Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
MULTI-CHANNEL PHYSIOTHERAPY DEVICE AND PROCEDURE FOR ITS APPLICATION
Document Type and Number:
WIPO Patent Application WO/2017/055973
Kind Code:
A1
Abstract:
The invention is a multi-channel physiotherapy device, which is fitted with an electrical source, a power supply unit, a photo-coupler, a microprocessor, and an electrode. It is characterized in that the electrical source (1) is connected to a single power supply unit (2), the power supply unit (2) is connected to the microprocessor (5), and the microprocessor (5) is connected to the photo-couplers (4) and, through the photo-couplers (4) and the channels (7), to the electrodes (6), the number of which is at least approximately equal to the number of photo-couplers (4) and channels (7). The invention is also the procedure for applying the device according to claim 1.

Inventors:
PAPP JANOS (HU)
Application Number:
PCT/IB2016/055655
Publication Date:
April 06, 2017
Filing Date:
September 22, 2016
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
PAPP JANOS (HU)
International Classes:
A61N1/378; A61N1/372
Domestic Patent References:
WO2003032887A12003-04-24
Foreign References:
US5285781A1994-02-15
US20140025138A12014-01-23
US20150100107A12015-04-09
US20150054355A12015-02-26
FR2758268A11998-07-17
JPH04352970A1992-12-08
US6895280B22005-05-17
US7499746B22009-03-03
US8565888B22013-10-22
US20110054570A12011-03-03
US20110160810A12011-06-30
Attorney, Agent or Firm:
PINTZ, Gyorgy (HU)
Download PDF:
Claims:
CLAIMS

1. Multi-channel physiotherapy device, which is fitted with an electrical source, a power supply unit, a photo-coupler, a microprocessor, and an electrode, characterized in that the electrical source (1) is connected to a single power supply unit (2), the power supply unit (2) is connected to the microprocessor (5), and the microprocessor (5) is connected to the photo-couplers (4) and, through the photo-couplers (4) and the channels (7), to the electrodes (6), the number of which is at least approximately equal to the number of photo-couplers (4) and channels (7).

2. The device according to claim 1, characterized in that the number of channels (7), photo- couplers (4), and electrodes (6) each falls between 6 and 14 for each body side.

3. Any of the devices according to claim 1 or 2, characterized in that the total output performance of the device is maximum 3.75 Watt.

4. Any of the devices according to claims 1 to 3, characterized in that each channel (7) is regulated separately.

5. Any of the devices according to claims 1 to 4, characterized in that the output performance of one channel (7) is 0.04 - 0.225 Joule per second.

6. Procedure for applying the device according to claim 1, characterized in that a single power supply unit (2) is connected to the electrical source (1), and a microprocessor (5), photo-couplers (4), and electrodes (6), the number of which is at least approximately equal to the number of photo-couplers (4), are connected to the power supply unit (2) through channels (7), the number of which is at least approximately equal to the number of photo-couplers (4) and electrodes (6), and all photo-couplers (4) are served by the single power supply unit (2).

7. The procedure according to claim 6, characterized in that the output impulses are sent through the channels (7) with a time delay, so that each electrode (6) stimulates the individual muscles at different times. stimulated at a given time, so that the muscle stimulation does not exceed 0.225 Joule.

Description:
Multi-channel physiotherapy device and procedure for its application

The subject of the invention is a multi-channel physiotherapy device, which is fitted with an electrical source, a power supply unit, a photo-coupler, a microprocessor, and an electrode. The subject of the invention also includes the procedure for the application of the device.

The following solutions are included in the state of the art.

French patent application No. FR2758268 Al describes an electric muscle stimulation system, where the electrodes are mounted onto the special suit using Velcro straps, so that they are adjusted to the appropriate muscle groups.

Japanese patent document No. JPH04352970 A describes a unit consisting of 4 electrodes that include wires and carbon fibres, which also includes a foam capable of absorbing water. Its cover is made of flexible silicon.

