Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
NOVEL IMMUNOMODULATOR AND ANTI INFLAMMATORY COMPOUNDS
Document Type and Number:
WIPO Patent Application WO/2011/138665
Kind Code:
A1
Abstract:
The present invention provides dihydroorotate dehydrogenase inhibitors of formula (I), methods of preparing them, pharmaceutical compositions containing them and methods of treatment, prevention and/or amelioration of diseases or disorders wherein the inhibition of Dihydroorotate dehydrogenase is known to show beneficial effect.

Inventors:
MUTHUPPALANIAPPAN MEYYAPPAN (IN)
BHAVAR PRASHNANT KASHINATH (IN)
VISWANADHA SRIKANT (IN)
VAKKALANKA SWAROOP KUMAR V S (CH)
MERIKAPUDI GAYATRI SWAROOP (IN)
Application Number:
PCT/IB2011/000959
Publication Date:
November 10, 2011
Filing Date:
May 06, 2011
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
INCOZEN THERAPEUTICS PVT LTD (IN)
RHIZEN PHARMACEUTICALS SA (CH)
MUTHUPPALANIAPPAN MEYYAPPAN (IN)
BHAVAR PRASHNANT KASHINATH (IN)
VISWANADHA SRIKANT (IN)
VAKKALANKA SWAROOP KUMAR V S (CH)
MERIKAPUDI GAYATRI SWAROOP (IN)
International Classes:
C07D209/14; A61K31/167; A61K31/44; A61K31/4965; A61P19/02; A61P35/00; C07C233/66; C07C235/84; C07D213/56; C07D213/75; C07D213/81; C07D241/24; C07D307/79; C07D317/58; C07D319/18
Domestic Patent References:
WO2003006425A22003-01-23
WO2011026107A12011-03-03
Foreign References:
US2474893A1949-07-05
DE887501C1953-08-24
EP2135610A12009-12-23
Other References:
SHINJI ANDO ET AL: "Substituent shielding parameters of fluorine-19 NMR on polyfluoroaromatic compounds dissolved in dimethyl sulphoxide-d6", MAGNETIC RESONANCE IN CHEMISTRY, vol. 33, no. 8, 1 August 1995 (1995-08-01), pages 639 - 645, XP055005140, ISSN: 0749-1581, DOI: 10.1002/mrc.1260330805
SERCHENKOVA S V ET AL: "IR spectroscopic study of compounds of benzimide-amido-acid series", POLYMER SCIENCE U.S.S.R, PERGAMON, vol. 18, no. 8, 1 January 1976 (1976-01-01), pages 2133 - 2141, XP024123389, ISSN: 0032-3950, [retrieved on 19760101], DOI: 10.1016/0032-3950(76)90402-0
RUSCHIG H ET AL: "2,6-DIHYDROXYBENZOESAEUREDERIVATE ALS ANTHELMINTHIKA//2,6-DIHYDROXYBE NZOIC ACID DERIVATIVES AS ANTHELIMINTICS", ARZNEIMITTEL FORSCHUNG. DRUG RESEARCH, ECV EDITIO CANTOR VERLAG, AULENDORF, DE, vol. 23, no. 12, 1 January 1973 (1973-01-01), pages 1745 - 1758, XP009044195, ISSN: 0004-4172
HARTMANN R W ET AL: "SYNTHESIS AND AROMATASE INHIBITION OF 3-CYCLOALKYL-SUBSTITUTED 3-(4-AMINOPHENYL)PIPERIDINE-2,6-DIONES", JOURNAL OF MEDICINAL CHEMISTRY, AMERICAN CHEMICAL SOCIETY, US, vol. 35, no. 12, 12 June 1992 (1992-06-12), pages 2210 - 2214, XP000615592, ISSN: 0022-2623, DOI: 10.1021/JM00090A010
JOHN S. SWENTON ET AL: "Preparation of quinol N-acyl- and quinol ether imines via anodic oxidation of para-substituted anilide derivatives", THE JOURNAL OF ORGANIC CHEMISTRY, vol. 58, no. 21, 1 October 1993 (1993-10-01), pages 5607 - 5614, XP055005169, ISSN: 0022-3263, DOI: 10.1021/jo00073a016
Download PDF:
Claims:
Claims

1. A compound of formula 00

CD

or a tautomer, stereoisomer (such as an enantiomer or diastereomer), pharmaceutically acceptable salt, pharmaceutically acceptable ester, prodrug or N-oxide thereof, wherein Ring A is independently selected from a substituted or unsubstituted monocyclic aryl and a substituted or unsubstituted monocyclic heteroaryl, wherein each occurrence of X independently is CR4 or N;

Ring B is independently selected from a substituted or unsubstituted monocyclic aryl and a substituted or unsubstituted monocyclic heteroaryl; wherein X1 is CR4 or N; optionally two R4 substituent ortho to each other may be joined to a form a substituted or unsubstituted saturated or unsaturated 4-10 member ring, which may optionally include heteroatoms which may be same or different and are selected from O, NRa or S;

R is hydrogen, substituted or unsubstituted (Ci_e)alkyl or -ORa;

R1 is selected from -OH, - R*OH, -COOH ,-COORa, -CR¾.bOH, -CR^COOH, -S02 a, - CR4RhS02Ra, -S(¾Ra, -CRV-SCbR11, -C(=Y)- R*R and -S(sO)irNR¾b or an isostere of - COOH group or optionally represent halogen, substituted or unsubstituted or Cy1; X2 is N or CR2 and X3 is N or CR3, wherein R2 and R3 may be same or different and are independently selected from hydrogen, halogen or substituted or unsubstituted (Ci-e)alkyl or substituted or unsubstituted (C^alkoxy;

L1 and L2 are independently absent or selected from -(CR*RV, -0-, -S(=0)q- , -NRa- , -

SCO NR^-, -NR¾b~C(=YX - R4R -S(=0)q- substituted or unsubstituted (Ci-2)alkyl, substimted or unsubstituted (C2)all-enyl, and substituted or unsubstituted (C2)alkynyl; optionally each of substituted or unsubstituted substituted or unsubstituted (Ci- 2)alkenyl, and substituted or unsubstituted (Ci.2)alkynyl may be interrupted with -0-, - C(=Y> , -S(=0)q- and - RA-; Cy is selected from substituted or unsubstituted cycloaliyl, substituted or unsubstituted heterocyclic group, substituted or unsubstituted aryl and substituted or unsubstituted heteroaryl;

Cy* is selected from substituted or unsubstituted monocyclic cycloaliyl, substituted or unsubstituted monocyclic heterocyclic group, substituted or unsubstituted monocyclic aryl and substituted or unsubstituted monocyclic heteroaryl;

R4 is independently selected from hydrogen, hydroxy, halogen, cyano, -OR1, , - NR*Rb, -C(=Y R4, -C(=Y)-ORa, -C(=Y NR*Rb,-S(=0)q^aRb, substituted or unsubstirated ahVyl, substituted or unsubstituted alkenyl, substituted or unsubstituted alkynyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted cycloalkylaky!, substituted or unsubstituted cycloalkenyl or when two R4 substituents are present, they may be joined to a form a substituted or unsubstituted saturated or unsaturated 3-10 member ring, which may optionally include heteroatoms which may be same or clifferent and are selected from 0, NRa or S, or alternatively when two R4 substituent are orfho to each other on an aromatic ring may be joined to form a substituted or unsubstituted saturated or unsaturated 4-10 member ring, which may optionally include one or more heteroatoms which may be same or different and are selected from 0, R* or S;

each occurrence of R* and R¾ may be the same or different and are independently selected from hydrogen, halogen, hydroxy, cyano, substituted or unsubstituted (Cw)alkyl ,-ORc (wherein R° is substituted or unsubstituted (Chalky!) or when R* and Rb are directly bound to a common atom, they may be joined to form an oxo group (=0) or form a substituted or unsubstituted saturated or unsaturated 3-10 member ring, which may optionally include heteroatoms which may be the same or different and are selected from O, NR* or S;

each occurrence of Y is independently selected from the group consisting of O, S and NRa; each occurrence of n independently represents an integer 0, 1, 2, 3, or 4; and

each occurrence of q independently represents an integer 0,1 or 2.

2. A compound according to claim l,whereiii ring A is selected from

optionally substituted with one or more R4.

3. A compound according to claim 1 or 2, wherein R1 is -COOH.

4. A compound according to any of the preceding claims, wherein Y is 0.

5. A compound according to any of the preceding claims, wherein R is H.

6. A compound according to any of the preceding claims, wherein each occurrence of X is CH, C-Cl , C-F or .

7. A compound according to any of the preceding claims, wherein each occurrence of X1 is CH, N or OF.

8. A compound according to any of the preceding claims, wherein X2 is

CH, C-Cl , C-F orN.

9. A compound according to any of the preceding claims, wherein X3 is

CH, C-Cl , C-F or N.

10. A compound according to claim any of the preceding claims, wherein ring B is selected from

optionally substituted with one or more R4.

11. A compound according to any of the preceding claims, wherein Li and Lj are absent,

12. A compound according to any of the preceding claims, wherein Lj is absent and L2 is -O- CRaR¾.

13. A compound according to any of the preceding claims, wherein Cy is

optionally substituted with one or more R4.

14. A compound of formula

(1A) or a tautomer, stereoisomer (such as an enantiomer or diastereomer), pharmaceutically acceptable salt, pharmaceutically acceptable ester, prodrugs or N-oxide thereof, wherein Ring A including X is selected from

optionally substituted with one or more R4; R1 is independently selected from -OH, -NR^OH, -COOH ,-COOR4, or an isostere of -COOH group, such as S03H, CO HOH, B<OH>2, POjRH*. SC¾NHRa, a tetrazole, an amide, an ester or an acid anhydride;

Ring B including Xi¾ and X3 is selected from

optionally substituted with one or more R ,

L2 is absent or may be independently selected from , -NRa- , - C(=Y)-, -C(=:Y)-CR*R\ ^R¾b-C(=:Y>-,-C(=Y)-C(=Y)-, -C ^-Y-, -C(=Y>NRaRb-, - substituted or unsubstituted (Ci.2)alkyl, substituted or unsubstituted (C2)allcenyl, and substituted or unsubstituted (C2)alkynyl; optionally each of substituted or unsubstituted (Ci^)alkyl, substituted or unsubstituted (C2)alkenyl, and substituted or unsubstituted (C2)alkynyl may be interrupted with -0-, - C(=Y , -S(=0)q- and -NR - ;

Cy is independently selected from substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocyclic group, substituted or unsubstituted aryl and substituted or unsubstituted heteroaryl;

R* is independently selected from hydrogen, hydroxy, halogen, cyano, -OR*, -S(=0)q-Ra , - NR*Rb, -C(=Y)-Ra, -C(=Y -0R4, (=Y -NRaRb,-S(=0)¾-NRaRb, substituted or unsubstituted alkyl, substituted or unsubstituted alkenyl, substituted or unsubstituted alkynyl, substituted or unsubstituted cycloallyl, substituted or unsubstituted cycloaHsylakyl, or substituted or unsubstituted cycloalkenyl or when two R4 substituent s are present, they may be joined to a form a substituted or unsubstituted saturated or unsaturated 3-10 member ring, which may optionally include heteroatoios which may be same or different and are selected from O, NRa or S or alternatively when two R4 substituent are ortho to each other on an aromatic ring may be joined to form a substituted or unsubstituted saturated or unsaturated 4-10 member ring, which may optionally include one or more heteroatoms which may be same or different and are selected from O, NR* or S; each occurrence of Ra and Rb may be the same or different and are independently selected from hydrogen, halogen, hydroxy, cyano, substituted or unsubstitnted Chalky! ,-ORe

(wherein Rc is substituted or unsubstituted (Ci^)alkyl) or when R4 and Rb are directly bound to a common atom, they may be joined to form an oxo group (=0) or form a substituted or unsubstituted saturated or unsaturated 3-10 member ring, which may optionally include heteroatoms which may be the same or different and are selected from O, NRa or S;

Y is selected from 0, S and NRa;

each occurrence of n independently represents an integer 0, 1, 2, 3, or 4; and

each occurrence of q independently represents an integer 0, 1 or 2.

15. A compound compound of formu a (IA)

(IA) or a tautomer, stereoisomer (such as an enantiomer or diastereomer), pharmaceutically acceptable salt, pharmaceutically acceptable ester, prodrugs or N-oxide thereof,

wherein

Ring A including R1 is selected from

Ring B is selected from

optionally substituted with one or more R4;

L2 is absent or is O-CH2-; and

Cy is substituted or unsubstituted phenyl, indole or indazole.

optionally substituted with one or

17. A compound selected from

2^3,5-DiJfluor '3'-memoxybiphenyl-4-ylcarbamoyl)beiizoic acid 2-(3,5-Difluwc>-3'-me&oxybipheny^ acid 2-(6-(3-Memoxyphenyl pyridin-3-yl-^bamoyl)benzoic acid

2-(3 '-Ethoxy-3-fluorobiphenyl-4-ylcarbamoyl)benzoic acid

2-(3'-Eiihoxy-3,5-aifluoit»biphenyl^ylcaibamoyl)beii2X)ic acid 2-(2'^bJc^3,5-difluorobipheiiyM-yl^ acid

2<3S5-Difluorobiphenyl^ylcaibamoyl)benzoxc acid

2-[3,5-Difluoro-3'-(tiifluorom

2"[3'-(Beiwyloxy)-3,5-difluorobiphenyl^ylcaibmoyl]beiizoic acid

4f5-DicMoro-2-(3-cUoro-3'-etooxy-

2-(3-CMoro-3'-eihoxy-5-fluQro^^

4,5- icMoro-2-(3,5-<n loorc-3'-me hoxybipheayl-4-ylcaibai^ acid

4,5-I¾c cxo-2-(3,-ethoxy-3,5-<lifluorobiphenyl-4-ylc^bam

2-(3,5-Dichloro-3'-methoxybiph^

2-(3^Uoro-5 Iuoro-3,-propox:^iphe^

2-(3-CWoro-2^5-difluorobiphenyl -ylcarbamoyl)benzoic dd

2-(3,5-Dicnloro-3'-etJioxybiphenyM-ylca-bamoyl)be∞oic acid

2-[3-Huoro-3'-(trifluoromethoxy^

2-[2'-HuoiO-3-(ttiflucromeihoxy)biphenyl -ylcaibamoyl]benzoic acid 2-(3,5 -DicUorc^2'-fluorobiphenyM-ylcarbamoyl)bcnzoic acid

2-(3^~ iflooro-3'-isopropoxybiph^^

2-(3,5-Difluoro-3 '-propoxybiphenyl-4-ylcaibanioyl)benzoic acid

4,5-DicMOTcn2-(2\3-<fic oro-5-fluo^

4,5-DicMon 2-(2\3-dicMorc~5-fluo^ acid

4,5-DicMoro-2^2^3-dicbloro-5-fluoro^ acid ,5-DicWorcH2-(2'-cUoro-3,5-difl^^

2-(3 Horo-5-fluoro-3' $obutoxybiph^

2-(2^3,5-Trifliiort)biphenyl-4-ylcarbamoyl)benzoic acid

2-(2^3,5-¾cUorobiphenyl -ylcaitamoyl)benzoic acid

2-(3,5 -IMflucio-S'-isobutoxybiphenyl^ylcaibaoioy^benzoic acid

2-(3'-Butoxy-355-<^UOTobiphenyl^ylcaib--moyl)beii2oic acid

-H3-Qtdoro-3'-ethoxy-5-fluorobiphe^^ acid

2-[3-CMoro-5-fluoro-3'-(triflw^

2-[4-(Ben-yloxy)-2,6-difluorophenylcarbamoyl]benzoic add

2-[3'-(Cyclopentyloxy)-375-difluorobjphenyl^ylcaitamoyl3ben2ok acid 2-(3-Chloro-3'-(cyclopentyloxy)-5-fl^

2-[3'-ipifluoromet oxy)-315-difl^^

2-[3-Cliloro-3,-(diiluoromethoxy)-5-fluorobipheDyl^ylcaibaro acid 2-(2' Morc 3,5-difluoro-5,-melto^ 2-(3,3 5-Tiifluoro-5,-methoxybiphenyM-ylcarbainoyl)benzoic add

2-[4-(Benzo[d][l,3]<jioxo--5-yl)-2-cH^ acid

2-(3,5-I¾flttoro-3\4'-dimetfcoxybiphe^^

2-(3,3\5-Trifluoro-5'-raetl_ox^^

2-(3 '-I¾cMorch5-;-luoro-5,-meth^^

2-[4-(2,3-Dihydroben2oftirai.-5-yl)-2J6^fluorophenylcarbam

2-[2 Mor^4-(2,3^i drobei-Zof^ acid

2-[4-<l,3-Dimethyl-lH-mdazol-5^

2 3'-Cbloro-3,5-difluoiO-5'-i»etboxybiphenyl -yl ^amoyl)b^

2-(3'CMoro-5-fluoro-3^4'-dimetho^ acid 2-(^3^Dichlorc~5-fluoro-5'-metto^ acid 2-(2\3,5-Trifluoro-5'-methoxybiphenyM-ylcarijamoyl)beii-raic acid

2-(4'-Chloro-3,5-difliioro-3,-m^

2-(3,4'-DicMoiO-5-fluorc-3,-m^

2-(3 :Moro-2^5'^uoro-5'-metho b^^ acid

2-(3s4 5-trifluorc-3'-methoxybiphenyl -ylcarbarooyl)benz

2-[2,6-dffluoro^(3-methyMH-indol-5-yD^^

2-[2,6-difluoro4-(3 thyl-l^^

2-(3^hloro-3'^tibyl-5-fluoro^^^

2-(3-cMoro-3'-ethoxy-2\5-diflw^^

2-[2^hlor<>4-(2 -dihydrobenz^

acid

2-[3-cWoro-5-fluoro-3H2,2,2-tiifi^ acid 2-(3-fluorc-3'-methoxybiphenyl-4-yl ^bamoyl)beijzoic acid

2-(3l-ethoxybiphenyW-ylcarbamoyl)benzoic acid

2-[3' ei3iylt o)-3,5-<^uorobipheQyl^ylcarbamoyl]benzoic acid

2~[3'-(et-iylsulfinyl)-3,5-difluo^^ acid

2-(3'-cycIoptopoxy-3^-difluoiobiphenyl-4-ylcarbamoyl)benzoic acid

2^3'^tlioxy-3,5-(_dfluo- )bipte^

2-[4-(3-ethyl-lH-indol-5-yl)-2,6-difl^^ acid

-[3 eth lt-hio)-2 ,5,6-teti^uoro^^

2-(2' ;Woro-2-flttorcb5,-ine^^ acid

-(3-fl oro-3'-propoxybiphenyl^ylcai¾amoyl)benzoic acid 2-(3l-propoxybiphenyl^ylc--rbamoyl)benzoic cid

2-[3'-(ethyltm^)-2-fluorQbiphenyl^ylcaibamoyl]beii2oic acid

2- (3'-ethyl-3,5-difluorobiphenyl^ylcaibamoyl)benzoic acid

2-(bipbenyl-4-ylcarbamoyi)benzoic acid

2-(2'-chlo.x>biphenyl^yl<¾-ibamoyl)benzoic acid

2-(3'-methoxybiphenyl-4-ylcarbamoyl)benzoic acid

2-[3'-(triimororoemoxy)biphenyM^^

2-(3'-ethylbiphenyl-4-ylcarbamoyl)benzoic acid

2-(3'-butoxy'2,3,5,6-tetrafluorobiphenyl^ylcaibamoyl)benzoic acid

2-(3 '-bntoxy-3-fluorobipb-myl- -ylcaibamoyl)benzoic acid

2-[3,5-difluoro-3,-(trifluoromethoxy)biphenyl^ylcarbamoyl]b^ acid

2-(3'-cyclc^ropoxy-3-fluorobiphenyl^ylcaibanioyl)ben2oic acid

2-(3'-cyclopropoxybiphenyW-ylcai¾ainoyl)benzoic acid

2-(3'-bu.toxybiphenyl-4-ylcarbainoyi)ben20ic acid

2-(3'-butoxy-2-flucTObiphenyl -ylcaibamoyl)benzoic acid

2-(3'-Butoxy-2,6-difluorobiphenyl^ylcaibamoyl)benzoic cid

2-[2,6-]^uoro^-(3-propyl-lH-mdol-5-yl)phenylcarbam6yl]beiizoic acid

2- [2-Chloro^-(3-eftyl-lH-mdol^

18. A compound selected from

3- (3,5- ifluoio-3'-memoxybiphenyl^^

3-(3^-I^ oro-3'^thoxybipbenyl^ylcarbamoyl)pyra2me-2 arboxyH^ acid

3-[3'-(Benzyloxy)-3,5-difluorobipto acid

3- (3-Cbloro-3'-etboxy-5-fluorobiphenyl^ylcarbamoyl)pyrazine-2

N-(3 Moro-3'^ oxy-5-fluorobiphen^

N-^'-Emoxy^.S-difluarobiphen^

2-(3' thoxy-3,5-difluorobiphenyl^ylc3i^

4- (3'-e&oxy ^-<Ufluorobipheny-^^ acid.

19. A pharmaceutical composition, comprising a compound of any one of claims 1-18 and a phannaceutically acceptable carrier.

20. The pharmaceutical composition of claim 19, further comprising one or more additional therapeutic agents selected from anti-iiu^aniinatory agent, immunosuppressive and/or iromunomodiilatory agents, steroids, non-steroidal anfrinflainmatory agents, ^tiWstarrunes, analgesics, and suitable mixtures thereof.

21. A method of inhibiting DHODH activity in a mammal comprising adrrnnistering to the mammal a compound of any of claims 1-18, wherein the compound of any one of claims 1-18 inhibits DHODH activity in the mammal

22. A method of inhibiting cytokine release by inhibiting the DHODH in a raammaJ comprising acLrmnistering to the mammal a compound of any one of claims 1-18, therein the compound of any one of claims 1-18 inhibits cytokine release in the mammal.

23. A method of inhibiting cytokine production in a cell, comprising administering to the cell a compound of any one of claims 1-18.

24. The method of claim 22 or 23, wherein the cytokine is selected from IL-17 or IFN-γ and combinations thereof.

25. A method of inhibiting JL 17 cytokine release in mammal comprising aojiunistering to the mammal a compound of any one of claims 1-18, wherein the compound of any one-of claims 1-19 inhibits cytokine release independent of DHODH irihibition.

26. Use of a compound in any one of claims 1-18 in the manufacture of a Biedicament for the treatment of a disease, disorder, or condition that would benefit from rnhibiting dihydrooratate dehydrogenase..

27. A method of treating autoimmune diseases, immune and inflammatory diseases, destructive bone disorders, variety of cancers & malignant neoplastic diseases, angjogenic-related disorders, viral diseases, or infectious diseases via inhibition of DHODH or IL17 and combination thereof comprising the step of admi stering to a subject in need thereof an effective amount of a compound of any one of claims 1-18.

28. The method of claim 27, wherein the diseases are selected from rheumatoid arthritis, psoriatic arthritis, systemic lupus erythematosus, multiple sclerosis, psoriasis, ankylosing spondilytis, Wegener's granulomatosis, polyarticular juvenile idiopathic arthritis, inflammatory bowel disease such as ulcerative colitis, Crohn's disease, eiter's syndrome, fibromyalgia, chronic pancreatitis, graft versus-host disease, chronic sarcoidosis, transplant rejection, contact dermatitis, atopic dermatitis allergic rhinitis, allergic conjunctivitis, Behcet's syndrome, inflammatory eye conditions such as conjunctivitis , uveitis, osteoporosis, osteoarthritis ½mangiomas, ocular neovascularization, macular degeneration, HIV infection, hepatitis and cytoraegdovirus infection, sepsis, septic shock, endotoxic shock, Gram negative sepsis, toxic shock syndrome, Shigellosis and other protozoal infestations such as malaria. 29. The method of claim 27, wherein the diseases are selected from chronic obstructive pulmonary disease, rheumatoid arthritis, inflammatory bowel disease, allergic rliinitis, asthma, multiple sclerosis, psoriasis, Crohn's disease, colitis, ulcerative colitis, .arthritis, bone diseases associated with increased bone resorption, or chronic obstructive airway disease, Felty's syndrome, Wegener's granulomatosis, Crohn's disease, sarcoidosis, Still's disease, pemphigoid, Takayasu arteritis, systemic slerosis, relapsing polychondritis, refractory IgA nephropathy , SAPHO2 syndrome (SAS), cytomegalovirus infection including rhinitis or cyst, psoriasis and multiple myeloma.

30. The method of claim 27, wherein the disease is selected from rheumatoid arthritis, multiple sclerosis or inflammatory bowel disease.

Description:
NOVEL IMMUNOMODULATOR AND

ΑΝΉ-INFLAMMATORY COMPOUNDS

This application claims the benefit of Indian Provisional Patent Application No. 1265/CHE 200 dated 6* May 2010 which is hereby incorporated by reference.

FIELD OF THE INVENTION

The present invention provides dihydroorotate dehydrogenase inhibitors, methods of preparing them, pharmaceutical compositions containing them and methods of treatment, prevention and/or amelioration of diseases or disorders wherein the inhibition of Dihydroorotate dehydrogenase is known to show beneficial effect

BACKGROUND OF THE INVENTION

In the recent past immense research has been dedicated to the discovery and understanding of the structure and functions of enzymes and bio-molecules associated with various diseases. One such important class of enzymes that has been the subject of extensive research is dihydroorotate dehydrogenase PHODH).

DHODH is an enzyme that catalyzes the fourth step in the de novo biosynthesis of pyrimidine. It converts dihydroorotate (DHO) to orotate (ORO). Human DHODH is a ubiquitous flavine mononucleotide (FMN) moiety flavoprotein. In bacteria (gene pyrD), it is located on the inner side of the cytosolic membrane. In some yeasts, such as in S ccharomyces cer visiae (gene URA1), it is a cytosolic protein while in other eukaryotes it is found in the nutochondria (see Proc. Natl Acad. Sci. TJ.S A„ 89 (19), 8966-8970).

DHODH has been classified as a family of class I or class H proteins on the basis of the co- factor. Human DHODH belongs to the family class 2 that utilizes flavine as a redox cofactor, unlike the bacterial family class 1 protein mat uses tumarate or NAD+ instead. In the cell the mammalian protein is anchored at the inner mitochondrial leaflet. There, DHODH catalyzes the conversion of DHO to ORO, which represents the rate limiting step in the de novo pyiimidine biosynthesis, (see McLean et al., Biochemistry 2001, 40, 2194-2200). Kinetic studies indicate a sequential ping-pong mechanism for the conversion of DHO to ORO (see Knecht et aL, Chem. Biol. Interact. 2000, 124, 61-76). The first half-reaction comprises the reduction of DHO to ORO. Electrons are transferred to the FMN which becomes oxidized to dihydroflavin mononucleotide (FMNH2). After dissociation of ORO from the enzyme, KMNH2 is regenerated by a ubiquinone molecule, which is recruited from die inner mitochondrial membrane. Kinetic and structural studies revealed two distinct binding sites for DHO/ORO and ubiquinone, respectively.

Human DHODH is composed of two domains, a large C-terminal domain (Met78-Arg396) and a smaller N-terminal domain (Met30-Leu68), connected by an extended loop. The large C-terrainal domain can be best described as an α/β-barrel fold with a central barrel of eight parallel β strands surrounded by eight a helices. The redox site, formed by the substrate binding pocket and the site that binds the cofactor FMN, is located on this large C-terminal domain. The small N-terminal domain, on the other hand, consists of two o helices (labeled al and a2), both connected by a short loop. This small N-terminal domain harbors the b ding site for the cofactor ubiquinone. The helices al and a2 span a slot of about 10x20 A 2 in the so-called hydrophobic patch, with the short α1-α2 loop at the narrow end of that slot. The slot forms the entrance to a tunnel mat ends at the FMN cavity nearby the al-cc2 loop. This tunnel narrows toward the proximal redox site and ends with several charged or polar side chains (Gln47, Tyr356, Thr360, and Argl36). Structural clues, as discussed above, along with kinetic studies suggest that ubiquinone, which can easily diffuse into the mitochondrial inner membrane, uses this tunnel to approach the FMN cofactor for the redox reaction (see Baumgartner et al., J. Med. Chem. 2006, 49, 1239-1247).

A study disclosed in The Journal of Biological Chemistry 2005, 280(23), 21847-21853; formally demonstrates the possibility to identify potent inhibitors of P. falciparum DHODH that do not inhibit the human enzyme. Comparison of the human DHODH crystal structures with the malaria DHODH amino acid sequence further suggests there are opportunities for species-specific inhibitor binding.

