Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
MODIFIED POLYUNSATURATED FATTY ACIDS
Document Type and Number:
WIPO Patent Application WO/1996/011908
Kind Code:
A1
Abstract:
The present invention provides polyunsaturated fatty acid compounds having antimalarial and/or neutrophil stimulatory activity. The polyunsaturated fatty acids contain 18-25 carbons and 1-6 double bonds and are characterized in that they have one or two substitutions selected from the group consisting of 'beta' oxa, 'gamma' oxa, 'beta' thia and 'gamma' thia. It is also preferred that the polyunsaturated fatty acid compound includes a further substitution selected from the group consisting of hydroxy, hydroperoxy, peroxy, carboxymethyl substitutions or attached to an amino acid. The invention also provides a method of producing an unsaturated oxa substituted fatty acid comprising reacting an unsaturated fatty acid alcohol with a carbene that is inserted in the OH bond of the alcohol. The invention further provides a method of treating inflammation with a composition comprising at least one hydroxy, hydroperoxy or peroxy derivative of a polyunsaturated fatty acid having a C18-24 carbon chain and 1-6 cis or trans double bonds.

Inventors:
FERRANTE ANTONIO (AU)
POULOS ALFRED (AU)
EASTON CHRISTOPHER JOHN (AU)
PITT MICHAEL JOSEPH (AU)
ROBERTSON THOMAS ALISTAIR (AU)
RATHJEN DEBORAH ANN (AU)
Application Number:
PCT/AU1995/000677
Publication Date:
April 25, 1996
Filing Date:
October 13, 1995
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
PEPTIDE TECHNOLOGY LTD (AU)
WOMENS & CHILDRENS HOSPITAL (AU)
FERRANTE ANTONIO (AU)
POULOS ALFRED (AU)
EASTON CHRISTOPHER JOHN (AU)
PITT MICHAEL JOSEPH (AU)
ROBERTSON THOMAS ALISTAIR (AU)
RATHJEN DEBORAH ANN (AU)
International Classes:
A61K31/20; A61K31/21; A61P29/00; B01J31/04; C07B61/00; C07C51/367; C07C59/60; C07C69/708; C07C235/12; C07C323/52; C07C409/04; A61K31/195; C07C409/16; C07C409/40; C07C409/42; (IPC1-7): C07C323/52; C07C59/60; C07C409/42; C07C409/16; C07C409/04; C07C51/367; A61K31/20; A61K31/19; A61K31/16
Domestic Patent References:
WO1995009622A11995-04-13
WO1993000084A11993-01-07
WO1994022848A11994-10-13
Foreign References:
EP0345038A21989-12-06
EP0260655A21988-03-23
Other References:
JOURNAL OF LIPID RESEARCH, Volume 31, No. 5, 1990, C. VON SCHACKY et al., "Platelet-neutrophil Interactions 12S. 20- and 5S., 12S-dihydroxyeicosapentaenoic Acids: Two Novel Neutrophil Metabolites from Platelet-derived 12S-hydroxyeicosapentaenoic Acid", pages 801-810.
CHEMICAL ABSTRACTS, Volume 119, No. 19, issued 8 November 1993, R. BUNSHO et al., "Anti-inflammatory Agents Containing (5Z, 8Z, 11Z, 13E, 15(S), 17Z)-15-hydroxyeicosapentaenoic Acid Derivatives and Having Immune-modulating Effect", page 87, Abstract No. 195671a.
INTERLEUKINS, LYMPHOKINES AND CYTOKINES, PROCEEDINGS FROM THE THIRD INTERNATIONAL LYMPHOKINE WORKSHOP, 1982, YAEL BROMBERG et al., "Oxidative Metabolism of Lymphokine Activated Macrophages-free Fatty Acids as Second Messenger of Superoxide Generation", pages 561-567.
JOURNAL OF CLINICAL INVESTIGATION, Volume 89, No. 3, 1992, L.M. KUMARATILAKE et al., "Antimalarial Properties of n-3 and n-6 Polyunsaturated Fatty Acids: in Vitro Effects on Plasmodium Falciparum and in Vivo Effects on P. Berghei", pages 961-967.
BIOCHIMICA ET BIOPHYSICA ACTA, 1199, 1994, A. DEMOZ et al., "Modulation of Plasma and Hepatic Oxidative Status and Changes in Plasma Lipid Profile by n-3 (EPA and DNA), n-6 (Corn Oil) and a 3-thia Fatty Acid in Rats", pages 238-244.
PROCEEDINGS SCANDINAVIAN SYMPOSIUM LIPIDS, 16th, 1991, S. SKREDE et al., "3-Thia Fatty Acids, Clofibrate and Omega-3 Fatty Acids - Compounds Reducing Serum Lipids. They Might Act Hypolipaemic by Similar Mechanisms", pages 254-270.
Download PDF:
Claims:
CLAIMS -1 A polyunsaturated fattv acid compound having antimalarial and/or neutrophil stimulatoiv activity the polvunsatuiated fattv acid containing 18-25 caibons and
1. 6 double bonds and wheiem the polvunsatuiated fatty acid compound has one oi two substitutions selected fiom the group consisting of β oxa. γ oxa. β thia and γ thia.
2. A polvunsatuiated fattv acid compound as claimed in claim 1 in which the polvunsatuiated fattv acid compound includes a furthei substitution selected fiom the gioup consisting of hvdiow hvdropeioxv. peroxy. carboxymethvl substitutions oi attached to an ainino acid.
3. A polvunsatuiated fattv acid compound as claimed m claim 1 or claim 2 in which the polvunsatuiated fattv acid compound contains 20. 25 carbon atoms and 3. 6 double bonds 4 A polvunsatuiated fattv acid compound as claimed in anv one of claims 1 to 3 in which the polvunsatuiated fattv acid compound is an n. 3 to n. 6 fatty acid.
4. A polvunsatuiated fatty acid compound as claimed in anv one of claims 1 to 4 in which the polyunsaturated fatty acid compound is 21 carbons with 3. 4 double bonds containing a β oxa or β thia substitution.
5. A polyunsaturated fatty acid compound as claimed in anv one of claims 1 to 4 in which the polvunsatuiated fattv acid compound is 22 caibon atoms with 3. 4 double bonds containing a γ thia oi β oxa substitution.
6. A polvunsatuiated fatty acid compound as claimed in anv one of claims 1 to 4 in which the polyunsaturated fattv acid compound is 23 carbons with 3. 4 double bonds containing a β thia substitution.
7. A polyunsaturated fatty acid compound as claimed in any one of claims 1 to 4 in which the polyunsaturated fattv acid compound is 24 carbons with 3. 4 double bonds containing a γ thia substitution. 9. A polyunsaturated fatty acid compound as claimed in any one of claims 1 to 4 in which the polyunsaturated fattv acid compound is 25 carbons with 3. 6 double bonds containing a β oxa substitution. 10. A polyunsaturated fatty acid compound as claimed in any one of claims 1 to 4 in which the polyunsaturated fatty acid compound is 25 carbons with 3. 6 double bonds containing a β thia substitution 11 A polyunsaturated fatty acid compound as claimed in any one of claims 1 to 10 in which the polyunsaturated fatty acid compound has a ω hydroxy substitution.
8. 12 A polyunsaturated fatty acid compound as claimed in any one of claims 1 to 4 in which the polyunsaturated fatty acid compound has 23 carbons. 3. 6 double bonds, β thia and α. carboxymethyl group.
9. A polyunsaturated fatty acid compound as claimed in any one of claims 1 to 4 in which the polyunsaturated fatty acid compound is covalently attached via the carboxy terminus to an amino acid.
10. A polyunsaturated fatty acid compound as claimed in claim 13 in which the polyunsaturated fatty acid compound is covalently attached to aspartic acid or glvcine.
11. A method of producing an unsaturated oxa substituted fatty acid comprising reacting an unsaturated fatty acid alcohol with a carbene such that the carbene is inserted in the O. H bond of the alcohol.
12. A method as claimed in claim 15 in which the unsaturated fatty acid alcohol contains 18. 25 carbon atoms and 1. 6 double bonds.
13. A method as claimed in claim 15 or claim 16 in which the carbene is synthesized via rhodium acetate catalysed of a diazo compound.
14. A method as claimed in any one of claims 15 to 17 in which an unsaturated β oxa substituted fatty acid is produced.
15. 18 A method of treating inflammation in a subject, the method comprising administering to the subject a therapeutically effective amount of an anti. inflammatory composition comprising at least one hydroxy. hydroperoxy. or peroxy derivative of a polyunsaturated fatty acid having a carbon chain of 18 to 24 carbon atoms and having 1. 6 cis or trans double bonds.
16. A method as claimed in claim 18 in which the poly unsaturated fatty acid contains oxygen or sulphur atoms within the carbon chains as oxa or thia derivatives.
17. A method as claimed in claim 18 in which the polyunsaturated fatty acid is selected from the group consisting of the C20:4n. 6 (5,8.11.14. eicosatetraenoc acid). C20:5n. 3 (5.8,11.14.17. eicosapentaenoic), C22:6n. 3 (4,7.10.13.16.19. docosahexaenoic acid) and arachidonic acid.
Description:
MODIFIED POLYUNSATURATED FATTY ACIDS

The present invention relates to new polyunsaturated fatty acids having antimalarial activity and/or neutrophil stimulatorv activity. The present invention further relates to a group of modified polyunsaturated fatty acids which have the ability to suppress cytokine production and cytokine action. Such fatty acids have enhanced stability when compared to naturally occurring polyunsaturated fatty acids. The present invention further relates to compositions including the polyunsaturated fatty acids as the active ingredient and methods of anti-malarial, anti-infective or anti-inflammatory treatment or prevention involving the administration of this composition.

Over half of the world ' s population is at risk from malaria, with about 500 million acute infections and approximately 1 million deaths recorded each year. (Tropical Diseases Progress in International Research. 1987-1988. Ninth Programme Report. UNDP/World Bank/WHO. Geneva. 43-49: Stevenson MM Preface In: Stevenson MM. Ed. Malaria: Host responses to Infection. CRC Press. Inc). The use of antimalarial drugs is associated with major problems because of increased resistance and toxic side-effects. Most currently used antimalarials are unsuitable for use in children (most at risk of potentially fatal cerebral malaria), pregnant women and the aged.

