Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
NOVEL ARYL- AND HETEROARYLPIPERAZINES
Document Type and Number:
WIPO Patent Application WO/2003/066604
Kind Code:
A2
Abstract:
Novel aryl- and heteroarylpiperazines, use of these compounds as pharmaceutical compositions, pharmaceutical compositions comprising the compounds, and a method of treatment employing these compounds and compositions. The compounds show a high and selective binding affinity to the histamine H3 receptor indicating histamine H3 receptor antagonistic, inverse agonistic or agonistic activity. As a result, the compounds are useful for the treatment of diseases and disorders related to the histamine H3 receptor.

Inventors:
HOHLWEG ROLF (DK)
DOERWALD FLORENCIO ZARAGOZA (DK)
STEPHENSEN HENRIK (DK)
PETTERSSON INGRID (DK)
PESCHKE BERND (DK)
Application Number:
PCT/DK2003/000071
Publication Date:
August 14, 2003
Filing Date:
February 05, 2003
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
NOVO NORDISK AS (DK)
BOEHRINGER INGELHEIM INT (DE)
HOHLWEG ROLF (DK)
DOERWALD FLORENCIO ZARAGOZA (DK)
STEPHENSEN HENRIK (DK)
PETTERSSON INGRID (DK)
PESCHKE BERND (DK)
International Classes:
A61K31/495; C07D295/02; A61K31/496; A61K31/498; A61K31/4985; A61K31/501; A61P1/04; A61P3/04; A61P3/10; A61P25/28; A61P27/16; A61P37/08; A61P43/00; C07D213/74; C07D213/82; C07D215/38; C07D215/46; C07D237/20; C07D241/26; C07D241/44; C07D295/03; C07D295/033; C07D295/06; C07D295/073; C07D295/08; C07D295/092; C07D295/096; C07D295/10; C07D295/112; C07D401/04; C07D471/04; C07D491/04; C07D491/056; (IPC1-7): C07D241/00
Foreign References:
US2993899A1961-07-25
Other References:
DATABASE ZCAPLUS [Online] retrieved from STN Database accession no. 2001:661394 XP002902943 -& WO 01 64645 A (ORION CORP) 7 September 2001 (2001-09-07)
DATABASE ZCAPLUS [Online] retrieved from STN Database accession no. 2001:453029 XP002902944 -& WO 01 44201 A (SCHERING CORP.) 21 June 2001 (2001-06-21)
DATABASE ZCAPLUS [Online] retrieved from STN Database accession no. 2000:790496 XP002902945 -& WO 00 66578 A (PFIZER PRODUCTS INC.) 9 November 2000 (2000-11-09)
DATABASE ZCAPLUS [Online] retrieved from STN Database accession no. 1998:424243 XP002902961 -& WO 98 27081 A (SMITHKLINE BEECHAM PLC.) 25 June 1998 (1998-06-25)
DATABASE ZCAPLUS [Online] retrieved from STN Database accession no. 1997:140310 XP002902946 -& WO 97 02245 A (JAPAN TOBACCO INC.) 23 January 1997 (1997-01-23)
DATABASE ZCAPLUS [Online] retrieved from STN Database accession no. 1994:298482 XP002902947 -& AU 639 529 B (YOSHINARI HIGUCHI) 29 July 1993 (1993-07-29)
DATABASE ZCAPLUS [Online] retrieved from STN Database accession no. 1991:143438 XP002902948 -& EP 0 385 237 A (DAINIPPON PHARMACEUTICAL CO) 5 September 1990 (1990-09-05)
DATABASE ZCAPLUS [Online] retrieved from STN Database accession no. 1988:406428 XP002902965 -& EP 0 236 140 A (OTSUKA PHARMA CO LTD) 9 September 1987 (1987-09-09)
DATABASE ZCAPLUS [Online] retrieved from STN Database accession no. 1986:491334 XP002902949 -& EP 0 177 392 A (INNOTHERA LAB SA) 9 April 1986 (1986-04-09)
DATABASE ZCAPLUS [Online] retrieved from STN Database accession no. 1977:43741 XP002902950 -& DE 26 09 746 A (PARCOR) 14 October 1976 (1976-10-14)
DATABASE ZCAPLUS [Online] retrieved from STN Database accession no. 1990:35892 XP002902951 -& DE 38 03 860 A (BASF AG) 17 August 1989 (1989-08-17)
DATABASE ZCAPLUS [Online] retrieved from STN Database accession no. 1968:2915 XP002902952 -& US 3 309 370 A (ROBERT NORMAN SCHUT) 14 March 1967 (1967-03-14)
DATABASE ZCAPLUS [Online] retrieved from STN Database accession no. 1957:39516 XP002902953 -& GB 753 166 A (MILES LAB) 18 July 1956 (1956-07-18)
DATABASE ZCAPLUS [Online] retrieved from STN Database accession no. 1999:244638 XP002902954 -& EP 1 020 445 A (EISAI CO LTD) 19 July 2000 (2000-07-19)
DATABASE ZCAPLUS [Online] WU QIUYE ET AL: "Synthesis and platelet aggregation activity of 6-[4-substituted- piperazinyl)phenyl]-4,5-dihydro-3(2H)-pyri dazinones." retrieved from STN Database accession no. 1999:729780 XP002902955 & ZHONGGUO YAOWU HUAXUE ZAZHI, vol. 9, no. 3, 1999, pages 172-175, 185, ISSN: 1005-0108
DATABASE ZCAPLUS [Online] BALLABEN E ET AL: "Reactivity of cyclopentanone enamines towards non-symmetric electrophilic diazenes." retrieved from STN Database accession no. 1994:191665 XP002902956 & GAZZETTA CHIMICA ITALIANA, vol. 123, no. 7, 1993, pages 387-391, ISSN: 0016-5603
DATABASE ZCAPLUS [Online] HORI MANABU ET AL: "Potential nootropic agents, 4-alkoxy-2-(1-piperazinyl)quinazoline derivatives." retrieved from STN Database accession no. 1991:400232 XP002902957 & CHEMICAL & PHARMACEUTICAL BULLETIN, [Online] vol. 39, no. 2, 1991, pages 367-371, ISSN: 0009-2363
DATABASE ZCAPLUS [Online] HORI MANABU ET AL : "Novel 4-substituted 2-piperazinylquinazolines as potent anticonvulsive and antihypoxic agents." retrieved from STN Database accession no. 1990:552359 XP002902958 & CHEMICAL & PHARMACEUTICAL BULLETIN , vol. 38, no. 5, 1990, pages 1286-1291, ISSN: 0009-2363
DATABASE ZCAPLUS [Online] MAZARGUIL H ET AL : "Enamines of N-methyl- and N- phenylpiperazine. I. Synthesis and physicochemical study." retrieved from STN Database accession no. 1969:106472 XP002902959 & BULLETIN DE LA SOCIETE CHIMIQUE DE FRANCE, vol. 1, 1969, pages 319-324, ISSN: 0037-8968
DATABASE ZCAPLUS [Online] MAZARGUIL H ET AL: "Enamines of N-methyl and N- phenylpiperazines. Synthesis of unsymmetrical N,N'-disubstituted and N-monosubstituted piperazines." retrieved from STN Database accession no. 1969:20015 XP002902960 & COMPTES RENDUS DES SEANCES DE L'ACADEMIE DES SCIENCES, SERIE C: SCIENCES CHIMIQUE, vol. 267, no. 12, 1968, pages 724-727, ISSN: 0567-6541
See also references of EP 1474401A2
Attorney, Agent or Firm:
Novo, Nordisk A/s (Bagsværd, DK)
Download PDF:
Claims:
CLAIMS
1. A compound of the general formula (II) : wherein R2 is hydrogen or C14alkyl, (i) R'represents # branched C46alkyl, branched C46alkenyl or branched C46alkynyl with the proviso that R'is not isobutyl, # C35cycloalkyl, C37cycloalkenyl, C36cycloalkylC13alkyl or C36 cycloalkenylC13alkyl, 'ruz R1 and R2 together form a C36alkylene bridge, and A represents or (ii) R'represents # ethyl, npropyl or isopropyl, 'ruz R'and R2 together form a C36alkylene bridge, and A represents R3 is hydrogen, halogen, hydroxy, trifluoromethyl, trifluoromethoxy, C110alkyl, C210alkenyl, C38cycloalkyl, C16alkoxy, aryl, arylC16alkyl, amino, C16alkylamino, diC16alkylamino, C38cycloalkyl, C38cycloalkyloxy, cyano, nitro, C16alkylsulfanyl, or C16alkylsulfonyl, Z and X independently representN=, C (H) =, C (F) =,C (CI) =, C (CN) = orC (CF3) =, W representsN= orC (R10) =, Y representsN= orC (R11)=, R4, R5, R6, R7, R8, R9, R10, R11, R12 and R13 independently represent hydrogen, halogen, hydroxy, trifluoromethyl, trifluoromethoxy,SCF3, amino, cyano, nitro, orC (=O) NR14R15 #C110alkyl, C210alkenyl, C38cycloalkyl, C16alkoxy, C38cycloalkylC16alkoxy, C16alkylamino, diC16alkylamino, C38cycloalkyloxy, C16alkylsulfanyl, C16 alkylsulfonyl, C210alkanoyl, C49cycloalkanoyl, C38heterocyclyl or C49 heterocycloalkanoyl, C49heterocycloalkoxy, which may optionally be substituted with one or more substituents selected from R15 #aryl, arylC16alkyl, arylC16alkoxy or heteroaryl, which may optionally be substi tuted with one or more substituents selected from R17, aroyl, heteroaroyl, aryloxy, heteroaryloxy, arylamino or heteroarylamino, which may optionally be substituted with one or more substituents selected from R18, # or two of R5, R6, R7, R8, R9, R10, R11, R12 and R13 in adjacent positions together form a C16alkylene bridge or an OC16alkyleneO bridge, R14 and R15 are independently hydrogen, C16alkyl, arylC16alkyl or R14 and R15 may to gether form a C36alkylene bridge R16 is independently selected from aryl, heteroaryl, C38cycloalkyl, halogen, trifluoromethyl, trifluoromethoxy, NR19R20 and C16alkoxym, R17 is independently selected from halogen, hydroxy, trifluoromethyl, trifluoromethoxy, C16 alkoxy, C16alkyl, amino, C16alkylsulfonyl, C16alkylamino, diC16alkylamino, cyano, aryl, heteroaryl and C38cycloalkyl, R18 is independently selected from aryl, heteroaryl, C110alkyl, C38cycloalkyl, halogen, trifluoromethyl, trifluoromethoxy, C16alkoxy, cyano, amino, C16alkylamino, di C16alkylamino and hydroxy, R19 and R20 are independently hydrogen or C16alkyl, R19 and R20 may together form a C36alkylene bridge with the proviso that the compound must not be as well as any diastereomer or enantiomer or tautomeric form thereof including mixtures of these or a pharmaceutical acceptable salt thereof.
2. A compound according to claim 1, wherein R1 is branched C46alkyl, C35cycloalkyl or C36cycloalkylC13alkyl with the proviso that R'is not isobutyl.
3. A compound according to claim 2, wherein R'is 1, 1(dimethyl)propyl, 1ethylpropyl, cyclo propylmethyl, cyclopropyl, cyclobutyl, cyclopentyl or 1cyclopropyl1methylethyl.
4. A compound according to claim 3, wherein R'is 1ethylpropyl, cyclopropylmethyl, cyclo propyl or cyclopentyl.
5. A compound according to claim 1, wherein R'is branched C46alkyl or C35cycloalkyl with the proviso that R'is not isobutyl.
6. A compound according to claim 5, wherein R1 is 1ethylpropyl, cyclopropyl or cyclopentyl.
7. A compound according to any one of the claims 1 to 6, wherein Z isC (H) =, N=, or C (F) =.
8. A compound according to claim 7 wherein Z isC (H) = orN=.
9. A compound according to claim 8 wherein Z isC (H) =.
10. A compound according to claim 8 wherein Z isN=.
11. A compound according to any one of the claims 1 to 10 wherein X isC (H) =, N=, or C (F) =.
12. A compound according to claim 11 wherein Z isC (H) = orN=.
13. A compound according to claim 12 wherein Z isC (H) =.
14. A compound according to claim 12 wherein Z isN=.
15. A compound according to any one of the claims 1 to 14 wherein W isN=.
16. A compound according to any one of the claims 1 to 14 wherein W isC (R10)=.
17. A compound according to any one of the claims 1 to 16 wherein Y isN=.
18. A compound according to any one of the claims 1 to 16 wherein Y isC (R") =.
19. A compound according to any one of the claims 1 to 18 wherein R2 is hydrogen.
20. A compound according to any one of the claims 1 to 18 wherein R2 is C14alkyl.
21. A compound according to claim 20 wherein R2 is methyl or ethyl.
22. A compound according to claim 1 of the general formula (III) wherein A and R3 are as defined in claim 1.
23. A compound according to any one of the claims 1 to 22 wherein R3 is hydrogen, halogen, hydroxy, trifluoromethyl, trifluoromethoxy, C110alkyl, C16alkoxy, aryl, arylC16alkyl, amino, C38cycloalkyl, C38cycloalkyloxy, cyano or nitro.
24. A compound according to claim 23 wherein R3 is hydrogen, halogen, hydroxy, trifluor methyl, C110alkyl, C16alkoxy, cyano or nitro.
25. A compound according to claim 24 wherein R3 is hydrogen, halogen, hydroxy, trifluor methyl, C16alkyl, or cyano.
26. A compound according to claim 25 wherein R3 is hydrogen, halogen, or CI6alkyl.
27. A compound according to claim 25 wherein R3 is hydrogen or methyl.
28. A compound according to any one of the claims 1 to 27 wherein R4, R5, R6, R7, R8, and R9 independently represent *hydrogen, halogen, hydroxy, trifluoromethyl, trifluoromethoxy,SCF3, amino, or cyano, *Ci. C110alkyl, C38cycloalkyl, C16alkoxy, C38cycloalkyloxy, C210alkanoyl, C49 cycloalkanoyl, C38heterocyclyl or C49heterocycloalkanoyl, which may optionally be substituted with one or more substituents selected from R16 #aryl, arylC16alkyl, arylC16alkoxy or heteroaryl, which may optionally be substi tuted with one or more substituents selected from R aroyl, heteroaroyl, aryloxy, heteroaryloxy, which may optionally be substituted with one or more substituents selected from R18, or two of R5, R6, R7, R8, R9 in adjacent positions together form a C16alkylene bridge or an OC16alkylO bridge.
29. A compound according to claim 28 wherein R4, R5, R6, R7, R8, and R9 independently represent hydrogen, halogen, hydroxy, trifluoromethyl, trifluoromethoxy,SCF3, or cyano, * C110alkyl, C16alkoxy, C38cycloalkyloxy, which may optionally be substituted with one or more substituents selected from R15 Aryl or arylC1. 6alkyl, which may optionally be substituted with one or more sub stituents selected from R17, *Aroyl or aryloxy, which may optionally be substituted with one or more substituents selected from R18, or two of R5, R6, R7, Ra, R9 in adjacent positions together form a Cieaikyiene bridge or an OC16alkylO bridge.
30. A compound according to claim 28 wherein R4, R5, R6, R7, R8, and R9 independently represent hydrogen, halogen, or cyano, # C110alkyl or C16alkoxy which may optionally be substituted with one or more sub stituents selected from R15 Aryl optionally substituted with one or more substituents selected from R17, *Aroyl or aryloxy, which may optionally be substituted with one or more substituents selected from R'8, or two of R5, R6, R7, R8, R9 in adjacent positions together form a C16alkylene bridge or an OC16alkylO bridge.
31. A compound according to claim 30 wherein C110alkyl represents methyl, ethyl, propyl, or isopropyl.
32. A compound according to claim 30 wherein C16alkoxy represents methoxy, ethoxy or propoxy.
33. A compound according to claim 32 wherein C16alkoxy represents methoxy.
34. A compound according to claim 30 wherein aryl represents phenyl.
35. A compound according to claim 30 wherein aroyl representsC (=O)phenyl.
36. A compound according to claim 30 wherein aryloxy representsOphenyl.
37. A compound according to claim 1, wherein R'is ethyl or isopropyl.
38. A compound according to claim 37 wherein R'is isopropyl.
39. A compound according to claim 37 wherein R'is ethyl.
40. A compound according to claim 39 wherein R'and R2 together form a C34alkylene bridge.
41. A compound according to any one of the claims 37 to 40 wherein R'°, R", R12 and R13 independently represent hydrogen, halogen, hydroxy, trifluoromethyl, trifluoromethoxy, cyano, or (=o) NR14R15 #C110alkyl, C38cycloalkyl, C16alkoxy, C210alkanoyl, C49cycloalkanoyl, C38 heterocyclyl or C49heterocycloalkanoyl, C49heterocycloalkoxy, which may optionally be substituted with one or more substituents selected from R16 #aryl, arylC16alkyl, arylC16alkoxy or heteroaryl, which may optionally be substi tuted with one or more substituents selected from R17, # aroyl optionally substituted with one or more substituents selected from R18, or two of R'°, R11, R12 and R13 in adjacent positions together form a C16alkylene bridge.
42. A compound according to claim 41 wherein R10, R11, R12 and R13 independently represent hydrogen, halogen, hydroxy, trifluoromethyl, trifluoromethoxy, cyano, or C(=O)NR14R15 #C110alkyl, C38cycloalkyl, C16alkoxy, C210alkanoyl, C49cycloalkanonyl, C38 heterocyclyl or C49heterocycloalkanoyl, C49heterocycloalkoxy, which may optionally be substituted with one or more substituents selected from R16 #aryl, arylC16alkyl, arylC16alkoxy or heteroaryl, which may optionally be substi tuted with one or more substituents selected from R17, aroyl optionally substituted with one or more substituents selected from R13, or two of R'°, R", R12 and R13 in adjacent positions together form a C16alkylene bridge.
43. A compound according to claim 42 wherein R10, R11, R12 and R13 independently represent hydrogen, halogen, trifluoromethyl, orC (=O) NR14R15 #C110alkyl, C16alkoxy, C210alkanoyl, C49cycloalkanoyl, C49heterocycloalkanoyl or C49heterocycloalkoxy, which may optionally be substituted with one or more sub stituents selected from R16 #aryl, arylC16alkyl, or arylC16alkoxy, which may optionally be substituted with one or more substituents selected from R17, o aroyl optionally substituted with one or more substituents selected from R"', or two of R10, R11, R12 and R13 in adjacent positions togetherform a C16alkylene bridge.
44. A compound according to claim 43 wherein R10, R11, R12 and R13 independently represent hydrogen, halogen, trifluoromethyl, orC (=O) NR14R15 # C110alkyl or C49heterocycloalkanoyl, which may optionally be substituted with one or more substituents selected from R16 aryl optionally substituted with one or more substituents selected from R17, o aroyl optionally substituted with one or more substituents selected from R13, or two of R'°, R11, R12and R13 in adjacent positions together form a C16alkylene bridge.
45. A compound according to claim 44 wherein C110alkyl represents methyl, ethyl, or propyl.
46. A compound according to claim 44 wherein C49heterocycloalkanoyl represents piperidin alkanol or pyrrolidinalkanoyl.
47. A compound according to claim 44 wherein aryl represents phenyl.
48. A compound according to any one of the claims 1 to 47 wherein R14 and R15 are inde pendently methyl, ethyl or benzyl.
49. A compound according to any one of the claims 1 to 48 wherein R16 is halogen, trifluor methyl, trifluoromethoxy and C16alkoxy.
50. A compound according to any one of the claims 1 to 49 wherein R17 is halogen, hydroxy, trifluoromethyl, C16alkoxy, C16alkyl, C16alkylsulfonyl, or cyano.
51. A compound according to claim 50 wherein R17 is halogen, trifluoromethyl, C16alkoxy or C16alkylsulfonyl.
52. A compound according to any one of the claims 1 to 51 wherein R18 is C110alkyl, halo gen, trifluoromethyl, C16alkoxy, cyano, amino and hydroxy.
53. A compound according to claim 52 wherein R13 is halogen, C16alkoxy and hydroxy.
54. Use of a compound according to any one of the preceding claims 1 to 53 as a pharma ceutical composition.
55. A pharmaceutical composition comprising, as an active ingredient, at least one com pound according to any one of the claims 1 to 53 together with one or more pharmaceuti cally acceptable carriers or excipients.
56. A pharmaceutical composition according to claim 55 in unit dosage form, comprising from about 0.05 mg to about 1000 mg, preferably from about 0.1 mg to about 500 mg and espe cially preferred from about 0.5 mg to about 200 mg of the compound according to any one of the claims 1 to 53.
57. Use of a compound of the general formula (Il') : wherein R2 is hydrogen or C14alkyl, R1 represents #C18alkyl, C28alkenyl or C28alkynyl, which may optionally be substituted with one or more halogen substituents, * C35cycloalkyl, C37cycloalkenyl, C36cycloalkylC13alkyl or C36cycloalkenyl C13alkyl, which may optionally be substituted with one or more halogen substituents, 'ruz R1 and R2 together form a C36alkylene bridge, A represents is hydrogen, halogen, hydroxy, trifluoromethyl, trifluoromethoxy, Clloalkyl, C210alkenyl, C38cycloalkyl, C16alkoxy, aryl, arylC16alkyl, amino, C16alkylamino, diC16alkylamino, C38cycloalkyl, C38cycloalkyloxy, cyano, nitro, C16alkylsulfanyl, or C16alkylsulfonyl, Z and X independently representN=, C (H) =, C (F) =,C (CI) =, C (CN) = orC (CF3) =, W representsN= orC (R10) =, Y representsN= orC (R11) =, R4, R5, R6, R7, R8, R9, R10, R11, R12 and R13 independently represent hydrogen, halogen, hydroxy, trifluoromethyl, trifluoromethoxy,SCF3, amino, cyano, nitro, orC (=O) NR14R15 #C110alkyl, C210alkenyl, C38cycloalkyl, C16alkoxy, C38cycloalkylC16alkoxy, C16alkylamino, diC16alkylamino, C38cycloalkyloxy, C16alkylsulfanyl, C16 alkylsulfonyl, C210alkanoyl, C49cycloalkanoyl, C38heterocyclyl or C49 heterocycloalkanoyl, C49heterocycloalkoxy, which may optionally be substituted with one or more substituents selected from R16 #aryl, arylc16alkyl, arylC16alkoxy, or heteroaryl, which may optionally be substi tuted with one or more substituents selected from R17, aroyl, heteroaroyl, aryloxy, heteroaryloxy, arylamino or heteroarylamino, which may optionally be substituted with one or more substituents selected from R18, #or two of R5, R6, R7, R8, R9, R10, R11, R12 and R13 in adjacent positions together form a C16alkylene bridge or an OC16alkyleneO bridge, R14 and R15 are independently hydrogen, C16alkyl, arylC16alkyl or R'4 and R15 may to gether form a C34alkylene bridge R16 is independently selected from aryl, heteroaryl, C38cycloalkyl, halogen, trifluoromethyl, trifluoromethoxy, NR19R20 and C16alkoxy, R17 is independently selected from halogen, hydroxy, trifluoromethyl, trifluoromethoxy, C16 alkoxy, C16alkyl, amino, C16alkylsulfonyl, C16alkylamino, diC16alkylamino, cyano, aryl, heteroaryl and C38cycloalkyl, R18 is independently selected from aryl, heteroaryl, C110alkyl, C38cycloalkyl, halogen, trifluoromethyl, trifluoromethoxy, C16alkoxy, cyano, amino, C16alkylamino, di C16alkylamino and hydroxy, R'9 and R20 are independently hydrogen or C16alkyl, R19 and R20 may together form a C36alkylene bridge, as well as any diastereomer or enantiomer or tautomeric form thereof including mixtures of these or a pharmaceutical acceptable salt thereof for the preparation of a pharmaceutical composition for the treatment of disorders and diseases related to the histamine H3 receptor.
58. Use of a compound as defined in claim 57 for the preparation of a pharmaceutical com position for the treatment of diseases and disorders in which an inhibition of the H3 histamine receptor has a beneficial effect.
59. Use of a compound as defined in claim 57 for the preparation of a pharmaceutical com position having histamine H3 antagonistic activity or histamine H3 inverse agonistic activity.
60. Use of a compound as defined in claim 57 for the preparation of a pharmaceutical com position for the reduction of weight.
61. Use of a compound as defined in claim 57 for the preparation of a pharmaceutical com position for the treatment of overweight or obesity.
62. Use of a compound as defined in claim 57 for the preparation of a pharmaceutical com position for the suppression of appetite or for satiety induction.
63. Use of a compound as defined in claim 57 for the preparation of a pharmaceutical com position for the prevention and/or treatment of disorders and diseases related to overweight or obesity.
64. Use of a compound as defined in claim 57 for the preparation of a pharmaceutical com position for the prevention and/or treatment of eating disorders such as bulimia and binge eating.
65. Use of a compound as defined in claim 57 for the preparation of a pharmaceutical com position for the treatment of IGT.
66. Use of a compound as defined in claim 57 for the preparation of a pharmaceutical com position for the treatment of type 2 diabetes.
67. Use of a compound as defined in claim 57 for the preparation of a pharmaceutical com position for the delaying or prevention of the progression from IGT to type 2 diabetes.
68. Use of a compound as defined in claim 57 for the preparation of a pharmaceutical com position for the delaying or prevention of the progression from noninsulin requiring type 2 diabetes to insulin requiring type 2 diabetes.
69. Use of a compound as defined in claim 57 for the preparation of a pharmaceutical com position for the treatment of diseases and disorders in which a stimulation of the H3 hista mine receptor has a beneficial effect.
70. Use of a compound as defined in claim 57 for the preparation of a pharmaceutical com position having histamine H3 agonistic activity.
71. Use of a compound as defined in claim 57 for the preparation of a pharmaceutical com position for the treatment of allergic rhinitis, ulcer or anorexia.
72. Use of a compound as defined in claim 57 for the preparation of a pharmaceutical com position for the treatment of Alzheimer's disease, narcolepsy or attention deficit disorders.
73. A method for the treatment of disorders or diseases related to the H3 histamine receptor the method comprising administering to a subject in need thereof an effective amount of a compound as defined in claim 57 or a pharmaceutical composition according to claim 55 or 56.
74. The method according to claim 73 wherein the effective amount of the compound is in the range of from about 0.05 mg to about 2000 mg, preferably from about 0.1 mg to about 1000 mg and especially preferred from about 0.5 mg to about 500 mg per day.
Description:
NOVEL ARYL-AND HETEROARYLPIPERAZINES FIELD OF THE INVENTION The present invention relates to novel aryl-and heteroarylpiperazines, to the use of these compounds as pharmaceutical compositions, to pharmaceutical compositions comprising the compounds, and to a method of treatment employing these compounds and compositions.

The present compounds show a high and selective binding affinity to the histamine H3 recep- tor indicating histamine H3 receptor antagonistic, inverse agonistic or agonistic activity. As a result, the compounds are useful for the treatment of diseases and disorders related to the histamine H3 receptor.

BACKGROUND OF THE INVENTION The existence of the histamine H3 receptor has been known for several years and the recep- tor is of current interest for the development of new medicaments. Recently, the human his- tamine H3 receptor has been cloned. The histamine H3 receptor is a presynaptic autorecep- tor located both in the central and the peripheral nervous system, the skin and in organs such as the lung, the intestine, probably the spleen and the gastrointestinal tract. Recent evi- dence suggests that the H3 receptor shows intrinsic, constitutive activity, in vitro as well as in vivo (ie it is active in the absence of an agonist. Compounds acting as inverse agonists can inhibit this activity. The histamine H3 receptor has been demonstrated to regulate the release of histamine and also of other neurotransmitters such as serotonin and acetylcholine. A his- tamine H3 receptor antagonist or inverse agonist would therefore be expected to increase the release of these neurotransmitters in the brain. A histamine H3 receptor agonist, on the contrary, leads to an inhibition of the biosynthesis of histamine and an inhibition of the re- lease of histamine and also of other neurotransmitters such as serotonin and acetylcholine.

These findings suggest that histamine H3 receptor agonists, inverse agonists and antago- nists could be important mediators of neuronal activity. Accordingly, the histamine H3 recep- tor is an important target for new therapeutics.

Compounds similar to the compounds of the present invention have previously been dis- closed, cf. J. Med. Chem. 1999,42, 336, J. Med. Chem. 1992,35, 2369, DE 2804096, J.

Org. Chem. 1996, 61, 3849, Bull. Soc. Chim. Fr. 1969,319, WO 00/66578, WO 99/21845, and J. Med. Chem. 1968, 11 (6), 1144-1150. However, these references neither disclose nor suggest that these compounds may have a histamine H3 receptor antagonistic or agonistic activity.

Several publications disclose the preparation and use of histamine H3 agonists and antago- nists. Most of these are imidazole derivatives. However, recently some imidazole-free ligands of the histamine H3 receptor have been described (see e. g. Linney et al., J. Med. Chem.

2000,43, 2362-2370; US 6,316, 475, WO 01/66534 and WO 01/74810). However, these compounds differ structurally from the present compounds.

In view of the art's interest in histamine H3 receptor agonists, inverse agonists and antago- nists, novel compounds which interact with the histamine H3 receptor would be a highly de- sirable contribution to the art. The present invention provides such a contribution to the art being based on the finding that a novel class of aryl-and heteroarylpiperazines has a high and specific affinity to the histamine H3 receptor.

Due to their interaction with the histamine H3 receptor, the present compounds are useful in the treatment of a wide range of conditions and disorders in which an interaction with the his- tamine H3 receptor is beneficial. Thus, the compounds may find use eg in the treatment of diseases of the central nervous system, the peripheral nervous system, the cardiovascular system, the pulmonary system, the gastrointestinal system and the endocrinological system.

DEFINITIONS In the structural formulae given herein and throughout the present specification, the following terms have the indicated meaning: The term"halogen"means F, Cl, Br or 1.

The term"alkyl"as used herein represents a saturated, branched or straight hydrocarbon group having the indicated number of carbon atoms. Thus, the terms"C1 3-alkyl","C14-alkyl" and"C1 10-alkyl"as used herein represent saturated, branched or straight hydrocarbon groups having from 1 to 3 carbon atoms, 1 to 8 carbon atoms and from 1 to 10 carbon at- oms, respectively. Typical alkyl groups include, but are not limited to, methyl, ethyl, n-propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, hexyl and the like. ^- The term"alkenyl"as used herein represents a branched or straight hydrocarbon group hav- ing the indicated number of carbon atoms and at least one double bond. Thus, the terms "C2-alkenyl"and"C2 10-alkenyl"as used herein represents a branched or straight hydrocar- bon group having from 2 to 8 carbon atoms, and from 2 to 10 carbon atoms respectively, and at least one double bond Examples of such groups include, but are not limited to, ethenyl, 1-propenyl, 2-propenyl, allyl, iso-propenyl, 1, 3-butadienyl, 1-butenyl, 2-butenyl, 1- pentenyl, 2-pentenyl, 1-hexenyl, 2-hexenyl, 1-heptenyl, 2-heptenyl, 1-octenyl, 2-octenyl, 2- nonenyl, 2-decenyl and the like.

The term"alkynyl"as used herein represents a branched or straight hydrocarbon group hav- ing the indicated number of carbon atoms and at least one triple bond. Thus, the term "C2-8-alkynyl"as used herein represents a branched or straight hydrocarbon group having from 2 to 8 carbon atoms and at least one triple bond. Examples of such groups include, but are not limited to, ethynyl, 1-propynyl, 2-propynyl, 1-butynyl, 2-butynyl, 1-pentynyl, 2- pentynyl, 1-hexynyl, 2-hexynyl, 2-heptynyl, 1-octynyl, 2-octynyl and the like.

