Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
NON-INVASIVE DEVICE FOR TREATING GASTRO-ESOPHAGEAL REFLUX DISEASE
Document Type and Number:
WIPO Patent Application WO/2016/092349
Kind Code:
A1
Abstract:
A non-invasive device for facilitating therapy of patient suffering from the gastrointestinal system diseases or symptoms, and in particular suffering Gastroesophageal reflux disease (GERD). The device is positioned by the patient on the skin of the patient abdomen and electrically stimulates the abdomen muscles. This treating results in dynamic motions of the digestive system, which causes the treatment of various digestive symptoms or diseases.

Inventors:
ESH MORDECHAY (IL)
ARBEL GIORA (IL)
Application Number:
PCT/IB2014/066721
Publication Date:
June 16, 2016
Filing Date:
December 09, 2014
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
ESH MORDECHAY (IL)
ARBEL GIORA (IL)
International Classes:
A61N1/18; A61N1/36
Domestic Patent References:
WO2006113802A22006-10-26
Foreign References:
US20090036938A12009-02-05
US20120221073A12012-08-30
US20110004266A12011-01-06
Other References:
ZHANG, C ET AL.: "Clinical curative effect of electroacupuncture combined with Zhizhukuanzhong Capsules for treating gastroesophageal reflux disease", JOURNAL OF TRADITIONAL CHINESE MEDICINE., vol. 32, no. 3, September 2012 (2012-09-01), pages 364 , 366 - 368, XP055395017
IWA, M ET AL.: "Electroacupuncture at ST-36 accelerates colonic motility and transit in freely moving conscious rats", AMERICAN JOURNAL OF PHYSIOLOGY - GASTROINTESTINAL AND LIVER PHYSIOLOGY, vol. 290, no. 2, 2006, pages G285 - G292
See also references of EP 3229892A4
Attorney, Agent or Firm:
DR MARK FRIEDMAN LTD. (54th Floor7 Jabotinsky St, 07 Ramat Gan, IL)
Download PDF:
Claims:
CLAIMS

1. A non-invasive method for treating gastroesophageal reflux disease (GERD) in a patient. The method comprising:

positioning a plurality of electrodes, in electrical contact with the akin of a target region of said patient abdomen; and

applying a series of electrical bursts to said electrodes wherein, said electrical bursts are adapted for electrically stimulating the abdomen muscles of said patient in the target region; thereby causing the esophageal contents to creep down to the stomach.

2. The method of claim 1, further comprising applying a series of electrical asymmetric bursts to thereby generating asymmetrical contractions of said muscles; wherein a direction of a fast phase of said bursts being upward and a direction of a slow phase of said bursts being downward; thereby generating movements of a digestive system of said patient; wherein said movements being for causing the content of the esophagus to return to the stomach and to release the GRED symptoms of said patient.

3. The method of claim 1 further comprising synchronizing said pulses with the patient body signals.

4. The method of claim 3 wherein said body signal comprise one member of a group consisting of breathing, heart pulse, monotony movements and body position.

5. A non-invasive device for treating the digestive system symptoms of a patient ; the device comprises: a plurality of electrodes (101,102) adapted to be placed in electrical contact with the skin of the abdomen;

a pulse generator (107) for providing asymmetric burst electrical stimulation signals to said electrodes; wherein said asymmetric burst electrical stimulation signals being for stimulating the abdomen muscles ; for a moving the digestive system ; wherein said moving being for treating a digestive symptom or a diseases; a control unit (103) for controlling said pulse generator (107) wherein maximum voltage range of said pulses being +300V, maximum current range being 159mA; pulse frequency range being 10Hz-100Hz and burst frequency being 0.1-10Hz.

a sensor (109) connectable to said control unit 103 ; wherein said sensor (109) being adapted tor sensing body-signals from said patient; wherein said control unit (103) is farther adapted for synchronizing said pulse generator (107) in accordance with said body-signals to thereby improving affectivity of said electrical stimulation.

