Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
NOVEL ENDO-XYLANASE, ENCODING GENE AND USE THEREOF
Document Type and Number:
WIPO Patent Application WO/2011/157231
Kind Code:
A1
Abstract:
Provided are a novel endo-xylanase, encoding gene and use thereof. The expressing vector and host cell containing the said gene and the use of the said xylanase in the production of monosaccharide are also provided. The xylanase has high activity, wide pH range and good temperature endurance.

Inventors:
HUANG YONGPING (CN)
LIU NING (CN)
YAN XING (CN)
MIAO XUEXIA (CN)
WANG QIAN (CN)
XIE LEI (CN)
ZHOU ZHIHUA (CN)
WANG SHENGYUE (CN)
WANG YUEZHU (CN)
Application Number:
PCT/CN2011/075947
Publication Date:
December 22, 2011
Filing Date:
June 20, 2011
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
SHANGHAI INST BIOL SCIENCES (CN)
HUANG YONGPING (CN)
LIU NING (CN)
YAN XING (CN)
MIAO XUEXIA (CN)
WANG QIAN (CN)
XIE LEI (CN)
ZHOU ZHIHUA (CN)
WANG SHENGYUE (CN)
WANG YUEZHU (CN)
International Classes:
C12N15/56; A23L29/00; C12N1/21; C12N9/24; C12N15/11; C12N15/24; C12N15/64; C12P19/14; D06L4/40
Domestic Patent References:
WO2003106654A22003-12-24
Foreign References:
Other References:
NING LIU ET AL.: "Microbiome of Termites-growing Termites: a New Reservoir for Lignocellulase Genes", APPLIED AND ENVIRONMENTAL MICROBIOLOGY, vol. 77, no. 1, January 2011 (2011-01-01), pages 31 - 53
Attorney, Agent or Firm:
SHANGHAI PATENT & TRADEMARK LAW OFFICE, LLC (CN)
上海专利商标事务所有限公司 (CN)
Download PDF:
Claims:
权 利 要 求

1. 一种分离的多肽, 其特征在于, 该多肽选自下组:

(a) 如 SEQ ID NO: 2氨基酸序列的多肽;

(b) 将 SEQ ID NO: 2氨基酸序列经过一个或多个氨基酸残基的取代、 缺失或添加 而形成的, 且具有 (a)多肽功能的由 (a)衍生的多肽;

(c) 具有 (a)多肽功能的 SEQ ID NO: 2的蛋白片段。

2. 一种分离的多核苷酸, 其特征在于, 它包含一核苷酸序列, 该核苷酸序列选自 下组:

(1) 编码如权利要求 1所述多肽的多核苷酸;

(2) 与多核苷酸 (1)互补的多核苷酸。

3. 如利要求 2所述的多核苷酸, 其特征在于, 该多核苷酸编码如 SEQ ID NO: 2 所示氨基酸序列的多肽。

4. 如权利要求 2所述的多核苷酸, 其特征在于, 该多核苷酸的核苷酸序列如 SEQ ID NO: 1所示。

5. —种载体, 其特征在于, 它含有权利要求 2-4任一所述的多核苷酸。

6. 一种遗传工程化的宿主细胞, 其特征在于, 它含有权利要求 5所述的载体, 或 其基因组中整合有权利要求 2-4任一所述的多核苷酸。

7. 一种权利要求 1所述的多肽的制备方法, 其特征在于, 该方法包含:

(a) 培养权利要求 6所述的宿主细胞;

(b) 从培养物中分离出权利要求 1所述的多肽。

8. 权利要求 1所述的多肽的用途, 用于形成简单糖。

9. 如权利要求 8所述的用途, 其特征在于, 所述的简单糖是: 低聚木糖或木寡糖。

10. 如权利要求 8所述的用途, 其特征在于, 所述的多肽用于以内切形式水解底 物, 从而形成简单糖, 所述的底物是: 木聚糖, 或含木聚糖的物质。

11. 如权利要求 10所述的用途, 其特征在于, 所述的木聚糖是: 桦木木聚糖和山 毛榉木聚糖。

12.—种组合物, 其特征在于, 它含有安全有效量的权利要求 1所述的多肽以及食 品学或工业上可接受的载体。

13. 如权利要求 12的组合物, 其特征在于, 还含有调节酶活性的添加物。

14. 如权利要求 13的组合物, 其特征在于, 所述的调节酶活性的添加物是提高 酶活性的添加物; 较佳地选自: Tris-Cl, Mg2+或在添加至底物后可水解形成 Mg2+的 物质; 或 所述的调节酶活性的添加物是抑制酶活性的添加物; 较佳地选自: EDTA, Ag+, Cu2+, Fe3+, Co2+, Ca2+, Mn2+, K+, Ba2+, Ni2+, Zn2+或 Al3+; 或在添加至底物后可 水解形成 Ag+, Cu2+, Fe3+, Co2+, Ca2+, Mn2+, K+, Ba2+, Ni2+, Zn2+或 Al3+的物质。

15. 一种形成简单糖的方法, 其特征在于, 该方法包含: 用权利要求 1所述的多 肽或权利要求 6所述的宿主细胞处理待水解的底物, 所述的底物包括: 木聚糖, 或含 木聚糖的物质。

16. 一种水解、 降解、 液化或转化含纤维素或半纤维素或木聚糖的物质的方法, 其特征在于, 该方法包含: 用权利要求 1所述的多肽或权利要求 6所述的宿主细胞处 理含纤维素或半纤维素或木聚糖的物质。

17. 如权利要求 15或 16所述的方法, 其特征在于, 在 pH4-10.5条件下, 用权利 要求 1所述的多肽处理待水解的底物。

18. 如权利要求 15或 16所述的方法, 其特征在于, 在温度 20-70°C条件下, 用权 利要求 1所述的多肽处理待水解的底物。

19. 如权利要求 15或 16所述的方法, 其特征在于, 用权利要求 1所述的多肽处 理的同时, 还加入调节酶活性的添加物。

20. 权利要求 1所述的多肽的用途, 用于:

作为食品工业的添加剂;

作为造纸工业的脱木素或纸浆漂白或脱墨的添加剂;

作为纺织工业的酶解返麻工艺或织物漂白的添加剂;

作为饲料添加剂; 或

作为乙醇工业生产的添加物。

Description:
新型内切木聚糖酶, 其编码基因和应用 技术领域

本发明属于生物技术领域, 涉及一种新型内切木聚糖酶及其编码基因和应 用。 背景技术

木聚糖简介。 木聚糖, 是植物细胞壁中半纤维素的主要成份, 由木糖分子 (D Xylose )以 β-1,4-连结成主链;阿拉伯呋喃糖苷基、葡糖 酸基或乙酰基等连结成支链。 在自然界中是除纤维素之外含量最为丰富的可 再生植物多糖。

木聚糖的来源。 富含木聚糖的原料来源广泛, 包括硬木、 软木、 秸秆、 稻草、 麸 皮等农、 林、 工业废弃物及城市固体垃圾等。 且不同植物所含木聚糖的多少也有所差 另 |J, 一般硬材中所含木聚糖比软材中多, 硬材中能占到干重的 15〜30%, 软材中一般 占干重的 7〜12%。 而在一些一年生植物如小麦、 甘煎、 棉子壳中, 木聚糖含量则高 达 30%以上。

木聚糖酶简介。 木聚糖酶是一系列糖基水解酶 (E.C. 3.2.1.x)的总称。 由于组成木 聚糖单糖单元的差异、 键的类型不同、 以及木聚糖中存在许多不同取代基的支链, 木 聚糖的彻底降解需要多种酶参与, 包括: 内切 -1, 4-β-木聚糖酶 ( en do-P-l,4-xyl anaSe , EC 3. 2. 1 . 8), β-木糖苷酶 (β-xylosidase, EC 3. 2. 1 . 37), α-L-阿拉伯呋喃糖苷 酶 (a-L-arabinofuranosidase, E C. 3.2.1.39)、 β-D-葡萄糖醛酸苷酶 (p-D-glucuronidase, EC 3.2.1.39)、 乙酰木聚糖酯酶 (acetyl xylan esterases, E.C. 3.1.1.72)以及降解阿拉伯糖 侧链残基与酚酸 (;如阿魏酸或香豆酸)形成的酯键酚酸酯酶 Cferulic or p-coumaric acid esterase, E.C. 3.2.1.73)等。 其中, 内切 -1, 4-β-木聚糖酶是降解木聚糖最主要的酶。 该酶以内切方式作用于木聚糖主链内部的 β-1, 4-木糖苷键, 将大分子多聚木糖水解 为低聚木糖和少量木糖, 从而起始多聚糖的逐步降解 (Bernier R, Driguez Η,