The term"branched C46-alkyl"as used herein represents a saturated, branched hydrocarbon group having from 4 to 6 carbon atoms. Typical branched C48-alkyl groups include, but are not limited to, 1-methylpropyl, tert-butyl, 1-ethylpropyl, 1, 1-(dimethyl)propyl, isopentyl 1- ethylbutyl, 1, 1- (dimethyl) butyl, 1, 1-(dimethyl)pentyl, 1-ethylpentyl, 1, 1- (dimethyl) hexyl, 1- ethylhexyl and the like.

The term"branched C46-alkenyl"as used herein represents a branched hydrocarbon group having from 4 to 6 carbon atoms and at least one double bond. Typical branched C46-alkenyl groups include, but are not limited to, 1-ethylprop-2-enyl, 1, 1-(dimethyl)prop-2-enyl, 1- ethylbut-3-enyl, 1, 1-(dimethyl)but-2-enyl, 1, 1-(dimethyl)pent-3-enyl, 1-ethylpent-2-enyl, 1,1- (dimethyl) pent-3-enyl, 1, 1-(dimethyl)hex-3-enyl, 1-ethylhexl-4-enyl and the like.

The term"branched C46-alkynyl"as used herein represents a branched hydrocarbon group having from 4 to 6 carbon atoms and at least one triple bond. Typical branched C44-alkynyl groups include, but are not limited to, 1-ethylprop-2-ynyl, 1, 1-(dimethyl)prop-2-ynyl, 1- ethylbut-3-ynyl, 1, 1-(dimethyl)but-2-ynyl, 1, 1-(dimethyl)pent-3-ynyl, 1-ethylpent-2-ynyl, 1,1- (dimethyl) pent-3-ynyl, 1, 1-(dimethyl) hex-3-ynyl, 1-ethylhex-4-ynyl and the like.

The term"C16-alkoxy"as used herein refers to the radical -O-C1-6-alkyl, wherein C1-6-alkyl is as defined above. Representative examples are methoxy, ethoxy, n-propoxy, isopropoxy, butoxy, sec-butoxy, tert-butoxy, pentoxy, isopentoxy, hexoxy, isohexoxy and the like.

The term"C210-alkanoyl"as used herein refers to the radical-C (=O) C1-9-alkyl, wherein Cl-g- alkyl represents a saturated, branched or straight hydrocarbon groups having from 1 to 9 carbon atoms. Representative examples are acetyl, propionyl, butanoyl, pentanol, hexanoyl, heptanoyl, octanoyl, nonanoyl, decanoyl and the like.

The term"C16-alkylamino"as used herein refers to the radical-NH-C16-alkyl, wherein Cul-6- alkyl is as defined above. Representative examples are methylamino, ethylamino, isopro- pylamino, n-propylamino, butylamino, pentylamino, hexylamin and the like.

The term"di-C16-alkylamino"as used herein refers to the radical-N (CI-6-alkyl) 2, wherein Cul-6- alkyl is as defined above. It should be understood that the C16-alkyl groups may be the same or different. Representative examples are dimethylamino, methylethylamino, diethylamino, diisopropylamino, di-n-propylamino, dibutylamino, dipentylamino, dihexylamino and the like.

The term"C3-cycloalkyl"as used herein represents a monocyclic, carbocyclic group having from from 3 to 8 carbon atoms. Representative examples are cyclopropyl, cyclobutyl, cyclopentyl and the like.

In the same way the terms "C3-6-cycloalkyl" and "C3-8-cycloalkyl" as used herein represent monocyclic, carbocyclic groups having from 3 to 6 carbon atoms and from 3 to 8 carbon at- oms, respectively.

The term"C37-cycloalkenyl"as used herein represents a monocyclic, carbocyclic, non- aromatic group having from 3 to 7 carbon atoms and at least one double bond. Representa- tive examples are cyclopropenyl, cyclobutenyl, cyclopentenyl and the like.

In the same way the term "C3-6-cycloalkenyl" represents a monocyclic, carbocyclic, non- aromatic group having from 3 to 6 carbon atoms and at least one double bond.

The term"C36-cycloalkyl-C13-alkyl"as used herein refers to the radical-C13-alkyl-C36-cyclo- alkyl where C36-cycloalkyl and Cl-alkyl are as defined above.

The term"C36-cycloalkenyl-C13-alkyl"as used herein refers to the radical-C13-alkyl- C3-6-cycloalkenyl where C36-cycloalkenyl and C13-alkyl are as defined above.

The term"C38-cycloalkyloxy"as used herein refers to the radical-O-C38-cycloalkyl where C38-cycloalkyl is as defined above. Representative examples are cyclopropyloxy, cyclobuty- loxy, cyclopentyloxy, cyclohexyloxy, cycloheptyloxy, cyclooctyloxy and the like.

The term"C49-cycloalkanoyl"as used herein refers to the radical-C (=O)-C38-cycloalkyl where C38-cycloalkyl is as defined above. Representative examples are cyclopropylcarbonyl, cyclobutylcarbonyl, cyclopentylcarbonyl, cyclohexylcarbonyl, cycloheptylcarbonyl, cyclooctyl- carbonyl and the like.

The term"C16-alkylsulfonyl"as used herein refers to the radical-S (=O) 2-C16-alkyl, wherein Cl-alkyl is as defined above. Representative examples are methylsulfonyl, ethylsulfonyl, isopropylsulfonyl, n-propylsulfonyl, butylsulfonyl, pentylsulfonyl and the like.

The term"Cl-6-alkylsulfanyl"as used herein refers to the radical-S-C1-6-alkyl, wherein C1-6- alkyl is as defined above. Representative examples are methylsulfanyl, ethylsulfanyl, isopro- pylsulfanyl, n-propylsulfanyl, butylsulfanyl, pentylsulfanyl and the like.

The term"C38-heterocyclyl"as used herein refers to a saturated 3 to 8 membered monocyc- lic ring containing one or more heteroatoms selected from nitrogen, oxygen and sulphur.

Representative examples are aziridinyl, pyrrolidinyl, piperidinyl, morpholinyl, piperazinyl, tet- rahydrofuranyl and the like.

The term"C4-9-heterocycloalkanoyl"as used herein refers to the radical -C (=O)-C38-heterocyclyl where C38-heterocyclyl is as defined above. Representative exam-

pies are aziridinylcarbonyl, pyrrolidinylcarbonyl, piperidinylcarbonyl, morpholinylcarbonyl, piperazinylcarbonyl, tetrahydrofuranylcarbonyl and the like.

The term"aryl"as used herein is intended to include carbocyclic aromatic ring systems such as phenyl, biphenylyl, naphthyl, anthracenyl, phenanthrenyl, fluorenyl, indenyl, pentalenyl, azulenyl and the like. Aryl is also intended to include the partially hydrogenated derivatives of the carbocyclic systems enumerated above. Non-limiting examples of such partially-hydro- genated derivatives are 1,2, 3, 4-tetrahydronaphthyl, 1, 4-dihydronaphthyl and the like.

The term"aryloxy"as used herein refers to the radical-O-aryl, wherein aryl is as defined above. Non-limiting examples are phenoxy, naphthoxy, anthracenyloxy, phenantrenyloxy, fluorenyloxy, indenyloxy and the like.

The term"aroyl"as used herein refers to the radical-C (=O)-aryl, wherein aryl is as'defined above. Non-limiting examples are benzoyl, naphthol, anthracenylcarbonyl, phenantrenyl- carbonyl, fluorenylcarbonyl, indenylcarbonyl and the like.

The term"arylamino"as used herein refers to the radical-NH-aryl, wherein aryl is as defined above. Non-limiting examples are phenylamino, naphthylamino, anthracenylamino, phe- nantrenylamino, fluorenylamino, indenylamino and the like.

The term"heteroaryl"as used herein is intended to include heterocyclic aromatic ring sys- tems containing one or more heteroatoms selected from nitrogen, oxygen and sulfur such as furyl, thienyl, pyrrolyl, oxazolyl, thiazolyl, imidazolyl, isoxazolyl, isothiazolyl, 1,2, 3-triazolyl, 1,2, 4-triazolyl, pyranyl, pyridyl, pyridazinyl, pyrimidinyl, pyrazinyl, 1,2, 3-triazinyl, 1, 2, 4-tri- azinyl, 1,3, 5-triazinyl, 1,2, 3-oxadiazolyl, 1,2, 4-oxadiazolyl, 1,2, 5-oxadiazolyl, 1,3, 4-oxadi- azolyl, 1, 2, 3-thiadiazolyl, 1,2, 4-thiadiazolyl, 1,2, 5-thiadiazolyl, 1,3, 4-thiadiazolyl, tetrazolyl ; thiadiazinyl, indolyl, isoindolyl, benzofuryl, benzothienyl, indazolyl, benzimidazolyl, benzothi- azolyl, benzoisothiazolyl, benzoxazolyl, benzisoxazolyl, purinyl, quinazolinyl, quinolizinyl, quinolinyl,, isoquinolinyl, quinoxalinyl, naphthyridinyl, pteridinyl, carbazolyl, azepinyl, di- azepinyl, acridinyl and the like. Heteroaryl is also'intended to include the partially hydrogen- ated derivatives of the heterocyclic systems enumerated above. Non-limiting examples of such partially hydrogenated derivatives are 2, 3-dihydrobenzofuranyl, pyrrolinyl, pyrazolinyl, indanyl, indolinyl, oxazolidinyl, oxazolinyl, oxazepinyl and the like.

The term"heteroaryloxy"as used herein refers to the radical-O-heteroaryl, whereiri het- eroaryl is as defined above.

The term"heteroaroyl"as used herein refers to the radical-C (=O)-heteroaryl, wherein het- eroaryl is as defined above.

The term"heteroarylamino"as used herein refers to the radical-NH-heteroaryl, wherein het- eroaryl is as defined above.

Certain of the above defined terms may occur more than once in the structural formulae, and upon such occurrence each term shall be defined independently of the other.

"Aryl-CI-6-alkyl","aryl-Cl-6-alkoxy"etc. mean C16-alkyl or C16-alkoxy as defined above, sub- stituted by aryl as defined above, for example :

The term"optionally substituted"as used herein means that the groups in question are either unsubstituted or substituted with one or more of the substituents specified. When the groups in question are substituted with more than one substituent the substituents may be the same or different.

The term"treatment"as used herein means the management and care of a patient for the purpose of combating a disease, disorder or condition. The term is intended to include the delaying of the progression of the disease, disorder or condition, the alleviation or relief of symptoms and complications, and/or the cure or elimination of the disease, disorder or condi- tion. The patient to be treated is preferably a mammal, in particular a human being.

DESCRIPTION OF THE INVENTION The present invention relates to a compound of the general formula (I) :

wherein (i) R'represents # branched C4-8-alkyl, branched C48-alkenyl or branched C4-8-alkynyl, which may optionally be substituted with one or more halogen substituents, * C3-5-cycloalkyl, C3-7-cycloalkenyl, C3-6-cycloalkyl-C1-3-alkyl or C3-6-cycloalkenyl- CI-3-alkyl,

which may optionally be substituted in any position with one or more halogen sub- stituents, and A represents (ii) R'represents ethyl, n-propyl or isopropyl, and A represents Z and X independently represent-N=, -CH=, -CF= or-C (CF3) =, W represents-N= or-CR3=, Y represents-N= or-CR4=, R2a, R2b, R3, and R4 independently represent hydrogen, halogen, hydroxy, trifluoromethyl, trifluoromethoxy, C1-10-alkyl, C2-10-alkenyl, C3-8-cycloalkyl, C1-6-alkoxy, aryl-C1-6-alkyl, amino, C1-6-alkylamino, di- C16-alkylamino, C38-cycloalkyloxy, cyano, nitro, C1-6-alkylsulfanyl, C1-6-alkylsulfonyl or - C (=O) NR4aR4b, wherein R4a and R4b independently are hydrogen, C1-6-alkyl or aryl- C1-6-alkyl, # C2-10-alkanoyl, C4-9-cycloalkanoylm C3-8-heterocyclyl or C4-9-heterocycloalkanoyl,

which may optionally be substituted in any position with one or more substituents se- lected from aryl, heteroaryl, C3-8-cycloalkyl, halogen, trifluoromethyl, trifluoromethoxy and Cl-6-alkoxy, aryl, aryl-C16-alkyl, aryl-C16-alkoxy or heteroaryl, which may optionally be substituted with one or more substituents selected from halogen, hydroxy, trifluoromethyl, trifluoromethoxy, C1-6-alkoxy, C1-6-alkyl, amino, C1-6-alkylamino, di-C1-6-alkylamino, cyano, aryl, heteroaryl and C3-8-cycloalkyl, # aroyl, heteroaroyl, aryloxy, heteroaryloxy, arylamino or heteroarylamino, which may optionally be substituted with one or more substituents selected from aryl, heteroaryl, C1-10-alkyl, C3-8-cycloalkyl, halogen, trifluoromethyl, trifluoromethoxy C1-6-alkoxy, cyano, amino, C1-6-alkylamino, di-C16-alkylamino and hydroxy, 'or two of R2a, R2b, R3, and Win adjacent positions together form a C16-alkylene bridge, with the proviso that the compound must not be

as well as any diastereomer or enantiomer or tautomeric form thereof including mixtures of these or a pharmaceutically acceptable salt thereof.

In one embodiment, R'is branched C4-8-alkyl, C3-5-cycloalkyl or C3-6-cycloalkyl-C1-3-alkyl, which may optionally be substituted with one or more halogen substituents.

In another embodiment, R'is branched C4-8-alkyl, C3-5-cycloalkyl or C3-6-cycloalkyl- C1-3-alkyl.

In another embodiment, R'is 1, 1- (dimethyl) propyl, 1-ethylpropyl, cyclopropylmethyl, cyclo- propyl, cyclobutyl, cyclopentyl or 1-cyclopropyl-1-methylethyl.

In another embodiment, R1 is 1-ethylpropyl, cyclopropylmethyl, cyclopropyl or cyclopentyl.

In another embodiment, R'is branched C4-8-alkyl or C3-5-cycloalkyl, which may optionally be substituted with one or more halogen substituents.

In another embodiment, R'is branched C4-8-alkyl or C3-5-cycloalkyl.

In another embodiment, R'is 1-ethylpropyl, cyclopropyl or cyclopentyl.

In another embodiment, R'is isopropyl.

In another embodiment, A is

wherein R2a, R2b, R3 and R4 are as defined for formula (I)..

In another embodiment, A is wherein R2a, R3 and R4 are as defined for formula (I).

In another embodiment, A is wherein R2a, R3 and R4 are as defined for formula (I).

In another embodiment, A is wherein R2a, R2b, R3 and R4 are as defined for formula (I).

In another embodiment, R2a, R2b, R3 and R4 are independently selected from hydrogen, hydroxy, halogen, trifluoromethyl, trifluoromethoxy, C2-10-alkanoyl, C4-9- cycloalkanoyl or C4-9-heterocycloalkanoyl, or e-aikyt, aryl-C16-alkoxy or aroyl, which may optionally be substituted as defined for formula (I).

In another embodiment, R2a, R2b, R3 and R4 are independently selected from hydrogen, hydroxy, halogen, trifluoromethyl, trifluoromethoxy, C2-10-alkanoyl, C4-9- cycloalkanoyl or C4-9-heterocycloalkanoyl, # phenyl-C1-6-alkyl, phenyl-C1-6-alkoxy or benzoyl, which may optionally be substituted with one or two substituents selected from halo- gen and C1-6-alkoxy.

In another embodiment, R2a, R2b and R4 are hydrogen and R3 is different from hydrogen.

In another embodiment, R3 is halogen, trifluoromethyl or trifluoromethoxy.

In another embodiment, the invention relates to a compound of the general formula (11) : wherein A is as defined for formula (I) or in any one of the above embodiments.

In another embodiment, the invention relates to a compound of the general formula (12) : wherein A is as defined for formula (I) or in any one of the above embodiments.

In another embodiment, the invention relates of the general formula (I3) :

wherein R'is # branched C4-8-alkyl, branched C4-8-alkenyl or branched C4-8-alkynyl, which may optionally be substituted with one or more halogen substituents, o, C3-5-cycloalkyl, C3-7-cycloalkenyl, C36-cycloalkyl-C13-alkyl or C36-cycloalkenyl- C1-3-alkyl, which may optionally be substituted in any position with one or more halogen sub- stituents, # ethyl, n-propyl or isopropyl, R2a, R2b, R3 and R4 are as defined for formula (I).

In another embodiment the present invention relates to a compound selected from 4- (4-cyclopentylpiperazin-1-yl) phenol, 1-cyclopentyl-4- [4- (4-fluorobenzyloxy) phenyl] piperazine, 1- (3-chlorophenyl)-4-cyclopentylpiperazine, 1- [4- (4-cyclopentylpiperazin-1-yl) phenyl] ethanone, 1-(3,4-dichlorophenyl)-4-(1-ethylpropyl) piperazine, {4- [4- (1-ethylpropyl) piperazin-1-yl] phenyl} phenylmethanone, 1- (4-benzylphenyl)-4- (1-ethylpropyl) piperazine, cyclopropyl-{4-[4-(1-ethylpropyl)piperazin-1-yl]phenyl} methanone, (2-chlorophenyl)-{4-[-4-(1-ethylpropyl)piperazin-1-yl]phenyl } methanone, {4-[4-(1-Ethylpropyl)piperazin--1yl]phenyl}-(4-fluorophenyl) methanone, 1-cyclopentyl-4- (6-trifluoromethylpyridin-2-yl) piperazine, 1-cyclopentyl-4- (5-trifluoromethylpyridin-2-yl) piperazine,

1-cyclopentyl-4- (3-trifluoromethylpyridin-2-yl) piperazine,<BR> <BR> <BR> <BR> 2- [4- (1-ethylpropyl) piperazin-1-yl] quinoline,<BR> <BR> <BR> <BR> 7-chloro-4- [4- (1-ethylpropyl) piperazin-1-yl] quinoline, [4- (4-cyclopentylpiperazin-1-yl) phenyl]- (3, 4-dimethoxyphenyl) methanone, <BR> <BR> <BR> [4- (4-cyclopentylpiperazin-1-yl)-3, 5-difluorophenyl] phenylmethanone,<BR> <BR> <BR> <BR> 2- (4-cyclopentylpiperazin-1-yl) quinoxaline,<BR> <BR> <BR> <BR> 2- (4-cyclopropylmethylpiperazin-1-yl) quinoxaline,<BR> <BR> <BR> <BR> [6- (4-cyclopentylpiperazin-1-yl) pyridin-3-yl] piperidin-1-ylmethanone,<BR> <BR> <BR> <BR> 2- (4-cyclopentylpiperazin-1-yl) quinoline,<BR> <BR> <BR> <BR> 2- (4-cyclopentylpiperazin-1-yl)-7-methoxy-3- (4-methoxyphenyl) quinoline, {6-[4-(1-cyclopropyl-1-methylethyl)piperazin-1-yl]pyridin-3- yl}phenylmethanone, {4-[4-(1-cyclopropyl-1-methylethyl)piperazin-1-yl]-3,5-diflu orophenyl}phenylmethanone, {4-[4-(1-cyclopropyl-1-methylethyl)piperazin-1-yl-3,5-difluo rophenyl}phenylmethanol [4- (4-cyclopropylmethylpiperazin-1-yl)-3, 5-difluorophenyl]- (4-fluorophenyl) methanone, {4-[4-(1-ethylpropyl)piperazin-1-yl]-3,5-difluorophenyl}-(4- fluorophenyl)methanone, 2-[4-(1-ethylpropyl)piperazin-1-yl]-6,7-dimethoxyquinoline, <BR> <BR> <BR> 2- [4- (1-ethylpropyl) piperazin-1-yl]-4-trifluoromethylquinoline,<BR> <BR> <BR> <BR> 2- (4-cyclopropylmethylpiperazin-1-yl)-6-methoxy-4-trifluoromet hylquinoline,<BR> <BR> <BR> <BR> [4- (4-cyclopropylmethylpiperazin-1-yl)-3, 5-difluorophenyl] phenylmethanone,<BR> <BR> <BR> <BR> [4- (4-cyclopropylmethylpiperazin-1-yl)-3, 5-difluorophenyl]- (3-fluoro-4-methoxyphenyl)- methanone, {6-[4-(1-ethylpropyl)piperazin-1-ylpyridin-3-yl}phenylmethan one, {2-[4-(1-ethylpropyl)piperazin-1-ylpyridin-3-yl}phenylmethan one, {4- [4- (1-ethylpropyl) piperazin-1-yl] phenyl}- (4-hydroxyphenyl) methanone, {6-[4-(1-ethylpropyl)piperazin-1-ylpyridin-3-yl}piperidin-1- yl-methanone, N-benzyl-6- [4- (1-ethylpropyl) piperazin-1-yl]-N-methylnicotinamide, 2-[4-(1-ethylpropyl)piperazin-1-yl]-6-methoxyquinolinem, 6- [4- (1-ethylpropyl) piperazin-1-yf]-N-methyl-N-phenylnicotinamide, {6- [4- (1-ethylpropyl) piperazin-1-yl] pyridin-3-yl}- (4-fluorophenyl) methanone, 2-[4-(1-ethylpropyl)piperazin-1-yl]-4-methylquinoline, 2-[4-(1-ethylpropyl)piperazin--1yl]-5, 6,7, 8-tetrahydroquinoline, 2- (4-cyclopropylmethylpiperazin-1-yl)-6-methoxyquinoline, 2-(4-isopropylpiperazin-1-yl)-6-methoxyquinoline, <BR> <BR> <BR> 2- [4- (l-ethylpropyl) piperazin-1-yi]-6-fluoro-4-methylquinoline,<BR> <BR> <BR> <BR> 2- (4-cyclopropylpiperazin-1-yl)-6-trifluoromethylquinoline,

2- (4-cyclopropylpiperazin-1-yl)-6-propylquinoline, 2- (4-ethylpiperazin-1-yl) quinoline, as well as any diastereomer or enantiomer or tautomeric form thereof including mixtures of these or a pharmaceutically acceptable salt thereof.

In another aspect the present invention relates to a compound of the general formula (I") : wherein R'represents branched C43-alkyl, branched C43-alkenyl or branched C4-8-alkynyl, which may optionally be substituted with one or more halogen substituents, # C3-5-cycloalkyl, C3-7-cycloalkenyl, C3-6-cycloalkyl-C1-3-alkyl or C3-6-cycloalkenyl- C1-3-alkyl, which may optionally be substituted with one or more halogen substituents, A represents Z and X independently represent-N=,-CH=,-CF= or-C (CF3) =, W represents-N= or-CR3=, Y represents-N= or-CR4=, R2, R3, and R4 independently represent

hydrogen, halogen, hydroxy, trifluoromethyl, trifluoromethoxy, C1-10-alkyl, C2-10-alkenyl, C33-cycloalkyl, C1-6-alkoxy, aryl-C1-6-alkyl, amino, C16-alkylamino, di- C1-6-alkylamino, C3-8-cycloalkoxy or cyano, or # C210-alkanoyl or C4-9-cycloalkianoyl, which may optionally be substituted with one or more substituents selected from aryl, heteroaryl, C33-cycloalkyl, halogen, trifluoromethyl, trifluoromethoxy and C16-alkoxy, aryl, aryl-C1-6-alkyl, aryl-C1-6-alkoxy or heteroaryl, which may optionally be substituted with one or more substituents selected from halogen, hydroxy, trifluoromethyl, trifluoromethoxy, C1-6-alkoxy, C1-6-alkyl, amino, C1-6-alkylamino, di-C1-6-alkylamino, cyano, aryl, heteroaryl and C3-8-cycloalkyl, or # aroyl, heteroaroyl, aryloxy, heteroaryloxy, arylamino or heteroarylamino, which may optionally be substituted with one or more substituents selected from aryl, heteroaryl, C1-10-alkyl, C3-8-cycloalkyl, halogen, trifluoromethyl, trifluoromethoxy, C16-alkoxy, cyano, amino, C1-6-alkylamino, di-C16-alkylamino and hydroxy, with the proviso that the compound must not be

as well as any diastereomer or enantiomer or tautomeric form thereof including mixtures of these or a pharmaceutically acceptable salt thereof.

In one embodiment R1 is branched C44-alkyl, C35-cycloalkyl or C3-6-cycloalkyl-C1-3-alkyl, which may optionally be substituted with one or more halogen substituents.

In another embodiment R'is branched C48-alkyl, C35-cycloalkyl or C3-6-cycloalkyl-C1-3-alkyl, such as 1, 1-(dimethyl) propyl, 1-ethylpropyl, cyclopropylmethyl, cyclopropyl, cyclobutyl or cyclopentyl, eg 1-ethylpropyl, cyclopropylmethyl or cyclopentyl.

In yet another embodiment R1 is branched C48-alkyl or C35-cycloalkyl, which may optionally be substituted with one or more halogen substituents, such as branched C4-8-alkyl or C35-cycloalkyl, eg 1-ethylpropyl or cyclopentyl.

In a further embodiment A is wherein R2, R3 ad R4 are as defined for formula (1").

In another embodiment A is

wherein R2, R3 and R4 are as defined for formula (I").

In a further embodiment A is wherein R2, R3 and R4 are as defined for formula (I").

In one embodiment R2, R3 and R4 are independently selected from hydrogen, hydroxy, halogen, trifluoromethyl, C2-10-alkanoyl or C4-9-cycloalkanoyl, or # aryl-C1-6-alkyl, aryl-C1-6-alkoxy or aroyl, which may optionally be substituted as defined for formula (I").

In another embodiment R2, R3 and R4 are independently selected from # hydrogen, hydroxy, halogen, trifluoromethyl, C2-10-alkanoyl or C4-9-cycloalkanoyl, # phenyl-C1-6-alkyl, phenyl-C1-6-alkoxy or benzoyl, which may optionally be substituted with one or two substituents selected from halo- gen and C1-6-alkoxy.

In still another embodiment R2 and R4 are both hydrogen and R3 is different from hydrogen.

In yet another embodiment the invention relates to a compound of the general formula (11) :

wherein A is as defined for formula (I") or in any one of the above embodiments.

In still another embodiment the invention relates to a compound of the general formula (I2) :

wherein A is as defined for formula (I") or in any one of the above embodiments.

Accordingly, in another aspect the present invention relates to a compound of the general. formula (I) as well as any diastereomer or enantiomer or tautomeric form thereof including mixtures of these or a pharmaceutically acceptable salt thereof for use as a pharmaceutical composition.

The invention also relates to pharmaceutical compositions comprising, as an active ingredi- ent, at least one compound of the formula (I) or any diastereomer or enantiomer or tautomeric form thereof including mixtures of these or a pharmaceutically acceptable salt thereof together with one or more pharmaceutically acceptable carriers or diluents.

Furthermore, the invention relates to the use of a compound of the general formula (I') : wherein R'represents C18-alkyl, C2-3-alkenyl or C28-alkynyl, which may optionally be substituted with one or more halogen substituents,

# C3-5-cycllalkyl, C3-7-cycloalkenyl, C3-6-cycloalkyl-C1-3-alkyl or C3-6-cycloalkenyl- C1-3-alkyl, which may optionally be substituted with one or more halogen substituents, A represents Z and X independently represent-N=, -CH=, -CF= or-C (CF3) =, W represents-N= or -CR3=, Y represents-N= or-CR4=, R2a, R2b, R3, and R4 independently represent hydrogen, halogen, hydroxy, trifluoromethylm trifluoromethoxy, C1-10-alkyl, C2-10-alkenyl, C3-8-cycloalkyl, C1-6-alkoxy, aryl-C1-6-alkoxy, amino, Cl-6-alkylamino, di- C16-alkylamino, C38-cycloalkyloxy, cyano, nitro, C1-6-alkylsulfanyl, C1-6-alkylsulfonyl, or-C (=O) NR4aR4b, wherein R4a and R4b independently are hydrogen, Cl-6-alkyl or aryl- C16-alkyl, or C210-alkanoyl, C49-cycloalkanoyl, C38-heterocyclyl or C49-heterocycloalkanoyl, which may optionally be substituted in any position with one or more substituents se- lected from aryl, heteroaryl, C3-8-cycloalkyl, halogen, trifluoromethyl, trifluoromethoxy and C16-alkoxy, aryl, aryl-C1-6-alkyl, aryl-C1-6-alkoxy or heteroaryl, which may optionally be substituted with one or more substituents selected from halogen, hydroxy, trifluoromethyl, trifluoromethoxy, Cl-6-alkoxy, Cl-6-alkyl, amino, C1-6-alkylamino, di-C1-6-alkylamino, cyano, aryl, heteroaryl and C38-cycloalkyl, or

aroyl, heteroaroyl, aryloxy, heteroaryloxy, arylamino or heteroarylamino, which may optionally be substituted with one or more substituents selected from aryl, heteroaryl, C1-10-alkyl, C3-8-cycloalkyl, halogen, trifluoromethyl, trifluoromethoxy, C1-6-alkoxy, cyano, amino, C1-6-alkylamino, di-C1-6-alkylamino and hydroxy, # or two of R2a, R2b, R3, and R4 in adjacent positions together form a C16-alkylene bridge, as well as any diastereomer or enantiomer or tautomeric form thereof including mixtures of these or a pharmaceutically acceptable salt thereof for the preparation of a pharmaceutical composition for the treatment of disorders and diseases related to the histamine H3 receptor.

In another aspect the invention provides a compound of the general formula (ll) : wherein R2 is hydrogen or C1-4-alkyl, (i) R'represents # branched C4-6-alkyl, branched C46-alkenyl or branched C4-6-alkynyl with the proviso that R'is not isobutyl, # C35-cycloalkyl, C37-cycloalkenyl, C36-cycloalkyl-C13-alkyl or G3 6- cycloalkenyl-C1 3-alkyl, # R'and R2 together form a C3-6-alkylene bridge, and A represents

or (ii) R1 represents # ethyl, n-propyl or isopropyl, # R'and R2 together form a C38-alkylene bridge, and A represents R3 is hydrogen, halogen, hydroxy, trifluoromethyl, trifluoromethoxy, C1-10-alkyl, C2-10-alkenyl, C38-cycloalkyl, C16-alkoxy, aryl, aryl-C16-alkyl, amino, C1-6-alkylamino, di-C1-6-alkylamino, C3. 8-cycloalkyl, C38-cycloalkyloxy, cyano, nitro, C1-6-alkylsulfanyl, or C1-6-alkylsulfonyl, Z and X independently represent-N=, -C (H) =, -C (F) =,-C (Cl) =, -C (CN) = or-C (CF3) =, W represents-N= or-C (R10) =, Y represents-N= or-C (R11) =, R4, R5, R6, R7, R8, R9R10, R11, R12 and R13 independently represent # hydrogen, halogen, hydroxy, trifluoromethyl, trifluoromethoxy,-SCF3, amino, cyano, nitro, or-C (=O) NR14R15 # C1-10-alkyl, C2-10-akenyl, C3-8-cycloalkyl, C1-6-alkoxy, C3-8-cycloalkyl-C1-6-alkoxy, C1-6-alkylamino, di-C1-6-alkylamino, C3-8-cycloalkyloxy, C1-6-alkylsulfanyl, C1-6- alkylsulfonyl, C2-10-alkanoyl, C4-9-cycloalkanoyl, C3-8-heterocyclyl or C4-9- heterocycloalkanoyl, C49-heterocycloalkoxy, which may optionally be substituted with one or more substituents selected from R 16

# aryl, aryl-C1-6-alkyl, aryl-C1-6-alkoxy or heteroaryl, which may optionally be substi- tuted with one or more substituents selected from R17, # aroyl, heteroaroyl, aryloxy, heteroaryloxy, arylamino or heteroarylamino, which may optionally be substituted with one or more substituents selected from R'8, # or two of R5, R10 R11 R8, R9, R10, R11, R12 and R13 in adjacent positions together form a C16-alkylene bridge or an -O-C1-6-alkylene-O-bridge, R14 and R15 are independently hydrogen, C1-6-alkyl, aryl-C1-6-alkyl or R'4 and R15 may to- gether form a C36-alkylene bridge R16 is independently selected from aryl, heteroaryl, C3-8-cycloalkyl, halogen, trifluoromethyl, trifluoromethoxy, NR19R20 and C1-6-alkoxy, R17 is independently sslected from halogen, hydroxy, trifluoromethyl, trifluoromethoxy, C1-6- alkoxy, C1-6-alkyl, amino, C1-6-alkylsulfonyl, C1-6-alkylamino, di-C1-6-alkylamino, cyano, aryl, heteroaryl and C3-8-cycloalkyl, R'8 is independently selected from aryl, heteroaryl, C1-10-alkyl, C3-8-cycloalkyl, halogen, trifluoromethyl, trifluoromethoxy, Cl-6-alkoxy, cyano, amino, C1-6-alkylamino, di- C16-alkylamino and hydroxy, R19 and R20 are independently hydrogen or C1-6-alkyl, R19 and R20 may together form a C3-6 alkylene-bridge with the proviso that the compound must not be

as well as any diastereomer or enantiomer or tautomeric form thereof including mixtures of these or a pharmaceutical acceptable salt thereof.