6. The device of claim 5, wherein said digestive system symptoms being one member of a group consisting of gastroesophageal reflux, obesity and constipation.

7. The device of claim 5, wherein said pulse generator (107) is configured to determine the pulse ramp up direction in accordance with the desired direction.

8. The device of claim 5 wherein said sensor (109) being one member of a group consisting of a

Piezoelectric Respiratory Belt Transducer for sensing breathing rate, an BCG for sensing heartbeat, a Gyro and accelerometer for sensing body movements.

9. A non-invasive device for treating gastroesophageal reflux disease of a patient ; the device comprises: a plurality of electrodes (101 ,102) adapted to be placed in electrical contact with the skin of the abdomen;

a pulse generator (107) for providing asymmetric electrical stimulation bursts to said electrodes; wherein said asymmetric electrical stimulation bursts being for generating asymmetrical contractions of said muscles; wherein a direction of a fast phase of said bursts being upward and a direction of a slow phase of said bursts being downward; thereby generating movements of a digestive system of said patient; wherein said movements being for causing the content of the esophagus to return to the stomach and to release the GRED symptoms of said patient;

a control unit (103) configured for controlling said pulse generator (107) and

a sensor (109) adapted for sensing breathing signals from said patient; wherein said control unit (103) is farther adapted for synchronizing said pulse generator (107) in accordance with said breaming signals to thereby generating pulses only when the abdomen pressure is positive.

10. The device of claim 9, wherein said pulse generator (107) is further configured for providing symmetric electrical stimulation bursts.

11. A non-invasive device for treating gastroesophageal reflux disease of a patient ; the device comprises: a plurality of electrodes (101,102) adapted to be placed in electrical contact with the skin of the abdomen;

a pulse generator (107) for providing electrical stimulation bursts to said electrodes; wherein said electrical stimulation bursts being for directing the stomach contents to creep up to the esophagus, to thereby causing unpleasant sensation leading to decrease the appetite for treating obesity, or wherein said electrical stimulation signals being for causing the stomach contents to creep down to the duodenum and to empty the stomach for treating paralysis of the stomach, or wherein said electrical stimulation signals being for causing the transverses colon contents to creep down to the sigmoid colon to thereby treating constipation; and

a control unit (103) for controlling said pulse generator (107).

Description:
NON-INVASIVE DEVICE FOR TREATING GASTRO-ESOPHAGEAL

REFLUX DISEASE

FIELD OF THE INVENTION

The present disclosure relates to medical devices in general, and to medical devices related to digestive system and OERD in particular.

BACKGROUND OF THE INVENTION

Gastroesophageal reflux disease (GERD) is caused by stomach acid coming up from the stomach into the esophagus. The symptoms include abdominal pain, heart burn, asthma, mucosal damage and even cancer. GERD is usually caused by changes in the barrier between the stomach and the esophagus, including abnormal relaxation of the lower esophageal sphincter (LES) (which normally holds the top of the stomach closed), impaired expulsion of gastric reflux from the esophagus, or a hiatal hernia.

Treatment is typically via lifestyle changes and medications such as proton pump inhibitors (PPI), H2 receptor blockers or antacids. Medication therapy is effective up to 60% of the western world population. It is associated with various adverse effects, raising concern about the safety of its long-term use.

Surgical therapy (fundoplication) and endoscopic interventions provide an alternative to patients who do not respond to medication therapy, or are reluctant to use such medications for long periods of time, but it is associated with adverse effects. Various endoscopic intervention methods were developed in the last number of years, however, poor efficacy and complications have limited their use in clinical practice. The efficacy of all surgical interventions is decreasing in time.