Desrochers M Gene 26:59-65, 1983)

木聚糖酶在传统产业中的应用。 木聚糖酶被广泛应用于包括食品、 饲料、 造纸、 纺织等各种工业部门中, 并在其中扮演重要的角色。 第一, 在食品工业中, 木聚糖酶 被用于水果、蔬菜和植物加工, 以促进浸渍过程, 使汁液澄清, 提高产量和过滤效率; 被用于葡萄酒制造和酿造以促进葡萄皮浸渍和 降低成品的混浊度;被用于培烤、磨粉、 糕点、糖果的加工中以提高面团的弹性和强度 ,改善的面包质地;被用于咖啡加工中, 以降低咖啡提取物的粘度并改善了干燥 /冻干过程。 第二, 在造纸工业中, 木聚糖酶 被用于促进制浆处理和代替机械制浆,不仅能 有效降低能量消耗还可提高纸浆的原纤 维形成和透水性进而提高加工效率和纸张强度 。 第三, 在纺织工业中, 木聚糖酶被用 于纺织品 (亚麻, 黄麻, 兰麻, 大麻等)的酶解返麻中, 以减少或替代化学混麻方法。 第四, 在农牧业中, 木聚糖酶被广泛应用于单胃动物 (如猪和家禽)以及反刍动物的饲 料中。 辅助动物有效降解木聚糖, 降低饲料中非淀粉多糖的含量, 以提高饲料的可消 化性和营养价值同时减少环境污染。

木聚糖酶在生物能源领域的作用。 尤为重要的是, 在全球化石资源日益枯竭, 开 发新型生物能源迫在眉睫的背景下, 木聚糖酶可与其他纤维素酶、 半纤维素酶共同应 用于将木质纤维素转化为燃料乙醇的工业生产 中。一方面, 木聚糖酶通过降解木质纤 维素中与木质素及纤维素骨架链紧密交联的半 纤维素链,大大提高纤维素酶接触并作 用于纤维素链的频率和效率, 从而间接提高纤维素的降解效率; 另一方面, 随着近年 来五碳糖发酵途径及菌株的研究、 开发, 利用细菌、 酵母及丝状真菌发酵木聚糖水解 产物木糖生产燃料乙醇的工艺日趋成熟。两方 面共同作用使木质纤维素的转化效率大 大提高, 从而有效降低燃料乙醇的生产成本。

木聚糖酶的研究历史。 由于木聚糖酶有着广泛的用途, 对木聚糖酶的研究早在六 十年代就已开始,且己经从不同来源的微生物 中分离到大量的不同类型不同功能的木 聚糖酶。 研究得较为清楚的有 rr c/wifer a ree C里氏木霉;)、 ^erg //i« « ger (黑曲 霉)、 Streptomyces lividans (^ίίι ^ίίΐβ ¾ί) CW/M/owo"iiw/w (粪月巴杆菌)、 Clostridium t/zer oce//i w (热纤梭菌)、 Penicillium p/ c *« WMW (简青霉)等所产生的木聚糖酶。 需 要指出的是, 这些木聚糖酶基因大部分都是从纯培养的微生 物中分离出来的, 而自然 界中可培养微生物的种类尚不足 1%, 获得的木聚糖酶在理化特性、 催化效率、 产量 等方面也远远不能满足现代工业生产的需求。

鉴于现有技术中大部分木聚糖酶的活力较低, 在理化特性、 催化效率、 产量等方 面也远远不能满足现代工业生产的需求, 有必要进一步扩大筛选对象, 从中筛选出新 的、 酶活性高的木聚糖酶, 以用于工业生产, 提高生产效率。 发明内容

本发明的目的在于提供一种新型内切木聚糖酶 及其编码基因和应用。

本发明的目的在于提供包括内切木聚糖酶基因 的表达载体和宿主细胞, 基因的 表达和蛋白纯化方法, 以及重组蛋白的酶学特性和功能特征。 在本发明的第一方面, 提供一种分离的多肽, 该多肽选自下组:

(a) 如 SEQ ID NO: 2氨基酸序列的多肽;

(b) 将 SEQ ID NO: 2氨基酸序列经过一个或多个 (如 1-20个, 较佳地 1-10个; 更佳地 1-5个; 更佳地 1-3个) 氨基酸残基的取代、 缺失或添加而形成的, 且具有 (a) 多肽功能的由 (a)衍生的多肽;

(c) 具有 (a)多肽功能的 SEQ ID NO: 2的蛋白片段。

在一个优选例中, 所述的多肽来源于高等培菌白蚁肠道系统的元 基因组。

在本发明的另一方面, 提供一种分离的多核苷酸, 它包含一核苷酸序列, 该核苷 酸序列选自下组:

(1) 编码所述多肽的多核苷酸;

(2) 与多核苷酸 (1)互补的多核苷酸。

在另一优选例中, 该多核苷酸编码如 SEQ ID NO: 2所示氨基酸序列的多肽。 在另一优选例中, 该多核苷酸的核苷酸序列如 SEQ ID NO: 1所示。

在本发明的另一方面, 提供一种载体, 它含有所述的多核苷酸。

在本发明的另一方面, 提供一种遗传工程化的宿主细胞, 它含有所述的载体, 或 其基因组中整合有所述的多核苷酸。

在本发明的另一方面, 提供一种所述的多肽的制备方法, 该方法包含:

(a) 培养所述的宿主细胞;

(b) 从培养物中分离出所述的多肽。

在本发明的另一方面, 提供所述的多肽的用途, 用于形成简单糖 (还原糖)。

在另一优选例中, 所述的简单糖是: 低聚木糖或木寡糖 (主要包括: 木二糖、 木三 糖或木四糖)。

在另一优选例中, 所述的多肽用于以内切形式水解底物, 从而形成简单糖, 所述 的底物是: 木聚糖, 或含木聚糖的物质 (如半纤维素)。

在另一优选例中, 所述的木聚糖是: 桦木木聚糖和山毛榉木聚糖。

在本发明的另一方面, 提供一种组合物, 它含有安全有效量的所述的多肽以及食 品学或工业上可接受的载体。

在另一优选例中, 所述的组合物还含有调节酶活性的添加物。

在另一优选例中, 所述的调节酶活性的添加物是提高酶活性的添 加物; 较佳地选 自: Tris-Cl, Mg 2+ 或在添加至底物后可水解形成 Mg 2+ 的物质; 或

所述的调节酶活性的添加物是抑制酶活性的添 加物; 较佳地选自: EDTA Ag +

Cu 2+ , Fe 3+ , Co 2+ , Ca 2+ , Mn 2+ , K + , Ba 2+ , Ni 2+ , Zn 2+ 或 Al 3+ ; 或在添加至底物后可 水解形成 Ag + , Cu 2+ , Fe 3+ , Co 2+ , Ca 2+ , Mn 2+ , K + , Ba 2+ , Ni 2+ , Zn 2+ 或 Al 3+ 的物质。

在本发明的另一方面, 提供一种形成简单糖的方法, 该方法包含: 用所述的多肽 处理待水解的底物, 所述的底物包括: 木聚糖, 或含木聚糖的物质。

在一个优选例中, 所述的木聚糖是: 桦木木聚糖和山毛榉木聚糖。

在本发明的另一方面, 提供一种水解、 降解、 液化或转化含纤维素或半纤维素或 木聚糖的物质的方法, 该方法包含: 用所述的多肽或所述的宿主细胞处理含纤维素 或 半纤维素或木聚糖的物质。 在另一优选例中, 在 pH4-10.5 (较佳地是 PH5.5-10; 更佳地是 PH6.0-9.5 ; 更佳地 是 PH7.0-8.0; 最佳地是 PH7.5) 条件下, 用所述的多肽处理待水解的底物。

