Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
A NOVEL ALKALOID DERIVATIVE AND A PHARMACEUTICAL COMPOSITION CONTAINING THE SAME
Document Type and Number:
WIPO Patent Application WO/2002/100824
Kind Code:
A1
Abstract:
The present invention is to provide a novel colchicine derivative represented by the formula (I) with halogen or nitric ester group, or pharmaceutically acceptable salts thereof, pharmaceutical compositions containing the same as effective components and having anticancer, anti-proliferous and immunosuppressive functions, and methods for preparing the colchicine derivatives:

Inventors:
KIM WAN JOO (KR)
KIM KYOUNG SOO (KR)
KIM MYUNG HWA (KR)
PARK JONG YEK (KR)
JANG JUNG MIN (KR)
CHOI JAE WON (KR)
KIM DONG HOO (KR)
Application Number:
PCT/KR2002/000996
Publication Date:
December 19, 2002
Filing Date:
May 27, 2002
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
CHEMTECH RES INC (KR)
KOREA TOBACCO & GINSENG CORP (KR)
KIM WAN JOO (KR)
KIM KYOUNG SOO (KR)
KIM MYUNG HWA (KR)
PARK JONG YEK (KR)
JANG JUNG MIN (KR)
CHOI JAE WON (KR)
KIM DONG HOO (KR)
International Classes:
A61K31/122; A61K31/165; A61K31/166; A61K31/21; A61K31/222; A61K31/235; A61K31/366; A61P21/02; A61P29/00; A61P35/00; A61P37/06; C07C49/755; C07C69/76; C07C69/78; C07C201/02; C07C203/04; C07C203/10; C07C231/02; C07C233/32; C07C233/41; C07C233/76; C07C233/79; C07C235/14; C07C235/42; C07C271/24; C07C319/20; C07C323/30; C07C323/41; C07C323/42; C07D307/93; (IPC1-7): C07C323/41
Other References:
SHI QIAN ET AL.: "Antitumor agents. 172. Synthesis and biological evaluation of novel deacetamidothiocolchicin-7-ols and ester analogs as antitubulin agents", JOURNAL OF MEDICINAL CHEMISTRY, vol. 40, no. 6, 1997, pages 961 - 966, XP002038714
ANJUM MUZAFFAR ET AL.: "Antitubulin effects of derivatives of 3-demethylthiocolchicine, methylthio esters of natural colchicinoids and thioketones derived from thiocolchicine", JOURNAL OF MEDICINAL CHEMISTRY, vol. 33, no. 2, 1990, pages 567 - 571, XP002988453
KERKES P. ET AL: "Synthesis and biological effects of novel thiocolchicines. 3. Evaluation of N-acyldeacetylthiocolchicines, N-(alkoxycarbonyl)deacetylthiocolchicines, ... New synthesis of thiodermecolcine and antileukemic effects of 2-demethyl- and 3-demethylthiocolchicine", JOURNAL OF MEDICINAL CHEMISTRY, vol. 28, no. 9, 1985, pages 1204 - 1208, XP002069840
Attorney, Agent or Firm:
Kim, Yoon Bae (Dongduk Building 8th floor, 151-8, Kwanhoon-don, Jongro-ku Seoul 110-300, KR)
Download PDF:
Claims:
What claimed is:
1. Colchicine derivative of the following formula (I) and pharmaceutically acceptable salts thereof : wherein: when R, is N (R6) C (Xl)A, X2C (Xi)A, N (R6)A, N (A) 2 or X2A, R2 is X3R7 or N (R7) 2, R3 and R4 are independently hydrogen or a methyl group, R5 is hydrogen, a methyl group, or CH2X4R7, wherein R6 and R7 are independently hydrogen or a lower alkyl group, and X, Xl, X2, X3 and X4 are independently O or S; when R2 is N (R6) C (Xi)A, X2C (Xi)A, N (R6)A, N (A) 2 or X2A, R, is N (R6) COCH3, N (R6) COCF3, or NHC (O) OR8, R3 and R4 are independently hydrogen or a methyl group, R5 is hydrogen, a methyl group, or CH2X4R7, wherein R6 and R7 are independently hydrogen or a lower alkyl group, R8 is a lower alkyl, alkenyl, or substituted or unsubstituted aryl, and X, Xl, X2 and X4 are independently O or S; when R3 and R4 are independently C (X))A orA, Ri is N (R6) COCH3, N (R6) COCF3, or NHC (O) ORs, R2 is X3R7 or N (R7) 2, R5 is hydrogen, a methyl group, or CH2X4R7, wherein R6 and R7 are independently hydrogen or a lower alkyl group, R8 is a lower alkyl, alkenyl, or substituted or unsubstituted aryl, and X, Xi, X3 or X4 are independently O or S; when R5is CH2X2C (X,)A, Rlis N (R6) COCH3, N (R6) COCF3 or NHC (O) OR8, R2 is X3R7 or N (R7) 2, R3 and R4 are independently hydrogen or a methyl group, wherein R6 and R7 are independently hydrogen or a lower alkyl group, Rg is a lower alkyl, alkenyl, or substituted or unsubstituted aryl group, and X, X), X2 and X3 are independently O or S, wherein A is represented by the formula (a), (b), (c), (d), (e), (0, (g), (h), (i) or (j) : wherein Y) is a Cl to C, o straight chain or branched alkyl, preferably, a C2 to C5 straight chain or branched alkyl or a substituted C5 to C7 cycloalkyl group; Hal is halogen, for example, F, Cl, Br or 1 ; R9 is hydrogen or a lower alkyl group ; ni is an integer from 1 to 6, preferably from 2 to 4; n2 and n3 are independently an integer from 1 to 5, preferably from 1 to 3; n4 is an integer from 0 to 3; and n5 is an integer from 1 to 6.
2. A compound selected from the group consisting of : 4chloroN (1, 2,3,10tetramethoxy9oxo5,6,7,9tetrahydrobenzo [a] heptarene7yl) butylamide ; 4chloromethylN (1, 2,3,10tetramethoxy9oxo5,6,7,9tetrahydro benzo [a] heptarene7yl)benzamide; 3chloromethylN (1, 2,3,10tetramethoxy9oxo5,6,7,9tetrahydro benzo [a] heptarene7yl)benzamide ; 4iodoN (1, 2,3,10tetramethoxy9oxo5,6,7,9tetrahydrobenzo [a] heptarene7yl) butylamide; 4nitrooxyN (1, 2,3,10tetramethoxy9oxo5,6,7,9tetrahydro benzo [a] heptarene7yl)butylamide ; 4iodomethylN (1, 2,3,10tetramethoxy9oxo5,6,7,9tetrahydro benzo [a] heptarene7yl)benzamide; 4nitrooxymethylN (1, 2,3,10tetramethoxy9oxo5,6,7,9tetrahydro benzo [a] heptarene7yl)benzamide; 3iodomethylN (1, 2,3,10tetramethoxy9oxo5,6,7,9tetrahydro benzo [a] heptarene7yl)benzamide; 3nitrooxymethylN (1, 2,3,10tetramethoxy9oxo5,6,7,9tetrahydro benzo [a] heptarene7yl)benzamide ; 4chloroN (1, 2,3trimethoxy10methylsulfanyl9oxo5,6,7,9tetrahydro benzo [a] heptarene7yl)butylamide ; 4chloromethylN (1, 2,3trimethoxy10methylsulfanyl9oxo5,6,7,9 tetrahydrobenzo [a] heptarene7yl)benzamide ; 3chloromethylN (1, 2,3trimethoxy10methylsulfanyl9oxo5,6,7,9 tetrahydrobenzo [a] heptarene7yl)benzamide ; 4iodoN (1, 2,3trimethoxy10methylsulfanyl9oxo5,6,7,9tetrahydro benzo [a] heptarene7yl)butylamide; 4nitrooxyN (1, 2,3trimethoxy10methylsulfanyl9oxo5,6,7,9tetrahydro benzo [a] heptarene7yl)butylamide ; 4iodomethylN (1, 2,3trimethoxy10methylsulfanyl9oxo5,6,7,9tetrahydro benzo [a] heptarene7yl)benzamide ; 4nitrooxymethylN (1, 2,3trimethoxy10methylsulfanyl9oxo5,6,7,9 tetrahydrobenzo [a] heptarene7yl)benzamide ; 3iodomethylN (1, 2,3trimethoxy10methylsulfanyl9oxo5,6,7,9tetrahydro benzo [a] heptarene7yl)benzamide; 3nitrooxymethylN (1, 2,3trimethoxy10methylsulfanyl9oxo5,6,7,9 tetrahydrobenzo [a] heptarene7yl)benzamide; N (7acetylamino1, 2,3trimethoxy9oxo5,6,7,9tetrahydrobenzo [a] heptarene10 yl)4chloromethylbenzamide ; N (7acetylamino1, 2,3trimethoxy9oxo5,6,7,9tetrahydrobenzo [a] heptarene10 yl)4iodomethylbenzamide; N (7acetylamino1, 2,3trimethoxy9oxo5,6,7,9tetrahydrobenzo [a] heptarene10 yl)4nitrooxymethylbenzamide ; 4chloromethylbenzoic acid 7acetylamino1, 2,3,10tetramethoxy9oxo 5,6,7,9tetrahydrobenzo [a] heptarene7ylmethyl ester; 4chloromethylbenzoic acid 7acetylamino1, 2,3trimethoxy10methylsulfanyl 9oxo5, 6,7,9tetrahydrobenzo [a] heptarene7ylmethyl ester; 4chlorobutyric acid 7acetylamino1,2,3,10tetramethoxy9oxo5,6,7,9 tetrahydrobenzo [a] heptarene7ylmethyl ester; 4chlorobutyric acid 7acetylamino1,2,3trimethoxy10methylsulfanyl9oxo 5,6,7,9tetrahydrobenzo [a] heptarene7ylmethyl ester; 4nitrooxymethylbenzoic acid 7acetylamino1, 2,3,10tetramethoxy9oxo 5,6,7,9tetrahydrobenzo [a] heptarene4ylmethyl ester; 4iodomethylbutyric acid 7acetylamino1, 2,3trimethoxy10methylsulfanyl9 oxo5, 6,7,9tetrahydrobenzo [a] heptarene4ylmethyl ester; 4nitrooxymethylbutyric acid 7acetylamino1,2,3trimethoxy10 methylsulfanyl9oxo5,6,7,9tetrahydrobenzo [a] heptarene4ylmethyl ester; 4iodomethylbenzoic acid 7acetylamino1, 2,3trimethoxy10methylsulfanyl9 oxo5, 6,7,9tetrahydrobenzo [a] heptarene4ylmethyl ester; 4nitrooxymethylbenzoic acid 7acetylamino1,2,3trimethoxy10 methylsulfanyl9oxo5,6,7,9tetrahydrobenzo [a] heptarene4ylmethyl ester; ()3chloromethylbenzoic acid 1,2,3,10tetramethoxy9oxo5,6,7,9tetrahydro benzo [a] heptarene7yl ester; (+)3chloromethylbenzoic acid 1,2,3,10tetramethoxy9oxo5,6,7,9 tetrahydrobenzo [a] heptarene7yl ester; ()3iodomethylbenzoic acid 1,2,3,10tetramethoxy9oxo5,6,7,9tetrahydro benzo [a] heptarene7yl ester; (+)3iodomethylbenzoic acid 1, 2,3,10tetramethoxy9oxo5,6,7,9tetrahydro benzo [a] heptarene7yl ester ; ()3nitrooxymethylbenzoic acid 1,2,3,10tetramethoxy9oxo5,6,7,9 tetrahydrobenzo [a] heptarene7yl ester; (+)3nitrooxymethylbenzoic acid 1,2,3,10tetramethoxy9oxo5,6,7,9 tetrahydrobenzo [a] heptarene7yl ester; 4chlorobutyric acid 7acetylamino1, 2,10trimethoxy9oxo5,6,7,9tetrahydro benzo [a] heptarene3yl ester; 4chloromethylbenzoic acid 7acetylamino1, 2,10trimethoxy9oxo5,6,7,9 tetrahydrobenzo [a] heptarene3yl ester; 3chloromethylbenzoic acid 7acetylamino1, 2,10trimethoxy9oxo5,6,7,9 tetrahydrobenzo [a] heptarene3yl ester; 4nitrooxybutyric acid 7acetylamino1, 2,10trimethoxy9oxo5,6,7,9 tetrahydrobenzo [a] heptarene3yl ester; 4nitrooxymethylbenzoic acid 7acetylamino1,2,10trimethoxy9oxo5,6,7,9 tetrahydrobenzo [a] heptarene3yl ester; 3nitrooxymethylbenzoic acid 7acetylamino1, 2,10trimethoxy9oxo5,6,7,9 tetrahydrobenzo [a] heptarene3yl ester; 4chloroNmethylN (1, 2,3trimethoxy10methylsulfanyl9oxo5,6,7,9 tetrahydrobenzo [a] heptarene7yl)butylamide ; 4nitrooxymethylNmethylN (l, 2,3trimethoxy10methylsulfanyl9oxo 5,6,7,9tetrahydrobenzo [a] heptarene7yl)benzamide ; 3nitrooxymethylNmethylN (1, 2,3trimethoxy10methylsulfanyl 9oxo 5,6,7,9tetrahydrobenzo [a] heptarene7yl)benzamide ; ()3chloromethylbenzoic acid 1,2,3trimethoxy10methylsulfenyl9oxo 5,6,7,9tetrahydrobenzo [a] heptarene7yl ester; (+)3chloromethylbenzoic acid 1, 2,3trimethoxy10methylsulfenyl9oxo 5,6,7,9tetrahydrobenzo [a] heptarene7yl ester; ()3nitrooxymethylbenzoic acid 1, 2,3trimethoxy10methylsulfenyl9oxo 5,6,7,9tetrahydrobenzo [a] heptarene7yl ester; (+)3nitrooxymethylbenzoic acid 1, 2,3trimethoxy10methylsulfenyl9oxo 5,6,7,9tetrahydrobenzo [a] heptarene7yl ester; 4chloroNmethylN (1, 2,3,10tetramethoxy9oxo5,6,7,9tetrahydro benzo [a] heptarene7yl) butylamide; 4chloromethylNmethylN (1, 2,3,10tetramethoxy9oxo5,6,7,9tetrahydro benzo [a] heptarene7yl) benzamide; Nmethyl4nitrooxyN (1, 2,3,10tetramethoxy9oxo5,6,7,9tetrahydro benzo [a] heptarene7yl) butylamide; Nmethyl4nitrooxymethylN (1, 2,3,10tetramethoxy9oxo5,6,7,9tetrahydrobenzo [a] heptarene7yl) benzamide; 4nitrooxybutyric acid 7acetylamino1, 2,3,10tetramethoxy9oxo5,6,7,9 tetrahydrobenzo [a] heptarene4yl methyl ester; 4chloroN (1, 2,3trimethoxy4methoxymethyl10methylsulfanyl9oxo 5,6,7,9tetrahydrobenzo [a] heptarene7yl)butylamide ; 4chloromethylN (1, 2,3trimethoxy4methoxymethyl10methylsulfanyl9 oxo5, 6,7,9tetrahydrobenzo [a] heptarene7yl)benzamide ; 4nitrooxyN (1, 2,3trimethoxy4methoxymethyl10methylsulfanyl9oxo 5,6,7,9tetrahydrobenzo [a] heptarene7yl)butylamide; 4nitrooxymethylN (1, 2,3trimethoxy4methoxymethyl10methylsulfanyl9 oxo5, 6,7,9tetrahydrobenzo [a] heptarene7yl)benzamide; N (7acetylamino1, 2,3trimethoxy9oxo5,6,7,9tetrahydrobenzo [a] heptarene10 yl)3chloromethylbenzamide; N (7acetylamino1, 2,3trimethoxy9oxo5,6,7,9tetrahydrobenzo [a] heptarene10 yl)3nitrooxymethylbenzamide; N (7acetylamino1, 2,3trimethoxy9oxo5,6,7,9tetrahydrobenzo [a] heptarene10 yl4chlorobutylamide; 4chloromethylN (10dimethylamino1, 2,3trimethoxy9oxo5,6,7,9 tetrahydrobenzo [a] heptarene7yl)benzamide; N (10dimethylamino1, 2,3trimethoxy9oxo5,6,7,9tetrahydro benzo [a] heptarene7yl)4nitrooxymethylbenzamide ; 3chloromethylN (10dimethylamino1, 2,3trimethoxy9oxo5,6,7,9 tetrahydrobenzo [a] heptarene7yl)benzamide; N (10dimethylamino1, 2,3trimethoxy9oxo5,6,7,9tetrahydro benzo [a] heptarene7yl)3nitrooxymethylbenzamide ; 4chloroN (10dimethylamino1, 2,3trimethoxy9oxo5,6,7,9tetrahydro benzo [a] heptarene7yl)butyrilamide ; and N (10dimethylamino1, 2,3trimethoxy9oxo5,6,7,9tetrahydro benzo [a] heptarene7yl)4nitrooxybutyrilamide, or pharmaceutically acceptable salts thereof.
3. A pharmaceutical composition comprising the colchicine derivative or its pharmaceutically acceptable salt according to claim 1 or 2.
4. An anticancer agent, an antiproliferous agent, and an immunosuppressive agent comprising the colchicine derivative or its pharmaceutically acceptable salt according to claim 1 or 2 as an active ingredient.
5. A method for preparing a colchicine derivative of the formula (Ia) among the colchicine derivatives according to claim 1 comprising: reacting a compound of the formula (I with a compound of the following formula (m) or a compound of the following formula (V) for amidation to produce a compound of the following formula (IV) or a compound of the following formula (VI) ; and subjecting the compound of the formula (IV) or (VI) for nitration to convert the same into the colchicine derivative of the formula (Ia) : wherein, B is represented by the following formulas Cl and C2: (wherein R, through R5 and X are defined as in claim 1), wherein R6 is hydrogen or a lower alkyl group; X, is O or S; Hal, Hall, and Hal2 are independently the same or different halogen; and Y is represented by the general formulas (a'), (b'), (c'), (d') or (e'): wherein Yl represents a Cl to Clo straight chain or branched alkyl, preferably, a C2 to C5 straight chain or branched alkyl, or a substituted C5 to C7 cycloalkyl, R8 represents hydrogen or a lower alkyl, n, is an integer from 1 to 6, preferably from 2 to 4, n2 and n3 are independently an integer from 1 to 5, preferably from 1 to 3, n4 is an integer from 0 to 3, and n5 is an integer from 1 to 6.
6. The method according to claim 5 comprising nitration of a compound represented by the formula (VIn prepared by converting hydrogen of alcohol in the compound of the formula (VI) into a leaving group before the nitration of the compound of the formula (VI) : wherein B, R6, Xi and Y are defined as in claim 5, and L is a leaving group selected from a methanesulfonyl, ptoluenesulfonyl or triflate.
7. A method for preparing a colchicine derivative of the formula (Ib) among the colchicine derivatives according to claim 1 comprising: reacting the compound of the formula (IT) with a compound of the formula (Vm) or a compound of the formula (X) for amidation to produce a compound (IX) or a compound of the formula (XI) ; and subjecting the compound of the formula (IX) or the compound of the formula (XI) to nitration for converting the same into the compound of the formula (Ib) : wherein B is defined as in claim 5, wherein R6, Y, and Hal are defined as in claim 5; Hall and Hal2 are independently the same or different halogen.
8. The method according to claim 7 comprising nitration of a compound represented by the formula (XII) prepared by converting hydrogen of alcohol in the compound of the formula (XI) into a leaving group before nitration of the compound of the formula (XI) : wherein B, R6, and Y are defined as in claim 7, and L is a leaving group selected from a methanesulfonyl, ptoluene sulfonyl or triflate.
9. A method of preparing a colchicine derivative of the formula (Ic) among the colchicine derivatives according to claim 1 comprising: reacting a compound of the formula (Xin) with a compound of the formula (m) or a compound of the formula (XV) for esterification to produce a compound of the formula (XIV) or a compound of the formula (XVI) ; and subjecting the compound of the formula (XIV) or the compound of the formula (XVI) to nitration to produce the compound of the formula (Ic): wherein C is represented by the formula C1, C2, C3, C4 or C5: wherein Rl through R5 and X are defined as in claim 1, wherein Xi and X2 are each independently O or S; Hal is halogen; Hall and Hal2 are independently the same or different halogen; and Y is represented by the general formulas (a'), (b'), (c'), (d') or (e'): wherein Y, represents a C, to Clo straight chain or branched alkyl, preferably, a C2 to C5 straight chain or branched alkyl, or a substituted C5 to C7 cycloalkyl, R8 represents hydrogen or a lower alkyl, nl is an integer from 1 to 6, preferably from 2 to 4, n2 and n3 are independently an integer from 1 to 5, preferably from 2 to 4, n4 is an integer 0 to 3, and ns is an integer from 1 to 6.
10. The method according to claim 9 comprising reacting the compound of the formula (XE) with a compound of the formula (XVE) having a hydroxyprotecting group to produce a compound of the formula (XIX) before esterification of the compound of the formula (XIII) ; and converting the compound of the formula (XIX) into a compound of the formula (XVI) by a deprotection: wherein C, X and Y are defined as in claim 9; P represents a general hydroxyprotecting group selected among methoxymethyl or tbutyldimethylsilyl; and RIO is hydrogen or a lower alcohol of Cl to C3.
11. The method according to claim 9 or 10 comprising nitration of a compound of the formula (XVII) prepared by converting hydrogen of alcohol in the compound of the formula (XVI) into a leaving group before nitration of the compound of the formula (XVI) : wherein C, Xl, X2 and Y are defined as in claim 9, and L represents a leaving group selected from methanesulfonyl, ptoluene sulfonyl or triflate.
12. A method for preparing a colchicine derivative of the formula (Id) among the colchicine derivatives according to claim 1 comprising: reacting a compound of the formula (XX) with a compound of the formula (Vm) or a compound of the formula (X) for amidation to produce a compound of the formula (XXI) or a compound of the formula (XXII) ; and subjecting the compound of the formula (XXI) or the compound of the formula (XXII) to nitration to convert the same into the colchicine derivative of the formula (Id) : wherein B is defined as in claim 5, wherein Y and Hal is defined as in claim 5; Hall and Hal2 are independently the same or different halogen.
13. The method according to claim 12 comprising nitration of a compound of the formula (XXm) prepared by converting each hydrogen of alcohols in the compound of the formula (XXII) into a leaving group before nitration of the compound of the formula (XXII) : wherein B and Y are defined as in claim 12, and L represents a leaving group selected from methanesulfonyl, ptoluene sulfonyl or triflate.
14. A method of preparing a colchicine derivative of the formula (Ie) among the colchicine derivatives according to claim 1 comprising: reacting a compound of the formula (XII) with a compound of the formula (Vin) or a compound of the formula (X) for esterification to produce a compound of the formula (XXIV) or a compound of the formula (XXV) ; and subjecting the compound of the formula (XXIV) or the compound of the formula (XXV) to nitration to convert the same into the colchicine derivative of the formula (Ie) : wherein C is defined as in claim 9, wherein X2, Y, Hal, Hall and Hal2 are defined as in claim 9.
15. The method according to claim 14 comprising nitration of a compound of the formula (XXVI) prepared by converting hydrogen of alcohol in the compound of the formula (XXV) into a leaving group before nitration of the compound of the formula (XXV): wherein C, X2 and Y are defined as in claim 14, and L represents a leaving group selected from methanesulfonyl, ptoluene sulfonyl or triflate.
Description:
A NOVEL ALKALOID DERIVATIVE AND A PHARMACEUTICAL COMPOSITION CONTAINING THE SAME Technical Field The present invention relates to a novel alkaloid derivative and a pharmaceutical composition containing the same. More particularly, the present invention relates to a novel colchicine derivative having anticancer, anti-proliferous and anti-inflammatory effects and immunosuppressive and muscle relaxing functions, and pharmaceutically acceptable salts thereof, a pharmaceutical composition containing the same as an effective component, and methods for preparing the same.