US patent No 7,660,636 discloses an electrical stimulation device and method for the treatment of dysphagia. In a preferred embodiment, me electrical stimulation device includes one or more channels of electrodes each of which includes a first electrode positioned in electrical contact with tissue of a target region of a patient and a second electrode positioned in electrical contact with tissue of a posterior neck region or a posterior thoracic region of the patient. A series of electrical pulses are then applied to the patient through the one or more channels of electrodes in accordance with a procedure for treating dysphagia.

US patent No 5,716,385 an electronic pacemaker is used to counter-act crural diaphragm relaxation thereby preventing and/or treating gastroesophageal reflux. The pacemaker canbe implantable, or be connected to the skeletal muscles of the crural diaphragm through the skin. A sensor is used to identify spontaneous intermittent relaxations of the diaphragm. During these spontaneous intermittent relaxations, one or more electrodes are used to stimulate the skeletal muscles of the crural diaphragm to cause contraction of the lower esophageal sphincter.

SUMMARY OF THE INVENTION

Embodiments of the present invention disclose a non-invasive device for facilitating therapy of patient suffering from the gastrointestinal system diseases or symptoms, and in particular suffering Gastroesophageal reflux disease (GERD). The device is a noninvasive device that is positioned by the patient on the skin of the patient abdomen and electrically stimulates the abdomen muscles. This treating results in dynamic motions of the digestive system, which causes the treatment of various digestive symptoms or diseases.

In one embodiment, the device causes an increase of the esophagus motility and strengthens the esophageal sphincter, which releases or suppresses the Gastroesophageal reflux symptoms.

In one other embodiment, the electrical stimulation directs the stomach contents to creep op to the esophagus, causing unpleasant sensation leading to decrease the appetite. The unpleasant sensation occurs when device works both during eating and / or in between meals. The treatment increases the stomach pressure and facilitates the satiation feeling as obesity treatment.

In one other embodiment the electrical stimulation causes the stomach contents to creep down to the duodenum and to empty the stomach. This treatment is effective in case of paralysis of the stomach.

In one other embodiment the electrical stimulation cause the transverses colon contents to creep down to the sigmoid colon as a treatment of constipation. In such a case, two channels stimulation may be used.

The devise may be built from a sealed plastic case that contains an electrical circuit and a battery / batteries pack. In one embodiment, a pair or more of electrodes coated with conductive adhesive (or hydrogel) or other any type of electrodes are attached to the case. In some other embodiments, some or all of the electrodes are separated from the case to be able to locate the electrodes in various locations of the patient abdomen. The device is integrated with a belt that the patient wears. The stimulation program begins when two or more electrodes are in contact with the skin. The user can control the device by keys on the device or by any remote control facilities.

The device is self-applied for daily use, typically after meal. In order to determine the optimal application location on the patient body and find the device optimal parameters (e.g. amplitude, frequency and burst / pulse sequence, etc.) an initial set up session may be required. This session can be done with a trained clinician or via printed or video user guide.

The stimulation pulses may be monophasic or asymmetrical or symmetrical biphasic in typical rang with a specific time pattern or modulated pattern wherein time pattern or modulated pattern are denoted as a burst and asymmetrical burst is denoted as a current wave form in which the time of ramp up is different from the time of ramp down. Max Voltage range is +300V (typically 200V), max current range is 150mA (typical 100mA); pulse frequency range is 10Hz- 100Hz (typical 20 Hz -40Hz), burst frequency 0.1-10Hz ( typical 0.25Hz-4Hz).

In some embodiments, the pulses are synchronized with the patient body signals. For example, the pulses may be synchronized with breathing, heart pulse, monotony movements, and body position. Synchronizing may be done by a sensor that is included in the device. Examples of such sensors are Accelerometer, Gyro, Magnetic Compass, Inclinometer and Respiratory Transducer based on a piezoelectric device (for sensing body position, movements and breathing), ECO amplifiers and microphone (for sensing heart rate).

Breathing, body position and movements changes the stomach and esophagus pressure and position. The synchronization is required for generating optimal pulses only while the abdomen pressure is positive through the inspiration cycles.

