Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
β2-MICROGLOBILIN (β2m) AND ANTI-β2m BINDING AGENTS AS ANTI-CANCER THERAPEUTICS
Document Type and Number:
WIPO Patent Application WO/2003/086307
Kind Code:
A2
Abstract:
The present invention describes the use of agents that interact with with major histocompatibility complex (MHC) HLA class I molecules, such as β2-microglobulin, or antibodies that bind to β2-mcroglobulin, for the treatment and prevention of multiple myeloma and other types of cancer. The anti-cancer therapeutics of the present invention interact with MHC molecules on the surface of the tumor cell to increase apoptosis and inhibit cell growth and proliferation. For example, in an embodiment, anti-β2-microglobulin antibodies inhibit the growth of multiple myeloma cells by over 90%. Thus, the present invention describes a new class of anti-cancer therapeutics and methods of use.

Inventors:
YI QING (US)
Application Number:
PCT/US2003/011184
Publication Date:
October 23, 2003
Filing Date:
April 10, 2003
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
UNIV ARKANSAS (US)
YI QING (US)
International Classes:
A61K38/17; C07K16/28; (IPC1-7): A61K/
Other References:
CINNINGHAM B.A. ET AL: 'The complete amino acid sequence of beta-2 microglobulin.' BIOCHEMISTRY. vol. 12, no. 24, November 1973, pages 4811 - 4821, XP002988693
JOHNSTONE A. AND THORPE R. ET AL: 'Immunochemistry in Practice.', 1987, BLACKWELL SCIENTIFIC PUBLICATIONS. pages 49 - 50, XP008050005
Attorney, Agent or Firm:
Rothschild, Cynthia B. (1001 West Fourth Street Winston-States, NC, US)
Download PDF:
Claims:
CLAIMS What is claimed is:
1. A composition to reduce tumor growth or proliferation in an individual in need thereof comprising a pharmacologically effective amount of an agent that interacts with MHC ß2n icroglobulin HLA class I molecules located on the tumor cell surface in a pharmaceutically acceptable carrier, wherein a pharmacologically effective amount of said agent comprises sufficient agent to reduce proliferation of said tumor cells.
2. The composition of claim 1, wherein said agent comprises ß2microglobulin.
3. The composition of claim l, wherein said agent comprises an antibody that binds P2 microglobulin.
4. The composition of claim 1, wherein said agent comprises (32microglobulin used in combination with an antibody that binds ß2microglobulin.
5. The composition of claim 4, wherein the use of both (32microglobulin used in combination with an antibody that binds p2microglobulin provides a greater than additive effect.
6. The composition of claim 1, wherein a pharmacologically effective amount of said agent reduces proliferation of said tumor cells by over 50%.
7. The composition of claim 1, wherein a pharmacologically effective amount of said agent reduces proliferation of said tumor cells by over 75%.
8. The composition of claim 1, wherein a pharmacologically effective amount of said agent reduces proliferation of said tumor cells by over 90%.
9. The composition of claim 1, wherein the cancer comprises multiple myeloma, lymphoma, leukemia, or a solid tumor.
10. The composition of claim 1, wherein a pharmacologically effective amount of said agent binds to MHC ß2microglobulin HLA class I molecules located on the surface of said tumor cells.
11. The composition of claim 1, wherein a pharmacologically effective amount of said agent reduces the number of MHC (32microglobulin HLA class I molecules located on the surface of said tumor cells.
12. The composition of claim 1, wherein a pharmacologically effective amount of said agent stimulates apoptosis in said tumor cells.
13. The composition of claim 12, wherein the apoptosis promoting effects of said agent are mediated at least in part by activation of caspases.
14. The composition of claim 1, wherein a pharmacologically effective amount of said agent causes changes in the cell cycle distribution of the cancer cells.
15. A composition to reduce tumor growth or proliferation in an individual in need thereof comprising a pharmacologically effective amount of an agent that binds to pz microglobulin (ß2m) in a pharmaceutically acceptable carrier, wherein a pharmacologically effective amount of said ß2microglobulin binding agent comprises sufficient agent to reduce proliferation of said tumor cells.
16. The composition of claim 15, wherein said agent that binds to ß2microglobulin (ß2m) comprises an antibody to (32microglobulin.
17. The composition of claim 16, further comprising exogenous 02microglobulin.
18. The composition of claim 16, wherein a pharmacologically effective amount of said antibody comprises a concentration at said tumor cells of 0.5 to 5, 000 pLg/inl.
19. The composition of claim 16, wherein a pharmacologically effective amount of said antibody comprises a concentration at said tumor cells of 5 to 500 FLg/ml.
20. The composition of claim 16, wherein a pharmacologically effective amount of said antibody comprises a concentration at said tumor cells of 20 to 100 plg/ml.
21. The composition of claim 15, wherein the cancer comprises multiple myeloma, lymphom, leukemia, or a solid tumor.
22. The composition of claim 15, wherein a pharmacologically effective amount of said agent reduces proliferation of said tumor cells by over 50%.
23. The composition of claim 15, wherein a pharmacologically effective amount of said agent reduces proliferation of said tumor cells by over 75%.
24. The composition of claim 15, wherein a pharmacologically effective amount of said agent reduces proliferation of said tumor cells by over 90%.
25. The composition of claim 15, wherein a pharmacologically effective amount of said agent binds to MHC (32microglobulin HLA class I molecules located on the surface of said tumor cells.
26. The composition of claim 15, wherein a pharmacologically effective amount of said agent reduces the number of MHC (32microglobulin HLA class I molecules located on the surface of said tumor cells.
27. The composition of claim 15, wherein a pharmacologically effective amount of said agent stimulates apoptosis in said tumor cells.
28. A method to reduce tumor growth or proliferation in an individual in need thereof comprising application of a pharmacologically effective amount of an agent that interacts with MHC (32microglobulin HLA class I molecules located on the tumor cell surface in a pharmaceutically acceptable carrier to said individual, wherein a pharmacologically effective amount of said agent comprises sufficient agent to reduce proliferation of said tumor cells.
29. The method of claim 28, wherein the agent comprises ß2microglobulin.
30. The method of claim 28, wherein the agent comprises an antibody that binds ß2 microglobulin.
31. The method of claim 28, wherein the agent comprises ß2microglobulin used in combination with an antibody that binds ß2microglobulin.
32. The method of claim 3 1, wherein the use of both ß2microglobulin used in combination with an antibody that binds (32microglobulin provides a greater than additive effect.
33. The method of claim 28, wherein a pharmacologically effective amount of said agent reduces proliferation of the tumor cells by over 50%.
34. The method of claim 28, wherein a pharmacologically effective amount of said agent reduces proliferation of the tumor cells by over 75%.
35. The method of claim 28, wherein a pharmacologically effective amount of said agent reduces proliferation of the tumor cells by over 90%.
36. The method of claim 28, wherein the cancer comprises multiple myeloma, lymphom, leukemia, or a solid tumor.
37. The method of claim 28, wherein a pharmacologically effective amount of said agent binds to MHC ß2microglobulin HLA class I molecules located on the surface of said tumor cells.
38. The method of claim 28, wherein a pharmacologically effective amount of said agent reduces the number of MHC (32microglobulin HLA class I molecules located on the surface of said tumor cells.
39. The method of claim 28, wherein a pharmacologically effective amount of said agent stimulates apoptosis in said tumor cells.
40. The method of claim 39, wherein the apoptosis promoting effects of said agent are mediated at least in part by activation of caspases.
41. The method of claim 28, wherein a phannacologically effective amount of said agent causes changes in the cell cycle distribution of the cancer cells.
42. A method to reduce tumor growth or proliferation in an individual in need thereof comprising application of a pharmacologically effective amount of an agent that binds to ß2 microglobulin (ß2m) in a pharmaceutically acceptable carrier to said individual, wherein a pharmacologicaly effective amount of said (3Zmicroglobulin binding agent comprises sufficient agent to reduce proliferation of said tumor cells.
43. The method of claim 42, wherein said agent that binds to ß2microglobulin (ß2m) comprises an antibody to ß2microglobulin.
44. The method of claim 43, further comprising exogenous pzmicroglobulin.
45. The method of claim 43, wherein a pharmacologically effective amount of said antibody comprises a concentration at said tumor cells of 0.5 to 5,000 ptg/ml.
46. The method of claim 43, wherein a pharmacologically effective amount of said antibody comprises a concentration at said tumor cells of 5 to 500 ptg/ml.
47. The method of claim 43, wherein a pharmacologically effective amount of said antibody comprises a concentration at said tumor cells of 20 to 100 pg/ml.
48. The method of claim 42, wherein the cancer comprises multiple myeloma, lymphom, leukemia, or a solid tumor.
49. The method of claim 42, wherein a pharmacologically effective amount of said agent reduces proliferation of said tumor cells by over 50%.
50. The method of claim 42, wherein a pharmacologically effective amount of said agent reduces proliferation of said tumor cells by over 75%.
51. The method of claim 42, wherein a phannacologically effective amount of said agent reduces proliferation of said tumor cells by over 90%.
52. The method of claim 42, wherein a pharmacologically effective amount of said agent binds to MHC ß2microgloloulin HLA class 1 molecules located on the surface of said tumor cells.
53. The method of claim 42, wherein a pharmacologically effective amount of said agent reduces the number of MHC (32microglobulin HLA class I molecules located on the surface of said tumor cells.
54. The method of claim 42, wherein a pharmacologically effective amount of said agent stimulates apoptosis in said tumor cells.
55. A kit to reduce tumor growth or proliferation in an individual in need thereof comprising : (a) at least one container comprising a pharmacologically effective amount of an agent that interacts with MHC (32microglobulin HLA class I molecules located on the tumor cell surface, wherein a pharmacologically effective amount of said agent comprises sufficient agent to reduce proliferation of said tumor cells; (b) a pharmaceutically acceptable carrier, and (c) instructions for use.
56. The kit of claim 55, wherein said agent comprises (32microglobulin.
57. The kit of claim 55, wherein said agent comprises an antibody that binds pz microglobulin.
58. The kit of claim 55, wherein said agent comprises (3Zmicroglobulin used in combination with an antibody that binds p2microglobulin.
59. The kit of claim 55, wherein the cancer comprises multiple myeloma, lymphom, leukemia, or a solid tumor.
60. The kit of claim 57, wherein a pharmacologically effective amount of said antibody comprises a concentration at said tumor cells of 0.5 to 5,000 Fg/ml.
61. The kit of claim 57, wherein a pharmacologically effective amount of said antibody comprises a concentration at said tumor cells of 5 to 500 Fg/ml.
62. The kit of claim 57, wherein a pharmacologically effective amount of said antibody comprises a concentration at said tumor cells of 20 to 100 yg/ml.
Description:
S2-MICROGLOBULIN (ß2m) AND ANTI-p2m BINDING AGENTS AS ANTI-CANCER THERAPEUTICS PRIORITY CLAIM This application claims priority to U. S. Provisional application 60/372,049, filed April 12,2002. The disclosure of U. S. Provisional application 60/372,049, is hereby incorporated by reference in its entirety.

