Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
NUCLEASE SYSTEMS FOR GENETIC ENGINEERING
Document Type and Number:
WIPO Patent Application WO/2019/051278
Kind Code:
A1
Abstract:
Fusion constructs encoding RNase-H-like domain containing compositions are disclosed. Disclosed are also compositions and methods utilizing RNase-H-like domain containing compositions for the treatment of cancer. Also disclosed are the methods of making and using the RNase-H-like domain containing compositions in treating various diseases, conditions, and cancer.

Inventors:
QI LEI S (US)
CHOUDHRY MODASSIR S (US)
LIN XUEQIU (US)
XU XIAOSHU (US)
Application Number:
PCT/US2018/050029
Publication Date:
March 14, 2019
Filing Date:
September 07, 2018
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
UNIV LELAND STANFORD JUNIOR (US)
INTIMA BIOSCIENCE INC (US)
International Classes:
C12N15/11; C12N9/22; C12N15/63
Domestic Patent References:
WO2017139264A12017-08-17
WO2015157534A12015-10-15
Other References:
See also references of EP 3679137A4
Attorney, Agent or Firm:
HAO, Joe C. et al. (US)
Download PDF:
Claims:
WHAT IS CLAIMED IS:

A polypeptide construct comprising: a prokaryotic RNase H-like domain-containing (RHDC) polypeptide sequence and a nucleic acid unwinding polypeptide sequence, wherein said RHDC polypeptide sequence cleaves a nucleic acid in a target polynucleotide sequence at a mesophilic temperature, wherein said target polynucleotide sequence is bound by a guide DNA, and wherein said RHDC polypeptide sequence is fused to said nucleic acid unwinding polypeptide sequence.

The polypeptide construct of claim 1, wherein at least one of said RHDC polypeptide sequence or said nucleic acid unwinding polypeptide sequence are derived from a mesophilic organism.

The polypeptide construct of claim 1, wherein said RHDC polypeptide sequence cleaves a nucleic acid in said target polynucleotide sequence at about 30 °C, 31 °C, 32 °C, 33 °C, 34 °C, 35 °C, 36 °C, 37 °C, 38 °C or 39 °C.

The polypeptide construct of claim 1, wherein said RHDC polypeptide sequence cleaves a nucleic acid in said target polynucleotide sequence at about 19 °C, 20 °C, 21 °C, 22 °C, 23 °C, 24 °C, 25 °C, 26 °C, 27 °C, 28 °C, 29 °C or 30°C.

The polypeptide construct of claim 1, wherein said RHDC polypeptide sequence cleaves a nucleic acid in said target polynucleotide sequence at 37 °C.

The polypeptide construct of any one of claims 2 to 5, wherein said mesophilic organism is a prokaryotic organism.

The polypeptide construct of claim 6, wherein said prokaryotic organism is from a family selected from the group consisting of: bacteroidetes, proteobacteria, acidobacteria, actinobacteria, firmicutes, cyanobacteria, spirochaetes, deinococcus, verrucomicrobia, planctomycetes, balneolaeota, and chloroflexi.

The polypeptide construct of any one of claims 1 to 7, wherein said RHDC polypeptide sequence is derived from a polypeptide encoded by a gene located in an adjacent operon to at least one of a P-element induced Wimpy testis (PIWI) gene, RuvC, Cas, Sir2, Mrr, TIR, PLD, REase, restriction endonuclease, DExD/H, superfamily II helicase, RRXRR, DUF460, DUF3010, DUF429, DUF1092, COG5558, Orffl_IS605, Peptidase_A17, Ribonuclease H-like domain, 3'-5' exonuclease domain, 3'-5' exoribonuclease Rv2179c-like domain, Bacteriophage Mu, transposase, DNA- directed DNA polymerase, family B, exonuclease domain, Exonuclease, RNase T/DNA polymerase III, yqgF gene, HEPN, RNase LS domain, LsoA catalytic domain, KEN domain, RNaseL, Irel, RNase domain, RloC, or PrrC.

The polypeptide construct of any one of claims 1 to 8, wherein said RHDC polypeptide sequence is derived from a polypeptide encoded by a gene located in an adjacent operon to at least one of a gene involved in defense, stress response, a Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR), Argonaute, or DNA repair.

10. The polypeptide construct of claim 9, wherein said RHDC polypeptide sequence is an

Argonaute domain sequence.

11. The polypeptide construct of claims 1 to 10, wherein said RHDC polypeptide sequence comprises a nuclease, nickase, RNase, recombinase, flippase, transposase, or a combination thereof.

12. The polypeptide construct of any one of claims 1 to 11, further comprising an additional functional polypeptide sequence fused to said RHDC polypeptide sequence and said nucleic acid unwinding polypeptide sequence.

13. The polypeptide construct of any one of claims 1 to 12, wherein said nucleic acid

unwinding polypeptide is of prokaryotic or archaeal origin.

14. The polypeptide construct of any one of claims 1 to 13, wherein said nucleic acid

unwinding polypeptide comprises a helicase, a topoisomerase, a Cas, or a combination thereof.

15. The polypeptide construct of claim 14, wherein said Cas is a catalytically dead Cas or partially dead Cas (nickase).

16. The polypeptide construct of claim 15, wherein said catalytically dead Cas is selected from the group consisting of catalytically dead derivatives of: Casl, CaslB, Cas2, Cas3, Cas4, Cas5, Cas6, Cas7, Cas8, Cas9, CaslO, Csyl, Csy2, Csy3, Csel, Cse2, Cscl, Csc2, Csa5, Csn2, Csm2, Csm3, Csm4, Csm5, Csm6, Cmrl, Cmr3, Cmr4, Cmr5, Cmr6, Csbl, Csb2, Csb3, Csxl7, Csxl4, CsxlO, Csxl6, CsaX, Csx3, Csxl, CsxlS, Csfl, Csf2, CsO, Csf4, Cpfl, c2cl, c2c3, Cas9HiFi, xCas9, CasX, CasY, and CasRX.

17. The polypeptide construct of any one of claims 1 to 16, wherein said polypeptide

construct further comprises an ATPase sequence.

18. The polypeptide construct of any one of claims 1 to 17, wherein said RHDC polypeptide sequence and said nucleic acid unwinding polypeptide sequence are fused by a linker sequence.

19. The polypeptide construct of claim 18, wherein said linker is a polypeptide linker that comprises: a GSGSGS sequence or multiple copies of GSGSGS, non-charged amino acids, alpha-helical domains, or peptides with ligand-inducible conformational changes.

20. The polypeptide construct of claim 19, wherein said linker is a polypeptide linker.

21. The polypeptide construct of any one of claims 1 to 20, wherein said nucleic acid unwinding polypeptide sequence and said RHDC polypeptide sequence are expressed in the same frame.

22. The polypeptide construct of any one of claims 1 to 21, wherein said polypeptide

construct binds to said guide DNA.

23. The polypeptide construct of any one of claims 1 to 22, wherein said guide DNA is from about 1 base pair to about 30 base pairs in length.

24. The polypeptide construct of any one of claims 1 to 23, wherein said guide DNA is complementary to said target polynucleotide sequence.

25. The polypeptide construct of claim 24, wherein said target polynucleotide sequence comprises a gene sequence.

26. The polypeptide construct of any one of claims 1 to 25, wherein said polypeptide

construct produces a disruption in said gene sequence when introduced into a cell.

27. The polypeptide construct of claim 26, wherein said disruption comprises a double strand break or a single strand break.

28. The polypeptide construct of any one of claims 1 to 27, wherein said RHDC polypeptide sequence comprises a firmicutes Argonaute domain, or a functional fragment or variant thereof, that cleaves a nucleic acid at 37 °C.

29. The polypeptide construct of any one of claims 1 to 27, wherein said RHDC polypeptide sequence comprises a Clostridium Argonaute domain, or a functional fragment or variant thereof, that cleaves a nucleic acid at 37 °C.

30. The polypeptide construct of claim 29, wherein said Clostridium Argonaute domain comprises a Clostridium disporicum Argonaute domain, or a functional fragment or variant thereof.

31. The polypeptide construct of any one of claims 1 to 27, wherein said RHDC polypeptide sequence comprises a Thermoactinomyces Argonaute domain, or a functional fragment or variant thereof, that cleaves a nucleic acid at 37 °C.

32. The polypeptide construct of claim 31, wherein said Thermoactinomyces Argonaute domain comprises a Thermoactinomyces sp CDF Argonaute domain, or a functional fragment or variant thereof.

33. The polypeptide construct of any one of claims 1 to 27, wherein said RHDC polypeptide sequence comprises a Methylobacter Argonaute domain, or a functional fragment or variant thereof, that cleaves a nucleic acid at 37 °C.

34. The polypeptide construct of claim 33, wherein said Methylobacter Argonaute domain comprises a Methylobacter whittenburyi Argonaute domain, or a functional fragment or variant thereof.

35. The polypeptide construct of any one of claims 1 to 27, wherein said RHDC polypeptide sequence comprises a Thermosynechococcus Argonaute domain, or a functional fragment or variant thereof, that cleaves a nucleic acid at 37 °C.

36. The polypeptide construct of claim 35, wherein said Thermosynechococcus Argonaute domain comprises a Thermosynechococcus elongates Argonaute domain, or a functional fragment or variant thereof.

37. A polypeptide construct comprising a synthetic fusion of an Argonaute polypeptide sequence and a nucleic acid unwinding polypeptide sequence, wherein said

Argonaute polypeptide sequence cleaves a target nucleic acid at a mesophilic temperature.

38. The polypeptide construct of claim 37, wherein at least one of said Argonaute polypeptide sequence or said nucleic acid unwinding polypeptide sequence are derived from a mesophilic organism.

39. The polypeptide construct of claim 37 or 38, wherein said Argonaute polypeptide

sequence cleaves said target nucleic acid at about 19 °C to 40 °C.

40. The polypeptide construct of claim 39, wherein said Argonaute polypeptide sequence cleaves said target nucleic acid at about 30 °C, 31 °C, 32 °C, 33 °C, 34 °C, 35 °C, 36 °C, 37 °C, 38 °C or 39 °C.

41. The polypeptide construct of claim 40, wherein said Argonaute polypeptide sequence cleaves said target nucleic acid at 37 °C.

42. The polypeptide construct of any one of claims 37 to 41, wherein said Argonaute

polypeptide sequence is an archaeal Argonaute polypeptide sequence.

43. The polypeptide construct of claims 37 to 41, wherein said Argonaute polypeptide

sequence comprises a nuclease, nickase, RNase, recombinase, flippase, transposase, or a combination thereof.

44. The polypeptide construct of any one of claims 37 to 43, wherein said Argonaute

polypeptide sequence and said nucleic acid unwinding polypeptide sequence are fused by a linker sequence.

45. An ex vivo cell comprising the polypeptide construct of any one of claims 1 to 44.

46. A nucleic acid encoding a polypeptide construct of any one of claims 1 to 44.

47. A composition comprising the polypeptide construct of any one of claims 1 to 44.

48. A method of genomic editing comprising contacting a cell with the polypeptide construct of any one of claims 1 to 44.

49. A kit comprising:

(a) the polypeptide construct of any one of claims 1 to 44; and

(b) instructions for use thereof.

50. The kit of claim 49, further comprising a container.

51. A polypeptide construct comprising: an RNase H-like domain-containing (RHDC) polypeptide sequence, a nucleic acid unwinding polypeptide sequence, and a nucleic- acid insertion polypeptide sequence, wherein said RHDC polypeptide sequence cleaves a nucleic acid in a target polynucleotide sequence at a mesophilic temperature to generate a cleaved nucleic acid, wherein said target polynucleotide sequence is bound by a guide DNA, wherein said RHDC polypeptide sequence is fused to said nucleic acid unwinding polypeptide sequence, and wherein said nucleic-acid insertion polypeptide sequence inserts a nucleic acid sequence in said cleaved nucleic acid.

52. A polypeptide construct comprising: an RNase H-like domain-containing (RHDC)

polypeptide sequence and a regulatory domain polypeptide (RDP) sequence.

53. The polypeptide construct of claim 51 or 52, wherein said polypeptide construct further comprises a nucleic acid unwinding domain sequence.

54. The polypeptide construct of claim 53, wherein said nucleic acid unwinding domain sequence comprises a catalytically dead Cas, a helicase, or a topoisomerase.

55. The polypeptide construct of any one of claims 52 to 54, wherein said RDP sequence is a

Rad51 polypeptide, a recombinase, an epigenetic modulator, or a domain involved in germ cell repair.

56. The polypeptide construct of any one of claims 51 to 55, wherein said RHDC polypeptide sequence comprises a Firmicutes Argonaute domain, or a functional fragment or variant thereof, that cleaves a nucleic acid in said target polynucleotide sequence at 37 °C.

57. The polypeptide construct of any one of claims 51 to 54, wherein said RHDC polypeptide sequence comprises a Clostridium Argonaute domain, or a functional fragment or variant thereof, that cleaves a nucleic acid in said target polynucleotide sequence at 37 °C.

58. The polypeptide construct of claim 57, wherein said Clostridium Argonaute domain comprises a Clostridium disporicum Argonaute domain, or a functional fragment or variant thereof.

59. The polypeptide construct of any one of claims 51 to 54, wherein said RHDC polypeptide sequence comprises a Thermoactinomyces Argonaute domain, or a functional fragment or variant thereof, that cleaves a nucleic acid in said target polynucleotide sequence at 37 °C.

60. The polypeptide construct of claim 59, wherein said Thermoactinomyces Argonaute domain comprises a Thermoactinomyces sp CDF Argonaute domain, or a functional fragment or variant thereof. The polypeptide construct of any one of claims 51 to 54, wherein said RHDC polypeptide comprises a Methylobacter Argonaute domain, or a functional fragment or variant thereof, that cleaves a nucleic acid in said target polynucleotide sequence at 37 °C.

The polypeptide construct of claim 61, wherein said Methylobacter Argonaute domain comprises a Methylobacter whittenburyi Argonaute domain, or a functional fragment or variant thereof.

The polypeptide construct of any one of claims 51 to 54, wherein said RHDC polypeptide comprises a Thermosynechococcus Argonaute domain, or a functional fragment or variant thereof, that cleaves a nucleic acid in said target polynucleotide sequence at 37 °C.

The polypeptide construct of claim 63, wherein said Thermosynechococcus Argonaute domain comprises a Thermosynechococcus elongates Argonaute domain, or a functional fragment or variant thereof.

A polypeptide construct comprising: an Argonaute polypeptide sequence, a nucleic acid unwinding polypeptide sequence, and a nucleic-acid insertion polypeptide sequence, wherein said Argonaute polypeptide sequence cleaves a nucleic acid at a mesophilic temperature and said nucleic acid-insertion polypeptide sequence inserts a nucleic acid sequence in said cleaved nucleic acid.

The polypeptide construct of claim 65, wherein at least one of said Argonaute polypeptide sequence or said nucleic acid unwinding polypeptide sequence are derived from a mesophilic organism.

The polypeptide construct of claim 65 or 66, wherein said Argonaute polypeptide

sequence cleaves a nucleic acid from 19 °C to 40 °C.

The polypeptide construct of claim 67, wherein said Argonaute polypeptide sequence cleaves a nucleic acid at about 30 °C, 31 °C, 32 °C, 33 °C, 34 °C, 35 °C, 36 °C, 37

°C, 38 °C or 39 °C.

The polypeptide construct of claim 68, wherein said Argonaute polypeptide sequence cleaves a nucleic acid at 37 °C.

The polypeptide construct of any one of claims 65 to 69, wherein said Argonaute

polypeptide sequence is an archaeal Argonaute polypeptide sequence.

The polypeptide construct of claims 65 to 70, wherein said Argonaute polypeptide

sequence comprises a nuclease, nickase, RNase, recombinase, flippase, transposase, or a combination thereof.

The polypeptide construct of any one of claims 65 to 71, wherein said Argonaute

polypeptide sequence and said nucleic acid unwinding polypeptide sequence are joined by a linker.

An ex vivo cell comprising the polypeptide construct of any one of claims 51 to 72.

74. A nucleic acid encoding the polypeptide construct of any one of claims 51 to 72.

75. A composition comprising the polypeptide construct of any one of claims 51 to 72.

76. A method of genomic editing comprising contacting a cell with the polypeptide construct of any one of claims 51 to 72.

77. A method comprising: contacting a cell with a nucleic acid editing system that comprises:

i. an RNase H-like domain-containing (RHDC) polypeptide sequence; ii. a nucleic acid unwinding agent sequence;

iii. a guide nucleic acid; and

iv. a regulatory domain polypeptide (RDP) sequence;

wherein said contacting results in editing of a nucleic acid in said cell.

The method of claim 77, wherein said RHDC sequence, said nucleic acid unwinding agent sequence, and said RDP sequence are in a protein complex.

The method of claim 78, wherein said protein complex associates with said guide nucleic acid to form a guided editing complex.

The method of any one of claims 77 to 79, wherein said guide nucleic acid is a guide

DNA

The method of any one of claims 77 to 79, wherein said guide nucleic acid is a guide RNA.

The method of any one of claims 77 to 81, wherein said RHDC domain is from an

Argonaute.

The method of any one of claims 77 to 82, wherein said nucleic acid unwinding agent sequence comprises a helicase, a topoisomerase, a Cas, or a combination thereof.

The method of claim 83, wherein said Cas is a catalytically dead or partially catalytically dead Cas.

The method of any one of claims 77 to 84, wherein said RDP sequence comprises a recombinase, an epigenetic modulator, a germ cell repair domain, a DNA repair protein, or a combination thereof.

The method of any one of claims 77 to 85, wherein said RDP sequence controls, in whole or in part, said nucleic acid editing.

The method of any one of claims 77 to 86, wherein said guide nucleic acid is complementary to said nucleic acid in said cell.

The method of claim 87, wherein said nucleic acid in said cell encodes for a disease- related antigen.

The method of claim 88, wherein said disease is a heart disease, diabetes, cancer,

neurological disease, mental illness, a genetic disease, or a combination thereof.

The method of any one of claims 77 to 89, wherein said method has a lower energy

requirement as compared to a corresponding nucleic acid editing method without said RDP sequence, and wherein said energy requirement is determined by calculating difference in ATP usage by providing a predetermined amount of ATP into said nucleic acid editing systems, and calculating ATP usage based on ([ATP]- [ADP])/[modified DNA] after said editing.

91. The method of any one of claims 77 to 90, wherein said energy level is reduced by about

4%, 5%, 6%, 7%, 8%, 9%, 10%, 15%, 20%, or up to 25% when said nucleic acid editing system comprising said RDP sequence is utilized as compared to said comparable nucleic acid editing system without said RDP sequence.

92. The method of any one of claims 77 to 91, wherein said method favors a genomic editing repair towards homology directed repair over non-homologous end joining.

93. The method of any one of claims 77 to 92, further comprising introducing a transgene into a genome of said cell.

94. The method of claim 93, wherein said introducing is performed non-virally.

95. The method of claim 93, wherein said introducing is performed virally.

96. The method of any one of claims 77 to 95, wherein said cell is a primary cell or a

recombinant cell.

97. The method of any one of claims 77 to 96, wherein said cell is a human cell.

98. The method of any one of claims 77 to 97, wherein said nucleic acid editing system is electroporated into said cell.

99. The method of any one of claims 77 to 98, further comprising introducing a cell edited by said method to a subject in need thereof.

100. The method of any one of claims 77 to 99, wherein said RHDC polypeptide sequence comprises a firmicutes Argonaute domain, or a functional fragment or variant thereof, that cleaves a nucleic acid at 37 °C.

101. The method of any one of claims 77 to 99, wherein said RHDC polypeptide sequence comprises a Clostridium Argonaute domain, or a functional fragment or variant thereof, that cleaves said nucleic acid at 37 °C.

102. The method of claim 101, wherein said Clostridium Argonaute domain comprises a

Clostridium disporicum Argonaute domain, or a functional fragment or variant thereof.

103. The method of any one of claims 77 to 99, wherein said RHDC polypeptide sequence comprises a Thermoactinomyces Argonaute domain, or a functional fragment or variant thereof, that cleaves said nucleic acid at 37 °C.

104. The method of claim 103, wherein said Thermoactinomyces Argonaute domain

comprises a Thermoactinomyces sp CDF Argonaute domain, or a functional fragment or variant thereof.

105. The method of any one of claims 77 to 99, wherein said RHDC polypeptide sequence comprises a Methylobacter Argonaute domain, or a functional fragment or variant thereof, that cleaves said nucleic acid at 37 °C.

106. The method of claim 105, wherein said Methylobacter Argonaute domain comprises a

Methylobacter whittenburyi Argonaute domain, or a functional fragment or variant thereof.

107. The method of any one of claims 77 to 99, wherein said RHDC polypeptide sequence comprises a Thermosynechococcus Argonaute domain, or a functional fragment or variant thereof, that cleaves said nucleic acid at 37 °C.

108. The method of claim 107, wherein said Thermosynechococcus Argonaute domain

comprises a Thermosynechococcus elongates Argonaute domain, or a functional fragment or variant thereof.

109. An isolated nucleic acid sequence comprising at least 60% identity to any one of SEQ ID

NOs: 161 to 252.

110. The isolated nucleic acid sequences of claim 109, further comprising at least 65%, 70%,

75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% identity to any one of SEQ ID NOs: 161 to 252.

111. A cell comprising the isolated nucleic acid sequence of any one of claims 109 to 110.

112. A cell comprising a protein encoded by the isolated nucleic acid sequence of any one of claims 108 to 109.

113. The cell of claim 111 or 112, further comprising a guide nucleic acid.

114. The cell of any one of claims 111 to 112, further comprising a regulatory domain

polypeptide (RDP).

115. An isolated polypeptide sequence comprising at least 60% identity to any one of SEQ ID

NOs: 20 to 38.

116. The isolated polypeptide sequences of claim 114, further comprising at least 65%, 70%,

75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% identity to any one of SEQ ID NOs: 20 to 38.

117. A cell comprising an isolated polypeptide sequence of any one of claims 115 to 116.

118. The cell of claim 117, further comprising a guide nucleic acid.

119. The cell of any one of claims 117 to 118, further comprising a regulatory domain

polypeptide (RDP) sequence.

120. A method of genome editing comprising: contacting a population of cells with the

polypeptide construct of any one of claims 1 to 44 or 51 to 72, wherein at least about 5% of said population comprises a genomic disruption after said contacting.

121. The method of claim 120, wherein at least about 10%, 15%, 20%, 25%, 30%, 35%, 40%,

45%, 50%, 55%, or 60% of said population comprises said genomic disruption after said contacting.

122. A method of genome editing comprising: contacting a population of cells with an isolated polynucleic acid encoding the polypeptide construct of any one of claims 1 to 44 or 51 to 72, wherein at least about 5% of said population comprises a genomic disruption after said contacting.

123. The method of claim 122, wherein at least about 10%, 15%, 20%, 25%, 30%, 35%, 40%,

45%, 50%, 55%, or 60% of said population comprises said genomic disruption after said contacting.

124. A method of genome editing comprising:

a. unwinding a genomic sequence with Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) protein, thereby generating an unwound genomic sequence; and

b. introducing a genomic disruption in said unwound genomic sequence by contacting said unwound genomic sequence with a mesophilic RNase H- like domain-containing (RHDC) polypeptide, thereby editing said genome.

125. The method of claim 124, wherein said CRISPR protein is a catalytically dead Cas or partially dead Cas (nickase).

126. The method of claim 125, wherein said catalytically dead Cas is selected from the group consisting of catalytically dead derivatives of: Casl, CaslB, Cas2, Cas3, Cas4, Cas5, Cas6, Cas7, Cas8, Cas9, CaslO, Csyl , Csy2, Csy3, Csel, Cse2, Cscl, Csc2, Csa5, Csn2, Csm2, Csm3, Csm4, Csm5, Csm6, Cmrl, Cmr3, Cmr4, Cmr5, Cmr6, Csbl, Csb2, Csb3, Csxl7, Csxl4, CsxlO, Csxl6, CsaX, Csx3, Csxl, CsxlS, Csfl, Csf2, CsO, Csf4, Cpfl, c2cl, c2c3, Cas9HiFi, xCas9, CasX, CasY, and CasRX.

127. The method of any one of claims 124 to 126, wherein said Cas is dCas9.

128. The method of any one of claims 124 to 127, wherein said RHDC polypeptide comprises a polypeptide selected from RuvC, HNH, RNase H, PIWI, or a combination thereof.

129. The method of any one of claims 124 to 128, further comprising a regulatory domain polypeptide (RDP).

130. The method of claim 129, wherein said RDP comprises Rad51, a recombinase, an

epigenetic modulator, or a domain involved in germ cell repair.

131. The method of any one of claims 124 to 130, wherein said genomic serquence is in a primary cell or a recombinant cell.

132. The method of any one of claims 124 to 131, wherein said genomic sequence is in a human cell.

133. A method of treating a disease in a subject in need thereof comprising administering a cell edited by the method of any one of claims 48, 76, 77, 120, 122, or 124.

134. The method of claim 133, wherein the disease is heart disease, diabetes, cancer,

neurological disease, immunological disease, mental illness, a genetic disease, or a combination thereof.

135. The method of any one of claims 133 to 134, wherein a measure of said disease is

reduced by about 10% to about 50% after said administering.

136. A method of stabilizing a disease in a subject in need thereof comprising administering a cell edited by the method of any one of claims 48, 76, 77, 120, 122, or 124.

137. The method of claim 136, wherein said stabilizing comprises a less than 5% change in a level of a disease in said subject after said administering.

138. A nucleic acid construct encoding a prokaryotic RNase H-like domain-containing

(RHDC) polypeptide sequence and a nucleic acid unwinding polypeptide sequence, wherein said RHDC polypeptide sequence cleaves a nucleic acid in a target polynucleotide sequence at a mesophilic temperature, wherein said target polynucleotide sequence is bound by a guide DNA, and wherein said RHDC polypeptide sequence is fused to said nucleic acid unwinding polypeptide sequence in a polypeptide encoded by said nucleic acid construct.

139. A nucleic acid construct encoding an RNase H-like domain-containing (RHDC)

polypeptide sequence, a nucleic acid unwinding polypeptide sequence, and a nucleic- acid insertion polypeptide sequence, wherein a protein encoded by said RHDC polypeptide sequence cleaves a nucleic acid in a target polynucleotide sequence at a mesophilic temperature, wherein said target polynucleotide sequence is bound by a guide DNA, wherein said RHDC polypeptide sequence is fused to said nucleic acid unwinding polypeptide sequence in a polypeptide encoded by said nucleic acid construct, and wherein said nucleic-acid insertion polypeptide sequence inserts a nucleic acid sequence in said cleaved nucleic acid.

140. A cell comprising: a polypeptide construct comprising a prokaryotic RNase H-like

domain-containing (RHDC) polypeptide and a nucleic acid unwinding polypeptide, wherein said RHDC polypeptide sequence cleaves a nucleic acid at a mesophilic temperature, wherein said nucleic acid-cleaving activity is bound by a guide DNA, and wherein said RHDC polypeptide sequence is fused to said nucleic acid unwinding polypeptide.

141. A cell comprising: a polypeptide construct comprising an RNase H-like domain- containing (RHDC) polypeptide sequence, a nucleic acid unwinding polypeptide sequence, and a nucleic-acid insertion polypeptide sequence, wherein a polypeptide encoded by said RHDC polypeptide sequence cleaves a nucleic acid in a target polynucleotide sequence at a mesophilic temperature, wherein said target polynucleotide sequence is bound by a guide DNA, wherein said RHDC polypeptide sequence is fused to said nucleic acid unwinding polypeptide, and wherein said nucleic-acid insertion polypeptide sequence inserts a nucleic acid sequence in said cleaved nucleic acid.