Background Art Colchicine is a pseudo-alkaloid widely used for treatment of gout and is used only for short-term therapeutic treatment due to its toxicity. However, colchicine has been reported to exhibit a very fast and specific therapeutic effect on gout, as described in the Alkaloids, 1991, vol. 41,125-176, U. S. patent No. 4,533,675, and so on.

During cell division, colchicine inhibits formation of mitotic spindle, thereby suppresses cell division, leading to activation of anticancer and anti-proliferous effects. Also, continuous research into colchicine applications has been carried out and a variety of colchicine derivatives have been synthesized up to now, as described in U. S. patent No. 3,222,253, U. S. patent application serial No. 00/608073A, WO 91/02084, and so on. Among them, only demecolcine has been used for treatment of leukemia.

There is also a report that colchicine can be used for treatment of psoriasis or rheumatoid arthritis and has an amyloidosis inhibitory effect and an anti-inflammatory effect (Arch. Dermatol. 1982, Vol. 118, July, pp 453-457). Also, thiocolchicoside, which is one of colchicine derivatives, is widely used for treatment of skeletal muscle contracture and inflammation.

Disclosure of the Invention

A first feature of the present invention is to provide a novel colchicine derivative having anticancer, anti-proliferous and anti-inflammatory effects and immunosuppressive and muscle-relaxing functions, and pharmaceutically acceptable salts thereof.

A second feature of the present invention is to provide methods for preparing the colchicine derivatives.

A third feature of the present invention is to provide a pharmaceutical composition containing the colchicine derivative and pharmaceutically acceptable salts thereof as an effective component.

In an aspect of the present invention, it is provided colchicine derivatives represented by the formula (I) and pharmaceutically acceptable salts thereof : wherein when Ri is N (R6) C (Xl)-A, X2C (X)-A, N (R6)-A, N (A) 2 or X2-A, R2 is X3R7 or N (R7) 2, R3 and R4 are independently hydrogen or a methyl group, R5 is hydrogen, a methyl group or CH2X4R7, wherein R6 and R7 are independently hydrogen or a lower alkyl, and X, XI, X2, X3 and X4 are independently O or S; when R2 is N (R6) C (X,)-A, X2C (Xi)-A, N (R6)-A, N (A) 2 or X2-A, R, is N (R6) COCH3, N (R6) COCF3, or NHC (O) OR8, R3 and R4 are independently hydrogen or a methyl group, Rs is hydrogen, a methyl group or CH2X4R7, wherein R6 and R7 are independently hydrogen or a lower alkyl, R8 is a lower alkyl, alkenyl, or substituted or unsubstituted aryl, and X, XI, X2 and X4 are independently O or S; when R3 and R4 are independently C (X)-A or-A, R, is N (R6) COCH3, N (R6) COCF3, or NHC (O) OR8, R2 is X3R7 or N (R7) 2, R5is hydrogen, a methyl or CH2X4R7, wherein R6 and R7 are independently hydrogen or a lower alkyl, R8 is a

lower alkyl, alkenyl, or substituted or unsubstituted aryl, and X, XI, X3 or X4 are independently O or S; when R5 is CH2X2C (X,)-A, R, is N (R6) COCH3, N (R6) COCF3 or NHC (O) OR8, R2 is X3R7 or N (R7) 2, R3 and R4 are independently hydrogen or a methyl group, wherein R6 and R7 are independently hydrogen or a lower alkyl, R8 is a lower alkyl, alkenyl, or substituted or unsubstituted aryl, and X, Xl, X2 and X3 are independently O or S, wherein A is represented by the formula (a), (b), (c), (d), (e), (f), (g), (h), (i) or (i) : wherein Yl is a C, to CIO straight chain or branched alkyl, preferably, a C2 to C5 straight chain or branched alkyl or a substituted C5 to C7 cycloalkyl ; Hal is halogen, for example, F, Cl, Br or I, Rg is hydrogen or a lower alkyl ; n is an integer from 1 to 6, preferably from 2 to 4; n2 and n3 are independently an integer from 1 to 5, preferably from 1 to 3; n4 is an integer from 0 to 3; and ns is an integer from 1 to 6.

In another aspect of the present invention, it is provided a pharmaceutical composition containing the colchicine derivatives and pharmaceutically acceptable salts thereof as effective components, the pharmaceutical composition having anticancer, anti-proliferous and anti-inflammatory effects and immunosuppressive and muscle-relaxing functions.

In still another aspect of the present invention, it is provided methods for preparing the colchicine derivative represented by the formula (I) according to the reaction schemes 1, 2,3,4 and 5. In the reaction schemes 1 to 5, the colchicine derivatives of the formula (1) are represented as the formula (Ia), (Ib), (Ic), (Id), or (Ie) : Reaction scheme 1 (Method 1)

Reaction scheme 2 (Method 2) Reaction scheme 3 (Method 3 Reaction scheme 4 (Method 4)

Reaction scheme 5 (Method 5)

wherein B in the formulas (Ia), (Ib), (Ic), (Id) and (Ie) is represented by the formula Cl or C2, and C in the formulas is represented by the formula Cl, C2, C3, C4 or C5 :

wherein R, through R5 and X are defined as in the compound of the formula (I).

R6 is hydrogen or a lower alkyl ; X, and X2 are independently O or S; Hal, Hall, and Hal2 may be the same or different halogens; L is a leaving group selected from methanesulfonyl, p-toluenesulfonyl or triflate ; P represents a general hydroxy-protecting group including methoxymethyl or t-butyldimethylsilyl; Rio is hydrogen or a lower alcohol of Cl to C3 ; and Y is represented by the general formula (a'), (b'), (c'), (d') or (e'): wherein Yl represents a C, to CIO straight chain or branched alkyl, preferably, a C2 to C5 straight chain or branched alkyl, or a substituted C5 to C7 cycloalkyl, R8

represents hydrogen or a lower alkyl, n, is an integer from 1 to 6, preferably an integer from 2 to 4, n2 and n3 are independently an integer from 1 to 5, preferably an integer from 1 to 3, n4 is an integer 0 to 3, and ns is an integer from 1 to 6.

Brief Description of the Drawings FIG. 1 is a graph showing the immonosuppressive effect of a colchicine derivative tested by mixed lymphocyte reaction (MLR); FIG. 2 is a graph showing the immonosuppressive effect of cyclosphorine A as a positive control sample in an immunosuppressive effect test using a BALB/c mouse spleen; and FIG. 3 is a graph showing the immonosuppressive effect of a colchicine derivative according to the present invention in an immunosuppressive effect test using a BALB/c mouse spleen.

Best mode for carrying out the Invention The present invention will now be described in more detail.

Throughout the specification, a lower alkyl represents a saturated C, to C6, preferably, Cl to C4 straight chain or branched hydrocarbon.

Preferred examples of the colchicine derivative of the formula (I) and its pharmaceutically acceptable salt according to the present invention include: 4-chloro-N- (1, 2,3,10-tetramethoxy-9-oxo-5,6,7,9-tetrahydro-benzo [a] heptarene-7-yl)- butylamide; 4-chloromethyl-N- (1, 2,3,10-tetramethoxy-9-oxo-5,6,7,9-tetrahydro- benzo [a] heptarene-7-yl)-benzamide; 3-chloromethyl-N- (1, 2,3,10-tetramethoxy-9-oxo-5,6,7,9-tetrahydro- benzo [a] heptarene-7-yl)-benzamide ; 4-iodo-N- (1, 2,3,10-tetramethoxy-9-oxo-5,6,7,9-tetrahydro-benzo [a] heptarene-7-yl)- butylamide; 4-nitrooxy-N- (1, 2,3,10-tetramethoxy-9-oxo-5,6,7,9-tetrahydro-benzo [a] heptarene-7- yl)-butylamide ; 4-iodomethyl-N- (1, 2,3,10-tetramethoxy-9-oxo-5,6,7,9-tetrahydro-benzo [a] heptarene-

7-yl)-benzamide; 4-nitrooxymethyl-N- (1, 2,3,10-tetramethoxy-9-oxo-5,6,7,9-tetrahydro- benzo [a] heptarene-7-yl)-benzamide ; 3-iodomethyl-N- (1, 2,3,10-tetramethoxy-9-oxo-5,6,7,9-tetrahydro-benzo [a] heptarene- 7-yl)-benzamide; 3-nitrooxymethyl-N- (1, 2,3,10-tetramethoxy-9-oxo-5,6,7,9-tetrahydro- benzo [a] heptarene-7-yl)-benzamide; 4-chloro-N- (1, 2,3-trimethoxy-10-methylsulfanyl-9-oxo-5,6,7,9-tetrahydro- benzo [a] heptarene-7-yl)-butylamide; 4-chloromethyl-N- (1, 2,3-trimethoxy-10-methylsulfanyl-9-oxo-5,6,7,9-tetrahydro- benzo [a] heptarene-7-yl)-benzamide; 3-chloromethyl-N- (1, 2,3-trimethoxy-10-methylsulfanyl-9-oxo-5,6,7,9-tetrahydro- benzo [a] heptarene-7-yl)-benzamide; 4-iodo-N- (1, 2,3-trimethoxy-10-methylsulfanyl-9-oxo-5,6,7,9-tetrahydro- benzo [a] heptarene-7-yl)-butylamide ; 4-nitrooxy-N- (1, 2,3-trimethoxy-10-methylsulfanyl-9-oxo-5,6,7,9-tetrahydro- benzo [a] heptarene-7-yl)-butylamide ; 4-iodomethyl-N- (1, 2,3-trimethoxy-10-methylsulfanyl-9-oxo-5,6,7,9-tetrahydro- benzo [a] heptarene-7-yl)-benzamide ; 4-nitrooxymethyl-N- (1, 2,3-trimethoxy-10-methylsulfanyl-9-oxo-5,6,7,9-tetrahydro- benzo [a] heptarene-7-yl)-benzamide; 3-iodomethyl-N- (1, 2,3-trimethoxy-10-methylsulfanyl-9-oxo-5,6,7,9-tetrahydro- benzo [a] heptarene-7-yl)-benzamide; 3-nitrooxymethyl-N- (1, 2,3-trimethoxy-10-methylsulfanyl-9-oxo-5,6,7,9-tetrahydro- benzo [a] heptarene-7-yl)-benzamide ; N- (7-acetylamino-1, 2,3-trimethoxy-9-oxo-5,6,7,9-tetrahydro-benzo [a] heptarene-10- yl)-4-chloromethyl-benzamide; N- (7-acetylamino-1, 2,3-trimethoxy-9-oxo-5,6,7,9-tetrahydro-benzo [a] heptarene-10- yl)-4-iodomethyl-benzamide; N- (7-acetylamino-1, 2,3-trimethoxy-9-oxo-5,6,7,9-tetrahydro-benzo [a] heptarene-10- yl)-4-nitrooxymethyl-benzamide ;

