATGAAAAACCGCGCCGCGTTGTGCAGGTTCCGGGCTTTGTGGCCAAAGCACGTC

CGATTACCAATGGCGAATATGCAAAATATCTGGAAGAACGTGGCATTGGTCAGGT

GCCGGCAAGCTGGGTTAAAAAACATACCGAAAATGAAAGCACCAATGATGGCATT

GAAACCCTGAGCAGCGGTAATAGTAGCCATAATGTTGTTACCGAATATGCCGTGC

GTACCGTGTTTGGCCCGGTTCCGCTGGAATGGGTTCTGGATTGGCCGGTGGCAGCA

AGTTATGAAGAACTGACCCAGTATGCCAAATGGATGAATTGCCGTATTCCGACCTT

TGAAGAAGTGCGCAGCCTGTATAAATATAGCCTGACCAGCCCGACCGGTACCAAT

CATAGCACCAATGAACTGCGTCCGAGCACCACCGAACTGAAAAAACCGGAATATT

GTACCAGTCATCAGCCGGTTCAGACCCCGATGAAAATTCATGGTCCGGTGTATGTT

GATCTGGATGGTTGTAATGTGGGCTTTACCCATTGGCATCCGACCCCGGTTACCCA

GAAAGGTAATAAGCTGTGTGGTCAGGGTGACTTTGGCGGTCTGTGGGAATGGACC

AGCAGTACCCTGCAGGCACATGAAGGCTTTAAACCGATGAGCCTGTATCCGGCAT

ATACCGCAGATTTCTTTGATGGCAAACATAATATTGTGCTGGGCGGTAGCTGGGCC

ACCC AT CC GCGT CT GGC AGGCC GT AGT ACCTTT GTT A ATT GGT AT C AGC GT AATT A

TCCGTATGTGTGGGCCGGCGCCCGTCTGGTGCGTGATGATtaa

< SEQ ID NO: 16; PRT; AlEgtl; 1_XM_002844094.1; Microsporum canis> MSPIATSNVDIVDIRRNSLESSLVQDIYHGLQAKEKSLPTLLLYDTKGLRLFEDITYLDE Y YLTN AEIE VLT AN A AKIA AIIPEN C QLVELGS GNLRKIEILLNELERTKKS VE Y Y ALDL SLEELHRTFAELPSKSYRYVKCGGLWGTYDDGLAWLNKLVNRNKPTWVMSLGSSMG NFNPTEAAGFLSGFARSLGPVDSMVIALDPCKASEKVFRAYNDSKGVTKQFYLNGLSN ANTILGFEAFKLGEWDAIGEFDQTQGCHRAYYVPLTDTVIRDIHIKKGEKIFFEQAFKF GADECEKLWREAGLQPTRKFGDEYNIYILS S AS ATMNPY QLPTKGPEYVKGVVPALG DFE A VWKLWDT VTT AM VPPNDLLS RPINLRN S LIF YLGHIP AFMDRHLTC AT S GIPTEP ANFHS MFERGIDPD VDNPDHCHDHS AIPDE WP A VETLVE Y QQKVRVR AKS L Y S D AKT GDRRIAE ALWIS FEHETMHLETFL YMLLQS S S TMPPPL VPEPDFKQL AS N S AEKA VPNE WFDIPEQTFEIGFNEPES DEIPS NS F GWDNEKPRRV V Q VPGF V AKARPITN GEY AKYFE ERGIGQVPASWVKKHTENESTNDGIETLSSGNSSHNVVTEYAVRTVFGPVPLEWVLD WP V A AS YEELT Q Y AKWMNCRIPTFEE VRS LYKY S LTS PT GTNHS TNELRPS TTELKKP EYCTSHQPVQTPMKIHGPVYVDLDGCNVGFTHWHPTPVTQKGNKLCGQGDFGGLWE WT S S TLQ AHEGFKPMS L YP A YT ADFFDGKHNIVLGGS W ATHPRL AGRS TFVNW Y QR N YP Y VW AG ARLVRDD

< SEQ ID NO: 17; DNA; A2Egtl; 1_XM_002622999.1 Ajellomyces dermatitidis>

ATGGCCCCTAGTAAACTGAGTAATGTTCCGATTATGGATATTCATGTTAACGATCT

GAAGGATAGCCTGGTGAATGATATCTATGCCGGTCTGAAACCGAGTCATGGTGGT

GCCAAAAGTCTGCCGACCCTGCTGCTGTATAGTACCGAAGGTCTGCGTCAGTTTGA

AGATATTACCTATGTTGATGAATACTACCTGACCAATGCAGAAATTGAAGCACTG

ACCACCCATGCCGCAAAAATTGTGAATCAGCTGCCGGAAAATGCACAGCTGCTGG

A ACT GGGT AGC GGC A ATCTGC GCA A A ATT A AG ATT CT GCT GG AT G A ATTT G AGC G

TAAACAGAAAGCAGTTGAATATTTTGCCCTGGATCTGAGTCGCGAAGAACTGCAT

CGTACCTTTGCAGAAATTCCGCAGGGCGGTTATAAATATGTGCGTTGTCGTGGTCT

GCATGGCACCTATGATGATGCACTGATTTGGCTGACCCGCCCGGAAAATCGCCGT

AATCCGACCTGTATTCTGAGTATGGGTAGCAGTATTGGCAATTTTACCCGCCCGGA

GGCCGCACAGTTTCTGAATCGTTTTAGCAAAATGCTGGGCCCGAGCGATAGCATG

CTGATTGGTATTGATAGTTGTCAGGACCCTGAACGCGTGTATAAAGCCTATAATGA

TAGTCAGGGTGTTACCCGTGATTTTTATATGACCGGCCTGAGCCATGCAAATAGTA

TTCTGGGTTTTGAAGCCTTTAAAAAAGAAGATTGGGGTGTTGCAGGTCATTATGAT

GTGGTTAGTGGTGCACATATGGCCTATTATGTGCCGAATAAGGATGTTACCTTTGA

TGGCGTGGTTCTGGAAAAAGGTGAAAAAATTTTCTTTGAGCAGGCATTCAAATAC

GGCCCGAAAGATTGCAAAGATTTGTTTCAGCATGCAGGTCTGACCCCGATTGCAC

AGTTTGGTAATAATACCGGCGAATATTATGTTCATCTGCTGAGTAGCTGCGCACTG

GAAATGCCGACCCGCGCCGCACAGTATGCAGAAAATGTGATTCCGAATGTGGCCG

ATTTTGAAAATCTGTGGAAAACCTGGGATATGGTGACCCTGAGCATGATTCCGCA

GGATGATCTGCTGAGTAAACCGATTCGCCTGCGCAATGCACTGATTTTCTATCTGG

GCCATATTCCGGCATTTCTGGATATTCATCTGACCCGTGCAACCGATGGTACCCCG

ACCGAACCGAAACATTTTCAGAGTATGTTTGAACGCGGCATTGATCCGGATGTTGA

TAATCCGGAACTGTGTCATGATCATAGTGATATTCCGAGTGAATGGCCGAGCCTGG

GCGAAATTCTGGCATATCGCGATGCCGTTCGTAGTCGCACCCTGGCCCTGCTGGAA

AAACGCACCAAAGATCGTCGCCTGGCCGAAGCCCTGTGGATTGGTTTTGAACATG

AAGCCATGCATCTGGAAACCTTTCTGTATATGCTGCTGCAGAGCGATAAAGCCCTG

CCGCCGCCGGGCGTTCTGCGTCCTAATTTTGAAAGTCTGGCACGCCAGAGTGCACT

GGAAAGCCGTGAAAATAGCTGGTTTACCATTCCGGAACAGCAGATTAGCATTGGC

CTGGATGATCCGAATGAACATGTTATTCCGGAACATAGCTTTAGTTGGGATAATGA

AAAACCGAAACGTAATGTTAACGTGAGCGCCTTTGCAGCACAGGCCCGTCCGATT

ACCAATGGCGAATATGCAACCTATCTGGAAGAACATCATATTACCACCATTCCGG

CCACCTGGATTGATCTGACCCCGAAAACCGGCGATGTGAAACGTAATGGTTATGA

TAGCTGTAATGGCTATAGTACCAATGGTGTTCGTCAGAGTAGCACCAGTGCCACCA

AAAAATTTCTGGAAAAATTTGCCGTTCGCACCGTGTTTGGTCCGGTGCCGCTGAAA

TGGGCACTGAATTGGCCGCTGATGGCAAGCTATAATGAACTGCAGGGTTATGCCG

AAAGTGTGAATTGCCGTATTCCGACCTTTGAAGAAGTGCGCAGTATCTATCAGTAT

AGCGCATTTCTGAAAAGCAAACAGCGTAATGGCGCAACCAGTCTGACCAATGGCC ATAGCAATGTTCCGAATGGTACCGTTAAAACCTTTGATCGCAGCGTGGAACCGGC

CAAAGATACCCATGGCAATCCGCGTAGTCCGGATCATCAGCCGGTGCAGTGCCCG

AGCGCAGATCCGATGCCGGTTTATATTGATCTGGATGAAAATTGCAACGTGGGTCT

GAAACATTGGCATCCGACCCCGGTGACCCAGAATGGTGACCGCCTGAGTGGCCAG

GGTGAACTGGGCGGCGTTTGGGAATGGACCAGTACCCCGCTGCATGCCCATGAAG

GCTTTAAAGCCATGGATCTGTATCCGGGCTATAGTGCAGATTTCTTTGATGGCAAA

CATAATATTGTGCTGGGTGGTAGTTGGGCCACCCATCCGCGTATTGCCGGCCGTAC

CACCTTTATTAATTGGTATCAGCGCAAATATATCTACGTGTGGGCCGGCGCACGCC

TGGTTCGCGAT ATTT AA

< SEQ ID NO: 18; PRT; A2Egtl; 1_XM_002622999.1 Ajellomyces dermatitidis> MAPSKLSNVPIMDIHVNDLKDSLVNDIYAGLKPSHGGAKSLPTLLLYSTEGLRQFEDIT Y VDE Y YLTN AEIE ALTTH A AKI VN QLPEN AQLLELGS GNLRKIKILLDEFERKQK A VE YFALDLSREELHRTFAEIPQGGYKYVRCRGLHGTYDDALIWLTRPENRRNPTCILSMG SSIGNFTRPEAAQFLNRFSKMLGPSDSMLIGIDSCQDPERVYKAYNDSQGVTRDFYMT GLSHAN S ILGFE AFKKEDW GVAGHYD V V S GAHM A YYVPNKD VTFDGVVLEKGEKIF FEQAFKYGPKDCKDLFQHAGLTPIAQFGNNTGEYYVHLLSSCALEMPTRAAQYAENV IPNVADFENLWKTWDMVTLSMIPQDDLLSKPIRLRNALIFYLGHIPAFLDIHLTRATDG TPTEPKHF QS MFERGIDPD VDNPELCHDHS DIPS EWPS LGEILA YRD A VRS RTLALLEK RTKDRRLAE ALWIGFEHE AMHLETFL YMLLQS DKALPPPG VLRPNFES L ARQS ALES R ENSWFTIPEQQISIGLDDPNEHVIPEHSFSWDNEKPKRNVNVSAFAAQARPITNGEYAT YLEEHHITTIPATWIDLTPKTGDVKRNGYDSCNGYSTNGVRQSSTSATKKFLEKFAVR T VF GP VPLKW ALNWPLM AS YNELQG Y AES VN CRIPTFEE VRS IYQ YS AFLKS KQRN G AT S LTN GHS N VPN GT VKTFDRS VEP AKDTHGNPRS PDHQP V QCPS ADPMP V YIDLDEN CNVGLKHWHPTPVTQNGDRLSGQGELGGVWEWTSTPLHAHEGFKAMDLYPGYSAD FFDGKHNIVLGGSWATHPRIAGRTTFINWYQRKYIYVWAGARLVRDI

< SEQ ID NO: 19; DNA; A3Egtl; 1_XM_001397080.2; Aspergillus niger>

ATGAGCCCGCTGTGTCCGGTTGTTAAAGGCGTTGATATTGTGGATATTCGTCAGAA

TGATGTGGAATTTTCACTGGTGAATGATATTCAGCGCGGTATTGATCCGCCGGCAG

GTACCTGCCGCAGCATGCCTACCATGCTGCTGTATGATGCCCAGGGCCTGAAACTG

TTTGAAGATATTACCTATCTGGAAGAATACTATCTGACCAATGCAGAAATTGATGT

GCTGCGTACCCATGCAAAACGCATTGTTGAACGTATTCCGGATAATGCCCAGCTGC

TGGAACTGGGTAGCGGCAATCTGCGCAAAATTGAAATTCTGCTGCAGGAATTTGA

AGCCGCAAGCAAAAAAGTTGATTATTATGCACTGGATCTGAGTCTGAGCGAACTG

GAACGTACCTTTAGCGAAGTGAGCCTGGATCAGTATCAGTATGTTAAACTGCATG

GTCTGCATGGTACCTATGATGATGCACTGACCTGGCTGGAAAATCCGGCAAATCGT

AAAGTGCCGACCGTTATTATGAGTATGGGTAGCAGCATTGGCAATTTTGATCGTCC

GGCCGCCGCAAAATTTCTGAGCCAGTTTGCACGCCTGCTGGGCCCGAGCGATCTG

ATGGT GCT GGGT CT GG AT AGCT GC ACCG AT AGT GAT A A AGTTT AT A A AGCCT AT A

ACGACAGTAAGGGCATTACCCGCCAGTTTTATGAAAATGGCCTGCTGCATGCAAA

TGCCGTGCTGGGCTATGAAGCCTTTAAACTGGATGAATGGGATATTGTGACCGAAT

ATGATAATGTTGAAGGCCGCCATCAGGCCTTTTATGCACCGAATCGTGATGTTACC

ATTAATGGTGTGCTGCTGCAGAAAGGTGAAAAACTGATTTTTGAAGAAGCATTCA

AATACGATCCGGAACAGTGTGATCAGCTGTGGCATGATGCAGGTCTGATTGAAGA

TGCAGAATTTGGTAATGAAAGTGGTGACTATCTGATTCATGTTCTGAGCAGCGCCA

GTCTGAATTTTAGTACCCGTCCGAGTCAGTATGCCGCACAGAGCATTCCGAGTTTT GAAGAATTTCAGAGTCTGTGGACCGCATGGGATATTGTTACCAAAGCCATGGTTCC

GCGCGAAGAACTGCTGAGTAAACCGATTAAGCTGCGTAATGCCCTGATTTTCTATC

TGGGTCATATTCCGACCTTTCTGGATGTTCATCTGACCCGTGCCCTGGGCGAAAAA

CCGACCCATCCGAAAAGCTATCGCCTGATTTTTGAGCGTGGTATTGATCCTGATGT

GGATGATCCGGAAAAATGCCATAGTCATAGCGAAATTCCGGATGAATGGCCGGCA

CTGGGTGACATTCTGGATTATCAGGTGCGTGTTCGCAGTCGCGTGCGTAGTATTTT

TCAGAAACATAATGTTGCCGAAAACCGTGTTCTGGGCGAAGCACTGTGGATTGGT

TTTGAACATGAAGCAATGCATCTGGAAACCTTTCTGTATATGCTGATTCAGAGCGA

ACGCACCCTGCCGCCGCCGGCAGTTCCTAGACCGGATTTTCGTAAATTTTTCCATG

ATGCCCGTCAGGAAAGTCGCCCGAATGAATGGTTTAGTATTCCGGAAAAAACCCT

GAGCGTTGGCCTGCATGATGATGGTCATAGCGTTCCGCGTGATAGCTTTGGCTGGG

ATAATGAAAAACCGCAGCGTAAAATTACCGTGAAAGCATTTGAAGCACAGGCCCG

CCCGATTACCAATGGTGAATATGCAAAATATCTGCAGGCAAATCAGCTGCCGCAG

AAACCGGAAAGTTGGGTTCTGATTAAGCCGGAAACCTATCCGACCTGTAATGGCG

TGAGCCAGGATGGTAGTTATGCAACCAATGAGTTTATGGCCCATTTTGCCGTTCGT

ACCGTTTTTGGTAGTGTGCCGCTGGAACTGGCACAGGATTGGCCGGTTATTGCAAG

TTATGATGAACTGGCCAAATATGCAAAATGGGTGGATTGTCGCATTCCGACCTTCG

AAGAAGCCAAAAGCATCTATGCACATGCAGCACGTCTGAAAGAAACCAGTCATGG

TCTGAATGGCCATAGCGAAACCAATGGTGTTAATGGCCATGAACATAGCGAAACA

AATCCGCTGCGTCCGCGTACCCCGGATCATCAGCCGGTTCAGCATCCGAGTCAGG

AAAGTCTGCCGGTGTTTGTGGAACTGGATAATTGCAATGTGGGTTTTAAACATTGG

CATCCGACCCCGGTTATTCAGAATGGCGATCGCCTGGCAGGCCATGGTGAACTGG

GCGGTGTTTGGGAATGGACCAGCACCGAACTGGCCCCGCATGAAGGTTTTGAAGC

CATGCAGATATATCCGGGCTATACCAGTGATTTCTTTGATGGTAAACATAATATCA

TCCTGGGCGGTAGTTGGGCAACCCATCCGCGTATTGCCGGCCGCACCACCTTTGTT

AATTGGTATCAGCGTAATTATCCGTATCCGTGGGCCGGTGCCCGTCTGGTTCGCGA

TGTGtaa

< SEQ ID NO: 20; PRT; A3Egtl; 1_XM_001397080.2; Aspergillus niger> MSPLCPVVKGVDIVDIRQNDVEFSLVNDIQRGIDPPAGTCRSMPTMLLYDAQGLKLFE DIT YLEE Y YLTN AEID VLRTH AKRIVERIPDN AQLLELGS GNLRKIEILLQEFE A AS KKV D Y Y ALDLS LS ELERTF S E V S LDQ Y QYVKLHGLHGTYDD ALT WLENPANRKVPT VIMS MGSSIGNFDRPAAAKFLSQFARLLGPSDLMVLGLDSCTDSDKVYKAYNDSKGITRQFY EN GLLHAN A VLGYE AFKLDEWDIVTEYDN VEGRHQAFY APNRD VTIN GVLLQKGEK LIFEEAFKYDPEQCDQLWHDAGLIEDAEFGNESGDYLIHVLSSASLNFSTRPSQYAAQS IPSFEEFQSLWTAWDIVTKAMVPREELLSKPIKLRNALIFYLGHIPTFLDVHLTRALGEK PTHPKS YRLIFERGIDPD VDDPEKCHS HS EIPDEWP ALGDILD Y Q VR VRS R VRS IFQKHN V AENR VLGE ALWIGFEHE AMHLETFLYMLIQS ERTLPPP A VPRPDFRKFFHD ARQES R PNEWFSIPEKTLSVGLHDDGHSVPRDSFGWDNEKPQRKITVKAFEAQARPITNGEYAK YLQAN QLPQKPES WVLIKPET YPTCNGV S QDGS YATNEFMAHFA VRT VFGS VPLELA QD WP VIAS YDEL AKY AKW VDCRIPTFEE AKS IY AH A ARLKET S HGLN GHS ETN G VN G HEHS ETNPLRPRTPDHQP V QHPS QES LP VFVELDN CN V GFKHWHPTP VIQN GDRL AGH GELGG VWE WT S TEL APHEGFE AMQIYPG YT S DFFD GKHNIILGGS W ATHPRIAGRTTF VNW Y QRN YP YPW AG ARLVRD V

< SEQ ID NO: 21; DNA; A4Egtl; 1_XM_003066635; Coccidioides posadasii> ATGGGT CT GGC A AT GGGTGGT GTT A AT ATT ATT GAT ATTC GCC GT A AT A ACCT G A A

TAATAGCCTGGCCAAAGATGTGACCCGCGGCCTGGACCCTAAAAATGGCACCCAG

CGCAGTCTGCCGACCCTGCTGCTGTATAATACCGAAGGCCTGCGCCTGTTTGAAGA

AATTACCTATCTGGATGAATACTATCTGACCAATGCCGAAATTGAAGTTCTGACCA

CCCATGCCGTTAGTATTGTTGAACGTGTGCCGGAAAATAGTCAGCTGGTTGAACTG

GGCAGTGGTAATCTGCGCAAAGTTGAAATTCTGCTGAATGAATTTGAGCGTACCA

A A A A ACC GGTT G A AT AT CT GGCCCT GG AT GTG AGT CT GG A AG A ACT G A ATC GC AC

CTTTGCCGAACTGCCGAGTAAAAGCTATCAGTATGTTAAATGCAGCGGTCTGCTGG

GCACCTATGATGATGCACTGAGCTGGCTGAAACGTAGTGAAAATCGTCGCAAACC

GACCTGGGTTATGAGCATGGGCAGCAGCATTGGCAATTTTACCCGTAGCGAAGCA

GCCCAGTTTCTGGGTGGTTTTGCCCGTACCCTGGGTGCAGATGATGCCCTGCTGGT

GGGTCTGGATAGCTGTAAAGATCCGCAGAAAGTTTTTCGTGCCTATAATGATAGTA

AGAATGTT ACCCGTGAATTTT ATCTGA ATGGTCTGGC AAATGC AAAT AGC ATTCTG

GGCTTTGAAGCATTCAAACGTGAAGATTGGGATGTGGCCGGTATCTATGATGAAG

TTGATGGCTGTCATAAAGCCTATTATACCCCGACCCGTGATGTTACCATTGAAGCA

TGGAGCTTTACCAAAGGTGAACGCATTTTCTTTGAACAGGCATTCAAATATGCAGA

AAAAGAATATCAGGCACTGTGGCAGCAGGCAGGCCTGACCAGTACCGCACGTTTT

ACCAGTAGCACCGGTGACCATAATATTCATCTGCTGAGCAGTAGCCCGTATATTCT

GCCGACCCAGCCGGCAGAATATGCCGCAACCCTGACCCCGAGTCTGAAAGAATTT

GAAGCACTGTGGAAACTGTGGGATACCGTTACCACCGGCATGCTGCCGCGCAATG

AACTGCTGAGCAAACCGATTAATCTGCGCAATGCACTGGTGTTTTATCTGGGCCAT

ATTCCGACCTTTCTGGATATGCATATTACCCGCGCCATTGATGGTCAGCCGACCGA

ACCGAAAAGCTATTGGAGCATTTTTGAACGTGGCATTGATCCGGATGTTGATGATC

CGCGTAAATGCCATGATCATAGCGAAATTCCGGATGCATGGCCGCCGGTTGAAGA

AATTCTGCAGTTTCAGACCACCGTGCGCAATCGTGCACGTAGTCTGCTGCAGAAAA

GCCAGCATACCACCAATCGCCGCATTCATGAAGCCCTGTGGATTGGTTTTGAACAT

G A AGC A AT GC AT CT GG A A ACCTTT CT GT AT AT GCT GCT GC AG AGCG AT A A AGTGT

GTCCGCCGCCGGAAATTAGCACCCCGGATTTTGAATATCTGGCGATGCGCAGCGC

CCAGGAAAGTGTTCCGAATGAATGGTTTATTGTTCCGGAACAGACCATTTGGATTG

GTCTGGATGATCCGGACCCTACCCGCATTCCGTTTGGCAGTTTTGGTTGGGATAAT

GAAAAACCGCAGCGCACCGCAAAAGTTAGTAGCTTTGAAGCCAAAGGCCGTCCGA

TTACCAATGGTGAATATTGCCGTTATCTGGAAGCCAATAAGCTGGCCACCGTGCCG

GCCAGTTGGACCCGTAGCAGTAGTGGCTTTAGCGAACCGAATGGTCATGCCGCCA

GCCATACCAATGGTACCAATGGTCGTGAAACCAGCGAAGCAAGTGCCTTTAGCCA

GCTGCTGAGTAAATATCATGTTCGCACCGTGTTTGGTCCGGTTCCGCTGCGCTTTG

CCCT GG ATT GGCC GGTT ATT GC A AGCT AT A AT G A ACT GG A AC GCT ATGC A A ATT GG

GTT AATTGTCGCATTCCGACCTTCGAAGAAGCACGCAGCATCTATCAGT AT AGTGT

GTTTCTGAAAGATCAGGAAATTGGTGTGCAGAGTAGCCTGATTGATGCAAGCAGC

AATGATATGGAAGGTCCGCCGCGCGATCTGAATGGTTTTGTTGAACATCGTAATGG

TCGTCCGCGTGCCCCGGATCATCAGCCGGTTAGCCAGCCGCCGAGCACCCAGATG

CCGGTGAATGTGGATCTGGATGGTTATAATGTGGGTTTTAAACATTGGCATCCGAC

CCCGGTTACCCAGAATGGTAATAAGCTGAGTGGTCAGGGTGGTATGGGTGGTGCC

TGGGAATGGACCAGCAGCACCCTGGAAGCACATGAAGGTTTTAAAGCAATGGATC

TGTATCCGGCCTATACCGCCGATTTCTTTGATGGCAAACATAATATTGTGCTGGGC

GGCAGCTGGGCAACCCATCCGCGTATTGCCGGCCGCACCACCTTTGTGAATTGGTA

TCAGCGCAATTATCCGTATGTTTGGGCAGGTGCACGCCTGGTTCGCGATATTtaa < SEQ ID NO: 22; PRT; A4Egtl; 1_XM_003066635; Coccidioides posadasii> MGLAMGGVNIIDIRRNNLNNSLAKDVTRGLDPKNGTQRSLPTLLLYNTEGLRLFEEIT YLDE Y YLTN AEIE VLTTH A V S IVERVPEN S QL VELGS GNLRKVEILLNEFERTKKP VE Y LALD V S LEELNRTF AELPS KS Y Q Y VKC S GLLGT YDD ALS WLKRS ENRRKPT W VMS M GSSIGNFTRSEAAQFLGGFARTLGADDALLVGLDSCKDPQKVFRAYNDSKNVTREFYL N GLAN AN S ILGFE AFKRED WD V AGIYDE VDGCHKA Y YTPTRD VTIE A W S FT KGERIFF EQAFKYAEKEYQALWQQAGLTSTARFTSSTGDHNIHLLSSSPYILPTQPAEYAATLTPS LKEFEALWKLWDTVTTGMLPRNELLSKPINLRNALVFYLGHIPTFLDMHITRAIDGQP TEPKS YW S IFERGIDPD VDDPRKCHDHS EIPD A WPP VEEILQF QTT VRNRARS LLQKS Q HTTNRRIHE ALWIGFEHE AMHLETFLYMLLQS DKVCPPPEIS TPDFE YL AMRS AQES VP NEWFI VPEQTIWIGLDDPDPTRIPF GS F GWDNEKPQRT AKV S S FE AKGRPITN GEY CRY LE ANKLAT VP AS WTRS S S GF S EPN GH A AS HTN GTN GRET S E AS AF S QLLS K YH VRT VF GPVPLRFALDWPVIASYNELERYANWVNCRIPTFEEARSIYQYSVFLKDQEIGVQSSLI D AS S NDMEGPPRDLN GFVEHRN GRPR APDHQP V S QPPS TQMP VN VDLDG YN V GFKH WHPTP VT QN GNKLS GQGGMGG A WEWT S S TLE AHEGFKAMDLYP A YT ADFFDGKHN IVLGGSWATHPRIAGRTTFVNWYQRNYPYVWAGARLVRDI

< SEQ ID NO: 23; DNA; A5Egtl; 1_XM_016386852; Cladophialophora immunda>

ATGGCAACCCATACCCCGGCCGGTGTGCCGATTCTGGATATTCGTAGCGATCAGA

GCGATCAGAGTCTGCTGCATACCCTGAAACAGAGTCTGAATCCGCCGAAAGGTCA

GCCGCGTACCTTTCCGACCCTGCTGCTGTATGATGAAAAAGGCCTGAAACTGTTTG

AAGAAATTACCTATGTGGATGAATACTATCTGACCAATGCCGAAATTGATACCCTG

ACCCGTCATGCCGGCAAAATTGTTGGCCGCATTCCGGATGGCGCACGTCTGGTGG

AACTGGGTAGTGGCAATCTGCGTAAAGTTAATATTCTGCTGAAAGCATTTGAGGA

AGCCAATAAGAATGTGGAATATTATGCCCTGGATCTGAGCCTGAGCGAACTGAAA

CGTACCTTTGCACAGCTGGATATTAATGCATTTCATCATGTTACCTTCCGTGCCCTG

CATGGCACCTATGATGATGCCCTGCTGTGGCTGAAAGAAAGCGCCACCGATGCCC

GCACCACCTGCGTGATGACCATGGGTAGTAGTCTGGGCAATTTTACCCGTGAAGA

AGCCGCACAGTTTCTGGCAAGCTTTAAAAAAGTTCTGGCAGCAAGCGATTATGTTA

TGGTTGGCATTGATGCATGTCAGCAGCCGGATCGCGTTTTTCGCGCCTATAATGAT

AGCATGAATGTGACCGAACGCTTTTATCGTAATGGCCTGACCCATGCAAATAATAT

TCTGGGTTATGAAGCATTTCGTCAGGATGAATGGCAGATTGAAGGCGTGTATGAT

GAAAATC AGAAT AAGC ATC AGGCC AGTT ATGTGGC ACTGAAA ACC ATT AAT AAT A

AGGATTTCAGCTTCGAACAGGGCGAAAAAGTGCATCTGGAAGATGCATTCAAATA

TAGCGAAGCCCAGCGTGATGCACTGTGGCATGCCGCAGGTCTGATTCCGCAGACC

GC AT AT AAT AAT AAGACC AATGATT ACT AC ATCC ACCTGCTGAGCCCGAGT ACC AT

TAATTTTCCGACCAAACCGGCCGAATTTGCCGCCAGCCCGGTTCCGAGTCTGGATG

ATTGGCGTCAGCTGTGGGCCGCATGGGATACCGTTACCAAAAGTATGGTTCCGAA

AGATGAACTGCTGAATAAGCCGATTAAGCTGCGTAATGATCTGATTTTCTATCTGG

GCCATATTCCGACCTTTGCCGATATTCATTATATGAAAGCCACCAAAGAAAAGGCC

ACCGATCCGGCCTATTATATGAGTATTTTTGAACGCGGCATTGATCCGGATGTTGA

TAATCCGGAACTGTGTCATGATCATAGTGAAATTCCGGATAGCTGGCCGCCGCTGG

AAGATATTCTGAATTATAGCCAGCGTGTGCGCGAACGTATTGTTGAAGGCATTCAT

AGCGGTCGCGCCTATACCGATCGTCGTCTGAGTCGTGGCCTGTGGCTGGCATATGA

ACATGAAGCCATGCATCTGGAAACCTTTCTGTATATGCTGCTGCAGAGCGAACGC

GTGCTGCCGCCGCCTGGTGAAGGTCTGCCGGATTTTCGTACCCTGGCCGCCGAAGC

ACGTGCAAATCGCACCAGCAATCAGTGGCATCGTATTCCGGCCAGCAAAGTTAAA ATTGGTCTGGATGATCCGGAAAATAATTTTGGTCCGGATCGTTATTTTGGCTGGGA

TAATGAACGCCCGAGCCGCACCGTGGCAGTGAATGAATTTGAAGCCCAGAGCCGC

CCGATTAGTAATGGCGAATATGCACGCTTTCTGGAAGTTACCCATAAAGATAGCCT

GCCGGCCAGCTGGACCGCAAGTAAAGTGGGTGCCGTGCTGAATGGCACCAATGGC

ACCAACGGCGCCAATGGCCATGTTCAGGATGAACTGGATATGGCAAGTCCGAGCT

TTGTGGAAGATAAAGCCATTCGCACCGTTTATGGCCTGATTCCGCTGAAATATGCA

CTGGATTGGCCGGTTATGGCCAGCTATGATGAACTGGCCGCATATGCAGAATGGA

GCAATGGTCGCATTCCGACCCTGGAAGAAGCCCGCAGTCTGTATCAGTATGTTGA

AAATCAGGATAGTGTTCTGCAGAAAGTGACCAGCAAACTGATTAGCGCCGTTAAT

GGTCATCTGAGCAATGATGGCGTTCAGGAAACCCCGCCGAGCACCCATCAGAGCA

ATGGCGTTGTGAATGGCAGTGCAGATGGTCCGAGTCTGGACCCGAATGAACTGTT

TGTGGAACTGGGCGATCGTAATGTGGCCTTTCGTCATTGGCATCCGACCCCGGTTA

CCGGTAATGCAGATCGTCTGCGTGGCCAGAGCGATCTGGGTGGTCTGTGGGAATG

GACCAGTACCCCGCTGGCCCCGCATGAAGGCTTTAAAGCCATGGATCTGTATCCG

GGCTATACCGCCGATTTCTTTGATAGTAAACATAATGTGTGCCTGGGCGGCAGTTG

GGCAACCGTTCCGCGTATTGCCCTGAAAAAGACTTTTGTGAATTGGTATCAGCGCA

ATTATCCGTATGTTTGGTGCACCGCACGCCTGGTGCGCGATGTTGTTGTTtaa

< SEQ ID NO: 24; PRT; A5Egtl; 1_XM_016386852; Cladophialophora immunda> MATHTPAGVPILDIRSDQSDQSLLHTLKQSLNPPKGQPRTFPTLLLYDEKGLKLFEEITY VDEYYLTN AEIDTLTRHAGKIV GRIPDGARLVELGS GNLRKVNILLKAFEE ANKNVE Y

Y ALDLS LS ELKRTF AQLDIN AFHH VTFRALHGT YDD ALLWLKES ATD ARTT C VMTMG S S LGNFTREE A AQFL AS FKKVL A AS D Y VM V GID ACQQPDR VFRA YNDS MN VTERFYR NGLTHANNILGYEAFRQDEWQIEGVYDENQNKHQASYVALKTINNKDFSFEQGEKVH LED AFK Y S E AQRD ALWH A AGLIPQT A YNNKTND Y YIHLLS PS TINFPTKP AEF A AS P VP SLDDWRQLWAAWDTVTKSMVPKDELLNKPIKLRNDLIFYLGHIPTFADIHYMKATKE KATDPAYYMSIFERGIDPDVDNPELCHDHSEIPDSWPPLEDILNYSQRVRERIVEGIHSG RA YTDRRLS RGLWL A YEHE AMHLETFLYMLLQS ERVLPPPGEGLPDFRTLA AE ARAN RT S N QWHRIP AS KVKIGLDDPENNF GPDRYF GWDNERPS RT V A VNEFE AQS RPIS N GE

Y ARFLE VTHKDSLPAS WT AS KV GA VLN GTN GTN GAN GHV QDELDMASPSFVEDKAI RT V Y GLIPLKY ALD WP VM AS YDELA A Y AE W S N GRIPTLEE ARS LY Q Y VEN QDS VLQK VT S KLIS A VN GHLS NDG V QETPPS THQS N G V VN GS ADGPS LDPNELF VELGDRN V AFR HWHPTP VT GN ADRLRGQS DLGGLWEWT S TPLAPHEGFKAMDL YPG YT ADFFDS KHN

Y CLGGS W AT VPRIALKKTFVNW Y QRN YP Y VW CT ARL VRD V V V

< SEQ ID NO: 25; DNA; M A6Egtl; 1_XM_008090310; Glarea lozoyensis>

ATGACCATTCATAGCGCAACCAATGGTACCGCAAAACTGGGTAGCCATACCAAAC

CGATGAGCAGCAGCAAAACCAATAATATTCAGCCGAGTGCAAAAGATGAACTGAC

CAGCGGCGTTGATATTATTGATATTCGTCATGATGCAGTTGAAATTAATCTGAAAG

AAGAAATCGACAAGCTGCTGCATCCGGCAGAAGGCCCGAAAAAACTGCCGACCCT

GCTGCTGTATGATGAACAGTATTATCTGACCAATGCAGAAATTGATGTGCTGAAAC

GTAGTGCAGGTAGCATTGCAGATAGCATTCCGAGCGGCAGCATGCTGGTGGAACT

GGGCAGTGGCAATCTGCGTAAAGTTAGTATTCTGCTGCGTGCACTGGAAGCCGCC

GGCAAAGAAATTGATTATTATGCCCTGGATCTGAGCCTGAGCGAACTGAAACGCA

CCCTGGAACAGGTTCCGAATTTTAAATATGTTAAGTGCCATGGCCTGCATGGTACC

TATGATGATGGCCTGGATTGGCTGAAAGCCGCCGAACATGGCAGTCGCACCAAAG

TTGTTATGAGCCTGGGCAGCAGCATTGGTAATTTTAAACGCAGCGAAGCAGCAAG CTTTCTGCGCGGTTTTAGTGATGCCCTGGGCCCGAGCAATATGATGCTGATTGGTG

TGGATGCAACCAGCGATCCGAGTAAAGTGTATCATGCCTATAATGATCGTAAAGG

TACCACCCATGAGTTTATTCTGAATGGTCTGACCAATGCCAATGGTATTCTGGGTG

AAGATGCCTTTGATATTAAGGATTGGAAAGTTATTGGCGAATATGTGTTTGATCAT

GAAGGTGGTCGTCATCAGGCATTTTATGTGCCGAAAACCGATGTGACCTATAAAA

ATATTCTGCTGAAAGCAGGCGAACGTATTCAGGTTGAAGAAAGTCTGAAATATAG

CCTGGATGATGCAACCCATCTGTGGGCCGCCAGTGGCCTGCGTGAAGTGAGTCATT

GGACCGCCAGTAGCGATGCCTATAATATTCATCTGCTGCAGCCGAAAGAACGCAT

GGAATTTCATACCGCAAGTGCAGTGTATGCAGCAACCACCGTGCCGAGTGTTGAT

GATT GGCT G A AT CT GT GG A A AGTTT GGG AT ATTGT G ACCCGT A A A AT GATT CC GG A

ACAGGATCTGCTGGAAAAACCGATTAAGCTGCGTAATGCATGTATTTTCTATCTGG

GCCATATTCCGACCTTTCTGGATATTCAGCTGTGTAAAGTTAGTGGTGAACCGCCG

TGCGAACCGAGTCATTATCCGAAAATTTTTGAACGCGGTATTGATCCGGATGTTGA

TAATCCGGAACATTGTCATGCACATAGCGATATTCCGGATGAATGGCCGCCGCTG

GAAGAAATTCTGCAGTATCAGGAACAGGTTCGCGCAAAAGCACTGAAACTGACCG

CAGCAAGCAAAATTCCGCGCGAAATTGGCCGCGCCCTGTGGATTGGTCTGGAACA

TGAAATTATGCATCTGGAAACCCTGCTGTATATGCTGCTGCAGAGCGATCGCACCA

TTCCGCCGACCAGTCATACCCCGAATTTTAAGGATGATGCCAAAGCCGCAGAAAG

CGCACGCGTTGAAAATGAATGGTTTGAAGTTCCGCGCCAGCAGATTACCATTGGC

CTGGAAGATCCGGAAGATAATAGCGGCGGTGACCGCCATTTTGGCTGGGATAATG

AAAAACCGCCGCGCCAGGTTCTGGTGCCGAGCTTTCTGGCCAAAGGTCGTGCCATT

ACCAATGAAGAATATGCCCGCTATCTGGAATATACCAATAAGCATGAAATCCCGG

CAAGTTGGGCCGATGGTGGTAGCACCGGCAGTGATACCAATGGCTTTTTCAATGG

CGC AAATGGCTAT AGT AATGGCC AT AGT AATGGTGGTGAAA AGAAAAGT AGTACC

AAAGCATTTCTGGAAGGCAAAAGCGTTCGCACCGTGTATGGTCTGGTGCCGCTGC

AGTATGCACTGGATTGGCCGGTGTTTGCAAGTTATGATGAACTGGCAGGTTGTGCA

GCATTCATGGGCGGCCGTATTCCGACCGTGGAAGAAGCCCGCAGCATCTATAGTC

ATGTTGATGGCCTGAAACTGAAAGAAGCCGAACAGCATCTGGGTAAAACCGTGCC

GGCCGTTAATGGTCATCTGGTGAATGATGGCGTTGAAGAAAGCCCGCCGAGTCGT

GCCGTGGTTAATAGTGGTCGTAGTCGCAATCTGTTTGCAAATCTGGATGGTGCAAA

TGTTGGCTTTAAAAATTGGCATCCGGTTGCCGTGACCGCCAATGGCGATAAACTGG

CAGGCCAGGCCGAAATGGGTGGCGTTTGGGAATGGACCAGCAGCCCGCTGGTTAA

ACATGAAGGTTTTGAACCGATGCCGCTGTATCCGGCCTATACCAGCGATTTCTTTG

ATGGTAAACATAATATCGCCCTGGGCGGTAGTTGGGCAACCCATCCGCGCATTGC

CGGTCGCAAAACCTTTGTGAATTGGTATCAGCGTAATTATCCGTATGCCTGGGCAG

GCGCACGTCTGGTTCGCGATATTtaa

< SEQ ID NO: 26; PRT; M A6Egtl; 1_XM_008090310; Glarea lozoyensis>

MTIHS ATN GT AKLGS HTKPMS S S KTNNIQPS AKDELT S G VDIIDIRHD A VEINLKEEIDK LLHPAEGPKKLPTLLLYDEQYYLTNAEIDVLKRSAGSIADSIPSGSMLVELGSGNLRKV SILLRALEAAGKEIDYYALDLSLSELKRTLEQVPNFKYVKCHGLHGTYDDGLDWLKA AEHGS RTKV VMS LGS S IGNFKRS E A AS FLRGF S D ALGPS NMMLIG VD AT S DPS KV YH A YNDRKGTTHEFILNGLTNANGILGEDAFDIKDWKVIGEYVFDHEGGRHQAFYVPKTD VT YKNILLKAGERIQ VEES LKY S LDD ATHLW A AS GLRE V S HWT ASS D A YNIHLLQPKE RMEFHTASAVYAATTVPSVDDWLNLWKVWDIVTRKMIPEQDLLEKPIKLRNACIFYL GHIPTFLDIQLC KV S GEPPCEPS H YPKIFERGIDPD VDNPEHCH AHS DIPDE WPPLEEILQ Y QEQ VR AKALKLT A AS KIPREIGRALWIGLEHEIMHLETLL YMLLQS DRTIPPT S HTPN FKDDAKAAESARVENEWFEVPRQQITIGLEDPEDNSGGDRHFGWDNEKPPRQVLVPS FF AKGRAITNEE Y AR YFE YTNKHEIP AS W ADGGS TGS DTN GFFN GAN GY S N GHS NGG EKKSSTKAFLEGKSVRTVYGLVPLQYALDWPVFASYDELAGCAAFMGGRIPTVEEAR SIYSHVDGLKLKEAEQHLGKTVPAVNGHLVNDGVEESPPSRAVVNSGRSRNLFANLD G AN V GFKNWHP V A VT AN GDKL AGQ AEMGG VWEWT S S PLVKHEGFEPMPLYP A YT S DFFDGKHNIALGGS W ATHPRIAGRKTFVNW Y QRNYPY AWAG ARLVRDI

