Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
NEW POLYMORPHS OF OLANZAPINE HYDROCHLORIDE
Document Type and Number:
WIPO Patent Application WO/2004/094433
Kind Code:
A1
Abstract:
The present invention relates to new crystalline forms I, II and III of 2-methyl-4-(4-methylpiperazin-l-yl)-10H-thieno[2,3-b] [1,5]-benzodiazepine hydrochloride, a process for the preparation thereof and pharmaceutical compositions containing the same. Said new polymorphic forms are useful as active ingredients for the treatment of psychotic conditions.

Inventors:
PETH ODBLAC (HU)
BARKOCZY JOZSEF (HU)
KOTAY NAGY PETER (HU)
SIMIG GYULA (HU)
SZENT-KIRALLYI ZSUZSA (HU)
Application Number:
PCT/HU2004/000042
Publication Date:
November 04, 2004
Filing Date:
April 22, 2004
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
EGYT GYOGYSZERVEGYESZETI GYAR (HU)
PETH ODBLAC (HU)
BARKOCZY JOZSEF (HU)
KOTAY NAGY PETER (HU)
SIMIG GYULA (HU)
SZENT-KIRALLYI ZSUZSA (HU)
International Classes:
A61P25/18; C07D495/04; (IPC1-7): C07D495/04; A61K31/551; A61P25/18
Domestic Patent References:
WO2000018408A12000-04-06
WO2003007912A22003-01-30
Foreign References:
EP0454436A11991-10-30
Attorney, Agent or Firm:
ADVOPATENT OFFICE OF PATENT AND TRADEMARK ATTORNEYS (Budapest, HU)
Download PDF:
Claims:
What we claim is:
1. Crystalline form I 2methyl4 (4 methylpiperazin1yl)10Hthieno [2, 3b] [1, 5]benzodiazepine dihydrochloride, characterized by the Xray powder diffraction pattern expressed in Table 1 and Figure 1, measured using CuKα radiation: Table 1 Position of diffraction lines and relative intensities (>5%) Peak 2*th D (hkl) I (abs) I (rel) No. [degree] [A] [cts] [%] 1 10. 38 8. 5918 1017 66. 47 2 12. 28 7. 2072 89 5. 82 3 12. 59 7. 0305 303 19. 80 4 16. 31 5. 4338 108 7. 06 5 17. 13 5. 1770 693 45. 29 6 18. 21 4. 8707 158 10. 33 7 18. 40 4. 8219 240 15. 69 8 19. 38 4. 5802 264 17. 25 9 20. 62 4. 3079 1530 100 10 21. 07 4. 2157 199 13. 01 11 22. 05 4. 0320 424 27. 71 12 23. 50 3. 7862 170 11. 11 13 23. 85 3. 7314 432 28. 24 14 28 15 86 16 75 17 28. 06 20 18 30. 26 19 52 20 93 21 65 22 67 23 89 F24 07 2. A process for preparation of crystalline form I 2methyl4 (4 methylpiperazin1yl)lOHthieno [2, 3 b] [1, 5] benzodiazepine dihydrochloride according to Claim 1, which comprises a. dissolving 2methyl4 (4methyl piperazin1yl)10Hthieno [2, 3b] [1, 5]benzodiazepine base in a di polar aprotic or less polar aprotic or protic solvent or in a mixture of such solvents, reacting the solution with a solution of a dipolar aprotic or less polar aprotic or polar solvent or a mixture of such solvents saturated with gaseous hydrogen chloride and isolating the separated crystalline polymorph, or b. recrystallizing polymorph form II 2methyl4 (4methylpiperazin1yl) lOHthieno [2, 3b] [1, 5]benzodi azepine dihydrochloride or a mixture of polymorph forms I and II from a protic solvent, or c.
2. stirring polymorph form II 2methyl 4 (4methylpiperazin1yl)10H thieno [2, 3b] [1,5]benzodiazepine dihydrochloride or a mixture of polymorph forms I and II in a protic solvent at about room temperature and isolating the crystalline poly morph.
3. A process according to Claim 2, which comprises using as dipolar aprotic solvent a ketone, preferably acetone, acetonitrile, an ester, preferably ethyl acetate or preferably a dialkyl amide, dimethyl formamide or a mixture thereof.
4. A process according to Claim 2, which comprises using as less polar aprotic solvent an ether, preferably diethyl ether, dioxane, tetrahydrofuran, diiso propyl ether or a mixture thereof.
5. A process according to Claim 2, which comprises using as protic solvent a lower aliphatic alcohol, preferably methanol, ethanol, propanol or 2 propanol.
6. A process according to variant a) of claim 2, which comprises carrying out the formation of polymorph form I 2 methyl4 (4methylpiperazin1yl)10H thieno [2,3b] [1, 5]benzodiazepine di hydrochloride, if necessary, under heating, preferably under boiling the reaction mixture by using a reflux condenser and obtaining polymorph form I upon cooling.
7. A process according to claim 6, which comprises facilitating the separation of the desired polymorph form by seeding with crystals of polymorph form I 2 methyl4 (4methylpiperazin1yl)10H thieno [2,3b] [1, 5]benzodiazepine di hydrochloride.
8. A pharmaceutical composition comprising polymorph form I 2methyl4 (4methylpiperazin1yl)lOHthieno [2,3 b] [1, 5]benzodiazepine dihydrochloride as active ingredient in admixture with inert, solid or liquid pharmaceutical carriers and/or auxiliary agents.
9. A process for the preparation of pharmaceutical compositions according to claim 8, which comprises admixing crystalline form I 2methyl4 (4methyl piperazin1yl)lOHthieno [2,3b] [1,5] benzodiazepine dihydrochloride with pharmaceutically acceptable solid or liquid carriers and/or auxiliary agents and bringing the mixture to galenic form.
10. Crystalline form I 2methyl4 (4 methylpiperazin1yl)lOHthieno [2,3b] [1, 5]benzodiazepine dihydrochloride for use as pharmaceutically active ingredient.
11. Use of crystalline form I 2methyl 4 (4methylpiperazin1yl)lOHthieno [2,3b] [1, 5]benzodiazepine dihydro chloride for the preparation of a pharmaceutical composition having anti psychotic activity.
12. A method for antipsychotic treatment, which comprises administering to the patient in need of such treatment a pharmaceutically efficient amount of crystalline form I 2methyl4 (4methyl piperazin1yl)lOHthieno [2, 3b] [1, 5] benzodiazepine dihydrochloride.
13. Crystalline form II 2methyl4 (4 methylpiperazin1yl)10Hthieno [2,3b] [1,5]benzodiazepine dihydrochloride, characterized by the Xray powder diffraction pattern expressed in Table 2 and Figure 2, measured using CuKa radiation: Table 2 Position of diffraction lines and relative intensities (>5%) Peak 2*th D (hkl) I (abs) I (rel) Number [degree] [A] [cts] [%] 1 7. 78 11. 3638 219 8. 74 2 8. 17 10. 8222 124 4. 95 3 79 10. 0557 2505 100 4 71 5 58 6 08 7 61 8 25 9 11 10 11 12 23 13. 28 I 14 15 79 16 13 14.
14. A process for the preparation of crystalline form II 2methyl4 (4 <BR> <BR> methylpiperazin1yl)10Hthieno [2, 3b] [1, 5]benzodiazepine dihydrochloride according to claim 13, which comprises recrystallizing crystalline form I 2 methyl4 (4methylpiperazin1yl)10H thieno [2, 3b] [1, 5] benzodiazepine di hydrochloride from a mixture of a di polar aprotic or protic solvent formed with water.
15. A process according to claim 14, which comprises using as dipolar aprotic solvent a ketone, preferably acetone or acetonitrile.
16. A process according to claim 14, which comprises using as protic solvent a lower aliphatic alcohol, preferably ethanol or isopropanol.
17. A processes according to any of claims 14 to 16, which comprises using a mixture of a dipolar aprotic or protic solvent and water containing an amount of 5 to 100 (v/v) %, preferably 10 to 50 (v/v) % of water.
18. A process according to any of claims 14 to 17, which comprises dissolving crystalline form I 2methyl4 (4 methylpiperazin1yl)lOHthieno [2, 3b] [1, 5] benzodiazepine dihydrochloride in a dipolar aprotic or protic solvent under heating, preferably under boiling, while adding some water to the solution, cooling the solution and isolating the separated crystalline polymorph.