在另一优选例中,在温度 20-70°C (较佳地是 40-58°C ;更佳地是 50-55 °C) 条件下, 用所述的多肽处理待水解的底物。

在另一优选例中, 用所述的多肽处理的同时, 还加入调节酶活性的添加物。

在另一优选例中, 所述的调节酶活性的添加物是提高酶活性的添 加物; 较佳地选 自: Tris-Cl, Mg 2+ 或在添加至底物后可水解形成 Mg 2+ 的物质; 或

所述的调节酶活性的添加物是抑制酶活性的添 加物;较佳地选自: Ag + , Cu 2+ , Fe 2+ , Fe 3+ , Ca 2+ , Mn 2+ , K + , Ni 2+ , Zn 2+ 或 Al 3+ ; 或在添加至底物后可水解形成 Ag + , Cu 2+ , Fe 3+ , Co 2+ , Ca 2+ , Mn 2+ , K + , Ba 2+ , Ni 2+ , Zn 2+ 或 Al 3+ 的物质。

在另一优选例中, 加入所述的 Tris-Cl或 Mg 2+ 的浓度是 l ± 0.5mM; 较佳地 1士 0.2mM ; 更佳地 l ± 0.1mM; 最佳地为 lmM。

在本发明的另一方面, 提供所述的多肽的用途, 用于:

作为食品工业的添加剂; 较佳地, 用于水果、 蔬菜或植物加工, 以促进浸渍过程, 使汁液澄清, 提高产量和过滤效率; 用于葡萄酒制造和酿造以促进葡萄皮浸渍和降 低 成品的混浊度; 被用于培烤、 磨粉、 糕点、 糖果的加工中以提高面团的弹性和强度, 改善的面包质地; 被用于咖啡加工中, 以降低咖啡提取物的粘度并改善了干燥 /冻干 过程;

作为造纸工业的脱木素或纸浆漂白或脱墨的添 加剂; 较佳地, 用于促进制浆处理 和代替机械制浆, 有效降低能量消耗, 提高纸浆的原纤维形成和透水性, 提高加工效 率和纸张强度;

作为纺织工业的酶解返麻工艺或织物漂白的添 加剂; 较佳地, 用于的纺织品包括 但不限于: 亚麻, 黄麻, 兰麻, 大麻;

作为饲料添加剂; 较佳地, 用于辅助动物降解木聚糖, 降低饲料中非淀粉多糖的 含量, 以提高饲料的可消化性和营养价值同时减少环 境污染; 或

作为乙醇工业生产的添加物; 较佳地, 用于降解木质纤维素中与木质素及纤维素 骨架链紧密交联的半纤维素链, 提高纤维素酶接触并作用于纤维素链的频率和 效率, 提高纤维素的降解效率; 或用于微生物 (包括: 细菌、 酵母及丝状真菌)发酵木聚糖水 解产物木糖生产乙醇。

本发明的其它方面由于本文的公开内容,对本 领域的技术人员而言是显而易见的。 附图说明

图 1为重组大肠杆菌 BL21(DE3ypET22b(+;)-x ^£7菌体 PCR后的电泳图。

图 2为重组大肠杆菌 BL21(DE3)/pET22b(+)-x M£7在含桦木木聚糖的平板活性检 测图。

图 3为内切 -1,4-β-木聚糖酶基因 x_yM£7的表达 (左图)、 表达产物的纯化 (右图) SDS-PAGE图。其中左图泳道 1为细胞裂解液总蛋白,泳道 2为裂解液上清中的蛋白, 泳道 3为裂解液沉淀中的蛋白;右图泳道 1为 10mM 咪唑洗脱液,泳道 2为 20mM 咪 唑洗脱液, 泳道 3为 25mM 咪唑洗脱液, 泳道 4为 60 mM 咪唑洗脱液, 泳道 5为 250 mM 咪唑洗脱液。

图 4为 Xyl6E7在不同 pH条件下的酶活力曲线。

图 5为 Xyl6E7在不同温度条件下的酶活力曲线。

图 6为 Xyl6E7对不同温度的耐受性检测结果。

图 7为 Xyl6E7对桦木木聚糖在不同作用条件下的水解底 物的 TLC分析。其中, 1: 标准品: XI为木糖, X2为木二糖, X3为木三糖; 2: 对照组 (未与酶作用的 1%桦 木木聚糖) ; 3 : 当酶量较少 (0.03665U), 作用时间较短(10分钟)时将大分子木聚糖初 步水解为一系列低聚木聚糖; 4: 当酶量较充分 (3.665U), 作用时间较长 (12小时)时将 其最终水解为木寡糖, 主要包括: 木二糖、 木三糖、 木四糖。

图 8为 Xyl6E7 pH耐受性测定。

图 9为 Xyl6E7在三个 pH值、 50Ό情况 T, 随时间延长酶活力的变化。 具体实施方式

本发明人经过大规模的筛选, 首次从白蚁肠道的元基因组中分离得到一种新 的木 聚糖酶 (较佳地为内切 -1, 4-β-木聚糖酶), 其酶活性高, 对温度和 pH具有较宽的作用 范围, 可良好地应用于工业生产。所述的木聚糖酶的 氨基酸序列与已知氨基酸序列的 相似性最高的为 71.8%, 证明其是一种新的蛋白。 本发明的木聚糖酶具有很高的酶活 性, 在 pH7.5, 55 °C下的比活力高于 700U/mg。 针对传统微生物学中基因筛选方面的缺陷, 元基因组学 (Metagenomics)技术异军 突起。 通过直接从环境中抽提微生物核酸并构建元基 因组文库 (BAC, fosmid或者质 粒文库), 可以有效克服由于微生物分离培养技术造成的 缺陷, 获得群落中所有种群 的遗传信息, 这些遗传信息就包括了群落中所欲参与生物转 化的基因, 这些基因编码 的酶在克隆宿主中的表达可以用于各种与生物 转化相关的酶的筛选,从而有可能获得 大量新的基因。

众所周知, 针对不同用途需要使用不同性质的木聚糖酶, 而不同性质的木聚糖酶 极有可能蕴藏于自然界不同生态环境下的微生 物基因组中。白蚁作为自然生态系统中 木质纤维素的重要降解者,其肠道共生微生物 群落在纤维素物质转化过程中起到了关 键作用。 鉴于白蚁肠道生态系统的高效性、 独特性和复杂性, 本发明以白蚁作为木聚 糖酶筛选的体系, 利用元基因组学技术进行筛选, 对其基因和酶进行挖掘, 最终找到 了本发明的木聚糖酶。

本发明的木聚糖酶可作用于木聚糖长链分子的 内部, 以内切方式作用于木聚糖主 链内部的 β-1, 4-木糖苷键, 将大分子多聚木糖水解为简单糖 (如木寡糖)。 如本文所用, 术语"本发明的多肽"、 "本发明的蛋白"、 "本发明的木聚糖酶"、 " Xyl6E7蛋白" 、 " Xyl6E7多肽"或 "木聚糖酶 Xyl6E7 "可互换使用, 都指具有木 聚糖酶 Xyl6E7氨基酸序列 (SEQ ID NO: 2或其变异形式或衍生物)的蛋白或多肽。 它 们包括含有或不含起始甲硫氨酸的木聚糖酶 Xyl6E7。

如本文所用, 术语 "本发明的基因" 、 "x >M£7基因" 、 "xyl6E7"指具有木聚 糖酶编码基因序列 (SEQ ID NO: 1或其变异形式或衍生物)的多核苷酸。

如本文所用, 所述的 "简单糖"广义地指木聚糖链被切割后形成的一 糖的总称, 其链长度低于被切割前。 例如, 所述的简单糖含有 1-50个木糖, 较佳的, 含有 1-30 个木糖; 更佳的, 含有 1- 15个木糖; 更佳地含有 1-10个木糖, 如 2, 3 , 4, 5, 6, 7, 8, 9个木糖。 所述的简单糖包括: 木二糖、 木三糖、 木四糖等。 本发明中, 所述的 简单糖又指: 低聚木糖。