FIELD OF THE INVENTION The present invention relates to the field of anti-cancer therapeutics. For example, the present invention describes the use of agents that interact with major histocompatibility complex (MHC) HLA class I molecules, such as antibodies that bind to 2-microglobulin, for the treatment and prevention of multiple myeloma and other types of cancer.

BACKGROUND OF THE INVENTION Cancer remains the second leading cause of death in the western hemisphere. While some types of cancer may be managed by surgery, radiation therapy and/or chemotherapy, other types of cancer are considered to be incurable.

For example, multiple myeloma (MM) is a B-cell neoplasm characterized by the accumulation of malignant plasma cells in the bone marrow. Multiple myeloma accounts for about 1% of all cancers and about 10% of all hematological malignancies. The American Cancer Society estimated that about 14,600 new cases of myeloma would be diagnosed and nearly 11,000 Americans would die from multiple myeloma in 2002. Although high-dose chemotherapy followed by autologous stem cell support may result in remission for about 50% of individuals with MM, relapses are still frequent (Barlogie B. , et al., Blood, 93: 55-65, 1999).

Thus, there is a need for better treatment modalities for multiple myeloma and other types of cancer. What is needed in cancer prevention and therapeutics are ways to either prevent tumors from forming, or to inhibit the growth of tumors once formed. Also, what is needed are agents that act specifically at the tumor cell, thus minimizing non-specific and/or toxic side effects. Preferably, the chemotherapeutic agents will comprise agents that target the cancer cells with high efficacy to either reduce cellular signals that promote cell growth, or to increase cellular signals that promote cell death.

SUMMARY The present invention describes the use of agents that interact with major histocompatibility complex (MHC) HLA class I molecules on the surface of tumor cells for the treatment of cancer. Embodiments of the present invention recognize that ß2- microglobulin and antibodies to ß2-microglobulin may interact with MHC molecules on tumor cells to inhibit the growth and proliferation of the tumor.

Thus, in one aspect, the present invention comprises a composition to reduce tumor growth or proliferation in an individual in need thereof comprising a pharmacologically effective amount of an agent that interacts with MHC (32-microglobulin HLA class I molecules located on the tumor cell surface in a pharmaceutically acceptable carrier, wherein a pharmacologically effective amount of the agent comprises sufficient agent to reduce proliferation of the tumor cells.

In another aspect, the present invention comprises a composition to reduce tumor growth or proliferation in an individual in need thereof comprising a pharmacologically effective amount of an agent that binds to ß2-microglobulin (ß2m) in a pharmaceutically acceptable carrier, wherein a pharmacologically effective amount of the ß2-microglobulin binding agent comprises sufficient agent to reduce proliferation of the tumor cells.

In another aspect, the present invention comprises a method to reduce tumor growth or proliferation in an individual in need thereof comprising application of a pharmacologically effective amount of an agent that interacts with MHC (32-microglobulin HLA class I molecules located on the tumor cell surface in a pharmaceutically acceptable carrier, wherein a pharmacologically effective amount of the agent comprises sufficient agent to reduce proliferation of the tumor cells.

In another aspect, the present invention comprises a method to reduce tumor growth or proliferation in an individual in need thereof comprising application of a pharmacologically effective amount of an agent that binds to ß2-microglobulin (ß2m) in a pharmaceutically acceptable carrier to the individual, wherein a pharmacologically effective amount of the ß2-microglobulin binding agent comprises sufficient agent to reduce proliferation of the tumor cells.

In yet another aspect, the present invention comprises a kit to reduce tumor growth or proliferation in an individual in need thereof comprising: (a) at least one container comprising a pharmacologically effective amount of an agent that interacts with MHC (3Z-microglobulin HLA class I molecules located on the tumor

cell surface, wherein a pharmacologically effective amount of said agent comprises sufficient agent to reduce proliferation of said tumor cells; (b) a pharmaceutically acceptable carrier, and (c) instructions for use.

From the foregoing summary, it is apparent that an object of the present invention is to provide methods and compositions for the use of agents that are able to interact with MHC class I molecules on the surface of tumor cells as anti-cancer therapeutics. It is also an object of the present invention to provide compositions and methods for the treatment of multiple myeloma. There are, of course, additional features of the invention which will be described hereinafter and which will form the subject matter of the claims appended hereto. It is to be understood that the invention is not limited in its application to the specific details as set forth in the following description and figures. The invention is capable of other embodiments and of being practiced or carried out in various ways.

BRIEF DESCRIPTION OF THE FIGURES FIG. 1 illustrates the cellular effects of ß2m on growth of myeloma cells in accordance with an embodiment of the present invention wherein (A) shows a dose-response of four Epstein Barr Virus (EBV) -negative cell lines in a 48-hour culture; (B) shows a time- response of the EBV-negative cell lines in cultures with or without the addition of 20 Fg/ml ß2m ; and (C) shows a dose response of two EBV-positive cell lines in a 48-hour culture. Cell growth, determined by 3H-thymidine incorporation assay, is expressed as a percentage of control. Values are expressed as the mean SD of four experiments.

FIG. 2. illustrates the proliferation of primary myeloma cells from 5 patients in response to different concentrations of P2M in accordance with an embodiment of the present invention wherein 3H-thymidine incorporation assay was performed in a 24-hour culture and cell growth is expressed as a percentage of control.

FIG. 3 illustrates ß2m-induced apoptosis in myeloma cells in accordance with an embodiment of the present invention wherein (A) shows representative dot plots showing apoptotic RPMI-8226 cells determined by propidium idodide (PI) and Annexin V staining; (B) shows representative histograms showing apoptotic RPMI-8226 cells determined by TUNEL assay using ß2m at 40 ptg/ml, where the percentage of apoptotic cells is indicated by the horizontal bar; (C) shows dose-dependent induction of apoptosis in RPMI-8226 myeloma cells by ß2m ; and (D) shows ß2m-induced apoptosis in six myeloma cell-lines (o, control

cells ; , cells treated with 40 pg/ml I P2M). Values are expressed as the mean SDof5 experiments.

FIG. 4 illustrates that IL-6, but not IGF-I, inhibits ß2m-induced apoptosis in myeloma cells in accordance with an embodiment of the present invention. Shown are percentages of apoptotic cells among ARK-RS (#) and RPMI-8226 (n) myeloma cells. Values are expressed as the mean SD of 3 experiments.

FIG. 5 illustrates that, in accordance with an embodiment of the present invention, (32m-induced apoptosis in myeloma cells involves caspase activation wherein (A) shows western blot analysis showing ß2m-induced activation and processing of caspase-3 and cleavage of PARP in RPMI-8226, ARK-RS, and ARP-1 cells, but not U266 cells; (B) shows that the pan-caspase inhibitor Z-VAD-FMK inhibits ß2m-induced cleavage of PARP in ARK- RS and RPMI-8226 cells; (C) shows P2M-induced apoptosis in RPMI-8226 cells ( (32m : 40 pg/ml in 48-hour culture); and (D) shows anti-Fas antibody-induced apoptosis in Jurkat cells (antibody: 100 ng/ml in 18-hour culture).

FIG. 6 illustrates (A) ß2m-induced changes in cell cycle distribution and (B) changes in cyclin expression in accordance with an embodiment of the present invention. Shown are the results of 4 myeloma cell lines (RPM1-8226, ARK-RS, U266, ARP-1) in response to 20 Fg/ml ß2m (n-control cells; # - ß2m-treated cells). Values in (A) are expressed as the mean SD of 3 experiments.

FIG. 7 illustrates that anti- antibodies (B2 and C21) inhibit the proliferation of (A) established myeloma cell lines (ARP-1, ARK-RS, RPM1, and U266) and (B) primary myeloma cells in accordance with an embodiment of the present invention.

FIG. 8 illustrates that anti-ß2m antibodies (B2 and C21) induced apoptosis in myeloma cells (RPMI-8226) in accordance with an embodiment of the present invention wherein (A) shows the percentage increase in apoptotic cells (% apoptotic cells in population is indicated by horizontal bar) upon exposure of RPMI-8226 myeloma cells to anti- 2m antibodies (B2 and C21), and (B) shows that anti- antibodies B2 and C21 did not block ß2m-induced apoptosis in myeloma cell lines ARK-RS (-) and RPMI-8226 (n) but induced apoptosis in the tumor cells, wherein control antibody W6/32 had no effect.

FIG. 9 illustrates induction of apoptosis in myeloma cell lines (ARK-RS and RPMI- 8226) by increasing concentrations of anti- 2m antibodies B2 and C21, as detected by

Annexin-V and propidium iodide (PI) staining in accordance with an embodiment of the present invention.

FIG. 10 illustrates that anti- antibodies (B2 and C21) induce apoptosis in myeloma cell lines (ARP-1, ARK-RS, RPMI, and U266) and primary myeloma cells isolated from 5 different patients (Pats. 1-5) in accordance with an embodiment of the present invention.

FIG. 11 illustrates that IL-6 and IGF-1 do not protect myeloma cells from B2 anti- ß2m antibody-induced apoptosis in accordance with an embodiment of the present invention.

FIG. 12 illustrates that ß2m does not block the apoptotic effect of anti-ß2m antibody B2 and enhances apoptotic effects of C21 antibody on myeloma cells in accordance with an embodiment of the present invention.

FIG. 13 illustrates that anti- antibodies (B2 and C21) do not kill normal blood lymphocytes in accordance with an embodiment of the present invention, wherein blood lymphocytes from healthy individuals, either resting (n) or phytohemagglutinin-activated (z) (PHA-act.; 3 llg/ml for 3 days), were incubated with 100 plg/ml of either B2 or C21 antibody for 48 hours.

FIG. 14 illustrates that anti-ß2m antibodies B2 and C21 do not increase apoptosis in normal CD34+ stem cells in accordance with an embodiment of the present invention.

FIG. 15 compares the apoptotic effects of anti-ß2m antibodies (B2 and C21) to dexamethasone (Dex) and melphalan (Mel) in myeloma cells (ARP-1, ARK-RS, RPMI and U266) in accordance with an embodiment of the present invention.

FIG. 16 illustrates that incubation with anti- antibodies B2 and C21 blocks the binding of FITC-conjugated anti- (32m () and FITC-conjugated HLA-ABC (n) antibodies to the cell surface of myeloma cells (RPMI-8226 and U266) in accordance with an embodiment of the present invention, wherein MFI is the mean fluorescence intensity of FITC-antibody binding.