19. A pharmaceutical composition comprising as active ingredient crystalline form II 2methyl4 (4 methylpiperazin1yl)10Hthieno [2,3b] [1, 5] benzodiazepine dihydrochloride in admixture with inert, solid or liquid pharmaceutical carriers and/or auxiliary agents.
20. A process for the preparation of pharmaceutical compositions according to Claim 19, which comprises admixing crystalline form II 2methyl4 (4 methylpiperazin1yl)10Hthieno [2,3b] [1,5]benzodiazepine dihydrochloride with pharmaceutically acceptable solid or liquid carriers and/or auxiliary agents and bringing the mixture to galenic form.
21. Use of crystalline form II 2methyl 4 (4methylpiperazin1yl)lOHthieno [2, 3b] [1, 5] benzodiazepine dihydro chloride as a pharmaceutically active ingredient.
22. Use of crystalline form II 2methyl 4 (4methylpiperazin1yl)lOHthieno [2,3b] [1, 5]benzodiazepine dihydro chloride for the preparation of pharma ceutical compositions having anti psychotic activity.
23. A method for antipsychotic treatment, which comprises administering to the patient in need of such treatment a pharmaceutically efficient amount of crystalline form II 2methyl4 (4 methylpiperazin1yl)lOHthieno [2,3b] [1, 5]benzodiazepine dihydrochloride.
24. Crystalline form III 2methyl4 (4 methylpiperazin1yl)10Hthieno [2,3b] [1, 5]benzodiazepine monohydrochloride, characterized by the Xray powder diffraction pattern expressed in Table 3 and Figure 3, measured using CuKa radiation: Table 3 Position of diffraction lines and relative intensities (>5%) Peak 2*th D (hkl) I (abs) I (rel) Number [degrees] [A] [cts] [%] 1 7. 53 11. 7415 806 77. 58 2 10. 41 8. 4980 228 21. 95 3 79 14. 15 5 15. 12 14 6 91 16. 19. 85 19. 66 10 75 11 99 12 13 i 14 64 is 30 16 87 17 90 18 00 19 90 20 23 21 24 22 36 23 13 24 22. 18 25 44 25.
25. Process for the preparation of crystalline form III 2methyl4 (4 methylpiperazin1yl)10Hthieno [2, 3b] [1,5]benzodiazepine monohydrochloride, which comprises dissolving 2methyl4 (4methylpiperazin1yl)lOHthieno [2, 3b] [1, 5]benzodiazepine base in a dipolar aprotic or less polar aprotic solvent or mixture of such solvents, reacting said solution with an amount of hydrogen chloride necessary for the formation of monohydrochloride and isolating the separated crystalline polymorph.
26. A process according to claim 25, which comprises applying a concentrated aqueous hydrogen chloride solution.
27. A processes according to claim 25 or 26, which comprises using as dipolar aprotic solvent acetonitrile, a ketone, preferably acetone, an ester, preferably ethyl acetate or a dialkyl amide, preferably dimethyl formamide.
28. A process according to claim 25 or 26 which comprises using as less polar aprotic solvent an ether, preferably diethylther, dioxane, tetrahydrofuran or diisopropyl ether.
29. A processes according to any of claims 25 to 28, which comprises dissolving 2methyl4 (4methylpiper azin1yl)lOHthieno [2,3b] [1, 5]benzo diazepine base in a dipolar aprotic or less polar aprotic solvent under heating, preferably by using a reflux condenser, adding the calculated amount of hydrogen chloride to the reaction mixture, cooling it and isolating the separated crystalline polymorph.
30. Pharmaceutical compositions comprising as active ingredient crystalline form III 2methyl4 (4 methylpiperazin1yl)10Hthieno [2, 3b] [1, 5]benzodiazopine monohydrochloride in admixture with inert, solid or liquid pharmaceutical carriers and/or auxiliary agents.
31. A process for the preparation of pharmaceutical compositions according to claim 30, which comprises admixing crystalline form III 2methyl4 (4 methylpiperazin1yl)lOHthieno [2,3b] [1,5]benzodiazepine monohydrochloride with pharmaceutically acceptable solid or liquid carriers and/or auxiliary agents and bringing the mixture to galenic form.
32. Crystalline form III 2methyl4 (4 methylpiperazin1yl)10Hthieno [2,3b] [1, 5]benzodiazepine monohydrochloride for use as pharmaceutically active ingredient.
33. Use of crystalline form III 2 methyl4 (4methylpiperazin1yl)10H thieno [2,3b] [1, 5] benzodiazepine mono hydrochloride for the preparation of pharmaceutical preparations having anti psychotic activity.
34. Method for antipsychotic treatment, which comprises administering to the patient in need of such treatment a pharmaceutically efficient amount of crystalline form III 2methyl4 (4 methylpiperazin1yl)lOHthieno [2,3b] [1, 5]benzodiazepine monohydrochloride.
Description:
PCT RECEIVED 12 AUG INTERNATIONAL SEARCH REPORT (PCT Article 18 and Rules 43 and 44) Applicant's or agent's file reference Form PCT/ISA/220 17011 applicable, item 5 below. International application No. International filing date (daylmonthlyear) (Earliest) Priority Date (day/month/year) PCT/HU2004/000042 22/04/2004 22/04/2003 Applicant EGIS GYOGYSZERGYAR RT This International Search Report has been prepared by this International Searching Authority and is transmitted to the applicant according to Article 18. A copy is being transmitted to the International Bureau. This International Search Report consists of a total of 5 sheets. It is also accompanied by a copy of each prior art document cited in this report. 1. Basis of the report a. With regard to the language, the international search was carried out on the basis of the international application in the language in which it was filed, unless otherwise indicated under this item. The international search was carried out on the basis of a translation of the international application furnished to this Authority (Rule 23. 1 (b)). b. Eij With regard to any nucleotide and/or amino acid sequence disclosed in the international application, see Box No. I. 2. Certain claims were found unsearchable (See Box II). 3. invention is lacking (see Box III). I 4. With regard to the title, the text is approved as submitted by the applicant. the text has been established by this Authority to read as follows : NEW POLYMORPHS OF OLANZAPINE HYDROCHLORIDE 5. With regard to the abstract, the text is approved as submitted by the applicant. the text has been established, according to Rule 38. 2 (b), by this Authority as it appears in Box No. IV. The applicant may, within one month from the date of mailing of this international search report, submit comments to this Authority. 6. With regards to the drawings, a. the figure of the drawings to be published with the abstract is Figure No. as suggested by the applicant. as selected by this Authority, because the applicant failed to suggest a figure. as selected by this Authority, because this figure better characterizes the invention. b. F-I none of the figures is to be published with the abstract. Form PCT/ISA/210 (first sheet) (January 2004) NEW POLYMORPHS OF OLANZAPINE HYDROCHLORIDE Technical field of the invention The present invention relates to new polymorphic hydrochloride salts of olanzapine, a process for the preparation thereof, pharmaceutical compositions containing said new poly- morphic hydrochloride salts and the use of said salts for the treatment of psychotic conditions.