Inflammation may be caused by bacteria, viruses and /or other infective agents, opportunistic infections (which may be consequent on an immunodepressed state, for example resulting from cancer or therapy, particularly cytotoxic drug therapy or radiotherapy), autoimmunitv or otherwise. Septic shock is an illustration of a disease involving inflammation. Many of the clinical features of Gram-negative septic shock may be reproduced in animals by the administration of LPS to animals can prompt severe metabolic and physiological changes which can lead to death. Associated with the injection of LPS is the extensive production of pro- inflammatory cytokines such as tumour necrosis factor alpha (TNFα). Cachexia. which is characteristic of chronic exposure to TNF or interleukin- 6. is a common symptom of advanced malignancy and severe infection. It is characterised by abnormal protein and glucose metabolism and body wasting. Chronic administration of TNF IL-1 in mice, rats and/or humans

cause anorexia, weight loss and depletion of body lipid and protein within 7 to 10 days (Cerami et al. 1985. Immunol. Lett. 11. 173: Fong et al. 1989 J. Exp. Med. 170. 1627. Moldawer et al. Am. J. Phusiol.. 254 G450-G456. 1988:Fong et am. Am. J Physiol. 256. R659-R665 (1989): McCarthy et al. Am. J. Clin. Nature. 42. 1179-1182. 1982). TNF levels have been measured in patients with cancer and chronic disease associated with cachexia.

TNF and IL-1. with their common functional activities such as pyrogenicity. somnogenicity and being mediators of inflammation, have been implicated in the pathology of other diseases associated with chronic inflammation apart from toxic shock and cancer-related cachexia. TNF has been detected in synovial fluid in patients with both rheumatoid and reactive arthritis and in the serum of patients with rheumatoid arthritis (Saxne et en. 1988. Arthrit. Rheumat. 31. 1041). Raised levels of TNF have been detected in renal transplant patients during acute rejection episodes (Maury and Teppo 1987. J. Exp. Med. 166. 1132). In animals. TNF has been shown to be involved in the pathogenesis of graft-versus-host disease in skin and gut following allogenic marrow transplantation.

Administration of a rabbit anti-murine TNF antibody was shown to prevent the histological changes associated with graft-versus-host disease and to reduce mortality (Piquet et en, 1987. J. Exp. Med. 166. 1220). TNF has also been shown to contribute significantly to the pathology of malaria (Clark et al, 1987. Am. J. Pathol. 129. 192-199). Further, elevated serum lebvels of TNF have been reported in malaria patients (Scuderi et al, 1986. Lancet 2. 1364-1365).

Multiple sclerosis (MS) is a chronic demyelinating disease of the central nervous system and is the commonest chronic neutroligical disease of young adults. The incidence of MS and its pattern of distribution have been unchanged for decades. The disease remains essentially untreatable.

MS usually affects multiple areas of white matter in the central nervous system (CNS). most frequently, the preventricual white matter, brainstem, spinal cord and the optic nerves. The primary process destroys myelin

sheaths and eventually kills o godendiocvtes cieating the characteristic plaque of MS

The earlv development of the plaque is characterised by the development of penvascular inflammation followed bv the migration of Ivmphocvtes. plasma ceils and macrophages into the lesion This is followed by astiocyte ghosis and the attempts of demvehnation by ohgodendiocvtes The plaque is surrounded by Ivmphocvtes Anti-T cell agents such as antι-CD4 treatment are effective Such agents inhibit the proliferation of T-cells

Although the aetiology of MS is still unknown, the focus of research efforts that have led to plausible hypotheses have been those of immune dvsregulation including autoimmumtv and genetic predisposition, both of which may plav a lole in the actual development of disease Both TNFβ (lymphotoxin) and TNFα aie thought to plav a lole in the pathophysiology

Multiple lmmunological abnormalities are leproduciblv found in patients in the acute stage of the disease The synthesis of lmmunoglobuhns. although normal in the periphery, is increased in the central nervous system and the antibodies produced have a characteristic banding pattern. The antigenic specificity of these antibodies is not known and it is uncleai whether they have a lole to play in the progression of the disease

Various stiessors known to activate the immune svstem such as viral infection or surgery can also produce an exacerbation of MS Other activators such as γ-interferon produce similar effects when administered In addition, immunosuppressive anti-inflammatory therapy with corticosteroids for example, can produce modest remission or at least palliation for short periods of time.

Myelopathy, a disorder of the spinal cord, can have many different aetiologies, most of which are mediated by inflammation, including the following:-

Neurosyphilhs: b 12 or folate deficiency, sarcoidosis:

transverse nivelitis. arachidonitis. cervical spondvlitis. motor neuron disease: neurofibromatosis: spinal cord compression from tumour, disc or arthritis: lupus ervthematosus of the spinal cord: and viral encephalomyelitis

Chronic inflammation oi . as moie commonlv known, chronic immune system activation occuis in response to persistent antigen whose origin may be exogenous or mav result from an autoimmune state Such chronic inflammation results in local tissue destruction and depending upon the type of inflammation can result in systemic effects due to the sustained production of inflammatory mediators. Such inflammatory mediators include the cytokines which are soluble mediatois produced by activated lymphocytes and macrophages and effect cellular communication and physiological response Chronic immune activation can occur as a lesult of infectious disease, such as chrome fatigue syndrome or toxic shock syndrome or through autoimmune mechanisms resulting in such conditions as rheumatoid arthritis, inflammatory bowel disease. Ciohns Disease and other diseases such as graft versus host disease

Rheumatoid arthritis (Marrow et al, I "Autoimmune Rheumatic Disease". Blackwell Scientific Publ. Oxford. UK. Chapter 4 pp 148-207 (1987) ) is a disease characterised by chronic inflammation and eiosion of joints that may affect up to 3% of the population, including children. Symptoms of rheumatoid arthritis include morning stiffness, swelling and pain upon motion in at lease one joint and joint swelling. Non-specific symptoms including lethargy, anorexia and weakness as well as fever and lymphadenopathy (characteristic of immune activation) may antedate joint involvement. Extra-articular manifestations of rheumatoid arthritis include vasculitis. cataracts, uveitis. interstitial fibrosis. pericarditis and myocarditis, peripheral neuropathy, myeloid deposits, chronic anaemia and subcutaneous and pulmonary nodules.

Genetic factors and infectious agents including bacteria, fungi, mycoplasmas and viruses have been associated with the development of rheumatoid arthritis. Mild rheumatoid arthritis may be treated with non-steroidal anti- inflammatory drugs while severe cases require systemic corticosteroids. anti- metabolites or cytotoxic agents. Experimentally. anti-CD4 monoclonal antibodies and anti-TNFα antibodies have been used to treat rheumatoid arthritis (Horneff et al, Cytokine 3 266-267 (1991): Horneff et al, Arth. Rheum. 34 129-140 ( 1991)and Shoenfeld et al. Clin. Exp. Rheum. 9. 663-673 (1991). Williams et al. 1992 PNAS 89. 9784).

Inflammatory bowel disease (IBD) and Crohns disease are chronic inflammatory conditions that fulfil some of the criteria of an autoimmune disease (Snook. Gut 31 961-963 (1991)). Inflammation and tissue damage involves the recruitment and activation of neutrophils. macrophages and lymphocytes (MacDermott et al. Adv. Immunol. 42 285-328 (1988)) which generate cytokines and proinflammatorv molecules such as prostaglandins and leukotrienes (MacDermott. Mt. Sinai J. Med. 57 273-278 ( 1990)). As a result of chronic activation of immunocompetent cells. IL-1. IL-6 (Starter. Immunol. Res. 10 273-278 (1990) ; Fiocchi. Immunol. Res. 10 239-246 (1991)) and TNFα (MacDermott. Mt. Sinai J. Med. 57 273-278 (1990)) are all elevated in IBD and Crohns Disease patients.

Drugs used to treat IBD and Crohns Disease include anti-inflammatory agents such as sulphasalazine (5-ASA) corticosteroids. cyclosporin A and azathiprine (Hanauer. Sca d. J. Gastroenterol. 25 (Supl. 175) 97-106 (1990): Peppercorn. Annal. Intern. Med. 112 50-60 (1990)). Experimentally, anti- CD4 and anti-TNF monoclonal antibodies have been used to successfully treat ulcerative colitis (Emmerich et al, Lancet 338 570-571 (1991)).

Whilst a host may react against a genetically incompatible graft producing a host-versus-graft response, an immunocompetent graft (such as bone marrow or intestinal tissue) may react against the host resulting in graft-versus-host disease. These reactions are mediated by allogenic responses directed against a foreign MHC molecule and are mimicked in vitro by the mixed lymphocyte reaction (MLR). Graft/host interactions result in chronic inflammation surrounding the grafted tissue with an increase in markers of

immune activation such as aie seen in ADS (Grant. Immunol. Today 12 171- 172 (1991)) Treatment of the graft/host interactions currently include either azathiopπne. cvclospoπn A or methylprednisone and. more recently, lapamvcin (Spekowski et al, Tiansplantation 53 258-264 (1992). Huber et al, Bibliotheca Cardiologica 43 103-110 (1988)) Monoclonal antibodies specific for CD3 (Wissing et al, Clin Exp Immunol. 83 333-337 (1991)), CD4 (Reinke et al, Lancet 338 702-703 (1991)) and TNFα have been used experimentally to inhibit graft/host reactions

As mentioned above PUFAs have a range of useful biological activities (see for example International Patent Application ι\os WO 93/ 00084 and WO 95/00607 and the references cited therein) Unfortunately, due to their limited stability m vivo. PUFAs have not achieved widespiead use as therapeutic agents The present mventois have developed substituted PUFAs which while letaimng biological activity have mcieased stability in vivo l e. slower metabolic turnover These new polvunsatuiated fatty acid (PUFA) compounds have direct antimalarial activity In addition to their direct antimalarial activity, the novel PUFA activate human neutrophils causing release of granule contents, and exhibit synergy with TNF in the production of superoxide. Activation of human neutrophils by the PUFA results in enhanced ability of these cells to kill malaria parasite [P falciparum) within led blood cells and also the bacteria StapluJococcus aureus

Further, the present inventors have also found that certain polvunsatuiatcd fatty acids and novel polyunsaturated fatty acids and their hydroxv and hydroperoxy derivatives suppress production of cytokines

These new PUFAs include at least one β oxa. β thia. γ oxa or γ thia substitution. While saturated β-oxa fatty acids can be obtained using the standard procedure for ether synthesis, by reaction of alkyl halides with the dianions of α-hydroxy acids or bv treating α-halo acids with deprotonated alcohols, the unsaturated β-oxa fatty acids of the present invention are not accessible using normal methods. Attempts to obtain the unsaturated compounds in this manner lead only to decomposition products, resulting from undesirable side reactions at the olefimc and allvlic carbons.