FIG. 17 illustrates changes in surface ß2m and HLA-ABC (class I) after treatment with anti-ß2m antibodies B2 or C21 in accordance with an embodiment of the present invention, wherein MFI is the mean fluorescence intensity of the anti- and anti-HLA- ABC (class-1) FITC-conjugated antibody (as indicated by groupings on the x-axis) which binds to cells treated with B2 or C21; control are cells exposed only to medium.

FIG. 18 illustrates that anti- antibodies also kill non-myeloma tumor cells, such as lymphom and leukemia cells, that express surface MHC class I molecules in accordance with an embodiment of the present invention, wherein (A) shows HLA-ABC expression on Daudi cells and K562 leukemia cells, and (B) shows antibody-induced Annexin-V positive apoptotic cells.

DETAILED DESCRIPTION OF THE INVENTION The present invention describes the use of (3Z-microglobulin based therapeutics for the treatment and prevention of cancer. Thus, embodiments of the present invention recognize that ß2-microglobulin interacts with other molecules of the major histocompatibility complex (MHC) class I to affect an individual's ability to resist and combat tumor development. In one embodiment, application of exogenous p2-microglobulin inhibits cancer cell growth and proliferation. In another embodiment, anti-ß2-microglobulin antibodies inhibit cancer cell growth and proliferation. In yet another embodiment, ß2-microglobulin enhances the ability of (32-microglobulin antibodies to inhibit cancer cell growth and proliferation. Thus, embodiments of the present invention recognize that antibodies to (32-microglobulin interact with (32-microglobulin to invoke a synergistic inhibition of cancer cell growth.

In one aspect, the present invention comprises a composition to reduce tumor growth or proliferation in an individual in need thereof comprising a pharmacologically effective amount of an agent that interacts with MHC 02-microglobulin HLA class I molecules located on the tumor cell surface in a pharmaceutically acceptable carrier, wherein a pharmacologically effective amount of the agent comprises sufficient agent to reduce proliferation of the tumor cells.

In an embodiment, the agent comprises (3Z-microglobulin. Alternatively, the agent may comprise an antibody that binds ß2-microglobulin. In yet another embodiment, the agent comprises (32-microglobulin used in combination with an antibody that binds ß2- microglobulin. Preferably, the use of both ß2-microglobulin used in combination with an antibody that binds (3Z-microglobulin provides a greater than additive effect.

In an embodiment, the agent reduces growth or proliferation of the tumor cells significantly. Preferably, a pharmacologically effective amount of the agent reduces proliferation of the tumor cells by over 50%. More preferably, a pharmacologically effective amount of the agent reduces proliferation of the tumor cells by over 75%. Even more preferably, a pharmacologically effective amount of the agent reduces proliferation of the tumor cells by over 90%.

The compositions of the present invention are preferably effective against a wide variety of tumor types. Thus, in an embodiment, the cancer comprises multiple myeloma, lymphom, leukemia, and solid tumors including, but not limited to, breast cancer, melanoma and colon cancer.

There may be multiple mechanisms by which the compositions of the present invention exert a therapeutic effect. In an embodiment, a pharmacologically effective amount of the agent binds to MHC 2-microglobulin HLA class I molecules located on the surface of the tumor cells. Also, in an embodiment, a pharmacologically effective amount of the agent reduces the number of MHC ß2 microglobulin HLA class I molecules located on the surface of the tumor cells. Alternatively, and/or additionally, a pharmacologically effective amount of the agent stimulates apoptosis in the tumor cells. In an embodiment, stimulation of apoptosis is mediated at least in part by activation of caspases. Alternatively, and/or additionally, the agent causes changes in the cell cycle distribution of the cancer cells.

In another aspect, the present invention comprises a composition to reduce tumor growth or proliferation in an individual in need thereof comprising a pharmacologically effective amount of an agent that binds to ß2-microglobulin (ß2m) in a pharmaceutically acceptable carrier, wherein a pharmacologically effective amount of the ß2-microglobulin binding agent comprises sufficient agent to reduce proliferation of the tumor cells.

In an embodiment, the agent that binds to (32-microglobulin (p2m) comprises an antibody to (32-microglobulin. Additionally, in an embodiment, the composition further comprises exogenous ß2-microglobulin. Preferably, the use of both (32-microglobulin used in combination with an antibody that binds ß2-microglobulin provides a greater than additive effect.

In an embodiment, the agent reduces growth or proliferation of the tumor cells significantly. Preferably, a pharmacologically effective amount of the ß2-microglobulin binding agent reduces proliferation of the tumor cells by over 50%. More preferably, a pharmacologically effective amount of the (32-microglobulin binding agent reduces proliferation of the tumor cells by over 75%. Even more preferably, a pharmacologically effective amount of the (32-microglobulin binding agent reduces proliferation of the tumor cells by over 90%.

The compositions of the present invention are preferably effective against a wide variety of tumor types. Thus, in an embodiment, the cancer comprises multiple myeloma, lymphom, leukemia, and solid tumors including, but not limited to, breast cancer, melanoma and colon cancer.

The composition may comprise a specific concentration of the ß2-microglobulin binding agent. For example, in the embodiment where the (32-microglobulin binding agent comprises anti-ß2-microglobulin antibody, a pharmacologically effective amount of the antibody preferably comprises a concentration at the tumor cells of 0.5 to 5,000 plg/ml. More preferably, a pharmacologically effective amount of the antibody comprises a concentration at the tumor cells of 5 to 500 yg/ml. Even more preferably, a pharmacologically effective amount of the antibody comprises a concentration at the tumor cells of 20 to 100 plg/ml.

There may be multiple mechanisms by which the compositions of the present invention exert a therapeutic effect. In an embodiment, a pharmacologically effective amount of the (32-microglobulin binding agent binds to MHC (32-microglobulin HLA class I molecules located on the surface of the tumor cells. Also, in an embodiment, a pharmacologically effective amount of the ß2-microglobulin binding agent reduces the number of MHC P2- microglobulin HLA class I molecules located on the surface of the tumor cells. Alternatively, and/or additionally, a pharmacologically effective amount of the (3Z-microglobulin binding agent stimulates apoptosis in the tumor cells. In an embodiment, stimulation of apoptosis is mediated at least in part by activation of caspases. Alternatively, and/or additionally, the pz- microglobulin binding agent causes changes in the cell cycle distribution of the cancer cells.

In another aspect, the present invention comprises a method to reduce tumor growth or proliferation in an individual in need thereof comprising application of a pharmacologically effective amount of an agent that interacts with MHC (32-microglobulin HLA class I molecules located on the tumor cell surface in a pharmaceutically acceptable carrier, wherein a pharmacologically effective amount of the agent comprises sufficient agent to reduce proliferation of the tumor cells.

In an embodiment, the agent comprises ß2-microglobulin. Alternatively, the agent may comprise an antibody that binds ß2-microglobulin. In yet another embodiment, the agent comprises (32-microglobulin used in combination with an antibody that binds ß2- microglobulin. Preferably, the use of (32-microglobulin in combination with an antibody that binds (32-microglobulin provides a greater than additive effect.

In an embodiment, the agent reduces growth or proliferation of the tumor cells significantly. Preferably, a pharmacologically effective amount of the agent reduces proliferation of the tumor cells by over 50%. More preferably, a pharmacologically effective amount of said agent reduces proliferation of the tumor cells by over 75%. Even more preferably, a pharmacologically effective amount of the agent reduces proliferation of the tumor cells by over 90%.

The methods of the present invention are preferably effective against a wide variety of tumor types. Thus, in an embodiment, the cancer comprises multiple myeloma, lymphom, leukemia, and solid tumors including, but not limited to, breast cancer, melanoma and colon cancer.

There may be multiple mechanisms by which the methods of the present invention exert a therapeutic effect. In an embodiment, a pharmacologically effective amount of the agent binds to MHC ß2-microglobulin HLA class I molecules located on the surface of the tumor cells. Also, in an embodiment, a pharmacologically effective amount of the agent reduces the number of MHC 32-microglobulin HLA class I molecules located on the surface of the tumor cells. Alternatively, and/or additionally, a pharmacologically effective amount of the agent stimulates apoptosis in the tumor cells. In an embodiment, stimulation of apoptosis is mediated at least in part by activation of caspases. Alternatively, and/or additionally, the agent causes changes in the cell cycle distribution of the cancer cells.

In another aspect, the present invention comprises a method to reduce tumor growth or proliferation in an individual in need thereof comprising application of a pharmacologically effective amount of an agent that binds to ß2-microglobulin (ß2m) in a pharmaceutically acceptable carrier to the individual, wherein a pharmacologically effective amount of the ß2-microglobulin binding agent comprises sufficient agent to reduce proliferation of the tumor cells.

In an embodiment, the agent that binds to ß2-microglobulin (ß2m) comprises an antibody to 02-microglobulin. Additionally, in an embodiment, the composition further comprises exogenous (32-microglobulin. Preferably, the use of ß2-microglobulin in combination with an antibody that binds (32-microglobulin provides a greater than additive effect.

In an embodiment, the agent reduces growth or proliferation of the tumor cells significantly. Preferably, a pharmacologically effective amount of the (3Z-microglobulin binding agent reduces proliferation of the tumor cells by over 50%. More preferably, a pharmacologically effective amount of the (3Z-microglobulin binding agent reduces proliferation of the tumor cells by over 75%. Even more preferably, a pharmacologically effective amount of the ß2-microglobulin binding agent reduces proliferation of the tumor cells by over 90%.

The methods of the present invention are preferably effective against a wide variety of tumor types. Thus, in an embodiment, the cancer comprises multiple myeloma, lymphom,

leukemia, and solid tumors including, but not limited to, breast cancer, melanoma and colon cancer.

The methods of the present invention may employ a specific concentration of the ß2- microglobulin binding agent. For example, in the embodiment where the ß2-microglobulin binding agent comprises anti-ß2-microglobulin antibody, a pharmacologically effective amount of the antibody preferably comprises a concentration at the tumor cells of 0.5 to 5,000 gg/i-ni. More preferably, a pharmacologically effective amount of the antibody comprises a concentration at the tumor cells of 5 to 500 ptg/ml. Even more preferably, a pharmacologically effective amount of the antibody comprises a concentration at the tumor cells of 20 to 100 µg/ml.

There may be multiple mechanisms by which the methods of the present invention exert a therapeutic effect. In an embodiment, a pharmacologically effective amount of the pz- microglobulin binding agent binds to MHC (32-microglobulin HLA class I molecules located on the surface of the tumor cells. Also, in an embodiment, a pharmacologically effective amount of the (32-microglobulin binding agent reduces the number of MHC p2-microglobulin HLA class I molecules located on the surface of the tumor cells. Alternatively, and/or additionally, a pharmacologically effective amount of the ß2-microglobulin binding agent stimulates apoptosis in the tumor cells. In an embodiment, stimulation of apoptosis is mediated at least in part by activation of caspases. Alternatively, and/or additionally, the ß2- microglobulin binding agent causes changes in the cell cycle distribution of the cancer cells.