< SEQ ID NO: 27; DNA; A7Egtl; 1_XM_016369232; Exophiala mesophila> ATGACCCGCACCATTAGCCAGGTGCTGCATCCGGCCTTTACCATGGCCACCAGCCA GCGTCCGGCCGTGCGTTTTCTGGATATTCGTGGTGACAAAAGCGGCCAGAGTCTGC TGAGCATGCTGAAAGAAAGTCTGGACCCTCCGAATAAGCAGCCGCGTAGTTTTCC GACCCTGCTGCTGTATGATGAAAAAGGTCTGAAAATTTTCGAGGAAATTACCTATC TGGATGAATATTATCTGACCAATGCAGAAATTGAAGCACTGGAAACCCATGCCCG CGAAATTGCCACCCAGATTCCGCGCAATAGTCGCATTGTGGAACTGGGTAGTGGT AATCTGCGTAAAATTAATATTCTGCTGGAAGCCTTTGAAGCAGCAAAAAAGAATG TTGATTACTATGCACTGGATCTGAGCTTTCCGGAACTGCAGCGTACCTTTGCCGAA ATTGATACCAGTCGTTATCAGCATGTGAGCTTTAATGCACTGCATGGCACCTATGA TGATGCCCTGACCTGGCTGAGTAATAGTAGTGGTGACCAGAGTACCTGTGTTATGA CCATGGGTAGCAGCCTGGGTAATTTTAGCCGTCAGGATGCAGCAGGCTTTCTGACC AAAATTAAGAGCGTTCTGGGTCCGGCCGATCTGATTCTGGTGGGTCTGGATGCCTG CCAGGACCCTCAGCGTGTTTTTAAAGCCTATAATGATAGTCAGCTGGTGACCGAAC GTTTTTATCGCAATGGTCTGGATCATGCCAATAGCCTGCTGGGTTATGAAGTGTT T CGTCAGGAAGATTGGAGCGTTGAAGGCCGTTATGATGAACAGCTGGATCGCCATC ATGCAACCTATCTGGCCCGCAAAGATATTATTACCAAAGATTTTAGCTTCAAGCGT GGCGAACGCCTGCCGTTTGAAGAAAGCTTTAAATATAGCGAAGCACAGAGTGATC AGCTGTGGCATGATAGCGGTCTGGTGCAGCAGATGGCCTTTGGCAATAAGAGCGC CGATTATTTTATTCATCTGCTGAGCCCGGCAGCAATTAATTTTGCCACCAAACCGG CC G A AT AT GCA ACC A AT CC GATT CC G AGT AGCG AT GATT GGC AGC AGCT GT GG AC CGCATGGGATGTTGTGACCCGTAGCATGATTCCGAAAGATGAACTGCTGAATAAG CCGATTAAGCTGCGTAATGATCTGATTTTCTATCTGGGCCATATTCCGACCTTTGCA GATATTCATTTTACCAAAGCAACCGATGGCAAACCGACCGAACCGGCCAGTTATT GGAGTATTTTTGAACGTGGCATTGATCCGGATGTTGATAATCCGGAACTGTGTCAT GATCATAGTGAAGTTCCGGATAGTTGGCCGGCACTGAATGATATTCTGACCTATGC CAAACGTGTGCGCAGTCGTATTGCAGATAGCCTGGAAAGCGGCCAGGCCGTGCAG GATCGTCGCCTGGGTCGTGGTCTGTGGCTGGCCTATGAACATGAAGCCATGCATCT GGAAACCTTTCTGTATATGCTGCTGCAGAGTGATCGCATTCTGCCGCCGCCGGGTA CCGAACGCCCGGACTTTCGCCAGATTGCAGATGAAGCACGTGCAAATCGCGTGGC CAATAAGTTTCATCGCATTCCGGCAGCAGAAGTGACCCTGGGCCTGGATGATCCG GAAAATCATCATGGTCCGGATCGTTATTTTGGCTGGGATAATGAACGCCCGAGTCG CACCGTTAGCGTTGCAGCCTTTGAAGCGCAGAGTCGTCCGATTAGCAATGGTGACT ATGCATATTATCTGGAAGTTACCGGCAATAGCAGCCTGCCGGCAAGCTGGATTGC ACGTCGCAGTGTTCTGAATGGTGTGAATGGCGCAGTTAGTAATGGCGAAGTTGGC CGTGAAGTTGTTAGTAGCGAATTTCTGGGCGATAAAGCACTGCGCACCGTTTGGG GTCCGCTGCCGCTGAAACATGCCCTGGATTGGCCGGTTATGGCAAGCTATGATGA ACTGGCCGCATATGCAAAATGGGCAAATGGTCGTATTCCGACCCTGGAAGAAGCA CGTAGTATCTATCATCATGTTGAAAGCCGCAAAGATACCCTGGAAAAAGTTCCGA GC A A ACTG ATT AGT GC AGTT A AT GGCC AT CT G AGC A AT G A AGGCGT GG A AG A A AC CCCGCCGAGCAATCAGAGTAGCGGTGAAGCCGCCAATGGCAGCCTGCCGCCGAAT

CCGAATGAACTGTTTGTGGATCTGAATAATTGCCCGGTTGGTTTTAAAACCTGGAC

CCCGCAGCCGATTACCCATAGCAGTAGCCTGCGTGGTCAGGCCGATGTTGGCGGC

CTGTGGGAATGGACCAGTACCCCGCTGGCCCCGTATGATGGCTTTAAAGCCATGG

ATCTGTATCCGGGCTATACCGCAGATTTCTTTGATGGTAAACATAATATCTGCCTG

GGTGGCAGCTGGGCAACCATTCCGCGTATTGCAGGTCGTAAAACCTTTGTTAATTG

GTATCAGCGTAATTATCCGTATGTGTGGTGCACCGCCCGCCTGGTTCGCGATATTG

CAGAAtaa

< SEQ ID NO: 28; PRT; A7Egtl; 1_XM_016369232; Exophiala mesophila>

MTRTIS Q VLHP AFTM ATS QRP A VRFLDIRGDKS GQS LLS MLKES LDPPNKQPRS FPTLL FYDEKGFKIFEEIT YFDE Y YFTN AEIE AFETH AREIAT QIPRN S RIVEFGS GNFRKINIFF E AFE A AKKN VD Y Y ALDLS FPELQRTF AEIDTS R Y QH V S FN ALHGT YDD ALT WLS NS S GDQSTCVMTMGSSLGNFSRQDAAGFLTKIKSVLGPADLILVGLDACQDPQRVFKAYN DS QLVTERFYRN GLDHANSLLGYE VFRQEDWS VEGRYDEQLDRHHAT YLARKDIITK DFSFKRGERLPFEESFKYSEAQSDQLWHDSGLVQQMAFGNKSADYFIHLLSPAAINFA TKP AE Y ATNPIPS S DD W QQLWT A WD V VTRS MIPKDELLNKPIKLRNDLIF YLGHIPTF A DIHFTKATDGKPTEPASYWSIFERGIDPDVDNPELCHDHSEVPDSWPALNDILTYAKRV RSRIADSLESGQAVQDRRLGRGLWLAYEHEAMHLETFLYMLLQSDRILPPPGTERPDF RQIADE AR ANRV ANKFHRIP A AE VTLGLDDPENHHGPDR YF GWDNERPS RT V S V A AF E AQS RPIS N GD Y A Y YLE VTGN S S LP AS WIARRS VLN G VN G A V S N GE V GREW S S EFLG DKALRT VW GPLPLKH ALD WP VM AS YDEL A A Y AKW AN GRIPTLEE ARS IYHH VES RK DTLEKVPS KLIS A VN GHLS NEG VEETPPS NQS S GE A AN GS LPPNPNELF VDLNN CP V GF KTWTPQPITHSSSLRGQADVGGLWEWTSTPLAPYDGFKAMDLYPGYTADFFDGKHNI CLGGS W ATIPRI AGRKTF VNW Y QRN YP Y VWCT ARLVRDIAE

< SEQ ID NO: 29; DNA; A8Egtl; 1_XM_018400273; Fusarium oxysporum>

ATGCCGAGTATTACCGCCAGCAGTGCAACCCCGCAGCGTGTTAAACCGACCACCG

CAAAACCGAGCAGTGCCCTGCCGAGTATTATTGATATTCGTGGTGAACATGTTGAA

ATTAATCTGAAAGATCAGATCGCAAGCATGTTTAATCCGGATGAAGGTCCGCGCA

AACTGCCGACCCTGCTGCTGTATAATGAAAAAGGTCTGCAGATTTTTGAGGATATT

ACCTATCTGGATGAATATTATCTGACCAATTACGAAATCGAAATCCTGAAAAAATC

CAGCGCCGAAATTGCAAGTCAGATTCCGGAAGGTAGTATGGTTATTGAACTGGGC

AGTGGCAATCTGCGTAAAGTGTGTCTGCTGCTGCAGGCCTTTGAAGAACTGAAAA

AACCGATTCAGTATTTTGCACTGGATCTGAGTCTGAAAGAACTGGAACGCACCCTG

GCCCAGGTGCCGGAGTTTAAATATGTTAGTTGCCATGGTCTGCATGGCACCTATGA

TG AT GGCC GTG A AT GGCT G A A AC AT CC G AGT CT G ACC AGTC GC AGT A A AT GC ATT

ATTCATCTGGGCAGCAGTATTGGCAATTTTACCCGTGATGGTGCAGCCGATTTTCT

GGGCGGTTTTGCCGAAGTGCTGACCCCGAGTGATAGTATGATTGTTGCAGTTGATA

GTTGTAGCAATCCGGCACAGGTGTATCATGCCTATAATGATAGTAAAGGCGTGAC

CCATCAGTTTGTGCTGAATGGTCTGCAGAATGCCAATGAAATTCTGGGCGAAGAA

GCATTCAATACCGATGAATGGCGCGTTATTGGTGAATATGTTTATGATGTTGAGGG

CGGTCGTCATCAGGCCTTTCTGAGTCCGACCCGCCCGACCGATGCCCTGGGTAGTC

GCGT GCT GCC GC AT G A ACGC ATT G A A ATT G A AC AG AGCCT G A A AT AT AGT G AAGC

AGAAAAAGATAAGCTGTGGAAACTGGCCGGTCTGACCGAAATGGGTCGCTGGAGC

CGCGGCGATGAATATGGTCTGCATTTTCTGCAGAAAAGCAGCATGCCGTTTAGTCG

CATTCCGAGCCTGTATGCCGCCGAACCGCTGCCGACCGTTCAGGATTGGAAAGCC CTGTGGAAAGCATGGGATGTTGTGACCAAAGATATGATGCCGGATGAAGAACTGC

AGGAAAAACCGATTAAGCTGCGCAATGCATGTATTTTCTATCTGGGCCATATTCCG

ACCTTTCTGGATATTCAGCTGACCAAAACCACCGGTAATGCCCCGACCGAACCGG

CCACCTATTATAGTATTTTTGAACGCGGCATTGATCCGGATGTGGATAATCCGGAA

CATTGTCATACCCATAGCGAAATTCCGGATGAATGGCCGCTGGTGCAGGAAATTA

TGATCTATCAGGATCGCGTTCGTAGTCGCCTGCAGAATCTGTATAAAAATGGCCAG

GATAAAATCAGTCGCGATATTGGTCGCGCAATTTGGGTGGGCTTTGAACATGAACT

GATGCATATTGAAACCCTGCTGTATATGATGCTGCAGAGTGATCGCACCCTGCCGC

CGCCGCATACCGTGCAACCGGATTTTGCAAAACTGGCCCAGCAGGCCCATGAAGC

CCGCGTGCCTAATCAGTGGTTTGATGTTCCGGAACAGACCATTACCCTGGGCATGG

ATG AT CC GG A AG AT GGT ACC GAT A AT AGTC GTC ATTTT GGCT GGG AT A AT G A A A A

ACCGGAACGTCAGACCAAAGTTCATGCATTTCGCGCACAGGGTCGCGCAATCACC

AATGAAGAATATGCCCAGTATCTGTATAATAGCAAAATTGAACACATCCCGGCCA

GCTGGAGTAGCGTTACCAATGCCTATACCAATGGCGCAACCAATGGCAGCCATGC

CAATGGTAATAGCAATGGCTATAGCAATGGCAATGGTCATCATGCAAGCCAGGTT

CCGGATAGCTTTATTCAGGATAAATTTGTTAAGACCGTGTATGGTCTGGTGCCGCT

GAAATATGCACTGGATTGGCCGGTGTTTGCCAGCTATGATGAACTGGCAGGCTGT

GCAGCATGGATGGGCGGTCGCATTCCGACCTTCGAAGAAGCCAAAAGTATCTATG

CACATGTGAATAAGCAGAAACGTGCAGAAGCAGAACGCACCTTAAGCAAAACCG

TGCCGGCCGTGAATGGTCATCTGGTGAATGATGGTGTGGAAGAAACCCCGCCGAG

TAATAGCAGCGCCCTGGTGAAAGATAGCAGTAGTGAACTGTTTTTCGATCTGACCG

GTGCCAATGTTGGTTTTCGCCATTGGCATCCGATGCCGGTGACCAGCCGTGGTAAT

AAGCTGGCCGGTCAGAGTGAAATGGGCGGCGTGTGGGAATGGACCAGCAGTAGC

CTGGAACGTCATGAAGGCTTTGAACCGATGAGTCTGTATCCGCTGTATACCACCGA

TTTCTTTGATGGTAAACATAATGTTGTGCTGGGCGGCAGCTGGGCAACCCATCCGC

GT ATTGC AGGCC GC GC A AGCTTTGT G A ATT GGT AT C AGC GT A ATT AT CC GT AT GCA

TGGGTTGGTGCACGCCTGGTGCGCGATGTTtaa

< SEQ ID NO: 30; PRT; A8Egtl; 1_XM_018400273; Fusarium oxysporum>

MPS IT AS S ATPQR VKPTT AKPS S ALPS IIDIRGEH VEINLKDQIAS MFNPDEGPRKLPTLL

LYNEKGLQIFEDITYLDEYYLTNYEIEILKKSSAEIASQIPEGSMVIELGSGNLRKV CLLL

Q AFEELKKPIQ YF ALDLS LKELERTL AQ VPEFKY V S CHGLHGT YDD GRE WLKHPS LT S

RSKCIIHLGSSIGNFTRDGAADFLGGFAEVLTPSDSMIVAVDSCSNPAQVYHAYNDS KG

VTHQFVLNGLQNANEILGEEAFNTDEWRVIGEYVYDVEGGRHQAFLSPTRPTDALGS

RVLPHERIEIEQSLKY SEAEKDKLWKLAGLTEMGRWSRGDEY GLHFLQKSSMPFSRIP

SLYAAEPLPTVQDWKALWKAWDVVTKDMMPDEELQEKPIKLRNACIFYLGHIPTFLD

IQLTKTTGNAPTEPATYYSIFERGIDPDVDNPEHCHTHSEIPDEWPLVQEIMIYQDR VRS

RLQNLYKNGQDKISRDIGRAIWVGFEHELMHIETLLYMMLQSDRTLPPPHTVQPDFA K

LAQQAHEARVPNQWFDVPEQTITLGMDDPEDGTDNSRHFGWDNEKPERQTKVHAFR

AQGRAITNEE Y AQ YL YN S KIEHIP AS WS S VTN A YTN G ATN GS HAN GN S N GY SNGN GH

HASQVPDSFIQDKFVKTVYGLVPLKYALDWPVFASYDELAGCAAWMGGRIPTFEEAK

S IY AH VNKQKRAE AERTLS KT VP A VN GHLVNDG VEETPPS NS S AL VKDS S S ELFFDLT

G AN V GFRHWHPMP VT S RGNKL AGQS EMGG VWE WT S S S LERHEGFEPMS L YPLYTTD

FFDGKHNVVLGGSWATHPRIAGRASFVNWYQRNYPYAWVGARLVRDV

< SEQ ID NO: 31; DNA; B lEgtl; 1_XM_003048838; Nectria haematococca> ATGCCGAGCAGCGTGAATGCACCGCCGGCCGTTTTTCAGGGTGCACGTCCGGCAG

TGAGCAAACCGAGCCCGGCACTGCCGGATATTATTGATATTCGCGGCGAACATGT

TGAAATTAATCTGAAAGATCAGATCATCAGCCAGTTTAATCCGGAAGATGGTCCG

CGT A A ACT GCC G ACCCT GCT GCT GT AT A AT G A A A A AGGT CT GC AG ATTTTT G AGG A

TATTACCTATCTGGATGAATATTATCTGACCAATTACGAAATCGAAGTGCTGAAAC

GCAGTAGTACCGAAATTGCACGTCAGATTCCGGAAGGCAGCATGGTTATTGAACT

GGGTAGCGGTAATCTGCGTAAAGTGTGTCTGCTGCTGCAGGCCTTTGAAGATTTGG

CCAAACCGATTCAGTATTTTGCCCTGGATCTGAGCCGCAAAGAACTGGAACGTAC

CCTGGCCCAGGTGCCGGATTTTAAATATGTGAGTTGCCATGGCCTGCTGGGCACCT

ATGATGATGGTCGTGAATGGCTGAAACATCCGAGTCTGACCGGTCGCAGTAAATG

CATTCTGCATCTGGGCAGTAGCATTGGTAATTTTAGCCGTGATGAAGCAGCAGCCT

TTCTGGGCGGCTTTGCCGATGTTCTGCGCCCGAGTGATAGCATGATTGTTGGCGTG

GATGCATGCAATAATCCGGCAAAAGTTTATAAACCGATTATGAATCAGCCGCGTC

TGAGTCGTACCAATCGCATTCATCGCTTTATTCTGAATGGTCTGAGTCATGCCAAT

GAACTGCTGAGCGAAGAAGCCTTTAAAGTTGAAGAATGGCGTGTTATTGGCGAAT

ATGTTTATGATGATGAAGGTGGCCGCCATCAGGCCTTTGTTGCCCCGACCCGCCCG

ACCGATGTGCTGGGTAGCCGCGTTATGCCGCATGAACGCATTGAAATTGAACAGA

GTCTGAAATATAGCGATGAAGAAACCATGACCCTGTGGGCCCAGAGCGGTCTGAC

CGAAATGGGTCGTTGGAGTCGCGGCGATGAATATGGTCTGCATATGCTGCAGAAA

AGCGCAATGCCGTTTAGTCTGATTCCGAGCCTGTATGCCGCCGAACCGCTGCCGGC

AGTTCAGGATTGGGAAGCACTGTGGAAAGCCTGGGATGTTGTGACCCAGGGTATG

CTGCCGCATGAAGAACTGAATGAAAAACCGATTAAGCTGCGCAATGCCTGTATTT

TCTATCTGGGTCATATTCCGACCTTTCTGGATATTCAGCTGACCAAAACCACCGGT

C AGGCCCCGACCGATCCGGCTT ATT ATT AT AGC ATTTTTGAACGCGGT ATCGATCC

GGATGTGGATAATCCGGAACTGTGCCATACCCATAGCGAAATTCCGGATGAATGG

CCGCCGGTTGGCGAAATTATTGAATATCAGGGTCGTGTGCGCAGCCGCGTGAAAG

CACTGTATCGCGATGGCGCCAGTAAAATTCCGCGCCATATTGCACGTGCAATTTGG

GTTGGCTTTGAACATGAACTGATGCATATTGAAACCCTGCTGTATATGATGCTGCA

GAGTGATAAAACCCTGCCGCCGCCGCATACCGCCCAGCCTAATTTTGAAAAAATG

GCAAAACAGGCCTATGAAGCACGTGTGCCGAATCAGTGGTTTAATGTTCCGGAAC

AGACCATTACCCTGGGTATGGATGATCCGGAAGATTGCACCGATACCAGTGGCCA

TTTTGGCTGGGATAATGAAAAACCTGCCCGTCAGGCCAAAGTTCATACCTTTCAGG

CACAGGGCCGCCCGATTACCAATGAAGAATATGCACAGTATCTGTATAGTACCAA

AACCAATAGCGTTCCGGCCAGCTGGAGCTGGGACCCTAGTAAAACCGTGAATGGT

AGCGCAAATGGTAGCTATACCAATGGCCATAGCAATGTGCCGGATAGTTTTCTGG

AAGGCAAATATGTTCGCACCGTTTATGGCCTGGTGCCGCTGAAACATGCCCTGGAT

TGGCCGGTTTTTGCAAGCTATGATGAACTGAGTGGTTGCGCAAGCTGGATGGGCG

GCCGTATTCCGACCTTCGAAGAAGCCAAAAGCATCTATGCATATGTGAATAAGCA

GAAACGCGCCGATGCAGAACGCATTCTGAGTAAAACCGTTCCGGCAGTGAATGGT

CATCTGGTTAATGATGGTGTGGAAGAAACCCCGCCGAGCCAGAGTAGTGAAAGTG

CCAAAGATAGCCCGAGCAAACTGTTTCTGGATCTGGCAGATGCCAATGTGGGCTTT

CGTCATTGGCATCCGATGCCGGTTACCAGTCAGGGTAATCGTCTGGCAGGTCAGA

GCGAAATGGGTGGCGTTTGGGAATGGACCAGTAGCAATCTGAAACCGCATGAAGG

CTTTGAACCGATGAGTCTGTATCCGCTGTATACCACCGATTTCTTTGATGGCAAAC

ATAATATTGTGCTGGGCGGCAGTTGGGCCACCCATCCGCGTATTGCAGGCCGCGC

AAGTTTTGTTAATTGGTATCAGCGTAATTACCCGTATGCATGGGTGGGTGCCCGCC

TGGTTCGTGATATTtaa < SEQ ID NO: 32; PRT; BlEgtl; 1_XM_003048838; Nectria haematococca>

MPS S VN APP A VF QG ARP A V S KPS P ALPDIIDIRGEH VEINLKDQIIS QFNPEDGPRKLPTL

LLYNEKGLQIFEDITYLDEYYLTNYEIEVLKRSSTEIARQIPEGSMVIELGSGNLRK VCL

LLQAFEDLAKPIQYFALDLSRKELERTLAQVPDFKYVSCHGLLGTYDDGREWLKHPS L

TGRSKCILHLGSSIGNFSRDEAAAFLGGFADVLRPSDSMIVGVDACNNPAKVYKPIM N

QPRLS RTNRIHRFILN GLS H ANELLS EE AFKVEEWR VIGE Y V YDDEGGRHQ AF V APTR

PTD VLGS RVMPHERIEIEQS LKY S DEETMTLW AQS GLTEMGRW S RGDE Y GLHMLQKS

AMPFSLIPSLYAAEPLPAVQDWEALWKAWDVVTQGMLPHEELNEKPIKLRNACIFYL

GHIPTFLDIQLTKTTGQAPTDPAYYYSIFERGIDPDVDNPELCHTHSEIPDEWPPVG EIIE

YQGRVRSRVKALYRDGASKIPRHIARAIWVGFEHELMHIETLLYMMLQSDKTLPPPH T

AQPNFEKMAKQAYEARVPNQWFNVPEQTITLGMDDPEDCTDTSGHFGWDNEKPARQ

AKVHTFQ AQGRPITNEE Y AQ YL Y S TKTN S VP AS WS WDPS KT VN GS AN GS YTN GHS N V

PDSFLEGKYVRTVYGLVPLKHALDWPVFASYDELSGCASWMGGRIPTFEEAKSIYAY

VNKQKRAD AERILS KT VP A VN GHLVNDG VEETPPS QS S ES AKDS PS KLFLDLAD AN V G

FRHWHPMP VT S QGNRLAGQS EMGG VWE WT S S NLKPHEGFEPMS LYPL YTTDFFDGK

HNIVLGGSWATHPRIAGRASFVNWYQRNYPYAWVGARLVRDI

< SEQ ID NO: 33; DNA; B2Egtl; 1_XM_022728240; Penicilliopsis zonata>

ATGAGCCCGAGTGTGTGCCCGGCAAATAATGTTGAAATTGTTGAAATTCGCCAGG

AAAATTTTGAATTTTCACTGGCAGAAGATATCTATAATGGTATTAAGCTGAGCGAA

AATGGCACCCGTAGTCTGCCGACCATGCTGCTGTATGATGCAAAAGGCCTGAATCT

GTTTGAAGAAATTACCTATCTGGATGAATACTATCTGACCAATACCGAAATTGAAG

TTCTGGAAACCCATGCCCAGCGTATTGTTGAACGCATTCCGGCCAATGCACAGCTG

GTGGAACTGGGCAGCGGTAATCTGCGTAAAATTGAAATTCTGCTGAAAGAATTTG

AGCGTACCGAAAAACATGTTCATTATTATGCACTGGATCTGAGCCTGAGCGAACT

GAAACGTACCTTTAGTGAAATTCCGGTTGATCAGTTTGAATTTGTGAAACTGCATG

GCCTGCATGGTACCTATGCCGATGCCCTGACCTGGCTGAGTAATCCGAAAAATCGC

ACCCGTCCGACCGGCGTGATTAGTATGGGTAGTAGCCTGGGTAATTTTAGCCGTCC

GGATGCCGCCAGCTTTCTGCATGGTTTTAGTCGCCTGCTGGGTCCGAGCGATTTTA

TGGTTCTGGGCCTGGATGGCTGTAAAAATACCGATAAAGTTTATAAGGCCTACAAT

GATAGTCGTGGTGTGACCCGTCAGTTTTATGAAAATGGTCTGGCACATGCCAATGA

AGTTCTGGGTTATGAAGCATTCAAACCGAGCGAATGGGAAATTGTTACCCGTTATA

ATGAAGAAGGTGGTCTGCATCAGACCTTTGTTCGTCCGAAATGCGATGTGACCATT

AATGGCATTAAGATTAGTAAAGGTGAGAATCTGCTGTATGAAGAAGCATTCAAAT

ATGATCCGGCCGAACGCGAAAGCCTGTGGCGTGATGCCGGTCTGATTCATAATGTT

GCCTTTGGCAATACCAGTGATGATTATCATATTCATATGCTGAGCCCGGCAAATCT

GGATCTGCCGACCAATCCGCTGGAATATGCAGCCAGCCCGATTCCGCGCATGGAA

GAATTTCAGAGCCTGTGGACCGCCTGGGATATTGTGACCAAAGGTATGGTTCCGG

GCGCCGAACTGCTGAGCAAACCGATTAATCTGCGTAATGTTCTGCTGTTTTATCTG

GGTCATATTCCGACCTTTAGTGATATTCATGTTACCCGCGCACTGCGTGGTAAACT

GACCGAACCGCGTCATTATCAGCTGATTTTTGAACGTGGTATTGATCCGGATGTTG

AAGATCCGGAACAGTGTCATGCCCATAGTGAAATTCCTGATCAGTGGCCGCCGCT

GGTTGAAATTCTGGAATATCAGTGGAAAGTGCGCAGCCGTATTCAGAGCGTTCTG

CAGAGTGGCGGCCTGAAACATAATCGCACCCTGGGCGAAGCCCTGTGGATTGGTT

TTGAACATGAAATTATGCATCTGGAAACCTTTCTGTATATGCTGCTGCAGAGTGAT

AAAACCCTGCCGCCGCCGGGTGTTGATACCCCGGATTTTGAAAAAATTTTTCGTGA AGCACGTAAGCAGGCAACCCCGAATCAGTGGTTTGTTGTTCCGGAACAGACCCTG

CTGATTGGTCTGGATGATAAAGATGATGGTGTTATTCCGCCGGTTAGCTTTGGTTG

GGATAATGAAAAACCGCAGCGTACCGCCGCCGTGAGCGCATTTGAAGCACAGGGC

CGTGCAATTACCAATGGTGAATATGCCGAATATCTGGAAGCCAATCATATTGAAC

AGATTCCGGCCAGCTGGGTTCTGGCAGGTTTTAATGGCGCCTGCCATGTTAGCAAT

AAGAGTGGCAGCAATAGTAGCCTGCGTCCGAATGGTTTTCTGAGTCTGTATACCGT

TCGTACCGTTTTTGGTCCGGTTAGCCTGGAACTGGCCCAGGATTGGCCGGTTGTGG

CCAGTTATGATGAACTGGCAGGTTATGCAGAATGGGTTAAATGCCGCATTCCGAC

CTATGAAGAAGTGCGTAGTATCTATCAGTATAGTGAACAGCTGAAACATGCCACC

ACCCCGCCGAAAACCAATGGCCATGGCACCAGTAATGAAAGCAATCGTATTAAGG

GTGAAACCAATGGCACCAAACCGTATAGCAAAGATCATCATCAGCCGGTTCGCCC

GCCGGTTAGTAGCACCAGCCCGGTGTTTCTGGATATTGAAGGTTGCAATGTGGGTT

TTAAACATTGGCATCCGACCCCGGTTATTCAGAATGGTAATAAGCTGGCAGGTCA

GAGCGAACTGGGCGGTGTGTGGGAATGGACCAGTACCCCGCTGGTTCCGCATGAT

GGTTTT A A ACC GAT GG AT GTTT AT CC GGGTT AT ACC GCC G ATTTCTTTG AT GGC A A

ACATAATATTGTGCAGGGCGGTAGCTGGGCAACCCATCCGCGCATTGCAGGTCGT

ACCAGTTTTGTTAATTGGTATCAGCATAATTACCCGTATGCCTGGGCCGGCGCCCG

TCTGGTTCGCGACTTAtaa

< SEQ ID NO: 34; PRT; B2Egtl; 1_XM_022728240; Penicilliopsis zonata>

MSPS V CP ANN VEIVEIRQENFEF S LAEDIYN GIKLS EN GTRS LPTMLLYD AKGLNLFEEI TYLDEYYLTNTEIEVLETHAQRIVERIPANAQLVELGSGNLRKIEILLKEFERTEKHVHY Y ALDLS LS ELKRTF S EIP VDQFEFVKLHGLHGT Y AD ALT WLS NPKNRTRPT GVIS MGS S LGNFSRPDAASFLHGFSRLLGPSDFMVLGLDGCKNTDKVYKAYNDSRGVTRQFYENG LAHANEVLGYEAFKPSEWEIVTRYNEEGGLHQTFVRPKCDVTINGIKISKGENLLYEE AFKYDP AERES LWRD AGLIHN V AF GNT S DD YHIHMLS P ANLDLPTNPLE Y A AS PIPRM EEFQS LWT A WDI VTKGM VPG AELLS KPINLRN VLLFYLGHIPTF S DIH VTR ALRGKLTE PRH Y QLIFERGIDPD VEDPEQCH AHS EIPDQWPPL VEILE Y QWKVRS RIQS VLQS GGLK HNRTLGE ALWIGFEHEIMHLETFLYMLLQS DKTLPPPGVDTPDFEKIFRE ARKQ ATPN Q WFVVPEQTLLIGLDDKDDGVIPPVSFGWDNEKPQRTAAVSAFEAQGRAITNGEYAEY LE ANHIEQIP AS W VLAGFN G ACH V SNKSGSNSS LRPN GFLS L YT VRT VF GP V S LELAQ D WP V V AS YDEL AG Y AEW VKCRIPT YEE VRS IYQ YS EQLKH ATTPPKTN GHGT S NES N RIKGETN GTKPY S KDHHQPVRPPV S STSPVFLDIEGCNV GFKHWHPTPVIQN GNKLAG QSELGGVWEWTSTPLVPHDGFKPMDVYPGYTADFFDGKHNIVQGGSWATHPRIAGR T S F VNW Y QHN YP Y AW AG ARL VRDL

< SEQ ID NO: 35; DNA; B3Egtl; 1_XM_014676787; Penicillium digitatum Pdl>

ATGAGTCCGACCCTGCTGCGCAATGTTGATACCGTGGAAATTGTGAATATTCATCA

GTGTGATATGGAATTTTCCCTGGTGGATGATGTTTATAAAAATCTGGACCCTCCGG

CAGGTAAACAGCGTACCTTTCCGACCCTGTTACTGTATGATGCCAAAGGTCTGAAA

CTGTTTGAAGA AATT ACCT ATCTGGATGAAT ACT ATCTGACC AAT ACCGAA ATTGA

A ATT CT G A A A A AGC AC GCA A A A A AG ATT GTTGC AC AT ATT CC GG A A A AT GCCC AG

CTGGTTGAACTGGGCAGTGGCAATCTGCGTAAAATTGAAATTTTACTGCGTGAATG

CGAACGCAGTGAAAAGAAAGTGGATTATTATGCCCTGGATCTGAGCCTGGGTGAA

CTGCAGCGTACCTTCAGCGAAATTAGTCCGGAAAGTTTTATTCATGTTGGCTTTCA

TGGTCTGCATGGTACCTATGATGATGCCGTGGGTTGGCTGAAAAGTCCGGAAAAT

CGTAAACGCCCGACCCTGGTTCTGAGCATGGGCAGCAGTATGGGCAATTTTAGTCC GCCGGATGCAGCCGATTTTCTGGGTGGCTTTAGTAAACTGCTGGGTCCGAGTGATT

TTCTGCTGGTGGGTCTGGATGCATGCAAAAATCCGGAAAAAGTTTTTCGTGCCTAT

AATGATAGCAAAGGTATTACCCGCAAATTTTATGAAAACGGCCTGCTGCATGCAA

ATCGTGTGCTGGGCTTTAAAGCCTTTAAAGCAGATGAATGGGAAATTCTGACCGAT

TATGATAATCGTGAAGGTCGTCATCAGGCCTTTTATGTTAGCAAAGTTGATGTGAT

TATCAACGGCATTAAGATTCGTAAAGGTGAAAAACTGATCTTTGAAGAAGCATGG

AAATATGGTCGTAATGAACGCGATCAGCTGTGGCGTAATGCAAATCTGATTAGCC

AGGTGGAATTTGGCAATAGCACCGATGATTATCATCTGCATCTGCTGAGTCCGGCC

GCCCTGGATCTTAGCATGAATCCGAGCAAATATGCAGCACAGCCGATTCCGAGTA

TTGAAAATTTTCAGAGTCTGTGGACCGCATGGGATCTGGCAACCCGCACCATGGTG

CCGCATGAAGAACTGCTGAGCCAGCCGATTAAGCTGCGTAATGCCCTGATTTTCTA

TTTTGGTCATATTCCGACCTTTCTGGATATTCATCTGACCCGTGCCCTGCAGGAAG

AAAGTACCGAACCGAGCAATTATAAAACCATTTTTGAACGTGGTATCGATCCGGA

TGTTGAAGATCCGCAGCAGTGTCATAGTCATAGCGAAATTCCGGATGAATGGCCG

CCGCTGGATGAAATTCTGGATTATCAGGATCGTGTTCGTAATCGTGCCCTGAGCAT

TCTGCAGCAGGGCTATGCAAGCCAGGATCGCGCCCTGGGTGAAGCACTGTGGATT

GGTTATGAACATGAAGCAATGCATCTGGAAACCTTTCTGTATATGCTGATTCAGAG

CGATAAAACCCTGCCGCCGACCGGTGTTGATCGTCCGGATTTTGAACAGATTAATC

GCCAGGCAAAAATTAATAAGAAGCCGAATAAGTGGTTCCGCATTCCGCGTCAGAC

CATTGAAATTGGCCTGAATGATAGCAATGAAGAAGTTGTTCCGAATCAGAGTTTTG

GTTGGGATAATGAAAAACCGCAGCGCAAAGTGACCGTGCATGCATTTGAAGCCCA

GGCCCGTCCGATTACCAATGGTGAATATGCAAAATATATCCAGGATAAAGGTATC

AAAACCTATCCGGCAAGTTGGGTTTTTAAACCGAGCCAGGATAATCCGGTGAGCA

AAGGCATTAGCAGCAGTGATGCCCAGGCCGGTAGTAGCAGTAGCCCGGCCGGTCT

GAGCCTGAAAGATATTACCGTTCGTACCGTGTTTGGTCCGGTTGCACTGGAAGTTG

CCCAGGATTGGCCGCTGGCAGCCAGCTATGATGAAGTGGCCAGTTATGCCAAATG

CATGAAATGTCGTATTCCGACCTTCGAAGAAACCCGTAGTATCTATCATTATAGTG

ATCAGCTGAAAGGTGACCGTGTGACCAATGATCATCGTAATGGTGTGAATGGCCT

GGCAAATGATAGCAAGCCGAATAGCACCGACCAGACCGTTTTTCGCGATCTGACC

GGTTGCAATGTTGGTTTTAATAATTGGCATCCGATTCCGGTTACCAGCAATGGCGA

TCAGCTGGCCGGTCAGGGTGAAATGGGCGGTGTGTGGGAATGGACCAGTACCCCG

CTGATGCCGCATGATGATTTTAAAGCCATGGATATCTATCCGGGTTATACCAGTGA

TTTCTTTGATGGTAAACATAATATCGTGCTGGGTGGCAGTTGGGCCACCCTGCCGC

GTATTGCAGGCCGTACCACCTTTGTGAATTGGTATCAGCATAATTATCGTTATGCA

TGGGCAGGTGCACGCCTGGTTCGCGATATTtaa

< SEQ ID NO: 36; PRT; B3Egtl; 1_XM_014676787; Penicillium digitatum Pdl> MSPTLLRNVDTVEIVNIHQCDMEFSLVDDVYKNLDPPAGKQRTFPTLLLYDAKGLKLF EEITYLDEYYLTNTEIEILKKHAKKIVAHIPENAQLVELGSGNLRKIEILLRECERSEKK V D Y Y ALDLS LGELQRTFS EIS PES FIH V GFHGLHGT YDD A V GWLKS PENRKRPTLVLS M GS S MGNF S PPD A ADFLGGF S KLLGPS DFLL V GLD ACKNPEKVFRA YNDS KGITRKF YE N GLLHANRVLGFKAFKADEWEILTD YDNREGRHQAFYV S KVD VIIN GIKIRKGEKLIF EE A WKY GRNERD QLWRN ANLIS Q VEF GN S TDD YHLHLLS PA ALDLS MNPS K Y A AQPI PS IENF QS LWT A WDL ATRTM VPHEELLS QPIKLRN ALIF YF GHIPTFLDIHLTR ALQEES TEPS N YKTIFERGIDPD VEDPQQCHS HS EIPDE WPPLDEILD Y QDRVRNR ALS ILQQG Y A SQDRALGEALWIGYEHEAMHLETFLYMLIQSDKTLPPTGVDRPDFEQINRQAKINKKP NKWFRIPRQTIEIGLNDSNEEVVPNQSFGWDNEKPQRKVTVHAFEAQARPITNGEYAK YIQDKGIKT YP AS W VFKPS QDNP V S KGIS S S D AQ AGS S S S P AGLS LKDIT VRT VF GP V A LEV AQD WPLA AS YDE V AS Y AKCMKCRIPTFEETRS IYH Y S DQLKGDR VTNDHRN G VN GLANDSKPNSTDQTVFRDLTGCNVGFNNWHPIPVTSNGDQLAGQGEMGGVWEWTST PLMPHDDFKAMDIYPGYTSDFFDGKHNIVLGGS WATLPRIAGRTTFVNWY QHNYRY A WAGARLVRDI

< SEQ ID NO: 37; DNA; B4Egtl; 1_XM_001939502; Pyrenophora tritici-repentis>

ATGGCAACCAAAATTATCGATATCCGCGTGGATACCGCCGAAAGCGATATTCTGG

CCGATATTAAGAAAGGCCTGCGTCCGGAAAATGGCGGTGAAAAGAAACTGCCGAC

CCTGCTGCTGTATGATCAGGAAGGTCTGCGCCTGTTTGAAAAAATTACCTATCAGG

AAGAATACTACCTGACCAATGCAGAAATTGAAGTGCTGGAAACCTATGCAGATAG

TATTGCAGAACGTATTAGTAGTCCGAGCATTATTGTGGAACTGGGCAGCGGCAAT

CTGCGCAAAGTTAATATTCTGCTGCAGGCCCTGGATCGCCTGGGCAAAGATGTTGA

ATATTATGCAGTGGATCTGAGTCTGCCGGAACTGGAACGTACCTTTGGTCAGATTC

CGATTGAAGGCTATAAACATGTGAAATGTTTCGGTCTGCATGGCACCTATGATGAT

GCCCT GGGTT GGCT G A A A AGCCC GGC A ATT G A AGC A A A ACC G A A A ACC ATT CT GT

GGCTGGGCAGCAGCCTGGGTAATTTTAAACGCCATGAAGTTCCGCCGTTTCTGGCC

GGCTTTGGCGAAGTGCTGCAGACCGGCGATACCATGCTGATTGGCATTGATAGTTG

T A A AG AT CC GG A AC GCGTTTTT CAT GC AT AT A ATG ATCGT A AT GGT GTT ACCC AT C

GTTTTATTCTGAATGGCCTGAAACATGCAAATGCACTGATGGGCGAAAATGCCTTT

AATCTGGATGATTGGGAAGTTATTGGTGAATATGATAAACAGGCAGGCCGCCATC

ATGCCTTTGTGGCACCGCGCAAAGATGTTGTGATTGATGGCGTGCCGGTGAAAAA

AGGTGAACGCATTCGCATTGAAGAAAGCTATAAATATAGCGGTGAAGAAGCAAA

AGAACTGTGGGAAATGGCCAAACTGACCGAAAATGTGGTGTGGCCGAATGCAAA

AGGTGACTATGGCCTGCATTTTGTGAGTAAACCGGCCGTGTTTTTCCCGACCAAAC

CGGAAGAATATGCAGCAAAACCGGTGCCGAGCCTGACCGAATGGCAGGAACTGT

GGAAAGCATGGGATGCCGTTAGCAAACAGATGATTCCGGAAGAAGAACTGCTGA

GTAAACCGATTAAGCTGCGCAATGAATGCATTTTCTATCTGGGTCATATTCCGACC

TTTCTGGATATTCATATTGCACGTGCCACCGGTAAAAAACCGAGCGATCCGGCATA

TTTTTGGAAAATTTTTGAACGTGGTGTGGACCCTGATGTGGAAGATCCGACCCGCT

GCCATGCACATAGCGAAGTGCCGGAAGAATGGCCGCCGCTGAAAACCATTTTAAT

GTTTCAGCAGAGTGTTCGCGATAATGTTGAAGCACTGTATAGCAGCGGTGAAGCC

GAAAGCAATGGTCGTGTGAGCCGCGCCCTGTGGCTGGCTTTTGAACATGAAGCAA

TGCATCTGGAAACCCTGCTGTATATGCTGATTCAGAGTGATAAAGTTCTGCCGCCG

CCGGGTACCACCGTTCCGGATTTTGCAGCATTTGCCGCCCGTAGTAATAGCCTGGC

AGTGGAAAATGAATGGTTTACCATTCCGGCAAGCGATGTTAGCGTTGGTCTGGAA

GATCCGGAAGGTGACTATGATAGCCAGCGTTATTTTGGTTGGGATAATGAACGTCC

GCATCGTAGTACCCATATTAAGAGCTTTCGTGCCAAAGCCCGTCCGATTACCAATG

GCGAATATGCAACCTATCTGAGCGAAACCGGCAAAACCGTTATTCCGGCAAGTTG

GTGCGAACAGCCGTATTATAATGCAAAAGCCACCAGTACCGCAAAACGCGATAGT

GTTATTAATGGCCATCAGAATGGTACCAATGGTAGCACCACCGGCATTACCGATG

GCAAATTTGTTCGCACCGTGTTTGGCACCGTTCCGCTGAAACTGGCCCTGAATTGG

CCGGTTGTGGCAAGTTATGATGAACTGGCAGGCTGTGCCCAGTGGATGGGTGGTC

GTATTCCGACCATGGAAGAAGCCCGCAGCATCTATAGTTATGTGGAAAGCATGAA

AGAAGAATTTGAAAAAAGCCTGGGTAACACCATTCCGGCCGTGAATGGCCATCTG

ATTAATGAAGGTGTGTTTGAAACCCCGCCGAGCAAACCGCTGAGTAATGGTAATA

GTGGTGCAGGTCCGAGCCTGAATCCGCATGATCTGTTTATTGATCTGGAAGGCACC AATGTGGGTTTTAAACATTGGCATCCGGTTAGCGTGGCAGAACGCGGTAATAAGC

TGTGTGGTCAGAGCGATCTGGGCGGTGTGTGGGAATGGACCAGTACCGTTCTGGA

AAAACATGATGGTTTTGAACCGATGGAACTGTATCCGGGCTATACCGCAGATTTCT

TTGATGGCAAACATAATATTACCCTGGGTGGTAGCTGGGCAACCCATCCGCGTATT

GCAGGCCGTAAAACCTTTGTTAATTGGTATCAGCGCAATTATCCGTATATGTGGGC

CGGC GC AC GT ATTGT G AGC G ATGTTtaa

< SEQ ID NO: 38; PRT; B4Egtl; 1_XM_001939502; Pyrenophora tritici-repentis> MATKIIDIRVDTAESDILADIKKGLRPENGGEKKLPTLLLYDQEGLRLFEKITYQEEYYL TN AEIE VLET Y ADS IAERIS S PS IIVELGS GNLRKVNILLQ ALDRLGKD VE Y Y A VDLS LP ELERTFGQIPIEGYKHVKCFGLHGTYDDALGWLKSPAIEAKPKTILWLGSSLGNFKRHE VPPFFAGFGEVFQTGDTMFIGIDSCKDPERVFHAYNDRNGVTHRFIFNGFKHANAFM GENAFNFDDWEVIGEYDKQAGRHHAFVAPRKDVVIDGVPVKKGERIRIEESYKYSGE EAKEFWEMAKFTENVVWPNAKGDYGFHFVSKPAVFFPTKPEEYAAKPVPSFTEWQE FWKA WD A V S KQMIPEEEFFS KPIKFRNECIF YFGHIPTFFDIHIAR AT GKKPS DP A YFW KIFERG VDPD VEDPTRCH AHS E VPEE WPPFKTIFMF QQS VRDN VE AFY S S GE AES N GR V S RALWLAFEHE AMHLETLL YMLIQS DK VLPPPGTT VPDFA AF A ARS N S L AVENE WF TIP AS D VS V GLEDPEGD YDS QRYF GWDNERPHRS THIKS FR AKARPITN GEY AT YLS ET GKT VIP AS WCEQP Y YN AKAT S T AKRDS VIN GHQN GTN GS TT GITDGKF VRT VF GT VPL KLALNWP V V AS YDEL AGC AQWMGGRIPTMEE ARS IY S Y VES MKEEFEKS LGNTIP A V N GHLINEG VFETPPS KPLS N GN S G AGPS LNPHDLFIDLEGTN V GFKHWHP V S V AERGN KLCGQSDLGGVWEWTSTVLEKHDGFEPMELYPGYTADFFDGKHNITLGGSWATHPRI AGRKTFVNW Y QRN YP YM W AG ARIV S D V

