Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
MODULAR MULTI-LEVEL CONVERTER AND SUB-MODULE FOR A MULTI-LEVEL CONVERTER
Document Type and Number:
WIPO Patent Application WO/2017/016601
Kind Code:
A1
Abstract:
The invention relates to, inter alia, a modular multi-level converter having at least one sub-module series circuit (UE) comprising at least two sub-modules (T) connected in series and an inductance. According to the invention, at least one of the sub-modules (T) comprises: a half bridge (100) which forms an input connection (Et) of the sub-module (T) and has a first and a second half bridge output connection (101, 102); a series circuit unit (300) that is connected to the first half bridge output connection (101) by a first connection (301), and to the second half bridge output connection (102) by a second connection (302), wherein the series circuit unit (300) comprises a first and a second switch unit (310, 320) as well as a capacitor (C2), and the electrical connection point (V300) between the two switch units (310, 320) of the series circuit unit (300) forms an output connection (At) of the sub-module (T); and a bidirectionally switchable switch device (200) that can activate and deactivate current regardless of the current flow direction, and having a connection (A200) at the output connection (At) of the sub-module (T), and having another connection (E200) at the second half bridge output connection (102), and is thereby connected to the second connection (302) of the series circuit unit (300).

Inventors:
HOFMANN VIKTOR (DE)
BAKRAN MARK-MATTHIAS (DE)
SCHÖN ANDRE (DE)
Application Number:
PCT/EP2015/067402
Publication Date:
February 02, 2017
Filing Date:
July 29, 2015
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
SIEMENS AG (DE)
International Classes:
H02M7/483
Domestic Patent References:
WO2014146721A12014-09-25
Foreign References:
DE102013218207A12015-03-12
Download PDF:
Claims:
Patentansprüche

1. Modularer Multilevelumrichter (10) mit zumindest einer Teilmodulreihenschaltung (UE) , die mindestens zwei in Reihe geschaltete Teilmodule (T) und eine Induktivität (L) umfasst, d a d u r c h g e k e n n z e i c h n e t, dass

zumindest eines der Teilmodule (T) aufweist:

- eine Halbbrücke (100), die einen Eingangsanschluss (Et) des Teilmoduls (T) bildet und einen ersten und einen zweiten Halbbrückenausgangsanschluss (101, 102) umfasst,

- eine Reihenschaltungseinheit (300), die mit einem ersten Anschluss (301) an den ersten Halbbrückenausgangsanschluss (101) und mit einem zweiten Anschluss (302) an den zweiten Halbbrückenausgangsanschluss (102) angeschlossen ist, wobei die Reihenschaltungseinheit (300) eine erste und eine zweite Schalteinheit (310, 320) sowie einen

Kondensator (C2) umfasst und die elektrische

Verbindungsstelle (V300) zwischen den zwei Schalteinheiten (310, 320) der Reihenschaltungseinheit (300) einen

Ausgangsanschluss (At) des Teilmoduls (T) bildet, und

- eine bidirektional schaltfähige Schalteinrichtung (200), die Strom unabhängig von der Stromflussrichtung ein- und ausschalten kann und mit einem Anschluss (A200) an den Ausgangsanschluss (At) des Teilmoduls (T) und mit einem anderen Anschluss (E200) an den zweiten

Halbbrückenausgangsanschluss (102) und damit an den zweiten Anschluss (302) der Reihenschaltungseinheit (300) angeschlossen ist. 2. Multilevelumrichter nach Anspruch 1,

d a d u r c h g e k e n n z e i c h n e t, dass

die Halbbrücke (100) eine Reihenschaltung mit zwei in Reihe geschalteten Halbleiterschaltern (110, 120), deren

elektrische Verbindungsstelle (V100) den Eingangsanschluss (Et) des Teilmoduls (T) bildet, und einen parallel zu der

Reihenschaltung geschalteten Kondensator (Cl) umfasst, dessen äußere Anschlüsse den ersten und den zweiten Halbbrückenausgangsanschluss (101, 102) der Halbbrücke (100) bilden .

3. Multilevelumrichter nach einem der voranstehenden

Ansprüche,

d a d u r c h g e k e n n z e i c h n e t, dass

- die bidirektional schaltfähige Schalteinrichtung (200)

zwei elektrisch in Reihe geschaltete Halbleiterschalter (210, 220) umfasst, die jeweils unidirektional schaltfähig sind und Strom jeweils nur in einer Stromflussrichtung ein- und ausschalten können, und

- die Halbleiterschalter (210, 220) der Schalteinrichtung (200) invers derart gepolt sind, dass ein Stromfluss in einer Richtung von einem der beiden Halbleiterschalter ein- und ausgeschaltet werden kann und ein Stromfluss in der entgegengesetzten Richtung von dem anderen der beiden Halbleiterschalter ein- und ausgeschaltet werden kann.

4. Multilevelumrichter nach Anspruch 3,

d a d u r c h g e k e n n z e i c h n e t, dass

die Halbleiterschalter der bidirektional schaltfähigen

Schalteinrichtung (200) jeweils eine Freilaufdiode (D) umfassen und die Anodenanschlüsse oder die Kathodenanschlüsse der Freilaufdioden (D) der zwei Halbleiterschalter elektrisch miteinander verbunden sind.