In another aspect, the present invention comprises a kit to reduce tumor growth or proliferation in an individual in need thereof comprising: (a) at least one container comprising a pharmacologically effective amount of an agent that interacts with MHC p2-microglobulin HLA class I molecules located on the tumor cell surface, wherein a pharmacologically effective amount of the agent comprises sufficient agent to reduce proliferation of the tumor cells; (b) a pharmaceutically acceptable carrier, and (c) instructions for use.

In an embodiment, the agent comprises (32-microglobulin. Also in an embodiment, the agent comprises an antibody that binds ß2-microglobulin. In yet another embodiment, the agent comprises ß2-microglobulin used in combination with an antibody that binds ß2- microglobulin.

The kits of the present invention are preferably effective against a wide variety of tumor types. Thus, in an embodiment, the cancer comprises multiple myeloma, lymphom,

leukemia, and solid tumors including, but not limited to, breast cancer, melanoma and colon cancer.

The kits of the present invention may employ a specific concentration of the P2- microglobulin binding agent. For example, in the embodiment where the (32-microglobulin binding agent comprises anti-ß2-microglobulill antibody, a pharmacologically effective amount of the antibody preferably comprises a concentration at the tumor cells of 0.5 to 5,000 lLg/ml. More preferably, a pharmacologically effective amount of the antibody comprises a concentration at the tumor cells of 5 to 500 ptg/ml. Even more preferably, a pharmacologically effective amount of the antibody comprises a concentration at the tumor cells of 20 to 100 Fg/ml.

In an embodiment, the agent reduces growth or proliferation of the tumor cells significantly. Preferably, a pharmacologically effective amount ofthe ß2-microglobulin binding agent reduces proliferation of the tumor cells by over 50%. More preferably, a pharmacologically effective amount of the (32-microglobulin binding agent reduces proliferation of the tumor cells by over 75%. Even more preferably, a pharmacologically effective amount of the (32-microglobulin binding agent reduces proliferation of the tumor cells by over 90%.

Thus, the present invention describes methods and compositions for treatment of multiple myeloma (MM) and other types of cancer. For example, the present invention describes reduction of tumor growth or proliferation by application of a composition comprising an agent that interacts with MHC ß2-microglobulin HLA class I molecules located on the tumor cell surface.

In an embodiment, the agent that interacts with MHC (32-microglobulin HLA class I molecules located on the tumor cell surface binds to the surface HLA class I molecules.

Also, and/or alternatively, the agent that interacts with MHC p2-microglobulin HLA class I molecules located on the tumor cell surface reduces the number of the surface HLA class I molecules. Also, and/or alternatively, the agent that interacts with MHC ß2-microglobulin HLA class I molecules located on the tumor cell surface stimulates apoptosis in the cells, wherein apoptosis is defined as intracellular changes leading to cell death.

An agent that interacts with MHC 02-microglobulin HLA class I molecules may comprise a protein, such as ß2-microglobulin, a polypeptide, such as a fragment of p2- microglobulin, or a functional equivalent thereof comprising conservative substitutions, wherein conservative substitutions are those substitutions which do not significantly effect the structure or function of the protein or polypeptide. Also, the polypeptide may be a

non-natural polypeptide which has chirality not found in nature, i. e. , D-amino acids in place of L-amino acids.

Alternatively, the agent that interacts with MHC ß2-microglobulin HLA class I molecules may comprise a peptidomimetic, wherein the compound has a bond, a peptide backbone or an amino acid component replaced with a suitable mimic. Examples of unnatural amino acids which may be suitable amino acid mimics include (P-alanine, L-a- amino butyric acid, L-aspartic acid, L-glutamic acid, N-£-Boc-N-a-CBZ-L-lysine, L- norleucine, L-norvaline, Boc-p-nitro-L-phenylalanine, Boc-hydroxyproline, and the like.

In another embodiment, the agent that interacts with MHC (32-microglobulin HLA class I molecules is an antibody. In one embodiment, the antibody is a monoclonal antibody.

The monoclonal antibody may be human, humanized, primatized, or a chimeric antibody. In yet another embodiment, the agent is a fragment of an antibody. For example, the agent that interacts with MHC (32-microglobulin HLA class I molecules may comprise a Fab fragment of an anti- antibody. Preferably, the Fab fragment is a F (ab') Z fragment. In an embodiment, the agent comprises the variable domain of an anti- antibody. In an embodiment, the antibody is an IgG antibody.

The present invention also describes reduction of tumor growth or proliferation by application of a composition comprising an agent that binds to (32-microglobulin located on the tumor cell surface. An agent that binds to P2-microglobulin may comprise a protein, a polypeptide or peptide fragment, or a functional equivalent thereof comprising conservative substitutions, wherein conservative substitutions are those substitutions which do not significantly effect the structure or function of the polypeptide or peptide. Also, the polypeptide may be a non-natural polypeptide which has chirality not found in nature, i. e. , D- amino acids in place of L-amino acids.

Alternatively, the agent binds to ß2-microglobulin may comprise a peptidomimetic, wherein the compound has a bond, a peptide backbone or an amino acid component replaced with a suitable mimic. Examples of unnatural amino acids which may be suitable amino acid mimics include ((3-alanine, L-a-amino butyric acid, L-aspartic acid, L-glutamic acid, N-£- Boc-N-a-CBZ-L-lysine, L-norleucine, L-norvaline, Boc-p-nitro-L-phenylalanine, Boc- hydroxyproline, and the like.

In another embodiment, the agent that binds to ß2-microglobulin is an antibody. In one embodiment, the antibody is a monoclonal antibody. The monoclonal antibody may be human, humanized, primatized, or a chimeric antibody. In yet another embodiment, the agent is a fragment of an antibody. For example, the agent binds to (32-microglobulin may comprise

an Fab fragment of an anti- antibody. Preferably, the Fab fragment is a F (ab') Z fragment.

In an embodiment, the agent comprises the variable domain of an anti-p2m antibody. In an embodiment, the antibody is an IgG antibody.

ß2-Microglobulin As A Negative Growtlz Regulator of Taunor Cells Multiple myeloma (MM) is a B-cell neoplasm characterized by the accumulation of malignant plasma cells in the bone marrow. The level of ß2-microglobulin (ß2m) is one of the most important independent prognostic factors in multiple myeloma, yielding a reliable prediction of survival (Bataille, R. , et al., Blood, 63: 468-476,1984 ; Cuzick, J. , et al., Br. J.

Cancer, 52: 1-6,1985). These data attest to an important yet unidentified role ouf pom in MM.

In vitro studies show that primary myeloma cells (Bataille, R. , et al., Cancer Invest., 6 : 271- 277,1988) and myeloma cell lines (Brenning, G. , et al., Scand. J. Hae771atol., 37: 280-288, 1986) produce high levels of ß2m. Thus, it is presumed that myeloma cells contribute to high levels of serum ß2m, which hence has been considered an indicator of tumor burden.

The MHC class I molecule, present on the surface of most nucleate cells, forms a trimolecular complex consisting of (32m, an a chain, and an antigenic peptide. In the thymus, the class l a-chain-ß2m complex affects the generation of a CD8+ cytotoxic T lymphocyte (CTL) repertoire (Blackman, M. , et al., Science, 248: 1335-1341,1990). In the periphery, the function of the class I a-chain- 2m complex is to present antigens, in the form of peptides derived from degraded endogenously synthesized proteins, to CTLs (Townsend, A. R. , and Bodmer, H., Annu. Rev. Immunol., 7: 601-624, 1989). The class I α-chain-ß2m complex also affects the target-cell sensitivity of natural killer (NK) cells and may modify the NK cell repertoire (Ljubggren, H. G. and Karre, K., Immunol. Today, 11: 237-244,1990). MHC class I molecules also serve as important signal-transducing molecules involved in the regulation or fine-tuning of immune responses (Skov. , S. , J. Tissue Antigens, 51: 215-223,1998). Ligation of MHC class I molecules on T and B cells by mobilized antibodies triggers signal transduction, which is involved in responses ranging from anergy and apoptosis to cell proliferation and IL-2 production (Skov. , S. , J. Tissue Antigens, 51: 215-223,1998 ; Skov, S., et al., J. Cell Biol., 139: 1523-1531,1997). These findings indicate that, in addition to antigen presentation, MHC class I molecules or their components play an important role in the regulation of immune responses.

ß2m is a 11. 6-kDa non-glycosylated polypeptide composed of 100 amino acids. It is part of the major histocompatibility complex (MHC) class I molecules on the cell surface of

all nucleate cells. Its best-characterized function is to interact with and stabilize the tertiary structure of the MHC class I a-chain (Bjorkman, P. J. , and Parham, P., Ann. Rev. Biochem., 59:253-288, 1990). Because it is non-covalently associated with the a-chain and has no direct attachment to the cell membrane, pzm on the cell surface can exchange with free ß2m present in serum-containing medium (Hyafil, F. , and Strominger, J. L., Proc. Natl. Acad. Sci.

U. S. A., 76. 5834-5838, 1979; Parker, K. C. , and Strominger, J. L., Biochemistry, 24. 5543- 5550,1985).

As a result of shedding from cell surfaces or intracellular release, free P2M is found in body fluids under physiological conditions. 02ni is almost exclusively catabolized within the kidney; at least 95%, and possibly 100%, of circulating ß2m is eliminated via glomerular filtration (Karlsson, F. A. , et al., Scand. J. Clin. Lab. Invest., 40: S27-S37, 1980). In normal individuals, the serum concentration of ß2m is usually <2 mg/L and the urinary excretion <400 Rg/24 hours (Revillard, J. P. , and Vincent, C., Contrib. Nephrol., 62: 44-53,1988 ; Schardijn, G. H. , and Statius van Eps, L. W., Kdney Int., 32: 635-641,1987).

Increased synthesis and release of ß2m, as indicated by an elevated serum pzm concentration, occur in autoimmune and infectious diseases (Revillard, J. P. , et al., Eur. J.

Rheumatol. Inflamm., 5: 398-405, 1982 ; Walters, M. T., et al., Ann. Rheum. Dis., 48: 905-911, 1989; Grieco, M. H. , et al., Clin. Immunol. Immunopathol., 32: 174-184,1984 ; Lifson, A. R., et al., Lancet, 339: 1436-1440,1992) and in malignancies (Campos, L. , et al., Blut, 48: 221- 226,1984 ; Bunning, R. A. , et al., J. Urol., 121: 624-625,1979), including MM (Barlogie, B., et al., Blood, 93: 55-65,1999 ; Bataille, R. , et al., Blood, 63: 468-476,1984). Thus, both T- and B-cell antigen stimulation increases cellular P2m release by cells (Sprague, S. M. and Popovtzer, M. M. , Kidney Int. , 47: 1-6, 1995). In vitro and in vivo studies demonstrate that the synthesis and release of ß2m are mediated by various cytokines. Tumor necrosis factor (TNF)-a, IL-2, and both interferon (IFN)-a and-y stimulate the synthesis and release ouf pom from various cell types in culture (Sprague, S. M. and Popovtzer, M. M., Kiclney Int., 47: 1-6, 1995). In vivo application ofTNF-a, IFN-a, or IFN-y increases serum pzm concentrations (Sprague, S. M. and Popovtzer, M. M., Kidney Il1t., 47: 1-6, 1995).