One technical problem dealt with by the present disclosure is bow to affect motility of the esophagus and stomach system or / and the diaphragm of a patient in a non-invasive way.

One technical solution is to continuously electrically stimulating the abdomen muscles, with a specific bursts wherein the frequency and the power of stimulation may be controlled by the patient. The burst rapid ramp up direction may be determined in accordance with the symptom. For example, in the case of Gastroesophageal reflux disease (GERD) a specific current wave forms and treatment protocols cause the effect of creeping materials to the stomach direction for treating GRED patient. Another example is treating obesity, when the specific pattern changes its direction the stomach contents creep up to the esophagus and creates unpleasant sensation leading to decrease me appetite (this occurs when the device works both during eating and / or in between meals). The treatment increases the stomach pressure and facilitates satiation.

One technical problem dealt with by the present disclosure is how to cause movement of the content of digestive system of a patient in a non invasive way.

One technical solution is to generate asymmetrical movements of the digestive system (like the esophagus) by applying asymmetrical electrical stimulation bursts onto the abdomen muscles, wherein the frequency and the power of stimulation may be controlled by the patient. The asymmetrical bursts generate abdomen muscles asymmetrical contractions. Those contractions generates forward and "fast back" displacement of the esophagus (via the stomach) causing the remaining materials creeping back to die stomach, like in "Vibration Conveyer", wherein the ramp direction is determined in accordance with the desired direction of the digestive system. For example, in the case of Gastroesophageal reflux disease (GERD) a fast ramp direction is upward and the slow phase is downward, causing the content of the esophagus return to the stomach and release the GRED symptoms of the patient. One other technical problem dealt with by the present disclosure is how to strengthen the esophageal sphincter

One other technical solution is electrically stimulating the abdominal muscles. For every burst of stimulation the pressure in (he stomach increases causing the esophageal sphincter muscle to contract and to prevent the stomach content entering to the esophagus, numerous times every day. The numerous contractions of the sphincter muscle cause thickening and strengthening of the sphincter which prevent the reflux syndrome in long term.

One other technical problem is how to optimize the stimulation effect A burst that acts during the abdomen negative pressure cycles it not effective though a burst that acts during the abdomen positive pressure cycles it effective.

One other technical solution is synchronizing the pulses timing with the patient body signals. Breathing, body position and movements changes the stomach and esophagus pressure and position. The synchronization is required for generating optimal pulses only while the abdomen pressure is positive through the inspiration cycles. In another embodiment the device synchronizes the pulses generation with heart beat rate measured by BOO (electrocardiogram) sensor. Pulses are generated during the periods of positive values. In another embodiment body position is performed by Gyro and/or accelerometer sensors.

One exemplary embodiment of the disclosed subject matter is a method for treating gastroesophageal reflux disease (OBRD) in a patient The method comprising: positioning a plurality of electrodes, in electrical contact with the skin of a target region of the patient abdomen; and applying a series of electrical bursts to the electrodes wherein the electrical burets are adapted for electrically stimulating the abdomen muscles of the patient in the target region; thereby causing the esophageal contents to creep down to the stomach.

According to some embodiments the method further comprising applying a series of electrical asymmetric bursts to thereby generating asymmetrical contractions of the muscles; wherein a direction of a fast phase of the bursts being upward and a direction of a slow phase of the bursts being downward; thereby generating movements of a digestive system of the patient; wherein the movements being for causing the content of the esophagus to return to the stomach and to release the GRED symptoms of the patient. According to some embodiments the method further comprising synchronizing the pulses with the patient body signals. According to some embodiments the body signal comprise one member of a group consisting of breathing, heart pulse, monotony movements and body position.