4-chloromethyl-benzoic acid 7-acetylamino-1,2,3,10-tetramethoxy-9-oxo-5,6,7,9- tetrahydro-benzo [a] heptarene-7-yl-methyl ester; 4-chloromethyl-benzoic acid 7-acetylamino-1,2,3-trimethoxy-10-methylsulfanyl- 9-oxo-5,6,7,9-tetrahydro-benzo [a] heptarene-7-yl-methyl ester; 4-chloro-butyric acid 7-acetylamino-1,2,3,10-tetramethoxy-9-oxo-5,6,7,9-tetrahydro - benzo [a] heptarene-7-yl-methyl ester; 4-chloro-butyric acid 7-acetylamino-1, 2,3-trimethoxy-10-methylsulfanyl-9-oxo- 5,6,7,9-tetrahydro-benzo [a] heptarene-7-yl-methyl ester; 4-nitrooxymethyl-benzoic acid 7-acetylamino-1, 2,3,10-tetramethoxy-9-oxo-5,6,7,9- tetrahydro-benzo [a] heptarene-4-yl-methyl ester; 4-iodomethyl-butyric acid 7-acetylamino-1, 2,3-trimethoxy-10-methylsulfanyl-9-oxo- 5,6,7,9-tetrahydro-benzo [a] heptarene-4-yl-methyl ester; 4-nitrooxymethyl-butyric acid 7-acetylamino-1, 2,3-trimethoxy-10-methylsulfanyl- 9-oxo-5, 6,7,9-tetrahydro-benzo [a] heptarene-4-yl-methyl ester; 4-iodomethyl-benzoic acid 7-acetylamino-1, 2,3-trimethoxy-10-methylsulfanyl-9- oxo-5, 6,7,9-tetrahydro-benzo [a] heptarene-4-yl-methyl ester; 4-nitrooxymethyl-benzoic acid 7-acetylamino-1,2,3-trimethoxy-10-methylsulfanyl-9- oxo-5,6,7,9-tetrahydro-benzo [a] heptarene-4-yl-methyl ester; (-)-3-chloromethyl-benzoic acid 1,2,3,10-tetramethoxy-9-oxo-5,6,7,9-tetrahydro- benzo [a] heptarene-7-yl ester; (+)-3-chloromethyl-benzoic acid 1,2,3,10-tetramethoxy-9-oxo-5,6,7,9-tetrahydro- benzo [a] heptarene-7-yl ester; (-)-3-iodomethyl-benzoic acid 1,2,3,10-tetramethoxy-9-oxo-5,6,7,9-tetrahydro- benzo [a] heptarene-7-yl ester; (+)-3-iodomethyl-benzoic acid 1,2,3,10-tetramethoxy-9-oxo-5,6,7,9-tetrahydro- benzo [a] heptarene-7-yl ester; (-)-3-nitrooxymethyl-benzoic acid 1,2,3,10-tetramethoxy-9-oxo-5,6,7,9-tetrahydro- benzo [a] heptarene-7-yl ester; (+)-3-nitrooxymethyl-benzoic acid 1,2,3,10-tetramethoxy-9-oxo-5,6,7,9-tetrahydro- benzo [a] heptarene-7-yl ester; 4-chloro-butyric acid 7-acetylamino-1,2,10-trimethoxy-9-oxo-5,6,7,9-tetrahydro-

benzo [a] heptarene-3-yl ester; 4-chloromethyl-benzoic acid 7-acetylamino-1, 2,10-trimethoxy-9-oxo-5,6,7,9- tetrahydro-benzo [a] heptarene-3-yl ester; 3-chloromethyl-benzoic acid 7-acetylamino-1, 2,10-trimethoxy-9-oxo-5,6,7,9- tetrahydro-benzo [a] heptarene-3-yl ester; 4-nitrooxy-butyric acid 7-acetylamino-1, 2,10-trimethoxy-9-oxo-5,6,7,9- tetrahydro-benzo [a] heptarene-3-yl ester; 4-nitrooxymethyl-benzoic acid 7-acetylamino-1, 2,10-trimethoxy-9-oxo-5,6,7,9- tetrahydro-benzo [a] heptarene-3-yl ester; 3-nitrooxymethyl-benzoic acid 7-acetylamino-1,2,10-trimethoxy-9-oxo-5,6,7,9- tetrahydro-benzo [a] heptarene-3-yl ester; 4-chloro-N-methyl-N- (1, 2,3-trimethoxy-10-methylsulfanyl-9-oxo-5,6,7,9-tetrahydro- benzo [a] heptarene-7-yl)-butylamide; 4-nitrooxymethyl-N-methyl-N- (1, 2,3-trimethoxy-10-methylsulfanyl- 9-oxo-5,6,7,9- tetrahydro-benzo [a] heptarene-7-yl)-benzamide; 3-nitrooxymethyl-N-methyl-N- (1, 2,3-trimethoxy-10-methylsulfanyl- 9-oxo-5,6,7,9- tetrahydro-benzo [a] heptarene-7-yl)-benzamide ; (-)-3-chloromethyl-benzoic acid 1,2,3-trimethoxy-10-methylsulfenyl-9-oxo-5,6,7,9- tetrahydro-benzo [a] heptarene-7-yl ester; (+)-3-chloromethyl-benzoic acid 1, 2,3-trimethoxy-10-methylsulfenyl-9-oxo-5,6,7,9- tetrahydro-benzo [a] heptarene-7-yl ester; (-)-3-nitrooxymethyl-benzoic acid 1,2,3-trimethoxy-10-methylsulfenyl-9-oxo-5,6,7,9- tetrahydro-benzo [a] heptarene-7-yl ester; (+)-3-nitrooxymethyl-benzoic acid 1,2,3-trimethoxy-10-methylsulfenyl-9-oxo-5,6,7,9- tetrahydro-benzo [a] heptarene-7-yl ester; 4-chloro-N-methyl-N- (1, 2,3,10-tetramethoxy-9-oxo-5,6,7,9-tetrahydro- benzo [a] heptarene-7-yl) butylamide; 4-chloromethyl-N-methyl-N- (1, 2,3,10-tetramethoxy-9-oxo-5,6,7,9-tetrahydro- benzo [a] heptarene-7-yl) benzamide; N-methyl-4-nitrooxy-N- (1, 2,3,10-tetramethoxy-9-oxo-5,6,7,9-tetrahydro- benzo [a] heptarene-7-yl) butylamide;

N-methyl-4-nitrooxymethyl-N- (1, 2,3,10-tetramethoxy-9-oxo-5,6,7,9-tetrahydro- benzo [a] heptarene-7-yl) benzamide; 4-nitrooxy-butyric acid 7-acetylamino-1, 2,3,10-tetramethoxy-9-oxo-5,6,7,9- tetrahydro-benzo [a] heptarene-4-yl methyl ester; 4-chloro-N- (1, 2,3-trimethoxy-4-methoxymethyl-10-methylsulfanyl-9-oxo-5,6,7 ,9- tetrahydro-benzo [a] heptarene-7-yl)-butylamide; 4-chloromethyl-N- (1, 2,3-trimethoxy-4-methoxymethyl-10-methylsulfanyl-9-oxo- 5,6,7,9-tetrahydro-benzo [a] heptarene-7-yl)-benzamide; 4-nitrooxy-N- (1, 2,3-trimethoxy-4-methoxymethyl-10-methylsulfanyl-9-oxo-5,6,7 ,9- tetrahydro-benzo [a] heptarene-7-yl)-butylamide; 4-nitrooxymethyl-N- (1, 2,3-trimethoxy-4-methoxymethyl-10-methylsulfanyl-9-oxo- 5,6,7,9-tetrahydro-benzo [a] heptarene-7-yl)-benzamide ; N- (7-acetylamino-1, 2,3-trimethoxy-9-oxo-5,6,7,9-tetrahydro-benzo [a] heptarene-10- yl)-3-chloromethyl-benzamide ; N- (7-acetylamino-1, 2,3-trimethoxy-9-oxo-5,6,7,9-tetrahydro-benzo [a] heptarene-10- yl)-3-nitrooxymethyl-benzamide; N- (7-acetylamino-1, 2,3-trimethoxy-9-oxo-5,6,7,9-tetrahydro-benzo [a] heptarene-10- yl-4-chloro-butylamide; 4-chloromethyl-N- (10-dimethylamino-1, 2,3-trimethoxy-9-oxo-5,6,7,9-tetrahydro- benzo [a] heptarene-7-yl)-benzamide; N- (10-dimethylamino-1, 2,3-trimethoxy-9-oxo-5,6,7,9-tetrahydro-benzo [a] heptarene-7 -yl)-4-nitrooxymethyl-benzamide ; 3-chloromethyl-N- (10-dimethylamino-1, 2,3-trimethoxy-9-oxo-5,6,7,9-tetrahydro- benzo [a] heptarene-7-yl)-benzamide ; N- (10-dimethylamino-1, 2,3-trimethoxy-9-oxo-5,6,7,9-tetrahydro-benzo [a] heptarene-7 -yl)-3-nitrooxymethyl-benzamide ; 4-chloro-N- (10-dimethylamino-1, 2,3-trimethoxy-9-oxo-5,6,7,9-tetrahydro- benzo [a] heptarene-7-yl)-butyrilamide; and N- (10-dimethylamino-1, 2,3-trimethoxy-9-oxo-5,6,7,9-tetrahydro-benzo [a] heptarene-7 -yl)-4-nitrooxy-butyrilamide.

Examples of the pharmaceutically acceptable salt of the colchicine derivative of the formula (I) include, but are not limited to, salts with inorganic bases such as sodium, potassium, magnesium or calcium and salts with organic bases such as ammonium, lysine, ethanolamine, N, N'-dibenzylethylenediamine and angelic acid Preparation methods of the invention will now be described in more detail.

Method 1 In Method 1 for preparing a compound of the formula (Ia), first, a compound of the formula (II) is reacted with a compound of the formula (m) to produce a compound (fiv). The reaction can be carried out without using a base, but is generally carried out in the presence of a base used for amidation. Preferred examples of the base include pyridine, triethylamine, diethylisopropylamine and dimethylphenylamine, and a phase transfer catalyst such as sodium hydrocarbonate or benzyltriethylammonium chloride. The reaction can be carried out without using a solvent, but is advantageously carried out in the presence of a solvent that does not adversely affect the reaction. Examples of the solvent used include dichloromethane, chloroform, tetrahydrofuran, diethylether, toluene and dimethylformamide. The reaction temperature is not specifically limited and is generally carried out at reduced or elevated temperature, preferably at room temperature.

Second, the compound of the formula (IV) is subjected to nitration to convert it into a compound of the formula (Ia). Compounds capable of nitrating halogen are generally used for the reaction, and examples of such compounds include AgN03 and t-butylammonium nitrate (Bu4NN03). The reaction is preferably carried out in the presence of a solvent that does not adversely affect the reaction, and examples of such solvent include chloroform, acetonitrile, a mixed solution of acetonitrile and water, dichloromethane, and the like. The reaction temperature is not specifically limited and is generally carried out at reduced or elevated temperature, preferably at room temperature.

Alternatively, the compound of the formula (Ia) can be synthesized by reacting the compound of the formula (II) with a compound of the formula (V) to produce a compound (VI), followed by converting it into the compound (Ia). The conditions for reacting the compound of the formula (II) with the compound of the formula (V)

are the same as those for amidation like in the reaction between the compound of the formula (In and the compound of the formula (m). In order to convert the compound (VI) into the compound of the formula (Ia), the reaction is generally carried out under nitrating conditions of alcohol. Preferably, nitric acid and sulfuric acid, dinitrogen pentaoxide (N205) and aluminum chloride HI, potassium nitrate and boron trifluoride (BF3), acetylnitrate, etc., may be used, most preferably nitric acid and acetic anhydride (Ac20) are used. The reaction is preferably carried out in the presence of a solvent that does not adversely affect the reaction, and examples of the solvent used include chloroform, dichloromethane, and the like. The reaction temperature is not specifically limited and is generally carried out at reduced or elevated temperature, preferably at room temperature.

The compound of the formula (Ia) can also be synthesized by performing nitration a compound of the formula (VII) prepared by converting hydrogen of alcohol in the compound of the formula (VI) into a leaving group such as methane sulfonyl, p-toluene sulfonyl or triflate. In order to convert the compound (VII) into the compound of the formula (Ia), the reaction is generally carried out under nitrating conditions. Most preferably, t-butylammonium nitrate (Bu4NNO3), t-butylammonium nitrate (Bu4NN03) and nitric acid, nitric acid and silver nitrate, or potassium nitrate is used. The reaction is preferably carried out in the presence of a solvent that does not adversely affect the reaction. Examples of the solvent used include chloroform, dichloromethane, a mixed solution of benzene and water, acetonitrile, ethylalcohol, and the like. The reaction temperature is not specifically limited and is generally carried out at reduced or elevated temperature, preferably at room temperature.

Desired products can be isolated and purified by general methods, for example, column chromatography or recrystallization.

Method 2 In Method 2 for preparing a compound of the formula (Ib), first, a compound of the formula (In is reacted with a compound of the formula (VIM) to produce a compound (IX). The reaction is generally carried out in the same manner as in the amidation for converting the compound (II) into the compound (IV) as described in

Method 1.

Second, the compound of the formula (IX) is subjected to nitration to produce the compound of the formula (Ib). This reaction is generally carried out in the same manner as in the nitration for converting the compound of the formula (IV) into the compound of the formula (Ia) as described in Method 1.

Alternatively, the compound of the formula (Ib) can be synthesized by reacting the compound of the formula (In with a compound of the formula (X) to produce a compound (XI), followed by converting the same into the compound (Ib). The conditions of reacting the compound of the formula (H) with the compound of the formula (X) are the same as those for amidation like in the reaction between the compound of the formula (H) and the compound of the formula (IV) as described in Method 1. In order to convert the compound (XI) into the compound of the formula (Ib), the reaction is generally carried out under nitrating conditions of an alcoholic compound, that is, under the same conditions as those of converting the compound of the formula (VI) into the compound of the formula (Ia) as described in Method 1.

The compound of the formula (Ib) can also be synthesized by performing nitration the compound of the formula (XII) prepared by converting hydrogen of alcohol in the compound of the formula (XI) into a leaving group such as methane sulfonyl, p-toluene sulfonyl or triflate. In order to convert the compound (XH) into the compound of the formula (Ib), the reaction is generally carried out under nitrating conditions, that is, under the same conditions of converting the compound of the formula (VIt) into the compound of the formula (Ia) as described in Method 1.

Desired products can be isolated and purified by general methods, for example, column chromatography or recrystallization.

Method 3 In Method 3 for preparing a compound of the formula (Ic), first, a compound of the formula (HI) is reacted with a compound of the formula (XIII) to produce a compound (XIV). The reaction is generally esterification between alcohol (X2=O) or thioalcohol (X2=S) and acyl or thioacyl halide, that is, the reaction is carried out in the presence of nickelacetylacetonate or zinc chloride or in the presence of a base that can be used for esterification. Examples of the base include pyridine,

4-dimethylaminopyridine, triethylamine, diethylisopropylamine, dimethylphenylamine, 2,6-lutidine, or sodium hydride (NaH), cesium carbonate, and a phase transfer catalyst such as sodium hydroxide or benzyltriethylammonium chloride.

Also, the reaction can be advantageously carried out in the presence of a solvent that does not adversely affect the reaction. Examples of the solvent include dichloromethane, chloroform, tetrahydrofuran, diethylether, toluene, dimethylformamide, toluene, dimethylformamide, acetonitrile, and the like. The reaction temperature is not specifically limited and is generally carried out at reduced or elevated temperature, preferably at room temperature.

Second, the compound of the formula (XIV) synthesized in the first step is subjected to nitration to produce the compound of the formula (Ic). This reaction is generally carried out in the same manner as in the nitration of halogen for converting the compound of the formula (IV) into the compound of the formula (Ia) as described in Method 1.

Alternatively, the compound of the formula (Ic) can be synthesized by reacting the compound of the formula (XE) with a compound of the formula (XV) to produce a compound (XVI), followed by converting the same into the compound (Ic). The reaction between the compound of the formula (XIII) and the compound of the formula (XV) is generally esterification between alcohol (X2=O) or thioalcohol (X2=S) and acyl or thioacyl halide, that is, the reaction is carried out under the same conditions as the reaction between the compound of the formula (XE) and the compound of the formula (E) as mentioned above. In order to convert the compound (XVI) into the compound of the formula (Ic), the reaction is generally carried out under nitrating conditions of an alcoholic compound, that is, under the same conditions as those of converting the compound of the formula (VI) into the compound of the formula (Ia) as described in Method 1.

The compound of the formula (Ic) also can be synthesized by performing nitration the compound of the formula (XVII) prepared by converting hydrogen of alcohol in the compound (XVI) is converted into a leaving group such as methane sulfonyl, p-toluene sulfonyl or triflate. In order to convert the compound (X-Vlll) into the compound of the formula (Ic), the reaction is generally carried out under nitrating

conditions of an alcoholic compound, that is, under the same conditions of converting the compound of the formula (VII) into the compound of the formula (Ia) as described in Method 1.

Also, the compound of the formula (Ic)'can be synthesized by reacting the compound of the formula (XE) with a compound of the formula (XVE) having a protecting group in alcohol to convert the same into a compound of the formula (XIX), followed by converting the compound of the formula (XIX) into the compound (XVI) by a deprotection. The conversion of the compound of the formula (XID) into the compound of the formula (XIX) is generally esterification between alcohol (X2=O) or thioalcohol (X2=S) and carboxylic acid (R, O=H) or carboxylic acid ester (Rlo=a lower alkyl of Cl to 3). When Rio is H, the reaction is preferably carried out in the presence of a base, preferably pentafluorophenyl and pyridine, or ethylchloroformate and triethylamine. This reaction can also be carried out without using a solvent, preferably in the presence of a solvent that does not adversely affect the reaction.

Examples of the solvent include dichloromethane, chloroform, tetrahydrofuran, diethylether, and the like. The reaction temperature is not specifically limited and is generally carried out at reduced or elevated temperature, preferably at room temperature.

Desired products can be isolated and purified by general methods, for example, column chromatography or recrystallization.

Method 4 In Method 4 for preparing a compound of the formula (Id), first, a compound of the formula (XX) is reacted with a compound of the formula (Vm) to produce a compound (XXI). The reaction is generally carried out in the same manner as in the amidation for converting the compound (II) into the compound (fiv) as described in Method 1.

Second, the compound of the formula (XXI) synthesized in the first step is subjected to nitration to produce the compound of the formula (Id). This reaction is generally carried out in the same manner as in the nitration of halogen for converting the compound of the formula (IV) into the compound of the formula (Ia) as described in Method 1.