< SEQ ID NO: 39; DNA; B5Egtl; 1_XM_002487114; Talaromyces stipitatus>

ATGAGCCCGGCACTGCTGAGCAATGGCAGTGTTAATATTGTTGATATTCGTGATAA

GGACGCCAATTTTAGCGCCGCAGCAGCAATTCAGGATGGTCTGGACCCTCCGGCC

GGCAAAGCCCGTAGCTTTCCGACCGTGCTGCTGTATGATGCCGTTGGCCTGCGTCT

GTTTGAAGAAATTACCTATCTGGATGAATACTATCTGACCAATACCGAAATTGAAG

TGCTGGAAAAACATGCACGTACCATTGCAGAACGTCTGCCGGATCAGAGCCAGCT

GGTTGAACTGGGTAGCGGCAATCTGCGCAAAGTTGAAATTCTGCTGCGCGAATTT

GAAAATCTGCAGAAACGCGTGGATTATTATGCACTGGATCTGAGCCTGGAAGAAC

TGCAGCGTACCTTTGCACAGGTTAGTCCGCAGAGTTATCATTATGTTCGTTTTCAG

GGCCTGCATGGCACCTATGATGATGCCCTGGAATGGCTGAAAAATCCGCAGAATC

GTAAACGCCCGACCTGTGTTCTGAGCCTGGGTAGTAGCATTGGCAATTTTAATCGC

AAAGCCGCCGCAGATTTTCTGCGCCAGTATAGTCAGCTGCTGGGCCCGACCGATA

GCATTATTATTGGTCTGGATGGCTGTAAAGATAAAGATCGTGTTTATCGTGCATAT

AATGATAGTAAAGGCATTACCCATCAGTTTTATCTGAATGGTCTGAGCCATGCAAA

TCAGGTGCTGGGTTATAATAGTTTTCGCCCGGATCAGTGGGATATTGAATGTCTGT

ATGATGAAGCAGATGGTTGTCATCGCGCCTTTTATGTGCCGACCCAGGATGTGACC

ATTAATGGTATTAGTCTGCGTAAAGGTGAAAAAATTATCTTTGAAGAGGCCTATAA

GTACGATGCCCAGGAACGCGAAGAACTGTGGCGTGATGCCGGTCTGATTAATGTT

GC AGC ACT GGGC A AT AGCC AT GAT A ATT AT CAT CT G A AT AT GCT G AGCCC GGC A A

AAGTGAGTTTTCCGAGTCGCCCGAGCGAATATGCACCGAGTGCCGTGCCGGCCTG

GGAAGAATGGCGTAGCCTGTGGACCAGCTGGGATGTGGTTAGCAAAACCATGGTG

CCGCGTGATGAACTGCTGAGCAAACCGATTAAGCTGCGTAATGCACTGATTTTCTA

TCTGGGCCATATTCCGACCTTTCTGGATATTCATCTGACCCGCGCCACCCGCGGCA AACCGACAGATCCGAAATATTATCCGCAGATTTTTGAACGCGGTATTGATCCGGAT

GTGGATAATCCGGAACAGTGCCATGCACATAGTGAAATTCCGGATGAATGGCCGG

CCCTGGGCGAAATTCTGCGCTATCAGGAACAGGTGCGTAGCCGTGTGCAGAGCCT

GCTGCGTACCGAAGATGTTAGCCAGAATCGCCTGCTGGGTGAAGCACTGTGGATT

GGCTTTGAACATGAAGTTATGCATCTGGAAACCTTTCTGTATATGCTGCTGCAGAG

TGATCGTATTCTGCCGCCGCTGGGTGTTGATAGCCCGGATTTTAAAGGCATTGCCC

GCCAGGCCGAACTGGATGCCAAACCGAATCAGTGGTTTAGTATTCCGGAACAGAC

CATTACCATTGGTGTGGATGATAGTGATCTGAGCAAACTGCCGGCCCAGAGCTTTA

CCTGGGATAATGAAAAACCGAAACGTAGCGTTCGTGTGCATGCATTTGAAGCACA

GGGCCGCGCCGTTACCAATCGTGAATATGCACATTATCTGAAAGAAAATAGCATC

CATCGCATTCCGACCAGCTGGGTTATTCAGGCAGCAAATAGCTGGAATAATACCTT

TAATGGTCTGCATACCAATGGCGTTAGCAATGGTCATGGTAATAGCATGGATAATT

ATGCAGTTCGTACCGTTTTTGGCCCGGTTAGCTTTGCCTGGGCAGCCGATTGGCCG

GTTATGGCAAGCTATGATGAACTGGCAGGCTATGCAGAATGGAAAAAATGTCGTC

TGCCGACCTTTGAAGAAGTGCGCAGTATCTATAAATATGCCGCAGCCCTGAAAGG

TCAGCCGAATGGTGTGGATGCCGTGAGTAATGGTCTGGCCATTCTGAAAAAGAAA

GATCCGACCGATGCCGTTATTAATGGCGCAAATCCGGAAAGCATTTTTGTGGATCT

GGC AG AT GCC A ATGTT GGTTTT A A A A ATT GGC AT CC GGTT CC GGTT ACCCC G A ATG

GTGACAAACTGGCCGGTCAGGGCGAAATGGGTGGTGTTTGGGAATGGACCAGCAC

CCCGCTGAGTGCACATGATGGCTTTGAAGAAATGAAAATCTATCCGGGCTATACC

GCCGATTTCTTTGATGGCAAACATAATATTGTGCAGGGTGGCAGTTGGGCAACCCA

TCCGCGCATTGCAGGCCGCACCAGTTTTGTGAATTGGTATCAGCATAATTACCCGT

ATGCATGGGTGGGCGCCCGTCTGGTTCGTGATCTGtaa

< SEQ ID NO: 40; PRT; B5Egtl; 1_XM_002487114; Talaromyces stipitatus>

MSP ALLS NGS VNIVDIRDKD ANF S A A A AIQD GLDPP AGKARS FPT VLLYD A V GLRLFE EIT YLDEY YLTNTEIE VLEKHARTIAERLPDQS QLVELGS GNLRKVEILLREFENLQKRV DYYALDLSLEELQRTFAQVSPQSYHYVRFQGLHGTYDDALEWLKNPQNRKRPTCVLS LGSSIGNFNRKAAADFLRQYSQLLGPTDSIIIGLDGCKDKDRVYRAYNDSKGITHQFYL NGLSHANQVLGYNSFRPDQWDIECLYDEADGCHRAFYVPTQDVTINGISLRKGEKIIFE E A YKYD AQEREELWRD AGLIN V A ALGN S HDN YHLNMLS P AKV S FPS RPS E Y APS A VP AWEEWRSLWTSWDVVSKTMVPRDELLSKPIKLRNALIFYLGHIPTFLDIHLTRATRGK PTDPKYYPQIFERGIDPDVDNPEQCHAHSEIPDEWPALGEILRYQEQVRSRVQSLLRTE D VS QNRLLGE ALWIGFEHE VMHLETFL YMLLQS DRILPPLG VDS PDFKGI ARQ AELD A KPN QWFS IPEQTITIG VDDS DLS KLP AQS FT WDNEKPKRS VRVH AFE AQGR A VTNRE Y AH YLKEN S IHRIPTS W VIQ A ANS WNNTFN GLHTN G V S N GHGN S MDN Y A VRT VFGP V S FA W A AD WP VM AS YD EL AG Y AE WKKCRLPTFEE VRS IYKY A A ALKGQPN G VD A V S N GLAILKKKDPTD A VIN GANPESIFVDLAD ANV GFKNWHPVPVTPN GDKLAGQGEMGG VWEWTSTPLSAHDGFEEMKIYPGYTADFFDGKHNIVQGGSWATHPRIAGRTSFVNWY QHN YP Y A W V G ARLVRDL

< SEQ ID NO: 41; DNA; B6Egtl; 1_XM_014099552; Trichoderma virens>

ATGCCGGCAGTGCGCGAAAGCGTTCTGCTGGCACAGCAGCATATTACCGATGATG

CCATGGCACTGAAAACCGTGAATGCCACCGCACGCAGTCTGGATATTATTGATATT

CAGAATAGCCGTATCGATATTAATCTGAAAGATGAAATCCTGACCCAGATGAATC

CGGAAGAAGGTCCGCGCACCCTGCCGACCCTGCTGTTATATGATGAACGTGGCCT

GCAGCTGTTTGAAGATATTACCTATCTGGATGAATACTATCTGACCAATTATGAAA TCGAACTGCTGAAAAAATCCGCAGCCGAAATGGCCAGCAAAATTCCGGAAGGTGC

CATTGTGGTTGAACTGGGCAGTGGTAATCTGCGTAAAGTTTGCCTGCTGCTGCAGG

CCTTTGAAGATGCAAAAAAGAAAATTGATTACTACGCACTGGATCTGAGCCAGAC

CGAACTGGAACGTACCCTGGCAGAAGCCCCGGCCTTTGAATATGTTAGCTGCCGT

GGTCTGCGCGGTACCTATGATGATGGCTGCGAATGGCTGAAACAGGAAGCCATTC

TGGCACGTCCGAAATGCATTCTGCATCTGGGCAGCAGCATTGGTAATTTTAATCGC

GATGAAGCAGCAGATTTTCTGCGCAGTTTTGCCGAAATTCTGCAGCCGACCGATCT

GATGATTGTGGGTGTGGATAGTTGCCAGAATCCGGATAAAGTGTATCATGCATAT

AATGATAGCAAGGGCATTACCCATCAGTTTGTTCTGAATGGCCTGACCCATGCCAA

TGAAATTCTGGGTAATGAAGTTTTTAACGTGGAAGAATGGAATGTGACCGGTGAA

TATGTTTATGATGTTGATGGCGGCCGTCATCAGGCCTTTGTTAGCCCGCTGGAAGT

GGCAAGTGTTCTGGGCCATATTATTAAGCCGCATGAACGCATTAAGATTGAACAG

AGCCTGAAATATAGTGATATTGGTGTTGCCAAACTGTGGAAAACCGCAGGCCTGG

AAGAAGTGACCCGCTGGAGCCATAATGGTGAATATGGCCTGCATATGCTGAAAAA

AGCCAAAATGCCGTTTCCGCGTCTGCCGGAACTGTATGCCAGCGGTACCCTGCCGA

CATGGGCAGATTGGGAAAGCCTGTGGGCAGCATGGGATACCGTGACCCGTAAAAT

GCTGCCGGATGAAGAACTGAATGAAAAACCGATTAAGCTGCGCAATGCATGTATT

TTCTATCTGGGTCATATTCCGGCCTTTCTGGATATTCAGCTGAAAAAGACTACCAA

AGCAGGCGGCACCGAACCGCTGTATTTTCATAGCATTTTTGAACGTGGTATCGATC

CGGATGTGGATAATCCGGAAAATTGCCATGATCATAGCGAAATTCCGGATGAATG

GCCGCCGCTGGAAGATATTCTGGCCTATCAGGATCGCGTGCGTGAACGTCTGCAG

AAAATGTATAGTAATCCGGATGAACTGGTTGGTGACGTGCGTCGCGCAGTGTGGA

TTGGCTTTGAACATGAAGTTCTGCATCTGGAAACCCTGCTGTATATGCTGCTGCAG

AGTGATAAAACCCTGCCGCCGCCGCATACCGTTATTCCGGATTTTCCGAAAATGGC

CCAGAAAGCCTATGCACAGCGCGTTCCGAATCAGTGGTTTGAAATTCCGGAACAG

ACCATTACCATTGGCATGGATGATCCGGAAGATGAACATGATAGCAAACGCCATT

TT GGTT GGG AT A AT G A A A A ACCT GC AC GT C AGG A A A A AGTGC AT GC ATTT G A AGC

CAAAGCCCGTCCGATTACCAATGAAGAATATGCAAAATATCTGTACAGCAGCCAT

ATTGAAGCACTGCCGGCCAGTTGGAGTATTATTCCGCCGAATTATCATCATAATAC

CAATGCAACCACCCCGGGTAAACCGATTCTGAGTGAACTGCCGGAAAGTTTTATTC

ATGATAAAGCAGTTCGTACCGTTTATGGCCTGGTGCCGCTGCGCTATGCCCTGGAT

TGGCCGGTGTTTGCCAGCTATGATGAACTGGCCGGCTGCGCAGCATGGATGGGCG

GTCGTATTCCGACCATGGAAGAAGCAAAAAGTATCTATGCCTATGTTGAAAAACA

GAAAGATATCGCCAAACAGAGCAAACTGAGCAATAAGGTGCCGGCCGTTAATGGT

CATCTGGTTAATGATGGCGTTCAGGAAACCCCGCCGAGTGCAACCAGCCCGAGCA

GTCTGTTTACCGATCTGAGTACCACCAATACCGGTTTTCTGCATTGGCATCCGGTG

CCGGTTACCCCGAAAGGTGGCAGTCTGGCCGGCCAGGGCGATTTTGGTGGTGTGT

GGGAATGGACCAGCACCATTCTGCGCCCGCATGAAGGCTTTCGTCCGATGAGTAT

CTATCCGGGTTATACCGCAGATTTCTTTGATGAAAAACATAATGTGGTGCTGGGTG

GTAGCTGGGCCACCCATCCGCGCGTTGCCGGTCGTAAAAGCTTTATTAATTGGTAT

CAGCGCAATTATCTGTATGCATGGGTTGGTGCCCGTCTGGTTCGCGATCTGtaa

< SEQ ID NO: 42; PRT; B6Egtl; 1_XM_014099552; Trichoderma virens>

MPAVRESVLLAQQHITDDAMALKTVNATARSLDIIDIQNSRIDINLKDEILTQMNPE EG

PRTLPTLLLYDERGLQLFEDITYLDEYYLTNYEIELLKKSAAEMASKIPEGAIVVEL GSG

NLRKVCLLLQAFEDAKKKIDYYALDLSQTELERTLAEAPAFEYVSCRGLRGTYDDGC

EWLKQEAILARPKCILHLGSSIGNFNRDEAADFLRSFAEILQPTDLMIVGVDSCQNP DK VYHAYNDSKGITHQFVLNGLTHANEILGNEVFNVEEWNVTGEYVYDVDGGRHQAFV

S PLE V AS VLGHIIKPHERIKIEQS LKY S DIG V AKLWKT AGLEE VTRW S HN GEY GLHML

KKAKMPFPRLPEL Y AS GTLPT W AD WES LW A A WDT VTRKMLPDEELNEKPIKLRN ACI

FYLGHIP AFLDIQLKKTTKAGGTEPL YFHS IFERGIDPD VDNPEN CHDHS EIPDE WPPLE

DILA Y QDRVRERLQKMYSNPDELV GD VRRA VWIGFEHE VLHLETLLYMLLQSDKTLP

PPHTVIPDFPKM AQKA Y AQRVPN QWFEIPEQTITIGMDDPEDEHDS KRHFGWDNEKPA

RQEKVH AFE AKARPITNEE Y AKYL Y S S HIE ALP AS WS IIPPN YHHNTN ATTPGKPILS EL

PESFIHDKAVRTVYGLVPLRYALDWPVFASYDELAGCAAWMGGRIPTMEEAKSIYAY

VEKQKDIAKQS KLS NKVP A VN GHL VNDG V QETPPS ATS PS S LFTDLS TTNTGFLH WHP

VP VTPKGGS L AGQGDF GG VWE WT S TILRPHEGFRPMS IYPG YT ADFFDEKHN V VLGG

S WATHPRVAGRKSFINWY QRNYLY AWV GARLVRDL

< SEQ ID NO: 43; DNA; B7Egtl; 1_XM_002540793; Uncinocarpus reesii>

ATGGTTCTGCCGATGGCAGGCGTGGATATTATTGATATTCGCCGCAGCAATTTTAA

TCATAGCCTGGCAAAAGAAGTTCTGGATGGCCTGCGCGCCAAAGATGGCAGCCAG

CGTAGTCTGCCGACCCTGCTGCTGTATGATACCGAAGGTCTGCGCCTGTTTGAAGA

AATTACCTATCTGGATGAATACTATCTGACCAATGCAGAAATTGAAGTTCTGACCA

GTCATGCCGCAGGTATTGTGGAACGTGTGCCGGAAAATGCACAGCTGGTTGAACT

GGGTAGTGGTAATCTGCGTAAAATTGAAATTCTGCTGAAAGAATTTGAGCGTGTTC

GCAAAAGCGTTGAATATCTGGCCCTGGATGTTAGTCTGGAAGAACTGCATCGTAC

CTTT GCC G A A ATT CC G AGT A A A AGTT AT A A AT ATGT G A AGT GC GGTGGCCT GCT GG

GTACCTATGATGATGCCCTGGCATGGCTGAAACGCAGTGAAAATCGCCGTAAACC

GACCTGGGTTATGAGCATGGGTAGTAGCATGGGTAATTTTACCCGCACCGAAGCC

GCCCAGTTTCTGGGCGGTTTTGCCAAAACCCTGGGTCCGGATGATGCACTGTTTAT

TGGTCTGGATAGTTGCAAAGATCCGCAGAAAGTTTTTCGCGCCTATAATGATAGCA

AAAATGTTACCCGCGAATTTTATCTGAATGGCCTGGTGAATGCAAATAGTATTCTG

GGTTTTGAAGCCTTTCGTCGTATGGATTGGGATGTTGTTGGCGAATATGATGAAGA

AAATGGTTGCCATAAAGCATATTATAGCCCGCTGAAAGATGTGACCATTCAGGAT

CTGAGCATTCAGAAAGGTGAAAAAATTTTCTTTGAGCAGGCATTCAAATACAGCA

AACAGGAATATGAAGCCCTGTGGCAGCAGAGTGGCCTGAAACCGATTGCCCGCTT

TAGTAATACCACCGGCGATCATCATATTCATCTGCTGAGTAGCAGCCCGTATATTG

TTCCGACCCAGCCGGCCGAATATGCCCCGAGTGCAACCCCGAGTCTGAAAGAATT

TGAAGCACTGTGGAAACTGTGGGATACCGTGACCACCGAAATGCTGCCGCGCAAT

GAACTGCTGAGTAAACCGATTAAGCTGCGCAATAGTCTGATTTTCTATCTGGGTCA

TATTCCGGCATTTCTGGATATTCAGATTGCAAAAGCCACCACCGGTCAGCCGACCG

AACCGAAAAGCTATCATAGCACCTTTGAACGCGGCATTGATCCGGATGTTGATGA

TCCGACCAAATGTCATGATCATAGCGAAATTCCGGCAGAATGGCCGCCGGTTGAA

GAAATTCTGCGCTATCAGACCGCAGTTCGTAATCGCGCCCGTCTGCTGCTGCAGAA

AAGCCAGAGCGTGCTGGATCGTCGCATTCATGAAGCCCTGTGGATTGGCTTTGAAC

ATGAAGCAATGCATCTGGAAACCTTTCTGTATATGCTGCTGCAGAGTGATAAAGTT

CTGCCGCCGCCGGAAATTATGCAGCCGGATTTTGAATATCTGGCAATTCGCAGCGC

CCAGGAAAGTGTGCCGAATGAATGGTTTACCGTTCCGGAACAGACCATTAGCATT

GGTCTGGACGATCCGGGTAGTGCCCAGATTCCGACCCAGAGTTTTAGTTGGGATA

ATGAACAGCCGCGTCGTAGTGCCAAAGTGCATAGCTTTGAAGCCAAAGGCCGCCC

GATTACCAATGGTGAATATGCAAAATATCTGGAAGCAAATGAACCGCGTGCCATT

CCGGCCAGCTGGACCAAAAGTCCGAAAAGTTTTAGCAAAAGTAACGGTCTGGTGA

ATGGCAATACCAATGGTGCAAATGGTCATGGCATTAATGGCGCCAGCACCGCACC

GCAGTTTCTGGAAAAATATTGTGTTCGCACCGTTTTTGGTCCGGTGCCGCTGCGTTT TGCAGCAGATTGGCCGGTTATTGCAAGTTATAATGAACTGGAAGGTTATGCCAATT

GGGCAAATTGCCGCATTCCGACCTTTGAAGAAGCCCGTAGCCTGTATCAGTATAGC

GCCTTTCTGAAAAGCAGTGCAGATAGCAGCGTGTGTGCAGCAGTGAATGGCAACA

GCA AT ACC GTT A AAA A AGC AC AT GGC A AT AGC A ATGGTTTT GT GC AT C AGC AG A A

TGGTAAACCGCGTGCCCCGGATCATCAGCCGGTTAGTCTGGCAAGCGCAAGCCAG

GTT CC GGTTT AT ATT GAT CT GG ATGGCT AT A ATGT GGGTTTT A A AC ATT GGC AT CC

GAGTCCGGTGACCCAGAATGGTAATAAGCTGAGCGGTCAGGGCGATATGGGTGGT

GTTTGGGAATGGACCAGCAGCGCCCTGCAGCCGCATGAAGGTTTTAAAGCCATGG

ATCTGTATCCGGCCTATACCGCAGATTTCTTTGATGGTAAACATAATATCGTGCTG

GGCGGCAGTTGGGCAACCCATCCGCGCATTGCCGGTCGCACCACCTTTGTTAATTG

GTATCAGCGCAATTATCCGTTTGCCTGGGCAGGTGCCCGTCTGGTGCGCGATGTGta a

< SEQ ID NO: 44; PRT; B7Egtl; 1_XM_002540793; Uncinocarpus reesii> MVLPMAGVDIIDIRRSNFNHSLAKEVLDGLRAKDGSQRSLPTLLLYDTEGLRLFEEITY LDE Y YLTN AEIE VLT S H A AGIVERVPEN AQL VELGS GNLRKIEILLKEFER VRKS VE YL ALDVSLEELHRTFAEIPSKSYKYVKCGGLLGTYDDALAWLKRSENRRKPTWVMSMG SSMGNFTRTEAAQFLGGFAKTLGPDDALFIGLDSCKDPQKVFRAYNDSKNVTREFYL N GLVN AN S ILGFE AFRRMD WD V V GE YDEEN GCHKA Y Y S PLKD VTIQDLS IQKGEKIFF EQ AFKY S KQE YE ALW QQS GLKPIARFS NTTGDHHIHLLS S S P YIVPTQP AE Y APS ATPS LKEFEALWKLWDTVTTEMLPRNELLSKPIKLRNSLIFYLGHIPAFLDIQIAKATTGQPTE PKS YHS TFERGIDPD VDDPTKCHDHS EIP AE WPP VEEILR Y QT A VRNRARLLLQKS QS V LDRRIHE ALWIGFEHE AMHLETFL YMLLQS D KVLPPPEIMQPDFE YL AIRS AQES VPNE WFT VPEQTIS IGLDDPGS AQIPTQS FS WDNEQPRRS AKVHS FE AKGRPITN GEY AKYLE ANEPRAIPAS WTKSPKSFS KSNGLVN GNTN GAN GHGIN GAST APQFLEKY C VRTVFGP VPLRFA AD WP VIAS YNELEG Y AN W AN CRIPTFEE ARS L Y Q Y S AFLKS S ADS S V C A A VN GN S NT VKKAHGN S N GF VHQQN GKPR APDHQP V S LAS AS Q VP V YIDLDG YN V GFKHW HPSPVTQNGNKLSGQGDMGGVWEWTSSALQPHEGFKAMDLYPAYTADFFDGKHNIV LGGSWATHPRIAGRTTFVNWYQRNYPFAWAGARLVRDV

< SEQ ID NO: 45; DNA; B8Egtl; 1_XM_013164379; Schizosaccharomyces octosporus>

ATGATCAGCAATAACATCATCAACATCGGCAGTCTGGAAGTTCTGTTTAGCCCGGA

AATTATTGAACAGTGTCTGAAAGTTTGCCAGCTGCCGACCAGCCTGCTGTATGATG

AAAAAGGTCTGCAGCTGTTTGATAAAATTACCGGCACCGAAGAATATTATCTGTTT

GATTGCGAACTGAGCATTCTGCAGCGCGATAGCGATGCAATTGCCCAGGAACTGC

TGAGTCCGGATCTGCCGAATACCGTGGTGGAACTGGGTTGTGGCGCAATGCATAA

AACCAAACATCTGCTGGATGCATTTGAACGTACCGGCAAAGATGTGAATTTTTATG

CCCTGGATCTGAATGAAGATGAACTGCGCCGTGGCCTGAGCCAGCTGGAACAGCA

TGCCAGCTATAAACATGTTAAAGTTGCAGGTATTTGCGGCTGCTTTGATATGTTTC

TGAAAAATATTGACAAGTTCCGTGGTAGTAGCAATGGCCAGATTAGCATTCTGTAT

CTGGGTAGCAGCATTGGCAATTTTAATCGCGATAGTGCAACCAAATTCATTAAGA

GTTTTAGCGATCGTCTGGCAATTGGCGATAAATTTCTGCTGAGTTTTGATCATCGC

AATAGTGCCGAACTGGTGGAACGCGCCTATGATGATAGCACCCGTGTTACCGAAA

CCTTTGAAAAGAATATTCTGACCAGCGCCAATCGCGTGTTTGGCGAAGATTTGTTT

AATGAAAATGACTGGGATTACGTTAGTAAATATGAAGAAGATTTGGGTGTGCATC

GTGCCTATCTGCGTGCCAAAAAAGATTTGACCATTGCCAAAGGCCCGATGGTTTTT

AATTTTAAAGCCGGTCATCTGCTGCTGTGTGAAGAAAGTTGGAAAAGTAATGATA ACGAATGTCGCGAAATTATTCATAATGGCAATTTTGTTGTGGACAATGTTCATACC

AATACCACCCCGAGTTATAGCGTGTATGTTGGTAGTAAAAGTTTTCCGATTCTGCC

GCAGATTCCGAAAGAAGCCAGCATTAGTCTGGAAGAATGGAGCCAGACCCGTGAT

ATTTGGCTGTTTGTGACCAATAAGCTGCTGAATGATAGTAATATTTTCAACGTGTG

GATTCCTCTGCGCCATCCGTTTATTTTCTATATGGGCCATATTCCGGTTTTTAATGA

TATCTATCTGAGTCGTATCTTCGAAAATCCGGCAACCGCCAGCAAACGTGAATATT

GGG ATT GGTTT C AGC GC GGT ATTG AT CC GG AT GTT G A A A AT CC GG A AC AGT GCC A

TTGGCATAGTCAGACCCCGCCGAAATGGCCGAGCCCGAATGAACTGCGTAGTTAT

GAAGTTGCAAGCTGGCAGAATCATATTCTGAAACTGCTGGATGGCAGCCATGCCC

TGAGCCCGAGTCAGAAACGTATTCTGTGGCTGTGTTATGAACATGTTGCCATGCAT

ATTGAAACCACCCTGTATATCTATGTGCAGAGTTTTCAGCATCCGAAACAGAATAA

TACCCTGTGTGGTCTGCCGCCGAGTAAAAATCTGAAACTGAAAAAAGATCCGAGC

TGGATTAAGTTTCCGAATGCACAGGTTCTGCAGGGTCTGCCGATTCGCAGTGATCA

GAAAACCAAACTGAATAGCGAAGAACCGGATGAACAGGAATTTTTCGGCTGGGAT

AATGAAAAACCGCTGCGCATGAAACAGCCGAGTTTTCAGATTGCAAATCGCCCGA

TTAGCAATGGTGAATATCTGGATTATCTGGAAAGTAAACCGGCCGATGATAAACA

TTATCCGAAAAGCTGGAAAGTGATTGATGGTAAACTGTATGTGACCACCATGTAT

GGCCTGCTGCCGCTGGAAAGTTATCATAGCTGGCCGGTTATGGCAAGCTTTGAAG

AACTGAATGATTATGCAGCAAGTAAAGGTTGTCGTCTGCCGACCGAAGAAGAACT

GAACCATTTTTATGATCATGTGCTGCATCGCAAAAGCGAAACCTATGTGAGTACCA

AAGGCATGGCAACCGGTTTTCAGCAGCTGCATCCGGCCAATCTGAAAGATGATGG

CACCCATCAGATTTTTACCGGTGCCTGGGAATGGAGTAGCACCGTTCTGGATAAAC

ATGAAGGCTTTGAACCGGAAGCCCTGTATCCGGATTATACCAAAGATTTCTTTGAT

GGTAAACACAATGTGGTGCTGGGCGGCAGTTTTGCAACCGTTCCGCGCATTGCAA

ATCGTCGCAGCTTTCGTAATTTTTATCAGCGTCAGTATCAGTATGCCTGGATTACC

GCACGTCTGGCCAAAAGCATTtaa

< SEQ ID NO: 46; PRT; B8Egtl; 1_XM_013164379; Schizosaccharomyces octosporus>

MIS NNIINIGS LE VLF S PEIIEQCLKV C QLPT S LL YDEKGLQLFD KIT GTEE Y YLFDCELS I LQRDSDAIAQELLSPDLPNTVVELGCGAMHKTKHLLDAFERTGKDVNFYALDLNEDE LRRGLS QLEQH AS YKH VKV AGIC GCFDMFLKNIDKFRGS S NGQIS ILYLGS S IGNFNRD S ATKFIKS FS DRLAIGDKFLLS FDHRN S AEL VER A YDDS TR VTETFEKNILT S ANR VF GE DLFNENDWD YV S KYEEDLGVHRA YLRAKKDLTIAKGPMVFNFKAGHLLLCEES WKS NDNECREIIHN GNF V VDN VHTNTTPS Y S V Y V GS KS FPILPQIPKE AS IS LEEW S QTRDIW LFVTNKLLNDSNIFNVWIPLRHPFIFYMGHIPVFNDIYLSRIFENPATASKREYWDWFQ RGIDPDVENPEQCHWHSQTPPKWPSPNELRSYEVASWQNHILKLLDGSHALSPSQKRI LWLCYEHVAMHIETTLYIYVQSFQHPKQNNTLCGLPPSKNLKLKKDPSWIKFPNAQVL QGLPIRSDQKTKLNSEEPDEQEFFGWDNEKPLRMKQPSFQIANRPISNGEYLDYLESKP ADDKHYPKSWKVIDGKLYVTTMYGLLPLESYHSWPVMASFEELNDYAASKGCRLPT EEELNHF YDH VLHRKS ET Y V S TKGM ATGFQQLHP ANLKDDGTHQIFT G A WE W S S TV LDKHEGFEPEALYPD YTKDFFDGKHNVVLGGSFATVPRIANRRSFRNFY QRQY QY AW ITARLAKSI

< SEQ ID NO: 47; DNA; ClEgtl; 1_XM_002172061; Schizosaccharomyces japonicus>

ATGATGGCCGAAAGTATTATTGATATCGGCGCCACCGCAGATATTTTTAGTGCACA

GAGCGTGAGCGCAAATCTGAAACAGAGCCGTCTGAGTAGCAGCCTGCTGTATGAT

GAAACCGGTCTGCAGCTGTTTGGCCAGATTACCCAGGAAGATGAATATTATCCGTT TCGTCTGGAAATGCAGCTGCTGCAGAAACATGCAGATTGGATTGCAGAACATGTG

CGTAGTAAAACCAGTACCACCATTATTCTGGAACTGGGTTGTGGTAGCATGCGTAA

AACCAAAGTGCTGCTGGATGCCTTTGAAAATACCTGCAGTCCGGTTCATTATTATG

CACTGGATCTGAATCGCAAAGAACTGCAGAATAGCCTGAATACCCTGGAAGCAAG

TACCAGCTATCGCAATGTGAAAATTAGTGGTATTTGTGGTTGTTTTAAGCATGCAC

TGAGTTATCTGCCGATTCTGCGCAGTAGTCCGAATAGTAAATTTGTGCTGACCTAT

CTGGGTAGCAGCATTGGCAATTTTAGCCGTGAAGAAAGTGCAACCTTTCTGCAGG

CATTTTCTAGTAAACTGAAACCGGATGATCAGATTATTGTGAGTTTTGATCATCGT

C ATGAAAAAGAAACC ATT ATT AGCGCCT AT AATGAT AAAC ATC AC ATT ACCGAAA

AGTTCGAACTGAATATTCTGAATCATGTGAATCATATCTTCGGTGCACGCCTGTTT

CATCTGGATGATTGGCGCTATCAGGGCGAATATGATGAACATACCGGTGTGCATA

AAGCATTTCTGATTAGTAAACGCCCGGTGACCATTCCGGAACTGCAGCTGAGTTTT

CCGCAGAATCATAAACTGCTGTGCGAAGAAAGCTGGAAAAGCAGCAGTGAAGAA

GCCAATAAGATTCTGCATAATGGCGGTTTCTTTACCGAAGCAGAACTGAAAAGTA

ATCATGGTTTTAGCCTGTTTATCGCAAGCGTGCCGACCTTTGATGTGAGCCGTAAT

CCGGAAACCCCGTGCCCGACCCTGGAAGAATGGACCCAGATTCGCCTGGCATGGC

TGTATCTGGTTTTTAAACTGTATCCGCGCGATCTGTATTTTACCGAACTGATTCCGG

TTCGTCATCCGTTTATTTTCTATATTGGTCATGTTCCGGCCTTTAATGATATCTATC T

GGCCCGTCTGACCGATGGCAAACCGACCCTGGGCCGCAAAGATTATTGGGATTGG

TTTCAGCGTGGCATTGATCCGGATCTGGATAATACCAAAAAATGCCATTGGCATAG

CCAGCCGCCGGAAAAATGGCCGAGTGTTGAAGAAGTGAATGAATATGAACGCAAT

GTTTGGAGTCGCCTGGTTAGCATCTATAAACAGGGTGAAATGAGCGCCAATATGC

AGCGCGCAATGTGGATGATCTATGAACATACCGCCATGCATCTGGAAACCAGCTA

TTATATTCTGCTGCAGAGCGATTATCATATTATTAGTCCGAATAACTTCCCGCCGC

CGATTGCACCGGCCCTGCAGACAGATCCGACCTGGGTTCGCGTGCCGGAAAGCTT

TATTACCATGGGTATTCCGACCACCGCAGATGGTAAAGAAACCTTTTATTATGGCT

GGGATAATGAAAAACCGGAACGTCAGGTTAGCGTGCGCTGTTTTGAAATTGCCAA

TCGCCCGATTAGTAATGGCGAATATCTGAGCTTTCTGAAAGAAACCACCCAGAGC

A A AG A AG A ATTT G A AGC AGC A ATT CC G A A A ACCT GGCT GCT G A A AG AT G A A AT GC

TGTTTGCAAAAAGTATGTATGGTCCGCTGCCGATTGAACATGTGCTGGGCTGGCCG

GTTGCCACCAGCTATGATGAACTGAAACAGTATGCCAATGCAAAAGGCTGTCGTC

TGCCGACCGATTATGAACTGCGCGCATTTTATGATCATGTGCTGAAACCGAATGAA

GAAACCTATGTTGATACCGCCGGTTATGCCACCGCCTTTCAGCAGTGGTATCCGAA

AAGTCTGCAGGATGAAGAAAAACCGCAGATATATACCGGCCTGTGGGAATGGACC

AGTACCGTGCTGAAAGAAGATTTGGATTTTACCCCGGAAGAACTGTATCCGGATT

ATACCCGCGATTTCTTTGATGGTAAACATAATGTTGTGATGGGCGGTAGCTTTACC

ACCGTTGCACGCATTGCAAATCGTCGTAGTTTTCGTAATTTTTATCAGCGTAAATA

CCCGTATGCCTGGATTGGCGCACGTCTGGTGAAAGTGACCAATACCCTGAGCtaa

< SEQ ID NO: 48; PRT; ClEgtl; 1_XM_002172061; Schizosaccharomyces japonicus>

MM AES IIDIG AT ADIF S AQS VS ANLKQS RLS S S LLYDETGLQLF GQITQEDE Y YPFRLEM QLLQKH AD WIAEH VRS KT S TTIILELGCGS MRKTKVLLD AFENT C S P VH Y Y ALDLNRK EFQN S FNTFE AS T S YRN VKIS GICGCFKH AES YFPIFRS S PN S KF VET YFGS S IGNF S REE S ATFLQAFS S KLKPDDQIIVSFDHRHEKETIIS A YNDKHHITEKFELNILNHVNHIFG ARL FHLDDWRYQGEYDEHTGVHKAFLISKRPVTIPELQLSFPQNHKLLCEESWKSSSEEAN KILHN GGFFTE AELKS NHGF S LFIAS VPTFD V S RNPETPCPTLEEWT QIRL A WL YLVFKL YPRDLYFTELIPVRHPFIFYIGHVPAFNDIYLARLTDGKPTLGRKDYWDWFQRGIDPDL DNTKKCHWHS QPPEKWPS VEE VNE YERN V W S RL V S IYKQGEMS ANMQR AMWMIYE HT AMHLET S Y YILLQS D YHIIS PNNFPPPI AP ALQTDPTW VR VPES FITMGIPTT ADGKE TF Y Y GWDNEKPERQ V S VRCFEI ANRPIS N GE YLS FLKETT QS KEEFE A AIPKT WLLKDE MLFAKS M Y GPLPIEH VLGWP V AT S YDELKQ Y AN AKGCRLPTD YELR AFYDH VLKPN EET Y VDT AG Y AT AF QQW YPKS LQDEEKPQI YTGLWEWT S T VLKEDLDFTPEELYPD Y TRDFFDGKHNVVMGGSFTTVARIANRRSFRNFY QRKYPY AWIGARLVKVTNTLS