In a recent variation of the standard procedure, saturated β-oxa fatty acids have been obtained through nucleophilic substitution reactions under less vigorous conditions, by treating diazoacetates. activated by complexation with boron trifluoride etherate. with alcohols. However, boron trifluoride etherate is known to cause isomerization of alkenes and it is therefore unsuitable for use in the synthesis of unsaturated β-oxa fatty acids.

The present inventors have now found that unsaturated β-oxa fatty acids can be obtained, in good yields, by insertion of carbenes in the O-H bond of alcohols. There is no complication from other caibene insertion reactions and. of particular significance, the olefinic moieties are unaffected under the reaction conditions.

The carbene can be generated from the corresponding diazo acetate or diazo alkane. by treatment with a catalyst such as a rhodium salt. Reaction of the carbene with the complementary alcohol, which is either a derivative of α-hydroxy acetic acid or an unsaturated fatty alcohol affords the unsaturated β-oxa fatty acid. In a preferred embodiment the alcohols are those obtained by reduction of naturally occurring unsaturated fatty acids or the corresponding esters, and reaction with an ester of diazo acetic acid affords the unsaturated β-oxa fatty acid.

The present inventors have also shown that both β-oxa and β-thia substituted fatty acids are unable to undergo β oxidation. In addition certain of the novel compounds display other properties which differ from those of natural PUFA including enhanced solubility, varied oxidation reduction potentials and different charge and polarity.

Accordingly, in a first aspect the present invention consists in a polyunsaturated fatty acid compound having antimalarial and/or neutrophil stimulatory activity, the polyunsaturated fatty acid containing 18-25 carbons and 1-6 double bonds and wherein the polyunsaturated fatty acid compound has one or two substitutions selected from the group consisting of β oxa. γ oxa. β thia and γ thia.

In a preferred embodiment of the present invention the polyunsaturated fatty acid compound includes a further substitution selected from the group consisting of hydroxv. hvdroperoxy. peroxv and carboxvmethyl substitutions. In another embodiment the substituted fattv acid is covalentlv attached to an ammo acid

In a further preferred embodiment of the piesent invention the polyunsatuiated fattv acid compound contains 20-25 carbon atoms and 3-6 double bonds and is pieferablv an n-3 to n-6 fattv acid

In another prefeπed embodiment of the present invention the polyunsaturated fattv acid compound is 21 carbons with 3-4 double bonds containing a β oxa oi β thia substitution. 22 carbon atoms with 3-4 double bonds containing a γ thia oi β oxa substitution. 23 carbons with 3-4 double bonds containing a β thia substitution. 24 carbons with 3-4 double bonds containing a γ thia substitution. 25 carbons with 3-6 double bonds containing a β oxa substitution. 25 carbons with 3-6 double bonds containing a β thia substitution, or 23 caibons. 3-6 double bonds, β thia and α- carboxymethyl group.

In yet another preferred embodiment of the present invention the polyunsaturated fatty acid compound has a ω hvdroxy substitution

In another prefeπed form of the invention the polyunsaturated fatty acid compound is attached to an ammo acid, preferably an aspartic acid or glycine

In a second aspect the present invention consists in a method of producing an unsaturated oxa substituted fatty acid comprising reacting an unsaturated fatty acid alcohol with a carbene such that the carbene is inserted in the O-H bond of the alcohol.

In a preferred embodiment of this aspect of the present invention the unsaturated fattv acid alcohol contains 18-25 carbon atoms and 1-6 double bonds

In a further preferred embodiment of this aspect of the present invention the carbene is synthesized via rhodium acetate catalysed of a diazo compound.

In another preferred embodiment of this aspect of the present invention an unsaturated β oxa substituted fatty acid is produced.

In a third aspect the present invention consists in a method of treating inflammation in a subject, the method comprising administering to the subject a therapeutically effective amount of an anti-inflammatory composition comprising at least one hydroxy. hydroperoxy. or peroxy derivative of a polyunsaturated fatty acid having a carbon chain of 18 to 24 carbon atoms and having 1-6 cis or trans double bonds.

In a preferred embodiment of this aspect of the present invention the poly unsaturated fatty acid may contain oxygen or sulphur atoms within the carbon chains as oxa or thia derivatives.

In a further preferred embodiment of this aspect of the present invention the polyunsaturated fatty acid is selected from the group consisting of the C20:4n-6 (5. 8. 11. 14-eicosatetraenoc acid). C20:5n-3 (5, 8, 11. 14. 17- eicosapentaenoic). C22:6n-3 (4. 7. 10. 13. 16. 19-docosahexaenoic acid) and arachidonic acid.

Neutrophil/macrophage stimulatory agents may have application in the treatment of other infections including Candida sp. Tiypanosoma.

Schistosomiasis. Tuberculosis, viruses eg herpes. Sindbis virus. Legionella, Listeriosis. Pneumocystsis. Pseudomonas. They would also be useful as adjunct therapy in immunocomporomised individuals including those undergoing cancer chemotherapy and transplant recipients and burns patients. In addition others, so called normal individuals may also be treated eg the aged, children under 2. alcoholics who are known to have poor phagocytic cell activity.

In order that the nature of the present invention may be more clearly understood preferred forms therot will now be described with reference to the following examples and Figures m whiclr-

Fig la shows Arachidonic acid 5.8.11.14-Eicosatetraenoιc acid Fig lb shows 5-HvdiOperoxy-6E.8Z.l lZ.14Z-Eιcosatetraenoιc acid Fig lc shows 9-HydropeiOxy-5Z.7E.llZ.14Z-Eicosatetraenoιc acid Fig id shows 8-HydropeiOxv-5Z.9E.l lZ.14Z-Eιcosatetraenoιc acid Fig le shows 12-HydropeiOxy-5Z.8Z.10E.14Z Eicosatetraenoic acid Fig if shows ll-HvdiOperoxy-5Z.8Z.12E.14Z Eicosatetraenoic acid Fig lg shows i5-HydropeiOxy-5Z.8Z. l lZ.13E Eicosatetraenoic acid Fig lh shows 5-hydroxv-6E.8Z.l lZ.14Z-Eicosatetraenoιc acid Fig ii shows 9-Hydιoxv-5Z.7E.llZ.14Z-Eicosatetraenoιc acid Fig ij shows 8-Hydroxv-5Z.9E.llZ.14Z-Eicosatetraenoιc acid Fig Ik shows 12-Hydroxy-5Z.8Z.10E.14Z Eicosatetraenoic acid Fig ll shows ll-Hydroxy-5Z.8Z.12E.14Z Eicosatetraenoic acid Fig lm shows 15-Hydroxy-5Z.8Z.llZ.13E Eicosatetraenoic acid Figs In to Fig lz show a range of substituted PUFAs in which Y is hydroxy, hydroperoxy or peroxy Fig 2a shows β-oxa 23:4 (n-6) Fig 2b shows β-oxa 21:3 (n-6) Fig 2c shows β-oxa 21:3 (n-3) Fig 2d shows β-oxa 25:6 (n-3) Fig 2e shows β-oxa 21:4 (n-3) Fig 2f shows β-thia 23:4 (n-6) Fig 2g shows β-thia 21:3 (n-6) Fig 2h shows β-thia 21:3 (n-3) Fig 2i shows β-thia 25:6 (n-3) Fig 2j shows α-carboxymethyl-β-thia 23:4 (n-6) Fig 2k shows γ-thia 24:4 (n-6) Fig 21 shows γ-thia 22:3 (n-6) Fig 2m shows γ-thia 22:3 (n-3) Fig 2n shows 16-OH-β-oxa 22:3 (n-6) Fig 2o shows 16-OH β-oxa 22:3 (n-3).

Fig 3 shows the effect of 20 4. 20 4 methvl estei (ME). 20 4 hvdioperoxy (HP) and 20 4 hvdioxv (H) on cytokine pioduction by human peripheral blood mononuclear cells (PBMC) stimulated bv the mitogen PHA

20.4 hydropeioxy and 20.4 hvdioxv inhibit cytokine production, both maciophage-deiived cvtokines (TNFα) and T cell derived cvtokines

(lymphokines. inteiferon. IL-2)

Fig 4 shows the effect of 22 6. 22.6HP. 22.6H. 20.5. 20 5HP and 20 5H on

PHA-induced cvtokine production These compounds inhibit m vitro production of maciophage and T cell-derived cvtokines Fig 5 shows 20 4 20 4 hvdroperoxv (HP) and 20 4 hvdroxv (OH) inhibit

TNFα-induced expiession of E-selection bv human umbilical vein endothehal cells

Fig 6 shows the fattv acid stimulated lelease fiom neutrophil azurophihc granules Fig 7 shows the fattv acid stimulated release fiom neutrophil specific granules

Fig 8 shows the enhancement of neutrophil mediated killing of Staph aureus by fatty acids

Fig 9 (a) shows the comparative abilities of arachidσmc acid and β-oxa 23.4 n-3) to undergo β oxidation

Fig 9 (b) shows that the compound does not inhibit β-oxidation of arachidonic acid and hence is unlikely to interfere with normal cellular metabolism

Table 1 shows the dnect antimalarial activity of novel fatty acids against chloioquine sensitive P falciparum.