Alternatively, the compound of the formula (Id) can be synthesized by reacting the compound of the formula (XX) with a compound of the formula (X) to produce a compound (XXII), followed by converting the same into the compound (Id). The conditions of reacting the compound of the formula (XX) with the compound of the formula (X) are the same as those for amidation by which the compound of the formula (In is converted into the compound of the formula (IV) as described in Method 1. In order to convert the compound (XXII) into the compound of the formula (Id), the reaction is generally carried out under nitrating conditions of an alcoholic compound, that is, under the same conditions as those of converting the compound of the formula (VI) into the compound of the formula (Ia) as described in Method 1.

The compound of the formula (Id) can also be synthesized by performing nitration the compound of the formula (XI) prepared by converting hydrogen of alcohol in the compound of the formula (XXII) into a leaving group such as methane sulfonyl, p-toluene sulfonyl or triflate. In order to convert the compound (XXIH) into the compound of the formula (Id), the reaction is generally carried out under nitrating conditions, that is, under the same conditions of converting the compound of the formula (VII) into the compound of the formula (Ia) as described in Method 1.

Desired products can be isolated and purified by general methods, for example, column chromatography or recrystallization.

Method 5 In Method 5 for preparing a compound of the formula (Ie), first, a compound of the formula (Xm) is reacted with a compound of the formula (Vm) to produce a compound (XXIV). The reaction is generally a reaction between alcohol (X2=O) or thioalcohol (X2=S) and alkylhalide to produce ether or thioether, preferably in the presence of a base that can be used for etherification. Examples of the base include sodium hydride (NaH), cecium carbonate, silver carbonate, a phase transfer catalyst such as sodium or potassium hydroxide or benzyltriethylammonium chloride, or crown ether. The reaction is preferably carried out in the presence of a solvent that does not adversely affect the reaction. Examples of the solvent include dichloromethane, chloroform, tetrahydrofuran, diethylether, toluene,

dimethylformamide, dimethyl sulfoxide, or benzene. The reaction temperature is not specifically limited and is generally carried out at reduced or elevated temperature, preferably at cooling temperature or room temperature.

Second, the compound of the formula (XXIV) synthesized in the first step is subjected to nitration to convert the same into a compound of the formula (Ie). The reaction is generally carried out in the same manner as in the nitration of halogen for converting the compound (IV) into the compound (Ia) as described in Method 1.

Alternatively, the compound of the formula (Ie) can be synthesized by reacting the compound of the formula (XIH) with a compound of the formula (X) to produce a compound (XXV), followed by converting the same into the compound (Ie). The conditions of reacting the compound of the formula (XE) with the compound of the formula (X) are the same as those for the reaction between the compound of the formula (XI) and the compound of the formula (VIM), In order to convert the compound (XXV) into the compound of the formula (Ie), the reaction is generally carried out under nitrating conditions of an alcoholic compound, preferably under the same conditions for the reaction for converting the compound of the formula (VI) into the compound of the formula (Ia) as described in Method 1.

The compound of the formula (Ie) can also be synthesized by performing nitration a compound of the formula (XXVI) prepared by converting hydrogen in alcohol in the compound of the formula (XXV) into a leaving group such as methane sulfonyl, p-toluene sulfonyl or triflate. In order to convert the compound (XXVI) into the compound of the formula (Ie), the reaction is generally carried out under nitrating conditions, preferably under the same conditions of converting the compound of the formula (VII) into the compound of the formula (Ia) as described in Method 1.

Desired products can be isolated and purified by general methods, for example, column chromatography or recrystallization.

As described above, the pharmaceutical composition according to the present invention including the colchicine derivative of the formula (I) and its pharmaceutically acceptable salt as effective components can be used for gout

treatment agents, anticancer agents, anti-proliferous agents, anti-inflammatory agents, immunosuppressive agents and muscle relaxing agents.

The pharmaceutical composition according to the present invention can be prepared in various parenterally or orally administrable formulations. Typical examples of formations for parenteral administration preferably include in the form of an isotonic aqueous saline solution or suspension for injection. Examples of formulations for oral administration include tablets, capsules and the like, which may further contain a diluent (e. g.: lactose, dextrose, sucrose, mannitol, sorbitol, cellulose and/or glycine) or a lubricant (e. g.: silica, talc, stearic acid and its magnesium or potassium salt, and/or polyethylene glycol) in addition to effective components.

Tablets can further be prepared with a binder such as magnesium aluminum silicate, starch paste, gelatins, tragacanth, methylcellulose, sodium carboxymethylcellulose and/or polyvinylpyrrolidine. In some cases, there may be further contained an disintegrator such as starch, agar, and alginate or sodium salts thereof, boiling mixtures and/or absorbents, a coloring agent, a flavoring agent, or a sweetener. The formulations can be prepared by general techniques of mixing, granulation or coating.

The pharmaceutical composition according to the present invention is sterilized and/or contains additives such as an antiseptic, a stabilizer, a hydrator or emulsifier, osmosis adjusting salts and/or a buffering agent, and other therapeutically effective materials. These preparations can be formulated in accordance with known methods usually employed in the formulation process.

As the effective components of the pharmaceutical composition of the present invention, the colchicine derivative of the formula (I) and its pharmaceutically acceptable salt can be administered to mammals including humans through parenteral or oral routes in an amount of 1 to 200 mg/kg (body weight) once or several times per a day.

Examples The present invention will be further described by the following Examples, but the Examples do not limit the scope of the invention.

7-deacetylcolchicine used in Examples was synthesized according to the

method of the reference EP 0 493 064 and Synthetic Communications 1997,27 (2), 293-296.

The preparation of the thiodeacetylcolchicine was carried out in accordance with the method of WO 9421598 and Bioorganic & Medicinal Chemistry, Vol 5, No.

12, pp 2277-2282 (1997).

The preparation of N- (10-amino-1, 2,3-trimethoxy-9-oxo-5,6,7,9-tetrahydro- benzo [a] heptarene-7-yl) acetamide was carried out in accordance with the method of WO 9421598.

The preparation of 4-hydroxymethylcolchicine and 4-hydroxy -methylthiocolchicine was carried out in accordance with the method of the Brevet Canadien 778369 and Justus Liebigs Ann. Chem. 662,105-113 (1963) The preparation of 7-hydroxy-1, 2,3-trimethoxy-10-methylsulphenyl-6,7,- dihydro-5H-benzo [a] heptarene-9-on and colchicone was carried out in accordance with the method of the J. Med. Chem. Vol. 40,961-965 (1997).

Example 1 Preparation of 4-chloro-N- (1, 2,3,10-tetramethoxy-9-oxo-5,6,7,9-tetrahydro - benzo [a] heptarene-7-yl)-butylamide 0. 1g (0.28mmol) of deacetylcolchicine was placed into a 10ml flask and 3.5ml of tetrahydrofuran was added thereto and then dissolved. To the mixture, 0.2mQ (1.40mmol) of triethylamine was added dropwise and 0.035mQ (0. 31mmol) of 4-chlorobutyryl chloride was added slowly. The mixture was stirred for 2 hours, and then extracted with chloroform and dried over anhydrous magnesium sulfate and filtered. The solvent in the mixture was removed under reduced pressure. The concentrated product was purified by the column chromatography (ethylacetate: methanol = 85: 15) to obtain the title product: 'H NMR (500 MHz, CDC13) 5 : 1.87-1.91 (m, 1H), 2.00-2.04 (m, 2H),

2.29-2.54 (m, 5H), 3.50 (t, J= 4. 3 Hz, 2H), 3.67 (s, 3H), 3.91 (s, 3H), 3.95 (s, 3H), 4.01 (s, 3H), 4.65-4.68 (m, 1H), 6.54 (s, 1H), 6.88 (d, J = 11. 0 Hz, IH), 7.35 (d, J= 11. 0 Hz, 1H), 7.51 (d, J=6. 5Hz, lH), 7.52 (s, lH) Example 2 Preparation of 4-chloromethyl-N- (1, 2,3,10-tetramethoxy-9-oxo-5,6,7,9- tetrahydro-benzo [a] heptarene-7-yl)-benzamide 0.12g of title compound 2 (yields: 79%, as a yellow solid) was obtained in accordance with the same method with Example 1 except that 3-chloromethylbenzoyl chloride was used instead of 4-chlorobutyryl chloride: 'H NMR (500 MHz, CDC13) 8 : 2.05-2.06 (m, 1H), 2.36-2.42 (m, 2H), 2.52-2.52 (m, 1H), 3.75 (s, 3H), 3.91 (s, 3H), 3.96 (s, 3H), 4.00 (s, 3H), 4.44 (s, 2H), 4.86-4.88 (m, 1H), 6.55 (s, lH), 6.90 (d, J= 11. 0 Hz, 1H), 7.18 (d, J= 8.5 Hz, 2H), 7.39 (d, J = 11. 0 Hz, 1H), 7.69 (s, 1H), 7.78 (d, J = 8. 5 Hz, 2H), 8.40 (d, J= 6. 5 Hz, 1H) Example 3 Preparation of 3-chloromethyl-N- (1, 2,3,10-tetramethoxy-9-oxo-5,6,7,9- tetrahydro-benzo [a] heptarene-7-yl)-benzamide 0.13g of the title compound 3 (yields: 92%, as a yellow solid) was carried out in accordance with the same method with Example 1 except that 4-chloromethyl benzoyl chloride was used instead of 4-chlorobutyryl chloride: 'H NMR (500 MHz, CDC13) 6 : 2.22-2.26 (m, 1H), 2.39-2.48 (m, 2H),

2.53-2.57 (m, 1H), 3.75 (s, 3H), 3.95 (s, 3H), 3.97 (s, 3H), 4.01 (s, 3H), 4.90-4.95 (m, 1H), 5.30 (d, 12.0 Hz, 1H), 5.36 (d, 12.0 Hz, 1H), 6.56 (s, 1H), 6.93 (d, J= 11. 0 Hz, 1H), 7.12 (t, J= 7. 5 Hz, 1H), 7.30 (d, J= 7. 5 Hz, 1H), 7.41 (d, J= 11. 0 Hz, 1H), 7.56 (d, J= 7. 5 Hz, 1H), 7.69 (s, 1H), 7.77 (s, 1H), 8.44 (d, J = 6. 5 Hz, 1H) Example 4 Preparation of 4-nitrooxy-N- (1, 2,3,10-tetramethoxy-9-oxo-5,6,7,9-tetrahydro- benzo [a] heptarene-7-yl)-butylamide M mye c\ /\ / Me (t MeQ MeO r) H Acetone) 40-50 ! C H H M M M 0. lg (0.22mmol) of the compound 1 obtained from the Example 1 was placed into a 10ml flask and dissolved by adding the 5 ml of acetone. 0.097g (0. 065 mmol) of sodium iodide was added dropwise thereto, and then the mixture was stirred at temperature of 40~50 C for 12 hours. The mixture was extracted with chloroform, dried over anhydrous magnesium sulfate and filtered, and then concentrated under reduced pressure to obtain 4-iodo-N- (1, 2,3,10-tetramethoxy-9-oxo-5,6,7,9- tertahydro-benzo [a] heptarene-7-yl)-butylamide (intermediate compound 1) (the first step reaction). The concentrated intermediate compound 1 and 2mu of acetonitrile were placed into a 251nit flask and 0. 15g (0.87mmol) of silver nitrate was added thereto. After stirring for 12 hours, the mixture was filtered. The solvent was removed under reduced pressure. Chloroform was added thereto and the mixture was dried over sodium sulfate and filtered under reduced pressure. The resulting compound was purified by the column chromatography (ethylacetate : methanol = 85: 15) to obtain the title compound 4 as a yellow solid (53mg, yields of the second step: 50%) (the second step reaction).

'H NMR of the intermediate compound 1: 'H NMR (500 MHz, CDC13) 6 : 1.86-1.89 (m, 1H), 2.02-2.07 (m, 2H), 2.18-2.25 (m, 1H), 2.35-2.47 (m, 3H), 2.51-2.55 (m, 1H), 3.55 (t, 2H), 3.65 (s,

3H), 3.90 (s, 3H), 3.94 (s, 3H), 3.99 (s, 3H), 4.61-4.66 (m, 1H), 6.54 (s, 1H), 6.82 (d, 1H), 7.30 (d, 1H), 7.44 (s, 1H), 7.46 (d, 1H) 'H NMR of the Compound 4: 'H NMR (500 MHz, CDC13) 6 : 1.96-1.20 (m, 3H), 2.29-2.39 (m, 4H), 2.51-2.52 (m, 1H), 3.66 (s, 3H), 3.91 (s, 3H), 3.95 (s, 3H), 4.01 (s, 3H), 4.40-4.44 (m, 2H), 4.65-4.67 (m, 1H), 6.54 (s, 1H), 6.89 (d, J = 11.0 Hz, 1H), 7.36 (d, J= 11. 0 Hz, 1H), 7.51 (s, 1H), 7.55 (d, J= 6. 5 Hz, 1H) MS m/z (relative intensity): 977.349 ([2M+H]+, 17), 846.271 (6), 527.12 (9), 489.165 ([M+H]+, 100), 358.170 ([M+H] +-CO (CH2) 3ONO2, 48), 341.46 (48) Example 5 Preparation of 4-nitrooxymethyl-N- (1, 2,3,10-tetramethoxy-9-oxo-5,6,7,9- tetrahydro-benzo [a] heptarene-7-yl)-benzamide MeO MeO MeO h 9 AgNO, 0 MeO o NaI meo 0 AgN03 meo 0 QX (3 Acetone. 401C Q H U Q. H L Me (To Cl meo 0 meo 0 ON02 33mg of the title compound 5 (yields of the second step reaction: 45%, as a yellow solid) was prepared by the same method of Example 4 through 4-iodomethyl-N- (1, 2,3,10-tetramethoxy-9-oxo-5,6,7,9-tetra-hydro-benzo [a] heptarene-7-yl)-bezamide (intermediate compound 2) except for using compound 2 obtained from the Example 2.

1H NMR of intermediate compound 2: 'H NMR (500 MHz, CDC13) 6 : 2.01-2.09 (m, 1H), 2.31-2.45 (m, 2H), 2.51-2.55 (m, 1H), 3.75 (s, 3H), 3.91 (s, 3H), 3.96 (s, 3H), 4.00 (s, 2H), 4.86-4.89 (m, 1H), 6.54 (s, 1H), 6.90 (d, 1H), 7.19 (d, 2H), 7.38 (d, 1H), 7.67 (s, 1H), 7.71 (d, 2H), 8.28 (d, J= 6. 5 Hz, 1H) in NMR of compound 5: 'H NMR (500 MHz, CDCl3) 8 : 2.02-2.09 (m, 1H), 2.35-2.58 (m, 3H), 3.76 (s, 3H), 3.91 (s, 3H), 3.97 (s, 3H), 4.01 (s, 3H), 4.86-4.91 (m, 1H), 5.30 (s, 2H), 6.56 (s, 1H), 6.92 (d, J= 11. 0 Hz, 1H), 7.19 (d, J = 8. 2 Hz, 2H), 7.41 (d, J = 11. 0 Hz, 1H), 7.70 (s, 1H), 7.81 (d, J = 8. 2 Hz, 2H), 8.36 (d, J = 6. 5 Hz, 1H) Example 6 Preparation of 3-nitrooxymethyl-N- (1, 2,3,10-tetramethoxy-9-oxo-5,6,7,9- tetrahydro-benzo [a] heptarene-7-yl)-benzamide

Me0 Me0 Me0 Me0 j N Me0 Q M \/ O meo'INg Nal mco 0 Mao ex MeO 0 Cr MeO 0 r MeO 00 25mg of the title compound 6 (yields of the second step reaction: 42%, as a yellow solid) was prepared by the same method of Example 4 through 3-iodomethyl-N- (1, 2,3,10-tetramethoxy-9-oxo-5,6,7,9-tetra-hydro-benzo [a] heptarene-7-yl)-benzamide (intermediate compound 3) except for using compound 3 obtained from the Example 3.

'H NMR of the intermediate compound 3: 'H NMR (500 MHz, CDC13) 6 : 2.23-2.31 (m, 1H), 2.38-2.48 (m, 2H), 2.56-2.60 (m, 1H), 3.74 (s, 3H), 3.92 (s, 3H), 3.97 (s, 3H), 3.99 (s, 3H), 4.23 (d, 1H), 4.28 (d, 1H), 4.88-4.95 (m, 1H), 6.59 (s, 1H), 7.03 (d, 1H), 7.13 (t, 1H), 7.33 (d, 1H), 7.45 (d, 1H), 7.59 (d, 1H), 7.70 (s, 1H), 7.78 (s, 1H), 8.44 (d, 1H) 'H NMR of the compound 6: 'H NMR (500 MHz, CDC13) # : 2.23-2.31 (m, 1H), 2.40-2.50 (m, 2H), 2.55-2.61 (m, 1H), 3.76 (s, 3H), 3.92 (s, 3H), 3.98 (s, 3H), 4.02 (s, 3H), 4.89-4.94 (m, 1H), 5.10 (d, J= 12. 3 Hz, 1H), 5.20 (d, J= 12. 3 Hz, 1H), 6.57 (s, 1H), 6.94 (d, J= 11. 0 Hz, 1H), 7.14 (t, J= 7. 9 Hz, 1H), 7.28 (d, J= 7. 9 Hz, 1H), 7.44 (d, J= 11. 0 Hz, 1H), 7.60 (d, J= 7. 9 Hz, 1H), 7.70 (s, 1H), 7.81 (s, 1H), 8.56 (d, J= 6. 5 Hz, 1H) Example 7 Preparation of 4-chlroro-N- (1, 2,3-trimethoxy-10-methyl-sulfonly-9-oxo- 5,6,7,9-tetra-hydro-benzo [a] heptarene-7-yl)-butylamide.

0.13g of the title compound 7 (yields: 86%, as a yellow solid) was prepared by the same method of Example 1 except that thiodeacetylcolchicine was used instead of deacetylcolchicine.