More particularly the present invention is concerned with new crystalline forms of the hydrochloride salts of 2-methyl- 4- (4-methylpiperazin-1-yl)-lOH-thieno- [2, 3-b] [1, 5] -benzodiazepine (olanzapine), a process for the preparation thereof, pharmaceutical compositions containing the same and the use of said polymorphic hydrochloride salts for the treatment of psychotic conditions.

Technical background It is known that 2-methyl-4- (4-methyl- piperazin-. 1-yl)-lOH-thieno [2, 3-b]- [1, 5] - benzodiazepine, also known as olanzapine (INN), is a drug widely used for the treatment of psychotic conditions.

Olanzapine as a base was described the first time in EP No. 454, 436. In the specification a great number of in- organic and organic acids are mentioned as acids that can be used for salt formation, including hydrochloric acid. However, only the preparation of the olanzapine base is exemplified, no salt of olanzapine is characterized by physical-chemical parameters (e. g. melting point), and no process is dis- closed for the preparation of any salt.

Said patent specification is completely silent in mentioning any crystal form of the olanzapine base. There is not even a hint in the specification at the crystalline form of olanzapine base.

European Patent No. 733,635 discloses and claims polymorph form II olanzapine base. According to this specification olanzapine base prepared as specified in EP 454,436 is unstable, unsuitable for the preparation of pharmaceutical formulations and thus cannot be put on the market. According to this document the new olanzapine base of crystalline form II is sufficiently stable.

Olanzapine base prepared as specified in EP 454,436 is designated as polymorph I.