In another aspect of the invention R1 is branched C46-alkyl, C35-cycloalkyl or C36-cycloalkyl- C1-3-alkyl with the proviso that R'is not isobutyl.

In another aspect of the invention R'is 1, 1- (dimethyl) propyl, 1-ethylpropyl, cyclopropyl- methyl, cyclopropyl, cyclobutyl, cyclopentyl or 1-cyclopropyl-1-methylethyl.

In another aspect of the invention R'is 1-ethylpropyl, cyclopropylmethyl, cyclopropyl or cyclopentyl.

In another aspect of the invention R1 is branched C4-6-alkyl or C35-cycloalkyl with the proviso that R'is not isobutyl.

In another aspect of the invention R'is 1-ethylpropyl, cyclopropyl or cyclopentyl.

In another aspect of the invention Z is-C (H) =, -N=, or-C (F) =.

In another aspect of the invention Z is-C (H) = or-N=.

In another aspect of the invention Z is-C (H) =.

In another aspect of the invention Z is-N=.

In another aspect of the invention X is-C (H) =, -N=, or-C (F) =.

In another aspect of the invention Z is-C (H) = or-N=.

In another aspect of the invention Z is-C (H) =.

In another aspect of the invention Z is-N=.

In another aspect of the invention W is-N=.

In another aspect of the invention W is-C (R10)=.

In another aspect of the invention Y is-N=.

In another aspect of the invention Y is-C (R11) =.

In another aspect of the invention R2 is hydrogen.

In another aspect of the invention R2 is C1. 4-alkyl.

In another aspect of the invention R2 is methyl or ethyl.

In another aspect the invention provides compounds of the general formula (III) wherein A and R3 are as defined for compounds of general formula (II)

In another aspect of the invention R3 is hydrogen, halogen, hydroxy, trifluoromethyl, trifluoromethoxy, C1-10-alkyl, C1-6-alkoxy, aryl, aryl-C1-6-alkyl, amino, C3-8-cycloalkyl, C3-8-cycloalkyloxy, cyano or nitro.

In another aspect of the invention R3 is hydrogen, halogen, hydroxy, trifluoromethyl, C1-10-alkyl, C1-6-alkoxy, cyano or nitro.

In another aspect of the invention R3 is hydrogen, halogen, hydroxy, trifluoromethyl, C1-6-alkyl, or cyano.

In another aspect of the invention R3 is hydrogen, halogen, or C16-alkyl.

In another aspect of the invention R3 is hydrogen or methyl.

In another aspect of the invention R4, R5, R6, R7, R8, and R9 independently represent *hydrogen, halogen, hydroxy, trifluoromethyl, trifluoromethoxy,-SCF3, amino, or cyano, #C1-10-alkyl, C3-8-cycloalkyl, C1-6-alkoxy, C3-8-cycloalkyloxy, C2-10-alkanoyl, C4-9- cycloalkanoyl, C38-heterocyclyl or C49-heterocycloalkanoyl, which may optionally be substituted with one or more substituents selected from R16 # aryl, aryl-C1-6-alkyl, aryl-C1-6-alkoxy or heteroaryl, which may optionally be substi- tuted with one or more substituents selected from R17, earoyl, heteroaroyl, aryloxy, heteroaryloxy, which may optionally be substituted with one or more substituents selected from R18, or two of R5, R6, R7, R8, R9 in adjacent positions together form a C16-alkylene bridge or an- O-C1-6-alkylene-O- bridge.

In another aspect of the invention R4, R5, R6, R7, R8, and R9 independently represent # hydrogen, halogen, hydroxy, trifluoromethyl, trifluoromethoxy,-SCF3, or cyano,

# C1-10-alkyl, C16-alkoxy, C38-cycloalkyloxy, which may optionally be substituted with one or more substituents selected from R16 Aryl or aryl-C16-alkyl, which may optionally be substituted with one or more sub- stituents selected from R17, *Aroyl or aryloxy, which may optionally be substituted with one or more substituents selected from R18M, or two of R5, R6, R7, R8, R9 in adjacent positions together form a C16-alkylene bridge or an- O-C1-6-alkylene-O-bridge.

In another aspect of the invention R4, R5, R6, R7, R8, and R9 independently represent # hydrogen, halogen, or cyano, # C1-10-alkyl or C1-6-alkoxy which may optionally be substituted with one or more sub- stituents selected from R15 *Aryl optionally substituted with one or more substituents selected from R17, # Aroyl or aryloxy, which may optionally be substituted with one or more substituents selected from R18, or two of R5, R6, R7, R8, R9 in adjacent positions together form a C16-alkylene bridge or an- O-C1-6-alkylene-O-bridge.

In another aspect of the invention R4, R5, E6, R7, R8, and R9 independently represent hydrogen, halogen, or cyano, # methyl, ethyl, propyl, isopropyl or C16-alkoxy which may optionally be substituted with one or more substituents selected from R16 *Aryl optionally substituted with one or more substituents selected from R'7,

*Aroyl or aryloxy, which may optionally be substituted with one or more substituents selected from R'8, or two of R5, R6, R7, R8, R9 in adjacent positions together form a C1-6-alkylene bridge or an- O-C1-6-alkylene-O-bridge.

In another aspect of the invention R4, R5, R6, R7, R8, and R9 independently represent #hydrogen, halogen, or cyano, # C1-10-alkyl, methoxy, ethoxy or propoxy which may optionally be substituted with one or more substituents selected from R16 Aryl optionally substituted with one or more substituents selected from R17, # Aroyl or aryloxy, which may optionally be substituted with one or more substituents selected from R18, or two of R5, R6, R7, R8, R9 in adjacent positions together form a C16-alkylene bridge or an- O-C6-alkylene-O-bridge.

In another aspect of the invention R4, R5, R6, R7, R8, and R9 independently represent hydrogen, halogen, or cyano, #C1-10-alkyl or methoxy which may optionally be substituted with one or more sub- stituents selected from R16 Aryl optionally substituted with one or more substituents selected from R17.

# Aroyl or aryloxy, which may optionally be substituted with one or more substituents selected from R, or two of R5, R6, R7, R8, R9 in adjacent positions together form a C1-6-alkylene bridge or an- O-C1-6-alkylene-O-bridge.

In another aspect of the invention R4, R5, R6, R7, R8, and R9 independently represent

# hydrogen, halogen, or cyano, C1-10-alkyl or C16-alkoxy which may optionally be substituted with one or more sub- stituents selected from R16 phenyl optionally substituted with one or more substituents selected from R17, #Aroyl or aryloxy, which may optionally be substituted with one or more substituents selected from R'8, or two of R5, R6, R7, R8, R9 in adjacent positions together form a C1-6-alkylene bridge or an- O-C1-6-alkylene-O-bridge.

In another aspect of the invention R4, R5, R6, R7, R8, and R9 independently represent *hydrogen, halogen, or cyano, #C1-10-alkyl or C16-alkoxy which may optionally be substituted with one or more sub- stituents selected from R16 Aryl optionally substituted with one or more substituents selected from R17, #-C (=O)-phenyl or aryloxy, which may optionally be substituted with one or more substituents selected from R, or two of R5, R6, R7, R8, R9 in adjacent positions together form a C1-6-alkylene bridge or an- O-C1-6-alkylene-O-bridge.

In another aspect of the invention R4, R5, R6,R7,R8, and R9 independently represent hydrogen, halogen, or cyano, # C1-10-alkyl or C, 6-alkoxy which may optionally be substituted with one or more sub- stituents selected from R16 *Aryl optionally substituted with one or more substituents selected from R'7,

Aroyl or-O-phenyl, which may optionally be substituted with one or more substitu- ents selected from R'8, or two of R5, R6, R7, R8, R9 in adjacent positions together form a C16-alkylene bridge or an- O-C1-6-alkylene-O-brige.

In another aspect of the invention R'is ethyl or isopropyl.

In another aspect of the invention R'is isopropyl.

In another aspect of the invention R'is ethyl In another aspect of the invention R1 and R2 together form a C34-alkylene bridge.

In another aspect of the invention R10, R11, R12 and R13 independently represent hydrogen, halogen, hydroxy, trifluoromethyl, trifluoromethoxy, cyano, or -C(=O)NR14R15 #C1-10-alkyl, C3-8-cycloalkyl, C1-6-alkoxy, C2-10-alkanoyl, C4-9-cycloalkanoyl, C3-8- heterocyclyl or C49-heterocycloalkanoyl, C49-heterocycloalkoxy, which may optionally be substituted with one or more substituents selected from R16 # aryl, aryl-C1-6-alkyl, aryl-C1-6-alkoxy or heteroaryl, which may optionally be substi- tuted with one or more substituents selected from R17, aryl optionally substituted with one or more substituents selected from R18, or two of R10, R'1, R12 and R13 in adjacent positions together form a C16-alkylene bridge.

In another aspect of the invention R10, R11, R12 an d R13 independently represent hydrogen, halogen, hydroxy, trifluoromethyl, trifluoromethoxy, cyano, or -C(=O)NR14R15

#C1-10-alkyl, C3-8-cycloalkyl, C1-6-alkoxy, C2-10-alkanoyl, C4-9-cycloalkanoyl, C3-8- heterocyclyl or C49-heterocycloalkanoyl, C49-heterocycloalkoxy, which may optionally be substituted with one or more substituents selected from R16 #arl, aryl-C1-6-alkyl, ary-C1-6-alkoxy or heteroaryl, which may optionally be substi- tuted with one or more substituents selected from R17, # aroyl optionally substituted with one or more substituents selected from R18, or two of R10 R11, R12and R13 in adjacent positions together form a C16-alkylene bridge.

In another aspect of the invention R10, R11, R12 and R13 independently represent hydrogen, halogen, trifluoromethyl, or-C (=O) NR14R15 # C1-10-alkyl, C1-6-alkoxy, C2-10-alkanoyl, C4-9-cycloalkanoyl, C4-9-heterocycloalkanoyl or C49-heterocycloalkoxy, which may optionally be substituted with one or more sub- stituents selected from R15 #aryl, aryl-C1-6-alkyl, or aryl-C1-6-alkoxy, which may optionally be substituted with one or more substituents selected from R, *aroyl optionally substituted with one or more substituents selected from R'8, or two of R10, R11, R12 and R13 in adjacent positions together form a C16-alkylene bridge.

In another aspect of the invention R10, R", R12 and R13 independently represent # hydrogen halogen, trifluoromethyl, or-C (=O) NR14R15 #C1-10-alkyl or C49-heterocycloalkanoyl, which may optionally be substituted with one or more substituents selected from R16 aryl optionally substituted with one or more substituents selected from R17,

aroyl optionally substituted with one or more substituents selected from R18, or two of R10, R11, R12 and R13 in adjacent positions together form a C1-6-alkylene bridge.

In another aspect of the invention R10, R11, R'2 and R13 independently represent # hydrogen, halogen, trifluoromethyl, or-C (=O) NR14R15 #methyl, ethyl# propyl or C49-heterocycloalkanoyl, which may optionally be substi- tuted with one or more substituents selected from R16 aryl optionally substituted with one or more substituents selected from R, 7, #aroyl optionally substituted with one or more substituents selected from R18, or two of R10, R11, R12 and R13 in adjacent positions together form a C1-6-alkylene bridge.

In another aspect of the invention R10, R11, R12 and R13 independently represent #hydrogen, halogen, trifluoromethyl, or-C (=O) NR14R'5 # C1-10-alkyl, piperidin-alkanoyl or pyrrolidin-alkanoyl, which may optionally be substi- tuted with one or more substituents selected from R16 aryl optionally substituted with one or more substituents selected from R'7, aryl optionally substituted with one or more substituents selected from R18, or two of R10, R", R12 and R13 in adjacent positions together form a C1-6-alkylene bridge.

In another aspect of the invention R10, R11, R'2 and R13 independently represent #hydrogen, halogen, trifluoromethyl, or-C (=O) NR14R15

# C1-10-alkyl or C49-heterocycloalkanoyl, which may optionally be substituted with one or more substituents selected from R16 Phenyl optionally substituted with one or more substituents selected from R17, aroyl optionally substituted with one or more substituents selected from R18, or two of R'°, R'1, R12 and R13 in adjacent positions together form a C16-alkylene bridge.

In another aspect of the invention R14 and R15 are independently methyl, ethyl or benzyl.

In another aspect of the invention R15 is halogen, trifluoromethyl, trifluoromethoxy and Ci. e- alkoxy.

In another aspect of the invention R17 is halogen, hydroxy, trifluoromethyl, C1-6-alkoxy, C1-6-alkyl, C1-6-alkylsulfonyl, or cyano.

In another aspect of the invention R17 is halogen, trifluoromethyl, C16-alkoxy or Cul-6- ,. alkylsulfonyl.

In another aspect of the invention R18 is C1-10-alkyl, halogen, trifluoromethyl, C1-6-alkoxy, cyano, amino and hydroxy.

In another aspect of the invention R18 is halogen, C1. 6-alkoxy and hydroxy.

In another aspect the invention provides the use of a compound according to formula (II) or (III) as a pharmaceutical composition. The pharmaceutical composition may in another as- pect of the invention comprise, as an active ingredient, at least one compound according to formula (II) or (III) together with one or more pharmaceutically acceptable carriers or excipi- ents. In another aspect the invention provides such a pharmaceutical composition in unit dosage form, comprising from about 0.05 mg to about 1000 mg, preferably from about 0.1 mg to about 500 mg and especially preferred from about 0.5 mg to about 200 mg of the com- pound according to formula (II) or (III) In another aspect the invention provides the use of a compound of the general formula (Il') :

wherein R2 is hydrogen or C14-alkyl, R'represents # C1-8-alkyl, C2-8-alkenyl or C28-alkynyl, which may optionally be substituted with one or more halogen substituents, C35-cycloalkyl, C37-cycloalkenyl, C36-cycloalky !-C13-alkyl or C36-cycloalkenyl- C13-alkyl, which may optionally be substituted with one or more halogen substituents, # R1 and R2 together form a C3-6-akylene bridge A represents R3 is hydrogen, halogen, hydroxy, trifluoromethyl, trifluoromethoxy, C1-10-alkyl, C2-10-alkenyl, C3-8-cycloalkyl, C1-6-alkoxy, aryl, ary-C1-6-alkyl, amino, C1-6-alkylamino, di-C1-6-alkylamino, C3-8-cycloalkyl, C3-8-cycloalkyloxy, cyano, nitro, C1-6-alkylsulfanyl, or C1-6-alkylsulfonyl, Z and X independently represent-N=, -C (H) =, -C (F) =,-C (CI) =, -C (CN) = or-C (CF3) =, W represents-N= or-C (R10)=, Y represents-N= or-C (R11) =, R4, R5, R6, R7, R8, R9R10, R11, R12 and R13 independently represent

hydrogen, halogen, hydroxy, trifluoromethyl, trifluoromethoxy,-SCF3, amino, cyano, nitro, or-C (=O) NR14R15 #C1-10-alkyl, C2-1-alkenyl, C3-8-cycloalkyl, C1-6-alkoxy, C3-8-cycloalkyl-C1-6-alkoxy, C1-6-alkylamino, di-C1-6-alkylamino, C3-8-cycloalkyloxy, C1-6-alkylsulfanyl, C1-6- alkylsulfonyl, C2-1-alkanoyl, C4-9-cycloalkanoyl, C3-8-heterocyclyl or C49- heterocycloalkanoyl, C49-heterocycloalkoxy, which may optionally be substituted with one or more substituents selected from R16 #aryl, aryl-C1-6-alkyl, aryl-C1-6-alkoxy or heteroaryl, which may optionally be substi- tuted with one or more substituents selected from R17, aroyl, heteroaroyl, aryloxy, heteroaryloxy, arylamino or heteroarylamino, which may optionally be substituted with one or more substituents selected from R'8, #or two of R5, R6, R7, R8, R9, R10, R11, R12 and R13 in adjacent positions together form a C16-alkylene bridge or an-O-C16-alkylene-O-bridge, R14 and R15 are independently hydrogen, C1-6-alkyl, aryl-C1-6-alkyl or R14 and R15 may to- gether form a C36-alkylene bridge R16 is independently selected from aryl, heteroaryl, C3-8-cycloalkylk halogen, trifluoromethyl, trifluoromethoxy, NR'9R2° and C1-6-alkoxy, R17 is independently selected from halogen, hydroxy, trifluoromethyl, trifluoromethoxy, C1-6- alkoxy, C1-6-alkyl, amino, C1-6-alkylsulfonyl, C1-6-alkylamino, di-C1-6-alkylamino, cyano, aryl, heteroaryl and C3-8-cycloalkyl, R'8 is independently selected from aryl, heteroaryl, C1-10-alkyl, C3-8-cycloalkyl, halogen, trifluoromethyl, trifluoromethoxy, C1-6-alkoxy, cyano, amino, C1-6-alkylamino, di- C16-alkylamino and hydroxy, R'9 and R20 are independently hydrogen or C1-6-alkyl, R19 and R20 may together form a C34-alkylene bridge,

as well as any diastereomer or enantiomer or tautomeric form thereof including mixtures of these or a pharmaceutical acceptable salt thereof for the preparation of a pharmaceutical composition for the treatment of disorders and diseases related to the histamine H3 receptor.

In another aspect the invention provides the use of a compound of the general formula (II') as defined above for the preparation of a pharmaceutical composition for the treatment of diseases and disorders in which an inhibition of the H3 histamine receptor has a beneficial effect.

In another aspect the invention provides the use of a compound of the general formula (II') as defined above for the preparation of a pharmaceutical composition having histamine H3 antagonistic activity or histamine H3 inverse agonistic activity.

In another aspect the invention provides the use of a compound of the general formula (II') as defined above for the preparation of a pharmaceutical composition for the reduction of weight.

In another aspect the invention provides the use of a compound of the general formula (II') as defined above for the preparation of a pharmaceutical composition for the treatment of overweight or obesity.

In another aspect the invention provides the use of a compound of the general formula (II') as defined above for the preparation of a pharmaceutical composition for the suppression of appetite or for satiety induction.

In another aspect the invention provides the use of a compound of the general formula (II') as defined above for the preparation of a pharmaceutical composition for the prevention and/or treatment of disorders and diseases related to overweight or obesity.

In another aspect the invention provides the use of a compound of the general formula (II') as defined above for the preparation of a pharmaceutical composition for the prevention and/or treatment of eating disorders such as bulimia and binge eating.

In another aspect the invention provides the use of a compound of the general formula (II') as defined above for the preparation of a pharmaceutical composition for the treatment of IGT.

In another aspect the invention provides the use of a compound of the general formula (II') as defined above for the preparation of a pharmaceutical composition for the treatment of type 2 diabetes.

In another aspect the invention provides the use of a compound of the general formula. (il') as defined above for the preparation of a pharmaceutical composition for the delaying or pre- vention of the progression from IGT to type 2 diabetes.

In another aspect the invention provides the use of a compound of the general formula (II') as defined above for the preparation of a pharmaceutical composition for the delaying or pre- vention of the progression from non-insulin requiring type 2 diabetes to insulin requiring type 2 diabetes.

In another aspect the invention provides the use of a compound of the general formula (II') as defined above for the preparation of a pharmaceutical composition for the treatment of diseases and disorders in which a stimulation of the H3 histamine receptor has a beneficial effect.

In another aspect the invention provides the use of a compound of the general formula (II') as defined above for the preparation of a pharmaceutical composition having histamine H3 agonistic activity.

In another aspect the invention provides the use of a compound of the general formula (II') as defined above for the preparation of a pharmaceutical composition for the treatment of allergic rhinitis, ulcer or anorexia.

In another aspect the invention provides the use of a compound of the general formula (II') as defined above for the preparation of a pharmaceutical composition for the treatment of Alzheimer's disease, narcolepsy or attention deficit disorders.

In another aspect the invention provides a method for the treatment of disorders or diseases related to the H3 histamine receptor the method comprising administering to a subject in need thereof an effective amount of a compound of the general formula (II') as defined above or a pharmaceutical composition comprising such a compound.

In another aspect the invention provides a method for the treatment of disorders or diseases related to the H3 histamine receptor wherein the effective amount of the compound of the general formula (II') as defined above is in the range of from about 0.05 mg to about 2000 mg, preferably from about 0.1 mg to about 1000 mg and especially preferred from about 0.5 mg to about 500 mg per day.

In still another aspect, the invention relates to a method for the treatment of diseases and disorders related to the histamine H3 receptor the method comprising administering to a sub- ject in need thereof an effective amount of a compound of the formula (I) or any diastereomer- or enantiomer or tautomeric form thereof including mixtures of these or a pharmaceutical acceptable salt thereof or a pharmaceutical composition comprising the same.

In one aspect the invention relates to compounds with histamine H3 receptor antagonistic activity or inverse agonistic activity which may accordingly be useful in the treatment of a wide range of conditions and disorders in which histamine H3 receptor blockade is beneficial.

In another aspect the invention relates-to compounds with histamine H3 receptor agonistic activity and which may accordingly be useful in the treatment of a wide range of conditions and disorders in which histamine H3 receptor activation is beneficial.

In a preferred embodiment of the invention the present compounds are used for the prepara- tion of a pharmaceutical composition for the reduction of weight.

In a preferred embodiment of the invention the present compounds are used for the prepara- tion of a pharmaceutical composition for the treatment of overweight or obesity.

In another preferred embodiment of the invention the present compounds are used for the preparation of a pharmaceutical composition for the suppression of appetite or satiety induc- tion.

In a further preferred embodiment of the invention the present compounds are used for the preparation of a pharmaceutical composition for the prevention and/or treatment of disorders and diseases related to overweight or obesity such as atherosclerosis, hypertension, IGT (impaired glucose tolerance), diabetes, especially type 2 diabetes (NIDDM (non-insulin de- pendent diabetes mellitus)), dyslipidaemia, coronary heart disease, gallbladder disease, os-

teoarthritis and various types of cancer such as endometrial, breast, prostate and colon can- cers.

In yet a further preferred embodiment of the invention the present compounds are used for the preparation of a pharmaceutical composition for the prevention and/or treatment of eating disorders such as bulimia and binge eating.

In a further preferred embodiment of the invention the present compounds are used for the preparation of a pharmaceutical composition for the treatment of IGT.

In a further preferred embodiment of the invention the present compounds are used for the preparation of a pharmaceutical composition for the treatment of type 2 diabetes. Such treatment includes inter alia treatment for the purpose of delaying or prevention of the pro- gression from IGT to type 2 diabetes as well as delaying or prevention of the progression from non-insulin requiring type 2 diabetes to insulin requiring type 2 diabetes.

The compounds of the present invention may also be used for the treatment of airway disor- ders such as asthma, as anti-diarrhoeals and for the modulation of gastric acid secretion.

Furthermore, the compounds of the present invention may be used for the treatment of dis- eases associated with the regulation of sleep and wakefulness and for the treatment of nar- colepsy and attention deficit disorders.

Moreover, the compounds of the invention may be used as CNS stimulants or as sedatives.

The present compounds may also be used for the treatment of conditions associated with epilepsy. Additionally, the present compounds may be used for the treatment of motion sick- ness and vertigo. Furthermore, they may be useful as regulators of hypothalamo- hypophyseal secretion, antidepressants, modulators of cerebral circulation, and in the treat- ment of irritable bowel syndrome.

Further, the compounds of the present invention may be used for the treatment of dementia and Alzheimer's disease.

The compounds of the present invention may also be useful for the treatment of allergic rhini- tis, ulcer or anorexia.

The compounds of the present invention may furthermore be useful for the treatment of mi- graine, see McLeod et al., The Journal of Pharmacology and Experimental Therapeutics 287 (1998), 43-50, and for the treatment of myocardial infarction, see Mackins et al., Expert Opin- ion on Investigational Drugs 9 (2000), 2537-2542.

In a further aspect of the invention treatment of a patient with the present compounds is combined with diet and/or exercise.

In a further aspect of the invention the present compounds are administered in combination with one or more further active substances in any suitable ratio (s). Such further active agents

may be selected from antiobesity agents, antidiabetics, antidyslipidemic agents, antihyper- tensive agents, agents for the treatment of complications resulting from or associated with diabetes and agents for the treatment of complications and disorders resulting-from or asso- ciated with obesity.

Thus, in a further aspect of the invention the present compounds are administered in combi- nation with one or more antiobesity agents or appetite regulating agents.

Such agents may be selected from the group consisting of CART (cocaine amphetamine regulated transcript) agonists, NPY (neuropeptide Y) antagonists, MC4 (melanocortin 4) agonists, MC3 (melanocortin 3) agonists, orexin antagonists, TNF (tumor necrosis factor) agonists, CRF (corticotropin releasing factor) agonists, CRF BP (corticotropin releasing fac- tor binding protein) antagonists, urocortin agonists, p3 adrenergic agonists such as CL- 316243, AJ-9677, GW-0604, LY362884, LY377267 orAZ-40140, MSH (melanocyte- stimulating hormone) agonists, MCH (melanocyte-concentrating hormone) antagonists, CCK (cholecystokinin) agonists, serotonin re-uptake inhibitors such as fluoxetine, seroxat or cita-- lopram, serotonin and noradrenaline re-uptake inhibitors, mixed serotonin and noradrenergic compounds, 5HT (serotonin) agonists, bombesin agonists, galanin antagonists, growth hor- mone, growth factors such as prolactin or placenta lactogen, growth hormone releasing compounds, TRH (thyreotropin releasing hormone) agonists, UCP 2 or 3 (uncoupling protein 2 or 3) modulators, leptin agonists, DA agonists (bromocriptin, doprexin), lipase/amylase in- hibitors, PPAR (peroxisome proliferator-activated receptor) modulators, RXR (retinoid X re- ceptor) modulators, TR ß agonists, AGRP (Agouti related protein) inhibitors, opioid antago- nists (such as naltrexone), exendin-4, GLP-1 and ciliary neurotrophic factor.

In one embodiment of the invention the antiobesity agent is leptin.

In another embodiment the antiobesity agent is dexamphetamine or amphetamine.

In another embodiment the antiobesity agent is fenfluramine or dexfenfluramine.

In still another embodiment the antiobesity agent is sibutramine.

In a further embodiment the antiobesity agent is orlistat.

In another embodiment the antiobesity agent is mazindol or phentermine.

In still another embodiment the antiobesity agent is phendimetrazine, diethylpropion, fluoxet- ine, bupropion, topiramate or ecopipam.

In yet a further aspect the present compounds are administered in combination with one or more antidiabetic agents.

Relevant antidiabetic agents include insulin, insulin analogues and derivatives such as those disclosed in EP 0 792 290 (Novo Nordisk A/S), eg N8B29-tetradecanoyl des (B30) human insu- lin, EP 0 214 826 and EP 0 705 275 (Novo Nordisk A/S), eg AspB28 human insulin, US

5,504, 188 (Eli Lilly), eg LysB28 ProB29 human insulin, EP 0 368 187 (Aventis), eg Lantus@, which are all incorporated herein by reference, GLP-1 derivatives such as those disclosed in WO 98/08871 (Novo Nordisk A/S), which is incorporated herein by reference, as well as orally active hypoglycaemic agents.

The orally active hypoglycaemic agents preferably comprise imidazolines, sulfonylureas, biguanides, meglitinides, oxadiazolidinediones, thiazolidinediones, insulin sensitizers, a- glucosidase inhibitors, agents acting on the ATP-dependent potassium channel of the p-ceiis eg potassium channel openers such as those disclosed in WO 97/26265, WO 99/03861 and WO 00/37474 (Novo Nordisk A/S) which are incorporated herein by reference, or mitiglinide, or a potassium channel blocker, such as BTS-67582, nateglinide, glucagon antagonists such as those disclosed in WO 99/01423 and WO 00/39088 (Novo Nordisk A/S and Agouron Pharmaceuticals, Inc.), which are incorporated herein by reference, GLP-1 agonists such as those disclosed in WO 00/42026 (Novo Nordisk A/S and Agouron Pharmaceuticals,'Inc.), which are incorporated herein by reference, DPP-IV (dipeptidyl peptidase-IV) inhibitors, PTPase (protein tyrosine phosphatase) inhibitors, inhibitors of hepatic enzymes involved in stimulation of gluconeogenesis and/or glycogenolysis, glucose uptake modulators, GSK-3 (glycogen synthase kinase-3) inhibitors, compounds modifying the lipid metabolism such as antilipidemic agents, compounds lowering food intake, PPAR (peroxisome proliferator- activated receptor) and RXR (retinoid X receptor) agonists, such as ALRT-268, LG-1268 or LG-1069.

In one embodiment of the invention the present compounds are administered in combination with insulin or an insulin analogue or derivative, such as N8B29-tetradecanoyl des (B30) hu- man insulin, AspB28 human insulin, LysB28 ProB29 human insulin, LantusX, or a mix- preparation comprising one or more of these.

'in a further embodiment of the invention the present compounds are administered in com- bination with a sulfonylurea eg tolbutamide, chlorpropamide, tolazamide, glibenclamide, glipizide, glimepiride, glicazide or glyburide.

In another embodiment of the invention the present compounds are administered in com- bination with a biguanide eg metformin.

In yet another embodiment of the invention the present compounds are administered in com- bination with a meglitinide eg repaglinide or nateglinide.

In still another embodiment of the invention the present compounds are administered in combination with a thiazolidinedione insulin sensitizer eg troglitazone, ciglitazone, pioglita= zone, rosiglitazone, isaglitazone, darglitazone, englitazone, CS-011/CI-1037 or T 174 or the compounds disclosed in WO 97/41097, WO 97/41119, WO 97/41120, WO 00/41121 and

WO 98/45292 (Dr. Reddy's Research Foundation), which are incorporated herein by refer- ence.

In still another embodiment of the invention the present compounds may be administered in combination with an insulin sensitizer eg such as GI 262570, YM-440, MCC-555, JTT-501, AR-H039242, KRP-297, GW-409544, CRE-16336 ; AR-H049020, LY510929, MBX-102, CLX- 0940, GW-501516 or the compounds disclosed in WO 99/19313, WO 00/50414, WO 00/63191, WO 00/63192, WO 00/63193 (Dr. Reddy's Research Foundation) and WO 00/23425, WO 00/23415, WO 00/23451, WO 00/23445, WO 00/23417, WO 00/23416, WO 00/63153, WO 00/63196, WO 00/63209, WO 00/63190 and WO 00/63189 (Novo Nord- isk A/S), which are incorporated herein by reference.