'H NMR (500 MHz, CDCI3) 8 : 1.86-1.93 (m, 1H), 2.00-2.10 (m, 2H), 2.23-2.31 (m, 1H), 2.37-2.55 (m, 4H), 2.45 (s, 3H), 3.53 (td, J = 6. 5,1.5 Hz, 2H), 3.67 (s, 3H), 3.91 (s, 3H), 3.95 (s, 3H), 4.68-4.73 (m, 1H), 6.54 (s, 1H), 7.09 (d, J= 10.6 Hz, 1H), 7.32 (d, J = 10.6 Hz, 1H), 7.35 (d, J= 7.3 Hz, 1H), 7.42 (s, 1H) Example 8 Preparation of 4-chloro-N- (1, 2,3-trimethoxy-10-methylsulfonyl-oxo-5,6,7,9- tetrahydro-benzo [a] heptarene-7-yl)-benzamide 0.12 g of the title compound 8 (yields: 89%, as a yellow solid) was prepared by the same method of Example 1 except that thiodeacetylcolchicine and 3-chloromethylbenzoyl chloride were used instead of deacetylcochicine and 4-chlorobutyryl chloride, respectively.

'H NMR (500 MHz, CDC13) 8 : 2.09-2.15 (m, 1H), 2.31-2.38 (m, 1H), 2.41-2.48 (m, 1H), 2.44 (s, 3H), 2.55-2.59 (m, 1H), 3.75 (s, 3H), 3.91 (s, 3H), 3.97 (s, 3H), 4.47 (s, 2H), 4.90-4.95 (m, 1H), 6.56 (s, 1H), 7.10 (d, J= 10.6 Hz, 1H), 7.25 (d, J= 8. 2 Hz, 2H), 7.35 (d, J= 10. 6 Hz, 1H), 7.56 (s, 1H), 7.84 (d, J = 8. 2 Hz, 2H), 8.11 (d, J = 7. 3 Hz, 1 H) Example 9 Preparation of 3-chloromethyl-N- (1, 2,3-trimethoxy-10-methylsulfonyl -9-oxo-5, 6,7,9-tetrahydro-benzo [a] heptarene-7-yl)-benzamide

0.15g of the title compound 9 (yields: 90%, as a yellow solid) was prepared by the same method of Example 1 except that thiodeacetylcolchicine and 4-chloromethylbenzoyl chloride were used instead of deacetylcolchicine and 4-chlorobutyryl chloride, respectively.

'H NMR (500 MHz, CDC13) 8 : 2.20-2.25 (m, 1H), 2.33-2.49 (m, 2H), 2.45 (s, 3H), 2.56-2.60 (m, 1H), 3.75 (s, 3H), 3.92 (s, 3H), 3.96 (s, 3H), 4.37 (d, 11.7 Hz, 1H), 4.41 (d, 11.7 Hz, 1H), 4.93-4.98 (m, 1H), 6.57 (s, 1H), 7.13 (d, J= 10. 6 Hz, 1H), 7.17 (t, J= 7. 6 Hz, 1H), 7.34 (d, J=7. 6Hz, lH), 7.38 (d, J= 10.6 Hz, 1H), 7.65 (s, 1H), 7.67 (d, J= 7. 6 Hz, 1H), 7.77 (s, 1H), 8.35 (d, J= 7.3 Hz, 1H) Example 10 Preparation of 4-nitrooxy-N- (1, 2,3-trimethoxy-10-methylsulfonyl-9-oxo- 5,6,7,9-tetrahydro-benzo [a] heptarene-7-yl)-butylamide MeO MeO Me Me0 Me0 Me0 -NR-'-C' CH3CN-\1 "N I \\ H Acetone, 40-501C'L4,-H MeSMeS MeS 30mg of the title compound 10 (yields of second step reaction: 33%, as a yellow solid) was prepared by the same method of Example 4 through 4-iodo-N- (1, 2,3-trimethoxy-10-methylsulfonyl-9-oxo-5,6,7,9-tetrahydro-be nzo [a] heptarene-7-yl)-butylamide (intermediate compound 4) except for using compound 7 obtained from the Example 7.

'H NMR of intermediate compound 4: 'H NMR (500 MHz, CDC13) # : 1.92-1.98 (m, 1H), 2.01-2.12 (m, 2H),

2.24-2.55 (m, 5H), 2.45 (s, 3H), 3.50-3.54 (m, 2H), 3.68 (s, 3H), 3.91 (s, 3H), 3.95 (s, 3H), 4.71-4.74 (m, 1H), 6.55 (s, 1H), 7.11 (d, 1H), 7.34 (d, 1H), 7.53 (s, 1H), 7.98 (d, 1H) oh NMR of compound 10: 'H NMR (500 MHz, CDC13) 6 : 1.87-1.93 (m, 1H), 1.96-2.06 (m, 2H), 2.24-2.55 (m, 5H), 2.45 (s, 3H), 3.67 (s, 3H), 3.91 (s, 3H), 3.95 (s, 3H), 4.42-4.47 (m, 2H), 4.70-4.75 (m, 1H), 6.54 (s, 1H), 7.11 (d, J = 10.6 Hz, 1H), 7.34 (d, J= 10. 6 Hz, 1H), 7.49 (s, 1H), 7.69 (d, J= 7. 6 Hz, 1H) Example 11 Preparation of 4-nitrooxymethyl-N- (1, 2,3-trimethoxy-10-methylsulfonyl-9- oxo-5, 6,7,9-tetrahydro-benzo [a] heptarene-7-yl)-benzamide MeO MeO Me tS O Nal Met AgNO3 Me9vNW NaI AgN03 Acetone, 40-501C H CH3CN H \, H I Acetone, 40--S0 \ H y CH CN l Me Cl MeS I MeS ONO2 75 mg of the title compound 11 (yields of second step reaction: 58%, as a yellow solid) was prepared by the same method of Example 4 through 4-iodomethyl-N- (1, 2,3-trimethoxy-10-methylsulfonyl-9-oxo-5,6,7,9-tetrahydro- benzo [a] heptarene-7-yl)-benzamide (intermediate compound 5) except for using compound 8 obtained from the Example 8.

'H NMR of intermediate compound 5: 'H NMR (500 MHz, CDC13) 8 : 2.15-2.20 (m, 1H), 2.28-2.35 (m, 1H), 2.38-2.44 (m, 1H), 2.44 (s, 3H), 2.53-2.56 (m, 1H), 3.75 (s, 3H), 3.90 (s, 3H), 3.96 (s, 3H), 4.27 (s, 2H), 4.92-4.97 (m, 1H), 6.56 (s, 1H), 7.12 (d, 1H), 7.17 (d, 2H), 7.36 (d, 1H), 7.67 (s, 1H), 7.80 (d, 2H), 8.67 (d, 1H) 'H NMR of compound 11: 'H NMR (500 MHz, CDC13) 8 : 2.14-2.20 (m, 1H), 2.30-2.48 (m, 2H), 2.45 (s, 3H), 2.55-2.59 (m, 1H), 3.76 (s, 3H), 3.91 (s, 3H), 3.97 (s, 3H), 4.93-4.98 (m, 1H), 5.29 (s, 2H), 6.56 (s, 1H), 7.13 (d, J= 10. 6 Hz, 1H), 7.20 (d, J= 8. 5 Hz, 2H), 7.37 (d, J= 10. 6 Hz, 1H), 7.66 (s, 1H), 7.90 (d, J= 8. 5 Hz, 2H), 8.64 (d, J= 7. 3 Hz, 1H) Example 12 Preparation of 3-nitrooxymethyl-N- (1, 2,3-trimethoxy-10-methylsulfonyl-9- oxo-5,6,7,9-tetrahydro-benzo [a] heptarene-7-yl)-benzamide MeO MeO MeO ? 'R 9 Ao, ) 9 MeO.Nal MeO AgN03 meo Me0' 3 Me0 \ H I . Acetone, 4030 C \ H CH3CN I H I v MeS 0 CI MeS 0 MeS 02NO

70mg of the title compound 12 (yields of second step reaction: 64%, as a yellow solid) was prepared by the same method of Example 4 through 3-iodomethyl-N- (1, 2,3-trimethoxy-10-methylsulfonyl-9-oxo-5,6,7,9-tetrahydro- benzo [a] heptarene-7-yl)-benzamide (intermediate compound 6) except for using compound 9 obtained from the Example 9.

'H NMR of intermediate compound 6: 'H NMR (500 MHz, CDC13) 6 : 2.26-2.45 (m, 3H), 2.45 (s, 3H), 2.54-2.58 (m, 1H), 3.75 (s, 3H), 3.91 (s, 3H), 3.97 (s, 3H), 4.16 (d, 1H), 4.23 (d, 1H), 4.95-5.00 (m, 1H), 6.57 (s, 1H), 7.05 (t, 1H), 7.16 (d, 1H), 7.26 (d, 1H), 7.39 (d, 1H), 7.60 (d, 1H), 7.77 (s, 1H), 7.80 (s, 1H), 8.82 (d, 1H) 'H NMR of compound 12: 'H NMR (500 MHz, CDC13) 6 : 2.31-2.47 (m, 3H), 2.45 (s, 3H), 2.57-2.61 (m, 1H), 3.77 (s, 3H), 3.92 (s, 3H), 3.98 (s, 3H), 4.94-4.99 (m, 1H), 5.10 (d, 12.0 Hz, 1H), 5.18 (d, 12.0 Hz, 1H), 6.57 (s, 1H), 7.12 (t, J = 7.6 Hz, 1H), 7.18 (d, J= 10.6 Hz, 1H), 7.25 (d, J = 7.6 Hz, 1H), 7.42 (d, J = 10.6 Hz, 1H), 7.69 (s, 1H), 7.78-7.79 (m, 2H), 9.02 (d, J= 7. 3 Hz, 1H) Example 13 Preparation of N- (7-acetylamino-1, 2,3-trimethoxy-9-oxo-5,6,7,9-tetrahydro- benzo [a] heptarene-10-yl)-4-chloromethyl-benzamide

1 g (26mmol) of N- (10-amino-1, 2,3-trimethoxy-9-oxo-5,6,7,9-tetrahydro benzo [a] heptarene-7-yl) acetamide was placed into a 25ml flask and dissolved with 10ml of trahydrofuran. 2.8ml (20 mmol) of triethylamine was added thereto dropwise, and then the mixture was stirred for 30 minutes. 0. 55g (2.9mmol) of 4-chloromethylbenzoyl chloride was added thereto and dissolved with stirring at room temperature for 48 hours, extracted with chloroform, dried over anhydrous magnesium sulfate and then filtered. After concentrating under reduced pressure, the concentrated resulting compound was purified through the column chromatography (chloroform: methanol=9: 1) to obtained 1.36g of the title compound 13 (yields: 98%, as a yellow solid).

'H NMR (500 MHz, CDC13) 8 : 1.87 (m, 1H), 2.02 (s, 3H), 2.39 (m, 1H), 2.41 (m, 1H), 2.53 (m, 1H), 3.67 (s, 3H), 3.91 (s, 3H), 3.92 (s, 3H), 4.68 (s, 2H), 4.71 (m, 1H), 6.54 (s, 1H), 6.94 (d, J=10. OHz, 1H), 7.54-7.67 (m, 4H), 8.00 (m, 2H), 9.21 (d, J=10. 9Hz, 1H), 10.32 (s, 1H) Example 14 Preparation of N- (7-acetylamino-1, 2,3-trimethoxy-9-oxo-5,6,7,9-tetrahydro- benzo [a] heptarene-10-yl)-4-nitrooxymethyl-benzamide Me0 M M aNHCOMe (vNHCOMe vNHCOMe MeOv MeO> MeO> Me0 Mo0 Me0 OM N M pp3 _ OM O Acetona HN ONO ira The compound 13 obtained from the Example 13 was dissolved using 5ml of acetone. 0.072g (0.48mmol) of the sodium iodide was added dropwise thereto.

After stirring at 40~50°C for 24 hours, the mixture was extracted with chloroform, dried over anhydrous magnesium sulfate and filtered. The mixture was concentrated under reduced pressure to obtain N- (7-acetylamino-1, 2,3-trimethoxy-9-oxo-5,6,7,9- tetrahydro-benzo [a] heptarene-10-yl)-4-iodidmethyl benzamide (intermediate compound 7). 0.0205g (0.033mmol) of the concentrated intermediate compound 7 and 0.2ml of the acetonitrile were placed into a 25ml flask and 0.022g (0.13mmol) of silver nitrate was added thereto. After stirring for 24 hours, the mixture was filtered,

and followed by concentrating under reduced pressure, and chloroform was added thereto. The resulting mixture was dried over sodium sulfate, filtered, and followed by concentrating under reduced pressure. 18mg of the title compound 14 (yields of second step reaction: 96%, as a yellow solid) was obtained after purification by column chromatography (chloroform: methanol = 9 : 1) 'H NMR of intermediate compound 7: 'H NMR (500 MHz, CDCl3) 8 : 1.85 (m, 1H), 2.02 (s, 3H), 2.29 (m, 1H), 2.40 (m, 1H), 2.54 (m, 1H), 3.66 (s, 3H), 3.91 (s, 3H), 3.95 (s, 3H), 4.50 (s, 2H), 4.69 (m, 1H), 6.54 (s, 1H), 6.85 (d, J= 6. 75Hz, 1H), 7.53 (m, 3H), 7.60 (s, 1H), 7.93 (d, J=8. 2Hz, 2H), 9.20 (d, J=10. 9Hz, 1H), 10.30 (s, 1H) 'H NMR of compound 14: 'H NMR (500 MHz, CDC13) 8 : 1.85 (m, 1H), 2.02 (s, 3H), 2.2 9 (m, 1H), 2.41 (m, 1H), 2.54 (m, 1H), 3.66 (s, 3H), 3.91 (s, 3H), 3.94 (s, 3H), 4.69 (m, 1H), 5.52 (s, 2H), 6.54 (s, 1H), 6.73 (d, J=6. 8Hz, 1H), 7.51-7.60 (m, 4H), 8.03 (m, 2H), 9.19 (d, J=10. 9Hz, 1H), 10.33 (s, 1H) Example 15 Preparation of 4-chloromethyl-benzoic acid-7-acetylamino-1, 2,3,10- tetramethoxy-9-oxo-5, 6,7,9-tetrahydro-benzo [a] heptarene-7-yl-methyl ester 0. 05g (0.12mmol) of 4-hydroxymethylcolchicine (N- (4-hydroxymethyl- 1,2,3,10-tetramethoxy-9-oxo-5,6,7,9-tetrahydro-benzo [a]-heptarene-7-yl)-acetamide) was placed into a 10ml flask and 3.5ml of chloroform was added thereto to dissolve the compound. To the mixture, 0.13ml (0.096mmol) of triethylamine was added dropwise and then 0.088mg (0.48mmol) of 4-chloromethylbenzoyl chloride was added slowly. After stirring for 18 hours, the mixture was extracted with chloroform, dried and filtered over anhydrous magnesium sulfate, and the solvent was removed

under reduced pressure. Concentrated resulting compounds was purified using the column chromatography (ethylacetate: methanol = 85: 15) to obtain 0.034 g of the title compound 15 (yields: 50.2%) as a white solid.

'H NMR (500 MHz, CDC13) 8 : 1.85-1.87 (m, 1H), 1. 99 (s, 3H), 2.21-2.23 (m, 2H), 2.92-2.94 (m, 1H), 3.67 (s, 3H), 3.98 (s, 3H), 4.00 (s, 3H), 4.02 (s, 3H), 4.61 (s, 3H), 4.67-4.69 (m, 1H), 5.40 (d, J=11. 15Hz, 1H), 5.46 (d, J=11. 15Hz, 1H), 6.86 (d, J= 11.15Hz, 1H), 7.30 (d, J= 10.85Hz, 1H), 7.45 (d, J=8. 80Hz, 2H), 7.55 (s, 1H), 7.80 (d, J=6. 75Hz, 1H), 8.03 (d, J=8. 80Hz, 2H) Example 16 Preparation of 4-chloromethyl-benzoic acid-7-acetylamino-1, 2,3- trimethoxy-10-methylsulfonyl-9-oxo-5, 6,7,9-tetrahydro-benzo [a] heptarene-7-yl- methyl-ester 0.12g of the title compound 16 (yields: 40%, as a yellow solid) was prepared by the same method of Example 15 except that 4-hydroxymethylthiocolchicine was used instead of 4-hydroxymethylcolchicine.

'H NMR (500 MHz, CDC13) 8 : 1.83-1.85 (m, 1H), 2.02 (s, 3H), 2.19-2.21 (m, 2H), 2.43 (s, 3H), 2.92-2.94 (m, 1H), 3.67 (s, 3H), 3.98 (s, 3H), 4.00 (s, 3H), 4.61 (s, 2H), 4.64-4.66 (m, 1H), 5.41 (d, J=11. 15Hz, 1H), 5.46 (d, J= 11.15Hz, 1H), 7.06 (d, J= 10.56Hz, 1H), 7.27 (d, J= 9.39Hz, 1H), 7.38 (s, 1H), 7.45 (d, J=8. 51Hz, 2H), 7.50 (d, J=7. 33Hz, 1H), 8.03 (d, J=8. 5 I Hz, 2H) Example 17 Preparation of 4-chlorobutyric acid-7-acetylamino-1, 2,3,10-tetramethoxy -9-oxo-5, 6,7,9-tetrahydro-benzo [a] heptarene-7-yl-methyl ester

0.13g of the title compound 17 (yields: 92%, as a yellow solid) was prepared by the same method of Example 15 except that 4-chlolobutyryl chloride was used instead of 4-chloromethylbenzoyl chloride.