Table 2 shows the ability of the novel fatty acids to stimulate neutrophils to kill P. falciparum.

Table 3 shows the direct effect of novel fatty acids on survival of chloioquine resistant P falciparum. Table 4 shows inhibition of mitogen stimulated proliferation of peripheral blood mononuclear proliferation by fatty acids.

Table 5 shows inhibition of PHA stimulated TNFα production by fatty acids

Table 6 shows inhibition of Staph aureus stimulated mterferonγ production by fatty acids.

METHODS

DETECTION OF TNF-INDUCED ELAM-1 AND ICAM-1

Human umbilical cord endothelial cells (5xl0 passage 1) were plated onto the centre 60 wells of 96 well microtrays. the remaining wells were filled with pyrongen-free distilled water to reduce evaporation in the wells containing cells. The cells were fed with fresh medium (M199 supplemented with 20% FCS and endothelial cell growth supplement) every second day until confluent. On the day preceding the assay the cells were washed with HBSS and re-fed. At the time of assay the medium was aspirated and fatty acides prepared in media were added to each well and incubated for various times as shown in Figs. At 37-0-C in 5% C0 . After this incubation the cells were washed and treated with either TNF or PMA before being washed three times in PBS and fixed (lOOμl. 0.025% glutaraldehyde in PBS. overnight at 4°C). The wells were washed with PBS and either anti-ELAM (Becton-Dickinson. lOOμl. 1/1.000 in M199 containing 20% FCS) or anti-ICAM (Immunotech. lOOμl. 12/2500 in M199 containing 20% FCS) was added and incubated for 1 hour at room temperature after which the wells were washed with PBS ant lOOμl of rabbit anti-mouse Ig- HRP conjugate was added (1/1,000. Dako). A further incubation at room temperature for one hour followed before the plates were washed three time prior to the addition of lOOμl of the substrate (ABTS). Colour development was measured at 410nm in a microplate reader.

MONONUCLEAR CELL PROLIFERATION ASSAYS

Mononuclear cells were separated from peripheral blood of normal human donors as described by Ferrante and Thong (1978 ). The mononuclear cells were resuspended in RPMI-1640 contianing 20% human AB serum and placed into 96 well microtrays (50μl per well, cell density 4X10 D cells/ml). Fatty acid (66μm) was then added in 50μl and pre-incubated with the cells for 30 min at 37 l, C in 5% CO 2 . Mitogen (PHA. ConA. PWM. Staph. aureus) was then added in lOOμl and the cells incubated for 66 hours at 37 (I C in 5% CO 2 before the addition of tritiated thymidine (lμCi/well). After a total of 72h in culture the cells were harvested and proliferation (thymidine incorporation) and supernatant ' s assayed for the presence of cvtokines.

CYTOKINE ASSAYS

Cytokine levels in culture supernatants were determined by specific ELISA using anti-cytokine antibodies. The following cytokine levels were determined TNFα. TNFβ. interferon-γ. IL-lβ. IL-2.

PREPARATION OF FATTY ACID MICELLES AND PRETREATMENT OF NEUTROPHILS

To overcome fatty acid insolubility in aqueous solution mixed dipalmitoyl phophatidylcholine (DPC. 400μg):fatty acid (lOOμg) micells were prepared in HBSS by sonication. Neutrophils were pretreated for 30 min at 37 U C. In some experiments PUFA were solubilized in ethanol.

MALARIA GROWTH INHIBITION ASSAY

Aliquots of RBC (5X10 1 ' with 305% parasitaemia) was mixed with neutrophils (10°) in the wells of a 96-well microtitre plate and then incubated for 2 hr at 37°C in 5% CO 2 in air before adding IμCi of 3H- hypoxanthine. The plates were then incubated overnight. Individual well contents were collected onto glass filter paper and incorporated 3H measured in a liquid scintillation counter. Percent growth inhibition of the parasite was then calculated.

MEASUREMENTOFNEUTROPHILCHEMILUMINESCENCE

To lOOμl of neutrophils (lXlO n ) in HBSS was added lOOμl of fatty acid micelles or DPC alone and an additional 300μl of HBSS. This was followed immediately by the addition of 500μl of lucigenin (0.25mg/ml in PBS and the resulting light output (mV) measured over time in a luminometer. Experiments were performed in triplicate with cells from a separate individual and vlaues presented represent peak values of the responses.

MEASUREMENTOFDEGRANULATION

Degranulation was determined by measuring vitamin B12 binding protein (as described bv Gottleib et al.. 1965. Blood 25:875-883) and β-glucuronidase release (as described bv Kolodenev and Mumford. 1976. Clin. Chem. Acta 70:247-257)

BACTERICIDAL ASSAY

Neutrophil bactericidal activity against Staphvlococcus aureus was measured according to the piocdure described by Ferrante and Abell. 1986. Infect. Immun. 51:607.

CHEMICAL SYNTHESIS

Synthesis of β-Oxa Fatty Acids

ROH + N 2 =CHC0 2 tBu Rh 2 (OAc) 4 ROCH,CO .f-Bu

CH C1 2 .RT

CF,CO 2 H CH 2 C1 . RT

ROCH 2 C0 2 H 4

CH.,(CH 2 ) 4 (CH l ,S =CHCH 2 ) 4 (CH 2 ) 3 - CH,(CH 2 ) 4 (CH ( ,S =CHCH ),(CH,) 4 - CH,CH 2 (CH I, =CHCH ) 3 (CH 2 ) 7 - CH ,CH 2 (CH * ,s = CHCH,) 4 (CH 2 ) S -

REAGENTS

Arachidonvl Alcohol ( la) - Nu Chek Prep.. Elvsian. MN. USA Gamma Linolenvl Alcohol (lb) - Nu Chek Prep.. Elvsian. MN. USA Linolenvl Alcohol (lc) - Nu Chek Prep.. Elysina. MN. USA

Docosahexaenvl Alcohol (Id) - Nu Chek Prep.. Elvsian. MN. USA Z.Z.Z.Z- 6. 9. 12. 15-Octadecatetraenyl alcohol (le) - Synthesised by lithium aluminium hydride reduction of Methvl 6. 9. 12. 15-Octadecatetraenoate. Methyl Z.Z.Z.Z- 6. 9. 12. 15-Octadecatetraenoate - Sigma Chemical Company Rhodium Acetate Dimer - Aldrich Chemical Company tert-Butyl DiazoAcetate (2) - synthesized from tert-Butyl Acetoacetate as per: Regitz. M: Hocker. J: Leidhegener. A. Organic Srtheses Coll. Vol. 5. 179. tert-βut /lcetoαcetαte - Fluka AG Trifluoroacetic Acid - Aldrivch Chemical Company. All solvents were distilled prior to use.

Column chromatographies were performed under positive nitrogen pressure on Merck Silica Gel 60 (230-400 mesh). Art. 9385.

PROCEDURE tert-Butyl alkyloxyacetates 3

The relevant fatty alcohol 1 (1 mol equivalent) was weighed into a two-neck round bottom flask under dry nitrogen and was dissolved in dichloromethane. To this stirred solution was added rhodium acetate dimer (0.5 mol%). followed by the dropwise addition of a solution of tert-butyl diazoacetate 2(2.5 mol equivalents) in dichloromethane via syringe. After the addition was complete the reaction mixture was stirred at room temperature under nitrogen for 2 hrs. The crude reaction mixture was concentrated under a stream of dry nitrogen and the residue was purified by column chroma tography on silica, eluting with hexane/diethyl ether (9:1), to afford the relevant tert-butyl alkloxyecetate 3 as an oil.

ALKYLOXYACETIC ACIDS 4

The relevant tert-butyl alkyloxvacetate 3 (ca. lOOmg. 1 mol equivalent) was weighed into a two-neck round-bottom flask under dry nitrogen and was

dissolved by the addition of dichloromethane (ca. 4ml). To this stirred solution was added trifluoroacetic acid (ca. lml). and the reaction mixture was stirred at room temperature under nitrogen for 2 hrs. The crude reaction mixture was concentrated under a stream of dry nitrogen and the residue was purified by column chromatography on silica, eluting with hexane/diethly ether/acetic acid (40:60:2). to afford the relevant alkyloxyacetic acid 4 as an oil.

t-Butyl (5, 8, 11, 14-eicosaletraenyloxy) acetate (3a) [t-Bu β-oxa 23:4 (n-6)]

Η n.m.r. (200mnz. CDCl,) δ 0.89 (3H. t. J 6.7 Hz. C20'-H,. 1.25 - 1.38 (8H. m. C3 ' -H . Cl7 " -H Cl8'-H,. Cl9'-H 2 ), 1.49 (9H. s. C(CH,) 3 ), 1.56 - 1.69 (2H. m. C2'-H,). 2.01 - 2.15 (4H. m. C4' - H,. Cl6'-H ). 2.79 - 2.87 (6H. m. C7'- H 2 , ClO ' -H,. C 13 ' -H ). 3.52 (2H. t. J6.6 Hz. Cl'-H ). 3.94 (2H. s. C2-H 2 ). 5.32 - 5.45 (8H. m. C5'-H. C6 -H. C8'-H. C9'-H. Cll -H. Cl2'-H. C l4'-H. C15--H); ι:, C n.m.r. (50MHz. CDCL δ 169.82s. 130.48d. 129.97d. 128.55d. 128.42d. 128.08d. 128.02d. 127.96d, 127.59d. 81.40S. 71.63t. 68.83t. 31.58t, 29.29t. 29.07t. 28.14q. 27.23t. 27.01t. 26.09t. 25.66t. 22.57t. 14.09q.

t-Butyl Z.Z,Z-(6, 9, 12-octadecatrienyloxy) acetate (3b)

[t-Bu β-oxa 21:3(n-6)]