< SEQ ID NO: 49; DNA; C2Egtl; 1_XM_007696134; Bipolaris sorokiniana>

ATGGCCGCAAATATTATTGATATCCGCGTTGATAAAGCCGAAAGCGATATTCTGGC

CGATATTAAGAAAGGTCTGCGCCCGGTTGCCGATGCAGAAAAAACCCTGCCGACC

CTGCTGCTGTATGATCAGGAAGGCCTGCGCCTGTTTGAACAGATTACCTATCAGGA

AGAATATTATCTGACCAATGCCGAAATTGAAGTTCTGGAAACCTATGCCGATAAA

ATTGCCCAGCGCATTAGTCCGGGCAGCATTGTTGTTGAACTGGGCAGCGGTAATCT

GCGCAAAGTTAATATTCTGCTGCAGGCCGTGGATCGCCTGGGCAAAGATATTGAA

TATTATGCCGTGGATCTGAGCCTGCCGGAACTGGAACGCACCTTTAAACAGATTCC

GATTGAAGGTTATAGTCATGTGAAATGTTTCGGTCTGCATGGTACCTATGATGATG

CCCTGGAATGGCTGAAAAGCCCGGCAGTTGAAGCCAAACCGAAAACCATTCTGTG

GCTGGGTAGCAGCCTGGGCAATTTTAAACGCCATGAAGTGCCGCCGTTTCTGGCA

GGCTTTGGTAAAGTTCTGCAGACCGGTGACACCATGCTGATTGGTATTGATAGCTG

CAAAGATCCGAAACGTGTGTTTCATGCATATAATGATCGTGATGGTGTGACCCATC

GCTTTATTCTGAATGGTCTGAAACATGCAAATGCCCTGATGGGTGAAAATGCATTC

AATCTGGATGATTGGGAAGTTATTGGCGAATATGATACCAAAGCAGGTCGCCATC

ATGCATTTGTTGCCCCGCGCAAAGATGTTGTGGTGGATGGTGTTCCGATGAAACAG

GGTGAACGCATTCGCATTGAAGAAAGTTATAAATATAGCCGCGAAGAAGCAAAAA

AGCTGTGGGAACTGGCCAAACTGGCCGAAAATGCAGTGTGGGCCAATAGTAAAGG

TGACTATGGTCTGCATATGGTGAGCAAACCGAGCTTTTTCTTTCCGACCACCCCGG

AAGAATATGCAGAAAAACCGGTTCCGAGCCTGACCGAATGGCAGGAACTGTGGA

AAGCCTGGGATGCAGTTAGTAAACAGATGATTCCGAATAGTGAACTGCTGGCCAA

ACCGATTAAGCTGCGCAATGAATGCATTTTCTATCTGGGTCATATTCCGACCTTTCT

GGATATTCATATTGCACGTGCCACCGATGGCAAACCGACCGAACCGGCCTATTTTT

GGAAAATTTTTGAACGCGGCGTGGACCCTGATGTTGATGATCCGACCCTGTGCCAT

GCCCATAGCGAAGTGCCGGAAGAATGGCCGCCGCTGGGTACCATTCTGCAGTATC

AGCAGACCATTCGTAAAAATCTGGAAGCACTGTATGATAGCGGCGAAGCAGAAAA

GAATTGTCGCATTAGTCGTGGTCTGTGGATTGCATTTGAACATGAAGCAATGCATC

TGGAAACCCTGCTGTATATGCTGATTCAGAGCGATAAAGTGCTGCCGCCGCCGGG

CATTAAGCAGCCGGATTTTGCCGCATTTGCAGCACAGAGTGAAGTTATGGCCGTG

GAAAATGAATGGTTTACCATTCCGGAAAGTGATATTGATATTGGCCTGAATGATCC

GGAAAAAGATTTTGGTAGTAAACGCTATTTCGGCTGGGATAATGAACGCCCGTGT

CGTAGTGTTCATGTTAAAAGCTTTCGTGCAAAAGCACGTCCGATTACCAATGGTGA

ATATGCAACCTATCTGCTGCAGACCGGCAAAAAAGAAATTCCGGCCAGTTGGTGT

GATAAAGCATATAGTAATGGTCATGATACCAATACCACCAAACGTGATAGCGTTG

TGAATGGTCAGAGCAATGGTAATGGTGAAAGTAGCCAGGGCATTATTGAAGGCAA

ATTTGTGCGTACCGTTTATGGTACCATTCCGCTGAAACTGGCAATGGGCTGGCCGG

TTGTGGCAAGCTATGATGAACTGGTGGGTTGTGCACAGTGGATGGGCGGCCGTAT

TCCGACCATGGAAGAAGCACGCAGTATCTATGCCTATGTTGATAGTATTAAGCCG

GAATTTGAACAGAGCCTGGGTAATACCATTCCGGCCGTGAATGGTCATCTGCTGA

ATGAAGGCGTTTTTGAAACCCCGCCGAGCCATCATCTGAGCAATGGCAATAGTGG TGCAGTGACCGGCCTGAAACCGCGTGATCTGTTTATTGATCTGGAAGGCACCAATG

TGGGTTTT A A AC ATT GGC AT CC GGTG AGT GT GGC AG A A A A AGGT G AC A A ACTGT G

TGGTCAGAGTGATCTGGGCGGCGTTTGGGAATGGACCAGCACCGTGCTGGAAAAA

CATGATGGCTTTGAACCGATGGAACTGTATCCGGGCTATACCGCCGATTTCTTTGA

TGGCAAACATAATATTACCCTGGGCGGTAGCTGGGCAACCCATCCGCGCATTGCA

GGCC GT A A A ACCTTT GT G A ATT GGT ATC AGC GT A ATT AT CC GT AT GTTT GGGCC GG

TGCACGCATTGTTACCGATCTGtaa

< SEQ ID NO: 50; PRT; C2Egtl; 1_XM_007696134; Bipolaris sorokiniana> MAANIIDIRVDKAESDILADIKKGLRPVADAEKTLPTLLLYDQEGLRLFEQITYQEEYY LTN AEIE VLET Y ADKI AQRIS PGS IV VELGS GNLRKVNILLQ A VDRLGKDIE Y Y A VDLS LPELERTFKQIPIEGYSHVKCFGLHGTYDDALEWLKSPAVEAKPKTILWLGSSLGNFKR HEVPPFFAGFGKVFQTGDTMFIGIDSCKDPKRVFHAYNDRDGVTHRFIFNGFKHANA FMGENAFNFDDWEVIGEYDTKAGRHHAFVAPRKDVVVDGVPMKQGERIRIEESYKY S REE AKKFWEF AKF AEN A VW AN S KGD Y GFHM V S KPS FFFPTTPEE Y AEKP VPS FTE W QELWKA WD A V S KQMIPN S ELL AKPIKLRNECIFYLGHIPTFLDIHIAR ATD GKPTEP A Y FWKIFERGVDPDVDDPTLCHAHSEVPEEWPPLGTILQYQQTIRKNLEALYDSGEAEKN CRISRGLWIAFEHEAMHLETLLYMLIQSDKVLPPPGIKQPDFAAFAAQSEVMAVENEW FTIPESDIDIGLNDPEKDFGSKRYFGWDNERPCRSVHVKSFRAKARPITNGEYATYLLQ TGKKEIPAS WCDKA Y SNGHDTNTTKRDS VVN GQSNGN GES S QGIIEGKFVRTVY GTIP LKL AMGWP V V AS YDELV GC AQWMGGRIPTMEE ARS IY A Y VDS IKPEFEQS LGNTIP A VN GHLLNEG VFETPPS HHLS N GN S G A VT GLKPRDLFIDLEGTN V GFKHWHP V S V AEK GDKLC GQS DLGG VWE WT S T VLEKHDGFEPMELYPG YT ADFFD GKHNITLGGS W ATH PRIAGRKTFVNWY QRNYPYVWAGARIVTDL

< SEQ ID NO: 51; DNA; C3Egtl; 1_XM_008027421; Exserohilum turcica>

ATGGCCACCCAGATTATTGATATTCGTGTTGATACCGCCGAAAGTGATATTCTGGC

ACATATTAAGAAAGGCCTGCGCCCGGAAGCAGGCGGCGAAAAAACCCTGCCGAC

CCTGCTGCTGTATGATCAGGAAGGTCTGCGTCTGTTTGAACAGATTACCTATGAAG

AAGAATACTATCTGACCAATGCAGAAATTGAAGTTCTGGAAAAATACGCCCATGA

AATTGCACAGCGTGTTCCGAGCGGCAGCATTGTTGTTGAACTGGGCAGCGGCAAT

CTGCGCAAAGTTAATATTCTGCTGCAGGCCATGGATCGCCTGGCCAAAGATGTTGA

ATATTATGCAGTTGATCTGAGCCTGCCGGAACTGCAGCGTACCTTTAGTCAGATTC

CGATTGAAGGCTATAGCCATGTTAAATGCTTTGGCCTGCATGGCACCTATGATGAT

GCCCTGGAATGGCTGAAAAGTCCGGCCGTTGAAGCCAAACCGAAAACCATTCTGT

GGCTGGGTAGTAGCCTGGGCAATTTTAAACGCCATGAAGTTCCGCCGTTTCTGGCA

GGCTTTGGTCGCGTTCTGCAGACCGGTGACACCATGCTGATTGGTATTGATAGTTG

CAAAGATCCGGAACGTGTGTTTCATGCATATAATGATCGCAATGGTGTGACCCATA

AATTCATTCTGAATGGCCTGAAACATGCCAATGCCCTGATGGGCGATCGTACCTTT

AATATGGATGATTGGGAAATTATCGGCGAATATGATGTGAAAGCAGGCCGTCATC

ATGCCTTTGTGGCACCGCGTAAAGATGTGGTTGTGGATGGCGTTACCGTGAAACA

GGGCGAACGTATTCGCATTGAAGAAAGCTATAAATATAGCCATAAGGAAGCAAAA

AAGCTGTGGGAACTGGCACGTCTGAGTGAAAGTGCAGTTTGGGCAAATAGCATGG

GCGATTATGGTCTGCATCTGGTTAGTAAACCGGCATTTTTCTTTCCGACCAATCCG

GAAGAATATGCCGCAAGTCCGGTTCCGAGCCTGGCAGAATGGCAGGAACTGTGGA

AAAGTTGGGATGCCGTGAGCAAACAGATGATTCCGGAAGCCGAACTGCTGAGCAA

ACCGATTAAGCTGCGCAATGAATGCATTTTCTATCTGGGTCATATTCCGACCTTTCT GGATATTCATATTGCACGTGCAACCGATGGCCAGCCGACCGAACCGGCATATTTTT

GGAAAATTTTTGAACGTGGCGTGGACCCTGATGTGGATAATCCGACCCAGTGCCA

TGCCCATAGTGAAGTGCCGGAAGAATGGCCGGCAGTGAAAACCATTTTAGAATAT

CAGCAGACCATTCGTAAAAATACCGAAGCACTGTATCAGAGCGGTGAAGCCGAAA

ATAATGTGCGTGTTAGTCGTGGCCTGTGGATTGCCTTTGAACATGAAGCAATGCAT

CTGGAAACCCTGCTGTATATGCTGATTCAGAGCGATAAAATTCTGCCGCCGCCGGG

TACCAAAGTTCCGGATTTTGCCGCCTATGCAGCACATAGTGATGTTCTGGCAGTTG

AAAATCAGTGGTTTACCATTCCGGAAAGCGATATTGATATTGGCCTGGATGATCCG

GAAAATGATTTTAAAACCAAACGTTATTTCGGCTGGGATAATGAACGTCCGCGTC

GTAGTGCCCATGTGAAAGCCTTTCGTAGTAAAGCCCGCCCGATTACCAATGGTGA

ATATGCCACCTATCTGTTTCAGACCGGTAAAAAAGAAATTCCGGCAAGCTGGAGC

GAAACCAGTTATAGTAATGCCAATGGCACCACCATGACCAAACGCGATAGCGTGA

TTAATGGCCATGCAAATGGCGATAGTGATCCGAGTTATAGTATGATTGAAGGTAA

ATTTGTGCGTACCGTTTATGGTACCGTGCCGCTGCGTTTTGCCATGGGCTGGCCGG

TGGTGGCAAGCTATGAAGAACTGGCCGGCTGCGCACGCTGGATGGGTGGTCGTAT

TCCGACCATGGAAGAAGCACGCAGCATCTATGCCTATGTGGATCGCATGAAACCG

GAATTTGAAAAAAGCCTGGGTAATACCATTCCGGCCGTTAATGGTCATCTGATTAA

TGAAGGCGTTTTTGAAACCCCGCCGAGTCCGCATCTGAGTAATGGCAATAGCGGT

GCCGCCACCAGTCTGAATCCGCATGATCTGTTTATTGATCTGGAAGGCGCCAATAT

GGGCTTTAAACATTGGCATCCGGTTAGCGTTGCAGATAAAGGCAATAAGCTGTGT

GGTCAGTATGATCTGGGTGGCGTTTGGGAATGGACCAGTACCGTTCTGGAAAAGC

ATGAAGGTTTTGAACCGATGGAACTGTATCCGGGTTATACCGCCGATTTCTTTGAT

GGTAAACATAATGTTACCCTGGGTGGCAGCTGGGCCACCCATCCGCGTCTGGCAG

GCC GT A A A ACCTTT ATT A ATTGGT AT C AGC GCA ATT AT CC GT AT GTTT GGGCC AGC

GCCCGTATTGTTGCAGATTTGtaa

< SEQ ID NO: 52; PRT; C3Egtl; 1_XM_008027421; Exserohilum turcica> MATQIIDIRVDTAESDILAHIKKGLRPEAGGEKTLPTLLLYDQEGLRLFEQITYEEEYYL TN AEIE VLEKY AHEI AQR VPS GS IV VELGS GNLRKVNILLQ AMDRL AKD VE Y Y A VDLS LPELQRTF S QIPIEG Y S H VKCF GLHGT YDD ALEWLKS P A VE AKPKTILWLGS S LGNFKR HEVPPFLAGFGRVLQTGDTMLIGIDSCKDPERVFHAYNDRNGVTHKFILNGLKHANAL MGDRTFNMDDWEIIGEYDVKAGRHHAFVAPRKDVVVDGVTVKQGERIRIEESYKYS HKE AKKLWELARLS ES A VW AN S MGD Y GLHL V S KP AFFFPTNPEE Y A AS P VPS LAE W Q ELWKS WD A V S KQMIPEAELLS KPIKLRNECIFYLGHIPTFLDIHIARATDGQPTEPA YF WKIFERGVDPDVDNPTQCHAHSEVPEEWPAVKTILEYQQTIRKNTEALYQSGEAENN VRVSRGLWIAFEHEAMHLETLLYMLIQSDKILPPPGTKVPDFAAYAAHSDVLAVENQ WFTIPESDIDIGLDDPENDFKTKRYFGWDNERPRRSAHVKAFRSKARPITNGEYATYLF QTGKKEIPASWSETSYSNANGTTMTKRDSVINGHANGDSDPSYSMIEGKFVRTVYGT VPLRFAMGWP V V AS YEEL AGC ARWMGGRIPTMEE ARS IY A Y VDRMKPEFEKS LGNTI P A VN GHLINEG VFETPPS PHLS N GN S G A AT S LNPHDLFIDLEG ANMGFKHWHP V S V AD KGNKLCGQYDLGGVWEWTSTVLEKHEGFEPMELYPGYTADFFDGKHNVTLGGSWA THPRLAGRKTFIN W Y QRN YP Y VW AS ARIV ADL

< SEQ ID NO: 53; DNA; C4Egtl; 1_XM_018186317; Paraphaeosphaeria sporulosa> ATGGATGTGACCCGTGCCCTGAGTGGCGCACGTCTGCGCCCTCTGCGTTTTCTGAA AGAAACCAGCTTTGAAAAAATGAGTGCCAAAACCAGCACCGAAATTATTGATATT CGCCCGGGCCCGACCGAATTTGATATTCTGCAGGATATTAAGGATGGCCTGCGTCC GGAACATGGCGGCGAAAAAACCCTGCCGACCATGCTGCTGTATGATGAAGCAGGC

CTGCGTCTGTTTGAAAAAATTACCTATGTTAAGGACTACTACCTGACCGATAGCGA

AATTGAAGTGCTGGATACCTATGCAGATCAGATTGCCGAACGCATTAAGGCCGGT

AGCGTTCTGGTGGAACTGGGTAGTGGTAATCTGCGTAAAGTGAATATTCTGCTGCA

GGCAATTGAACGTCTGGGTAAAGATGTTGAATATTATGCAGTGGATCTGAGCCTG

CCGGAACTGGAACGCACCTTTGCCGAAATTCCGACCAATTATCAGCATGTGAAAC

TGAAAGGTCTGTATGGTACCTATGATCATGCCCTGGAATGGCTGAAAAGCCCGAA

AGTG AGC GCA A A ACC G A A A ACC ATT CT GT GGCT GGGC AGT AGCCT GGGT A ATTTT

ACCCGTGCAGATGTGCCGCCGTTTCTGACCGGTTTTCGTGAAGCACTGCAGCCGGG

TGACACCATGCTGATTGGTATTGATAGCTGCAAAGAACCGGAACGCGTTTTTCGCG

CCTATAATGATACCGATGGTGTTACCCGTGATTTTACCCTGAATGGTCTGAAAAAT

GCAAATCGCATTATGGGCACCGAAGCCTTTAAACCGCATGAATGGGAACATTGTG

GTGAATTTGTGGAAAAAGATGGTTATCATCGCGCATTTGTTAGCCCGCTGAAAGAT

GTTATTATTGATGGCGTTCATATCAAAAAGGGTGAACGTATTCGCATTGAAGAAA

GCTGGAAATTTTCTAAAGAGGAAATTGAACACCTGTGGAGCGAAGCCGGCCTGAT

TCCGAATACCACCTTTAGTACCGCCCGTGGTGACTATGGTCTGCATTTTGTGAGCA

AACCGGCATTTTTCTTTCCGACCAAACCGGAACGTTATGCAGCAAAACCGGTGCCG

AGTATTGCCGAATGGCGCGAACTGTGGACCGCCTGGGATGATATTGCCCAGAAAA

TGGT GCC G ACC G A AGC ACT GCT G AGC A A ACC GATT A AGCT GC GT A AT GC AGTG AT

TTTCTATCTGGGCCATATTCCGACCTTTCTGGATATTCATCTGACCCGCGCAACCGA

TGAAAAACCGACCGAACCGGCCGCATATACCAAAATTTTTGAACGTGGCATTGAT

CCGGATGTTGATAATCCGGAACAGTGTCATGATCATAGTGAAATTCCGGAAACCT

GGCCGCCGCGCGATGAAGTTCTGGCCTTTCAGGATGCAGTTCGTAAACGTACCAA

AGCACTGTATGATAGTAATGCAGCCCATGAAAATCCGCGTGTGAGCCGTGCCCTG

TGGCTGGCTTTTGAACATGAAGCAATGCATCTGGAAACCCTGCTGTATATGCTGAT

TCAGAGTGAACGTATTCTGCCGCCGCCGGGCAGCGTGATGCCGAGCTTTGATGCCC

TGGCACGCAAAAGCAAAAAAGCACGCGTGGAAAATCAGTGGTTTACCATTCCGGA

AGCCGAAATTCGTGATGGTCTGGATGATCCGGAAGATGGCAGCGCCGCAAAACGC

TATTTTGGCTGGGATAATGAAAAACCGACACGCAGCCTGCGCGTGAAAAGTTTTA

AAGCAAAAGCACGCCCGATTACCAATGGCGAATATGCCGATTATCTGGTTCAGAC

CGGCAAATGTGCCGTGCCGGCAAGTTGGTGCGATGGCCTGGACCCTGCAGCAAAA

GTGGTGGTTAATGGTGTGAATCGCCGTAATGGTACCAATAGCATTAATAGCAGTAT

TGATAAGGTTATGCAGGGTAAATATGTGCGCACCGTTTTTGGTACCGTTCCGCTGC

ATTATGCCCTGGATTGGCCGGTTGTGGCAAGCTATGATGAACTGGCAAGTTGTGCC

CAGTGGATGGGCGGTCGCATTCCGACCCTGGAAGAAGCACGCAGTATCTATAATT

ATGTGGAACATGGCAAAGCCCAGGAATTTGAAAAAACCCATGGCAATAAGATTCC

GGCAGTGAATGGTCATCTGATTAATAATGGTGTTAGTGAAAGCCCGCCGAGTCAG

CATCTGAGCAATGGTAGTAGCGGCACCGGCAGTGATCCGAAACCGGGCGATCTGT

TTATTGATCTGGAAGGCACCAATACCGCCTTTCAGCATTGGCATCCGATTAGCGTG

GCAGAAAAAGGTGACAAACTGTGTGGTCAGGCCGATCTGGGCGGTGCATGGGAAT

GGACCAGTACCGTGCTGGAAAAACATGATGGTTTTAGCGCAATGCCGCTGTATCC

GGGTTATACCGCAGATTTCTTTGATGGCAAACATAATATTATGCTGGGCGGTAGCT

GGGCCACCCATAGCCGTATTGCCGGTCGTAAAACCTTTGTGAATTGGTATCAGCGT

AATT ATCCGtaa

< SEQ ID NO: 54; PRT; C4Egtl; 1_XM_018186317; Paraphaeosphaeria sporulosa> MDVTRALSGARLRPLRFLKETSFEKMSAKTSTEIIDIRPGPTEFDILQDIKDGLRPEHGG

EKTFPTMFFYDEAGFRFFEKITYVKDYYFTDSEIEVFDTYADQIAERIKAGSVFVEF GS

GNLRKVNILLQAIERLGKDVEYY AVDLSLPELERTFAEIPTNY QHVKLKGLY GTYDHA

LEWLKSPKVSAKPKTILWLGSSLGNFTRADVPPFLTGFREALQPGDTMLIGIDSCKE PE

RVFRAYNDTDGVTRDFTLNGLKNANRIMGTEAFKPHEWEHCGEFVEKDGYHRAFVS

PLKD VIIDG VHIKKGERIRIEES WKFS KEEIEHLWSEAGLIPNTTFST ARGD Y GLHFV S K

P AFFFPTKPERY A AKP VPS IAEWRELWT A WDDIAQKM VPTE ALLS KPIKLRN A VIF YL

GHIPTFLDIHLTRATDEKPTEPAAYTKIFERGIDPDVDNPEQCHDHSEIPETWPPRD EVL

AFQDAVRKRTKALYDSNAAHENPRVSRALWLAFEHEAMHLETLLYMLIQSERILPPP

GSVMPSFDALARKSKKARVENQWFTIPEAEIRDGLDDPEDGSAAKRYFGWDNEKPTR

SLRVKSFKAKARPITNGEYADYLVQTGKCAVPASWCDGLDPAAKVVVNGVNRRNGT

NS INS S IDK VMQGKY VRT VFGT VPLH Y ALD WP V V AS YDEL AS C AQWMGGRIPTLEE A

RS IYN Y VEHGKAQEFEKTHGNKIP A VN GHLINN G V S ES PPS QHLS NGS S GTGS DPKPGD

LFIDLEGTNTAFQHWHPISVAEKGDKLCGQADLGGAWEWTSTVLEKHDGFSAMPLYP

GYTADFFDGKHNIMLGGSWATHSRIAGRKTFVNWYQRNYP

< SEQ ID NO: 55; DNA; C5Egtl; 1_XM_007289816; Marssonina brunnea>

ATGGCACCGAAAATTGATATTATCGATATTCGTCATAACGCAGTGGAAATGAGTCT

GAAAGATGAAATTGTTAAGAGCCTGAAACCGCAGGAAGGCCCGAAACGCCTGCC

GACCCTGCTGCTGTATGATGAACGCGGCCTGCAGCTGTTTGAAGAAATTACCTATC

TGGAAGAATACTATCTGACCAATGCAGAAATTGATGTGCTGCAGCGCAGCGCATG

C A AT ATT GC AG A A GCA ATT CC GCC GGGT AGT ATGGT GGT GG A ACT GGGT AGTGGT

AATCTGCGTAAAGTTAGTATTCTGCTGCAGGCACTGGATCAGGCCGGCAAAGATA

TTGATTATTATGCCCTGGATCTGAGTCTGAAAGAACTGTATCGTACCCTGGAACAG

GTTCCGGCCTTTAAACATGTGACCTGCCATGGTCTGCATGGCACCTATGATGATGG

TCTGGATTGGCTGAAAATTCCGGAAAATATTACCCGCCCGAAATGCGTGATGAGC

CTGGGTAGTAGCATTGGCAATTTTAGTCGTGCCGGTGGCGCAGAATTTCTGAAAGG

TTTTGCCGAAGTGATGCAGGATAGCGATCTGATGCTGGTTGGTCTGGATGCCACCG

AAGATCCGGCAAAAGTGTATCATGCATATAATGATCGTGAAGGTAAAACCCATAA

ATTCATTCTGAATGGTCTGACCAATGCCAATGGTATCTATAATGAAGAAATCTTTG

AGCCGAATGATTGGAAAGTGATTGGCGAATATGTGTTTGATGCAGAAGGCGGCCG

TCATCAGGCCTTTTGCAGCCCGGTTCATGATGTGAGTGTTAAAGGTGTTCAGATTA

AGGCAGGTGAACGCGTGCAGATTGAAGAAAGCCTGAAATATAGTCCGGAAGGTA

GCGCCCAGCTGTGGAAAGCCAGTGGCCTGATTGAAGTTGATCGTATGAGTGCAAG

CAGTGATAGCTATAGCCTGCATCTGCTGAAACGTAATATGGCCTTTAAAACCGATC

CGAGTCTGTATGCCGCCAGTACCGTGCCGACCCGCAAAGATTGGAAAGGTCTGTG

GACCGTGTGGGATCTGATTACCCAGAATATGATTCCGAAAACCGAACTGAATGAA

AAACCGATTAAGCTGCGCAATGCCTGTATTTTCTATCTGGGTCATATTCCGACCTTT

ACCGATATTCAGCTGGAAAAAGTGACCAAACAGCCGCGTTGCGAACCGGGCTATT

TTAAAGAAATTTTTGAACGTGGCATCGATCCGGATGTGGATAATCCGGAACGCTGT

CATGATCATAGCGAAGTTCCGGAAGAATGGCCGCCGCTGCAGGATATTCTGGGTT

ATCAGGATCAGGTGCGTGCCAAAATTGAAAAAATTACCGCAAGCGAAAGTATTCC

GCGTGATGTTGGCCGTGCCCTGTGGATTGGTTTTGAACATGAAATTATGCATCTGG

A A ACCCT GCT GT AT AT GCT GCT GC AG AGT GAT A A A ACCCT GCC GCC G ACC A A ATT C

AAACCGAATTTTGAAGAACTGGCAGCCGCCGATGAAGCAGCCCGCGTTGGCAATG

AATGGTTTGAAATTCCGGAACAGCGTATTACCATTGGTCTGGATGATCCGGAAGAT

AATAGTGGCGGTGACCGCCATTTTGGCTGGGATTGCGAAAAACCGCCGCGCAGCG TTGTGGTTCCGGCCTTCAAAGCACAGGCCCGCGCCATTACCAATGAAGATTATGCC

CGTTATCTGGAACAGACCCATGCCAGTAAAATTCCGGCAAGCTGGACCGAAAGCG

TGACCAATGGTCATACCAATGGCGTGAGCAATGTGTATAGCAATGGTAATAGCAA

TGGTCATGCAATTACCAGCACCCCGCTGACCAAAGAATATCTGGATGGTAAATTTG

TGCGCACCGTGTATGGCCTGGTTCCGCTGATGTTTGCACTGCATTGGCCGGTTTTTG

CAAGCTATGATGAACTGGCAGGCTGTGCAAAATGGATGGGTGGTCGCATTCCGAC

CCTGGAAGAAGCACGTAGCATCTATAGTCATGTGGATGGCCTGCGTCTGAAAGAA

GCCGAACAGCATCTGGTTAAAACCGTTCCGGCCGTTAATGGTCATCTGGTTAATGA

AGGCGTTGAAGAAAGCCCGCCGAGTCGCGGCGCATGGCCTGGTGAAGGCAGCGA

ACTGTTTACCGATCTGGCCAATGCCAATGTTGGCTTTAAACATTGGCATCCGATTG

GCGTGACCAGCAATGGCGATAAACTGGCAGGTCAGGCAGAAATGGGTGGCGTGTG

GGAATGGACCAGTAGCGAACTGCTGCGCCATGATGGCTTTGAACCGATGAAACTG

TATCCGGCCTATACCGCAGATTTCTTTGATGGCAAACATAATATTGTGCTGGGTGG

CAGCTGGGCAACCCATCCGCGCATTGCAGGCCGCAAAACCTTTATTAATTGGTATC

AGCGTAACTATCCGTATGCCTGGGCCGGCGCACGCCTGGTTCGCGACGTTtaa

< SEQ ID NO: 56; PRT; C5Egtl; 1_XM_007289816; Marssonina brunnea>

MAPKIDIIDIRHNAVEMSLKDEIVKSLKPQEGPKRLPTLLLYDERGLQLFEEITYLE EYY

LTNAEIDVLQRSACNIAEAIPPGSMVVELGSGNLRKVSILLQALDQAGKDIDYYALD LS

LKELYRTLEQVPAFKHVTCHGLHGTYDDGLDWLKIPENITRPKCVMSLGSSIGNFSR A

GGAEFFKGFAEVMQDSDFMFV GFD ATEDPAKVYHA YNDREGKTHKFIFN GFTN AN G

IYNEEIFEPNDWKVIGEYVFDAEGGRHQAFCSPVHDVSVKGVQIKAGERVQIEESLK Y

S PEGS AQLWKAS GLIE VDRMS AS S DS YS LHLLKRNM AFKTDPS L Y A AS T VPTRKD WK

GLWTVWDLITQNMIPKTELNEKPIKLRNACIFYLGHIPTFTDIQLEKVTKQPRCEPG YF

KEIFERGIDPDVDNPERCHDHSEVPEEWPPLQDILGYQDQVRAKIEKITASESIPRD VGR

ALWIGFEHEIMHLETLLYMLLQSDKTLPPTKFKPNFEELAAADEAARVGNEWFEIPE Q

RITIGLDDPEDNSGGDRHFGWDCEKPPRSVVVPAFKAQARAITNEDYARYLEQTHAS K

IP AS WTES VTN GHTN G V S N V Y S N GN S N GH AIT S TPLTKE YLDGKF VRT V Y GLVPLMFA

LHWPVFASYDELAGCAKWMGGRIPTLEEARSIYSHVDGLRLKEAEQHLVKTVPAVNG

HLVNEGVEESPPSRGAWPGEGSELFTDLANANVGFKHWHPIGVTSNGDKLAGQAEM

GGVWEWTSSELLRHDGFEPMKLYPAYTADFFDGKHNIVLGGSWATHPRIAGRKTFIN

W Y QRN YP Y AW AG ARLVRD V

< SEQ ID NO: 57; DNA; C6Egtl; 1_XM_024470276; Pseudogymnoascus destructans>

ATGACCAATAGTACCACCCCGCCGCCGGATGTTGTTGATCTGGATAAATTTCATAC

CCATGATGATCCGCGTCATACCCGCCTGACCACCCCGAGCAAAGCCACCCTGCCG

CCGGCTACCCCGCCTAGCCCTGCACAAAGCACCCTGGATTTTATTGATATTATTGA

TATCCGCCGTGATGCCCTGGGCAGTAGTCTGGATCTGGGTCGCGATATTATGGCCC

AGCTGGCACCGGCCCGCGGTCCTAAAAAGATGCCGACCCTGCTGCTGTATGATGA

AAAAGGCCTGCAGACCTTTGAAGAAATTACCTATCTGGAAGAATACTATCTGACC

AATGCAGAAATTGAAGTGCTGGAACGCAATGCAGAAGAAATGGCCCGCAATATTC

AGGCAGAAAGCATGGTTATTGAACTGGGTAGCGGTAATCTGCGTAAAGTGAGCAT

TCTGCTGAATGCCCTGGAAAAAGCCGAAAAAAGTATTCATTATTACGCACTGGAT

CT G AGC A A AC GCG A ACT GG A ACGT ACCCT G AGC AGT GTT CC GC GTTTT G A AC AT G

TGGTTTGCCATGGTCTGCTGGGCACCTATGATGATGGCCTGGAATGGATTCGTAGT

GGTTGCAATGCAAGCTGGCCGAAATGCATTATGAGTCTGGGTAGTAGTATTGGTA

ATTTTAATCGCGGCGATGCCGCAGAATTTCTGAAAGGTTTTGCAGATATGCTGCGT CCGAGTGATAGCATGATTATTGGCCTGGATGCCTGCAATGATCCGGCCAAAGTTTA

TCATGCCTATAATGATAGCCTGGGCATTACCCATAAATTCATTCTGAATGGTCTGG

ATAATGCAAATAGCATTCTGGGCGAAAATGTGTTTGATACCAATGATTGGGAAGT

GATTGGTGAATATGTTTGTGATAAAGATGGTGGTCGCCATCGCGCCTTTTATGCCC

CGAAACGTGATATTACCATTCGTGGTGTTTTTATTGAACAGGGTGAACGCGTTCAG

GTTGAACAGAGCCTGAAATATAGCCAGGCCGAAAGCGAAGGCATGTGGGCAGCA

GCCGGCCTGAAAGAAGTGGGCAAATGGGGTGCAACCAAAGAACAGTATAATATTC

ATATGCTGACCAAACGTGCAAAACCGTTTCAGCTGCATCCGAGTCAGTATGCCCTG

ACCCCGACCCCGACCCTGGAAGATTGGCGTGGCCTGTGGAGCACCTGGAATACCG

TGGCCCGTGGTATGATTCCGAATAATGAACTGCTGGCAAAACCGATTAAGCTGCG

TAATGCCTGCATTTTCTATCTGGGCCATATTCCGACCTTTCTGGATCTGCAGCTGAG

CAAAGCCACAGGTGTGCCGCTGTGTGAACCGAGTCATTATCCGCAGATTTTTGAAC

GTGGTATTGATCCGGATGTGGATAATCCGGATAATTGCCATGCACATAGTGAAATT

CCGGATCAGTGGCCGCCGGTGGAAGAAATTCTGGAATATCAGGCACAGGTGCGCC

GTAAAGTGGAAGGTCTGTATGCCAGCGGTGTGCCGGAAGCAAGTCGTAAAGTGGG

TCGTAGTCTGTGGATTGGCCTGGAACATGAAATTATGCATCTGGAAACCCTGCTGT

ATATGCTGCTGCAGAGCGATAATTGTATGCCGCCGCCGCGCACCGTGAAACCGGA

TTTTGAAGAACAGGCCCGTCGTGATGCAGAACGTGAAGTGGAAAATCAGTGGTTT

ACCATTCCGGAACAGGATATTGCCCTGGGCCTGGATGATCCGGAAGATAATAGCG

GTGACGGTCATTTTGGCTGGGATAATGAAAAACCGGTTCGTAAAGCCCATGTTCGT

AGCTTTCAGGCAAAAGGTCGTCCGATTACCAATGAAGAATATGCAATCTATCTGG

ATGCAACCGATAATGAAAATCTGCCGGCAAGTTGGACCCGTCAGCATGCCAATGG

CGATCTGAGCGCACATACCCCGAATGGCAATACCAATGGTTATACCAATGGCAAT

GGTCATACCAATGGTAATGGTCTGACCAATGGCAACGGCCATACCGATGGTAGCG

GCCATACCAATGGCAATGGCTATCTGAGTAATGGCTATACCAATGGTCTGACAAA

ACTGCATCCGTCATATATTAGTAATATCCTGGTGCGTACCGTGTATGGTCCGGTTA

GCCTGGCCCATGCACTGCATTGGCCGGTTAGTGCCTGTTATGATGAACTGCGTCGC

TGCGCAAAATGGATGGGTGGCCGCATTCCGACCGTTGAAGAAGCCCGTAGCATCT

ATAGCTATGTTGATGAACGCCGTCTGAAAGAAGTTCGCAATGCCCGCCGTGTTCCG

GCCGTGAATGCACATCTGGTTAATAATGGCGTGGAAGAAAGTCCGCCGCTGCGTG

ATCCGGCCGGTAGTCCTGCCAATCCGCATAGTGCCCTGTTTACCGATCTGGAAGGT

GCC A ATGT GGGCTTT A A AC ATT GGC AT CC GGT GGCC GTT ACC GCC G ATGGT G AC A

AACTGGCCGGTCAGGGCGAAATGGGCGGTGTTTGGGAATGGACCAGCAGTGTGCT

GGAACGTCATGAAGGCTTTCGCGAAATGGAACTGTATCCGGCCTATAGTGAAGAT

TTCTTTGATGGCAAACATAATGTGGTGCTGGGTGGCAGCTGGGCAACCCATCCGCG

CATTGCCGGCCGCAAAAGTTTTATTAATTGGTATCAGCGTAACTACCCGTATGTGT

GGGCAGGCGCCCGCCTGGTGCGCGACATTtaa

< SEQ ID NO: 58; PRT; C6Egtl; 1_XM_024470276; Pseudogymnoascus destructans> MTNSTTPPPDVVDLDKFHTHDDPRHTRLTTPSKATLPPATPPSPAQSTLDFIDIIDIRRD ALGS S LDLGRDIM AQL AP ARGPKKMPTLLL YDEKGLQTFEEIT YLEE Y YLTN AEIE VLE RN AEEM ARNIQ AES M VIELGS GNLRKV S ILLN ALEKAEKS IH Y Y ALDLS KRELERTLS S VPRFEHVVCHGLLGTYDDGLEWIRSGCNASWPKCIMSLGSSIGNFNRGDAAEFLKGFA DMLRPS DS MIIGLD ACNDP AKV YH A YNDS LGITHKFILN GLDN AN S ILGEN VFDTND W EVIGEYVCDKDGGRHRAFYAPKRDITIRGVFIEQGERVQVEQSLKYSQAESEGMWAA AGLKE V GKW GATKEQYNIHMLTKRAKPFQLHPS QY ALTPTPTLEDWRGLWSTWNT V ARGMIPNNELLAKPIKLRNACIFYLGHIPTFLDLQLSKATGVPLCEPSHYPQIFERGIDP D VDNPDNCHAHSEIPDQWPPVEEILEYQAQVRRKVEGLYASGVPEASRKVGRSLWIGLE HEIMHLETLLYMLLQSDNCMPPPRTVKPDFEEQARRDAEREVENQWFTIPEQDIALGL DDPEDNSGDGHFGWDNEKPVRKAHVRSFQAKGRPITNEEYAIYLDATDNENLPASWT RQH AN GDLS AHTPN GNTN G YTN GN GHTN GN GLTN GN GHTDGS GHTN GN G YLS N GY TN GLTKLHPS YIS NIL VRT V Y GP V S LAH ALHWP V S AC YDELRRC AKWMGGRIPT VEE ARS IY S Y VDERRLKE VRN ARR VP A VN AHL VNN G VEES PPLRDP AGS P ANPHS ALFTDL EGANV GFKHWHPVA VT ADGDKLAGQGEMGGVWEWT S S VLERHEGFREMELYPA Y S EDFFDGKHNVVLGGSWATHPRIAGRKSFINWYQRNYPYVWAGARLVRDI

< SEQ ID NO: 59; DNA; C7Egtl; 1_XM_007834197; Pestalotiopsis fici>

ATGCCGAGCGCCACCGAAATGTTTTATGAAAGTCAGGCAATTCCGACCGCCTTTGA

ACTGAGTAAAGGTCTGAGCAAAAATCCGAAAAGCAGTCGCCGTCTGGATATTATT

GATATTCGCCAGGCCGCAGTGGAACTGAATCTGAAAGAAGAAATTCATCAGCTGC

TGCGTCCGCAGGAAGGTCCGCGCAAACTGCCGACCCTGCTGCTGTATGATGAACG

TGGTCTGCAGCTGTTTGAACAGATTACCTATCTGGAAGAATATTATCTGACCAATA

GCGAAATTCAGGTGCTGCGTAGTAGTGCACAGGCAATTGCCAAAGCAATTCCGAG

TGGTAGCATGGTGGTTGAACTGGGTAGCGGTAATCTGCGTAAAGTTCAGATTCTGC

TGCAGGCCCTGGAAGATGCCGGTAAAGATATTGATTATTATGCCCTGGATCTGGAT

AAACGTGAACTGGAACGTACCCTGGCACAGGTGCCGGCCTTTCGTTTTGTTACCTG

CCATGGCCTGCATGGTACCTATGATGATGGCCGCGTGTGGCTGAAAAATAGTAGC

GTTAGCGCACGCCCGAAATGTGTGATGAGCCTGGGTAGCAGTATTGGTAATTTTCA

TCGCAGTGATGCAGCCGCATTTCTGCGCAGTTTTAGTGATGTGCTGCAGCCGAGCG

ATACCTTTCTGCTGGGTCTGGATAGTTGTACCAATCCGAGCAAAGTGTATCATGCA

TATAATGATCGTCATGGCGTTACCCATCAGTTTATTCTGAATGGTCTGCGTCATGC

CAATGAAGTGCTGGAAGATGAAGTTTTTAATCTGGATGAATGGCAGGTTATTGGT

GAATATGTGTATGATGTGGAAGGCGGCCGTCATCAGGCATTTTATAGCCCGAGCC

GCGATGTGACCATTCTGGGCGAAAATATTAAGGCCCAGGAACGTATTCAGGTTGA

ACAGAGCCTGAAATATAGTGAAGATGGTATGAAAAAGCTGTGGAGCGAAGCCGG

TGTTGTTGAAACCGATCGCTGGATGACCGATAATAATGAATATGGTCTGCATCTGC

TGACCAAACCGACCACCATGCCGTTTAGCCTGGACCCTCGCCAGTATGCAGGTAGT

GTGCTGCCGACCTTAGATGATTGGAAAGCCCTGTGGAGCACCTGGGATACCGTTA

CCCAGCGTATGCTGCCGGATGAAGAACTGCTGGAAAAACCGATTAAGCTGCGTAA

TGCATGTATTTTCTATCTGGGTCATATTCCGACCTTTCTGGATATTCAGCTGACCAA

AACCACCAAACAGCCGCCGACCGAACCGGTTAGCTATAGCGCCATTTTTGAACGC

GGTATTGATCCGGATGTGGATAATCCGGAACATTGCCATAGTCATAGCGAAATTCC

GGATGAATGGCCGAAACAGGCAGATATTCTGCGCTATCAGAATAATGTGCGCGTG

CGTCTGACCGGTCTGTATAGCCATGGCCCGGAAAGCATTCCGCGTGATGTTGCCCG

TGCAATTTGGGTGGGTTATGAACATGAACTGATGCATATGGAAACCCTGCTGTATA

TGATGCTGCAGAGTGATAAAACCCTGCCGCCGCCGCATATTCCGCGTCCGGATTTT

AAAGGTCTGGCACGTAAAGCATATGCCGAACGTACCGCAAATGAATGGTTTACCA

TTCCGGAACAGCATATTCTGGTTGGTCTGAATGATCCGGAAGATGATGAACGTTTT

AAAGGTCATTTTGGTTGGGATAATGAAAAACCGGCCCGCAAAATTAATGTGAAAA

GTTTTCAGGCAAAGGGTCGCCCGATTACCAATGAAGAATATGCATATTATATGTAC

GAGACAAAGGTGACCAAAATTCCGGCCAGTTGGGCAGAAGCCCCGCAGCATCATG

TGAATGGTAGCAATGGCACCAGTCATGAACATACCAATGGTCAGGCCAATGGTCA

TGCAAATGGCCATGTGAATGGCCATGTTAATGGTAGCCATGATACCGGTAGCACC

CTGCTGCCGAGCAGCTTTCTGGATGATAAAACCGTGCGCACCATCTATGGCCTGGT TCCGCTGGAATATGCCCTGGACTGGCCGGTTTTTGCAAGTTATGATGAACTGGCCG

GTTGTGCAGCATGGATGGGCGGTCGCATTCCGACCTTCGAAGAAGCACGTAGTGT

TTATGCATATGTGGATTATCTGAAAAAGAAGGAAGCCGAACGTAAACTGGGTAAA

ACCGTTCCGGCCGTGAATGGCCACCTGGTGAATGATGGCGTGGAAGAAACCCCGC

CGAGTCGTGGTTTTGGTATGCAGGTGAATGGCGAAGCAAGTGAAAATGATGATAG

CTTTGTGGATCTGGAAGGTAGCAATGTTGGTTTTAATCATTGGCATCCGATGCCGA

TTACCAGCCGCGGCAATCGTCTGGCCGGCCAGAGTGAAATGGGTGGTGTGTGGGA

ATGGACCAGTAGTCATCTGACCCGTCATGAAGGCTTTGAACCGATGGCACTGTATC

CGGCATATACCAGTGATTTCTTTGATGGCAAACATAATGTTGTTCTGGGCGGTAGC

TGGGCAACCCATCCGCGTATTGCCGGTCGCAAAAGCCTGtaa

< SEQ ID NO: 60; PRT; C7Egtl; 1_XM_007834197; Pestalotiopsis fici>

MPS ATEMFYES QAIPT AFELS KGLS KNPKS SRRLDIIDIRQA A VELNLKEEIHQLLRPQE GPRKLPTLLL YDERGLQLFEQIT YLEE Y YLTN S EIQ VLRS S AQ AIAK AIPS GS M V VELGS GNLRKVQILLQALEDAGKDIDYYALDLDKRELERTLAQVPAFRFVTCHGLHGTYDDG RVWLKN S S VS ARPKC VMS LGS S IGNFHRS D A A AFLRS F S D VLQPS DTFLLGLDS CTNPS KVYHA YNDRHGVTHQFILN GLRHANEVLEDE VFNLDEW QVIGEY VYD VEGGRHQAF YS PS RD VTILGENIKAQERIQ VEQS LKY S ED GMKKLW S E AG V VETDRWMTDNNE Y GL HLLTKPTTMPFS LDPRQ Y AGS VLPTLDD WK ALW S T WDT VT QRMLPDEELLEKPIKLR NACIFYLGHIPTFLDIQLTKTTKQPPTEPVSYSAIFERGIDPDVDNPEHCHSHSEIPDEW P KQ ADILRY QNN VRVRLTGL Y S HGPES IPRD V AR AIW V G YEHELMHMETLL YMMLQS DKTLPPPHIPRPDFKGLARKAYAERTANEWFTIPEQHILVGLNDPEDDERFKGHFGWD NEKPARKINVKSFQAKGRPITNEEYAYYMYETKVTKIPASWAEAPQHHVNGSNGTSH EHTN GQ AN GH AN GH VN GH VN GS HDTGS TLLPS S FLDDKT VRTIY GLVPLE Y ALD WP V FAS YDELAGCAAWMGGRIPTFEEARS VY AYVDYLKKKEAERKLGKTVPAVN GHLVN DGVEETPPSRGFGMQVNGEASENDDSFVDLEGSNVGFNHWHPMPITSRGNRLAGQSE MGGVWEWTSSHLTRHEGFEPMALYPAYTSDFFDGKHNVVLGGSWATHPRIAGRKSL