Crystalline modifications of olanzapine base formed with one mole of methanol, one mole of ethanol and one mole of 1- propanol are disclosed and claimed in European Patent No. 733,634. This document is concerned with the crystal- line monomethanol, monoethanol and mono- 1-propanol solvates of olanzapine. The advantage of these crystalline solvates over the olanzapine base prepared according to EP 454,436 resides in the fact that by using methanol, ethanol or 1-propanol the product can be prepared in much higher purity, and only a single recrystallization is necessary during the purification.

Polymorph forms III, IV and V of olanzapine are described and claimed in WO 01/47933. These forms are prepared by dissolving olanzapine base in a mixture of acetic acid, formic acid or hydro- chloric acid and water, neutralizing the acidic solution with ammonium hydroxide or sodium hydroxide and isolating the separating polymorph. According to the specification the advantage of poly- morphic forms III, IV and V of olanzapine is that during the reaction carried out in a medium free of solvent a solvate-free product containing only a negligible amount of residual solvent can be obtained.

European Patent No. 831,098 discloses and claims crystalline modifications B, D and E of olanzapine dihydrate.

According to the specification olanzapine dihydrates prepared in aqueous medium are intermediates of the polymorph form II olanzapine provided in EP No. 733, 635, which can be converted into polymorph form II olanzapine by \ vacuum drying carried out at a temperature between 40 °C and 70 °C. The advantage of this process is that the anhydrous polymorphic crystalline form II, which is considered to be the most stable crystalline form, can be prepared via olanzapine dihydrate intermediate in an environmentally advantageous manner.

Crystalline modifications of olanzapine formed with dichloromethane are described and claimed in US Patent No.

5,637, 584. According to this document olanzapine can be present in two anhydrous polymorphic forms. One of them, the polymorph designated as form II is metastable, consequently un- suitable for the preparation of pharmaceutical preparations, while the polymorph designated as form I is stable and suitable for pharmaceutical use in every respect. According to the specification the solvate of olanzapine formed with dichloromethane can be used for the preparation of anhydrous poly- morphic form I olanzapine.

From the above references it is apparent that the production of anhydrous and stable olanzapine encounters serious difficulties. Olanzapine base forms solvates readily with water or solvents, consequently the preparation of crystal- line olanzapine suitable for pharma- ceutical use with regard to the residual solvent content is problematical.

Summary of the invention It is the object of the present invention to develop a new form of olanzapine which has favourable properties for the preparation of pharmaceutical compositions meeting the requirements of the pharmaceutical industry.

The above object is solved by the present invention.

The present invention is based on the recognition that olanzapine hydro- chloride can be prepared in three different, morphologically homogeneous crystalline forms. While polymorphic forms I and II contain two molar equi- valents of hydrochloric acid, poly- morphic form III contains one molar equivalent of hydrochloric acid.

Analytical studies revealed that the solubility of olanzapine base in water is significantly lower than that of the new polymorphic salts prepared according to the present invention.

There is a strong demand in the pharma- ceutical industry for stable and morpho- logically uniform active ingredients of high purity, namely these requirements are fundamental conditions for complying the requirements towards medicines.

Morphologically homogeneous products have other advantages from technological point of view, too. They enable the manufacture of products with constant filtration and drying characteristics. Scaling up of morphologically uniform products can be performed reproducibly. A further advantage of morphologically homogeneous products resides in that they can be stored for a long period without applying specific conditions.

The new hydrochloride salts of 2-methyl- 4- (4-methylpiperazin-1-yl)-lOH-thieno- [2, 3-b] [1, 5]-benzodiazepine according to the present invention comply with these requirements.

Details of the invention According to an aspect of the present invention there is provided new crystal- line form I 2-methyl-4- (4-methyl-piper- azin-1-yl)-10H-thieno [2, 3-b] [1,5]-benzo- diazepine dihydrochloride characterized by the X-ray powder diffraction pattern expressed in Table 1 and Figure 1, measured using CuKa radiation: Table 1 Position of diffraction lines and relative intensities (>5%) Peak 2*th D (hkl) I (abs) I (rel) No. [degree] [A] [cts] [%] 1 10. 38 8. 5918 1017 66. 47 2 12. 28 7. 2072 89 5. 82 12. 59 7. 0305 303 19. 80 4 31 5. 4338 108 7. 06 5 29 6 18. 21 33 18. 69 8 25 9 20. 62 10 01 11 71 12 11 13 24 14 28 15 86 16 75 17 28. 06 20 18 30. 26 01 19 52 20 93 21 65 22 67 23 89 24 07 The powder diffraction pattern of new crystalline form I 2-methyl-4- (4-methyl- piperazin-1-yl)-10H-thieno [2,3-b] [1,5]- benzodiazepine dihydrochloride was de- termined under the following conditions: Equipment: PHILIPS-XPERT PW 3710 powder diffractometer Radiation: CuKa (A : 1. 54190 A) Monochromator: graphite Excitation voltage: 40 kV Anode current: 30 mA Method: Standard reference substance: SRM 675 Mica powder (synthetic fluorophlogo- pite), serial number: 981307 The measurement was continuous: O/20 scan: 4.5-35. 00° 20 Step size: 0.02-0. 04° Sample: surface plain, width 0.5 mm, in quartz sample holder, measured and stored at room temperature.

According to a further aspect of the present invention there is provided a process for preparation of crystalline form I 2-methyl-4- (4-methylpiperazin-l- yl)-10H-thieno- [2, 3-b] [1,5]-benzodi- azepine dihydrochloride, which comprises a. dissolving 2-methyl-4- (4-methyl- piperazin-1-yl)-10H-thieno [2,3-b]- [1, 5] -benzodiazepine base in a di- polar aprotic or less polar aprotic or protic solvent or in a mixture of such solvents, reacting the solution with a solution of a dipolar aprotic or less polar aprotic or polar solvent or a mixture of such solvents saturated with gaseous hydrogen chloride and isolating the separated crystalline polymorph, or b. recrystallizing polymorph form II 2- methyl-4- (4-methylpiperazin-1-yl)- lOH-thieno [2,3-b] [1, 5] -benzodi- azepine dihydrochloride or a mixture of polymorph forms I and II from a protic solvent, or c. stirring crystalline form II 2- methyl-4- (4-methylpiperazin-1-yl)- lOH-thieno [2,3-b] [1, 5] -benzodi- azepine dihydrochloride or a mixture of polymorphs I and II in a protic solvent at about room temperature and isolating the crystalline poly- morph.