In a further embodiment of the invention the present compounds are administered in combi- nation with an a-glucosidase inhibitor eg voglibose, emiglitate, miglitol or acarbose.

In another embodiment of the invention the present compounds are administered in combi- nation with an agent acting on the ATP-dependent potassium channel of the ß-cells eg tolbu- tamide, glibenclamide, glipizide, glicazide, BTS-67582 or repaglinide.

In yet another embodiment of the invention the present compounds may be administered in combination with nateglinide.

In still another embodiment, the present compounds are administered in combination with an antihyperlipidemic agent or antilipidemic agent, eg cholestyramine, colestipol, clofibrate, gemfibrozil, lovastatin, pravastatin, simvastatin, probucol or dextrothyroxine.

In still another embodiment of the invention the present compounds are administered in combination with an antilipidemic agent eg cholestyramine, colestipol, clofibrate, gemfibrozil, lovastatin, pravastatin, simvastatin, probucol or dextrothyroxine.

In another aspect of the invention, the present compounds are administered in combination with more than one of the above-mentioned compounds eg in combination with mefformin and a sulfonylurea such as glyburide ; a sulfonylurea and acarbose; nateglinide and met- formin; acarbose and mefformin ; a sulfonylurea, mefformin and troglitazone ; insulin and a sulfonylurea ; insulin and mefformin ; insulin, metformin and a sulfonylurea ; insulin and trogli- tazone; insulin and lovastatin ; etc.

Furthermore, the present compounds may be administered in combination with one or more antihypertensive agents. Examples of antihypertensive agents are ß-blockers such as alpre- nolol, atenolol, timolol, pindolol, propranolol and metoprolol, ACE (angiotensin converting en- zyme) inhibitors such as benazepril, captopril, enalapril, fosinopril, lisinopril, quinapril and ramipril, calcium channel blockers such as nifedipine, felodipine, nicardipine, isradipine, ni- modipine, diltiazem and verapamil, and a-blockers such as doxazosin, urapidil, prazosin and

terazosin. Further reference can be made to Remington: The Science and Practice of Phar- macy, 19th Edition, Gennaro, Ed. , Mack Publishing Co. , Easton, PA, 1995.

It should be understood that any suitable combination of the compounds according to the in- vention with diet and/or exercise, one or more of the above-mentioned compounds and op- tionally one or more other active substances are considered to be within the scope of the present invention.

The compounds of the present invention may be chiral, and it is intended that any enanti- omers, as separated, pure or partially purified enantiomers or racemic mixtures thereof are included within the scope of the invention.

Furthermore, when a double bond or a fully or partially saturated ring system or more than one center of asymmetry or a bond with restricted rotatability is present in the molecule di- astereomers may be formed. It is intended that any diastereomers, as separated, pure or partially purified diastereomers or mixtures thereof are included within the scope of the inven- tion.

Furthermore, some of the compounds of the present invention may exist in different tauto- , meric forms and it is intended that any tautomeric forms, which the compounds are able to form, are included within the scope of the present invention.

The present invention also encompasses pharmaceutical acceptable salts of the present compounds. Such salts include pharmaceutically acceptable acid addition salts, pharma- ceutically acceptable metal salts, ammonium and alkylated ammonium salts. Acid addition salts include salts of inorganic acids as well as organic acids. Representative examples of suitable inorganic acids include hydrochloric, hydrobromic, hydroiodic, phosphoric, sulfuric, nitric acids and the like. Representative examples of suitable organic acids include formic, acetic, trichloroacetic, trifluoroacetic, propionic, benzoic, cinnamic, citric, fumaric, glycolic, lactic, maleic, malic, malonic, mandelic, oxalic, picric, pyruvic, salicylic, succinic, methane- sulfonic, ethanesulfonic, tartaric, ascorbic, pamoic, bismethylene salicylic, ethanedisulfonic, gluconic, citraconic, aspartic, stearic, palmitic, EDTA, glycolic, p-aminobenzoic, glutamic, benzenesulfonic, p-toluenesulfonic acids and the like. Further examples of pharmaceutically acceptable inorganic or organic acid addition salts include the pharmaceutical acceptable salts listed in J. Pharm. Sci. 1977,66, 2, which is incorporated herein by reference. Exam- ples of metal salts include lithium, sodium, potassium, magnesium salts and the like. Exam- ples of ammonium and alkylated ammonium salts include ammonium, methylammonium, di- methylammonium, trimethylammonium, ethylammonium, hydroxyethylammonium, diethyl- ammonium, butylammonium, tetramethylammonium salts and the like.

Also intended as pharmaceutical acceptable acid addition salts are the hydrates, which the present compounds are able to form.

The acid addition salts may be obtained as the direct products of compound synthesis. In the alternative, the free base may be dissolved in a suitable solvent containing the appropriate acid, and the salt isolated by evaporating the solvent or otherwise separating the salt and solvent.

The compounds of the present invention may form solvates with standard low molecular weight solvents using methods well known to the person skilled in the art. Such solvates are also contemplated as being within the scope of the present invention.

The invention also encompasses prodrugs of the present compounds, which on administra- tion undergo chemical conversion by metabolic processes before becoming active pharma- cological substances. In general, such prodrugs will be functional derivatives of the present compounds, which are readily convertible in vivo into the required compound of the formula (I). Conventional procedures for the selection and preparation of suitable prodrug derivatives are described, for example, in"Design of Prodrugs", ed. H. Bundgaard, Elsevier, 1985.

The invention also encompasses active metabolites of the present compounds.

The compounds of the present invention interact with the histamine H3 receptor and are ac- cordingly useful for the treatment of a wide variety of conditions and disorders in which his- tamine H3 receptor interactions are beneficial.

PHARMACEUTICAL COMPOSITIONS The compounds of the invention may be administered alone or in combination with pharma- ceutically acceptable carriers or excipients, in either single or multiple doses. The pharma- ceutical compositions according to the invention may be formulated with pharmaceutically acceptable carriers or diluents as well as any other known adjuvants and excipients in accor- dance with conventional techniques such as those disclosed in Remington: The Science and Practice of Pharmacy, 19th Edition, Gennaro, Ed. , Mack Publishing Co. , Easton, PA, 1995.

The pharmaceutical compositions may be specifically formulated for administration by any suitable route such as the oral, rectal, nasal, pulmonary, topical (including buccal and sublin- gual), transdermal, intracisternal, intraperitoneal, vaginal and parenteral (including subcuta- neous, intramuscular, intrathecal, intravenous and intradermal) route, the oral route being preferred. It will be appreciated that the preferred route will depend on the general condition and age of the subject to be treated, the nature of the condition to be treated and the active ingredient chosen.

Pharmaceutical compositions for oral administration include solid dosage forms such as cap- sules, tablets, dragees, pills, lozenges, powders and granules. Where appropriate, they can be prepared with coatings such as enteric coatings or they can be formulated so as to pro- vide controlled release of the active ingredient such as sustained or prolonged release ac- cording to methods well known in the art.

Liquid dosage forms for oral administration include solutions, emulsions, suspensions, syr- ups and elixirs.

Pharmaceutical compositions for parenteral administration include sterile aqueous and non- aqueous injectable solutions, dispersions, suspensions or emulsions as well as sterile pow- ders to be reconstituted in sterile injectable solutions or dispersions prior to use. Depot in- jetable formulations are also contemplated as being within the scope of the present inven- tion.

Other suitable administration forms include suppositories, sprays, ointments, cremes, gets, inhalants, dermal patches, implants etc.

A typical oral dosage is in the range of from about 0.001 to about 100 mg/kg body weight per day, preferably from about 0.01 to about 50 mg/kg body weight per day, and more preferred from about 0.05 to about 10 mg/kg body weight per day administered in one or more dos- ages such as 1 to 3 dosages. The exact dosage will depend upon the frequency and mode of administration, the sex, age, weight and general condition of the subject treated, the nature and severity of the condition treated and any concomitant diseases to be treated and other factors evident to those skilled in the art.

The formulations may conveniently be presented in unit dosage form by methods known to those skilled in the art. A typical unit dosage form for oral administration one or more times per day such as 1 to 3 times per day may contain of from 0.05 to about 1000 mg, preferably from about 0.1 to about 500 mg, and more preferred from about 0.5 mg to about 200 mg.

For parenteral routes, such as intravenous, intrathecal, intramuscular and similar administra- tion, typically doses are in the order of about half the dose employed for oral administration.

The compounds of this invention are generally utilized as the free substance or as a pharma- ceutically acceptable salt thereof. One example is an acid addition salt of a compound having the utility of a free base. When a compound of the formula (I) contains a free base such salts are prepared in a conventional manner by treating a solution or suspension of a free base of the formula (I) with a chemical equivalent of a pharmaceutical acceptable acid, for example, inorganic and organic acids. Representative examples are mentioned above. Physiologically acceptable salts of a compound with a hydroxy group include the anion of said compound in combination with a suitable cation such as sodium or ammonium ion.

For parenteral administration, solutions of the novel compounds of the formula (I) in sterile aqueous solution, aqueous propylene glycol or sesame or peanut oil may be employed. Such aqueous solutions should be suitable buffered if necessary and the liquid diluent first ren- dered isotonic with sufficient saline or glucose. The aqueous solutions are particularly suit- able for intravenous, intramuscular, subcutaneous and intraperitoneal administration. The sterile aqueous media employed are all readily available by standard techniques known to those skilled in the art.

Suitable pharmaceutical carriers include inert solid diluents or fillers, sterile aqueous solution and various organic solvents. Examples of solid carriers are lactose, terra alba, sucrose, cyclodextrin, talc, gelatine, agar, pectin, acacia, magnesium stearate, stearic acid or lower alkyl ethers of cellulose. Examples of liquid carriers are syrup, peanut oil, olive oil, phosphol- ipids, fatty acids, fatty acid amines, polyoxyethylene or water. Similarly, the carrier or diluent may include any sustained release material known in the art, such as glyceryl monostearate or glyceryl distearate, alone or mixed with a wax. The pharmaceutical compositions formed by combining the novel compounds of the formula (I) and the pharmaceutically acceptable carriers are then readily administered in a variety of dosage forms suitable for the disclosed routes of administration. The formulations may conveniently be presented in unit dosage form by methods known in the art of pharmacy.

Formulations of the present invention suitable for oral administration may be presented as discrete units such as capsules or tablets, each containing a predetermined amount of the active ingredient, and which may include a suitable excipient. These formulations may be in the form of powder or granules, as a solution or suspension in an aqueous or non-aqueous liquid, or as an oil-in-water or water-in-oil liquid emulsion.

If a solid carrier is used for oral administration, the preparation may be tablette, placed in a hard gelatine capsule in powder or pellet form or it can be in the form of a'troche'or lozenge.

The amount of solid carrier will vary widely but will usually be from about 25 mg to about 1 g.

If a liquid carrier is used, the preparation may be in the form of a syrup, emulsion, soft gela- tine capsule or sterile injectable liquid such as an aqueous or non-aqueous liquid suspension or solution.

A typical tablet, which may be prepared by conventional tabletting techniques, may contain: Core : Active compound (as free compound or salt thereof) 5.0 mg Lactosum Ph. Eur. 67.8 mg Cellulose, microcryst. (Avicel) 31.4 mg AmberliteE IRP88* 1.0 mg

Magnesii stearas Ph. Eur. q. s.

Coating: Hydroxypropyl methylcellulose approx. 9 mg Mywacett 9-40 T** approx. 0.9 mg * Polacrillin potassium NF, tablet disintegrant, Rohm and Haas.

Acylated monoglyceride used as plasticizer for film coating.

If desired, the pharmaceutical composition of the invention may comprise the compound of the formula (I) in combination with further pharmacologically active substances such as those described in the foregoing.

EXAMPLES In the examples the following terms are intended to have the following, general meanings: DIPEA : diisopropylethylamine DMSO : dimethyl sulphoxide THF: tetrahydrofuran HPLC (Method A) NMR spectra were recorded on Bruker 300 MHz and 400 MHz instruments. HPLC-MS was performed on a Perkin Elmer instrument (API 100). The column used was X-Terra C18, 5 Fm, 50 X 3 mm, and elution was done at 1.5 ml/min at room temperature with a gradient of 5% to 90% acetonitrile in water with 0.01 % trifluoroacetic acid within 7.5 min.

HPLC (Method B) The reverse phase analysis was performed using UV detections at 214 and 254 nm on a 218TP54 4.6 mm x 150 mm C-18 silica column, which was eluted at 1 ml/min at 42 °C. The column was equilibrated with 5% acetonitrile, 85% water and 10% of a solution of 0. 5% trifluoroacetic acid in water and eluted by a linear gradient from 5% acetonitrile, 85% water and 10% of a solution of 0.5% trifluoroacetic acid to 90% acetonitrile and 10% of a solution of 0.5% trifluoroacetic acid over 15 min.

HPLC (Method C)

The RP-analyses was performed using a Alliance Waters 2695 system fitted with a Waters 2487 dualband detector. UV detections were collected using a Symmetry C18,3. 5 um, 3.0 mm x 100 mm column. The eluation is done with a linear gradient of 5-90% acetonitrile, 90- 0% water, and 5% trifluoroacetic acid (1.0%) in water over 8 minutes at a flow-rate of 1.0 min/min.

General procedure (A) General procedure (A) may be used for the preparation of the compounds of the general formula (la) : wherein-CH (R20R21) represents ethyl, isopropyl, branched C4-6-alkyl, branched C46-alkenyl, branched C44-alkynyl, C35-cycloalkyl, C37-cycloalkenyl, C36-cycloalkyl-C14-alkyl or C3-6- cycycloalkenyl-C_3-alkyl, which may optionally be substituted with one or more halogen sub- stituents.

To a mixture of a monosubstituted piperazine (15.2 mmol) in a suitable solvent such as and THF are added a ketone or an aldehyde (22.6 mmol), water, acetic acid (45.0 mmol), and then NaCNBH3 (18 mmol). The mixture is stirred at 55 °C for 5.5 hours (ketones) or at room temperature overnight (aldehydes), and then concentrated under reduced pressure. Satu- rated aqueous NaHCO3 solution (100 ml) is added, and the mixture is extracted with a sol- vent such as ethyl acetate (3 x 40 ml). The combined extracts are washed with brine, dried over magnesium sulphate, and concentrated under reduced pressure. The residue may be converted into an appropriate salt, such as the hydrochloride salt by co-evaporation with an acid, such as 1 molar aqueous hydrochloric acid, ethanol and toluene, and the residue is then purified by recrystallization.

General procedure (B) The compounds of the general formula (I) may be prepared by the general procedure (B): A mixture of a monosubstituted piperazine (2.00 mmol), DMSO (1.0 ml), a suitable aryl or heteroaryl halide (2.00 mmol), and a base such as DIPEA (0.20 ml) is stirred for one hour at 100 °C and then for 18 hours at 120 °C. Water and potassium carbonate are added and the

mixture is extracted with a solvent such as ethyl acetate (3 x 20 ml). Isolation and purification are done as in General Procedure (A).

Non-commercially available substituted 2-chloroquinolines were prepared as described in the literature: F. Effenberger, W. Hartmann, Chemische Berichte 1969, 102, 3260-3267.

General procedure (C) The compounds of the general formula (I) may be prepared by the general procedure (C): CNH catalyst CN Brw + RiNJ 0 A compound of formula I may be prepared from a suitable monosubstituted piperazine and a suitable aryl bromide in the presence of a suitable catalyst such as e. g. t tris (dibenzylideneacetone) dipalladium in a suitable solvent such as toluene at a suitable temperature between 0°C and 150°C.

Example 1 4- (4-Cyclopentylpiperazin-1-yl) phenol

To a suspension of 1-(4-hydroxyphenyl) piperazine (2.70 g, 15.2 mmol) in THF (28 ml) were added cyclopentanone (1.90 ml, 22.6 mmol), water (0.15 ml), acetic acid (2.70 ml, 45.0 mmol), and then NaCNBH3 (18 mi, 1 molar in THF, 18 mmol). The mixture was stirred at 55 oc for 5.5 hours and then concentrated under reduced pressure. Saturated aqueous Na- HC03 solution (100 mi) and ethyl acetate (40 ml) were added, and the mixture was filtered.

The resulting solid was resuspended in methanol (30 ml), heated to reflux, and allowed to stand at room temperature over night. Filtration and drying under reduced pressure yielded the title compound (1.82 g, 49%) as a solid.

1H NMR (DMSO-d6) 61. 34 (m, 2H), 1.49 (m, 2H), 1.60 (m, 2H), 1.79 (m, 2H), 2.43 (m, 1H), 2.51 (m, 4H), 2.92 (m, 4H), 6.62 (d, J = 8 Hz, 2H), 6.77 (d, J = 8 Hz, 2H), 8.78 (s, 1 H); HPLC- MS: m/z 247 (MH+) ; Rf: 2.70 min.

Example 2 1-Cyclopentyl-4- [4- (4-fluorobenzyloxy) phenyl] piperazine

To a suspension of potassium hydroxide (0.165 g, 2.95 mmol) in ethanol (4 ml) was added 4- (4-cyclopentylpiperazin-1-yl) phenol (0.25 g, 1.02 mmol). After 10 min 4-fluorobenzyl chloride (0.18 ml, 0.22 g, 1.51 mmol) was added, and the mixture was stirred at 70 °C for 5 hours.

Saturated aqueous NaHCO3 solution (20 mi) was added, and the mixture was extracted with ethyl acetate (3 x 20 ml). The combined extracts were washed with brine, dried over magne- sium sulphate, and concentrated. Recrystallization from methanol (4 ml) yielded 0.125 g (35%) of the title compound.

'H NMR (DMSO-d6) 61. 34 (m, 2H), 1.50 (m, 2H), 1.62 (m, 2H), 1.81 (m, 2H), 2.45 (m, 1H), 2.51 (m, 4H), 2.99 (m, 4H), 5.00 (s, 2H), 6.87 (m, 4H), 7.19 (t, J = 8 Hz, 2H), 7.46 (m, 2H); HPLC-MS: m/z 355 (MH') ; Rf: 4.73 min.

Example 3 1- (3-Chlorophenyl)-4-cyclopentylpiperazine

This compound was prepared as described in Example 1, starting from 1- (3-chlorophenyl)- piperazine.

'H NMR (DMSO-d6) #1. 34 (m, 2H), 1.50 (m, 2H), 1.60 (m, 2H), 1.80 (m, 2H), 2.45 (m, 1 H), 2.51 (m, 4H), 3.14 (m, 4H), 6.78 (d, J= 8 Hz, 1H), 6.88 (m, 2H), 7.19 (t, J= 8 Hz, 1H) ; HPLC- MS: m/z 265 (MH+) ; Rf: 3.88 min.

Example 4 1- [4- (4-Cyclopentylpiperazin-1-yl) phenyl] ethanone

This compound was prepared as described in Example 1, starting from 1- (4-acetylphenyl)- piperazine.

'H NMR (DMSO-d6) 61. 30-1.88 (m, 8H), 2.45 (s, 3H), 2.45 (m, 1H), 2.51 (m, 4H), 3.31 (m, 4H), 6.95 (d, J = 8 Hz, 2H), 7.79 (d, J = 8 Hz, 2H) ; HPLC-MS: m/z 273 (MH+); Rf: 3.25 min.

Example 5 1- (3, 4-Dichlorophenyl)-4- (1-ethylpropyl) piperazine

This compound was prepared as described in Example 1, starting from 1- (3, 4-dichloro- phenyl) piperazine and 3-pentanone.

'H NMR (DMSO-d6) 60. 88 (t, J= 7 Hz, 6H), 1.28 (m, 2H), 1.45 (m, 2H), 2.19 (m, 1H), 2.56 (br s, 4H), 3.12 (br s, 4H), 6.91 (m, 1H), 7.09 (brs, 1H), 7.36 (d, J= 8 Hz, 1H) ; HPLC-MS: m/z 301 (MH+); Rf : 4.25 min.

Example 6 {4- [4- (l-Ethyl propyl) piperazin- 1-yl] phenyl} phenylmethanone hydrochloride

A mixture of 1- (3-pentyl) piperazine (0.31 g, 2.00 mmol), DMSO (1.0 ml), 4-fluoro- benzophenone (0.40 g, 2.00 mmol), and DIPEA (0.20 ml) was stirred for one hour at 100 °C and then for 18 hours at 120 °C. Water (50 ml) and potassium carbonate (2 g) were added and the mixture was extracted with ethyl acetate (3 x 20 ml). The combined extracts were washed with brine, dried with magnesium sulphate, and concentrated under reduced pres- sure. The crude product was redissolved in ethanol (10 ml) and 1 molar aqueous HCI (4 ml), and the solution was concentrated under reduced pressure. After co-evaporation with etha- nol and toluene the residue solidified, and was recrystallized from acetonitrile (100 ml). 0.20 g (27%) of the title compound was obtained.

'H NMR (DMSO-d6) 60. 95 (m, 6H), 1.62 (m, 2H), 1.89 (m, 2H), 3.04-3. 27 (m, 3H), 3.48 (m, 4H), 4.05 (m, 2H), 7.08 (m, 2H), 7.51 (m, 2H), 7.65 (m, 5H), 10.75 (br s, 1 H) ; HPLC-MS: m/z 337 (MH+) ; Rf: 4.27 min.

Example 7 1- (4-Benzylphenyl)-4- (1-ethylpropyl) piperazine hydrochloride A mixture of {4- [4- (1-ethylpropyl) piperazin-1-yl] phenyl} phenylmethanone hydrochloride (77 mg, 0.21 mmol), trifluoroacetic acid (2.0 ml), and triethylsilane (0.5 ml) was stirred at 60 °C for 20 hours. The mixture was concentrated under reduced pressure, and mixed with water

and potassium carbonate. The mixture was extracted with ethyl acetate (3 x 20 ml). The combined extracts were washed with brine, dried with magnesium sulphate, and concen- trated under reduced pressure. The crude product was redissolved in ethanol and 1 molar aqueous HCI, and the solution was concentrated under reduced pressure. After co- evaporation with ethanol and toluene the residue solidified. 45 mg (61 %) of the title com- pound was obtained.

1H NMR (DMSO-d6) 8 0. 98 (t, J = 7 Hz, 6H), 1.64 (m, 2H), 1.89 (m, 2H), 3.04-3. 23 (m, 5H), 3.48 (m, 2H), 3.72 (m, 2H), 3.85 (s, 2H), 6.93 (d, J= 8 Hz, 2H), 7.10-7. 30 (m, 7H), 10.05 (br s, 1 H) ; HPLC-MS: m/z 323 (MH+) ; Rf : 4.93 min.

Example 8 Cyclopropyl- {4- [4- (1-ethylpropyl) piperazin-1-yl] phenyl} methanone hydrochloride

This compound was prepared as described in Example 6, starting from 4-fluorophenyl (cyclo- propyl) ketone.

'H NMR (DMSO-d6) 8 0. 98 (m, 10H), 1.64 (m, 2H), 1.89 (m, 2H), 2.82 (brs, 1H), 3. 04-3. 23 (m, 3H), 3. 49 (m, 4H), 4.04 (m, 2H), 7.07 (d, J = 8 Hz, 2H), 7.96 (d, J = 8 Hz, 2H), 10.95 (br s, 1 H) ; HPLC-MS: m/z 301 (MH+) ; Rf : 4.03 min.

Example 9 (2-Chlorophenyl)- 4- [4- (1-ethylpropyl) piperazin-1-yl] phenyl} methanone hydrochloride

This compound was prepared as described in Example 6, starting from 4-fluorophenyl- (2- chlorophenyl) ketone.

'H NMR (DMSO-d6) 8 0. 98 (t, J= 7 Hz, 6H), 1.64 (m, 2H), 1.88 (m, 2H), 3.08-3. 23 (m, 3H), 3. 50 (m, 4H), 4.06 (m, 2H), 7.08 (d, J = 8 Hz, 2H), 7.31 (m, 1 H), 7.48 (m, 1 H), 7.50-7. 61 (m, 4H), 10.85 (br s, 1 H) ; HPLC-MS: m/z 371 (MH+) ; Rf: 4.43 min.

Example 10 {4-[4-(1-Ethylpropyl)piperazin-1-yl]phenyl}-(4-fluorophenyl) methanone hydrochloride

This compound was prepared as described in Example 6, starting from 4, 4'-difluorobenzo- phenone.

'H NMR (DMSO-d6) #0. 98 (t, J= 7 Hz, 6H), 1.66 (m, 2H), 1.89 (m, 2H), 3.08-3. 25 (m, 3H), 3.41-3. 53 (m, 4H), 4.05 (m, 2H), 7.09 (d, J = 8 Hz, 2H), 7.38 (m, 2H), 7.69 (d, J = 8 Hz, 2H), 7.76 (m, 2H), 10.80 (br s, 1 H) ; HPLC-MS: m/z355 (MH) ; Rf : 4.37 min.

Example 11 1-Cyclopentyl-4- (6-trifluoromethylpyridin-2-yl) piperazine This compound was prepared as described in Example 1, starting from 1- (6-trifluoromethyl- pyridin-2-yl) piperazine.

1H NMR (DMSO-d6) 51. 34 (m, 2H), 1.50 (m, 2H), 1.60 (m, 2H), 1.80 (m, 2H), 2. 45-2. 51 (m, 5H), 3.52 (m, 4H), 7.02 (d, J = 8 Hz, 1H), 7.11 (d, J = 8 Hz, 1H), 7.71 (t, J = 8 Hz, 1 H) ; HPLC-MS : m/z 300 (MH+) ; Rf : 4. 10 min.

Example 12 1-Cyclopentyl-4- (5-trifluoromethylpyridin-2-yl) piperazine

This compound was prepared as described in Example 1, starting from 1- (5-trifluoromethyl- pyridin-2-yl) piperazine.

'H NMR (DMSO-d6) #1. 36 (m, 2H), 1.50 (m, 2H), 1.60 (m, 2H), 1.80 (m, 2H), 2. 45-2. 52 (m, 5H), 3.58 (m, 4H), 6.92 (d, J = 8 Hz, 1 H), 7.78 (br d, J = 8 Hz, 1 H), 8.39 (s, 1 H) ; HPLC-MS: m/z 300 (MH+) ; Rf: 3.87 min.

Example 13 1-Cyclopentyl-4- (3-trifluoromethylpyridin-2-yl) piperazine

This compound was prepared as described in Example 1, starting from 1- (3-trifluoromethyl- pyridin-2-yl) piperazine.

'H NMR (DMSO-d6) 81. 29-1.65 (m, 6H), 1.80 (m, 2H), 2.45 (m, 1 H), 2.52 (m, 4H), 3. 18 (m, 4H), 7.16 (m, 1H), 8.02 (m, 1H), 8.49 (m, 1H) ; HPLC-MS: m/z 300 (MH+)} ; Rf: 3.70 min.

Example 14 <BR> <BR> 2- [4- (1-Ethylpropyl) piperazin-1-yl] quinoline hydrochloride

This compound was prepared as described in Example 6, starting from 2-chloroquinoline.

1 H NMR (DMSO-d6) g 0. 99 (t, J = 7 Hz, 6H), 1.65 (m, 2H), 1.94 (m, 2H), 3. 12 (br s, 1 H), 3.33 (m, 2H), 3.57 (m, 2H), 3.93 (m, 2H), 4.83 (m, 2H), 7.44-7. 58 (m, 2H), 7.76 (m, 1H), 7.92 (m, 1H), 8.2 (br s, 1H), 8.42 (m, 1H), 11.20 (br s, H); HPLC-MS: m/z 284 (MH+); Rf: 3.03 min.

Example 15 7-Chloro-4- [4- (1-ethylpropyl) piperazin-1-yl] quinoline hydrochloride

This compound was prepared as described in Example 6, starting from 4, 7-dichloroquinoline.

'H NMR (DMSO-d6) 5 1. 00 (t, J = 7 Hz, 6H), 1.67 (m, 2H), 1.95 (m, 2H), 3.15 (br s, 1 H), 3.30- 3.70 (m, 4H), 4.05 (m, 2H), 4.20 (m, 2H), 7.32 (m, 1 H), 7.73 (m, 1 H), 8.28 (m, 2H), 8.83 (m, 1H), 11.35 (br s, H); HPLC-MS: m/z 318 (MH+) ; Rf: 3.13 min.

Example 16 [4- (4-Cyclopentylpiperazin-1-yl) phenyl]- (3, 4-dimethoxyphenyl) methanone hydrochloride

This compound was prepared as described in Example 6, starting from 4'-fluoro-3, 4- dimethoxybenzophenone.

'H NMR (DMSO-d6) 51. 55 (m, 2H), 1.65-1. 90 (m, 4H), 2.02 (m, 2H), 3. 05-3.40 (m, 4H), 3. 55 (m, 3H), 3.81 (s, 3H), 3.88 (s, 3H), 4. 08 (m, 2H), 7.10 (m, 3H), 7.29 (m, 2H), 7.69 (d, J = 8 Hz, 2H), 10.78 (br s, 1 H) ; HPLC-MS: m/z 395 (MHi) ; Rf: 3.03 min.

Example 17 [4-(4-Cyclopentylpiperazin-1-yl)-3, 5-difluorophenyl] phenylmethanone hydrochloride s

This compound was prepared as described in Example 6, starting from 3,4, 5-trifluorobenzo- phenone.

'H NMR (DMSO-d6) 61. 55 (m, 2H), 1.65-1. 90 (m, 4H), 2. 02 (m, 2H), 3.15 (m, 2H), 3.50-3. 71 (m, 7H), 7.42 (m, 2H), 7.58 (m, 2H), 7.68-7. 78 (m, 3H), 10.90 (br s, 1 H) ; HPLC-MS: m/z 371 (MH+) ; Rf: 2.77 min.

Example 18 2- (4-Cyclopentylpiperazin-1-yl) quinoxaline hydrochloride

This compound was prepared as Example 6, starting from 2-chloroquinoxaline and using propionitrile as solvent.

'H NMR (DMSDO-d6) #1. 55 (m, 2H), 1.64-1. 90 (m, 4H), 2.02 (m, 2H), 3.15 (m, 2H), 3.42-3. 65 (m, 5H), 4.71 (m, 2H), 7.49 (m, 1 H), 7.67 (m, 2H), 7.88 (brd, J= 8 Hz, 1 H), 8.91 (s, 1 H), 10. 92 (br s, 1 H) ; HPLC-MS: m/z 283 (MH+) ; Rf: 1.70 min.

Example 19 2- (4-Cyclopropylmethylpiperazin-1-yl) quinoxaline hydrochloride

'H NMR (DMSO-d6) 5 0. 41 (m, 2H), 0.66 (m, 2H), 1.18 (m, 1H), 3.02 (m, 2H), 3.13 (m, 2H), 3.52-3. 69 (m, 4H), 4.71 (m, 2H), 7.48 (m, 1 H), 7.66 (m, 2H), 7.88 (d, J = 8 Hz, 1 H), 8.90 (s, 1H), 11.17 (br s, 1H) ; HPLC-MS: m/z 269 (MH+) ; Rf : 1. 73 min.

Example 20 [6- (4-Cyclopentylpiperazin-1-yl) pyridin-3-yl] piperidin-1-ylmethanone hydrochloride

'H NMR (DMSO-d6) #1. 45-2.08 (m, 14H), 3.06 (m, 2H), 3.38-3. 61 (m, 9H), 4.44 (m, 2H), 7.02 (d, J= 8 Hz, 1H), 7.70 (dd, J= 8 Hz, 1 Hz, 1H), 8.19 (d, J= 1 Hz, 1H) ; HPLC-MS: m/z (MH+). This compound was prepared as Example 6 (General Procedure B), using 1- (6-chloro- nicotinoyl) piperidin (Thunus, Ann. Pharm. Fr. 1977,35, 197).