< SEQ ID NO: 61; DNA; C8Egtl; 1_XM_013493644; Aureobasidium subglacialo

ATGGATACCAGTACCGCACCGAAAATTATTGATATTCGTCAGGATGGCGGTGGTCT

GACCCCGCTGGTGCCGGAAATTCGTGAAGGTCTGAATGCCCGTGAAGGTCAGGAA

AAGAAACTGCCGACCCTGCTGCTGTATAGTGAAGATGGTCTGAAACTGTTTGAAA

AAATTACCTATCTGGAGGAATACTATCCGACCGGTCAGGAAATTCAGGTTCTGGA

AGCATATGCAGATCGCATTGCCGATCGTATTGCCCTGGAAAGTAATAGCATGCTG

GTGGAACTGGGTAGTGGCAATCTGCGCAAAGTGCGCATTCTGCTGGATGCCCTGG

ATCGCAAAGGTAAAGATGTTAGTTATTATGCCCTGGATGTTAGCGAAGTTGAACTG

GAACGCACCCTGGCCGAAGTTCCGCAGGGCACCTTTAAACATGTTCAGTGCCATG

GTCTGCTGGGTACCTATGATGAAGGTCTGGATTGGCTGAAAAAACCGGAAAATGC

ACATCGCAGTAAAACCGTTCTGAGCCTGGGTAGCAGTATTGGTAATTTTAGTCGTG

ATGAAGCCGCAAAATTTCTGAGCCAGTTTAGCGAAACCCTGGACCCTAATGATAC

CCTGCTGTTAGGTATTGATGCATGTACCGATGCAGATAAAGTTTATCATGCATATA

ACGATCGCGAAGGTCTGACCCATGAGTTTATTCTGTGTGGCCTGAAACAGGCCAAT

CGCCTGCTGGGTTATGATGCCTTTGATACCAAAATGTGGGAAGTTATTGGCCGTTA

TAATAAGGAAACCGATCGTCATGAAGCCTTTGTTAGCCCGAAAAAAGATGTTACC

ATTGAAGGTGCACTGATTCGTGCCGGTGAACAGGTTCGCATTGAAGAAAGTTATA

AATATAACAGCGTGCAGAGTGAACGCCTGTGGAGTGATGCCGGCCTGACCGAAGG

TGCCAAATGGACCAATACCGATGGCGATTATGCACTGCATCTGCTGAATAAGCCG AAAGTTCAGTATCCGCTGGTGGCCGAAAAATATGCCGCCCAGCCGGTGCCGAGCC

TGGAAGAATGGGATCAGCTGTGGGCAGCATGGGATGCAGTGACCCTGGAAATGAT

TCCGGAAGAAGATTTGCTGGAAAAACCGATTAAGCTGCGCAATGCCTGTATTTTCT

ATCTGGGCCATATTCCGACCTTTATGGATATTCATCTGACCCGCGCAACCCATGGC

AAACCGACCGAACCGAGCAGCTATACCAGTATTTTTGAACGTGGTATTGATCCGG

ATGTTGATGATCCGGAACAGTGTCATGCCCATAGCGAAATTCCGGATAGCTGGCC

GCCGGCCACCGAAATTCTGGATTTTCAGAGCAAAGTTCGCATTCGTGTGAAAAAA

CTGTATGCAACCGGCCAGGCCGTTAAAGATCGTGCCGTTAGTCGTGCAATGTGGCT

G AGTT ATG A AC AT G A A ATT AT GC AT CT GG A A ACCCT GCT GT AT AT GCT G ATTC AG A

GTGAAAAAACCATGGCCCCGCCGACCACCGTTATGCCGGATTTTGAAGCACTGGC

AGTTCAGGCACGCCAGCGCGCAGTGGAAAATCAGTGGTTTGATATTCCGGCACAG

AAAGTTGAAATTGGCATTGAAGATCCGGATGATAATAGTGGTCCGGAACATTTCTT

TGGCTGGGATAATGAAAAACCGAAACGCACCGTTCATGTTCCGGCCTTTAAAGCA

AAAGGTCGTCCGATTACCAATGGTGAATTTGCCAAATATCTGGAAGAAAATCATC

TGGATACCCTGCCGGCCAGCTGGCATACCCTGAGCCATACCCGTGGCACCGAAAC

CAATGGTCATACCAGCGGTATTAGTAGCAGCTTTCTGCAGGGTAAAGCCGTTCGTA

CCGTTTATGGTCCGATTAGTCTGAAACTGGCACTGGATTGGCCGGTTTGCGCCAGT

TATGATGAACTGCGCGGCTGTGCCCGTTGGATGGGCGGTCGTATTCCGAGCATGG

AAGAAGCCCGCAGCATCTATCGCCATGTTGATGAAGCCAAAACCCTGCAGGCCCA

TGAAAGCCTGGGTGCCAATATTCCGGCAGTTAATGCCCATCTGGTGAATGATGGC

GTGGAAGAAAGTCCGCCGAGCAAAGCCCTGAGCAGCAGCAGCACCGGTCCGAAT

CCGAATGATCTGTTTGTTGATCTGCTGGGTGCAAATGTTGGTTTTCGTCATTGGCAT

CCGATGCCGGTGAGCCAGCATGGTAATAAGCTGGCCGGTCAGAGTGAAATGGGCG

GTGTTTGGGAATGGACCAGTAGCGTGCTGGATAAACAGGAAGGCTTTGAAGCCAT

GCCGCTGTATCCGGGTTATACCGCAGATTTCTTTGATGGCAAACATAATATTGTGC

TGGGTGGCAGTTGGGCAACCCATCCGCGTATTGCCGGCCGTAAAAGTTTTGTTAAT

TGGTATCAGCGCAATTATCCGTTTGTTTGGGCCGGCGCCCGCATTGTGAAAGATGC

Ctaa

< SEQ ID NO: 62; PRT; C8Egtl; 1_XM_013493644; Aureobasidium subglacialo MDTSTAPKIIDIRQDGGGLTPLVPEIREGLNAREGQEKKLPTLLLYSEDGLKLFEKITYL EEYYPTGQEIQVLEAYADRIADRIALESNSMLVELGSGNLRKVRILLDALDRKGKDVS Y Y ALD V S E VELERTL AE VPQGTFKH V QCHGLLGT YDEGLD WLKKPEN AHRS KT VLS L GS S IGNF S RDE A AKFLS QFS ETLDPNDTLLLGID ACTD ADKV YH A YNDREGLTHEFILC GLKQANRLLGYDAFDTKMWEVIGRYNKETDRHEAFVSPKKDVTIEGALIRAGEQVRI EES YKYN S VQS ERLW S D AGLTEG AKWTNTDGD Y ALHLLNKPKV Q YPLV AEKY A AQP VPSLEEWDQLWAAWDAVTLEMIPEEDLLEKPIKLRNACIFYLGHIPTFMDIHLTRATH GKPTEPSSYTSIFERGIDPDVDDPEQCHAHSEIPDSWPPATEILDFQSKVRIRVKKLYAT GQ A VKDRA V S R AMWLS YEHEIMHLETLL YMLIQS EKTM APPTT VMPDFE AL A V Q AR QRA VEN QWFDIPAQKVEIGIEDPDDN S GPEHFFGWDNEKPKRTVH VPAFKAKGRPITN GEF AKYLEENHLDTLP AS WHTLS HTRGTETN GHT S GIS S S FLQGKA VRT V Y GPIS LKL A LD WP VC AS YDELRGC ARWMGGRIPS MEE ARS IYRH VDE AKTLQ AHES LG ANIP A VN A HLVNDG VEES PPS KALS S S S T GPNPNDLFVDLLG AN V GFRHWHPMP V S QHGNKL AGQ SEMGGVWEWTSSVLDKQEGFEAMPLYPGYTADFFDGKHNIVLGGSWATHPRIAGRK SFVNWY QRNYPFVWAGARIVKDA

< SEQ ID NO: 63; DNA; DIEgtl; 1_XM_016360447; Verruconis gallopava> ATGATCGGTGACAGTGCAGGTCTGGGCTTTGCAGATTTTAGTAGTAGTAATGTTCA

CACCAAAGCCGCCAAACCGCATAGTCCGCTGAGTAGCATTATTGAAATTCGTCAG

GATCGTGAAGAACTGGATCTGCTGATTGATATTAAGAGTGGTCTGCGTGCAAGCG

GCCCGGGCCGTAAAACCCTGCCGACCCTGCTGCTGTATGATGAACCGGGTCTGAA

ACTGTTTGAAAAAATTACCTTTCTGGACGAATACTATCTGACCAATGCCGAAATTG

AAGTGCTGCATAAATGGGCAGGCAATATTGCAGATCGTATTAGTCCGAATAGCAT

TGTGCTGGAACTGGGTAGCGGCAATCTGCGTAAAATTAAGATTCTGCTGGATGCAT

TTGAAGCAGCAAAAAAGCCGGTGGAATATTATGCACTGGATGTGAGCCGTGTGGA

ACTGGAACGCACCCTGGCAGCCATTCCGGTTGGCGCATTCAAACATGTGAAATGTT

TTGGTCTGCATGGCACCTATGATGATGGCCTGCAGTGGCTGAAAAGCGAACAGAT

TGCAAAACGTAGTAAAGCAATTCTGAGTATGGGTAGCAGCATTGGTAATTTTGCCC

GCCATGAAGCAGTGCGCTTTCTGCGTAGTTTTAGCGATGTGCTGCAGACCAGTGAT

GTTCTGCTGATTGGCATTGATGCATGTAAAGATCCGGATAAAGTGTTTCGCGCATA

TAATGATAGCCAGGGTGTTACCCATGAATTTGTGCTGAATGGCCTGCAGCATGCAA

ATCAGCTGCTGGGCCATGATGCCTTTGATGTGGAAAAATGGCGTGTGATTGGTGA

ATATGATGAAGTTAATGGTAAACATCACGCATTTGTTAGTCCGGTTCAGGATATGA

ATATTGATGGTATTCTGATTAAGGCAGGTGAACGCATTCGTATTGAAGAAAGTTTT

AAATACGACCTGATCGATCGTAGCCGTCTGTGGGAAGGTGCAGGTCTGATTGAAG

GTGCAAGTTGGACCAATGCCGAGGCCAATTATGGTCTGCATATGGCATATAAACC

GAAAGTTCAGTTTAGTAGCAAACCGGAAGAATATGCCGCCAGCGCAGTGCCGACC

CTGGCCGAGTGGAAAGATTTGTGGACCATTTGGGATCTGGTTACCCAGCAGATGA

TTCC G A A AG A AG A ACT GCT GGC A A A ACCG ATT A AGCTGC GT A AT GC AT GC ATTTT

CTATCTGGGCCATATTCCGACCTTTCTGGCCATTCATCTGGAAAAAGCCAGCTGTG

AAGGCGTGGCCGGCCTGCGTGATTATCAGCGTATTTTTGAACGCGGCATTGATCCG

GATGTTGATAATCCGGAACTGTGTCATGATCATAGTGAAATTCCGGATGAATGGCC

GCCGGAAGTTGAAATTCTGGCCTTTCAGAGTAAAGTGCGTGATCAGGTTAAACAG

ATATATGATAGTCGTATGCATGAAAGCAGTCATGCCATTCGTAAAGCACTGTGGAT

T AGTTTTG A AC AT G A AGTT AT GC AT ATC G A A ACCCT GCT GT AT AT GCT G ATTC AG A

GTGAAAAAACCCTGCCTCCGCCGGGCGTTATTCATCCGGATTTTGAAGCACTGGCC

TGTGAAGCCAAAGCAAAAACCGTTCCGAATAAGTGGTTTACCGTGCCGAGTCGTA

CCGTTACCCTGGGCCTGAATGATGATGATAAAGATACCACCACCAATCGTT ATTTT

GGTTGGGATAATGAAAAGCCGCAGCGTCGCGTTAAAGTTAAAAGCTTTAGCGCCC

AGGCACGCCCGATTACCAATGGCGAATATGTGGAATATCTGAAAGCAATTGGCAG

TGAAAAACTGCCGGCAAGCTGGAGTAGTACCAAAAGTACCCCGAATGGTCATTTT

AATGGCCATATGAATGGCGATAGCAATGGTGTGGCAAATGCCGCAGTGAATGGTG

AAAATTTTGTTGATGGTAAAGAGGTGAAAACCGTTTTTGGTAGCATTCCGCTGAAA

CTGGCACTGGATTGGCCGGTTATGGCAAGCTATGATGAACTGCTGGGTTTTGCCCA

TTGGGCAGGTGGCCGCATTCCGACCATGGAAGAAGTGAAAAGCATCTATGAATAT

GCCGAAGAACTGAAAGTTAAAGATTTTGTGAACGCACTGGGCGAAACCATTCCGG

CAGTTAATGGCCATCTGATTAATGATGGCGTGGAAGAAACCCCGCCGCATCGCCA

TAGTGCAAATGGCGAACCGAGTGCCAGCGTTGGTCCGAGTCCGCATCGCCTGTTTG

TTGATCTGGAAGATGCAAATGTTGGCTTTAAACATTGGCATCCGCTGCCGGTTACC

GCACATGGTGACAATCTGGCAGGCCAGGGTGAACTGGGCGGCGTTTGGGAATGGA

CCAGTACCGTTCTGGAAAAACATGAAGGCTTTGAACCGATGCAGCTGTATCCGGG

CTATACCGCCGATTTCTTTGATAAAAAACATAATATCGTGCTGGGTGGCAGCTGGG

CAACCCATCCGCGTATTGCCGGCCGTCGTAGCTTTGTTAATTGGTATCAGCGTAAT

TATCCGTTTGTGTGGGCCGGTGCACGCCTGGTTCGCGATCTGtaa < SEQ ID NO: 64; PRT; DIEgtl; 1_XM_016360447; Verruconis gallopava> MIGDSAGLGFADFSSSNVHTKAAKPHSPLSSIIEIRQDREELDLLIDIKSGLRASGPGRK T LPTLLLYDEPGLKLFEKITFLDE Y YLTN AEIE VLHKW AGNIADRIS PN S IVLELGS GNLR KIKILLDAFEAAKKPVEYYALDVSRVELERTLAAIPVGAFKHVKCFGLHGTYDDGLQ WLKSEQIAKRSKAILSMGSSIGNFARHEAVRFLRSFSDVLQTSDVLLIGIDACKDPDKV FRA YNDS QGVTHEFVLN GLQHAN QLLGHD AFD VEKWRVIGE YDE VN GKHHAFVSPV QDMNIDGILIKAGERIRIEESFKYDLIDRSRLWEGAGLIEGASWTNAEANYGLHMAYK PKVQFSSKPEEYAASAVPTLAEWKDLWTIWDLVTQQMIPKEELLAKPIKLRNACIFYL GHIPTFLAIHLEKASCEGVAGLRDYQRIFERGIDPDVDNPELCHDHSEIPDEWPPEVEIL AFQS KVRDQ VKQIYD S RMHES S H AIRKALWIS FEHE VMHIETLLYMLIQS EKTLPPPG V IHPDFEALACEAKAKTVPNKWFTVPSRTVTLGLNDDDKDTTTNRYFGWDNEKPQRRV KVKS FS AQ ARPITN GE Y VE YLKAIGS EKLP AS WS S TKS TPN GHFN GHMN GD SNG V AN A A VN GENFVD GKE VKT VF GS IPLKL ALD WP VM AS YDELLGFAHW AGGRIPTMEE VK S IYE Y AEELKVKDF VN ALGETIP A VN GHLINDG VEETPPHRHS AN GEPS AS V GPSPHRL FVDLED ANV GFKHWHPLPVT AHGDNLAGQGELGGVWEWTSTVLEKHEGFEPMQLY PGYTADFFDKKHNIVLGGSWATHPRIAGRRSFVNWYQRNYPFVWAGARLVRDL

< SEQ ID NO: 65; DNA; D2Egt2; 2_XM_001728079; Neurospora crassa>

ATGGT GGCC ACC ACC GTT G A ACT GCC GCT GC AGC AG A A AGCC GAT GCC GC AC AG A

CCGTTACCGGTCCGCTGCCGTTTGGTAATAGTCTGCTGAAAGAATTTGTGCTGGAC

CCTGCATATCGTAATCTGAATCATGGTAGTTTTGGCACCATTCCGAGTGCCATTCA

GCAGAAACTGCGTAGTTATCAGACCGCCGCCGAAGCCCGCCCGTGTCCTTTTCTGC

GTTATCAGACCCCGGTTCTGCTGGATGAAAGTCGTGCAGCAGTGGCAAATCTGCTG

AAAGTTCCGGTTGAAACCGTTGTGTTTGTGGCAAATGCCACCATGGGCGTGAATAC

CGTTCTGCGTAATATTGTTTGGAGTGCAGATGGCAAAGATGAAATTCTGTATTTTG

ATACCATCTACGGCGCATGTGGCAAAACCATTGATTATGTTATTGAAGATAAGCGT

GGTATTGTGAGTAGTCGCTGCATTCCGCTGATCTATCCGGCAGAAGATGATGATGT

TGTTGCAGCATTTCGCGATGCCATTAAGAAAAGCCGCGAAGAAGGTAAACGCCCG

CGTCTGGCAGTTATTGATGTTGTTAGTAGTATGCCGGGCGTGCGTTTTCCGTTTGA

AGATATTGTTAAAATCTGCAAAGAGGAAGAAATCATTAGCTGTGTGGATGGTGCA

CAGGGCATTGGCATGGTGGATCTGAAAATTACCGAAACCGATCCGGATTTTCTGAT

TAGTAATTGCCATAAATGGCTGTTTACCCCGCGCGGTTGCGCAGTGTTTTATGTTC

CGGTTCGCAATCAGCATCTGATTCGTAGTACCCTGCCGACCAGTCATGGTTTTGTG

CCGCAGGTGGGCAATCGCTTTAATCCGCTGGTTCCGGCCGGCAATAAGAGCGCAT

TTGTGAGCAATTTTGAATTTGTGGGTACCGTGGATAATAGTCCGTTTTTCTGTGTGA

AAGATGCCATTAAGTGGCGCGAAGAAGTGCTGGGTGGTGAAGAACGCATTATGGA

ATATATGACCAAACTGGCCCGTGAAGGTGGCCAGAAAGTGGCCGAAATTCTGGGC

ACCCGCGTTCTGGAAAATAGCACCGGTACCCTGATTCGCTGTGCCATGGTGAATAT

TGCACTGCCGTTTGTTGTTGGCGAAGATCCGAAAGCCCCGGTTAAACTGACCGAA

AAAGAAGAAAAAGATGTTGAAGGCCTGTATGAAATTCCGCATGAAGAAGCAAAT

ATGGCATTCAAATGGATGTATAATGTGCTGCAGGATGAGTTTAATACCTTTGTGCC

GATGACCTTTCATCGTCGTCGCTTTTGGGCACGCCTGAGTGCCCAGGTTTATCTGG

AAATGAGCGATTTTGAATGGGCCGGCAAAACCCTGAAAGAACTGTGCGAACGCGT

TGCC A A AGGT G A AT AT A A AG A A AGT GC Ataa

< SEQ ID NO: 66; PRT; D2Egt2; 2_XM_001728079; Neurospora crassa> MVATTVELPLQQKADAAQTVTGPLPFGNSLLKEFVLDPAYRNLNHGSFGTIPSAIQQK LRS Y QTAAEARPCPFLRY QTPVLLDESRAAVANLLKVPVETVVFVANATMGVNTVLR NIVWSADGKDEILYFDTIYGACGKTIDYVIEDKRGIVSSRCIPLIYPAEDDDVVAAFRD AIKKSREEGKRPRLAVIDVVSSMPGVRFPFEDIVKICKEEEIISCVDGAQGIGMVDLKIT ETDPDFLIS NCHKWLFTPRGC A VF Y VP VRN QHLIRS TLPT S HGFVPQ V GNRFNPLVP AG NKSAFVSNFEFVGTVDNSPFFCVKDAIKWREEVLGGEERIMEYMTKLAREGGQKVAE ILGTRVLENSTGTLIRCAMVNIALPFVVGEDPKAPVKLTEKEEKDVEGLYEIPHEEANM AFKWM YN VLQDEFNTFVPMTFHRRRFW ARLS AQ V YLEMS DFE W AGKTLKELCERV AKGEYKESA

< SEQ ID NO: 67; DNA; D3Egt2; 2_XM_003653634; Thielavia terrestris NRRL 8126>

ATGGGCCTGGCACCGCTGGAACTGCCGGTGCGTCAGAAAGCAGATGTGGATGCCA

CCCAGAATGGTCCGGTGAAATTTGGTCATGAACTGCGCGAACAGCATTTTCTGTTT

GATCCGAGCTATCGTAATCTGAATCATGGCAGCTTTGGCACCATTCCGCGCGCAAT

TCAGGCAAAACTGCGTAGCTATCAGGATCAGGCCGAAGCAGCCCCGGATGTGTTT

ATTCGTTATGATTATCCGAAACTGCTGGATCAGAGCCGTGCCGCAATTGCAAAACT

GCTGCGCGTGCCGACCGATACCGTTGTTTTTGTGCCGAATGCAACCACCGGCGTTA

ATACCGTGCTGCGTAATCTGGATTGGAATGCCGATGGCAAAGATGAAATTCTGTAT

TTTGATACCATCTACGGCGGCTGTGCCCGCACCATTGATTATGTTGTTGAAGATCG

TCAGGGTCGCGTTAGTCATCGTTGCATTCCGCTGAGTTATCCGTGCGAAGATGATG

CAGTTGTGGCAGCCTTTGAAAGCGCAGTTGAAGCCAGCCGTCGCGATGGTAAACG

TCCGCGTCTGTGCCTGTTTGATGTTGTGAGCAGTCTGCCGGGCGTTCGTTTTCCGTT

TGAAGCAATTGCCGCCGCATGTCGTGCCGCCGGCCTGTTAAGCCTGGTTGATGGCG

CACAGGGCGTTGGTATGGTGGATCTGGATCTGGCAGCCGTTGATCCGGATTTCTTT

GTTAGCAATTGCCATAAATGGCTGCATGTTCCGCGTGGCTGTGCAGTTTTCTATGT

GCCGGAACGCAATCAGCCGCTGATGCGTAGTCCGCTGGTGACCAGTCATCGCTTTG

TTCCGCGTGCAGGTGCAACCCAGCCGCTGTTTAATCCGCTGCCGCCGACCGATAAA

ACCGAATTTGTTAGTAATTTCGAGTTCGTGGGCACCGTGGATAATGCACCGTATCT

GTGTGTTCGCGATAGTCTGCGCTGGCGCGAAGAAGTGCTGGGCGGTGAAGCCCGT

ATTCTGGCCGCACTGACCGCCCAGGCCCGCGAGGGTGGTAGACGTGCAGCAGCAA

TTCTGGGTACCGAAGTGCTGGATAATGCAAGCCAGAGCCTGACCCGTTGCAGCAT

GGTTAATGTGGCCCTGCCGCTGGCCGTTCAGCCGGATGGTGAAGGCGAAGCACCG

CCGGCCGCAGGTGGTTTTCCGGCTCTGCCGAAAGAAGATGTTAGTGCAGTGACCA

ATTGGATGCTGGAAACCCTGATGGATGAGTTTAAAACCTTTATTGCACTGTTTGTG

TACAAAGATCGTTGGTGGGCCCGCCTGAGTGCACAGGTGTATCTGGAACTGGATG

ATTTTGAATGGGCCGGCCAGACCCTGAAAACCGTGTGCGAACGTGCAGGCCGCGG

TGAATATAAACAGGATCGTCCGtaa

< SEQ ID NO: 68; PRT; D3Egt2; 2_XM_003653634; Thielavia terrestris NRRL 8126> MGLAPLELPVRQKADVDATQNGPVKFGHELREQHFLFDPSYRNLNHGSFGTIPRAIQA KLRS Y QDQ AE A APD VFIRYD YPKLLDQS RA AIAKLLRVPTDT V VF VPN ATT G VNT VLR NLDWNADGKDEILYFDTIYGGCARTIDYVVEDRQGRVSHRCIPLSYPCEDDAVVAAFE SAVEASRRDGKRPRLCLFDVVSSLPGVRFPFEAIAAACRAAGLLSLVDGAQGVGMVD LDL A A VDPDFF V S N CHKWLH VPRGC A VF Y VPERN QPLMRS PLVT S HRFVPR AG ATQP LFNPLPPTDKTEFVSNFEFVGTVDNAPYLCVRDSLRWREEVLGGEARILAALTAQARE GGRR A A AILGTE VLDN AS QS LTRCS M VN V ALPL A V QPDGEGE APP A AGGFP ALPKED V S A VTNWMLETLMDEFKTFIALFV YKDRW W ARLS AQ V YLELDDFEW AGQTLKT V C ERAGRGEYKQDRP

< SEQ ID NO: 69; DNA; D4Egt2; 2_XM_018300274; Colletotrichum higginsianum>

ATGGGCGAACTGGTGAAAGAAACCAGCCAGCTGCAGCTGAGCAGCATTCCGTTTG

GTAAACCGATGCTGAAAGAATTTCTGATTGATCCGGCATATCATAATATGAATCAT

GGCAGTTTTGGCACCATTCCGCGCCATATTCAGACCATTCTGCGCAGTTATCAGGA

TAAAGCAGAAGCCCGCCCGGACCCTTTTATTCGTTGGGAATATCATACCTATCTGA

AAGAAAGCCGTCAGGCCGTTGCAGATTTGATTAATGCACCGGTGGATTGTACCGTT

TTTGTTCCGAATGCCACCGTGGGCATTAATACCGTTCTGCGTAATCTGATTTGGGC

CCCGGATGGTCTGGATGAAATTCTGTATTTTAGCACCGTGTATGGTGGCTGTGCAA

AAACCATTGATTATATTGTGGATACCCGTCTGGGCCTGGTGAGCAGCCGCAGTATT

CCGCTGACCTATCCGCTGGAAGATGATGAAGTGGTGGCACTGTTTCGCGATGCAGT

GGCACAGAGTCATGCCGAAGGTAAACGCCCGAAAATTTGTCTGTTTGATGTGGTT

AGTTGTCTGCCGGGTATTCGCTTTCCGTTTGAAGCAATTACCGCCGCATGTCGTGA

ACTGGGCATTCTGAGTCTGGTGGATGGCGCACAGGGCGTGGGTATGGTGCCGCTG

GATATTGCAGCACTGGACCCTGATTTCTTTATTAGTAATTGTCATAAGTGGACCTT

CACCCCGCGTGCAAGTGCCGTGTTTTATGTGAGCGAACGCAATCATCATCTGGTTC

CGAGCACCATTCCGACCAGTCATGGCTATGTTCCGCGTACCGGTGTTCAGCGTCAT

AATCCGCTGCCGCCGAGTGGTGAACCGCCGTTTGTGACCCGTTTTGGCTTTGTGGC

AACCTTTGATAATAGTCCGAATCTGTGCGTGAAACATAGTATTGAATGGCGCAAA

AGTATTGGCGGCGAAGATAAAATTATGGAATATCTGTGGGCACTGGCCAAAAATG

GCGGTAAAAAAGCAGCAGCAATTCTGGGTACCTTTATTCTGGATAATAAGAGTGA

AACCCTGACCCGCTGCGCAATGGTTAATGTTGCACTGCCGATTGTTATGGGCGCCG

ATGCCGAAACCCTGAGTGTTGGCCCGGATGGCACCATTACCGTTCCGGAAAAAGA

AGCCAGTGTTATTGTTAATTGGATGCTGAGTGCCCTGGTTAATGAATATCTGACCT

TTGTGGCCCTGTTTTGGCATCAGGGCCGCTGGTATAGTCGTATTAGTGCCCAGATA

TATCTGGATGAAACCGATTTTGAATGGGTTGGCAATACCATTAAGGAACTGTGTCA

GCGCGTTGCCAAACAGGAATATAAAGTGAAAGCAtaa

< SEQ ID NO: 70; PRT; D4Egt2; 2_XM_018300274; Colletotrichum higginsianum> MGELVKETS QLQLS S IPF GKPMLKEFLIDP A YHNMNHGS F GTIPRHIQTILRS Y QDKAE ARPDPFIRWE YHT YFKES RQ A V ADFIN AP VDCT VF VPN AT V GINT VFRNFIW APDGFD EIL YF S T V Y GGC AKTID YIVDTRLGL V S S RS IPLT YPLEDDE V V ALFRD A V AQS H AEGK RPKICFFDVVSCFPGIRFPFEAITAACREFGIFSFVDGAQGVGMVPFDIAAFDPDFFISN CHKWTFTPRAS A VFY V S ERNHHFVPS TIPT S HG Y VPRT G V QRHNPFPPS GEPPF VTRFG FV ATFDN S PNFC VKHS IE WRKS IGGEDKIME YEW AFAKN GGKKA A AIFGTFIFDNKS E TLTRCAMVNVALPIVMGADAETLSVGPDGTITVPEKEASVIVNWMLSALVNEYLTFV ALFWHQGRWYSRISAQIYLDETDFEWVGNTIKELCQRVAKQEYKVKA

< SEQ ID NO: 71; DNA; D5Egt2; 2_XM_018389754; Fusarium oxysporum f. sp. lycopersici 4287>

ATGGGCAGCATTGGTCAGGGTAGTAGTCAGCTGCCGGTGCGTGGCAAAACCAATA

CCAGTGTGTTTGGCAGCGCCATTAAGAAAGAGTTTATGTTTGATCCGGAATGGCGC

AATCTGAATCATGGCAGCTTTGGCACCTATCCGCAGGCAGTTCGTACCAAATTTCG

CGAATATCAGGATGCCAGTGAAGCCCGCCCGGACCCTTTTATTCGCTATGAATATC

CGAAAATTCTGGATGAAAACCGTGCAGCAGTGGCCAAACTGCTGAATGCCCCGGT

TGATAGCGTGGTTTTTGTTAGTAATGCAACCACCGGCGTTAATACCGTGTATCGCA AT AT G A A AT GG A AT G A AG AT GGC A A AG AT GTT ATT ATT AGCTTT AGC ACC ATCT AT

G A AGCCTGT GGT A A AGT GGC AG ATT ATT AT GTT GATT ATT AC A AC G AG A AGGT G A

CCCATCGTGAAATTGAACTGCCGTATCCGCTGGATGATGATGAAATTATTAAGAA

ATTCGAGGACGCCGTTAAAAAGATTGAAAGTGAAGGCAAACGCGTGCGTATTTGC

ACCTTTGATGTTGTGAGTAGCCGTCCGGGCGTTGTTTTTCCGTGGGAAGAAATGGT

TAAAACCTGTCGCCGTCTGAATGTTCTGAGCATGGTGGATGGTGCCCAGGGTGTGG

GTATGGTGAAACTGGATCTGAGTGCCGCCGATCCGGATTTCTTTGTGAGCAATTGC

CATAAATGGCTGCATGTGCCGCGTGGTTGCGCCGTTTTCTATGTTCCGCAGCGTAA

TCAGGCACTGATTCAGACCACCCTGGCAACCAGCCATGGCTATGTTCCGAAACTG

GCAAATCGTATTACCCCGCTGCCGCCGAGTAGTAAAAGTCCGTTTGTTATTAATTT

CGAGTTCGTGGGTACCCTGGATAATAGTCCGTATCTGTGCGTGAAAGATGCAATTA

AGTGGCGTGAAGAAGCACTGGGTGGCGAAGATGCCATTCTGGAATATATTTGGGA

TCTGAATAAGAAAGGCAGTGAACTGGTTGCAGAAAAACTGGGTACCACCTATATG

GAAAATAGCACCGGCACCATGCGTAATTGCGGTATGGCAAATATTGCCCTGCCGG

TGTGGACCGTTGAAGGCAAAGAAGGCGAAGTGGTTATTAGCGCAGAAGAAACCC

AGACCGCCTTTCAGTGGATTCTGAATACCCTGATTGGCGATTATAAAACCTTTGTG

GCACTGTTTCTGCATGGCGGTCGCTTTTGGATTCGTACCAGCGCACAGGTGTATCT

GGAAATTGAAGATTATGAATGGCTGGGCGGTGTTCTGAAAGAAGTTTGTGAACGT

GTT GGT A A A A A AG A AT AT CT G A A Ataa

< SEQ ID NO: 72; PRT; D5Egt2; 2_XM_018389754; Fusarium oxysporum f. sp. lycopersici 4287>

MGSIGQGSSQLPVRGKTNTSVFGSAIKKEFMFDPEWRNLNHGSFGTYPQAVRTKFRE Y QD AS E ARPDPFIRYE YPKIFDENRA A V AKFFN AP VDS V VF V S N ATT G VNT V YRNMKW NEDGKDVIISFSTIYEACGKVADYYVDYYNEKVTHREIEFPYPFDDDEIIKKFEDAVKK IESEGKRVRICTFDVVSSRPGVVFPWEEMVKTCRRFNVFSMVDGAQGVGMVKFDFSA ADPDFFV S NCHKWFH VPRGC A VFY VPQRN Q AFIQTTF ATS HG Y VPKF ANRITPFPPS S KSPFVINFEFVGTFDNSPYFCVKDAIKWREEAFGGEDAIFEYIWDFNKKGSEFVAEKF GTTYMENSTGTMRNCGMANIAFPVWTVEGKEGEVVISAEETQTAFQWIFNTFIGDYK TF V AFFFHGGRFWIRT S AQ V YFEIED YEWFGG VFKE VCER V GKKE YFK

< SEQ ID NO: 73; DNA; D6Egt2; 2_XM_018216062; Phialocephala scopiformis>

ATGACCATTAAGCCGCCGTTTGGTCATCCGATTCGTAATACCCATTTTAGCTTTAG

CCCGACCTATGTTCCGCTGAATCATGGTAGTTTTGGCACCTTTCCGCTGAGTGTTAC

CCAGCATCAGAATCAGCTGCAGACCCAGGCCCTGGAACGCCCGGATACCTTTATT

GTGTTTGATCTGCCGGTGCTGATTGATGAAAGCCGCGCAGCAATTGCACCGCTGCT

GGGTGTTGATGTGGATGAAGTTGTGTTTGTGCCGAATGCCACCACCGGCGTTAATG

TTGTTCTGCGTAATCTGCGTTGGGAAGAAGGTGACGTGGTTGTTTGTTTTAGTACC

ATCTATGGCGCATGCGAAAAAAGCCTGGTTAGTGTTGGTGAAGTTCTGCCGGTTCA

GATGGAAGTGGTGGAACTGCAGTATCCGGTTGAAGATGAAGAAATTCTGGGTCGT

CTGGAAGAACGTGTTGGTAAAGTGCGTCAGGAAGGCAAACGCATTCGTCTGGCAA

TGTTTGATACCGTGCTGACCTTTCCGGGCGCACGTATGCCGTGGGAACGCCTGGTG

GCCAAATGCAAAGAACTGGAAGTGCTGAGCCTGATTGATGGTGCACATGGTATTG

GCCATATTGATCTGCGTGAACTGGGCAAAGTGGCCCCGGATTTCTTTGTGAGTAAT

TGCCATAAATGGCTGTATACCCCGCGTGGTTGCGCCGTTTTTCATGTGCCGTTTAA

AAATCAGCATCTGATTCGTACCAGCCTGCCGACCAGTCATGGTTATCAGCATCCGA

ATAAGCCGCCGGAAAAAATTGATGGCAAAACCCCGTTTGTGCATCTGTTTGAATTT GTTGCAACCATTGATTATAGCCCGTATGCATGCGTGCCGGCAGCCCTGAGCTTTCG

TCAGAAAATTTGTGGTGGCGAAGAAGAAATTCGCAAATATTGTTTTAACCTGGCA

CGTACCGGCGGCGCCGCAGTGGCAAAAATTCTGGGCACCCATGTGATGGATACCA

AAAGTGGTACCATGAGCCAGTGTTGTTTTGCAAATGTTGCACTGCCGCTGGCATTT

GGCGAAGGCAAAAAATTTGGCACCGATGAAGCCCCGCGCATTCAGAAATGGCTGA

ATGGCACCGCAGTGCGTGAATTTGATACCTATCTGCAGATTGCCCTGCATGGTGGT

ATTATGTGGGTTCGCCTGAGTGCCCAGATATATCTGGAAGGTAAAGATTTTGAATG

GGTGGGTTATCGTCTGAAAGAACTGTGCGTTCGTATTGAAGGTGGCGAAGTGGAT

CGCtaa

< SEQ ID NO: 74; PRT; D6Egt2; 2_XM_018216062; Phialocephala scopiformis>

MTIKPPF GHPIRNTHF S FS PT Y VPLNHGS F GTFPLS VTQHQN QLQTQ ALERPDTFIVFDL PVFIDESRAAIAPFFGVDVDEVVFVPNATTGVNVVFRNFRWEEGDVVVCFSTIYGACE KS FV S V GE VFP V QME V VEFQ YP VEDEEIFGRFEER V GKVRQEGKRIRF AMFDT VFTFP G ARMPWERFV AKC KEFE VFS FIDG AHGIGHIDFREFGKV APDFF V S NCHKWFYTPRG C A VFH VPFKN QHLIRT S LPT S HG Y QHPNKPPEKIDGKTPF VHLFEF V ATID YS P Y AC VP AALSFRQKICGGEEEIRKYCFNLARTGGAAVAKILGTHVMDTKSGTMSQCCFANVAL PLAFGEGKKFGTDEAPRIQKWLNGTAVREFDTYLQIALHGGIMWVRLSAQIYLEGKDF EWV GYRLKELC VRIEGGEVDR

< SEQ ID NO: 75; DNA; D7Egt2; 2_XM_003045069; Nectria haematococca>

ATGGGTAGCGTGACCCAGGAACTGCCGCTGCGCGGTAAACCGAGTGCAAGTGTTT

TTGGCGCCGCAATGAAAGATGAATTTCTGTTTGATCCGGAATGGCGCAATCTGAAT

CATGGTAGCTTTGGCACCTATCCGAAAGCAATTAAGGCCAAATTTCGCGATGAAG

CACGTCCGGATGTTTTTATTCGTTATGAATATCCGAAGCTGCTGGATGAAAGTCGT

GTTGCCGTTGCCAAAATTCTGAATGCACCGGAAGATGGCGTGGTGTTTGTGAGCA

ATGCCACCGTGGGCGTTAATACCGTTTTTCGTAATATGGCATGGAATAAGGATGGC

AAAGATGTGATTATTAGCTTTAGTACCATCTATGAAGCCTGTGGTAAAGTTGCCGA

TTATCTGGCCGATTATTATGAAGGCAATGTTACCCATCGTGAAATTGAAATTACCT

ATCCGATTGATGATGATGTGATTCTGAAACGCTTTGAAGATACCGTGAAAAAGATT

GAAGAAGAAGGTAAACGCGCACGTATTTGTACCTTTGATGTTGTTAGTAGTCGCCC

GGGCGTGGTGTTCCCGTGGGAAGAAATGATTAAGACCTGTCGCCGCCTGAATGTG

CTGAGCATGGTTGATGGCGCCCAGGGTATTGGCATGGTGAAACTGGATCTGAGTG

CAGCCGATCCGGATTTCTTTGTTAGCAATTGCCATAAATGGCTGCATGTGCCGCGT

GGTTGCGCCGTTTTCTATGTTCCGCAGCGTAATCAGGCACTGCTGCCGACCACCCT

GGCAACCAGTCATGGCTATGTTCCGAAACTGGCAAATCGCATTAGTCCGCTGCCGC

CGAGTAGCAAACCGCGCTTTGTGACCAATTTTGAATTTGTTGGCACCCTGGATAAT

AGTCCGTATCTGTGCGTTAAAGATGCAATTAAGTGGCGCCAGGATGTTCTGGGTGG

TGAAGATGCAGTTCTGAAATATCTGTGGGATCTGAATAAGAAAGGTACCGATATT

GTGGCAAAAGCACTGAATACCCCGGTTATGGAAAATAGTACCGGTACCCTGCGTA

ATTGTGGCATGGGCAATGTTGCCCTGCCGCTGTGGGCAGGTGAAGGTGAAGGCAC

CGTGGTGCCGGCAGATGAAACCCAGAAAGCATTTCAGTGGATGCTGACCACCCTG

ATTGATGATTATAAAACCTTTCTGAGTCTGTTTATCCATGGCGGCCGTTTTTGGGCA

CGCATTAGCGCCCAGGTTTATCTGGGCATTGAAGATTATGAATGGGCCGGTAAAG

TTCTGAAAGAACTGTGTGAACGTGTGGCAAAAAAGGAATATCTGtaa

< SEQ ID NO: 76; PRT; D7Egt2; 2_XM_003045069; Nectria haematococca> MGSVTQELPLRGKPSASVFGAAMKDEFLFDPEWRNLNHGSFGTYPKAIKAKFRDEAR PD VFIRYE YPKLLDES RV A V AKILN APEDG V VFV S N AT V G VNT VFRNM A WNKD GKD VIISFSTIYEACGKVADYLADYYEGNVTHREIEITYPIDDDVILKRFEDTVKKIEEEGKR ARICTFDVVSSRPGVVFPWEEMIKTCRRLNVLSMVDGAQGIGMVKLDLSAADPDFFV S N CHKWLH VPRGC A VFY VPQRN Q ALLPTTL AT S HGYVPKL ANRIS PLPPS S KPRF VTN FEFVGTLDNSPYLCVKDAIKWRQDVLGGEDAVLKYLWDLNKKGTDIVAKALNTPVM EN S T GTLRN C GMGN V ALPLW AGEGEGT V VP ADETQKAFQWMLTTLIDD YKTFLS LFI HGGRFW ARIS AQ V YLGIED YE W AGKVLKELCERV AKKE YL