In the body, DHODH catalyzes the synthesis of pyrirnidines, which are necessary for cell growth. An inhibition of DHODH inhibits the growth of (pathologically) fast proliferating cells, whereas cells which grow at normal speed may obtain their required pyrimidme bases from the normal metabolic cycle. The most important types of cells for the immune response, the lymphocytes, use exclusively the synthesis of pvrimidines for their growth and react particularly sensitively to DHODH inhibition.

DHODH inhibition results in decreased cellular levels of ribonucleotide uridine monophosphate (rUMP), thus arresting proliferating cells in the Gl phase of the cell cycle. The inhibition of de novo pyrirnidine nucleotide synthesis is of great interest in view of the observations that lymphocytes seem not to be able to undergo clonal expansion when this pathway is blocked. Substances mat inhibit the growth of lymphocytes are important medicaments for the treatment of auto-immune diseases.

During homeostatic proliferation, the salvage pathway which is independent of DHODH seems sufficient for the cellular supply with pyrmiidine bases. Only, cells with a high turnover and particularly T and B lymphocytes need the de novo pathway to proliferate. In these cells, DHODH inhibition stops the cell cycle progression suppressing DNA synthesis and consequently cell proliferation (see Breedveld et al., Ann Rheum Dis 2000).

Therefore, inhibitors of DHODH show beneficial immunosuppressant and antiproliferative effects in human diseases characterized by abnormal and uncontrollable cell proliferation causing chronic inflammation and tissue destruction. The human enzyme dihydroorotate dehydrogenase (DHODH) represents a well-characterized target for small molecular weight Disease Modifying Antirheumatic Drugs (DMARDs).

A list of known DHODH inhibitors includes Leflunomide, Teriflunomide, Brequinar (NSC 368390) (Cancer Research 1992, 52, 3521-3527), Dichloroallyl lawsone (The Journal of Biological Chemistry 1986, 261(32), 14891-14895), Maritimus (F 778) (Drugs of the Future 2002, 27(8), 733-739) and Redoxal (The Journal of Biological Chemistry 2002, 277(44), 41827-41834),

Dic oroallyl lawsone Marit nus Redoxal

Leflunomide, teriilunomide, and brequinar have been studied significantly.

In general, inhibitors of DHODH show beneficial immunosuppressive and antiproliferative activities, most pronounced on T-cells (see Fairbanks et al., J. Biol. Chem. 1995, 270, 29682- 29689). Brequinar and leflunomide are two examples of small molecular weight inhibitors of DHODH that had been in clinical development. The latter is used in the treatment of rheumatoid arthritis refractive to methotrexate (see Rozman J. Rheumatol Suppl. 1998, 53, 27-31; Pally et al., Toxicology 1998, 127, 207-222). Clinical application of both molecules suffers from various side effects. On the basis of very good efficacy in animal models, brequinar was originally developed for the therapy of organ transplant rejection but was switched to cancer as a secondary indication. The compound failed in the clinic due to its narrow therapeutic window. Oral administration of brequinar and some of its analogues resulted in toxic effects, including leukocytopenia and thrombocytopenia, when given in combination with cyclosporine. The application of leflunomide might be flawed by its long half-life time of approximately 2 weeks which represents a serious obstacle in patients that have developed side effects (see Fox et al. J. Rheumatol SuppL 1998, 53, 20-26; AUdred et al., Expert Opin. Pharmacother. 2001, 2, 125-137).

In addition to abolish lymphocyte proliferation, inhibitors of DHODH (e.g., teriflunomide, maritimus (FK778) and brequinar) have an ann^inflammatory action by inhibition of cytokine production and nuclear factor (NF)-kB-signa!ling, monocyte migration and increased production of transforming growth factor beta-1 and induce a shift from T helper cell type 1 (TM) to type 2 (Th2) subpopulafion differentiation (Manna et al., J. Immunol 2000; Dimitrova et al., J. Immunol 2002). Purthermore, the osteoclast differentiation mediated by Receptor Activator for Nuclear Factor k B Ligand (RA KL) decreased by DHODH inhibition (Urushibara et al., Arthrititis Rheum 2004). In co-crystallisation experiments with two inhibitors of DHODH that reached clinical trials, brequinar (Dexter et al, Cancer Res. 1985) and teriflunomide (A77-1726), were both found to bind in a common site, that is also believed to be the binding site of the cofactor ubiquinone (Liu et aL, Struc Fold. Des. 2000).

Leflunomide sold under the trade name Arava (EP 0 780 128, WO 97/34600), was the first DHODH inhibitor that reached the market place. Leflunomide is the prodrug of teriflunomide, which is the active metabolite inhibiting human DHODH with a moderate potenc (Fox et al, 7 J. Rheumatol. Suppl. 1998).

Leflunomide is a DMARD from Aventis, which was approved by the FDA for the treatment of rheumatoid arthritis in 1998 and by the EMEA for the treatment of psoriatic arthritis in 2004. Currently leflunomide is under active development for the treatment of systemic lupus erythematosus, Wegener's granulomatosis (Metzler et aL, Rheumatology 2004, 43(3), 315- 320) and HIV infection. Moreover, teriflunomide, its active metabolite is efficacious in multiple sclerosis and is currently in Phase m clinical trials (O'Connor et aL, Neurology 2006).

Other data are emerging in other closely related diseases such as ankylosing spondylitis (Haibel et aL, Ann. Rheum. Dis. 2005), polyarticular juvenile idiopathic arthritis (Silverman et aL, Arthritis Rheum. 2005) and Sarcoidosis (Baughman et aL, Sarcoidosis Vase. Diffuse Lung Dis. 2004), Furthemore, leflunomide and FK778 have shown antiviral activity against cytomegalovirus. Leflunomide is currently indicated as second-line therapy for cytomegalovirus disease after organ transplantation (John et aL, Transplantation 2004). In addition leflunomide reduces HTV replication by about 75% at a concentration that can be obtained with conventional dosing (Schlapfer et al„ ADDS 2003),

DHODH inhibitors under investigation at various stages of clinical trials are 4SC-101 (Phase-ID from 4SC AG; LAS-186323 (Phase-I) from AJLmirall Laboratories SA and ABR- 224050, ABR-222417, & ABR-214658 (Preclinical) from Active Biotech AB. The exact structures of all these molecules have not yet been disclosed.

Various DHODH inhibitors have been disclosed for the treatment or prevention of autoimmune diseases, immune and inflammatory diseases, destructive bone disorders, malignant neoplastic diseases, angiogenic-related disorders, viral diseases, and infectious diseases. See for example WO200 137081; WO2009133379; WO 2009021696; WO200 082691; WO2009029473; WO2009153043; US2009209557; US2009 062318; US2009082374; WO2008097180; W02QQ8Q77639; US2008027079; US2007 299U4; US2007027193; US2007224672; WO2007149211; JP2007015952; WO2006 044741; WO2006001961; WO2006051937; WO2006038606; WO2006022442; US2006 199856; WO2005075410; US7074831; WO2004056797; US7247736; WO2004056747; WO 2004056746; JP2004099586; WO2003097574; WO2003030905; WO2003006425; WO2003 006424; US2003203951; WO2002080897; US7176241; US7423057; WO2001024785; US 6841561; W09945926; W09938846; W09941239; EP767167 and US5976848.

For additional reviews and literature regarding DHODH inhibitors see Bio & Med. Chem. Letters, 20(6), 2010, Pages 1981-1984; Med. Chem. 2009, 52, 2683-2693; J. Med. Chem. 2008, 51 (12), 3649-3653. All of these patents, patent applications, and literature disclosures are incorporated herein as reference in their entirety for all purposes.

Despite the progress made in the area of DHODH inhibition in human diseases, challenges remain in terms of the side effects and desired clinical benefits from small molecule inhibitors. Accordingly, there still remains an unmet and dire need for small molecule DHODH inhibitors for the treatment and/or amelioration of diseases and disorders known to be associated with DHODH.

SUMMARY OF THE INVENTION

The present invention relates to compounds of formula (I) , methods for their preparation, pharmaceutical compositions containing them and methods of use with them. The compound of formula (I) has the structure:

00

or a tautomer, stereoisomer (such as an enantiomer or cliastereorner), pharmaceutically acceptable salt, pharmaceutically.acceptable ester, prodrug or N-oxide thereof, wherein Ring A is independently selected from a substituted or unsubstituted monocyclic aryl and a substituted or unsubstituted monocyclic heteroaryl, wherein each occurrence of X is independently CR 4 or N; Ring B is independently selected from a substituted or unsubstituted monocyclic aryl and a substituted or unsubstituted monocyclic heteroaryl, wherein each occurrence of X 1 is independently CR 4 or N;

R is hydrogen, substituted or unsubstituted or -OR a ;

R 1 is selected from -OH, -NR'OH, -COOH ,-COOR a , -CR*R OH, -CR¾ COOH, -SOiR* , - C ^SC^R 3 , -SOsR 4 , -CR*R b -S03R a , -C(=Y>NR¾ and -S(=0),-NR a R or an isostere of - COOH group, such as SOjH, CO HOH, B(OH) 2 , PO^R*, SC¾ R¾. b , a tetxazole, an amide, an ester or an acid anhydride or optionally represent halogen, substituted or unsubstituted (Chalky! or Cy 1 ;

X 2 is N or CR Z and X 3 is N or CR 3 , wherein R 2 and R 3 may be same or different and are independently selected from hydrogen, halogen, substituted or unsubstituted or substituted or unsubstituted (Ci^)alkoxy.

L 1 and L 2 are independently absent or selected from -(CR a R ) I1 -, -0-, -S(=0) q - , -NR 4 - , - C(=Y)-, -C(=Y)-CR*R b , -CR*R B -C(=Y)-,-C(=Y)-C(=Y)-, -CR a R B -Y-, -C(BY)-NR*R ¾ --, - S(=0) q -NR a R b -, - R¾ b -C(=Y>, -NR a R b -S(=0) q -. substituted or unsubstituted (Ci -2 )alkyl, substituted or unsubstituted (C 2 )alkenyl, and substituted or unsubstituted (C 2 )alkynyl; optionally each of substituted or unsubstituted (Ct.2)alkyl, substituted or unsubstituted (Cijalkenyl, and substituted or unsubstituted (C 2 )alJcynyl may be interrupted with -0-, - C(=Y)- , -S(=0) q - and -NR a -;

Cy is selected from substituted or unsubstituted cycloallsyl, substituted or unsubstituted heterocyclic group, substituted or unsubstituted aryl and substituted or unsubstituted heteroaryl;

Cy 1 is selected from substituted or unsubstituted monocyclic cycloalkyl, substituted or unsubstituted monocyclic heterocyclic group, substituted or unsubstituted monocyclic aryl and substituted or unsubstituted monocyclic heteroaryl;

R 4 is independently selected hydrogen, hydroxy, halogen, cyano, -OR*, -S(=0) q -R a , -NR¾ b , -C(=Y)-R a , -C(=Y)-0R a , -C(=Y)-NR a R b S(=0) q -NR a R b , substituted or unsubstituted alkyl, substituted or unsubstituted alkenyl, substituted or unsubstituted alkynyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted cycloalkylakyl, substituted or unsubstituted cycloaUkenyl or when two R 4 substituents are present, they may be joined to a form a substituted or unsubstituted saturated or unsaturated 3-10 member ring, which may optionally include heteroatoms which may be same or different and are selected from 0, NR a or S, or alternatively when two R 4 substituent are ortho to each other on an aromatic ring, may be joined to form a substituted or unsubstituted saturated or unsaturated 4-10 member ring, which may optionally include one or more heteroatoms which may be same or different and are selected from 0, NR a or S;

each occurrence of R a and R b may be the same or different and are independently selected from hydrogen, halogen, hydroxy, cyano, substituted or unsubstituted ,-ΟΚ" (wherein R c is substituted or unsubstituted or when R a and R are directly bound to a common atom, they may be joined to form an oxo group (=0) or form a substituted ox unsubstituted saturated or unsaturated 3-10 member ring, which may optionally include heteroatoms which may be the same or different and are selected from 0, NR* or S;

each occurrence of Y is independently selected from O, S and NR a ;

each occurrence of n independently represents an integer 0, 1, 2, 3, or 4; and

each occurrence of q independently represents an integer 0,1 or 2.

Some of the compounds of the present invention invention appear in different tautomeric forms. For example, Ring A can include a -C(OH)=N- group which interconverts to -C(O)- NH- and back to -C(OH)=N- again.

Yet another embodiment is a compound having the formula (I) wherein ring A is selected fr

optionally substituted with one or more R 4 .

Yet another embodiment is a compound having the formula (X) wherein R 1 is -COOH,

Yet another embodiment is a compound having the formula (T) wherein each occurrence of Y is O.

Yet another embodiment is a compound having the formula (I) wherein the variable Y between ring A and the group -N(R)- is O.

Yet another embodiment is a compound having the formula (I) wherein R is R

Yet another embodiment is a compound having the formula 0) wherein each occurrence of X is C& C-CL or C-F. Yet another embodiment, is a compound having the formula CO wherein each occurrence of X^s CH- N or CF.

Yet another embodiment, is a compound having the formula (I) wherein X 2 is CH, N, CCl or CF.

Yet another embodiment, is a compound having the formula (I) wherein X 3 is CH, N, CCl or CF,

Yet another embodiment is a compound having the formula (I) wherein ring B is selected

optionally substituted with one or more R 4 .

Yet another embodiment is a compound having the formula 00, wherein Li and Lz are absent. Yet another embodiment is a compound having the formula 00» wherein Li is absent and L 2 is -0-CR¾ b .

Yet another embodiment, is a compound having the formula (I), wherein Cy is selected from

each optionally substituted with one or more .

I one preferred embodiment. Ring A is phenyl, Ring B is phenyl, Cy is phenyl or 3-ethyl- lH-indol-5-yl, R 1 is -COOH, Y is 0, L 1 is absent, and L 2 is absent. In a more preferred embodiment, Cy is phenyl substituted with one or more Ci-G alJcoxy, -S-CQ-Ct alkyl), and/or halogen. In a more preferred embodiment, Ring B is phenyl subsiiuted with one or more fluoro groups.

Yet another embodiment is a compound of formula (IA)

or a tautomer, stereoisomer (such as an enantiomer or diastereomer), pharmaceutically acceptable salt, pharmaceutically acceptable ester, prodrug or N-oxide thereof, wherein ng A is selected from

optionally substituted with one or more R 4 , and R 1 is independently selected from -OH, - NR¾H, -COOH ,-COOR a , or an isostere of -COOH group, such as SO 3 H, CONHOH, B(OH> 2 , P0 3 b , SO2NHR 11 , a ietrazole, an amide, an ester or an acid anhydride.

Ring B is selected from

optionally substituted with one or more R 4 . and all other variables are the same as described above in relation to formula (I).

Yet another embodiment is a com ound of formula (IA)

or a tautomer, stereoisomer . (such as an enantiomer or diastereomer), pharmaceutically acceptable salt, phannaceuticaJly acceptable ester, prodrug or N-oxide thereof, wherein Ring A is selected from

Ring B is selected from

optionally substituted with one or more R ;

L 2 is absent or is 0-CR a R b -;

Cy is substituted phenyl, substituted indole or substituted indazole, such as

and all other variables are the same as described above in relation to formula (I).

Representative componnds of the present invention include those specified below and pharmaceutically acceptable salts thereof (Table 1). The present invention should not be construed to be limited to them.

1. 2-(3,5-Difluoro-3'-raemoxybiphenyl^ylcarbamoyl)benzoic acid

2. 2-(3,5^MuoKH3'-mem0xybiphenyl^ylcarbamoyl)benzenesulfomc acid

3. 2-(6-(3-Memoxyphenyl)pyridm-3-ylcad)amoyl)beazoic acid

4. 2-(3'-Ethoxy-3-fluorobiphenyl-4-ylcarbamoyl)benzoic acid

5. 2-(3'-Emoxy-3,5- --fluorobiphenyl-4-ylcarbamoyl)benzoic acid

6. 3 3,5-D-fluoreH3 , -me&oxybipheny -yk acid

7. 3^3,5-DifluOTO-3 , -e&o ybiphOTyl^ylc^^ acid

8. 2-(2'-CUoro-3,5-(lifluorobiphenyl^ylcaibamoyl)benzx>ic acid

9. 3-[3'-(Benzyloxy)-3,5^fluorobiphenyl^ylcaA^

10.2- (3,5-Difluorobiphenyl^ylcaibamoyl)benzoic acid

11. 3- (3-CMoro-3'-ethoxy-5-fluorobiphen^ acid 12.2-[3,5^ifluorc~3'-(trifluoror^ acid

13. 2-[3HBenzyloxy)-3,5-difluorobipbenyl^ylcarbamoyl]benzoic acid

14. ,5-DicUoro-2-(3-chloro-3'-ethoxy-5-fiuorobiphenyl-4-ylcarbam oyl)benzoic acid 15. 2-(3-Chloro-3'-ethoxy-5-fluoiobip eayM-ylcarbamoyl)beiizoic acid

16.4,5-DicMoro-2-(3,5-difluoro-3 , -m^

17.4,5ΦϊοΜθΓθ-2-(3'~Βΐ3ιο^-3,5-ΰ^^ acid

18.2-(3,5-DicUoi( 3 , -methoxybiphenyM-ylca-banioyl)benzoic acid

19. 2-(3 ^hloro-5-flttorc^3'-propoxybipheayl^ylc^amoyl)beiizoic acid

20. 2-(3^idoro-2 , J 5-difluorobipb∞yl^yic^b-uiioyl)benzoic acid

21.2-(3,S-DicUon 3'-ethoxybiphenyl^ylcai¾amoyl)benzoic acid

22.2-[3-Huoro-3'-(trifl oromethox acid

24. 2-(3,5-Diclilorc>-2'-fluorobiphenyl^ylcarbainoyl)berizoic acid

25.2-(3,5^ifluoro-3'-isopropoxybiphenyl-4-ylc.ubamoyl)bei-zo ic acid

26. 2^3,5-DifluorcH3'-prc^oxybipheiiyl-4-ylcarbamoyl)beazoic acid

27.4 -I¾cUorc^2-(2^3^cMoro- -fluo^

28.4,5^icbloro-2 ^3^cUoro-5-fluoroM acid 29.4,5-I¾cUorc 2-(2^3→ftcMoro-5-fluoro acid 30. ^S-D cblor^-^'-chloro^ acid 31. 2-(3-ChlorC 5-fluorc~3 , -isobutoxybiphenyl-4-yIcarbamoyl)benzoic acid 32. 2-(2 3,5-Trifluorobiphenyl^ylcaibarnoyl)benzoic acid

33. 2-(2^3,5-Trichlorobiphenyl^ylcai¾amoyl)benzoic acid

34. 2-(3 J 5-Difluoro-3'-isobutoxybiphenyl^ylcarbamoyl)benzoic acid

35. 2-(3'-Butoxy-3,5-difluorobiphenyI^ylcaibamoyl)beazoic acid

36. N 3-Chlwo-3'-ethoxy-5-flu^^

37. N-(3M2thoxy-3,5-d.fluorob^^

39. 2-[3-CWorc-5-fluoro-3'-(trifluo^

40. 2-[4-(Beiizyloxy)-2,6^difliKjrophenylcaibamoyl]ben2oic acid

41.2-[3HCyclopentyloxy)-3,5-<-ifluorobipbenyl^ylcaTbam oyl]benzoic acid 42.2-(3-Chloro-3'-(cyclopeQtyloxy 5-fluorobiphenyi-4-ylcarbamoyl)benzoic cid 43.2-[3'^ifluoromethoxy 3,5-difluo^ acid

45. 2-(2'-Chlc^3,5-<-Mnoio-5 -methoxyW acid 46.2-(3 5-Trifluoro-5'-i»ethoxybiphenyl^ylcarbamoyl)benzd acid

47. 2-[4-(Benzo[.fl[l,3]dioxol-5-y^ acid 48. 2-[4-(Ben.w[^[l,3]dioxol-5-yl)-2 Mo^ acid 2^3,5-Difluoic^3 4'-dimethoxybiphenyl^ylcaibamoyl)benzoic acid

2 3 \5-Tiifluoro-5'-meftoxybip^ acid

2-(3,3'-DicWoro-5-fluoro-5'-mel-ioxybiphenyl -ylcarbamoyl)beuzoic acid 2-[4-(2,3-DiIiydrobenzofiiran-5-yl)-2,6-difluorophenylcarbar a acid 2-[2-CWoro-4-(2,3-dihydrobeaiz^ acid 2-[4-(1 -DimeiJiyl-lH-inda^ acid 2-(3'-CbIoro-3,5-difluoro-5'-me1ho^^^ acid 2-(3-CUoix 5-fluoro-3 4 1 -d-jnethoxybiphenyl-4-ylcarbamoyl)b^ acid 2-(2\3-Dichloi©-5-fluoix>-5'-me^^ acid 2 2 3,5-Trifluoro-5'-nietiioxybiphenyl-4-ylcarbamoyl)benzoic acid

2-(4 , -CMoro-3,5-difluoro-3'-metto^ acid2-(3,4'^ichloiO-5 fluoro-3'-^^

2-(3-chloro-2 5'difluoro-5-methoxybiphenyl -ylcarbainoyl)benzoic acid

2-(3,4^5-trifluoro-3'-methoxybiphenyl -ylcarbamoyl)benzoic acid

2-[2,6Miifluoro^(3-meftyl-lH-mdol-5^ acid

2-[2,6-difluon> -(3-mei-iyl-lH-in<lazol-5-yl)phenylcarb acid ^3-chloro-3'-ethyl-5-fluorobiphenyl-4-ylcarbamoyI)beDzoic acid

2-(3-cli-oro-3'-ethoxy-2^5-difluoro^ acid

2'[2-chloK t-(2,3-dihydroben2o[i>][l,4]cfioxin-^yl)-6- fluorop enylcarbanioyl]benzoic acid

2-[3-cMoro-5-fluoro-3'-(2,2,2-triflTO^ acid 2-(3-fluoiO-3'-mel-ioxybipheny -ylca-l)ainoyl)benzoic acid

2-(3'-et±ioxybiphenyl-4-ylcarbamoyl)benzoic acid

2-[3'-(ethylt-tio)-3,5-difluoroW acid

2-[3 ethylsuIfinyl)-3,5 -iilu^^ acid

2-(3'-cyclopropoxy-3,5-difluorobipte^ acid

2-(3'-e£hoxy-3,5-difluorobiphenyl^^ acid 2-[4^3-ethyl-lH-mdol-5-yl)-2,6-d^ acid

2-(3'-e&oxy-3,5-difluorobiphenyM^ acid

4-(3'-ethoxy-3,5-cliflttotObiphe^^ acid

2-[3'-(ethyltbio)-2,3,5 > 6-tetra^ acid

2-(2' ;hloro-2-fluoro-5'-metito^^ acid

2-(3-fluoK)-3 , -propoxybiphe»yI^ylciatbamoyl)benzoic acid

2-(3 , -propoxybipheiiyl-4-ylcarbamoyl)benzoic acid 82. 2-[3'-(ethyl^o)-2-fluoiObiplienyM-ylc^amoyl]beaizoic acid

83. 2-[3,5^fluoro-3'-(2,2,2-trifluorc^ acid

84. 2-(3'-ethyl-3,5-(lifluorobiphenyl^ylc^amoyl)beazoic acid

85.2-(biphenyl-4-ylcarbamoyl)benzoic acid

86. 2-(2'^hlorobiphenyl^ylcaibamoyl)benzoic acid

87. 2-(3'-methoxybiphenyl-4-ylcarbaj-ioyl)beiizoic acid

88.2-[3'-(trifluoromethoxy)biphenyl- -ylcarbamoyI3beiizoic acid

89.2-[3'-(ethyltMo)-2,6-(Muorobiph^ acid

90. 2-(3'-ethylbiphenyl-4-ylcarbamoyl)beiizoic acid

91. 2H '-butoxy-2,3,5,( te*rafluoroM acid

92. 2-(3'-butoxy-3-flDorobiphenyM-ylcaa¾am.oyl)benzoic acid

93. 2 3,5-&fluoro-3'-(trifluorome^^

94. 2^3' yclopropoxy-3-fluoiObiphenyl^ylcarbamoyl)benzoic acid

95. 2-(3'^yclopropoxybip eiiyl-4-ylcarbamoyl)benzoic acid

96.2-(3'-b toxybiphenyl^ylcarbamoyl)benzoic acid

97. 2-(3'-b toxy-2-fluoi¾biphenyl^ylc^amoyl)benzcdc acid

98.2-(3'-Butoxy-2,6-difluorobipbeiiyl-4-ylcarbamoyI)bei-zoic acid

99. 2-[2,6-Difluoro-4-(3-propyl-lH-mdo ^ acid

100. 2-[2-CWoro^(3 !thyl-lH-indol-5-yl)^fluorophenylcaibamo acid

Yet another embodiment is a method of iaMbiting DHODH in a patient in need thereof by administering to the patient an effective amount of a compound of formula (I) or/and (IA). Yet another embodiment is a method of inhibiting IL-17 in a patient in need thereof by to the patient an effective amount of a compound of formula (I) or/and (IA).

In particular compounds of formula (I) or/and (IA), or their pharmaceutically acceptable salts thereof axe DHODH inhibitors useful in the treatment, prevention and or amelioration of diseases or disorders wherein the inhibition of DHODH is known to show beneficial effect.

Another embodiment of the present invention is a method for treating an immunological disorder, inflammatory disorder, cancer or other proliferative disease via inhibition of DHODH by administering to a patient in need of such treatment an effective amount of at least one compound of formula (I) or/and (IA), as defined above.

Another embodiment of the present invention is a method for treating an immunological disorder, inflammatoiy disorder, cancer or other proliferative disease via inhibition of IL-17 either directly or by inhibition of DHODH by administering to a patient in need of such treatment an effective amount of at least one compound of formula (I) or/and (IA), as defined above.

Another embodiment of the present invention is a method for treating an immunological disorder, inflammatory disorder, cancer or other proliferative disease via inhibition of U- l7 as well DHODH by adinirjistering to a patient in need of such treatment an effective amount of at least one compound of formula (I) oi and (IA), as defined above.

Yet another embodiment of the present invention is a method for treating an immunological disorder, iriflammatory disorder, cancer or other proliferative disease via inhibition of DHODH by administering to a patient in need of such treatment an effective amount of at least one compound of fonnula (I) or/and (IA)„ as defined above, in combination (simultaneously or sequentially) with at least one other immunomodulator or anti-cancer agent

The compounds of formula (I) oi/and (IA), are useful in the treatment of a variety of disorders, including, but not limited to, autoimmune diseases, immune and inflammatory diseases, destructive bone disorders, cancers and malignant neoplastic diseases, angiogenic- related disorders, viral diseases, and infectious diseases. Such disorders include, but are not limited to:

A Autoirnmune diseases which may be prevented (prophylactically) or treated include but are not limited to rheumatoid arthritis, psoriatic arthritis, systemic lupus erythematosus, multiple sclerosis, psoriasis, ankylosing spondilytis, Wegener's granulomatosis, polyarticular juvenile idiopathic arthritis, ir-flammatory bowel disease such as ulcerative colitis and Crohn's disease, Renter's syndrome, fibromyalgia and type-1 diabetes.

A Immune and inflammatory diseases which may be prevented (prophylactically) or treated include but are not limited to asthma, COPD, respiratory distress syndrome, acute or chronic pancreatitis, graft versus-host disease, chrome sarcoidosis, transplant rejection, contact dermatitis, atopic dermatitis allergic rhinitis, allergic conjunctivitis, Behcet's syndrome, inflammatory eye conditions such as conjunctivitis and uveitis.

& Destructive bone disorders which may be prevented or treated include but are not limited to osteoporosis, osteoarthritis and multiple myeloma-related bone disorder.

A Cancers and malignant neoplastic diseases that may be prevented (prophylactically) or treated include but are not limited to prostate, ovarian and brain cancer. Carcinoma, including that of the bladder, breast, colon, kidney, liver, lung, including small cell lung cancer, esophagus, gall bladder, ovary, pancreas, stomach, cervix, thyroid, prostate, and skin, mcluding squamous cell carcinoma; hematopoietic tumors of lymphoid lineage, including leukemia, acute lymphocytic leukemia, acute lymphoblastic leukemia, B-cell lymphoma, T-ceH lymphoma, Hodgkin's lymphoma, non-Hodgkins lymphoma, hairy cell lymphoma and Bnrkett's lymphoma; hematopoietic tumors of myeloid lineage, including acute and chronic myelogenous leukemias, myelodysplastic syndrome and promyelocyte leukemia tumors of mesenchymal origin, including fibrosarcoma and rhabdomyosarcoma; tumors of the central and peripheral nervous system, including astrocytoma, neuroblastoma, glioma and schwannomas; and other tumors, including melanoma, seminoma, teratocarcinoma, osteosarcoma, xenoderoma pigmentosum, keratoctanthoma, thyroid follicular cancer and Kaposi's sarcoma.