5. Multilevelumrichter nach einem der voranstehenden

Ansprüche,

d a d u r c h g e k e n n z e i c h n e t, dass

die erste und zweite Schalteinheit (310, 320) der

Reihenschaltungseinheit (300) jeweils zwei Halbleiterschalter (311, 312, 321, 322) umfassen, die elektrisch in Reihe geschaltet sind. 6. Multilevelumrichter nach Anspruch 5,

d a d u r c h g e k e n n z e i c h n e t, dass - die Halbleiterschalter (311, 312, 321, 322) der Reihenschaltungseinheit (300) jeweils eine Freilaufdiode (D) umfassen und

- die Freilaufdioden (D) jeweils derart elektrisch

angeordnet sind, dass ihr Kathodenanschluss mittelbar oder unmittelbar elektrisch mit dem ersten Anschluss (301) der Reihenschaltungseinheit (300) und ihr Anodenanschluss mittelbar oder unmittelbar elektrisch mit dem zweiten Anschluss (302) der Reihenschaltungseinheit (300) in

Verbindung steht und die Freilaufdioden (D) einen

Freilaufpfad (330) bilden, der einen Stromfluss von dem zweiten Anschluss (302) der Reihenschaltungseinheit (300) in Richtung des ersten Anschlusses (310) der

Reihenschaltungseinheit (300) zulässt.

7. Multilevelumrichter nach einem der voranstehenden

Ansprüche,

d a d u r c h g e k e n n z e i c h n e t, dass

einer der beiden Anschlüsse des Kondensators (C2) der

Reihenschaltungseinheit (300) den zweiten Anschluss (302) der Reihenschaltungseinheit (300) bildet und mit einem der beiden Anschlüsse des Kondensators (Cl) der Halbbrücke (100) verbunden ist und die beiden Kondensatoren (Cl, C2) und die Schalteinheiten (310, 320) der Reihenschaltungseinheit (300) elektrisch eine geschlossene Schleife bilden.

8. Multilevelumrichter nach einem der voranstehenden

Ansprüche,

d a d u r c h g e k e n n z e i c h n e t, dass

- die Halbleiterschalter der Halbbrücke (100) jeweils eine Freilaufdiode (D) umfassen und

- die Freilaufdioden (D) der Halbbrücke (100) jeweils derart elektrisch angeordnet sind, dass ihr Kathodenanschluss mittelbar oder unmittelbar elektrisch mit dem ersten

Halbbrückenausgangsanschluss (101) und damit dem ersten

Anschluss (301) der Reihenschaltungseinheit (300) und ihr Anodenanschluss mittelbar oder unmittelbar elektrisch mit dem zweiten Halbbrückenausgangsanschluss (102) und damit dem zweiten Anschluss (302) der Reihenschaltungseinheit (300) in Verbindung steht und die Freilaufdioden (D) der Halbbrücke (100) einen Freilaufpfad (130) bilden, der einen Stromfluss von dem zweiten Anschluss (302) der Reihenschaltungseinheit (300) in Richtung des ersten

Anschlusses (301) der Reihenschaltungseinheit (300) zulässt und elektrisch parallel zu dem Freilaufpfad (330) liegt, den die Freilaufdioden (D) der Halbleiterschalter der Reihenschaltungseinheit (300) bilden.

9. Multilevelumrichter nach einem der voranstehenden

Ansprüche,

d a d u r c h g e k e n n z e i c h n e t, dass

die bidirektional schaltfähige Schalteinrichtung (200) mit ihrem einen Anschluss (A200) an den Ausgangsanschluss (At) des Teilmoduls (T) und mit ihrem anderen Anschluss (E200) an die elektrische Verbindungsstelle zwischen dem Kondensator (Cl) der Halbbrücke (100) und dem Kondensator (C2) der Reihenschaltungseinheit (300) angeschlossen ist.

10. Multilevelumrichter nach einem der voranstehenden

Ansprüche,

d a d u r c h g e k e n n z e i c h n e t, dass

die Halbleiterschalter der Halbbrücke (100), der

Reihenschaltungseinheit (300) und der bidirektional

schaltfähigen Schalteinrichtung (200) jeweils einen

Transistor (TR) und eine dazu parallel geschaltete

Freilaufdiode (D) umfassen. 11. Multilevelumrichter nach einem der voranstehenden

Ansprüche,

d a d u r c h g e k e n n z e i c h n e t, dass

die Halbleiterschalter der Halbbrücke (100), der

Reihenschaltungseinheit (300) und der bidirektional

schaltfähigen Schalteinrichtung (200) baugleich sind.

12. Multilevelumrichter nach einem der voranstehenden

Ansprüche, d a d u r c h g e k e n n z e i c h n e t, dass

die Halbleiterschalter der Halbbrücke (100), der

Reihenschaltungseinheit (300) und der bidirektional

schaltfähigen Schalteinrichtung (200) Bipolartransistoren mit integrierter Gateelektrode sind.

13. Multilevelumrichter nach einem der voranstehenden

Ansprüche,

d a d u r c h g e k e n n z e i c h n e t, dass

alle Teilmodule (T) aller Teilmodulreihenschaltungen des

Multilevelumrichters die Merkmale gemäß einem der Ansprüche 1 bis 12 aufweisen.