US patent document No. US6895280 B2 describes a multi-channel muscle stimulation devices fitted with multiple electrodes. US patent description No. US7499746 B2, and its subsequent document No. US8565888 B2, also describe an electronic muscle stimulation device. The solution includes at least one electrode and it has multiple channels. The device is also capable of measuring the response from the muscles, the electric impulse. International patent application No. WO03032887 Al describes a muscle stimulating invention, which measures the impact on the muscles, meaning that it does not provide feedback during use.

Similarly to the above documents, US patent application No. US2011054570 Al describes a multi-channel electric muscle stimulating device.

US patent application No. US2011160810 Al also describes a multi-channel electric muscle stimulating device fitted with multiple electrodes.

A disadvantage of the inventions is that they consume a significant amount of energy. For the user, it is also disadvantageous that his body is exposed to a large stimulus at once, and the electric load on the entire body is multiplied. All photo-couplers are fitted with a separate power supply unit, and the entire body is exposed to the total electric performance, meaning that only a portion of it reaches any given muscle.

The purpose of the invention is to eliminate the shortfalls of the known solutions, and to implement an electric stimulating device and a procedure for its application, which operates only with a single power supply unit, consumes less energy, but works with higher efficiency. It is a goal to reduce the electric load the human body is exposed to, while preserving the performance of the stipulating force working on the muscles. It is also a goal to direct the entire electric impulse to a single electrode, meaning that the electric load on the entire body is equal to the performance of a single channel at any given time. Consequently, it is also a goal to achieve separation by channel, meaning that only a single output impulse is active at any time, so that the stimulation of the muscles takes place at different times, while the user has the feeling that he experiences contractions over his entire body simultaneously.

The inventive step is based on the recognition that an invention that is more advantageous than the earlier ones can be achieved by implementing the device according to claim 1. In line with the desired purpose, the most general implementation form of the solution according to the invention may be implemented according to claim 1. The most general form of the application procedure is described in the main procedural claim. The various implementation forms are described in the sub-claims.

The solution in general is a multi-channel physiotherapy device, which is fitted with an electrical source, a power supply unit, a photo-coupler, a microprocessor, and an electrode.

A feature of the invention is that the electrical source is connected to a single power supply unit, the power supply unit is connected to the microprocessor, and the microprocessor is connected to the photo-couplers and, through the photo-couplers and the channels, to the electrodes, the number of which is at least approximately equal to the number of photo-couplers and channels.

In another implementation form, the number of channels, photo-couplers, and electrodes each falls between 6 and 14 for each body side.

Another distinctive feature may be that the total output performance of the device is maximum 3.75 Watt.

Another distinctive feature may be that each channel is regulated separately.

In another implementation form, the output performance of one channel is 0.04 - 0.225 Joule per second. It is a distinctive feature of the general application of the invention that a single power supply unit is connected to the electrical source, and a microprocessor, photo-couplers, and electrodes, the number of which is at least approximately equal to the number of photo-couplers, are connected to the power supply unit through channels, the number of which is at least approximately equal to the number of photo-couplers and electrodes, and all photo-couplers are served by the single power supply unit.

A distinctive feature of the procedure may be that the output impulses are sent through the channels with a time delay, so that each electrode stimulates the individual muscles at different times.

Another distinctive feature of the procedure may be that a single muscle is stimulated at a given time, so that the muscle stimulation does not exceed 0.225 Joule.

The invention is described below in more detail on the basis of drawings for the implementation forms.

On the attached drawing,

Figure 1 shows the circuit diagram of the device.