As dipolar aprotic solvent a ketone, preferably acetone or acetonitrile, an ester, preferably ethyl acetate or a dialkyl amide, preferably dimethyl formamide or a mixture of said solvents can be used.

Particularly advantageous solvents are acetonitrile, acetone or ethyl acetate.

As less polar aprotic solvent ethers, preferably diethyl ether, dioxane, tetrahydrofuran, diisopropyl ether or a mixture thereof can be used. It is particularly preferable to use tetra- hydrofuran.

As protic solvent lower alcohols, preferably methanol, ethanol, propanol or 2-propanol, particularly 2-propanol can be used.

Process variant a) can be performed preferably in the following manner: 2- methyl-4- (4-methylpiperazin-1-yl)-10H- thieno [2, 3-b] [1, 5] -benzodiazepine base is dissolved in a dipolar aprotic or less polar aprotic or protic solvent or in a mixture of such solvents under heating, preferably by boiling the reaction mixture using a reflux condenser. Then a solution of a dipolar aprotic or less polar aprotic or polar solvent or a mixture of such solvents saturated by gaseous hydrogen chloride is added to the solution, the reaction mixture is cooled and the precipitating polymorph is isolated. Isolation is preferably carried out by filtration or centrifugation. In order to facilitate the precipitation of the polymorph the solution can be seeded with polymorph form I. It is preferable to carry out the formation of 2-methyl-4- (4-methyl- piperazin-1-yl)-10H-thieno [2,3-b] [1,5]- benzodiazepine dihydrochloride under heating, preferably by boiling the reaction mixture by using a reflux condenser. The desired polymorph I is obtained upon cooling.

According to process variant b) crystal- line form II 2-methyl-4- (4-methylpiper- azin-1-yl)-10H-thieno [2, 3-b] [1, 5]-benzo- diazepine dihydrochloride or a mixture of polymorph forms I and II is re- crystallized from a protic solvent.

Crystalline form II 2-methyl-4- (4- methylpiperazin-1-yl)-10H-thieno [2,3-b]- [1, 5]-benzodiazepine dihydrochloride can be used in morphologically pure form or as a mixture formed with polymorph form I 2-methyl-4- (4-methylpiperazin-1-yl)- lOH-thieno [2, 3-b] [1, 5]-benzodiazepine dihydrochloride. One can proceed by heating-or preferably boiling-the solution, if necessary, filtering off the insoluble contamination and cooling the solution or the filtrate to room temperature. The thus-obtained polymorph form I 2-methyl-4- (4-methylpiperazin-l- yl)-lOH-thieno-[2, 3-b] [1, 5]-benzodi- azepine dihydrochloride is stirred for 0. 1-12 hours and then isolated, preferably by filtration or centri- fugation. Crystallization can be enhanced by inoculating the solution with polymorph form I. It is preferable to cool the mixture to a temperature between-20 °C and +15 °C, preferably between 0 °C and +15 °C, stir it for 0.1 - 12 hours and isolate the crystals.

According to process variant c) polymorph form II 2-methyl-4- (4-methyl- piperazin-1-yl)-lOH-thieno [2, 3-b] [1,5]- benzodiazepine dihydrochloride or a mixture of polymorph forms I and II is stirred in a protic solvent at about room temperature, preferably between 20°C and 24 °C, and the precipitating crystalline polymorph is isolated by filtration or centrifugation. Stirring is carried our preferably for 0.1-12 hours.

According to a further aspect of the present invention there is provided polymorph form II 2-methyl-4- (4- methylpiperazin-1-yl)-10H-thieno [2, 3-b]- [1, 5]-benzodiazepine dihydrochloride characterized by the X-ray diffraction pattern as set forth in Table 2 and Figure 2 measured using CuKa radiation.

Table 2 Position of diffraction lines and relative intensities (>5%) Peak 2*th D (hkl) I (abs) I (rel) No. [degree] [A] [cts] [%] 1 7. 78 11. 3638 219 8. 74 2 8. 17 10. 8222 124 4. 95 3 8. 79 10. 0557 2505 100 4 11. 26 7. 8611 143 5. 71 5 58 6 7 61 8 9 11 10 11 25. 75 12 23 13 31. 30 28 14 06 i 15 79 16 13 The powder diffraction pattern was determined under the conditions described in connection with polymorph form I.

According to a still further aspect of the present invention there is provided a process for the preparation of crystalline form II 2-methyl-4- (4- methyl-piperazin-1-yl)-lOH-thieno [2,3- b]- [1, 5] -benzodiazepine dihydrochloride, which comprises subjecting crystalline form I 2-methyl-4- (4-methylpiperazin-l- yl)-10H-thieno [2, 3-b] [1, 5] -benzodi- azepine dihydrochloride to recrystalliz- ation from a mixture thereof formed with a dipolar aprotic or protic solvent and water.

As dipolar aprotic solvent a ketone, preferably acetone or acetonitrile can be used.

As protic solvent lower aliphatic alcohols, preferably ethanol or iso- propanol can be applied.