142. A cell comprising: a nucleic acid construct encoding a prokaryotic RNase H-like domain- containing (RHDC) polypeptide sequence and a nucleic acid unwinding polypeptide sequence, wherein said RHDC polypeptide sequence cleaves a nucleic acid in a target polynucleotide sequence at a mesophilic temperature, wherein said target polynucleotide sequence is bound by a guide DNA, and wherein said RHDC polypeptide sequence is fused to said nucleic acid unwinding polypeptide sequence.

143. A cell comprising: a nucleic acid construct encoding an RNase H-like domain-containing

(RHDC) polypeptide sequence, a nucleic acid unwinding polypeptide sequence, and a nucleic-acid insertion polypeptide sequence, wherein said RHDC polypeptide sequence cleaves a nucleic acid in a target polynucleotide sequence at a mesophilic temperature, wherein said target polynucleotide sequence is bound by a guide DNA, wherein said RHDC polypeptide sequence is fused to said nucleic acid unwinding polypeptide sequence, and wherein said nucleic-acid insertion polypeptide sequence inserts a nucleic acid sequence in said cleaved nucleic acid.

Description:
NUCLEASE SYSTEMS FOR GENETIC ENGINEERING

CROSS-REFERENCE

[0001] This application claims the benefit of U.S. Provisional Application No. 62/555,564 filed September 7, 2017, and U.S. Provisional Application No. 62/652,047 filed April 3, 2018, which applications are incorporated herein by reference in their entireties.

SEQUENCE LISTING

[0001.1] The instant application contains a Sequence Listing which has been submitted electronically in ASCII format and is hereby incorporated by reference in its entirety. Said ASCII copy, created on September 7, 2018, is named 47533-727_601_SL.txt and is 1,150,509 bytes in size.

BACKGROUND

[0002] With the rapid progress being made in genome sciences, effective genome engineering holds great promise both in understanding the molecular bases of human diseases and in treating human disorders with identifiable alterations in the genome. The past few years have witnessed a rapid rise of the RNA-guided CRISPR/Cas9 technology from obscurity. Significant efforts are being devoted to optimizing the current CRISPR/Cas9 system and/or to identifying more Cas9-like nucleases with better efficiency and specificity.

[0003] Similarly, significant efforts are being employed to identify new systems that can be harnessed for genome editing with improved specificity and efficiency.

INCORPORATION BY REFERENCE

[0004] All publications, patents, and patent applications herein are incorporated by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference. In the event of a conflict between a term herein and a term in an incorporated reference, the term herein controls.

SUMMARY OF THE INVENTION

[0005] Disclosed herein is a polypeptide construct comprising: a prokaryotic RNase H-like domain- containing (RHDC) polypeptide sequence and a nucleic acid unwinding polypeptide sequence. In some cases, the RHDC polypeptide sequence cleaves a nucleic acid in a target polynucleotide sequence at a mesophilic temperature. In some cases the target polynucleotide sequence is bound by a guide DNA. In some cases, the RHDC polypeptide sequence is fused to the nucleic acid unwinding polypeptide sequence. In some cases, at least one of the RHDC polypeptide sequence or said nucleic acid unwinding polypeptide sequence are derived from a mesophilic organism. In some cases, the RHDC polypeptide sequence cleaves a nucleic acid in the target polynucleotide sequence at about 30 °C, 31 °C, 32 °C, 33 °C, 34 °C, 35 °C, 36 °C, 37 °C, 38 °C or 39 °C. In some cases, the RHDC polypeptide sequence cleaves a nucleic acid in said target polynucleotide sequence at about 19 °C, 20 °C, 21 °C, 22 °C, 23 °C, 24 °C, 25 °C, 26 °C, 27 °C, 28 °C, 29 °C or 30°C. In some cases, the RHDC polypeptide sequence cleaves a nucleic acid in said target polynucleotide sequence at 37 °C. In some cases, the mesophilic organism is a prokaryotic organism. In some cases, the prokaryotic organism is from a family selected from the group consisting of: bacteroidetes, proteobacteria, acidobacteria, actinobacteria, firmicutes, cyanobacteria, spirochaetes, deinococcus, verrucomicrobia, planctomycetes, balneolaeota, and chloroflexi. In some cases, the RHDC polypeptide sequence is derived from a polypeptide encoded by a gene located in an adjacent operon to at least one of a P-element induced Wimpy testis (PIWI) gene, RuvC, Cas, Sir2, Mrr, TIR, PLD, REase, restriction endonuclease, DExD/H, superfamily II helicase, RRXRR (SEQ ID NO: 380), DUF460, DUF3010, DUF429, DUF1092, COG5558, OrfB_IS605, Peptidase_A17, Ribonuclease H-like domain, 3'-5' exonuclease domain, 3'-5' exoribonuclease Rv2179c-like domain, Bacteriophage Mu, transposase, DNA-directed DNA polymerase, family B, exonuclease domain, Exonuclease, RNase T/DNA polymerase III, yqgF gene, HEPN, RNase LS domain, LsoA catalytic domain, KEN domain, RNaseL, Irel, RNase domain, RloC, or PrrC. In some cases, the RHDC polypeptide sequence is derived from a polypeptide encoded by a gene located in an adjacent operon to at least one of a gene involved in defense, stress response, a Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR), Argonaute, or DNA repair. In some cases, the RHDC polypeptide sequence is an Argonaute domain sequence. In some cases, the RHDC polypeptide sequence comprises a nuclease, nickase, RNase, recombinase, flippase, transposase, or a combination thereof. In some cases, the polypeptide construct further comprises an additional functional polypeptide sequence fused to the RHDC polypeptide sequence and the nucleic acid unwinding polypeptide sequence. In some cases, the nucleic acid unwinding polypeptide is of prokaryotic or archaeal origin. In some cases, the nucleic acid unwinding polypeptide comprises a helicase, a topoisomerase, a Cas, or a combination thereof. In some cases, the Cas is a catalytically dead Cas or partially dead Cas (nickase). In some cases, the catalytically dead Cas is selected from the group consisting of catalytically dead derivatives of: Casl, CaslB, Cas2, Cas3, Cas4, Cas5, Cas6, Cas7, Cas8, Cas9, CaslO, Csyl, Csy2, Csy3, Csel, Cse2, Cscl, Csc2, Csa5, Csn2, Csm2, Csm3, Csm4, Csm5, Csm6, Cmrl, Cmr3, Cmr4, Cmr5, Cmr6, Csbl, Csb2, Csb3, Csxl7, Csxl4, CsxlO, Csxl6, CsaX, Csx3, Csxl, CsxlS, Csfl, Csf2, CsO, Csf4, Cpfl, c2cl, c2c3, Cas9HiFi, xCas9, CasX, CasY, and CasRX. In some cases, the polypeptide construct further comprises an ATPase sequence. In some cases, the RHDC polypeptide sequence and the nucleic acid unwinding polypeptide sequence are fused by a linker sequence. In some cases, the linker is a polypeptide linker that comprises: a GSGSGS sequence or multiple copies of GSGSGS (SEQ ID NO: 381), non-charged amino acids, alpha-helical domains, or peptides with ligand-inducible conformational changes. In some cases, the linker is a polypeptide linker. In some cases, the nucleic acid unwinding polypeptide sequence and the RHDC polypeptide sequence are expressed in the same frame. In some cases, the polypeptide construct binds to the guide DNA. In some cases, the guide DNA is from about 1 base pair to about 30 base pairs in length. In some cases, the guide DNA is complementary to the target polynucleotide sequence. In some cases, the target polynucleotide sequence comprises a gene sequence. In some cases, the polypeptide construct produces a disruption in the gene sequence when introduced into a cell. In some cases, the disruption comprises a double strand break or a single strand break. In some cases, the RHDC polypeptide sequence comprises a firmicutes Argonaute domain, or a functional fragment or variant thereof, that cleaves a nucleic acid at 37 °C. In some cases, the RHDC polypeptide sequence comprises a Clostridium

Argonaute domain, or a functional fragment or variant thereof, that cleaves a nucleic acid at 37 °C. In some cases, the Clostridium Argonaute domain comprises a Clostridium disporicum Argonaute domain, or a functional fragment or variant thereof. In some cases, the RHDC polypeptide sequence comprises a Thermoactinomyces Argonaute domain, or a functional fragment or variant thereof, that cleaves a nucleic acid at 37 °C. In some cases, the Thermoactinomyces Argonaute domain comprises a

Thermoactinomyces sp CDF Argonaute domain, or a functional fragment or variant thereof. In some cases, the RHDC polypeptide sequence comprises a Methylobacter Argonaute domain, or a functional fragment or variant thereof, that cleaves a nucleic acid at 37 °C. In some cases, the Methylobacter Argonaute domain comprises a Methylobacter whittenburyi Argonaute domain, or a functional fragment or variant thereof. In some cases, the RHDC polypeptide sequence comprises a Thermosynechococcus Argonaute domain, or a functional fragment or variant thereof, that cleaves a nucleic acid at 37 °C. In some cases, the Thermosynechococcus Argonaute domain comprises a Thermosynechococcus elongates Argonaute domain, or a functional fragment or variant thereof.

[0006] Disclosed herein is a polypeptide construct comprising a synthetic fusion of an Argonaute polypeptide sequence and a nucleic acid unwinding polypeptide sequence. In some cases, the Argonaute polypeptide sequence cleaves a target nucleic acid at a mesophilic temperature. In some cases, at least one of the Argonaute polypeptide sequence or the nucleic acid unwinding polypeptide sequence are derived from a mesophilic organism. In some cases, the Argonaute polypeptide sequence cleaves the target nucleic acid at about 19 °C to 40 °C. In some cases, the Argonaute polypeptide sequence cleaves the target nucleic acid at about 30 °C, 31 °C, 32 °C, 33 °C, 34 °C, 35 °C, 36 °C, 37 °C, 38 °C or 39 °C. In some cases, the Argonaute polypeptide sequence cleaves the target nucleic acid at 37 °C. In some cases, the Argonaute polypeptide sequence is an archaeal Argonaute polypeptide sequence. In some cases, the Argonaute polypeptide sequence comprises a nuclease, nickase, RNase, recombinase, flippase, transposase, or a combination thereof. In some cases, the Argonaute polypeptide sequence and the nucleic acid unwinding polypeptide sequence are fused by a linker sequence.

[0007] Provided herein is an ex vivo cell comprising a polypeptide construct.

[0008] Provided herein is a nucleic acid encoding a polypeptide construct.

[0009] Provided herein is a composition comprising a polypeptide construct. [0010] Provided herein is a method of genomic editing comprising contacting a cell with a polypeptide construct.

[0011] Provided herein is a kit comprising: a polypeptide construct and instructions for use thereof. In some cases, a kit can further comprise a container.

[0012] Provided herein is a polypeptide construct comprising: an RNase H-like domain-containing (RHDC) polypeptide sequence, a nucleic acid unwinding polypeptide sequence, and a nucleic-acid insertion polypeptide sequence. In some cases, the RHDC polypeptide sequence cleaves a nucleic acid in a target polynucleotide sequence at a mesophilic temperature to generate a cleaved nucleic acid. In some cases, the target polynucleotide sequence is bound by a guide DNA. In some cases, the RHDC polypeptide sequence is fused to the nucleic acid unwinding polypeptide sequence. In some cases, the nucleic-acid insertion polypeptide sequence inserts a nucleic acid sequence in the cleaved nucleic acid.

[0013] Provided herein is a polypeptide construct comprising: an RNase H-like domain-containing (RHDC) polypeptide sequence and a regulatory domain polypeptide (RDP) sequence. In some cases, the polypeptide construct further comprises a nucleic acid unwinding domain sequence. In some cases, the nucleic acid unwinding domain sequence comprises a catalytically dead Cas, a helicase, or a topoisomerase. In some cases, the RDP sequence is a Rad51 polypeptide, a recombinase, an epigenetic modulator, or a domain involved in germ cell repair. In some cases, the RHDC polypeptide sequence comprises a Firmicutes Argonaute domain, or a functional fragment or variant thereof, that cleaves a nucleic acid in said target polynucleotide sequence at 37 °C. In some cases, the RHDC polypeptide sequence comprises a Clostridium Argonaute domain, or a functional fragment or variant thereof, that cleaves a nucleic acid in said target polynucleotide sequence at 37 °C. In some cases, the Clostridium Argonaute domain comprises a Clostridium disporicum Argonaute domain, or a functional fragment or variant thereof. In some cases, the RHDC polypeptide sequence comprises a Thermoactinomyces Argonaute domain, or a functional fragment or variant thereof, that cleaves a nucleic acid in said target polynucleotide sequence at 37 °C. In some cases, the Thermoactinomyces Argonaute domain comprises a Thermoactinomyces sp CDF Argonaute domain, or a functional fragment or variant thereof. In some cases, the RHDC polypeptide comprises a Methylobacter Argonaute domain, or a functional fragment or variant thereof, that cleaves a nucleic acid in said target polynucleotide sequence at 37 °C. In some cases, the Methylobacter Argonaute domain comprises a Methylobacter whittenburyi Argonaute domain, or a functional fragment or variant thereof. In some cases, the RHDC polypeptide comprises a

Thermosynechococcus Argonaute domain, or a functional fragment or variant thereof, that cleaves a nucleic acid in said target polynucleotide sequence at 37 °C. In some cases, the Thermosynechococcus Argonaute domain comprises a Thermosynechococcus elongates Argonaute domain, or a functional fragment or variant thereof.

[0014] Disclosed herein is a polypeptide construct comprising: an Argonaute polypeptide sequence, a nucleic acid unwinding polypeptide sequence, and a nucleic-acid insertion polypeptide sequence. In some cases, the Argonaute polypeptide sequence cleaves a nucleic acid at a mesophilic temperature and the nucleic acid-insertion polypeptide sequence inserts a nucleic acid sequence in the cleaved nucleic acid. In some cases, at least one of the Argonaute polypeptide sequence or the nucleic acid unwinding polypeptide sequence are derived from a mesophilic organism. In some cases, the Argonaute polypeptide sequence cleaves a nucleic acid from 19 °C to 40 °C. In some cases, the Argonaute polypeptide sequence cleaves a nucleic acid at about 30 °C, 31 °C, 32 °C, 33 °C, 34 °C, 35 °C, 36 °C, 37 °C, 38 °C or 39 °C. In some cases, the Argonaute polypeptide sequence cleaves a nucleic acid at 37 °C. In some cases, the Argonaute polypeptide sequence is an archaeal Argonaute polypeptide sequence. In some cases, the Argonaute polypeptide sequence comprises a nuclease, nickase, RNase, recombinase, flippase, transposase, or a combination thereof. In some cases, the Argonaute polypeptide sequence and the nucleic acid unwinding polypeptide sequence are joined by a linker.

[0015] Provided herein is an ex vivo cell comprising a polypeptide construct.

[0016] Provided herein is a nucleic acid encoding a polypeptide construct.

[0017] Provided herein is a composition comprising a polypeptide construct.

[0018] Provided herein is a method of genomic editing comprising contacting a cell with a polypeptide construct.

[0019] Provided herein is a method comprising: contacting a cell with a nucleic acid editing system that comprises: (i) an RNase H-like domain-containing (RHDC) polypeptide sequence; (ii) a nucleic acid unwinding agent sequence; (iii) a guide nucleic acid; and (iv) a regulatory domain polypeptide (RDP) sequence. In some cases, the contacting results in editing of a nucleic acid in the cell. In some cases, the RHDC sequence, the nucleic acid unwinding agent sequence, and the RDP sequence are in a protein complex. In some cases, the protein complex associates with the guide nucleic acid to form a guided editing complex. In some cases, the guide nucleic acid is a guide DNA. In some cases, the guide nucleic acid is a guide RNA. In some cases, the RHDC domain is from an Argonaute. In some cases, the nucleic acid unwinding agent sequence comprises a helicase, a topoisomerase, a Cas, or a combination thereof. In some cases, the Cas is a catalytically dead or partially catalytically dead Cas. In some cases, the RDP sequence comprises a recombinase, an epigenetic modulator, a germ cell repair domain, a DNA repair protein, or a combination thereof. In some cases, the RDP sequence controls, in whole or in part, the nucleic acid editing. In some cases, the guide nucleic acid is complementary to the nucleic acid in the cell. In some cases, the nucleic acid in the cell encodes for a disease-related antigen. In some cases, the disease is a heart disease, diabetes, cancer, neurological disease, mental illness, a genetic disease, or a combination thereof. In some cases, the method has a lower energy requirement as compared to a corresponding nucleic acid editing method without the RDP sequence, and wherein the energy requirement is determined by calculating difference in ATP usage by providing a predetermined amount of ATP into a nucleic acid editing system, and calculating ATP usage based on ([ATP]-[ADP])/[modified DNA] after the editing. In some cases, the energy level is reduced by about 4%, 5%, 6%, 7%, 8%, 9%, 10%, 15%, 20%, or up to 25% when the nucleic acid editing system comprising the RDP sequence is utilized as compared to the comparable nucleic acid editing system without the RDP sequence. In some cases, the method favors a genomic editing repair towards homology directed repair over nonhomologous end joining. In some cases, the method further comprises introducing a transgene into a genome of the cell. In some cases, the introducing is performed non-virally. In some cases, the introducing is performed virally. In some cases, the cell is a primary cell or a recombinant cell. In some cases, the cell is a human cell. In some cases, the nucleic acid editing system is electroporated into the cell. In some cases, the method further comprises introducing a cell edited by the method to a subject in need thereof. In some cases, the RHDC polypeptide sequence comprises a firmicutes Argonaute domain, or a functional fragment or variant thereof, that cleaves a nucleic acid at 37 °C. In some cases, the RHDC polypeptide sequence comprises a Clostridium Argonaute domain, or a functional fragment or variant thereof, that cleaves the nucleic acid at 37 °C. In some cases, the Clostridium Argonaute domain comprises a Clostridium disporicum Argonaute domain, or a functional fragment or variant thereof. In some cases, the RHDC polypeptide sequence comprises a Thermoactinomyces Argonaute domain, or a functional fragment or variant thereof, that cleaves the nucleic acid at 37 °C. In some cases, the Thermoactinomyces Argonaute domain comprises a Thermoactinomyces sp CDF Argonaute domain, or a functional fragment or variant thereof. In some cases, the RHDC polypeptide sequence comprises a Methylobacter Argonaute domain, or a functional fragment or variant thereof, that cleaves the nucleic acid at 37 °C. In some cases, the Methylobacter Argonaute domain comprises a Methylobacter whittenburyi Argonaute domain, or a functional fragment or variant thereof. In some cases, the RHDC polypeptide sequence comprises a Thermosynechococcus Argonaute domain, or a functional fragment or variant thereof, that cleaves the nucleic acid at 37 °C. In some cases, the Thermosynechococcus Argonaute domain comprises a Thermosynechococcus elongates Argonaute domain, or a functional fragment or variant thereof.

[0020] Provided herein is an isolated nucleic acid sequence comprising at least 60% identity to any one of SEQ ID NOs: 161 to 252. In some cases, the isolated nucleic acid sequence comprises at least 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% identity to any one of SEQ ID NOs: 161 to 252.

[0021] Provided herein is a cell comprising an isolated nucleic acid sequence.

[0022] Provided herein is a cell comprising a protein encoded by an isolated nucleic acid sequence. In some cases, the cell further comprises a guide nucleic acid. In some cases, the cell further comprises a regulatory domain polypeptide (RDP).

[0023] Provided herein is an isolated polypeptide sequence comprising at least 60% identity to any one of SEQ ID NOs: 20 to 38. In some cases, the isolated polypeptide sequence further comprises at least 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% identity to any one of SEQ ID NOs: 20 to 38. [0024] Provided herein is a cell comprising an isolated polypeptide sequence. In some cases, the cell further comprises a guide nucleic acid. In some cases, the cell further comprises a regulatory domain polypeptide (RDP) sequence.

[0025] Provided herein is a method of genome editing comprising: contacting a population of cells with a polypeptide construct, wherein at least about 5% of the population comprises a genomic disruption after the contacting. In some cases, at least about 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, or 60% of the population comprises the genomic disruption after the contacting.

[0026] Provided herein is a method of genome editing comprising: contacting a population of cells with an isolated polynucleic acid encoding a polypeptide construct, wherein at least about 5% of the population comprises a genomic disruption after the contacting. In some cases, at least about 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, or 60% of the population comprises the genomic disruption after the contacting.

[0027] Provided herein is a method of genome editing comprising: (a) unwinding a genomic sequence with a Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) protein, thereby generating an unwound genomic sequence; and (b) introducing a genomic disruption in the unwound genomic sequence by contacting the unwound genomic sequence with a mesophilic RNase H-like domain- containing (RHDC) polypeptide, thereby editing the genome. In some cases, the CRISPR protein is a catalytically dead Cas or partially dead Cas (nickase). In some cases, the catalytically dead Cas is selected from the group consisting of catalytically dead derivatives of: Casl, CaslB, Cas2, Cas3, Cas4, Cas5, Cas6, Cas7, Cas8, Cas9, CaslO, Csyl , Csy2, Csy3, Csel, Cse2, Cscl, Csc2, Csa5, Csn2, Csm2, Csm3, Csm4, Csm5, Csm6, Cmrl, Cmr3, Cmr4, Cmr5, Cmr6, Csbl, Csb2, Csb3, Csxl7, Csxl4, CsxlO, Csxl6, CsaX, Csx3, Csxl, CsxlS, Csfl, Csf2, CsO, Csf4, Cpfl, c2cl, c2c3, Cas9HiFi, xCas9, CasX, CasY, and CasRX. In some cases, the Cas is dCas9. In some cases, the RHDC polypeptide comprises a polypeptide selected from RuvC, HNH, RNase H, PIWI, or a combination thereof. In some cases, the method further comprises a regulatory domain polypeptide (RDP). In some cases, the RDP comprises Rad51, a recombinase, an epigenetic modulator, or a domain involved in germ cell repair. In some cases, the genomic sequence is in a primary cell or a recombinant cell. In some cases, the genomic sequence is in a human cell.

[0028] Provided herein is a method of treating a disease in a subject in need thereof comprising administering a cell edited by a method disclosed herein. In some cases, the disease is heart disease, diabetes, cancer, neurological disease, immunological disease, mental illness, a genetic disease, or a combination thereof. In some cases, a measure of the disease is reduced by about 10% to about 50% after the administering.

[0029] Provided herein is a method of stabilizing a disease in a subject in need thereof comprising administering a cell edited by a method disclosed herein. In some cases, the stabilizing comprises a less than 5% change in a level of a disease in the subject after the administering. [0030] Provided herein is a nucleic acid construct encoding a prokaryotic RNase H-like domain- containing (RHDC) polypeptide sequence and a nucleic acid unwinding polypeptide sequence, wherein the RHDC polypeptide sequence cleaves a nucleic acid in a target polynucleotide sequence at a mesophilic temperature, wherein the target polynucleotide sequence is bound by a guide DNA, and wherein the RHDC polypeptide sequence is fused to the nucleic acid unwinding polypeptide sequence in a polypeptide encoded by the nucleic acid construct.

[0031] Provided herein is a nucleic acid construct encoding an RNase H-like domain-containing (RHDC) polypeptide sequence, a nucleic acid unwinding polypeptide sequence, and a nucleic-acid insertion polypeptide sequence, wherein a protein encoded by said RHDC polypeptide sequence cleaves a nucleic acid in a target polynucleotide sequence at a mesophilic temperature, wherein the target polynucleotide sequence is bound by a guide DNA, wherein the RHDC polypeptide sequence is fused to the nucleic acid unwinding polypeptide sequence in a polypeptide encoded by the nucleic acid construct, and wherein the nucleic-acid insertion polypeptide sequence inserts a nucleic acid sequence in the cleaved nucleic acid.

[0032] Provided herein is a cell comprising: a polypeptide construct comprising a prokaryotic RNase H- like domain-containing (RHDC) polypeptide and a nucleic acid unwinding polypeptide, wherein the RHDC polypeptide sequence cleaves a nucleic acid at a mesophilic temperature, wherein the nucleic acid-cleaving activity is bound by a guide DNA, and wherein the RHDC polypeptide sequence is fused to the nucleic acid unwinding polypeptide.

[0033] Provided herein is a cell comprising: a polypeptide construct comprising an RNase H-like domain-containing (RHDC) polypeptide sequence, a nucleic acid unwinding polypeptide sequence, and a nucleic-acid insertion polypeptide sequence, wherein a polypeptide encoded by the RHDC polypeptide sequence cleaves a nucleic acid in a target polynucleotide sequence at a mesophilic temperature, wherein the target polynucleotide sequence is bound by a guide DNA, wherein the RHDC polypeptide sequence is fused to the nucleic acid unwinding polypeptide, and wherein the nucleic-acid insertion polypeptide sequence inserts a nucleic acid sequence in the cleaved nucleic acid.

[0034] Provided herein is a cell comprising: a nucleic acid construct encoding a prokaryotic RNase H- like domain-containing (RHDC) polypeptide sequence and a nucleic acid unwinding polypeptide sequence, wherein the RHDC polypeptide sequence cleaves a nucleic acid in a target polynucleotide sequence at a mesophilic temperature, wherein the target polynucleotide sequence is bound by a guide DNA, and wherein the RHDC polypeptide sequence is fused to the nucleic acid unwinding polypeptide sequence.

[0035] Provided herein is a cell comprising: a nucleic acid construct encoding an RNase H-like domain- containing (RHDC) polypeptide sequence, a nucleic acid unwinding polypeptide sequence, and a nucleic- acid insertion polypeptide sequence, wherein the RHDC polypeptide sequence cleaves a nucleic acid in a target polynucleotide sequence at a mesophilic temperature, wherein the target polynucleotide sequence is bound by a guide DNA, wherein the RHDC polypeptide sequence is fused to the nucleic acid unwinding polypeptide sequence, and wherein the nucleic-acid insertion polypeptide sequence inserts a nucleic acid sequence in the cleaved nucleic acid.

[0036] Disclosed herein is a prokaryotic polypeptide construct comprising an RNase H-like domain- containing (RHDC) polypeptide sequence and a nucleic acid unwinding polypeptide. The RHDC polypeptide cleaves a nucleic acid at a mesophilic temperature. The nucleic acid-cleaving activity is directed by a guide DNA, and the RHDC polypeptide is fused to the nucleic acid unwinding polypeptide.

[0037] Disclosed herein is a polypeptide construct comprising an RNase H-like domain-containing (RHDC) polypeptide and a nucleic acid unwinding polypeptide. The RHDC polypeptide cleaves a nucleic acid at a mesophilic temperature. The nucleic acid-cleaving activity is directed by a guide DNA, and the RHDC polypeptide is fused to the nucleic acid unwinding polypeptide.