< SEQ ID NO: 77; DNA; D8Egt2; 2_XM_024886631; Hyaloscypha bicolor>

ATGGGCGAAGTGCTGAATATTAAGCTGGAAGAAGTTAGTCTGAATAATGAACGTA

CCCCGTTTGGTAAAGAAATGCTGAAACATTTTCTGTTTGACCCGGATTATAAAAAT

CTGAATCAGGGCAGTTTTGGTAGCTTTCCGCGTGTGGTGCGCGAAAAACAGCAGC

AGTATCAGCGCGCATGCGAACTGCGTCCGGACCCTTTTATTCGTTATGAACATCCG

AAACTGCTGGATGAAAGCCGTGCAGCACTGGCCAAAGTGCTGAATGCCCCGCTGA

GCACCGTTGTTTGTGTTCCGAATGCAACCACCGGCGTGAATACCATTATTCGTAAT

ATTGTGTGGAACGCAGATCGCAAAGATGAAGTGCTGTATTTTAGCACCGCATATTG

CAGCTGCAGCAATACCATTGATTATAATAGTGAAGTGCACCCGAATCTGGTGGGC

AGTCGTGAAATTAGTCTGACCTATCCGATTGAAGATGAAGATTTGCTGAAAATGTT

CAAAGATGCAATTAAGGCCAGCCGTGCAAGCGGCAAACGTCCGCGTCTGGCCATG

TTTGATACCGTGAGTAGCCTGCCGGGCGTTCGTATGCCGTTTGAAAGTCTGACCGC

CATTTGCAAACAGGAAGGCATTTTTAGCCTGATTGATGGTGCACATGGTATTGGTC

TGCTGCCGCTGGATCTGAGCGCCCTGGACCCTGATTTCTTTACCAGCAATACCCAT

AAATGGTTTTTCGTGCCGCGCGGCTGTGCAGTGCTGTATGTTCCGGAACGCAATCA

GCATCTGATTCGTAGCAGCCTGCCGACCAGCGATGGCTTTGTGAGTAAAACCGGC

ATGGCCAGTCGCAATCCGCTGCCGCCGAGTAGTAAAAGTGAATTTGTTAATACCTT

CGAGTTCGTGGGTACCCTGGATAATGCCAATTATCTGGTTATTCCGGAAGCAATTG

AATTTCGTGAAAAAGTTTGTGGCGGCGAAAAAGCAATTATGGAATATTGTGTTCA

CCTGGCCAAAGATGGCGGCAAAGCCGCCGCCAAAATTCTGGGTACCAGCATTATG

GATAATAGCACCGAAACCCTGACCAAAGGTTGTGGTATGGTGAATATTCTGCTGC

CGTTAGAAATTAGCCCGACCAAAGTGCATGGCAAAAATTGTATTGATCCGCGTAA

TCGTACCGTGGCAACCGAATGGATGCAGGAAACCCTGATTGCAGATTTTAAAACC

TTTATTCCGATCTATCTGTTCCAGGAAAAATGGTGGGCCCGTCTGAGTGCACAGAT

AT AT CT GG A ACT GGTT G ATTTT G A AT GGGC AGGT A A AGC ACTG A A AGC A ATTT GC

GAACGTGCCGGCAAAGGCGAATTTCTGAAAGCCGAAAAGAAAGTGAAAAAGATG

GGTGAAGTTGTTGGTGGCGGTGGTGAACATGGCCCGCGTACCCGTCCGGAACTGG

AATGCAAACTGtaa

< SEQ ID NO: 78; PRT; D8Egt2; 2_XM_024886631; Hyaloscypha bicolor>

MGE VLNIKLEE V S LNNERTPF GKEMLKHFLFDPD YKNLN QGS FGS FPR V VREKQQQ Y QRACEFRPDPFIRYEHPKFFDES RA AF AKVFN APES T V V C VPN ATTG VNTIIRNIVWN A DRKDE VFYFS T AY CS C S NTID YN S E VHPNF V GS REIS FT YPIEDEDFFKMFKD AIKAS R AS GKRPRLAMFDT V S S LPG VRMPFES LT AIC KQEGIFS LIDG AHGIGLLPLDLS ALDPDF FT S NTHKWFFVPRGC A VL Y VPERN QHLIRS S LPT S DGF V S KTGM AS RNPLPPS S KS EF V NTFEFVGTLDNANYLVIPEAIEFREKVCGGEKAIMEYCVHLAKDGGKAAAKILGTSIM DNS TETLTKGC GM VNILLPLEIS PTKVHGKN CIDPRNRT V ATE WMQETLIADFKTFIPIY LF QEKWW ARLS AQI YLEL VDFE W AGK ALK AICER AGKGEFLKAEKKVKKMGE V V G GGGEHGPRTRPELEC KL

< SEQ ID NO: 79; DNA; ElEgt2; 2_XM_024814247; Aspergillus candidus>

ATGGGCGAAGCCAATGTTGTTCTGGGCAGTGGTCCGACCCCGTTTGGTAAAGAAA

TGAAAAAACATTTCAGCTTCGCACCGGGCTATCATAATCTGAATCATGGCAGTTAT

GGCACCTGCCCGACCGCAATTCAGCGTGAAGCCAATCGCCTGCGCGATGAATGCG

AAGCCCGTCCGTGCCCGTTTATTAAGTATCGTTTTCCGGAACTGCTGGATGAAAGC

CGCGCAGCAGTGGCCCAGTTTCTGGGTGTTCCGCGTAGTACCGTTGTGTTTGTTAC

CAATGCAACCACCGGCGTTAATACCGTTTTTCGCAATATGATTTGGAATACCGATG

GCAAAGATGAAATTATTGAATTTGACGTTGTGTACGGTGCCTGTGGTAAAACCGCC

GATTATATTTGCGAAACCAGTCGTGATCTGGTGCGTACCCGCCAGATTCAGCTGAC

CTATCCGGTTGAAGATGATGATTTTGTTGCAGCCTTTCGTGAAGCCATTGATGCAA

GTCGTCGCGATGGCCGTCGTCCGCGTATTGCAATTTTTGATACCATTAGCAGCAAT

CCGGGTATTCGCCTGCCGTTTGAAGCCCTGACCGCCGTTTGTCGTAGCGAAGGTGT

TCTGAGCCTGATTGATGCCGCACATGGTATTGGCCAGATTGATCTGAATCTGCCGA

GCCTGGACCCTGATTTTCTGGTGAGTAATTGCCATAAATGGCTGTTTACCCCGCGT

GGTTGTGCCGTTTTCTATGTGCCGGAACGCAATCAGGCAATGATGCGCAGCACCAT

TCCGACCAGCCATGGTTTTCGTCCGCGTCTGGCACAGAATGAAGAAAAGAAAGTG

AGCATTGCACCGCATACCCATAGCGAATTTGAACTGAATTTTGAACATACCGGTAC

CTATGATAATATTGCATTTCTGACCGTGCCGGCCGCCATTAAGTGGCGTCAGAATG

TGTGTGGCGGCGAAGAAAAAATTCGCGGTTATTGTACCAATCTGGCCCGCGAAGG

CGGCAAAATTGTTGCCGCAGCACTGGGCACCAGTGTTCTGGATAATCCGACCCAT

ACCTATACCGATTGCTTTATGGTGAATATTCTGCTGCCGGTTCCGCCGAAAGAAAA

TG A AT GT AT G A ATT GGC GTGGTCGT CC GGTT A AT ATT AGT G A AT GG AT GC AGC GCA

CCATGATTGAAGAATGGCAGACCTATATGCCGGTGTTTTGGTTTAAAGGCGCCTGG

TGGTTTCGCATTAGCGCACAGGTTTATCTGGAACTGAGCGATTTTGAATGGGCCGG

TAGCGCCATGAAAGAAGTGTGTCAGAAAGTGAATAAGCTGCTGGGTtaa

< SEQ ID NO: 80; PRT; ElEgt2; 2_XM_024814247; Aspergillus candidus>

MGE AN V VLGS GPTPF GKEMKKHF S FAPG YHNLNHGS Y GT CPT AIQRE ANRLRDECE A RPCPFIKYRFPELLDESRAAVAQFLGVPRSTVVFVTNATTGVNTVFRNMIWNTDGKDE IIEFDVVYGACGKTADYICETSRDLVRTRQIQLTYPVEDDDFVAAFREAIDASRRDGRR PRIAIFDTIS S NPGIRLPFE ALT A VCRS EG VLS LID A AHGIGQIDLNLPS LDPDFL V S NCHK WLFTPRGC A VFY VPERN Q AMMRS TIPT S HGFRPRL AQNEEKKV S IAPHTHS EFELNFE HTGTYDNIAFLTVPAAIKWRQNVCGGEEKIRGYCTNLAREGGKIVAAALGTSVLDNPT HTYTDCFMVNILLPVPPKENECMNWRGRPVNISEWMQRTMIEEWQTYMPVFWFKGA WWFRIS AQ V YLELS DFE W AGS AMKE V C QKVNKLLG

< SEQ ID NO: 81; DNA; E2Egt2; 2_XM_003720232; Pyricularia oryzae>

ATGGCAACCCCGCTGCGTCATTATGGCACCGAAAAACCGTATAGCCATCCGGAAC

CGGTTACCAAACGCCAGTTTGGTAAAAATGTGCTGCAGGATTTTCTGATTGATCCG

AAATTTCGCAATATGAATCATGGTAGTTTCGGCGTTATTCCGCGTCCGGTTCATGC

CGCACGCCGTTATTATCAGGATAAAAGCGAAGAACGTCCGGATGTGTGGATTCGC

TATAATTGGAGCCAGCTGCTGGAAGGCAGCCGCGCCGCTGTGGCACCTCTGTTAG

GTGTGGATAAAGATACCATTGCATTTGTGCCGAATGCCACCGTTGGTGTTAATACC

GTTCTGCGCAATCTGGTGTGGAATGATGATAAAAAAGATGAAATCCTGTACTTCA ACACCATCTATGCAGCATGCGGCAAAACCGTGCAGTATATGATTGAAATTAGTCG

CGGCCATGTTAGCGGTCGTAGCGTGCCGCTGGAATATCCGCTGACCGATGATGAA

CTGGTGGCCCTGTTTAAAAAAGGTATTCAGGATTGTCGTGCAGCAGGTAAACGTCC

GCGCGCCGCCGTGATTGATACCGTTAGCAGTATTCCGGCAGTTCGCCTGCCGTTTG

AAGCCCTGGTGCAGGTTTGTCATGATGAAGGTATTCTGAGTATTGTTGATGGTGCC

CAGGGTGTGGGTATGATTGATCTGAAACATCTGGGCACCCAGGTTAAACCGGATT

TCTTTATTACCAATTGTCATAAATGGCTGTACACCCCGCGCGGTTGCGCCGTTCTG

CATGTGCCGAAACATAATCAGGCCCTGATGCGTAGTACCCTGCCGACCAGCTGGG

GTTGGGTTCCGAGTGGCGAAGGTGACCCGGATTTTATTGATAATTTTGCCTTTGCA

AGCACCCTGGATAATAGTAATTATATGGCCGTTCAGCATGCAGTTCAGTGGATTCA

GGAAGCACTGGGCGGTGAAGATGCCGTTATTGAATATATGATGAGTCTGAATAAG

AAGGGCGGCAATATGGTGGCAGAAATGCTGGGCACCAAAGTTCTGGATAATGCAG

AAGGCACCCTGACCAATTGCGCCATGAGTAATGTTCTGCTGCCGCTGGGTATTAAG

GGCCGCGAAAGTAGTGCAAAAGTTCTGGTGGATGAAGAAGATGCCGCCCGTCTGG

GCGATTGGTGCCAGAAAACCCTGGCCAGTGATTATAATACCTGGCTGCCGGTTACC

CTGATTAAGGGTCAGTGGTGGACCCGCATTAGTGCCCAGGCCTATCTGGATGAAA

GTGATTATGAAGCAGTTGGCAAAATTTTTCTGGAACTGGTTGAACGTATTGGCAAA

GGCG AT CAT A A A A A Ataa

< SEQ ID NO: 82; PRT; E2Egt2; 2_XM_003720232; Pyricularia oryzae>

MATPLRHY GTEKPYSHPEPVTKRQFGKNVLQDFLIDPKFRNMNHGSFGVIPRPVHAAR RYYQDKSEERPDVWIRYNWSQFFEGSRAAVAPFFGVDKDTIAFVPNATVGVNTVFRN FVWNDD KKDEIF YFNTIY A AC GKT V Q YMIEIS RGH V S GRS VPFE YPFTDDEFV AFFKK GIQDCRA AGKRPRA A VIDT V S S IP A VRFPFE AFV Q VCHDEGIFS IVD G AQG V GMIDFKH FGTQVKPDFFITNCHKWFYTPRGCAVFHVPKHNQAFMRSTFPTSWGWVPSGEGDPDF IDNF AF AS TFDN S N YM A V QH A V Q WIQE AFGGED A VIE YMMS FNKKGGNM V AEMFG TKVFDN AEGTFTNC AMS N VFFPFGIKGRES S AKVFVDEED A ARFGD W C QKTFAS D Y NTWFP VTFIKGQWWTRIS AQ A YFDES D YE A V GKIFFEFVERIGKGDHKK

< SEQ ID NO: 83; DNA; E3Egt2; 2_XM_008078420; Glarea lozoyensis>

ATGCCGGCTCCGCTGAATATGCCGATTCATCTGAAAGCCGGCGAAGTTAGTAGCG

ATGTTAGTAATAAGTATAAGCGTGTTCCGTTTGGTAAAGAAATGCTGAAACAGTTT

AGTTTTGACCCGGAATATCGTAATGTGAATCATGGTAGCTATGGTAGCTTTCCGAA

ACCGATTAGCGAACTGCGTCGCCATTATCTGGATGAATGTGAAAAAAGCCCGGAC

CCTTTTATTCGCTATGATTTTGGTAGTATTCTGGATGAAAACCGTGCCGCAGTGGC

CAAACTGGTGGATGCCCCGCTGCATACCGTTGTTTTTGTGCCGAATGCAACCACCG

GCATTAATGTTGTTCTGCGCAATCTGCAGTGGAATGAAAATGGCAAAGATGAAAT

TCTGTACTTTAACACCATCTATGGTGCATGTGGTAAAACCGTTAGTTATACCAGTG

AATATAGTCGTGGTCTGGTGCAGGGCCGTGAAATTACCCTGGATTATCCGATTAGC

GATGAAGCACTGATTGAACAGTTTAGCAGTACCATTCAGGCCAGCATTGATGCAG

GCAAAAATCCGCGCATTGCAATTTTTGATACCATTAGTAGTCTGCCGGGCGTTCGC

ATGCCGTTTGAAGCCCTGACCGCAGTGTGCGCCAGTAGCGGTGTGCTGAGCCTGAT

TGATGGCGCCCATGGCATTGGTCATATTCCGCTGAGTCTGAGCACCCTGAATCCGG

ATTTCTTTGTGAGCAATCTGCATAAATGGCTGTTTGTGCCGCGTGGTTGCGCACTG

TTTTATGTTCCGCTGCGCAATCAGCATCTGATTCGTACCAGCCTGCCGACCAGTCA

TTATTTTGAACCGAAACAGCTGAGCCTGGGCGCCCCGAATCCGTTTGCCCCGACCA

CCAAAAGTGGCTTTGTGATGCAGTTTGAAAGTAATGGCACCATTGATAATAGTCCG TATCTGACCGTGGCCGAAGCAATTCGTTGGCGCCGCGAAGCATGTGGCGGCGAAG

AAGCAATTCATGATTATTGTCTGGATCTGAGCCGTAAAGGCGCAACCCTGATTGCA

AGTATTCTGAATACCCATATTCTGGATAATCCGCAGCATACCCTGACCAATTGTCA

TCTGAGCAATATTCTGCTGCCGGTTAGCACCAAACCGTATCAGGATTTTCATGTTA

TTCCGGAAGAACATGCACATCTGGTGGGTGAATGGATTCATACCACCATGATTAA

GGATCATAAAACCTTTGTGGCCATTTTCTATTTTCAGGAAAAATGGTGGGGCCGCC

TGAGTGCACAGATATATCTGGAAATTGAAGATTATGAGTGGGCAGGTAATGTTCT

GAAAGGCCTGTGCGAACGCGTGGGCCGCCTGGAATTTCTGGGCGAAGAAGTTCCG

CGCGGCGATGCAGCACCGtaa

< SEQ ID NO: 84; PRT; E3Egt2; 2_XM_008078420; Glarea lozoyensis> MPAPLNMPIHLKAGE V S S D VS NKYKR VPFGKEMLKQF S FDPE YRN VNHGS Y GS FPKPI S EFRRH YFDECEKS PDPFIR YDF GS IFDENR A A V AKF VD APFHT V VFVPN ATT GIN V VF RNFQWNENGKDEIFYFNTIYGACGKTVSYTSEYSRGFVQGREITFDYPISDEAFIEQFS S TIQ AS ID AGKNPRIAIFDTIS S LPG VRMPFE ALT A VC AS S G VLS LIDG AHGIGHIPLS LS T LNPDFF V S NLHKWLF VPRGC ALFY VPLRN QHLIRT S LPT S H YFEPKQLS LG APNPFAPT TKS GF VMQFES N GTIDN S P YLT V AE AIRWRRE ACGGEE AIHD Y CLDLS RKG ATLIAS IL NTHILDNPQHTLTNCHLSNILLPVSTKPYQDFHVIPEEHAHLVGEWIHTTMIKDHKTFV AIF YF QEKWW GRLS AQIYLEIED YE W AGN VLKGLCERV GRLEFLGEE VPRGD A AP

< SEQ ID NO: 85; DNA; FlEgt2; 2_XM_008028041; Exserohilum turcica>

ATGACCAGTAATAGCAAATACGGTGTTCCGGATATTAAGACCAAAGATGGTATTG

AATTTGGTAAAGAACTGCAGGAAAAAGAATTTCTGTTTGATAAAGGTTACATCGG

TCTGAATCATGGTAGTTTTGGTACCTATCCGCGCCCGGTGCGTGATCGTCTGCGTG

CATTTCAGGATGCCAGCGAAGCCCAGCCGGATAAATTCATTCTGTATGATTATCCG

CGTTATCTGGATGAAGCCCGTGAAGCCATGGCAAAACTGCTGAATACCCCGAGTA

GCACCCTGGTTTTTGTTCCGAATGCAACCACCGGTGTGAATATTGTTCTGCGTAAT

CTGGTTTTTACCCCGGAAGATCATATTCTGATTTTTAGTAATATCTACGGCGCCTGC

GAACGTACCGTTAGTTATATTACCGAAACCACCCCGGCACAGAGTGTTAAAGTTG

AATATGCCCTGCCGTTTGAAGATGATTGGCTGGTTGAACAGTTTGAAAGCAAAGTT

CGTGATGTTGAAGCAAAAGGCGGTAAAGTGAAAATTGCAATTTTTGATACCGTGG

TGAGCATGCCGGGCATTCGTCTGCCGTTTGAGCGCCTGACCGCAAAAAGCAAAGA

ACTGGGCATTCTGAGTTGCATTGATGGTGCCCATGGCGTTGGCCATGTGGAAATTG

ATCTGGGTACCCTGGACCCTGATTTCTTTGTGAGTAATTGTCATAAATGGCTGCAT

GTGCCGCGTGGTACCGCCATTTTTCATGTTGCCCATCGTGCCCAGCATCTGATTCGT

AGCACCCTGCCGACCAGTCATGGTTTTACCCCGAAAAATGGTAAATTTGTGAGCCC

GTTTAGCAAACCGGTGTATCATAATCGTAGTCAGCAGACCGGTGCCGAACAGAAT

ACCAGCGAACAGCAGACCGCCGGTACCGCCGCAAGTAGCGAAAAACCGGAATTT

GTGGCAAATTTTGAATTTGTTGGCACCATTGATAGTAGCCCGTATCTGTGCGTTCC

GACCGCACTGAAATGGCGTGAAAGCCTGGGCGGCGAAGCAGTGATTCGCAGTTAT

TGTACCACCCTGGCCCAGGCAGCCGGCCAGCATGTGGCTAGTGTTCTGGGTACCCA

TGTGCTGGAAAATCGCACCCGCACCCTGGGCCAGTGCTGTCTGAGTAATGTTCTGC

TGCCGATTAGCCTGGAAAAAGTTCATGCCACCGCACGCCTGGCCGGTATTGATCCG

GATGATGCCGGTCTGAAAGTTCGCGATTGGATGAAAAAACTGAGCAGCGAACAGT

ATAATACCTTTATTATGGTTTACTGGTACGCCGGCAAATGGTGGACCCGCCTGAGT

GGTCAGGTTTATCTGGATATGCGTGATTTTGAATGGGCCGCACATACCCTGAAAGA

AATGTGCGCCCGTGTGGAAAGCGGTGAATGGGCAGGTGTGAAAGGTCGCCTGtaa < SEQ ID NO: 86; PRT; FlEgt2; 2_XM_008028041; Exserohilum turcica>

MTS NS KY G VPDIKTKDGIEF GKELQEKEFLFDKG YIGLNHGS F GT YPRP VRDRLRAF Q DASEAQPDKFILYDYPRYLDEAREAMAKLLNTPSSTLVFVPNATTGVNIVLRNLVFTP EDHILIF S NIY G ACERT V S YITETTP AQS VKVE Y ALPFEDD WL VEQFES KVRD VE AKGG KVKIAIFDT V V S MPGIRLPFERLT AKS KELGILS CIDG AHG V GH VEIDLGTLDPDFFV S N CHKWLH VPRGT AIFH V AHRAQHLIRS TLPTS HGFTPKNGKF V S PFS KP V YHNRS QQTG AEQNT S EQQT AGT A AS S EKPEF V ANFEF V GTIDS S P YLC VPT ALKWRES LGGE A VIRS Y CTTL AQ A AGQH V AS VLGTH VLENRTRTLGQCCLS N VLLPIS LEKVH AT ARL AGIDPDD AGLKVRD WMKKLS S EQ YNTFIM V Y W Y AGKWWTRLS GQ V YLDMRDFEW A AHTLKE MC ARVES GEW AG VKGRL

< SEQ ID NO: 87; DNA; F2Egt2; 2_XM_013170142; Schizosaccharomyces cryophilus>

ATGAGCGATTGTATGCCGTTTGGCCATGCACTGAAACCGTATTATATGCTGGATAA

AAATTACGTGAGCGTGAATAATGGTAGTTATGGCGTGGTGTGTGCCAGTGCATTTC

AGCGTCATCTGCAGCTGCTGGAAGAAAGCGAAAAAACCCAGGATCTGCAGATGAA

ATATCGTCTGCCGAAACTGGCAAATAATACCCTGCTGCAGATTGCCGAACTGCTGG

ATACCACCAGTAGCAATCTGGCATTTTGCTTTAGTGCAACCCAGGCCATTAGTAGT

ATTCTGCTGACCTTTCCGTGGAGTGCAAATGATAAAATTCTGAGTCTGAATGTTGC

CTATCCGACCTGCCAGTTTGCCCTGGATTTTGTTCGCAATCGTTATGATGTGCAGGT

TGATACCCTGGAAGTGGAGTTTATCTATGATCCGAGCGAATTTCTGAGCCGCGTTG

AAAGCTATCTGGTTAAAAATAAGCCGCGCGTTTTTATTTTTGATTTTATTACCAGC

ATGCCGGTTACCCAGCTGCCGTGTAAAGAACTGATTCAGCTGTGCAAAAAATATG

GTGTGATTAGTGTGGTTGATGCAGCACATGGCATTGGTTTTTGCCCGCTGAGCCTG

AGTAGTCTGGACCCTGATTTTCTGTATACCAATGCACATAAATGGCTGAATGCCCC

GAGCGGTACCACCATTCTGTATGTTAGCAAAAAATATCACAACTTCATCGAAGCA

CT GCC GATT AGCT AT GGCT ATC AT ATTC GT A A AC AG A AT AGT CC GCC GGCC GAT AG

TCTGGGTATTCGTTTTCTGAATGCAAGCTTTATGGATCTGCCGAAATTCATTGCCAT

TGATGCCGCCATTGCATTTCGTAAAAGTATTGGCGGCGAACATAAAATTCAGAGTT

ATAATCATGACATCGCCGTGCGTGGCAGTAAAATTATTGCCGAAAGCCTGGGTAC

CAGCTATTTTGCACTGGCCAGCCCGATTGCAATGGTTAATGTTGAAGTTCCGCTGC

GCTGCATTCCGAGTGCCGATTTTCTGGAAGAATTTTGGCAGAGCAAAAATACCTTT

CTGCGCTTTGTGGAATATCAGGGTCGTTATTATACCCGCGTGGGTGGTGCCCCGTT

TCTGGAAGAGAGTGATTTTGTGTATGTGGCCGATGTGCTGAAAGAACTGTGCCAG

AAAtaa

< SEQ ID NO: 88; PRT; F2Egt2; 2_XM_013170142; Schizosaccharomyces cryophilus> MSDCMPFGHALKPYYMLDKNYVSVNNGSYGVVCASAFQRHLQLLEESEKTQDLQM KYRLPKLANNTLLQI AELLDTT S S NLAFCFS AT Q AIS S ILLTFPW S ANDKILS LN V A YPT CQFALDFVRNRYDVQVDTLEVEFIYDPSEFLSRVESYLVKNKPRVFIFDFITSMPVTQL PCKELIQLCKKYGVISVVDAAHGIGFCPLSLSSLDPDFLYTNAHKWLNAPSGTTILYVS KKYHNFIE ALPIS Y G YHIRKQN S PP ADS LGIRFLN AS FMDLPKFI AID A AI AFRKS IGGEH KIQS YNHDIA VRGS KIIAES LGT S YFAL AS PIAM VN VE VPLRCIPS ADFLEEFW QS KNTF LRFVE Y QGRY YTR V GG APFLEES DF V Y V AD VLKELCQK

< SEQ ID NO: 89; DNA; F3Egt2; 2_XM_002482656; Talaromyces stipitatus> ATGAGCACCAGTAATCCGACCTTTGGTGCACCGCTGCTGCCGTATTTTCCGTTTCA

G AGCG ATT AT CT G A AT ATT A AT C AC GGT AGCTTTGGT GGTT AT CC GATT A AGGT GC

GTGATGCCCTGCGTGAATATCAGCGCCAGACCGATGCCAAACCGGATGATTTTATT

CGTTATCGCCTGCCGGGTCTGATTGATAAAAGCCGCGCCGCAGTTGCAGAACTGAT

TAATGCCGATGTGGGCAATGTTGTGCTGATTCCGAATGCCACCACCGGTGTTAATA

CCGTGCTGCGTAATCTGGTGTATAATCCGGGTGACAAAATTGTGTATCTGGGCACC

ACCTATGGCGCATGTGAAAAAGCCGTGATGCATATTGTGGATACCTGTATTCCGGC

CGGTGCCGTTGAAGCAATTAAGGTTGAAGTTGAATATCCGGTTACCAGCAAAGAA

ATTCTGCGCCGCTTTGAAGATGCCATTAGTCAGAAAGGTGTGCGTATTGCCCTGTT

TGATACCGTTAGTAGTCTGCCGGCCCTGCGTCTGCCGTATGAAAATATGATTAGCC

TGTGTAAAAAGTACCATGTGCTGAGCCTGATTGATGGTGCCCATGCAGTTGGCGCC

ATTGAACTGGATATGCAGCGCCTGGACCCTGATTTCTTTATTAGCAATCTGCATAA

ATGGCTGTATACCCCGCGTAGCTGCGCAGTTTTTCATGTGGCAGCCCGTAGCCAGC

ATCTGATTAAGACCAGCCTGCCGACCAGCCATGGCTATCGTCCGGAAGAACGCCC

GGGTCGTCTGCGCGTGAGCAATCCGCTGCCGACCAGTAGTAAAACCGGTTTTGTG

GAACTGTTTGGTTATGTGGGCACCATGGATTATACCCCGTATCTGTGCATTCCGGA

AGCCATTAAGTTTCGTAAAGAAGTGTGTGGCGGCGAACAGAAACTGCTGCAGTAT

ATTACCACCCTGGCCAAACAGGGCGGCAATCTGGTTGCAAATATTCTGGGCACCG

AACTGCTGGGTGACGAAGATCAGCGCCGCAGCCCGATGGTTATGGTGCGCCTGCC

GCTGAAATTCACTGCCGATGAACTGCAGCAGGGTAAACAGCATCTGCTGCTGGAA

GAAATTGAACGTACCATTAGCGAAAAATATCGCACCTTTGTTCCGCTGATCTATCA

TGGCGGTCATGCCTATGGTCGTCTGAGTGGCCAGGTGTATCTGACCCTGGAAGATT

TTGAAAAAGCCGGCCAGATTCTGGCCAAAGCCTGTAAAGAATTTGAACAGAAAAG

CAAACTGtaa

< SEQ ID NO: 90; PRT; F3Egt2; 2_XM_002482656; Talaromyces stipitatus> MSTSNPTFGAPLLPYFPFQSDYLNINHGSFGGYPIKVRDALREYQRQTDAKPDDFIRYR FPGFIDKS R A A V AEFIN AD V GN V VFIPN ATT G VNT VFRNF V YNPGDKIV YFGTT Y G AC EKA VMHIVDTCIPAG A VEAIKVE VEYPVT S KEIFRRFED AIS QKGVRIAFFDT V S SFPAF RLP YENMIS LC KKYH VLS LIDG AH A V G AIELDMQRLDPDFFIS NLHKWL YTPRS C A VF H V A ARS QHLIKT S LPT S HG YRPEERPGRLR V S NPLPT S S KTGF VELF G Y V GTMD YTP YL CIPE AIKFRKE V C GGEQKLLQ YITTL AKQGGNLV ANILGTELLGDEDQRRS PM VM VRL PLKFT ADELQQGKQHLLLEEIERTIS EKYRTF VPLIYHGGH A Y GRLS GQ V YLTLEDFEK AGQIL AKAC KEFEQKS KL

< SEQ ID NO: 91; DNA; F4Egt2; 2_XM_011130091; Arthrobotrys oligospora>

ATGGCCGCTAGTAATCCGCCGAAAACCCCGACCTTTGGCCATAGCCTGCGTCGCCA

GTTTCTGTTTCCGGAAAATTATACCAATCTGAATCATGGCAGCTTTGGTGCAATTC

CGGCCCCGGTTCTGACCCATCGTCAGAAACTGCATATTCTGAGCGAACAGCATCCG

GATAATTTTATGCGCTATCATAGTATTAGCCTGCTGGATGAAAGCCGCGCCGCCGT

TGCCAAAGTGCTGAATGCACCGAGCGAAGAAGTTGTGTTTGTTACCAATGCAACC

ACCGGTGTGAATATTGTTCTGCGCAATCTGGTTTATGAAGAAGGTGACGTGATTCT

GCATTTTGGTACCATCTATGGTGCATGCGGCCGTACCGTTCAGTATATTGCCGATA

CCACCCCGGCAACCTGTATTAGCATTCCGCTGGCATATCCGGTTAGCGATGCAAGT

ATTCTGAGTAGCTTTAATACCACCGTTCAGGAAATTAAGGCCGCAGGTAAAAAAC

CGAAACTGGTTATTTTTGATACCGTGAGCAGCATGCCGGGCATGCGCTTTCCGTGG

GAAAAAATGATTGTGGCCGCAAAAGAAGCCGGCGTTCTGAGCCTGATTGATGGCG CCCATGGTGTTGGTAATATTAAGATTGATCTGGGTGCCAATCAGCCGGATTTCTTT

GTGAGCAATTGCCATAAATGGCTGTATACCCCGCGCCCGGCAGCAGTTCTGTTTGT

TCCGATTCGTAATCAGCCGCTGATTACCACCAGCGTGCCGACCAGTCATTATTATA

TTCCGAAAAGTGCAGCCCAGTATTGGAGCCCGCTGAGTCCGGGTACCAAAAGCAA

TTTTATTCTGCAGTTTGAGTTTAATGGCACCATTGATGCAACCCCGTATCTGTGCGT

GCCGGCAGCCCTGAAATTTCGCCAGGAAATTGGCGGTGAAGATGCCATTATTAAT

TATTGTAACACCCTGGCATTCGAAGGTGGCGAAGCAGTTGCAAAAATTCTGGGTA

CCGAAATTATGGCCCCGGACCCTGCAGCCGTTGATGGTGGTCGCTGCCCGATGGTG

AATATTCGTCTGCCGCTGCTGAGTGTGCCGAAAACCGAAGTTGAACCGGTGTATA

ATACCTTTACCAAAGAAGTTGGTATCCGCGAAAATACCTTTGTGCAGGTTTATGTT

CAT A ATGCCC GTT GGT GGGTGC GT ATT AGT GCCC AGGT GT AT CT GG A A AT G A A AG

ATTTTGTTTGGATCGCCGGCGTGCTGAAAAAAGAATGCGAAAAAATTAACGAGCG

TATTAAGAGTCTGGCCACCATTGCAGCAGCAACCGGCGAAAAAGCAGATGTTGCA

AATGGTGCAGATGTTCATGTTGAAGAAGTTCGCAGCGCCAAAAAAGTGGTGAGCG

GCATGGGTGACCTGAAAGTTAGCGAAGCCGAAGGCGAAACCGTGACCGTTAAAG

GCtaa

< SEQ ID NO: 92; PRT; F4Egt2; 2_XM_011130091; Arthrobotrys oligospora>

MAAS NPPKTPTF GHS LRRQFLFPEN YTNLNHGS F G AIP AP VLTHRQKLHILS EQHPDNF MRYHS IS FFDES R A A V AKVFN APS EE V VF VTN ATT G VNI VFRNFV YEEGD VIFHF GTI Y G ACGRT V Q YIADTTP ATCIS IPF A YP V S D AS IFS S FNTT V QEIKA AGKKPKFVIFDT V S S MPGMRFPWEKMIV A AKE AG VFS FIDG AHG V GNIKIDFG AN QPDFF V S NCHKWFYTPR P A A VLF VPIRN QPLITT S VPT S H Y YIPKS A AQ YW S PLS PGTKS NFILQFEFN GTID ATP YL CVPAALKFRQEIGGEDAIINYCNTLAFEGGEAVAKILGTEIMAPDPAAVDGGRCPMVN IRLPLLS VPKTE VEP V YNTFTKE V GIRENTFV Q V Y VHN ARWW VRIS AQ V YLEMKDF V WIAG VLKKECEKINERIKS L ATIA A AT GEKAD V AN G AD VH VEE VRS AKKV V S GMGDL KVSEAEGETVTVKG

< SEQ ID NO: 93; DNA; F5Egt2; 2_XM_013471838; Rasamsonia emersonii>

ATGAGTACCCCGTTTGGCCGTCCGATGCGCGAACATTTTCTGTTTGAAGAAGGTAA

TATCAACATCAATCACGGCAGTTTTGGCACCTATCCGAAACCGGTTCTGGATGCAC

TGCGTAGTTATCAGCTGCAGGGCGAAGCCAATCCGGATCGCTTTCTGCGCTATGAA

GTGAGCGAACTGATTGATCGTAGTCGCGAACAGCTGGCAAAACTGCTGCATGTTG

TTGATGTTGATGAACTGGTGCTGGTTCAGAATGCAACCACCGGCGTTAATACCGTG

CTGCGTAATCTGACCTATGCCCCGGGCGATAAAATTCTGTATCTGAGCACCGCATA

TGGTGCATGTGAAAAAACCGTTGATTATCTGACCGAAACCACCCCGGCCGAAGCA

GTGCGTGTTGAAGTTGCATATCCGATTAGCGATGATGAACTGGTTGCACGTGTGGA

AAAAGTGCTGAAAGAAAATGCACCGGTTAAAGTTGCAATGTTTGATACCGTGAGT

AGTCTGCCGGGCGTGCGTATTCCGTTTGAACGTCTGGTTGCCGTTTGCCGTGCCGC

AGGTGTTCTGAGCCTGATTGATGGTGCCCATGGTGTTGGCTGCATTCCGCTGGATC

TGGGCAAACTGGATGCCGATTTCTTTGTGAGTAATTGTCATAAATGGCTGTATGTG

CCGCGTGGTTGCGCAGTGCTGCATGTGCCGAAACGTAATCAGGATCTGATTCGTAG

CAGTATGCCGACCAGTCATGGTTATCAGCCGCGTGAACGTCCGGGCAAAAAGAAA

ATTAGTAATCCGCTGCCGCCGAGCACCAAAAGCGGTTTTGTTCGCATGTTTGAGTT

TATTGGTAGCATGGATTATGCCCCGTATCTGTGCGTGCCGGCCGCCTTAAAATTTC

GTCAGGAAGTTTGCGGTGGTGAAGAAGCAATTATGAGCTATTGTACCCAGGTTGC

ACGCGATGGTAGCCGTCGTGTGGCCGAAATTCTGGGTACCGAAGTTATGCGTCAT GATCAGCCGTGCCCGGTTGTTAATGTGCGCCTGCCGATTGATCCGCCGGCCGGTGA

CGTTACCGCCGCTGCAGCACAGGCACGTATTGGTGCCGTGAATGCCTTTGTTGAAA

AAATGATGCTGAGCGAATATAAAACCTTTGTTCCGGCCTTTTTCCATAATGGCCGT

TTTTGGGTTCGTCTGAGCGGCCAGATATATCTGACCGTGGATGATTTTGAAGAAGT

TGGCCGTCAGCTGCGCGATATTTGTAGCCGTGTGGGTCGTACCAGTCATCTGACCG

A ACT GG A AG AT A A Ataa

< SEQ ID NO: 94; PRT; F5Egt2; 2_XM_013471838; Rasamsonia emersonii> MSTPFGRPMREHFLFEEGNININHGSFGTYPKPVLDALRSYQLQGEANPDRFLRYEVSE FIDRSREQFAKFFHVVDVDEFVFVQNATTGVNTVFRNFTY APGDKIFYFSTAY GACE KT VD YFTETTP AE A VR VE V A YPIS DDEF V AR VEKVFKEN AP VK V AMFDT V S S FPG VRI PFERLVAVCRAAGVLSLIDGAHGVGCIPLDLGKLDADFFVSNCHKWLYVPRGCAVLH VPKRN QDLIRS S MPTSHG Y QPRERPGKKKIS NPLPPS TKS GF VRMFEFIGS MD Y AP YLC VPAALKFRQEVCGGEEAIMSYCTQVARDGSRRVAEILGTEVMRHDQPCPVVNVRLPI DPPAGDVTAAAAQARIGAVNAFVEKMMLSEYKTFVPAFFHNGRFWVRLSGQIYLTV DDFEEVGRQLRDICSRVGRTSHLTELEDK

< SEQ ID NO: 95; DNA; yjeH; methionine transporter; Escherichia coli>

ATGAGTGGACTCAAACAAGAACTGGGGCTGGCCCAGGGCATTGGCCTGCTATCGA

CGTCATTATTAGGCACTGGCGTGTTTGCCGTTCCTGCGTTAGCTGCGCTGGTAGCG

GGCAATAACAGCCTGTGGGCGTGGCCCGTTTTGATTATCTTAGTGTTCCCGATTGC

GATTGTGTTTGCGATTCTGGGTCGCCACTATCCCAGCGCAGGCGGCGTCGCGCACT

TCGTCGGTATGGCGTTTGGTTCGCGGCTTGAGCGAGTCACCGGCTGGCTGTTTTTA

TCGGTCATTCCCGTGGGTTTGCCTGCCGCACTACAAATTGCCGCCGGGTTCGGCCA

GGCGATGTTTGGCTGGCATAGCTGGCAACTGTTGTTGGCAGAACTCGGTACGCTGG

CGCTGGTGTGGTATATCGGTACTCGCGGTGCCAGTTCCAGTGCTAATCTACAAACC

GTTATTGCCGGACTTATCGTCGCGCTGATTGTCGCTATCTGGTGGGCGGGCGATAT

CAAACCTGCGAATATCCCCTTTCCGGCACCTGGTAATATCGAACTTACCGGGTTAT

TTGCTGCGTTATCAGTGATGTTCTGGTGTTTTGTCGGTCTGGAGGCATTTGCCCATC

TCGCCTCGGAATTTAAAAATCCAGAGCGTGATTTTCCTCGTGCTTTGATGATTGGT

CTGCTGCTGGCAGGATTAGTCTACTGGGGCTGTACGGTAGTCGTCTTACACTTCGA

CGCCTATGGTGAAAAAATGGCGGCGGCAGCATCGCTTCCAAAAATTGTAGTGCAG

TTGTTCGGTGTAGGAGCGTTATGGATTGCCTGCGTGATTGGCTATCTGGCCTGCTTT

GCCAGTCTCAACATTTATATACAGAGCTTCGCCCGCCTGGTCTGGTCGCAGGCGCA

ACATAATCCTGACCACTACCTGGCACGCCTCTCTTCTCGCCATATCCCGAATAATG

CCCTCAATGCGGTGCTCGGCTGCTGTGTGGTGAGCACTTTGGTGATTCATGCTTTA

GAGATCAATCTGGACGCTCTTATTATTTATGCCAATGGCATCTTTATTATGATTTAT

CTGTTATGCATGCTGGCAGGCTGTAAATTATTGCAAGGACGTTATCGACTACTGGC

GGTGGTTGGCGGGCTGTTATGCGTTCTGTTACTGGCAATGGTCGGCTGGAAAAGTC

TCTATGCGCTGATCATGCTGGCGGGGTTATGGCTGTTGCTGCCAAAACGAAAAAC

GCCGGAAAATGGC AT AACC AC AT AA

< SEQ ID NO: 96; PRT; yjeH; methionine transporter; Escherichia coli>

MS GLKQELGLAQGIGLLS T S LLGT G VFA VP ALA AL V AGNN S LW A WP VLIIL VFPI AIVF AILGRH YPS AGG V AHF V GM AFGS RLERVT GWLFLS VIP V GLP A ALQIA AGF GQ AMFG WHSWQLLLAELGTLALVWYIGTRGASSSANLQTVIAGLIVALIVAIWWAGDIKPANIP FPAPGNIELTGLFAALSVMFWCFVGLEAFAHLASEFKNPERDFPRALMIGLLLAGLVY WGCTVVVLHFDAYGEKMAAAASLPKIVVQLFGVGALWIACVIGYLACFASLNIYIQSF ARL VW S Q AQHNPDH YL ARLS S RHIPNN ALN A VLGCC V V S TL VIH ALEINLD ALII Y AN GIFIMIYLLCMLAGCKLLQGRYRLLAVVGGLLCVLLLAMVGWKSLYALIMLAGLWLL LPKRKTPEN GITT