In MM and other malignancies, such as leukemias and lymphomas (Campos, L., et al., Blut, 48: 221-2261,1984 ; Bunning, R. A. , et al., J. Urol., 121: 624-625,1979 ; Bataille, R., et al., Blood, 63: 468-476,1984 ; Cuzick, J. , et al., Br. J. Cancer, 52: 1-6,1985), elevated serum levels of ß2m are present and correlate with a poor patient outcome. For example, in vitro studies have shown that primary myeloma cells and myeloma cell lines produce ß2m

(Bataille, R. , et al., Cancer Invest., 6: 271-277,1988 ; Brenning, G. , et al., Scand. J.

Hcietnatol., 37: 280-288,1986). Thus, it is presumed that myeloma cells contribute to the high levels of serum ß2m, which has therefore been considered a surrogate marker for tumor burden in myeloma patients. According to data collected from >1,000 myeloma patients at U. of Arkansas Myeloma Institute for Research and Therapy (MIRT), serum ß2m can be as high as 80 mg/L. The concentrations of ß2m in tumor sites, such as bone marrow, may be even higher.

In an embodiment, the present invention recognizes that p2M suppresses the growth and proliferation of myeloma cells. As shown in FIG. 1, the proliferation of four myeloma cell lines (ARK-RS, ARP-1, RPMI-8226, and U266) is suppressed by ß2m in a dose and time dependent manner. The anti-proliferative effects of ß2m are seen in Epstein Barr Virus negative (EBV-) cells (FIG. 1A and 1B), as well as Epstein Barr Virus positive (EBV+) cells (FIG. 1C), as well as in a majority of primary myeloma cells isolated from patients (FIG. 2).

For example, as shown in FIG. 2, ß2m inhibits the proliferation of myeloma cells isolated from four out of five myeloma patients in a dose-dependent manner.

In addition to growth inhibition, (3Z-microglobulin may induce apoptosis in myeloma cells. Thus, addition of ß2m leads to significant apoptosis in myeloma cell lines and primary tumor cells (FIG. 3). Preferably, induction is dose-dependent, with substantial apoptosis induced by doses which provide a concentration of ß2m at the cell surface of about 40 llg/ml (FIG. 3).

Apoptosis is a self-destructive process characterized by nuclear and cytoplasmic condensation, DNA fragmentation, dilation of the endoplasmic reticulum, and alterations in cell membrane composition (Bratton, S. B. , et al. , Exp. Cell. Res., 256: 27-33,2000). In mammalian cells, the onset of apoptosis usually correlates with the activation of a family of cystine proteases called caspases. Caspases can activate one another and, consequently, can initiate specific caspase cascades. Caspase-8 and-9 appear to be the apical caspases activated in apoptosis induced by death receptors and mitochondrial stress, respectively.

These caspases are responsible for activating various effector caspases, including caspases-3, - 6, and-7, which contain short prodomains.

In an embodiment, the growth factor interleukin-6 (IL-6), but not insulin-like growth factor (IGF-1), prevents the apoptosis promoting effects ouf pom (FIG. 4). Also, and/or alternatively, the apoptosis promoting effects of ß2m are mediated at least in part by activation of caspases. As shown in FIG. 5, 2m-induced apoptosis in myeloma cells

involves activation and cleavage of caspase-3 and PARP (FIG. 5A and B). Further, treatment of cells with the pan-caspase inhibitor Z-VAD-FMK inhibits induction of apoptosis and cleavage of PARP by pzm (FIGS. 5B and 5C). This caspase inhibitor also abrogates apoptosis induced by the anti-Fas antibody 7C11 (IgM, Immunotech) in Jurkat cells (FIG.

5D). Thus, treatment of cells with ß2m results in activation of caspase-3 and cleavage of PARP in myeloma ARK-RS, ARP-1 and RPMI-8226 cells.

There may be more than one pathway by which P2m acts on cancer cells. In an embodiment, ß2m arrests the progression of tumor cells through the cell cycle. For example, in an embodiment, treatment of tumor cells with ß2m causes an alteration in cell cycle distribution. Thus, in an embodiment, treatment of tumor cells with 02m results in growth arrest in Go/GI. Thus, treatment of tumor cells with ß2m may result in an increased percentage of cells in the Go/GI phases of the cell cycle and a decreased percentage in S and G2/M phases (FIG. 6A). Alternatively and/or additionally, treatment of tumor cells with 02M down-regulates cyclins A and D2 (FIG. 6B).

Agents That Bind B2-Microglobulin Inhibit Cancer Cell Growth and Proliferation The present invention recognizes that ß2m plays an important role in the regulation of tumor cell growth and proliferation. Interestingly, antibodies to P211i do not prevent ß2m- mediated inhibition of cell growth and proliferation, but also inhibit growth and proliferation of tumor cells. This is in contrast to prior descriptions of the use of ß2m as an anti-cancer therapeutic (Mori, M. , et al., Blood, 94: 2744-2753,1999 ; Mori, M., Cancer Res., 61: 4414- 4417, 2001) where anti-ß2m antibodies were found to prevent the apoptotic effects ouf pom (Mori, M., et al. , Blood, 94: 2744-2753,1999).

Thus, in one aspect, the present invention comprises a composition for the treatment of cancer growth or proliferation comprising a pharmacologically effective amount of an agent that binds to (32-microglobulin in a phannaceutically acceptable carrier, wherein a pharmacologically effective amount of the ß2-microglobulin binding agent comprises sufficient agent to reduce growth and proliferation of the cancer.

Thus, in an embodiment, pzm binding agents may suppress tumor cell growth and proliferation. For example, addition of anti- (32m antibodies to myeloma cell cultures suppresses the growth and proliferation of established myeloma cell lines (FIG. 7A) and primary myeloma cells from patients (FIG. 7B). In an embodiment, the antibody reduces proliferation of the cancer by over 50%. More preferably, the antibody reduces proliferation

of the cancer by over 75%, and even more preferably, by the antibody reduces proliferation of the cancer over 90%.

In an embodiment, anti-ß2-microglobulin antibodies induce apoptosis (FIG. 8A).

Preferably, the apoptotic effects of anti-ß2-microglobulin binding agents are not inhibited by pzm. In an embodiment, the effect of the antibody and P2M is synergistic. For example, antibody C21 displays a stronger apoptosis inducing effect when used with ß2m than when used alone (FIG. 8B).

Preferably, the apoptotic inducing effects of anti-ß2-microglobulin binding agents are seen in a large variety of cell types. For example, U266 and IM-9 cells, which are less responsive to ß2m, are also sensitive to anti-ß2m antibody-induced apoptosis (data not shown). Thus, in an embodiment, tumors which are sensitive to the apoptotic effects of anti- (32-microglobulin binding agents include myeloma tumor cells as well as lymphom, leukemia and solid tumors including, but not limited to, breast cancer, melanoma, and colon cancer.

In an embodiment, agents that bind ß2m inhibit cell growth and proliferation by induction of apoptosis. Thus, in an embodiment, anti-ß2m antibodies induce apoptosis in a large percentage of myeloma cells (FIG. 8) in a dose-dependent (FIG. 9) and time-dependent (not shown) manner. The apoptosis-inducing effects of anti-ß2m antibodies are seen in both myeloma cell lines as well as primary tumor cells isolated from patients (FIG. 10). Also, the apoptosis-inducing effect is not restricted to B2 and C21 anti- antibodies, as similar results are obtained with other anti- antibodies (data not shown).

In an embodiment, there is a preferred range of ß2m binding agent concentrations.

For example, in an embodiment, the agent comprises anti- 2m antibody. Preferably, a pharmacologically effective amount of the antibody comprises a concentration at the tumor cell of 0.5 to 5,000 ELg/ml. More preferably, a pharmacologically effective amount of the antibody comprises a concentration at the tumor cell of 5 to 500 pLg/ml. Even more preferably, a pharmacologically effective amount of the antibody comprises a concentration at the tumor cell of 12.5 to 200 Lg/i-n I (FIG. 9).

Preferably, the apoptotic effects of ß2m binding agents are not counteracted by growth factors commonly upregulated in cancer. For example, IL-6 and insulin-like growth factor (IGF-I) are growth and survival factors in myeloma cells (Kawano et al., Nature, 332: 83-85, 1988; Harding et al., Blood, 84: 3063-3070,1994 ; Georgii-Hemming et al., Blood, 88: 2250- 2258, 1996). In an embodiment, IL-6 does not protect cells against the apoptotic effect of

anti- 2m antibodies (FIG. 11). Also, in an embodiment, IGF-I does not protect cells against the apoptotic effect of anti- (32m antibodies (FIG. 11).

In an embodiment, the apoptotic effects of agents that interact with p2M is not inhibited or competed by endogenous ß2m. For example, as shown in FIG. 12, pre- incubation of anti-ß2m antibodies with a 50 to 12. 5 fold excess molar concentration ofpzm does not inhibit apoptosis induced by C21 antibody, and inhibits apoptosis induced by B2 antibody only minimally. Also, in an embodiment, the apoptotic effect ouf (32m binding agent is not inhibited by ß2m, but may be increased by pzm. For example, the apoptosis-inducing effect of antibody C21 is actually enhanced by ß2m (FIGS. 8B and 12). Thus, in an embodiment, the presence of high concentrations of soluble (32m in myeloma patients will not compromise the therapeutic potential of anti- 2m antibodies.

A problem common to many chemotherapeutic protocols currently in use is that agents that are toxic to the tumor are also somewhat toxic to normal tissue. Thus, toxicity of anti-cancer agents may severely limit the usefulness of a treatment protocol. Preferably, the agents that interact with ß2m as chemotherapeutic agents are not toxic to normal hemapoietic cells. Thus, in an embodiment, normal blood lymphocytes comprising either resting or phytohemagglutinin-activated cells (FIG. 13), and purified bone marrow CD34+ cells from healthy individuals (FIG. 14) are resistant to the apoptotic effects of anti-ß2-m antibodies.

Another problem common to many potential chemotherapeutic agents is a lack of efficacy. Melphalan and dexamethasone are chemotherapy agents commonly used for myeloma. For example, myeloma cell lines ARP-1 and ARK-RS are sensitive to dexamethasone, and RPMI-8226 and U266 are sensitive to melphalan. As shown in FIG. 15, the anti- 2m antibodies have apoptotic effects that are at least as strong as, if not stronger than, the apoptotic effects of melphalan and dexamethasone. Additionally, both anti-ß2m antibodies are effective in each of the cell lines, and not just a subset.