'H NMR (500 MHz, CDC13) 8 : 1.91-1.93 (m, 1H), 2.00 (s, 3H), 2.10-2.12 (m, 2H), 2.23-2.25 (m, 2H), 2.55 (t, J=7. 04Hz, 2H), 2.82- 2.84 (m, 1H), 3.63 (t, J=6. 16Hz, 2H), 3.65 (s, 3H), 3.96 (s, 3H), 3.98 (s, 3H), 4.03 (s, 3H), 4.63-4.66 (m, 1H), 5.12 (d, J=12. 91Hz, 1H), 5.27 (d, J=12. 91Hz, 1H), 6.90 (d, J=11. 15Hz, 1H), 7.30 (d, J=9. 68Hz, 1H), 7.61 (s, 1 H), 8.21 (d, J=6. 45Hz, 1H) Example 18 Preparation of 4-chloro-butyric acid-7-acetylamino-1, 2,3-trimethoxy-10- methyl-sulfonyl-9-oxo-5, 6,7,9-tetrahydro-benzo [a] heptarene-7-yl-methyl ester

0.13g of the title compound 18 (yields: 92%, as a yellow solid) was prepared by the same method of Example 15 except that 4-hydroxymethyl thiocolchicine and 4-chlorobutyryl chloride were used instead of 4-hydroxymethyl colchicine and 4-chloromethylbenzoyl chloride, respectively.

'H NMR (500 MHz, CDC13) 8 : 1.85-1.87 (m, 1H), 2.03 (s, 3H), 2.12-2.14 (m, 2H), 2.19-2.21 (m, 2H), 2.45 (s, 3H), 2.53 (t, J=7. 33Hz, 2H), 2.81-2.83 (m, 1H), 3.60 (t,

J=6. 75Hz, 2H), 3.65 (s, 3H), 3.96 (s, 3H), 3.98 (s, 3H), 4.64-4.66 (m, 1H), 5.17 (d, J=12. 03Hz, 1H), 5.26 (d, J=12. 03Hz, 1H), 7.07 (d, J=10. 56Hz, 1H), 7.26 (d, J=10. 27Hz, 1H), 7.37 (s, lH), 7.40 (d, J=7. 04Hz, 1H) Example 19 Preparation of 4-nitrooxymethyl-benzoic acid-7-acetylamino-1, 2,3,10-tetra- methoxy-9-oxo-5, 6,7,9-tetrahydro-benzo [a] heptarene-4-yl-methyl-ester 0.084g (0.14mmol) of the compound 15 obtained from the Example 15 (0.14mmol) was placed into the flask and then dissolved by adding 5 ml of acetone.

After adding 0.086g of sodium iodide (0. 057mmol) dropwisely thereto, the mixture was stirred at 40-50 °C for 12 hours, extracted with chloroform, dried over anhydrous magnesium sulfate, and then concentrated under reduced pressure. Concentrated resulting compound and 2 ml acetonitrile were placed with a 25ml flask and 0.09g (0.53mmol) of silver nitrate was added thereto. The mixture was stirred for 12 hours, and the solvent was filtered and removed under reduced pressure. The resulting compound was purified by column chromatography (ethylacetate : methanol = 85: 15) to obtain 40mg of the title compound 19 (yields of second step reaction: 46%) as a yellow solid.

'H NMR of compound 19: 'H NMR (500 MHz, CDC13) 8 : 1.86-1.88 (m, 1H), 1.77 (s, 1H), 2.20-2.22 (m, 2H), 2.92-2.94 (m, 1H), 3.67 (s, 3H), 3.98 (s, 3H), 3.99 (s, 3H), 4.00 (s, 3H), 4.67-4.69 (m, 1H), 5.39-5.47 (m, 2H), 5.47 (s, 2H), 6.86 (d, J=10. 85Hz, 1H), 7.30 (d, J=10. 85Hz, 1H), 7.47 (d, J=8. 51Hz, 2H), 7.54 (s, 1H), 7.76 (d, J=7. 04Hz, 1H), 8.01 (d, J=8. 51Hz, 2H) Example 20 Preparation. of 4-nitrooxymethyl-butyric acid-7-acetylamino-1, 2,3 - trimethoxy-10-methylsulfonyl-9-oxo-5, 6,7,9-tetrahydro-benzo [a] heptarene-4-yl- methyl-ester

70mg of the title compound 20 (yields of second step reaction: 39%, as a yellow solid) was prepared by the same method of the Example 19 through 4-iodomethyl-butyric acid-7-acetylamido-1, 2,3-trimethoxy-10-methylsulfonyl-9-oxo- 5,6,7,9-tetrahydro-benzo [a] heptarene-4-yl-methyl-ester (intermediate compound 8) except for using compound 18 obtained from the Example 18.

'H NMR of intermediate compound 8: 'H NMR (500 MHz, CDC13) 8 : 1.82-1.84 (m, 1H), 2.02 (s, 3H), 2.13-2.15 (m, 4H), 2.44 (s, 3H), 2.47 (t, J=7. 04Hz, 2H), 2.82-2.84 (m, 1H), 3.24 (t, J=6. 75Hz, 2H), 3.65 (s, 3H), 3.95 (s, 3H), 3.97 (s, 3H), 4.63-4.65 (m, 1H), 5.17 (d, J=11. 73Hz, 1H), 5.25 (d, J=11. 73Hz, 1H), 6.65 (d, J=7. 33Hz, 1H), 7.05 (d, J=10. 27Hz, 1H), 7.23 (d, J=10. 27Hz, 1H), 7.27 (s, lH) 'H NMR of compound 20: 'H NMR (500 MHz, CDC13) 8 : 1.90-1.92 (m, 1H), 2.02 (s, 3H), 2.08- 2.10 (m, 2H), 2.18-2.20 (m, 2H), 2.45 (s, 3H), 2.49 (t, J=7. 04Hz, 2H), 2.81-2.83 (m, 1H), 3.65 (s, 3H), 3.96 (s, 3H), 3.97 (s, 3H), 4.54 (t, J=6. 45Hz, 2H), 4.65-4.67 (m, 1H), 5.18 (d, J=11. 73,1H), 5.27 (d, J=11. 73Hz, 2H), 7.10 (d, J=11. 15Hz, 1H), 7.26 (d, J=9. 68Hz, 1H), 7.45 (s, 1 H), 8.00 (d, J=7. 04Hz, 1H) Example 21 Preparation of 4-nitrooxymethyl-benzoic acid-7-acetylamino-1, 2,3 - trimethoxy-10-methylsulfonyl-9-oxo-5, 6,7,9,-tetrahydro-benzo [a] heptarene-4-yl- methyl-ester

70mg of the title compound 21 (yields of second step reaction: 45%, as a yellow solid) was prepared by the same method of the Example 19 through 4-iodomethyl-benzoic acid-7-acetylamino-1, 2,3-trimethoxy-10-methylsulfonyl-9- oxo-5,6,7,9-tetrahydro-benzo [a] heptarene-4-yl-methyl-ester (intermediate compound 9) except for using compound 16 obtained from the Example 16.

'H NMR of intermediate compound 9: 'H NMR (500 MHz, CDC13) 8 : 1.74-1.76 (m, 1H), 2.23 (s, 3H), 2.13- 2.15 (m, 1H), 2.23-2.25 (m, 1H), 2.43 (s, 3H), 2.92-2.94 (m, 1H), 3.66 (s, 3H), 3.97 (s, 3H), 3.99 (s, 3H), 4.45 (s, 2H), 4.66-4.68 (m. lH), 5.40 (d, J=12. 03Hz, 1H), 5.45 (d, J=12. 03Hz, 1H), 6.35 (d, J=6. 45Hz, 1H), 7.05 (d, J=9. 97Hz, 1H), 7.24 (d, J=7. 24Hz, 1H), 7.22 (s, 1H), 7.41 (d, J=8. 51Hz, 2H), 7.96 (d, J=8. 51Hz, 2H) 'H NMR of compound 21: 'H NMR (500 MHz, CDCl3) 5 : 1.79-1.81 (m, 1H), 2.00 (s, 3H), 2.13- 2.15 (m, 1H), 2.23-2.25 (m, 1H), 2.43 (s, 3H), 2.92-2.94 (m, 1H), 3.67 (s, 3H), 3.97 (s, 3H), 3.99 (s, 3H), 4.66-4.68 (m. lH), 5.42-5.47 (m, 2H), 5.47 (s, 2H), 6.95 (d, J=6. 75Hz, 1H), 7.05 (d, J=10. 56Hz, 1H), 7.24 (d, J=10. 85Hz, 1H), 7.30 (s, 1H), 7.46 (d, J=8. 21Hz, 2H), 8.07 (d, J=8. 21Hz, 2H) Example 22 Deacetamidocolchicine-7-ol 2.29g (6.426mmol) of colchicine, 20ml of methanol and 20ml of chloromethane were placed into a 100ml flask and cooled to-78 C. To the mixture,

0.729g (19.278mmol) of sodium borohydride was added and the mixture was warmed to 0--20 °C with stirring for 5 hours. The solution was acidified with 50% acetic acid and extracted with chloroform, and then dried over sodium sulfate, filtered and the solvent was removed under reduced pressure. The concentrated resulting compound was recrystallized (methanol/ethylether) to obtain the title compound 22 (2.0844g, 90.5%).

'H NMR (500 MHz, CDC13) : 8 1.80-1.83 (m, 1H), 2.40-2.49 (m, 3H), 3.26 (br, 1H), 3.60 (s, 3H), 3.90 (s, 3H), 3.91 (s, 3H), 3.97 (s, 3H), 4.46-4.49 (m, 1H), 6.55 (s, 1H), 6.79 (d, J = 11. 0 Hz, 1H), 7.18 (d, J = 11. 0 Hz, 1H), 7.94 (s, 1H) Example 23 Preparation of (-)-4,7,7-trimethyl-3-oxo-2-oxa-bicyclo [2.2.1] heptane-1- carboxylic acid-1,2,3,10-tetramethoxy-9-oxo-5,6,7,9-tetrahydro-benzo [a] heptalene - 7-yl ester and (+)-4,7,7-trimethyl-3-oxo-2-oxa-bicyclo [2.2.1] heptane-1-carboxcylic acid-1, 2,3,10-tetramethoxy-9-oxo-5,6,7,9-tetrahydro-benzo [a] heptalene-7-yl ester Me Me \\ O O MeO " pue mye0 Me0 Me Met Met mye Met OH + Distilled Pyridine Me Me Meo 0 Mi eq 0 MeO 0 o 0 I O V''Q me MeO' MET OMe OMe 0.5098g (1.4225 mmol) of deacetamidocolchicine-7-ol was placed into a 10ml flask and 8ml of distilled pyridine was added thereto. To the mixture, (-)-camphanic chloride (0.4007g, 1.8492mmol) was added. After 3 hours, IN hydrochloric acid was added to stop the reaction. The mixture was extracted with ethyl acetate for three times, and then dried over anhydrous sodium sulfate and filtered, and the compound was concentrated under reduced pressure. The concentrated compound was purified by column chromatography (ethyl acetate) to obtain the racemates of the title compounds 23 (1) and 23 (2). The racemates were separated by MPLC

(ethanol: isopropyl alcohol = 9: 1) to obtain the compounds 23 (1) (184.6mg, 24.1%) and 23 (2) (191.5mg, 25.0%).

'H NMR of compound 23 (1) : 'H NMR (500 MHz, CDC13) : # 0.95 (s, 3H), 1.10 (s, 3H), 1.11 (s, 3H), 1.71-1.74 (m, 1H), 1.90-1.93 (m, 1H), 2.05-2.13 (m, 2H), 2.14-2.43 (m, 2H), 2.49-2.52 (m, 1H), 2.54-2.58 (m, 1H), 3.66 (s, 3H), 3.92 (m, 3H), 3.94 (s, 3H), 3.99 (s, 3H), 5.41 (dd, J = 7. 0,11.0 Hz, 1H), 6.56 (s, 1H), 6.80 (d, J = 11. 0 Hz, 1H), 7.28 (d, J = 11. 0 Hz, 1H), 7.40 (s, 1H) 'H NMR of compound 23 (2): 'H NMR (500 MHz, CDCl3) : 8 1.02 (s, 3H), 1.07 (s, 3H), 1.12 (s, 3H), 1.71-1.74 (m, 1H), 1.92-1.95 (m, 1H), 2.07-2.11 (m, 2H), 2.35-2.43 (m, 1H), 2.48-2.56 (m, 3H), 3.66 (s, 3H), 3.91 (m, 1H), 3.94 (s, 3H), 3.99 (s, 3H), 5.46 (dd, J = 7. 0,11.0 Hz, 1H), 6.56 (s, 1H), 6.80 (d, J = 11. 0 Hz, 1H), 7.28 (d, J = 11. 0 Hz, 1H), 7.36 (s, lH) Example 24 (-)-deacetamidocolchicine-7-ol 184.6mg (0.3427mmol) of the compound 23 (1) obtained from the Example 23 was placed into a 10ml flask, and 2.5ml of methanol and 2.5ml of chloroform were added thereto. The solution was cooled to-78°C, and 1.71ml (3.4275mmol) of 2N aqueous solution of sodium hydroxide was added into the solution. The mixture was warmed to the room temperature and stirred for 3 hours. It was extracted with chloroform for three times and washed with water, and then dried over anhydrous sodium sulfate. The solvent in the mixture was removed under reduced pressure.

The resulting concentrated product was recrystallized (ethyl acetate/hexane) to obtain the title product 24 (128. 8mg, 100%). <BR> <BR> <P>25<BR> [α] D :-102. 55 (CDC13, c = 6.875 x 10~3g/ml)

'H NMR (500 MHz, CDCl3) : 8 1.80-1.83 (m, 1H), 2.40-2.49 (m, 3H), 3.26 (br, 1H), 3.60 (s, 3H), 3.90 (s, 3H), 3.91 (s, 3H), 3.97 (s, 3H), 4.46-4.49 (m, 1H), 6.55 (s, 1H), 6.79 (d, J = 11.0 Hz, 1H), 7.18 (d, J = 11. 0 Hz, 1H), 7.94 (s, 1H) Example 25 (+)-deacetamidocolchicine-7-ol 191.5mg (0.3556mmol) of the compound 23 (2) obtained from the Example 23 was added to a 10ml flask, and 2.5ml of methanol and 2.5ml of chloromethane were added thereto. The temperature was cooled down to-78°C, and 1.78ml (3.5560mmol) of 2N aqueous solution of sodium hydroxide was added thereto. The solution was warmed to the room temperature and stirred for 3 hours. The mixture was extracted with chloroform for three times and washed with water, and dried over anhydrous sodium sulfate and the solvent was removed by concentrating under reduced pressure. The resulting concentrated product was recrystallized (ethyl acetate/hexane) to obtain the title product 25 (127.4mg, 100%).

25<BR> [α]D : +113.10 (CDC13, c = 7.250 x 10-3g/ml) 'H NMR (500 MHz, CDC13) : 8 1.80-1.83 (m, 1H), 2.40-2.49 (m, 3H), 3.26 (br, 1H), 3.60 (s, 3H), 3.90 (s, 3H), 3.91 (s, 3H), 3.97 (s, 3H), 4.46-4.49 (m, 1H), 6.55 (s, 1H), 6.79 (d, J = 11. 0 Hz, 1H), 7.18 (d, J = 11.0 Hz, 1H), 7.94 (s, 1H) Example 26 (-)-3-chloromethyl-benzoic acid-1, 2,3,10-tetramethoxy-9-oxo-5,6,7,9- tetrahydro-bezo [a] heptarene-7-yl ester

61.2mg (0.171mmol) of (-)-deacetamidocolchicine-7-ol was placed into a 25ml flask, and 1 ml of chloromethane and 2ml of THF were added thereto. To the solution, 26.7, t. te (0.188mmol) of 3-chloromethylbenzoyl chloride was added dropwise and then 71.4ßQ (0. 512mmol) of triethylamine was added. 4.2mg (0.0342mmol) of DMAP was added to the mixture and it was stirred at room temperature for 3 hours. The mixture was extracted with chloroform and dried over anhydrous sodium sulfate and concentrated under reduced pressure. The resulting concentrated product was purified with column chromatography (ethyl acetate: methanol = 20: 1) to obtain the title product 26 (60.0mg, 68.8%).

'H NMR (500 MHz, CDC13) : 6 2.15-2.22 (m, 1H), 2.45-2.64 (m, 3H), 3.70 (s, 3H), 3.92 (s, 3H), 3.96 (s, 3H), 3.99 (s, 3H), 4.62 (s, 1H), 4.63 (s, 1H), 5.57 (dd, J = 6.5,5.5 Hz, 1H), 6.59 (s, 1H), 6.83 (d, J = 11.0 Hz, 1H), 7.33 (d, J = 11.0 Hz, 1H), 7.46 (t, J = 7.5 Hz, 1H), 7.53 (s, 1H), 7.62 (d, J = 7. 5 Hz, 1H), 8.03 (d, J = 7.5 Hz, 1H), 8.06 (s, 1H) Example 27 (+)-3-chloromethyl-benzoic acid-1, 2,3,10-tetramethoxy-9-oxo-5,6,7,9- tetrahydro-benzo [a] heptaren-7-yl ester The title compound 27 (58.7mg, 67.4%) was obtained in accordance with the same method of the Example 26 except that (+)-deacetamidocolchicine-7-ol was used instead of (-)-deacetamidocolchicine-7-ol.