如本文所用, 所述的 "低聚木糖"指由少数单体木糖由 β- Γ, 4-糖苷键连接形成的 低聚体; 所述的 "木聚糖" 是由大量单体木糖由 β- 4-糖苷键连接形成的高聚体。

如本文所用, "分离的" 是指物质从其原始环境中分离出来 (如果是天然的物质, 原始环境即是天然环境)。 如活体细胞内的天然状态下的多聚核苷酸和多 肽是没有分 离纯化的, 但同样的多聚核苷酸或多肽如从天然状态中同 存在的其他物质中分开, 则 为分离纯化的。

如本文所用, "分离的 Xyl6E7蛋白或多肽"是指 Xyl6E7多肽基本上不含天然与 其相关的其它蛋白、 脂类、 糖类或其它物质。 本领域的技术人员能用标准的蛋白质纯 化技术纯化 Xyl6E7蛋白。 基本上纯的多肽在非还原聚丙烯酰胺凝胶上能 产生单一的 主带。 Xyl6E7多肽的纯度能用氨基酸序列分析。 本发明的多肽可以是重组多肽、 天然多肽、 合成多肽, 优选重组多肽。 本发明的 多肽可以是天然纯化的产物, 或是化学合成的产物, 或使用重组技术从原核或真核宿 主 (例如, 细菌、 酵母、 高等植物、 昆虫和哺乳动物细胞;)中产生。 根据重组生产方案 所用的宿主, 本发明的多肽可以是糖基化的, 或可以是非糖基化的。 本发明的多肽还 可包括或不包括起始的甲硫氨酸残基。

本发明还包括 Xyl6E7蛋白的片段、衍生物和类似物。如本文所 用, 术语"片段"、 "衍生物" 和 "类似物" 是指基本上保持本发明的天然 Xyl6E7蛋白相同的生物学功 能或活性的多肽。 本发明的多肽片段、衍生物或类似物可以是 (i)有一个或多个保守或 非保守性氨基酸残基 (优选保守性氨基酸残基)被取代的多肽, 而这样的取代的氨基酸 残基可以是也可以不是由遗传密码编码的, 或 (ii)在一个或多个氨基酸残基中具有取 代基团的多肽, 或 (iii)成熟多肽与另一个化合物 (比如延长多肽半衰期的化合物, 例如 聚乙二醇)融合所形成的多肽, 或 (iv)附加的氨基酸序列融合到此多肽序列而形 的多 肽 (如前导序列或分泌序列或用来纯化此多肽的 列或蛋白原序列, 或与抗原 IgG片 段的形成的融合蛋白)。 根据本文的教导, 这些片段、 衍生物和类似物属于本领域熟 练技术人员公知的范围。

在本发明中, 术语 "Xyl6E7多肽"指具有 Xyl6E7蛋白活性的 SEQ ID NO: 2序列 的多肽。 该术语还包括具有与 Xyl6E7蛋白相同功能的、 SEQ ID NO: 2序列编码多肽 的片段。 的变异形式。 这些变异形式包括 (但并不限于;): 一个或多个 (通常为 1-50个, 较佳地 1-30个, 更佳地 1-20个, 更佳地 1-10个, 最佳地 1-5个)氨基酸的缺失、 插 入和 /或取代, 以及在 C末端和 /或 N末端添加或缺失一个或数个 (通常为 20个以内, 较佳地为 10个以内, 更佳地为 5个以内)氨基酸。 例如, 在本领域中, 用性能相近或 相似的氨基酸进行取代时, 通常不会改变蛋白质的功能。 比如, 在 C末端和 /或 N末 端添加或缺失一个或数个氨基酸通常也不会改 变蛋白质的功能; 又比如, 仅表达该蛋 白的催化结构域,而不表达碳水化合物结合结 构域也能获得和完整蛋白同样的催化功 能。 因此该术语还包括 Xyl6E7蛋白的活性片段和活性衍生物。

该多肽的变异形式包括: 同源序列、 保守性变异体、 等位变异体、 天然突变体、 诱导突变体、 在高或低的严紧度条件下能与 x_yM£7 DNA杂交的 DNA所编码的蛋白、 以及利用抗 Xyl6E7多肽的抗体获得的多肽或蛋白。 本发明还提供了其他多肽, 如包 含 Xyl6E7多肽或其片段的融合蛋白。除了几乎全长 的多肽外,本发明还包括了 Xyl6E7 多肽的可溶性片段。 通常, 该片段具有 Xyl6E7多肽序列的至少约 10个连续氨基酸, 通常至少约 30个连续氨基酸, 较佳地至少约 50个连续氨基酸, 更佳地至少约 80个 连续氨基酸, 最佳地至少约 100个连续氨基酸。 发明还提供 Xyl6E7蛋白或多肽的类似物。 这些类似物与天然 Xyl6E7多肽的差别 可以是氨基酸序列上的差异, 也可以是不影响序列的修饰形式上的差异, 或者兼而有 之。 这些多肽包括天然或诱导的遗传变异体。 诱导变异体可以通过各种技术得到, 如 通过辐射或暴露于诱变剂而产生随机诱变,还 可通过定点诱变法或其他已知分子生物 学的技术。 类似物还包括具有不同于天然 L-氨基酸的残基 (如 D-氨基酸)的类似物, 以及具有非天然存在的或合成的氨基酸 (如 β、 Υ -氨基酸)的类似物。 应理解, 本发明 的多肽并不限于上述例举的代表性的多肽。

修饰 (通常不改变一级结构)形式包括: 体内或体外的多肽的化学衍生形式如乙酰 化或羧基化。 修饰还包括糖基化, 如那些在多肽的合成和加工中或进一步加工步 骤中 进行糖基化修饰而产生的多肽。 这种修饰可以通过将多肽暴露于进行糖基化的 酶 (如 哺乳动物的糖基化酶或去糖基化酶)而完成。 修饰形式还包括具有磷酸化氨基酸残基 (如磷酸酪氨酸, 磷酸丝氨酸, 磷酸苏氨酸)的序列。 还包括被修饰从而提高了其抗蛋 白水解性能或优化了溶解性能的多肽。

在本发明中, " Xyl6E7蛋白保守性变异多肽"指与 SEQ ID NO: 2的氨基酸序列 相比, 有至多 20个, 较佳地至多 10个, 更佳地至多 5个, 最佳地至多 3个氨基酸被 性质相似或相近的氨基酸所替换而形成多肽。 这些保守性变异多肽最好根据表 1进行 氨基酸替换而产生。

表 1

本发明的 Xyl6E7蛋白的氨基端或羧基端还可含有一个或多 个多肽片段, 作为蛋 白标签。 任何合适的标签都可以用于本发明。 例如, 所述的标签可以是 FLAG, HA, HA1, c-Myc, Poly -His, Poly-Arg, Strep-Tagil, AU1, EE, T7, 4A6, ε, B, gE 以及 Tyl。 这些标签可用于对蛋白进行纯化。 表 2列出了其中的一些标签及其序列。

表 2

标签 残基数 序列 SEQ ID NO:

Poly-Arg 5-6个 (通常 5个) RRRRR 5

Poly-His 2-10个 (通常 6个) HHHHHH 6

FLAG 8个 DYKDDDDK 7

Strep-Tagil 8个 WSHPQFEK 8

C-myc 10个 WQKLISEEDL 9 为了使翻译的蛋白分泌表达 (如分泌到细胞外;),还可在所述 Xyl6E7的氨基酸氨基 末端添加上信号肽序列, 如 pelB信号肽等。 信号肽在多肽从细胞内分泌出来的过程中 可被切去。 本发明的多核苷酸可以是 DNA形式或 RNA形式。 DNA形式包括 cDNA、基因组 DNA或人工合成的 DNA。 DNA可以是单链的或是双链的。 DNA可以是编码链或非 编码链。 编码成熟多肽的编码区序列可以与 SEQ ID NO: 1所示的编码区序列相同或 者是简并的变异体。如本文所用, "简并的变异体"在本发明中是指编码具有 SEQ ID NO: 2的蛋白质, 但与 SEQ ID NO: 1所示的编码区序列有差别的核酸序列。