< SEQ ID NO: 97; DNA; tnaA; Tryptophanase; Escherichia coli>

ATGGAAAACTTTAAACATCTCCCTGAACCGTTCCGCATTCGTGTTATTGAGCCAGT

AAAACGTACCACTCGCGCTTATCGTGAAGAGGCAATTATTAAATCCGGTATGAAC

CCGTTCCTGCTGGATAGCGAAGATGTTTTTATCGATTTACTGACCGACAGCGGCAC

CGGGGCGGTGACGCAGAGCATGCAGGCTGCGATGATGCGCGGCGACGAAGCCTA

CAGCGGCAGTCGTAGCTACTATGCGTTAGCCGAGTCAGTGAAAAATATCTTTGGTT

ATCAATACACCATTCCGACTCACCAGGGCCGTGGCGCAGAGCAAATCTATATTCC

GGTACTGATTAAAAAACGCGAGCAGGAAAAAGGCCTGGATCGCAGCAAAATGGT

GGCGTTCTCTAACTATTTCTTTGATACCACGCAGGGCCATAGCCAGATCAACGGCT

GTACCGTGCGTAACGTCTATATCAAAGAAGCCTTCGATACGGGCGTGCGTTACGA

CTTTAAAGGCAACTTTGACCTTGAGGGATTAGAACGCGGTATTGAAGAAGTTGGT

CCGAATAACGTGCCGTATATCGTTGCAACCATCACCAGTAACTCTGCAGGTGGTCA

GCCGGTTTACTGGCAAACTTAAAAGCGATGTACAGCATCGCGAAGAAATACGATA

TTCCGGTGGTAATGGACTCCGCGCGCTTTGCTGAAAACGCCTATTTCATCAAGCAG

CGTGAAGCAGAATACAAAGACTGGACCATCGAGCAGATCACCCGCGAAACCTACA

AATATGCCGATATGCTGGCGATGTCCGCCAAGAAAGATGCGATGGTGCCGATGGG

CGGCCTGCTGTGCATGAAAGACGACAGCTTCTTTGATGTGTACACCGAGTGCAGA

ACCCTTTGCGTGGTGCAGGAAGGCTTCCCGACATATGGCGGCCTGGAAGGCGGCG

CGATGGAGCGTCTGGCGGTAGGTCTGTATGACGGCATGAATCTCGACTGGCTGGC

TTATCGTATCGCGCAGGTACAGTATCTGGTCGATGGTCTGGAAGAGATTGGCGTTG

TCTGCCAGCAGGCGGGCGGTCACGCGGCATTCGTTGATGCCGGTAAACTGTTGCC

GCATATCCCGGCAGACCAGTTCCCGGCACAGGCGCTGGCCTGCGAGCTGTATAAA

GTCGCCGGTATCCGTCGGTAGAAATTGGCTCTTTCCTGTTAGGCCGCGATCCGAAA

ACCGGTAAACAACTGCCATGCCCGGCTGAACTGCTGCGTTTAACCATTCCGCGCGC

AACATATACTCAAACACATATGGACTTCATTATTGAAGCCTTTAAACATGTGAAAG

AGAACGCGGCGAAT ATTAAAGGATT AACCTTT ACGT ACGAACCGAAAGT ATTGCG

TC ACTTC ACCGC AAAACTT AAAGAAGTTT AA

< SEQ ID NO: 98; PRT; TnaA; Tryptophanase; Escherichia coli>

MENFKHLPEPFRIRVIEPVKRTTRAYREEAIIKSGMNPFLLDSEDVFIDLLTDSGTG AVT QS MQ A AMMRGDE A Y S GS RS Y Y AL AES VKNIFG Y Q YTIPTHQGRG AEQIYIP VLIKKRE QEKGLDRSKMVAFSNYFFDTTQGHSQINGCTVRNVYIKEAFDTGVRYDFKGNFDLEG LERGIEE V GPNN VP YI V ATIT S NS AGGQP V S L ANLKAM Y S IAKKYDIP V VMDS ARF AE NAYFIKQREAEYKDWTIEQITRETYKYADMLAMSAKKDAMVPMGGLLCMKDDSFFD VYTECRTLC VV QEGFPT Y GGLEGGAMERLA V GLYDGMNLDWLA YRIAQ V QYLVDG LEEIGVVCQQAGGHAAFVDAGKLLPHIPADQFPAQALACELYKVAGIRAVEIGSFLLG RDPKTGKQLPCPAELLRLTIPRATYTQTHMDFIIEAFKHVKENAANIKGLTFTYEPKVL RHFTAKLKEV

< SEQ ID NO: 99; DNA; sdaA; L-serine dehydratase; Escherichia coli>

GTGATTAGTCTATTCGACATGTTTAAGGTGGGGATTGGTCCCTCATCTTCCCATAC

CGTAGGGCCTATGAAGGCAGGTAAACAGTTCGTCGATGATCTGGTCGAAAAAGGC TTACTGGATAGCGTTACTCGCGTTGCCGTGGACGTTTATGGTTCACTGTCGCTGAC

GGGTAAAGGCCACCACACCGATATCGCCATTATTATGGGTCTTGCAGGTAACGAA

CCTGCCACCGTGGATATCGACAGTATTCCCGGTTTTATTCGCGACGTAGAAGAGCG

CGAACGTCTGCTGCTGGCACAGGGACGGCATGAAGTGGATTTCCCGCGCGACAAC

GGG ATGC GTTTT CAT A AC GGC A ACCT GCC GCT GC AT G A A A ACGGT AT GCA A AT CC

ACGCCTATAACGGCGATGAAGTCGTCTACAGCAAAACTTATTATTCCATCGGCGGC

GGTTTTATCGTCGATGAAGAACACTTTGGTCAGGATGCTGCCAACGAAGTAAGCG

TGCCGTATCCGTTCAAATCTGCCACCGAACTGCTCGCGTACTGTAATGAAACCGGC

TATTCGCTGTCTGGTCTCGCTATGCAGAACGAACTGGCGCTGCACAGCAAGAAAG

AGATCGACGAGTATTTCGCGCATGTCTGGCAAACCATGCAGGCATGTATCGATCG

CGGGATGAACACCGAAGGTGTACTGCCAGGCCCGCTGCGCGTGCCACGTCGTGCG

TCTGCCCTGCGCCGGATGCTGGTTTCCAGCGATAAACTGTCTAACGATCCGATGAA

TGTCATTGACTGGGTAAACATGTTTGCGCTGGCAGTTAACGAAGAAAACGCCGCC

GGTGGTCGTGTGGTAACTGCGCCAACCAACGGTGCCTGCGGTATCGTTCCGGCAGT

GCTGGCTTACTATGACCACTTTATTGAATCGGTCAGCCCGGACATCTATACCCGTT

ACTTTATGGCAGCGGGCGCGATTGGTGCATTGTATAAAATGAACGCCTCTATTTCC

GGTGCGGAAGTTGGTTGCCAGGGCGAAGTGGGTGTTGCCTGTTCAATGGCTGCTG

CGGGTCTTGCAGAACTGCTGGGCGGTAGCCCGGAACAGGTTTGCGTGGCGGCGGA

AATTGGCATGGAACACAACCTTGGTTTAACCTGCGACCCGGTTGCAGGGCAGGTT

CAGGTGCCGTGCATTGAGCGTAATGCCATTGCCTCTGTGAAGGCGATTAACGCCGC

GCGGATGGCTCTGCGCCGCACCAGTGCACCGCGCGTCTCGCTGGATAAGGTCATC

GAAACGATGTACGAAACCGGTAAGGACATGAACGCCAAATACCGCGAAACCTCA

CGCGGTGGTCTGGCAATCAAAGTCCAGTGTGACTAA

< SEQ ID NO: 100; PRT; SdaA; L-serine dehydratase; Escherichia coli>

MIS LFDMFKV GIGPS S S HT V GPMKAGKQF VDDL VEKGLLDS VTR V A VD V Y GSLS LTG KGHHTDIAIIMGFAGNEPATVDIDSIPGFIRDVEERERFFFAQGRHEVDFPRDNGMRFH N GNLPLHEN GMQIH A YN GDE V V Y S KT Y Y S IGGGFIVDEEHFGQD A ANE V S VP YPFKS ATELLA Y CNETG YSLS GLAMQNELALHS KKEIDE YFAHVW QTMQ ACIDRGMNTEGV LPGPLRVPRRAS ALRRML V S S DKLS NDPMN VID W VNMF AL A VNEEN A AGGR V VT AP TN G AC GIVP A VL A Y YDHFIES V S PDIYTR YFM A AG AIG ALYKMN AS IS G AE V GC QGE V G V ACS M A A AGLAELLGGS PEQ V C V A AEIGMEHNLGLTCDP V AGQ V Q VPCIERN AIAS VKAIN A ARM ALRRT S APRV S LDKVIETM YETGKDMN AKYRET S RGGL AIK V QCD

< SEQ ID NO: 101; DNA; serA; D-3-phosphoglycerate dehydrogenase; Escherichia coli>

ATGGCAAAGGTATCGCTGGAGAAAGACAAGATTAAGTTTCTGCTGGTAGAAGGCG

TGCACCAAAAGGCGCTGGAAAGCCTTCGTGCAGCTGGTTACACCAACATCGAATT

TCACAAAGGCGCGCTGGATGATGAACAATTAAAAGAATCCATCCGCGATGCCCAC

TTCATCGGCCTGCGATCCCGTACCCATCTGACTGAAGACGTGATCAACGCCGCAGA

AAAACTGGTCGCTATTGGCTGTTTCTGTATCGGAACAAACCAGGTTGATCTGGATG

CGGCGGCAAAGCGCGGGATCCCGGTATTTAACGCACCGTTCTCAAATACGCGCTC

TGTTGCGGAGCTGGTGATTGGCGAACTGCTGCTGCTATTGCGCGGCGTGCCGGAA

GCCAATGCTAAAGCGCACCGTGGCGTGTGGAACAAACTGGCGGCGGGTTCTTTTG

AAGCGCGCGGCAAAAAGCTGGGTATCATCGGCTACGGTCATATTGGTACGCAATT

GGGCATTCTGGCTGAATCGCTGGGAATGTATGTTTACTTTTATGATATTGAAAATA

AACTGCCGCTGGGCAACGCCACTCAGGTACAGCATCTTTCTGACCTGCTGAATATG

AGCGATGTGGTGAGTCTGCATGTACCAGAGAATCCGTCCACCAAAAATATGATGG GCGCGAAAGAAATTTCACTAATGAAGCCCGGCTCGCTGCTGATTAATGCTTCGCGC

GGTACTGTGGTGGATATTCCGGCGCTGTGTGATGCGCTGGCGAGCAAACATCTGG

CGGGGGCGGCAATCGACGTATTCCCGACGGAACCGGCGACCAATAGCGATCCATT

TACCTCTCCGCTGTGTGAATTCGACAACGTCCTTCTGACGCCACACATTGGCGGTT

CGACTCAGGAAGCGCAGGAGAATATCGGCCTGGAAGTTGCGGGTAAATTGATCAA

GTATTCTGACAATGGCTCAACGCTCTCTGCGGTGAACTTCCCGGAAGTCTCGCTGC

CACTGCACGGTGGGCGTCGTCTGATGCACATCCACGAAAACCGTCCGGGCGTGCT

AACTGCGCTGAACAAAATCTTCGCCGAGCAGGGCGTCAACATCGCCGCGCAATAT

CTGCAAACTTCCGCCCAGATGGGTTATGTGGTTATTGATATTGAAGCCGACGAAGA

CGTTGCCGAAAAAGCGCTGCAGGCAATGAAAGCTATTCCGGGTACCATTCGCGCC

CGTCTGCTGTACTAA

< SEQ ID NO: 102; PRT; SerA; D-3-phosphoglycerate dehydrogenase; Escherichia coli> MAKVSLEKDKIKFLLVEGVHQKALESLRAAGYTNIEFHKGALDDEQLKESIRDAHFIG FRS RTHFTED VIN A AEKFV AIGCFCIGTN Q VDFD A A AKRGIP VFN APF S NTRS V AEF VI GELLLLLRG VPE AN AKAHRG VWNKL A AGS FE ARGKKLGIIG Y GHIGT QLGILAES LG M YV YF YDIENKLPLGN AT Q V QHLS DLLNMS D V V S LH VPENPS TKNMMG AKEIS LMK PGS LLIN AS RGT V VDIP ALCD AL AS KHLAG A AID VFPTEP ATN S DPFT S PLCEFDN VLLT PHIGGS T QE AQENIGLE V AGKLIKY S DNGS TLS A VNFPE V S LPLHGGRRLMHIHENRPG VLTALNKIFAEQGVNIAAQYLQTSAQMGYVVIDIEADEDVAEKALQAMKAIPGTIRAR LLY

< SEQ ID NO: 103; DNA; serB; Phosphoserine phosphatase; Escherichia coli>

ATGCCTAACATTACCTGGTGCGACCTGCCTGAAGATGTCTCTTTATGGCCGGGTCT

GCCTCTTTCATTAAGTGGTGATGAAGTGATGCCACTGGATTACCACGCAGGTCGTA

GCGGCTGGCTGCTGTATGGTCGTGGGCTGGATAAACAACGTCTGACCCAATACCA

GAGCAAACTGGGTGCGGCGATGGTGATTGTTGCCGCCTGGTGCGTGGAAGATTAT

CAGGTGATTCGTCTGGCAGGTTCACTCACCGCACGGGCTACACGCCTGGCCCACG

AAGCGCAGCTGGATGTCGCCCCGCTGGGGAAAATCCCGCACCTGCGCACGCCGGG

TTTGCTGGTGATGGATATGGACTCCACCGCCATCCAGATTGAATGTATTGATGAAA

TTGCCAAACTGGCCGGAACGGGCGAGATGGTGGCGGAAGTAACCGAACGGGCGA

TGCGCGGCGAACTCGATTTTACCGCCAGCCTGCGCAGCCGTGTGGCGACGCTGAA

AGGCGCTGACGCCAATATTCTGCAACAGGTGCGTGAAAATCTGCCGCTGATGCCA

GGCTTAACGCAACTGGTGCTCAAGCTGGAAACGCTGGGCTGGAAAGTGGCGATTG

CCTCCGGCGGCTTTACTTTCTTTGCTGAATACCTGCGCGACAAGCTGCGCCTGACC

GCC GTGGT AGCC A AT G A ACT GG AG AT C ATGG AC GGT A A ATTT ACC GGC A AT GTG A

TCGGCGACATCGTAGACGCGCAGTACAAAGCGAAAACTCTGACTCGCCTCGCGCA

GGAGTATGAAATCCCGCTGGCGCAGACCGTGGCGATTGGCGATGGAGCCAATGAC

CTGCCGATGATCAAAGCGGCAGGGCTGGGGATTGCCTACCATGCCAAGCCAAAAG

TGAATGAAAAGGCGGAAGTCACCATCCGTCACGCTGACCTGATGGGGGTATTCTG

CATCCTCTCAGGCAGCCTGAATCAGAAGTAA

< SEQ ID NO: 104; PRT; SerB; Phosphoserine phosphatase; Escherichia coli>

MPNIT WCDLPED V S LWPGLPLS LS GDE VMPLD YH AGRS GWLL Y GRGLDKQRLTQ Y Q S KLG A AM VIV A A WC VED Y Q VIRL AGS LT ARATRL AHE AQLD V APLGKIPHLRTPGLL VMDMDS T AIQIECIDEI AKLAGT GEM V AE VTER AMRGELDFT AS LRS R V ATLKG AD A NILQQ VRENLPLMPGLT QLVLKLETLGWKV AIAS GGFTFFAE YLRDKLRLT A V V ANEL EIMDGKFTGNVIGDIVDAQYKAKTLTRLAQEYEIPLAQTVAIGDGANDLPMIKAAGLG I A YH AKPKVNEKAE VTIRH ADLMG VFCILS GS LN QK

< SEQ ID NO: 105; DNA; serC; Phosphoserine phosphatase; Escherichia coli>

ATGGCTCAAATCTTCAATTTTAGTTCTGGTCCGGCAATGCTACCGGCAGAGGTGCT

TAAACAGGCTCAACAGGAACTGCGCGACTGGAACGGTCTTGGTACGTCGGTGATG

GAAGTGAGTCACCGTGGCAAAGAGTTCATTCAGGTTGCAGAGGAAGCCGAGAAG

GATTTTCGCGATCTTCTTAATGTCCCCTCCAACTACAAGGTATTATTCTGCCATGGC

GGTGGTCGCGGTCAGTTTGCTGCGGTACCGCTGAATATTCTCGGTGATAAAACCAC

CGCAGATTATGTTGATGCCGGTTACTGGGCGGCAAGTGCCATTAAAGAAGCGAAA

AAATACTGCACGCCTAATGTCTTTGACGCCAAAGTGACTGTTGATGGTCTGCGCGC

GGTT AAGCC AATGCGTGAATGGC AACTCTCTGAT AATGCTGCTT AT ATGC ATT ATT

GCCCGAATGAAACCATCGATGGTATCGCCATCGACGAAACGCCAGACTTCGGCGC

AGATGTGGTGGTCGCCGCTGACTTCTCTTCAACCATTCTTTCCCGTCCGATTGACGT

CAGCCGTTATGGTGTAATTTACGCTGGCGCGCAGAAAAATATCGGCCCGGCTGGC

CTGACAATCGTCATCGTTCGTGAAGATTTGCTGGGCAAAGCGAATATCGCGTGTCC

GTCGATTCTGGATTATTCCATCCTCAACGATACGGCTCCATGTTTAACACGCCGCC

GACATTTGCCTGGTATCTATCTGGTCTGGTCTTTAAATGGCTGAAAGCGAACGGCG

GTGT AGCT G A A AT GG AT A A A AT C A AT C AGC A A A A AGC AG A ACTGCT AT AT GGGGT

GATTGATAACAGCGATTTCTACCGCAATGACGTGGCGAAAGCTAACCGTTCGCGG

ATGAACGTGCCGTTCCAGTTGGCGGACAGTGCGCTTGACAAATTGTTCCTTGAAGA

GTCTTTTGCTGCTGGCCTTCATGCACTGAAAGGTCACCGTGTGGTCGGCGGAATGC

GCGCTTCTATTTATAACGCCATGCCGCTGGAAGGCGTTAAAGCGCTGACAGACTTC

ATGGTTGAGTTCGAACGCCGTCACGGTTAA

< SEQ ID NO: 106; PRT; SerC; Phosphoserine phosphatase;Escherichia coli> MAQIFNFSSGPAMLPAEVLKQAQQELRDWNGLGTSVMEVSHRGKEFIQVAEEAEKDF RDLLNVPSNYKVLFCHGGGRGQFAAVPLNILGDKTTADYVDAGYWAASAIKEAKKY CTPNVFDAKVTVDGLRAVKPMREWQLSDNAAYMHYCPNETIDGIAIDETPDFGADVV V A ADF S S TILS RPID V S R Y G VIY AG AQKNIGP AGLTIVIVREDLLGK ANIACPS ILD Y S IL NDN GSMFNTPPTFAWYLS GLVFKWLKANGGVAEMDKIN QQKAELLY GVIDN SDFYR ND V AKANRS RMN VPFQL ADS ALDKLFLEES FA AGLH ALKGHR V V GGMRAS I YN AMP LEGVKALTDFMVEFERRHG

< SEQ ID NO: 107; DNA; cysM; Cysteine synthase B; Escherichia coli>

GTGAGTACATTAGAACAAACAATAGGCAATACGCCTCTGGTGAAGTTGCAGCGAA

TGGGGCCGGATAACGGCAGTGAAGTGTGGTTAAAACTGGAAGGCAATAACCCGGC

AGGTTCGGTGAAAGATCGTGCGGCACTTTCGATGATCGTCGAGGCGGAAAAGCGC

GGGGAAATTAAACCGGGTGATGTCTTAATCGAAGCCACCAGTGGTAACACCGGCA

TTGCGCTGGCAATGATTGCCGCGCTGAAAGGCTATCGCATGAAATTGCTGATGCCC

GACAACATGAGCCAGGAACGCCGTGCGGCGATGCGTGCTTATGGTGCGGAACTGA

TTCTTGTCACCAAAGAGCAGGGCATGGAAGGTGCGCGCGATCTGGCGCTGGAGAT

GGCGAATCGTGGCGAAGGAAAGCTGCTCGATCAGTTCAATAATCCCGATAACCCT

TATGCGCATTACACCACCACTGGGCCGGAAATCTGGCAGCAAACCGGCGGGCGCA

TCACTCATTTTGTCTCCAGCATGGGGACGACCGGCACTATCACCGGCGTCTCACGC

TTTATGCGCGAACAATCCAAACCGGTGACCATTGTCGGCCTGCAACCGGAAGAGG

GCAGCAGCATTCCCGGCATTCGCCGCTGGCCTACGGAATATCTGCCGGGGATTTTC AACGCTTCTCTGGTGGATGAGGTGCTGGATATTCATCAGCGCGATGCGGAAAACA

CCATGCGCGAACTGGCGGTGCGGGAAGGAATATTCTGTGGCGTCAGCTCCGGCGG

CGCGGTTGCCGGAGCACTGCGGGTGGCAAAAGCTAACCCTGACGCGGTGGTGGTG

GCGATCATCTGCGATCGTGGCGATCGCTACCTTTCTACCGGGGTGTTTGGGGAAGA

GCATTTTAGCCAGGGGGCGGGGATTTAA

< SEQ ID NO: 108; PRT; CysM; Cysteine synthase B; Escherichia coli> MSTLEQTIGNTPLVKLQRMGPDNGSEVWLKLEGNNPAGSVKDRAALSMIVEAEKRGE IKPGD VLIE AT S GNTGIALAMIAALKGYRMKLLMPDNMS QERRAAMRA Y GAELILVT KEQGMEGARDLALEM ANRGEGKLLDQFNNPDNPY AHYTTTGPEIW QQTGGRITHFV S S MGTTGTITG V S RFMREQS KP VTIV GLQPEEGS S IPGIRRWPTE YLPGIFN AS LVDE VL DIHQRD AENTMRELA VREGIFCGV S S GGA V AGALRVAKANPD A V VVAIICDRGDRYL STGVFGEEHFSQGAGI

< SEQ ID NO: 109; DNA; nrdH; Glutaredoxin-like protein; Escherichia coli> ATGCGCATTACTATTTACACTCGTAACGATTGCGTTCAGTGCCACGCCACCAAACG GGCGATGGAAAACCGGGGCTTTGATTTTGAAATGATTAATGTCGATCGCGTTCCTG AAGCGGCAGAAGCGTTGCGTGCTCAGGGCTTTCGTCAGTTGCCGGTAGTGATTGCT GGCGATCTTAGCTGGTCTGGTTTCCGTCCGGACATGATTAACCGTCTGCATCCAGC GCCACACGCGGCCAGTGCATGA

< SEQ ID NO: 110; PRT; NrdH; Glutaredoxin-like protein; Escherichia coli>

MSQLVYFS S S SENTQRFIERLGLPA VRIPLNERERIQVDEPYILIVPS Y GGGGTAGA VPR Q VIRFLNDEHNRALLRG VI AS GNRNF GE A Y GR AGD VIARKCG VP WLYRFELMGT QS D IENVRKGVTEFW QRQPQNA

< SEQ ID NO: 111; DNA; cysE; Serine acetyltransferase; Escherichia coli>

ATGTCGTGTGAAGAACTGGAAATTGTCTGGAACAATATTAAAGCCGAAGCCAGAA

CGCTGGCGGACTGTGAGCCAATGCTGGCCAGTTTTTACCACGCGACGCTACTCAAG

CACGAAAACCTTGGCAGTGCACTGAGCTACATGCTGGCGAACAAGCTGTCATCGC

CAATTATGCCTGCTATTGCTATCCGTGAAGTGGTGGAAGAAGCCTACGCCGCTGAC

CCGGAAATGATCGCCTCTGCGGCCTGTGATATTCAGGCGGTGCGTACCCGCGACCC

GGCAGTCGATAAATACTCAACCCCGTTGTTATACCTGAAGGGTTTTCATGCCTTGC

AGGCCTATCGCATCGGTCACTGGTTGTGGAATCAGGGGCGTCGCGCACTGGCAAT

CTTTCTGCAAAACCAGGTTTCTGTGACGTTCCAGGTCGATATTCACCCGGCAGCAA

AAATTGGTCGCGGTATCATGCTTGACCACGCGACAGGCATCGTCGTTGGTGAAAC

GGCGGTGATTGAAAACGACGTATCGATTCTGCAATCTGTGACGCTTGGCGGTACG

GGTAAATCTGGTGGTGACCGTCACCCGAAAATTCGTGAAGGTGTGATGATTGGCG

CGGGCGCGAAAATCCTCGGCAATATTGAAGTTGGGCGCGGCGCGAAGATTGGCGC

AGGTTCCGTGGTGCTGCAACCGGTGCCGCCGCATACCACCGCCGCTGGCGTTCCGG

CTCGTATTGTCGGTAAACCAGACAGCGATAAGCCATCAATGGATATGGACCAGCA

TTTCAACGGTATTAACCATACATTTGAGTATGGGGATGGGATCTAA

< SEQ ID NO: 112; PRT; CysE; Serine acetyltransferase; Escherichia coli> MSCEELEIVWNNIKAEARTLADCEPMLASFYHATLLKHENLGSALSYMLANKLSSPIM PAIAIREVVEEAY AADPEMIAS AACDIQAVRTRDPAVDKYSTPLLYLKGFHALQAYRI GHWLWN QGRRALAIFLQN Q VS VTFQVDIHPAAKIGRGIMLDHATGIVV GET AVIEND VSIFQSVTFGGTGKSGGDRHPKIREGVMIGAGAKIFGNIEVGRGAKIGAGSVVFQPVPP

HTT AAGVPARIV GKPDSDKPSMDMDQHFN GINHTFE Y GDGI

< SEQ ID NO: 113; DNA; ydeE; EamA domain-containing protein Escherichia coli>

ATGTCGCGAAAAGATGGGGTGTTGGCGCTACTGGTAGTGGTCGTATGGGGGCTAA

ATTTTGTGGTCATCAAAGTGGGGCTTCATAACATGCCACCGCTGATGCTGGCCGGT

TTGCGCTTTATGCTGGTCGCTTTTCCGGCTATCTTTTTTGTCGCACGACCGAAAGTA

CCACTGAATTTGCTGCTGGGGTATGGATTAACCATCAGTTTTGCGCAGTTTGCTTTT

CTTTTTTGTGCCATTAACTTCGGTATGCCTGCTGGACTGGCTTCGCTGGTGTTAC AG

GCACAGGCGTTTTTTACTATCATGCTTGGCGCGTTTACTTTCGGGGAGCGACTGCA

TGGCAAACAATTGGCGGGGATCGCCTTAGCGATTTTTGGCGTACTGGTGTTAATCG

AAGATAGTCTGAACGGTCAGCATGTGGCGATGCTCGGCTTTATGTTGACCCTGGCG

GCAGCATTTAGTTGGGCGTGTGGCAACATCTTCAATAAAAAGATCATGTCGCACTC

AACGCGTCCGGCGGTGATGTCGCTGGTAATCTGGAGCGCTTTAATCCCAATCATTC

CCTTCTTTGTTGCCTCGCTGATTCTCGATGGTTCCGCAACCATGATTCACAGTCTGG

TTACTATCGATATGACCACCATCTTGTCTCTGATGTATCTGGCGTTTGTGGCGACA

ATTGTTGGTTATGGGATCTGGGGGACGTTACTGGGACGCTATGAAACCTGGCGGG

TTGCACCGTTATCGTTACTGGTGCCCGTAGTAGGACTGGCAAGTGCGGCACTATTG

TTGGATGAACGCTTAACGGGTCTGCAATTTTTAGGTGCGGTGCTCATTATGACCGG

GCTGTATATCAATGTATTTGGCTTGCGGTGGCGTAAAGCGGTAAAGGTGGGAAGT

TAA

< SEQ ID NO: 114; PRT; YdeE; EamA domain-containing protein; Escherichia coli>

MSRKDGVLALLVVVVWGLNFVVIKVGLHNMPPLMLAGLRFMLVAFPAIFFVARPKV

PFNFFFGYGFTISFAQFAFFFCAINFGMPAGFASFVFQAQAFFTIMFGAFTFGERFH GK

QFAGIAF AIFG VF VFIEDS FN GQH V AMFGFMFTFA A AFS W AC GNIFNKKIMS HS TRP A

VMS F VIW S AFIPIIPFF V AS FIFDGS ATMIHS F VTIDMTTIFS EM YFAF V ATIV GY GIW GT

FFGRYETWRVAPFSFFVPVVGFASAAFFFDERFTGFQFFGAVFIMTGFYINVFGFRW

RKAVKVGS

< SEQ ID NO: 115; DNA; yhaM; UPF0597 protein YhaM; Escherichia coli>

ATGTTTGATTCGACTTTAAATCCGTTATGGCAGCGTTACATCCTCGCCGTTCAGGA

GGAAGTAAAACCGGCGCTGGGATGTACTGAACCGATTTCACTGGCGCTGGCGGCG

GCGGTTGCTGCGGCAGAACTGGAAGGTCCGGTTGAACGTGTAGAAGCCTGGGTTT

CGCCAAATCTGATGAAGAACGGTCTGGGCGTCACCGTTCCCGGCACGGGAATGGT

GGGGCTGCCGATTGCGGCGGCGCTGGGGGCGTTAGGTGGAAATGCCAACGCCGGG

CTGGAAGTGCTGAAAGACGCAACAGCGCAGGCAATTGCCGATGCCAAAGCACTGC

TGGCGGCGGGGAAAGTCTCCGTTAAGATCCAGGAACCTTGCGATGAAATCCTCTT

CTCACGCGCCAAAGTCTGGAACGGTGAGAAGTGGGCGTGTGTCACCATCGTCGGC

GGGCATACCAACATTGTGCATATCGAGACGCACGATGGTGTGGTGTTTACCCAGC

AGGCGTGTGTGGCAGAGGGCGAGCAAGAGTCTCCGCTGACGGTGCTTTCCAGAAC

GACGCTGGCTGAGATCCTGAAGTTCGTCAATGAAGTCCCGTTTGCGGCGATCCGCT

TTATTCTCGATTCCGCGAAGCTAAATTGTGCGTTATCGCAGGAAGGTTTGAGCGGT

AAGTGGGGGCTGCATATTGGCGCGACGCTGGAAAAACAGTGCGAGCGCGGTTTGC

TGGCGAAAGATCTCTCTTCATCCATTGTGATTCGTACCAGCGCGGCATCCGATGCG

CGTATGGGCGGCGCTACGCTTCCGGCTATGAGTAACTCCGGCTCGGGTAACCAGG

GGATTACCGCAACAATGCCTGTGGTGGTGGTAGCAGAACACTTCGGAGCGGATGA

TGAACGGCTGGCGCGTGCGCTGATGCTTTCGCATTTGAGCGCAATTTACATCCATA ACCAGTTACCGCGTTTGTCTGCGCTGTGTGCCGCAACGACCGCAGCAATGGGGGC

CGCCGCCGGGATGGCATGGCTGGTGGATGGGCGTTATGAAACCATCTCGATGGCG

ATCAGCAGTATGATCGGCGATGTCAGCGGCATGATTTGCGATGGTGCGTCGAACA

GCTGCGCGATGAAGGTTTCGACCAGTGCTTCGGCTGCGTGGAAAGCGGTGTTAAT

GGCGCTGGATGATACCGCCGTGACCGGCAATGAAGGGATTGTGGCGCATGATGTT

GAGCAGTCGATTGCCAACCTGTGTGCGTTAGCAAGCCATTCGATGCAGCAAACGG

ATCGGCAGATTATCGAGATTATGGCGAGCAAGGCCAGATAA

< SEQ ID NO: 116; PRT; YhaM; UPF0597 protein YhaM; Escherichia coli>

MFDS TLNPLW QR YIL A V QEE VKP ALGCTEPIS L ALA AAV A A AELEGP VER VE A W V S P NLMKN GLG VT VPGT GM V GLPIA A ALG ALGGN AN AGLE VLKD AT AQ AIAD AK ALLA AGKVSVKIQEPCDEILFSRAKVWNGEKWACVTIVGGHTNIVHIETHDGVVFTQQACV AEGEQESPLTVLSRTTLAEILKFVNEVPFAAIRFILDSAKLNCALSQEGLSGKWGLHIGA TLEKQCERGLL AKDLS S S IVIRT S A AS D ARMGG ATLP AMS N S GS GN QGIT ATMP V V V V AEHF G ADDERL ARALMLS HLS AIYIHN QLPRLS ALC A ATT A AMG A A AGM A WLVDGR YETISMAISSMIGDVSGMICDGASNSCAMKVSTSASAAWKAVLMALDDTAVTGNEGI V AHD VEQS IANLC AL AS HS MQQTDRQIIEIM AS KAR

< SEQ ID NO: 117; DNA; cysB; HTH-type transcriptional regulator; Escherichia coli>

ATGAAATTACAACAACTTCGCTATATTGTTGAGGTGGTCAATCATAACCTGAATGT

CTCATCAACAGCGGAAGGACTTTACACATCACAACCCGGGATCAGTAAACAAGTC

AGAATGCTGGAAGACGAGCTAGGCATTCAAATTTTTTCCCGAAGCGGCAAGCACC

TGACGCAGGTAACGCCAGCAGGGCAAGAAATAATTCGTATCGCTCGCGAAGTCCT

GTCGAAAGTCGATGCCATAAAATCGGTTGCCGGAGAGCACACCTGGCCGGATAAA

GGTTCACTGTATATCGCCACCACGCATACCCAGGCACGCTACGCATTACCAAACGT

CATCAAAGGCTTTATTGAGCGTTATCCTCGCGTTTCTTTGCATATGCACCAGGGCT

CGCCGACACAAATTGCTGATGCCGTCTCTAAAGGCAATGCTGATTTCGCTATCGCC

ACAGAAGCGCTGCATCTGTATGAAGATTTAGTGATGTTACCGTGCTACCACTGGAA

TCGGGCTATTGTAGTCACTCCGGATCACCCGCTGGCAGGCAAAAAAGCCATTACC

ATTGAAGAACTGGCGCAATATCCGTTGGTGACATATACCTTCGGCTTTACCGGACG

TTCAGAACTGGATACTGCCTTTAATCGCGCAGGGTTAACGCCGCGTATCGTTTTCA

CGGCAACGGATGCTGACGTCATTAAAACTTACGTCCGGTTAGGGCTGGGGGTAGG

GGTCATTGCCAGCATGGCGGTGGATCCGGTCGCCGATCCCGACCTTGTGCGTGTTG

ATGCTCACGATATCTTCAGCCACAGTACAACCAAAATTGGTTTTCGCCGTAGTACT

TTCTTGCGCAGTTATATGTATGATTTCATTCAGCGTTTTGCACCGCATTTAACGCGT

GATGTCGTTGATGCGGCTGTCGCATTGCGCTCTAATGAAGAAATTGAGGTCATGTT

TAAAGAT AT AAAACTGCCGGAAAAAT AA

< SEQ ID NO: 118; PRT; CysB; HTH-type transcriptional regulator; Escherichia coli> MKLQQLRYIVE VVNHNLNV S ST AEGLYTS QPGIS KQVRMLEDELGIQIFSRS GKHLTQ VTPAGQEIIRIAREVLSKVDAIKSVAGEHTWPDKGSLYIATTHTQARYALPNVIKGFIER YPRV S LHMHQGS PT QIAD A V S KGN ADF AIATE ALHL YEDL VMLPC YHWNRAIV VTPD HPLAGKKAITIEELAQYPLVTYTFGFTGRSELDTAFNRAGLTPRIVFTATDADVIKTYV RLGLG V G VIAS M A VDP V ADPDL VRVD AHDIFS HS TTKIGFRRS TFLRS YM YDFIQRF AP HLTRD V VD A A V ALRS NEEIE VMFKDIKLPEK

< SEQ ID NO: 119; DNA; cysK; Cysteine synthase A; Escherichia coli> ATGAGTAAGATTTTTGAAGATAACTCGCTGACTATCGGTCACACGCCGCTGGTTCG

CCTGAATCGCATCGGTAACGGACGCATTCTGGCGAAGGTGGAATCTCGTAACCCC

AGCTTCAGCGTTAAGTGCCGTATCGGTGCCAACATGATTTGGGATGCCGAAAAGC

GCGGCGTGCTGAAACCAGGCGTTGAACTGGTTGAACCGACCAGCGGTAATACCGG

GATTGCACTGGCCTATGTAGCTGCCGCTCGCGGTTACAAACTCACCCTGACCATGC

CAGAAACCATGAGTATTGAACGCCGCAAGCTGCTGAAAGCGTTAGGTGCAAACCT

GGTGCTGACGGAAGGTGCTAAAGGCATGAAAGGCGCAATCCAAAAAGCAGAAGA

AATTGTCGCCAGCAATCCAGAGAAATACCTGCTGCTGCAACAATTCAGCAATCCG

GCAAACCCTGAAATTCACGAAAAGACCACCGGTCCGGAGATATGGGAAGATACCG

ACGGTCAGGTTGATGTATTTATTGCTGGCGTTGGGACTGGCGGTACGCTGACTGGC

GTCAGCCGCTACATTAAAGGCACCAAAGGCAAGACCGATCTTATCTCTGTCGCCGT

TGAGCCAACCGATTCTCCAGTTATCGCCCAGGCGCTGGCAGGTGAAGAGATTAAA

CCTGGCCCGCATAAAATTCAGGGTATTGGCGCTGGTTTTATCCCGGCTAACCTCGA

TCTCAAGCTGGTCGATAAAGTCATTGGCATCACCAATGAAGAAGCGATTTCTACCG

CGCGTCGTCTGATGGAAGAAGAAGGTATTCTTGCAGGTATCTCTTCTGGAGCAGCT

GTTGCCGCGGCGTTGAAACTACAAGAAGATGAAAGCTTTACCAACAAGAATATTG

TGGTTATTCTACCATCATCGGGTGAGCGTTATTTAAGCACCGCATTGTTTGCCGAT

CTCTTCACTGAGAAAGAATTGCAACAGTAA

< SEQ ID NO: 120; PRT; CysK: Cysteine synthase A; Escherichia coli>

MS KIFEDN S LTIGHTPL VRLNRIGN GRILAKVES RNPS F S VKCRIG ANMIWD AEKRG VL KPG VEL VEPT S GNTGIAL A Y V A A ARG YKLTLTMPETMS IERRKLLKALG ANL VLTEG AKGMKGAIQKAEEIVASNPEKYLLLQQFSNPANPEIHEKTTGPEIWEDTDGQVDVFIA G V GTGGTLTG V S R YIKGTKGKTDLIS V A VEPTDS P VIAQ AL AGEEIKPGPHKIQGIG AG FIP ANLDLKL VDKVIGITNEE AIS T ARRLMEEEGILAGIS S G A A V A A ALKLQEDES FTNK NIV VILPS S GERYLS T ALFADLFTEKELQQ

< SEQ ID NO: 121; DNA; cysA; Sulfate/thiosulfate import ATP-binding protein; Escherichia coli>

ATGAGCATTGAGATTGCCAATATTAAGAAGTCGTTTGGTCGCACCCAGGTGCTGA

ACGATATCTCACTGGATATTCCTTCAGGTCAGATGGTCGCGTTGCTGGGGCCGTCC

GGTTCCGGGAAAACCACGCTGCTGCGCATTATCGCCGGGCTGGAGCATCAAACCA

GCGGGCATATTCGCTTCCACGGCACCGACGTGAGCCGCCTGCACGCACGTGATCG

TAAAGTCGGTTTCGTGTTCCAGCATTACGCGCTGTTCCGCCATATGACGGTGTTCG

ACAATATCGCTTTTGGCCTGACGGTGCTGCCGCGTCGCGAGCGCCCGAATGCCGCA

GCCATCAAAGCGAAAGTGACAAAATTGCTGGAAATGGTCCAGCTTGCCCATCTGG

CGGATCGTTATCCGGCGCAGCTTTCCGGCGGCCAGAAACAGCGCGTGGCGCTGGC

GCGCGCGCTGGCTGTGGAACCGCAAATTCTGCTGCTTGATGAACCGTTTGGCGCGC

TGGATGCGCAGGTGCGTAAAGAGCTGCGTCGCTGGCTGCGTCAACTCCATGAAGA

ACTAAAATTCACCAGCGTTTTTGTGACCCACGATCAGGAAGAAGCGACCGAAGTA

GCTGATCGTGTAGTTGTGATGAGCCAGGGCAATATTGAACAGGCTGACGCGCCGG

ATCAGGTATGGCGCGAACCGGCGACCCGTTTTGTGCTCGAATTTATGGGCGAAGT

GAACCGCCTGCAGGGAACCATTCGCGGCGGGCAGTTCCATGTTGGCGCGCATCGC

TGGCCGCTGGGCTACACACCTGCGTATCAGGGGCCGGTGGATCTCTTCCTGCGCCC

TTGGGAAGTGGATATCAGCCGCCGTACCAGCCTCGATTCGCCGCTGCCGGTACAG

GTACTGGAAGCCAGCCCGAAAGGTCACTACACCCAATTAGTGGTGCAGCCGCTGG

GGTGGTACAACGAACCGCTGACGGTCGTGATGCATGGCGACGATGCCCCGCAGCG TGGCGAGCGTTTATTCGTTGGTCTGCAACATGCGCGGCTGTATAACGGCGACGAGC

GTATCGAAACCCGCGATGAGGAACTTGCTCTCGCACAAAGCGCCTGA

< SEQ ID NO: 122; PRT; CysA; Sulfate/thiosulfate import ATP-binding protein; Escherichia coli>