& Agiogenesis-ielated disorders that may be prevented or treated include but are not limited to hemangiomas, ocular neovascularization, macular degeneration or diabetic retinopathy. 4. Viral diseases which may be prevented or treated include but are not limited to HIV infection, hepatitis and cytomegalovirus infection.

A Infectious diseases which may be prevented or treated include but are not limited to sepsis, septic shock, endotoxic shock, Gram negative sepsis, toxic shock syndrome,

Shigellosis and other protozoal infestations such as malaria.

The compounds of the present invention as modulators of apoptosis, are useful in the treatment of cancer (including but not limited to those types mentioned herein above), viral infections (including but not limited to heipevirus, poxvirus, Epstein-Batr virus, Sindbis virus and adenovirus), prevention of AIDS development in HIV-infected individuals, autoimmune diseases (including but not limited to systemic lupus, erythematosus, autoimmune mediated glomerulonephritis, rheumatoid arthritis, psoriasis, inflammatory bowel disease, and autoimmune diabetes mellitus), neurodegenerative disorders (deluding but not limited to Alzheimer's disease, AIDS-related dementia, Parkinson's disease, amyotrophic lateral sclerosis, retinitis pigmentosa, spinal muscular atrophy and cerebellar degeneration), myelodysplastic syndromes, aplastic anemia, ischemic injury associated with myocardial infarctions, stroke and reperfusion injury, arrhythmia, atherosclerosis, toxin-induced or alcohol related liver diseases, hematological diseases (including but not limited to chronic anemia and aplastic anemia), degenerative diseases of the musculoskeletal system (including but not limited to osteoporosis and arthritis) aspirin-sensitive rhinosinusitis, cystic fibrosis, multiple sclerosis, kidney diseases and cancer pain.

The compounds of present invention can modulate the level of cellular UNA and DNA synthesis. These agents are therefore useful in the treatment of viral infections (mcluding but not limited to HTV, human papilloma virus, herpesvirus, poxvirus, Epstein-Batr virus, Sindbis virus and adenovirus).

The compounds of the present invention are useful in the chemoprevention of cancer. Chemoprevention is defined as inhibiting the development of invasive cancer by either bloclring the initiating mutagenic event or by blocking the progression of pre-malignant cells that have already suffered an insult or in biting tumor relapse. The compounds are also useful in inMbiting tumor angiogenesis and metastasis. The compounds of the present invention may also be combined with other active compounds in the treatment of diseases wherein the inhibition of DHODH is known to show beneficial effect

In other embodiments, the diseases, conditions or disorders that benefit from inhibition of DHODH include, but are not limited to, an immune system-related disease (e.g., an autoimmune disease), a disease or disorder involving inflammation (e.g., asthma, chronic obstructive pulmonary disease, rheumatoid arthritis, iiu^ammatory bowel disease, glomerulonephritis, neuroiiulamniatory diseases, multiple sclerosis, uveitis and disorders of the immune system), cancer or other proliferative disease, hepatic diseases or disorders, renal diseases or disorders. la one embodiment, compounds described herein are used as immunosuppresants to prevent transplant graft rejections, allogeneic or xenogeneic transplantation rejection (organ, bone marrow, stem cells, other cells and tissues), and graft - versus - host disease. In other erabociiments, transplant graft rejections result from tissue or organ transplants. In further embodiments, graft-versus-host disease results from bone marrow or stem cell transplantation.

More particularly, the compounds of formula (I) or/and GA) are useful in the treatment of a variety of inflammatory diseases including, but not limited to, inflammation, glomerulonephritis, uveitis, hepatic diseases or disorders, renal diseases or disorders, chronic obstructive pulmonary disease, rheumatoid arthritis, kiflammatory bowel disease, vasculitis, dermatitis, osteoarthritis, mflammatory muscle disease, allergic rhinitis, vaginitis, interstitial cystitis, scleroderma, osteoporosis, eczema, allogeneic or xenogeneic transplantation, graft rejection, graft-versus-host disease, corneal transplant rejection, lupus erythematosus, systemic lupus erythematosus, prolipherative lupus nephritis, type I diabetes, pulmonary fibrosis, dermatomyositts, thyroiditis, myasthenia gravis, autoimmune hemolytic anemia, cystic fibrosis, chronic relapsing hepatitis, primary biliary cirrhosis, allergic conjunctivitis, hepatitis and atopic dermatitis, asthma and Sjogren's syndrome.

In one embodiment, the compounds described herein are useful in the treatment of a variety of diseases mcluding Felty's syndrome, Wegener's granulomatosis, Crohn's disease, sarcoidosis, Still's disease, pemphigoid, Takayasu arteritis, systemic slerosis, relapsing polychondritis, refractor IgA nephropathy, SAPHO 2 syndrome (SAS), cytomegalovirus infection including rhinitis or cyst, psoriasis and multiple myeloma.

The invention further provides pharmaceutical compositions comprising compounds having formula (Γ) or/and (IA), together with a pharmaceutically acceptable carrier.

DETAIL DESCRIPTION

Unless defined otherwise, all technical and scientific terms used herein have the same meaning as is commonly understood in the field to which the claimed subject matter belongs. In the event that there is a plurality of definitions for terms herein, those in this section prevail. Where reference is made to a URL or other such identifier or address, it is understood that such identifiers generally change and particular information on the internet comes and goes, but equivalent information is found by searching the internet. Reference thereto evidences the availability and public dissemination of such information.

It is to be understood that the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of any subject matter claimed. In this application, the use of the singular includes the plural unless specifically stated otherwise. It must be noted that, as used in the specification and the appended claims, the singular forms "a," "an" and "the" include plural referents unless the context clearly dictates otherwise. In this application, the use of "or" means "and/or" unless stated otherwise. Furthermore, use of the term "deluding" as well as other forms, such as "include", "includes," and "included," is not limiting.

Definition of standard chemistry and molecular biology terms are found in reference works, including but not limited to, Carey and Sundberg "ADVANCED ORGANIC CHEMISTRY 4 th edition" Vols. A (2000) and B (2001), Plenum Press, New York and "MOLECULAR BIOLOGY OF THE CELL 5 th edition" (2007), Garland Science, New York. Unless otherwise indicated, conventional methods of mass spectroscopy, NMR, HPLC, protein chemistry, biochemistry, recombinant DNA techniques and pharmacology are contemplated within the scope of the embc liments disclosed herein.

Unless specific definitions are provided, the nomenclature employed in connection with, and the laboratory procedures and techniques of, analytical chemistry, and medicinal and pharmaceutical chemistry described herein are those generally used. In some embodiments, standard techniques are used for chemical analyses, pharmaceutical preparation, formulation, and delivery, and treatment of patients. In other embo liments, standard techniques are used for recombinant DNA, oligonucleotide synthesis, and tissue culture and txansfonnation (e.g., electtoporation, Iipofection). In certain embodiments, reactions and purification techniques are performed e.g., using kits of manufacturer's specifications or as described herein. The foregoing techniques and procedures are generally performed of conventional metbods and as described in various general and more specific references that are cited and discussed throughout the present specification.

As used herein the following definitions shall apply unless otherwise indicated. Further many of the groups defined herein can be optionally substituted. The listing of substituents in the definition is exemplary and is not to be construed to Kmit the substituents defined elsewhere in the specification.

The term 'alkyl' refers to a straight or branched hydrocarbon chain radical consisting solely of carbon and hydrogen atoms, containing no unsaturation, having from one to eight carbon atoms, and which is attached to the rest of the molecule by a single bond, e.g., methyl, ethyl, n-propyl, 1-methylethyl (isopropyl), n-butyl, n-pentyl, and 1,1-dimethylethyl (t-butyl).

The term substituted or unsubstituted (Ci.j)alkyl refers to an alkyl group as defined above having up to 2 carbon atoms, and the term substituted or unsubstituted (C.^alkyl refers to an alkyl group as defined above having up to 6 carbon atoms.

The term "alkenyl" refers to an aliphatic hydrocarbon group containing a carbon-carbon double bond which may be a straight or branched or branched chain having about 2 to about 10 carbon atoms, e.g., ethenyl, 1-propenyl, 2-propenyl (allyl), iso-propenyl, 2-rnethyl-l- propenyl, 1-butenyl, and 2-butenyl.

The term substituted or unsubstituted (C 2 )alkenyl refers to an alkenyl group as defined above having 2 carbon atoms.

The terra "alkynyl" refers to a straight or branched chain hydrocarbyl radicals having at least one carbon-carbon triple bond, and having in the range of 2 up to 12 carbon atoms (with radicals having in the range of about 2 up to 10 carbon atoms presently being preferred), e.g., ethynyl, propynyl, and butnyl.

The term substituted or unsubstituted (C 2 ) alkynyl refers to an aJJtynyl group as defined above having 2 carbon atoms.

The term "alkoxy" denotes an alkyl group as defined above attached via an oxygen linkage to the rest of the molecule. Representative examples of these groups are -OC¾ and -OC2H5.

The term "cycloalkyl" denotes a non-aromatic mono or multicyclic ring system of about 3 to 12 carbon atoms such as cyclopropyl, cyclobutyl, cyclopentyl, and cyclohexyl. Examples of mulucyclic cycloalkyl groups include perhydronapththyl, adamantyl and norbornyl groups, bridged cyclic groups, and sprirobicyclic groups, e.g., sprio (4,4) non-2-yl.

The term "cycloalkylalkyl" refers to a cyclic ring<xrataiiung radical containing in the range of 3 up to 8 carbon atoms directly attached to an alkyl group which are then attached to the main structure at any carbon from the alkyl group that results in the creation of a stable structure such as cyclopropylraethyl, cyclobuyylethyi, and cyclopentylethyl.

The term "cycloalkenyl" refers to cyclic ring-a>ntaming radicals containing in the range of 3 up to 8 carbon atoms with at least one carbon-carbon double bond such as cyclopropenyl, cyclobutenyl, and cyclopentenyl. The term "cycloalkenylalkyl" refers to a cycloalkenyl group directly attached to an alkyl group which are then attached to the main structure at any carbon from the alkyl group that results in the creation of a stable structure

The term "aryl" refers to an aromatic radical having in the range of 6 up to 20 carbon atoms such as phenyl, naphthyl, tetrahydronapthyl, indanyl, and biphenyl.

The term "arylalkyl" refers to an aryl group as defined above directly bonded to an alkyl group as defined above, e.g., -(¾<¾¼ and -C 2 H5 H5.

The term "heterocyclic ring" refers to a non-aromatic 3 to 15 member ring radical which, consists of carbon atoms and at least one heteroatom selected from the group consisting of nitrogen, phosphorus, oxygen and sulfur. For purposes of this invention, the heterocyclic ring radical may be a mono-, bi-, tri- or tetracyclic ring system, which may include fused, bridged or spixo ring systems, and the nitrogen, phosphorus, carbon, oxygen or sulfur atoms in the heterocyclic ring radical may be optionally oxidized to various oxidation states. In addition, the nitrogen atom may be optionally quaternized. The heterocyclic ring radical may be attached to the main structure at any heteroatom or carbon atom that results in the creation of a stable structure.

The term "heteroaryl" refers to an optionally substituted 5-14 member aromatic ring having one or more heteroatoms selected from N, O, and S as ring atoms. The heteroaryl may be a mono-, bi- or tricyclic ring system. Examples of such heteroaryl ring radicals include, but are not limited to, oxazolyl, thiazolyl imidazolyl, pyirolyl, ruranyl, pyridinyl, pvrimidmyl, pyrazinyl, benzofuranyl, indolyl, benzothiazolyl, benzoxazolyl, carbazolyl, quinolyl and isoquinolyl. The heteroaryl ring radical may be attached to the main structure at any heteroatom or carbon atom that results in the creation of a stable structure.

Examples of such heterocyclic ring" or "heteroaryl" radicals include, but are not limited to, azetidmyl, acridinyl, benzodioxolyl, benzodioxanyl, benzofurnyl, carbazolyl, cinnolinyl, dioxolanyl, mdolizinyl, naphthyridinyl, perhydroazepinyl, phenazinyl, phenothiazinyl, phenoxazinyl, phthalazinyl, pyridyl, pteridinyl, purinyl, qiunazolinyl, quinoxalinyl, quinolinyl, isoquinolinyl, tetrazoyl, imidazolyl, tetrahydroisoumolyl, piperidinyl, piperazinyl, 2-oxopiperazinyl, 2-oxopiperidinyl, 2-oxopyrroUdinyl, 2-oxoazepinyl, azepinyl, pyrrolyl, 4- piperidonyl, pyrrolidinyl, pyrazinyl, pyrirmdinyl, pyridazinyl, oxazolyl, oxazolinyl, oxasolidinyl, triazolyl, indanyl, isoxazolyl, isoxasolidinyl, morpholinyl, thiazolyl, thiazolinyl, thiazoUdinyl, isotbiazolyl, φώ-ojclidinyl, isolhiazolidinyl, indolyl, isoindolyl, indolinyl, isoindolinyl, octahydroindolyl, octahydroisoindolyl, quinolyl, isoquinotyl, decahydroisoquinolyl, benzimidazolyl, thiadiazolyl, benzopyranyl, benzothiazolyl, benzooxazolyl, furyl, tetrahydrofurtyl, tetrahydropyranyl, thienyl, benzothienyl, thiamorpholinyl, thiamorpholinyl sulfoxide thiamorpholinyl sulfone, dioxaphospholanyl , oxadiazolyl , chromanyl, and isochromanyl.

The term "heteroarylalkyl" refers to a heteroaryl ring radical as defined above directly bonded to an alkyl group. The heteroarylalkyl radical may be attached to the main structme at any carbon atom from the alkyl group that results in the creation of a stable structure.

The term "heterocyclyl" refers to a heterocylic ring radical as defined above. The heterocylcyl ring radical may be attached to the main structure at any heteroatom or carbon atom that results in the creation of a stable structure. The term "heterocyclylalkyl" refers to a heterocylic ring radical as defined above directly bonded to an alkyl group. The heterocyclylalkyl radical may be attached to the main structure at a carbon atom in the alkyl group that results in the creation of a stable structure.

The term "cyclic ring" refers to a cyclic ring containing 3-10 carbon atoms, optionally one or more of the ring carbon atoms may be replaced with heteroatom such as N, O, or S atom.

The term "monocyclic ring" refers to a single cyclic ring containing 3-10 carbon atoms, optionally one or more of the ring carbon atoms may be replaced with heteroatom such as N, O, or S atom.

The prefix "monocyclic ring" being used such as for example monocyclic aryl, refers to single aryl ring wherein the aryl is as defined herein above. Similarly die term monocyclic heteroaryl refers to a single heteroaryl ring wherein the heteroaryl is as defined herein above. The same is applicable to each of the terms monocyclic cycloalkyl and monocyclic heterocyclic ring as well.

The term "substituted" unless otherwise specified, refers to substitution with any one or any combination of the following substituents and may. be the same or different which one or more are selected from hydrogen, hydroxy, halogen, carboxyl, cyano, nitro, oxo (=0), thio (=S), substituted or unsubstituted alkyl, substituted or unsubstituted alkoxy, substituted or unsubstituted alkenyl, substituted or unsubstituted alkynyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted cycloalkenyl, substituted or unsubstituted cycloalkylalkyl, substituted or unsubstituted cycloalkenylalkyl, substituted or unsubstituted heterocyclic ring, substituted or unsubstituted heterocyclcyalkyl, substituted or unsubstituted aryl, substituted or unsubstituted arylalkyl, substituted or unsubstituted heteroaryl, substituted or unsubstituted heteroarylalkyl, substituted or unsubstituted guanidine, -COOR", -C(0)R x , - C(S)R X , -C(0) R¾ -C(0)ONR x R y -NR y R z , - R x CO R y R*, -N(R x )SOR -N(R x )S02R y , - (=N-N(R x )R y ), - NR*C(0)OR y -NR x R y , -NR x C(0)R y -, -NR x C(S)R y -NR x C(S)NR y R z , - SO R¾\ -S02N x R y -, -OR x , -OR x C(0)NR y R z , -OR^CCOJOR 3 '-, -OC(0)R x , -OC(0)NR x R y , - R x NR y C(0)R 2 , -R x OR y -R x C(0)OR y , -R x C(0)NR y R z , -Rt^ *, -R*OC(0)R y , -SR X , - SOR x , -S02R X 7 -ON0 2 , wherein R x , R y and R l in each of the above groups can be hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted alkoxy, substituted or unsubstituted alkenyl, substituted or unsubstituted alkynyl, substituted or unsubstituted cycloalkyl substituted or unsubstituted cycloalkenyl, substituted or unsubstituted cyclo-ilkylalkyl, substituted or unsubstituted cycloalkenylalkyl, substituted or unsubstituted heterocyclic ring, substituted or unsubstituted heterocyclcyalkyl, substituted or unsubstituted aryl, substituted or unsubstituted arylalkyl, substituted or unsubstituted heteroaryl, substituted or unsubstituted heteroarylalkyl, or any two of \ R y and R z may be joined to form a substituted or unsubstituted saturated or unsaturated 3-10 membered ring, which may optionally include heteroatoras which may be the same or different and are selected from O, NR or S. Substitution or the combination of substituents envisioned by this invention are preferably those that result in the formation of a stable or chemically feasible compounds. Hie term stable as used herein refers to the compounds or the structure that are not substantially altered when subjected to conditions to allow for their production, detection and preferably their recovery, purification and incorporation into a pharmaceutical composition.

Hie term "halogen" or "halo" refers to radicals of fluorine, chlorine, bromine and iodine.

The term "protecting group" or "PG" refers to a substituent that is employed to block or protect a particular functionality. Other functional groups on the compound may remain reactive. For example, an "ammo-protecting group" is a substituent attached to an amino group that blocks or protects the amino functionality in the compound. Suitable ammo- protecting groups include, but are not hmited to, acetyl, trifluoroacetyl, tert-buioxycarbonyl (BOC), benzyloxycarbonyi (CBz) and 9-fluorenylmethylenoxycarbonyI (Fmoc). Similarly, a "hydroxy-protecting group" refers to a substituent of a hydroxy group that blocks or protects the hydroxy functionality. Suitable hydroxy-protecting groups include, but are not limited to, acetyl and silyl. A "carboxy-protecting group" refers to a substituent of the carboxy group mat blocks or protects the carboxy functionality. Suitable carboxy-protecting groups include, but are not limited to, -CH 2 CH 2 S0 2 Ph, cyanoethyl, 2-(trimethylsilyl)ethyl, 2- (trimethylsnyl)ethoxymethyl, - 2-(p-toluenesulfonyl)ethyl, 2-(p-nitrophenylsulfenyl)ethyI, 2- (diphenylphosphino)-ethyl, and nitroethyl. For a general description of protecting groups and their use, see T. W. Greene, Protective Groups in Organic Synthesis, John Wiley & Sons, New York, 1991.

The term "stereoisomer" refers to compounds, which have identical chemical composition, but differ with regard to arrangement of the atoms and the groups in space. These include enantiomers, diastereomers, geometrical isomers, atropisomer or conformational isomers. All the stereoisomers of compounds described herein are within the scope of this invention. Racemic mixtures are also encompassed within the scope of this invention. Therefore, single stereochemical isomers as well enantiomeric, diastereoisomeric and geometric (or conformational) mixtures of the present compounds fall within the scope of the invention.

The term "tautomers" refers to compounds, which are characterized by relatively easy interconversion of isomeric forms in equilibrium. These isomers are intended to be covered by this invention.

The term "prodrug" refers to a compound, which is an- inactive precursor of a compound, converted into its active form in the body by normal metabolic processes.

The term "ester" refers to a compound, which is formed by reaction between an acid and an alcohol with emr nation of water. An ester can be represented by the formula RCOOR'.

Additionally the instant invention also includes the compounds which differ only in the presence of one or more isotopicaHy enriched atoms for example replacement of Hydrogen with Deuterium and the like.

Pharmaceutically acceptable salts forming part of this invention include salts derived from inorganic bases such as Li, Na, K, Ca, Mg, Fe, Co, Zn, and Mn; salts of organic bases such as NjN'-diacetylemylenediamine, glucamine, triemylamine, choline, hydroxide, dicyclohexylamine, metformin, benzylamine, trialkylamine, thiamine, and the like; chiral bases like alkylphenylamine, glycinol, and phenyl glycinol, salts of natural amino acids such as glycine, alanine, valine, leucine, isoleucine, norieucine, tyrosine, cystine, cysteine, methionine, proline, hydroxy proline, mstidine, ornithine, lysine, arginine, and serine; quaternary ammonium salts of the compounds of invention with alkyl halides, and alkyl sulphates such as Mel and (Me) 2 S0 4 , non-natural amino acids such as D-isomers or substituted amino acids; guanidine, substituted guanidine wherein the substiments are selected from nitro, amino, alkyl, alkenyl, alkynyl, ammonium or substituted ammonium salts and aluminum salts. Salts may include acid addition salts where appropriate which are, sulphates, nitrates, phosphates, perchlorates, borates, hydrohalides, acetates, tartrates, maleates, citrates, fumarates, succinates, palmoates, methanesulphonates, benzoates, salicylates, benzenesulfonates, ascorbates, glycerophosphates, and ketoglutarates. Pharmaceutically acceptable solvates may be hydrates or comprise other solvents of crystallization such as alcohols.

Additionally the instant invention also includes the compounds which differ only in the presence of one or more isotopically enriched atoms for example replacement of hydrogen with deuterium.

The term "subject" or "patient" encompasses mammals and non-mammals. Examples of mammals include, but are not limited to, any member of the Mammalian class: humans, non- human primates such as chimpanzees, and other apes and monkey species; farm animals such as cattle, horses, sheep, goats, and swine; domestic animals such as rabbits, dogs, and cats; and laboratory animals including rodents, such as rats, mice and guinea pigs. Examples ,of non-mammals include, but are not limited to, birds, fish and the like. In one embc>diment of the methods and compositions provided herein, the mammal is a human.

The terms "treat," "treating" or "treatment," as used herein, include alleviating, abating or ameliorating a disease, disorder or condition symptoms, preventing additional symptoms, ameliorating or preventing the underlying causes of symptoms, inhibiting the disease, disorder or condition, e.g., arresting the development of the disease, disorder or condition, relieving the disease, disorder or condition, causing regression of the disease, disorder or condition, reHeving a condition caused by the disease, disorder or condition, or stopping the symptoms of the disease, disorder or condition either prophylactically and/or therapeutically.

As used herein, "amelioration" refers to an improvement in a disease or condition or at least a partial relief of symptoms associated with a disease or condition and As used herein, amelioration of the symptoms of a particular disease, disorder or condition by adrninistration of a particular compound or pharmaceutical composition refers to any lessening of severity, delay in onset, slowing of progression, or shortening of duration, whether permanent or temporary, lasting or transient that are attributed to or associated with administration of the compound or composition.

The terms "nan-bits", "mhibiting", or "inhibitor" of DHODH, as used herein, refer to inhibition of the enzyme DHODH. By "pharmaceutically acceptable," as used herein, refers a material, such as a carrier or diluent, which does not abrogate the biological activity or properties of the compound, and is relatively nontoxic, i.e., the material is adniinistered to an individual, without causing undesirable biological effects or mteracting in a deleterious manner with any of the components of the composition in which it is contained

The term "pharmaceutical composition" refers to a mixture of a compound capable of inhibiting DHODH as described herein with other chemical components, such as carriers, stabilizers, diluents, dispersing agents, suspending agents, t ckening agents, and/or excipients. The pharmaceutical composition facilitates acJministration of the compound to an organism- The compound and pharmaceutical composition of the present invention can be administered by various routes of administration including, but not limited to, intravenous, oral, aerosol, parenteral, ophthalmic, pulmonary and topical administration.

The terms "effective amount" or "therapeutically effective amount," as used herein, refer to a sufficient amount of an agent or a compound being administered which will relieve to some extent one or more of the symptoms of the disease or condition being treated. The result is reduction and/or alleviation of the signs, symptoms, or causes of a disease, or any other desired alteration of a biological system. For example, an "effective amount" for therapeutic uses is the amount of the composition that includes a compound capable of inhibiting DHODH as described herein required to provide a clinically significant decrease in disease symptoms. In some embodiments, an appropriate "effective" amount in any individual case is determined using techniques, such as a dose escalation study.

The term "carrier," as used herein, refers to relatively nontoxic chemical compounds or agents that facilitate the incorporation of a compound into cells or tissues.

The term "diluent" refers to chemical compounds mat are used to dilute the compound of interest prior to delivery. la some embodiments, diluents are used to stabilize compounds because they provide a more stable environment Salts dissolved in buffered solutions (which also provide pH control or maintenance) are utilized as diluents, mcluding, but not limited to a phosphate buffered saline solution.

As used herein, the term "immune" include cells of the immune system and cells that perform a function or activity in an immune response, such as, but not limited to, T-cells, B-cells, lymphocytes, macrophages, dendritic cells, neutrophils, eosinophils, basophils, mast cells, plasma cells, white blood cells, antigen presenting cells and natural killer cells.

As used herein, "cytokine" or "cytokines" refers to small soluble proteins secreted by cells that in some embodiments, alter the behavior or properties of the secreting cell or another cell Cytokines bind to cytokine receptors and trigger a behavior or property within the cell, for example, cell proliferation, death or differentiation. Exemplary cytokines include, but are not limited to, interleukins (e.g., IL-2, JL-3, TLA, JL-5, IL-6, IL-7, 1L-8, JL-9, 3L-10, IL-Π, IL-12, JL-13, IL-15, IL-16, IL-17, IL-18, IL-la, IL-Ιβ, and IL-1 RA), granulocyte colony stimulating factor (G-CSF), granulocyte-macrophage colony stimulating factor (GM-C$F), oncostatin M, erythropoietin, leukemia inhibitory factor LW), interferons, B7.1 (also known as CD80), B7.2 (also known as B70, CD86), TNF family members (T F-ot, TNF-β, LT-β, CD40 ligand, Fas ligand, C 27 ligand, CD30 ligand, 4-lBBL, Trail), and MBF.

The compounds of the present invention are also useful in combination (administered together or sequentially) with known immunomodulators and/or anti-inflammatory agents useful in the treatment of autoimmune diseases, immune and inflammatory diseases, destructive bone disorders, malignant neoplastic diseases, angiogenic-related disorders, viral diseases, and infectious diseases such as

■ Anti-TNF-alpha monoclonal antibodies such as Mliximab, (Zertolizumab pegol, Golimumab, Adalimnmab and AME-527 from Applied Molecular Evolution,

• Antimetabolite compounds such as Mizoribine, Cyclophosphamide and Azatbiopirine,

Calcineurin (PP-2B) Inhibitors / IKS Expression Inhibitors such as cyclosporine A, Tacrolimus and ISA-247 from totechnik-L,

■ Cyclooxygenase Inhibitors such as Aceclofenac, Diclofenac, Celecoxib. Rofecoxib.

Etoricorib, Valdecoxib, Lumiracoxib, Cimicoxib and LAS-34475 from Laboratorios Almira , S.A.,

TNF-alpha Antagonists such as Etanercept, Lenercept, Onercept and Pegsunercept, 1 1 NF-kappaB (NF B) Activation Inhibitors such as Sulfasalazine and Iguratimod,

EL-1 Receptor Antagonists such as Anakinra and A G-719 from Amgen,

Dihydrofolaie Reductase (DHFR) Inhibitors such as Methrotexate, Aminopterin and CH-1504 from Chelsea, Inhibitors of lnosine ^-Monophosphate Dehydrogenase (IMPDH) such as Mizoribi j ie, Ribavirin, Tiazofurin, Arnitivir, Mycophenolate mofetil, Ribaraidine and Merimepodib,

Glucocorticoids such as Prednisolone, Methylprednisolone, Dexamethasone, Cortisol, Hydrocortisone, Triamcinolone acetonide, Huocinolone acetouide, Huocinonide, Clocortolone pivalate, Hydrocortisone aceponate, Methylprednisolone suleptanate, Betamethasone butyrate propionate, Deltacort-sone, Deltadehydrocortisone, Prednisone, Dexamethasone sodium phosphate, Triamcinolone, Betamethasone valerate, Betamethasone, Hydrocortisone sodium succinate, Prednisolone sodium phosphate, Hydrocortisone probutate and Difluprednate,

Anti-CD20 monoclonal antibodies such as Rituximab, Ofatumumab, Ocrelizumab,

Veltuzumab and TRU-015 from Trubion Pharmaceuticals,

B-targeted cell therapies such as BLYSS, BAFF and TACI-Ig,

p38 Inhibitors such as AMG-548 (from Amgen), ARRY-797 (from Array

Biopharma), Chlormethiazole edisylate, Doramapirood, PS-540446, BMS-582949

(from BMS), SB- 203580, SB-242235, SB-235699, SB-281832, SB-681323, SB-

856553 (aU from GlaxoSmith line), KC-706 (from Kemia), LEO-1606, LEO-15520

(all from Leo), SC-80036, SD-06, PH-797804 (all from Pfizer), RWJ-67657 (from

R.W. Johnson), RO- 3201195,, RO 402257 (all from Roche), AVE-9940 (from

Aventis). SCIO-323, SCIO-469 (all from Scios), TA-5493 (from Tauabe. Seiyaku), and VX-745, VX-702 (all from Vertex).