'H NMR (500 MHz, CDC13) : 8 2.15-2.22 (m, 1H), 2.45-2.64 (m, 3H), 3.70 (s, 3H), 3.92 (s, 3H), 3.96 (s, 3H), 3.99 (s, 3H), 4.62 (s, 1H), 4.63 (s, 1H), 5.57 (dd, J = 6.5,5.5 Hz, 1H), 6.59 (s, 1H), 6.83 (d, J = 10.8 Hz, 1H),

7.33 (d, J = 10.8 Hz, 1H), 7.46 (t, J = 7. 5 Hz, 1H), 7.53 (s, 1H), 7.62 (d, J = 7.5 Hz, 1H), 8.03 (d, J = 7.5 Hz, 1H), 8.06 (s, 1H) Example 28 (-)-3-iodomethyl-benzoic acid-1,2,3,10-tetramethoxy-9-oxo-5,6,7,9- tetrahydro-benzo [a] heptarene-7-yl ester Met met MeOO o,.. 0"Q 0 MeO MeO Met.O MeOt O Acetone \ i \ i C !" ! ce I

47.5mg of the title product 28 (67.1%) was prepared by the same method of the first step of the Example 4 except for using of compound 26 obtained in the Example 26. lH NMR (600 MHz, CDC13) : 8 2.05-2.22 (m, 1H), 2.46-2.62 (m, 3H), 3.71 (s, 3H), 3.93 (s, 3H), 3.97 (s, 3H), 3.99 (s, 3H), 4.48 (d, J = 9. 9 Hz, 1H), 4.50 (d, J = 9. 9 Hz, 1H), 5.57 (dd, J = 6. 5,4.3 Hz, 1H), 6.59 (s, 1H), 6.82 (d, J = 10. 8 Hz, 1H), 7.33 (d, J = 10. 8 Hz, 1H), 7.41 (t, J = 7. 8 Hz, 1H), 7.51 (s, 1H), 7.61 (d, J = 7. 8 Hz, 1H), 7.96 (d, J=7. 8Hz, lH), 8.05 (s, 1H) Example 29 (+)-3-iodomethyl-benzoic acid-1, 2,3,10-tetramethoxy-9-oxo-5,6,7,9- tetrahydro-benzo [a] heptarene-7-yl ester MeO MeO MeO O MeO « o MeO ° Acetone (X°$ \ i \ i Met-met Ci I cr!

47.5mg of the title compound 29 (68.6%) was prepared by the first step of the Example 4 except for using compound 27 obtained the Example 27.

'H NMR (600 MHz, CDC13) : 8 2.05-2.22 (m, 1H), 2.46-2.62 (m, 3H), 3.71 (s, 3H), 3.93 (s, 3H), 3.97 (s, 3H), 3.99 (s, 3H), 4.48 (d, J = 9. 9 Hz, 1H), 4.50 (d, J = 9. 9 Hz, 1H), 5.57 (dd, J = 6. 5,4.3 Hz, 1H), 6.59 (s, 1H), 6.82 (d, J = 10. 8 Hz, 1H), 7.33 (d, J = 10. 8 Hz, 1H), 7.41 (t, J = 7. 8 Hz, 1H), 7.51 (s, 1H), 7.61 (d, J = 7. 8 Hz, 1H), 7.96 (d, J = 7. 8 Hz, 1H), 8.05 (s, 1H) Example 30 (-)-3-nitrooxymethyl-benzoic acid-1, 2,3,10-tetramethoxy-9-oxo-5,6,7,9- tetrahydro-benzo [a] heptaren-7-yl ester MeO MeO MeO MeO Me0 mye0 Acetonitrile i i MeO MeO 02NO

34.4mg of the title compound 30 (81.2%) was prepared by the second step of the Example 4 except for using compound 28 obtained the Example 28.

'H NMR (500 MHz, CDC13) : 8 2.10-2.22 (m, 1H), 2.46-2.62 (m, 3H), 3.70 (s, 3H), 3.92 (s, 3H), 3.96 (s, 3H), 3.99 (s, 3H), 5.48 (s, 2H), 5.57 (dd, J = 6.5,4.5 Hz, 1H), 6.59 (s, 1H), 6.82 (d, J = 10. 8 Hz, 1H), 7.32 (d, J = 10.8 Hz, 1H), 7.50 (s, 1H), 7.51 (t, J = 7.8 Hz, 1H), 7.63 (d, J = 7.8 Hz, 1H), 8.09 (s, 1H), 8.10 (d, J=7. 8Hz, lH) Example 31 (+)-3-nitrooxymethyl-benzoic acid-1,2,3,10-tetramethoxy-9-oxo-5,6,7,9- tetrahydro-benzo [a] heptarene-7-yl ester MeO MeO MeO MeO mye0 MeO ° JV Acetonitrile X JX \ i \/ MeO MeO 0 MeO 0 J MeO 0 J 02NO 32.5mg of the title compound 31 (76.7%) was prepared by the second step of the Example 4 except for using compound 29 obtained the Example 29.

'H NMR (500 MHz, CDC13) : 8 2.10-2.22 (m, 1H), 2.46-2.62 (m, 3H), 3.70 (s, 3H), 3.92 (s, 3H), 3.96 (s, 3H), 3.99 (s, 3H), 5.48 (s, 2H), 5.57 (dd, J= 6. 5,4.5Hz, lH), 6.59 (s, 1H), 6.82 (d, J= 10. 8 Hz, 1H), 7.32 (d, J = 10. 8 Hz, 1H), 7.50 (s, 1H), 7.51 (t, J = 7. 8 Hz, 1H), 7.63 (d, J = 7. 8 Hz, 1H), 8.09 (s, 1H), 8.10 (d, J = 7. 8 Hz, 1H) Table 1 shows the list of the compounds synthesized in accordance with the method of the present invention in addition to the compounds of the above Examples Table 1A Compounds'H NMR (500 MHz) : 5 ci o 1. 85-1. 90 (m, 1H), 2.00 (s, 3H), 2.23-2.42 (m, 4H), 2.50-2.56 (m, IH), 0 Mezzo 2.82-2.88 (m, 2H), 3.68 (s, 3H), 3.74 (t, J = 6. 3 Hz, 2H), 3. 96 (s, 3H), 4.03 (s, meo/N'k Me 3H), 4.62-4.66 (m, I H), 6.71 (s, I H), 6.88 (d, J = 10.9 Hz, lH), 7.34 (d, J = H 10. 9 Hz, 1H), 7.38 (d, J=63 Hz, 1H), 7.54 (s, IH) Mu0 1. 92-1. 98 (m, IH), 2.00 (s, 3H), 2. 31-2. 44 (m, 2H), 2. 55-2.59 (m, IH), 3 69 (s, MeO 0 3H), 3.94 (s, 3H), 4.03 (s, 3H), 4.64-4.69 (m, IH), 4.67 (s, 2H), 6.83 (s, IH), Me 'H Me r n > \ n O O 6. 91 (d, J= 10.9 Hz, 1H), 7. 38 (d, J= 10.9 Hz, 1H), 7.57 (d, J= 8. 2 Hz, 2H), me 0 7.61 (s, 1H), 7.94 (d, J= 6. 2 Hz, 1H), 8.23 (d, J=8. 2Hz, 2H) 0 1. 92-2.00 (m, IH), 1.95 (S, 3H), 2.31-2.44 (m, 2H), 2.57-2.59 (m, IH), 3.70 (s, o \/ -4. 70 (m, I H), 4.69 (s, 2H), 6.83 (s, I H), Cl 3H), 3.95 (s, 3H), 4.04 (s, 3H), 4.65 meo/NKMe 6. 92 (d, J = 10.9 Hz, IH), 7.39 (d, J = 10.9 Hz, IH), 7.56 (t, J = 7.6 Hz, IH), 7. 64 (s, 1H), 7 71 (d, J=7. 6Hz, lH), 8.03 (d, J= 6. 2 Hz, 1 H), 8.19 (d, J=7. 6Hz, eoo I H), 8.26 (s, I H) ONO2 õ 1. 91-1.96 (m, 1H), 1.97 (s, 3H), 2.20-2.26 (m, 2H), 2.29-2.40 (m, 2H), 0 MeO > 5 2.52-2.56 (m, IH), 2.77-2.80 (m, 2H), 3.66 (s, 3H), 3.93 (s, 3H), 4.03 (s, 3H), meo"N me 4. 61-4.65 (m, I H), 4.64 (t, J = 6. 5 Hz, 2H), 6.70 (s, IH), 6.90 (d, J = 10. 9 Hz, MeO O IH), 7.35 (d, J=10. 9Hz, lH), 7.60 (s, 1 H), 8.05 (d, J=6. 2Hz, lH) 0 oxo2 1.90-1.95 (m, lH), 1.99 (s, 3H), 2.29-2.43 (m, 2H), 2.55-2.58 (m, IH), 3.69 (s, o 3H), 3.93 (s, 3H), 4.03 (s, 3H), 4.64-4.68 (m, IH), 4.82 (s, 2H), 6. 83 (s, IH), Mye0 Me S'ZNJ (Me 6. 91 (d, J = 10.9 Hz, IH), 7.38 (d, V= 10. 9 Hz, IH), 7.53 (d, J = 8. 2 Hz, 2H), Meu -'/ Me MeO O 7. 60 (s, IH), 7.91 (d, J= 6. 2 Hz, 1 H), 8.22 (d, J=8. 2Hz, 2H) Mu0 0 1.89-1.96 (m, IH), 1. 99 (s, 3H), 2.29-2.43 (m, 2H), 2. 54-2.58 (m, IH), 3.69 (s, _ \ 3H), 3. 93 (s, 3H), 4.03 (s, 3H), 4.63-4.68 (m, IH), 4.81 (s, 2H), 6.82 (s, IH), Only Me0 Me N NJ (Me 6. 91 (d, J=10. 9Hz, IH), 7. 38 (d, J=10. 9 Hz, IH), 7.53 (t, J=7. 6Hz, IH), 7.59 N Me H (s, I H), 7.68 (d, J=7. 6 Hz, IH), 7.84 (d, J = 6. 2 Hz, I H), 8. 15 (d, J = 7. 6 Hz, eo ° IH), 8.23 (s, I H) Table 1B (continued) Compounds'H NMR (500 MHz) : 8 MeO met 0 1. 99-2.06 (m, 2H), 2.08-2.15 (m, IH), 2.22-2.28 (m, IH), 2.42 (s, 3H), Me0 \/O N JCI 2. 43-2.51 (m, 3H), 2.61-2.65 (m, IH), 3.28 (s, 3H), 3. 56 (t, J = 6. 0 Hz, 2H), 3. 70 (s, 3H), 3.90 (s, 3H), 3.94 (s, 3H), 4.98 (q, J = 6. 2, 1 H), 6.53 (s, IH), mes 6.90 (s, IH), 7.02 (d, J=10. 3Hz, IH), 7.27 (d, J=10. 3 Hz, IH) Met Met 0 2.25-2.36 (m, 2H), 2.44 (s, 3H), 2.49-2.56 (m, IH), 2.66-2.69 (m, IH), 3.23 /N (s, 3H), 3. 72 (s, 3H), 3. 91 (s, 3H), 3. 94 (s, 3H), 5. 06 (br, IH), 5. 42 (s, 0 2H), 6.57 (s, I H), 7.05 (d, J=10. 3Hz, lH), 7.08 (s, 1H), 7.31-7.40 (m, 5H) m 2.25-2.37 (m, 2H), 2.44 (s, 3H), 2.48-2.56 (m, IH), 2.66-2.68 (m, IH), 3.24 MeO 0 ,, ° (s, 3H), 3. 72 (s, 3H), 3.91 (s, 3H), 3. 94 (s, 3H), 5.05 (br, IH), 5.40 (s, 2H 6. 57 s 1 H, 7. 06 d J = 10. 3 Hz, 1 H 7. 09 s 1 H 7. 31-7. 42 m 0 meus ON02 su) Mao 2.15-2.20 (m, IH), 2.43 (s, 3H), 2.44-2.64 (m, 3H), 3. 70 (s, 3H), 3. 92 (s, Meo 0 3H), 3.96 (s, 3H), 4.62 (s, 2H), 5.57 (dd, J = 7, 7.5 Hz, I H), 6.59 (s, IH), Meo o w meo/0-,-7. 05 (d, J = 10. 0 Hz, IH), 7.30 (d, J = 10. 0 Hz, IH), 7.33 (s, IH), 7.46 (dd, J rsO) =8. 0,8.0 Hz, I H), 7.62 (d, J = 8. 0 Hz, IH), 8.03 (d, J = 8. 0Hz, IH), 8.06 (s, ci IH) Me 2.15-2.20 (m, IH), 2.43 (s, 3H), 2.44-2.64 (m, 3H), 3.70 (s, 3H), 3.92 (s, Mao 0 3H), 3.96 (s, 3H), 4.62 (s, 2H), 5.57 (dd, J = 7, 7. 5 Hz, 1 H), 6.59 (s, 1H), Me 7. 05 (d, J=10. 0Hz, IH), 7.30 (d, J = 10. 0 Hz, IH), 7. 33 (s, IH), 7.46 (dd, J nnes o 8. 0,8.0 Hz, lH), 7.62 (d, J=8. 0 Hz, IH), 8.03 (d, J=8. 0Hz, lH), 8.06 (s, ce IH) 2. 15-2. 20 (m, IH), 2.43 (s, 3H), 2.44-2.64 (m, 3H), 3.70 (s, 3H), 3.92 (s, 3H), 3. 96 (s, 3H), 5. 48 (s, 2H), 5. 57 (dd, J = 7, 7.5 Hz, I H), 6. 59 (s, I H), <7. 05 (d, J=10. 0 Hz, IH), 7. 30-7. 33 (m, 2H), 7. 46 (dd, J=8. 0, 8. 0 Hz, I H), 7. 63 (d, J=8. 0Hz, IH), 8.08-8.10 (m, 2H) 2. 15-2.20 (m, IH), 2.43 (s, 3H), 2.44-2.64 (m, 3H), 3.70 (s, 3H), 3.92 (s, <X 3H), 3.96 (s, 3H), 5.48 (s, 2H), 5.57 (dd, J=7, 7. 5 Hz, IH), 6.59 (s, I H), Met Me 7. 05 (d, J = 10. 0 Hz, IH), 7.30-7.33 (m, 2H), 7.46 (dd, J = 8.0,8.0 Hz, IH), 7. 63 (d, J=8. 0Hz, lH), 8.08-8.10 (m, 2H) Table 1C(continued) Compounds'H NMR (500 MHz) : 8 Meo 2.01-2.40 (m, 4H), 2.43-2.64 (m, 4H), 3.28 (s, 3H), 3.56 (t, J = 6.0 Hz, met 0 2H), 3.69 (s, 3H), 3.90 (s, 3H), 3.94 (s, 3H), 3.98 (s, 3H), 4.94-5. 01 (m, Meo ci 1H), 6. 53 (s, 1 H), 6.80 (d, J= 10. 6 Hz, IH), 7.09 (s, I H), 7.28 (d, J= \, Me MeO 10. 6 Hz, I H) MeO 2.20-2.31 (m, 2H), 2.46-2.53 (m, IH), 2.60-2.65 (m, IH), 3.22 (s, 3H), MeO-, -.-, MeO 0 3 70 (s, 3H), 3.84 (s, 3H), 3.86 (s, 3H), 3.97 (s, 3H), 4.55 (s, 2H), Po meo'/N cl 5.01-5.03 (m, IH), 6.54 (s, IH), 6.79 (d, J = 10. 6 Hz, 1 H), 7.25-7.45 (m, MeO 6H) MeO MeO 1. 96-2.30 (m, 4H), 2.40-2.67 (m, 4H), 3.26 (s, 3H), 3.69 (s, 3H), 3.90 Me0-/-\ Q Meo.,oNO, (s, 3H), 3.94 (s, 3H), 3.98 (s, 3H), 4.45 (t, J = 6. 0 Hz, 2H), 5.01-5.04 e (m, I H), 6.53 (s, IH), 6.81 (d, J= 10.6 Hz, IH), 7.07 (s, IH), 7.28 (d, J MeO10. 6 Hz, IH) Met 0 2. 17-2. 39 (m, 2H), 2.51-2.69 (m, 2H), 3.24 (s, 3H), 3.71 (s, 3H), 3.91 meo (s, 3H), 3.94 (s, 3H), 4.00 (s, 3H), 5.00-5.10 (m, IH), 5.42 (s, 2H), meo Me/ONO= 6, 57 (s, 1H), 6. 82 (d, J= 10. 6 Hz, 1H), 7.28-7.39 (m, 6H) ON02 1. 87-1.96 (m, 1H), 2.03 (s, 3H), 2.05-2.12 (m, 2H), 2.20-2.51 (m, 2H), MeO 0 2. 49 (t, J=7. OHz, 2H), 2.81-2.83 (m, 1H), 3.65 (s, 3H), 3.96 (s, 3H), MeO zozo 3.97 (s, 3H), 4.02 (s, 3H), 4.54 (t, J = 7. 0 Hz, 2H), 4.63-4.65 (m, IH), MeO mye Me 5. 17 (d, J= 12. 0 Hz, IH), 5.29 (d, J= 12. 0 Hz, IH), 6.88 (d, J= 11. 0 Hz, MeO ° l H), 7.28 (d, J= 11. 0 Hz, IH), 7.56 (s, I H), 7.87 (d, J=6. 5Hz,] H) mye0 MeO onze 1.82-1.88 (m, 1H), 2.00-2.26 (m, 4H), 2. 36-2. 56 (m, 2H), 2.45 (s, 3H), MOO 0 2.91-2.94 (m, 1H), 3.42 (s, 3H), 3.54 (t, J= 6. 2 Hz, 2H), 3.64 (s, 3H), 3.95 (s, 3H), 3.97 (s, 3H), 4.46 (d, J= 10. 3 Hz, t H), 4.50 (d, J=10. 3Hz, 1 H), 4.61-4.66 (m, 1H), 7.08 (d, J = 10. 6 Hz, 1 H), 7.25 (d, J = 10. 6 Hz, Meus 1 H), 7.41 (d, J= 7.3 Hz, 1 H), 7.43 (s, I H) MeO OMe 2.05-2.34 (m, 3H), 2.45 (s, 3H), 2.96-3.00 (m, 1H), 3.42 (s, 3H), 3.72 Meo Q (s, 3H), 3.96 (s, 3H), 3.99 (s, 3H), 4.45 (s, 2H), 4.47 (d, J = 10. 3 Hz, ; H), 4. 54 (d, J = 10 3 Hz, IH), 4.85-4.93 (m, IH), 7.09 (d, J = 10. 6 Hz, I H), 7. 22 (d, J 8. 3 Hz, 2H), 7. 29 (d, J = 10. 3 Hz, I H), 7. 59 (s, I H), MeS 7. 84 (d, J=8. 3Hz, 2H), 8.34 (d, J=7. 3Hz, IH) Meo oMe 1. 78-1. 85 (m, IH), 1. 98-2.05 (m, 2H), 2.14-2.42 (m, 4H), 2.45 (s, 3H), Me) 0 2. 91-2. 94 (m, 1H), 3.42 (s, 3H), 3.64 (s, 3H), 3.95 (s, 3H), 3.97 (s, MeO, iNONOZ 3H), 4.42-4.52 (m, 4H), 4.63-4.67 (m, IH), 7.09 (d, J = 10.6 Hz, IH), mas 0 7.26 (d, J= 10. 6 Hz, IH), 7.47 (s, IH), 7.77 (d, J = 7. 3 Hz, 1 H) Table 1D(continued) Compounds'H NMR (500 MHz) : 6 a te 2. 14-2. 34 (m, 3H), 2.45 (s, 3H), 2.96-3.01 (m, IH), 3.42 (s, 3H), 3.72 (s, Mg% 3H), 3.96 (s, 3H), 3.99 (s, 3H), 4.46 (d, J= 10. 3 Hz, I H), 4.53 (d, J l Kto"N 10. 3 Hz, I H), 4.88-4.94 (m, IH), 5. 30 (s, 2H), 7.11 (d, J= 10. 6 Hz, IH) 7. 21 (d, J= 8. 3 Hz, 2H), 7. 31 (d, J= 10. 3 Hz, IH), 7.62 (s, IH), 7.88 (d, 0 8. 3 Hz, 2H), 8.51 (d, J = 7. 3 Hz, I H) MeO met 0 1. 82 (m, IH), 2.03 (s, 3H), 2.25 (m, I H), 2.40 (m, I H), 2.54 (m, IH), 3.66 (s, Mu0, 3H), 3.91 (s, 3H), 3.94 (s, 3H), 4.68 (s, 2H), 4.71 (m, IH), 6.54 (s, IH) l 6. 73 (d, J=7. 0Hz, IH), 7.51-7.65 (m, 4H), 7.94 (d, J=8. OHz, IH), 801 (s, tce IH), 920 (d, J=ll. OHz, IH), 10. 32 (s, IH) ci R4-0R5 R3O S 1. 84 (m, IH), 2. 03 (s, 3H), 2.28 (m, IH), 2.42 (m, IH), 2.54 (m,] H), 3.67 (s, H3COX J"'RI 3H), 3.91 (s, 3H), 3. 92 (s, 3H), 4.69 (m, IH)), 5.53 (s, 2H), 6.39 (d, =7. OHz, IH), 6.54 (s, IH), 7.51-7.65 (m, 4H), 8.01 (d, J=9. 5Hz, IH), 8.03 (s, R R2 X (X) IH), 9.18 (d, J--1l. OHz, 1H), 10. 32 (s, IH) MEON MeOL O 1.80 (m, IH), 2.02 (s, 3H), 2.22 (t, J=6. 0,6.5Hz, 2H), 2.40 (m, IH), 2.48 '"HMe (m, 1H), 2. 72 (t, J=7. OHz, 2H), 3.62 (s, 3H), 3.67 (t, J=6. OHz, 2H), 3. 90 (s, 3H), 3.94 (s, 3H) 4.64 (m, IH), 6.18 (d, J=7. OHz, IH), 6.52 (s, IH), 7.43 (d, Han ci~io J=10. 5Hz, IH), 7.49 ( s, 1H), 8.99 (d, J=11. OHz, IH), 9.41 (s, IH) cW o MeOm 1. 98 (m, IH), 2.25 (m, IH), 2.47 (m, IH), 2.49 (m, IH), 3.15 (s, H), 3.71 (s, MeO 0 MeO."N 3H), 3.88 (s, 3H), 3.95 (s, 3H), 4.55 (s, 2H), 4.81 (m, IH), 6.51 (s, IH), \ I/" 6.55 (d, J=11. 5Hz, IH), 7. 22 (s, IH), 728~737 (dd, J=8. 5, 11 5Hz, 4H), Me2N cl 7.61 (d, J=7. OHz) 1 H), 7.87 (d, J=10. 5Hz, IH) met 1. 98 (m, IH), 2.29 (m, IH), 2.50 (m, IH), 2.51 (m, IH), 3. 14 (s, 6H), 3.71 (s, moo 3H), 3.89 (s, 3H), 3.95 (s, 3H), 4.81 (m, tH), 5. 42 (s, 2H), 6.52 (s, I H), iß,) H t 6.55 (d, J=11. 5Hz, IH), 7.17 (s, IH), 7.27-7.40 (dd, J=8. 5, 11. 5Hz, 4H) l Me2N 0 ONO2 7. 871 (d, J=8. 5Hz, IH) Me 1. 98 (m, IH), 2.03 (m, IH), 2.48 (m, IH), 2.53 (m, IH), 3. 14 (s, 6H), 3.70 (s, Met 0 nnao., 3H), 3. 90 (s, 3H), 3.95 (s, 3H), 4.56 (s, 2H), 4.83 (m, IH), 6.55 (s, IH), 6.56 (d, a =11. 2Hz, 1H), 6. 93 (d, J=7. 5Hz, IH), 7 14~752 (m, 4H), 7.73 (d, J=7. 7Hz, Me2N ° IH), 7.79 (s, IH) MEON neo 2. 20 (m, IH), 2.48 (m, IH), 2.54 (m, 2H), 3.15 (s, 6H), 3.72 (s, 3H), 3.90 (s, \/o me WO. IN N02 3H), 3.96 (s, 3H), 4.85 (m, IH), 5.32 (d, 5. 3Hz, 2H), 6. 55 (s, IH) l t H isH 6.58 (d, J=11. 3Hz, IH), 7.28-7.54 (m, 4H), 7.76 (d, J=7. 8Hz, IH), 7.80 (s, Mez Me2N I H) Table lE (continued) Compounds'H NMR (500 MHz) : 6 MeO meo 0 1. 80 (m, IH), 2.04 (m, IH), 2.07 (t, 2H, J=7. 0Hz), 2.20 (m, IH), 2.43 (m, Me IH), 2.49 (t, J=7. OHz, 2H), 3. 17 (s, 6H), 3.56 (t, J=6. 0,6.5Hz, 2H), 3.64 (s, 't) 3H), 3.87 (s, 3H), 3.93 (s, 3H), 4.60 (m, IH), 6.49 (s, IH), 6.55 ( d, Me, J=11. 5Hz, IH), 7. 16 (s, IH), 7.21 (d, J=10. 5Hz, IH), 7.27 (d, J=11. 5Hz, IH) Met 2. 01 (m, IH), 2.04 (t, 2H, J=6.5,6.5Hz), 2.18 (m, IH), 2.40 (m, IH), 2.46 (m, nneo o nneo"orvo2 2H)) 2. 48 (m, 1 H), 3.17 (s, 6H), 3.64 (s, 3H), 3.88 (s, 3H), 3.93 (s, 3H), 0 H 4. 45 (t, 2H, J=6.0,6.5Hz), 4.58 (m, IH), 6.48 (s, IH), 6.55 (d, IH, J=11. 5Hz), Me2N ° 7. 11 (s, IH), 7.27 (d, IH, J=11. 5Hz), 7.44 (d, IH, J=7. OHz)