14. Teilmodul (T) für einen modularen Multilevelumrichter, g e k e n n z e i c h n e t durch

- eine Halbbrücke (100), die einen Eingangsanschluss (Et) des Teilmoduls (T) bildet und einen ersten und einen zweiten Halbbrückenausgangsanschluss (101, 102) umfasst,

- eine Reihenschaltungseinheit (300), die mit einem ersten Anschluss (301) an den ersten Halbbrückenausgangsanschluss

(101) und mit einem zweiten Anschluss (302) an den zweiten Halbbrückenausgangsanschluss (102) angeschlossen ist, wobei die Reihenschaltungseinheit (300) eine erste und eine zweite Schalteinheit (310, 320) sowie einen

Kondensator (C2) umfasst und die elektrische

Verbindungsstelle (V300) zwischen den zwei Schalteinheiten

(310, 320) der Reihenschaltungseinheit (300) einen

Ausgangsanschluss (At) des Teilmoduls (T) bildet, und

- eine bidirektional schaltfähige Schalteinrichtung (200), die Strom unabhängig von der Stromflussrichtung ein- und ausschalten kann und mit einem Anschluss (A200) an den Ausgangsanschluss (At) des Teilmoduls (T) und mit einem anderen Anschluss (E200) an den zweiten

Halbbrückenausgangsanschluss (102) und damit an den zweiten Anschluss (302) der Reihenschaltungseinheit (300) angeschlossen ist.

Description:
Beschreibung

Modularer Multilevelumrichter sowie Teilmodul für einen

Multilevelumrichter

Die Erfindung bezieht sich auf einen modularen Multilevelumrichter mit zumindest einer Teilmodulreihenschaltung, die mindestens zwei in Reihe geschaltete Teilmodule und eine Induktivität umfasst.

Ein modularer Multilevelumrichter dieser Art ist

beispielsweise aus der Veröffentlichungsschrift "Modular Multilevel Converter: An universal concept for HVDC-Networks and extended DC-Bus-Applications " (R. Marquardt, 2010

International Power Electronics Conference, Seiten 502 bis 507, 978-1-4244-5393-1/10, 2010 IEEE) bekannt. In der

Veröffentlichungsschrift sind Teilmodule offenbart, die Haib ¬ und Vollbrücken umfassen. Ein Multilevelumrichter mit komplexeren Teilmodulen ist aus der internationalen Veröffentlichungsschrift WO 2015/036149 AI bekannt.

Der Erfindung liegt die Aufgabe zugrunde, einen Multilevel- umrichter mit verbesserten Eigenschaften anzugeben.

Diese Aufgabe wird erfindungsgemäß durch einen Multilevel ¬ umrichter mit den Merkmalen gemäß Patentanspruch 1 gelöst. Vorteilhafte Ausgestaltungen des erfindungsgemäßen

Multilevelumrichters sind in Unteransprüchen angegeben.

Danach ist erfindungsgemäß vorgesehen, dass zumindest eines der Teilmodule aufweist:

- eine Halbbrücke, die einen Eingangsanschluss des

Teilmoduls bildet und einen ersten und einen zweiten

Halbbrückenausgangsanschluss umfasst,

- eine Reihenschaltungseinheit, die mit einem ersten

Anschluss an den ersten Halbbrückenausgangsanschluss und mit einem zweiten Anschluss an den zweiten Halbbrücken- ausgangsanschluss angeschlossen ist, wobei die

Reihenschaltungseinheit eine erste und eine zweite

Schalteinheit sowie einen Kondensator umfasst und die elektrische Verbindungsstelle zwischen den zwei

Schalteinheiten der Reihenschaltungseinheit einen

Ausgangsanschluss des Teilmoduls bildet, und

- eine bidirektional schaltfähige Schalteinrichtung, die

Strom unabhängig von der Stromflussrichtung ein- und ausschalten kann und mit einem Anschluss an den

Ausgangsanschluss des Teilmoduls und mit einem anderen Anschluss an den zweiten Halbbrückenausgangsanschluss und damit an den zweiten Anschluss der Reihenschaltungseinheit angeschlossen ist.

Ein wesentlicher Vorteil des erfindungsgemäßen Multilevel- umrichters ist darin zu sehen, dass das zumindest eine

Teilmodul, im Vergleich zu Teilmodulen, die lediglich aus einer einfachen Serienschaltung aus Halb- und Vollbrücken bestehen, höhere Spitzenströme führen kann.

Ein weiterer wesentlicher Vorteil des erfindungsgemäßen

Multilevelumrichters ist darin zu sehen, dass das zumindest eine Teilmodul auch negative Spannungslevel erzeugen kann und die Spannungszustände auch unabhängig vom Ladezustand der Kondensatoren der Teilmodule modulierbar sind.

Bezüglich der Ausgestaltung der Halbbrücke wird es als vorteilhaft angesehen, wenn die Halbbrücke eine Reihen- Schaltung mit zwei in Reihe geschalteten Halbleiterschaltern, deren elektrische Verbindungsstelle den Eingangsanschluss des Teilmoduls bildet, und einen parallel zu der Reihenschaltung geschalteten Kondensator umfasst, dessen äußere Anschlüsse den ersten und den zweiten Halbbrückenausgangsanschluss der Halbbrücke bilden.

Bezüglich der Ausgestaltung der bidirektional schaltfähigen Schalteinrichtung ist es besonders vorteilhaft, wenn diese zwei elektrisch in Reihe geschaltete Halbleiterschalter umfasst, die jeweils unidirektional schaltfähig sind und Strom jeweils nur in einer Stromflussrichtung ein- und ausschalten können, und die Halbleiterschalter der

Schalteinrichtung invers derart gepolt sind, dass ein

Stromfluss in einer Richtung von einem der beiden Halbleiterschalter ein- und ausgeschaltet werden kann und ein

Stromfluss in der entgegengesetzten Richtung von dem anderen der beiden Halbleiterschalter ein- und ausgeschaltet werden kann.