编码 SEQ ID NO: 2的成熟多肽的多核苷酸包括: 只编码成熟多肽的编码序列; 成 熟多肽的编码序列和各种附加编码序列; 成熟多肽的编码序列 (和任选的附加编码序 列)以及非编码序列。 术语 "编码多肽的多核苷酸" 可以是包括编码此多肽的多核苷酸, 也可以是还包 括附加编码和 /或非编码序列的多核苷酸。

本发明还涉及上述多核苷酸的变异体, 其编码与本发明有相同的氨基酸序列的多 肽或多肽的片段、类似物和衍生物。此多核苷 酸的变异体可以是天然发生的等位变异 体或非天然发生的变异体。这些核苷酸变异体 包括取代变异体、缺失变异体和插入变 异体。 如本领域所知的, 等位变异体是一个多核苷酸的替换形式, 它可能是一个或多 个核苷酸的取代、 缺失或插入, 但不会从实质上改变其编码的多肽的功能。

本发明还涉及与上述的序列杂交且两个序列之 间具有至少 50%,较佳地至少 70%, 更佳地至少 80%相同性的多核苷酸。 本发明特别涉及在严格条件 (或严紧条件)下与本 发明所述多核苷酸可杂交的多核苷酸。 在本发明中, "严格条件" 是指: (1)在较低 离子强度和较高温度下的杂交和洗脱, 如 0.2 X SSC, 0.1%SDS , 60 °C ; 或 (2)杂交时 加有变性剂, 如 50%(νΑ 甲酰胺, 0.1%小牛血清 /0.1% Ficoll, 42°C等; 或 (3)仅在两 条序列之间的相同性至少在 90%以上, 更好是 95%以上时才发生杂交。 并且, 可杂交 的多核苷酸编码的多肽与 SEQ ID NO: 2所示的成熟多肽有相同的生物学功能和活性

本发明还涉及与上述的序列杂交的核酸片段。 如本文所用, "核酸片段" 的长度 至少含 15个核苷酸, 较好是至少 30个核苷酸, 更好是至少 50个核苷酸, 最好是至 少 100个核苷酸以上。核酸片段可用于核酸的扩增 技术 (如 PCR)以确定和 /或分离编码 Xyl6E7蛋白的多聚核苷酸。

本发明中的多肽和多核苷酸优选以分离的形式 提供, 更佳地被纯化至均质。

本发明的 x_yM£7核苷酸全长序列或其片段通常可以用 PCR扩增法、 重组法或人 工合成的方法获得。 对于 PCR扩增法, 可根据本发明所公开的有关核苷酸序列, 尤 其是开放阅读框序列来设计引物,并用市售的 cDNA库或按本领域技术人员已知的常 规方法所制备的 cDNA库作为模板, 扩增而得有关序列。 当序列较长时, 常常需要进 行两次或多次 PCR扩增, 然后再将各次扩增出的片段按正确次序拼接在 一起。

一旦获得了有关的序列, 就可以用重组法来大批量地获得有关序列。 这通常是将 其克隆入载体, 再转入细胞, 然后通过常规方法从增殖后的宿主细胞中分离 得到有关 序列。

此外, 还可用人工合成的方法来合成有关序列, 尤其是片段长度较短时。 通常, 通过先合成多个小片段, 然后再进行连接可获得序列很长的片段。

目前, 已经可以完全通过化学合成来得到编码本发明 蛋白 (或其片段,或其衍生物) 的 DNA序列。 然后可将该 DNA序列引入本领域中已知的各种现有的 DNA分子 (或 如载体)和细胞中。 此外, 还可通过化学合成将突变引入本发明蛋白序列 中。

应用 PCR技术扩增 DNA/RNA的方法被优选用于获得本发明的基因。 别是很难 从文库中得到全长的 cDNA时,可优选使用 RACE法 (RACE-cDNA末端快速扩增法), 用于 PCR的引物可根据本文所公开的本发明的序列信 息适当地选择, 并可用常规方 法合成。 可用常规方法如通过凝胶电泳分离和纯化扩增 的 DNA/RNA片段。

本发明也涉及包含本发明的多核苷酸的载体, 以及用本发明的载体或 Xyl6E7蛋 白编码序列经基因工程产生的宿主细胞, 以及经重组技术产生本发明所述多肽的方 法。

通过常规的重组 DNA技术, 可利用本发明的多聚核苷酸序列可用来表达或 生产 重组的 Xyl6E7多肽。 一般来说有以下步骤:

(1) .用本发明的编码 Xyl6E7多肽的多核苷酸 (或变异体), 或用含有该多核苷酸的 重组表达载体转化或转导合适的宿主细胞;

(2) .在合适的培养基中培养的宿主细胞;

(3) .从培养基或细胞中分离、 纯化蛋白质。

本发明中, x_yM£7多核苷酸序列可插入到重组表达载体中 术语"重组表达载体" 指本领域熟知的细菌质粒、 噬菌体、 酵母质粒、 植物细胞病毒、 哺乳动物细胞病毒如 腺病毒、 逆转录病毒或其他载体。 只要能在宿主体内复制和稳定, 任何质粒和载体都 可以用。 表达载体的一个重要特征是通常含有复制起点 、 启动子、 标记基因和翻译控 制元件。

本领域的技术人员熟知的方法能用于构建含 Xyl6E7编码 DNA序列和合适的转录 /翻译控制信号的表达载体。 这些方法包括体外重组 DNA技术、 DNA合成技术、 体 内重组技术等。 所述的 DNA序列可有效连接到表达载体中的适当启动子 上, 以指导 mRNA合成。 这些启动子的代表性例子有: 大肠杆菌的 lac或 trp启动子; λ噬菌体 PL启动子; 真核启动子包括 CMV立即早期启动子、 HSV胸苷激酶启动子、 早期和 晚期 SV40启动子、 反转录病毒的 LTRs和其他一些已知的可控制基因在原核或真 细胞或其病毒中表达的启动子。表达载体还包 括翻译起始用的核糖体结合位点和转录 终止子。

此外, 表达载体优选地包含一个或多个选择性标记基 因, 以提供用于选择转化的 宿主细胞的表型性状, 如真核细胞培养用的二氢叶酸还原酶、 新霉素抗性以及绿色荧 光蛋白 (GFP), 或用于大肠杆菌的四环素或氨苄青霉素抗性。

包含上述的适当 DNA序列以及适当启动子或者控制序列的载体, 可以用于转化 适当的宿主细胞, 以使其能够表达蛋白质。

宿主细胞可以是原核细胞, 如细菌细胞; 或是低等真核细胞, 如酵母细胞; 或是 高等真核细胞, 如哺乳动物细胞。 代表性例子有: 大肠杆菌, 链霉菌属; 鼠伤寒沙门 氏菌的细菌细胞; 真菌细胞如酵母; 植物细胞; 果蝇 S2或 Sf9的昆虫细胞; CHO、 COS、 293细胞、 或 Bowes黑素瘤细胞的动物细胞等。

本发明的多核苷酸在高等真核细胞中表达时, 如果在载体中插入增强子序列时将 会使转录得到增强。增强子是 DNA的顺式作用因子,通常大约有 10到 300个碱基对, 作用于启动子以增强基因的转录。 可举的例子包括在复制起始点晚期一侧的 100到 270个碱基对的 SV40增强子、 在复制起始点晚期一侧的多瘤增强子以及腺病 毒增强 子等。

本领域一般技术人员都清楚如何选择适当的载 体、 启动子、 增强子和宿主细胞。 用重组 DNA转化宿主细胞可用本领域技术人员熟知的常 规技术进行。 当宿主为 原核生物如大肠杆菌时,能吸收 DNA的感受态细胞可在指数生长期后收获,用 CaCl 2 法处理, 所用的步骤在本领域众所周知。 另一种方法是使用 MgCl 2 。 如果需要, 转化 也可用电穿孔的方法进行。 当宿主是真核生物, 可选用如下的 DNA转染方法: 磷酸 钙共沉淀法, 常规机械方法如显微注射、 电穿孔、 脂质体包装等。