One other exemplary embodiment of the disclosed subject matter is a non-invasive device for treating the digestive system symptoms of a patient ; the device comprises: a plurality of electrodes adapted to be placed in electrical contact with the skin of the abdomen; a pulse generator 107 for providing asymmetric bursts electrical stimulation to flic electrodes; wherein the asymmetric bursts being for stimulating the abdomen muscles for a moving the digestive system; wherein the moving being for treating a digestive symptom or a diseases; a control unit 103 for controlling the pulse generator 107 wherein maximum voltage range of the pulse being +300V, maximum current range being 150mA; pulse frequency range being 10Hz- 100Hz and burst frequency being 0.1-10Hz. a sensor connectable to the control unit adapted for sensing body-signals from the patient; wherein the control unit is farther adapted for synchronizing the pulse generator 107 in accordance with the body-signals to thereby improving the effect of the electrical stimulation.

According to some embodiments the device digestive system symptoms being one member of a group consisting of reflux, obesity and constipation. According to some embodiments the pulse generator 107 is configured to determine the pulse ramp up direction in accordance with the desired direction. According to some embodiments the sensor being one member of a group consisting of a Piezoelectric Respiratory Belt Transducer for sensing breathing rate, an ECG for sensing heartbeat, a Gyro and accelerometer for sensing body movements.

One other exemplary embodiment of the disclosed subject matter a non-invasive device for treating gastroesophageal reflux disease of a patient ; the device comprises: a plurality of electrodes adapted to be placed in electrical contact with the skin of the abdomen; a pulse generator 107 for providing asymmetric electrical stimulation bursts to the electrodes; wherein the asymmetric electrical stimulation bursts being for generating asymmetrical contractions of the muscles; wherein a direction of a fast phase of the bursts being upward and a direction of a slow phase of the burts being downward; thereby generating movements of a digestive system of the patient; wherein the movements being for causing the content of the esophagus to return to the stomach and to release the GRED symptoms of the patient; a control unit for controlling the pulse generator 107 and a sensor adapted for sensing breaming signals from the patient; wherein the control unit is farther adapted for synchronizing the pulse generator 107 in accordance with the breathing signals to thereby generating pulses only when the abdomen pressure is positive. According to some embodiments the pulse generator 107 is further configured for providing symmetric electrical stimulation bursts.

One other exemplary embodiment of the disclosed subject matter a device for treating gastroesophageal reflux disease (GERD) of a patient ; the device comprises: a plurality of electrodes adapted to be placed in electrical contact with the skin of the abdomen; a pulse generator 107 for providing electrical stimulation signals to the electrodes; wherein the electrical stimulation bursts being for directing the stomach contents to creep up to the esophagus, to thereby causing unpleasant sensation leading to decrease the appetite for treating obesity or wherein the electrical stimulation bursts being for causing die stomach contents to creep down to the duodenum and to empty the stomach for treating paralysis cf the stomach or wherein the electrical stimulation bursts being for causing the transverses colon contents to creep down to the sigmoid colon to thereby treating constipation; and a control unit 103 for controlling the pulse generator 107

THE BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

The present disclosed subject matter will be understood and appreciated more fully from the following detailed description taken in conjunction with the drawings in which corresponding or like numerals or characters indicate corresponding or like components. Unless indicated otherwise, the drawings provide exemplary embodiments or aspects of the disclosure and do not limit the scope of the disclosure, In the drawings:

Figures la and lb illustrate a device for treating the digestive system in accordance with some embodiments of the disclosed subject matter;

Figure 2 illustrates an example of the asymmetrical burst stimulation monophasic pulses or half wave in case of biphasic pulses, in accordance with some embodiments of the disclosed subject matter;

Figure 3 is an illustration of user wearing the devise on the abdomen, in accordance with some embodiments of the disclosed subject matter, and

Figure 4 is an illustration of typical data that is generated by a Piezoelectric Respiratory Belt Transducer, in accordance with some embodiments of the disclosed subject matter.

DETAILED DESCRIPTION OF THE INVENTION

Figures 1 a and lb illustrate a device for treating the digestive, in accordance with some embodiments of the disclosed subject matter.