ß2-Microglobulin Binding Agents Interact With Cell Surface HLA Class I Molecules On The Surface Of Tunor Cells There may be multiple mechanisms by which ß2m binding agents suppress tumor growth. For example, in an embodiment, ß2-microglobulin binding agents prevent p2M from interacting with HLA class I molecules on the surface of tumor cells.

Thus, in an embodiment, anti-ß2m antibodies may bind to the cell surface via p2M class I HLA molecules. For example, myeloma cells pre-incubated with B2 antibody show

almost complete inhibition of the binding of fluorescein isothiocyanate (FITC)-labeled anti- ß2m antibody and partially reduced binding of FITC-labeled anti-HLA-ABC antibody (FIG.

16), suggesting that the B2 antibody blocks binding of other agents to MHC molecules on the cell surface. Also, cells incubated with C21 show significantly reduced binding of FITC- labeled anti- 2m antibody (FIG. 16). Thus, in an embodiment, both B2 and C21 bind to P2M on the surface of tumor cells. However, B2 binding almost completely blocks surface P2M and partially blocks HLA-ABC, whereas C21 binding significantly blocks surface pzm, but not HLA-ABC.

Alternatively and/or additionally, the anti- 2m antibodies lead to a reduction of P2M or class I molecules on the surface of the tumor cells, indicating that MHC class I molecules may be involved in (32m-and anti- 2m antibody-induced growth suppression and apoptosis in myeloma cells. For example, cells cultured in the presence of B2 and C21 anti-ß2m antibodies may have significantly lower levels of surface ß2m and/or HLA class I a chain on the cell surface than cells cultured in the absence of anti- antibodies (FIG. 17). For example, culturing of myeloma cells in the presence of B2 anti-ß2m antibody results in greater than 2-3 fold reduction in cell surface P21-n and a chain. In contrast, culturing of myeloma cells in the presence of C21 anti-ß2m antibody results reduction in cell surface ß2m, but less reduction in the cell surface a chain (FIG. 17).

The present invention recognizes that the anti-proliferative effect of anti-ß2m antibodies is not limited to myeloma cells, but is found for other tumor cells having HLA class I molecules on the cell surface. For example, in an embodiment, anti- 2m antibodies inhibit growth and proliferation of lymphom, leukemia, and solid tumors including, but not limited to, breast cancer, melanoma, and colon cancer. As shown in FIG. 18, B2 and C21 anti-ß2m antibodies are not effective in inducing apoptosis in tumor cells that do not express HLA-ABC class I molecules (Daudi), but are effective in inducing apoptosis in K562 leukemia cells that express low levels of HLA-ABC class I molecules.

Therapeutics The invention contemplates methods of administration of the compositions of the present invention which are well known in the art. A pharmaceutically acceptable carrier comprises substances commonly used in pharmaceutical formulations suitable for human use.

For example, in an embodiment, administration of the compositions of the present invention is oral. Also, administration may employ a time-release capsule. In another embodiment,

administration of the composition is by intravenous, intra-arterial, or intraperitoneal injection.

In another embodiment, the method of administration is by a transdermal patch. In yet another embodiment, administration is as an aerosol. In another embodiment, administration is sublingual. In yet another embodiment, administration is transrectal, as by a suppository or the like.

Pharmaceutical formulations comprising pharmaceutically acceptable carriers can be prepared by procedures known in the art. For example, the compositions of the present invention can be formulated with common excipients, diluents, or carriers, and formed into tablets, capsules, suspensions, powders, and the like. Examples of excipients, diluents, and carriers that are suitable for such formulations include the following: fillers and extenders such as starch, sugars, mannitol, and silicic derivates; binding agents such as carboxymethyl cellulose and other cellulose derivatives, alginates, gelatin, and polyvinyl pyrrolidone ; moisturizing agents such as glycerol; disintegrating agents such as agar, calcium carbonate, and sodium bicarbonate; agents for retarding dissolution such as paraffin; resorption accelerators such as quaternary ammonium compounds; surface active agents such as cetyl alcohol, glycerol monostearate; adsorptive carriers such as kaolin and bentonite; and lubricants such as talc, calcium and magnesium stearate, and solid polyethyl glycols.

The compositions of the present invention can also be formulated as elixirs or solutions for convenient oral administration or as solutions appropriate for parenteral administration, for instance by intramuscular, subcutaneous or intravenous routes. For example, dissolution in a physiological solution such as a buffered saline is appropriate for intravenous administration. Additionally, the compounds are suited to formulation as sustained release dosage forms and the like. The formulations can be so constituted that they release the active ingredient only or preferably in a particular part of the intestinal tract, possibly over a period of time. The coatings, envelopes, and protective matrices may be made, for example, from polymeric substances or waxes.

The therapeutic efficacy of exogenous compounds can be determined by standard pharmaceutical procedures in cell cultures or experimental animals using procedures known in the art. The dose ratio between toxic and therapeutic effects is the therapeutic index and may be expressed as LDo/EDso, wherein LDso is understood to represent the dose which is toxic to 50% of the subjects and EDso is understood to represent the dose which is effective in 50% of the subjects. Generally, compounds which exhibit large therapeutic indices are preferred. Administration of the compound may be hourly, daily, weekly, monthly, yearly or a single event.

In an embodiment, the dose of ß2m, ß2m-binding agent, or other MHC-binding agent required for inhibition of cancer cells comprises levels of the agent that may be used pharmacologically in animals and humans. For example, in preferred embodiments, the level of anti-ß2m antibody at the tumor cells comprises from 01. µg/ml to 2, 000 ug/ml, more preferably, from I ptg/ml to 500 plg/ml, and even more preferably, from 5 u. g/ml to 200 µg/ml.

Alternatively, in preferred embodiments, the level of ß2m at the tumor cells comprises from 0.1 µg/ml to 2,000 µg/ml, more preferably, from 1 µg/ml to 200 Ftg/ml, and even more preferably, from 5 µg/ml to 100 µg/ml.

Also, the ability of ß2m, a ß2m-binding agent, or other MHC-binding agents to inhibit tumor growth may a function of cell division and the length of the cell cycle. Thus, application of the ß2m, ß2m-binding agent, or other MHC-binding agent may be hourly, daily, or over the course of weeks. Thus, preferably, the effective amount of the ß2m, (32m-binding agent, or other MHC-binding agent comprises from about 1 ng/kg body weight to about 300 mg/kg body weight. More preferably, the effective amount of the ß2m, ß2m-binding agent, or other MHC-binding agent comprises from about 1 µg/kg body weight to about 100 mg/kg body weight. Even more preferably, the effective amount of the P21n, a ß2m-binding agent, or other MHC-binding agent comprises from about 10 µg/kg body weight to about 50 mg/kg body weight.

Alternatively, a continuous level of ß2m, a ß2m-binding agent, or other MHC-binding ranging from about 0. 005-10, 000 µg/kg/hour, or more preferably, 0.1-2, 000 pg/kg/hr, or even more preferably 1. 0-1,000 µg/kg/hour may be employed. The actual effective amount will be established by dose/response assays using methods standard in the art. Thus, as is known to those in the art, the effective amount will depend on bioavailability, bioactivity, and biodegradability of the compound.

EXAMPLES The present invention may be better understood by reference to the following non- limiting examples.

Example 1: Materials And Methods A. Reagents Purified human ß2m was purchased from Sigma Corp. (St. Louis, MO). According to information from the manufacturer, the protein is purified from human urine, and its purity is

>98% by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). To ensure its purity, the P21-n protein (10 g) was analyzed by SDS-PAGE with a 4.5% stacking and 15% resolving gel under denaturing conditions; no contaminating proteins were detected (data not shown).

Neutralizing monoclonal antibodies against Fas (clone ZB4), tumor necrosis factor (TNF) receptor (TNFR, clone 16803.1), and TNF-related apoptosis-inducing ligand (TRAIL) receptor-2 (TRAILR-2) were purchased from Immunotech (Marseille, France), Oncogene Research Products (Boston, MA), and Calbiochem-Novabiochem Corp. (La Jolla, CA), respectively. Antibodies against P2ni (clones B2 and C21) were obtained from Serotec Ltd.

(Oxford, UK), and an MHC-blocking antibody, W6/32, was kindly provided by Dr. M.

Cannon (Department of Immunology and Microbiology, University of Arkansas for Medical Sciences, Little Rock, AR). Antibodies that contain sodium azide were dialyzed against phosphate-buffered saline (PBS) overnight.

B. Myeloma cell lines and primary tumor cells The U266, RPMI-8226, ARH-77, and IM-9 human myeloma-derived cell lines were obtained from the American Type Culture Collection (Rockville, MD). The ARP-1 and ARK-RS cell lines were established at the Arkansas Cancer Research Center from bone marrow aspirates of patients with MM (Harding, J. , et al., Blood, 84: 3063-3070,1994) and provided by Dr. J. Epstein. These cell lines, except ARH-77 and IM-9, are negative for Epstein-Barr virus (EBV). Cells were cultured in RPMI-1640 (Gibco, Grand Island, NY) containing 10% heat-inactivated (56°C for 30 min) fetal bovine serum, 100 U/ml penicillin, 100 llglml streptomycin, and 4 mmol L-glutamine (Gibco).

Primary myeloma cells were isolated from bone marrow aspirates obtained from patients during a routine clinic visit. Institutional Research Board-approved consent forms are kept on file. Briefly, bone marrow mononuclear cells were separated by Ficoll-Paque (Amersham Pharmacia Biotech, Piscataway, NJ) density-gradient centrifugation. CD138+ cells were isolated by incubation with anti-CD138 antibody-conjugated microbeads and sorted by VarioMACS magnetic cell-sorting kit (Miltenyi Biotec GmbH, Bergisch Gladbach, Germany), according to the manufacturer's recommendations. The sorted CD138+ cell populations contained >90% myeloma plasma cells (Yi, Q. , et al., Blood, 90: 1960-1967, 1997). Freshly sorted cells were used in most of the experiments.

C. Cell proliferation or growth assay

Myeloma cells (1 x 105/ml for cell lines and 0.5-1 x 106/ml for primary cells) were cultured in complete medium. For experiments with 02ni or anti- antibody that bind ß2m, cells were cultured in the absence or the presence of ß2m for up to 120 hours or anti- 2m antibody for up to 48 hours. Viable cells were determined by trypan blue (Gibco) exclusion.

DNA synthesis was assayed by 3H-thymidine incorporation using I ptCi/well of 3H-thymidine (Dupont-NEN; NEN Life Science Products, Inc. , Boston, MA) added 6 hours before harvesting onto glass fiber filters. Radioactivity was measured in a liquid scintillation analyzer (Packard, Meriden, CT). Experiments were performed in triplicate, and cell growth was expressed as a percentage of that seen in control media.