获得的转化子可以用常规方法培养, 表达本发明的基因所编码的多肽。 根据所用 的宿主细胞, 培养中所用的培养基可选自各种常规培养基。 在适于宿主细胞生长的条 件下进行培养。 当宿主细胞生长到适当的细胞密度后, 用合适的方法 (如温度转换或 化学诱导)诱导选择的启动子, 将细胞再培养一段时间。

在上面的方法中的重组多肽可在细胞内、 或在细胞膜上表达、 或分泌到细胞外。 如果需要, 可利用其物理的、化学的和其它特性通过各种 分离方法分离和纯化重组的 蛋白。 这些方法是本领域技术人员所熟知的。 这些方法的例子包括但并不限于: 常规 的复性处理、 用蛋白沉淀剂处理 (盐析方法;)、 离心、 渗透破菌、 超处理、 超离心、 分 子筛层析 (凝胶过滤)、 吸附层析、 离子交换层析、 高效液相层析 (HPLC)和其它各种液 相层析技术及这些方法的结合。

重组的 Xyl6E7的用途包括 (但不限于 水解木聚糖, 将木聚糖长链切割为短链, 或形成简单糖。 大部分已知木聚糖酶的活力都低于本发明的 Xyl6E7的酶活力, 预期 通过蛋白分子改造等手段可以进一步提高 Xyl6E7的酶活力、 或扩大 Xyl6E7适用的 PH值范围、 温度范围及热稳定性, 因此其应用前景良好。 一些蛋白的分子改造技术 是本领域人员熟知的, 因此采用这些技术改造 Xyl6E7后生成的木聚糖酶也包含在本 发明中。

用表达的重组 Xyl6E7蛋白筛选多肽库可用于寻找有治疗价值的 能抑制或剌激 Xyl6E7蛋白功能的多肽分子。

另一方面, 本发明还包括对^ M£7 DNA或是其片段编码的多肽具有特异性的多 克隆抗体和单克隆抗体, 尤其是单克隆抗体。 这里, "特异性" 是指抗体能结合于 x_yM£7基因产物或片段。 较佳地, 指那些能与 x_yM£7基因产物或片段结合但不识别 和结合于其它非相关抗原分子的抗体。 本发明中抗体包括那些能够结合并抑制 Xyl6E7蛋白的分子, 也包括那些并不影响 Xyl6E7蛋白功能的抗体。 本发明还包括那 些能与修饰或未经修饰形式的 Xyl6E7基因产物结合的抗体。

本发明的抗体可以通过本领域内技术人员已知 的各种技术进行制备。 例如, 纯化 的 x_yM£7基因产物或者其具有抗原性的片段, 可被施用于动物以诱导多克隆抗体的 产生。 与之相似的, 表达 Xyl6E7蛋白或其具有抗原性的片段的细胞可用来 免疫动物 来生产抗体。本发明的抗体也可以是单克隆抗 体。此类单克隆抗体可以利用杂交瘤技 术来制备(见 Kohler等人, Nature 256;495, 1975; Kohler等人, Eur.J.Immunol. 6: 511, 1976; Kohler等人, Eur.J.Immunol. 6: 292, 1976; Hammerling等人, In Monoclonal Antibodies and T Cell Hybridomas, Elsevier, N.Y., 1981)。抗 Xyl6E7蛋白的抗体可用于 检测样本中的 Xyl6E7蛋白。

利用本发明蛋白, 通过各种常规筛选方法, 可筛选出与 Xyl6E7蛋白发生相互作 用的物质, 如抑制剂、 激动剂或拮抗剂等。

本发明还提供了一种组合物, 它含有有效量的本发明的 Xyl6E7多肽以及食品学 上或工业上可接受的载体或赋形剂。 这类载体包括 (但并不限于;): 水、 缓冲液、 葡萄 糖、 水、 甘油、 乙醇、 及其组合。

所述的组合物中还可添加调节本发明的 Xyl6E7酶活性的物质。 任何具有提高酶 活性功能的物质均是可用的。 较佳地, 所述的提高本发明的 Xyl6E7酶活性的物质选 自: Tris-Cl、 Mg离子 (Mg 2+ )或在添加至底物后可水解形成 Mg离子的物质, 如氯化 镁、 硫酸镁。 此外, 一些物质可以降低酶活性, 选自: EDTA Ag + , Cu 2+ , Fe 3+ , Co 2+ , Ca 2+ , Mn 2+ , K + , Ba 2+ , Ni 2+ , Zn 2+ 或 Al 3+

在获得了本发明的 Xyl6E7酶后, 根据本发明的提示, 本领域人员可以方便地应 用该酶来发挥水解底物 (特别是木聚糖)的作用。 作为本发明的优选方式, 还提供了一 种形成简单糖的方法, 该方法包含: 用本发明所述的 Xyl6E7酶处理待水解的底物, 所述的底物包括桦木木聚糖和山毛榉木聚糖等 。 较佳地, 在 pH4-10.5条件下, 用所 述的 Xyl6E7酶处理待水解的底物。较佳地,在温度 20-70°C条件下,用所述的 Xyl6E7 酶处理待水解的底物。较佳地,用所述的 Xyl6E7酶处理的同时,还加入 Tris-Cl、 Mg 2+ 或在添加至底物后可水解形成 Mg 2+ 的物质; 更佳地, 加入所述的 Tris-Cl或 Mg 2+ 的浓 度是 l ± 0.5mM。 在本发明的一个实例中, 提供了一种分离的多核苷酸, 它编码具有 SEQ ID NO: 2 所示氨基酸序列的多肽。 本发明的多核苷酸是从白蚁肠道系统构建的 Fosmid文库中 分离出的。其序列如 SEQ ID NO: 1所示,它包含的多核苷酸序列全长为 1818个碱基, 编码全长为 605个氨基酸的 Xyl6E7蛋白(SEQ ID NO: 2)。所述的 Xyl6E7蛋白 (SEQ ID NO: 2) 序列中, 自氨基端的第 13-25 1位氨基酸为糖基水解酶第 1 1家族 (Glycosyl Hydrolase Family 1 1) 保守功能域。从 340-484位为碳水化合物结合结构域 (CBM_4_9;> 家族。 所述的 Xyl6E7蛋白与已知氨基酸序列的相似性为 71.8%, 证明是一种新的内 切 - 1 ,4-β-木聚糖酶。

实验证明本发明的内切 - 1 ,4-β-木聚糖酶具有很高的木聚糖酶活性、很广 的 ρΗ适用 范围及较广的温度适用范围, 因而具有巨大的应用前景。 下面结合具体实施例, 进一步阐述本发明。 应理解, 这些实施例仅用于说明本发 明而不用于限制本发明的范围。 下列实施例中未注明具体条件的实验方法, 通常按照 常规条件如 Sambrook等人, 分子克隆: 实验室指南 (New York: Cold Spring Harbor Laboratory Press, 1989) 中所述的条件, 或按照制造厂商所建议的条件。 除非另外说 明, 否则百分比和份数按重量计算。

除非另行定义, 文中所使用的所有专业与科学用语与本领域熟 练人员所熟悉的意 义相同。 此外, 任何与所记载内容相似或均等的方法及材料皆 可应用于本发明中。 文 中所述的较佳实施方法与材料仅作示范之用。 实施例 1、 内切 -1,4-β-木聚糖酶及其编码基因的分离

利用元基因组技术从白蚁肠道元基因组系统 (一种高等培菌白蚁肠道的共生细菌) 中筛选到木聚糖酶阳性克隆 Υ8006Ε7,提取该克隆的质粒 DNA进行 454高通量测序, 序列拼接后可以获得完整的 Fosmid序列。 用 DNAStar软件寻找 ORF, 用 NCBI的 BlastP (http://www.ncbi.nlm.nih.gov) 搜寻 GenBank数据库, 得到内切 - 1 ,4-β-木聚糖酶 的编码基因,该基因具有 SEQ ID NO: 1的核苷酸序列,命名为 x_y/6£7。自 SEQ ID NO : 1的 5 '端第 1 - 1818位核苷酸为 xyl6E 7的开放阅读框 (Open Reading Frame, ORF), 自 SEQ ID NO: 1的 5 '端的第 1 -3位核苷酸为 x_yM£7基因的起始密码子 ATG, 自 SEQ ID NO: 1的 5 '端的第 1815- 1818位核苷酸为 x_y/6£7基因的终止密码子 TAG。