[0038] Disclosed herein is a polypeptide construct comprising an Argonaute polypeptide and a nucleic acid unwinding polypeptide. The Argonaute polypeptide cleaves a nucleic acid at a mesophilic temperature. In some cases, at least one of the RHDC polypeptide or the nucleic acid unwinding polypeptide are derived from a mesophilic organism. In some cases, at least one of the Argonaute polypeptide or the nucleic acid unwinding polypeptide are derived from a mesophilic organism. The RHDC polypeptide can cleave a nucleic acid from about 30 °C, 31 °C, 32 °C, 33 °C, 34 °C, 35 °C, 36 °C, 37 °C, 38 °C to about 39 °C. In some cases, the RHDC polypeptide cleaves a nucleic acid from about 19 °C to about 40 °C. In some cases, the RHDC polypeptide cleaves a nucleic acid at 37 °C. In some cases, the Argonaute polypeptide cleaves a nucleic acid at about 30 °C, 31 °C, 32 °C, 33 °C, 34 °C, 35 °C, 36 °C, 37 °C, 38 °C or 39 °C. In some cases, the Argonaute polypeptide cleaves a nucleic acid at 37 °C. In some cases, the mesophilic organism is a prokaryotic organism. The prokaryotic organism can be from a family selected from the group consisting of: bacteroidetes, proteobacteria, acidobacteria, actinobacteria, firmicutes, cyanobacteria, spirochaetes, deinococcus, verrucomicrobia, planctomycetes, balneolaeota, and chloroflexi. The RHDC polypeptide can be an archaeal Argonaute polypeptide. The Argonaute polypeptide can be an archaeal Argonaute polypeptide. The RHDC polypeptide can be encoded by a gene located in an adjacent operon to at least one of a P-element induced Wimpy testis (PIWI) gene, RuvC, Cas, Sir2, Mrr, TIR, PLD, REase, restriction endonuclease, DExD/H, superfamily II helicase, RRXRR SEQ ID NO: 380), DUF460, DUF3010, DUF429, DUF1092, COG5558, OrfB_IS605, Peptidase_A17, Ribonuclease H-like domain, 3'-5' exonuclease domain, 3'-5' exoribonuclease Rv2179c-like domain, Bacteriophage Mu, transposase, DNA-directed DNA polymerase, family B, exonuclease domain, Exonuclease, RNase T/DNA polymerase III, yqgF gene, HEPN, RNase LS domain, LsoA catalytic domain, KEN domain, RNaseL, Irel, RNase domain, RloC, or PrrC. In some cases, the RHDC polypeptide is encoded by a gene located in an adjacent operon to at least one of a gene involved in defense, stress response, a Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR), Argonaute, or DNA repair. In some cases, the RHDC polypeptide is an Argonaute domain. In some cases, the RHDC polypeptide encodes for a nuclease, nickase, RNase, recombinase, flippase, transposase, or a combination thereof. In some cases, the Argonaute polypeptide encodes for a nuclease, nickase, RNase, recombinase, flippase, transposase, or a combination thereof. In some cases, the RHDC polypeptide encodes for an RNase. The nucleic acid unwinding polypeptide can be of prokaryotic or archaeal origin. In some cases, the nucleic acid unwinding polypeptide encodes for a helicase, a topoisomerase, a Cas, or a combination thereof. A Cas can be a catalytically dead Cas or partially dead Cas (nickase). A Cas can be partially catalytically dead. A Cas can be partially dead. In some cases, a catalytically dead Cas is selected from the group consisting of: Casl, CaslB, Cas2, Cas3, Cas4, Cas5, Cas6, Cas7, Cas8, Cas9, CaslO, Csyl, Csy2, Csy3, Csel, Cse2, Cscl, Csc2, Csa5, Csn2, Csm2, Csm3, Csm4, Csm5, Csm6, Cmrl, Cmr3, Cmr4, Cmr5, Cmr6, Csbl, Csb2, Csb3, Csxl7, Csxl4, CsxIO, Csxl6, CsaX, Csx3, Csxl, CsxlS, Csfl, Csf2, CsO, Csf4, Cpfl, c2cl, c2c3, Cas9HiFi, xCas9, CasX, CasY, and CasRX. In some cases, a polypeptide construct further comprises an ATPase-encoding sequence. In some cases, the RHDC polypeptide and the nucleic acid unwinding polypeptide are joined by a linker. A linker can be a polypeptide linker that comprises: GSGSGS, non-charged amino acids, alpha-helical domains, and peptides with ligand-inducible conformational changes. In some cases, an Argonaute polypeptide and a nucleic acid unwinding polypeptide are joined by a linker. A linker can be a polypeptide linker. In some cases, a nucleic acid unwinding polypeptide and an RHDC polypeptide are expressed in the same frame. In some cases, a nucleic acid unwinding polypeptide and an Argonaute polypeptide are expressed in the same frame. In some cases, a protein encoded by a polypeptide construct is bound to a guide DNA. In some cases, a polypeptide construct can be bound to a guide nucleic acid. In some cases, a guide polynucleic acid can be a guide DNA (gDNA) or a guide RNA (gRNA). A guide DNA can be from about 1 base pair to about 30 base pairs in length. A guide DNA can be

complementary to a target polynucleotide sequence. In some cases, a target polynucleotide sequence comprises a gene sequence. In some cases, a protein encoded by a polypeptide construct produces a disruption in a gene sequence when introduced into a cell. A disruption can comprise a double strand break or a single strand break.

[0039] Disclosed herein is an ex vivo cell comprising a polypeptide construct.

[0040] Disclosed herein is a method of genomic editing comprising contacting a cell with a protein encoded by a polypeptide construct.

[0041] Disclosed herein is a kit comprising a polypeptide construct and instructions for use thereof. A kit can further comprise a container.

[0042] Disclosed herein is a polypeptide construct comprising an RNase H-like domain-containing (RHDC) polypeptide and a nucleic acid unwinding polypeptide. A protein encoded by the RHDC polypeptide cleaves a nucleic acid at a mesophilic temperature. A nucleic acid-cleaving activity can be directed by a guide DNA. An RHDC polypeptide can be fused to a nucleic acid unwinding polypeptide, and a protein encoded by a polypeptide construct can further demonstrate nucleic acid-insertion activity. [0043] Disclosed herein is a polypeptide construct comprising an Argonaute polypeptide and a nucleic acid unwinding polypeptide, a protein encoded by the Argonaute polypeptide cleaves a nucleic acid at a mesophilic temperature, and a protein encoded by the polypeptide construct further demonstrates nucleic acid-insertion activity.

[0044] Disclosed herein is a polypeptide construct comprising an RNase H-like domain-containing

(RHDC) polypeptide and a regulatory domain polypeptide (RDP). A polypeptide construct can further comprise a nucleic acid unwinding domain. A nucleic acid unwinding domain can be a catalytically dead

Cas, a helicase, or a topoisomerase. In some cases, an RDP is a Rad51 polypeptide, a recombinase, an epigenetic modulator, or a domain involved in germ cell repair.

[0045] Disclosed herein is a cell comprising a polypeptide construct.

[0046] Disclosed herein is a composition comprising a polypeptide construct.

[0047] Disclosed herein is a method comprising contacting a cell with a nucleic acid editing system that comprises an RNase H-like domain-containing (RHDC) polypeptide, a nucleic acid unwinding agent, a guide nucleic acid, and a regulatory domain polypeptide (RDP). In some cases, the RHDC, the nucleic acid unwinding agent, and the RDP are comprised in a protein complex. The protein complex associates with the guide nucleic acid to form a guided editing complex. In some cases, the guide nucleic acid is a guide DNA, a guide RNA, or a combination thereof. The RHDC domain can be from an Argonaute. The nucleic acid unwinding agent comprises a helicase, a topoisomerase, a Cas, or a combination thereof. In some cases, the Cas can be a catalytically dead Cas. A Cas can be partially catalytically dead. The RDP can comprise a recombinase, an epigenetic modulator, a germ cell repair domain, a DNA repair protein, or a combination thereof. In some cases, the RDP allows for tuning of nucleic acid editing. A guide nucleic acid can be complementary to a genomic sequence comprising a gene in a cell. In some cases, a gene encodes for a protein involved in a disease. A disease can be a heart disease, diabetes, cancer, neurological disease, immunological disease, mental illness, a genetic disease, or a combination thereof. In some cases, a method disclosed herein has a lower energy requirement as compared to a corresponding nucleic acid editing system without an RDP, and wherein the energy requirement is determined by calculating difference in ATP usage by providing a predetermined amount of ATP into nucleic acid editing systems, and calculating ATP usage based on ([ATP]-[ADP])/[modified DNA] after editing. In some cases, an energy level can be reduced by about 4%, 5%, 6%, 7%, 8%, 9%, 10%, 15%, 20%, or up to 25% when the nucleic acid editing system is utilized as compared to said comparable nucleic acid editing system without the RDP. In some cases, a method skews a genomic editing repair towards homology directed repair over non-homologous end joining. Disclosed herein can be a method further comprising introducing a transgene into a genome of a cell. In some cases, introducing a transgene is performed non-virally or virally. A cell can be a primary cell or a recombinant cell. A cell can be human or non-human. A nucleic acid editing system can be electroporated into a cell. A method can further comprise introducing a cell edited by a nucleic acid editing system to a subject in need thereof. [0048] Disclosed herein is an isolated nucleic acid sequence comprising at least 60% percent identity to any one of SEQ ID NOs: 161 to 252. An isolated nucleic acid sequence can further comprise at least about 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or up to about 100% identity to a sequence disclosed herein.

[0049] Disclosed herein is a cell comprising a protein encoded by an isolated nucleic acid sequences. A cell can further comprise a guide nucleic acid. A cell can further comprise a protein encoded by a regulatory domain polypeptide (RDP).

[0050] Disclosed herein is a method of genome editing comprising contacting a population of cells with a protein encoded by the polypeptide construct or the polypeptide construct, wherein at least about 5% of said population comprises a genomic disruption after the contacting. In some cases, at least about 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, or 60% of said population of cells comprises a genomic disruption after the contacting.

[0051] Disclosed herein is a method of genome editing comprising unwinding a genomic sequence with Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) protein thereby generating an unwound genomic sequence; and introducing a genomic disruption in said unwound genomic sequence by contacting with an RNase H-like domain-containing (RHDC) polypeptide thereby editing the genome. A CRISPR protein can be a catalytically dead Cas or partially dead Cas (nickase). A Cas can be partially catalytically dead. The catalytically dead Cas can be selected from the group consisting of: Casl, CaslB, Cas2, Cas3, Cas4, Cas5, Cas6, Cas7, Cas8, Cas9, CaslO, Csyl , Csy2, Csy3, Csel, Cse2, Cscl, Csc2, Csa5, Csn2, Csm2, Csm3, Csm4, Csm5, Csm6, Cmrl, Cmr3, Cmr4, Cmr5, Cmr6, Csbl, Csb2, Csb3, Csxl7, Csxl4, CsxlO, Csxl6, CsaX, Csx3, Csxl, CsxlS, Csfl, Csf2, CsO, Csf4, Cpfl, c2cl, c2c3, Cas9HiFi, xCas9, CasX, CasY, and CasRX. The Cas can be dCas9. An RHDC comprises a protein selected from RuvC, HNH, RNase H, PIWI, or a combination thereof. A method can further comprise a regulatory domain polypeptide (RDP). In some cases, an RDP can be Rad51, a recombinase, an epigenetic modulator, or a domain involved in germ cell repair. A cell can be a primary cell or a recombinant cell. A cell can be human or non-human.

[0052] Disclosed herein is a method of treating a disease in a subject in need thereof comprising administering a cell edited by the method. A disease can be heart disease, diabetes, cancer, neurological disease, immunological disease, mental illness, a genetic disease, or a combination thereof. In some cases, a level of a disease is reduced by about 10% to about 50% after said administering.

[0053] Disclosed herein is a method of stabilizing a disease in a subject in need thereof comprising administering a cell edited by the method. Stabilizing a disease can comprise less than a 5% change in a level of a disease in a subject.

[0054] In one embodiment, the present disclosure provides a polypeptide construct comprising an RNase-H-like domain-containing (RHDC) polypeptide and a nucleic acid unwinding polypeptide, wherein the RHDC polypeptide cleaves a nucleic acid at a mesophilic temperature, wherein the nucleic acid-cleaving activity is directed by a guide DNA, and wherein the RHDC polypeptide is fused to the nucleic nucleic acid unwinding polypeptide.

[0055] In some embodiments, the present disclosure provides a polypeptide construct comprising an Argonaute polypeptide and a nucleic acid unwinding polypeptide, wherein the Argonaute polypeptide cleaves a nucleic acid at a mesophilic temperature.

[0056] In some embodiments, the present disclosure provides a method of genome editing comprising introducing into a cell: (a) an RNase-H-like domain-containing (RHDC) polypeptide; (b) a nucleic acid unwinding agent; and (c) a guide DNA, wherein the guide DNA comprises a sequence that is complementary to at least a portion of a target nucleic acid sequence in the cell, wherein the nucleic acid unwinding agent unwinds at least a portion of the target sequence, and wherein the RHDC polypeptide introduces a genomic disruption into the target sequence at a mesophilic temperature.

[0057] In some embodiments, the present disclosure provides a method of genome editing comprising introducing into a cell: (a) an Argonaute polypeptide; (b)a nucleic acid unwinding agent; and (c) a guide polynucleic acid, wherein the guide polynucleic acid comprises a sequence that is complementary to at least a portion of a target nucleic acid sequence in the cell, wherein the nucleic acid unwinding agent unwinds at least a portion of the target sequence, and wherein the Argonaute polypeptide introduces a genomic disruption into the target sequence at a mesophilic temperature.

[0058] In some embodiments, the method further comprises introducing into the cell an exogenous nucleic acid sequence. In some embodiments, the exogenous nucleic acid sequence is introduced into a genomic disruption. In some embodiments, the exogenous nucleic acid sequence is introduced into a random genomic location. In some embodiments, the exogenous nucleic acid sequence is introduced via non-viral introduction or viral introduction. In some embodiments, the viral introduction comprises a retrovirus, lentivirus, adenovirus, or adeno-associated virus. In some embodiments, the non-viral introduction of the exogenous nucleic acid sequence comprises an electroporation, microinjection, liposome, or conjugation. In some embodiments, the exogenous nucleic acid sequence is DNA or RNA. In some embodiments, the exogenous nucleic acid sequence is single stranded DNA or double stranded DNA. In some embodiments, the exogenous nucleic acid sequence comprises double stranded DNA it comprises plasmid DNA or minicircle DNA. In some embodiments, the exogenous nucleic acid sequence encodes an exogenous receptor.

[0059] In some embodiments, the method comprises stimulating the cell prior to, concurrent with, or after the introducing. In some embodiments, the cell is stimulated prior to the introducing. In some embodiments, the cell is stimulated from about 1 hour to about 48 hours prior to the introducing. In some embodiments, the stimulation comprises contacting the cell with at least one of: an anti-CD3 antibody, an anti-CD28 antibody, or an interleukin. In some embodiments, the introducing comprises at least one of electroporation, microinjection, liposome, or conjugation. In some embodiments, the introducing comprises electroporation. In some embodiments, the electroporation comprises introducing the Argonaute polypeptide, the nucleic acid unwinding agent, the guiding polynucleic acid, or a combination thereof, at a voltage from about 1000 V to about 2000V for about 1ms to about 30ms. In some embodiments, the voltage is from about 1400V for about 10ms. In some embodiments, the

electroporation comprises about 1 pulse to about 5 pulses. In some embodiments, the electroporation is 3 pulses.

[0060] In some embodiments, the method further comprises expanding the cells. In some embodiments, the method further comprises selecting one or more of the cells. In some embodiments, the selection comprises at least one of a magnetic separation, a flow cytometric separation, and/or an antibiotic. In some embodiments, the selection comprises selecting a population of cells that express a cellular marker or an exogenous receptor. In some embodiments, the cellular marker comprises at least one of: CD3, CD4, CD8, CCR7, CD45RA, CD62L+, CD27, CD28, and IL-7Ra. In some embodiments, the method is performed in a closed system. In some embodiments, the method further comprises repeating the method on the cells.

[0061] In some embodiments, the polypeptide comprises at least one RHDC polypeptide and a nucleic acid unwinding polypeptide. In some embodiments, the at least one RHDC polypeptide and the nucleic acid unwinding polypeptide are derived from a mesophilic organism.

[0062] In some embodiments, the polypeptide comprises at least one Argonaute polypeptide and a nucleic acid unwinding polypeptide. In some embodiments, the at least one Argonaute polypeptide and the nucleic acid unwinding polypeptide are derived from a mesophilic organism.

[0063] In one embodiment, the present disclosure provides an ex vivo system for use in targeting a predetermined gene, the system comprising an RNase-H4ike domain-containing (RHDC) polypeptide, a nucleic acid unwinding agent, and a guide DNA (gDNA), wherein the gDNA binds to the gene or to a nucleic acid sequence adjacent to the gene, and wherein the RHDC polypeptide cleaves a nucleic acid at a mesophilic temperature, wherein the nucleic acid-cleaving activity is directed by a guide DNA.

[0064] In one embodiment, the present disclosure provides an ex vivo system for use in targeting a predetermined gene, the system comprising an Argonaute polypeptide and a nucleic acid unwinding agent, wherein the Argonaute polypeptide cleaves a nucleic acid at a mesophilic temperature.

[0065] In some embodiments, the ex vivo system further comprises a cell.

[0066] In some embodiments, the ex vivo system for use in targeting a predetermined gene, comprises at least one RHDC polypeptide and a nucleic acid unwinding polypeptide. In some embodiments, the at least one RHDC polypeptide and the nucleic acid unwinding polypeptide are derived from a mesophilic organism.

[0067] In some embodiments, the ex vivo system for use in targeting a predetermined gene, comprises at least one Argonaute polypeptide and a nucleic acid unwinding polypeptide. In some embodiments, the at least one Argonaute polypeptide and the nucleic acid unwinding polypeptide are derived from a mesophilic organism. [0068] In some embodiments, the RHDC polypeptide cleaves a nucleic acid from about 30 °C to about 39 °C. In some embodiments, the RHDC polypeptide cleaves a nucleic acid from about 35 °C to about 39 °C. In some embodiments, the RHDC polypeptide cleaves a nucleic acid at 37 °C. In some embodiments, the RHDC polypeptide demonstrates nuclease activity from 5 °C to 40 °C.

[0069] In some embodiments, the Argonaute polypeptide cleaves a nucleic acid from about 30 °C to about 39 °C. In some embodiments, the Argonaute polypeptide cleaves a nucleic acid from about 35 °C to about 39 °C. In some embodiments, the Argonaute polypeptide cleaves a nucleic acid at 37 °C. In some embodiments, the Argonaute polypeptide demonstrates nuclease activity from 5 °C to 40 °C.

[0070] In some embodiments, the mesophilic organism is a prokaryotic organism. In some

embodiments, the mesophilic organism is from a family selected from the group consisting of:

bacteroidetes, proteobacteria, actinobacteria, firmicutes, cyanobacteria, spirochaetes, deinococcus, verrucomicrobia, planctomycetes, balneolaeota, and chloroflexi. In some embodiments, the mesophilic organism is from a family selected from the group consisting of: proteobacteria, acidobacteria, actinobacteria, and bacteroidetes.

[0071] In some embodiments, the RHDC polypeptide is an archaeal Argonaute polypeptide. In some embodiments, the Argonaute polypeptide is an archaeal Argonaute polypeptide.

[0072] In some embodiments, the RHDC polypeptide is encoded by a gene located in an adjacent operon to at least one of a P-element induced Wimpy testis (PIWI) gene, RuvC, Cas, Sir2, Mrr, TIR, PLD, REase, restriction endonuclease, DExD/H, superfamily II helicase, RRXRR, DUF460, DUF3010, DUF429, DUF1092, COG5558, OrfB_IS605, Peptidase_A17, Ribonuclease H-like domain, 3'-5' exonuclease domain, 3 '-5' exoribonuclease Rv2179c-like domain, Bacteriophage Mu, transposase, DNA- directed DNA polymerase, family B, exonuclease domain, Exonuclease, RNase T/DNA polymerase III, yqgF gene, HEPN, RNase LS domain, LsoA catalytic domain, KEN domain, RNaseL, Irel, RNase domain, RloC, or PrrC.

[0073] In some embodiments, the RHDC polypeptide is encoded by a gene located in an adjacent operon to at least one of a gene involved in defense, stress response, a CRISPR system, or DNA repair.

[0074] In some embodiments, the RHDC polypeptide comprises an Argonaute domain. In some embodiments, the RHDC polypeptide has nuclease activity. In some embodiments, the Argonaute polypeptide has nuclease activity. In some embodiments, the nuclease activity is double stranded DNA cleaving activity.

[0075] In some embodiments, the RHDC polypeptide has nickase activity. In some embodiments, the Argonaute polypeptide has nickase activity. In some embodiments, the nickase activity is single stranded DNA cleaving activity.

[0076] In some embodiments, the RHDC polypeptide has RNAse activity. In some embodiments, the Argonaute polypeptide has RNase activity. In some embodiments, the RNase activity is double stranded RNA cleaving activity. In some embodiments, the RNase activity is RNA cleaving activity. [0077] In some embodiments, the RHDC polypeptide has RNase-H activity. In some embodiments, the Argonaute polypeptide has RNase-H activity. In some embodiments, the RNase-H activity is RNA cleaving activity.

[0078] In some embodiments, the RHDC polypeptide has recombinase activity. In some embodiments, the RHDC polypeptide has DNA base flipping activity. In some embodiments, the RHDC polypeptide has transposase activity.

[0079] In some embodiments, the nucleic acid unwinding polypeptide is of prokaryotic origin. In some embodiments, the nucleic acid unwinding polypeptide is of archaeal origin.

[0080] In some embodiments, the nucleic acid unwinding polypeptide comprises a helicase domain. In some embodiments, the nucleic acid unwinding polypeptide comprises a topoisomerase domain. In some embodiments, the nucleic acid unwinding polypeptide comprises a Cas protein domain. In some embodiments, the Cas protein domain is selected from the group consisting of: Casl, CaslB, Cas2, Cas3, Cas4, Cas5, Cas6, Cas7, Cas8, Cas9, CaslO, Csyl , Csy2, Csy3, Csel, Cse2, Cscl, Csc2, Csa5, Csn2, Csm2, Csm3, Csm4, Csm5, Csm6, Cmrl, Cmr3, Cmr4, Cmr5, Cmr6, Csbl, Csb2, Csb3, Csxl7, Csxl4, CsxlO, Csxl6, CsaX, Csx3, Csxl, CsxlS, Csfl, Csf2, CsO, Csf4, Cpfl, c2cl, c2c3, and Cas9HiFi.

[0081] In some embodiments, the nucleic acid unwinding polypeptide comprises a catalytically dead nucleic acid unwinding domain. In some embodiments, the catalytically dead nucleic acid unwinding domain is a dCas domain. In some embodiments, the catalytically dead nucleic acid unwinding domain is a dCas9 domain.

[0082] In some embodiments, the nucleic acid unwinding polypeptide comprises an ATPase domain. In some embodiments, the nucleic acid unwinding polypeptide has ATPase activity. In some embodiments,

[0083] In some embodiments, the polypeptide construct comprises a polypeptide with ATPase activity.

In some embodiments, the ex vivo system comprises a functional ATPase domain.

[0084] In some embodiments, the RHDC polypeptide and the nucleic acid unwinding polypeptide are joined by a linker. In some embodiments, the Argonaute polypeptide and the nucleic acid unwinding polypeptide are joined by a linker. In some embodiments, the linker is a polypeptide linker.

[0085] In some embodiments, the nucleic acid unwinding polypeptide and the RHDC polypeptide are expressed in the same frame. In some embodiments, the nucleic acid unwinding polypeptide and the

Argonaute polypeptide are expressed in the same frame.

[0086] In some embodiments, the polypeptide construct is bound to the guide DNA. In some embodiments, the polypeptide construct comprising an RNase-H-like domain-containing (RHDC) polypeptide and a nucleic acid unwinding polypeptide construct is bound to the guide DNA.

[0087] In some embodiments, the at least one of the RHDC polypeptide and the nucleic acid unwinding agent is bound to a guide DNA. [0088] In some embodiments, the polypeptide construct is bound to a guide nucleic acid. In some embodiments, the polypeptide construct comprising an Argonaute polypeptide and a nucleic acid unwinding polypeptide is bound to a guide nucleic acid.

[0089] In some embodiments, the guide polynucleic acid is a guide DNA (gDNA). In some embodiments, the guide DNA is from about 1 base pair to about 30 base pairs. In some embodiments, the guide DNA forms a secondary structure. In some embodiments, the guide DNA is complementary to a target polynucleotide sequence. In some embodiments, the target polynucleotide sequence is a gene sequence. In some embodiments, the gene sequence is a sequence of a disease-associated gene.

[0090] In some embodiments, the guide nucleic acid is a guide RNA (gRNA).

[0091] In some embodiments, the guide polynucleic acid is from about 1 base pair to about 30 base pairs. In some embodiments, the guide polynucleic acid forms a secondary structure. In some embodiments, the guide polynucleic acid is complementary to a target polynucleotide sequence. In some embodiments, the target polynucleotide sequence is a gene sequence. In some embodiments, the gene sequence is a sequence of a disease-associated gene. In some embodiments, the polypeptide construct produces a disruption when introduced into a cell. In some embodiments, the ex vivo system produces a disruption when introduced to a cell.

[0092] In some embodiments, the disruption comprises a double strand break or a single strand break. In some embodiments, the cell is a prokaryotic cell. In some embodiments, the cell is a eukaryotic cell. In some embodiments, the eukaryotic cell is a plant cell. In some embodiments, the eukaryotic cell is an animal cell. In some embodiments, the animal cell is a mammalian cell. In some embodiments, the mammalian cell is a human cell. In some embodiments, the human cell is a stem cell. In some embodiments, the human cell is an immune cell. In some embodiments, the immune cell is a lymphoid cell. In some embodiments, the lymphoid cell is a T cell, B cell, NK cell, stem cell, or TIL. In some embodiments, the cell is a primary cell.

[0093] In some embodiments, the polypeptide construct is good-manufacturing practices (GMP) compatible. In some embodiments, the ex vivo system is good-manufacturing practices (GMP) compatible.

[0094] In some embodiments, the present disclosure provides an ex vivo cell comprising any one of the polypeptide constructs disclosed herein.

[0095] In some embodiments, the present disclosure provides an ex vivo cell comprising a polypeptide construct comprising an RNase-H-like domain-containing (RHDC) polypeptide and a nucleic acid unwinding polypeptide, wherein the RHDC polypeptide cleaves a nucleic acid at a mesophilic temperature, wherein the nucleic acid-cleaving activity is directed by a guide DNA, and wherein the RHDC polypeptide is fused to the nucleic nucleic acid unwinding polypeptide. [0096] In some embodiments, the present disclosure provides an ex vivo cell comprising a polypeptide construct comprising an Argonaute polypeptide and a nucleic acid unwinding polypeptide, wherein the Argonaute polypeptide cleaves a nucleic acid at a mesophilic temperature.

[0097] In some embodiments, the ex vivo cell is a primary cell. In some embodiments, the ex vivo cell is a recombinant cell. In some embodiments, the ex vivo cell is a prokaryotic cell. In some embodiments, the ex vivo cell is a eukaryotic cell. In some embodiments, the eukaryotic cell is a plant cell. In some embodiments, the eukaryotic cell is an animal cell. In some embodiments, the animal cell is a mammalian cell. In some embodiments, the mammalian cell is a human cell. In some embodiments, the human cell is a stem cell. In some embodiments, the human cell is an immune cell. In some

embodiments, the immune cell is a lymphoid cell. In some embodiments, the lymphoid cell is a T cell, B cell, NK cell, stem cell, or TIL. In some embodiments, the cell is a primary cell.

[0098] In some embodiments, the present disclosure provides a polynucleic acid encoding any one of the polypeptide constructs disclosed herein.