Example A: Anticancer effect test To ascertain the anticancer effects of colchicine derivatives of the formula (I) according to the present invention, the following tests were carried out by sulforhodamine-B (SRB) cytotoxicity assay. For comparison of anticancer effects, conventional colchicine and taxol as an anticancer drug were used as control groups.

Human tumor cells, including MCF-7 (human breast adenomatous tumor), MCF-7/DOX (adriamycin resistant cell strain), MRS-SA (human uterine sarcoma), MES-SA/DX5 (adriamycin resistant cell strain), A 549 (human non-small cell lung), SKOV-3 (human ovarian), SKMEL-2 (human melanoma), XF-498 (human CNS), HCT-15 (human colon) were incubated at 37 C in the presence of 5% C02 using a DMEM culture medium. The respective cells were seeded into each well of 96-well plates at a concentration of 2 X 1035 X 103 cells/well. After culturing for 24 hours, colchicine dissolved in dimethylsulfoxide (DMSO), a compound 6, a compound 12 and taxol were diluted, and further cultured for 72 hours. Each cell line of the resultant plates was fixed with trichloroacetic acid (TCA), stained with 0.4% SRB solution and rinsed with 1% acetic acid. Thereafter, the dye was dissolved in 10mM Tris base to measure the optical density (OD) at 520 nm. The measurement results are listed in Tables 2 and 3.

Table 2 Materials ED50 (riM) MCF7 MCF-7/DOX MES-SA MES-SA/DXS Colchicine 4 183 16 961 Compound 6 0.02 205 0.2 773 Compound 12 0. 02 28 0. 01 115 Taxol 0.04 943 0. 02 1147 Table 3 Material ED50 (nM) A549 SK-OV-3 SK-MEL-2 XF498 HCT15 Colchicine 9 8 3 4 3 Compound 6 0. 1 0.2 0.1 0.1 0.1 Compound 12 0. 1 0.3 0.1 0.2 0.1 Taxol 0. 3 1. 2 0. 1 1. 7 0. 1

When ED50 values of the compounds 6 and 12 were investigated for each cell line, the colchicine derivative of the present invention exhibited a higher anticancer effect even at a low concentration of 0.02 to 773 nM than the conventional colchicine and taxol as shown in Tables 2 and 3.

Example B: Mixed lymphocvte reaction (MLR) tests MLR tests were carried out to determine the immunosuppressive effect of an immunosuppressive candidate material. When a responding cell (BALB/c mouse spleen cell) and a stimulating cell (DBA/2 mouse spleen cell) were cultured separately, the cells grew little. On the contrary, when the cells were simultaneously cultured, the cells were proliferated due to induction of an antigen-antibody reaction. The proliferated cells were treated with the immunosuppressive candidate material for measurement of the proliferation inhibitory extent.

Responding cells (BALB/c mouse spleen cells) and stimulating cells (DBA/2 mouse spleen cells) were respectively seeded into each well of 96-well plates at a concentration of 2X105 cells/well for simultaneous culturing, and cyclosporin A (positive control group), colchicines, and colchicine derivatives of the present invention (compounds 6,9,10,11 and 12) were treated. After culturing for 72 hours at a CO2 incubator, a 20, c. ce MTS solution was added to each well, followed by further culturing for 2 to 4 hours and measuring OD at 490 nm by using ELISA. The

results were shown in FIG. 1.

As shown in FIG. 1, it can be found that the colchicine derivatives according to the present invention, that is, the compounds 6,9,10,11 and 12, suppressed growth of cells even at concentrations as low as 100 to 1000 nm and had a good immunosuppressive effect.

Example C: Immunosuppressive effect test using BALB/c mouse spleen cells This test was carried out to determine the immunosuppressive effect of an immunosuppressive candidate material by checking anti-proliferation of T cells and B cells. To identify the proliferation inhibitory extent, responding cells (BALB/c mouse spleen cells) were treated with an immunosuppressive candidate material, lipopolysaccharide (LPS) as a B cell activator and concanvalin A (ConA) as a T cell activator. It is known that the responding cells treated with LPS induce proliferation of B cells and those treated with ConA induce proliferation of T cells.

Responding cells (BALB/c mouse spleen cells) were seeded into each well of 96-well plates at a concentration of 2x 105 cells/well. Then, 20 llg/ml lipopolysaccharide, cyclosporin A (positive control group), and inventive colchicine derivatives (compounds 6,10 and 12) were simultaneously treated, and 2 Rg/ml of ConA, cyclosporin A (positive control sample), and inventive colchicine derivatives (compounds 6,10 and 12) were simultaneously treated. After culturing for 72 hours at a C02 incubator, a 20, MTS solution was added to each well, followed by further culturing for 2 to 4 hours and measuring OD at 490 nm using ELISA. The measurement results are shown in FIGS. 2 and 3.

As shown in FIGS. 2 and 3, the colchicine derivatives according to the present invention suppressed proliferation of the B and T cells induced by LPS and ConA, respectively, in a concentration-dependent manner. The immunosuppressive effect of the colchicine derivatives according to the present invention was superior to that of cyclosporin A, a conventional immunosuppressive agent. In particular, the compounds 6 and 12 exhibited a remarkable anti-proliferous effect on B and T cells (FIG. 3).

Example D: Toxicity assay The colchicine derivatives according to the present invention were

administered to ICR mice of 4-5 weeks old, weighing 18 to 20g, for acute (intravenous administration) toxicity assay and oral administration toxicity assay, as demonstrated in Tables 5 and 7. The same assays were carried out using colchicine as a control group (see Tables 4 and 6).

Table 4: Acute toxicity of colchicine intravenously administered to mice Days for the test (death) Number Dosage Total p of Mouse (mg/kg) 1 2 3 4 5 6 7 T1 5 2 3 1 1 5/5 T2 5 5 1 4 5/5 T35 10 4 1 5/5 Table 5 : Acute toxicity of compound 6 intravenously administered to mice Number Dosage Days for the test (death) Group of Mouse (mg/kg) 1 2 3 4 5 6 7 Fol550/5 T2 10 0/5 T3 5 25-------0/2 T4 3 50 3 3/3

Table 6: Toxicity of colchicine orally administered to mice Number Dosage Days for the Test (death) of Mouse (mg/kg) 1 2 3 4 5 6 7 'ofMouse (mg/kg) 1 2 3 4 5 6 7 T1 5 5 0/5 T25100/5 T3 5 25 3 1 4/5 T4 3 50-3-1 1--5/S Table 7: Toxicity of compound 6 orally administered to mice Number Dosage Days for the Test (Death) Group of Mouse (mg/kg) 1 2 3 4 5 6 | 7 Total T1 5 2 0/5 T2 5 5---1---1l5 T3 5 10 1 1 2/5

Example E: Reverse mutation assay by using bacteria This assay is carried out to test mutagenicity of chemical substances using histidine auxotrophic strains that are one of Salmonella Typhimurium mutants. In the assay, artificially induced mutants (histidine auxotrophic mutants) are cultured in a histidine-free culture medium. When various mutagens are added to the culture medium, only revertants generated by reverse mutation survive. Thus generated colonies and spontaneously induced revertants are compared for detection of mutation.

Ames test was carried out using WP2 uvrA strains (tryptophan auxotrophic strains) of TA100, TA1535, TA98, TA1537 and Escherichia coli. Mutagens used as positive control samples were 0.5 ug/plate of sodium azide, 0.5 Ag/plate of 4NQO (4-nitroquinolin-1-oxide), 50 ug/plate of 9-AA (9-aminoacridine). Colchicine and colchicine derivative (Compound 6) according to the present invention were treated at amounts of 0,317.5,625,1250,2500 and 5000 ug/plate, and incubated in the presence (+) and absence (-) of microsomal polysubstrate oxygenases (S-9 mixture) at 37C for 48 hours. After incubation, the number of revertant colonies was counted.

3 plates were prepared for each test and the average was calculated. The results are demonstrated in Tables 8 and 9.

Table 8 Dosage Colony/Plate Test Strain Material (g/Plate g-9 Mixture (-) S-9 Mixture (+) TA100 Colchicine 0 121 103 317.5 115 79 625 110 76 1250 112 100 2500 115 91 5000 108 78 TA1525 Colchicine 0 14 13 317.5 18 13 625 15 13 1250 17 7 2500 17 12 5000 13 10 TA98 Colchicine 0 31 35 317.5 29 37 625 29 32 1250 29 33 2500 24 37 5000 26 28 TA1537 Colchicine 10 14 317.5 17 20 625 14 18 1250 10 18 2500 8 21 5000 9 21 E. coli Colchicine 0 11 10 WP2 uvrA 317.5 10 11 625 6 14 1250 11 14 2500 10 12 5000 11 8 Positive TA100 Sodium azide 0.5 453 616 control TA1535 Sodium azide 0.5 279 444 group TA98 4NQO 0.5 488 391 TA1537 9-AA 50 175 588 WP2 uvrA 4NQO 0.5 268 653 Table 9 Dosage Colony/plate Dosave Test Strain Materials S-9 Mixture (-) S-9 Mixture (g/plate) TA100 Compound 6 0 95 104 317.5 81 96 625 77 84 1250 84 81 2500 88 77 5000 79 78 TA1525Compound 6 0 12 10 317.5 14 14 625 18 12 1250 15 11 2500 10 11 5000 13 9 TA98 Compound 6 0 28 36 317.5 21 32 625 32 29 1250 24 33 2500 22 22 5000 19 23 TA1537 Compound 6 0 10 15 317.5 8 11 625 10 16 1250 16 13 2500 11 17 5000 7 14 E. coli Compound 6 0 11 10 WP2 uvrA 317.5 16 12 625 9 12 1250 10 12 2500 8 9 5000 11 13 Positive TA100 Sodium azide 0.5 453 616 Control TA1535 Sodium azide 0.5 279 444 group TA98 4NQO 0.5 488 391 TA1537 9-AA 50 175 588 WP2 uvrA 4NQO 0.5 268 653

As shown in Tables 8 and 9, the colchicine derivatives according to the present invention induced noticeably fewer revertant colonies than the positive control groups, implying no significant hazard as mutagens.

Industrial Applicability As described above, the novel colchicine derivative of the formula (I) according to the present invention or pharmaceutically acceptable salts thereof are superior to conventional colchicine in view of anticancer, anti-proliferous and immunosuppressive effects, and have less likelihood of toxicity and less hazard as mutagen than conventional colchicine.