Figure 1 presents the circuit and shows the parts of the device conducting electric muscle stimulation and fitted with multiple channel pairs. The device works with direct current, electricity is provided by the electrical source 1. 9 to 15 V enters the power supply unit 2 and is converted to 50 V. It proceeds to the photo-couplers 4 through the parallel positive poles 3. The quickly connecting photo-couplers 4 provide unidirectional signal and data transmission between the different circuits with different voltage levels. The microprocessor 5 controls the opening of the photo-couplers 4 and the amperage coming from the power supply unit 2, sets the value for the given open channel 7 when the photo- coupler 4 belonging to the channel 7 is in open position, and the microprocessor 5 also stores the pre-written programs. The converted electric current proceeds to the electrodes 6, which electrodes 6 are placed onto the appropriate regions and muscles of the human body. The signal set by the microprocessor 5 reaches the appropriate electrodes 6 through the open channels 7, thereby delivering electric stimuli to the given muscles. The device can be used by multiple patients, i.e. users at the same time. The device can have any number of pairs of channels 7. In this implementation form, there are twelve pairs of channels 7. Due to its design, any interference between the individual channel pairs and any crosscurrent in the human body can be excluded. Only a single output impulse is active at any given time, but, due to the quick consecutive channel changes, the delays in the entire routine are undetectable for the human body and it is sensed by the entire body as a one-time flexing of the muscles.

In the course of applying the invention according to the desired result, power is provided for the operation of the device by the electrical source 1. A power supply unit 2 converts the current to the desired form, and then it is sent to quickly connecting photo-couplers 4. The photo-couplers 4 correspond to the electrodes 6. Signals and data are transferred to the given electrode 6 when the photo-couplers 4 are in open position. The microprocessor 5 controls this process, controls the opening of the photo-couplers 4, and sets the appropriate signal. The various muscles of the body are stimulated by the electrodes 6 with a slight time delay. Only a single channel 7 is active at any given time, but they are changing quickly, so that the body detects only a single flexing of the muscles.

The device described has numerous advantages. One of the advantages is that it allows for this production of quick and delayed square-waves, separated by channels, using a single electrical source. Another new feature and advantage of the solution is that, for each channel pair, the electric impulses discharged onto and reflected by the body can be measured, so various conclusions may be drawn on the basis of the principle of bioresonance. Feedback is an important advantage, it helps the making of measurements, personalized improvements, and progress tracking. The stimulation placed and applied onto the various muscle groups of the body at the same time allows for the improvement of blood circulation and for the improvement of the muscles of patients who may be even laying or even in coma. To this end, only a load of 0.04 Joule needs to be applied onto the body, unlike in the case of other commercially available devices that may have a performance of up to 50 or 60 W. When delivering full output at each channel, a total load of 0.225 Joule is discharged onto the body. This way, the electric load exerted onto the entire body is equal to the performance of a single channel. During average use, the entire body is affected by 0.4 Joule. This significantly reduces power consumption and avoids wastefulness, since there are no power supply units or generators for each channel, and only one power supply unit is used. This also increases efficiency. The essence of the solution is that it reduces the electric load exerted onto the human body, while maintaining the power of electric stimuli on the muscles. Numerous clinical examinations have proven that the developed technology is capable of achieving the same results as traditional devices using voltaic separated channels, and it is in fact even more advantageous from various aspects. The main point of our invention is that it delays in time the impulses discharged through the different channels, meaning that only a single stimulus is applied to the human body at any given time. The greatest advantage of this is that possible cross-impulses between the various channel pairs can be eliminated, and the carefully selected delay frequency makes it possible that the delay in time regarding the muscles remains unnoticeable for the user. Another important advantage is that this design reduces the energy consumption of the device and the output signal performance significantly, and the electric power discharged onto the human body - even taking into account all channels - is equal to the performance of a single channel. This means that the total output performance is maximum 3.75 Watt with total output, which - taking into account the impulse peaks and interim brakes - makes it unique among all the commercially available devices. Another advantage is that a single device can be used to treat multiple patients at the same time. Another important advantage is that the large muscle groups can be stimulated due to the multiple channels that can be used simultaneously while being regulated separately, thereby increasing the circulation and metabolism. This solution may bring about significant improvements in the condition of inactive patients.

In addition to the above examples, the invention may be implemented in other forms and with other manufacturing procedures within the scope of protection.