[0099] In some embodiments, the present disclosure provides a polynucleic acid encoding a polypeptide construct comprising an RNase-H-like domain-containing (RHDC) polypeptide and a nucleic acid unwinding polypeptide, wherein the RHDC polypeptide cleaves a nucleic acid at a mesophilic temperature, wherein the nucleic acid-cleaving activity is directed by a guide DNA, and wherein the RHDC polypeptide is fused to the nucleic nucleic acid unwinding polypeptide.

[0100] In some embodiments, the present disclosure provides a polynucleic acid encoding a polypeptide construct comprising an Argonaute polypeptide and a nucleic acid unwinding polypeptide, wherein the Argonaute polypeptide cleaves a nucleic acid at a mesophilic temperature.

[0101] In some embodiments, the RHDC polypeptide and the nucleic acid unwinding polypeptide are in the same reading frame.

[0102] In some embodiments, the polynucleic acid further comprises a nuclear localization signal.

[0103] In some embodiments, the present disclosure provides a pharmaceutical composition comprising:

(a) any one of the polypeptide constructs disclosed herein or any one of the ex vivo systems disclosed herein; and (b) at least one of: an excipient, a diluent, or a carrier.

[0104] In some embodiments, the pharmaceutical composition is in unit dosage form.

[0105] In some embodiments, the pharmaceutical composition is in the form of a tablet, a liquid, syrup, an oral formulation, an intravenous formulation, an intranasal formulation, a subcutaneous formulation, an inhalable respiratory formulation, a suppository, and any combination thereof.

[0106] In some embodiments, the present disclosure provides a kit comprising: (a) any one of the polypeptide constructs disclosed herein or any one of the ex vivo systems disclosed herein; and (b) instructions for use thereof.

[0107] In some embodiments, the kit further comprises a container. [0108] In some embodiments, the present disclosure provides a method of treating a subject in need thereof, comprising administering a population of cells modified with any one of the methods disclosed herein. In some embodiments, the method further comprises administering at least one of a cytokine, chemotherapeutic, anti-viral, antibiotic, or granulocyte colony -stimulating factor (G-CSF) analog. In some embodiments, the cytokine is IL-2. In some embodiments, a cancer is reduced in the subject in need thereof after the administering as measured by CT scan.

[0109] In some embodiments, the present disclosure provides an ex vivo system comprising an RNase H-like domain-containing (RHDC) polypeptide, a nucleic acid unwinding agent, and a guide nucleic acid, wherein the guide nucleic acid binds to a predetermined gene or to a nucleic acid sequence adjacent to the predetermined gene, the RHDC polypeptide is capable of introducing a double strand break in the predetermined gene, the nucleic acid unwinding agent lowers the energetic requirement for introducing the double strand break in comparison to introducing a double strand break with the RHDC polypeptide alone, and the ex vivo system introduces the double strand break at a range of temperatures from 19 °C to 40 °C. In some embodiments the ex vivo system further comprises a regulatory domain polypeptide (RDP).

[0110] In some embodiments, provided herein is an ex vivo system comprising an RNase H-like domain-containing (RHDC) polypeptide, a nucleic acid unwinding agent, a guide nucleic acid, and a regulatory domain polypeptide (RDP), wherein the guide nucleic acid binds to a predetermined gene or to a nucleic acid sequence adjacent to the predetermined gene, the RHDC polypeptide is capable of introducing a double strand break in the predetermined gene, the nucleic acid unwinding agent lowers the energetic requirement for introducing the double strand break in comparison to introducing a double strand break with the RHDC alone, and the ex vivo system introduces the double strand break at a range of temperatures from 19 °C to 40 °C. In some embodiments the nucleic acid unwinding agent is a polypeptide. In some embodiments the RHDC polypeptide, the nucleic acid unwinding agent, and the RDP are a polypeptide construct. In some cases, the RDP is a Rad51 polypeptide or a recombinase. In some cases, the guide nucleic acid is a guide DNA. In some cases, the ex vivo system introduces a double strand break in the predetermined gene at an efficiency 25%, 50%, or 75% greater than a comparable ex vivo system without said nucleic acid unwinding agent. In some cases, the ex vivo system introduces a first D-loop in the predetermined gene at an efficiency of 25%, 50%, or 75% and a second D-loop in said predetermined nucleic acid sequence at an efficiency of 25%, 50%, or 75%. In some cases, the RHDC polypeptide is an Argonaute polypeptide. In some cases, the Argonaute is selected from the group consisting of MjAgo, TtAgo, HlaAgo, DmcAgo, MsAgo, TsAgo, and PfAgo.

[0111] In some embodiments, provided herein is a cell comprising an ex vivo system.

[0112] In some embodiments, provided herein is a composition comprising an ex vivo system.

[0113] In some embodiments, provided herein is a polypeptide construct comprising an RNAse H-like domain-containing (RHDC) polypeptide and a regulatory domain polypeptide (RDP). In some cases, the polypeptide construct further comprises a nucleic acid unwinding domain. In some cases, the nucleic acid unwinding domain is a dCas9 domain. In some cases, the polypeptide construct further comprises a regulatory domain polypeptide (RDP). In some cases, the RDP is a Rad51 polypeptide or a recombinase.

[0114] Provided herein is a cell comprising a polypeptide construct.

[0115] Provided herein is a composition comprising a polypeptide construct.

[0116] Provided herein is a method for reducing an energy requirement associated with a nucleic acid editing system, comprising contacting a cell with a nucleic acid editing system, wherein the nucleic acid editing system comprises an RNase H-like domain-containing (RHDC) polypeptide, a nucleic acid unwinding agent, a guide nucleic acid, and a regulatory domain polypeptide (RDP), wherein the energy required for nucleic acid editing with said nucleic acid editing system is less than a comparable nucleic acid editing system without the RDP.

[0117] Provided herein is an Assembled Genetic Editing Molecule (AGEM) comprising an RNase H- like domain-containing (RHDC) polypeptide, a nucleic acid unwinding polypeptide, and an optional regulatory domain polypeptide (RDP), wherein the RHDC polypeptide cleaves a nucleic acid at a mesophilic temperature, wherein said nucleic acid-cleaving activity is directed by a guide nucleic acid, and wherein said RHDC polypeptide is fused to said nucleic acid unwinding polypeptide. In some cases, the RHDC polypeptide is an Argonaute polypeptide. In some cases, the Argonaute is selected from the group consisting of Mj Ago, TtAgo, HlaAgo, DmcAgo, MsAgo, TsAgo, and PfAgo. In some cases, the RHDC polypeptide comprises a sequence selected from the group consisting of SEQ ID NOs: 59-160. In some cases, the RDP is a Rad51 polypeptide or a recombinase. In some cases, the nucleic acid unwinding polypeptide comprises a dCas9 domain.

BRIEF DESCRIPTION OF THE DRAWINGS

[0118] The novel features of the invention are set forth with particularity in the appended claims. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which:

[0119] FIG. 1 shows a phylogenetic tree for a PIWI domain in a complete genome of an Argonaute protein. This tree identifies possible PIWI domains in organisms that can be used to identify suitable nuclease or helicase domains.

[0120] FIG. 2 shows a mining strategy for nuclease identification based on PIWI domain identification.

[0121] FIG. 3 shows features of the PIWI superfamily proteins, including that C-termini may contain a PIWI domain and be conserved among nucleases. Dotted lines indicate separate genes located in the same, predicted, operon.

[0122] FIG. 4 shows a phylogenetic tree. On the right is homology between predicted structural alignment. From left to right is position 0 to end of protein. Black boxes are conserved domains. [0123] FIG. 5 shows a C-terminus structural alignment. Red is matching alpha helix, blue is beta sheet. FIG. 5 discloses SEQ ID NOS 385-406, respectively, in order of appearance.

[0124] FIG. 6 shows a phylogenetic tree of Argonaute genes with a nearby helicase. Blue indicates that the Argonaute gene is from a mesophilic organism; red indicates that the Argonaute gene is from a thermophilic organism.

[0125] FIGs. 7A-7D show a phylogenetic tree of Argonaute proteins. Blue indicates that the Argonaute protein is from a mesophilic organism; red indicates that the Argonaute protein is from a thermophilic organism.

[0126] FIGs. 8A-8D show a phylogenetic tree. On the right is homology between predicted structural alignments. From left to right is position 0 to end of protein. Black boxes are conserved domains.

[0127] FIG. 9 shows a schematic of a gain-of-function gene editing reporter system.

[0128] FIG. 10 depicts a map of a lentiviral plasmid integrated into HEK 293T to generate reporter cell line, HEK293T QMS (CMVS-CuO luc-p2A-GFP, EFlalpha-cymR).

[0129] FIG. 11 shows a map of the SpCas9 and sgCymR expression plasmid, pX459-sgCymR-94.

[0130] FIG. 12 depicts a schematic of RDP-homology directed repair enhancement. To note, artificial genome editor molecule (aGEM).

[0131] FIG. 13A shows a coomassie Blue stained gel of lysis condition 1 of Argonaute (SEQ ID NO: 190). FIG. 13B shows a coomassie Blue stained gel of lysis condition 2 of Argonaute (SEQ ID NO: 190). FIG. 13C shows a coomassie Blue stained gel of lysis condition 3 of Argonaute (SEQ ID NO: 190). FIG. 13D shows a coomassie Blue stained gel of lysis condition 4 of Argonaute (SEQ ID NO: 190). FIG. 13E shows a coomassie Blue stained gel of lysis condition 5 of Argonaute (SEQ ID NO: 190). FIG. 13F shows a coomassie Blue stained gel of lysis condition 6 of Argonaute (SEQ ID NO: 190).

[0132] FIG. 14A shows a ssDNA gel stained with SYBR Gold of the ssDNA cleavage assay utilizing Argonaute (SEQ ID NO: 190) in conjunction with sgDNA (Dl, D2, or non-targeting sgDNA (NT)), Table 25, under different concentrations of NaCl. FIG. 14B shows a ssDNA gel stained with SYBR Gold of the ssDNA cleavage assay utilizing sonicated Argonaute (SEQ ID NO: 190) in conjunction with sgDNA (Dl, D2, or NT), Table 25, under different concentrations of NaCl. FIG. 14C shows a ssDNA gel stained with SYBR Gold of the ssDNA cleavage assay utilizing sonicated Argonaute (SEQ ID NO: 190) in conjunction with sgDNA (Dl, D2, Rl, R2, or NT), Table 25, at a concentration of 250 mM NaCl. FIG. 14D shows a ssDNA gel stained with SYBR Gold of the ssDNA cleavage assay utilizing sonicated Argonaute (SEQ ID NO: 190) under different treatment conditions comprising a heating step of 95°C in conjunction with sgDNA (Dl, D2, Rl, R2, or NT) Table 25.

[0133] FIG. 15A shows protein quantification standard curve of BSA. FIG. 15B shows protein quantification of Argo #4, Argo #7, Argo #8, Argo #9, and Argo #10. FIG. 15C shows protein quantification of Argo #16, Argo #17, Argo #19, Argo #20, and Argo #21. FIG. 15D shows protein quantification of Argo #23, Argo #25, Argo #26, Argo #27, and Argo #29. FIG. 15E shows protein quantification of Argo #29, Argo #30, Argo #41, Argo #63, and Empty control.

[0134] FIG. 16 shows results of a ssDNA cleavage assay utilizing Argo #41, #17 and #30.

[0135] FIG. 17 shows a schematic of a dsDNA/ssDNA cleavage assay.

[0136] FIG. 18 shows a schematic of the 6808 cell assay.

[0137] FIG. 19 shows an example of a possible architecture of a split fluorescent reporter for a DNA cutting/nicking assay. Location of guide DNAs is also included 6819, 6821, sg_02, sg_03, sg_01 relative to the architecture.

[0138] FIG. 20 shows an example of a possible architecture of a split fluorescent reporter for a DNA cutting/nicking assay. Location of guide DNAs is also included 6819, 6821, sg_02, sg_03, sg_01 relative to the architecture.

[0139] FIG. 21 shows an example of a possible architecture of a split fluorescent reporter for a DNA cutting/nicking assay. Location of guide DNAs is also included 6819, 6821, sg_02, sg_03, sg_01 relative to the architecture.

[0140] FIG. 22A shows a negative control experiment performed using HEK293T cells.

[0141] FIG. 22B shows a negative control experiment performed using 6808 cells.

[0142] FIG. 22C shows a negative control experiment performed using 6808 cells and Cas9.

[0143] FIG. 22D shows a negative control experiment performed using 6808 cells, Cas9 and a non- targeting guide RNA.

[0144] FIG. 22E shows a negative control experiment performed using 6808 cells, Cas9, a non- targeting guide RNA and a single-stranded oligodeoxynucleotide donor.

[0145] FIG. 22F shows a negative control experiment performed using 6808 cells, Cas9, a non-targeting guide RNA and another single-stranded oligodeoxynucleotide donor.

[0146] FIG. 22G shows a negative control experiment performed using 6808 cells, Cas9n and a non- targeting guide RNA.

[0147] FIG. 22H shows a negative control experiment performed using 6808 cells, Cas9, a non- targeting guide RNA and a single-stranded oligodeoxynucleotide donor.

[0148] FIG. 221 shows a negative control experiment performed using 6808 cells, nCas9, a non targeting guide RNA and a single-stranded oligodeoxynucleotide donor.

[0149] FIG. 22J shows a negative control experiment performed using 6808 cells and a single -stranded oligodeoxynucleotide donor.

[0150] FIG. 22K shows a negative control experiment performed using 6808 cells and a single-stranded oligodeoxynucleotide donor.

[0151] FIG. 23 shows a positive control experiment performed using 6808 cells, Cas9 and a guide RNA targeting the 94_linker. [0152] FIG. 24 shows a positive control experiment performed using 6808 cells, nCas9 and a guide RNA targeting the 94_linker.

[0153] FIG. 25A shows a positive control experiment performed using 6808 cells, nCas9 a guide RNA targeting the 94_linker, and a single-stranded oligodeoxynucleotide donor.

[0154] FIG. 25B shows a positive control experiment performed using 6808 cells, nCas9 a guide RNA targeting the 94_linker, and another single-stranded oligodeoxynucleotide donor.

[0155] FIG. 26A shows a coomassie Blue stained gel of a ssDNA cleavage assay utilizing truncated guiding polynucleic acids of Table 22. FIG. 26B shows a ssDNA gel stained with SYBR Gold of a ssDNA cleavage assay utilizing truncated guiding polynucleic acids of Table 22, Dl* denotes that Dl has no 5' phosphorylation.

[0156] FIG. 27A shows the results of a sequencing reaction performed on untreated 6808 cells.

[0157] FIG. 27B shows the results of a sequencing reaction performed on 6808 cells treated with a Cas9n, a non-targeting guide RNA and ssODN_4 donor.

[0158] FIG. 28 shows the results of a sequencing reaction performed on 6808 cells treated with nCas9 and sgRNA6821.

[0159] FIG. 29 shows the results of a sequencing reaction performed on 6808 cells treated with nCas9, sgRNA6821 and ssODN_4 donor.

[0160] FIG. 30 shows the results of a sequencing reaction performed on 6808 cells treated with Cas9 and sgRNA6825.

[0161] FIG. 31 shows the results of a sequencing reaction performed on 6808 cells treated with Cas9, sgRNA6825 and ssODN_4 donor.

[0162] FIG. 32A and FIG. 32B show the results of the split fluorescence 6808 cell assay for 38 and 44 different Ago proteins respectively.

[0163] FIG. 33 shows the first law of genetic thermodynamics and provides a comparison between the AGEM system provided herein (exothermic) and additional gene editing systems (endothermic).

[0164] FIG. 34 depicts an exemplary schematic of the anatomy of an artificial genome editor molecule (aGEM). The aGEM contains an RNase-H like domain containing protein, a nucleic acid unwinding agent, and a regulatory domain agent.

[0165] FIG. 35 shows an example of a possible architecture of a split fluorescent reporter for a DNA cutting/nicking assay. Location of guide DNAs is also included 68 25 relative to the architecture.

DETAILED DESCRIPTION OF THE INVENTION

[0166] The following description and examples illustrate embodiments of the invention in detail. It is to be understood that this invention is not limited to the particular embodiments described herein and as such can vary. Those of skill in the art will recognize that there are numerous variations and modifications of this invention, which are encompassed within its scope. DEFINITIONS

[0167] The term "about" and its grammatical equivalents in relation to a reference numerical value and its grammatical equivalents as used herein can include a range of values plus or minus 10% from that value. For example, the amount "about 10" includes amounts from 9 to 11. The term "about" in relation to a reference numerical value can also include a range of values plus or minus 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, or 1% from that value.

[0168] The term "activation" and its grammatical equivalents as used herein can refer to a process whereby a cell transitions from a resting state to an active state. This process can comprise a response to an antigen, migration, and/or a phenotypic or genetic change to a functionally active state. For example, the term "activation" can refer to the stepwise process of T cell activation. For example, a T cell can require at least two signals to become fully activated. The first signal can occur after engagement of a TCR by the antigen-MHC complex, and the second signal can occur by engagement of co-stimulatory molecules. Anti-CD3 can mimic the first signal and anti-CD28 can mimic the second signal in vitro.

[0169] The term "adjacent" and its grammatical equivalents as used herein can refer to right next to the object of reference. For example, the term adjacent in the context of a nucleotide sequence can mean without any nucleotides in between. For instance, polynucleotide A adjacent to polynucleotide B can mean AB without any nucleotides in between A and B.

[0170] The term "argonuate," "Ago," and its grammatical equivalents as used herein can refer to a naturally occurring or engineered domain or protein that can be guided by guiding polynucleic acid to specifically recognize a target nucleic acid comprising a complementary sequence to the guiding polynucleic acid. Some Ago domains or proteins, also referred to herein as "Argonaute nucleases" have endonuclease activity, e.g., the ability to cleave an internal phosphodiester bond in a target nucleic acid. Some Ago proteins may not cleave a target nucleic acid.

[0171] The term "autologous" and its grammatical equivalents as used herein can refer to as originating from the same being. For example, a sample (e.g., cells) can be removed, processed, and given back to the same subject (e.g., subject) at a later time. An autologous process is distinguished from an allogenic process where the donor and the recipient are different subjects.

[0172] The term "cancer" and its grammatical equivalents as used herein can refer to a

hyperproliferation of cells whose unique trait— loss of normal controls— results in unregulated growth, lack of differentiation, local tissue invasion, and/or metastasis. With respect to the inventive methods, the cancer can be any cancer, including any of acute lymphocytic cancer, acute myeloid leukemia, alveolar rhabdomyosarcoma, bladder cancer, bone cancer, brain cancer, breast cancer, cancer of the anus, anal canal, rectum, cancer of the eye, cancer of the intrahepatic bile duct, cancer of the joints, cancer of the neck, gallbladder, or pleura, cancer of the nose, nasal cavity, or middle ear, cancer of the oral cavity, cancer of the vulva, chronic lymphocytic leukemia, chronic myeloid cancer, colon cancer, esophageal cancer, cervical cancer, fibrosarcoma, gastrointestinal carcinoid tumor, Hodgkin lymphoma, hypopharynx cancer, kidney cancer, larynx cancer, leukemia, liquid tumors, liver cancer, lung cancer, lymphoma, malignant mesothelioma, mastocytoma, melanoma, multiple myeloma, nasopharynx cancer, non-Hodgkin lymphoma, ovarian cancer, pancreatic cancer, peritoneum, omentum, and mesentery cancer, pharynx cancer, prostate cancer, rectal cancer, renal cancer, skin cancer, small intestine cancer, soft tissue cancer, solid tumors, stomach cancer, testicular cancer, thyroid cancer, ureter cancer, and/or urinary bladder cancer. As used herein, the term "tumor" refers to an abnormal growth of cells or tissues, e.g., of malignant type or benign type.

[0173] The term "cancer neo-antigen" or "neo-antigen" or "neo-epitope" and its grammatical equivalents as used herein can refer to antigens that are not expressed and/or not exposed to immune surveillance in normal, non-cancerous host tissue. For example, a "neo-antigen" may not be encoded in a normal, non-mutated host genome. A "neo-antigen" can in some instances represent either oncogenic viral proteins or abnormal proteins that arise as a consequence of somatic mutations. For example, a neo- antigen can arise by the disruption of cellular mechanisms through the activity of viral proteins. Another example can be an exposure of a carcinogenic compound, which in some cases can lead to a somatic mutation. This somatic mutation can ultimately lead to the formation of a tumor/cancer.

[0174] The term "cytotoxicity" as used in this specification, refers to an alteration in the normal state of a cell such that the cell dies. The normal state of a cell can refer to a state that is manifested or exists prior to the cell's exposure to a cytotoxic composition, agent and/or condition. Generally, a cell that is in a normal state is one that is in homeostasis. An unintended or undesirable alteration in the normal state of a cell can be manifested in the form of, for example, cell death (e.g., programmed cell death), a decrease in replicative potential, a decrease in cellular integrity such as membrane integrity, a decrease in metabolic activity, a decrease in developmental capability, or any of the cytotoxic effects disclosed in the present application. Cytotoxicity can be desirable, for example, in the case of tumor cell cytotoxicity, or undesirable, for example, in the case of healthy cell cytotoxicity.

[0175] The phrase "reducing cytotoxicity" or "reduce cytotoxicity" refers to a reduction in degree or frequency of unintended or undesirable alterations in the normal state of a cell upon exposure to a cytotoxic composition, agent and/or condition. The phrase can refer to reducing the degree

of cytotoxicity in an individual cell that is exposed to a cytotoxic composition, agent and/or condition, or to reducing the number of cells of a population that exhibit cytotoxicity when the population of cells is exposed to a cytotoxic composition, agent and/or condition.

[0176] The term "engineered" and its grammatical equivalents as used herein can refer to one or more alterations of a nucleic acid, e.g., the nucleic acid within an organism's genome. The term "engineered" can refer to alterations, additions, and/or deletion of genes. An engineered cell can also refer to a cell with an added, deleted and/or altered gene.

[0177] The term "cell" or "engineered cell" and their grammatical equivalents as used herein can refer to a cell of human or non-human animal origin. [0178] The term "checkpoint gene" and its grammatical equivalents as used herein can refer to any gene that is involved in an inhibitory process (e.g., feedback loop) that acts to regulate the amplitude of an immune response, for example, an immune inhibitory feedback loop that mitigates uncontrolled propagation of harmful responses. These responses can include contributing to a molecular shield that protects against collateral tissue damage that might occur during immune responses to infections and/or maintenance of peripheral self -tolerance. Non-limiting examples of checkpoint genes can include members of the extended CD28 family of receptors and their ligands as well as genes involved in co- inhibitory pathways (e.g. , CTLA-4 and PD-1). The term "checkpoint gene" can also refer to an immune checkpoint gene.

[0179] A "CRISPR," "CRISPR system," or "CRISPR nuclease system" and their grammatical equivalents can include an RNA molecule (e.g., guide RNA) that binds to DNA and a Cas protein (e.g. , Cas9) with nuclease functionality (e.g. , two nuclease domains). See, e.g. , Sander, J.D., et al. , "CRISPR- Cas systems for editing, regulating and targeting genomes," Nature Biotechnology, 32:347-355 (2014); see also e.g. , Hsu, P.D., et al, "Development and applications of CRISPR-Cas9 for genome engineering," Cell 157(6): 1262-1278 (2014). In some embodiments, a CRISPR system includes a Cas protein with nickase functionality (e.g., one catalytically dead nuclease domain and one catalytically active nuclease domain). A Cas can be partially catalytically dead.

[0180] The term "disrupting" and its grammatical equivalents as used herein can refer to a process of altering a gene, e.g. , by deletion, insertion, mutation, rearrangement, or any combination thereof. For example, a gene can be disrupted by knockout. Disrupting a gene can, for example, partially or completely suppress expression of the gene. Disrupting a gene can also cause activation of a different gene, for example, a downstream gene.

[0181] The term "engineered" and its grammatical equivalents as used herein can refer to one or more alterations of a nucleic acid, e.g. , the nucleic acid within an organism's genome. The term "engineered" can refer to alterations, additions, and/or deletion of genes. An engineered cell can also refer to a cell with an added, deleted and/or altered gene.

[0182] The term "function" and its grammatical equivalents as used herein can refer to the capability of operating, having, or serving an intended purpose. Functional can comprise any percent from baseline to 100% of normal function. For example, functional can comprise or comprise about 5, 10, 15, 20, 25, 30, 35, 40, 45, 50,55, 60, 65, 70, 75, 80, 85, 90, 95, and/or 100% of normal function. In some cases, the term functional can mean over or over about 100% of normal function, for example, 125, 150, 175, 200, 250, 300% and/or above normal function.

[0183] The term "gene editing" and its grammatical equivalents as used herein can refer to genetic engineering in which one or more nucleotides are inserted, replaced, or removed from a genome. Gene editing can be performed using a nuclease (e.g. , a natural-existing nuclease or an artificially engineered nuclease). [0184] The term "good manufacturing practices" (GMP) and its grammatical equivalents as used herein can refer to products that are safe, effective, or pure according to the FDA. GMP can also sometimes be referred to as "cGMP". The "c" stands for "current." Manufacturers of a product can employ technologies and systems which are up-to-date in order to comply with regulation of GMP products. GMP compatible products are typically utilized in the clinical setting as opposed to the research setting.

[0185] The term "mutation" and its grammatical equivalents as used herein can include the substitution, deletion, and insertion of one or more nucleotides in a polynucleotide. For example, up to 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 25, 30, 40, 50, or more nucleotides/amino acids in a polynucleotide (cDNA, gene) or a polypeptide sequence can be substituted, deleted, and/or inserted. A mutation can affect the coding sequence of a gene or its regulatory sequence. A mutation can also affect the structure of the genomic sequence or the structure/stability of the encoded mRNA.

[0186] The term "non-human animal" and its grammatical equivalents as used herein can include all animal species other than humans, including non-human mammals, which can be a native animal or a genetically modified non-human animal.

[0187] The terms "nucleic acid," "polynucleotide," "polynucleic acid," and "oligonucleotide" and their grammatical equivalents can be used interchangeably and can refer to a deoxyribonucleotide or ribonucleotide polymer, in linear or circular conformation, and in either single- or double-stranded form. For the purposes of the present disclosure, these terms should not to be construed as limiting with respect to length, unless the context clearly indicates otherwise. The terms can also encompass analogues of natural nucleotides, as well as nucleotides that are modified in the base, sugar and/or phosphate moieties (e.g., phosphorothioate backbones). Modifications of the terms can also encompass demethylation, addition of CpG methylation, removal of bacterial methylation, and/or addition of mammalian methylation. In general, an analogue of a particular nucleotide can have the same base-pairing specificity, e.g., an analogue of A can base-pair with T.

[0188] The term "construct" can refer to an artificial or synthetic construct. For example, a polypeptide construct can refer to an artificial or synthetic polypeptide, e.g., comprising one or more polypeptide sequences. Similarly, a nucleic acid construct can refer to an artificial or synthetic nucleic acid, e.g., comprising one or more nucleic acid sequences.

[0189] The term "percent (%) identity" can be readily determined for nucleic acid or amino acid sequences, over the full-length of a sequence, or a fragment thereof. Generally, when referring to "identity", "homology", or "similarity" between two different sequences (e.g., nucleotide or amino acid sequences), "identity", "homology" or "similarity" is determined in reference to "aligned" sequences. "Aligned" sequences or "alignments" refer to multiple nucleic acid sequences or protein (amino acids) sequences, often containing corrections for missing or additional bases or amino acids as compared to a reference sequence. [0190] The term "peripheral blood lymphocytes" (PBL) and its grammatical equivalents as used herein can refer to lymphocytes that circulate in the blood (e.g., peripheral blood). Peripheral blood lymphocytes can refer to lymphocytes that are not localized to organs. Peripheral blood lymphocytes can comprise T cells, NK cells, B cell, or any combinations thereof.