Η n.m.r. (200 MHz. CDCl :t ) δ 0.89 (3H. t. J 6.7 Hz. C18'-H„ 1.25 - 1.45 (10H. m. C3'-H,. C4'-H, Clδ'-H,. Cl6 * -H 2 Cl7'-H ), 1.48 (9H. s. C(CH 3 ) 3 ), 1.56 - 1.68 (2H. m. C2'-H 2 ), 2.01 - 2.13 (4H. m. C5' - H 2 . Cl4'-H 2 ), 2.77 - 2.84 (4H. m. C8'-H . Cll'-H 2 ), 3.51 (2H. t. J6.6 Hz. Cl'-H 2 ), 3.94 (2H, s, C2-H 2 ). 5.27 - 5.48 (6H. m. C6'-H. C7'-H. C9'-H. ClO'-H. Cl2'-H. C13'-H); l3 C n.m.r. (50MHz. CDC1 3 ) δ 169.82s. 130.4ld. 130.10d. 128.33d. 128.2ld. 127.87d. 127.64d. 81.39s. 71.72t. 68.82L 31.52t. 29.57 29.49t. 28.12q. 27.18t. 25.74t. 25.63t. 22.56t. 14.04q.

t-Butyl Z,Z,Z-(9, 12, 15-octadecatrienyloxy)acetate (3c) [t-Bu β-oxa 21:3 (n-3)]

Η n.m.r. (200 MHz. CDCl 3 ) δ 0.98 (3H. t. J 7.5 Hz. Cl8'-H 3 ). 1.25 -

1.40 (10H. m. C3'-H . C4'-H, . C5'-H , C6'-H 2 C7'-H 2 ). 1.48 (9H. s. C(CH 3 ) 3 ), 1.51 - 1.67 (2H. m. C2'-H ). 2.01 - 2.15 (4H. m. C8'-H 2 . Cl7'-H 2 ). 2.75 - 2.86

(4H. m. Cir-H, C14'-H ). 3.50 (2H. t. J6.6 Hz. Cl * -H 2 ), 3.95 (2H. s. C2-H 2 ). 5.31 - 5.43 (6H. m. C9 -H. ClO ' -H. Cl2'-H. C13 -H. Cl5'-H. Cl6'-H); l3 C n.m.r. (50MHz. CDCl ;1 ) δ 169.84s. 131.94d. 130.35d. 128.27d. 127.66d. 127.13d. 81.36s. 71.63t. 68.82t. 29.64t. 29.45t. 29.251. 28.12q, 27.24t. 26.04t. 25.62t. 25.53t. 20.53t. 14.25q.

t-Butyl Z,Z,Z,Z,Z.Z-(4,7.10,13,16,19-docosahexaenyloxy)acetate (3d)

[t-Bu B-oxa 25:6(n-3)

Η n.m.r. (200 MHz. CDC1 : ,) δ 0.98 (3H. t. J 7.5 Hz. C22'-H ) . 1.48 (9H, s. C(CH ) :t ). 1.58 - 1.76 (2H. m. C2'-H ). 2.00 - 2.21 (4H. in. C3' - H 2 . C21'-H 2 ),

2.79 - 2.87 (10H. . CC ' -H,. C9 ' -H .. Cl2'-H.. C 15 -H ,. C lβ'-H,). 3.52 (2H. t. J

6.6 Hz. Cl'-H ). 3.95 (2H. s. C2-H 2 ). 5.28-5.46 (12H. in. C4'-H. C5'-H. C7'-H.

C8'-H. ClO'-H. Cll'-H. Cl3'-H. Cl4'-H. Cl6'-H. Cl7'-H. Cl9'-H. C20'-H): 'C n.m.r. (50MHz. CDCL,) δ 169.76s. 132.03d. 129.4 id. 128.57d. 128.39d. 128.36d. 128.24d. 128.21d. 128.16d. 128.12d. 128.02d. 127.88d.

127.02d. 81.40s. 71.08t. 68.83 29.53t. 28.12q. 25.63t. 25.59t. 25.54L 23.72t.

20.55t. 14.25q.

t-Butyl Z,Z,Z,Z-(6, 9, 12, 15-octadecatetraenyloxy acetate (3e) [t/Bu β-oxa 21:4(n-3)

1H n.m.r. (200 MHz. CDCl 3 ) δ 0.98 (3H. t. J 7.5 Hz. Clδ'-H, 1 . 1.21 -

1.52 (4H. m. C3'H 2 ), 1.48 (9H. s. C(CH 3 ) 3 ) 1.53 - 1.66 (2H. m. C2'-H 2 .), 2.01

2.15 (4H. m. C5'-H 2 . C17'-H,).2.77 - 2.87 (6H. m C8 * -H,. Cll'-H ,. Cl4'-H,).

3.51 (3H. t. J6.6 Hz. Cl'-H ). 3.95 (2H. s. C2-H2). 5.28 - 5.47 (8H. in C6'-H. C7Η. C9--H. ClO'-H. Cl2 * -H. Cl3'-H. Cl5'-H. C l6'-H);

1 Cn.m.r. (50MHz. CDCl ;t ) δ 169.82s. 132. OOd. 130.15d. 128.49d.

128.42d. 128.0ld. 127.96d. 127.78d. 127.05d. 81.39s. 71.72L 68.81t. 29.57t.

29.49t. 28.12q. 27.18 25.74t. 25.63t, 25.54t. 20.55t. 14.25q.

Z,Z,Z,Z (5, 8, 11, 4-Eicosatetraenyloxy) acetic acid (4a)

[β-oxa 23:4(n-3)J

1H n.m.r. (200 MHz. CDCl : ,) δ 0.89 (3H. t. J 6.6 Hz. C20'-H 3 ) , 1.25 - 1.490 (8H. in. C3'-H 2 C17.H 2 . Cl8'-H 2 . Cl9'-H 2 ). 1.57 - 1.74 (2H. m. C2'-H 2 ), 2.00 - 2.14 (4H. m. C4 * - H . Cl6'-H 2 ), 2.78 - 2.85 (6H. m. C7'-H 2 . C10'-H 2 , C13'-H 2 ) 3.58 (2H. br t. J6.0 Hz. Cl'-H 2 ), 4.08 (2H. s. C2-H 2 ), 5.29 - 5.46 (8H. m. C5'-H. C6'-H. C8'-H. C9'-H. Cll'-H. Cl2'-H. Cl4'-H. Cl5'-H):

l 3 C n.m.r. (50MHz. CDCl a ) δ 173.37s. 130.47d. 129.64d. 128.55d. 128.24d. 128.13d. 128.02d. 127.86d. 127.152d. 71.81t. 31.49t. 29.49t. 29.21t. 27.20t. 26.88t. 26.03t. 25.63t. 25.63t. 22.54t. 14.02q.

Z,Z,Z-(6, 9, 12-Octadecatrienyloxy) acetic acid (4b)

[β-oxa 21:3(n-6)]

Η n.m.r. (200 Mhz. CDCl-,) δ 0.89 (3H. t. J 6.8 Hz. Clδ'-HS 1 . 1.23 -

1.43 (10H. m. C3'-H2. C4 ' -H2. Cl5'-H2. C 16 ' -H2. Cl7 * -H2)), 1.51 - 1.71 (2H. m. C2'-H2). 2.00 - 2.10 (4H. m. C5' - H2. C14 -H2). 2.75 - 2.86 (4H. m. C8'-H2, Cll'-H2). 3.60 (2H. t. J 6.6 Hz. Cl'-H2) 4.17 (2H. s. C2-H2) . 5.26 - 5.47 (6H. m. C6'-H. C7'-H. C9'-H. ClO -H. C l2'-H. Cl3'-H)

, C n.m.r. (50MHz. CDCl,) δ 171.74s. 130.45d. 129.84d. 128.40d.

128.20d. 128. lOd. 127.59d. 71.13d. 3 1.5 ld. 29.36d. 29.31d. 27.20d. 27.10d.

25.62d. 22.57d. 22.55d. 14.04q.

Z,Z,Z-(9, 12, 15-Octadecatricnyloxy) acetic acid (4c)

[β-oxa 21:3(n-3)]

1H n.m.r. (200 MHz. CDCl ,) δ 0.97 (3H. t. J 7.5 Hz. C18'-H ), 1.25 -

1.43 (10H. m. C3'-H 2 . C4 ' -H . C5'-H 2 . C6'-H 2 C7'-H ), 1.51 - 1.63 (2H, m, C2'- H 2 ), 2.01 - 2.15 (4H. m. C8'-H . C17'-H 2 ). 2.75 - 2.86 (4H. m. Cll' - H 2 , C14'-

H 2 ), 3.55 (2H. t. J 6.5 Hz. Cl'-H 2 ), 4.12 (2H. s. C2'-H 2 ), 5.28 - 5.46 (6H. m, C9'-

H. ClO ' -H. C12'-H. C13'-H. Cl5'-H. Cl6'-H)

13 C n.m.r. (50MHz. CDCL,) δ 174.73s. 131.93d. 130.29d. 128.25d.

127.68d. 127.1ld. 72.16t. 29.60t. 29.41t. 29.20t. 27.21t. 25.88t. 25.60t. 25.52t. 20.53t. 14.24q.

Z,Z,Z,Z,Z,Z-(4, 7, 10, 13, 16, 19-Docosahexaenyloxy) acetic acid (4d)

[β-oxa 25 :6(n-3)]

Η n.m.r. (200 MHz. CDCl ,) δ 0.97 (3H. t. J 7.5 Hz. C22'-H 3 ', 1.65 - 1.78 (2H. m. C2'-H ). 2.01 - 2.21 (4H. m. C3'-H 2 . C21'-H 2 ), 2.75 - 2.92 (10H, m, C6 1 - H 2 . C9'-H 2 . C12'-H 2 . Cl5'-H . Cl8'-H 2 ), 3.57 (2H. t, J 6.4 Hz. Cl * -H 2 ), 4.12 (2H. s. C2-H,.). 5.28 - 5.46(12H. m. C4'-H. C5 ' -H. C7'-H. C8'-H. ClO'-H. Cll * - H. C13'-H. C14'-H. C16'-H. C17 -H. C19 -H. C20'-H). 10.22 (1H. br. CO 2 H) l 3 C n.m.r. (50MHz. CDCl ) δ 172.99s. 132.04d. 128.98d. 128.75d. 128.59d. 128.49d. 128.38d. 128.28d. 128.22d. 128.17d. 128.08d. 127.86d. 127.0ld. 71.48t. 29.26t. 25.64t. 25.59t. 25.54t. 23.55t. 14.25q.