The mixture consisting of a dipolar aprotic or protic solvent and water contains an amount of 5-100 v/v%, preferably an amount of 10-50 v/v% of water. It is particularly preferable to carry out the reaction by using a mixture of acetone and water, aceto- nitrile and water, ethanol and water or 2-propanol and water containing 10-20 v/v% of water.

The reaction is preferably carried out in the following manner: crystalline form I 2-methyl-4- (4-methylpiperazin-l- yl)-lOH-thieno [2, 3-b] [1, 5]-benzodi- azepine dihydrochloride is dissolved in a dipolar aprotic or protic solvent under heating-preferably under boiling - while adding some water to the solution. If necessary, the insoluble contamination is filtered off- optionally while the solution is hot-, the mixture is cooled to about room temperature and stirred for 0.1-1 hour. Crystallization can be facilitated by seeding with crystalline form II polymorph. The separating crystalline form II 2-methyl-4- (4-methylpiperazin-l- yl)-10H-thieno [2,3-b] [1, 5]-benzodi- azepine dihydrochloride is isolated, preferably by filtration or centri- fugation.

According to a further aspect of the present invention there is provided crystalline form III 2-methyl-4- (4- methylpiperazin-1-yl)-10H-thieno [2, 3-b]- [1,5]-benzodiazepine monohydrochloride characterized by the X-ray powder diffraction pattern expressed in Table 3 and Figure 3, measured using Cul « radiation.

Table 3 Position of diffraction lines and relative intensities (>10%) Peak 2*th D (hkl) I (abs) I (rel) Number [degrees] [Å] [cts] [ 7.53 11.7415 806 77. 58 2 10. 41 8. 4980 228 21. 95 3 13. 93 6. 3575 798 76. 79 4 14. 29 6. 1982 147 14. 15 5 15. 12 5. 8598 178 17. 14 6 15. 93 5. 5629 165 15. 91 7 16.62 5.3336 1039 100 8 19.10 4.6474 1027 98.85 9 19.57 4.5362 235 22.66 10 19. 89 4. 4639 299 28. 75 11 20. 53 4. 3262 125 11. 99 12 21. 30 4. 1721 309 29. 70 13 21. 49 4. 1351 439 42. 29 14 22. 09 4. 0241 215 20. 64 15 23.61 3.7679 855 82. 30 16 24. 45 3. 6408 154 14. 87 17 25.21 3.5327 581 55. 90 18 26. 33 3. 3849 104 10. 00 19 27. 46 3. 2486 259 24. 90 20 28. 56 3. 1260 138 13. 23 21 29. 40 3. 0376 117 11.24 22 30. 25 2. 9546 128 12. 36 23 13 24 18 25 44 The powder diffraction pattern of the new crystalline form II was determined under the conditions described in connection with crystalline form I.

According to a still further aspect of the invention there is provided a process for the preparation of crystalline form III 2-methyl-4- (4- methylpiperazin-1-yl)-lOH-thieno [2,3- b] [1, 5]-benzodiazepine monohydro- chloride, which comprises dissolving 2- methyl-4- (4-methylpiperazin-1-yl)-10H- thieno [2,3-b] [1, 5] -benzodiazepine in a dipolar aprotic or less polar aprotic solvent or in a mixture of such solvents, reacting the solution with hydrogen chloride in an amount necessary for the formation of monohydrochloride and isolating the precipitated crystal- line polymorph. As dipolar aprotic or less polar aprotic solvent the solvents mentioned in connection with the preparation of poly- morph form I can be used. According to a preferred embodiment acetonitrile can be used.

The process is preferably carried out by dissolving 2-methyl-4- (4-methylpiper- azin-1-yl)-10H-thieno [2, 3-b]- [1, 5] - benzodiazepine base in a dipolar aprotic or less polar aprotic solvent and adding a stoichiometric amount of hydrogen chloride necessary for the formation of monohydrochloride. For this purpose preferably a concentrated aqueous solution of hydrogen chloride is used. Salt formation is carried out under heating, preferably under boiling by using a reflux condenser. The reaction mixture is then cooled and the precipitating crystalline form III poly- morph is isolated.

According to a still further aspect of the present invention there is provided a pharmaceutical composition comprising crystalline form I, II or III 2-methyl- 4- (4-methylpiperazin-1-yl)-lOH-thieno- [2,3-b] [1, 5] -benzodiazepine hydro- chloride as active ingredient in ad- mixture with inert, solid or liquid pharmaceutical carriers and/or auxiliary agents and bringing the mixture to galenic form.

The pharmaceutical compositions according to the invention can be prepared by methods conventionally applied in pharmaceutical industry. The pharmaceutical compositions according to the invention can be administered orally (e. g. tablets, coated tablets, capsules, pilules, solutions, suspensions or emulsions), rectally (e. g. sup- positories), parenterally (e. g. intra- venously, intraperitoneally, etc. ) or transdermally.

The pharmaceutical compositions according to the invention may contain usual pharmaceutical carriers and/or auxiliary agents. As carrier magnesium carbonate, magnesium stearate, talc, sucrose, lactose, pectin, dextrin, starch, gelatine, tragacanth, methyl cellulose, sodium carboxymethyl cellulose, low melting wax, cocoa butter etc. can be used. In case of capsules the carrier is generally the wall of the capsule so that no additional carrier is needed. As oral administration form the lozenge and sachet can also be mentioned. Tablets, powders, capsules, pilules, sachets and lozenges are solid forms particularly suitable for oral administration.

Suppositories may contain low melting waxes (e. g. mixtures of fatty acid tri- glycerides or cocoa butter) as carrier.

Suppositories can be prepared by melting the wax, homogeneously distributing the active ingredient in the melt, pouring the melt homogenous mixture into mould forms of suitable size and form, and allowing the mixture to solidify under cooling.