[0191] The term "phenotype" and its grammatical equivalents as used herein can refer to a composite of an organism's observable characteristics or traits, such as its morphology, development, biochemical or physiological properties, phenology, behavior, and/or products of behavior. Depending on the context, the term "phenotype" can sometimes refer to a composite of a population's observable characteristics or traits.

[0192] The term "protospacer" and its grammatical equivalents as used herein can refer to a PAM- adjacent nucleic acid sequence capable to hybridizing to a portion of a guide RNA, such as the spacer sequence or engineered targeting portion of the guide RNA. A protospacer can be a nucleotide sequence within gene, genome, or chromosome that is targeted by a guide RNA. In the native state, a protospacer is adjacent to a PAM (protospacer adjacent motif). The site of cleavage by an RNA-guided nuclease is within a protospacer sequence. For example, when a guide RNA targets a specific protospacer, the Cas protein will generate a double strand break within the protospacer sequence, thereby cleaving the protospacer. Following cleavage, disruption of the protospacer can result though non-homologous end joining (NHEJ) or homology-directed repair (HDR). Disruption of the protospacer can result in the deletion of the protospacer. Additionally or alternatively, disruption of the protospacer can result in an exogenous nucleic acid sequence being inserted into or replacing the protospacer.

[0193] The term "recipient" and their grammatical equivalents as used herein can refer to a human or non-human animal. The recipient can also be in need thereof.

[0194] The term "recombination" and its grammatical equivalents as used herein can refer to a process of exchange of genetic information between two polynucleic acids. For the purposes of this disclosure, "homologous recombination" or "HR" can refer to a specialized form of such genetic exchange that can take place, for example, during repair of double-strand breaks. This process can require nucleotide sequence homology, for example, using a donor molecule to template repair of a target molecule (e.g., a molecule that experienced the double-strand break), and is sometimes known as non-crossover gene conversion or short tract gene conversion. Such transfer can also involve mismatch correction of heteroduplex DNA that forms between the broken target and the donor, and/or synthesis-dependent strand annealing, in which the donor can be used to resynthesize genetic information that can become part of the target, and/or related processes. Such specialized HR can often result in an alteration of the sequence of the target molecule such that part or all of the sequence of the donor polynucleotide can be incorporated into the target polynucleotide. In some cases, the terms "recombination arms" and "homology arms" can be used interchangeably. [0195] The term "RNase-H-like domain-containing (RHDC) polypeptides" and their grammatical equivalents as used herein can refer to polypeptides with shared structural and/or functional features. An RHDC can also be referred to as an RNase-H like domain containing protein. In certain embodiments, an RHDC polypeptide has structural features similar to the structure of RNase-H, for example a secondary structure of β-strands and a-helices as follows: β1-β2-β3-α1-β4-α2-β5-(α3)-α4, wherein a3 is optional. In some embodiments, an RHDC polypeptide has nucleic acid-cleaving activity at, for example, about 19 °C to 40 °C, as evidenced by the fact that RHDC polypeptides can be derived from a mesophilic organism. In some embodiments, an RHDC polypeptide has nucleic acid-cleaving activity at, for example, about 19 °C to 40 °C. In some embodiments, "derived from a mesophilic organism" can refer to a feature that occurs in a mesophilic organism. In some cases, a feature that can be derived from mesophilic organism can share a domain organization of β1-β2-β3-α1-β4-α2-β5-(α3)-α4, wherein a3 is optional, while also have at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% sequence identity to an RHDC polypeptide that occurs in a mesophilic organism. In some embodiments, an RHDC polypeptide has nucleic acid-cleaving activity or assists in nucleic acid-cleaving activity.

[0196] The term "transgene" and its grammatical equivalents as used herein can refer to a gene or genetic material that is transferred into an organism. For example, a transgene can be a stretch or segment of DNA containing a gene that is introduced into an organism. When a transgene is transferred into an organism, the organism is then referred to as a transgenic organism. A transgene can retain its ability to produce RNA or polypeptides (e.g. , proteins) in a transgenic organism. A transgene can be composed of different nucleic acids, for example RNA or DNA. A transgene can encode for an engineered T cell receptor, for example a TCR transgene. A transgene can be a TCR sequence. A transgene can be a receptor. A transgene can comprise recombination arms. A transgene can comprise engineered sites.

[0197] A "therapeutic effect" can occur if there is a change in the condition being treated. The change can be positive or negative. For example, a 'positive effect' can correspond to an increase in the number of activated T-cells in a subject. In another example, a 'negative effect' can correspond to a decrease in the amount or size of a tumor in a subject. There is a "change" in the condition being treated if there is at least 10% improvement, preferably at least 25%, more preferably at least 50%, even more preferably at least 75%, and most preferably 100%. The change can be based on improvements in the severity of the treated condition in an individual, or on a difference in the frequency of improved conditions in populations of individuals with and without treatment with the therapeutic compositions with which the compositions of the present invention are administered in combination. Similarly, a method of the present disclosure can comprise administering to a subject an amount of cells that is "therapeutically effective". The term "therapeutically effective" should be understood to have a definition corresponding to 'having a therapeutic effect' . [0198] The term "sequence" and its grammatical equivalents as used herein can refer to a nucleotide sequence, which can be DNA or RNA; can be linear, circular or branched; and can be either single- stranded or double stranded. A sequence can be mutated. A sequence can be of any length, for example, between 2 and 1,000,000 or more nucleotides in length (or any integer value there between or there above), e.g., between about 100 and about 10,000 nucleotides or between about 200 and about 500 nucleotides.

OVERVIEW

[0199] The present disclosure provides methods, systems, compositions and kits for modifying a target nucleic acid using a system comprising an RHDC polypeptide and a nucleic acid unwinding agent. The systems described herein can comprise, for example, a nuclease, a helicase, and an ATPase. These systems overcome technical challenges associated with RHDC proteins including, for example, a lack of activity at temperatures that are conducive for gene editing in human cells. The methods, systems, compositions and kits described herein allow for this physiologically -relevant gene editing by providing an RHDC polypeptide in combination with a nucleic acid unwinding agent. Without wishing to be bound by theory, this combination overcomes the energetic barrier that RHDC proteins face that prevents RHDC proteins alone from inducing single- or double-stranded nucleic acid breaks because the nucleic acid unwinding agent exposes a nucleic acid sequence such that the RHDC polypeptide can cleave in the exposed region. In some embodiments, the RHDC is an Argonaute protein, for example, from a mesophilic organism. In some embodiments, the nucleic acid unwinding agent is a helicase or a topoisomerase. In some embodiments, the RHDC polypeptide and the nucleic acid unwinding agent are provided as a fusion protein. In some embodiments, the RHDC polypeptide and the nucleic acid unwinding agent are provided such that they co-localize on a nucleic acid, without being present as a fusion protein. The present disclosure also provides for the bioinformatic co-localization as a proxy for bioenergy efficiency of DNA repair. In some cases, the physiologic repair is energy efficient and the natural state. In some aspects, the pathologic failure of a double strand break is energy inefficient and the diseased state.

NUCLEASE SYSTEMS FOR GENETIC ENGINEERING

[0200] Intracellular genomic transplant can be a method of genetically modifying cells and nucleic acids for therapeutic applications. Provided herein can be a gene editing system containing interchangeable parts. For example, one module of a gene editing system can be replaced whilst not affecting the function of the other modules. The modular gene editing system provided herein can be tunable to allow for dialing-up and dialing-down of a gene editing efficiency and/or the skewing to a particular genomic break repair method. Provided herein are also compositions, constructs, systems, and methods for disrupting a genomic sequence in a subject (e.g. mammal, non-mammal, or plant). Also provided herein are compositions, constructs, systems, and methods of treating or inhibiting a condition caused by a defect in a target sequence in a genomic locus of interest in a subject (e.g., mammal or human) or a non- human subject (e.g., mammal) in need thereof. In some cases, a method can comprise modifying a subject or a non-human subject by manipulation of a target sequence and wherein a condition can be susceptible to treatment or inhibition by manipulation of a target sequence.

[0201] Disclosed herein is also a method of genomically editing a system utilizing an RNase-H like domain containing protein that performs a genomic alternation with favorable thermodynamics. A genomic alteration can be exothermic. A genomic alteration can be endothermic. In some cases, A genomic alteration utilizing the disclosed system can be energetically favorable over alternate gene editing systems. An RNase-H-like domain-containing protein system can more thermodynamically favorable as measured by a biochemical system, for example by providing a finite amount of ATP into the reaction and measuring an amount of gene editing before, during, and after the genomic alteration has occurred. In some cases, the disclosed editing system utilizing an RNase-H-like domain-containing protein can reduce an energetic requirement by about 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 15%, 20%, 25%, 40%, 50%, or up to about 60% as compared to a system that does not employ an RNase-H-like domain-containing protein. In some cases, the disclosed editing system utilizing an RNase- H-like domain containing protein can reduce an immune response to the RNase-H-like domain containing protein by about 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 15%, 20%, 25%, 40%, 50%, or up to about 60% as compared to a system that does not employ the disclosed RNase-H-like domain containing protein. In some cases, an RNase-H-like domain containing protein can be harvested from bacteria that are endogenously present in the human body to prevent eliciting an immune response.

[0202] In some cases, a genome that can be disrupted or modified can be from an organism or subject that can be a eukaryote (including mammals including human) or a non-human eukaryote or a non- human animal or a non-human mammal. In some cases, an organism or subject can be a non-human animal, and may be an arthropod, for example, an insect, or may be a nematode. In some cases, an organism or subject can be a plant. In some cases, an organism or subject can be a mammal or a non- human mammal. A non-human mammal may be for example a rodent (preferably a mouse or a rat), an ungulate, or a primate. In some methods of the invention the organism or subject is algae, including microalgae, or is a fungus. In some cases, a subject can be a human. A human subject can be an adult or a pediatric subject. A pediatric subject can be under the age of 18. An adult subject can be about 18 or over 18 years of age.

[0203] A protein with nucleic acid-cleaving activity (e.g., a nuclease) can be an enzyme that cleaves a chain of nucleotides in a nucleic acid into smaller units. A protein with nucleic acid-cleaving activity can be from a eukaryote or a prokaryote. A protein with nucleic acid-cleaving activity can be from a eukaryote. A protein with nucleic acid-cleaving activity can be from a prokaryote. In some cases, a protein with nucleic acid-cleaving activity can be from archaea. [0204] In some cases, a protein with nucleic acid-cleaving activity can be an RNase-H like domain containing protein. In some cases, a nuclease can be a protein that has a secondary structure similar to an RNase-H or an RNase-H-like domain-containing protein. RNase-H can belong to a nucleotidyltransferase superfamily, which can include transposase, retroviral integrase, Holliday junction resolvase, and RISC nuclease Argonaute. In some cases, an RNase-H or RNase-H-like domain-containing protein can utilize two-metal-ion catalysis as a general feature. In nucleases, two metal ions can be

asymmetrically coordinated and have distinct roles in activating a nucleophile and stabilizing a transition state. In some cases, an RNase-H or RNase-H like domain-containing protein can have an α/β fold containing a carboxylate triad in a catalytic center. In some cases, two spatially conserved Asps can be present in a nuclease. For example, an Asp residue may be conserved in a majority of Argonaute sequences. An Asp residue may align spatially with a catalytic Asp residue of RNase-H-like catalytic sites. In some cases, a nuclease can be an RNase-H, reverse transcriptase, integrase, Tn5, Argonaute, RuvC, Cas, or a combination thereof. In some cases, a nuclease can be an enzyme that may share an RNase-H domain with any one of RNase-H, reverse transcriptase, integrase, Tn5, Argonaute, RuvC, or Cas. In other cases, a nuclease can be substantially similar in structure to any one of RNase-H, reverse transcriptase, integrase, Tn5, Argonaute, RuvC, or Cas. A substantially similar structure may contain a β- fold containing a central five-stranded mixed ?-sheet surrounded by et-helices on both sides. In some cases, an RNase-H structure can also have additional helices and loops inserted between two et-turn- ? units, which can form part of a substrate-binding surface. In some cases, a substantially similar structure contains an active site. An active site of an RNase-H or RNase-H like protein can contain a set of three highly conserved carboxylates. In some cases a domain may be RuvC. In some cases, a domain is a PIWI domain. In some cases, a phylogenetic tree identifies possible PIWI domains in organisms that can be used to identify suitable nuclease or helicase domains, FIG. 1.

[0205] In some cases, an enzymatic polypeptide can be an RNA-dependent DNase editor, an RNA- dependent RNase editor, a DNA-dependent DNase editor, or a DNA-dependent RNase editor. Examples of an RNA-dependent DNase editor can be Cas9 and Cpfl to name a couple. An example of an RNA- dependent RNase editor is Casl3. An enzymatic protein can contain multiple domains. For example, an enzymatic polypeptide can contain domains that can bind to a duplex of DNA-RNA, DNA-DNA, or RNA-RNA. For example, RuvC can bind Cas9 and Cpfl ; HNH can bind Cas9, RNase-H can bind ribonuclease, and PIWI can bind Ago.

[0206] In some cases, an RHDC polypeptide can be expressed by a gene located adjacent to an operon of at least one of P-element induced Wimpy testis (PIWI) gene, RuvC, Cas, Sir2, Mrr, TIR, PLD, REase, restriction endonuclease, DExD/H, superfamily II helicase, RRXRR (SEQ ID NO: 380), DUF460, DUF3010, DUF429, DUF1092, COG5558, Orffl_IS605, Peptidase A17, Ribonuclease H-like domain, 3'- 5' exonuclease domain, 3'-5' exoribonuclease Rv2179c-like domain, Bacteriophage Mu, transposase, DNA-directed DNA polymerase, family B, exonuclease domain, Exonuclease, RNase T/DNA polymerase III, yqgF gene, HEPN, RNase LS domain, LsoA catalytic domain, KEN domain, RNaseL, Irel, RNase domain, RloC, PrrC, or modified versions thereof. An RHDC polypeptide disclosed herein can be interchangeable. For example, an RHDC polypeptide domain can be any nuclease domain that can be selected from a list comprising: CRISPR, Argonaute, meganuclease, Zinc finger nuclease (ZFN), TALEN, or a restriction enzyme. In some cases, when a RHDC domain is interchanged, the

interchanging may not affect a function of the remaining modules of the gene editing system (a nucleic acid unwinding agent or an RDP). In some cases, a gene editing system can be dialed-up or dialed-down. A dialing up can be performed by interchanging a domain such as RHDC polypeptide for a stronger performing RHDC polypeptide. A dialing up can enhance a double strand break repair by about 5%, 10%, 15%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, or up to about 100% as compared to a comparable gene editing system. A dialing down can be performed by interchanging a domain such as RHDC polypeptide for a weaker performing RHDC polypeptide for improved homology directed repair (HDR) of a double strand break. In some cases, interchanging a module of a gene editing system can allow for HDR of a double strand break. Use of a gene editing system disclosed herein can allow for preferential HDR of a double strand break over that of comparable or alternate gene editing systems. In some cases, an HDR repair can preferentially occur in a population of cells at %, 10%, 15%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, or up to about 100% over that which occurs in a comparable gene editing system.

[0207] In some cases, an RHDC or a functional fragment thereof can be selected from a phylum of bacteria selected from: Chloroflexi, Proteobacteria, Bacteroidetes, Planctomycetes, Firmicutes,

Cyanobacteria, Bacteroidetes, Balneolaeota, Bacteroidetes, Euryarchaeota, Crenarchaeota, Firmicutes, Euryarchaeota, Actinobacteria, Thermotogae, Deinococcus, Spirochaetes, Acidobacteria, modified versions thereof, or any combination thereof.

[0208] In some cases, an RHDC or a functional fragment thereof can be selected from a class of bacteria selected from: phylum Chloroflexi (Class:Thermoflexi, dehalococcoidia, anaerolinaea, ardenticatenia, caldilineae, ktedonobacteria, thermomicrobia, chloroflexia), phylum Proteobacteria (class:

Alphaproteobacteria, Betaproteobacteria, hydrogenophilalia, Gammaproteobacteria, acidithiobacillia, Deltaproteobacteria, epsilonproteobacteria, oligoflexia) , phylum Bacteroidetes (class: rhodothermia, balneolia, cytophagia, sphingobacteria, chitinophagia, bacteroidia, flavobacteriia) , phylum

Planctomycetes (class: phycisphaerae, plantomycetacia), phylum Firmicutes (class: bacillales, Clostridia, thermolithobacteria), phylum Cyanobacteria (class: chroococcales, chroococcidiopsidales, gleobacterales, nostocales, oscillatoriales, pleurocapsales, spirulinales, synechococcales, incertae sedis), phylum

Bacteroidetes (class: rhodothermia, balneolia, cytophagia, sphingobacteria, chitinophagia, bacteroidia, flavobacteriia), phylum Balneolaeota (class :balneolia), phylum Euryarchaeota (class: aciduliprofundum, archaeoglobi, halobacteria, methanobacteria, methanococci, methanomicrobia, methanopyri, nanohaloarchaea, thermococci, thermoplasmata), phylum Crenarchaeota (class: eocyta, eocytes, crenarchaeot garrity and holt), phylum Actinobacteria (class: rubrobacteria, thermoleophilia, coriobacteriia, acidimicrobiia, nitrilliruptoia, Actinobacteria), phylum Thermotogae (class: Thermotogae) , Deinococcus (class: deinococci), phylum Spirochaetes (class :spirochaetia) , phylum Acidobacteria (class: Acidobacteria, blastocatellia, holophagae), modified versions thereof, or any combination thereof.

[0209] In some cases, an RHDC or a functional fragment thereof can be selected from a species selected from: Dehalococcoides mccartyi DCMB5, Cupriavidus metallidurans HI 130, Acinetobacter venetianus, Methylobacter whittenburyi, Bacteroides fragilis str. 11345, Candidates Brocadia sinica JPN1,

Clostridium sartagoforme AAU1, Calothrix sp. PCC 7103, Microcystis aeruginosa PCC 9701,

Elizabethkingia meningoseptica, Rhodohalobacter halophilus, Parabacteroides goldsteinii CL02T12C30, Sphingobium chlorophenolicum L-1, Methanotorris formicicus Mc-S-70, Hymenobacter psychrotolerans DSM 18569, Vulcanisaeta moutnovskia 768-28, Flavobacterium seoulense, Elizabethkingia anophelis, Rhodopseudomonas palustris DX-1, Lachnospiraceae bacterium VE202-12, Thermococcus barophilus, Rhizobium undicola ORS 992 = ATCC 700741, Anoxybacillus gonensis, Bacteroides thetaiotaomicron, Flavobacterium johnsoniae, Microcystis aeruginosa KW, Burkholderia sp. H160, Chroococcidiopsis thermalis PCC 7203, Fischerella major NIES-592, Cyclobacterium marinum DSM 745, Flavobacterium sp. Rootl86, Nocardia sienata NBRC 100364, Thermoactinomyces sp. CDF, Methylobacterium mesophilicum SRI.6/6, Nonlabens ulvanivorans, Synechococcus sp. PCC 7003, Psychroserpens damuponensis, Flavobacterium soli DSM 19725, Acinetobacter nosocomialis, Methanocaldococcus fervens AG86, Dehalococcoides mccartyi CBDB1, Marinitoga hydrogenitolerans DSM 16785, Thermus brockianus, Thermus scotoductus SA-01, Rhodopirellula maiorica SMI, Hydrogenophaga sp. PBC, Deinococcus sp. YIM 77859, Kurthia massiliensis, Thermococcus onnurineus NA1, Prevotella intermedia ZT, Hyphomonas sp. T16B2, Halopiger djelfimassiliensis, Porphyromonas gingivalis, Natrialba asiatica DSM 12278, Microcystis sp. Tl-4, Pseudomonas aeruginosa, Sediminibacterium sp. C3, Fluviicola taffensis DSM 16823, Haloferax sp. BAB2207, Cecembia lonarensis LW9, Leptolinea tardivitalis, Thermosynechococcus elongatus BP-1, Mesorhizobium sp. L2C066B000, Cellulophaga lytica DSM 7489, Halorubrum kocurii JCM 14978, Paenibacillus borealis, Chryseobacterium sp. JM1, Variovorax paradoxus B4, Methylibium sp. YR605, Porphyromonadaceae bacterium COT-184 OH4590, Hyphomonas sp. T16B2, Leptospira noguchii, Clostridiales bacterium NK3B98, Geobacillus sp. FW23, [Clostridium] citroniae WAL-19142, Clostridium disporicum, Burkholderia vietnamiensis, Bacteroides fragilis str. 3397 T14, Leptolyngbya sp. 'hensonii', Acidobacterium capsulatum ATCC 51196,

Clostridium perfringens WAL- 14572, Geobacillus kaustophilus GBlys, Clostridium saudiense, Methylomicrobium buryatense 5G, Enterobacter kobei, Deinococcus sp. RL

[0210] In some cases, an RHDC or a functional fragment thereof can be selected from at least one of Vulcanisaeta moutnovskia, Thermoproteus uzoniensis, Pyrobaculum, Modestobacter marinus,

Acidovorax avenae, Pseudomonas synxantha, Xanthomonas campestris, Caulobacter segnis,

Pseudomonas putida, Xanthomonas vesicatoria, Pseudomonas stutzeri, Pantoea, Cupriavidus, Geobacter sulfurreducens, Chlorobium phaeobacteroides, Bordetella bronchiseptica, Woodsholea maritima, Novosphingobium pentaromativorans, Rhizobium phaseoli, Polymorphum gilvum, Bradyrhizobium elkanii, Bradyrhizobium, Bradyrhizobium oligotrophicum, Geobacter uraniireducens, Planctomyces limnophilus, Parvularcula bermudensis, alpha proteobacterium, Acinetobacter, Acinetobacter ursingii, Acinetobacter bereziniae, Mariprofundus ferrooxydans, Burkholderia sp- HI 60, Thioalkalivibrio thiocyanoxidans, Variovorax paradoxus, Burkholderia graminis, Burkholderia xenovorans LB400, Bacteroides fragilis 638R, Desulfobacula toluolica Tol2, Clostridium termitidis, Clostridium sp- CAG- 264, Clostridium bolteae, Firmicutes bacterium CAG-65, Bacteroides, Bacteroidesovatus, Fluviicola taffensis DSM 16823, Joostella marina, Bacteroides massiliensis, Parabacteroides goldsteinii,

Empedobacter brevis, Bacteroides eggerthii, Bacteroides fluxus. Alistipes putredinis, Parabacteroides merdae, Treponema vincentii, Lachnospiraceae bacterium 3 1 57FAA CT1, Brachyspira sp- CAG-484, Clostridiales bacterium NK3B98, Firmicutes bacterium CAG-137, Desulfovibrio sp- 6 1 46AFAA, Stenotrophomonas maltophilia R551-3, Owenweeksia hongkongensis DSM, Cyclobacterium marinum DSM 745, Bacteroides coprophilus, Bacteroides intestinalis CAG-564, Pedobacter saltans DSM 12145, Hyphomicrobium denitrificans 1NES1, Sphingomonas sp- S17, Rhodopseudomonas palustris BisB5, Agrobacterium sp- H13-3, Elioraea tepidiphila, Rhodanobacter denitrificans, Rhizobium etli CIAT 652, Pelagibacterium halotolerans B2, Tistrella mobilis KA081020-065, Sphingomonas wittichii RW1, Acidobacterium capsulatum ATCC 51196, Gluconacetobacter diazotrophicus PAl 5, Mesorhizobium sp- STM 4661, Sinorhizobium fredii NGR234, Sinorhizobium medicae WSM419, Mesorhizobium metallidurans, Methanosarcina acetivorans C2A, halophilic archaeon DL31, Haloarcula marismortui ATCC 43049, Halorubrum lacusprofundi ATCC 49239, Halosarcina pallida, Halorubrum

tebenquichense, Rhizobium lupine, Granulicella tundricola MP5ACTX9, Methylomicrobium album, Novosphingobium sp- PP1Y, Rhodopirellula maiorica, Flavobacterium indicum GPTSA100-9, Planctomyces maris, Leptolyngbya sp- PCC 7375, Bacteroides thetaiotaomicron, Bacteroides sp- 3 1 19, Parabacteroides, Sphingobacterium spiritivorum, Fibrella aestuarina BUZ 2, Anaerophaga

thermohalophila, Vibrio tubiashii, Gilvimarinus chinensis, Shewanella sp- ANA-3, Providencia rettgeri, Alishewanella agri, Pseudomonas plecoglossicida, Pseudomonas alcaligenes, Pseudomonas aeruginosa, Novosphingobium pentaromativorans, Methylobacterium mesophilicum, Azospirillum amazonense, Methylibium petroleiphilum PM1, Methylohalobius crimeensis, Parvularcula bermudensis HTCC2503, Opitutaceae bacterium TAV5, Pedosphaera parvula, Acidobacteriaceae bacterium TAA166, Cupriavidus metallidurans CH34, Cupriavidus taiwanensis, Mycobacterium sp- KMS, Modestobacter marinus, Rhizobium phaseoli, Sphingomonas sp- KC8, Bradyrhizobium sp- YR681, Methylobacterium sp- 88A, Novosphingobium pentaromativorans, Maritimibacter alkaliphilus, Sphingobium yanoikuyae,

Beijerinckia indica subsp- indica ATCC 9039, Brucella inopinata, Mesorhizobium loti MAFF303099, Afipia broomeae, Asticcacaulis biprosthecium, Sphingopyxis baekryungensis, Fodinicurvata sediminis, Sulfitobacter sp- NAS-14-1, Rhodovulum sp- PH10, Xanthobacter autotrophicus Py2, Sulfolobus islandicus M-16-27, Caldanaerobacter subterraneus, Cytophaga hutchinsonii ATCC 33406, Solitalea canadensis DSM 3403, Bacteroides sp- CAG-189, Winogradskyella psychrotolerans, Cecembia lonarensis, Flavobacterium sp- WG21, Sphingobium chlorophenolicum L-l, Streptomyces coelicolor A3- 2, Methylobacterium mesophilicum, Parvularcula bermudensis HTCC2503, Rhodopseudomonas palustris DX-1, Pelotomaculum thermopropionicum SI, Syntrophobacter fumaroxidans MPOB, Acinetobacter baumannii, Acinetobacter nosocomialis, Hydrogenophaga sp- PBC, Salmonella enterica, Gemmata obscuriglobus, Zavarzinella Formosa, Acidovorax ebreus TPSY, Rhodopirellula maiorica, Cyanothece sp- PCC 8801, Rhodobacter sphaeroides ATCC 17025, Acidobacterium capsulatum ATCC 51196, Archaeoglobus fulgidus DSM 4304, Calditerrivibrio nitroreducens DSM 19672, Marinimicrobia bacterium JGI 0000039-D08, Cellulophaga lytica DSM 7489, Belliella baltica DSM 15883,

Cyclobacterium marinum DSM 745, Acinetobacter baumanniil. Acinetobacter nosocomialis, Treponema medium, Pirellula staleyi DSM 6068, Leptospira interrogans, Pedobacter heparinus DSM 2366, Spirosoma linguale DSM 74, Leptospira santarosai, Anoxybacillus sp- DT3-1, Methylovulum miyakonense, Sulfolobus tokodaii str- 7, Candidate Nitrososphaera gargensis Ga9-2, Scytonema hofmanni, Cyanothece sp- PCC 8802, Calothrix sp- PCC 7103, Oryza sativa Japonica Group,

Natronobacterium gregoryi SP2, Halobacterium sp- DL1, Prochlorothrix hollandica, Halopiger xanaduensis SH-6, Haloferax elongans, Haloferax denitrificans, Natronorubrum tibetense, Natrinema pellirubrum DSM 15624, Pseudoalteromonas luteoviolacea, Aromatoleum aromaticum EbNl,

Synechococcus sp- PCC 7002, Synechococcus elongatus PCC 7942, Synechococcus sp- JA-3-3Ab, Cyanothece sp- PCC 7822, Stanieria cyanosphaera PCC 7437, Thermus scotoductus SA-01, Thermus sp- CCB US3 UF1, Halorubrum lacusprofundi ATCC 49239, Ignisphaera aggregans DSM 17230, Aquifex aeolicus VF5, Chamaesiphon minutus PCC 6605, Oscillatoria acuminata PCC 6304, Lyngbya sp- PCC 8106, Chroococcidiopsis thermalis PCC 7203, Rivularia sp- PCC 7116, Microcystis aeruginosa NIES- 843, Crinalium epipsammum PCC 9333, Anabaena cylindrical PCC 7122, Fischerella sp- JSC-11, Calothrix sp- PCC 7507, Burkholderia ambifaria, and/or Thioalkalivibrio thiocyanoxidans.