MSIEIANIKKS FGRTQ VLNDISLDIPS GQMVALLGPS GS GKTTLLRIIAGLEHQTS GHIRF

HGTD V S RLH ARDRK V GFVFQH Y ALFRHMT VFDNIAF GLT VLPRRERPN A A AIKAKVT

KLLEMVQLAHLADRYPAQLSGGQKQRVALARALAVEPQILLLDEPFGALDAQVRKEL

RRWLRQLHEELKFTSVFVTHDQEEATEVADRVVVMSQGNIEQADAPDQVWREPATR

FVLEFMGEVNRLQGTIRGGQFHVGAHRWPLGYTPAYQGPVDLFLRPWEVDISRRTSL

DSPLPVQVLEASPKGHYTQLVVQPLGWYNEPLTVVMHGDDAPQRGERLFVGLQHAR

LYN GDERIETRDEEL AL AQS A

< SEQ ID NO: 123; DNA; cysP; thio-sulfate binding protein; Escherichia coli>

ATGGCCGTTAACTTACTGAAAAAGAACTCACTCGCGCTGGTCGCTTCTCTGCTGCT

GGCGGGCCATGTACAGGCAACGGAACTGCTGAACAGTTCTTATGACGTCTCCCGC

GAGCTGTTTGCCGCCCTGAATCCGCCGTTTGAGCAACAATGGGCAAAAGATAACG

GCGGCGACAAACTGACGATAAAACAATCTCATGCCGGGTCATCAAAACAGGCGCT

GGCGATTTTACAGGGCTTAAAAGCCGACGTTGTCACTTATAACCAGGTGACCGAC

GTACAAATCCTGCACGATAAAGGCAAGCTGATCCCGGCCGACTGGCAGTCGCGCC

TGCCGAATAATAGCTCGCCGTTCTACTCCACCATGGGCTTCCTGGTGCGTAAGGGT

AACCCGAAGAATATCCACGATTGGAACGACCTGGTGCGCTCCGACGTGAAGCTGA

TTTTCCCGAACCCGAAAACGTCGGGTAACGCGCGTTATACCTATCTGGCGGCATGG

GGCGCAGCGGATAAAGCTGACGGTGGTGACAAAGGCAAAACCGAACAGTTTATG

ACCCAGTTCCTGAAAAACGTTGAAGTGTTCGATACTGGCGGTCGTGGCGCGACCA

CCACTTTTGCCGAGCGCGGCCTGGGCGATGTGCTGATTAGCTTCGAATCGGAAGTG

AACAACATCCGTAAACAGTATGAAGCGCAGGGCTTTGAAGTGGTGATTCCGAAAA

CCAACATTCTGGCGGAATTCCCGGTGGCGTGGGTTGATAAAAACGTGCAGGCCAA

CGGTACGGAAAAAGCCGCCAAAGCCTATCTGAACTGGCTCTATAGCCCGCAGGCG

CAAACCATCATCACCGACTATTACTACCGCGTGAATAACCCGGAGGTGATGGACA

AACTGAAAGACAAATTCCCGCAGACCGAGCTGTTCCGCGTGGAAGACAAATTTGG

CTCCTGGCCGGAAGTGATGAAAACCCACTTCACCAGCGGCGGCGAGTTAGACAAG

CTGTTAGCGGCGGGGCGTAACTGA

< SEQ ID NO: 124; PRT; CysP; thio-sulfate binding protein A; Escherichia coli>

M A VNLLKKN S L AL V AS LLL AGH V Q ATELLN S S YD V S RELF A ALNPPFEQQW AKDN G GDKLTIKQSHAGS S KQALAILQGLKAD VVT YN QVTD V QILHDKGKLIPAD W QSRLPN NS S PFY S TMGFLVRKGNPKNIHD WNDL VRS D VKLIFPNPKT S GN AR YT YL A A W G A AD KADGGDKGKTEQFMTQFLKNVEVFDTGGRGATTTFAERGLGDVLISFESEVNNIRKQ YEAQGFEVVIPKTNILAEFPVAWVDKNVQANGTEKAAKAYLNWLYSPQAQTIITDYY YRVNNPE VMDKLKDKFPQTELFRVEDKFGS WPE VMKTHFT S GGELDKLLAAGRN

< SEQ ID NO: 125; DNA; cysT; Sulfate transport system permease protein; Escherichia coli>

ATGACGGAATCGTTGGTCGGCGAACGCCGCGCGCCGCAGTTCCGCGCGCGCCTTT

CCGGCCCCGCGGGCCCCCCTTCCGTTCGGGTCGGTATGGCAGTGGTGTGGCTTTCG

GTGATCGTGCTGTTGCCGCTGGCCGCCATCGTCTGGCAGGCCGCGGGCGGTGGTTG

GCGGGCCTTCTGGCTGGCGGTCTCGTCGCATGCCGCGATGGAGTCGTTCCGGGTAA CGCTGACGATTTCGACCGCAGTCACGGTCATCAACCTGGTGTTCGGCTTGCTGATC

GCCTGGGTGCTGGTGCGTGACGACTTCGCTGGCAAGCGGATCGTCGATGCGATTAT

CGATCTGCCGTTTGCGTTGCCCACCATCGTCGCCAGCCTGGTGATGTTGGCACTGT

ACGGGAACAACAGCCCGGTGGGGCTTCATTTTCAACACACCGCGACCGGTGTTGG

GGTGGCGTTGGCGTTCGTCACATTGCCGTTCGTGGTGCGCGCCGTGCAGCCGGTGC

TGCTGGAAATCGATCGCGAGACCGAGGAGGCGGCGGCGTCGCTGGGCGCTAATGG

TGCCAAAATCTTCACTTCGGTGGTGTTGCCGTCGCTGACGCCGGCATTGTTATCCG

GTGCGGGCCTGGCGTTTTCGCGCGCTATCGGCGAGTTCGGTTCGGTGGTTCTGATC

GGCGGGGCCGTGCCGGGCAAGACCGAGGTGTCCTCGCAATGGATTCGCACCCTGA

TCGAGAACGACGACCGCACCGGAGCGGCCGCGATATCGGTTGTATTGCTCTCGAT

TTCGTTCATTGTGCTGCTCATCCTACGTGTCGTCGGCGCGCGTGCGGCCAAACGTG

AGGAGATGGCCGCATGA

< SEQ ID NO: 126; PRT; cysT; Sulfate transport system permease protein; Escherichia coli> MTES L V GERRAPQFRARLS GP AGPPS VR V GM A V VWLS VIVLLPL A AIVW Q A AGGG W RAFWLAVSSHAAMESFRVTLTISTAVTVINLVFGLLIAWVLVRDDFAGKRIVDAIIDLP FAFPTIV AS FVMF AF Y GNN S P V GFHFQHT AT G V G V AF AFVTFPFV VRA V QP VFFEIDR ETEE A A AS EGAN G AKIFT S V VFPS FTP AFFS G AGE AFS R AIGEF GS V VFIGGA VPGKTE VS S QWIRTFIENDDRT G AAAIS WEES IS FIVFFIFRV V G ARA AKREEM A A

< SEQ ID NO: 127; DNA; cysW; Sulfate transport system permease protein; Escherichia coli>

ATGGCGGAAGTTACCCAATTGAAGCGTTATGACGCGCGCCCGATTAACTGGGGCA

AATGGTTTCTGATTGGCATCGGGATGCTGGTTTCGGCGTTCATCCTGCTGGTGCCG

ATGATTTACATCTTCGTGCAGGCATTCAGCAAGGGGCTGATGCCGGTTTTACAGAA

TCTGGCCGATCCGGACATGCTGCACGCCATCTGGCTGACGGTGATGATCGCGCTGA

TTGCCGTACCGGTAAACCTGGTGTTCGGCATTCTGCTGGCCTGGCTGGTGACGCGC

TTTAACTTCCCTGGACGCCAGTTACTGCTGACGCTACTGGACATTCCGTTTGCCGT

ATCGCCGGTGGTTGCCGGTCTGGTGTATTTGCTGTTCTACGGCTCTAACGGCCCGC

TCGGCGGTTGGCTCGACGAGCATAACCTGCAAATTATGTTCTCCTGGCCGGGAATG

GTGCTGGTCACCATCTTCGTGACGTGTCCGTTTGTGGTGCGCGAACTGGTGCCGGT

GATGTTAAGCCAGGGCAGCCAGGAAGACGAAGCGGCGATTTTGCTTGGCGCGTCC

GGCTGGCAGATGTTCCGTCGCGTCACATTACCGAACATCCGCTGGGCGCTGCTTTA

TGGCGTGGTGTTGACCAACGCCCGCGCAATTGGCGAGTTTGGCGCGGTGTCGGTG

GTTTCCGGCTCGATTCGCGGCGAAACCCTGTCGCTGCCGTTACAGATTGAATTGCT

GGAGCAGGACTACAACACCGTCGGCTCCTTTACCGCTGCGGCGCTGTTAACGCTG

ATGGCGATTATCACCCTGTTTTTAAAAAGTATGTTGCAGTGGCGCCTGGAGAATCA

GGAAAAACGCGCACAGCAGGAGGAACATCATGAGCATTGA

< SEQ ID NO: 128; PRT; CysW; Sulfate transport system permease protein; Escherichia coli> M AE VTQLKRYD ARPINW GKWFLIGIGML V S AFILL VPMI YIFV Q AFS KGLMPVLQNLA DPDMLH AIWLT VMIALIA VP VNL VF GILL A WL VTRFNFPGRQLLLTLLDIPFA V S P V V A GLVYLLFYGSNGPLGGWLDEHNLQIMFSWPGMVLVTIFVTCPFVVRELVPVMLSQGS QEDE A AILLG AS GW QMFRRVTLPNIRW ALLY G V VLTN AR AIGEF G A V S V V S GS IRGET LSLPLQIELLEQDYNTVGSFTAAALLTLMAIITLFLKSMLQWRLENQEKRAQQEEHHE H

< SEQ ID NO: 129; DNA; egtB Mycobacterium smegmatis> ATGATCGCAC GCGAGACACT GGCCGACGAG CTGGCCCTGG CCCGCGAACG

CACGTTGCGG CTCGTGGAGT TCGACGACGC GGAACTGCAT CGCCAGTACA

ACCCGCTGAT GAGCCCGCTC GTGTGGGACC TCGCGCACAT CGGGCAGCAG

G A AG A ACT GT GGCTGCTGCG CGACGGCAAC CCCGACCGCC CCGGCATGCT

CGCACCCGAG GTGGACCGGC TTTACGACGC GTTCGAGCAC TCACGCGCCA

GCCGGGTCAA CCTCCCGTTG CTGCCGCCTT CGGATGCGCG CGCCTACTGC

GCGACGGTGC GGGCCAAGGC GCTCGACACC CTCGACACGC TGCCCGAGGA

CGATCCGGGC TTCCGGTTCG CGCTGGTGAT CAGCCACGAG AACCAGCACG

ACGAGACCAT GCTGCAGGCA CTCAACCTGC GCGAGGGCCC ACCCCTGCTC

GACACCGGAA TTCCCCTGCC CGCGGGCAGG CCAGGCGTGG CAGGCACGTC

GGTGCTGGTG CCGGGCGGCC CGTTCGTGCT CGGGGTCGAC GCGCTGACCG

AACCGCACTC ACTGGACAAC GAACGGCCCG CCCACGTCGT GGACATCCCG

TCGTTCCGGA TCGGCCGCGT GCCGGTCACC A AC GCC G A AT GGCGCGAGTT

CATCGACGAC GGTGGCTACG ACCAACCGCG CTGGTGGTCG CCACGCGGCT

GGGCGCACCG CCAGGAGGCG GGCCTGGTGG CCCCGCAGTT CTGGAACCCC

GACGGCACCC GCACCCGGTT CGGGCACATC GAGGAGATCC CGGGTGACGA

ACCCGTGCAG CACGTGACGT TCTTCGAAGC CGAGGCCTAC GCGGCGTGGG

CCGGTGCTCG GTTGCCCACC GAGATCGAAT GGGAGAAGGC CTGCGCGTGG

GATCCGGTCG CCGGTGCTCG GCGCCGGTTC CCCTGGGGCT CAGCACAACC

CAGCGCGGCG CTGGCCAACC TCGGCGGTGA C GC AC GCC GC CCGGCGCCGG

TCGGGGCCTA CCCGGCGGGG GCGTCGGCCT ATGGCGCCGA GCAGATGCTG

GGCGACGTGT GGGAGTGGAC CTCCTCGCCG CTGCGGCCGT GGCCCGGTTT

CACGCCGATG ATCTACGAGC GCTACAGCAC GCCGTTCTTC GAGGGCACCA

CATCCGGTGA CTACCGCGTG CTGCGCGGCG GGTCATGGGC CGTTGCACCG

GGAATCCTGC GGCCCAGCTT CCGCAACTGG GACCACCCGA TCCGGCGGCA

< SEQ ID NO: 130; PRT; EgtB; Mycobacterium smegmatis>

Met lie Ala Arg Glu Thr Leu Ala Asp Glu Leu Ala Leu Ala Arg Glu Arg Thr Leu Arg Leu Val Glu Phe Asp Asp Ala Glu Leu His Arg Gin Tyr Asn Pro Leu Met Ser Pro Leu Val Trp Asp Leu Ala His lie Gly Gin Gin Glu Glu Leu Trp Leu Leu Arg Asp Gly Asn Pro Asp Arg Pro Gly Met Leu Ala Pro Glu Val Asp Arg Leu Tyr Asp Ala Phe Glu His Ser Arg Ala Ser Arg Val Asn Leu Pro Leu Leu Pro Pro Ser Asp Ala Arg Ala Tyr Cys Ala Thr Val Arg Ala Lys Ala Leu Asp Thr Leu Asp Thr Leu Pro Glu Asp Asp Pro Gly Phe Arg Phe Ala Leu Val He Ser His Glu Asn Gin His Asp Glu Thr Met Leu Gin Ala Leu Asn Leu Arg Glu Gly Pro Pro Leu Leu Asp Thr Gly He Pro Leu Pro Ala Gly Arg Pro Gly Val Ala Gly Thr Ser Val Leu Val Pro Gly Gly Pro Phe Val Leu Gly Val Asp Ala Leu Thr Glu Pro His Ser Leu Asp Asn Glu Arg Pro Ala His Val Val Asp He Pro Ser Phe Arg He Gly Arg Val Pro Val Thr Asn Ala Glu Trp Arg Glu Phe He Asp Asp Gly Gly Tyr Asp Gin Pro Arg Trp Trp Ser Pro Arg Gly Trp Ala His Arg Gin Glu Ala Gly Leu Val Ala Pro Gin Phe Trp Asn Pro Asp Gly Thr Arg Thr Arg Phe Gly His He Glu Glu He Pro Gly Asp Glu Pro Val Gin His Val Thr Phe Phe Glu Ala Glu Ala Tyr Ala Ala Trp Ala Gly Ala Arg Leu Pro Thr Glu He Glu Trp Glu Lys Ala Cys Ala Trp Asp Pro Val Ala Gly Ala Arg Arg Arg Phe Pro Trp Gly Ser Ala Gin Pro Ser Ala Ala Leu Ala Asn Leu Gly Gly Asp Ala Arg Arg Pro Ala Pro Val Gly Ala Tyr Pro Ala Gly Ala Ser Ala Tyr Gly Ala Glu Gin Met Leu Gly Asp Val Trp Glu Trp Thr Ser Ser Pro Leu Arg Pro Trp Pro Gly Phe Thr Pro Met He Tyr Glu Arg Tyr Ser Thr Pro Phe Phe Glu Gly Thr Thr Ser Gly Asp Tyr Arg Val Leu Arg Gly Gly Ser Trp Ala Val Ala Pro Gly He Leu Arg Pro Ser Phe Arg Asn Trp Asp His Pro He Arg Arg Gin He Phe Ser Gly Val Arg Leu Ala Trp Asp Val

< SEQ ID NO: 131; DNA; egtC Mycobacterium smegmatis> ATGTGCCGGC ATGTGGCGTG GCTGGGCGCG CCGCGGTCGT TGGCCGACCT GGTGCTCGAC CCGCCGCAGG GACTGCTGGT GCAGTCCTAC GCACCGCGAC GACAGAAGCA CGGTCTGATG AACGCCGACG GTTGGGGCGC AGGGTTTTTC GACGACGAGG GAGTGGCCCG CCGCTGGCGC AGCGACAAAC CGCTGTGGGG TGATGCGTCG TTCGCGTCGG TGGCACCCGC ACTACGCAGT CGTTGCGTGC TGGCCGCGGT GCGCTCGGCC ACCATCGGCA TGCCCATCGA ACCGTCGGCG TCGGCGCCGT TCAGCGACGG GCAGTGGCTG CTGTCGCACA ACGGCCTGGT CGACCGCGGG GTGCTCCCGT TGACCGGTGC CGCCGAGTCC ACGGTGGACA GCGCGATCGT CGCGGCGCTC ATCTTCTCCC GTGGCCTCGA CGCGCTCGGC GCCACCATCG CCGAGGTCGG C G A ACT C G AC CCGAACGCGC GGTTGAACAT CCTGGCCGCC AACGGTTCCC GGCTGCTCGC CACCACCTGG GGGGACACGC TGTCGGTCCT GCACCGCCCC GACGGCGTCG TCCTCGCGAG CGAACCCTAC GACGACGATC CCGGCTGGTC GGACATCCCG GACCGGCACC TCGTCGACGT CCGCGACGCC CACGTCGTCG TGACACCCCT GTGA

< SEQ ID NO: 132; PRT; EgtC; Mycobacterium smegmatis>

Met Cys Arg His Val Ala Trp Leu Gly Ala Pro Arg Ser Leu Ala Asp Leu Val Leu Asp Pro Pro Gin Gly Leu Leu Val Gin Ser Tyr Ala Pro Arg Arg Gin Lys His Gly Leu Met Asn Ala Asp Gly Trp Gly Ala Gly Phe Phe Asp Asp Glu Gly Val Ala Arg Arg Trp Arg Ser Asp Lys Pro Leu Trp Gly Asp Ala Ser Phe Ala Ser Val Ala Pro Ala Leu Arg Ser Arg Cys Val Leu Ala Ala Val Arg Ser Ala Thr lie Gly Met Pro lie Glu Pro Ser Ala Ser Ala Pro Phe Ser Asp Gly Gin Trp Leu Leu Ser His Asn Gly Leu Val Asp Arg Gly Val Leu Pro Leu Thr Gly Ala Ala Glu Ser Thr Val Asp Ser Ala He Val Ala Ala Leu He Phe Ser Arg Gly Leu Asp Ala Leu Gly Ala Thr He Ala Glu Val Gly Glu Leu Asp Pro Asn Ala Arg Leu Asn He Leu Ala Ala Asn Gly Ser Arg Leu Leu Ala Thr Thr Trp Gly Asp Thr Leu Ser Val Leu His Arg Pro Asp Gly Val Val Leu Ala Ser Glu Pro Tyr Asp Asp Asp Pro Gly Trp Ser Asp He Pro Asp Arg His Leu Val Asp Val Arg Asp Ala His Val Val Val Thr Pro Leu

< SEQ ID NO: 133; DNA; egtD Mycobacterium smegmatis> ATGACGCTCT CACTGGCCAA CTACCTGGCA GCCGACTCGG CCGCCGAAGC ACTGCGCCGT GACGTCCGCG CGGGCCTCAC CGCGGCACCG AAGAGTCTGC CGCCCAAGTG GTTCTACGAC GCCGTCGGCA GTGATCTGTT CGACCAGATC ACCCGGCTCC CCGAGT ATT A CCCCACCCGC ACCGAGGCGC AGATCCTGCG GACCCGGTCG GCGGAGATCA TCGCGGCCGC GGGTGCCGAC ACCCTGGTGG AACTGGGCAG TGGTACGTCG GAGAAAACCC GCATGCTGCT CGACGCCATG CGCGACGCCG AGTTGCTGCG CCGCTTCATC CCGTTCGACG TCGACGCGGG CGTGCTGCGC TCGGCCGGGG CGGCAATCGG CGCGGAGTAC CCCGGTATCG AGATCGACGC GGTATGTGGC GATTTCGAGG AACATCTGGG CAAGATCCCG CATGTCGGAC GGCGGCTCGT GGTGTTCCTG GGGTCGACCA TCGGCAACCT GACACCCGCG CCCCGCGCGG AGTTCCTCAG TACTCTCGCG GACACGCTGC AGCCGGGCGA CAGCCTGCTG CTGGGCACCG ATCTGGTGAA GGACACCGGC CGGTTGGTGC GCGCGTACGA CGACGCGGCC GGCGTCACCG CGGCGTTCAA CCGCAACGTG CTGGCCGTGG TGAACCGCGA ACTGTCCGCC GATTTCGACC TCGACGCGTT CGAGCATGTC GCGAAGTGGA ACTCCGACGA GGAACGCATC GAGATGTGGT TGCGTGCCCG CACCGCACAG CATGTCCGCG TCGCGGCACT GGACCTGGAG GTCGACTTCG CCGCGGGTGA GGAGATGCTC ACCGAGGTGT CCTGCAAGTT CCGTCCCGAG AACGTCGTCG CCGAGCTGGC GGAAGCCGGT CTGCGGCAGA CGCATTGGTG GACCGATCCG GCCGGGGATT TCGGGTTGTC GCTGGCGGTG CGGTGA

< SEQ ID NO: 134; PRT; EgtD; Mycobacterium smegmatis> Met Thr Leu Ser Leu Ala Asn Tyr Leu Ala Ala Asp Ser Ala Ala Glu Ala Leu Arg Arg Asp Val Arg Ala Gly Leu Thr Ala Ala Pro Lys Ser Leu Pro Pro Lys Trp Phe Tyr Asp Ala Val Gly Ser Asp Leu Phe Asp Gin He Thr Arg Leu Pro Glu Tyr Tyr Pro Thr Arg Thr Glu Ala Gin He Leu Arg Thr Arg Ser Ala Glu He He Ala Ala Ala Gly Ala Asp Thr Leu Val Glu Leu Gly Ser Gly Thr Ser Glu Lys Thr Arg Met Leu Leu Asp Ala Met Arg Asp Ala Glu Leu Leu Arg Arg Phe He Pro Phe Asp Val Asp Ala Gly Val Leu Arg Ser Ala Gly Ala Ala He Gly Ala Glu Tyr Pro Gly He Glu He Asp Ala Val Cys Gly Asp Phe Glu Glu His Leu Gly Lys He Pro His Val Gly Arg Arg Leu Val Val Phe Leu Gly Ser Thr He Gly Asn Leu Thr Pro Ala Pro Arg Ala Glu Phe Leu Ser Thr Leu Ala Asp Thr Leu Gin Pro Gly Asp Ser Leu Leu Leu Gly Thr Asp Leu Val Lys Asp Thr Gly Arg Leu Val Arg Ala Tyr Asp Asp Ala Ala Gly Val Thr Ala Ala Phe Asn Arg Asn Val Leu Ala Val Val Asn Arg Glu Leu Ser Ala Asp Phe Asp Leu Asp Ala Phe Glu His Val Ala Lys Trp Asn Ser Asp Glu Glu Arg He Glu Met Trp Leu Arg Ala Arg Thr Ala Gin His Val Arg Val Ala Ala Leu Asp Leu Glu Val Asp Phe Ala Ala Gly Glu Glu Met Leu Thr Glu Val Ser Cys Lys Phe Arg Pro Glu Asn Val Val Ala Glu Leu Ala Glu Ala Gly Leu Arg Gin Thr His Trp Trp Thr Asp Pro Ala Gly Asp Phe Gly Leu Ser Leu Ala Val Arg

< SEQ ID NO: 135; DNA; egtE Mycobacterium smegmatis>

ATGCTCGCGC AGCAGTGGCG TGACGCCCGT CCCAAGGTTG CCGGGTTGCA CCTGGACAGC GGGGCATGTT CGCGGCAGAG CTTCGCGGTG ATCGACGCGA CCACCGCACA CGCACGCCAC GAGGCCGAGG TGGGTGGTTA TGTGGCGGCC GAGGCTGCGA CGCCGGCGCT CGACGCCGGG CGGGCCGCGG TCGCGTCGCT CATCGGTTTT GCGGCGTCGG ACGTGGTGTA CACCAGCGGA TCCAACCACG CCATCGACCT GTTGCTGTCG AGCTGGCCGG GGAAGCGCAC GCTGGCCTGC CTGCCCGGCG AGTACGGGCC GAATCTGTCT GCCATGGCGG CCAACGGTTT CCAGGTGCGT GCGCTACCGG TCGACGACGA CGGGCGGGTG CTGGTCGACG AGGCGTCGCA CGAACTGTCG GCCCATCCCG TCGCGCTCGT ACACCTCACC GCATTGGCAA GCCATCGCGG GATCGCGCAA CCCGCGGCAG AACTCGTCGA GGCCTGCCAC AATGCGGGGA TCCCCGTGGT GATCGACGCC GCGCAGGCGC TGGGGCATCT GG ACT GCA AT GTCGGGGCCG ACGCGGTGTA CTCATCGTCG CGCAAGTGGC TCGCCGGCCC GCGTGGTGTC GGGGTGCTCG CGGTGCGGCC CGAACTCGCC GAGCGTCTGC AACCGCGGAT CCCCCCGTCC GACTGGCCAA TTCCGATGAG CGTCTTGGAG AAGCTCGAAC TAGGTGAGCA CAACGCGGCG GCGCGTGTGG GATTCTCCGT CGCGGTTGGT GAGCATCTCG CAGCAGGGCC CACGGCGGTG CGCGAACGAC TCGCCGAGGT GGGGCGTCTC TCTCGGCAGG TGCTGGCAGA GGTCGACGGG TGGCGCGTCG TCGAACCCGT CGACCAACCC ACCGCGATCA CCACCCTTGA GTCCACCGAT GGTGCCGATC CCGCGTCGGT GCGCTCGTGG CTGATCGCGG AGCGTGGCAT CGTGACCACC GCGTGTGAAC TCGCGCGGGC ACCGTTCGAG ATGCGCACGC CGGTGCTGCG AATCTCGCCG CACGTCGACG TGACGGTCGA CGAACTGGAG CAGTTCGCCG CAGCGTTGCG TGAGGCGCCC TGA

< SEQ ID NO: 136; PRT; EgtE; Mycobacterium smegmatis>

Met Leu Ala Gin Gin Trp Arg Asp Ala Arg Pro Lys Val Ala Gly Leu His Leu Asp Ser Gly Ala Cys Ser Arg Gin Ser Phe Ala Val lie Asp Ala Thr Thr Ala His Ala Arg His Glu Ala Glu Val Gly Gly Tyr Val Ala Ala Glu Ala Ala Thr Pro Ala Leu Asp Ala Gly Arg Ala Ala Val Ala Ser Leu lie Gly Phe Ala Ala Ser Asp Val Val Tyr Thr Ser Gly Ser Asn His Ala He Asp Leu Leu Leu Ser Ser Trp Pro Gly Lys Arg Thr Leu Ala Cys Leu Pro Gly Glu Tyr Gly Pro Asn Leu Ser Ala Met Ala Ala Asn Gly Phe Gin Val Arg Ala Leu Pro Val Asp Asp Asp Gly Arg Val Leu Val Asp Glu Ala Ser His Glu Leu Ser Ala His Pro Val Ala Leu Val His Leu Thr Ala Leu Ala Ser His Arg Gly He Ala Gin Pro Ala Ala Glu Leu Val Glu Ala Cys His Asn Ala Gly He Pro Val Val He Asp Ala Ala Gin Ala Leu Gly His Leu Asp Cys Asn Val Gly Ala Asp Ala Val Tyr Ser Ser Ser Arg Lys Trp Leu Ala Gly Pro Arg Gly Val Gly Val Leu Ala Val Arg Pro Glu Leu Ala Glu Arg Leu Gin Pro Arg lie Pro Pro Ser Asp Trp Pro lie Pro Met Ser Val Leu Glu Lys Leu Glu Leu Gly Glu His Asn Ala Ala Ala Arg Val Gly Phe Ser Val Ala Val Gly Glu His Leu Ala Ala Gly Pro Thr Ala Val Arg Glu Arg Leu Ala Glu Val Gly Arg Leu Ser Arg Gin Val Leu Ala Glu Val Asp Gly Trp Arg Val Val Glu Pro Val Asp Gin Pro Thr Ala He Thr Thr Leu Glu Ser Thr Asp Gly Ala Asp Pro Ala Ser Val Arg Ser Trp Leu He Ala Glu Arg Gly He Val Thr Thr Ala Cys Glu Leu Ala Arg Ala Pro Phe Glu Met Arg Thr Pro Val Leu Arg He Ser Pro His Val Asp Val Thr Val Asp Glu Leu Glu Gin Phe Ala Ala Ala Leu Arg Glu Ala Pro

< SEQ ID NO: 137; DNA; NcEgtl; Neurospora crassa>

ATGCCGAGTGCCGAATCCATGACCCCAAGCAGTGCCCTCGGACAGCTCAAAGCAA

CTGGACAACATGTGCTATCCAAGCTTCAGCAGCAGACATCAAACGCCGATATCAT

CGACATCCGCCGCGTTGCTGTAGAGATCAACCTCAAGACCGAGATAACCTCCATG

TTCCGACCTAAAGATGGCCCTAGACAGCTACCCACCTTGCTTCTCTACAACGAGAG

AGGCCTGCAGCTGTTCGAGCGTATCACATACCTTGAAGAGTACTATCTTACCAATG

ACGAGATCAAAATCCTCACCAAACATGCGACCGAAATGGCTAGCTTCATCCCGTC

AGGTGCCATGATCATTGAGCTCGGAAGCGGAAATCTGCGCAAAGTAAACCTTCTA

TTGGAAGCCCTAGACAACGCCGGCAAGGCAATTGACTATTATGCCCTTGACCTGTC

TCGGGAGGAGCTGGAGCGCACTCTCGCTCAGGTACCATCCTACAAGCACGTCAAG

TGCCACGGTCTTCTGGGTACATATGACGATGGACGTGACTGGCTCAAGGCCCCAG

AGAACATCAATAAACAGAAATGCATCTTGCACCTCGGGTCAAGCATTGGCAACTT

TAACCGCAGTGACGCCGCTACCTTTCTCAAGGGCTTTACGGACGTCCTTGGACCCA

ATGACAAGATGCTCATTGGGGTTGACGCTTGCAATGACCCGGCGAGGGTATACCA

CGCTTACAACGACAAGGTTGGTATTACTCACGAGTTCATCTTGAATGGTCTTCGCA

ACGCCAATGAAATTATCGGAGAGACGGCCTTCATCGAGGGCGATTGGAGAGTCAT

TGGCGAATATGTGTATGACGAAGAGGGCGGCAGACACCAGGCCTTTTACGCCCCC

ACTCGCGACACCATGGTTATGGGGGAGTTGATTAGGTCACACGACAGGATCCAGA

TCGAACAGAGCCTAAAGTACTCGAAAGAGGAGTCAGAGAGGCTCTGGAGCACGG

CGGGATTGGAACAAGTCTCGGAATGGACGTACGGCAACGAATATGGACTCCATCT

GCTTGCCAAGTCAAGGATGTCTTTCAGTCTCATCCCTTCGGTGTACGCTCGCAGCG

CACTCCCAACTCTGGACGACTGGGAGGCCCTTTGGGCGACATGGGATGTCGTCAC

ACGTCAGATGCTTCCCCAGGAAGAGCTTCTGGAGAAGCCCATCAAGCTCCGAAAC

GCCTGCATCTTTTACCTCGGTCACATCCCGACCTTCCTCGACATCCAGCTCACAAA

GACCACCAAGCAGGCTCCGTCAGAGCCCGCTCACTTTTGCAAGATCTTCGAGCGA

GGCATTGATCCTGATGTCGACAACCCGGAGCTGTGTCATGCGCACTCGGAGATTCC

TGATGAATGGCCGCCGGTGGAAGAAATCCTGACCTACCAGGAGACGGTACGGTCC

CGGTTACGCGGCCTCTATGCGCATGGCATCGCGAATATTCCGCGGAATGTGGGTCG

GGCCATTTGGGTTGGGTTTGAGCACGAGCTTATGCATATCGAGACGCTGTTGTACA

TGATGCTACAGAGCGACAAGACGCTGATCCCAACCCATATTCCACGGCCCGACTTT

GACAAGCTCGCGAGGAAGGCAGAGTCCGAGAGGGTTCCCAATCAGTGGTTTAAGA

TTCCGGCACAGGAGATCACCATCGGTTTGGATGATCCTGAGGATGGATCTGATATC

AACAAGCATTATGGCTGGGACAACGAGAAGCCTCCAAGGCGCGTTCAAGTTGCTG

CCTTTCAGGCTCAAGGGAGGCCGATCACCAACGAAGAGTACGCGCAATATCTGCT

TGAAAAGAACATCGACAAGCTCCCTGCCTCTTGGGCCCGCCTGGACAACGAGAAC

ATTAGCAATGGAACAACAAACAGCGTGAGCGGTCACCACAGCAACAGAACCTCCA

AGCAGCAGCTCCCTTCATCTTTCCTCGAGAAGACAGCAGTCCGCACAGTCTACGGT

CTCGTGCCTCTCAAGCACGCTCTCGACTGGCCCGTGTTTGCCTCTTACGACGAACT

TGCCGGTTGCGCAGCTTACATGGGCGGCCGTATTCCCACCTTCGAAGAGACCCGG

AGCATTTACGCTTACGCCGATGCTCTCAAGAAGAAGAAGGAAGCTGAGAGACAAT

TGGGAAGGACGGTTCCGGCTGTTAATGCCCACCTAACCAACAACGGCGTGGAAAT

CACTCCCCCATCCTCTCCCTCTTCCGAGACCCCCGCCGAGTCTTCCTCCCCCTCCGA

CAGCAACACCACCCTCATCACCACCGAAGACCTCTTCTCTGACCTAGACGGTGCCA ATGTCGGTTTTCACAACTGGCACCCTATGCCCATCACCTCCAAAGGCAACACCCTT

GTCGGGCAAGGCGAGCTCGGCGGCGTGTGGGAATGGACTTCATCGGTCCTCCGCA

AGTGGGAGGGGTTCGAGCCGATGGAGCTGTACCCCGGCTATACGGCGGATTTTTT

CGATGAGAAGCACAACATTGTGCTGGGAGGGAGCTGGGCTACGCATCCGAGGATT

GCGGGGAGGAAGAGCTTTGTGAATTGGTACCAGAGGAATTATCCTTATGCTTGGG

TGGGGGCGAGAGTTGTTAGGGATTTGTGA

< SEQ ID NO: 138; PRT; NcEgtl; Neurospora crassa>

MPS AES MTPS S ALGQLKATGQH VLS KLQQQTS N ADIIDIRR V A VEINLKTEITS MFRPK DGPRQLPTLLLYNERGLQLFERITYLEEYYLTNDEIKILTKHATEMASFIPSGAMIIELG S GNLRKVNLLLEALDNAGKAIDYYALDLSREELERTLAQVPSYKHVKCHGLLGTYDDG RDWLKAPENINKQKCILHLGSSIGNFNRSDAATFLKGFTDVLGPNDKMLIGVDACNDP ARVYHAYNDKVGITHEFILNGLRNANEIIGETAFIEGDWRVIGEYVYDEEGGRHQAFY APTRDTM VMGELIRS HDRIQIEQS LKY S KEES ERLW S T AGLEQ V S E WT Y GNE Y GLHLL AKS RMS FS LIPS V Y ARS ALPTLDD WE ALW AT WD V VTRQMLPQEELLEKPIKLRN AC IF YLGHIPTFLDIQLTKTTKQAPSEPAHFCKIFERGIDPDVDNPELCHAHSEIPDEWPPVEE I LT Y QET VRS RLRGLY AHGIANIPRN V GR AIW V GFEHELMHIETLL YMMLQS DKTLIPT HIPRPDFDKLARKAESERVPNQWFKIPAQEITIGLDDPEDGSDINKHYGWDNEKPPRRV Q V A AF Q AQGRPITNEE Y AQ YLLEKNIDKLP AS W ARLDNENIS N GTTN S VS GHHS NRTS KQQLPSSFLEKTAVRTVYGLVPLKHALDWPVFASYDELAGCAAYMGGRIPTFEETRSI Y AY AD ALKKKKE AERQLGRT VP A VN AHLTNN G VEITPPS SPSS ETPAES S S PS DS NTTL ITTEDLFS DLDG AN V GFHN WHPMPIT S KGNTL V GQGELGG VWE WT S S VLRKWEGFEP MELYPGYTADFFDEKHNIVLGGSWATHPRIAGRKSFVNWYQRNYPYAWVGARVVR DL

< SEQ ID NO: 139; DNA; MzEan3; Methanosalsum zhilinae>

ATG AT CAT AC AG A ATTTT AT GCCTG AG ATT GG AG A ACGTT C AGTT C A AG A A AG AC

TTTTAACTTGTTTAAGGTCTGAGCCAAAGACATTACCATCTGTGTTCTTCTATGACC

AGAAAGGTTCGGAACTGTTCGAACAAATAACAAAACTTGAAGAATATTATTTACC

TGACATTGAGATCCCACTTTTAAGATCGACTGCTAAAAAAGTTAATTCTGAACTGA

AGAACTGTAACCTTGTAGAACTCGGGAGTGGTGACTGTTCTAAGATTTCAGTGTTC

CTTGATGCAGTTCCAAAAGACATTCGTGAAACCATCATTTATTATCCAATAGATGT

TTCCAAGGATGCTATGGAAAAATCTGGTCATATTCTACAGAACAGATTCCCTGAGA

TAGGTATTCATGGAATTAATGCCGATTTCCTTGAAAGTATGGATTTAATACCTGGA

GATAGGAACAGGTTCTTCTGTTTTTTCGGGAGTACAATAGGTAATCTTACTCGTGC

TAAGACTACTGAATTCATGAAACGGCTTGGACAAGTCATGAATGAAAATGATAGG

CTTCTTCTCGGAGTTGATATGGTGAAAGATATCAATGTACTTGAGAGAGCATATAA

TGATAGTCTGGGTATTACTGCGGAGTTTAATAAGAATATTTTAAAGGTCGCAAACA

ATCATATAGGAACTGACTTTGATCCAGATGATTTTGAACATGTTGCTTTTTTCAAC

AAAGAATTTTCACGAATCGAGATGCACTTGAAAGCAAAAAGGGATCTAGTAGTTA

AAAGTGATTTGTTTAAGGAACGTATTATCTTCAAGAAAGGGGATACCATTCATACA

GAAAATTCACATAAGTATACTGTACAGCACATCTATGATATGGCAGATACTGCTG

GTCTTTTTGTATCTGATATTTATTCTGATGATAAAAAATGGTTCTCACTTGTTGAAA

TGGTGAAAGAATG

< SEQ ID NO: 140; PRT; MzEanA3; Methanosalsum zhilinae>

MIIQNFMPEIGERSVQERLLTCLRSEPKTLPSVFFYDQKGSELFEQITKLEEYYLPD IEIPL LRS T AKKVN S ELKNCNL VELGS GDCS KIS VFLD A VPKDIRETII Y YPID V S KD AMEKS G HILQNRFPEIGIHGINADFLESMDLIPGDRNRFFCFFGSTIGNLTRAKTTEFMKRLGQVM NENDRLLLGVDMVKDINVLERAYNDSLGITAEFNKNILKVANNHIGTDFDPDDFEHV AFFNKEF S RIEMHLK AKRDL V VKS DLFKERIIFKKGDTIHTEN S HK YT V QHIYDM ADT AGFF V S DI YS DDKKWFS F VEM VKE

< SEQ ID NO: 141; DNA; MzEanB3; Methanosalsum zhilinae>

ATGAAATCCATTTCAACTGATGAATTATTAGAAAACTTGCATAGATACAAAGTCAT

TGATATTAGATCTGTAGATGCTTATAATGGATGGAAGGAGAATGGGGAAAACAGA

GGTGGGCATATAAGAAGTGCAAAATCACTACCTTACAAGTGGGTAAACTACATTG

ACTGGATCGAGATCGTTAGGAGCAAGGATATTCTCCCACAAGACAAACTTGTAAT

TTACGGTTATGACTCAGAGAAAGCAGAAGAGGTTGCCAGAATGTTTGAAAAGGCT

GGTTATACTGACCTGAACATATACCCTTCTTTTTTCGAGTGGGTAGAAAGGAATCT

GCCAATGGACCGACTTGAGAGGTACCGACACTTAGTATCTCCTGATTGGCTGAACC

AATTGATAACTACCGACAATGCACCTGAATATGATAATGATAAGTATGTCATATGC

CATTGCCATTACAGAAATCCAGTGGATTATGAAAAAGGTCATATTCCAGGCTCGAT

CCCACTTGATACCAATTCACTCGAATCCGAGGATACATGGAACCGTCGTTCACCAG

AAGAACTAAAAGATGCACTTGAAAATGCAGGTATTTCCAGTGAAACAACAGTTAT

TGTATATGGAAGGTTCTCCTACCCAAAGAACGATGACCCATTTCCAGGCAGTAGC

GCGGGTCACCTTGGTGCAATGCGATGTGCATTCATAATGCTTTATGCTGGAGTCAA

GGATGTAAGGATCCTTAATGGTGGACTCCAGTCCTGGCTTGATGCAGGTTATAATG

TCACAACAGAACCTGCTAAAATAAGTAAAGTATCTTTTGGTGCCAATATTCCTTTA

AACCCTAAAATTGCTGTTGATCTTGAGGAAGCAAAGGAGATACTTTCAGACCCTG

GCAAAAAACTGGTAAGTGTCAGGAGTTGGAGAGAATATATTGGTGAAGTAAGTGG

TTATAACTATATTGAGAAAAAAGGTCGTATCCCGGGATCTGTGTTCGGGGATTGCG

GAACTGATGCTTATCACATGGAGAACTACAGGAACCTGGACCACACTATGCGAGA

ATACCATGAAATTGAAGATAAATGGAAAGAATTAGGTATAACTCCCGAAAAACGC

AATGCCTTCTATTGTGGTACTGGATGGAGAGGAAGTGAAGCATTCCTTAACGCTTG

GCTCATGGGCTGGGACAATGCAGCGGTCTTTGACGGTGGATGGTTTGAGTGGAGT

AATAATGATCTTCCTTTTGAAACAGGTGTGCCAGAAAAATGA

< SEQ ID NO: 142; PRT; MzEanB3; Methanosalsum zhilinae>

MKSISTDELLENLHRYKVIDIRSVDAYNGWKENGENRGGHIRSAKSLPYKWVNYIDW I EIVRSKDILPQDKLVIYGYDSEKAEEVARMFEKAGYTDLNIYPSFFEWVERNLPMDRL ERYRHLVSPDWLNQLITTDNAPEYDNDKYVICHCHYRNPVDYEKGHIPGSIPLDTNSL ES EDTWNRRS PEELKD ALEN AGIS S ETT VI V Y GRFS YPKNDDPFPGS S AGHLG AMRC A FIMLY AGVKD VRILN GGLQS WLD AGYNVTTEPAKIS KVSFGANIPLNPKIA VDLEE AK EILSDPGKKLVSVRSWREYIGEVSGYNYIEKKGRIPGSVFGDCGTDAYHMENYRNLDH TMREYHEIEDKWKELGITPEKRNAFYCGTGWRGSEAFLNAWLMGWDNAAVFDGGW FEW S NNDLPFETG VPEK

< SEQ ID NO: 143; DNA; metJ Escherichia coli>

ATGGCTGAATGGAGCGGCGAATATATCAGCCCATACGCTGAGCACGGCAAGAAGA

GTGAACAAGTCAAAAAGATTACGGTTTCCATTCCTCTTAAGGTGTTAAAAATCCTC

ACCGATGAACGCACGCGTCGTCAGGTGAACAACCTGCGTCACGCTACCAACAGCG

AGCTGCTGTGCGAAGCGTTTCTGCATGCCTTTACCGGGCAACCTTTGCCGGATGAT

GCCGATCTGCGTAAAGAGCGCAGCGACGAAATCCCGGAAGCGGCAAAAGAGATC

ATGCGTGAGATGGGGATTAACCCGGAGACGTGGGAATACTAA

< SEQ ID NO: 144; PRT; MetJ; Escherichia coli> M AE W S GE YIS P Y AEHGKKS EQ VKKIT V S IPLKVLKILTDERTRRQ VNNLRH ATN S ELL CEAFLHAFTGQPLPDDADLRKERSDEIPEAAKEIMREMGINPETWEY