Besonders vorteilhaft ist es, wenn die Halbleiterschalter der bidirektional schaltfähigen Schalteinrichtung jeweils eine Freilaufdiode umfassen und die Anodenanschlüsse oder die Kathodenanschlüsse der Freilaufdioden der zwei Halbleiterschalter elektrisch miteinander verbunden sind.

Die erste und zweite Schalteinheit der Reihenschaltungs ¬ einheit umfassen bevorzugt jeweils zwei Halbleiterschalter, die elektrisch in Reihe geschaltet sind.

Darüber hinaus ist es bezüglich der Reihenschaltungseinheit vorteilhaft, wenn deren Halbleiterschalter jeweils eine

Freilaufdiode umfassen und die Freilaufdioden jeweils derart elektrisch angeordnet sind, dass ihr Kathodenanschluss mittelbar oder unmittelbar elektrisch mit dem ersten

Anschluss der Reihenschaltungseinheit und ihr Anodenanschluss mittelbar oder unmittelbar elektrisch mit dem zweiten

Anschluss der Reihenschaltungseinheit in Verbindung steht und die Freilaufdioden einen Freilaufpfad bilden, der einen

Stromfluss von dem zweiten Anschluss der Reihenschaltungs ¬ einheit in Richtung des ersten Anschlusses der

Reihenschaltungseinheit zulässt. Bezüglich der Verschaltung der Kondensatoren der Teilmodule ist es vorteilhaft, wenn einer der beiden Anschlüsse des Kondensators der Reihenschaltungseinheit den zweiten

Anschluss der Reihenschaltungseinheit bildet und mit einem der beiden Anschlüsse des Kondensators der Halbbrücke

verbunden ist und die beiden Kondensatoren und die

Schalteinheiten der Reihenschaltungseinheit elektrisch eine geschlossene Schleife bilden.

Die Halbleiterschalter der Halbbrücke umfassen vorzugsweise jeweils eine Freilaufdiode . Bei einer solchen Ausgestaltung ist es besonders vorteilhaft, wenn die Freilaufdioden der Halbbrücke jeweils derart elektrisch angeordnet sind, dass ihr Kathodenanschluss mittelbar oder unmittelbar elektrisch mit dem ersten Halbbrückenausgangsanschluss und damit dem ersten Anschluss der Reihenschaltungseinheit und ihr

Anodenanschluss mittelbar oder unmittelbar elektrisch mit dem zweiten Halbbrückenausgangsanschluss und damit dem zweiten Anschluss der Reihenschaltungseinheit in Verbindung steht und die Freilaufdioden der Halbbrücke einen Freilaufpfad bilden, der einen Stromfluss von dem zweiten Anschluss der

Reihenschaltungseinheit in Richtung des ersten Anschlusses der Reihenschaltungseinheit zulässt und elektrisch parallel zu dem Freilaufpfad liegt, den die Freilaufdioden der

Halbleiterschalter der Reihenschaltungseinheit bilden.

Die bidirektional schaltfähige Schalteinrichtung ist

vorzugsweise mit ihrem einen Anschluss an den Ausgangs- anschluss des Teilmoduls und mit ihrem anderen Anschluss an die elektrische Verbindungsstelle zwischen dem Kondensator der Halbbrücke und dem Kondensator der Reihenschaltungs ¬ einheit angeschlossen. Mit Blick auf die Bildung von Freilaufpfaden wird es als vorteilhaft angesehen, wenn die Halbleiterschalter der

Halbbrücke und die der Reihenschaltungseinheit jeweils einen Transistor und eine dazu parallel geschaltete Freilaufdiode umfassen .

Um minimale Herstellungskosten zu erzielen, wird es als vorteilhaft angesehen, wenn die Halbleiterschalter der Halbbrücke, der Reihenschaltungseinheit und der bidirektional schaltfähigen Schalteinrichtung baugleich sind.

Bei den Halbleiterschaltern der Halbbrücke, der Reihen- schaltungseinheit und der bidirektional schaltfähigen

Schalteinrichtung handelt es sich vorzugsweise um bipolare Transistoren mit integrierter Gateelektrode, nachfolgend kurz IGBT genannt. Vorzugsweise sind alle Teilmodule aller Teilmodulreihen ¬ schaltungen des Multilevelumrichters derart ausgestaltet, wie dies oben erläutert worden ist.

Die Erfindung bezieht sich darüber hinaus auf ein Teilmodul für einen modularen Multilevelumrichter . Ein solches

Teilmodul umfasst erfindungsgemäß eine Halbbrücke, die einen Eingangsanschluss des Teilmoduls bildet und einen ersten und einen zweiten Halbbrückenausgangsanschluss umfasst, eine Reihenschaltungseinheit, die mit einem ersten Anschluss an den ersten Halbbrückenausgangsanschluss und mit einem zweiten Anschluss an den zweiten Halbbrückenausgangsanschluss

angeschlossen ist, wobei die Reihenschaltungseinheit eine erste und eine zweite Schalteinheit sowie einen Kondensator umfasst und die elektrische Verbindungsstelle zwischen den zwei Schalteinheiten der Reihenschaltungseinheit einen

Ausgangsanschluss des Teilmoduls bildet, und eine

bidirektional schaltfähige Schalteinrichtung, die Strom unabhängig von der Stromflussrichtung ein- und ausschalten kann und mit einem Anschluss an den Ausgangsanschluss des Teilmoduls und mit einem anderen Anschluss an den zweiten Halbbrückenausgangsanschluss und damit an den zweiten

Anschluss der Reihenschaltungseinheit angeschlossen ist.