Jak3 Inhibitors such as CP690550 from Pfizer, R-348

Syk inhibitors such as R-l 12, R-406 and Fostamatinib (R-788) all from Rigel,

ME irihibitors such as ARRY-142886, ARRY 38162(all from Array Biopharma),

AZD-6244(from AstraZeneca), PD-098059, PD-0325901(all from Pfizer), AR-119,

AS703026

P2X7 receptor antagonist such as AZD-9056 from AstraZeneca,

SI Pi agonists such as F ngoHmod, CS-0777 from Sankyo and R-3477 from Actelion,

ONO-4641 , and KRP-203 fromNovartis,

Anti-CD49 monoclonal antibodies such as Natalizumab,

lntegrin Inhibitors such as Cilengitide, Firategrast, Valategrast hydrochloride, SB- 273005, SB- 683698 (all from Glaxo), HMR-1031 from Sanofi-Aventis, R-1295 from Roche, BMS- 587101 from BMS and CDP-323 from UCB Celltech,

Anti-CD88 monoclonal antibodies such as Eculizumab and Pexelizumab, ■ IL-6 receptor antagonist such as CBP-1011 from InKine and C-326 from Amgen,

■ (w) And IL-6 monoclonal antibodies such as Elsilimomab, C TO-328 from Centocor and VX-30 from Vaccinex,

■ Anti-CD 152 monoclonal antibodies such as lpihmumab and Ticilimumab,

■ Fusion proteins comprising the extracellular domain of human cytotoxic T- lymphocyte-associated antigen 4 (CTLA-4) linked to portions of human immunoglobulin Gl such as Abatacept,

■ Agents useful in the treatment of bone disorders such as Bisphophonates such as Tiludronate disodium, Clodronate disodium, Disodium pamidronate, Etidronate disodium, Xydiphone ( INa salt), Alendronate sodium, Neridronate, Dimethyl-APD, Olpadronic acid sodium salt, Minodronic acid, Apomine, lbandronate sodium hydrate and Risedronate sodium,

VEGF Try kinase inhibitors such as Pegaptanib octasodium, Vatalanib succinate,

■ Sorafenib, Vandetamb, Sumtinib malate, Cediranib, Pazopanib hydrochloride and AE-941 from AEterna Zentaris,

■ Other compounds efficacious in autoimmune diseases such as Gold salts, hydroxycloroquimne, Penic amine, -832, SMP114 and AD452,

Purine-Nucleoside phosphorylase inhibitors such as Forodesine hydrochloride, R- 3421 from Albert Einstein College of Medicine, CI-972 and CI-1000 both from Pfizer,

Anti- RANKL monoclonal antibodies such as Denosumab,

Anti-CD25 monoclonal antibodies such as Inolimomab, Dacliximab, Basiliximab and LMB-2 from the US National Cancer Institute,

■ Histone Deacerylase (HDAC) Inhibitors such as Divalproex sodium, Acetyldinaline, Depsipeptide, Sodium butyrate, Sodium phenylbutyrate, Vorinostat, MS- 27-275 from Mitsui, Valproic acid, Pyroxarnide, Triburyrin, PX-1056S4 from TopoTarget, MG- 0103 from MethylGene, G2M-777 from TopoTarget and CG-781 from Celera and

" Anti colony-stimulating factor (GM-CSF) monoclonal antibodies such as KB-002 from KaloBios.

The compounds of the invention are used for the treatment of rheumatoid arihritis, psoriatic arthritis, ankylosin spondilytis, multiple sclerosis, Wegener's granulomatosis, systemic lupus erythematosus, psoriasis and sarcoidosis it may be advantageous to use them in combination with .other active compounds known to be useful in the treatment of such diseases such as rheumatoid arthritis, psoriatic arthritis, ankylosing spondilytis, multiple sclerosis, Wegener's granulomatosis, systemic lupus erythematosus, psoriasis and sarcoidosis.

The combinations of the invention may be used in the treatment of diseases and/or disorders wherein the inhibition of DHODH is known to show beneficial effect Thus, the present application encompasses methods of treatment of these disorders, as well as the use of the combinations of the invention in the manufacture of a medicament for the treatment of these disorders.

The compounds of the present invention are also useful in combination (aan-inistered together or sequentially) with known anti-cancer treatments such as radiation therapy or with cytostatic or cytotoxic or anticancer agents, such as for example, but not limited to, DNA interactive agents, such as cisplatin or doxorubicin; topoisomerase II inhibitors, such as etoposide; topoisomerase I inhibitors such as CPT-11 or topotecan; tubulin interacting agents, such as paclitaxel, docetaxel or the epothilones (for example ixabepilone), either iiarurally occurring or synthetic; hormonal agents, such as tamoxifen; thymidilate synthase inhibitors, such as 5-fluorouracil; and anti-metabolites, such as methotrexate, other tyrosine kinase inhibitors such as Iressa and OSI-774; angiogenesis inhibitors; EGF inhibitors; VEGF inhibitors; CDK inhibitors; SRC inhibitors; c-Kit inhibitors; Herl/2 inhibitors and monoclonal antibodies directed against growth factor receptors such as erbitux (EGF) and herceptin (Her2) and other protein kinase modulators as well.

In some embodiments, diseases, disorders or conditions that are treated or prevented using compounds disclosed herein that are capable of inmbiting DHODH, compositions thereof, and methods provided herein to identify compounds capable of inhibiting DHODH, include diseases, conditions or disorders involving inflammation and/or mat are related to the immune system. These diseases include but are not limited to asthma, chronic obstructive pulmonary disease, rheumatoid arthritis, iriflammatory bowel disease, glomeiulonephritis, nemoinfianunatory diseases such as multiple sclerosis, and disorders of the immune system.

Thus, in some embodiments, inhibition of DHODH results in a method for treating immune and immune-related disorders, including, for example, chronic immune diseases/disorders, acute immune diseases disorders, autoimmune and immunodeficiency diseases disorders, diseases disorders involving inflammation, organ transplant graft rejections and graft-versus- host disease and altered (e.g., hyperactive) immune responses. Examples of immune disorders include psoriasis, rheumatoid arthritis, vasculitis, inflammatory bowel disease, dermatitis, osteoarthritis, asthma, inflammatory muscle disease, allergic rrdnitis, vaginitis, interstitial cystitis, scleroderma, osteoporosis, eczema,, allogeneic or xenogeneic transplantation (organ, bone marrow, stem cells and other cells and tissues) graft rejection, graft-versus-host disease, lupus erythematosus, inflammatory disease, type I diabetes, pulmonary fibrosis, derraatomyositis, Sjogren's syndrome, thyroiditis (e.g., Hashimoto's and autoimmune thyroiditis), myasthenia gravis, autoimmune hemolytic anemia, multiple sclerosis, cystic fibrosis, chronic relapsing hepatitis, primary biliary cirrhosis, allergic conjunctivitis and atopic dermatitis.

In other embodiments, compounds disclosed herein that are capable of inhibiting DHODH, compositions thereof, and methods provided herein to identify compounds capable of modulating DHODH inhibitors, are used in connection with treatment of malignancies, including, but not limited to, malignancies of lymphoreticular origin, bladder cancer, breast cancer, colon cancer, endometrial cancer, head and neck cancer, lung cancer, melanoma, ovarian cancer, prostate cancer and rectal cancer. DHODH is thought to play an important role in cell proliferation in cancer cells.

The following general methodology described herein provides the manner and process of making and using the compound of the present invention and are illustrative rather than limiting. Further modification of provided methodology and additionally new methods may also be devised in order to achieve and serve the purpose of the invention. Accordingly, it should be understood that there may be other embodiments which fall witibdn the spirit and scope of the invention as defined by the specification hereto.

General Method of Preparation of Compounds of the Invention

The compounds of the present invention may be prepared by the following processes. Unless otherwise indicated, the variables (e.g. A, B, Cy, R 1 , R, Y, Li, X, Xi, X 2 , X3 and hz) when used in the below formulae are to be understood to present those groups described above in relation to formula 00 to (IA).

Scheme 1: This scheme provides a method for the preparation of a compound of formula (I) wherein A is a substituted or unsubstimted monocyclic aryl and substituted or unsubstituted monocyclic heteroaryl and other variables such as B, Cy, R 1 , R, Y, Li, X, i, X2, 3 and L are the same as described above in relation to formula (I). Scheme 1

1 2

The compound of formula (1) wherein Lg is a leaving group such as hydroxyl or halogen, can be coupled with a compound of fonnula (2) in a suitable solvent using an amide coupling reagent such as DCC or optionally in the presence of a suitable base to give an intermediate (for example R J is COOEt) which can then be transformed either in single or multiple steps to the desired compound of formula (I), for example to R 1 is COOH wherein A is a substituted or unsubstituted monocyclic aryl or a substituted or unsubstituted monocyclic heteroaiyl and other variables such as L, B, Cy, R 2 , R 3 , R 4 , m and n are the same as described above in relation to formula CQ.

Scheme 2: This scheme provides a method for the preparation of a compound of formula (I) wherein R J is COOH, L 2 is absent, and other variables such as A, B, Cy, R 1 , R, Y, Li, X, Χχ, X 2 , and X 3 are the same as described above in relation to formula (I).

Scheme 2

reflux

1a 2a (I)

The compound of formula (3), wherein Hal represents halogen, can be coupled with a compound of formula (4) in the presence of Ρά Ρϊ¾)4 and a metal carbonate such as 2CO3 (Suzuki coupling) to give a compound of formula (2a). The compound of formula (2a) can be reacted with a suitable compound of fonnula (la) in the presence of a suitable solvent to give the desired compound of fonnula (J) wherein R 1 is COOH, L2 is absent and other variables such as A, B, Cy, R, Y, L X, Xi, X 2 , and X 3 are the same as described above in relation to formula $).

Scheme 3: This scheme provides a method for the preparation of a compound of formula (I) wherein R 1 is COOH, L2 is -0-, arid other variables such as A, B, Cy, R 1 , R, Y, Li, X, Xi, X 2l X3 and n are the same as described above in relation to formula (I).

Scheme 3

1a 2c

χ. χ ,χ R

The compound of fonnula (la) can be reacted with a suitable compound of formula (2a) wherein Hal represents halogen in the presence of a suitable solvent to give the desired compound of formula (5). The compound of formula (5) can be coupled with a compound of fonnula (6) in the presence of a suitable base such as 2CO3 to give the desired compound of formula 00 wherein R 1 is COOH, L2 is -O- and other variables such as A, B, Cy, R, Y, Li, X, Xi, X 2 , and X3 are the same as described above in relation to fonnula (Γ).

Similar methodologies with certain modifications as known to those skilled in the art can be used to synthesize compound of formula (I) or/and (IA), wherein the variables are to be understood to present those groups described above in relation to formula CO or/and (IA), using suitable intermediates and reagents.

Experimental:

Unless otherwise mentioned, work-up implies distribution of reaction mixture between the aqueous and organic phases indicated within parenthesis, separation and drying over Na 2 SO,, of the organic layer and evaporating the solvent to give a residue. Unless otherwise stated, purification is by column chromatography using silica gel as the stationary phase and a mixture of petroleum ether (boiling at 60-80°C) and ethyl acetate or dichloromethane and methanol of suitable polarity as the mobile phases. RT refers to ambient temperature (25- 28 ). General Procedure- for Suzuki coupling:

To a solution of an aryl bromide (1 eq.) in dioxane and water (5:1) were added an arylboronic acid or an arylboronic acid pinacol ester (1.3 eq), tetraHs(triphenylphosphine)palladium(0) - (0.08 eq) and potassium carbonate (3.3 eq). The mixture was degassed with N ¾ for 30 rain, and refluxed until both the staRTing materials disappeared as monitored by TLC. Work-up (H 2 O/Ac0Et) and purification gave the desired product

Ihtennediates 1, 4-27, 32-54, 56-63, 65-84 and 86-89 were prepared using general procedure- 1.

Intermediate 1: 3^-dtfluoro-3'-methoxybiphenyl^ title compound (992 mg) was prepared from 2,6-difluoro-4-bromo aniline (1.1 g, 5.3 mmol) and 3- methoxyphenylboronic acid (1.04 g, 6.8 mmol) as a pale-yellow liquid. 'H-NMR (δ ppm, CDCl3+DMSO-.¾s, 400 MHz): 7.21-7.20 (m, IH), 6.99-6.89 (m, 3H), 6.87-6.83 (m, IH), 6.74-6.68 (m, IH), 3.97 (bs, 2H), 3.69 (s, 3H).

Intennediate 2: 2 3-mett oxvphenyl)-S-nitropyridine:The title compound (612 mg) was prepared from 2-cUoro-5-nitropyridine (500 mg, 3.15 mmol) and 3-methoxyphenylboronic acid (623 mg, 4.1 mmol) as a pale yellow solid. ^-NMR (δ ppm, CDCI3, 400 MHz): 9.50 (d, 7 2.6, IH), 8.53 (dd, 7 2.6, 8.8, IH), 7.91 (d, 7 8.8, IH), 7.69-7.68 (m, IH), 7.63 (d, 7 7.8, IH), 7.44 (t, 7.9, IH), 7.08-7.05 (m, IH), 3.91 (s, 3H).

Intennediate 3: 6-(3-methoxyphenyl)pyridin-3--unine:Jron powder (739 mg, 13.24 mmol) and ammonium chloride (100 mg, 3.18 mmol) were added to a solution of intermediate 2 (610 mg, 2.65 mmol) in EtOH/¾0 (2:1, 15 mL) and the mixture refluxed for one hour. The mixture was filtered through celite and celite washed with ethanol. Work-up (H 2 0/AcOEt) and concentration of the combined layers afforded intermediate 3 (330 mg) as a waxy solid. ! H-NMR (5 ppm, DMSO--& 400 MHz): 8.00 (d, 72.7, IH), 7.61 (d, 78.5, IH), 7.47-7.45 (m, 2H), 7.27 (t, 78, IH), 6.97 (dd, 72.8, 8.5, IH), 6.83-6.81 (m, IH), 5.46 (s, 2H), 3.78 (s, 3H).

Intermediate 4: 3'-ethoxy-3^fluorobiphenyI-4-aininfi:The title compound (1.34 g) was prepared from 2-fluoro-4-bromo aniline (2.5 g, 13.1 mmol) and 3-ethoxyphenylboronic acid (2.8 g, 17.0T mmol) as a pale-yellow liquid. ^-NMR (δ ppm, DMSO- , 400 MHz): 7.38- 7.20 (m, 3H), 7.10 (d, 77.9, IH), 7.07-7.05 (m, IH), 6.83-6.76 (m, 2H), 5.24 (s, 2H), 4.06 (q, 77, 2H), L32 (t, 77, 3H). Intermediate 5: 3'^t-hoxy-3^-diflnorobipheny -ainine:The title compound (0.219 g) was prepared from 2,6-difluoro-4-t>romo aniline (0.5g, 2.4 mmol) and 3-ethoxyphenylboronic acid (0.517g T 3.12 mmol) as a pale-yellow liquid. ! H-NMR (δ ppm, DMSO-cfe, 400 MHz): 7.30-7.24 (m, 3H), 7.14 (d, J 7.9, 1H), 7.11 (s, 1H), 6.82 (dd, J 2.1, 8.1, 1H), 5.31 (s, 2H), 4.07 (q, J 7, 2H), 1.32 (t, 77, 3H).

Intermediate 6: 2'-chloro-3,5-difluorobiphenyl-4-aniine:The title compound (0-140 g) was prepared from 2,6-difluoro-4-bromo aniline (0.22 g, 1.06 mmol) and 2-cblorophenylboronic acid (0.21 g, 1.38 mmol) as a white solid. ^-NMR (δ ppm, r>MSO--¾, 400 MHz): 7.52-7.50 (m, 1H), 7.40-7.35 (m, 3H), 7.00 (d, J 2.1, 7.6, 2H), 5.39 (s, 2H).

Intermediate 7: 3,5-difIuorobiphenyl -amine:The title compound (0.401 g) was prepared from 2,6-difluoro-4-bromo aniline (0.5 g, 2.4 mmol) and phenylboronic acid (0.38 g, 3.12 mmol) as a white solid. ^-MMR (6 ppm, DMSO-4 > , 400 MHz): 7.60 (d, J 7.4, 2H), 7.38 (t, J 7.5, 2H), 7.30-7.25 (m, 3H), 5.33 (s, 2H).

Intermediate 8: 3^-dffluoro-3 triflnoiX)metho^)bipbenyl-4-ainine:The tide compound (0.812 g) was prepared from 2,6-difluoro-4-bromo aniline (1 g, 4.8 mmol) and 3- (trifluoromethoxy)phenylboronic acid (1.28 g, 6.24 mmol) as a colourless liquid.

Intermediate 9: S'-ibenzyloxyi-S^-difluorObi henyM-aminerThe title compound (0.143 g) was prepared from 2,6-difluoro-4-bromo aniline (0.3 g, 1.4 mmol) and 3- (benzyloxy)phenylboronic acid (0.426 g, 1.8 mmol) as a colourless liquid. Ή-ΝΜΚ. (5 ppm, DMSO-- 400 MHz): 7.49-7.44 (m, 2H), 7.39 (t, J 7.2, 2H), 7.35-7.26 (m, 4H), 7.24 (s, 1H), 7.18 (d, J 7.8, 1H), 6.91 (dd, J 1.9, 8.0, 1H), 5.33 (s, 2H), 5.16 (s, 2H).

Intermediate 10: 3-cMoro-3'^thoxy-5-fluorobipheny title compound (0.360 g) was prepared from 4-bromo-2^hloro-6-fluoroaniline (0.5g, 2.0 mmol) and 3- ethoxyphenylboronic acid (0.441 g, 2.65 mmol) as a yellow liquid. ^-N R (δ ppm, DMSO- 4 $ , 400 MHz): 7.43-7.38 (m, 2H), 7.27 (t, J 7.9, lH), 7.14 (d, J 7.9, lH), 7.10 (s, 1H), . 6.82 (dd, J 2.1, 8.1, 1H), 5.51 (s, 2H), 4.07 (q, J 7, 2H), 1.32 (t, J 7, 3H).

Intermediate II: 3^-dicUoro-3'-melaoxybiphenyl-4-axauie:The title compound (OJ550 g) was prepared from 2,6-a¾chloro-4-biomoaniline (0.5g, 2.0 mmol) and 3- methoxyphenylboronic acid (0.409 g, 2.69 mmol) as a white solid. ¾-NMR (5 ppm, DMSQ- <¼, 400 MHz): 7.58 (s, 2H), 7.29 (t, J 7.8, 1H), 7.18-7.10 (m, 2H), 6.85 (dd, J 2, 8.1, 1H), 5.63 (s, 2H), 3.81 (s, 3H). Intermediate 12: 3-cUoro-5-fluoi^3 , ^ropoxybiphenyl-4-amiM:'Ilie title compound (0.273 g) was prepared from 4-bromo-2 Uoro-6-fluoroaniline (0.5g, 2.2 mmol) and 3- propoxyphenylboronic acid (0.521 g, 2.9 mmol) as a yellow liquid. ¾-NMR (5 ppm, DMSO- <k, 400 MHz): 7.44-7.39 (m, 3H), 7.27 (t, J 7.9, IK), 7.16-7.10 (m, 2H), 5.51 (s, 2H), 3.97 (t, J 6.5, 2H), 1.75-1.70 (m, 2H), 0.98 (t, J 7.9, 3H).

Intermediate 13: 3-cWoro-2'^-diflnorobiphenyl-4-amine:The title compound (0.392 g) was prepared from 4-bromo-2-chloi )-6-fluoroaniJirie (0.5g, 2.2 mrool) and 2- fluorophenylboronic acid (0.363 g, 2.6 mmol) as a pale-yellow liquid. ^- MR (δ ppm, MS ^, 400 MHz): 7.51 (td, J 1.7, 7.8, IH), 7.38-7.32 (m, IH), 7.28 (s, 2H), 7.27-7.22 (m, 2H), 5.62 (s, 2H).

Intermediate 14: 3^-0¾ddoro-3'-ethoxybiphenyl-4-amine:The title compound (0.550 g) was prepared from4-Bromo-2,6-dicUoioamline (0.5g, 2.2 mmol) and 3-ethoxyphenylboronic acid (0.447 g, 2.7 mmol) as a yellow liquid which was about 70% pure as adjudged by ¾- MR data. ^-NMR (5 ppm, DMSO^, 400 MHz): 7.56 (s, 2H), 7.28 (s, IH), 7.16-7.08 (m, 2H), 6.83 (dd, J 2, 8.1, IH), 5.62 (s, 2H), 4.10 (q, J 7, 2H), 1.32 (t, J 7, 3H).

Intermediate 15: 3-fluoro-3'-(trifluoromethoxy)biphenyI-4-aii--uie:The title compound (0.5 g) was prepared from 4-Bromo-2-fluoroanilme (1 g, 5.3 mmol) and 3- (trifluoromethoxy)phenylboronic acid (1.4 g, 6.8 mmol) as a yellow liquid, ^-NMR (δ ppm, DMSO-d 6 , 400 MHz): 7.62 (d, J 8, IH), 7.53 (s, IH), 7.48 (t, J 8, IH), 7.42 (dd, J 2, 9.1, IH), 7.28 (dd, J 2, 8.3, IH), 7.23 (d, J 11, IH), 6.82 (t, J 8.5, IH), 5.40 (s, 2H).

Intermediate 16: 2'-flQoro-3-(-rifluorometfao-«7)biphenyl-4-amine:The title compound (0.294 g) was prepared from 2-trifluoromethoxy-4-bromo ariiline (0.5 g, 1.9 mmol) and 2- fluoropbenylboronic acid (0.345 g, 2.5 mmol) as a yellow liquid. 'H-NM (δ ppm, DMSO- <k, 400 MHz): 7.47 (td, J 1.2, 4.7, IH), 7.33-7.20 (m, 5H), 6.89 (d, J 8.8, IH), 5.62 (s, 2H).

Intermediate 17: 3^-<UcWoro-2'-fluon>biphenyl-4-amine:The title compound (0.367 g) was prepared from 4-Bromo-2,6-dichloro aniline (0.5 g, 1.9 mmol) and 2- fluorophenylboronic acid (0.363 g, 2.6 mmol) as a white solid. 'H-NMR (S ppm, DMSO-t¾, 400 MHz): 7.50 (t, J 6.3, IH), 7.43 (s, 2H), 7.39-7.31 (m, IH), 7.29-7.21 (m, 2H), 5.73 (s, 2H).

Intermediate 18: 3,5-difluoro-3'-isopropoxybiphenyl-4-ainine:The title compound (0.34 g) was prepared from 4-Bromo-2,6-difluoro ariiline (0.5 g, 2,4 mmol) and 3- isopropoxyphenylboronic acid (0,337 g, 3.1 mmol) as a red liquid. ^-NMR (δ ppm, DMSO <¼, 400 MHz): 7.30-7.22 (m, 3H), 7.16-7.07 (m, 2H), 6.89 (dd, J 2.3, 8.1, 1H), 5.32 (s, 2H), 4.68 (septet, J 6, 1H), 1.26 (d, J 6, H).

Intermediate 19: S^-diflnoro-S'^ro ojybiphenyM-amine The title compound (0.3 g) was prepared from 4-Bromo-2,6-difluoro aniline (0.5 g, 2.4 mmol) and 3- propoxyphenylboronic acid (0.337 g, 3.1 mmol) as a red liquid. ^-NMR (5 ppm, DMSO--i6, 400 MHz): 7.30-7.24 (m, 3H), 7.18-7.10 (m, 2H), 6.86-6.80 (m, 1H), 5.31 (s, 2H), 3.97 (t, J 6.5, 2H), 1.75-1.65 (m, 2H), 0.98 (t, J 7.4, 3H).

Intermediate 20: 2 ,3-dichloro-S-fluorobiphenyI-4-ainine:The title compound (0260 g) was prepared from 4-bromo-2-cUorci^-fluoroanilii-e (0.5 g, 2.4 mmol) and 2- chlorophenylboronic acid (0.453 g, 2.9 mmol) as a white solid. ^-NM (δ ppm, DMSO-<¾, 400 MHz): 7.60 (d, J 7.3, 1H), 7.42-7.31 (m, 3H), 7.18-7.11 (m, 2H), 5.6 (s, 2H).

Intermediate 21: 3'-batoxy-3-c oro-5-flnorobiphenyl-4-amme:The title compound (0.190 g) was prepared from 4-^bromc»2-c oro-6-fluoroaniline (0.2 g, 0.89 mmol) and 3- butoxyphenylboronic acid (0.224 g, 1.16 mmol) as a yellow solid. 'H-NMR (δ ppm, DMSO- <k, 400 MHz): 7.44-7.41 (m, 2H), 7.27 (t, J 7.9, 1H), 7.17-7.10 (m, 2H), 6.81-6.84 (m, 1H), 5.50 (s, 2H), 4.01 (t, J 5.3, 2H), 1.72-1.65 (m, 2H), 1.50-1.41 (m, 2H), 0.93 (t, J 7.4, 3H).

Intermediate 22: 3-cUoro-5-fluoro-3'-fcobntoxybiphenyl-4-amine:The title compound (0.180 g) was prepared from 4-bromo-2 blaro-6^fluoroariiline (0.2 g, 0.89 mmol) and 3- isobutoxypbenylboronic acid (0.224 g, 1.16 mmol) as a yellow solid, Ή-NMR (δ ppm, DMSO-rfe, 400 MHz): 7.44-7.41 (m, 2H), 7.27 (t, J 7.9, 1H), 7.17-7.10 (m, 2H), 6.84-6.81 (m, 1H), 5.50 (s, 2H), 3.83 (d, J 6.5, 2H), 2.07-1.97 (m, lH), 1.00 (d, J 6.7, 6H).

Intermediate 23: 2'^-trifluorobiphenyl-4-amine:The title compound (0.492 g) was prepared from 4-bit»mo-2,6-difluoroaidline (0.5 g, 2,4 mmol) and 2-fluoropbenyIboronic acid (0.436 g, 3.12 mmol) as a yellow liquid. ^- MR (5 ppm, DMSO-<¾, 400 MHz): 7.51 (td, J 1.5, 7.9, lH), 7.38-7.31 (m, 1H), 7.29-721 (m, 2H), 7.14 (d, J 8.6, 2H), 5,44 (s, 2H).

Intermediate 24: 2',3^-tricUorobiphenyl-4-amine:The title compound (0.4 g) was prepared from 4-bromo-2,6-dichloroaniline (0.5. g, 2.1 mmol) and 2-chlorophenylboronic acid (0.421 g, 2.7 mmol) as a white solid. 1 H-NMR (5 ppm, DMSO^, 400 MHz): 7.55-7.50 (m, 1H), 7.40-7.32 (m, 3H), 7.29 (s, 2H), 5.72 (s, 2H). Intermediate 25: 3,5-diflnoro-3'-isobutoj^biphenyl -aimne:Tiie title compound (0.16 g) was prepared from 4-bromc>-2-6^^uoroaiuIine (0.2 g, 0.96 mmol) and 3- isobutoxyphenylboronic acid (0.242 g, 1.2 mmol) as a yellow liquid.

Intermediate 26: 3,5-difluorO-3'-buto^biphenyl^amii»e:The title compound (0.104 g) was prepared from 4¾omo-2,6-difluoiOain-iae (0.2 g, 0.96 mmol) and 3- butoxyphenylboronic acid (0.242 g, 1.2 mmol) as a colourless liquid.