Example 21 2- (4-Cyclopentylpiperazin-1-yl) quinoline hydrochloride

'H NMR (DMSO-d6) a 1. 62 (m, 2H), 1.82 (m, 2H), 1.96 (m, 2H), 2.09 (m, 2H), 3.25 (m, 2H), 3.55-3. 70 (m, 5H), 4.83 (m, 2H), 7.46-7. 60 (m, 2H), 7.80 (m, 1H), 7.94 (m, 1H), 8.13 (m, 1H), 8.42 (m, 1 H), 11.52 (br s, 1 H) ; HPLC-MS: m/z 282 (MH+) ; Rf: 0.34 min.

This compound was prepared as Example 6, starting from 2-chloroquinoline.

Example 22 2-(4-Cyclopentylpiperazin--1yl)-7-methoxy-3-(4-methoxyphenyl )quinoline hydrochloride

'H NMR (DMSO-d6) 5 1. 53 (m, 2H), 1.63-1. 86 (m, 4H), 1.98 (m, 2H), 3.05 (m, 2H), 3.33-3. 52 (m, 5H), 3.75 (m, 2H), 3.82 (s, 3H), 3. 91 (s, 3H), 7.08 (d, J= 8 Hz, 2H), 7.13 (dd, J= 8 Hz, 1 Hz, 1H), 7.49 (brs, 1H), 7.61 (d, J= 8 Hz, 2H), 7.83 (d, J= 8 Hz, 1H), 8.15 (s, 1H), 11.29 (br s, 1H) ; HPLC-MS: m/z 418 (MH+) ; Rf : 3.40 min.

Example 23 {6-[4-(1-Cyclopropyl-1-methylethyl)piperazin--1yl]pyridin-3- yl}phenylmethanone hydrochloride

'H NMR (DMSO-d6) 60. 48-0.62 (m, 4H), 1.22-1. 39 (m, 7H), 3.14 (m, 2H), 3.69 (m, 4H), 4.64 (m, 2H), 7.08 (d, J = 8 Hz, 1 H), 7.55 (m, 2H), 7.61-7. 72 (m, 3H), 8.00 (dd, J = 8 Hz, 1 Hz, 1H), 8.52 (d, J= 1 Hz, 1H), 11.27 (br s, 1H) ; HPLC-MS: m/z 350 (MH+) ; Rf : 3. 03 min.

This compound was prepared as Example 6, starting from 2-chloro-5-benzoylpyridine (T. D.

Penning et al., J. Med. Chem. 2000,43, 721-735).

Example 24 {4- [4- (1-Cyclopropyl-1-methylethyl) piperazin-1-yl]-3, 5-difluorophenyl} phenylmethanone hy- drochloride

H NMR (DMSO-d6) 60. 48-0.63 (m, 4H), 1.23-1. 40 (m, 7H), 3.18 (m, 2H), 3.56 (m, 2H), 3.69 (m, 2H), 3.84 (m, 2H), 7.42 (m, 2H), 7.58 (m, 2H), 7.66-7. 76 (m, 3H), 10.90 (br s, 1 H) ; HPLC- MS: m/z 385 (MH+) ; Rf : 3. 73 min.

Example 25 {4-[4-(1-Cyclopropyl-1-methylethyl)piperazin-1-yl]-3,5-diflu orophenyl}phenylmethanol hydro- chloride

oh NMR (DMSO-d6) 80. 47-0.61 (m, 4H), 1.23-1. 34 (m, 7H), 3.12 (m, 2H), 3.29 (m, 2H), 3.65 (m, 4H), 5.66 (m, 1 H), 6.08 (m, 1H), 7.06 (m, 2H), 7.19-7. 40 (m, 5H), 10.40 (br s, 1 H) ; HPLC- MS: m/z 387 (MH+) ; Rf: 3.40 min.

This compound was prepared by reduction with sodium borohydride of Example 24.

Example 26 <BR> <BR> <BR> [4- (4-Cyclopropylmethylpiperazin-1-yl)-3, 5-difluorophenyl]- (4-fluorophenyl) methanone hydro- chloride

'H NMR (DMSO-d6) 60. 40 (m, 2H), 0. 66 (m, 2H), 1.13 (m, 1H), 3. 02-3, 23 (m, 5H), 3. 52-3. 68 (m, 5H), 7.40 (m, 4H), 7.82 (m, 2H), 10.55 (br s, 1 H) ; HPLC-MS: m/z 375 (MH+) ; Rf: 2. 78 min.

This compound was prepared as example 6, using 3,4, 5, 4'-tetrafluorobenzophenone. The latter was prepared by Friedel Crafts acylation of fluorobenzene with 3,4, 5-trifluorobenzoyl chloride.

Example 27 {4-[4-(1-Ethylpropyl)piperazin-1-yl]-3,5-difluorophenyl}-(4- fluorophenyl)methanone hydrochlo- ride

'H NMR (DMSO-d6) 5 0. 97 (t, J = 7 Hz, 6H), 1.68 (m, 2H), 1.88 (m, 2H), 3.06-3. 26 (m, 3H), 3.52 (m, 4H), 3.75 (m, 2H), 7.41 (m, 4H), 7.82 (m, 2H), 10.31 (br s, 1 H) ; HPLC-MS : m/z 391 (MH+) ; Rf: 3. 00 min.

Example 28 2- [4- (1-Ethylpropyl) piperazin-1-yl]-6, 7-dimethoxyquinoline hydrochloride

'H NMR (DMSO-d6) # 0. 99 (t, J= 7 Hz, 6H), 1.66 (m, 2H), 1.91 (m, 2H), 3.11 (m, 1H), 3.29 (m, 2H), 3.56 (m, 4H), 3. 88 (s, 3H), 3.92 (s, 3H), 4.72 (m, 2H), 7.31-7. 43 (m, 2H), 7.82 (br s, 1 H), 8.30 (br s, 1 H), 10.95 (br s, 1 H) ; HPLC-MS: m/z 344 (MH+) ; Rf: 2.00 min.

This compound was prepared as example 6 from 2-chloro-6, 7-dimethoxyquinoline (Pettit, Can. J. Chem. 1964,42, 1764).

Example 29 2- [4- (1-Ethylpropyl) piperazin-1-yl]-4-trifluoromethylquinoline hydrochloride

1H NMR (DMSO-d6) 5 0. 99 (t, J= 7 Hz, 6H), 1.65 (m, 2H), 1.91 (m, 2H), 3.08 (m, 1H), 3.19 (m, 2H), 3.52 (m, 2H), 3.75 (m, 2H), 4.77 (m, 2H), 7.48 (t, J= 7 Hz, 1H), 7.72 (m, 2H), 7. 88 (m, 2H), 11.19 (brs, 1H) ; HPLC-MS: m/z352 (MH+) ; Rf: 3.70 min.

This compound was prepared from 2-chloro-4-trifluoromethylquinoline. The latter was pre- pared as described in the literature: R. D. Westland et al. J. Med. Chem. 1973, 16, 319-327.

Example 30 2-(4-Cyclopropylmethylpiperazin-1-yl)-6-methoxy-4-trifluorom ethylquinoline hydrochloride

'H NMR (DMSO-d6) 30. 40 (m, 2H), 0.67 (m, 2H), 1.14 (m, 1H), 3.01-3. 16 (m, 4H), 3. 46 (m, 2H), 3.64 (m, 2H), 3. 87 (s, 3H), 4.66 (m, 2H), 7.16 (br s, 1 H), 7.43 (dd, J = 7 Hz, 1 Hz, 1 H), 7.68 (s, 1 H), 7.73 (d, J = 7 Hz, 1 H), 10.70 (br s, 1 H) ; HPLC-MS: m/z 366 (MH+) ; Rf: 3.63 min.

Example 31 [4-(4-Cyclopropylmethylpiperazin-1-yl)-3,5-difluorophenyl]ph enylmethanone hydrochloride

'H NMR (DMSO-d6) #0. 40 (m, 2H), 0.67 (m, 2H), 1.14 (m, 1H), 3.03-3. 20 (m, 4H), 3.60 (m, 6H), 7.40 (m, 2H), 7. 58 (m, 2H), 7.70 (m, 3H), 10.60 (br s, 1H) ; HPLC-MS: m/z 357 (MH+) ; Rf: 3.53 min.

Example 32 [4- (4-Cyclopropylmethylpiperazin-1-yl)-3, 5-difluorophenyl]- (3-fluoro-4-methoxyphenyl)- methanone hydrochloride

'H NMR (DMSO-d6) 8 0. 41 (m, 2H), 0.65 (m, 2H), 1.15 (m, 1H), 3.06 (m, 2H), 3.18 (m, 2H), 3.50-3. 70 (m, 6H), 3.95 (s, 3H), 7.33 (t, J = 8 Hz, 1 H), 7.41 (m, 2H), 7.60 (m, 2H), 10.79 (br s, 1H) ; HPLC-MS: m/z 405 (MH+) ; Rf: 3.67 min.

Example 33 {6-[4-(1-Ethylpropyl)piperazin-1-yl]pyridin-3-yl}phenylmetha none hydrochloride

'H NMR (DMSO-d6) # 0. 97 (t, J= 7 Hz, 6H), 1.65 (m, 2H), 1.90 (m, 2H), 3. 02-3. 22 (m, 3H), 3.49-3. 69 (m, 4H), 4.60 (m, 2H), 7.08 (d, J = 8 Hz, 1 H), 7.56 (m, 2H), 7.68 (m, 3H), 7.99 (dd, J = 8 Hz, 1 Hz, 1 H), 8.50 (d, J = 1 Hz, 1 H), 10.90 (br s, 1 H) ; HPLC-MS: m/z 338 (MH+) ; Rf: 3.00 min.

Example 34 {2-[4-(1-Ethylpropyl)piperazin-1-yl]pyridin-4-yl}phenylmetha none hydrochloride

'H NMR (DMSO-d6) 50. 97 (t, J = 7 Hz, 6H), 1.63 (m, 2H), 1.85 (m, 2H), 3.12 (m, 3H), 3.47 (m, 4H), 4.43 (m, 2H), 6.91 (d, J= 6 Hz, 1H), 7.14 (s, 1H), 7.58 (t, J= 8 Hz, 2H), 7.70-7. 84 (m, 3H), 8.33 (d, J = 6 Hz, 1 H), 10.43 (br s, 1 H) ; HPLC-MS: m/z 338 (MH+) ; Rf : 2. 97 min.

This compound was prepared from 2-chloro-4-benzoylpyridine, which was prepared by Friedel-Crafts acylation of benzene with 2-chloro-4-chlorocarbonylpyridine.

Example 35 {4- [4- (1-Ethylpropyl) piperazin-1-yl] phenyl}- (4-hydroxyphenyl) methanone hydrochloride

'H NMR (DMSO-d6) 80. 97 (t, J = 7 Hz, 6H), 1.65 (m, 2H), 1.92 (m, 2H), 3.05-3. 25 (m, 3H), 3.35-3. 55 (m, 4H), 4.02 (m, 2H), 6.89 (d, J = 8 Hz, 2H), 7.08 (d, J = 8 Hz, 2H), 7.59 (d, Jazz Hz, 2H), 7.63 (d, J = 8 Hz, 2H), 10.36 (s, 1 H), 10.60 (br s, 1 H) ; HPLC-MS: m/z 353 (MH+) ; Rf: 2.13 min.

Example 36 {6-[4-(1-Ethylpropyl)piperazin-1-yl]pyridin-3-yl}piperidin-1 -yl-methanone hydrochloride

'H NMR (DMSO-d6) #0. 97 (t, J= 7 Hz, 6H), 1.50 (m, 4H), 1.63 (m, 4H), 1.89 (m, 2H), 3.05- 3.20 (m, 3H), 3.50 (m, 8H), 4.46 (m, 2H), 7.04 (m, 1H), 7.70 (m, 1H), 8.18 (brs, 1H), 10.90 (br s, 1 H) ; HPLC-MS: m/z 345 (MH+) ; Rf: 2.27 min.

Example 37 N-Benzyl-6- [4- (1-ethylpropyl) piperazin-1-yl]-N-methylnicotinamide hydrochloride 'H NMR (DMSO-d6) #0. 97 (t, J= 7 Hz, 6H), 1.63 (m, 2H), 1.88 (m, 2H), 2.89 (s, 3H), 3.09 (m, 3H), 3.50 (m, 4H), 4.45 (m, 2H), 4.62 (br s, 2H), 7.02 (d, J = 8 Hz, 1 H), 7.25-7. 41 (m, 5H), 7.78 (m, 1 H), 8.28 (br s, 1 H), 10.78 (br s, 1 H) ; HPLC-MS: m/z 381 (MH+) ; Rf : 3. 10 min.

Example 38 2- [4- (1-Ethylpropyl) piperazin-1-yl]-6-methoxyquinoline hydrochloride 1H NMR (DMSO-d6) #0. 98 (t, J= 7 Hz, 6H), 1.66 (m, 2H), 1.92 (m, 2H), 3.11 (m, 1H), 3.31 (m, 2H), 3.57 (m, 2H), 3.82 (m, 2H), 3.88 (s, 3H), 4.74 (m, 2H), 7.41 (br s, 2H), 7.53 (m, 1 H), 8.12 (br s, 1 H), 8.34 (br s, 1 H), 10.95 (br s, 1 H) ; HPLC-MS: m/z 314 (MH+) ; Rf: 2. 17 min.

Example 39 6- [4- (1-Ethylpropyl) piperazin-1-yl]-N-methyl-N-phenylnicotinamide hydrochloride

'H NMR (DMSO-d6) 50. 95 (t, J= 7 Hz, 6H), 1.62 (m, 2H), 1.83 (m, 2H), 3.05 (m, 3H), 3.34 (s, 3H), 3.43 (m, 4H), 4.35 (m, 2H), 6.76 (d, J = 8 Hz, 1 H), 7.21 (m, 3H), 7.31 (m, 2H), 7.42 (dd, J= 8 Hz, 1 Hz, 1H), 8.01 (d, J= 1 Hz, 1H), 10.54 (br s, 1H) ; HPLC-MS : m/z 367 (MH+) ; Rf : 2. 90 min.

Example 40 {6-[4-(1-Ethylpropyl)piperazin-1-yl]pyridin-3-yl}-(4-fluorop henyl) methanone hydrochloride

'H NMR (DMSO-d6) #0. 95 (t, J = 7 Hz, 6H), 1.62 (m, 2H), 1.83 (m, 2H), 3.10 (m, 3H), 3.45- 3.65 (m, 4H), 4.55 (m, 2H), 7.05 (d, J = 8 Hz, 1H), 7.38 (d, J = 8 Hz, 2H), 7.78 (dd, J = 8 Hz, 4 Hz, 2H), 7.96 (dd, J = 8 Hz, 1 Hz, 1 H), 8.48 (d, J = 1 Hz, 1 H), 10.85 (br s, 1 H) ; HPLC-MS: m/z 356 (MH') ; Rf: 2.40 min.

Example 41 2- 4- (1-Ethylpropyl) piperazin-1-yl]-4-methylquinoline hydrochloride

'H NMR (DMSO-d6) 60. 98 (t, J= 7 Hz, 6H), 1.64 (m, 2H), 1.92 (m, 2H), 2.69 (s, 3H), 3.12 (m, 1 H), 3.32 (m, 2H), 3.57 (m, 2H), 3.94 (m, 2H), 4.86 (m, 2H), 7.53 (br s, 2H), 7.80 (m, 1 H), 8.01 (m, 1 H), 8.32 (br s, 1 H), 11.20 (br s, 1 H) ; HPLC-MS: m/z 298 (MH+) ; Rf : 1.26 min.

Example 42 2-[4-(1-Ethylpropyl)piperazin-1-yl]-5, 6,7, 8-tetrahydroquinoline hydrochloride 'H NMR (DMSO-d6) #0. 98 (t, J = 7 Hz, 6H), 1.50-2. 03 (m, 8H), 2.63 (m, 2H), 2.90 (m, 2H), 3.00-3. 33 (m, 3H), 3.50 (m, 2H), 3.75 (m, 2H), 4.48 (m, 2H), 7.13 (br s, 1 H), 7.75 (br s, 1 H), 11.10 (br s, 1H) ; HPLC-MS: m/z 288 (MH+) ; Rf: 1.83 min.

This compound was prepared from 2-chloro-5, 6,7, 8-tetrahydroquinoline (S. C. Zimmerman, Z.

Zeng, J. Org. Chem. 1990,55, 4789-5791).

Example 43 2- (4-Cyclopropylmethylpiperazin-1-yl)-6-methoxyquinoline hydrochloride 1H NMR (DMSO-d6) 5 0. 41 (m, 2H), 0.66 (m, 2H), 1.18 (m, 1H), 3.02 (m, 2H), 3.13 (m, 2H), 3.52-3. 69 (m, 4H), 3.85 (s, 3H), 4.71 (m, 2H), 7.41 (br s, 2H), 7.53 (m, 1 H), 8.12 (br s, 1H), 8.34 (br s, 1 H), 11.38 (br s, 1 H) ; HPLC-MS: m/z 298 (MH+) ; Rf: 1.87 min.

Example 44 2-(4-lsopropylpiperazin-1-yl)-6-methoxyquinoline hydrochloride

'H NMR (DMSO-d6) #1. 32 (d, J = 7 Hz, 6H), 3.28 (m, 2H), 3.53 (m, 3H), 3.80 (m, 1 H), 3.85 (s, 3H), 4.85 (m, 2H), 7.43 (br s, 2H), 7.59 (d, J = 8 Hz, 1 H), 8.27 (br s, 1 H), 8.34 (br. s, 1 H), 8.40 (d, J = 8 Hz, 1 H), 11.60 (br s, 1 H) ; HPLC-MS: m/z 286 (MH+) ; Rf: 1.77 min.

Example 45 2- [4- (1-Ethylpropyl) piperazin-1-yl]-6-fluoro-4-methylquinoline hydrochloride

1H NMR (DMSO-d6) 60. 98 (t, J = 7 Hz, 6H), 1.64 (m, 2H), 1.92 (m, 2H), 2.67 (s, 3H), 3.12 (m, 1 H), 3.32 (m, 2H), 3.57-4. 00 (m, 4H), 4. 85 (m, 2H), 7.57 (br s, 2H), 7.68 (m, 1 H), 7. 82 (m, 1H), 8.33 (brs, 1H), 11.10 (br s, 1H) ; HPLC-MS : mlz 316 (MH) ; Rf: 1.92 min.

This compound was prepared from 2-chloro-6-fluoro-4-methylquinoline, which was prepared by acetoacetylation of 4-fluoroaniline, followed by acid-mediated ring-closure and conversion of the resulting carbostyryl into the chloroquinoline by treatment with phosphorus oxychlo- ride.

Example 46 2- (4-Isopropylpiperazin-1-yl) quinoline hydrochloride 'H NMR (DMSO-d6) 81. 31 (d, J= 7 Hz, 6H), 3.19 (m, 2H), 3.52 (m, 3H), 3.72 (m, 2H), 4.79 (m, 2H), 7.45 (m, 2H), 7.68 (m, 1 H), 7.86 (m, 1 H), 8.03 (m, 1 H), 8.31 (m, 1 H), 11.45 (br s, 1H) ; HPLC-MS: m/z 256 (MH+) ; Rf: 1.47 min.

Example 47 2- (4-Cyclopropylpiperazin-1-yl)-6-methoxyquinoline hydrochloride

1H NMR (DMSO-d6) #0. 81 (m, 2H), 1.20 (br s, 2H), 2.86 (br s, 1 H), 3.25-3. 75 (m, 4H), 3.85 (s, 3H), 4.09 (m, 2H), 4.73 (m, 2H), 7.41 (m, 2H), 7.55 (m, 1H), 8.14 (m, 1H), 8.37 (m, 1H), 11.51 (br s, 1 H) ; HPLC-MS: m/z 284 (MH+) ; Rf: 1.80 min.

Example 48 2- (4-Isopropyl-piperazin-1-yl)-6-trifluoromethoxyquinoline hydrochloride 'H NMR (DMSO-d6) #1. 31 (d, J= 7 Hz, 6H), 3.17 (m, 2H), 3.52 (m, 3H), 3.68 (m, 2H), 4.79 (m, 2H), 7.56 (d, J = 8 Hz, 1 H), 7.68 (brd, J= 7 Hz, 1 H), 7.91 (br s, 1 H), 8.04 (br s, 1 H), 8.35 (brd, J= 7 Hz, 1 H), 11.28 (br s, 1 H) ; HPLC-MS : m/z 340 (MH+) ; Rf: 3.04 min.

Example 49 6-Chloro-2- (4-cyclopropyl-piperazin-1-yl)-quinoline hydrochloride 1H NMR (DMSO-d6) #0. 81 (m, 2H), 1.14 (br s, 2H), 2.88 (br s, 1 H), 3.25-3. 70 (m, 6H), 4.67 (m, 2H), 7.44 (d, J= 8 Hz, 1H), 7.61 (d, J= 8 Hz, 1H), 7. 72 (m, 1H), 7.91 (brs, 1H), 8.18 (br d, J = 8 Hz, 1 H), 10.75 (br s, 1H) ; HPLC-MS: m/z 288 (MH+) ; Rf: 1.77 min.

Example 50 2- (4-Cyclopropyl-piperazin-1-yl)-6-trifluoromethoxyquinoline hydrochloride

'H NMR (DMSO-d6) 8 0. 81 (m, 2H), 1.15 (br s, 2H), 2. 88 (br s, 1H), 3.20-3. 70 (m, 6H), 4.68 (m, 2H), 7.49 (d, J = 8 Hz, 1 H), 7.59 (br d, J = 8 Hz, 1 H), 7. 82 (m, 2H), 8.27 (d, J = 8 Hz, 1 H), 10.89 (br s, 1 H) ; HPLC-MS : m/z 338 (MH+) ; Rf: 2.24 min.

Example 51 2- (4-Isopropyl-piperazin-1-yl)-8-trifluoromethylquinoline hydrochloride 1H NMR (DMSO-d6) 51. 31 (d, J= 7 Hz, 6H), 3.10 (m, 2H), 3.51 (m, 5H), 4.72 (m, 2H), 7.38 (t, J = 8 Hz, 1 H), 7.46 (d, J = 8 Hz, 1H), 7.95 (br d, J = 7 Hz, 1 H), 8.05 (br d, J = 7 Hz, 1 H), 8.26 (d, J = 8 Hz, 1 H), 10.66 (br s, 1 H) ; HPLC-MS: m/z 324 (MH+) ; Rf: 3. 08 min.

Example 52 2-(4-lsopropyl-piperazin-1-yl)-6-trifluoromethylquinoline hydrochloride 'H NMR (DMSO-d6) #1. 31 (d, J= 7 Hz, 6H), 3.12 (m, 2H), 3.50-3. 68 (m, 5H), 4.78 (m, 2H), 7.52 (d, J = 7 Hz, 1 H), 7.88 (m, 2H), 8.26 (br s, 1 H), 8.36 (d, J = 7 Hz, 1 H), 10.95 (br s, 1 H) ; HPLC-MS: m/z 324 (MH+) ; Rf: 2.11 min.

Example 53 2- (4-Isopropyl-piperazin-1-yl)-6-propylquinoline hydrochloride

'H NMR (DMSO-d6) 5 0. 91 (t, J = 7 Hz, 3H), 1.31 (d, J = 7 Hz, 6H), 1.66 (sext, J = 7 Hz, 2H), 2.70 (t, J = 7 Hz, 2H), 3.23 (m, 2H), 3.48-3. 90 (m, 5H), 4.81 (m, 2H), 7.52 (m, 1 H), 7.63 (m, 1 H), 7.70 (br s, 1 H), 8.09 (br s, 1 H), 8.34 (br s, 1 H), 11.35 (br s, 1 H); HPLC-MS: m/z 298 (MH+) ; Rf: 1. 97 min.

Example 54 6, 8-Difluoro-2-(4-isopropylpiperazin-1-yl)quinoline hydrochloride 1H NMR (DMSO-d6) #1. 31 (d, J= 7 Hz, 6H), 3.09 (m, 2H), 3.51 (m, 5H), 4.66 (m, 2H), 7.45- 7.58 (m, 3H), 8.18 (d, J = 7 Hz, 1H), 10.92 (br s, 1H).

Example 55 8-Fluoro-2- (4-isopropylpiperazin-1-yl) quinoline hydrochloride 'H NMR (DMSO-d6) #1. 31 (d, J = 7 Hz, 6H), 3.09 (m, 2H), 3.52 (m, 5H), 4.70 (m, 2H), 7.24 (m, 1 H), 7.40 (m, 2H), 7.59 (d, J = 7 Hz, 1H), 8.20 (d, J = 7 Hz, 1 H), 10.84 (br s, 1 H).

Example 56 2- (4-Cyclopropylpiperazin-1-yl)-6-trifluoromethylquinoline hydrochloride

'H NMR (DMSO-d6) s0. 81 (m, 2H), 1.19 (brs, 2H), 2.88 (brs, 1H), 3.20-3. 70 (m, 6H), 4.73 (m, 2H), 7.52 (d, J = 8 Hz, 1 H), 7.86 (m, 2H), 8.26 (br s, 1 H), 8.33 (d, J = 8 Hz, 1 H), 11.12 (br s, 1 H) ; HPLC-MS: m/z 322 (MH+) ; Rf: 2.41 min.

Example 57 2- (4-Cyclopropylpiperazin-1-yi)-6-propylquinoline hydrochloride 1H NMR (DMSO-d6) 60. 82 (m, 2H), 0.91 (t, J= 7 Hz, 3H), 1.18 (br s, 2H), 1.66 (sext, J = 7 Hz, 2H), 2.69 (t, J = 7 Hz, 2H), 2.85 (br s, 1 H), 3.30-3. 75 (m, 6H), 4.72 (m, 2H), 7.51 (m, 1 H), 7.62 (m, 1 H), 7.69 (br s, 1 H), 7.97 (br s, 1 H), 8.33 (br s, 1 H), 11.20 (br s, 1 H) ; HPLC-MS: m/z 296 (MH+) ; Rf: 1. 97 min.

Example 58 2- (4-Ethylpiperazin-1-yl) quinoline hydrochloride Reference can also be made to S. Cacchi et al., SynLett 1997,1400-1402.

'H NMR (DMSO-d6) #1. 30 (t, J= 7 Hz, 3H), 3.15 (m, 4H), 3.55-3. 85 (m, 4H), 4.81 (m, 2H), 7.47 (m, 1H), 7.53 (m, 1H), 7.74 (m, 1H), 7.89 (d, J= 8 Hz, 1H), 8.13 (brs, 1H), 8.40 (br s, 1 H), 11.34 (br s, 1 H) ; HPLC-MS: m/z 242 (MH+) ; Rf: 1.04 min.

Example 59 (General procedure (B)) 3-(4-lsopropyl-piperazin-1-yl)-6-phenyl-pyridazine, hydrochloride

This compound was prepared according to General Procedure (B), starting from 1- isopropylpiperazine and 3-chloro-6-phenylpyridazine, prepared as described in J. Heterocycl.

Chem. , 15,881 (1978).

'H NMR (D20) : ô 1.46 (d, 6H); 3.28 (m, 2H); 3.48 (m, 2H); 3.64-3. 84 (m, 3H); 4.57 (m, 2H); 7.63-7. 72 (m, 4H); 7.90 (m, 2H); 8.12 (d, 1 H) ; HPLC-MS: m/z = 283.2 (M+1); Rt = 1. 52 min.

Example 60 (General procedure (B)) 3- (4-Cyclopentyl-piperazin-1-yl)-6- (4-methanesulfonyl-phenyl)-pyridazine This compound was prepared according to General Procedure (B), starting from 1- cyclopentylpiperazine and 3-chloro-6- (4-methanesulfonyl-phenyl)-pyridazine, prepared as described in J. Heterocycl. Chem. , 15,881 (1978).

'H NMR (CDCI3) : a 1.38-1. 80 (m, 6H), 1.92 (m, 2H); 2.56 (quint, 1H) ; 2.66 (dd, 4H); 3.10 (s, 3H); 3.97 (dd, 4H); 6.99 (d, 1 H) ; 7.69 (d, 1 H) ; 8.03 (d, 2H); 8.20 (d, 2H); HPLC-MS: m/z =387.0 (M+1); Rt = 2. 20 min.

Example 61 (General procedure (B)) 3- (4-Cyclopropylmethyl-piperazin-I-yl)-6- (4-methanesulfonyl-phenyl)-pyridazine This compound was prepared according to General Procedure (B), starting from 1- cyclopentylpiperazine and 3-chloro-6- (4-methanesulfonyl-phenyl)-pyridazine, prepared as described in J. Heterocycl. Chem. , 15,881 (1978).

1H NMR (CDC13) : my 0.15 (q, 2H); 0. 57 (m, 2H); 0.92 (m, 1H) ; 2.34 (d, 2H); 2.69 (dd, 4H) ; 3.10 (s, 3H); 3.80 (dd, 4H); 7.01 (d, 1 H) ; 7.70 (d, 1 H) ; 8.03 (d, 2H); 8.21 (d, 2H); HPLC-MS: m/z = 373.4 (M+1); Rt = 2.04 min.

Example 62 (General procedure (B)) 3-(4-Isopropyl-piperazin-1-yl)-6-(4-methanesulfonyl-phenyl)- pyridazine

This compound was prepared according to General Procedure (B), starting from 1- isopropylpiperazine and 3-chloro-6- (4-methanesulfonyl-phenyl)-pyridazine, prepared as de- scribed in J. Heterocycl. Chem. , 15,881 (1978).

'H NMR (DMSO-d6) : ô 1.01 (d, 6H); 2.57 (m, 4H); 2.71 (m, 1H) ; 3.26 (s, 3H); 3.67 (m, 4H); 7.39 (d, 1 H) ; 8.02 (d, 2H); 8.06 (d, 1 H) ; 8. 30 (d, 2H); HPLC-MS: m/z = 360.8 (M+1) ; Rt = 1.43 min.

Example 63 (General procedure (B) ) 3-(4-Chloro-phenyl)-6-(4-isopropyl-piperazin-1-yl)-4-methyl- pyridazine, dihydrochloride

This compound was prepared according to General Procedure (B), starting from 1- isopropylpiperazine and 6-chloro-3- (4-chloro-phenyl)-4-methyl-pyridazine, prepared as de- scribed in J. Heterocycl. Chem. , 15,881 (1978).

'H NMR (D2O) : # 1.08 (d, 6H); 2.10 (s, 1H); 3.01 (m, 2H); 3.23 (m, 2H); 3.28-3. 44 (m, 3H); 4.31 (broad d, 2H); 7.27 (d, 2H); 7.34 (d, 2H); 7.58 (s, 1H) ; HPLC-MS: m/z= 331.1 (M+1); Rt = 3.1 min.

C18 H23 N4 Cl, 2 HCI Calc. : C 53. 54 H6. 24 N13. 88 Found: C53.34 H 6. 31 N 13. 70.

Example 64 (General procedure (B)) 3- (4-Chloro-phenyl)-6- (4-cyclopentyl-piperazin-1-yl)-4-methyl-pyridazine, hydrochloride

This compound was prepared according to General Procedure (B), starting from 1- cyclopentylpiperazine and 6-chloro-3- (4-chloro-phenyl)-4-methyl-pyridazine, prepared as de- scribed in J. Heterocycl. Chem. , 15,881 (1978).