[0211] In some cases, a polypeptide construct can comprise a Clostridium disporicum Argonaute domain, or a functional fragment or variant thereof. In some cases, a polypeptide construct can comprise an RHDC polypeptide that comprises a Thermoactinomyces Argonaute domain, or a functional fragment or variant thereof, that can demonstrate nucleic acid-cleaving activity at 37 °C. In some cases, a polypeptide construct comprises a domain from Thermoactinomyces sp CDF Argonaute domain, or a functional fragment or variant thereof. In some cases, a polypeptide construct can comprise an RHDC polypeptide that comprises a Methylobacter Argonaute domain, or a functional fragment or variant thereof, that cleaves a nucleic acid at 37 °C. In some cases, a polypeptide construct comprises a

Methylobacter Argonaute domain that comprises a Methylobacter whittenburyi Argonaute domain, or a functional fragment or variant thereof. In some cases, a polypeptide construct comprises an RHDC polypeptide that comprises a Thermosynechococcus Argonaute domain, or a functional fragment or variant thereof, that cleaves a nucleic acid at 37 °C. In some cases, a polypeptide construct comprises an Thermoactinomyces Argonaute domain that comprises a Thermosynechococcus elongates Argonaute domain, or a functional fragment or variant thereof.

[0212] In some cases, a nucleic acid construct as described herein can encode a prokaryotic RNase H- like domain-containing (RHDC) polypeptide and a nucleic acid unwinding polypeptide. In some cases, an RHDC polypeptide cleaves a nucleic acid at a mesophilic temperature. Nucleic acid-cleaving activity can be directed by a guide DNA. In some cases, an RHDC polypeptide can be fused to a nucleic acid unwinding polypeptide. In some cases, a nucleic acid construct as described herein can encode an RNase H-like domain-containing (RHDC) polypeptide and a nucleic acid unwinding polypeptide. In some cases, a protein encoded by an RHDC polypeptide cleaves a nucleic acid at a mesophilic temperature. In some cases, nucleic acid-cleaving activity can be directed by a guide DNA. In some cases, an RHDC polypeptide can be fused to a nucleic acid unwinding polypeptide. In some cases, a protein encoded by a polypeptide construct further demonstrates nucleic acid-insertion activity. In some cases, an insertion can be of an exogenous transgene. An exogenous transgene can be a cellular receptor in some cases, such as a chimeric antigen receptor or a T cell receptor.

[0213] In some cases, an RHDC polypeptide can be chosen based on proximity to a secondary gene in a genome. For example, an RHDC polypeptide may be chosen based on its location adjacent to a helicase gene such ssDNA helicase SFl.In some cases, an RHDC polypeptide can be chosen based on proximity to DNA repair associated genes. In some cases, an RHDC polypeptide can be chosen based on a predicted alignment (e.g., structural analysis) or phylogenetic analysis, FIGS. 4-8D. For example, an RHDC polypeptide may have homology or be conserved in relation to a gene sequence of a secondary gene. In some cases, an RHDC polypeptide can be highly conserved in relation to RNase-H.

Conservation can refer to a sequence or structure. Structural conservation can refer to the presence or absence of structural features. A structural feature can be a secondary structural feature such as an alpha helix or beta pleated sheet, FIG. 5. An RHDC polypeptide can be screened or chosen based on a secondary structure. An RHDC polypeptide can be RNase-HI, RNase-HII, RVE/Trasp, Argonaute, Prp8, RuvC, RuvX, RNase T, or DNA PolIII. An RHDC polypeptide can share a secondary structure similar to at least one of RNase-HI, RNase-HII, RVE/Trasp, Argonaute, Prp8, RuvC, RuvX, RNase T, or DNA PolIII. In some cases, a nuclease is chosen based on a presence of an RHDC polypeptide fold in a structure. In some cases, an RHDC polypeptide is chosen based on conservation in an N-terminus or C- terminus. For example, a C-terminus may contain a PIWI domain and be conserved among a suitable nuclease, FIG. 3.

[0214] In some cases, a nuclease can be identified by the presence or absence of an RNase-H fold. An RNase-H fold can be one of the evolutionarily oldest protein folds that may be shared amongst different nucleases. In some cases, in the course of divergent evolution sequences of nuclease members accumulated numerous substitutions, insertions, deletions and underwent fusions with various domains. Due to this divergence, sequence similarity between different families of RNHL proteins can be low. In some cases, sequence similarity can be undetectable. The length of an RNase-H-like domain in different proteins can vary significantly owing to a presence of numerous insertions in a catalytic core. In some cases, a sequencing analysis can be performed to identify nucleases that share a domain, such as RNase- H or RNase-H-like.

[0215] In some cases, an RHDC polypeptide can be fused to at least one additional element, for example a helicase. In some cases, a nuclease can be fused to an ATPase. In some cases, an RHDC polypeptide can be fused to another RHDC polypeptide. In some cases, an RHDC polypeptide can be fused with a targeting polynucleic acid or targeting protein. In some cases, an RHDC polypeptide can be a fusion construct of an RHDC polypeptide and a nucleic acid unwinding polypeptide. In some cases, fusion proteins are comprised of polypeptides derived from a mesophilic organism. A mesophilic organism can be from a family selected from the group consisting of: bacteroidetes, proteobacteria, actinobacteria, firmicutes, cyanobacteria, spirochaetes, deinococcus, verrucomicrobia, planctomycetes, balneolaeota, and chloroflexi. A mesophilic organism can be from a family selected from the group consisting of:

proteobacteria, acidobacteria, actinobacteria, and bacteroidetes.

[0216] In some cases, an RHDC polypeptide can be a polypeptide that can have nuclease activity. Nuclease activity can be double stranded polynucleic acid cleaving activity, such as DNA or RNA. In some cases, nuclease activity can be single stranded polynucleic acid cleaving activity. In some cases, an RHDC polypeptide can have nickase activity. Nickase activity can be single stranded DNA or RNA cleaving activity. In some cases, an RHDC polypeptide can have RNase activity. In some cases, RNase activity can be double stranded RNA cleaving activity. In some cases, RNase activity can be RNA cleaving activity. In some cases, an RHDC protein or polypeptide can have RNase-H activity. In some cases, RNase-H activity can be RNA cleaving activity. In some cases, an RHDC polypeptide can have recombinase activity. An RHDC polypeptide can also have DNA-fhpping activity. In some cases, an RHDC polypeptide can have transposase activity.

[0217] Fusion proteins can be synthesized using known technologies, for instance, recombination DNA technology where the coding sequences of various portions of the fusion proteins can be linked together at the nucleic acid level. Subsequently a fusion protein can be produced using a host cell. In some embodiments, a fusion protein comprises a cleavable or non-cleavable linker between the different sections or domains of the protein (e.g, between a nucleic acid unwinding domain and an RHDC polypeptide). For example, a linker can be a polypeptide linker, such as a linker that is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, or more amino acids long. As described herein, two polypeptide sequences that are "fused" need not be directly adjacent to each other. Fused polypeptide sequences can be fused by a linker, or by an additional functional polypeptide sequence that is fused to the polypeptide sequences. [0218] A linker can be a GSGSGS linker (SEQ ID NO: 381). In some cases, there can be from 1, 2, 3, 4, 5, 6, 7, 8, 9, or up to 10 linkers on a genome editing construct. For example, there can be from 1 to 10 GSGSGS linkers. A linker can comprise non-charged or charged amino acids. A linker can comprise alpha-helical domains. A linker can comprise a chemical cross linker. In some cases, a linker can be of different lengths to adjust the function of fused domains and their physical proximity. In some cases, a linker can comprise peptides with ligand-inducible conformational changes.

[0219] In some embodiments, a nuclease can be an Argonaute protein or polypeptide or functional domain or variant thereof. Argonaute proteins can be relatively large proteins of about 800 to about 1200 amino acids. An Argonaute protein or polypeptide or functional domain or variant thereof can be of eukaryote origin. An Argonaute protein or polypeptide or functional domain or variant thereof can be of prokaryote origin. A eukaryotic Argonaute protein can include mouse Argonaute proteins, such as AG02. An Argonaute protein may be derived from an archaeal or a bacterial organism. An Argonaute protein may be derived from a mesophilic organism. A mesophilic organism can be an organism that is active at temperatures from about 19 °C to 40 °C. In some embodiments, a mesophilic organism can be active from temperatures of about 17 °C, about 18 °C, 19 °C, about 20 °C, about 21 °C, about 22 °C, about 23 °C, about 24 °C, about 25 °C, about 26 °C, about 27 °C, about 28 °C, about 29 °C, about 30 °C, about 31 °C, about 32 °C, about 33 °C, about 34 °C, about 35 °C, about 36 °C, about 37 °C, about 38 °C, about 39 °C, or up to 40 °C. In some embodiments, a mesophilic organism can be active at temperatures from about 17 °C to 40 °C. In some embodiments, a mesophilic organism can be active at temperatures of at least about 17 °C. In some embodiments, a mesophilic organism can be active at temperatures of at most 40 °C. In some embodiments, a mesophilic organism can be active at temperatures of about 17 °C to about 19 °C, about 17 °C to about 21 °C, about 17 °C to about 23 °C, about 17 °C to about 25 °C, about 17 °C to about 27 °C, about 17 °C to about 29 °C, about 17 °C to about 31 °C, about 17 °C to about 33 °C, about 17 °C to about 35 °C, about 17 °C to about 37 °C, about 17 °C to 40 °C, about 19 °C to about 21 °C, about 19 °C to about 23 °C, about 19 °C to about 25 °C, about 19 °C to about 27 °C, about 19 °C to about 29 °C, about 19 °C to about 31 °C, about 19 °C to about 33 °C, about 19 °C to about 35 °C, about 19 °C to about 37 °C, about 19 °C to 40 °C, about 21 °C to about 23 °C, about 21 °C to about 25 °C, about 21 °C to about 27 °C, about 21 °C to about 29 °C, about 21 °C to about 31 °C, about 21 °C to about 33 °C, about 21 °C to about 35 °C, about 21 °C to about 37 °C, about 21 °C to 40 °C, about 23 °C to about 25 °C, about 23 °C to about 27 °C, about 23 °C to about 29 °C, about 23 °C to about 31 °C, about 23 °C to about 33 °C, about 23 °C to about 35 °C, about 23 °C to about 37 °C, about 23 °C to 40 °C, about 25 °C to about 27 °C, about 25 °C to about 29 °C, about 25 °C to about 31 °C, about 25 °C to about 33 °C, about 25 °C to about 35 °C, about 25 °C to about 37 °C, about 25 °C to 40 °C, about 27 °C to about 29 °C, about 27 °C to about 31 °C, about 27 °C to about 33 °C, about 27 °C to about 35 °C, about 27 °C to about 37 °C, about 27 °C to 40 °C, about 29 °C to about 31 °C, about 29 °C to about 33 °C, about 29 °C to about 35 °C, about 29 °C to about 37 °C, about 29 °C to 40 °C, about 31 °C to about 33 °C, about 31 °C to about 35 °C, about 31 °C to about 37 °C, about 31 °C to 40 °C, about 33 °C to about 35 °C, about 33 °C to about 37 °C, about 33 °C to 40 °C, about 35 °C to about 37 °C, about 35 °C to 40 °C, or about 37 °C to 40 °C. In certain embodiments described herein an Argonaute polypeptide can comprise a functional domain from an Argonaute protein described herein, or variant thereof.

[0220] In some cases, an RHDC polypeptide can demonstrate nucleic acid-cleaving activity in a range of temperatures including about 19 °C to about 41 °C. In some cases, a nuclease or RHDC polypeptide can be from a mesophilic organism. An RHDC polypeptide can be an Argonaute protein, polypeptide or functional portion thereof. In some embodiments, an RHDC polypeptide has nucleic acid-cleaving activity at temperatures of about 17 °C, about 18 °C, 19 °C, about 20 °C, about 21 °C, about 22 °C, about 23 °C, about 24 °C, about 25 °C, about 26 °C, about 27 °C, about 28 °C, about 29 °C, about 30 °C, about 31 °C, about 32 °C, about 33 °C, about 34 °C, about 35 °C, about 36 °C, about 37 °C, about 38 °C, about 39 °C, or up to 40 °C. In some embodiments, an RHDC polypeptide has nucleic acid-cleaving activity at temperatures from about 17 °C to 40 °C. In some embodiments, a mesophilic organism can be active at temperatures of at least about 17 °C. In some embodiments, a mesophilic organism can be active at temperatures of at most 40 °C. In some embodiments, a mesophilic organism can be active at temperatures from about 17 °C to about 19 °C, about 17 °C to about 21 °C, about 17 °C to about 23 °C, about 17 °C to about 25 °C, about 17 °C to about 27 °C, about 17 °C to about 29 °C, about 17 °C to about 31 °C, about 17 °C to about 33 °C, about 17 °C to about 35 °C, about 17 °C to about 37 °C, about 17 °C to 40 °C, about 19 °C to about 21 °C, about 19 °C to about 23 °C, about 19 °C to about 25 °C, about 19 °C to about 27 °C, about 19 °C to about 29 °C, about 19 °C to about 31 °C, about 19 °C to about 33 °C, about 19 °C to about 35 °C, about 19 °C to about 37 °C, about 19 °C to 40 °C, about 21 °C to about 23 °C, about 21 °C to about 25 °C, about 21 °C to about 27 °C, about 21 °C to about 29 °C, about 21 °C to about 31 °C, about 21 °C to about 33 °C, about 21 °C to about 35 °C, about 21 °C to about 37 °C, about 21 °C to 40 °C, about 23 °C to about 25 °C, about 23 °C to about 27 °C, about 23 °C to about 29 °C, about 23 °C to about 31 °C, about 23 °C to about 33 °C, about 23 °C to about 35 °C, about 23 °C to about 37 °C, about 23 °C to 40 °C, about 25 °C to about 27 °C, about 25 °C to about 29 °C, about 25 °C to about 31 °C, about 25 °C to about 33 °C, about 25 °C to about 35 °C, about 25 °C to about 37 °C, about 25 °C to 40 °C, about 27 °C to about 29 °C, about 27 °C to about 31 °C, about 27 °C to about 33 °C, about 27 °C to about 35 °C, about 27 °C to about 37 °C, about 27 °C to 40 °C, about 29 °C to about 31 °C, about 29 °C to about 33 °C, about 29 °C to about 35 °C, about 29 °C to about 37 °C, about 29 °C to 40 °C, about 31 °C to about 33 °C, about 31 °C to about 35 °C, about 31 °C to about 37 °C, about 31 °C to 40 °C, about 33 °C to about 35 °C, about 33 °C to about 37 °C, about 33 °C to 40 °C, about 35 °C to about 37 °C, about 35 °C to 40 °C, or about 37 °C to 40 °C.

[0221] An Argonaute polypeptide can be from Homo sapiens, Arabidopsis thaliana, oryza sativa japonica, Entamoeba dispar, Paramecium tetraurelia, drosophila melanogaster, Caenorhabditis elegans. An Argonaute polypeptide can be homo sapiens Ago2, Arabidopsis thaliana Ago, oryza sativa japonica Ago, Entamoeba dispar SAW760 Ago, Paramecium tetraureliastrain d4-2 Ago, drosophila melanogaster Ago, Caenorhabditis elegans Ago, or homo sapiens Ago. In some cases, an RHDC polypeptide can comprise an Argonaute protein or functional domain.

[0222] In some cases, an Argonaute polypeptide or portion thereof can be a naturally -occurring Argonaute polypeptide (e.g, naturally occurs in bacterial and/or archaeal cells). In other cases, an Argonaute polypeptide may not be a naturally -occurring polypeptide (e.g., an Argonaute polypeptide can be a variant, chimeric, or fusion). In some cases, an Argonaute polypeptide can have nuclease activity. In some cases, an Argonaute polypeptide may not have nuclease activity.

[0223] In some cases, an Argonaute polypeptide can be a type I prokaryotic Argonaute. In some cases, a type I prokaryotic Argonaute can carry a DNA nucleic acid-targeting nucleic acid. In some cases, a DNA nucleic acid-targeting nucleic acid targets one strand of a double stranded DNA (dsDNA) to produce a nick or a break of the dsDNA. A nick or break can trigger host DNA repair. In some cases, a host DNA repair can be nonhomologous end joining (NHEJ) or homologous directed recombination (HDR). In some cases, a dsDNA can be selected from a genome, a chromosome, and a plasmid. A type I prokaryotic Argonaute can be a long type I prokaryotic Argonaute, which may possess an N-PAZ-MID- PIWI domain architecture. In some cases a long type I prokaryotic Argonaute possesses a catalytically active PIWI domain. The long type I prokaryotic Argonaute can possess a catalytic tetrad encoded by aspartate-glutamate-aspartate- aspartate/histidine (DEDX). The catalytic tetrad can bind one or more magnesium ions or manganese ions. In some cases, the type I prokaryotic Argonaute anchors the 5' phosphate end of a DNA guide. In some cases, a DNA guide can have a deoxy-cytosine at its 5' end.

[0224] In some embodiments, a prokaryotic Argonaute is a type II Ago. A type II prokaryotic Argonaute can carry an RNA nucleic acid-targeting nucleic acid. An RNA nucleic acid-targeting nucleic acid can target one strand of a double stranded DNA (dsDNA) to produce a nick or a break of the dsDNA which may trigger host DNA repair; the host DNA repair can be non-homologous end joining (NHEJ) or homologous directed recombination (HDR). In some cases, a dsDNA can be selected from a genome, a chromosome and a plasmid. A type II prokaryotic Argonaute may be a long type II prokaryotic

Argonaute or a short type II prokaryotic Argonaute. A long type II prokaryotic Argonaute may have an N- PAZ-MID-PIWI domain architecture. A short type II prokaryotic Argonaute may have a MID and PrWI domain, but may not have a PAZ domain. In some cases, a short type II Ago can have an analog of a PAZ domain. In some cases a type II Ago may not have a catalytically active PIWI domain. A type II Ago may lack a catalytic tetrad encoded by aspartate- glutamate-aspartate-aspartate/histidine (DEDX). In some cases, a gene encoding a type II prokaryotic Argonaute clusters with one or more genes encoding a nuclease, a helicase or a combination thereof. A nuclease may be natural, designed or a domain thereof. In some cases, the nuclease is selected from a Sir2, RE1 and TIR. The type II Ago may anchor the 5' phosphate end of an RNA guide. In some cases, the RNA guide has a uracil at its 5' end. In some cases, the type II prokaryotic Argonaute is a Rhodobacter sphaeroides Argonaute. In some cases, it may be desirable to use an Argonaute nuclease that has lost its ability to cleave a nucleic acid, such as in applications where the Argonaute: guide molecule complex is used as a probe. In some cases, a dead Argonaute system may utilize secondary nucleases to perform a genomic disruption. In such cases, one or more of the amino acid residues in a catalytic domain can be substituted or deleted, such that catalytic activity can be abolished, or diminished. In other cases, using a cleavage temperature-inducible

Argonaute may be desired to control the timing of cleavage, or if cleavage should be inhibited at non- inducible temperatures.

[0225] In some cases, an Argonaute polypeptide can have at least one active domain. For example, an Argonaute 's active domain can be a PIWI domain. In addition to a catalytic PIWI domain an Argonaute can contain non-catalytic domains such as PAZ (PIWI-Argonaute-Zwille), MID (Middle) and N domain, along with two domain linkers, LI and L2. A MID domain can be utilized for binding the 5 '-end of a guiding polynucleic acid and can be present in an Ago protein. A PAZ domain can contain an OB-fold core. An OB-fold core can be involved in stabilizing a guiding polynucleic acid from a 3 'end. An N domain may contribute to a dissociation of the second, passenger strand of a loaded double stranded genome and to a target cleavage. In some cases, an Argonaute family may contain PIWI and MID domains. In some cases, an Argonaute family may or may not contain PAZ and N domains.

[0226] In some cases, an Argonaute polypeptide can be or can comprise a naturally -occurring polypeptide (e.g, naturally occurs in bacterial and/or archaeal cells), such as a nuclease. In other cases, an Argonaute polypeptide can be or can comprise a non-naturally -occurring polypeptide, such as a nuclease. A non-naturally occurring polypeptide can be engineered. An engineered Argonaute polypeptide can be a chimeric nuclease, mutated, conjugated, or otherwise modified version thereof. In some cases, an Argonaute polypeptide can comprise a sequence encoded by any one of SEQ ID NO: 1 to SEQ ID NO: 19. In some cases, a polypeptide sequence of an Argonaute polypeptide can comprise a sequence encoded by any one of SEQ ID NO: 20 to SEQ ID NO: 38. In some cases, a polypeptide can comprise a sequence encoded by any one of SEQ ID NO: 39 to SEQ ID NO: 57. In some cases, a construct can comprise a sequence encoded by any one of the sequences of Table 16 (SEQ ID NO: 59- SEQ ID NO: 67), modified versions thereof, derivitaves thereof, or truncations thereof. In some cases, a construct can comprise a sequence encoded by any one of the sequences of Table 17 (SEQ ID NO: 68- SEQ ID NO: 160), modified versions thereof, derivitaves thereof, or truncations thereof. In some cases, a construct can comprise a sequence encoded by any one of the sequences of Table 18 (SEQ ID NO: 161- SEQ ID NO: 252), modified versions thereof, derivitaves thereof, or truncations thereof. In some cases, a construct can comprise a sequence encoded by any one of the sequences of Table 19 (SEQ ID NO: 253- SEQ ID NO: 344), modified versions thereof, derivitaves thereof, or truncations thereof.

[0227] In some cases, an Argonaute nucleic acid or portion thereof can comprise a percent identity to any one of SEQ ID NO: 1 to SEQ ID NO: 19, or SEQ ID NO: 39 to SEQ ID NO: 57 from at least about

10%, 15%, 20%, 25%, 30%,35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, up to at least about 100%. In some cases, an Argonaute polypeptide or portion thereof can comprise a percent identity to any one of SEQ ID NO: 20 to SEQ ID NO: 38 from at least about 10%, 15%, 20%, 25%, 30%,35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, up to at least about 100%. In some cases, a polypeptide or portion thereof can be from a sequence that comprises a percent identity to any one of SEQ ID NO: 59 to SEQ ID NO: 344 from at least about 10%, 15%, 20%, 25%, 30%,35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, up to at least about 100%.