Intermediate 27: 3-cWoro-5-fluoro«3Xtxifluorom title compound (0.280 g) was prepared from 4-bromo-2-cMoro-6K.ifluoroariiline (0.5 g, 2.27 mmol) and 3-(trifluoromethoxy)pfaenylboronic acid (0.6 g, 2.89 mmol) as a pale-yellow Uquid, ¾- MR. (5 ppm, DMSO-ds, 400 MHz): 7.68-7.64 (m, 1H), 7.62 (s, 1H), 7.53-7.46 (m, 3H)7.29-7.22 (m, 1H), 5.64 (s, 2H).

Intermediate 28: 5-^en2ylosy)-l^dffluoro-2-iutrobei-zene:Potassiu^ carbonate (544 mg, 3.94 mmol) and benzyl alcohol (0.3 ml, 2.8 mmol) were added to a solution of 2,4,6- trifluoronitrobenzene (500 mg, 2.8 mmol) in DMF (5 ml). This mixture was stirred at RT overnight. Work up (EtOAc/H 2 0) afforded the title compound (521 mg) as a yellow liquid which was used in the next step without fuRTher purification.

Intermediate 29: 4-(benzyloxy)-2,6-d1flnoroiuiflme:Iron powder (502 mg, 9 mmol) and ammonium chloride (192 mg, 3.6 mmol) were added to a solution of intermediate 28 (500 mg, 1.8 mmol) in EtOH/¾0 (2:1, 15 mL) and the mixture refluxed for two hours. The mixture was filtered through celite and celite washed with ethanoL Work-up 0¾O/AcOEt) from the combined filtrates and purification of afforded the title compound (24 mg) as a colourless liquid. *H-NMR (5 ppm, TMSO-d 6 , 400 MHz): 7.42-7.36 (m, 3H), 7.35-7.28 (m, 2H), 6.68 (dd, J 1.6, 8.8, 2H), 4.97 (s, 2H), 4.64 (s, 2H).

Intermediate 30: l-bromo-3-(cycIopentyIoxy)benzene'JOtassium carbonate (400 mg, 2.8 mmol) was added to 3-Bromophenol (500 mg, 2.8 mmol) dissolved in acetonitrile and the mixture was refluxed for lh and cooled to RT. cyclopentyl bromide (430 mg, 2.8 mmol) was added and the mixture refluxed again overnight Work up (EbO/EtOAc) and purification afforded the title compound as a pale-yellow liquid. ^-NMR (8 ppm, CDG3, 400 MHz): 7.11 (t, J 8.3, 1H), 7.05-7.00 (m, 2H), 6.82-6.76 (m, 1H), 4.76-4.68 (m, lH), 1.94-1,73 (m. 6H), 1.65-1.54 (m, 2H). Intermediate 31: 2-(3-(cyclopentyloxy)phenyI)-4,4^-teti^elhyl-I,3^- dioxaborolane:A mixture of intermediate 30 (335 mg, 1.4 mmol), bis(pinacolato)diboron (351 mg, 1.4 mmol) and potassium acetate (450 mg, 4.6 mmol) in dioxane was degassed with N 2 for 30 min. Tetialds(triphenylphosphme)p-madium (0) (128 mg, 0.11 mmol) was added and the degassing continued again for fuRTher 15 min. This mixture was refluxed overnight After completion of the reaction, work up (BfeO/EtOAc) and column purification afforded the title compound (165 mg) as a yellow liquid.

Intermediate 32: 3'-(cyclopentyloxy)-3^-difluorObiphenyl-4-aniine:The title compound (22 mg) was prepared from 4-bromo-2,6-difluoroaniline (165 mg, 0.6 mmol) and mtermediate 31 (120 mg, 0.6 mmol) as a pale-yellow liquid. ^-NMR (δ ppm, DMSO-d 6 , 400 MHz): 7.29-7.22 (m, 3H), 7.12 (d, J 8, IH), 7.06 (s, IH), 6.82-6.76 (m, IH), 5.30 (s, 2H), 4.96-4.88 (m, IH), 1.96-1.82 (m, 2H), 1.75-1.65 (m, 4H), 1.60-1.51 (m, 2H).

Intermediate 33: 3-chloro-3'-(cyclopentyloxy)'5-fluorobiphenyl-^ainme:The title compound (450 mg) was prepared from 4-bromo-2^hloro^-fluoroaniline (600 mg, 2.7 mmol) and intermediate 31 (1 g, 3.4 mmol) as a yellow liquid. ^- MR (5 ppm, DMSO-ifo 400 MHz): 7.42-7.36 (m, 2H), 7.26 (t, J 8, IH), 7.11 (d, J 7.8, IH), 7.08-7.05 (m, IH), 6.80 (dd, J 2.3, 8.1, IH), 5.49 (s, 2H), 4.92-4.84 (m, IH), 1.97-1.87 (m, 2H), 1.77-1.62 (m, 4H), 1.60-1.50 (m, 2H).

Intermediate 34: 3'-(o fluoromethoxy)-3^-difluorobiphenyl-4-ainme:The title compound (144 mg) was prepared from 4-biomo-2,6^difluoroardline (200 mg, 0.96 mmol) and 3- (difluoromethoxy)phenylboronic acid (234 mg, 1.25 mmol) as a white solid. 'H-NMR (δ ppm, DMSO-d f i, 400 MHz): 7.49 (d, J 7.9, IH), 7.43-7.39 (m, 2H), 7.38-7.30 (m, 2H), 7.32 (t, J 74, IH), 7.06 (dd, J 1.8, 7.9, IH), 5.42 (s, 2H).

Intermediate 35: 2-[3' difluorometho^)-3,5-diflQorobiphenyl-4-ylcarb-unoyl]benzoic acid:The title compound (155 mg) was prepared from 4-bromo-2-cMorCH ^fluoroamline (89 mg, 1.16 mmol) and 3-(c^uoromemoxy)phenylboronic acid (217 mg, 1.16 mmol) as a white solid. 'H-NMR (δ ppm, DMSO-ife 400 MHz): 7.52-7.47 (m, 3H), 7.46-7.44 (m, IH), 7.43- 7.40 (m, 2H), 7.32 (t, J 74.2, IH), 5.60 (s, 2H).

Intermediate 36; 2'-cWoro-3^-diflnorcH5'-methoxybiphenyl-4-aimiie:The title compound (97 mg) was prepared from 4-bromo-2,6-difluoroamline (100 mg, 0.48 mmol) and 2-chloro- 5-memoxyphenylboronic acid (116 mg, 0.62 mmol) as a yellow solid, ¾-NMR (δ ppm, DMSO-^ , 400 MHz): 7.40 (d, J 9.6, IH), 7.02 (d, J 7.7, 2H), 6.92 (s, 2H), 5.39 (s, 2H), 3.77 (s, 3H).

Intermediate 37: S^'^-triflnoro-S'-metttO-rybi he^ title compound (51 mg) was prepared from 4-bromo-2,6-difluoroanilme (100 mg, 0.4S mmol) and 3-fluoro-5- methoxyphenylboronic acid (106 mg, 0.62 mmol) as a yellow solid. ] H-NMR (δ ppm, DMSO-de, 400 MHz): 7.35 (dd, J 2.1, 8.1, 2H), 7.06 (d, J10.2, IH), 7.01 (s, IH), 6.71 (dd, J 2, 8.8, IH), 5.42 (s, 2H), 3.81 (s, 3H).

Intermediate 38: 4-( enzo[d][l^]dioxoI-5-yI)-2,6-diiIuoroaniIme:T¾e title compound (143 mg) was prepared from 4-biomo-2,6-aiflnoroain1ine (200 mg, 0.96 mmol) and b€mo[-i][l,3]dioxoI-5-ylboronic acid (207 mg, 1,25 mmol) as a white solid. 'H-NMR (8 ppm, DMSO-i¾, 400 MHz): 7.23-7.18 (m, 3H), 7.08 (dd, J 1.8, 8.2, IH), 6.91 (d, J 8.1, IH), 6.01 (s, 2H), 5.24 (s, 2H).

Intermediate 39: 4-(beiu»[fl[l^Jdio∑ol-5-yl 2-^ title compound (143 mg) was prepared from 4-bromo-2 ldorc)-6-il oroariiline (200 mg, 0.89 mmol) and benzo[^[l,3]dioxol-5-ylboronic acid (192 mg, 1.16 mmol) as a white solid. l H- M (S ppm, DMSO--¾, 400 MHz): 7.36-7.30 (m, 2H), 7.20 (d, J 1.7, IH), 7.06 (dd, J 1.4, 8.1, IH), 6.91 (d, J 8.1, IH), 6.01 (s, 2H), 5.42 (s, 2H).

Intermediate 40: 3^-a fluoro-3 4'-diimethoxybiphenyl-4-anmie:The title compound (39 mg) was prepared from 4-bromo-2,6-difmoroaniline (100 mg, 0.48 mmol) and 3,4- dimethoxyphenylboromc acid (113 mg, 0.62 mmol) as a pale-yellow solid. 'H-NMR (6 ppm, DMSO-i¾, 400 MHz): 7.25 (dd, J 2, 8.3, 2H), 7.18-7.10 (m, 2H), 6.94 (d, Ϊ 8.4, IH), 5.21 (s, 2H), 3.81 (s, 3H), 3.75 (s, 3H).

Intermediate 41: compound

(71 mg) was prepared from 4-bromo-2-cWoro-6^fluoroaniline (100 mg, 0.44 mmol) and 3- fluoro-5-memoxyphenylboronic acid (97 mg, 0.57 mmol) as a pale-yellow solid. l H-NMR (δ ppm, DM$0-c¼, 400 MHz): 7.51-7.45 (m, 2H), 7.05 (d, J 10.3, IH), 7.00 (s, IH), 6.73 (dd, J 2.1, 4.2, IH), 5.60 (s, 2H), 3.81 (s, 3H).

Intermediate 42: 3 '-djcblorov5-fluoro-5'-metboxybiphenyl-4-ainirie:Tlie title compound (41 mg) was prepared from 4-brom H2-chloro-6^fluoroaniline (100 mg, 0.44 mmol) and 3- chlorc-5-methoxyphenylboronic acid (107 mg, 0.57 mmol) as a pale-yellow solid. Intermediate 43: title compound

(182 mg) was prepared from 4-hrorno-2,6-difluoroar-iline (200 mg, 0.96 inmol) and 2 - dihydroben.Mf(jran-5-ylboronjc acid (204 rag, 1.25 mmol) as a white solid. ¾-NMR (δ ppm, DMSO-f¾, 400 MHz): 7.46 (s, 1H), 7.30 (dd, J 1.8, 8.3, lH), 7.16 (dd, J 2.1, 8.2, 2H), 6.75 (d, J 8.3, 1H), 5.18 (s, 2H), 4.52 (t, J 8.7, 2H), 3.18 (t, J 8.5, 2H).

Intermediate 44: 2- bloro-4^2^dftydroberizofura title compound (86 mg) was prepared from ^broinc-^rilorc^r uoro niline (200 mg, 0.89 mmol) and 2,3-dmydioberizofuran-5-ylboror-ic acid (189 mg, 1.16 mmol) as a pale-yellow solid. : H- MR (δ ppm, D SO 400 MHz): 7.46 (s, 1H), 7.33-7.25 (m, 3H), 6.75 (d, J 8.3, 1H), 5.36 (s, 2H), 4.52 (t, J 8.7, 2H), 3.18 (t, J 8.6, 2H).

Intermediate 45: 4^1,3-dimethyI-lH-mdazol-5-yI)-2^ acetate (0.344 g, 3.51 mraol) and bis( macolato)diborori (351 mg, 1.4 mmol) were added to a solution of 5-bromo-l,3-dimethyl-lH-inda2X>le (240 mg, 1.06 mmol) in dioxane (10 ml) and mixture was degassed with nitrogen for 30 min. teiiaki$(-riphenylpbosphijie) paUadium(O) was added and degassed for further 30 min. Reaction mixture was refluxed for 2 h. After completion of the reaction, work-up (AcOEt/l¾0) followed by column afforded 1,3- aimethyl-5-(4,4,5,5-tetrame&yM ^ (85 mg) as a white solid. The title compound (26 mg) was prepared from 4-bromo-2,6HMfluoroaniline (50 mg, 0,24 mmol) and l,3-dimemyl-5-(4,4,5,5-teta_me^

(85 mg, 0.31 mmol) as a white solii ] H- M (5 ppm, DMSO-i¾, 400 MHz): 7.93 (s, 1H), 7.66 (dd, J 1.5, 8.8, lH), 7.55 (d, J 8.8, 1H), 7.33 (dd, J 2, 8.2, 2H), 5.22 (s, 2H), 3.94 (s, 3H), 2.49 (s, 3H).

Intermediate 46: 3'^Woro-3^-o^uoi^5'-methoxybiphenyl-4-anime:The title compound (39 mg) was prepared from 4-bromo-2,6-difluoroaniline (100 mg, 0.48 mmol) and 3-chloro- 5-methoxyphenylboronic acid (116 mg, 0.62 mmol) as a pale-yellow solid. ^-NMR (8 ppm, DMSO-<¾, 400 MHz): 7.36 (dd, J 2.2, 8.1, 2H), 7.25 (s, lH), 7.12 (s, 1H), 6.91 (t, J 1.9, 1H), 5.43 (s, 2H), 3.81 (s 7 3H).

Intermediate 47: 3-ddoro.5-fluoro-3 4'-dimethoxybiphenyl-4-amine:The title compound (39 mg) was prepared from 4-bromo-2-crdoro-6-flu a»aniline (100 mg, 0.442 mmol) and 3,4- dimethoxyphenylboronic acid (80 mg, 0.62 mmol) as a pale-yellow solid.. Intermediate 48: Z'^-iUchloro-S-fluoro-S'-methoxybiphenyl^-aininciThe title compound

Π9 τ η « was oreDared from -bromo-2-chloro-6-fluoroaiii-ine (100 mg, 0.44 mmol) and 2- chloro-5-methoxyphenylboroiiic acid (106 mg, 0.62 mmol) as a paie-yeuow souu.

Intermediate 49: 2\3^-trifluoro-S l " metho^biphenyl-4-amine:The title compound (31 mg) was prepared from 4-bromo-2,6-aMuoroaoi_iQe (100 mg, 0.48 mmol) and 2-fluoro-5- methoxyphenylboronic acid (106 mg, 0.62 mmol) as a pale-yellow solid.

Intermediate 50: 4'-cWoro-3^-difluoro-3'-metho^WphenyM-amine:The title compound (81 mg) was prepared from 4-bromo-2,6-aMuoroaniline (100 mg, 0.48 mmol) and 4-chloro- 5-memoxyphenylboronic acid (116 mg, 0.62 mmol) as a white solid.

Intermediate 51: 3,4'-<ucWoro-5-flnoro-3'-methoxybipbenyl-4---mine:The title compound (82 mg) was prepared from 4-bix>mO'2-chloro-6^fluoroardline (100 mg, 0.44 mmol) and 4- chloro-5-methoxyphenylboronic acid (107 mg, 0.62 mmol) as a pale-yellow solid.

Intermediate 52: 3-cUoro- 5-difluoro-5 , -metho^b^pheπ l- -a^nine:The title compound (70 mg) was prepared from 4-bromo-2-cbloro^fluoroaniline (100 mg, 0.44 mmol) and 2- fluoro-5-methoxyphenylboromc acid (98 mg, 0.58 mmol) as a white solid. ^- MR (δ ppm, DMSO- e, 400 MHz): 7.30-7.24 (m, 2H), 7.17 (t, J 9.1, 1H), 7.02-6.97 (m, 1H), 6.90-6.84 (m, 1H), 5.61 (s, 2H), 3.77 (s, 3H).

Intennediate 53: S^'^-tr uo o-S'-metho^ iphen l-^amme'.'nie title compound (480 mg) was prepared from 4-bromo-2, 6-difluoiO--riiIine (200 mg, 0.96 mmol) and 4-fluoro-5- methoxyphenylboronic acid (210 mg, 1.24 mmol) as a white solid. ^- M (5 ppm, DMSO- (¼, 400 MHz): 7.39-7.29 (m, 3H), 7.21-7.12 (m, 2H), 5.33 (s, 2H), 3.90 (s, 3H).

Intermediate 54: 2,6-diiluoro-4-(3>methyl ' lH-indol-5-yl)aniliDe:The title compound (68 mg) was prepared from (100 mg, 0.48 mmol) and 3-methyl-5- (4,4,5,5-tetraroemyl-l 7 3,2-dioxaborolan-2-yl)-lH-indole (160 mg, 0.62 mmol) as a white solid. X H-NM (S ppm, DMSO-tf 6 , 400 MHz): 10.71 (s, 1H), 7.67 (s, 1H), 7.33-7.29 (m, 2H), 7.28-7.21 (m, 2H), 7.09 (s, lH), 5.12 (s, 2H), 2.27 (s, 3H).

Intermediate 55: 2,6-difluoro^-(3-niethyl-lH-mdra^ the general procedure-1, fd?rt-butyl S-^a-mno-S^-difluoro he

(106 mg) was prepared from 4-broracH2,6-difluoroamline (250 mg, .1.2 mmol) and teRT-butyl 3-memyl-5-(4A5,5-tetrmetoyl-l,3,2-dioxaboro^ (559 mg, 1.56 mmol) as a white solid. ie^F-butyl 5-(4-amino-3,5-o^uorophenyl)-3-methyl-lH- dazole-l-carboxylate (205 mg) was dissolved in dichloromethane (4 ml), trifluoroacetic acid (0.8 ml) was added and stirred at RT for 4 h. The solvent was removed and the residue co-evaporated 4 times with dihloromethane. Solid obtained was dried under high vacuum to obtain the title compound (243 mg) as a white solid. 'H-NM (δ ppm, DMSO--¾, 400 MHz): 9.01 (be, lH), 7.92 (s, lH), 7.58 (dd, J 1.4, 8.7, 1H), 7.44 (d, J 8.7, 1H), 7.32 (dd, J 2, 8.2, 2H), 5.22 (s, 2H), 2.50 (s, 3H).

Intennediate 56: 3 Uoro-3'-ethyl-5-flnorobiphenyl-4-ainine:The title compound (83 mg) was prepared from 4-bromo-2,6^^uoroaniline (100 mg, 0.48 mmol) and 3- ethylphenylboronic acid (86 mg, 0.57 mmol) as a yellow liquid.

Intennediate 57: 3H±loro-3'-etboxy-2'. -difluorob^ title compound

(65 mg) was prepared from 4-b ' romo-2-chloro-6^fluoroainIine (120 mg, 0.53 mmol) and 3- ethoxy-2-fluorophenylboronic acid (120 mg, 0.69 mmol) as a colourless liquid.

Intermediate 58: 2^oro- 2^-iuh drobeii2M^

title compound (68 mg) was prepared from 4-bromo~2,6-difluoroamline (100 mg, 0.48 mmol) and 2,3-^hydroben∞| ][l,4]dioxm^ymoro-uc acid (160 mg, 0.62 mmol) as a white solid.

Intennediate 59: 3-chloro-5.fluoro-3^2,2^rrifta^^ title compound (85 mg) was prepared from 4-bromo-2^hloro-6-fluoroaniline (100 mg, 0.44 mmol) and 3-(2,2,2-tiiiluoroethoxy)phenylboronic acid (127 mg, 0.57 mmol) as a white solid. Ή-NMR (5 ppm, DMSO-c¼, 400 MHz): 7.53-7.44 (m, 2H), 7.38-7.26 (m, 3H), 6.94 (d, J 7, 1H), 5.55 (s, 2H), 4.83 (q, J 8.9, 2H).

Intennediate 60: 3-fluoro-3'-methoxybiphenyW-aniine:The title compound (430 mg) was prepared from 4-bromo-6^fluoroamline (500 mg, 2.63 mmol) and 3-Methoxyphenylboronic acid (519 mg, 3.42 mmol) as a red liquid. 'H- (8 ppm, DMSO-ifc, 400 MHz): 7.34 (dd, J 2, 13.1, 1H), 7.27 (t, J 7.9, 1H), 7.22 (dd, J 2, 8.3, 1H), 7.12 (d, J 7.9, 1H), 7.09-7.07 (m, 1H), 6.84-6.78 (m, 2H), 5.29 (s, 2H), 3.78 (s, 3H). .

Intermediate 61: 3'-ethox biphenyl-4-amme:The title compound (200 mg) was prepared from 4-bromoaruLline (300 mg, 1.74 mmol) and 3-ethoxyphenylboronic acid (380 mg, 2.29 mmol) as a colourless liquid. ^-NMR (8 ppm, DMSO-<¼ > , 400 MHz): 7.33 (d, J 8.5, 2H), 7.26-7.22 (m, 1H), 7.06 (d, J 7.9, 1H), 7.01 (s,lH), 6.75 (dd, J 5.8, 8.1, 1H), 6.60 (d, J 8.5, 2H), 5.20 (s, 2H), 4.04 (q, J 7, 2H), 1.16 (t, J 7, 3H). Intermediate 62: 3'-(ethyltWo)-3^-diflaorobiphenyI-4-aniine:The title compound (900 mg) was prepared from 4-bromo-2,6-difluoroaiiiIijie (1 g, 4.8 mmol) and 3- (emylthio)phenylborordc acid (1.13 g, 6.24 mmol) as a colourless liquid.

Intermediate 63: 3'^ydopropo^-3,5-difluorobipheiiyl-4-amine:The title compound (170 mg) was prepared from 4-bromo-2,6-iifluoroaiiiline (1.2 g, 5.76 mmol) and 2-(3- cyclopropoxyphenyl ,4,5,5-tetramethyl-U,2-dioxaborolane (L5 g, 5.76 mmol) as a yellow liquid.

Intermediate 64:

Bromoisatin (5 g, 22.12 mmol) was added drop- wise to ethyl magnesium iodide formed from ethyl iodide (14 ml, 176.96 mmol) and magnesium (8.6 g, 176.96 mmol) in Et 2 0 (50 ml) and stirred at RT overnight Work-up (EtOAc H 2 0) after adding aq. 10% NH4CI solution and purification gave 5-bromo-3^myl-3-hydroxyindolin-2-one (1 g). To a solution of this intermediate (1 g, 3.93 mmol) in THF (40 ml) was added a 2M solution borane-dimethyl sulphide in THF (10 ml, 19.65 mmol) and stirred at RT for 3 h. Work up (EtOAc/¾0) and purification using afforded 5-Bromo-3-ethyl indole (800 mg). To a solution of 5-Bromo-3- ethyl indole (800 mg, 3.57 mmol) in dioxane (10 ml) were added bis(pinacolato)diboron (1.078 g, 4.64 mmol), potassium acetate (1.15 g, 11.78 mmol) and [1,1'- bis(diphenylphosphino)feiTocene]dichloro palladium(II).CH 2 Cl2 I degassed for 30 min. and refluxed overnight Work-up followed by purification afforded title compound (800 mg) as an off-white solid.

Intermediate 65: 4-(3-ethyl-m-mdol-5-yl).2,6-difluoroaiiu¾e:The title compound (220 mg) was prepared from 4-br omo-2, 6-difluoroarnline (662 rag, 2.57 mmol) and intermediate 64 (440 mg, 1.78 mmol) as a yellow liquid. 'H- MR (δ ppm, DMSO-<½, 400 MHz): 10.74 (s, 1H), 7.69 (s, 1H), 7.33-7.29 (m, 2H), 7.23 (dd, I 1.8, 8.3, 2H), 7.09 (s, lH), 5.12 (s, 2H), ' 2.73 (q, J 7.5, 2H), 1.27 (q, J 7.5, 3H).

Intermediate 66: 3'-(e ltWo)-2,3,5,6-tetr-ifluorobiphenyl-4.imime:The title compound (280 mg) was prepared from 4-bromo-2,3,5,6-tetraflnoroaniline (300 mg, 1.22 rrimol) and 3- (ethyltbio)phenylboromc acid (291 mg, 1.6 mmol) as a colourless liquid.

Intermediate 67: 2'-cMoro-2-fluor O -5'-methoxybiphenyl^amine:The ride compound (280 mg) was prepared from 4-bromo-3-fluoroamline (227 mg, 1.2 mmol) and 2-chloro-5- memoxyphenylboronic acid (290 mg, 1.6 mmol) as a pale-yellow liquid. Intermediate 68: 3-fluoro-3'-propoxybipbenyI-4 ' amine:The title compound (280 mg) was prepared from 4-bromo-2-fluoroaniline (390 mg, 1.6 mmol) and 3-propoxyphenylboronic acid (369 mg, 2 mmol) as a colourless liquid.

Intermediate 69: 3'^ropo^biphenyl-4-aiiime:Tne title compound (280 mg) was prepared from 4-bromoaniIine (300 mg, 1.7 mmol) and 3-propoxyphenylboronic acid (408 mg, 2.3 mmol) as a colourless liquid.

Intermediate 70: 3'-(ethylt o)-2-fluorobiphenyl -ainine:The title compound (430 mg) was prepared from 4-bromo-3-fluoroani_ir»e (300 mg, 1.6 mmol) and 3- (e yltmo)phenylboronic acid (370 mg, 2.0 mmol) as a yellow liquid

Intermediate 71: 3 -<Ufluoro-3'-(2^,2-trifluoroeto^ title compound (89 mg) was prepared from 4-bromo-2 ! 6-difluoroan Line (80 mg, 0.38 mmol) and 3-(2,2 7 2-trifluoit>ethoxy)phenylboronic acid (108 mg, 0.5 mmol) as a colourless liquid.

Intermediate 72: 3'^thyl-3,5-difluoi¾biphenyl-4-amjHie:The title compound (89 mg) was prepared from 4-bromo-2,&^uoroanilme (100 mg, 0.48 mmol) and 3-ethylphenylboronic acid (99 mg, 0.6 mmol) as a colourless liquid- Intermediate 73: 2'-cMorobipheny -aDime:The title compound (176 mg) was prepared from 4-bromoaniline (300 mg, 1.74 mmol) and 2-chlorophenylboronic acid (354 mg, 2.26 mmol) as a yellow solid.

Intermediate 74: 3'-mel_aoxybiphenyl-4 " amii_e: The title compound (58 mg) was prepared from 4-bromoaniline (300 mg, 1.74 mmol) and 3-methoxyphenylboronic acid (344 mg, 2.26 mmol) as. a yellow liquid.

Intermediate 75: S triflnoromefho^bi hen l^amnie: The title compound (280 mg) was prepared from 4-bromoaniline (300 mg, 1.74 mmol) and 3- (trifluoromethoxy)phenylboronic acid (466 mg, 2.26 mmol) as a pale-yellow liquid.

Intermediate 76: 3 , -(ethylt o)-2,6-difIuorobiphenyl-4-amine: The title compound (500 mg) was prepared from 4-bromo-3,5-mfluoroaniline (300 mg, 1.74 mmol) and 3- (ethylthio)phenylboronic acid (340 mg, 1.86 mmol) as a yellow liquid. Intermediate 77: title compound (300 mg) was prepared from 4-bromoaniline (270 mg, 1.56 mmol) and 3-ethylphenylboronic acid (300 mg, 2.04 mmol) as a colourless liquid.

Intermediate 78: 3'-butoxy-2^,5,6-tetrafluorobipheny -amhie:The title compound (250 mg) was prepared from 4-r^mo-2,3 7 5,6-tetrafluoroaniline (300 mg, 1.23 mmol) and 3- butoxyphenylboronic acid (310 mg, 1.59 mmol) as a yellow liquid.

Intermediate 79: title compound (170 mg) was prepared from 4-biomo-2~fluoroaniline (240 mg, 1.26 mmol) and 3-butoxyphenylboronic acid (310 mg, 1.59 mmol) as a yellow liquid.

Intermediate 80: 3'-cyclopropoxy-3-fluorobiphenyI -ainjne:The title compound (230 mg) was prepared from 4~bromo-2-fluoroaniiine (1 g, 5.26 mmol) and 3-isopropoxyphenylboromc acid (1.8 g, 6.84 mmol) as a yellow Uqxrid.

Intermediate 81: 3'-cyclopn>po-<ybiphenyl^ainHie:The title compound (98 mg) was prepared from 4-bromoaniIine (1 g, 5,81 mmol) and 3-isopropoxyphenylboromc acid (1.96 g, 7.55 mmol) as a yellow liquid.

Intermediate 82: 3'-buto^ -fluorobiphenyl -amuie:The title compound (84 mg) was prepared from 4-bromoaniline (200 mg, 1.16 mmol) and 3-butoxyphenylboronic acid (293 mg, 1.5 mmol) as a yellow liquid.