内切 - 1 ,4-β-木聚糖酶基因 xyi6E7编码一个含有 605个氨基酸的蛋白质 Xyl6E7,具 有 SEQ ID NO: 2的氨基酸残基序列, 用软件预测到该蛋白质的理论分子量大小为 64.5Kd, 等电点 pi为 4.81。 自 SEQ ID NO: 2的氨基端的第 15-251位氨基酸为糖基水 解酶第 1 1家族 (Glycosyl Hydrolase Family 1 1) 保守功能域。

经鉴定, Xyl6E7能够高效地以内切方式作用于桦木木聚糖 或山毛榉木聚糖主链内 部的 β- 1, 4-木糖苷键, 当酶量较少 (0.03665U) , 作用时间较短 (10分钟)时, 将大分子 多聚木糖初步水解为: 低聚木聚糖; 当酶量较充分 (3,665U), 作用时间较长 (12小时) 时, 将其最终水解为木寡糖, 主要包括: 木二糖、 木三糖、 木四糖。

经比对, Xyl6E7同已知序列的内切木聚糖酶的同源性最高 为 71.8%, 表明该内切 - 1 ,4-β-木聚糖酶为新酶。 实施例 2、 xj /6E7在大肠杆菌中的表达

1. 重组表达载体的构建

通过 PCR从上述筛选到的 fosmid阳性克隆中扩增预测到的内切 - 1 ,4-β-木聚糖酶 ORF编码基因,所用正向引物为: 5 'ATCCCATGGTGGCACAAACAACT ACTT 3 '(SEQ ID NO: 3 ), 其 5 '端添加 Ncol识别位点: CCATGG; 反向引物为

5 ' CTTCTCGAGTTTGCT AC AATC ATCC AAG 3 ' (SEQ ID NO: 4), 其 5 '端添加 Xho I 识别位点: CTCGAG。

将 PCR产物纯化后用 Ncol和 Xhol酶切, 应用 Axgen PCR产物柱回收试剂盒回 收酶切的 DNA片段, 将该 DNA片段和经同样双酶切的回收的载体 pET-22b(+) (Novagen公司)用 T4 DNA 连接酶在 16 °C下连接过夜, 得到重组表达载体 pET 22b(+)-xyl6E7 0 其中, 起始密码子和终止密码子由表达载体 pET-22b(+)提供。 表达产 物的 C末端有一个由表达载体提供的 His标签 (6 X His-Tag), 便于后续纯化。

2. xj /6E7基因在大肠杆菌 BL21(DE3)中的表达及平板活性检测

将上述构建好的质粒 pET 22b(+)-xyl6E7转化入大肠杆菌 BL21 CDE3)中, 将得到 的 BL21 (DE3ypET22(+ x M£7转化子随机挑取 8个单克隆, 接种于含有氨苄青霉素 的 LB培养液中, 以菌液为模板, 通过载体上的 T7启动子引物 (cat. no. 69348-3)和 T7终止子引物 (cat. no. 69337-3)PCR鉴定阳性克隆。 结果如图 1所示, 8个单克隆中 均有目的片段扩出。

挑取阳性克隆于含质量百分比含量为 0.5%桦木木聚糖的 LB培养平板上 (含氨苄 青霉素, 并用适量 IPTG诱导)进行平板活性检测。 37 °C过夜培养。 倒入 0.2%的刚果 红染液至所有菌落被覆盖, 用枪头吹起菌落, 染色 30分钟后用 l mol/L的氯化钠清 洗, 至少两次, 然后观察菌落周围有无水解圈。 结果如图 2所示, 含重组质粒的两列 BL21 (DE3)菌落周围均有水解圈, 说明目的基因在大肠杆菌 BL21 (DE3)中已经高效 表达出了具有木聚糖酶活性的木聚糖酶。

3. xyl6E7的表达和表达产物 Xyl6E7的纯化

(1) xyl6E7的表达

接种 E. coli BL21 (DE3)/pET22- y £7于 5 ml含有 50 g/ml 氨苄青霉素的 LB培 养液中,37°C 200 rpm培养过夜。取 5 ml培养液到 500ml LB培养液中, 37°C 200 rpm 培养至 OD 6QQ 为 0.6-0.8。冷水冷却后加入 50 μΜ ΙΡΤΘ, 于 28 °C 120 rpm继续培养 16 个小时,离心收集菌体。用 2ml水重悬菌体,冰上超声 10分钟,功率 10%,保存 ΙΟΟμΙ 细胞裂解液作为总蛋白, 其余细胞裂解液以 2000g离心 15分钟, 留上清检测可溶性 蛋白, 沉淀用水重悬检测包涵体。 如图 3中左图所示, 泳道 1为总蛋白, 泳道 2为上 清中的可溶性蛋白, 泳道 3为沉淀中的可溶性蛋白, 泳道 4为蛋白 Marker (分子量从 大到小依次为 94、 60、 45、 27、 18Kd)。 可见, 在此诱导条件下 x_y/6£7在 DL21中主 要以可溶性蛋白大量表达。 (2) 表达产物 Xyl6E7蛋白的提取纯化

用裂解液 (lysis buffer: NaH 2 P0 4 50 mmol/L, NaCl 300 mmol/L, inidazole lOmmol/L, pH8.0) 悬浮收集的菌体, 超声波破碎细胞后离心收集上清液即为粗酶液 。 用购自 Qiagen公司的 M柱 (M-NTA Column) 纯化粗酶液,纯化时所用洗涤液 (wash bufer): NaH 2 P0 4 50 mmol/L, NaCI 300 mmol/L, inidazole 60 mmol/L, pH8.0; 洗脱 液(elution bufer): NaH 2 P0 4 50 mmol/L, NaCl 300 mmol/L, inidazole 250mmol/L, pH 8.0。 用 5μ1洗脱液进行蛋白 SDS-PAGE电泳检测, 如图 3中右图所示。 其中泳道 1 为 10mM 咪唑洗脱液, 泳道 2为 20mM 咪唑洗脱液, 泳道 3为 25mM 咪唑洗脱液, 泳道 4为 60 mM 咪唑洗脱液, 泳道 5为 250 mM 咪唑洗脱液。 从图中可见, 咪唑浓 度到达 60mM时可将几乎全部杂蛋白去除, 目的蛋白少量洗脱; 250mM咪唑洗脱时 目的蛋白大量洗脱, 电泳后可以看到单条带, 说明此时已经得到高纯度的目的蛋白, 将所有含有目的蛋白的洗脱液合并, 用 GE公司 10 Kd截留的 vi vaS pin6超滤管浓缩 透析, 同时用 20 mM pH7.4 NaH 2 PO 4 的置换缓冲液, 以去除咪唑。 实施例 3. 重组 Xyl6E7蛋白酶学性质的分析

内切 -1,4-β-木聚糖酶的酶活测定采用 DNS法, 具体操作如下:

(1) DNS配制

称取 10克 NaOH, 溶解于大约 400ml ddH 2 0中, 再称取 10g二硝基水杨酸、 2g 苯酚、 0.5g无水亚硫酸钠、 200g四水酒石酸钾钠, 将其溶解于大约 300 ml dd¾0中, 两种溶液混合, 定容到 1升, 避光保存。

(2) 标准曲线制备

取 9支薄壁离心管, 按表 3加入溶液。

表 3 标样编号 1 2 3 4 5 6 7 8 9 木糖总量 ^g) 0 10 20 30 40 70 80 120 150 木糖体积 (μΐ) 0 1 2 3 4 7 8 12 15 补充纯水 (μΐ) 100 99 98 97 96 93 92 88 85 木糖浓度为 10mg/ml。 上表每份标样加 DNS 100 μ1, 沸水浴 5 min显色, 酶标仪 测 540 nm 光吸收, 标样 1为空白对照。 各样品值减空白后制备标线。 (3) 标准酶活测定