'H NMR (D2O) : a 1.29-1. 60 (m, 6H); 1.91 (m, 2H); 2.12 (s, 3H); 3.00 (m, 2H); 3.24 (m, 2H); 3.36 (m, 1 H) ; 3.51 (broad d, 2H); 4.29 (broad d, 2H); 7.29 (d, 2H); 7.36 (d, 2H); 7.60 (s, 1 H) ; HPLC-MS: m/z= 357.1 (M+1); Rt = 3.25 min.

C20 H25 N4 Cl, 2 HCI Calc. : C 55.89 H 6.33 N 13.04 Found: C55.83 H 6.47 N 12. 93.

Example 65 (General procedure (B)) 3- (4-Chlorophenyl)-6- (4-cyclopentylpiperazin-1-yl)-pyridazine This compound was prepared as described in Example 6, starting from 1- cyclopentylpiperazine and 3-chloro-6- (4-chlorophenyl)-pyridazine, prepared as described in J. Heterocycl. Chem. , 15,881 (1978). The title compound was obtained as the free base.

'H NMR (CDCI3) : 8 1. 39-1.81 (m, 6H), 1.91 (m, 2H), 2.56 (q, 1H), 2.66 (dd, 4H), 3.74 (dd, 4H), 6.96 (d, J=9. 5Hz, 1H), 7.43 (d, J = 8. 7 Hz, 2H), 7.61 (d, J=9. 5Hz, 1H), 7. 93 (d, J = 8.7 Hz, 2H); HPLC-MS (Method #) : m/z = 343 (M+1); Rt = 2.93 min.

Example 66 (General procedure (B)) 3- (4-Cyclopentylpiperazin-1-yl)-6- (3-fluoro-4-methoxyphenyl)-pyridazine, dihydrochloride

This compound was prepared as described in Example 6, starting from 1- cyclopentylpiperazine and 3-chloro-6- (3-fluoro-4-methoxyphenyl)-pyridazine, prepared as described in J. Heterocycl. Chem. , 15, 881 (1978).

'H NMR (DMSO-d6) : a 1.45-2. 15 (m, 8H), 3.17 (m, 2H), 3.40-3. 77 (m, 5H), 3.92 (s, 3H), 7.34 (t, J = 8.7 Hz, 1H), 7.80 (d, J=9. 8Hz, 1H), 7.85-8. 05 (m, 2H), 8.29 (d, J = 9.8 Hz, 1H), 11.75 (bs, 1 H) ; HPLC-MS: m/z = 357 (M+1); Rt = 2.47 min.

Example 67 (General procedure (B)) 3- (4-Cyclopentylpiperazin-1-yl)-6- (3, 4-dimethoxyphenyl)-pyridazine This compound was prepared as described in Example 6, starting from 1- cyclopentylpiperazine and 3-chloro-6- (3, 4-dimethoxyphenyl)-pyridazine, prepared as de- scribed in J. Heterocycl. Chem. , 15,881 (1978). The title compound was obtained as the free base.

1H NMR (CDCts) : 15 1.40-1. 65 (m, 4H), 1.73 (m, 2H), 1.91 (m, 2H), 2.55 (q, 1H), 2. 66 (t, 4H), 3.72 (t, 4H), 3.93 (s, 3H), 3.98 (s, 3H), 6.93 (d, 1 H), 6.97 (d, 1 H), 7.36 (dd, 1H), 7.64 (d, 1H), 7.86 (d, 1 H); HPLC-MS: m/z = 370 (M+1); Rt = 1. 90 min.

Example 68 (General procedure (B)) 3- (4-Chlorophenyl)-6- (4-cyclopropylmethylpiperazin-1-yl)-pyridazine

This compound was prepared as described in Example 6, starting from 1- cyclopropylmethylpiperazine and 3-chloro-6- (4-chlorophenyl)-pyridazine, prepared as de- scribed in J. Heterocycl. Chem. , 15,881 (1978). The title compound was obtained as the free base.

'H NMR (CDCI3) : 8 0.46 (m, 2H), 0.88 (m, 2H), 1.33 (m, 1 H), 2.90 (d, 2H), 3.1-3. 5 (m, 4H), 4.1-4. 35 (m, 4H), 7.05 (d, 1H), 7.46 (d, 2H), 7.72 (d, 1H), 7.95 (d, 2H); HPLC-MS: m/z= 329 (M+1); Rt = 2. 11 min.

Example 69 (General procedure (B)) [Name]

This compound was prepared as described in Example 6, starting from 1- cyclopentylpiperazine and 3-chloro-6- (4-trifluoromethylphenyl)-pyridazine, prepared as de- scribed in J. Heterocycl. Chem. , 15, 881 (1978). The title compound was obtained as the free base.

'H NMR (CDCI3) : # 1.40-1. 65 (m, 4H), 1.65-1. 80 (m, 2H), 1.92 (m, 2H), 2.55 (q, 1 H), 2.65 (t, 4H), 3.76 (t, 4H), 6.99 (d, 1H), 7.67 (d, 1H), 7.72 (d, 2H), 8.12 (d, 2H); HPLC-MS): m/z= 377 (M+1); Rt = 2. 68 min.

Example 70 (General procedure (B)) 3- (4-Isopropylpiperazin-1-yl)-6- (4-trifluoromethylphenyl)-pyridazine

This compound was prepared as described in Example 6, starting from 1-isopropylpiperazine and 3-chloro-6- (4-trifluoromethylphenyl)-pyridazine, prepared as described in J. Heterocycl.

Chem. , 15,881 (1978). The title compound was obtained as the free base.

1H NMR (DMSO-d6) : s 1.20 (d, 6H), 2. 8-4. 2 (m, 9H), 7.47 (d, 1H), 7.85 (d, 2H), 8.12 (d, 1H), 8. 28 (d, 2H); HPLC-MS: m/z = 351 (M+1); Rt = 2.51 min.

Example 71 (General procedure (B)) 3- (4-Cyclopropylmethylpiperazin-1-yl)-6- (4-trifluoromethylphenyl)-pyridazine

This compound was prepared as described in Example 6, starting from 1- cyclopropylmethylpiperazine and 3-chloro-6- (4-trifluoromethylphenyl)-pyridazine, prepared as described in J. Heterocycl. Chem. , 15, 881 (1978). The title compound was obtained as the free base.

'H NMR (CDCI3) : J 0.15 (m, 2H), 0.57 (m, 2H), 0.92 (m, 1H), 2.33 (d, 2H), 2.69 (t, 4H), 3.79 (t, 4H), 7.00 (d, 1H), 7.67 (d, 1H), 7.72 (d, 2H), 8.12 (d, 2H); HPLC-MS: m/z = 363 (M+1); Rt = 2.65 min.

Example 72 (General procedure (B)) -3-(4-Chlorophenyl)-6-(4-isopropylpiperazin-1-yl)-pyridazine

This compound was prepared as described in Example 6, starting from 1-isopropylpiperazine and 3-chloro-6- (4-chlorophenyl)-pyridazine, prepared as described in J. Heterocycl. Chem. , 15,881 (1978). The title compound was obtained as the free base.

1H NMR (CDCI3) : 5 1. 10 (d, 6H), 2.68 (t, 4H), 2.75 (q, 1H), 3.73 (t, 4H), 6.97 (d, 1H), 7. 43 (d, 2H), 7.61 (d, 1 H), 7.94 (d, 2H); HPLC-MS: m/z = 317 (M+1); Rt = 2.03 min.

Example 73 (General procedure (B)) 3- (4-Cyclopropylmethylpiperazin-1-yi)-6- (3-fluoro-4-methoxyphenyl)-pyridazine

This compound was prepared as described in Example 6, starting from 1- cyclopropylmethylpiperazine and 3-chloro-6- (3-fluoro-4-methoxyphenyl)-pyridazine, prepared as described in J. Heterocycl. Chem. , 15,881 (1978). The title compound was obtained as the free base.

'H NMR (DMSO-d6) : a 0.40 (m, 2H), 0.65 (m, 2H), 1.15 (m, 1H), 2.8-3. 7 (m, 10H), 3.90 (s, 3H), 7.29 (t, 1 H), 7.47 (d, 1 H), 7.88 (d, 1 H), 7.93 (d, 1 H), 8. 06 (d, 1 H) ; HPLC-MS: m/z = 343 (M+1); Rt = 1. 90 min.

Example 74 (General procedure (B)) 3- (3-Fluoro-4-methoxyphenyl)-6- (4-isopropylpiperazin-1-yl)-pyridazine

This compound was prepared as described in Example 6, starting from 1-isopropylpiperazine and 3-chloro-6- (3-fluoro-4-methoxyphenyl)-pyridazine, prepared as described in J. Hetero- cycl. Chem. , 15,881 (1978). The title compound was obtained as the free base.

'H NMR (CDCI3) : 151. 11 (d, 6H), 2.70 (m, 4H), 2.80 (q, 1H), 3.74 (m, 4H), 3. 94^ (s, 3H), 6.96 (d, 1 H), 7.04 (t, 1 H), 7.57 (d, 1 H), 7.72 (d, 1 H), 7.78 (m, 1 H) ; HPLC-MS: m/z = 331 (M+1); Rt = 1. 57 min.

Example 75 (General procedure (B)) 3- (3, 4-Dimethoxyphenyl)-6- (4-isopropylpiperazin-1-yl)-pyridazine, dihydrochloride

This compound was prepared as described in Example 6, starting from 1-isopropylpiperazine and 3-chloro-6- (3, 4-dimethoxyphenyl)-pyridazine, prepared as described in J. Heterocycl.

Chem. , 15,881 (1978).

'H NMR (DMSO-d6) : a 1.32 (d, 6H), 3.17 (q, 1H), 3.3-4. 1 (m, 6H), 3.84 (s, 3H), 3.87 (s, 3H), 4.56 (d, 2H), 7.09 (d, 1 H), 7.62 (d, 1 H), 7.68-7. 73 (m, 2H), 8.23 (d, 1 H), 11.35 (s, 1 H) ; HPLC- MS: m/z = 343 (M+1); Rt = 1.50 min.

Example 76 (General procedure (B)) (9a-R)-2- (6-Trifluoromethoxyquinolin-2-yl) octahydropyrido [1, 2-a] pyrazine hydrochloride

This compound was prepared using the General Procedure (B) from (9a-R) - octahydropyrido [1,2-a] pyrazine and 2-chloro-6-trifluoromethoxyquinoline.

'H NMR (DMSO-d6) 9 1. 40-1.55 (m, 1H), 1.65-2. 08 (m, 5H), 2.93 (m, 1H), 3.18 (m, 1H), 3.25- 3.55 (m, 4H), 3.71 (m, 1 H), 4.85 (m, 2H), 7.61 (d, J = 8 Hz, 1 H), 7.70 (d, J = 8 Hz, 1H), 7.93 (s, 1H), 8.19 (brs, 1H), 8.39 (d, J = 8 Hz, 1H), 11.60 (br s, 1H) ; HPLC-MS: mlz 352 (MH+) ; Rt = 2.67 min.

Example 77 (General procedure (B)) 7-Fluoro-2- (4-isopropylpiperazin-1-yl)-6-methylquinoline hydrochloride This compound was prepared using the General Procedure (B) from 1-isopropylpiperazine and 2-chloro-7-fluoro-6-methylquinoline.

'H NMR (DMSO-d6) #1. 32 (d, J = 7 Hz, 6H), 2.36 (s, 3H), 3.26 (m, 2H), 3.54 (m, 3H), 3. 83 (m, 2H), 4.88 (br s, 2H), 7.49 (d, J = 8 Hz, 1 H), 7.85 (d, J = 8 Hz, 1H), 8. 09 (br s, 1H), 8. 35 (d, J = 8 Hz, 1 H), 11.57 (br s, 1 H); HPLC-MS: m/z 287 (MH+) ; Rt = 1.47 min.

Example 78 (General procedure (B)) 7-Chloro-2- (4-isopropylpiperazin-1-yl) quinoline hydrochloride

This compound was prepared using the General Procedure (B) from 1-isopropylpiperazine and 2, 7-dichloroquinoline.

'H NMR (DMSO-d6) #1. 31 (d, J = 7 Hz, 6H), 3.23 (m, 2H), 3.53 (m, 3H), 3.79 (m, 2H), 4. 87 (br s, 2H), 7.48 (d, J = 8 Hz, 1H), 7.54 (d, J = 8 Hz, 1H), 7.92 (d, J = 8 Hz, 1H), 8.26 (br s, 1 H), 8.38 (d, J = 8 Hz, 1 H), 11.50 (br s, 1 H); HPLC-MS: m/z 289 (MH+) ; Rt = 1.61 min.

Example 79 (General procedure (B)) 6-Fluoro-2- (4-isopropylpiperazin-1-yl) quinoline hydrochloride

This compound was prepared using the General Procedure (B) from 1-isopropylpiperazine and 2-chloro-6-fluoroquinoline.

'H NMR (DMSO-d6) 61. 31 (d, J = 7 Hz, 6H), 3.22 (m, 2H), 3.53 (m, 3H), 3.79 (m, 2H), 4. 85 (br s, 2H), 7.55-7. 70 (m, 2H), 7.45 (d, J = 8 Hz, 1 H), 8.26 (br s, 1 H), 8.36 (d, J = 8 Hz, 1 H), 11.52 (br s, 1 H) ; HPLC-MS: m/z 274 (MH+) ; Rt = 1.21 min.

Example 80 (General procedure (B)) 2- (4-Cyclopropylpiperazin-1-yl)-7-fluoro-6-methylquinoline hydrochloride

This compound was prepared using the General Procedure (B) from 1-cyclopropylpiperazine and 2-chloro-7-fluoro-6-methylquinoline.

'H NMR (DMSO-d6) 30. 82 (m, 2H), 1.20 (m, 2H), 2.36 (s, 3H), 2.87 (m, 1H), 3. 25-4. 15 (m, 6H), 4.74 (br s, 2H), 7.43 (d, J = 8 Hz, 1H), 7.80 (m, 2H), 8.28 (d, J = 8 Hz, 1H), 11.36 (br s, 1 H) ; HPLC-MS: mlz 287 (MH+) ; Rt = 1.47 min.

Example 81 (General procedure (B) ) 2- (4-Cyclopropylpiperazin-1-yl)-7-fluoro-6-methoxyquinoline hydrochloride

This compound was prepared using the General Procedure (B) from 1-cyclopropylpiperazine and 2-chloro-7-fluoro-6-methoxyquinoline.

'H NMR (DMSO-d6) J0. 82 (m, 2H), 1.18 (m, 2H), 2.88 (m, 1H), 3.25-4. 10 (m, 6H), 3.93 (s, 3H), 4.64 (br s, 2H), 7.40 (d, J = 8 Hz, 1H), 7.55 (d, J = 8 Hz, 1H), 7.73 (br s, 1H), 8.24 (d, J = 8 Hz, 1 H), 11.11 (br s, 1 H) ; HPLC-MS: m/z 301 (MH+) ; Rt = 1.37 min.

Example 82 (General procedure (B)) 7-Fluoro-2- (4-isopropylpiperazin-1-yl)-6-methoxyquinoline hydrochloride This compound was prepared using the General Procedure (B) from 1-isopropylpiperazine and 2-chloro-7-fluoro-6-methoxyquinoline.

'H NMR (DMSO-d6) a 1.31 (d, J = 7 Hz, 6H), 3.16 (m, 2H), 3.45-4. 05 (m, 5H), 3.93 (s, 3H), 4.72 (m, 2H), 7.42 (d, J = 8 Hz, 1 H), 7.56 (d, J = 8 Hz, 1 H), 7.83 (br s, 1H), 8. 25 (d, J = 8 Hz, 1 H), 11.13 (br s, 1 H) ; HPLC-MS: m/z 303 (MH+) ; Rt = 1.41 min.

Example 83 (General procedure (B)) (9a-R)-2- (7-Fluoro-6-methoxyquinolin-2-yl) octahydropyrido [1, 2-a] pyrazine hydrochloride

This compound was prepared using the General Procedure (B) : from (9a-R)- octahydropyrido [1,2-a] pyrazine and 2-chloro-7-fluoro-6-methoxyquinoline.

'H NMR (DMSO-d6) #1. 40-1.55 (m, 1H), 1.65-2. 08 (m, 5H), 2.93 (m, 1H), 3.20 (m, 1H), 3.25- 3.55 (m, 4H), 3.73 (m, 1H), 4.81 (m, 2H), 7.50 (d, J = 8 Hz, 1H), 7.62 (d, J = 8 Hz, 1H), 8.13 (br s, 1 H), 8.34 (d, J = 8 Hz, 1 H), 11.59 (br s, 1 H) ; HPLC-MS: m/z 315 (MH+) ; Rt = 1.41 min.

Example 84 (General procedure (B)) (9a-R)-2- (6-Trifluoromethylquinolin-2-yl) octahydropyrido [1, 2-] pyrazine hydrochloride This compound was prepared using the General Procedure (B) from (9a-R)- octahydropyrido [1, 2-a] pyrazine and 2-chloro-6-trifluoromethylquinoline.

'H NMR (DMSO-d6) 51. 40-1.55 (m, 1H), 1.65-2. 05 (m, 5H), 2.92 (m, 1H), 3.20 (m, 1H), 3.30- 3.55 (m, 4H), 3.70 (m, 1H), 4. 88 (m, 2H), 7.61 (d, J = 8 Hz, 1H), 7.93 (d, J = 8 Hz, 1H), 8.15 (br s, 1 H), 8.31 (s, 1 H), 8.43 (d, J = 8 Hz, 1 H), 11.60 (br s, 1 H) ; HPLC-MS: m/z 335 (MH+) ; Rt = 2.27 min.

Example 85 (General procedure (B)) 7-Fluoro-2- (4-isopropylpiperazin-1-yl) quinoline hydrochloride This compound was prepared using the General Procedure (B) from 1-isopropylpiperazine and 2-chloro-7-fluoroquinoline.

'H NMR (DMSO-d6) 91. 31 (d, J = 7 Hz, 6H), 3.19 (m, 2H), 3.45-4. 20 (m, 5H), 4.84 (m, 2H), 7.32 (m, 1H), 7.45 (d, J= 8 Hz, 1H), 7.83 (brs, 1H), 7.95 (m, 1H), 8.35 (m, 1H), 11.35 (br s, 1H) ; HPLC-MS: m/z 274 (MH+) ; Rt = 1.31 min.

Example 86 (General procedure (B)) 6-Chloro-2- (4-isopropylpiperazin-1-yl) quinoline hydrochloride

This compound was prepared using the General Procedure (B) from 1-isopropylpiperazine and 2,6-dichloroquinoline.

1H NMR (DMSO-d6) # 1. 31 (d, J = 7 Hz, 6H), 3.19 (m, 2H), 3.45-3. 80 (m, 5H), 4. 82 (m, 2H), 7.55 (d, J = 8 Hz, 1 H), 7.72 (d, J = 8 Hz, 1 H), 7.99 (s, 1 H), 8.07 (br s, 1 H), 8.29 (d, J = 8 Hz, 1 H), 11.38 (br s, 1 H); HPLC-MS: m/z 290 (MH+) ; Rt = 1.64 min.

Example 87 (General procedure (B)) 6-Isopropyl-2- (4-isopropylpiperazin-1-yl) quinoline hydrochloride

This compound was prepared using the General Procedure (B) from 1-isopropylpiperazine and 2-chloro-6-isopropylquinoline.

'H NMR (DMSO-d6) 81. 27 (d, J = 7 Hz, 6H), 1.32 (d, J = 7 Hz, 6H), 3.05 (sept, J = 7 Hz, 1 H), 3.26 (m, 2H), 3.40-3. 95 (m, 5H), 4.86 (m, 2H), 7.55 (d, J = 8 Hz, 1 H), 7.72 (d, J = 8 Hz, 1 H), 7.77 (s, 1 H), 8.21 (br s, 1 H), 8.42 (d, J = 8 Hz, 1 H), 11.55 (br s, 1 H); HPLC-MS: m/z 298 (MH+) ; Rt = 1. 87 min.

Example 88 (General procedure (B)) 2- (4-Cyclopropylpiperazin-1-yl)-6-isopropylquinoline hydrochloride

This compound was prepared using the General Procedure (B) from 1-cyclopropylpiperazine and 2-chloro-6-isopropylquinoline.

'H NMR (DMSO-d6) #0. 83 (m, 2H), 1.20 (m, 2H), 1.27 (d, J = 7 Hz, 6H), 2.86 (br s, 1 H), 3.04 (sept, J= 7 Hz, 1H), 3.25-3. 85 (m, 5H), 4.15 (brs, 1H), 4.74 (m, 2H), 7.53 (m, 1H), 7.70 (d, J 8, Hz, 1 H), 7.75 (s, 1 H), 8.06 (br s, 1 H), 8.38 (m, 1 H), 11.41 (br s, 1 H) ; HPLC-MS : m/z (MH+) ; Rt = min.

Example 89 (General procedure (B)) 2- (4-Cyclopropylpiperazin-1-yl) quinoline hydrochloride

This compound was prepared using the General Procedure (B) from 1-cyclopropylpiperazine and 2-chloroquinoline.

'H NMR (DMSO-d6) #0. 83 (m, 2H), 1.19 (m, 2H), 2.87 (br s, 1H), 3.30-3. 80 (m, 6H), 4.74 (m, 2H), 7.45 (m, 1H), 7.52 (d, J = 8 Hz, 1H), 7.73 (m, 1H), 7.89 (d, J = 8 Hz, 1H), 8.02 (brs, 1H), 8.38 (m, 1 H), 11.22 (br s, 1 H) ; HPLC-MS: m/z (MH+) ; Rt = min.

Example 90 (General procedure (B)) 2- (4-Cyclopropylpiperazin-1-yl)-6, 7-dimethoxyquinoline hydrochloride

This compound was prepared using the General Procedure (B) from 1-cyclopropylpiperazine and 2-chloro-6, 7-dimethoxyquinoline.

1H NMR (DMSO-d6) 5 0. 82 (m, 2H), 1.20 (m, 2H), 2.87 (br s, 1 H), 3.25-3. 75 (m, 6H), 3.86 (s, 3H), 3.90 (s, 3H), 4.66 (m, 2H), 7.25-7. 50 (m, 3H), 8.24 (br s, 1 H), 11.38 (br s, 1 H) ; HPLC- MS: m/z 314 (MH+) ; Rt = 1.27 min.

Example 91 (General procedure (B)) 2- (4-Isopropylpiperazin-1-yl)-6, 7-dimethoxyquinoline hydrochloride

This compound was prepared using the General Procedure (B) from 1-isopropylpiperazine and 2-chloro-6, 7-dimethoxyquinoline.

'H NMR (DMSO-d6) #1. 32 (d, J = 7 Hz, 6H), 3.25 (m, 2H), 3.45-4. 00 (m, 5H), 3.87 (s, 3H), 3.91 (s, 3H), 4.80 (m, 2H), 7.39 (m, 2H), 7.96 (br s, 1H), 8.34 (br s, 1H), 11.50 (br s, 1H) ; HPLC-MS: m/z 316 (MH+) ; Rt = 1.27 min.

Example 92 (General procedure (B)) 2- (4-Cyclopropylpiperazin-1-yl)-7-fluoroquinoline hydrochloride

This compound was prepared using the General Procedure (B) from 1-cyclopriopylpiperazine and 2-chloro-7-fluoroquinoline.

'H NMR (DMSO-d6) 5 0. 82 (m, 2H), 1.22 (m, 2H), 2.87 (br s, 1 H), 3.30-3. 80 (m, 6H), 4.79 (m, 2H), 7.34 (m, 1H), 7.47 (d, J = 8 Hz, 1H), 7.85 (br s, 1H), 7.96 (m, 1H), 8.37 (m, 1H), 11.55 (br s, 1 H) ; HPLC-MS: m/z 271 (MH+) ; Rt = 1.24 min.

Example 93 (General procedure (B)) 2- (4-Cyclopropylpiperazin-1-yl) 6, 8-difluoroquinoline hydrochloride

This compound was prepared using the General Procedure (B) from 1-cyclopropylpiperazine and 2-chloro-6, 8-difluoroquinoline.

'H NMR (DMSO-d6) 5 0. 82 (m, 2H), 1.19 (m, 2H), 2.87 (br s, 1H), 3.20-3. 70 (m, 6H), 4.63 (m, 2H), 7.48 (m, 3H), 8.19 (d, J = 8 Hz, 1H), 11.11 (br s, 1H) ; HPLC-MS: m/z290 (MH+) ; Rt = 2.27 min.

Example 94 (General procedure (B)) 2- (4-Cyclopropylpiperazin-1-yl)-6-fluoroquinoline hydrochloride

This compound was prepared using the General Procedure (B) from 1-cyclopropylpiperazine and 2-chloro-6-fluoroquinoline.

'H NMR (DMSO-d6) 8 0. 82 (m, 2H), 1.21 (m, 2H), 2.87 (br s, 1 H), 3.30-3. 80 (m, 6H), 4. 73 (m, 2H), 7.56 (d, J = 8 Hz, 1H), 7.62 (m, 1H), 7.71 (d, J = 8 Hz, 1H), 8.09 (brs, 1H), 8.33 (d, J= 8 Hz, 1 H), 11.42 (br s, 1 H); HPLC-MS: m/z 272 (MH+) ; Rt = 1.27 min.

Example 95 (General procedure (B)) 7-Chloro-2- (4-cyclopropylpiperazin-1-yl) quinoline hydrochloride

This compound was prepared using the General Procedure (B) from 1-cyclopropylpiperazine and 2, 7-dichloroquinoline.

'H NMR (DMSO-d6) #0. 82 (m, 2H), 1.20 (m, 2H), 2.87 (br s, 1 H), 3.25-3. 75 (m, 6H), 4. 72 (m, 2H), 7.40 (d, J = 8 Hz, 1H), 7.46 (d, J = 8 Hz, 1 H), 7.87 (d, J = 8 Hz, 1 H), 7.94 (br s, 1H), 8.29 (d, J = 8 Hz, 1 H), 11.29 (br s, 1 H) ; HPLC-MS: m/z 288 (MH+) ; Rt = 1.71 min.

Example 96 (General procedure (B)) (9a-R)-2-Quinolin-2-yl-octahydropyrido [1,2-a] pyrazine hydrochloride

This compound was prepared using the General Procedure (B) from (9a-R)- octahydropyrido [1,2-a] pyrazine and 2-chloroquinoline.

'H NMR (DMSO-d6) #1. 40-1.55 (m, 1H), 1.65-2. 10 (m, 5H), 2.92 (m, 1H), 3.25 (m, 1H), 3.35- 3.90 (m, 5H), 4.90 (m, 2H), 7.49 (m, 1 H), 7.59 (d, J = 8 Hz, 1 H), 7.77 (m, 1 H), 7.92 (d, J = 8 Hz, 1H), 8. 32 (br s, 1 H), 8.46 (m, 1 H), 11.69 (br s, 1 H) ; HPLC-MS: m/z 268 (MH+) ; Rt = 1. 07 min.

Example 97 (General procedure (B)) (9a-R)-2- (6-Chloroquinolin-2-yl) octahydropyrido [1,2-a] pyrazine hydrochloride

This compound was prepared using the General Procedure (B) from (9a-R)- octahydropyrido [1,2-a] pyrazine and 2, 6-dichloroquinoline.

'H NMR (DMSO-d6) #1. 40-1.55 (m, 1H), 1.65-2. 05 (m, 5H), 2.93 (m, 1H), 3.18 (m, 1H), 3.25- 3.55 (m, 4H), 3.68 (m, 1H), 4.90 (m, 2H), 7.56 (d, J = 8 Hz, 1H), 7.71 (d, J = 8 Hz, 1H), 7.98 (s, 1 H), 8.07 (br s, 1 H), 8.29 (d, J = 8 Hz, 1 H), 11.47 (br s, 1 H); HPLC-MS: m/z 302 (MH+) ; Rt = 1.81 min.

Example 98 (General procedure (B)) (9a-R)-2- (7-Fluoro-6-methylquinolin-2-yl) octahydropyrido [1, 2-a] pyrazine hydrochloride

This compound was prepared using the General Procedure (B) from (9a-R)- octahydropyrido [1, 2-a] pyrazine and 2-chloro-7-fluoro-6-methylquinoline.

'H NMR (DMSO-d6) #1. 40-1.55 (m, 1H), 1.65-2. 10 (m, 5H), 2.36 (s, 3H), 2.92 (m, 1H), 3.23 (m, 1 H), 3.30-3. 60 (m, 4H), 3.80 (m, 1 H), 4.87 (m, 2H), 7.51 (d, J = 8 Hz, 1 H), 7.84 (d, J = 8 Hz, 1H), 8.13 (brs, 1H), 8.36 (d, J= 8 Hz, 1H), 11.77 (brs, 1H) ; HPLC-MS: m/z300 (MH+) ; Rt = 1. 54 min.

Example 99 (General procedure (B)) (9a-R)-2- (6-Propylquinolin-2-yl) octahydropyrido [1,2-a] pyrazine hydrochloride This compound was prepared using the General Procedure (B) from (9a-R)- octahydropyrido [1, 2-a] pyrazine and 2-chloro-6-propylquinoline.

'H NMR (DMSO-d6) 60. 91 (t, J= 7 Hz, 3H), 1.40-1. 55 (m, 1H), 1.60-2. 10 (m, 7H), 2.70 (t, J= 7 Hz, 2H), 2.92 (m, 1H), 3.24 (m, 1H), 3.30-3. 85 (m, 5H), 4.88 (m, 2H), 7.57 (d, J = 8 Hz, 1 H), 7.65 (d, J = 8 Hz, 1 H), 7.72 (s, 1 H), 8.28 (br s, 1 H), 8.41 (m, 1 H), 11. 69 (br s, 1 H) ; HPLC-MS: m/z 309 (MH+) ; Rt = 2.27 min.

Example 100 (General procedure (B)) 2-(4-Isopropylpiperazin-1-yl)quinoxaline hydrochloride

This compound was prepared using the General Procedure (B) from 1-isopropylpiperazine and 2-chloroquinoxaline.

'H NMR (DMSO-d6) 61. 31 (d, J= 7 Hz, 6H), 3.13 (m, 2H), 3.45-3. 65 (m, 5H), 4.75 (m, 2H), 7.48 (m, 1 H), 7.66 (m, 2H), 7.88 (d, J = 8 Hz, 1 H), 8.91 (s, 1 H), 11.15 (br s, 1 H) ; HPLC-MS: m/z 257 (MH+) ; Rt = 1. 25 min.

Example 101 (General procedure (B)) [4- (4-Cyclopropylpiperazin-1-yl) phenyl] phenylmethanone hydrochloride

This compound was prepared using the General Procedure (B) from 1-cyclopropylpiperazine and 4-fluorobenzophenone.

'H NMR (DMSO-d6) 60. 82 (m, 2H), 1.16 (m, 2H), 2.92 (brs, 1H), 3.30-3. 40 (m, 4H), 3.56 (br s, 2H), 4.09 (m, 2H), 7.12 (d, J = 8 Hz, 2H), 7.54 (m, 2H), 7.60-7. 75 (m, 5H), 10.82 (br s, 1 H); HPLC-MS: m/z 307 (MH+) ; Rt = 2.00 min.

Example 102 (General procedure (B)) [4- (4-Cyclopropylpiperazin-1-yl)-3, 5-difluorophenyl] phenylmethanone hydrochloride

This compound was prepared using the General Procedure (B) from 1-cyclopropylpiperazine and 3,4, 5-trifluorobenzophenone.

'H NMR (DMSO-d6) 5 0. 82 (m, 2H), 1.16 (m, 2H), 2.96 (brs, 1H), 3.30-3. 75 (m, 8H), 7.43 (d, J = 8 Hz, 2H), 7.58 (t, J = 8 Hz, 2H), 7.65-7. 78 (m, 3H), 10.90 (br s, 1 H) ; HPLC-MS: m/z 343 (MH+) ; Rt = 2.29 min.