Intermediate 83: 3'-butoxy-2-fluorobiphenyl-4-amine:The title compound (241 mg) was prepared from 4-bromo-3 -fluoroaniline (200 mg, 1.05 mmol) and 3-butoxyphenylboronic acid (265 mg, 1.4 mmol) as a colourless liquid.

Intermediate 84: S'-butoxy^.i-difluorobiphenyM-amine^e title compound (172 mg) was prepared from 4-bromo-3,5-difiuoroaiiiline (200 mg, 1 mmol) and 3-butoxyphenyl boronic acid (242 mg, 1.2 mmol) as a colourless liquid.

Intermediate 85: 3-prOpyl-5-(4,4,5,54etrametnyl-l,3,2-dto

The title compound (500 mg) was prepared as a colourless viscous liquid by using the procedure followed for intermediate 64 from propyl mapesium bromide generated from propyl bromide (16.2 ml, 176.96 mmol) and magnesium (4.3 g, 176.96 mmol) in ether (50 ml), 5-bromoisatin (5 g, 22.12 mmol), THF (20 ml), 2M borane-diroethyl sulphide in THF (10 ml, 19.65 mmol), bis(pinacolato)diboron (600 mg, 2.3 mmol), potassium acetate (600 mg, 2.3 mmol) and [l, -bis(diphenylphosphmo)ferrocene]dichloro palkdiumflfyCKbCk (44 mg, 0.03 mmol) and dioxane (10 ml).

Intermediate 86: 2,6-difluoro-4-(3-propyl-lH-indol-5-yl)anihne:The title compound (240 mg) was prepared from 4-bromo-2,6-difluoroaniline (400 mg, 1.55 mmol) and intermediate 85 (500 mg, 2.11 mmol) as a colourless gummy liquid.

Intermediate 87: 2-cUoro-4-(3-ethyl-lH-mdol-5-yl)-6 ' liuoroaiiinjie:The title compound (60 mg) was prepared from 4-bromo-2 hloro-6-fluoroaniline (300 mg, 1.1 mmol) and intermediate 64 (316 mg, 1.42 mmol) as a brown viscous liquid.

Intermediate 88: 2'-cUoro-3-fluoro-5'-methoxybiphenyl-4»--mme:The title compound (134 mg) was prepared from 4-bromo-2-fluoroaniline (150 mg, 0.79 mmol) and 2-chloro-5- methoxylphenylboronic acid (191 mg, 1.02 mmol) as a colourless liquii

Intermediate 89: 2 ' -chloro-5 ' -methoxybiphenyM-aniine:The title compound (154 mg) was prepared from 4-bromoaniline (150 mg, 0.87 mmol) and 2-chloro-5-methoxyphenyl boronic acid (211 mg, 1.13 mmol) as a colourless viscous liquid.

General procedure for amide formation:

Procedure -1

A solution of an anhydride (1.3 eq.) and an amine (1 eq) were dissolved in dioxane and refluxed overnight. Dioxane was evaporated and the resultant residue dissolved in AcOEt and extracted into aq. 2N NaHC0 3 solution. The aqueous layer was acidified with aq. 2 HC1 to obtain a solid, which was filtered and dried to give the desired amide.

Examples 1-11, 14, 16-17 and 20 were synthesised using general proceduie-1.

Procedure -2

An amine (1 eq) was dissolved in toluene and an anhydride (1 eq) was added in portions and the mixture heated to 60 e C for 4h. Solidified product was filtered and washed with aq. 2N HQ and dried under vacuum to obtain the desired product

Examples 12 and 13 were synthesised using general procedure - 2.

Procedure -3 An amine (1 eq) was dissolved in acetic acid and an anhydride (2 eq) was added and the mixture stirred at T overnight The solid that separated out was filtered and washed with petroleum ether and dried under vacuum to obtain the desired product

Examples 15, 18, 19, 21-35, 38-71 and 73-100 were prepared using general procedure-3.

Example 1

2-(3^-Difluoro-3'-methoxybiphenyl-4-yIcarbainoyI)berizoic acid:

The title compound (52 mg) was obtained from intermediate 1 (150 mg, 0.64 mmol) and phthalic anhydride (189 mg) as a white solid. MJ\: 168-173°G te-NMR (δ ppm, DUSO- k, 400 MHz): 13.05 (s, 1H), 10.19 (s, 1H), 7.83 (d, J 7.4, 1H), 7.69-7.63 (m, 1H), 7.62-7.52 (m, 4H), 7.39 (t, / 7.9, 1H), 7.34-7.27 (m, 2H), 6.98 (d, / 6.8, 1H), 3.83 (s, 3H). MS (m z): 381.55 ([itf-H] " ).

Example 2

2^3 -Diflttoro-3'-methoxybipheiryl^

The title compound (64 mg) was obtained from intermediate 1 (150 mg, 0.64 mmol) and 2-sulphobenzoic acid cyclic anhydride (235 mg) as a brown solid. M.P.: 97-102 °C. ¾- MR (δ ppm, DMSO-£¾, 400 MHz): 1L 8 (s, 1H), 7.92 (d, 7.1, lH), 7.S0 (d, / 7, IB), 7.57-7.49 (m, 4H), 7.38 (t, 7.8, 1H), 734-728 (m, 2H), 6.97 (d, / 8.1, 1H), 3.83 (s, 3H).

MS (m z): 417.6 ([_W-HT).

Example 3

2-(6-(3-Memoxyphenyl)pyrid^

The title compound (48 mg) was obtained from intermediate 3 (100 mg, 0.5 mmol) and phthalic anhydride (147 mg, 1 mmol) as a white solid. M.P.: 194-199 °C. 'H-NMR (δ ppm, DMSO-^s, 400 MHz): 13.17 (bs, 1H), 10.64 (s, lH), 8.88 (d, J % lH), 8.22 (dd, J 2.2, 8.7, 1H), 7.97 (d, J 8.7, 1H), 7.90 (d, 7, 1H), 7.70-7.66 (m, 1H), 7.63-7.56 (m, 4H), 7.38 (t, J 8, 1H), 6.98-6.95 (m, 1H), 3.82 (s, 3H). MS (m z): 347.30 ([ΑΓ-ΗΓ).

Example 4

2-(3'-Ethoxy-3-fluorobiphenyl-4-yIcarbamoyl)benzoic acid;

The title compound (26 mg) was obtained from intermediate 4 (100 mg, 0.5 mmol) and phthalic anhydride (128 mg, 1 mmol) as a white solid. M.P.: 151-157 e C. ^-N R (5 ppm, DMSO-i¾, 400 MHz): 13.06 (s, 1H), 10.22 (s, 1H), 7.95 (t J 8.5, 1H), 7.89 (d, J 7.7, 1H), 7.68-7.52 (jtn, 5H), 7.35 (t, 77.9, IH), 7.25 (d, 7 8.2, IH), 7.21 (s, IH), 6.92 (d, 7 8.4, IH), 4.10 (q, 77, 2H), 1.34 (t, 77, 3H). MS (m/z): 379.24 ([A/] " ).

Example 5

2-(3 '-Ethoxy-3^-diflnorobiphenyl-4-ylcarbamoyl)ben-toic add:

The title compound (15 mg) was obtained from intermediate 5 (100 mg, 0.43 mmol) and pthalic anhydride (118 mg, 0.86mmol) as a white solid. M.P.: 136-141 *C ! H-NM (δ ppm, DMSO-iie, 400 MHz): 13.04 (s, IH), 10.19 (s, IH), 7.83 (d, 77.4, IH), 7.69-7.64 (m, IH), 7.62-7.51 (m, 4H), 7.37 (t, 77.9, IH), 7.32-7.25 (m, 2H), 6.96 (dd, 7 1.7, 8.3, IH), 4.11 (q, 7 7, 2H), 1.34 (t, 77, 3H). MS (m/z): 395.81 ([M-H] " ).

Example 6

3-(3,54)m^oro-3'-methoxybiphenyI-4-yI^

The title compound (270 mg) was obtained from intermediate 1 (150 mg, 0.64 mmol) and 2,3^yrazinedicaiboxylic anhydride (190 mg, 1.26 mmol) as a white solid. M.P.: 180.1- 183.4°C. l H-NMR (5 ppm, DMSO-<¼, 400 MHz); 13.82 (be, IH), 10.7 (s, IH), 8.92 (d, J 5.7, 2H), 7.59 (d, J 9.1, 2H), 7.42-7.38 (m, IH), 7.36-7.28 (m, 2H), 7.00 (d, J 8, IH), 3.83 (s, 3H). MS (m/z): 384.05 ([M-H] " ).

Example 7

S-^-Muoro-S'^moxy i hen l^

The title compound (84 mg) was obtained from intermediate 5 (100 mg, 0.4 mmol) and 2,3- pyrazinedicarboxylic anhydride (120 mg, 0.8 mmol) as a white solid. M.P.: 133.4-l37.3 e C. ! H- MR (5 ppm, DMS0-< 400 MHz): 13.76 (s, IH), 10.68 (s, IH), 8.92 (dd, J 2.3, 7.7, 2H), 7.58 (d, J 9.2, 2H), 7.41-7.36 (m, IH), 734-7.26 (m, 2H), 6.98 (d, J 8, IH), 4.11 (q, J 6.9, 2H), 1.35 (t, J 6.9, 3H). MS (m z): 398.19 ([M-H] " )-

Example 8

2-(2'■ChlorO-3 > 5-diiluorobiphenyl-4-ylcarbamoyl)benzoic acid:

The title compound (110 mg) was obtained from intermediate 6 (140 mg, 0.59 mmol) and phthalic anhydride (170 mg, 1.17 mmol) as a white solid. MJ » .: 143.5-145.1°C Ή-NMR (δ ppm, DMSO-t¾s, 400 MHz): 13.06 (s, IH), 10.2 (s, IH), 7.85 (d, J 7.6, IH), 7.67 (t, J 7.3, IH), 7.63-7.56 COB, 3H), 7.52-7.43 (m, 3H), 7.28 (d, J 8.4, 2H), MS (m/z): 386.15 ([M-H] " ). Example 9

3-p*-(Beiizyloxy)-3,5-(--ffluorobiphe^^ acid:

The title compound (42 mg) was obtained from intermediate 9 (65 mg, 0.21 mmol) and 2,3- Pyrazmedicarboxylic anhydride (62 mg, 0.42 mmol) as a white solid. MP.: 142-144.5°C. Ή-ΝΜΚ. (5 ppm, DMSO-4,, 400 MHz): 13.77 (bs, lH), 10.69 (s, lH), 8.92 (dd, J 2.4, 7.7, 2H), 7.60 (d, J 9.2, 2H), 7.48 (d, J 7.3, 2H), 7.44-7.32 (m, 6H), 7.07 (d, J 6.5, IE), 5.20 (s, 2H). MS (m/z): 460.28 ([M-Ef).

Example 10

2-(3,5-D-fluorobiphenyl-4-ylcarbanioyI)ben2oic acid:

The title compound (85 mg) was obtained from intermediate 7 (100 mg, 0.48 mmol) and phthalic anhydride (144 mg, 0.86 mmol) as a white solid MP.: 161.2-165.7°C. 'H-NMR (δ ppm, DMSO-de, 400 MHz): 13.04 (s, 1H), 10.19 (s, 1H), 7.83 (d, J 7.6, 1H), 7.76 (d, J 7.4, 2H), 7.65 (d, J 8.2, 1H), 7.62-7.48 (m, 6H), 7.43 (d, J 7.2, lH). MS (m z): 352.06 ([A -H] " ).

Example 11

3-(3>CMoro-3'-ethoxy>5-fluorobiphenyl-4-yl^^ acid:

The title compound (30 mg) was obtained from intermediate 10 (100 mg, 0.38 mmol) and 2,3-pyrazinedicarboxylic anhydride (112 mg, 0.75 mmol) as a white solid, M.P.: 148-153°C *H-NMR (δ ppm, DMSO-^ 6 , 400 MHz): 13.74 (bs, 1H), 10.72 (s, IE), 8.93 (dd, J 2.3, 6.4, 2H), 7.76 (s, IE), 7.70 (d, J 10.7, IE), 7.42^7.36 (m, IE), 7.34-7.26 (m, 2H), 6.98 (dd, J 1.8, 8.1, lH), 4.12 (q, J 6.9, 2H), 1.34 (t, J 6.9, 3H). MS (m/z): 414.01 ([M-H] " ).

Example 12

2-[3,5J>-fluoro-3'-(trifluorom acid:

The title compound (15 mg) was obtained from intermediate 8 (100 mg, 0.34 mmol) and phthalic anhydride (50 mg, 0.34 mmol) as a white solid. MP.: 148.2-151.4"C. *H- MR (δ ppm, DMSO-i¾, 400 MHz): 13.07 (s, IE), 10.24 (s, 1H), 7.83 (t, J 6.2, 2H), 7.79 (s, IE), 7.54-7.50 (m, 6H), 7.42 (d, J 8.8, IE). MS (m z): 436.13 ([ -HD-

Example 13

2-[3'-(Ben^loxy)-3,5-difluorobi^^

The title compound (12 mg) was obtained from intermediate 9 (100 mg, 0.32 mmol) and phthalic anhydride (47. mg, 0.32 mmol) as a white solid. MP.: 140.3-143.4"C. ^-NM (6 ppm, DMSO-tfc, 400 MHz): 13.04 (s, IH), 10.19 (s, IH), 7.83 (d, J 7.6, IH), 7.68-7.64 (m, IH), 7.62-7.53 (m, 4H), 7.48 (d, J 7.2, 2H), 7.42-7.37 (m, 4H), 7.36-7.32 (m, 2H) 7 7.05 (dd, J 2, 7.7, IH), 5.20 (s, 2H). MS (m/z): 457.83 ([ -H] " ).

Example 14

4^-DicWoro-2-(3«^oro-3'-et--iox -5-fluorobiphenyl-4^

The title compound (42 mg) was obtained from intermediate 10 (100 mg, 0.38 mmol) and phmalic anhydride (160 mg, 0.75 mmol) as an off-white solid, M.P.: 260-265 e C. J H-NMR (8 ppm, DMSO-(¾, 400 MHz): 15.33 (s, IH), 8.16 (s, IH), 7.96 (s, IH), 7.71 (s, IH), 7.64 (d, J 11, IH), 7.36 (t, J 7.8, IH), 7.27-7.22 (m, 2H), 6.95 (dd, J 1.8, 8.1, IH), 4.12 (d, J 7, 2H), 1.34 (t, J 7, 3H). MS (m/z): 481.02 ([M-H] " )-

Example 15

2-(3*C >iO-3'-eihoxy-5-fluor toiph^ acid:

The title compound (86 rag) was obtained from inteimediate 10 (145 mg, 0,55 mmol) and phthalic anhydride (160 mg, 1.1 mmol) as a white solid. M.P.: 135-140°C. ^- R (δ ppm, DMSO-<¾, 400 MHz): 13.02 (s, IH), 10.23 (s, IH), 7.82 (d, J 7.6, IH), 7.72 (s, IK), 7.70- 7.58 (m, 4H); 7.38 (t, J 7.8, IH), 7.33-7.26 (m, 2H), 6.97 (dd, J 2, 8.1, IH), 4.12 (q, J 6.9, 2H), 1.35 (t, J 6.9, 3H). MS (m/z): 412.05 ([M-H] " ).

Example 16

4,5-DicMoro-2^3,5-dffluoro-3'-metiio^

The title compound (95 mg) was obtained from intermediate 1 (100 mg, 0.42 mmol) and 5,6- dicMoroisobenzofiiran-l,3-dione (182 mg, 0.84 mmol) as a white solid. M.P.: 158.6-162.2 e C. ^-NMR (5 ppm, DMSO-k 400 MHz): 13.58 (s, IH), 10.40 (s, IH), 7.57 (d, J 9.1, 2H), 8.03 (s, IH), 7.83 (s, IK), 7.39 (t, J 7.9, IK), 7.34-7.28 (m, 2H), 6.98 (dd, J 1.9,6.9, IK), 3.83 (s, 3H). MS (m/z): 451.24 ([M-H] " ).

Example 17

4^-IHcMort-2-(3^ethojcF-3,5-dffiw^

The title compound (87 mg) was obtained from intermediate 5 (100 mg, 0.42 mmol) and 5,6- dicmoroisobeiizofuran-l^-dione (173 mg, 0.8 mmol) as a white solid. M.P.: 190.1-192.4°C. ^- MR (δ ppm, DMSO-ifc, 400 MHz): 13.58 (s, IH), 10.39 (s, IH), 8.03 (s, IH), 7.82 (s, IH), 7.56 (d, J 9.2, 2H), 7.37 (t, J 7.9, IH), 7.33-7.26 (m. 2H), 6.97 (dd, J 1.8, 8.1, 1H) 7 4.11 (q, J 7, 2H), 1.34 (t, J 7, 3H). MS (m/z): 464.92 ([ -Hp.

Example 18

2-(3,5-Dic^oro-3 , -methoxybiphenyl-4-ylcarbamoyl)benzoic acid:

The title compound (20 mg) was obtained from intermediate 11 (150 mg, 0.56 mmol) and phthalic anhydride (165 mg, 1.12 mmol) as a white solid. M.P.: 163-168°C 'H- MR (δ ppm, DMSO- , 400 MHz): 13.0 (s, IH), 10.37 (s, IH), 7.86 (s, 2H), 7.80 (d, J 7.5, IH), 7.74-7.65 (m, 2H), 7.60 (t, J 7.5, IH), 7.40 (t, J 7.9, IH), 7.34-7.27 (ra, 2H), 6.99 (d, J 7.5, IH), 3.84 (s, 3H). MS (m z): 415.15 (Eftf-HT).

Example 19

2-(3-CMoro-5-flnoro-3'-propi>xy^

The title compound (38 mg) was obtained from intermediate 12 (100 mg, 0.36 mmol) and phmalic anhydride (105 mg, 0.72 mmol) as a white solid. M.P.: 144-148°C. L H- MR (5 ppm, DMSO- , 400 MHz): 13.03 (s, IH), 10.24 (s, IH), 7-82 (d, J 7.5, IH), 7.73 (s, IH), 7.70-7.57 (m, 4H), 7.38 (t, J 7.7, IH), 7.32-7.26 (m, 2H), 6.98 (d, J 8.1, IH), 4.02 (t, J 6.5, 2H), 1.77-1.72 (m, 2H), 0.99 (t, J 7.4, 3H). MS (m/z): 426.05 ([Af-H] " )-

Example 20

2-(3-Chloro-2'^5-difluorobjphenyl-4-ylcarbamoyI)ben2;oic a -id:

The title compound (15 mg) wa& obtained from intermediate 13 (100 mg, 0.34 mmol) and phthalic anhydride (100 mg, 0.68 mmol) as a white solid. M.P.: l63-167 e C. ^-NM (S ppm, DMSO-^6, 400 MHz): 13.05 (s, IH), 10.3 (s, IH), 7.83 (d, / 7.6, IH), 7.70-7.58 (m, 5H), 7.57-7.46 (m, 2H), 7.40-7.31 (m, 2H). MS (m/z): 386.15 ([ -H] " ).

Example 21

2-(3^-DicMon>-3'-ethoxybiphenyl ' 4-ylcarbamoyl)beiizoic acid:

The title compound (30 mg) was obtained from intermediate 14 (150 mg, 0.53 mmol) and phthalic anhydride (157 mg, 1.06 mmol) as a white solid. MJP.: 135.9-138.2 e C. ^- M (δ ppm, DMSO^, 400 MHz): 13.0 (s, IH), 10.37 (s, IH), 7.86 (s, 2H), 7.80 (d, J 7.3, IH), 7.74-7.64 (m, 2H), 7.62-7.55 (m, IH), 7.38 (t, J 7.9, IH), 7.32-7.26 (m, 2H), 7.00-6.96 (m, IH), 4.12 (q, J 7, 2H), 1.34 (t, J 7, 3H). MS (m/z): 429.30 ([ -HT). Example 22

2-[3-Fluoro-3'-(trifluoromethoxy)biphenyI^ylcarb-uiioyl]beiu oic acid

The title compound (124 mg) was obtained from intermediate IS (100 mg, 0.44 mmol) and phthalic anhydride (130 mg, 0.9 mmol) as a white solid. MP.: 128.3-132.1 6 C 'H-NMR (8 ppm, DMSO-i¾s, 400 MHz): 13.07 (s, IH), 10.28 (s, IH), 7.99 (t, J 8.3, IH), 7.88 (d, J 7.4, IH), 7.77 (d, J 8, IH), 7.67 (s, IH), 7.69-7.52 (m, 6H), 7.37 (d, J 8.2, IH). MS (m/z): 417.86

Example 23

2-[2^nuoro-3-(trifluorometbo-_y)bipta

The title compound (82 mg) was obtained from intermediate 16 (100 mg, 0.36 mmol) and phthalic anhydride (109 mg, 0.72 mmol) as a white solid. M.P.: 142.2-148.1°C ^-N R (δ ppm, DMSO-d f c 400 MHz): 13.08 (s, IH), 10.36 (s, IH), 8.03 (d, J 8.2, IH), 7.90 (d, J 7.8,. IH), 7.68 (t, J 7.5, IH), 7.65-7.54 (m, 4H), 7.49-7.41 (m, 2H), 7.38-7.30 (ra, 2H). MS (m z): 418.00 ([ -HD.

Example 24

2-(3^-DicMoro-2'-fluorobipheny

The title compound (78 mg) was obtained from interroediate 17 (100 mg, 0.39 mmol) and phthalic anhydride (115 mg, 0.78 mmol) as a white solid. M.P.: 185.4-193.6°C ^-NMR (5 ppm, DMSO-(¾, 400 MHz): 13.02 (s, IH), 10.42 (s, IH), 7.81 (d, J 7.4, IH), 7.74 (s, 2H), 7.72-7.58 (m, 4H), 7.53-7.47 (m, IH), 7.40-7.31 (m, 2H). MS (m z): 402.11 ([M-HD.

Example 25

2-(3,5-Difiuoro-3'-isopropoxybiphenyl-4-yl^bamoyI)benzoic acid:

The title compound (64 mg) was obtained from intermediate 18 (100 mg, 0.38 mmol) and phthalic anhydride (112 mg, 0.76 mmol) as a white solid. M.P.: 122-125°C. ! H-NMR (δ ppm, DMSO^s, 400 MHz): 13.05 (s, IH), 10.20 (s, 1H) 5 7,83 (d, J 7.5, 1H),7.66 (t, J 7.3, IH), 7.60-7.52 (m, 4H), 7.37 (t, J 7.8, IH), 7.30-7.24 (m, 2H), 6.96 (dd, J 2.1, 8.2, IH), 4.76 (septet, J 6.0, IH), 1.28 (d, J 6, H). MS (m/z): 410.02 ([M-HD. Example 26

2-(3^-Diiluoro-3'-pr poxy iphenyl-4-ylcarbarooyl)benzoic acid:

The title compound (68 mg) was obtained from mtennediate 19 (100 mg, 0.38 mmol) and phthalic anhydride (112 mg, 0.76 mmol) as a white solid. M.P.: 128.6-132.1°C. ^- MR (δ ppm, OUSO-de, 400 MHz): 13.05 (s, IH), 10.19 (s, IH), 7.83 (d, J 7.7, IH), 7.66 (t, J 7.4, IH), 7.62-7.52 (m, 4H), 7.37 ft, J 7.8, IH), 7.32-7.26 (m, 2H), 6.97 (dd, J 2, 8.1, IH), 4.01 (t, J 6.5, 2H), 1.77-1.67 (m, 2H), 0.99 (t, J 7.4, 3H). MS (m/z): 410.16 ([Af-H] " ).

Example 27

4,5-J cUoro-2^2'^-diclrioro-5-fluorobiph^

The title compound (110 mg) was obtained from intennediate 20 (100 mg, 0.39 mmol) and S.o^cWoroisobenzofiiran-l.S-dione (169 mg, 0.78 mmol) as a white solid. M.P.: 202.3- 206.5 e C. J H-NMR (5 ppm, DMSC s, 400 MHz): 13.60 (s, IH), 10.50 (s, Hi), 8.04 (s, IH), 7.82 (s, IH), 7.63-7.58 (m, IH), 7.52-7.43 (m, 5H). MS (m/z): 471.69 ([ -H] " ).

Example 28

4 -DicMoro-2-(2S3-dichIor^

The title compound (51 mg) was obtained from intermediate 5 (100 mg, 0.4 mmol) and 4,7- dichloroisobenzofiiran-l,3-dione (173 mg, 0.8 mmol) as a white solid MP.: 126.9-131.4 Q C. Ή-NMR (δ ppm, DMSO- , 00 MHz): 13.96 (s, IH), 10.56 (s, IH), 7.68 (s, 2H), 7.55 (d, J 9.1, 2H), 7.38 (t, J 7.9, IH), 7.32-7.26 (m, 2H), 6.97 (dd. J 1.7, 12.2, IH), 4.12 (q, J 7, 2H), 1.34 (U 7, 3H).

Example 29

4^McWo-^2-(2 l ^-dicMoro-S-fliioiObiphenyl-4-ylcarbam

The tide compound (39 mg) was obtained from intermediate 21 (90 mg, 0.31 mmol) and phthalic anhydride (90 mg, 0.6 mmol) as a white solid. M .: 128-130'C. Ή- ΜΚ (S ppm, DMSO-i/e, 400 MHz): 13.02 (s, IH), 10.23 (s, IH), 7.82 (d, J 7.9, IH), 7.73 (s, IH), 7.60- 7.57 (ra, 4H), 7.37 (t, J 7.9, IH), 7.32-7.25 (m, 2H), 6.99-6.96 (m, IH), 4.06 (t, J 6.4, 2H), 1.73-1.68 (m, 2H), 1.45 (h, J 7.5, 2H), 0.94 (t, J 7.4, 3H). MS (m/z): 440.19 ([ -HD- Example 30

4,5-Dicbloro-.^2 , -cMoro-3 -^ add:

The title compoimd (150 mg) was obtained from intermediate 6 (100 mg, 4.18 mmol) and 5,6-cUchloroisobenzoruran-l,3-dione (181 mg, 8.4 mmol) as a white solid. MP.; 202- 205.5°C. te-NMR (δ ppm, DMSO-.¼, 400 MHz): 13.61 (s, 1H) 7 10.45 (s, 1H), 8.04 (s, 1H), 7.83 (s, 1H), 7.62-7.58 (m, lH), 7.52-7.49 (m, 1H), 7.48-7.43 (m, 2H), 7.30 (d, J 8.5, 2H). MS (m z): 455.94 ([ -Η] *

Example 31

2-(3-(¾oro-5-fliioro-3'-jOTbuto^

The title compoimd (150 mg) was obtained from intermediate 22 (100 mg, 4.18. mmol) and 5,6-dichloroisobenzofuran-l,3-dione (181 mg, 8.4 mmol) as a white solid. M.P.: 202- 205.5°C Ή-NMR (δ ppm, DMSO-.¾ 400 MHz): 13.03 (s, 1H), 10.23 (s, lH), 7.82 (d, J 7.4, IH), 7.73 (s, 1H), 7.70-7.57 (m, 4H), 7.38 (t, J 7.8, 1H), 7.32-7.26 (m, 2H), 6.99 (dd, J 1.7, 8.2, IH), 3.83 (d, J 6.5, 2H), 2.10-1.99 (m, 1H), 1.00 (d, J 6.7, 6Ή). MS (m/z): 439.84 ([ - HD.

Example 32

2-(2'^-TrifluoiObiphcnyl -ylcarbamoyl)bei oic acid:

The title compound (72 mg) was obtained from intermediate 23 (100 mg, 0.44 mmol) and phmalic anhydride (130 mg, 0.88 mmol) as a white solid. M.P.: 152.2-156.3°C. Ή- Κ (δ ppm, DMSO-4;, 400 MHz): 13.06 (s, IH), 10.25 (s, IH), 7.84 (d, J 7.6, IH), 7.70-7.56 (m, 4H), 7.52-7.45 (m, IH), 7.43-7.38 (m, 2H), 7.36-7.31 (m, 2H). MS (m/z): 369.91 ([ -Η] "

Example 33

2^2'^,5"TricMorobiplienyl-4-ylcarbamoyl)benzoic acid:

The title compound (20 mg) was obtained from intermediate 24 (100 mg, 0.37 mmol) and phthalic anhydride (130 mg, 0.88 mmol) as a white solid. MJP.: 182-185°C. ¾- MR (δ ppm, OMSO-de, 400 MHz): 13.01 (s, IH), 10.40 (s, lH), 7.82 (d, J 7.2, IH), 7.72-7.67 (m, 2H) 7 7.64-7.59 (m, 4H), 7.53-7.50 (m, IH), 7.49-7.45 (m, 2H). MS (m z): 419.61 (IM-Bfi- Example 34

2-(3^-Diflnoro-3'-i$obutoxybiphenyl-4-ylcarbamoyl)beiizoic acid:

The title compound (34 mg) was obtained from intermediate 25 (100 mg, 0.36 mmol) and phthalic anhydride (106 mg, 0.72 mmol) as a white solid. M.P.: 112.6-116.4°C. ¾-NM (6 ppm, DMSO-4;, 400 MHz): 13.04 (s, IK), 10.18 (s, 1H) 7 7.83 (d, J 7.5, IH), 7.68-7.64 (m, IK), 7.62-7.52 (m, 4H), 7.37 (t, J 7.8, IH), 7.33-7.25 (m, 2H), 6.98 (d, J 8.2, IH), 3.84 (d, J 6.5, 2H), 2.10-1.99 (m, IH), 1.00 (d, J 6.7, 6H). MS (m/z): 423.95 ([M-H] " ).