Z,Z,Z,Z-(6, 9, 12, 15-Octadecatetraenyloxy) acetic acid (4e) [β-oxa 21:4(n-3)]

Η n.m.r. (200 Mhz. CDCl ) δ 0.97 (3H. t. J 7.5 Hz. Clβ'-H,). 1.33 - 1.40 (4H. m. C3'-H . C4'-H,). 1.54 - 1.68 (2H. m. C2'-H ). 2.00 - 2.15 (4H. m. C5' - H . C17'-H ). 2.77 - 2.87 (6H. m. C8'-H 2 . Cll'-H*,.. C14'-H ). 3.56 (3H. t. J 6.6 Hz. C1 * -H . 4.11 (2H. s. C2-H2). 5.24 - 5.45 (8H. m. C6'-H. C7'-H. C9'-H, ClO'-H. C12'-H. C13 -H. C 15 -H. C16 * -H):

1 C n.m.r. (50MHz. CDCl ;( ) δ 172.05s. 132.03d. 139.92d. 128.53d. 128.35d. 128.08d. 128. Old. 127.94d. 127.04d. 71.10t. 29.34t. 27.10t. 25.64t, 25.55t. 20.55t. 14.25q. SynUiesis of β and γ Thia fatty acids.

RBr

RBr +

RBr

R = CH 3 (CH 2 ) 4 (CH ,:is =CHCH 2 ) 4 (CH 2 ) 3 -

R = CH 3 (CH 2 ) 4 (CH is =CHCH 2 ) 3 (CH 2 ) 4 -

R = CH 3 CH,(CH cis =CHCH 2 ) 0 (CH 2 ) 2 -

Reagents

Fatty bromides (la-ld )- synthesized from the corresponding fatty alchohols by treatment with triphenylphosphine and carbon tetrabromide in dichloromethane. Arachidonyl alchohol - Nu Chek Prep.

Gamma linolenvl alchohol - Nu Chek Prep Linolenvl alchohol - Nu Check Preo Docosahexaenyl alchohol - Nu Chek Prep Mercaptoacetic acid - Aldrich Chemical Company Mercaptoproprionic acid - Aldrich Chemical Company All solvents were distlilled prior to use.

Column chromatographies were performed under positive nitrogen pressure on Merck Silica Gel 60 (230-400mesh).Art. 9385.

PROCEDURE

Alkylthioacetic acids 3a-d

Sodium (3mol equivalents) was dissolved in methanol in a two-neck round- bottomed flask under dry nitrogen and to this stirred solution was added mercaptoacetic acid (1.2 mol equivalents). After the initial white precipitate had dissolved, a solution of the relevant bromide 1 (1 mol equivalent) in diethyl ether was added via syringe and the mixture was stirred at room temperature under nitrogen for 16hr. The crude reaction mixture was poured into an equal volume of hydrochloric acid (10% v/v) and extracted with diethyl ether. The resulting extract was concentrated under a stream of dry nitrogen and the residue was purified by flash chromatography on silica. eluting with hexane/diethyl ether/acetic acid (40:60:2) to afford the relevant alkylthioacetic acid 3 as an oil.

Alkylthioproprionic acids 5a-c The alkylthioproprionic acids 5a-c were synthesized by alkaline condensation of the respective fatty bromides la-c with mercaptoproprionic acid 4. in an analogous manner to that described above for the alkylthioacetic acids 3a-d.

Z.Z.Z.Z-(5.8.11.14-Eicosatetraenylthio)succinic Acid 7a (5,8.11.14-Eicosatetraenylthio)succinic acid 7a was synthesized by condensation of the fatty bromide la ( 1 mol equivalent) with mercaptosuccinic acid 6 (1.2 mol equivalents), in the presence of sodium (4.5 mol eqivalents) in an analogous manner to that described above for the alkylthioacetic acids 3a-d.

Z,Z,Z,Z-(5,8,11.14-Eicosatetraenylthio) acetic acid (3a)

[β-thia 23:4(n-6)] Η n.m.r. (200 MHz. CDCl*,) δ 0.89 (3H. t. J 6.7 Hz. C20'-H 3 ), 1.21 -

1.54 (8H. . C3'-H,. C l7'-H Cl8'-H,, C19'-H ). 1.57 - 1.72 (2H. m. C2'-H 2 ).

2.01 - 2.14 (4H. m. C4 ' - H 2 . C16'-H ), 2.67 (2H. t. J 7.2 Hz. Cl'-H 2) ). 2.73 - 2.88

(6H. in. C7'-H C10 ' -H 2 . Cl3'-H,). 3.25 (2H. s. C2-H 2 ). 5.27 - 5.47 (8H. m. C5'-

H. C6 -H. C8 ' -H. C9'-H. Cll'-H. Cl2'-H. C14 -H. Cl5'-H); l3 C n.m.r. (50MHz. CDCl,) δ 175.69s. 130.49d. 129.54d. 128.56d.

128.27c.. 128.15d. 127.89d. 127.55c/. 33.45f. 32.70t. 31.51t. 30.38L 29.32t.

28.62t. 28.46t. 27.23f. 26.73t. 25.65t. 22.57t. 14.05q.

Z,Z,Z,Z-(G,9, 12-Octadecatrienyltlιio)acetic acid (3b) [β-thia 21:3(n-6)]

1H n.m.r. (200 MHz. CDCl 3 ) δ 0.89 (3H. t. / 6.6 Hz. C18'-H 3 ), 1.23 - 1.48 (10H. m. C3 ' -H . C4'-H Cl5 * -H 2 . C16'-H . Cl7'-H 2 ), 1.52 - 1.70 (2H. m. C2'-H 2 ), 1.89 - 2.15 (4H. m. C5'-H,. Cl4'-H,). 2.63 (2H. t. J 7.0 Hz. Cl'-H 2) ), 2.70 - 2.87 (4H. m. C8 ' -H 2 Cll'-H 2 ), 3.26 (2H. s. C2-H 2 ), 5.29 - 5.47 (6H, m, C6'-H. C7'-H. C9'-H. ClO'-H. Cl2'-H. Cl3'-H):

13 C n.m.r. (50MHz. CDCI 3 ) δ 176.54s. 130.41d. 129.86 . 128.367 . 128. lid. 128.03d. 128.59d. 33.49t. 32.74t. 31.5 It. 30.36t. 29.31f. 29.14Ϊ. 28.81t. 28.34t. 27.21f. 27.05f. 25.63_. 22.55t. 14.04q.

Z,Z,Z-(9,12,15-Octadecatrienylthio)acetic acid (3c)

[β-thia 21:3(n-3)] l H n.m.r. (200 MHz. CDCl 3 ) δ 0.89 (3H. t. J 6.7 Hz. Cl8'-H 3 ), 1.21 - 1.52 (10H. m. C3 * -H 2 . C4'-H 2 C5'-H 2 . C6 * -H 2 . C7'-H 2 ), 1.54 - 1.72 (2H. m. C2'- H 2 ), 2.01 - 2.15 (4H. m. C8' - H z . Cl7'-H 2 ), 2.67 (2H. t. J 7.2 Hz. Cl * -H 2) ), 2.73 - 2.87 (4H. m. Cll'-H,. Cl4'-H 2 ), 3.25 (2H. s. C2-H 2 ). 5.27 - 5.48 (6H. m. C9'-H, ClO'-H. C12 * -H. C13'-H. C15 -H. Cl6'-H);

l C n.m.r. (50MHz. CDCl-,) δ 176.21s. 131.94d. 130.29d. 128.26d. 127.69d. 127.1ld. 33.49t. 32.82f. 30.39t. 29.60.. 29.36t. 29.20.. 29.12.. 28.89t. 28.70t. 27.2U. 25.61.. 25.52t. 20.53t. 14.25q.

Z,Z.Z.Z.Z,Z-(9,12.15-Octadecatrienyltlιio)acetic acid (3d)

[β-thia 25 :6(n-3)]

Η n.m.r. (200 MHz. CDCL,) δ 0.99 (3H. t. J 7.5 Hz. C22'-H 3 ). 1.62 -

1.77 (2H. m. C2'-H 2 .). 2.02 - 2.24 (4H. m. C3'-H,. C21'-H 2 ). 2.68 (2H. t, J 7.4

Hz. Cl'-H,). 2.83 - 2.85 (10H. m. . C6'-H,. C9'-H ,. Cl2'-H,. Cl5'-H,. C18'-H 2 ), 3.26 (2H. s. C2-H,). 5.29 - 5.47 (12H. m. C4'-H_,. C5 ' -H. C7'-H. C8'-H. ClO'-H.

Cll'-H. C13'-H. C14 ' -H. Cl6'-H. Cl7'-H. C 19 -H. C20'-H) :

13 C n.m.r. (50MHz. CDCl,) δ 176.37s. 132.0ld. 128.94d. 128.68d.

128.55d. 128.24d. 128.18d. 128.12d. 128.07d. 127.85d. 126.99d. 33.41J.

32.21f. 28.67t. 26.12t. 25.64f. 25.22t. 20.53f. 14.24q.

Z,Z,Z,Z-(5,8,ll,14-Eicosatetraenylthio) proμionic acid (5a)

[γ-thia 24:4(n-6)]

Η n.m.r. (300 MHz. CDCl,) δ 0.89 (3H. f. / 6.8 Hz. C20'-H,). 1.26 -

1.38 (6H. m. C17 * -H 2 . Cl8'-H 2 , Cl9'-H ), 1.41 - 1.51 (2H. m. C3'-H 2 ). 1.56 - 1.66 (2H. m. C2' - H ), 2.02 - 2.12 (4H. m. C4'-H . C16'-H 2 ). 2.54 (2H. t, J 7.3

Hz. Cl'-H*,). 2.66 (2H. t. J 6.6 Hz C3-H 2 ), 2.78 (2H. t, J 6.6 Hz. C2-H 2 ), 2.78 -

2.86 (6H. in. C7'-H . ClO'-H 2 . Cl3'-H 2 ). 5.29 - 5.44 (8H. m. C5 ' -H. C6'-H. C8 -

H. C9 -H. Cll'-H. C12'-H. Cl4'-H. C15'-H):

, C n.m.r. (50MHz. CDCL,) δ 178.22s. 130.37d. 129.58d. 128.46d. 128.19d. 128. lOd. 128.03d. 127.8ld. 127.48d. 34.68t. 32.046t. 31.44t. 29.25t.