Example 103 (General procedure (B)) 2-(4-lsopropylpiperazin-1-yl)-5, 6, 7-trimethoxyquinoline hydrochloride

This compound was prepared using the General Procedure (B) from 1-isopropylpiperazine and 2-chloro-5, 6, 7-trimethoxyquinoline.

'H NMR (DMSO-d6) 81. 31 (d, J = 7 Hz, 6H), 3.21 (m, 2H), 3.45-3. 85 (m, 5H), 3. 82 (s, 3H), 3.93 (s, 3H), 3.99 (s, 3H), 4.78 (m, 2H), 7.31 (m, 1 H), 7.56 (m, 1 H), 8.31 (m, 1H), 11.36 (br s, 1 H) ; HPLC-MS: m/z 346 (MH+) ; Rt = 1.22 min.

Example 104 (General procedure (B)) 2- (4-Cyclopropylpiperazin-1-yl)-5, 6, 7-trimethoxyquinoline hydrochloride

This compound was prepared using the General Procedure (B) from 1-cyclopropylpiperazine and 2-chloro-5, 6, 7-trimethoxyquinoline.

'H NMR (DMSO-d6) 60. 82 (m, 2H), 1.22 (m, 2H), 2.87 (br s, 1H), 3.30-4. 10 (m, 6H), 3.83 (s, 3H), 3.93 (s, 3H), 4.00 (s, 3H), 4.76 (m, 2H), 7.33 (m, 1H), 7.65 (br s, 1H), 8.34 (m, 1H), 11.62 (br s, 1 H); HPLC-MS: m/z 344 (MH+) ; Rt = 1.46 min.

Example 105 (General procedure (B)) 2- (4-Cyclopropylpiperazin-1-yl)-6-trifluoromethylsulfanylquino line hydrochloride

This compound was prepared using the General Procedure (B) from 1-cyclopropylpiperazine and 2-chloro-6-trifluoromethylsulfanylquinoline.

'H NMR (DMSO-d6) 0. 82 (m, 2H), 1.20 (m, 2H), 2.86 (br s, 1H), 3.20-3. 70 (m, 6H), 4.75 (m, 2H), 7.53 (m, 1H), 7.86 (m, 2H), 8. 20-8. 40 (m, 2H), 11. 28 (br s, 1H) ; HPLC-MS: m/z 354 (MH+) ; Rt = 2.61 min.

Example 106 (General procedure (B)) 7-Chloro-2- (4-cyclopropylpiperazin-1-yl)-6-methoxyquinoline hydrochloride This compound was prepared using the General Procedure (B) from 1-cyclopropylpiperazine and 2, 7-dichloro-6-methoxyquinoline.

'H NMR (DMSO-d6) 50. 82 (m, 2H), 1.16 (m, 2H), 2.88 (m, 1H), 3.25-3. 70 (m, 6H), 3.94 (s, 3H), 4.62 (m, 2H), 7.45 (d, J = 8 Hz, 1H), 7.51 (s, 1H), 7.96 (brs, 1H), 8.23 (d, J = 8 Hz, 1H), 10.98 (br s, 1 H); HPLC-MS: m/z 318 (MH+) ; Rt = 1.80 min.

Example 107 (General procedure (B)) 5, 7-Dichloro-2- (4-cyclopropylpiperazin-1-yl) quinoline hydrochloride This compound was prepared using the General Procedure (B) from 1-cyclopropylpiperazine and 2,5, 7-trichloroquinoline.

'H NMR (DMSO-d6) 60. 82 (m, 2H), 1.19 (m, 2H), 2.86 (m, 1H), 3.20-3. 65 (m, 6H), 4.69 (m, 2H), 7.51 (d, J = 8 Hz, 1 H), 7.56 (s, 1 H), 7.68 (s, 1 H), 8.30 (d, J = 8 Hz, 1 H), 11.24 (br s, 1 H) ; HPLC-MS: m/z 322 (MH+) ; Rt = 2.78 min.

Example 108 (General procedure (B)) 1-Cyclopropyl-4- [5- (4-trifluoromethylphenyl) pyridin-2-yl] piperazine hydrochloride

The required 2-chloro-5- (4-trifluorophenyl) pyridine was prepared as described by R. Church, R. Trust, J. D. Alright, and D. Powell, J. Org. Chem. 1995,60, 3750-3758, in the following way: To a solution of Vilsmeier reagent prepared from dimethylformamide (5.98 g, 0.082 mol) and phosphorus oxychloride (22.5 g, 0.146 mol) at 10 °C, 4- (trifluoromethyl) phenyl acetic acid (6. 64 g, 0.033 mol) was added. The mixture was stirred at 70 °C for 8 h. After cooling to am- bient temperature, the mixture was added slowly to a mixture of ice and water (temperature was < 10 °C) and then the solution of Na2CO3 was added slowly until pH 11 was reached.

Toluene (125 ml) was added to the alkaline mixture and the resulting mixture was refluxed for 1.5 h. After cooling to ambient temperature the separated water layer was extracted with toluene (100 ml). The combined organic layers were washed with water, dried (Na2SO4), and concentrated under reduced pressure. The resulting solid was recrystallized from a mixture of dichloromethane and heptane to yield 6.98 g (87%) of 3-dimethylamino-2- (4- trifluoromethylphenyl) propenal as yellow crystals, mp. 97 °C.

1H NMR spectrum (CDCI3) 9. 10 (s, 1H), 7.57 (m, 2H), 7.32 (m, 2H), 6.95 (s, 1H), 2.85 (s, 6H); RF (Si02, chloroform/methanol 95: 5) 0.34.

To a solution of sodium methoxide (3.64 g, 0.068 mol) in methanol (68 ml) cyanoacetamide (6.95 g, 0.082 mol) and the previous product (6.98 g, 0.029 mol) were added. The mixture was stirred at ambient temperature for 1.5 h and then refluxed for 8 h. During this time a yel- low solid precipitated. The reaction mixture was diluted with water (75 ml), and acidified with 10% aqueous hydrochloric acid. The yellow solid was filtered off, washed with water, ethanol, diethyl ether, and then with hexane. This afforded 2-hydroxy-5- (4- trifluoromethylphenyl) nicotinonitrile (6.66 g, 87%) as a yellow solid, mp. 235-242 °C.

'H NMR (DMSO-d6) 68. 42 (m, 1H), 7.91 (m, 1H), 7.66 (m, 4H); RF (Si02, chloro- form/methanol 95: 5) 0.18.

The previous product (6.66 g, 0.025 mol) was added to a mixture of acetic acid (100 ml) and concentrated hydrochloric acid (70 ml). The reaction mixture was refluxed for 18 h, diluted with water (200 ml), and allowed to cool to room temperature while stirring. The solid was

filtered off, washed with water and then with 50% aqueous ethanol, to yield 5. 42 g (77%) of 2-hydroxy-5- (4-trifluoromethylphenyl) nicotinic acid as a light-gray solid, mp. 305-315 °C.

1H NMR (DMSO-d6) 68. 71 (d, 1H), 8.43 (d, 1H), 7.96 (m, 2H), 7.81 (m, 2H); RF (Si02, chloro- form/methanol 95: 5): 0.13.

A mixture of the previous product (5.42 g, 0.019 mol) and freshly distilled quinoline (50 ml) was stirred at 215 °C for 12 h. The reaction mixture was cooled to ambient temperature and heptane (250 ml) was added. The solid was filtered off, washed with heptane, and recrystal- lized from a mixture of dichloromethane and heptane to yield 3.92 g (86%) of 2-hydroxy-5- (4- trifluoromethylphenyl) pyridine, mp. 178-182 °C.

1H NMR (CDCI3) 67. 79 (dd, 2H), 7.68 (d, 3H), 7.52 (d, 2H), 6.73 (d, 1H) ; RF (Si02, chloro- form/methanol 95: 5) 0.23.

A mixture of phosphorus oxychloride (27.6 g, 0.18 mol) and the previous product (3.92 g, 0.016 mol) was stirred at 105 °C for 10 h. The excess phosphorus oxychloride was evapo- rated under reduced pressure, and the residue was stripped once with toluene (75 ml). Water 75 (ml) and dichloromethane (75 ml) were added to the residue, the dichloromethane layer was separated and the aqueous phase was extracted with dichloromethane (75 ml). The combined extracts were washed with water, then with solution of sodium hydrogen carbon- ate, dried (MgSO4), and concentrated under reduced pressure, to yield 2.95 g (72%) of 2- chloro-5- (4-trifluoromethylphenyl) pyridine as light-brown crystals, mp 98-101 °C.

1H NMR (CDCI3) #8. 62 (dd, 1H), 7.86 (dd, 1H), 7.44 (dd, 1H), 7.66 (m, 2H), 7.75 (m, 2 H); RF (SiO2, chloroform/methanol 95: 5) 0.94.

This product was treated with 1-cyclopropylpiperazine as described in General Procedure (B) to yield the title compound.

'H NMR (DMSO-d6) 60. 83 (m, 2H), 1.13 (m, 2H), 2.85 (m, 1H), 3.25-3. 75 (m, 6H), 4.51 (m, 2H), 7.12 (d, J = 8 Hz, 1H), 7.79 (d, J = 8 Hz, 2H), 7.89 (d, J = 8 Hz, 2H), 8.05 (m, 1H), 8.59 (m, 1 H), 10.56 (br s, 1 H) ; HPLC-MS: m/z 348 (MH+) ; Rt = 2. 77 min.

Example 109 (General procedure (B)) 3- (4-Cyclopropylpiperazin-1-yl)-6- (4-trifluoromethylphenyl) pyridazine hydrochloride

This compound was prepared using the General Procedure (B) from 1-cyclopropylpiperazine and 3-chloro-6- (4-trifluoromethylphenyl) pyridazine.

'H NMR (DMSO-d6) #0. 83 (m, 2H), 1.19 (m, 2H), 2.89 (m, 1H), 3.30-3. 70 (m, 6H), 4.61 (m, 2H), 7.61 (d, J = 8 Hz, 1H), 7.88 (d, J = 8 Hz, 2H), 8.22 (d, J = 8 Hz, 1H), 8.29 (d, J = 8 Hz, 2H), 11.11 (br s, 1 H) ; HPLC-MS: m/z 349 (MH+) ; Rt = 2. 40 min.

Example 110 (General procedure (B)) 6- (4-Cyclopropylpiperazin-1-yl)- [1, 3] dioxolo [4, 5-g] quinoline hydrochloride This compound was prepared using the General Procedure (B) from 1-cyclopropylpiperazine and 6-chloro [1,3] dioxolo [4,5-g] quinoline.

'H NMR (DMSO-d6) 50. 83 (m, 2H), 1.15 (m, 2H), 2.88 (m, 1H), 3.20-3. 70 (m, 6H), 4.59 (m, 2H), 6.17 (s, 2H), 7.29 (m, 3H), 8.13 (m, 1H), 10.80 (brs, 1H) ; HPLC-MS: m/z 298 (MH+) ; Rt = 0.68 min.

Example 111 (General procedure (B)) 6-Cyclohexyl-2- (4-cyclopropylpiperazin-1-yl) quinoline hydrochloride

This compound was prepared using the General Procedure (B) from 1-cyclopropylpiperazine and 2-chloro-6-cyclohexylquinoline.

'H NMR (DMSO-d6) 50. 83 (m, 2H), 1.10-1. 55 (m, 8H), 1.70-1. 93 (m, 4H), 2.65 (m, 1H), 2.86 (m, 1 H), 3.30-3. 70 (m, 6H), 4.72 (m, 2H), 7.50 (m, 1 H), 7.66 (m, 1 H), 7.72 (m, 1 H), 7.99 (br s, 1 H), 8.35 (br s, 1 H), 11.29 (br s, 1 H); HPLC-MS: m/z 336 (MH+) ; Rt = 2.55 min.

Example 112 (General procedure (B)) 6-Cyclohexyl-2- (4-isopropylpiperazin-1-yl) quinoline hydrochloride

This compound was prepared using the General Procedure (B) from 1-isopropylpiperazine and 2-chloro-6-cyclohexylquinoline. oh NMR (DMSO-d6) a 1. 10-1.55 (m, 8H), 1.31 (d, J = 7 Hz, 6H), 1.70-1. 93 (m, 4H), 2.65 (m, 1H), 3.23 (m, 2H), 3.50-3. 85 (m, 3H), 4.80 (m, 2H), 7.51 (m, 1H), 7.67 (m, 1H), 7.73 (m, 1H), 8. 08 (br s, 1 H), 8. 36 (br s, 1 H), 11.31 (br s, 1 H) ; HPLC-MS: m/z 338 (MH+) ; Rt = 2.50 min.

Example 113 (General procedure (B)) 2- (4-Cyclopropylpiperazin-1-yl)-6, 7-dimethoxy-3-methylquinoline hydrochloride

The required 2-chloro-6, 7-dimethoxy-3-methylquinoline was prepared according to the pro- cedure published in Tetrahedron Letters 1979,4885, in the following way: To a solution of 3, 4-dimethoxyaniline (4.70 g, 30.7 mmol) in dichloromethane (50 ml) were added pyridine (8.0 mi, 3 equivalents) and then dropwise propionyl chloride (3.5 ml, 40.5

mmol). After stirring at room temperature for 1 h and 50 min the mixture was poured into a mixture of water (200 ml) and concentrated hydrochloric acid (8 ml). The phases were sepa- rated, and the aqueous phase was extracted once with dichloromethane. Washing of the combined organic phases with brine, drying with magnesium sulfate, and concentration yielded 6.89 g of an oil which crystallized after a few minutes. Recrystallization from a mix- ture of ethyl acetate and heptane yielded 3.60 g (49%) of N- (3, 4- dimethoxyphenyl) propionamide as dark crystals.

This anilide (2.1 g, 10.0 mmol) was mixed with DMF (1.1 ml, 15 mmol), and to this mixture POCI3 (6.5 ml, 70 mmol) was dropwise added at room temperature. When the addition is fin- ished the mixture is stirred at 75 oC for 2 h. The mixture was poured into ice-water (100 ml), stirred for 30 min, and filtered. The solid was stripped with toluene and acetonitrile, to yield 1.60 g (67%) of 2-chloro-6, 7-dimethoxy-3-methylquinoline as a solid. This product was treated with 1-cyclopropylpiperazine as described in General Procedure (B) to yield the title compound.

'H NMR (DMSO-d6) 5 0. 83 (m, 2H), 1.23 (m, 2H), 2.42 (s, 3H), 2.94 (m, 1H), 3.40-4. 50 (m, 8H), 3.88 (s, 3H), 3.91 (s, 3H), 7.29 (s, 1 H), 7.48 (br s, 1 H), 8.12 (br s, 1H), 11.24 (br s, 1 H) ; HPLC-MS: m/z 328 (MH+) ; Rt = 1.63 min.

Example 114 (General procedure (B)) 6- (4-Isopropylpiperazin-1-yl)- [1, 3] dioxolo [4,5-g] quinoline hydrochloride This compound was prepared using the General Procedure (B) from 1-isopropylpiperazine and 6-chloro [1,3] dioxolo [4,5-g] quinoline.

'H NMR (DMSO-d6) a 1.31 (d, J = 7 Hz, 6H), 3.40 (m, 2H), 3.45-4. 00 (m, 5H), 4.72 (m, 2H), 6.21 (s, 2H), 7.34 (m, 2H), 7.62 (brs, 1H), 8.21 (m, 1H), 11.12 (brs, 1H) ; HPLC-MS: m/z300 (MH+) ; Rt = 0. 65 min.

Example 115 (General procedure (B)) [3, 5-Difluoro-4- (4-isopropyl-piperazin-1-yl)-phenyl]-piperidin-1-yl-methanon e hydrochloride

This compound was prepared using the General Procedure (B) by reaction of 1- isopropylpiperazine with 3,4, 5-trifluorobenzoic acid piperidide. This reaction yielded two products, namely the current example and example 121.

'H NMR (DMSO-d6) 51. 31 (d, J = 7 Hz, 6H), 1.40-1. 62 (m, 6H), 3.09 (m, 2H), 3.20-3. 65 (m, 11 H), 7.12 (m, 2H), 10.42 (br s, 1 H) ; HPLC-MS : m/z 352 (MH+) ; Rt = 3.75 min.

Example 116 (General procedure (B)) (9a-R)-2- (6, 7-Dimethoxyquinolin-2-yl) octahydropyrido [1,2-a] pyrazine hydrochloride This compound was prepared using the General Procedure (B) from (9a-R)- octahydropyrido [1,2-a] pyrazine and 2-chloro-6, 7-dimethoxyquinoline.

'H NMR (DMSO-d6) 61. 40-1.55 (m, 1H), 1.65-2. 05 (m, 5H), 2.93 (m, 1H), 3.22 (m, 1H), 3.25- 3.60 (m, 4H), 3.65-4. 20 (m, 1H), 3.87 (s, 3H), 3.90 (s, 3H), 4.79 (m, 2H), 7.40 (m, 2H), 8.00 (br s, 1 H), 8.33 (br s, 1 H), 11.55 (br s, 1 H); HPLC-MS: m/z 328 (MH+) ; Rt = 0.97 min.

Example 117 (General procedure (B)) 2- (4-Cyclopropylpiperazin-1-yl)-5, 6,7, 8-tetrahydroquinoline hydrochloride

This compound was prepared using the General Procedure (B) from 1-cyclopropylpiperazine and 2-chloro-5, 6,7, 8-tetrahydroquinoline.

'H NMR (DMSO-d6) 50. 81 (m, 2H), 1.17 (m, 2H), 1.67-1. 82 (m, 4H), 2.62 (m, 2H), 2.75-2. 95 (m, 3H), 3.20-3. 65 (m, 6H), 4.37 (m, 2H), 7.02 (br s, 1H), 7.63 (br s, 1H), 11.10 (br s, 1H) ; HPLC-MS: m/z 258 (MH+) ; Rt = 0.62 min.

Example 118 (General procedure (B)) [5-Chloro-6- (4-cyclopropylpiperazin-1-yl) pyridin-3-yl] piperidin-1-ylmethanone hydrochloride This compound was prepared using the General Procedure (B) from 1-cyclopropylpiperazine and 5, 6-dichloronicotinic acid piperidide.

'H NMR (DMSO-d6) 60. 82 (m, 2H), 1.12 (m, 2H), 1.45-1. 65 (m, 6H), 2.96 (m, 1H), 3.30-3. 60 (m, 10H), 3.96 (m, 2H), 7.89 (s, 1H), 8.27 (s, 1H), 10.68 (br s, 1H) ; HPLC-MS: m/z 349 (MH+) ; Rt = 1. 50 min.

Example 119 (General procedure (B)) (9a-R)- [6- (Octahydropyrido [1,2-a] pyrazin-2-yl) pyridin-3-yl] piperidin-1-ylmethanone hydro- chloride This compound was prepared using the General Procedure (B) from (9a-R)- octahydropyrido [1, 2-a] pyrazine and 6-chloronicotinic acid piperidide.

'H NMR (DMSO-d6) 91. 51 (m, 3H), 1.60 (m, 2H), 1.78-1. 98 (m, 3H), 2.90-3. 25 (m, 4H), 3.30- 3.50 (m, 5H), 3.74 (m, 6H), 4.50 (m, 2H), 7.02 (d, J= 7 Hz, 1H), 7.66 (d, J= 7 Hz, 1H), 8.19 (s, 1 H), 10.86 (br s, 1 H) ; HPLC-MS: m/z 329 (MH+) ; Rt = 1.31 min.

Example 120 (General procedure (B)) [6- (4-Cyclopropylpiperazin-1-yl) pyridin-3-yl] piperidin-1-ylmethanone hydrochloride

This compound was prepared using the General Procedure (B) from 1-cyclopropylpiperazine and 6-chloronicotinic acid piperidide.

'H NMR (DMSO-d6) 60. 81 (m, 2H), 1.17 (m, 2H), 1.51 (m, 4H), 1.60 (m, 2H), 2.87 (m, 1H), 3.20-3. 60 (m, 1 OH), 4.47 (m, 2H), 7.01 (d, J = 7 Hz, 1 H), 7.67 (d, J = 7 Hz, 1 H), 8.21 (s, 1 H), 11.04 (br s, 1 H); HPLC-MS: m/z 315 (MH+) ; Rt = 1.22 min.

Example 121 (General procedure (B)) [3, 4-Difluoro-5- (4-isopropyl-piperazin-1-yl)-phenyl]-piperidin-1-yl-methanon e hydrochloride

This compound was prepared using the General Procedure (B) by reaction of 1- isopropylpiperazine with 3,4, 5-trifluorobenzoic acid piperidide. This reaction yielded two products, namely the current example and example 115 'H NMR (DMSO-d6) 5 1. 31 (d, J = 7 Hz, 6H), 1.40-1. 65 (m, 6H), 3.12-3. 62 (m, 13H), 6.89 (d, J = 8 Hz, 1 H), 7.09 (m, 1 H), 11.09 (br s, 1 H); HPLC-MS: m/z 352 (MH+) ; Rt = 3.95 min.

Example 122 (General procedure (B)) [4- (4-Isopropyl-piperazin-1-yl)-3-trifluoromethyl-phenyl]-piper idin-1-yl-methanone hydrochlo- ride

This compound was prepared using the General Procedure (B) by reaction of 1- isopropylpiperazine with 4-fluoro-3-trifluoromethylbenzoic acid piperidide.

'H NMR (DMSO-d6) 8 1. 31 (d, J= 7 Hz, 6H), 1.40-1. 65 (m, 6H), 3.05 (m, 1H), 3.15 (m, 1H), 3.28 (m, 8H), 3.52 (m, 3H), 7.57 (br d, J = 8 Hz, 1H), 7.68 (br s, 1H), 7.71 (br d, J = 8 Hz, 1 H), 10.39 (br s, 1 H) ; HPLC-MS: m/z 384 (MH+) ; Rt = 4.21 min.

Example 123 2- (4-Cyclopropyl-3-methyl-piperazin-1-yl)-6, 7-dimethoxy-quinoline hydrochloride This compound was prepared by reductive cyclopropylation of 6, 7-dimethoxy-2- (3- methylpiperazin-1-yl) quinoline as described by Gillaspy, M. L. ; Lefker, B. A.; Hada, W. A.; and Hoover, D. J. in Tetrahedron Lett. 1995,36 (41), 7399-7402.

'H NMR (DMSO-d6) 5 0. 82 (m, 1H), 0.99 (m, 2H), 1.40 (m, 1H), 1.55 (d, J = 7 Hz, 3H), 2.76 (m, 1 H), 3.30-3. 80 (m, 5H), 3.87 (s, 3H), 3.90 (s, 3H), 4.65-4. 83 (m, 2H), 7.38 (br s, 2H), 7.82 (br s, 1 H), 8.31 (br s, 1 H), 11.30 (br s, 1 H); HPLC-MS: m/z 328 (MH+) ; Rt = 3.09 min.

Example 124 (General procedure (B)) [6- (4-Cyclopropylpiperazin-1-yl) pyridin-3-yl] pyrrolidin-1-yl-methanone hydrochloride

This compound was prepared using the General Procedure (B) from 1-cyclopropylpiperazine and 6-chloronicotinic acid pyrrolidide.

'H NMR (DMSO-d6) 5 0. 81 (m, 2H), 1.15 (m, 2H), 1.84 (m, 4H), 2.88 (m, 1H), 3.15-3. 60 (m, 10H), 4.49 (m, 2H), 7.00 (d, J = 7 Hz, 1H), 7.83 (d, J = 7 Hz, 1H), 8.38 (s, 1H), 10.91 (br s, 1 H); HPLC-MS: m/z 301 (MH+) ; Rt = 1.22 min.

Example 125 (General procedure (B)) 2- (4-Isopropylpiperazin-1-yl) quinoline-6-carbonitrile hydrochloride To a mixture of ethyl 3,3-diethoxypropionate (62 g, 326 mmol) and water (100 mi) was added NaOH (16.0 g) while stirring. Stirring at 110 °C (open flask). After 40 min the mixture was homogeneous, heating was interrupted, and the mixture was allowed to cool to room tem- perature. The mixture was acidified (approx 35 mi conc. HCI, pH 3-2) and extracted (4 x di- chloromethane). The combined extracts were washed with brine (1 x 50 ml), dried (magne- sium sulfate), and concentrated. 48 g of an oil was obtained.

To the oil was dropwise added thionyl chloride (80 ml). The mixture was stirred at reflux (80 oC) for 1 h 30 min. After careful concentration the residue weighted 48 g (theoretical wheight should be 43 g). The acid chloride was kept overnight at-20 oC.

This product is mixed with dichloromethane (70 mi) and 5/7 of this solution (approx 230 mmol) was added to a solution of 4-bromoaniline (34. 5 g, 201 mmol) and pyridine (50 ml) in dichloromethane (150 ml), and the mixture was shaken at room temperature over night.

The mixture was filtered, and the resulting solid was washed with dichloromethane, and dried, to yield 21 g of N- (4-bromophenyl)-3-ethoxyacrylamide as colorless solid. To the fil- trate was added a mixture of water (700 ml) and concentrated hydrochloric acid (50 ml). A solid precipitated upon shaking, and was filtered off, washed with dichloromethane and AcOEt, and dried. Additional 14.4 g of product were obtained.

The filtrates were extracted (3 x dichloromethane), washed once with brine, dried, and con- centrated. Additional 18 g of product resulted. Total yield : 53.4 g.

This product (58. 8 g; 218 mmol) was mixed with ice-cold concentrated sulfuric acid (390 ml) and the mixture was stirred first at 0 oC for 15 min (until almost all acrylamide had dissolved) and then at room temperature for 4 h. The mixture was then poured into ice water (3 1) and allowed to stand overnight. The mixture was filtered, and the solid was washed with water.

The solid was transferred into a flask with the aid of acetonitrile, ethanol, and dichloro- methane, and the suspension was concentrated under reduced pressure. The residue was resuspended in acetonitrile (300 ml), heated to reflux, and allowed to stand at room tempera- ture overnight. Filtration and drying of the solid under reduced pressure yielded 31.3 g (64%) of 6-bromo-2-quinolone as a yellow solid.

This quinolone (6.28 g, 28.0 mmol) was mixed with copper (l) cyanide (5.02 g, 56.1 mmol) and NMP (15 ml), and the mixture was stirred under reflux (202 oC) for 6 h, and then at room temperature overnight. Water (150 mi) was added, the mixture was filtered, and the solid was washed with water. The solid was resuspended in 1N hydrochloric acid (200 mi) and iron (lit) chloride hexahydrate (17.8 g) was added. The resulting mixture was stirred at room tempera- ture for 3 d, filtered, and the solid was washed once with water, stripped with ethanol, and dried under reduced pressure, to yield 4.33 g (91%) of 6-cyano-2-quinolone as a gray solid.

Treatment of the product with POCI3 and then with 1-isopropylpiperazine as described in the General Procedure (B) yielded the title compound.

'H NMR (DMSO-d6) 31. 31 (d, J = 7 Hz, 6H), 3.10 (m, 2H), 3.52 (m, 5H), 4.79 (m, 2H), 7.49 (d, J = 8 Hz, 1 H), 7.71 (d, J = 8 Hz, 1 H), 7.86 (d, J = 8 Hz, 1 H), 8.23 (d, J = 8 Hz, 1 H), 8.35 (s, 1 H), 10.73 (br s, 1 H) ; HPLC-MS : m/z 281 (MH+) ; Rt = 1.62 min.

Example 126 (General procedure (B)) 3- (4-Cyclopropylpiperazin-1-yl)-6-phenylpyridazine hydrochloride

This compound was prepared using the General Procedure (B) from 1-cyclopropylpiperazine and 3-chloro-6-phenylpyridazine.

1H NMR (DMSO-d6) 3 0. 82 (m, 2H), 1.22 (m, 2H), 2.88 (br s, 1H), 3.37 (m, 2H), 3.59 (m, 4H), 4.57 (m, 2H), 7.53 (m, 3H), 7.80 (d, J = 8 Hz, 1 H), 8.06 (m, 2H), 8.29 (d, J = 8 Hz, 1 H), 11.47 (br s, 1 H) ; HPLC-MS: m/z 281 (MH+) ; Rt = 1.43 min.

Example 127 (General procedure (B)) 3- (4-Cyclopropylpiperazin-1-yl)-6- (3, 4-dimethoxyphenyl) pyridazine hydrochloride This compound was prepared using the General Procedure (B) from 1-cyclopropylpiperazine and 3-chloro-6- (3, 4-dimethoxyphenyl) pyridazine.

1H NMR (DMSO-d6) #0. 83 (m, 2H), 1.22 (m, 2H), 2.88 (br s, 1H), 3.36 (m, 2H), 3.60 (m, 4H), 3.84 (s, 3H), 3.87 (s, 3H), 4.53 (m, 2H), 7.14 (d, J = 8 Hz, 1H), 7.66 (m, 2H), 7.86 (d, J = 8 Hz, 1 H), 8.37 (d, J = 8 Hz, 1 H), 11.43 (br s, 1 H) ; HPLC-MS: m/z 341 (MH+) ; Rt = 1.45 min.

Example 128 (General procedure (B)) 7-(4-Isopropylpiperazin-1-yl)-2,3-dihydro-[1, 4] dioxino [2,3-g] quinoline This compound was prepared using the General Procedure (B) from 1-isopropylpiperazine and 7-chloro-2, 3-dihydro [1,4,] dioxino [2,3-g] quinoline.

'H NMR (DMSO-d6) 61. 00 (d, J = 7 Hz, 6H), 2.67 (hept, J= 7 Hz, 1H), 3.33 (s, 4H), 3.56 (m, 4H), 4.29 (m, 4H), 6.95 (s, 1H), 7.02 (d, J = 8 Hz, 1H), 7.13 (s, 1H), 7.84 (d, J = 8 Hz, 1 H) ; HPLC-MS : m/z 314 (MH+) ; Rt = 1.14 min.

Example 129 2- (4-Cyclopropyl-3-methylpiperazin-1-yl) quinoline hydrochloride

This compound was prepared by reductive cyclopropylation of 2-(3-methylpiperazin-1- yl) quinoline as described by Gillaspy, M. L. ; Lefker, B. A.; Hada, W. A.; and Hoover, D. J. in Tetrahedron Lett. 1995,36 (41), 7399-7402.

'H NMR (DMSO-d6) 60. 82 (m, 1H), 1.00 (m, 2H), 1.41 (m, 1H), 1.56 (d, J = 7 Hz, 3H), 2.76 (m, 1 H), 3.25-3. 80 (m, 5H), 4.81 (m, 2H), 7.44 (br s, 1 H), 7.55 (m, 1 H), 7.72 (m, 1 H), 7.88 (m, 1H), 8.11 (br s, 1H), 8.37 (br s, 1H), 11.40 (br s, 1H) ; HPLC-MS : m/z 268 (MH+) ; Rt = 1.18 min.

Example 130 (General procedure (B)) 6-Cyclopropylmethoxy-2- (4-cyclopropylpiperazin-1-yl) quinoline hydrochloride

This compound was prepared using the General Procedure (B) from 1-isopropylpiperazine and 2-chloro-6- (cyclopropylmethyloxy) quinoline. The required 2-chloro-6- (cyclopropylmethyloxy) quinoline was prepared by treatment of 6- (cyclopropylmethyloxy)-2- quinolone with POCI3. 6- (Cyclopropylmethyloxy)-2-quinolone was prepared from the corre- sponding 6-hydroxyquinolone by treatment with (bromomethyl) cycylopropane and potassium carbonate in dimethyl formamide in the presence of catalytic amounts of sodium iodide.