D. Apoptosis assays and caspase inhibitor The fraction of apoptotic cells was determined by staining cells with Annexin V- fluorescein isothiocyanate (FITC) (Immunotech) and propidium iodide (PI) (Sigma) (Vermes, I., et al., J. Immunol. Methods, 184: 39-51,1995). Myeloma cells were incubated in medium containing various concentrations of ß2m, or anti- antibody, or both, for 48 hours and then resuspended in Annexin V-binding buffer. 5 tl of Annexin V-FITC (BD PharMingen, San Diego, CA) were added and incubated for 30 minutes. After washing and re-suspension of the cells in the binding buffer, 5 ul of PI were added, and the cells were ready for analysis.

Percentages of apoptotic cells are the sum of PI~/Annexin V (newly apoptotic) and PI+/Annexin V+ (already apoptotic) cell populations (Vermes, I., et al., J. Immunol. Methods, 184: 39-51,1995).

To confirm cell apoptosis induced by ß2m and anti-ß2m antibodies, the terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay was also employed. A flow cytometry-based cell death detection kit (APO-BRDU) was purchased from BD PharMingen, and experiments were performed according to the manufacturer's protocol.

E. Caspase Inhibitor A pan-caspase inhibitor, z-Val-Ala-Asp-fluoromethyl ketone (Z-VAD-FMK) or caspase I inhibitor V, was purchased from Calbiochem-Novabiochem. This peptide was dissolved in dimethylsulfoxide (DMSO, Sigma) and added to cell suspensions at a final concentration of 100 uM (final DMSO concentration of 0.25%).

F. Cell cycle analysis To determine the effect of ß2m, or anti- antibodies, on cell cycle progression, 5- bromo-2'-deoxyuridine (BrdU, Sigma) incorporation was used (Gratzner, H. G., Science,

218: 474-475,1982). Briefly, after treatment with the agent of interest, cells were incubated for 2 hours with 20 uM BrdU, fixed with 70% ethanol overnight, washed with PBS, and incubated in 2 M hydrochloride for 20 minutes. After washing, FITC-conjugated anti-BrdU antibody (Becton Dickinson, Franklin Lakes, NJ) was added and incubated for 20 minutes, followed by washing and incubation with ribonuclease (100 llg/ml RNase, Sigma) and PI (50 Fg/ml). Cells were analyzed by flow cytometry.

G. Flow cytometry analysis of cell surface antigens The expression of various surface molecules, such as HLA-ABC, P2m, Fas, and FasL, was determined by direct immunofluorescence using antibodies conjugated with FITC (anti- HLA-ABC and anti-Fas, Immunotech; anti- (32m, Sigma) and phycoerythrin (PE) (anti-FasL, Caltag Laboratories, Burlingame, CA). After staining, cells were resuspended in PBS and analyzed by a FACScan flow cytometer (Becton Dickinson), as described previously (Yi, Q., et al., Neurology, 42: 1081-1084,1992).

H. Western blotting detection of cyclins Cells were cultured with or without 40 pg/ml ? 2m for 48 hours, harvested, washed, and lysed with lysis buffer (50 mM Tris, pH 7.5, 140 mM NaCI, 5 mM EDTA, 5 mM NaN3,1% Triton-X-100, 1% NP-40, Ix protease inhibitor cocktail). To detect cyclins A, D (D1 and D2), and E, cell lysates were subjected to SDS-PAGE, transferred to polyvinylidene difluoride membrane, and immunoblotted with respective anticyclin antibodies (Santa Cruz Biotechnology, Inc. , Santa Cruz, CA). The membrane was stripped and reprobed with anti-P- actin antibody (Santa Cruz Biotechnology) to ensure equivalent protein loading. For detection of caspase-3 activation and cleavage of poly (ADP-ribose) polymerase (PARP), the membranes were immunoblotted with anti-caspase-3 antibody (Santa Cruz Biotechnology) or anti-PARP antibody (BD PharMingen). Secondary antibodies conjugated to horseradish peroxidase were used for detection, followed by enhanced chemiluminescence (Bio-Rad Laboratories, Hercules, CA) and autoradiography.

I. Statistical analysis The Student's t test was used to compare various experimental groups; significance was set at P < 0.05.

Example 2: B2m Suppresses The Growth Of Myeloma Cells In Vitro These experiments investigated whether ß2m suppresses the growth of myeloma cells.

Pure myeloma cells are completely free of Epstein Barr Virus (EBV-), whereas other tumor

cell types may be EBV+. Initial experiments tested the effect of (32m on the growth of four EBV-negative myeloma cell lines. The proliferation of ARK-RS, ARP-1, RPMI-8226, and U266 cells was suppressed by P2M in a dose-dependent (FIG. 1A) and time-dependent (FIG.

1B) manner, as detected by 3H-thymidine incorporation assay (P < 0.05 and 0.01, respectively) and viable cell counts (data not shown). ß2m also suppressed the growth of two EBV-positive cell lines derived from myeloma patients, ARH-77 and IM-9 (P < 0.05 and 0.01, respectively) (FIG. 1 C). These results indicate that ß2m can also affect non-myeloma cells such as lymphoma cells. To ensure that the growth-regulatory effect was indeed mediated by P2m, other highly purified human urine P2M from Calbiochem-Novabiochem and a recombinant human ß2m from Serotec on these cells were tested and similar results were obtained (data not shown).

Next, the effect of pzm on primary myeloma cells was examined. Purified tumor cells from 5 patients with MM were cultured for 24 hours in the presence of various concentrations of P2m. As shown in FIG. 2, P2ni inhibited the proliferation of cells from 4 of these patients in a dose-dependent manner (patient nos. 1,2, 4, and 5; P < 0.05). ß2m had no apparent effect on cells from patient no. 3. Primary myeloma cells from 3 patients (nos. 1,3, and 5) were tested twice, and similar results were obtained (data not shown), indicating a high reproducibility of the results. Thus, ? 2m was found to suppress ex vivo the growth of primary myeloma cells from a majority of MM patients.

Example 3: ß2m Induces Apoptosis In Myeloma Cells.

In addition to growth inhibition, ß2m also induces apoptosis in myeloma cells. As exemplified by the experiments depicted in FIG. 3, the addition of (32m led to a significant induction of apoptosis (P < 0. 01) in myeloma cells (RPMI-8226), as determined by Annexin V and PI staining (FIG. 3A) and TUNEL assay (FIG. 3B). The induction of apoptosis was dose-dependent (FIG. 3C). A summary of ß2m-induced apoptosis in all six cell lines is shown in FIG. 3D. The degree of apoptosis was higher in RPMI-8226, ARK-RS, and ARH- 77 cells (P < 0.01, p< 0.05, and p < 0.05, respectively) than in other cell lines. These results were confirmed by both apoptosis assays.

Induction of apoptosis in primary myeloma cells by ß2m was examined in two patients (nos. 1 and 5), as enough cells were obtained from these two patients. The addition of 20

llg/ml, 82m to these primary myeloma cells for 24 hours resulted in an increase in apoptotic cells. Thus, 20% of the untreated cells from patient 1 were apoptotic as opposed to 38% of the treated cells. Also, 30% of the untreated cells from patient 5 were apoptotic, versus 45% of the treated cells. These results are consistent with the cell proliferation data discussed above.

Interleukin-6 (IL-G) and insulin-like growth factor I (IGF-I) are growth and survival factors for myeloma cells (Kawano et al., Nature, 332: 83-85,1988 ; Harding et al., Blood, 84: 3063-3070,1994 ; Georgii-Hemming et al., Blood, 88: 2250-2258,1996). Tests were conducted to determine whether the addition of recombinant human IL-6 or IGF-I (both from R&D Systems, Inc., Minneapolis, MN) to cultures may counteract the effects ouf pom on myeloma cells. Representative results are shown in FIG. 4, and demonstrate that while addition of IL-6 (20 ng/ml) or IGF-I (50 ng/ml) reduced the percentage of cells undergoing spontaneous apoptosis, only IL-6 protected myeloma cells from (32m-induced apoptosis.

Example 4: (32m-Induced Apoptosis Depends On Caspase Activation Various types of apoptosis, such as receptor-mediated or stress-induced apoptosis, depend on the activation of caspases. To investigate whether caspase cascades participate in P2m-induced apoptosis, activation of caspase-3 and subsequent cleavage of PARP were investigated by Western blotting with specific antibodies. Treatment of cells with ß2m resulted in activation and processing of caspase-3 and cleavage of PARP in ARK-RS, ARP-1, and RPMI-8226 cells, but not in U266 cells (FIG. 5A). When the pan-caspase inhibitor Z- VAD-FMK was added to the culture, activation and processing of caspase-3 (data not shown), cleavage of PARP (FIG. 5B), and apoptosis (FIG. 5C) were inhibited. As a control, this caspase inhibitor also abrogated apoptosis induced by the anti-Fas antibody 7C11 (IgM, Immunotech) in Jurkat cells (FIG. 5D). Thus, these results demonstrate that ß2m-induced apoptosis in myeloma cells involves caspase cascades.

Example 5: ß2m-Induced Apoptosis Is Independent of Fas/FasL, TNF-a/TNFR, and TRAIL/TRAILR-2 Systems.

To investigate whether P2111-induced apoptosis is mediated by the Fas/FasL, TNF- a/TNFR, or TRAIL/TRAILR-2 systems, the effect of neutralizing antibodies against Fas,

TNFR, or TRAILR-2 was examined, with each at a concentration of 10 pg/ml. In the preliminary studies, the antibodies were able to block FasL-and TRAIL-induced apoptosis in Jurkat and ARP-1 myeloma cells (data not shown). Because ß2m had strong effects on ARK- RS and RPMI-8226 cells, these two cell lines were chosen for the studies. None of the neutralizing antibodies had an inhibitory effect on ß2m-induced apoptosis in the tumor cells (data not shown), suggesting that these pathways are not involved. These results are supported by flow cytometry analysis showing that only 1-5% of the myeloma cells expressed Fas or FasL. After treatment with ß2m, no obvious upregulation of the antigens was noted (data not shown). Furthermore, the anti-Fas antibody 7C 11, which has a strong apoptosis-inducing effect on Jurkat cells (FIG. 5D), had no effect on the myeloma cells (data not shown).