Tablets can be prepared by admixing the active ingredient with suitable carriers in the appropriate ratio and pressing the mixture into tablets of suitable size and form. Powders are prepared by admixing the finely powdered active ingredient with finely powdered carriers.

As liquid pharmaceutical compositions optionally sustained release solutions, suspensions and emulsions can be mentioned. Aqueous solutions and aqueous propylene glycol solutions are advantageous. Liquid pharmaceutical compositions suitable for parenteral administration can be preferably prepared in the form of aqueous poly- ethylene glycol solutions.

Aqueous solutions suitable for oral administration can be produced by dissolving the active ingredient in water and adding suitable colouring, aromatizing, stabilizing agents and thickeners.

Aqueous suspensions suitable for oral administration can be prepared by suspending the active ingredient in water in presence of a viscous substance (e. g. natural or artificial gums, resins, methyl cellulose, sodium carboxymethyl cellulose or other known suspending agents).

Another type of solid pharmaceutical compositions can be converted into liquid compositions immediately before use and administered orally into the organism in liquid form. Solutions, suspensions or emulsions can be mentioned as such liquid forms of administration which contain, in addition to the active ingredient, colouring agents, aromatizing agents, preservatives, buffers, artificial or natural sweeteners, dispersing agents, thickeners, etc.

The pharmaceutical compositions of the present invention are preferably prepared in dosage unit form. Such dosage units contain the desired amount of the active ingredient. The dosage units can be put on the market in packages containing discrete amounts of the compositions (e. g. packed tablets, capsules or powders in vials or ampoules). The term"dosage unit" relates to the capsules, tablets, lozenges, sachets per se and also to the packaging which contains the suitable number of dosage units.

The active ingredient may be released from the pharmaceutical compositions according to the present invention immediately or in a delayed manner.

The pharmaceutical compositions accord- ing to the present invention usually contain about 0.1-100 mg, preferably about 0.5-50 mg of active ingredient.

According to a still further aspect of . the present invention there is provided the use of crystalline form I, II or III <BR> 2-methyl-4- (4-methylpiperazin-1-yl)-10H- thieno [2, 3-b] [1,5]-benzodiazepine hydro- chloride as a pharmaceutically active ingredient.

According to a still further aspect of the present invention there is provided the use of crystalline form I, II or III <BR> 2-methyl-4- (4-methylpiperazin-1-yl)-10H- thieno [2,3-b] [1, 5]-benzodiazepine hydro- chloride for the preparation of pharmaceutical compositions possessing antipsychotic activity.

According to a still further aspect of the present invention there is provided a method for the treatment of psychotic conditions, which comprises administer- ing to a patient in need of such treatment a pharmaceutically active amount of crystalline form I or II 2- methyl-4- (4-methylpiperazin-1-yl)-10H- thieno [2, 3-b] [1, 5]-benzodiazepine di- hydrochloride or crystalline form III 2- methyl-4- (4-methylpiperazin-1-yl)-lOH- thieno [2, 3-b] [1, 5]-benzodiazepine mono- hydrochloride.

Further details of the present invention are provided in the following examples without limiting the scope of protection to said examples.

Example 1 Preparation of polymorph form I 2- methyl-4- (4-methylpiperazin-1-yl)-10H- thieno [2, 3-b] [1, 5]-benzodiazepine di- hydrochloride 1 g (3.2 mmoles) of olanzapine base is dissolved in 20 cm3 of 1,4-dioxane by boiling in an apparatus equipped with a reflux condenser. Subsequently 3.4 g of hydrogen chloride solution in 1,4-di- oxane (34.5 m/m%) are dropped to it. The mixture is cooled in ice-water for 10 minutes and the precipitated yellow product is filtered off. Thus 1.20 g (97%) of the title compound is obtained.

Example 2 Preparation of polymorph form I 2- methyl-4- (4-methylpiperazin-1-yl)-10H- thieno [2, 3-b] [1, 5]-benzodiazepine di- hydrochloride 1 g (3.2 mmoles) of olanzapine base is dissolved in 20 cm3 of acetonitrile by boiling in an apparatus equipped with a reflux condenser. Subsequently 3.4 g of hydrogen chloride solution in 1,4- dioxane (34.5 m/m%) are dropped to it.

The mixture is cooled in ice-water for 10 minutes and the precipitated yellow product is filtered off. Thus 1.20 g (97%) of the title compound is obtained.

Example 3 Preparation of polymorph form I 2- methyl-4- (4-methylpiperazin-1-yl)-10H- thieno [2, 3-b] [1, 5] -benzodiazepine di- hydrochloride 1 g (3.2 mmoles) of olanzapine base is dissolved in 20 cm3 of tetrahydrofuran by boiling in an apparatus equipped with a reflux condenser. Subsequently 3.4 g of hydrogen chloride solution in 1,4- dioxane (34.5 m/m%) are dropped to it.

The mixture is cooled in ice-water for 10 minutes and the precipitated yellow product is filtered off. Thus 1.20 g (97%) of the title compound is obtained.

Example 4 Preparation of polymorph form I of 2- methyl-4- (4-methylpiperazin-1-yl)-10H- thieno [2,3-b] [1, 5] -benzodiazepine di- hydrochloride 1 g (3.2 mmoles) of olanzapine base is dissolved in 80 cm3 of 2-propanol by boiling in an apparatus equipped with a reflux condenser. Subsequently 3.7 g of hydrogen chloride solution in 2-propanol (31.5 m/m%) are dropped to it. The mixture is cooled in ice-water for 10 minutes and the precipitated yellow product is filtered off. Thus 1.20 g (97%) of the title compound is obtained.