'H NMR (DMSO-d6) 5 0. 35 (m, 2H), 0.60 (m, 2H), 0.82 (m, 2H), 1.20 (m, 2H), 1.28 (m, 1H), 2.87 (br s, 1 H), 3.25-4. 20 (m, 6H), 3.92 (d, J = 7 Hz, 2H), 4.70 (m, 2H), 7.30-7. 60 (m, 3H), 8.08 (br s, 1 H), 8.32 (br s, 1 H), 11.37 (br s, 1 H); HPLC-MS: m/z 324 (MH+) ; Rt = 1.94 min.

Example 131 (General procedure (B)) 2-(4-lsopropylpiperazin-1-yl)-6-pyrazol-1-ylquinoline hydrochloride This compound was prepared using the General Procedure (B) from 1-isopropylpiperazine and 2-chloro-6- (1-pyrazolyl) quinoline. The required 2-chloro-6- (1-pyrazolyl) quinoline was prepared by treatment of 6- (1-pyrazolyl)-2-quinolone with POCI3. 6-(1-Pyrazolyl)-2-quinolone was prepared in the following way: A mixture of 6-bromo-2-quinolone (3.58 g, 16.0 mmol), DMF (15 ml), pyrazol (1.66 g, 24.4 mmol), potassium carbonate (3.33 g, 24.1 mmol), and copper (l) iodide (0.76 g, 3.99 mmol) was stirred at 160 oC for 22 h. Water (300 ml) was added, and after thorough trituration the mixture was filtered, and the solid was washed with water. The solid was stripped with EtOH, resuspended in a mixture of acetonitrile and ethanol (100 ml, 1: 1), heated to reflux, and kept at room temperature overnight. Filtration, washing with a bit of acetonitrile, and drying under reduced pressure yielded 1.7 g (50%) of 6- (1-pyrazolyl)-2-quinolone as a metallic-green solid.

'H NMR (DMSO-d6) 51. 32 (d, J= 7 Hz, 6H), 3.10-3. 70 (m, 7H), 4.81 (m, 2H), 6.60 (m, 1H), 7.56 (d, J = 8 Hz, 1H), 7.81 (s, 1H), 8.09 (m, 1H), 8.22 (d, J = 8 Hz, 1H), 8.32 (s, 1H), 8.38 (d, J= 8 Hz, 1H), 8.58 (m, 1H), 11.11 (br s, 1H) ; HPLC-MS: m/z 322 (MH+) ; Rt= 1.67 min.

Example 132 (General procedure (B)) 2- (4-Isopropylpiperazin-1-yl) quinolin-6-ol hydrochloride

This compound was prepared using the General Procedure (B) from 1-isopropylpiperazine and 2-chloro-6-hydroxyquinoline.

'H NMR (DMSO-d6) 61. 31 (d, J= 7 Hz, 6H), 3.15-3. 90 (m, 7H), 4.79 (m, 2H), 7.22 (m, 1H), 7.33 (d, J= 8 Hz, 1H), 7.53 (d, J= 8 Hz, 1H), 8.13 (brs, 1H), 8.35 (d, J= 8 Hz, 1H), 10.17 (br s, 1 H), 11.41 (br s, 1 H) ; HPLC-MS: m/z 272 (MH+) ; Rt = 0.40 min.

Example 133 (General procedure (B)) 2- (4-Cyclopropylpiperazin-1-yl) quinoline-6-carbonitrile hydrochloride This compound was prepared using the General Procedure (B) from 1-cyclopropylpiperazine and 2-chloro-6-cyanoquinoline.

'H NMR (DMSO-d6) #0. 83 (m, 2H), 1.15 (m, 2H), 2.87 (br s, 1H), 3. 20-3. 65 (m, 6H), 4.74 (m, 2H), 7.49 (d, J = 8 Hz, 1 H), 7.72 (d, J = 8 Hz, 1 H), 7.86 (d, J = 8 Hz, 1 H), 8.24 (d, J = 8 Hz, 1 H), 8.35 (s, 1 H), 10.88 (br s, 1 H) ; HPLC-MS: m/z 279 (MH+) ; Rt = 1. 43 min.

Example 134 (General procedure (B)) (9a-R)-2- (Octahydropyrido [1,2-a] pyrazin-2-yl) quinoline-6-carbonitrile hydrochloride This compound was prepared using the General Procedure (B) from (9a-R) - octahydropyrido [1, 2-a] pyrazine and 2-chloro-6-cyanoquinoline.

'H NMR (DMSO-d6) 61. 40-1.60 (m, 1H), 1.65-2. 00 (m, 5H), 2.85-3. 65 (m, 7H), 4.80 (m, 2H), 7.53 (d, J = 8 Hz, 1H), 7.79 (d, J = 8 Hz, 1H), 7.89 (d, J = 8 Hz, 1H), 8.26 (d, J = 8 Hz, 1H), 8.37 (s, 1 H), 11.31 (br s, 1 H); HPLC-MS: m/z 293 (MH+) ; Rt = 1.72 min.

Example 135 (General procedure (B)) 4-Chloro-6- (4-isopropylpiperazin-1-yl)-3-phenylpyridazine hydrochloride This compound was prepared using the General Procedure (B) from 1-isopropylpiperazine and 4, 6-dichloro-3-phenylpyridazine.

'H NMR (DMSO-d6) 61. 31 (d, J= 7 Hz, 6H), 3.13 (m, 2H), 3.40-3. 65 (m, 5H), 4.63 (m, 2H), 7.50 (m, 3H), 7.63 (m, 2H), 7.78 (s, 1 H), 11.01 (br s, 1 H) ; HPLC-MS: m/z 317 (MH+) ; Rt = 2.11 min.

Example 136 (General procedure (B)) 3- (4-Cyclopropylpiperazin-1-yl)-6- (3-trifluoromethylphenyl) pyridazine hydrochloride This compound was prepared using the General Procedure (B) from 1-cyclopropylpiperazine and 3-chloro-6- (3-trifluoromethylphenyl) pyridazine.

'H NMR (DMSO-d6) 60. 83 (m, 2H), 1.22 (m, 2H), 2.89 (br s, 1H), 3.35 (m, 2H), 3.59 (m, 4H), 4. 63 (m, 2H), 7.68 (d, J = 8 Hz, 1H), 7.77 (m, 1H), 7.84 (m, 1H), 8.32 (d, J= 8 Hz, 1H), 8.40 (m, 2H), 11.40 (br s, 1 H); HPLC-MS: m/z 349 (MH+) ; Rt = 2.43 min.

Example 137 1- [2- (4-isopropylpiperazin-1-yl) quinolin-6-yl] ethanone hydrochloride

This product was prepared by treatment of 2- (4-isopropylpiperazin-1-yl) quinoline-6- carbonitrile with an excess of methylmagnesium bromide in tetrahydrofuran.

'H NMR (DMSO-d6) 91. 31 (d, J = 7 Hz, 6H), 2.65 (s, 3H), 3.18 (m, 2H), 3.40-3. 80 (m, 5H), 4.82 (m, 2H), 7.52 (d, J = 8 Hz, 1H), 7.91 (brs, 1H), 8.15 (d, J = 8 Hz, 1H), 8.40 (d, J = 8 Hz, 1H), 8.54 (s, 1 H), 11.16 (br s, 1 H) ; HPLC-MS: m/z 298 (MH+) ; Rt = 1.47 min.

Example 138 (General procedure (B)) 3-(4-Isopropylipierazin-1-yl)-6-phenylpyridazin-4-carbonitri le hydrochloride This compound was prepared using the General Procedure (B) from 1-isopropylpiperazine and 3-chloro-6-phenylpyridazine-4-carbonitrile.

'H NMR (DMSO-d6) #1. 32 (d, J = 7 Hz, 6H), 3.23 (m, 2H), 3.50-3. 75 (m, 5H), 4.46 (m, 2H), 7.55 (m, 3H), 8.13 (d, J= 7 Hz, 2H), 8.72 (s, 1H), 10.67 (brs, 1H) ; HPLC-MS: m/z308 (MH+) ; Rt = 2. 16 min.

Example 139 (General procedure (B)) 6-Bromo-2- (4-isopropylpiperazin-1-yl) quinoline

This compound was prepared using the General Procedure (B) from 1-isopropylpiperazine and 6-bromo-2-chloroquinoline.

'H NMR (DMSO-d6) a 1.00 (d, J = 7 Hz, 6H), 2.52 (m, 4H), 2.69 (sept, J = 7 Hz, 1 H), 3.68 (m, 4H), 7.28 (d, J = 8 Hz, 1 H), 7.48 (d, J = 8 Hz, 1 H), 7.60 (dd, J= 1 Hz, 8 Hz, 1H), 7.93 (d, J= 1 Hz, 1H), 8.00 (d, J = 8 Hz, 1 H).

Example 140 (General procedure (B)) 2- (4-Cyclopropylpiperazin-1-yl)-6-pyrazol-1-ylquinoline hydrochloride This compound was prepared using the General Procedure (B) from 1-cyclopropylpiperazine and 2-chloro-6-pyrazol-1-ylquinoline.

1 NMR (DMSO-d6) 60. 83 (m, 2H), 1.22 (m, 2H), 2.88 (m, 1H), 3.30-3. 80 (m, 6H), 4.79 (m, 2H), 6.61 (m, 1H), 7.59 (d, J= 6 Hz, 1H), 7.81 (s, 1H), 8.10-8. 30 (m, 2H), 8.34 (s, 1H), 8.41 (d, J = 6 Hz, 1 H), 8.59 (s, 1 H), 11.47 (br s, 1 H) ; HPLC-MS: m/z 320 (MH+) ; Rt = 1.64 min.

Example 141 (General procedure (B)) 7-Chloro-2- (4-cyclopropylpiperazin-1-yl) quinolin-6-ol hydrochloride

This compound was prepared using the General Procedure (B) from 1-cyclopropylpiperazine and 2, 7-dichloro-6-hydroxyquinoline. The required 2, 7-dichloro-6-hydroxyquinoline was pre- pared by demethylation with boron tribromide in dichloromethane of 2, 7-dichloro-6- methoxyquinoline, which was prepared from 3-chloro-4-methoxyaniline as described by F.

Effenberger and W. Hartmann in Chemische Berichte 1969, 102, 3260-3267.

'H NMR (DMSO-d6) #0. 83 (m, 2H), 1.14 (m, 2H), 2.88 (m, 1H), 3.20-3. 80 (m, 6H), 4.61 (m, 2H), 7.32 (s, 1H), 7.42 (m, 1H), 7.96 (m, 1H), 8.21 (m, 1H), 10.65 (brs, 1H), 10.84 (br s, 1H) ; HPLC-MS: m/z 304 (MH+) ; Rt = 1.06 min.

Example 142 [2- (4-Cyclopropylpiperazin-1-yl) quinolin-6-yl]- (4-fluorophenyl) methanone hydrochloride This product was prepared by treatment of 2- (4-cyclopropylpiperazin-1-yl) quinoline-6- carbonitrile with an excess of (4-fluorophenyl) magnesium bromide in tetrahydrofuran.

'H NMR (DMSO-d6) #0. 84 (m, 2H), 1.14 (m, 2H), 2.89 (m, 1H), 3.25-3. 90 (m, 6H), 4.77 (m, 2H), 7.44 (m, 3H), 7.76 (m, 1 H), 7.86 (m, 2H), 7.98 (m, 1H), 8.21 (s, 1H), 8.34 (d, J = 8 Hz, 1 H), 10.65 (br s, 1 H) ; HPLC-MS: m/z 376 (MH+) ; Rt = 2.61 min.

Example 143 (General procedure (B)) Cyclopropyi- [2- (4-cyclopropylpiperazin-1-yl) quinolin-6-yl] methanone hydrochloride

This product was prepared by treatment of 2- (4-cyclopropylpiperazin-1-yl) quinoline-6- carbonitrile with an excess of cyclopropylmagnesium bromide in tetrahydrofuran.

'H NMR (DMSO-d6) 5 0. 83 (m, 2H), 1.07 (m, 4H), 1.18 (m, 2H), 2.88 (m, 1H), 3.00 (quint, J= 7 Hz, 1H), 3.30-3. 70 (m, 6H), 4.76 (m, 2H), 7.50 (d, J= 8 Hz, 1H), 7.82 (brs, 1H), 8.18 (d, J = 8 Hz, 1 H), 8.37 (d, J = 8 Hz, 1 H), 8.66 (s, 1 H), 11.05 (br s, 1 H) ; HPLC-MS: m/z 322 (MH+) ; Rt = 1.98 min.

Example 144 (General procedure (B)) 2- (4-Cyclopropylpiperazin-1-yl)-6- (4-fluorobenzyloxy) quinoline hydrochloride This compound was prepared using the General Procedure (B) from 1-cyclopropylpiperazine and 2-chloro-6- (4-fluorobenzyloxy) quinoline.

1H NMR (DMSO-d6) 5 0. 83 (m, 2H), 1.20 (m, 2H), 2.87 (m, 1H), 3.30-3. 80 (m, 6H), 4. 70 (m, 2H), 5. 18 (s, 2H), 7.25 (t, J= 8 Hz, 2H), 7.54 (m, 5H), 8.08 (brs, 1H), 8.33 (m, 1H), 11.34 (br s, 1 H) ; HPLC-MS: m/z 378 (MH+) ; Rt = 2.53 min.

Example 145 6-Cyclohex-1-enyl-2- (4-isopropylpiperazin-1-yl) quinoline hydrochloride

This product was prepared by treatment of 6-bromo-2- (4-isopropylpiperazin-1-yl) quinoline with butyllithium and then with cyclohexanone. Upon acidic workup the tertiary alcohol un- derwent elimination to yield the title compound.

'H NMR (DMSO-d6) a 1. 31 (d, J = 7 Hz, 6H), 1.60-1. 80 (m, 4H), 2.22 (m, 2H), 2.45 (m, 2H), 3.23 (m, 2H), 3.45-4. 00 (m, 5H), 4.78 (m, 2H), 6.34 (m, 1H), 7.50 (m, 1 H), 7.86 (m, 2H), 7. 98 (br s, 1 H), 8.34 (m, 1 H), 11.06 (br s, 1 H) ; HPLC-MS: m/z 336 (MH+) ; Rt = 2.50 min.

Example 146 (General procedure (C)) 1- (Biphenyl-3-yi)-4- (cyclopentyl) piperazine A mixture of 3-bromobiphenyl (300 mg, 1.28 mmol), 1-cyclopentylpiperazine (238 mg, 1.54 mmol), sodium tert. -butoxide (173 mg, 1.8 mmol), tris (dibenzylideneacetone) dipalladium (12 mg, 0.01 mmol) and racemic 2,2'-bis (diphenylphosphino)-1, 1'binaphthyl (24 mg, 0.04 mmol) in toluene (11 ml) was mixted under nitrogen in a closed reaction vessel. The reaction mixture was stirred at 80°C for 3 days in a closed reaction vessel. It was cooled to room temperature and washed with water (2 x 10 ml). The combined organic layers were extracted with 1 N hydrochloric acid (2 x 20 ml). The combined aqueous extracts were made basic with an 1 N aqueous sodium hydroxide solution and extracted with ter-butyl methyl ether (3 x 20 ml). The tert-butyl methyl ether layers were dried over magnesium sulphate. The solvent was removed in vacuo to give 220 mg of the title compound.

'H-NMR (CDCI3, two sets of signals, broad signals) 8 1.35-1. 85 (m, 6 H); 1.95 (m, 2 H); 2.55 (m, 1 H); 2.70 (m, 4 H); 3.30 (m, 4 H); 6.95 (d, 1 H); 7.05 (d, 1 H); 7.15 (s, 1 H); 7.35 (t, 2 H); 7.45 (t, 2 H); 7.60 (d, 2 H). HPLC method B: elution at 10.45 min.

The title compound was transferred into its hydrochloride salt, by dissolving it in ethyl acetate (5 ml). A 3.2 M solution of hydrogen chloride in ethyl acetate (5 ml) was added. The solvent was removed in vacuo. The residue was dissolved in ethanol (50 ml). The solvent was removed in vacuo.

Example 147 (General procedure (C)) 1-Cyclopentyl-4- [4- (2- (pyrrolidin-1-yl) ethoxy) phenyl] piperazine 86 mg of the title compound were synthesized as described for 1- (biphenyl-3-yl)-4- (cyclopentyl) piperazine, using 1- (2- (4-bromophenoxy) ethyl) pyrrolidine instead of 3- bromobiphenyl.

1H-NMR (DMSO-d6) ô 1. 55 (m, 2 H); 1.75 (m, 2 H); 1.85 (m, 4 H); 2.00 (m, 4 H); 3.10 (m, 6 H); 3.40-3. 70 (m, 9 H); 4.30 (t, 2 H); 7.00 (AB, 4 H); 10.80 (br, 1 H); 11.10 (br, 1 H). HPLC method C: elution at 2.24 min. MS: calc. for [M+H] + : 344; found: 344.

The title compound was transferred into its hydrochloride salt, by dissolving it in ethyl acetate (5 ml). A 3.2 M solution of hydrogen chloride in ethyl acetate (5 mi) was added. The solvent was removed in vacuo. The residue was dissolved in ethanol (50 ml). The solvent was removed in vacuo.

Example 148 (General procedure (C)) 1- (Biphenyl-4-yl)-4- (cyclopentyl) piperazine

180 mg of the title compound were synthesized as described for 1-(biphenyl-3-yl)-4- (cyclopentyl) piperazine, using 4-bromobiphenyl instead of 3-bromobiphenyl.

'H-NMR (CDC ! g) 8 1.80-2. 00 (m, 8 H); 2.55 (m, 1 H); 2.70 (m, 4 H); 3.20 (m, 4 H); 7.00 (d, 2 H); 7.30 (m, 1 H); 7.40 (t, 2 H); and 7.55 (m, together 4 H). HPLC method C: elution at 4.52 min.

The title compound was transferred into its hydrochloride salt, by dissolving it in ethyl acetate (5 ml). A 3.2 M solution of hydrogen chloride in ethyl acetate (5 ml) was added. The solvent was removed in vacuo. The residue was dissolved in ethanol (50 ml). The solvent was removed in vacuo.

Example 149 (General procedure (C)) [3- (4- (Cyclopentyl) piperazin-1-yl) phenyl]- (4-fluorophenyl) methanone 300 mg of the title compound were synthesized as described for 1-(biphenyl-3-yl)-4- (cyclopentyl) piperazine, using 3-bromo-4'-fluorobenzophenone instead of 3-bromobiphenyl.

'H-NMR (CDCI3) # 1. 45 (m, 2 H); 1.60 (m, 2 H); 1.75 (m, 2 H); 1.90 (m, 2 H); 2.55 (quintet, 1 H); 2.70 (m, 4 H); 3.30 (m, 4 H); 7.15 (m, 4 H); 7.35 (m, 2 H); 7.85 (m, 2 H). HPLC method C: elution at 4.22 min. MS: calc. for [M+H] + : 353; found: 353.

The title compound was transferred into its hydrochloride salt, by dissolving it in ethyl acetate (5 ml). A 3.2 M solution of hydrogen chloride in ethyl acetate (5 ml) was added. The solvent was removed in vacuo. The residue was dissolved in ethanol (50 ml). The solvent was re- moved in vacuo.

The following compounds are also within the scope of the present invention:

PHARMACOLOGICAL METHODS The ability of the compounds to interact with the histamine H3 receptor can be determined by the following in vitro binding assays.

Binding assay I Rat cerebral cortex is homogenized in ice cold K-Hepes, 5 mM MgCl2 pH 7.1 buffer. After two differential centrifugations the last pellet is resuspended in fresh Hepes buffer containing 1 mg/ml bacitracin. Aliquots of the membrane suspension (400, ug/ml) are incubated for 60 min at 25°C with 30 pM [1251]-iodoproxifan, a known histamine H3 receptor antagonist, and the test compound at various concentrations. The incubation is stopped by dilution with ice-cold medium, followed by rapid filtration through Whatman GF/B filters pretreated for 1 hour with 0.5% polyethyleneimine. The radioactivity retained on the filters is counted using a Cobra II auto gamma counter. The radioactivity of the filters is indirectly proportional to the binding affinity of the tested compound. The results are analyzed by nonlinear regression analysis.

Binding assay 11 The H3-receptor agonist ligand R-a-methyl [3H] histamine (RAMHA) is incubated with isolated rat cortex cell-membranes at 25 °C for 1 hour, followed by a filtration of the incubate through Whatman GF/B filters. Radioactivity retained on the filters is measured using a beta counter.

Male Wistar rats (150-200 g) are decapitated and cerebral cortex is quickly dissected out and frozen immediately on dry ice. Tissue is kept at-80 °C until membrane preparation. During the membrane preparation the tissue is kept on ice all the time. Rat cerebral cortex is ho- mogenized in 10 volumes (w/w) ice-cold Hepes buffer (20 mM Hepes, 5 mM MgCI2 pH 7.1 (KOH) + 1 mg/ml bacitracin) using an Ultra-Turrax homogenizer for 30 seconds. The ho- mogenate is centrifuged at 140 g in 10 min. The supernatant is transferred to a new test tube and centrifuged for 30 min at 23 000 g. Pellet is resuspended in 5-10 ml Hepes buffer, ho- mogenized and centrifuged for 10 min at 23 000 g. This short centrifugation step is repeated twice. After the last centrifugation the pellet is resuspended in 2-4 ml Hepes buffer and the protein concentration is determined. The membranes are diluted to a protein concentration of 5 mg/ml using Hepes buffer, aliquote and stored at-80 °C until use.

50 Ll test-compound, 100 pI membrane (200 ug/ml), 300 ul Hepes buffer and 50 ill R-a- methyl [3H] histamine (1 nM) are mixed in a test tube. The compounds to be tested are dis- solved in DMSO and further diluted in H20 to the desired concentrations. Radioligand and membranes are diluted in Hepes buffer + 1 mg/ml bacitracin. The mixture is incubated for 60 min at 25 °C. Incubation is terminated by adding 5 mi ice-cold 0.9% NaCI, followed by rapid filtration through Whatman GF/B filters pre-treated for 1hour with 0.5% polyethyleneimine.

The filters are washed with 2 x 5 mi ice-cold NaCI. To each filter a 3 ml scintillation cocktail is added and the radioactivity retained is measured with a Packard Tri-Carb beta counter.

IC50 values are calculated by non-linear regression analysis of binding curves (6 points mini- mum) using the windows program GraphPad Prism, GraphPad software, USA.

Binding assay III The human H3 receptor is cloned by PCR and subcloned into the pcDNA3 expression vec- tor. Cells stably expressing the H3 receptor are generated by transfecting the H3-expression vectors into HEK 293 cells and using G418 to select for H3 clones. The human H3-HEK 293 clones are cultured in DMEM (GIBCO-BRL) with glutamax, 10% foetal calf serum, 1% peni- cillin/streptavidin and 1 mg/ml G 418 at 37 °C and 5% CO2. Before harvesting, the confluent cells are rinsed with PBS and incubated with Versene (proteinase, GIBCO-BRL) for approxi- mately 5 min. The cells are flushed with PBS and DMEM and the cell suspension collected in a tube and centrifuged for 5-10 min at 1500 rpm in a Heraeus Sepatech Megafuge 1.0. The

pellet is resuspended in 10-20 vol. Hepes buffer (20 mM Hepes, 5 mM MgCI2, pH 7.1 (KOH) ) and homogenized for 10-20 seconds using an Ultra-Turrax homogenizer. The homogenate is centrifuged for 30 min at 23 000 g. The pellet is resuspended in 5-10 mi Hepes buffer, ho- mogenized 5-10 seconds with the Ultra-Turrax and centrifuged for 10 min at 23 000 g. Fol- lowing this centrifugation step, the membrane pellet is resuspended in 2-4 mI Hepes buffer, homogenized with a syringe or Teflon homogenizer, and the protein concentration deter- mined. The membranes are diluted to a protein concentration of 1-5 mg/ml in Hepes buffer, aliquote and kept at-80 °C until use.

Aliquots of the membrane suspension are incubated for 60 min at 25 °C with 30 pM [125 iodoproxifan, a known compound with high affinity for the H3 receptor, and the test com- pound at various concentrations. The incubation is stopped by dilution with ice-cold medium, followed by rapid filtration through Whatman GF/B filters pretreated for 1 hour with 0.5% polyethyleneimine. The radioactivity retained on the filters is counted using a Cobra II auto gamma counter. The radioactivity of the filters is indirectly proportional to the binding affinity of the tested compound. The results are analysed by nonlinear regression analysis.

When tested, the present compounds of the formula (I) generally show a high binding affinity to the histamine H3 receptor.

Preferably, the compounds according to the invention have an IC50 value as determined by one or more of the assays of less than 10, uM, more preferred of less than 1 uM, and even more preferred of less than 500 nM, such as of less than 100 nM.

Functional assay I The ability of the compounds to interact with the histamine H3 receptor as agonists, inverse agonists and/or antagonists, is determined by an in vitro functional assay utilizing mem- branes from HEK 293 cell expressing the human H3 receptors.

The H3 receptor is cloned by PCR and subcloned into the pcDNA3 expression vector. Cells stably expressing the H3 receptor are generated by transfecting the H3-expression vectors into HEK 293 cells and using G418 to select for H3 clones. The human H3-HEK 293 clones are cultured in DMEM with glutamax, 10% foetal calf serum, 1 % penicillin/streptavidin and 1 mg/ml G 418 at 37°C and 5% C02.

The H3 receptor expressing cells are washed once with phosphate buffered saline (PBS) and harvested using versene (GIBCO-BRL). PBS is added and the cells are centrifuged for 5 min at 188 g. The cell pellet is resuspended in stimulation buffer to a concentration of 1 x 106 cells/ml. cAMP accumulation is measured using the Flash Plate@ cAMP assay (NEN Life Science Products). The assay is generally performed as described by the manufacturer.

Briefly, 50 fil cell suspension is added to each well of the Flashplate which also contained 25 , u140, uM isoprenaline, to stimulate cAMP generation, and 25 zizi of test compound (either agonists or inverse agonists alone, or agonist and antagonist in combination). The assay can be run in"agonist-mode"which means that the test compound is added, in increasing con- centration, on its own, to the cells, and cAMP is measured. If cAMP goes up, it is an inverse agonist; if cAMP does not change, it is a neutral antagonist, and if cAMP goes down, it is an agonist. The assay can also be run in the"antagonist-mode"which means that a test com- pound is added, in increasing concentrations, together with increasing concentrations of a known H3 agonist (eg RAMHA). If the compound is an antagonist, increasing concentrations of it cause a right-ward shift in the H3-agonist's dose-response curves. The final volume in each well is 100 RI. Test compounds are dissolved in DMSO and diluted in H20. The mixture is shaken for 5 min, and allowed to stand for 25 min at room temperature. The reaction is stopped with 100, ul"Detection Mix"per well. The plates are then sealed with plastic, shaken for 30 min, allowed to stand overnight, and finally the radioactivity is counted in the Cobra II auto gamma topcounter. EC50 values are calculated by non-linear regression analysis of dose response curves (6 points minimum) using GraphPad Prism. Kb values are calculated by Schild plot analysis.

Functional assay 11 The ability of the compounds to bind and interact with the human H3 receptor as agonists, inverse agonists and/or antagonists, is determined by a functional assay, named [35S] GTPyS assay. The assay measures the activation of G proteins by catalyzing the exchange of guanosine 5'-diphosphate (GDP) by guanosine 5'-triphosphate (GTP) at the a-subunit.

The GTP-bounded G proteins dissociate into two subunits, Gacrp and Gpy, which in turn regulate intracellular enzymes and ion channels. GTP is rapidly hydrolyse by the Ga-sub- unit (GTPases) and the G protein is deactivated and ready for a new GTP exchange cycle.

To study the function of ligand induced G protein coupled receptor (GPCR) activation by an increase in guanine nucleotide exchange at the G proteins, the binding of [35S]-guanosine-5'- 0- (3-thio) triphosphate [35S] GTPyS, a non-hydrolysed analogue of GTP, is determined. This process can be monitored in vitro by incubating cell membranes containing the G protein coupled receptor H3 with GDP and [35S] GTPyS. Cell membranes are obtained from CHO cells stably expressing the human H3 receptor. The cells are washed twice in PBS, har- vested with PBS+1 mM EDTA, pH 7.4 and centrifuged at 1000 rpm for 5 min. The cell pellet is homogenized in 10 ml ice-cold Hepes buffer (20 mM Hepes, 10 mM EDTA pH 7.4 (NaOH) )

using an Ultra-Turrax homogenizer for 30 seconds and centrifuged for 15 min at 20.000 rpm.

Following this centrifugation step, the membrane pellet is resuspended in 10 ml ice-cold Hepes buffer (20 mM Hepes, 0.1 mM EDTA pH 7.4 (NaOH) ) and homogenized as describe above. This procedure is repeated twice except for the last homogenization step, the protein concentration is determined and membranes are diluted to a protein concentration at 2 mg/ml, aliquote and kept at-80 °C until use.

In order to study the presence and the potency of an inverse agonist/antagonist the H3- receptor agonist ligand R-a-methyl histamine (RAMHA) is added. The ability of the test com- pound to counteract the effect of RAMHA is measured. When studying the effect of an ago- nist RAMHA is not added to the assay medium. The test compound is diluted in the assay buffer (20 mM HEPES, 120 mM NaCI, 10 mM MgCl2 pH 7.4 (NaOH) ) at various concentra- tions followed by addition of 10-8 nM RAMHA (only in the case where an inverse ago- nist/antagonist is examined), 3 uM GDP, 2. 5 ug membranes, 0.5 mg SPA beads and 0.1 nM [35S] GTPyS and incubated for 2 hours by slightly shaking at room temperature. The plates are centrifuged at 1500 rpm for 10 min and the radioactivity is measured using a Top- counter. The results are analyzed by non linear regression and the IC5o value is determined.

RAMHA and other H3 agonists stimulate the binding of [35S] GTPyS to membranes express- ing the H3 receptor. In the antagonist/inverse agonist test, the ability of increasing amounts of test compound to inhibit the increased [35S] GTPyS binding by 1 M RAMHA is measured as a decrease in radioactivity signal. The ICSO value determined for an antagonist is the ability of this compound to inhibit the effect of 1 0-"M RAMHA by 50%. In the agonist test, the ability of increasing amounts of test compound is measured as an increase in radioactivity signal.

The Echo value determined for an agonist, is the ability of this compound to increase the sig- nal by 50% of the maximal signal that is obtained by 10-5 M RAMHA.

Preferably, the antagonists and agonists according to the invention have an IC50/EC5o value as determined by one or more of the assays of less than 10, uM, more preferred of less than 1, uM, and even more preferred of less than 500 nM, such as of less than 100 nM.

The open cage Schedule-fed rat model The ability of the present compounds to reduce weight is determined using the in vivo open cage Schedule-fed rat model.

Sprague-Dawley (SD) male rats of an age of about 11/2 to 2 months and a weight of about 200-250 g are purchased from Mllegård Breeding and Research Centre A/S (Denmark). On arrival they are allowed some days of acclimatisation before being placed in individual open plastic cages. They are habituated to the presence of food (Altromin pelleted rat chow) in

their home cage only during 7 hours in the morning from 07.30 to14. 30 all days a week. Wa- ter is present ad libitum. As the consumption of food has stabilised after 7 to 9 days, the ani- mals are ready for use.

Each animal is used only once to avoid carry-over effects between treatments. During the test sessions, the test compound is administered intraperitoneally or orally 30 min before the start of the sessions. One group of animals is administered the test compound at different doses and a control group of animals is given a vehicle. Food and water intake are monitored at 1,2 and 3 hours post administration.

Any side effects may rapidly be discovered (barrel-rolling, bushy fur etc. ) since the ani- mals are kept in transparent plastic cages to enable continuous monitoring.