29.01t. 28.67_. 27.15-. 26.70t. 26.54t. 25.57.. 22.50..13.98q.

Z.Z,Z-(6.9,12-Octadecatrienylthio)propionic acid (5b)

[γ-thia 22:3(n-6)] Η n.m.r. (200 MHz. CDCL,) δ 0.89 (3H. t. ] 6.8 Hz. Cl8'-H 3 ), 1.25 -

1.42 (10H. m. C3'-H 2 . C4'-H 2 Cl5'-H 2 . Cl6'-H 2 . C17'-H ), 1.53 - 1.65 (2H. m, C2'-H 2 ). 2.01 - 2.10 (4H. m. C5' - H 2 , Cl4'-H 2 ). 2.53 (2H. t. J 7.3 Hz. Cl'-H 2) ) ( 2.66 (2H. t, J 6.8 Hz. C3-H ). 2.78 (2H. t, } 6.8 Hz C2-H 2 ), 2.74 - 2.83 (4H. m, C8 * -H. Cll'-H)5.26 - 5.47 (6H. m. C6'-H. C7'-H. C9'-H. ClO'-H. Cl2'-H. C13'- H):

1 C n.m.r. (50MHz. CDCL,) δ 178.14s. 130.38d. 129.90d. 128.33d. 128. lOd. 127.97d. 127.58D. 34.69t. 32.13t. 31.49t. 29 Alt. 29.29_. 29.18.. 28.46t. 27.19f. 27.06_. 26.58f. 25.61t. 14.03q.

Z.Z,Z-(9,12.15-Octadecatrienylthio)μroponionic acid (5c)

[γ-thia 22:3(n-3)]

Η n.m.r. (200 MHz. CDCl,) δ 0.98 (3H. t. J 7.5 Hz. Cl8'-H :t ), 1.26 - 1.35 (10H. in. C3'-H 2 . C4'-H 2 C5 * -H , C6'-H 2 . C7'-H,). 1.51 - 1.65 (2H. , C2'- H 2 ), 1.98 - 2.15 (4H. . C8' - H,. Cl7 * -H ), 2.53 (2H. t. J 7.3 Hz. Cl'-H 2 ), 2.66 (2H. t, J 6.7 Hz. C3'-H,), 2.78 (2H. t, J 7.3 Hz. Cl-H ,). 2.66 (2H. t. J 6.7 Hz. C3'- H 2 ), 2.78 (2H. t. / 6.7 Hz. C2'-H 2 ). 2.75 - 2.84 (4H. m. Cl l -H ,. C 14 ' -H 2 ) 5.27 = 5.46 (6H. m. C9'-H. ClO ' -H. Cl2'-H. Cl3'-H. C15 -H. Cl6'-H):

,3 C n.m.r. 150MHz. CDCl,) δ 178.03s. 131.92d. 130.28d. 128.24d, 127.66d. 127. lOd. 34.67*. 32.19t. 29.58t. 29.50t. 29.37J. 29.20t. 29.16J. 28.81f. 27.19t. 26.59t. 25.59f. 25.50t. 20.52t. 14.245q.

Z.Z,Z,Z-(5,8.11,14-Octadecatrienylthio)succinic acid (7a) [α-carboxymethyl-β-thia 23:4(n-6)]

1H n.m.r. (300 MHz, CDCl 3 ) δ 0.89 (3H, t, / 6.8 Hz. C20'-H 3 ), 1.23 - 1.53 (8H. m, C3'-H 2 , Cl7'-H 2 . Cl8'-H 2 , Cl9'-H 2 ), 1.56 - 1.70 (2H. m. C2 * -H 2 ), 2.03 - 2.13 (4H, m. C4' - H 2 , Cl6 * -H 2 ), 2.65 - 2.86 (9H. , C7'-H . ClO'-H 2 , C13'-H 2 . Cl'-H 2 , CHHC0 H), 3.01 (IH. dd, J 12.1. 17.6 Hz.CHHC0 H). 3.64 (IH. dd, J 4.0. 12.1 Hz.C2-H). 5.32 - 5.43 (8H. m. C5'-H. C6'-H. C8'-H. C9'-H. Cll'-H. C12'-H. C14'-H. Cl5 ' -H);

SYNTHESIS OF HYDROXY AND HYDOPEROXY DERIVATIVES. The hydroperoxide derivatives of arachidonic acid (Figs lb-lg) are obtained separately from enzyme-catalysed reactions of Fig la. or as a mixture by autoxidation of Fig la. The components of the autoxidation mixture Figs lb- lg, which vary in ratio depending on the reaction conditions, can be separated by high performance liquid chromatography on silica. Reduction of the hydroperoxides Figs lb-lg. either separately or as a mixture affords the corresponding alchohols Figs lh-lm. These can be converted to the corresponding peroxides Fig In (R-alkyl or aryl), having the same substitiution pattern as the hydroperoxides Figs lb-lg and alcohols Figs lh- lm. by treating with a variety of reagents including the corresponding alkyl

or aryl hypohalites (ROX). Mixtures of either the alchols Figs lh- lm or the peroxides Fig In can also be separated bv high performance liquid chromatography

In a similar fashion other naturally occuring unsaturated fattv acids (eg 22:6 (n-3)). and modified fattv acids such as Figs lo- lx (Y=H) and related compounds prepared by elaboration of acids other that arachidomc acid can be used to prepare hvdroperoxv. hvdroxv and peroxv derivatives Figs lo-lx (Y=OOH. OH. OOR). analogous to Figs lb- In. where the substitution pattern is determined by the allyic oxidation. The acids Fig lo and Fig Ip (Y= H) can be prepared by aldol condensation of the coi iesponding aldehyde of Fig la and Fig lp can also be prepared via a Wittig reaction of the same aldehyde or the corresponding halide. while the acid Fig lq can be prepared via a Wittig reaction of the corresponding C19 aldehvde oi halide The acid Fig lr can be prepared bv aldol condensation of a corresponding ester of Fig la. while Figs ls-lx are obtained bv ether or thioether synthesis, through nucleophilic substitution or metal catalysed coupling reactions, and the thioethers Figs lv-lx can be oxidised to the corresponding sulphoxides and sulphones. The ammo acid derivatives Fig ly and Fig lz can be obtained by coupling the corresponding fattv acid (Fig la) and glvcine and aspartic acid respectively

Synthesis of Hydroxy β-oxa Fatty Acids

REAGENTS β-oxa Fatty Acids (1,3) - synthesized from the corresponding fatty alcohols by rhodium acetate catalysed coupling with diazoacetate esters.

Triphenylphosphine - Aldrich Chemical Company.

Potassium Dihydrogen Orthophosphate - Ajax Chemicals.

Soybean - Aldrich Chemical Company.

All solvents were distilled prior to use.

Preparative layer chromatographies were performed on Merck Silica Gel 60

PF 25 containing gypsum: Art 7749.

PROCEDURE

Hydroxy β-oxa Fatty Acids 2 and 4

The relevant fatty acid. 1 and 3. [ca. 50 mg) was dissolved in phosphate buffer (0.1 M. pH = 9.0. ca. 45 ml) at 3θ"C. Soybean 15-lipoxygenase (ca. 8 mg) in phosphate buffer (ca. 5 ml) was added and oxygen was bubbled through the stirred solution for 10 min. Triphenylphosphine (ca. 50 mg) was added in dichloromethane (ca 50 ml) followed by hydrochloric acid (0.2 M, ca 20 ml) and the solution was stirred at θ"C for 20 min. The crude reaction

mixture was extracted with dichloromethane and the resulting extract was concentrated under a stream of dry nitrogen. The residue was purified by preparative layer chromatography on silica, eluting with ethyl acetate/hexane/acetic acid (80:20:0.1). to afford the respective hydroxy β-oxa fatty acid. 2 or 4. as an oil

Z, Z. E-(13-Hydroxy-6,9,ll-octadecatienyloxy)acetic acid (2)

[16'-OH-β-oxa 21:3(n-6)]

Η n.m.r. (300 MHz. CDCl,) δ 0.89 (3H. _. / 6.8 Hz. Cl8 ' -H,). 1.25 - 1.45 (10H. in. C3 ' -H,. C4 ' -H C 15 -H,. C16'-H ,. C l7'-H 2 ). 1.59 - 1.73 (2H. m. C2'-H*,). 2.01 - 2.12 (4H. m. C5 " - H 2 . C l4 ' -H ). 2.81 (2H. t. / 5.8Hz. C8'-H 2 ), 3.52 - 3.60 (2H. JΠ. Cl '-H 2 ). 4.10 (2H. s, C2-H,). 4.20 (IH. dt, / 6.O. 6.7 Hz, C13'-H) 5.29 - 5.45 (3H m. C6'-H. C7'-H. C9'-H). 5.70 (IH. dd. J 6.7 15.2 Hz. C12'-H) 5.99 (IH. dd. J 10.9 Hz. C10 ' -H) 6.55 ( IH. dd. J 10.9. 15.2 Hz. Cll'-H)

Z, E, Z-(13-Hydroxy-9, 11, 15-octadecatrienyloxy)acetic acid (4) [16'-OH-β-oxa 21:3(n-6)]

Η n.m.r. (300 MHz. CDCl,) δ 0.95 (3H. t. J 7.6 Hz. C18'-H 3 ), 1.17 - 1.40 (10H. in. C3'-H . C4'-H C5 ' -H 2 . C6'-H 2 , C7'-H 2 ), 1.48- 1.63 (2H. m. C2'- H 2 ), 1.99 - 2.12 (2H. m. C8" - H ). 2.13 - 2.22 (2H. m, C14'-H ) 2.28 - 2.37 (2H, JΠ. C17'-H 2 ). 3.44 - 3.50 (2H.ni, Cl '-H 2 ), 3.80 - 3.92 (2H. s. C2 * -H ), 4.14 - 4.20 (IH. dt. J 6.4. 14.9 Hz. Cl3'-H). 5.30 - 5.60 (3H. m, C9'-H. Cl5'-H. Cl6'-H), 5.67 (IH. dd. J 6.4. 14.9 Hz. Cl2'-H). 5.95 (IH. dd, J 11.1. 11.1 Hz. C10'-H), 6.49 (IH. dd, J 11.1. 14.9 Hz Cll'-H)

Effect of novel fatty acids on the action of Acyl-CoA-Oxidase.