在 ΙΟΟμΙ反应体系中, 加入终浓度为 l%(w/w)的桦木木聚糖, 终浓度为 50 mM 的 pH7.5 Na 2 HP0 4 /NaH 2 P0 4 缓冲液, 然后加入用该缓冲液稀释至一定稀释度的适量 酶液 55 °C反应 10分钟,再加入 100 μΐ DNS终止反应 (对照为在上述反应体系中先加入 100 l DNS后再加酶液), 沸水浴中反应 5分钟显色, 用酶标仪测 540 nm 光吸收值, 样 品测定值减去对照后利用标准曲线计算酶活单 位 (u)。

酶活单位 (U)定义: 1 U为每分钟催化水解木聚糖产生 Ι μιηοΐ还原糖 (简单糖) 所 需的酶量。

比活力单位的定义: 每毫克蛋白质所含的酶活力 (U/mg)。

结果表明 Xyl6E7对桦木木聚糖在 pH7.5, 55 °C下的比活力为 733± 20.6U/mg。

(4) Xyl6E7最适 pH测定

pH范围为 4-10.5,每 0.5个单位为一个梯度,不同 pH值的缓冲液配制为: pH 4.0〜 5.5用终浓度为 50 mM的 NaAc; pH 6.0— 8.5用终浓度为 50mM Na 2 HP0 4 /NaH 2 P0 4 ; pH 9.0〜pH 10.5用终浓度为 50 mM CAPSO。 将酶液加入各 pH缓冲液的体系中, 按 如前所述标准酶活测定步骤测定酶活。 在 55 °C反应条件下, Xyl6E7在 pH7.5的

Na 2 HP0 4 /NaH 2 P0 4 缓冲液中的比活力最高, 以此为 100%, 换算各 pH值下的相对酶 活力。

结果如图 4所示, Xyl6E7最适 pH为 7.5, 且在 pH 6.0〜9.5之间均具有最高活力 50%以上的活力, 说明 Xyl6E7的反应 pH范围较宽, 能够适应的酸碱范围较广。

(5) Xyl6E7 pH耐受性测定

将酶液与 pH范围为 4.5-10的上述各缓冲液 (每 0.5个单位为一个梯度)在 4°C保存

6天, 再按如前所述标准酶活测定步骤测定酶活。 以 Xyl6E7在 pH7.5中保存 0 min, 在 55 反应 10 min的比活力为 100%, 换算 Xyl6E7在各 pH值缓冲液中保存 6天后 的相对酶活力。

结果如图 8所示, Xyl6E7具有较广的 pH耐受性: 在 pH 4.5〜 10之间均能够保 持最高活力的 50%以上, 其中, 对于偏碱性的 pH范围具有更为明显的耐受性, 能够 保持最高活力的 70%以上。

(6) Xyl6E7最适温度测定

在最适 pH7.5条件下,在温度范围为 20-70°C之间, 按如前所述标准酶活测定方法 步骤测定。结果如图 5所示, Xyl6E7的最适温度为 50〜55 °C, 55 °C活力略高于 50°C, 故以此温度下的酶活力为 100%, 换算各个温度下的相对酶活力。 Xyl6E7在 30-60°C 的温度范围内可保持最高活力 40%以上的活力, 说明 Xyl6E7的反应温度范围较宽。

(7) Xyl6E7温度耐受性测定

将 Xyl6E7酶液保存于最适 pH缓冲液中, 在不同温度 (60°C、 55 °C、 50°C、 45 °C) 保持不同时间(5min、 10min、 15min、 30min)后, 在 pH7.5, 55 °。下测定酶活力。 其 对照是未热处理的酶液在 pH7.5, 55 °C下所测定的活力, 以此为 100%, 换算在不同 温度下保温不同时间后的剩余相对活力。 结果如图 6所示, Xyl6E7在上述各温度下 保存 5min时, 活力下降较快, 基本下降到最大活力的 50%以下, 在随后的时间中下 降速度则趋于平缓, 到 30min时, 活力基本保持在最大活力的 20%左右。 将 Xyl6E7酶液保存于不同 pH (PH6.0、 8.0、 9.0) 值的缓冲液中, 分别在 50°C 热处理不同时间(lh、 2h、 3h)后, 在 pH7.5, 55 °C下测定酶活力。 其对照是未热处理 的酶液在 pH7.5, 55 °C下所测定的活力, 以此为 100%, 换算在不同 PH不同温度下保 温不同时间后的剩余相对活力。

结果如图 9所示, Xyl6E7在 50°C下, 随时间延长呈现活力递减。

(8) 不同化学试剂及金属离子对 Xyl6E7酶活的影响

各种化合物 (终浓度为 l mmol/L) 与酶液在 4°C下保温 30min, 然后按常规方法 测定酶活力, 以未加任何化学试剂及金属离子并在 4°C下保温 30min的酶活力为 100%。 不同化学试剂及金属离子对 Xyl6E7酶活的影响结果如表 4所示, Tris-Cl、 Mg 2+ 对 Xyl6E7有激活作用, 其中 Mg 2+ 可使酶活力提高近 20%; Ag + 、 Cu 2+ 、 Fe 3+ 、 Al 3+ 对 Xyl6E7有显著的抑制作用, 均可使酶丧失 70%以上活力; Lys对 Xyl6E7没有 显著作用。 表 4

金属离子或化学试剂 相对酶活力 (%)

ImM 无 100.00±2.69

Tris-cl 112.88±2.53

Lys 100.47±3.55

EDTA 79.12±3.67

Ag + 6.80±0.40

Cu 2+ 8.70±0.72

Fe 3+ 12.74±2.94

Al 3+ 28.58±0.94

Co 2+ 70.91±4.02

Ca 2+ 84.63±3.67

Mg 2+ 119.64±1.83

Mn 2+ 45.30±4.95

K + 87.92±1.34

Ba 2+ 67.89±2.10

Ni 2+ 65.49±1.27

Zn 2+ 40.99±1.52

(8) Xyl6E7对不同底物的水解情况

将各种底物 (终浓度为 l%(w/w)) 与适量酶 (0.05655 μ § )在 pH7.5及 55 °C下作用 10 min, 测定酶活力。 结果如表 5所示: Xyl6E7的底物特异性较强, 仅对桦木木聚糖及 山毛榉木聚糖具有显著酶活, 对于其他测定底物则没有检测到酶活, 这与 GH11家族 木聚糖酶的高底物特异性能较好吻合。 底物 比酶活 (U/mg) 桦木木聚糖 733±20.6

山毛榉木聚糖 771±17.2 微晶粉末纤维素 0

羧甲基纤维素纳 0

淀粉 0

大麦葡聚糖 0

槐树豆胶 0

(9) Xyl6E7对桦木木聚糖水解底物的 TLC分析

将 l%(w/w)桦木木聚糖与 0.03665U Xyl6E7在 pH7.5、 55 °C下作用 lOmin获得初 级水解产物; 将 1%桦木木聚糖与 3.665U Xyl6E7在 pH7.5、 55 °C下作用 12h获得最终 水解产物。 将 ΙΟμΙ上述两种产物用 TLC进行鉴定, 其中标准样品为木糖、 木二糖和 木三糖; 展开剂为: 正丁醇: 乙酸:水 = 2: 1: 1 (V/V/V ) ; 显色剂为 1 mL苯胺、 1 g 二苯胺、 5 mL 85%磷酸溶于 50 mL丙酮中。

结果如图 7所示, 当酶量较少 (0.03665U), 作用时间较短 (10分钟)时, 将大分子 多聚木糖初步水解为: 低聚木聚糖; 当酶量较充分 (3.665U) , 作用时间较长 (12小时) 时, 将其最终水解为木寡糖, 主要包括: 木二糖、 木三糖、 木四糖。 证明 Xyl6E7是 以内切方式作用于木聚糖主链内部的 β-1, 4-木糖苷键。 在本发明提及的所有文献都在本申请中引用作 为参考, 就如同每一篇文献被单 独引用作为参考那样。 此外应理解, 在阅读了本发明的上述讲授内容之后, 本领域技 术人员可以对本发明作各种改动或修改,这些 等价形式同样落于本申请所附权利要求 书所限定的范围。