Example 35

2^(3'-Butoxy-3,5-difluorobiphenyl-4-ylcarbamoyl)benzoic acid:

The title compound (32 mg) was obtained from intermediate 26 (100 mg, 0.36 mmol) and phthalic anhydride (106 rag, 0.72 mmol) as a white solid. MJP.: 119.3-123.3°C. 'H- MR (δ ppm, DMSO-<¼, 400 MHz): 13.04 (s, IH), 10.19 (s, IH), 7.83 (d, J 7.4, IH), 7.69-7.63 (m, IH), 7.62-7.52 (m, 4H), 7.37 (t, J 7.9, IH), 7.32-7.26 (m, 2H), 6.97(dd, J 1.6, 8, IH), 4.05 (t, J 6.4, 2H), 1.72 (q, J 6.4, 2H), 1.47 (h, J 7.5, 2H), 0.94 (t, J 7.3, 3H). MS (m/z): 423.8S ([M- H] ).

Example 36

iV^3-(_Woro-3'-ethoxy-5-fmorobi^^

Oxalyl chloride (0.86 ml, 9.8 mrnl) and two drops of DMF were added to a solution of 2- (methoxycarbonyl)benzoic acid (590 mg, 3.27 mmol) in dichloromethane (10 ml) and cooled to 0 e C and stirred at RT for 30 min. After 30 min., me solvent was removed to obtain methyl 2-(chloroformyl)benzoate (quantitative). A solution of this intermediate (401 mg, 2.03 mmol) in dichloromethane was added to a solution of intermediate 10 (540 mg, 2.03 mmol) and pyridine (0.19 ml, 2.43 mmol) in dichloromethane (5 ml) at 0°C and stirred at RT for 30 min. Work-up (CH 2 CI2/H2O) and purification gave methyl 2-(3-chloro-3'-ethoxy-5- fluorobiphenyl- -ylcarbamoyl)benzoate (250 mg) as an off-white solid. Lithium borohydride (20 mg, 0.94 mmol) was added to a solution of this product (200 mg, 0.47 mmol) in THF (5 ml) at 0 e C and the rmxture stirred at RT for 2 hrs. Work-up (EtOAc/aq. 10% NH 4 CI then H 2 0) and purification afforded the title compound (30 mg) as a white solid. M.P.: 139.2- 141.5 . ¾-NMR (6 ppm, DMSO-tk 400 MHz): 10.22 (s, IH), 7.76 (s, IH), 7.73-7.60 (m, 3H), 7.54 (t, J 6.7, IH), 7.43-7.36 (m, 2H), 7.33-7.26 (m, 2H), 6.97 (dd, J 1.8, 8.1, IH), 5.32 (t, J 5.6, IH), 4.72 (d, J 5.6, 2H), 4.12 (q, J 7, 2H), 1.35 (t, J 7, 3H). Example 37

iV'(3' £tho:^-3,5-dfflw>robiph^

A solution of methyl 2-(chlorofonnyl)benzoate (prepared as described under example 37, 361 mg, 2.0 mmol) in dicruoromethane was added slowly to a solution of intermediate 5 (500 mg, 2.0 mmol) and pyridine (0.19 ml, 2.43 mmol) in dichloromethane (5 ml) and stirred at 0°C and stirred at RT for 30 min. Work-up (<¾a2 H 2 0) and purification gave methyl 2-(3'- ethoxy-3,5-difluorobiphenyl-4-ylcarbamoyl)bertzoate (212 mg) as a pale-yellow solid lithium borohydride (21 mg, 0.96 mmol) was added to a solution of this intermediate (200 mg, 0.48 mmol) in THF (3 ml) at 0 e C and the mixture stirred at RT for 2 hrs. work-up (EtOAc/aq. 10% NH4CI then ¾0) and purification gave the title compound (21 mg) as a white solid. MP.: 94.8-99.1°C. ^-NM (δ ppm, DMSO-<f 6 , 400 MHz): 10-16 (s, IK), 7.64 (d, J 7.8, lH), 7.61-7.51 (m, 4H), 7.42-7.35 (m, 2H), 7,32-7.26 (m, 2H), 6.97 (dd, J 2, 7.6, 1H), 5.31 (t, J 5.6, 1H), 4.70 (d, J 5.6, 2H), 4.11 (q, J 7, 2H), 1.35 (t, J 7, 3H).

Example 38

2-(3-CUoro-3'-ethoxy-5-fluorobiphenyl-4-ylcarbamoyl)-6-fluor obenzoic acid:

The title compound (20 mg) was obtained from intennediate 10 (100 mg, 0.38 ramol) and 4- fluoroisobenzoruran-l,3-dione (125 mg, 0.75 mmol) as a white solid. M.P.: 156.3-158.2°C. ^- MR (δ ppm, DMSO-4;, 400 MHz): 13.42 (s, lH), 10.44 (s, lH), 7.79-7.69 (m, 2H), 7.59-7.50 (m, 3H), 7.42-7.34 (m, 1H), 7.32-7.24 (m, 2H), 6.97 (d, J 7.6, 1H), 4.12 (t, J 7, 2H), 1.33 (q, J 7, 3B).

Example 39

2-[3-C!doro"5-fluoro-3'-(trifluorometh^

The title compound (38 mg) was obtained from intermediate 27 (150 mg, 0.6 mmol) and phthalic anhydride (176 mg, 1.2 mmol) as a white solid. M.P.: 153-156.5°C. 'H-NM (δ ppm, DMSO-d6, 400 MHz): 13.04 (s, lH), 10.28 (s, 1H), 7.87-7.73 (m, 5H), 7.69-7.55 (m, 4H), 7.43 (d, J 7.6, 1H). MS (m/z): 451.95 ([M-HD-

Example 40

2>[4-(BenzyIo3-y)-2,6-djLfluorophenyI<^bamoyI]beiizoic dd:

The title compound (134 mg) was obtained from intermediate 29 (160 mg, 0.65 mmol) and phthalic anhydride (193 mg, 1.3 mmol) as a white solid. M.P.: 176.2-180.6°C- *H-NMR (δ ppm, DMSO-46, 400 MHz): 12.98 (bs, 1H), 9.88 (s, lH), 7.79 (d, J 7.6, IK), 7.67-7.61 (m, IH), 7.60-7.52 (m 7 2H), 7.45 (d, J 7, 2H . 7.40 (t, J 7, 2H), 7.37-7.32 (m, IH), 6.90 (d, J 9.4, 2H), 5.14 (s, 2H).

Example 41

2-[3'^C^dopentylo^)-3^-diflnorobiphenyl-4-ylcarba n

The title compound (38 mg) was obtained from intermediate 32 (150 mg, 0.6 irunol) and phthalic anhydride (176 mg, 1.2 mmol) as a white solid. MJ\: 153-156.5 e C. 'H-NMR (δ ppm, DMSO-ώ, 400 MHz): 13.05 (s, IH), 10.18 (s, IH), 7.83 (d, J 7.6, IH), 7.69-7.64 (m, IH), 7.62-7.49 (m, 4H), 7.36 (t, J 8, IH), 7.30-7.25 (m, IH), 7.23 (m, IH), 6.95 (dd, J 2, 8.1, IH), 5.00-4.92 (m, IH), 2.00-1.90 (m, 2H), 1.76-1.68 (m, 4H), 1.64-1.54 (m, 2H). MS (m/z):. 436.13 ([Af-HD-

Example 42

2-(3-C oro-3'-(cyclopentyloxy)-5-fluorobiphenyI-4-ylcarbamoyl)beix- ra

The title compound (38 mg) was obtained from intermediate 33 (100 mg, 0.33 mmol) and phthalic anhydride (96 mg, 0.65 mmol) as a white solid. M.P.: 122-126 e C. J H- MR (δ ppm, DMSO-ik 400 MHz): 13.02 (s, IH), 10.23 (s, IH), 7.82 (d, J 7.4, IH), 7.71 (s, IH), 7.68- 7.58 (m, 4H), 7.37 (t, J 7.6, IH), 7.30-7.21 ( , 2H), 6.95 (dd, J 2.2, 8.1, IH), 5.00^.93 (s, IH), 2.00-1.88 (m, 2H), 1.80-1.68 (m, 4H), 1.63-1.54 (m, 2H). MS (m/z): 452.16 ([Af-H] " ).

Example 43

2-[3'-(pifluoromethoxy)-3 -di^

The title compound (36 mg) was obtained from intermediate 34 (40 mg, 0.15 mmol) and phthalic anhydride (43 mg, 0.29 mmol) as a white solid. MP.: 148.2-150.5°C. 'H-NMR (δ ppm, DMSO-_¼, 400 MHz): 13.05 (s, IH), 10.22 (s, IH), 7.84 (d, J 7.7, IH), 7.69-7.51 (m, 8H), 7.36 (t, J 74, IH), 7.22 (dd, J1.8, 9.7, IH).

Example 44

2-[3-C¾doro-3'-(diiroorom

The title compound (41 mg) was obtained from intermediate 35 (40 mg, 0.14 mmol) and phthalic anhydride (41 mg, 0.28 mmol) as a white solid. M.P.: 156.5- 159.5 e C. ¾-NMR (θ ppm, DMSO-ie, 400 MHz): 13.03 (s, IH), 10.26 (s, IH), 7.83 (d, J 7.6, IH), 7.79 (s, IH), 7.75-7.70 (m, IH), 7.69-7.58 (m, 5H), 7.54 (t, J 6.1, IH), 7.37 (t, J 74, IH), 7.22 (dd, J 1.8, 7.8, IH). Example 45

2-(2'-CUoro-3^-difluoro-5'-roethoxybipheny]^ylcarb^oyl)benzo k acid:

The title compound (41 mg) was obtained from intermediate 36 (40 mg, 0.15 mmol) and phthalic anhydride (44 mg, 0.3 mmol) as a white solid. MP.: 167-172 < €. ^- MR (δ ppm, DMSO- , 400 MHz): 13.06 (s, IH), 10.23 (s, IH), 7.85 (d, J 7.6, IH), 7-69-7.65 (m, IH), 7.62-7.55 (m, 2H), 7.48 (d, J 8-6, IH), 7.29 (d, J 8.3, 2H), 7.08-7.00 (m, 2H), 2.49 (s, 3H).

Example 6

2-(3,3',5-Trifluoro-5^methoxybipbenyl-4-yl(^baOToyl)benzoic acid:

The title compound (37 mg) was obtained from intermediate 37 (40 mg, 0.15 mmol) and phthalic anhydride (46 mg, 0.31 mmol) as a white solid. MP.: 166.2-167.8 P C 'H-NMR (δ ppm, DMSC k 400 MHz): 13.04 (s, IH), 10.22 (s, IH), 7.84 (d, J 7.6, IH), 7.70-7.52 (m, 5H), 7.23 (d, J 9.8, IH), 7.18 (s, IH), 6-88 (d, J 10.8, IH). 3.85 (s, 3H).

Example 47

2-[4-(Benzo[ii][l^]dioxol-5-yl)-2,^^

The title compound (37 mg) was obtained from intermediate 38 (40 mg, 0.15 mmol) and phthalic anhydride (46 mg, 0.31 mmol) as a white solid. M.P.: 166.2-167.8°C X H-NMR (δ ppm, OMSO-ck, 400 MHz): 13.02 (s, IH), 10.14 (s, IH), 7.83 (d, J 5-9, IH), 7.67-7.64 (m, IH), 7.60-7.56 (m, 2H), 7.47 (d, J 9.2, 2H), 7.38 (s, IH), 7.26 (dd, J 1.5, 8.2, IH), 7.01 (d, J 8.1, IH), 6.07 (s, 2H).

Example 48

2-[4-0Berizo[<f][l,3]dioxol-5-yl 2-c oro-^^

The title compound (23 mg) was obtained from intermediate 39 (50 mg, 0.19 mmol) and phthalic anhydride (55 mg, 0.38 mmol) as a white solid. M.P.: 182-184.5°C. ^-NMR (δ ppm, DMSC ;, 400 MHz): 13.00 (s, IH), 10.21 (s 7 IE), 7.81 (d, J 7.5, IH), 7.68-7.56 (m, 5H), 7.39 (s, IH), 7.26 (dd, J 1.4, .4, IH), 7.01 (d, J 8.1, IH), 6.08 (s, 2H).

Example 49

2-(3^ΦifluoΓO-3^ ^^ethoxybi he^

The title compound (23 mg) was obtained from intermediate 40 (50 mg, 0.19 mmol) and phthalic anhydride (55 mg, 0.38 mmol) as a white solid. M.P.: 182-184.5 C C. ^- MR (δ ppm, DMSO-cfc, 400 MHz): 13.03 (s, IH), 10-14 (s, IH), 7.83 (d, J 7.6, IH), 7.67-7.64 (m, IH), 7.58 (t, J 7.1, 2H), 7.52 (d, J 9.3, 2H), 7.33-7.28 (m, 2H), 7.04 (d, J 9, IH), 3.86 (s, 3H), 3.79 (s, 3H).

Example 50

2-(3,3^5-TriflnorO-5'-metJioxyb^^

The title compound (35 mg) was obtained from intermediate 41 (40 mg, 0.14 mmol) and phthalic anhydride (44 mg, 0.28 mmol) as a white soUd. M.P.: 164-166°C. l H-NMR (S ppm, DMSO- , 400 MHz): 13.02 (s, IH), 10.25 (s, IH), 7.85-7.78 (m, 2H), 7.73 (d, J 11.2, IH), 7.69-7.56 (m, 3H), 7.24 (d, J 9.9, IH), 7.18 (s, IH), 6.88 (d, J 10.8, IH), 3.85 (s, 3H).

Example 51

2-(3^'-DicUoi^5-fluoro-5'-methoxybiphenyl-4^ylcarbainoyl)bei ^

The title compound (41 mg) was obtained from intermediate 42 (40 mg, 0.14 mmol) and phthalic anhydride (44 mg, 0.28 mmol) as a white solid. M.P.: 159.6-161.2"C. ^-NMR (δ ppm, DMSO-<¼, 400 MHz): 13.01 (s, IH), 10.25 (s, IH), 7.82 (d, J 7.9, IH), 7.79 (s, 1H) 7 7.74 (d, J 10.7, IH), 7.69-7.57 (m, 3H), 7.43 (s, IH), 7.28 (s, IH), 7.08 (s, IH), 3.86 (s 7 3H).

Example 52

2-[4-(2,3-Dmydrobeim>fnran ' 5-yl^

The tide compound (46 mg) was obtained from mtermediate 43 (50 mg, 0.2 mmol) and phthalic anhydride (59 mg, 0.40 mmol) as a white solid. M.P.: 176-177.5°C. l H-NMR (δ ppm, DMSO- , 400 MHz): 13.02 (s, IH), 10.12 (s, IH), 7.83 (d, J 7.6, IH), 7.67 (s, 2H), 7.61-7.53 (m, 2H), 7.49 (d, J 7.6, IH), 7.43 (d, J 9.2, 2H), 6.84 (d, J 8.3, IH), 4.57 (t, J 8.7, 2H) 5 3.23 (t, J 8.6, 2H).

Example 53

2-[2-Oiloro-4-(2^-dihydrobeiizofaran-5-yl)-6-fl acid:

The title compound (44 mg) was obtained from intermediate 44 (40 mg, 0.15 mmol) and prmialic anhydride (44 mg, 0.30. mmol) as a white solid. M.P.:. 177-179°C. ¾- MR (δ ppm, DMSO-4,, 400 MHz): 13.01 (s, IH), 10.18 (s, IH), 7.82 (d, J 7.6, IH), 7.69-7.55 (m, 6H), 7.50 (d, J 8.2, IH), 6.85 (d, J 8.4, IH), 4.58 (t, J 8.8, 2H), 3.23 (t, J 8.8, 2H). Example 54

2-[4-(l,3-Dimethyl-lH-mdazol-5-yl)-2,6-difluoro^

The title compound (16 mg) was obtained from intermediate 45 (25 mg, 0.09 mmol) and phthalic anhydride (27 rag, 0.18 mmol) as a white solid. M.P.: 276.4-277.5°C ¾-NM (5 ppm, DMSO-dg, 400 MHz): 13.02 (s, IH), 10.14 (s, IH), 8.14 (s, IH), 7.83 (d, J 7.2, IH), 7.79 (d, J 9, IH), 7.68-7.57 (m, 6H), 3.98 (s, IH), 2.53 (s, 3H).

Example 55

2.(3'-CWoro-3^-difluorO-5'-methoxybiphenyl-4-ylcarbamoyl)ben zoic add:

The title compound (37 mg) was obtained from intermediate 46 (35 mg, 0.13 mmol) and phthalic anhydride (39 mg, 0.25 mmol) as a white solid, M.P.: 17M75°C. ¾-NM (8 ppm, DMSO-<i 6 , 400 MHz): 13.04 (s, IH), 10.22 (s, Hi), 7.83 (d, J 7.7, IH), 7.70-7.55 (m, 5H), 7.42 (s, IH), 7.28 (s, IH), 7.07 (s, IH), 3.85 (s, 3H).

Example 56

2-(3-CUoix>-5 " fluoro-3^4'-<iimethoxyb-ph

The title compound (24 mg) was obtained from inteimediate 47 (30 mg, 0.1 mmol) and phthalic anhydride (31 mg, 0.2 mmol) as a white solid, M.P.: 179.6-182.1°C. J H-NMR (δ ppm, DMSO-de, 400 MHz): 13.0 (s, IH), 10.18 (s, IH), 7.82 (d, J 7.7, IH), 7.72 (s, IH), 7.68-7.57 (m, 4H), 7.33-7.28 (m, 2H), 7.04 (d, J 8.8, IH), 3.86 (s, 3H), 3.79 (s, 3H).

Example 57

2-(2 , ^»DicWoro-5-fluoro-5'-metiio^

The title compound (54 mg) was obtained from mtermediate 48 (30 mg, 0.1 mmol) and phthalic anhydride (30 mg, 0.2 mmol) as a white solid. M.P.: 165-167"C. Ή-ΝΜΚ (5 ppm, DMSO~£¾, 400 MHz): 13.03 (s, IH), 10-27 (s, IH), 7.83 (d, J 7.4, IE), 7.70-7.57 (m, 3H), 7.51-7.47 (m, 2H), 7.43 (d, J 10, IH), 7.08-7.01 (m, 2H), 3.80 (s, 3H).

Example 58

2-(2 '^-Trifluoro-5 Vmethoxybiphenyl-4-ylcarbamoyl)beiizoic acid:

The title compound (23 mg) was obtained from intermediate 49 (30 mg, 0.1 mmol) and phthalic anhydride (38 mg, 0.22 mmol) as a white solid. MP.: 173.4-176.5 e C. 'H-NMR (δ ppm, DMS0-i 400 MHz): 13.04 (s, IH), 10.24 (s, IH), 7.84 (d, J 7.7, IH), 7.67 (t, J 7.1, IH), 7.60 (t, J 8, 2H), 7.41 (d, J 8.6, 2H), 7.27 (:, J 9.5, 1H), 7.15-7.12 (m, 1H), 7.03-6.96 (m, lH), 3.80 (s, 3H).

Example 59

2-(4'-CMoro-3,5-diiluoro-3'-methoxybiphenyl-4-ylcarbamoyl)be nzoic acid:

The title compound (42 mg) was obtained from intermediate 50 (80 mg, 0.3 mmol) and phthalic anhydride (85 mg, 0.6 mmol) as a white solid. MP.: 156.1-158.3 e C. J H-NMR (5 ppm, DMSO-4;, 400 MHz): 13.04 (s, IH), 10.21 (s, IH), 7.84 (d, J 12.6, 2H), 7.70-7.57 (m, 4H), 7.55-7.49 (m, 1H), 7.46 (s, 1H), 7.34 (d, J 8.1, 1H), 3.97 (s, 3H).

Example 60

2-(3,4 I -Diddoro-5-fluoro-3'-metbo^biphenyl-4-ylcarb£-moyl)be nzoic acid:

The title compound (63 mg) was obtained from intermediate 51 (80 mg, 0.27 mmol) and phthalic anhydride (83 mg, 0.55 mmol) as a white solid. M.P.: 147.6-150.4°C 'H-NMR (δ ppm, DMSO-ii 6 , 400 MHz): 13.02 (s, IH), 10.24 (s, 1H), 7.85-7.79 (m, 2H), 7.73 (d, J 7.8, 1H), 7.70-7.58 (m, 3H), 7.51 (d, J 8.1, IH), 7.46 (s, IH), 7.34 (d, J 6.5, 1H), 3.97 (s, 3H).

Example 61

2-(3-<±loro-2^5-diflaoro-5'-methoxybiphmyl-4-ylcarbamoyl )benzoic acid:

The title compound (40 mg) was obtained from intermediate 52 (70 mg, 0.26 mmol) and phthalic anhydride (76 mg, 0.52 mmol) as an off-white solid. M.P.: 160.1-163.5°C. J H- MR (5 ppm, DMSO-d f i, 400 MHz): 13.05 (s, IH), 10.28 (s, IH), 7.83 (d, J 7.3, IH), 7.70-7.51 (m, 5H), 7.28 (d, J 9.5, IH), 7.17-7.11 (m, IH), 7,05-6.97 (m, IH), 3.81 (s, 3H).

Example 62

2-(3,4 5-trΊ£luoro-3'-methox biphen l-4- lcarbaIno l) emoic acid:

The title compound (60 mg) was obtained from intermediate 53 (200 mg, 0.79 mmol) and phthalic anhydride (230 mg, 1.58 mmol) as an off-white solid. M.P.: 125.6-128.8°C. *H- MMR (5 ppm, DMSO- , 400 MHz): 13.04 (s, IH), 10.18 (s, IH), 7.83 (d, J 7.6, IH), 7.68- 7.64 (m, IH), 7.63-7.54 (m, 4H), 7.50 (d, J 8, IH), 7.35-7.28 (m, 2H), 3.94 (s, 3H). Example 63

2-[2,6-difluoro-4-(3-methyI-lfiT^^

The title compound (84 mg) was obtained from lntennediate 54 (66 mg, 0.25 mmol) and phthalic anhydride (75 mg, 0.51 mmol) as a white solid. M.P.: 182-186.5°C. Ή-ΝΜΒ. (8. ppm, DMSO-de, 400 MHz): 13.03 (s, IH), 10.86 (s, IH), 10.11 (s, IH), 7.87 (s, IH), 7.83 (d, J 7.3, IH), 7.69-7.63 (m, IH) 7.62-7.57 (m, 2H), 7.52 (d, J 9.3, 2H), 7.45 (d, J 8.5, IH), 7.40 (d, J 8.4, IH), 7.15 (s, IH), 2.31 (s, 3H).

Example 64

2-[2,6-difluoro-4-(3-methyl-lifanda^^

The title compound (38 mg) was obtained from intermediate 55 (50 mg, 0.19 mmol) and phthalic anhydride (57 mg, 0.39 mmol) as a white solid. M.P.: 179-184°C. ^- R (5 ppm, DMSO^s, 400 MHz): 12.79 (bs, IH), 10.15 (s, IH), 8.14 (s, IH), 7.84 (d, J 7.3, IH), 7.73 (d, J 7.3, IH), 7.69-7.65 (m, IH), 7.62-7.55 (m, 4H), 7.53 (d, J 8.7, IH), 6.02 (bs, IH), 2.54 (s, 3H).

Example 65

2^3-cUoro-3'-etoyl-5-fluorobiphenyl-4-ylcarbamoyl)benzoic acid:

The title compound (38 mg) was obtained from intermediate 56 (50 mg, 0.19 mmol) and phthalic anhydride (57 mg, 0.39 mmol) as a white solid. M.P.: 179-184°C. Ή-ΝΜΚ (δ ppm, DMS0-.4400 MHz): 13.02 (bs, IH), 10.22 (s, IH), 7.82 (d, J 7.7, IH), 7.74-7.54 (m, 7H), 7.39 (t, J 7.6, IH), 7.27 (d, J 7.6, 1H).2.68 (q, J 7.6, 2H), 1.23 (t, J 7.6, 3H).

Example 66

2-(3-cWoro-3*»ethoxy«2S5-dffiuorobiphe^

The title compound (54 mg) was obtained from intetmediate 57 (60 mg, 0.21 mmol) and phthalic anhydride (63 mg, 0.42 mmol) as a white solid. M.P.: 160-163°C. 1H-NMR (δ ppm, DMSO-iie, 400 MHz): 13.04 (s, IH), . 10.29 (s, IH), 7.83 (d, J 7.6, IH), 7.70-7.55 (m, 4H), 7.51 (d, J 10, IH), 7.26-7.21 (m, 2H), 7.16-7.10 (m, IH), 4.14 (q, J 6.8, 2H), 1.37 (t, J 6.8, 3H). Example 67

2-[2- Woro^(2,3-dihydrobenzoi¾][l,4]dio^-6-yl)-6-fluorophe^

acid:

The tide compound (54 mg) was obtained from intermediate 58 (60 mg, 0.21 mmol) and phthalic anhydride (63 mg, 0.42 mmol) as a white solid. MP.: 147-15 l e C. Ή-ΝΜΚ (δ ppm, DMSO-i¼j, 400 MHz): 13.02 (s, IH), 10.19 (s, IH), 7.82 (d, J 7.5, IH), 7.68-7.53 (m, 5H), 7.29 (d, J 2.1, IH), 7.24 (dd, J 2.1, 8.4, IH), 6.94 (d, J 8.4, IH), 4.28 (s, 4H).

Example 68

2-[3-cMoro-5-fluoro-3^2,2^-tiffluoroeft^

The title compound (21 mg) was obtained from intermediate 59 (80 mg, 0.25 mmol) and phthalic anhydride (74 mg, 0.5 mmol) as a white solid. M.P.: 133-137°C. Ή-NM (δ ppm, DMSO-4 5 , 400 MHz): 13.02 (s, IH), 10.25 (s, IH), 7.86-7.79 (m, 2H), 7.72 (d, J 10.5, IH), " 7.70-7.55 (m, 3H), 7.48-7.42 (m, 3H), 7.15-7.06 (m, IH), 4.88 (q, J 9.3, 2H).

Example 69

2-(3-fluoro-3 , -methoxybiphenyl-4-ylcarbamoyl)benzoic add:

The title compound (82 mg) was obtained from intermediate 60 (150 mg, 0.69 mmol) and phthalic anhydride (200 mg, 1.4 mmol) as a white solid. M.P.: l41-143 e C. ^- MR (δ ppm, DMSO-fe 400 MHz): 13.04 (s, IH), 10.23 (s, IH), 7.97-7.93 (m, IH), 7.87 (d, J 7.5, IH), 7.70-7.50 (m, 5H), 7.37 (t, J 7.9, IH), 7.29-7.20 (m, 2H), 6.94 (d, J 6.1, IH), 3.82 (s, 3H).

Example 70

2-(3'-ethoxybiphenyl-4-yJcarbamoyl)benzoic acid:

The title compound (82 mg) was obtained from intermediate 61 (150 mg, 0.69 mmol) and phtlialic anhydride (200 mg, 1.4 mmol) as a white solid. M.P.: 141-143°α 'H-NMR (5 ppm, DMSC i, 400 MHz): 13.03 (s, IH), 10.41 (s, IH), 7.87 (d, J 7.6, IH), 7.76 (d, J 8.6, 2H), 7.69-7.61 (m, 3H), 7.60-7.52 (m, 2H), 7.33 (t, J 7.9, IH), 7.20 (d, J 7.8, IH), 7.14 (s, IH), 6.87 (dd, J 2.1, 8.0, IH), 4.07 (q, J 7, 2H), 1.34 (t, J 7, 2H).