Bezüglich der Vorteile des erfindungsgemäßen Teilmoduls sei auf die obigen Erläuterungen im Zusammenhang mit dem

erfindungsgemäßen Multilevelumrichter verwiesen. Die Erfindung wird nachfolgend anhand von Ausführungs ¬ beispielen näher erläutert; dabei zeigen beispielhaft:

Figur 1 ein Ausführungsbeispiel für einen

erfindungsgemäßen Multilevelumrichter,

Figur 2 ein erstes Ausführungsbeispiel für ein für den

Multilevelumrichter gemäß Figur 1 geeignetes Teilmodul ,

Fig. 3-8 zur Erläuterung der Funktionsweise verschiedene

Schaltzustände des Teilmoduls gemäß Figur 2,

Figur 9 ein zweites Ausführungsbeispiel für ein für den

Multilevelumrichter gemäß Figur 1 geeignetes

Teilmodul ,

Figur 10 ein drittes Ausführungsbeispiel für ein für den

Multilevelumrichter gemäß Figur 1 geeignetes Teilmodul,

Figur 11 ein Ausführungsbeispiel für einen

erfindungsgemäßen Multilevelumrichter auf der Basis einer Sternschaltung von Untereinheiten und

Figur 12 ein Ausführungsbeispiel für einen

erfindungsgemäßen Multilevelumrichter auf der Basis einer Dreieckschaltung von Untereinheiten. In den Figuren werden der Übersicht halber für identische oder vergleichbare Komponenten stets dieselben Bezugszeichen verwendet .

In der Figur 1 ist ein Ausführungsbeispiel für einen

dreiphasigen modularen Multilevelumrichter 10 gezeigt. Dieser umfasst Wechselspannungsanschlüsse W10 zum Einspeisen oder zur Entnahme von Wechselstrom. Darüber hinaus ist er mit einer Gleichspannungsseite G10 ausgestattet, die zwei Gleichspannungsanschlüsse GlOa und GlOb umfasst, über die Gleichstrom eingespeist oder entnommen werden kann.

Der Multilevelumrichter 10 weist drei parallel geschaltete Reihenschaltungen Rl, R2 und R3 auf, deren äußere Anschlüsse RH, R21 und R31 mit dem Gleichspannungsanschluss GlOa in Verbindung stehen. Die äußeren Anschlüsse R12, R22 und R32 stehen mit dem Gleichspannungsanschluss GlOb der

Gleichspannungsseite G10 in Verbindung. Mit anderen Worten bilden also die äußeren Anschlüsse der drei Reihenschaltungen Rl, R2 und R3 die Gleichspannungsseite G10 des

Multilevelumrichters 10.

Jede der drei Reihenschaltungen Rl, R2 und R3 ist beispiels- weise jeweils mit sechs in Reihe geschalteten Teilmodulen T sowie zwei Induktivitäten L ausgestattet. Jeweils zwischen den zwei Induktivitäten L befindet sich ein Zwischenanschluss Z, der potentialmäßig zwischen den in der Figur 1 oberen drei Teilmodulen und den in Figur 1 unteren drei Teilmodulen liegt und einen der drei Wechselspannungsanschlüsse W10 des

Multilevelumrichters 10 bildet. Durch die Zwischenanschlüsse Z werden die drei Reihenschaltungen Rl, R2 und R3 jeweils in zwei Untereinheiten unterteilt, die jeweils eine Mehrzahl an in Reihe geschalteten Teilmodulen T und eine Induktivität L aufweisen und somit jeweils für sich eine Teilmodulreihenschaltung UE bilden, die mindestens zwei in Reihe geschaltete Teilmodule und eine Induktivität umfasst.

Ausführungsbeispiele für bevorzugte Ausgestaltungen der

Teilmodule T werden nachfolgend im Zusammenhang mit den

Figuren 2 bis 4 näher erläutert.

Die Figur 2 zeigt ein Ausführungsbeispiel für ein Teilmodul T, das bei dem modularen Multilevelumrichter gemäß Figur 1 eingesetzt werden kann. Das Teilmodul T umfasst eine

Halbbrücke 100, eine bidirektional schaltende Schaltein ¬ richtung 200 sowie eine Reihenschaltungseinheit 300. Die Halbbrücke 100 weist eine Reihenschaltung mit zwei in Reihe geschalteten Halbleiterschaltern 110 und 120 auf, deren elektrische Verbindungsstelle V100 den Eingangsanschluss Et des Teilmoduls T bildet. Parallel zu der Reihenschaltung aus den beiden Halbleiterschaltern 110 und 120 ist ein Kondensator Cl geschaltet, dessen äußere Anschlüsse einen ersten Halbbrückenausgangsanschluss 101 des Teilmoduls T sowie einen zweiten Halbbrückenausgangsanschluss 102 bilden. Die beiden Halbleiterschalter 110 und 120 der Halbbrücke 100 weisen jeweils einen Transistor TR auf, bei dem es sich beispielsweise um eine IGBT handeln kann. Parallel zu dem Transistor des jeweiligen Halbleiterschalters ist eine

Freilaufdiode D geschaltet.