Example 5 Preparation of polymorph form I 2- methyl-4- (4-methylpiperazin-1-yl)-10H- thieno [2,3-b] [1, 5] -benzodiazepine di- hydrochloride 1 g (3.2 mmoles) of olanzapine base is dissolved in 25 cm3 of ethyl acetate by boiling in an apparatus equipped with a reflux condenser. Subsequently 8.5 cm3 of hydrogen chloride solution in ethyl acetate (13.7 g of hydrogen chloride in 100 cm3 of ethyl acetate) are dropped to it. The mixture is cooled in ice-water for 10 minutes and the yellow precipitated product is filtered off.

Thus 1.20 g (97%) of the title compound is obtained.

Example 6 Preparation of polymorph form II 2- methyl-4- (4-methylpiperazin-1-yl)-10H- thieno [2, 3-b] [1, 5]-benzodiazepine di- hydrochloride In an apparatus equipped with a reflux condenser 1 g (2.6 mmoles) of polymorph form I olanzapine dihydrochloride is dissolved in 30 cm3 of boiling acetone while dropping 6 cm3 of water to it. The hot solution is filtered and the filtrate is cooled in an ice-water bath.

The precipitated yellow crystals are stirred for 30 minutes, filtered off and dried. Thus 0.8 g (80%) of the title compound is obtained.

Example 7 Preparation of polymorph form II 2- methyl-4- (4-methylpiperazin-1-yl)-10H- thieno [2, 3-b] [1, 5]-benzodiazepine di- hydrochloride In an apparatus equipped with a reflux condenser 1 g (2.6 mmoles) of polymorph form I olanzapine dihydrochloride is dissolved in 30 cm3 of boiling aceto- nitrile while dropping 5.6 cm3 of water to the solution. The hot solution is filtered and the filtrate is cooled in an ice-water bath. The precipitated yellow crystals are stirred for 30 minutes, filtered off and dried. Thus 0.8 g (80%) of the title compound is obtained.

Example 8 Preparation of polymorph form II 2- methyl-4- (4-methylpiperazin-1-yl)-10H- thieno [2,3-b] [1, 5]-benzodiazepine di- hydrochloride In an apparatus equipped with a reflux condenser 1 g (2.6 mmoles) of polymorph form I olanzapine dihydrochloride is dissolved in 30 cm3 of boiling 2-propanol while dropping 4.6 cm3 of water to the solution. The hot solution is filtered and the filtrate is cooled in an ice- water bath. The precipitated yellow crystals are stirred for 30 minutes, filtered off and dried. Thus 0.8 g (80%) of the title compound is obtained.

Example 9 Preparation of polymorph form II 2- methyl-4- (4-methylpiperazin-1-yl)-10H- thieno [2, 3-b] [1, 5]-benzodiazepine di- hydrochloride In an apparatus equipped with a reflux condenser 1 g (2.6 mmoles) of polymorph form I olanzapine dihydrochloride is dissolved in 15 cm3 of boiling ethanol while dropping 1.6 cm3 of water to the solution. The hot solution is filtered and the filtrate is cooled using ice- water bath. The precipitated yellow crystals are stirred for 60 minutes, filtered off and dried. Thus 0.8 g (80%) of the title compound is obtained.

Example 10 Preparation of polymorph form I 2-- methyl-4- (4-methylpiperazin-1-yl)-10H- thieno [2,3-b] [1, 5]-benzodiazepine di- hydrochloride 1 g (2.6 mmoles) of polymorph form II olanzapine dihydrochloride is stirred vigorously in 10 cm3 of ethanol for 30 minutes at room temperature. The yellow crystals are then filtered off and dried. Thus 0.93 g (93%) of the title compound is obtained.

Example 11 Preparation of polymorph form I 2- methyl-4- (4-methylpiperazin-1-yl)-10H- thieno [2,3-b] [1, 5] -benzodiazepine di- hydrochloride 1 g (2.6 mmoles) of polymorph form II olanzapine dihydrochloride is stirred vigorously in 5 cm3 of methanol for 30 minutes at room temperature. The yellow crystals are then filtered and dried.

Thus 0.9 g (90%) of the title compound is obtained.

Example 12 Preparation of polymorph form I 2- methyl-4- (4-methylpiperazin-1-yl)-10H- thieno [2, 3-b] [1, 5] -benzodiazepine di- hydrochloride In an apparatus equipped with a reflux condenser 1 g (2.6 mmoles) of polymorph form II olanzapine dihydrochloride is dissolved in 17.5 cm3 of boiling methanol. The hot solution is filtered and the filtrate is cooled in an ice- water bath. The yellow crystals are stirred for 3 hours, filtered off and dried. Thus 0.6 g (60%) of the title compound is obtained.

Example 13 Preparation of polymorph form III 2- methyl-4- (4-methylpiperazin-1-yl)-10H- thieno [2, 3-b] [1, 5]-benzodiazepine mono- hydrochloride In an apparatus equipped with a reflux condenser 1 g (3.2 mmoles) of olanzapine base is dissolved in 20 cm3 of aceto- nitrile by heating until boiling. Sub- sequently 3.2 g of concentrated aqueous hydrochloric acid solution are dropped to it (37.0 g of hydrogen chloride in 100 cm3 of water). The reaction mixture is cooled for 10 minutes in an ice-water bath and the yellow precipitate is filtered off. Thus 1.1 g (98. 5%) of the title compound is obtained.

Example 14 Preparation of polymorph form II 2- methyl-4- (4-methylpiperazin-1-yl)-10H- thieno [2, 3-b] [1, 5] -benzodiazepine di- hydrochloride In an apparatus equipped with a reflux condenser 1 g (2.6 mmoles) of polymorph form I olanzapine dihydrochloride is dissolved in 2.7 cm3 of boiling water.

The mixture is stirred for 15 minutes, \cooled in an ice-water bath and the yellow precipitate is filtered off. Thus 0.8 g (80%) of the title compound is obtained.