Figure la is a top view of the device in accordance with some embodiments of the disclosed subject matter. The device 100 can be worn on the user body via adjustable belt and or pressure sensitive adhesive (PSA). The device 100 generates electrical pulses mat are delivered to the user abdomen muscles via two or more electrodes. The device 100 includes a control unit 103, a control unit case 106, an adjustable belt 104 and a plurality of electrodes 101 and 102.

The control unit 103 includes the electric circuit (printed board) PCB and a battery or multiple batteries pack (not shown in this figure). The control unit 103 includes two or more keys or knobs 1 OS for turning on/off, selecting the required operation protocol and pulse parameters, and two (or more) LEDs (not shown) for status indication. The control unit 103 is explained in greater details in figure lb. The adjustable belt (104) is adapted ensures comfortable and proper attachment of the device to the user body and allows daily activities.

The control unit case 106 may be constructed to be adequately flexible in order to allow good fit with the user body.

The electrodes 101 and 102 ate each adapted to be positioned in electrical conduct with the skin of selected regions of a patient abdomen.. The electrodes 101 and 102 are replaceable and disposable; they are supplied to the user packed in a sealed watertight package. The electrode structure contains multiple layers that may include a substrate liner; polymer film (e.g. polyester) or foam (e.g. polyurethane) or nonwoven (e.g. polypropylene fibers) coated with conductive layer (e.g. a bland of silver silver-chloride or graphite or metal) and an aqueous conductive adhesive (eg. conductive hydrogel or viscose layer with water). The electrodes are attached to the control unit side wall or integrated into the adjustable belt 104, and connected to the control unit 103 via special conductive wires 110. A siliconized film (release liner) protects the adhesive / hydrogel and is removed before use.

In order to allow daily operation through clothes there is an option to remotely control the device by using a wire/wireless remote control unite or a special unit with magnet that magnetically operate the switches of the device.

Figure lb illustrates the control unit in accordance with some embodiments of the disclosed subject matter. The control unit 103 includes control keys 105, a case 106 and printed circuit board (PCS) 108. The PCB 108 includes microcontroller, digital circuits, memory, communication, high voltage circuits, analog circuits, high voltages switches and bridges, protection circuits (not shown) and the pulse generator 107. The control unit 103 is connected to the electrodes (not shown) with the electrodes conductive wires 110. The control unit 103 is in electrical contact with the sensors (not shown) via conductive wire 111.

The control unit may be controlled by any remote control device with any type of communication.

Figure 2 illustrates an example of the monopbasic asymmetrical burst stimulation pulses 200 and the biphasic stimulation pulses 210, in accordance with some embodiments of the disclosed subject matter. In another embodiment, more types of asymmetrical burst and pulses may be used for example: skew nonlinear curves, asymmetrical stairs pulses.

Figure 3 is an illustration of user 300 wearing the device 100 on the abdomen, in accordance with some embodiments of the disclosed subject matter. The adjustable belt 104 is worn on the user 300. The adjustable belt 104 includes a sensor 109. The sensor 109 is connected to the control unit 103 via conductive wire (multiple wires cable) 109. The electrodes 401 and 402 are connected to the device 100 via conductive wires 110. The second electrode 402 or both electrodes 401 and 402 may be integrated or separated from the device 100 and can be located in various locations of the user abdomen. This structure allows deeper penetration of the pulse current and may be required primarily by obese users with thick layer of fate that may prevent the current to reach the inner abdomen muscles.

Figure 4 is an illustration of typical data that is generated by a Piezoelectric Respiratory Belt Transducer, in accordance with some embodiments of the disclosed subject matter. The figure illustrates the change in voltage as a result of a change in thoracic or abdominal circumference due to respiration. By measuring the voltage change the device synchronizes tine pulses generation with breathing rate. Pulses are generated during the periods of positive values.