β-oxidalion of fatly acids

β-oxidation is the main oxidative metabolic fate of fatty acids (1). the net process being characterized by the degradation of the fatty acid carbon chain by two carbon atoms with the concommitant production of equimolar amounts of acetyl-coenzyme A (4) (Scheme 1 ).

HSCoA CH3SC0A

3 4

Scheme 1

Acyl-CoA-oxidase

The first step in the β-oxidation pathway is controlled by acyl-CoA oxidase. In peroxisomes. acyl-CoA oxidase catalyses the reaction of acyl-coenzyme A thioesters with oxygen to produce enoyl-coenzyme A thioesters. In the presence of peroxidase enzyme the concommitant production of hydrogen peroxide is cycled back to oxygen with the net generation of one mole of water for each mole of acyl-coenzyme A thioester oxidized.

Novel fatty acids

Fatty acids bearing a blocking group at the β-position were anticipated as being inert to the usual course of β-oxidation. Novel fatty acids thus bearing a heteroatom at the β-position have been svnthesised. The compounds used in the current investigation were arachidonyloxyacetic acid [β-oxa 23:4(n-6)], gamma linolenvloxyacetic acid [β-oxa 21:3(n-6)]. linolenyloxyacetic acid [β- oxa 21:3(n-3)] and arachidonylthioacetic acid [β-thia 23:4(n-6)]. The oxidation of arachidonyl-thiopropionic acid [γ-thia 22:4(n-6)] was also investigated in order to assess the effect of a blocking group at the γ-position of a fatty acid upon β-oxidation.

Acyl-Co-A Oxidase assay

Acyl-CoA oxidase from Aiilu obacter species is available from Boehrmger Mannheim in stabilized tablet form and is commonly used together with acyl-CoA svnthetase for the measurement of fiee acids in serum or plasma.

Assay principle

Free fattv acids aie. m the piesence of the enzvme acvl-CoA svnthetase (acyl CS). converted by adenosιne-5'-triphosphate (ATP) and coenzyme A (CoA) into acvl-coenzyme A (acyl-CoA.) lesulting in adenosιne-5'-monophosphate (AMP) and pyrophosphate being pioduced

Acyl-CoA reacts with oxygen (O^) in the presence of acvl-CoA-oxidase

(ACOD) to form 2.3-enovl-coenzvme A (enovl-CoA.) with the generation of hydrogen peroxide

The resulting hydrogen peroxide ( 2 O ) converts 4-amιnoantιpyrme (4-AA) and 2.4.6-tπbromo-3-hydroxybenzoιc acid (TBHB) into a red dye in the presence of peroxidase (POD) The dye is measured in the visible legion at 546 nm.

Assay procedure

Wavelength: 546 nm

Micro Cuvette: 1 cm light path Temperature. 25°C ( ± 1°C)

Assay volume: 1.15 ml

Measurement of reaction mixtures against air Pippetted into cuvette: 1.00 ml reaction mixture- KH2PO 4 (87 mmol/1), Mg 2 + (1.3 mmol/1), ATP (1.5 mmol/1). CoA (0.26 mmol/1). POD

(21.7 kU/1), Acyl CS (165 U/l). 0.05 ml sample solution of free fatty acιd(s).

[for blank assay 0 05 ml of distilled water was substituted]

Sample was mixed and temperateted at 25_C for approx. 10 nun. Following this, addition of-

0 05 ml N-ethyl maleinamide solution- (0.86 mmol/1)

Absorbance (Al) of solution was measured at 546 nm followed by the addition of:

0.05 ml ACOD solution: (8.7 kU/1).

At t = 10 seconds after the addition of ACOD to the reaction mxture the change in visible absorption of the solution at 546 nm was measured for 20 min. Assay calibration / authenication

Sample concentration dependance

Arachidonic acid (20:4(n-6). 10) was assayed at the following concentrations:

4.3 mM. 2.1 mM. 0.99 mM. 0.49 mM. 0.25 mM and 0 mM (blank assay).

As per Figure 1 the assay shows rate dependance on the concentration of fatty acid.

Ezyme (ACOD) concentration dependance

A sample solution of arachidonic acid (20:4(n-6). 10) at a concentation of 0.99 mM was assayed using acyl-CoA oxidase concentrations as follows:

200 kU/1. 100 kU/1 and50 kU/1.

As per Figure 2 the assay shows rate dependance on the concentration of enzyme (ACOD).

Assay of novel fatty acids

Solutions of the novel compounds at concentrations of 1.0 mM.l.O mM. 1.0 mM. 1.0 mM and 1.1 mM respectively were assayed using an acyl-CoA oxidase concentration of 100 kU/1.

As per Figures 3 - 6 the assay indicates that the β-oxa compounds and the β- thia compounds respectively, are not substrates for acyl-CoA oxidase (Figure 11A).

Effect of novel compounds on arachidonic acid metabolism by Acyl-CoA oxidase

Sample solutions containing equimolar concentrations of arachidonic acid

(10) and each of the novel compounds were assayed using an acyl-CoA oxidase concentration of 100 kU/1.

The assay shows that the novel compounds have no effect on the uptake of arachidonic acid by acyl-CoA oxidase.

Further, samples containing novel compounds and arachidonic acid (10) at relative concentrations of 4 : 1 and 16:1 were assayed and indicated no appreciable effect on the uptake of arachidonic acid bv acvl-CoA oxidase (not shown).

Covalent Coupling of Fatty Acids to Λmino Acids

Polyunsaturated fatty acid (1.80 mmol). HOSu (0.41 g, 3.60 mmol) and the amino acid t-butyl ester (3.60 mmol) were dissolved together in dimethylformamide (3 inL) and the mixture cooled in ice bath. Dicyclohexylcarbodiimide (0.44 g, 2.16 mmol) in DMF (0.3 inL) and N- methylmorpholine (0.73 g. 7.20 mmol) were added. The mixture stirred for 20 hours, after which time some unreacted polyunsaturated fatty acid remained. More DCC (0.10 g) was added and the mixture stirred for further 20 hours. DCU was filtered off and the product isolated by reversed phase HPLC. The purified product was concentrated to an oil and trifluoracetic acid (30 L) as added. After an hour stirring, the trifluoroacetic acid was evaporated to leave the product as a brown oil which was redissolved in CH,CN (6 mL) and purified by reversed phase HPLC. The pure fractions obtained were combined, concentrated and lyophilised (in t-butanol) to leave the product as a brown oil.

TABLE 1 DIRECT ANTIMALARIAL ACTIVITY OF NOVEL FATTY ACIDS

TABLE 2 FATTY ACID STIMULATED NEUTROPHIL-MEDIATED ANTI-MALARIAL

ACTIVITY COMPOUND % INHIBITION RELATIVE TO 22:6 AT 16μM β-oxa 21:3 (n-3) 45 β-oxa 21:4 (n-3) 85 β-thia 21:3 (n-6) 85 β-thia 21:3 (n-3) 73 β-thia 23:4 (n-6) 150 γ-thia 24.4 (n-6) 91 β-thia 25.6 (n-3) 47

16-OH-β-oxa 21:3 (n-6) 33

TABLE 3 EFFECT OF MP8. MPll. MP14 ON KI CHLOROQUINE RESISTANT

P.FALCIPARUM COMPOUND % GROWTH INHIBITION

CHLOROQUINE 12.4 β-thia 23:4 (n-6) 97 γ-thia 24.4 (n-6) 97 β-thia 25.6 (n-3) 98

TABLE 4 EFFECT OF FATTY ACIDS ON MITOGEN-INDUCED PERIPHERAL BLOOD MONONUCLEAR CELL PROLIFERATION COMPOUND % INHIBITION OF

INDUCED PROLIFERATION AT 20μM PUFA β-oxa 21:3 (n-6) 17 β-thia 21.3 (n-3) 28 β-thia 25.6 (n-3) 97

16-OH-β-oxa 21:3 (n-6) 50

TABLE 5 EFFECT OF PUFA ON PHA-INDUCED TNFα PRODUCTION

COMPOUND % INHIBITION OF CYTOKINE PRODUCTION (PUFA AT 20μM)

β-oxa 21:3 (n-6) 38 β-oxa 21:3 (n-3) 39 β-thia 21:3 (n-6) 17 β-thia 21:3 (n-3) 17 γ-thia 22.3 (n-6) 41 γ-thia 22.3 (n-3) 25 β-oxa 23.4 (n-6) 25 β-thia 23.4 (n-6) 35 γ-thia 24.4 (n-6) 34 β-thia 25.6 (n-3) 90 16-OH-β-oxa 21:3 (n-6) 71 16-OH-β-oxa 21:3 (n-3) 68

TABLE 6 EFFECT OF PUFA ON STAPH AUREUS INDUCED INTERFERON γ PRODUCTION BY PERIPHERAL BLOOD MONONUCLEAR CELLS

COMPOUND % INHIBITION (PUFA AT 20μM) β-oxa 21:3 (n-6) 89 β-thia 21:3 (n-6) 45 β-oxa 25.6 (n-3) 44 β-oxa 23.4 (n-6) 89 β-thia 23.4 (n-6) 64 β-thia 25.6 (n-6) 96 16-OH-β-oxa 21:3 (n-6) 77 16-OH-β-oxa 21:3 (n-3) 65