Example 71

2-[3 , -(ethylthio)-3,5-difluorobiphenyl-4-ylcarbamoyl]benzoi c acid:

The title compound (65 mg) was obtained from intermediate 62 (150 mg, 0.69 mmol) and phthalic anhydride (200 mg, 1.4 mmol) as a white solid. M.P.: 137.8-142. C ^- MR (δ ppm, DMSO-dd, 400 MHz): 13.03 (s, IH), 10.2 (s, IH), 7.84 (d, J 7.6, IK), 7.70-7.52 (m, 7H), 7.42 (t, J 7.7, IH), 7.34 (d, J 7.6, IH), 3.08 (q, J 7.3, 2H), 1.26 (t, J 7.3, 3H). MS (mz): 413.80 ([Af+fff).

Example 72

2-[3^ewylsiiifinyl)-3,5-difluorobip^

Oxone (241 mg, 0.39 mmol) was added to a solution of example 71 (210 mg, 0.43 mmol) in water-acetone (1.1, 4.2 ml) and stirred at T for 2h. Solid that formed in reaction mixture was filtered and dried to obtain the title compound (95 mg) as a white solid. ! H-NMR (δ ppm, DMSO-<¾, 400 MHz): 13.04 (s, IH), 10.26 (a, IH), 8.19 (s, IH), 8.14 (d, J 7.8, IH), 7.91 (d, I 7.8, IH), 7.84 (d, J 7.3, IH), 7.77 (t, J 7.8, IH), 7.72-7.64 (m, 3H). 7.62-7.56 (m, 2H), 3.41 (q, J 7.3, 2H), 1.13 (t, J 7.3, 3H). MS (m/z): 430.07 ([ +H] .

Example 73

2-(3'-cyclopropoxy-3,5-diflnorobiphenyl-4-ylcarbamoyl)benzoi c acid:

The title compound (96 mg) was obtained from intermediate 63 (160 mg, 0.61 mmol) and phthalic anhydride (181 mg, 1.2 mmol) as a white solid, MJP.: 125-127°C. MS (m/z): 410.2 ([Af+flT).

Example 74

2-(3'-ethoxy-3^-difraon>biphen^^^

The title compound (75 mg) was obtained from intermediate 5 (200 mg, 0.8 mmol) and 4- memyhsoben2ofuran-l,3-dione (260 mg, 1.6 mmol) as a white solid. M.P.: 138-140"C. *H- NMR (δ ppm, DMSO-<- * s , 400 MHz): 13.02 (s, IH), 10.09 (s, IH), 7-77 (d, J 7.8, IH), 7.52 (d, J 9.3, 3H), 7.47-7.41 (m, IH), 7.38 (t, J 7.9, IH), 7.32-7.24 (m, 2H), 6.98-6.95 (m, IH), 4.11 (q, J 6.9, 2H), 2-41 (s, 3H), 1.35 (t, J 6.9, 3H). MS (m z): 410.07 ([Λί-Η] "

Example 75

2^4-(3-ettiyl-lH-mdol-5-yl)-2,6-difluoro^

The title compound (75 mg) was obtained from intermediate 65 (250 mg, 0.992 mmol) and phthalic anhydride (271 mg, 1.84 mmol) as a white solid. Mi 5 .: 157.9- 160.9°C. ^- M (5 ppm, DMSO-<¾, 400 MHz): 13.03 (s, IH), 10.88 (s, IK), 10.11 (s, IH), 7.89 (s, IH), 7.83 (d, J 7.3, IH), 7.69-7.63 (m, IH), 7.62-7.56 (m, 2H), 7.51 (d, J 9.3, 2H), 7.47-7.39 (m, 2H), 7.16 (s, IH), 2.75 (q, J 7.4, 2H), 1.28 ft J 7.4, 3H). MS (m/z): 418.75 (I -HP. P T/IB2011/000959

70

Example /t>

2-(3' -etho^-3,5-o fluorobiphenyl -ylcarbamoyl)i-icotmic add:

The tide compound (15 mg) was obtained from intermediate 5 (150 mg, 0.6 mmol) and faro[3,4-b]pyridine-57-dione (180 mg, 1.2 mmol) as a grey solid. M.P.: 207-210 e C. MS

Example 77

4-(3' -ethoxy-3^-d¾fluorobiphenyl-^ylcarbamoyl)rdcotinic acid:

The title compound (10 mg) was obtained from intermediate 5 (100 mg, 0.4 mmol) and (119 mg, 0.8 mmol) as a white solid. M.P.: 219-221°C. MS (m/z): 399.01 ([Af+HJ " *). The regioche ical assignment is based on earlier reports, e.g. NaiIton et. al. Bioorganic & Medicinal Chemistry Letters 2010, 20(1), 74-77.

Example 78

2-[3' elhyltWo)-2,3A6-tetraflnoroM

The title compound (82 mg) was obtained from intermediate 66 (280 mg, 0.93 mmol) and phthalic anhydride (206 mg, 1.4 mmol) as a white solid. M.P.: 158-160°C. MS (m z): 448.29 ([M-H]").

Example 79

2-(2'-^oro-2-fluoro-5'-methoxybiphenyl-4-ylcarbamoyl)benzoic acid:

The title compound (50 mg) was obtained from intermediate 67 (210 mg, 0.83 mmol) and phthalic anhydride (185 mg, 1.2 mmol) as a grey solid. M.P.: 185-187°C MS (m/z): 398.24 ([M-H]-).

Example 80

2-(3-fluoro-3'-propoxybiphenyl-4-ylcarbainoyl)benzoic acid:

The title compound (14 mg) was obtained from intermediate 68 (170 mg, 0.7 mmol) and phthalic anhydride (153 mg, 1.03 mmol) as a white solid. M.P.: 116-119°C MS (m/z): 394.2 ([M+H]*). Example 81

2-(3'-propoxybiphenyl-4-ylcarbamoyl)benzoic acid:

The title compound (60 mg) was obtained from intermediate 69 (60 mg, 0.26 mmol) and phthalic anhydride (58 mg, 0.4 mmol) as a white solid. MP.: 152-154°C. MS (m/z): 376.2

Example 82

2^3 ethyltMo)-2-fluorobiphenyl^^

The title compound (200 mg) was obtained from mtennediate 70 (430 mg, 1.74 mmol) and phthalic anhydride (380 mg, 2.6 mmol) as a white solid. M.P.: 74-76°C. MS (m/z): 395.72 Μ+ΉΓ).

Example 83

2-[3 -dlflnoro-3'-(2^^trifluoroethoxy)b^

The title compound (80 mg) was obtained from intermediate 71 (88 mg, 0.29 mmol) and phthalic anhydride (86 mg, 0.58 mmol) as a white solid. MP.: 152 56°C. 'H-NMR (δ ppm, DMSO-<& 400 MHz): 13.04 (s, 1H), 10.19 (s, 1H), 7.84 (d, J 7.2, 1H), 7.68-7.53 (m, 6H), 7.46-7.41 ( , 2H), 7.13-7.06 (m, 1H), 4.87 (q, J 9, 2H).

Example 84

2-(3'-ethyl-3^-difluorobiphenyl-4-ylcarbamoyl)berizoic acid:

The title compound (15 mg) was obtained from intermediate 72 (170 mg, 0.73 mmol) and phthalic anhydride (210 mg, 1.45 mmol) as a white solid. MP.: 132-136°C. 'H-NMR (δ ppm, DMSO-c¾, 400 MHz): 13.04 (s, 1H), 10.18 (s, 1H), 7.83 (d, J 7.3, 1H), 7.69-7.48 (ra, 7H), 7.39 (t, J 7.6, 1H), 7.26 (d, J 7.3, 1H), 2.67 (q, J 7.6, 2H), 1.23 (t, J 7.6, 3H).

Example 85

2-(biphenyl-4-yicarbamoyl)benzoic acid:

The title compound (46 mg) was obtained from biphenyl^amine (65 mg, 0.38 mmol) and phthalic anhydride (85 mg, 0.58 mmol) as a white solid. M .: 276-278°C. MS (m/z): 318.1 (S.M+WT). Example 86

2-(2'-cUorobiphenyi-4-yicarbamoyl)ber-Zoic acid:

The title compound (223 rag) was obtained from intermediate 73 (170 mg, 0.83 mmol) and phthaHc anhydride (185 mg, 1.25 mmol) as a white solid. M.P.: 243-247°C. MS (m/z): 352.1

Example 87

2-(3'-methoxybiphenyl-4-ylcarbamoyl)benzoic acid:

The title compound (223 mg) was obtained from intermediate 74 (170 mg, 0.83 mmol) and phthalic anhydride (185 mg, 1.25 mmol) as a white solid. M.P.: 243-247°C MS (m/z): 348.2 ([ +H]*).

Example 88

acid:

The title compound (110 mg) was obtained from intermediate 75 (280 mg, 1.1 mmol) and phthalic anhydride (245 mg, 1.66 mmol) as a white solid. M.P.: 154.4-158.5*C. MS (m/z): 402.2 ([M+H] ).

Example 89

2-[3'-(eftyltm , o)»2,6-diflnorobi^

The title compound (50 mg) was obtained from intermediate 76 (240 mg, 0.9 mmol) and phthaHc anhydride (200 mg, 1.35 mmol) as a white soHd. MP.: 162-167°C. MS (m/z): 414.2 ([M+H]*).

Example 90

2-(3*-efliylbipheBtyl-4-ylcarriamoyl)benzoic add:

The title compound (96 mg) was obtained from intermediate 77 (100 mg, 0.5 mmol) and phthaHc anhydride (110 mg, 0.76 mmol) as an off-white soHd. M.P.: 178-182°C. MS (m/z): 346.2 ([M+H]*). Example 91

2-(3'-buto^-2,3A^tetΓafluoΓobi hen l·4-ylcar amoyl) emoic add:

The title compound (130 mg) was obtained from intennediate 78 (180 mg, 0.57 mmol) and phthalic anhydride (127 mg, 0.86 mmol) as a white solid. MP.: 215.5-218.5 e C. MS (m z):

Example 92

2-(3'-butoxy-3-fluorobiphenyl^ylcarbamoyl)ben-ioic acid:

The title compound (130 mg) was obtained from intennediate 79 (170 mg, 0.65 mmol) and phthalic anhydride (145 mg, 0.98 mmol) as a white solid. M.P.: l02-105 e C. MS (m z): 406.17 ([M-H]-).

Example 93

The title compound (50 mg) was obtained from intermediate 8 (200 mg, 0.69 ramol) and phthalic anhydride (150 mg, 1.03 mmol) as a white solid. M.P.: 158-160°C. MS (m z): 435.93 ([M-H] " ).

Example 94

2-(3'^doprorwxy-3-fluorobiphenyl^ylcarbamoyl)benzoic acid:

The title compound (120 mg) was obtained from intermediate 80 (100 mg, 0.41 mmol) and phthalic anhydride (91 mg, 0.62 mmol) as a white solid. M.P.: 134.5-137.5°C. MS (m/z): 390.27 ([M-H] " ).

Example 95

2-(3'^ydopropoxybjphenyM-ylcarbamoyl)bexi--Oic acid:

The tide compound (90 mg) was obtained from intennediate 81 (98 mg, 0.43 mmol) and phthalic anhydride (96 mg, 0.65 mmol) as a white solid. M.P.: 150.2-154.3°C. MS (m/z): 372.14 ([M-H] " ). Example 96

2-(3'-butoxybiphenyl^-ylc-irbainoyl)beiizoic add:

The title compound (37 mg) was obtained from intermediate 82 (80 mg, 0.33 mmol) and phthalic anhydride (73 mg, 0.5 mmol) as a white solid. M.P.: 155-157°C. MS (ra/z): 388.38 w- -

Example 97

2-(3' -buto^-2-fluort)biphenyl-4-ylcarbamoyi)benzoic acid:

The title compound (171 ' mg) was obtained from intermediate 83 (240 mg, 0.92 mmol) and phthalic anhydride (205 mg, 1.3 mmol) as a white solid. MP.: 164-167 e C MS (m/z): 406.31 ([ -HD-

Example 98

2-(3'-Butoxy-¾6-difluorobiphe^

The title compound (91 mg) was obtained from intermediate 84 (170 mg, 0.6 mmol) and phthalic anhydride (136 mg, 0.9 mmol) as an off-white solid. M.P.: 181.1-184.2 e C. MS (m z): 423.95 ([Λ/-Η] " ).

Example 99

2-[¼6-Diffaoro-4 " (3-pro^

The title compound (150 mg) was obtained from intermediate 86 (240 rog, 0.84 mmol) and phthalic anhydride (186 mg, 1.25 mmol) as a white solid. M.P.: 76-80°C ^-N (8 ppm, DMSO-^, 400 MHz): 10.88 (s, 1H), 7.88 (s, 1H), 7.81 (d, J 6.6, 1H), 7.75-7.71 (m, 1H), 7.53-7.47 03», 5H), 7.44-7.38 (m, 2H), 7.14 (s, 1H), 2.72 (t, J 7.4, 2H), 1.69 (h, J 7.5, 2H), 0.96 (t, J 7.3, 3H). MS (m/z): 433.13 ([A -H] " ).

Example 100

2-[2-CUoro^3-ethyl-lH-mdol-5-yl)-6-fluorophenylcarbamoyl] benzoic acid:

The title compound (25 mg) was obtained from intermediate 87 (60 mg, 0.21 mmol) and phthalic anhydride (46 mg, 0.31 mmol) as a white solid. MP.: 98-102°C. MS (m/z): 435.23 ({M-HD- BIOLOGICAL ASSAY

The properties of the compounds of this invention may be confirmed by a number of biological and pharmacological assays. The biological and pharmacological assay which can be been carried out with the compounds according to the invention and/or their pharmaceutically acceptable salts are exemplified below. Similarly the compounds of the present invention may also be tested using other assays such as cytokine (EL-17 and interferon gamma) estimation in human whole blood and PBMCs.

The compounds of the invention may also be tested in various animal models to establish the various therapeutic potential of the compounds of this invention.

1. IN- VITRO DHODH Ι ΗΙΒΓΠΟΝ ASSAYS

The properties of the compounds of this invention may be confirmed by a number of biological/pharmacological assays. The biological/ pharmacological assay which can be been carried out with the compounds according to the invention and/or their pharmaceutically acceptable salts is exemplified below. Similarly the compounds of the present invention may also be .tested using other assays such as cytokine (IL-17, interferon gamma etc) estimation in human whole blood and PBMCs.

Dihydro-orotate dehydrogenase inhibition assay

Dihydro-orotate dehydrogenase (DHODH) catalyzes the reduction of dihydro-orotate to orotate during de novo biosynthesis of pyrimidines. Inhibition of DHODH activity in U937 membrane preparations was measured by the dihydro-orotate driven reduction of 2,6 dichloroindophenol (DCJP).

U937 cells were homogenized in 20 mM Tris/HCl (pH 7.2) containing 1 m EDTA, Cell debris was removed by centrifugation at 2000 x g for 10 min. Membrane fractions were pelleted by centrifuging the supernatant at 160000 x g for 1 h at 4°C and washed with buffer containing 125 mM sucrose and 150 mM NaCl. Following washes, the pellet was dissolved in 20 mM Tris/HCl containing 150 mM NaCl, 1 mM EDTA, and 1% octyl glucoside on ice for 1 h. Particulate matter was removed by centrifugation at 100000 x g t or 1 h at 4°C. Extracts (-50 ug protein) were added to an assay mixture (200 μΜ CoQD, 500 uM dihydro- orotate, 75 uM DCIP in 100 mM HEPES pH 8.0, 150 mM NaCl, 10% glycerol, 0.05% Triton X-100) containing inhibitors at desired concentrations in a 96-well plate. The mixture was incubated at 37 °C for 4 h before measuriag the change in absorbance on a plate reader (BMG Labtech., Germany) at 600 nm. Data were analyzed using GraphPad Prism. ICso for each compound was determined based on the percent inhibition of dihydro-orotate reduction.

Results:

Table-2

h- DHODH fl- DHODH h- DHODH

Compound % inhibition Compound % inhibition Compound % inhibition

ICSO icsq ICSO l a (nM> l uM fuM) l uM in )

Texifli omide* 77.16 875.9 Example 35 86.45 11.85 Example 70 14.02

Example 1 53.27 740.8 Example 36 . Example 71 84.84 53.51

Example 2 1218 Example 37 14.77 Example 72 16.92

Example 3 14.27 Example 38 27.84 Example 73* 84.98 28.01

Example 4 42.95 Example 39 74.43 177.8 Example 74* 7.14

Example 5 85.70 49.8 Example 40 Example 75* 100 1.52

Example 6 2.26 Example 41 72.16 S3.39 Example 76* 44.05

Example 7 4.53 Example 42 76-91 24.04 Example 77* 50.22

Example 8 85,75 90.03 Example 43 58.24 180.8 Example 78* 32,92

Example 9 10.33 Example 44 71.12 90.63 Example 79* .

Example 10 46.78 Example 45 96.21 44.09 Example 80* 47.65

Example J Example 46 55.97 Example 81* 11.25

Example 12 64.47 204.7 Example 47 55.19 Example 82* 57.87

Example 13 76.36 150 Example 48 47.10 Example 83* 43.56

Example 14 52.19 Example 49 - Example 84* 36.61

Example 15 75.48 129.2 Example 50 28.65 Example 85* 15,13

Example 16 28.04 Example 51 26.56 Example 86* 33,61

Example 17 50.26 Example 52 12.82 Example 87* 30.25

Example 18 62.23 294.1 Example 53 Example 88* 62.18

Example 19 82.18 44.65 Example 54 Example 89 .

Example 20 . 55.37 Example 55 44.50 Example 90 29.41

Example 21 56.44 Example 56 1.77 Example 91 4239

Example 22 41.83 Example 57 68.11 Example 92 9.65

Example 23 47.16 Example 58 76.14 Example 93 10.46

Example 24 40.18 Example 59 34.54 Example 94 13.86

Example 25 60.17 Example 60 41.77 Example 95 1.49

Example 26 85.34 122 Example 61 73.73 Example 96 -

Example 27 82.9 " 3 147.5 Example 62 12.37 Example 97

Example 28 1190 Example 63 76.68 22.0 Example 98 30.97

Example 29 94.02 7.93 Example 64 23.37 Example 99 42.58 Example 30 67.97 Example 65 71.16 146.2 Example 100 58.71

Example 31 73.51 44.65 Example 66 87.51 84.42

Example 32 58.91 Example 67 54.12

Example 33 Example 68 86.47 62.2

Example 34 93.78 62.52 Example 69 21.98

if compound tested at 10 uM; * compound tested at ( 3 uM

2. Inhibition of IL-17 release from mouse splenocytes: Splenocytes isolated from Balb/c mice were re-suspended in RPMI medium at a concentration of 1 x 10 6 cells/ml and seeded in a 6 well plate. Cells were incubated with desired concentrations of the inhibitor for 15 min prior to induction with 10 ug/ml PMA + 1 μΜ ionomycin. After a 3 h incubation, supernatant was collected and analyzed for IL-17 concentration using an ELISA kit Data were analysed using GraphPad Prism. IC50 values for each compound were determined based on the percent mhibitioii due to the test compound compared to the control.

Results:

Table-3

IL-17 IL-17 IL-17

Compound % inhibition @ Compound % inhibition @ Compound .% inhibition @

IC50 IC50 IC50

ΙΟμΜ (μΜ) IOJJL ίμ ) lOriM iuM)

TerifluBQmide 0 Example 31 21.10 Example 63 0

Example 1 6.13 Example 32 11.83 Example 64 15.33

Example 2 29.25 Example 33 14.02 Example 65 11.04

Example 3 17.15 Example 34 5.96 Example 67 3.56

Example 4 11.23 Example 35 7.76 Example 69 5.54

Example s 30.79 Example 36 45.45 Example 70 48.43 9.11

Example 6 9.52 Example 37 17.84 Example 71 27.77

Example 7 8.58 Example 38 9.35 Example 72 7.36

Example 8 35.43 Example 39 5.87 Example 73 7.86

Example 9 26.89 Example 40 8.79 Example 74 13181

Example 10 6.82 Example 41 7.16 Example 75 29.40 32.86

Example 11 2.62 Example 42 22.26 Example 76 7,88

Example 12 2.96 Example 43 6.82 Example 77 9.25

Example 13 3.43 Example 44 35.00 Example 78 11.14

Example 14 13.49 Example 45 48.51 Example 79 24.63

Example 15 57.45 Example 46 3.69 Example 80 20.07

Example 16 12.35 Example 47 6.22 Example 81 23.00

Example 17 11.11 Example 48 22.04 Example 82 17.59 Example 18 12.09 Example 49 3.95 Example 83 8.79

Example 19 19.00 Example SO 10.08 Example 84 12.12

Example 20 24-27 Example 51 10.85 Example 85 13.03

Example 21 17.84 Example 52 13.77 Example 86 23.84

Example 22 12.91 Example 53 8.28 Example 87 20.91

Example 23 1497 Example 54. 22.56 Example 88 19.09

Example 24 8.46 Example 55 5.66 Example 89 25.54

Example 25 17.54 Example 56 5.49 Example 90 22.35

Example 26 8.70 Example 58 5.46

Example 27 1239 Example 59 7.36

Example 28 18.83 Example 60 20-29

Example 29 46.09 18.76 Example 61 4.23

Example 30 10.29 Example 62 8.34

3. Determination of IL-17 producing cells by Flow cytometry; PBMC isolated from human blood were stimulated and treated with desired concentrations of the test compounds prior to stimulation with Cytostim (Milteny Biotech, Germany). After 4 h, IL-17 secreting cells were stained using the IL-17 secretion assay kit as per the manufacturer's instruction and normalized to total CD4+ cells within the PBMC population. Data were analyzed using Graph pad prism. For instance example 29 showed a 43.6 % inhibition of IL17 when tested at at 1 uM The results indicate the potential of the compounds of invention to inhibit IL1 release independent of DHODH inhibition.

4. In Vitro Inhibition of proliferation and cytokine Release in Peripheral Blood Mononuclear Cells (PBMC)

a. Inhibition of PHA induced PBMC proliferation: PBMC from freshly collected HWB was isolated by density gradient using Histopaque and seeded in a 96-well plate. Wells were incubated with desired concentrations of the inhibitor for 15 rain. Proliferation was induced by the addition of 2 uM Phytohemagglutinin at 37°C in an atmosphere containing 95% CO2 . Viability was determined after 48 h using an 3-(4,5-Dimemylthiazol-2-yl)-2,5- diphenyltetrazolium bromide (MTT) assay. Data were analysed using GraphPad Prism, percent inhibition and/or G¾o values for each compound were determined based on the percent inhibition due to the test compound compared to the control. For instance example 29, 42 & 75 showed a greater than 70 % rahibition when tested at 10 uM. b. Inhibition of PHA induced cytokine (IL17) release: PBMC from freshly collected HWB were isolated by density gradient using Histopaque and seeded in a 96-well plate. Wells were incubated with desired concentrations of the inhibitor for 15 min. Proliferation was induced by the addition of 2 μΜ Phytohemaggliitinin at 37°C in an atmosphere containing 95% CO2 . Supernatant was collected after 48 h for estimation of cytokines by ELISA. Data were analysed using GraphPad Prism. Percent inhibition and IC50 values for each compound were determined based on the percent inhibition due to the test compound compared to the control. For instance example 5 showed a greater than 50 % inhibition when tested at 10 uM.

c Inhibition of PHA induced CD4+ cell proliferation in Human Whole Blood: HWB or were treated with desired concentration of inhibitor and induced with 5 μΜ PHA. %CD4+ cell viability was detennined after 48 h by flow cytometry. Data were analysed using GraphPad Prism. Percent inhibition and IC5 0 values for each compound were detennined based on the percent inhibition due to the test compound compared to the control. For instance example 29 and 75 showed a greater than 65 % inhibition when tested at 1 uM. d. Inhibition of PHA induced CD4+ cell proliferation in PBMC: Isolated PBMC were treated with desired concentration of inhibitor and induced with 5 μ PHA. %CD4+ cell viability was determined after 48 h by flow cytometry. Data were analysed using GraphPad Prism. IC50 values for each compound were determined based on the percent inhibition due to the test compound compared to the contxoL For instance example 29 and 75 showed a greater than 90 % inhibition when tested at 1 uM.

5. Single Dose Oral Hepatotoxirfty Assay:

BALB/cJ (n= 4 or 5/sex) mice aged 8 to 10 weeks, with weights ranging from 18 to 25 g were used. They were housed under conditions of controlled temperature and humidity and a 12-h light dark cycle. They were given continuous access to bottled spring water a»d fed a standard chow at ad libitum. The mice were allowed to acclimate for 1 week before use. On the day of experiment mice were fasted overnight for 12 h and administered with test item formulation (100mg kg.b.wt po) or vehicle (lOml'kg.b.wt po) by oral route and food was given 4hr after test item administration. After 24 hr post administration blood samples were collected from orbital sinus of all the animals and serum was separated to assess the hepatotoxicity. Biochemical evaluation of liver function was determined by measuring serum enzyme activities of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) using commercially available kits from Sigma (St. Louis, MO). Results: The compounds of the invention were found to be Non-Hepatotoxic and the data is as disclosed herein below in Table4.

6. Evaluation of usefulness of DHODH modulators in various Anti-inflammatory and Autoimmune disorders using In-vivo animal models has been or can be established using the methodology as given below.

i. Inhibition of concanavalin induced lymphocyte proliferation in Wistar rats: Con A is often used to prepare experimental animals with high levels of cytotoxic T-lymphocytes, because these cells are involved in the development of viral infections in humans. To evaluate the effect of an inhibitor on lymphocyte proliferation in rats, ammals were treated with 10 mg/kg po of a compound of the present invention prior to intravenous adnunistration of 5 mg/kg concanavalin A. Lymphocyte count was determined after 48 h on a Medonic blood analyzer. Data indicated a -75% reduction in peripheral blood lymphocytes upon treatment with the test compound imphcating the therapeutic potential of the compound in immune-mediated disorders such as rheumatoid arthritis.

ii. Inhibition of concanavalin induced IL-17 release in Balb/c mice: Balb/c mice were treated with 10 mg/kg po of the test compound prior to intravenous adrr stration of 20 rag/kg concanavalin A. Plasma was obtained after 2 h and estimated for inhibition of IL-17 release by ELISA. The test compound reduced IL-17 secretion from Thl7 cells in a dose- dependent manner. iii. Inhibition of TNBS induced colitis in Balb/c mice: Female BALB/c Mice are to be fasted overnight and adnunistered PBS, 50% Ethanol/PBS, or 50% Ethanol 20 mg kg TNBS (40 uL enema), while under isoflourane anesthesia (study day 1). Animals are to be dosed p.o. with Vehicle, Dexamethasone (5 mg kg), or test compounds at for. example 25 mg/kg. The dosing would_begin on study day 1 (5 hours after the TNBS enema). Mice are to be euftanized on day 7. Various parameters of colitis are to be measured, essentially according to a previously published study (see. Fitzpatrick et al., Inflammatory Bowel Diseases, 2010).

Other in-vivo models wherein the effect of DHODH modulators in various Antiinflammatory and Autoimmune disorders can be tested include Collagen-induced arthritis in male DBA a Ola HSD mice and Chronic Experimental Autoimmune Encephalomyelitis in C57 B16J mice: Collagen induced arthritis in rodent models have been widely used to illustrate and understand the development of the disease besides serving as a surrogate for validation of therapeutic targets for human rheumatoid arthritis. Mice are anesthetized with fcoflurane and given 150μ1 of Bovine Type Π collagen in Freund's complete adjuvant injections (day 0 and day 21). Treatment is initiated on study day 0 and continued once daily, every day (po, qd). Starting on day 18, clinical scores are given daily for each of the paws (right front, left front, right rear, left rear) and continued till the day of sacrifice (day 34).

Experimental Autoimmune Encephalomyelitis (EAE) is an inflammatory disease of the central nervous system and widely used as an ariimal model of Multiple Sclerosis. Animals are ad i stered pertussis toxin intravenously and myelin oligodendrocyte glycoprotein (MOG) subcutaneously on day 0. Treatment is initiated at day 0 and continued till sacrifice. Development of EAE is observed between day 9 to day 42. At the end of the treatment period, animals are sacrificed for histopathological analysis as well as cytokine estimation in plasma.

Although the invention herein has been described with reference to particular embodiments, it is to be understood that these embodiments are merely iUustrative of the principles and applications of the present invention. It is therefore to be understood that numerous modifications may be made to the illustrative embodiments and that other arrangements ma be devised without departing from the spirit and scope of the present invention as described above and the appended claim. All publications and patent and/or patent applications cited in this application are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated herein by reference.