Table 1: Bacterial Argonaute functional domain nucleic acid sequences identified by PIWI domain

SEQ Sequence

ID

NO

7 GAGGACATCTCCGACCGCGTTGGCGAAACGGATCGTCACCGGTAACCGGTCATTGTGAAG GCACGAATTGAAGTTGATCTTCGT GAGCCCGAGCACGTCGGCGAGGACCGTCGTCAGTGGGCACTCGCCGCGAAGAACGCGAAC CGAAATCGGGTTCGGGGTCTCAGG CCCCATATAGGTGTCCAGCCGTGGCACATAGCCCGAGGTCCACAGAAGTGCGTGACGTTC ACCGATCTGCAGCGCCGTGCCGCG AATGACGGGATACTCTCCAGGACGATAGAGCTTCAGGTCATCACGAGCCTCGGCAATCTG CACACCGACGAGGTTGGTCTCATC CCCGCAGGCGGACGAAAAACCGCGCCATTCGTTGTCGGTAAAGGCGGACTTCGCGTGGAT GAAGAGTTCGGTTGGTGGGCCATC GTGCAGGCGGGTGTATTCGCCCACCACCATCTTGATAAGGTTCCTGGCGGCATCCTTATC AAGGTGGAACTGCTTCGTATCGGT TTGGAACCAAGGGCCGAGCGCGCCGCGGAAGACCACGCCTTCCCCGTCAGCGAGAAACAT TTGGGCTGCGCAGCAGGCATGACG CTTGTCGCTTGTTAGTTCGCTGCGTTTGTAGACCAGTCCGACATAACAGACGCCCGGTCG AACATCGGCCAACTGCCAAGGCTT CCCGCCAGCCTTGTAGTAGGCGCCCGTTCCCATTTTCCAGGCGATAGTCGC

8 GATGCTCACGACACACTCAAGGCATTGGGCGCGAAATATAATATACCAACGCAGGTGCTC AATGACCGTGTCTTTGCGTTTTCA CACCCTGCGTCGCGATCCTGGCGGCTGGCGATAGCGCTTTATGTTAAGGCAGCGGGCACA CCTTGGAAGCTTGCGCCCCTGAAA GGTGTACCTGAGGACACGGCTTACATCGGCCTCGCCTACGCCTTACGGGGCGACCAGCGG GATGCGCACTATGTGACGTGCTGT TCCCAGGTGTTTGATATGGATGGCGGAGGAATGCAGTTCGTTGCCTTCGAGGCCAAGGAT CCTATCGCCGATGTCGCAGAAGCG CGTCGAAATCCATTTCTCAGTCGAGATGATATGCGCGCGGTTCTTGCTCGCAGCCTCGAG CTCTATCAAGGAAGAAATGGAGGA ACACTGCCGAAGCGGCTTGTCATTCATAAGACCACAGCATTCAAACCGGATGAGATCGAG GGTGCGTTTGATGCACTTGCCGGG GTGCAAGAAATCGAGTGCATTGAAGTTAGCCCAGCTTCCGGTTGGCGTGGGGTATGGCTG GTACCGAGCGGACAGCCGAAGCCG CCGACCAAGCCTGCGGGCTACCCTGTTCCGAGAGGCACCGTTGTCGTCCGGTCCGGGACC TCGGCGCTTGTTTGGGTCGCGGGC AATGCTCCCGAAGTGTCTAATAAGGGCGACTATTATCAGGGAAAGAAGAGCATTCCAAAG CCGTTGCAGCTGATCAGGCACGCA GGCAGTGGACCGTTGGAGCTATCGGCTCACGAGGCCTTGGCTCTCACCAAGATGGATTGG AACAATGATGCTCTCTACGATCCT GTGCCTGTTAGCATCCGATACTCGCAACGCTTAGCCAAGACGATC

9 GATCTACACGATTTCGTCAAGGCGGCGGCGATTCCGAAAGGTTGCGCCACACAGTTTGTC GAAGAGGACACCCTCCGTAACACG CAGCAGCAATGCCGCGTGCGCTGGTGGCTCTCGCTTGCCCTGTACGTGAAAAGCATGCGC ACGCCGTGGACTTTGGAAGGCCTC AGCGAGAAATCCGCCTACGTGGGTCTCGGCTTCAGCGTCAAACGCAAGACGACACAGAAT GCGGGCGCACACGTCGTGCTGGGC TGTAGCCACCTCTATAGCCCGAACGGCATCGGTCTGCAGTTCCGCCTGAGCAAGATCGAA GATCCAATTATGCGCAACAAGAAT CCCTTCATGAGCTTCGACGATGCAAGACGGCTCGGTGAGGGCATCCGTGAACTGTTTTTC GCCGCCCAACTTCGACTTCCTGAG CGAGTGGTGATCCACAAGCAGACCCCATTCCTTCGCGAAGAACGCAGTGGGCTCCAGGCT GGACTCGAGGGAGTTGCGTGCGTA GAGCTATTGCAGATCTTCGTTGACGACACGCTACGGTATGTGGCGTCCCATCCGACCTCC GACGGAAAGTTCGAGACCGACAAC TATCCCATCCGGCGGGGAACGACAGTGGTCATCGACGATCACACGGCTCTTCTGTGGGTC CACGGCGCATCTACTGCACTAAAT CCCAGAAGGCACTATTTCCAGGGCAAGCGTCGAATTCCAGCCCCCTTGGTAATTCGGCGT CATGCGGGCACGACCGATTTGATG ACGATCGCCGACGAAGTTCTCGGCTTGTCGAAGATGAATTTCAACAGCTTCGACCTTTAC GGGCAACTTCCAGCGACGATCGAG ACGTCACGCCGCGTTGCGAAGATC

10 ACCGATGCGCGCGACCCGTTGAGAGGTTTCGATGGTTGCGGGCAACTGCCCATAGAGATC AAAGCTGTTGAAGTTCATCTTGGA CAGGCCAAGGATTTCATCGGCCAGCATCATGAGATCGCTAGTGCCGGCGTGGCGGCGCAT CACGAGCGGGGCCGGAATTCGGCG CTTCCCCTGAAAGTAGGATTGCCTAGGGTTGAGAGCGGTAGAGGTTCCGTGCACCCACAG CAATGCTGTCTGATCGTCCACTAC AACCGTTGTGCCGCGTCGAATCGGATAGCCGTGAATCTCGAAGTCGCCATTGGGCATCGG GCGCGATGCCACGTACCGCAAGGT GTCATCGACGAAGATCTGCAACAACTCGACGCAGGCCACGCCCTCCAGGCCAGCTTGCAG CCCCTCGCGCTCCTCCTTCAGGAA AGGCGTTTGCTTGTGCACCACGACGCGATTGGGAAGGCGTAGGTGGGCGTCGAAGAACAG CTCTCGGATGCCTTCCCCAAGCTT TCGCGCGTCGTCGAAGCTCATGAAGGGGTTCTTGCGCAGCATGATCGGGTTGTCGATCTT GCTCAGGCGGAATTGAAGGCCGTG ACCATTGGGGCTGTAGAGGTGGCTGCAGCCCAGCGCGACATGGCCTTCGCCGTCGATCTT TCGGCGGACGCTGAAGCCGAGGCC CACGAAGGCGGAATCCCTATCAAGGCCGGTGAGGGCCCAGGGGGTGCGCATGGCTTTCAC GTACACAGCCAGAGACAACCACCA TCGAACGCGGCATTGCTGACCGTTGGCGAGAGTGCTTTCTTCGAGAAACTGAGTGGAGCA ACCAGCCGGGATGGCCGCGGCCTT CACAAAATCGTG

11 GATCACGTCGCCCACCGCGTCGGCGAAACGTATCGTCACCGGCAATCGATCGTTATGCAG GCAAGAATTGAAATTGATCTTGGT CAGGCCCATCACGTCCCCGAGAACCGTTTCAAGTTCGCAATCTCCGCGGTGAATGCGGAC TTCTATCGGATTCGGCGTCTCTGG CCCTTGGTAGGTATCAAGGCGCGGGGCGAATCCCGACGTCCAGAGGAACGCGCGGCGTTC GTGCAATATCAAGGCCGTTCCGCG GATGACCGGATATCGACCGGGCCGGTATAGCTTCATGCGGTCTTTCGCATCGGAAATCTG CACTCCTACGACATTGGTCCCCGG AGCAGCGGCCTTGAAGCCTTTCCATTCCGGGTCCGCGAACGAGGACTTGGCATGAATGAA CAGCTCAGCGGGCGGCTGTCCATC ATGCATTTGTTGATATTCGCCGATAACCATCTCAACTAAACTGCTTGCCGCGTCCTCGCT CAGATGAAATTGCTTGGATTCGGA ATGAAACCATGGGCCGAGCGCACCGCGAAATACGACGCCTTCACCGCTCGAAAGAAACAT CTGGGCGGCGCAACAGGCGAAGCG ATCATCGGAACTATTGTCCTGTCGCTTATAGGCGAGGCCGACATAGCAAACGCCGGGTCT GACGTCGGCCAACTGCCATGGTCG TCCACCATCCTTGTAATAGGCGCCGGTCAATATTTTCCAGGCGATCGTTGCAGGGTCCTC CAATCGTCGCAGTGGCTTGCCGAT TTTGTTCAGGAAATCGTTAGGCGCCAATGTGGTTTCCCTAACGATCTGAGTGACGATACG GTCTCTGAGCAGACGTGCCTTCAA CTG

12 GACGCCCACGACGCGTTGAAGGCCCTTGGAGCCCGGTACGCCATCCCAACGCAGGTCATC AACGATCGCGTTTTCACATTCCGG CTCAAGGCGTCGTTGGCCTGGCGCCTGGCCATCGCGCTCTTCACCAAGGCGGGCGGCATT CCCTGGAAACTCGCGCCGATGGTC GGTGTACCAGAAGACACGGCCTATATCGGTCTCGCCTACGCGTTGCGCGGGGACCCCAAG TCCGCGCAGTTCGTCACGTGCTGC TCGCAGGTGTTCGACGCGGACGGCGGTGGCATGCAGTTCGTCGCTTTCGAGGCCAAGGAG CAGGTGGCGGATCCGCGCGAAGCC AGACGGAACCCGTTTCTCAGTCGGAGCGACATGCGGGCGGTAATGGCACGTAGCCTGAGC CTCTACCTTGGGCGTAATGGTGGA CGGCTGCCGCGACGTCTCGTCGTCCACAAAACGACGTCGTTCAAGGACGAAGAACTCCAA GGCGTTTTCGACGGCCTGTCGACG GTTCCAGAGGTGGAGTGCATCGAGATCGGCAGCAGCGCCACATGGCGTGGCGTGTGGCTG AAGCAGGGAAAGAAGGGCGGACCC AAAAGTGTGCCTGATCGAGCGCCGGTGCCGCGGGGAACTGTCCTCACGCGAACGGACCGG TCGGCGCTGTTGTGGGCATCGGGC AATGCCCCGTCGGCAGCGCTCAGCGGTGCCTTGTTTTTCCAGGGAAGCAAGAGCATTCCG CGCCCGCTCAACATCATCCGTCAC GCGGGCAGCGGTCCGCTGGAAGTTGCTGCGTTGGAAACCCTCGCGCTGACCAAAATGGAC TGGAACAACGACGCGTTGTACGAC CCGGTTCCGGTGACCATTCGCTATTCGCAACGGCTCGCACGTACCATC SEQ Sequence

ID

NO

13 AGCCCTTACTGGTGGGCGAAGGCTGCGTTCCTGCGGCGCGACGTGCCAGTGCAGGCACTC TCCGCCGAGATGATGGCCATGGGC GACTTCGAGTACGCCTGCGCTTTGGCAAACGTCAGCTTGGCCACTTACGCCAAGCTCGGC GGTACCCCTTGGCTGCTGAAGGCC CGGCCCTCGACAGATCACGAGCTTGTCTTTGGCCTCGGATCTCATACCCACAAGGAGCGA CGTCGAGGTGCAGGGGAACGGGTC GTCGGGATCACGACCGTGTTCTCTAGCCAGGGTAACTATCTACTAGATGCCCGAACGGCT GCAGTACCGTTCGACCGCTACCCG GAGGCACTGCGCGCCACGCTCATCGAGGCGGTCAAGCGCATACGGCAAGAGGAGGCCTGG CGCGCGGGCGACACGGTGCGCTTG GTCTTCCATGCCTTCACCCAGATGCGACAAGAGACTGCGGATGCCGTGGTTGCCGCTGTG GAAAGCATGGGCCTGAGTGGGGTG AAGTTCGCCTTCCTCCATGTGGCCGAGGACCACCCATTCACGCTGTTCGACCACGCCTCA GCGACTGGCAAGGGTGCCTATGCG CCCGAGCGTGGGCAGGCCGTAGAACTCAGCGACCACGAGTGGCTCCTTTCCCTCACCGGA CGGGATCAGATCAGAGCCGCGTCG CAGGGCATCCCTGATCCGGTGCTACTCCGCCTGCACGAGAAATCGACCTTTCGCGACATG CGAACGCTGACGCGTCAGGTATCG GATTTCGCCTGCCACTCCTGGCGTACTTACGAACGAGCTAGGCTCCCGATCACACTCCTC TAC

14 GATCACGTCGCCCACCGCGTCGGCGAAACGTATCGTCACCGGCAATCGATCGTTATGCAG GCAAGAATTGAAATTGATCTTGGT CAGGCCCATCACGTCCCCGAGAACCGTTTCAAGTTCGCAATCTCCGCGGTGAATGCGGAC TTCTATCGGATTCGGCGTCTCTGG CCCTTGGTAGGTATCAAGGCGCGGGGCGAATCCCGACGTCCAGAGGAACGCGCGGCGTTC GTGCAATATCAAGGCCGTTCCGCG GATGACCGGATATCGACCGGGCCGGTATAGCTTCATGCGGTCTTTCGCATCGGAAATCTG CACTCCTACGACATTGGTCCCCGG AGCAGCGGCCTTGAAGCCTTTCCATTCCGGGTCCGCGAACGAGGACTTGGCATGAATGAA CAGCTCAGCGGGCGGCTGTCCATC ATGCATTTGTTGATATTCGCCGATAACCATCTCAACTAAACTGCTTGCCGCGTCCTCGCT CAGATGAAATTGCTTGGATTCGGA ATGAAACCATGGGCCGAGCGCACCGCGAAATACGACGCCTTCACCGCTCGAAAGAAACAT CTGGGCGGCGCAACAGGCGAAGCG ATCATCGGAACTATTGTCCTGTCGCTTATAGGCGAGGCCGACATAGCAAACGCCGGGTCT GACGTCGGCCAACTGCCATGGTCG TCCACCATCCTTGTAATAGGCGCCGGTCAATATTTTCCAGGCGATCGTTGCAGGGTCCTC CAATCGTCGCAGTGGCTTGCCGAT TTTGTTCAGGAAATCGTTAGGCGCCAATGTGGTTTCCCTAACGATCTGAGTGACGATACG GTCTCTGAGCAGACGTGCCTTCAA CTG

15 GATCACGTCGCCCACCGCGTCGGCGAAACGTATCGTCACCGGCAATCGATCGTTATGCAG GCAAGAATTGAAATTGATCTTGGT CAGGCCCATCACGTCCCCGAGAACCGTTTCAAGTTCGCAATCTCCGCGGTGAATGCGGAC TTCTATCGGATTCGGCGTCTCTGG CCCTTGGTAGGTATCAAGGCGCGGGGCGAATCCCGACGTCCAGAGGAACGCGCGGCGTTC GTGCAATATCAAGGCCGTTCCGCG GATGACCGGATATCGACCGGGCCGGTATAGCTTCATGCGGTCTTTCGCATCGGAAATCTG CACTCCTACGACATTGGTCCCCGG AGCAGCGGCCTTGAAGCCTTTCCATTCCGGGTCCGCGAACGAGGACTTGGCATGAATGAA CAGCTCAGCGGGCGGCTGTCCATC ATGCATTTGTTGATATTCGCCGATAACCATCTCAACTAAACTGCTTGCCGCGTCCTCGCT CAGATGAAATTGCTTGGATTCGGA ATGAAACCATGGGCCGAGCGCACCGCGAAATACGACGCCTTCACCGCTCGAAAGAAACAT CTGGGCGGCGCAACAGGCGAAGCG ATCATCGGAACTATTGTCCTGTCGCTTATAGGCGAGGCCGACATAGCAAACGCCGGGTCT GACGTCGGCCAACTGCCATGGTCG TCCACCATCCTTGTAATAGGCGCCGGTCAATATTTTCCAGGCGATCGTTGCAGGGTCCTC CAATCGTCGCAGTGGCTTGCCGAT TTTGTTCAGGAAATCGTTAGGCGCCAATGTGGTTTCCCTAACGATCTGAGTGACGATACG GTCTCTGAGCAGACGTGCCTTCAA CTG

16 AACCCGTACTACACCACTAAAGCGCGATTGATGGCGCAAGGTGTTCCAGTACAACTATTG AATATCGAAACCATCCGTCGAAAA AGCCTTGACTACATTCTCAATAATATCGGGCTTGCTATGTACGCGAAGCTTGGCGGAATC CCTTGGACGCTGACCCAGAACAGC GATATGGCGCACGAGATTATCGTTGGTATAGGAAGCGCCAGATTGAACGAAAGCCGTCGT GGTGCAGGCGAGCGGGTGATCGGA ATTACGACCGTTTTCAGCGGCGATGGCCAGTACCTGTTGGCAAACAATACTCAAGAGGTG CCTTCAGAAGAGTACGTTGATGCT CTGACTCAGTCTCTCTCGGAGACTGTGAGTGAACTCAGGAGCCGATTCGGTTGGAGACCA AAAGACAGGGTCCGATTCATCTTC CATCAAAAGTTCAAGAAGTACAAAGATGCTGAAGCTGAGGCAGTTGATCGCTTCGCACGA TCACTCAAAGATTTCGACGTGCAA TATGCCTTCGTTCATGTCAGTGACTCGCACAACTGGATGTTGCTAGATCCCGCATCGAGG GGAGTGAAGTTCGGCGACACAATG AAGGGAGTGGCGGTCCCGCAGAGGGGACAATGTGTGCCTCTAGGGCCAAACGCTGCTCTT TTGACTTTGTCCGGGCCATTTCAG GTCAAGACGCCACTGCAAGGTTGCCCTCATCCAGTACTGGTGAGCATTCACGAGAAGTCC ACGTTCAAGAGCGTGGATTATATC GCTCGCCAAATTTTCAATCTCAGCTTCATCTCATGGAGGGGTTTCAACCCGTCAACGCTT CCAGTTTCGATTTCTTACTCAGAC ATGATCGTAGATCTGTTG

17 AATTTTAGAAGAGCATTAAAAGCCCGTGCAATGAAATACAACACACCTATTCAGTTGTTG AGAGAATATGTAATGCACGACAGT AACAAATCACAAGATAATGCAACTAAGGCATGGAATTTTTGCACTGCTCTTTATTATAAG GGACTTCAAACCATTCCTTGGAAG TTGGAAGTAGACGAGAACAAACCAAAAGTATGTTTTGTAGGTATTGGATTCTACAAAAGC AGGGACAAGAAAACGATTCAAACC AGTTTAGCACAAATTTTCAATGAAAATGGAAAAGGTGTGATACTTCGCGGAACTCCTGTA ACTGAAGATAAAGACGATAAAAAA CCTCACTTAACTTATGAGCAATCTTTAAGCCTTCTGAAAGATGCCTTGACCAAATACAAG TTTGCGACAGGTTCAATGCCAGGT AGAGTAGTTTTACACAAGACTTCAAAATACTATGAGGATGAACTTGACGGCTTTATTCAA GCAATGCAGGATTTGGGTATAACT GAATACGATATTGTAACTATCATGGAAACCGATTTGCGTTTCTTTAGAAATAATCTTTAT CCACCAGTGAGAGGGGCAGTTTTT TCATTGACTGAACAAAGACACATACTTTACACTAGGGGTTCAGTTCATCAATATCAGACA TATCCAGGAATGTATATTCCTGCT CCATTAGAAGTAAGAATAGTAAGTTCCGTTTCATCTATAAGGACAGTTTGTAAAGAAATT CTTGGCTTGACAAAAATGAATTGG AACAACACCCAATTCGACAACAAATACCCCATTACAATTGGCTGTGCAAGACGGGTAGGA GAAATAATG

18 AAGAACCTCACCAACCTTTCGTGCGGCCCGGATGGGAATGGGCAGCTTCTGGTTCATCTG GGTCGAATTCCAGTTGATCTTCGT CATCGACAGCACGTCTTTGGCGATCTGCGCGACGGTGCTGTCGCTGCTTTTGTGCGGACA TAGCAGAAATGGCCTGGGATCATA CTGGCCTGGATAGGTTCCGTAGTACGGGATGCTGCCGTTCGTATAGAGAAGCCCTTTCCC GTCGAGTTCGACAAAGGTGCCGCG CATCACGGGATAGTTCCCGTCGCGGAGGACTTTCACCGACGAGGATTCCTGGACCCATAC AAGGTCCTTCATCTCCGTGCCCGC AGCGTCGAGCGCCTCCACGTTCCGTCCGCTTCCTCGTCACGGAAACGCGAGGTTTTCAGG ACGGCGACACGGACCGGGTAGTGC CGATGATGGTTCTTGTAGGCGGTCAGCACCGC SEQ Sequence

ID

NO

19 GATTTTCACCGCCAGGTGAAAGCGCGTCTGCTCAAGCTAGGTCGCACTTCGCAACTCATC CGCGAAACGACGTTGGCACCCGAC AAATTCCTAAATAACGCGGGCTATCCAAAGCGTGGGTTGCAGGATCCGGCGACAGTGGCG TGGAATCTGGCAACTGGACTTTAC TACAAAACCCAACCCTTGCCGCCGTGGAAACTCGCGCATGTCAGGCCGGGCGTTTGTTAC ATCGGACTTGTTTTCAAGATGATT CCGAATGATCCAAAGGAACATGCCTGCTGTGCGGCGCAGATGTTTCTTAATGAGAGCGAC GCCGTTGTTTTCAGGGGCGCAAAT GGCCCGTGGAAAACCGACGACTTTGAATTCCACCTTCAACCCAAAGAGGCGCAAAGCCTG ATTGCCAAAGTGCTCAAAACCTTC GAGGAGAAGCACGGTGTGCCACCAAAGGAATTTTTCATCCACGGGTGCACAACCTTCAAC GAGGATGAATGGAAAGCCTTCAAA AAGGCCACGCCGAAGGGCACCAATCTTGTCGGCGTCCGCATCAAGGAAACCAAAGGGGAA TCCAAGCTGTTCCGTGATGGTGAT TATCCGGTAATGAGGGGAACGGCCATCATTCTTGATCACCGAAACGCCTTGCTGTGGACG AATGGATTTGTGCCACGGCTGGAC ACCTATATTGGGCCTGAGACGCCAAACCCGCTTTTGATAACCGTTCTGCGTAGTACGGGT CGGCGACCTAACATTCGCACCGTT CTTGCTGACATCATGGGCCTTACCAAGATCAACTACAACGCCTGCAACTACAATGACGGA TTGCCCGTCACGATCCGCTTTGCG AGCAAGGTGGGCGATGTGCTG

Table 2: Corresponding Argonaute domain polypeptide acid sequences to those disclosed in Table 1 that were identified by PIWI domain

SEQ Sequence

ID NO

28 VDALVRSLAVSQDRPLMLFLGAGASMTSGMPSANQCIWEWKRDIFLS NPGIEEQFSELSLPSVRDRIQTWLDRQRCYPVAGHPDE YGAYIEACFSRSDDRRRYFERWVKQSTPHTGYRLLAELAASGLIQTVWTTNFDGLIARAA VATNLTSIEIGIDSQQRLYRAPGKDE LACVSMHGDYRYDRL NSPGELAQVEVQLRDSLIEALRTHTVWAGYSGRDESVMQAFRQYAASGPARTDLPLFWTQ YGEDPPLDT VSAFLSTNDDEPSRFIVPGVSFDDLMRRLALYLSKGPARDRVNKILDEHATTPVNQLTAF GLPPLPPTGLIKSNAIPLTPPQELLE FDLHQWPASGTVWATLRELGDKHNFVAAPFRSKIYAIAIAESLRLAFGENLKGEIKRVPL NDDDLRYEDGVINQLVRRATVLALSA KANCPSDGESLIWTSEKVENLRLDRVDWKVHQAVLVQIRPLGTEMALVLKPTLYVTDKSG AIAPKDTERLVKQRVLGYQHNKEFND ATEAWRRRLVPQRDFHVRFPDHEDGIDLTFSGRPLFARITDERERTVSLSSAQELAARQA GLQLAEPRLKFARKSAAGLAFDTHPV RGLINNRPFDSSLTTTGIASSIRVGIIAPAQDATRVHQYLSQLHVAAQPGKDADYLPPFP GFASAYQCPLEIPAVGEQSFVQLDEP DS TPSSARALAGAITRSIASLSASQRPDVTIIYVPDRWAPLR Y IDDEEFDLHDFVKAAAIPKGCATQFVEEDTLRNTQQQCRV RWWLSLALYVKSMRTPWTLEGLSEKSAYVGLGFSVKRKTTQNAGAHWLGCSHLYSPNGIG LQFRLSKIEDPIMRN NPFMSFDDA RRLGEGIRELFFAAQLRLPERWIHKQTPFLREERSGLQAGLEGVACVELLQIFVDDTLRY VASHPTSDGKFETDNYPIRRGTTW IDDHTALLWVHGASTALNPRRHYFQGKRRIPAPLVIRRHAGTTDLMTIADEVLGLSKMNF NSFDLYGQLPATIETSRRVAKIGALL DRFSEHSYDYRLFM

29 MSVDAMIRSIGVARDRPLLVFLGAGASMSSGMPSATQCIWEWKREIFLTNNPDVEKTQFS ELSLPSVRLRIQAWLDRQRRYPALDH PDEYSTYIGECFARSDDRRIYFEKWVKRCSPHLGYQLLAELARQGLVASVWTTNFDALAA RAATSINLTAIEIGIDSQQRLYRAPG EAELACVSLHGDYRYDPL NTAPELIKQEKELRESLVQAMRTHTVLVCGYSGRDESVMAAFSDAYDAAHFKGHHPLFWT QYGDYPA SEPVAGLLASPLDQEPAKFHVPGASFDDLMRRIALHVSDGEARERVRKILENFKTAPVNQ KLPFALPSLPVTGLVKSNAIPLIPPG ELIEFDLVRWPPSGEVWSTLREIGDRHGFVAAPFRGKVYALATIEQLTQAFADNVKDGAF NRVPLNNDDLRYEDGTANQLMRRATV LALAGKAGCANDGDAIVWDTSRSKTERLDRQLWTVYDAVLLQIRPLGTKLALVLKPTLRV TDSTGEVAPKEIERAVKVRVLGYQHN KEFNQATDFWRKRLLPSRDLLVRFPDLDGGMTFTISGRPIFARLTDERTETVTLNDAQER SASQVGLQLAEPKLVFARTVGTGPAT DTLPVRGLLQNRPFDANLTDLGIATNLRIAVIAPARDARRVHDYLGQLHQPIDPTKWDAD YLMRFPGFSSAFKCPLDIPQPGQAAF VTLDEPHDESPQSARTLAGRITAALSALRATENPSVTIIYIPARWHALRAFDLESEQFNL HDFVKAAAIPAGCSTQFLEESTLA G QQCRVRWWLSLAVYVKAMRTPWALTGLDRDSAFVGLGFSVRRKIDGEGHVALGCSHLYSP NGHGLQFRLSKIDNPIMLR NPFMSF DDARKLGEGIRELFFDAHLRLPNRVWHKQTPFLKEEREGLQAGLEGVACVELLQIFVDDT LRYVASRPMPNGDFEIHGYPIRRGT TVWDDQTALLWVHGTSTALNPRQSYFQGKRRIPAPLVMRRHAGTSDLMMLADEILGLSKM NFNSFDLYGQLPATIETSQRVARIG ALLDRYTERSYDYRLFM

30 MLEFRYGQRMVYPRDGLFLFGPGDGGRAPINFGVIGTPAGVARFRQWMGSVG VIDAANDDPQHVPFPGYGAAFASAWPDKPRHII DSIDPAAVSRALRLENRNEAIKSTVDLYVDPLVAAADRLEAPPNFWFWIPEEIYKLGRPQ SSVPKADRIRGSVKLSKSAARDL L EPTFFPEDLEAAEIYQYATHFRRQLKARLLRDRIVTQIVRETTLAPNDFLNKIGKPLRRL EDPATIAWKILTGAYYKDGGRPWQLA DVRPGVCYVGLAYKRQDNSSDDRFACCAAQMFLSSGEGWFRGALGPWFHSESKQFHLSED AASSLVEMVIGEYQQMHDGQPPAEL FIHAKSSFADPEWKGFKAAAPGTNWGVQISDAKDRMKLYRPGRYPVIRGTALILHERRAF LWTSGFAPRLDTYQGPETPNPIEVR IHRGDCELETVLGDVMGLTKINFNSCLHNDRLPVTIRFADAVGDVILAAPRTGEPKLPFK YYI

31 MDYNLSKAPSFSLLDEPALTFNSEDTDLDENPLRGLLRFGAYNGKTFEGYTPKLRVATIA PASGWPKLKGLVDTIRSGHEASDRRN YVPSFPGFENLFRVPLVAGP DVHIKWPDDLMALARTGAPHERLFSAMSEAMARLDALHDQFDWLVHLPDAWATAFTANGF DAHD ALKALGARYAIPTQVINDRVFTFRLKASLAWRLAIALFTKAGGIPWKLAP VGVPEDTAYIGLAYALRGDPKSAQFVTCCSQVFDA DGGGMQFVAFEAKEQVADPREARRNPFLSRSDMRAVMARSLSLYLGRNGGRLPRRLWHKT TSFKDEELQGVFDGLSTVPEVECIE IGSSATWRGVWLKQGKKGGPKSVPDRAPVPRGTVLTRTDRSALLWASGNAPSAALSGALF FQGSKSIPRPLNIIRHAGSGPLEVAA LETLALTKMDWNNDALYDPVPVTIRYSQRLARTIANVPDLPGHAYPYRLFM

32 LSIKSEEDQGLQIADGVPLQFESPLDQAESVPFPPAEVFQRPTFSFDPSGSRNDNWTQRQ LDKTGPYDRATFER RPRIAVICEAR RRGAMAETVAHFLEGLPEVQSHKGFVPHATGLLGRFRLQKPQVEFFEAKDDSADAYAEAA RNALSAAATRDQPWDLALVQVQRSWK DRPATSSPYWWAKAAFLRRDVPVQALSAEMMAMGDFEYACALANVSLATYAKLGGTPWLL KARPSTDHELVFGLGSHTHKERRRGA GERWGITTVFSSQGNYLLDARTAAVPFDRYPEALRATLIEAVKRIRQEEAWRAGDTVRLV FHAFTQMRQETADAWAAVESMGLS GVKFAFLHVAEDHPFTLFDHASATGKGAYAPERGQAVELSDHEWLLSLTGRDQIRAASQG IPDPVLLRLHEKSTFRDMRTLTRQVS DFACHSWRTYERARLPITLLYADEIAKQLAGLERTPGWDPDTAWGAVMRRPWFL