Example 6: ß2m Arrests Cell Cycle Progression Cell cycle analysis of exponentially growing cells demonstrates that treatment with P2M for 48 hours results in alterations in cell cycle distribution. An increased percentage of cells in Go/Gl phases and a decreased percentage in S and G2/M phases were observed in ARK-RS, ARP-1, and RPMI-8226 cells, but not in U266 cells (FIG. 6A), suggesting that a Go/Gi growth arrest was induced in these three cell lines. Furthermore, Western blot analysis revealed that ? 2m treatment downregulated cyclins A and D2, but not cyclins D1 or E, in these three cell lines (FIG. 6B), providing further support for ß2m-induced growth arrest in myeloma cells. Taken together, these findings indicate that ß2m affects the growth and survival of most myeloma cell lines and primary tumor cells by inhibiting cell proliferation and inducing apoptosis and growth arrest in the tumor cells.

Example 7: Anti-ß2m Antilsodies Suppress Tumor Cell Growth and Induce Apoptosis in Myeloma Cells To examine whether anti- 2m antibodies had any effect on myeloma cell growth or proliferation, or could block the effect of ß2m, two commercially available B2 and C21 monoclonal antibodies (both from Serotec Inc. , Raleigh, NC) were used. Antibody B2 binds to both soluble and surface-bound ß2m, and antibody C21 appears to bind only to soluble ß2m (Liabeuf, A. , et al., J. I} us101., 127: 1542-1548, 1981). W6/32, an antibody that binds to

mature class I molecules (Ladasky, J. J. , et al., Innnunogenetics, 49: 312-320,1999), and purified mouse IgG, were used as controls.

Surprisingly, addition of nanti-pom antibodies to myeloma cell cultures strongly suppressed the growth of established myeloma cell lines (FIG. 7A) and primary myeloma cells from patients (FIG. 7B). The effect was stronger with B2 antibody than C21, but both antibodies significantly inhibited cell growth. Data were obtained with antibodies at 100 g/ml in 48-hour culture, and the 3H-thymidine incorporation assay was used.

As shown by the experiments depicted in FIG. 8A, both antibodies B2 and C21 induced apoptosis (P < 0.01) on RPMI-8226 cells (P < 0.01). Also, surprisingly, it was found that the apoptotic effects of 2m was not prevented by anti- antibodies. In fact, the apoptotic effect ouf pom was enhanced by C21 ant-ß2m antibody (FIG. 8B). These results suggest that there is complex mode of interaction at the tumor cell surface for various components of the MHC P2m HLA class I molecules, which when disrupted, can lead to cell death.

Significant induction of apoptosis by the antibodies was also observed at about a 10- fold lower concentration (12.5 llg/ml) of the antibodies and in other cell lines, including ARK-RS and RPMI-8226 (FIG. 9). Incubation of the cells with W6/32 or mouse IgG did not induce apoptosis in myeloma cells (FIG. 8).

The apoptotic response was dose-dependent (FIG. 9) and time-dependent (data not shown). Four established myeloma cell lines (ARP-1, ARK-RS, RPMI, U266) and primary myeloma cells from five patients (Pats. 1-5) were found to be sensitive to anti-p2m antibody- induced apoptosis (FIG. 10). In these experiments, data were obtained with antibodies at 100 Fg/ml in a 48-hour culture for myeloma cell lines or in a 24-hour culture for primary myeloma cells. The apoptotic effect of the antibodies was not counteracted by IL-6 or IGF-I (FIG. 11). This insensitivity to cytokines was observed even when the cells were preincubated with the cytokines for 4 hours before the anti-ß2m antibodies were added (data not shown). The apoptosis-inducing effect was not restricted to these two anti-ß2m antibodies, as similar results were obtained with other commercially available anti-ß2m antibodies (data not shown).

Example 8: ß2m Does Not Block the Apoptotic Effects of Anti-ß2m Antibodies As both ß2m and anti-ß2m antibodies induced apoptosis in myeloma cells, experiments were performed to examine whether preincubating ß2m and nanti-pom antibodies

could reduce the apoptotic capacity of anti- (32m antibodies. FIG. 12 depicts a representative experiment in which the anti-P2m antibodies (50 llg/ml ; molecular weight of IgG : 150 kDa) were preincubated with much higher molar concentrations ouf pom (12.5-50 pg/ml ; molecular weight ouf pom : 11. 6 kDa) before cells were added. The apoptosis-inducing effect of antibody B2 was slightly reduced by pzm, while that of antibody C21 was enhanced by addition of ß2m. These results were reproduced in numerous experiments using the same or different myeloma cells. These findings indicate that the presence of high concentrations of soluble 02M in myeloma patients will not compromise the therapeutic potential of anti-ß2m antibodies.

Example 9: Anti- 2m Antibodies Do Not Kill Normal Hematopoietic Cells To determine whether anti- 2m-antibodies can be used clinically, experiments were performed to examine whether the antibodies would be toxic (i. e., induce apoptosis) in normal blood cells. Incubation of blood lymphocytes from healthy individuals, using either resting or phytohemagglutinin (3 plg/ml for 3 days) -activated cells (PHA-act. ), with 100 pg/ml of either B2 or C21 antibody for 48 hours did not increase the percentage of apoptotic cells (FIG. 13, data from two healthy donors). Rather, the treatment decreased the percentage of apoptotic cells compared with that of culture with medium only. More importantly, purified bone marrow CD34+ stem cells from healthy individuals (purchased from BioWhittaker Inc. , Walkersville, MD) were also resistant to anti- antibody- mediated apoptosis (FIG. 14). Interestingly, as with lymphocytes, addition of the antibodies (100 pg/ml) also reduced the percentages of apoptotic stem cells. These results suggest that anti-ß2m antibodies do not kill normal hematopoietic cells, including CD34+ stem cells.

Example 10: Anti-ß2m Antibody-induced Apoptosis in Myeloma Cells Is Stronger Than That Observed with Melphalan and Dexamethasone Melphalan and dexamethasone are commonly used chemotherapy drugs for myeloma.

Myeloma cell lines ARP-1 and ARK-RS are sensitive to dexamethasone, and RPMI-8226 and U266 are sensitive to melphalan. To investigate the potential potency of anti-ß2m antibodies in relation to known chemotherapeutics, killing of myeloma cells by nanti-pom antibodies was compared to killing of these cells by the chemotherapy agents. As shown in FIG. 15, the anti- antibodies (100 pg/ml), especially B2, had apoptosis-inducing effects that were at least as strong as the chemotherapy drugs, even though the drug concentrations

were higher (20-100 pM) than typically employed in vitro (1-10 pM) (Georgii-Hemming, P. , et al., Blood, 88: 2250-2258,1996 ; Harding, J. , et al., Blood, 84: 3063-3070,1994).

Additionally, both antibodies displayed apoptotic effects on all four of the cell lines. These results suggest that anti- antibodies may be more potent than these two chemotherapy drugs in killing myeloma cells.

Example 11: Modulation of Surface Class I Molecules on Myeloma Cells by Anti-ß2m Antibodies-Both B2 and C21 Bind to Surface pzm Experiments were performed to test whether anti- antibodies can bind to the cell surface and block the subsequent binding of the FITC-conjugated antibodies to cell surface recognition sites. Myeloma cells were incubated with B2 or C21 antibodies at 4°C (on ice) for 30 minutes, washed three times, and stained with the FITC-conjugated antibodies. As shown in FIG. 16, cells incubated with B2 show almost complete inhibition of the binding of FITC-conjugated anti-ß2m antibody and partially reduced binding of FITC-conjugated anti- HLA-ABC antibody. Cells incubated with C21 also had significantly reduced binding of FITC-conjugated anti- antibody, but the binding of FITC-conjugated anti-HLA-ABC antibody was not affected. These results suggest that both B2 and C21 bind to surface ß2m.

However, B2 binding almost completely blocks surface P2111 and partially blocks HLA-ABC, whereas C21 binding significantly blocks surface P2ni but not HLA-ABC.

Experiments were also performed to investigate whether anti- antibodies can alter Class I MHC molecules on the cell surface. Myeloma cells were cultured with or without anti- 2m antibodies (100 tg/nil) for 48 hours and analyzed for the surface expression of MHC class I molecules with the use of fluorescein isothiocyanate (FITC) -conjugated anti- P2m antibody (GJ14; Oxford Biotechnology Ltd. , Raleigh, NC) and anti-HLA-ABC antibody (clone B9.12. 1, recognizing a monomorphic epitope common to HLA-A, -B and-C molecules; Immunotech Inc. , Miami, FL). As shown in FIG. 17, it was found that treatment of the cells with antibody B2 resulted in a significant reduction in the binding of FITC- conjugated anti-ß2m and FITC-conjugated anti-HLA-ABC antibodies to the cell surface. In contrast, treatment with antibody C21 significantly reduced the binding of FITC-conjugated anti-ß2m antibodies, but not the binding of FITC-conjugated anti-HLA-ABC antibodies.

Treatment with control antibody W6/32 had no effect on the level of surface ß2m or the oc chain (data not shown). Previous work suggests that C21 anti-ß2m antibody cannot bind to the cell surface (Liabeuf, A. , et al., J. Immunol., 127: 1542-1548,1981). Thus, the data

suggests that anti- 2m antibody B2 binds to surface ß2m and blocks the binding of staining antibodies and/or downregulates surface HLA-ABC molecules, whereas C21 depletes surface P2M from class I molecules.

The determination that the binding of B2 and C21 significantly blocks surface ß2m (FIG. 16) may explain the observed dramatic reduction of surface ß2m (FIG. 17). A reduction in surface FILA-ABC molecules, however, was also noted on the cell surface after B2 treatment (FIG. 17), which might be a result of partial blockage of the HLA-ABC molecules by B2 binding to P2M (FIG. 16) and/or a decreased density of the molecules.

Example 12: Effects of B2 and C21 on Daudi and K562 Cells Because MHC class t molecules are implicated in the mechanism of ß2m-mediated apoptosis, experiments were performed to determine whether anti- 2m antibodies would prevent the growth of tumor cells that express low levels of class I molecules or do not express any class I molecules. HLA-ABC is absent on Daudi cells, due to a defect in p2M mRNA expression, and is only weakly expressed on K562 leukemia cells (FIG. 18A). In these experiments, Daudi and K562 cells were incubated with B2 and C21 (100 llg/ml) and analyzed for the percentage of apoptotic cells measured as Annexin-V-positive cells after culture. As shown in FIG. 18B, anti- 2m antibodies had no obvious effect on Daudi cells, but were able to kill a small percentage of the K562 leukemia cells. As K562 cells express a low level of HLA-ABC and perhaps other MHC class I molecules, they are more sensitive to B2-induced apoptosis. The results are consistent with the evidence indicating that B2 may be more potent than C21 in killing HLA-ABC-positive myeloma cells, and that nanti-pom antibodies mediate their effects, at least in part, via MHC class I molecules. These results also indicate that anti- (3zm antibodies are effective against non-myeloma cells that express HLA-ABC molecules.

It should be understood that various changes and modifications to the presently preferred embodiments described herein will be apparent to those skilled in the art. Such changes and modifications can be made without departing from the spirit and scope of the present invention and without diminishing its attendant advantages.