Die Freilaufdioden D der beiden Halbleiterschalter 110 und 120 bzw. der Halbbrücke 100 sind elektrisch derart zueinander angeordnet, dass ihr Kathodenanschluss mittelbar bzw.

unmittelbar jeweils elektrisch mit dem ersten Halbbrücken- ausgangsanschluss 101 der Halbbrücke 100 und ihr Anoden- anschluss mittelbar oder unmittelbar jeweils elektrisch mit dem zweiten Halbbrückenausgangsanschluss 102 in Verbindung steht. Die Freilaufdioden D der Halbbrücke 100 bilden damit einen Freilaufpfad, der einen Stromfluss von dem zweiten Halbbrückenausgangsanschluss 102 der Halbbrücke 100 in

Richtung des ersten Halbbrückenausgangsanschlusses 101 zulässt. Der Freilaufpfad der Halbbrücke 100 ist in der Figur 2 mit dem Bezugszeichen 130 gekennzeichnet. Die bidirektional schaltende bzw. schaltfähige Schaltein ¬ richtung 200 umfasst zwei elektrisch in Reihe geschaltete Halbleiterschalter 210 und 220, die jeweils unidirektional schaltfähig sind und Strom jeweils nur in einer Stromrichtung (in technisch ausreichendem Maße) ein- und ausschalten können. Die Halbleiterschalter 210 und 220 sind invers derart gepolt, dass ein Stromfluss in einer Richtung von einem der beiden Halbleiterschalter ein- und ausgeschaltet werden kann und ein Stromfluss in entgegengesetzter Richtung von dem jeweils anderen der beiden Halbleiterschalter ein- und ausgeschaltet werden kann.

Die Halbleiterschalter 210 und 220 umfassen vorzugsweise jeweils einen unidirektional schaltfähigen Transistor TR, vorzugsweise in Form eines IGBT, sowie eine dazu parallel ¬ geschaltete Freilaufdiode D. Aufgrund der inversen

Verschaltung der Halbleiterschalter 210 und 220 sind bei dem Ausführungsbeispiel gemäß Figur 2 die Kathodenanschlüsse der beiden Freilaufdioden D unmittelbar miteinander verbunden, so dass sich die Freilaufdioden D elektrisch gegenseitig sperren und - im Unterschied zu den Freilaufdioden D der Halbbrücke 100 - keinen Freilaufpfad bilden können. Die Reihenschaltungseinheit 300 ist mit einem ersten

Anschluss 301 an den ersten Halbbrückenausgangsanschluss 101 der Halbbrücke 100 und mit einem zweiten Anschluss 302 an den zweiten Halbbrückenausgangsanschluss 102 der Halbbrücke 100 angeschlossen. Die Reihenschaltungseinheit 100 umfasst eine erste Schalteinheit 310 und eine zweite Schalteinheit 320 sowie einen Kondensator C2, wobei die elektrische

Verbindungsstelle V300 zwischen den beiden Schalteinheiten 310 und 320 der Reihenschaltungseinheit 300 den Ausgangs- anschluss At des Teilmoduls T bildet.

Um zu gewährleisten, dass die beiden Schalteinheiten 310 und 320 anliegende Spannungen unabhängig von den Schaltzuständen der Schalter des Teilmoduls T sicher tragen können, ist bei dem Ausführungsbeispiel gemäß Figur 2 vorgesehen, dass die beiden Schalteinheiten 310 und 320 jeweils zwei in Reihe geschaltete Halbleiterschalter umfassen. Die Halbleiterschalter der ersten Schalteinheit 310 sind in der Figur 2 mit dem Bezugszeichen 311 und 312 gekennzeichnet. Die beiden Halbleiterschalter der Schalteinheit 320 tragen in der Figur 2 die Bezugszeichen 321 und 322.

Die Halbleiterschalter 311, 312, 321 und 322 der

Reihenschaltungseinheit 300 umfassen jeweils einen unidirektional schaltfähigen Transistor TR, vorzugsweise in Form eines IGBT, sowie eine dazu parallelgeschaltete

Freilaufdiode D. Die Freilaufdioden D der vier Halbleiterschalter der Reihenschaltungseinheit 300 sind elektrisch derart angeordnet, dass ihr Kathodenanschluss jeweils

mittelbar oder unmittelbar mit dem ersten Anschluss 301 der Reihenschaltungseinheit 300 und der Anodenanschluss jeweils mittelbar oder unmittelbar mit dem zweiten Anschluss 302 der Reihenschaltungseinheit 300 verbunden ist. Die vier

Freilaufdioden D der Reihenschaltungseinheit 300 bilden somit einen Freilaufpfad, der in der Figur 2 mit dem Bezugszeichen 330 gekennzeichnet ist. Der Freilaufpfad 330 erlaubt einen Stromfluss von dem zweiten Anschluss 302 der Reihenschal ¬ tungseinheit 300 in Richtung des ersten Anschlusses 301. Der Freilaufpfad 330 liegt somit zu dem Freilaufpfad 130 der Halbbrücke 100 parallel.

Die Figur 2 lässt darüber hinaus erkennen, dass einer der beiden Anschlüsse des Kondensators C2 der Reihenschaltungs- einheit 300 mit dem zweiten Anschluss 302 der Reihenschal ¬ tungseinheit 300 und damit mit dem zweiten Halbbrücken- ausgangsanschluss 102 der Halbbrücke 100 verbunden ist.

Aufgrund dieser Verschaltung steht der Kondensator C2 der Reihenschaltungseinheit 300 elektrisch unmittelbar in

Verbindung mit dem Kondensator Cl der Halbbrücke 100.

Bezüglich der Verschaltung der bidirektional schaltfähigen Schalteinrichtung 200 lässt sich der Figur 2 entnehmen, dass die Schalteinrichtung 200 mit ihrem einen Anschluss A200 an den Ausgangsanschluss At und mit ihrem anderen Anschluss E200 an die elektrische Verbindungsstelle zwischen den beiden Kondensatoren Cl und C2 bzw. mit anderen Worten an den zweiten Halbbrückenausgangsanschluss 102 und den zweiten Anschluss 302 der Reihenschaltungseinheit 300 angeschlossen ist.

Aufgrund der Verschaltung der Komponenten des Teilmoduls T gemäß Figur 2 können bei diesem zwischen dem Eingangsanschluss Et und dem Ausgangsanschluss At des

Teilmoduls T folgende Spannungszustände geschaltet werden, nämlich wahlweise:

- einer, bei dem die Spannung zwischen dem Eingangsanschluss Et und dem Ausgangsanschluss At des Teilmoduls T der Summe beider Kondensatorspannungen Ucl + Uc2 entspricht,

- einer, bei dem die Spannung zwischen dem Eingangsanschluss Et und dem Ausgangsanschluss At des Teilmoduls T jeweils nur einer der Kondensatorspannungen entspricht, also +Ucl oder +Uc2,

- einer, bei dem die Spannung zwischen dem Eingangsanschluss Et und dem Ausgangsanschluss At des Teilmoduls T einem Klemmenkurzschluss oder einem Freilauf entspricht, und

- einer, bei dem die Spannung zwischen dem Eingangsanschluss Et und dem Ausgangsanschluss At des Teilmoduls T der negativen Kondensatorspannung des Kondensators Cl, also - Ucl, entspricht.

Eine Übersicht dieser möglichen Schaltzustände ist in der nachfolgenden Tabelle in Abhängigkeit von der Schaltstellung der Halbleiterschalter 110, 120, 311, 312, 320, 321, 210 und 220 aufgelistet:

Die Schaltstellung "1" bezeichnet dabei jeweils einen

eingeschalteten Halbleiterschalter und die Schaltstellung "0" jeweils einen ausgeschalteten Halbleiterschalter; Ut

bezeichnet die Spannung zwischen dem Eingangsanschluss Et und dem Ausgangsanschluss At des Teilmoduls T. Die Schaltzustände Nr. 1 bis Nr. 6 sind alle jeweils

unabhängig von der Stromrichtung (bidirektional) schaltbar, und es führen immer jeweils drei Halbleiterschalter den

Laststrom. Dabei existieren für den Klemmenkurzschluss

(Freilauf) zwei mögliche Strompfade.

Die Serienschaltung der Halbleiterschalter 311 und 312 ist bei dem Ausführungsbeispiel gemäß Figur 2 vorteilhaft, um die Sperrspannung beider Kondensatoren Cl und C2 sicher aufnehmen zu können, wenn die Halbleiterschalter 321 und 322 auf

Durchlass geschaltet sind ( Schaltzustände Nr. 1 und 3) .

Analog sind die Halbleiterschalter 321 und 322 bei dem

Ausführungsbeispiel gemäß Figur 2 als Serienschaltung

ausgeführt, um die nötige Sperrspannung bei eingeschalteten Halbleiterschaltern 311 und 312 sicher aufnehmen zu können (Schaltzustände Nr. 4 und 5) .

Die Halbleiterschalter 210 und 220 verhindern gemeinsam, dass die Kondensatoren Cl und C2 kurzgeschlossen werden, wenn die Halbleiterschalter 311 und 312 bzw. 321 und 322 eingeschaltet sind .

Eine Übersicht der resultierenden Strompfade, die mit dem Bezugszeichen I gekennzeichnet sind, bei den einzelnen

Schaltzuständen ist in den Figuren 3 bis 8 dargestellt; dabei zeigt die Figur 3 den Schaltzustand Nr. 1, die Figur 4 den Schaltzustand Nr. 2, die Figur 5 den Schaltzustand Nr. 3, die Figur 6 den Schaltzustand Nr. 4, die Figur 7 den Schalt- zustand Nr. 5 und die Figur 8 den Schaltzustand Nr. 6.

Die Halbleiterschalter 110, 120, 311, 312, 320, 321, 210 und 220 sind bei dem Ausführungsbeispiel gemäß Figur 2

vorzugsweise baugleich.

Bei dem Teilmodul gemäß den Figuren 2 bis 8 kann im Vergleich zu einer einfachen Serienschaltung aus Halb- und Vollbrücken ein um etwa 25% höherer thermischer Spitzenstrom erreicht werden, da zwei komplett unterschiedliche Freilaufpfade zur Verfügung stehen und somit die Verlustleistung günstiger auf die einzelnen Halbleiter verteilt werden kann. Bei einer Serienschaltung aus Halb- und Vollbrücke muss bei diesen Zuständen einer der Halbleiterschalter stets den Laststrom führen und wird dadurch stärker beansprucht.

Verglichen mit dem Teilmodul aus der eingangs angegebenen internationalen Patentanmeldung WO 2015/036149 ermöglicht das Ausführungsbeispiel gemäß den Figuren 2 bis 8 in vorteil ¬ hafter Weise das stromrichtungsunabhängige Stellen eines negativen Spannungslevels . Weiterhin sind alle

Spannungszustände unabhängig vom Ladezustand der beiden

Kondensatoren modulierbar.

Auch sind bei dem Teilmodul gemäß den Figuren 2 bis 8 in vorteilhafter Weise zahlreiche Zustände für beide

Stromrichtungen modulierbar und dabei nicht an den

Ladezustand der Kondensatoren geknüpft, wodurch der

Regelaufwand reduziert wird.

Mit Blick auf minimale Baukosten wird es als vorteilhaft angesehen, wenn die in der Figur 2 gezeigten Halbleiterschalter jeweils baugleich sind und jeweils einen

Halbleitertransistor TR und eine dazu parallelgeschaltete Freilaufdiode D umfassen.

Die Figur 9 zeigt ein weiteres Ausführungsbeispiel für ein Teilmodul T, das bei dem Multilevelumrichter 10 gemäß Figur 1 eingesetzt werden kann. Bei dem Teilmodul T gemäß Figur 9 werden die beiden Schalteinheiten 310 und 320 der Reihenschaltungseinheit 300 jeweils nur durch einen einzigen

Halbleiterschalter 311 bzw. 321 gebildet. Um das im Zusammenhang mit den Figuren 2 bis 8 oben

beschriebene Schaltverhalten des Schaltmoduls T sicher zu gewährleisten, ist bei dem Teilmodul T gemäß Figur 9

vorgesehen, dass die Spannungsfestigkeit bzw. die Spannungstragkraft der Halbleiterschalter 311 und 321, insbesondere deren Transistoren TR', jeweils mindestens doppelt so groß ausgelegt ist wie die Spannungsfestigkeit bzw. Spannungstragkraft der übrigen Halbleiterschalter des Teilmoduls T.

Im Übrigen gelten die obigen Ausführungen im Zusammenhang mit dem Teilmodul T gemäß den Figuren 2 bis 8 für das Teilmodul T gemäß Figur 9 entsprechend, so dass diesbezüglich auf die obigen Ausführungen verwiesen sei.

Die Figur 10 zeigt ein drittes Ausführungsbeispiel für ein Teilmodul T, das bei dem Multilevelumrichter 10 gemäß Figur 1 eingesetzt werden kann.

Bei dem Teilmodul T gemäß Figur 10 ist vorgesehen, dass die bidirektional schaltfähige Schalteinrichtung 200 durch einen einzigen, bidirektional schaltfähigen Schalter S realisiert ist. Ein solcher Schalter S kann beispielsweise durch ein mechanisches Schaltelement gebildet sein. Im Übrigen gelten die obigen Ausführungen im Zusammenhang mit den Figuren 2 bis 8 für das Ausführungsbeispiel gemäß Figur 10 entsprechend, so dass diesbezüglich auf die obigen Erläuterungen verwiesen sei .

Im Übrigen sei erwähnt, dass auch andere Bauformen für auf Teilmodulen basierenden Multilevelumrichtern 10 möglich sind. Beispielsweise können die in der Figur 1 gezeigten Untereinheiten UE auch anders verschaltet sein, zum Beispiel in Form einer Dreieckschaltung (vgl. Figur 11) oder einer

Sternschaltung (Figur 12) . Die obigen Ausführungen im Zusammenhang mit den Figuren 2 bis 10 gelten für die Multilevelumrichter 10 gemäß den Figuren 11 und 12 entsprechend. Obwohl die Erfindung im Detail durch bevorzugte Ausführungs ¬ beispiele näher illustriert und beschrieben wurde, so ist die Erfindung nicht durch die offenbarten Beispiele eingeschränkt und andere Variationen können vom Fachmann hieraus abgeleitet werden, ohne den Schutzumfang der Erfindung zu verlassen.

Bezugs zeichenliste

10 Multilevelumrichter

100 Halbbrücke

101 Halbbrückenausgangsanschluss

102 Halbbrückenausgangsanschluss

110 Halbleiterschalter

120 Halbleiterschalter

130 Freilaufpfad

200 Schalteinrichtung

210 Halbleiterschalter

220 Halbleiterschalter

300 Reihensehaltungseinheit

301 Anschluss

302 Anschluss

310 Schalteinheit

311 Halbleiterschalter

312 Halbleiterschalter

320 Schalteinheit

321 Halbleiterschalter

322 Halbleiterschalter

330 Freilaufpfad

A200 Anschluss

At Ausgangsanschluss

Cl Kondensator

C2 Kondensator

D Freilaufdiode

E200 Anschluss

Et Eingangsanschluss

G10 Gleichspannungsseite

GlOa Gleichspannungsanschluss

GlOb Gleichspannungsanschluss

I Strompfad

L Induktivität

Rl Reihenschaltung

R2 Reihenschaltung

R3 Reihenschaltung RH äußerer Anschluss

R12 äußerer Anschluss

R21 äußerer Anschluss

R22 äußerer Anschluss

R31 äußerer Anschluss

R32 äußerer Anschluss

S Schalter

T Teilmodul

TR Transistor

TR' Transistor

Ucl KondensatorSpannung

Uc2 KondensatorSpannung

UE Teilmodulreihenschaltung

VI 00 Verbindungsstelle

V300 Verbindungsstelle

W10 Wechselspannungsanschluss

Z Zwischenanschluss