33 MLEFRYGQRMVYPRDGLFLFGPGDGGRAPINFGVIGTPAGVARFRQWMGSVG VIDAANDDPQHVPFPGYGAAFASAWPDKPRHII DSIDPAAVSRALRLENRNEAIKSTVDLYVDPLVAAADRLEAPPNFWFWIPEEIYKLGRPQ SSVPKADRIRGSVKLSKSAARDL L EPTFFPEDLEAAEIYQYATHFRRQLKARLLRDRIVTQIVRETTLAPNDFLNKIGKPLRRL EDPATIAWKILTGAYYKDGGRPWQLA DVRPGVCYVGLAYKRQDNSSDDRFACCAAQMFLSSGEGWFRGALGPWFHSESKQFHLSED AASSLVEMVIGEYQQMHDGQPPAEL FIHAKSSFADPEWKGFKAAAPGTNWGVQISDAKDRMKLYRPGRYPVIRGTALILHERRAF LWTSGFAPRLDTYQGPETPNPIEVR IHRGDCELETVLGDVMGLTKINFNSCLHNDRLPVTIRFADAVGDVILAAPRTGEPKLPFK YYI

34 MLEFRYGQRMVYPRDGLFLFGPGDGGRAPINFGVIGTPAGVARFRQWMGSVG VIDAANDDPQHVPFPGYGAAFASAWPDKPRHII DSIDPAAVSRALRLENRNEAIKSTVDLYVDPLVAAADRLEAPPNFWFWIPEEIYKLGRPQ SSVPKADRIRGSVKLSKSAARDL L EPTFFPEDLEAAEIYQYATHFRRQLKARLLRDRIVTQIVRETTLAPNDFLNKIGKPLRRL EDPATIAWKILTGAYYKDGGRPWQLA DVRPGVCYVGLAYKRQDNSSDDRFACCAAQMFLSSGEGWFRGALGPWFHSESKQFHLSED AASSLVEMVIGEYQQMHDGQPPAEL FIHAKSSFADPEWKGFKAAAPGTNWGVQISDAKDRMKLYRPGRYPVIRGTALILHERRAF LWTSGFAPRLDTYQGPETPNPIEVR IHRGDCELETVLGDVMGLTKINFNSCLHNDRLPVTIRFADAVGDVILAAPRTGEPKLPFK YYI

35 LHLNYLPLRFTADIFKGGALTFPEGSEKNWTSDDPISKELSKLREKHGDSHVFHR GNKIACIPWENAIAIGTETDFNIISDFQL ANALARSALHRYFKAAGRETVIGFRPVTLLLEKHNLASNRKDVFGIFPEYTLDVRPLAPH EGDIASGVLIGFGIKYVFLQ VAELQ AQGVSAAGMYAVRLVDESEHQFDRAYLGRIDRFTKD VTLVDSDYAEYPADQCYFEGSRTNIEAVGRSLLGKDYDAFSSSLLQESY KVTGAPNQTQRLHQLGAWLEAKSPIPCAVGLGVRIAKKPHECSRGNDAGYSRFFDSPKCV LRPGGSLTVPWPVDKQIDLNGPYDAE SFPNKRVRIAVICPQEFTGDAEEFLRKLKEGLPNAPDGSPFRKGFVRKYHLSSCDFTFHE VKRSSNSDDIYKDASLEALKQKPDMA IAIIRSQYRGLPDASNPYYTTKARLMAQGVPVQLLNIETIRRKSLDYILNNIGLA YAKLGGIPWTLTQNSD AHEIIVGIGSARL NESRRGAGERVIGITTVFSGDGQYLLANNTQEVPSEEYVDALTQSLSETVSELRSRFGWR PKDRVRFIFHQKFKKYKDAEAEAVDR FARSLKDFDVQYAFVHVSDSH WMLLDPASRGVKFGDTMKGVAVPQRGQCVPLGPNAALLTLSGPFQVKTPLQGCPHPVLVS IHEK STFKSVDYIARQIFNLSFISWRGFNPSTLPVSISYSDMIVDLLGHLRRV NWNPETLSTALKERRWFL SEQ Sequence

ID NO

36 MKADYIQEPFLLFGKGKSICPREGIAELNVYDTVIEAR NQLLIGIIGIEEDVENLKSWIKRFESYIPADPKGKQKGLFKSFPGFH QDKGFCAKFIYDSNYERILSPNDIKRILKEPDRNKKVLDAVELFGENIGFLSDI NCDVIICIIPKSFEGKIVKENKDDEPVEQVA EDNEGPELELNFRRALKARAMKYNTPIQLLREYVMHDSNKSQDNATKAWNFCTALYYKGL QTIPWKLEVDENKPKVCFVGIGFYKS RDKKTIQTSLAQIFNENGKGVILRGTPVTED DDKKPHLTYEQSLSLLKDALTKYKFATGSMPGRWLHKTSKYYEDELDGFIQAM QDLGITEYDIVTIMETDLRFFRNNLYPPVRGAVFSLTEQRHILYTRGSVHQYQTYPGMYI PAPLEVRIVSSVSSIRTVCKEILGLT KMNWNNTQFDNKYPITIGCARRVGEIMKYVGENEYPKESYAYYM

37 MKDLVWVQESSSVKVLRDGNYPVMRGTFVELDGKGLLYTNGSIPYYGTYPGQYDPRPFLL CPHKSSDSTVAQIA DVLSMTKINWN STQMNQKLPIPIRAARKVGEVLKYVSDGKVSSDYTRY

38 MDLSKKSLKTIHIEEPELSFGHGQTCDHPKDGLFLYGPHSGPTRTREVSVGVIGTKDGLS YFRTWAIAAGGFVPVPPRKKTDKENR LHLSNFPGLEEAFGIMVSPGDFVQRTVDYTVLDDATRTVNQHEAVRKAVDLYVGEIERYD NNEEKTVDVWMFILPEIIFERCKPLS RRTGLGLTKGEFAKSQKERIDLPLF DVIDQSGEDIFDDVPDFHRQVKARLLKLGRTSQLIRETTLAPDKFLNNAGYPKRGLQDPA TVA NLATGLYYKTQPLPPWKLAHVRPGVCYIGLVF MIPNDPKEHACCAAQMFLNESDAWFRGANGPWKTDDFEFHLQPKEAQS LIA VLKTFEEKHGVPPKEFFIHGCTTFNEDEWKAFKKATPKGTNLVGVRIKETKGESKLFRDG DYPV RGTAIILDHRNALLWTN GFVPRLDTYIGPETPNPLLITVLRSTGRRPNIRTVLADIMGLTKINYNACNYNDGLPVTI RFASKVGDVLTMGSARDADKQPLKFY V

Table 3: Corresponding Argonaute full genomic nucleic acid sequences identified by PIWI domain as those disclosed in Table 1.

SEQ Sequence

ID NO

39 ATGCTCGAGTTTCGCTACGGCCAGCGCATGGTCTATCCACGGGACGGACTATTTCTGTTC GGTCCAGGCGACGGAGGGCGAGCAC CCATCAATTTCGGCGTGATCGGCACTCCCGCGGGAGTCGCTCGCTTCCGGCAGTGGATGG GCTCGGTCGGCAATGTCATAGACGC CGCCAATGACGACCCGCAGCATGTGCCGTTTCCGGGTTATGGTGCCGCCTTCGCCAGTGC TTGGCCAGACAAGCCACGGCACATC ATCGATAGCATCGACCCCGCGGCTGTCTCGCGGGCTCTTCGCCTGGAGAACAGGAACGAG GCGATCAAAAGCACCGTGGATCTGT ATGTCGACCCACTGGTGGCGGCCGCCGATCGCTTGGAGGCACCTCCGAATTTCTGGTTCG TGGTTATTCCTGAGGAAATCTACAA GCTCGGGCGACCCCAATCAAGCGTCCCCAAGGCGGACCGCATCCGCGGTTCGGTGAAACT GTCCAAGTCTGCTGCCAGGGACTTG ATGTTGGAGCCGACGTTCTTCCCCGAAGATCTGGAAGCGGCGGAGATCTATCAATATGCC ACCCATTTCAGGCGCCAGTTGAAGG CACGTCTGCTCAGAGACCGTATCGTCACTCAGATCGTTAGGGAAACCACATTGGCGCCTA ACGATTTCCTGAACAAAATCGGCAA GCCACTGCGACGATTGGAGGACCCTGCAACGATCGCCTGGAAAATATTGACCGGCGCCTA TTACAAGGATGGTGGACGACCATGG CAGTTGGCCGACGTCAGACCCGGCGTTTGCTATGTCGGCCTCGCCTATAAGCGACAGGAC AATAGTTCCGATGATCGCTTCGCCT GTTGCGCCGCCCAGATGTTTCTTTCGAGCGGTGAAGGCGTCGTATTTCGCGGTGCGCTCG GCCCATGGTTTCATTCCGAATCCAA GCAATTTCATCTGAGCGAGGACGCGGCAAGCAGTTTAGTTGAGATGGTTATCGGCGAATA TCAACAAATGCATGATGGACAGCCG CCCGCTGAGCTGTTCATTCATGCCAAGTCCTCGTTCGCGGACCCGGAATGGAAAGGCTTC AAGGCCGCTGCTCCGGGGACCAATG TCGTAGGAGTGCAGATTTCCGATGCGAAAGACCGCATGAAGCTATACCGGCCCGGTCGAT ATCCGGTCATCCGCGGAACGGCCTT GATATTGCACGAACGCCGCGCGTTCCTCTGGACGTCGGGATTCGCCCCGCGCCTTGATAC CTCCCAAGGGCCAGAGACGCCGAAT CCGATAGAAGTCCGCATTCACCGCGGAGATTGCGAACTTGAAACGGTTCTCGGGGACGTG ATGGGCCTGACCAAGATCAATTTCA ATTCTTGCCTGCATAACGATCGATTGCCGGTGACGATACGTTTCGCCGACGCGGTGGGCG ACGTGATCCTCGCGGCACCACGGAC CGGCGAACCGAAGCTGCCGTTCAAGTATTATATATAA

40 ATGACCAGCCAGCTGCAACATTATGTCCGGCTGCCGGAGCCCAATCTGCTGTTCCATCCG GACCGGCCGAGCGATCGAGACATCC ATCCTCTGCGGGGACTGGCCCGTTTCGGACCCTATTCGAGCATGTTCACCCCGTCCCCCA TCCGCGTGGCGACGCTTGCGCCTTC CGGGGAATCGCAGCGTCTCTTCGAGTTCCTAAGGGAACTCAACCAGCCTGCGAGACCGCA GGAGCGAACCGACTATCTTCCGGAC TGGGCCAGTTTCAACAGCGTCTTCCAGACGCACCTCGCACCAGCTGCAAGCCATTGTCGG CGGGAACTCGATGCCCAACTGGACG GAGAGTTGAAGGATTGCCCTGCATCGGGTCTGCTGCTTGCCGAACGGCTCATCCGTTCAA TCCAGTTGCTCGACGCCAACCGCGC GGATTTTGACGTGCTGTTCATTTATCTTCCTGAACGCTGGTCTCCCGGCTTCTACGGAGC CGATGATTTCGATCTGCATCACCAG CTCAAAGCCTTCACCGCCGCGCGGCAGCTGCCCATTCAGATTGTGCGCGAAGACAGCGCA CTATCCTATCGATGCCGGGCCAGCG TCATGTGGCGGATCGGCCTGGCGCTCTACGCCAAGGCTGGCGGCGTTCCTTGGAAACTGG CCGATGTGGAGCCGGACACTGCCTA TATTGGTATCTCCTATGCGCTCCGGCCCGCAGAATCGGAGCTTGCCCGCTTCGTAACCTG TTGCAGCCAGGTCTTCGACGCCGAC GGTGCTGGACTGGAATTCATCGCCTATGACACCGGCGATGTGAACGTACAGCGGGAGAAC CCGTTTCTCTCGCATACCGAGATGT TTCGGGTCATCACCCGTTCGCTGGACCTTTATCGCCGGCGCCATGGCGGCAGACTGCCGA CACGTGTGATGATCCACAAATCGAC CGAGTTCAAGGAAGCCGAAATAGAAGGCTGCTTCGAAGCGCTGAAACATATCGAGTCGGT CGATCTCATCCAGATCGTCGAGGAC AATGGCTGGCAGGGCGTGCGATGGGAACAGGACCGTAACGATCCGGAGATATCACAAGCG GATGGGTATCCGGTGAAACGCGGAA CCTTGCTCGGGCTCAGCGGCAAAGACGCTTTGCTCTGGATGCACGGGGCAGTCGATGGTT TCGGGCGCCGCCCCTATTTTCAAGG TGGCAAAGGTACACCGCGACCGTTGCGACTGGTCCGACATGCCGGGCATGGAACATGGGA CGATACCGCGAAGGCGGCCCTGGCG CTGTCGAAAATGAACTGGAACAATGACGGGCTCTATGATCCACTTCCGGTGACGATGAGC TACGCAAAGACCTTAGCACAGGTGA TCAAGCGGATGCCGGGGCTCGGCAAGGGCACTTACCAGTTCCGATTTTTCATGTGA

41 ATGCTCGAGTTTCGCTACGGCCAGCGCATGGTCTATCCACGGGACGGACTATTTCTGTTC GGTCCAGGCGACGGAGGGCGAGCAC CCATCAATTTCGGCGTGATCGGCACTCCCGCGGGAGTCGCTCGCTTCCGGCAGTGGATGG GCTCGGTCGGCAATGTCATAGACGC CGCCAATGACGACCCGCAGCATGTGCCGTTTCCGGGTTATGGTGCCGCCTTCGCCAGTGC TTGGCCAGACAAGCCACGGCACATC ATCGATAGCATCGACCCCGCGGCTGTCTCGCGGGCTCTTCGCCTGGAGAACAGGAACGAG GCGATCAAAAGCACCGTGGATCTGT ATGTCGACCCACTGGTGGCGGCCGCCGATCGCTTGGAGGCACCTCCGAATTTCTGGTTCG TGGTTATTCCTGAGGAAATCTACAA GCTCGGGCGACCCCAATCAAGCGTCCCCAAGGCGGACCGCATCCGCGGTTCGGTGAAACT GTCCAAGTCTGCTGCCAGGGACTTG ATGTTGGAGCCGACGTTCTTCCCCGAAGATCTGGAAGCGGCGGAGATCTATCAATATGCC ACCCATTTCAGGCGCCAGTTGAAGG CACGTCTGCTCAGAGACCGTATCGTCACTCAGATCGTTAGGGAAACCACATTGGCGCCTA ACGATTTCCTGAACAAAATCGGCAA GCCACTGCGACGATTGGAGGACCCTGCAACGATCGCCTGGAAAATATTGACCGGCGCCTA TTACAAGGATGGTGGACGACCATGG SEQ Sequence

ID NO

CAGTTGGCCGACGTCAGACCCGGCGTTTGCTATGTCGGCCTCGCCTATAAGCGACAG GACAATAGTTCCGATGATCGCTTCGCCT GTTGCGCCGCCCAGATGTTTCTTTCGAGCGGTGAAGGCGTCGTATTTCGCGGTGCGCTCG GCCCATGGTTTCATTCCGAATCCAA GCAATTTCATCTGAGCGAGGACGCGGCAAGCAGTTTAGTTGAGATGGTTATCGGCGAATA TCAACAAATGCATGATGGACAGCCG CCCGCTGAGCTGTTCATTCATGCCAAGTCCTCGTTCGCGGACCCGGAATGGAAAGGCTTC AAGGCCGCTGCTCCGGGGACCAATG TCGTAGGAGTGCAGATTTCCGATGCGAAAGACCGCATGAAGCTATACCGGCCCGGTCGAT ATCCGGTCATCCGCGGAACGGCCTT GATATTGCACGAACGCCGCGCGTTCCTCTGGACGTCGGGATTCGCCCCGCGCCTTGATAC CTACCAAGGGCCAGAGACGCCGAAT CCGATAGAAGTCCGCATTCACCGCGGAGATTGCGAACTTGAAACGGTTCTCGGGGACGTG ATGGGCCTGACCAAGATCAATTTCA ATTCTTGCCTGCATAACGATCGATTGCCGGTGACGATACGTTTCGCCGACGCGGTGGGCG ACGTGATCCTCGCGGCACCACGGAC CGGCGAACCGAAGCTGCCGTTCAAGTATTATATATAA

42 ATGACCCTCGACTTTGACTCTCGCCAGCCCTGGGCACCGCACACGATTCTTCAGGAACCG ATGCTGAAGTTTGACAGCAGCCCGA CCCCGGCAACCGCGGGTCACCCGCTCGTCGGACTGCTCGACCACGGCCCCTACGCCGGAC CGCCGACCGCTAGCGTGCGACTCGC CACGATCACCCTCAACGGTGACAAGCCGAAGCTCTACGACTTCCTCCGCGGTGCCACCCA GGCACACGAACCCAGCGACCGTCTG GCATACGTGCCGCGATATCCGGGGTTCGAGGCGCTGTTCAAGGCCGAGCTTCTTCCTCAG TCCGACGCCCACGTCGACATCCGGA GCGCCGAGATCGGCACCGGTGCTGACGCGCACGACCGACTCAGCGAGGCGCTTGCCCGTG CGGTGCGGCACCTCCACACCGTTCG CGACTCCTGGGACGTCATCGTCTTCCTACTCCCTGCAGCCTGGGAGCCTCTGAGGCTCAG CGCCGACGGTGCGCTGGACCTGCAC GACCGGTTGAAGGCGACGGCCGCGCTGCTGGGCTGTCCTATCCAGATGATCCGCGAGACC TCCGCGCTGCAGTTCAGGTACAAGT GCTCCATGTACTGGCGGCTGTCGATTGCGCTGCTGACGAAGGCTGGCGGCGTGCCGTTCC GGATGATGCGTCCCACTGAGTCCGA CACTGCCTACCTCGGGCTGGCCTACGCGATTCGCGGCGGGACCGCCAACGAGTTCGTCAC CTGCTGCTCGCAGGTCTTCGACGCC GAAGGCGGCGGCTTCGAATTTATCGCCTACAACGTCGGCGCCGACCGTGACCTGGAGAAC CCGCATCTGACCCGCGACGAGATGC GCACCGTCATGGCGCGCAGCGCTCGCCTCTACCAGCGGCGCAGGGCCGGGTCTCTGCCCC AGCGGCTTGTGATCCACAAGACGAC AACCTGGCGTGAGGAAGAAGTCGCAGGGGTCTTCGACGCGTGGAGCCCGGCCGTTCCTGA CATCGAGTGCCTCCAGGTACGTCTA GACACACCCTGGACCGGGGTTGCCCTCCGCGGCGGCAAGGGCAACTCGGCGGTCGCCAAC GAATGGCCTGTGGGCCGCGGGTCTC TTCAGTATCTCTCTGGGCGGGAGGCACTCCTGTGGATCGCCGGTACGGCGAAGGGTGTCG CGCTGACGGGTGAGAACTATAATCA GGCAGCCAAGGCTCTACCGACCCCGATTGCGTTCAAGCGTGACGCGGGTGCTGGCCCCCT GGAGATTCCTGCCAGCGAAATCCTT GCCCTGTCGAAGCTCGACTGGAACAACGACGCCCTTTACGGTGTGACCCCGTGA

43 GTGGAAATGGTTTTCGAGCAAGTGCTTCTCCGCGGCCACATTGGCGTCGTCGAAGAAGAC GCCTTGGCGCTGTACCGCTATTTGG AGAAGAAGCCTATATCGCCCTGCGGTGCCAGGATCTGA

44 TTGACGGGGGCGGTCTTCGCAGCCGCGGCGTTCGATGCCTTCGCCGGTATGAGGGAACAT CTGCGCGCCACAGCACGCCTCCTTC GCTTCGACCGGGTTGTTTGTACGCTTGAAGACGAGGCCTGTGTAGCAGACGCCATCCCGG ATGTCGGCAAGAGACCACGGCTTCT CGCCCGCTTTGTAATAGACACCAGTCGTGAGATTCCACGCGACGGTGCGTCATCCTGCAT CTTGCGGGAAAGCTCGCCCTTGCTG TTGAGGTATTCGCGCGGGGCAATGGCGGTCTGCGCACGAGCTGGGTGA

45 ATGACGACTAGGCCGCGATCCTTCAAGCCTCAGATGCTCTATCTGGAAGAACCTCAGCTT GAGTTCCGCCACGGTCAGCACCTCG TCTATCCCCGCGACGGCCTCTACCTCTATGGACCCGTCGGCGAGACAAAAGAACTGCCGA CGATCCGATACGGCGTGATTGGCAC GCCGGATGGCGTAGGTCGCTTCAAAGCCTGGGCACAATCCATGGCAGGATTTATAGATAT CCCACCGCCTGGGCCGCGTTCGCGC GCTGTCGAACCACAGCATGTTCCATTTCCGGGCTTCGCCGCGGCTTTCCATGCTGACTGG CCCGTTGAACCGCCCTACATCATTG ACAGCCTTGATCCCGACGAGATCGAACAAACGCTCAGGATCGCCAATCGTCATGAGGCGG TGCGCAACACTGTCGACATGTTCGT GTCGCGCCTCGTCGCTGAGAACAATCGCCTCGAAAGCGCACCGCAATTCTGGTTCGTCGT CATTCCCGAAAAGGTCTACGAACTC GGCAGACCGAAATCGACGGTTAGACGTGACGATCGCGTTGCGGGCGAAGTGACGATCTCC CAGCGTCGTGCAAAGGAGCTGCAGC GCCAACCGACCTTGTTTGGCGAGGACGAGCGCGAAGCCGAAGTCTATCAATATGCGACCC ATTTCCGCCGGCAACTAAAGGCACG GCTCCTCAAAGAGCGGATTGTCACGCAGATCGTTCGTGAAACGACGCTGGCGCCCGGCGA TTTCCGTCGCGAGAGCGGCATGCCG ATCAGACGCGTCGAGGATCCTGCGACTATCGCCTGGAAAATGGGAACGGGCGCCTACTAC AAGGCTGGCGGGAAGCCTTGGCAGT TGGCCGATGTTCGACCGGGCGTCTGTTATGTCGGACTGGTCTACAAACGCAGCGAACTAA CAAGCGACAAGCGTCATGCCTGCTG CGCAGCCCAAATGTTTCTCGCTGACGGGGAAGGCGTGGTCTTCCGCGGCGCGCTCGGCCC TTGGTTCCAAACCGATACGAAGCAG TTCCACCTTGATAAGGATGCCGCCAGGAACCTTATCAAGATGGTGGTGGGCGAATACACC CGCCTGCACGATGGCCCACCAACCG AACTCTTCATCCACGCGAAGTCCGCCTTTACCGACAACGAATGGCGCGGTTTTTCGTCCG CCTGCGGGGATGAGACCAACCTCGT CGGTGTGCAGATTGCCGAGGCTCGTGATGACCTGAAGCTCTATCGTCCTGGAGAGTATCC CGTCATTCGCGGCACGGCGCTGCAG ATCGGTGAACGTCACGCACTTCTGTGGACCTCGGGCTATGTGCCACGGCTGGACACCTAT ATGGGGCCTGAGACCCCGAACCCGA TTTCGGTTCGCGTTCTTCGCGGCGAGTGCCCACTGACGACGGTCCTCGCCGACGTGCTCG GGCTCACGAAGATCAACTTCAATTC GTGCCTTCACAATGACCGGTTACCGGTGACGATCCGTTTCGCCAACGCGGTCGGAGATGT CCTCATTTCCGCCCCGATGGATGGC GAGCCGAAGCTGCCGTTCAAATTCTACATCTAG

46 ATGGCATCCCTGCAAGGATCGCATCAGCCAAGCGATCGCCTCGAGTATGTGCCGCCTTAC CCCGGCTTTGAATCTTTGTTTGGCA TCGCGTTGCAGTCCGCACCAGCCGAAGCTCACGTGAAATGGCCGGACGCTATTCGCGATC TTCCCGGCGAAGGGAATGATCAGGT TCGCCTATTCTTAGCGATGGACGCAGCGTTGCGACGTCTTGACACGATGCGAAATGAGTT TGACGTCGTTCTTTTCCATTTTCCA GATAGCTGGGACGCGACTACGAGAACCAAGTTTTTCGATGCTCACGACACACTCAAGGCA TTGGGCGCGAAATATAATATACCAA CGCAGGTGCTCAATGACCGTGTCTTTGCGTTTTCACACCCTGCGTCGCGATCCTGGCGGC TGGCGATAGCGCTTTATGTTAAGGC AGCGGGCACACCTTGGAAGCTTGCGCCCCTGAAAGGTGTACCTGAGGACACGGCTTACAT CGGCCTCGCCTACGCCTTACGGGGC GACCAGCGGGATGCGCACTATGTGACGTGCTGTTCCCAGGTGTTTGATATGGATGGCGGA GGAATGCAGTTCGTTGCCTTCGAGG CCAAGGATCCTATCGCCGATGTCGCAGAAGCGCGTCGAAATCCATTTCTCAGTCGAGATG ATATGCGCGCGGTTCTTGCTCGCAG CCTCGAGCTCTATCAAGGAAGAAATGGAGGAACACTGCCGAAGCGGCTTGTCATTCATAA GACCACAGCATTCAAACCGGATGAG ATCGAGGGTGCGTTTGATGCACTTGCCGGGGTGCAAGAAATCGAGTGCATTGAAGTTAGC CCAGCTTCCGGTTGGCGTGGGGTAT GGCTGGTACCGAGCGGACAGCCGAAGCCGCCGACCAAGCCTGCGGGCTACCCTGTTCCGA GAGGCACCGTTGTCGTCCGGTCCGG GACCTCGGCGCTTGTTTGGGTCGCGGGCAATGCTCCCGAAGTGTCTAATAAGGGCGACTA TTATCAGGGAAAGAAGAGCATTCCA AAGCCGTTGCAGCTGATCAGGCACGCAGGCAGTGGACCGTTGGAGCTATCGGCTCACGAG GCCTTGGCTCTCACCAAGATGGATT GGAACAATGATGCTCTCTACGATCCTGTGCCTGTTAGCATCCGATACTCGCAACGCTTAG CCAAGACGATCGCGAACGTCCCAGA TTTGCCCAGAAACGTCTATCCATATCGGCTCTTCATGTGA

47 GTGGACGCCCTCGTTCGGTCGCTGGCCGTGTCCCAAGACCGTCCCTTGATGCTTTTCCTT GGCGCGGGCGCATCGATGACTTCCG GGATGCCTTCCGCTAACCAATGCATCTGGGAATGGAAGCGGGATATTTTTCTTTCGAATA ATCCAGGTATCGAGGAGCAGTTTAG CGAACTTTCCCTCCCCTCCGTTCGCGACAGAATTCAAACATGGTTGGACAGGCAACGGTG CTATCCGGTCGCCGGGCATCCTGAC GAATACGGTGCCTACATTGAAGCCTGTTTCTCGCGCAGTGACGATCGTCGTCGCTATTTT GAAAGATGGGTCAAACAGTCTACGC CTCACACCGGTTATAGGCTGCTAGCCGAACTCGCCGCTTCCGGTTTGATTCAGACCGTGT GGACGACAAATTTCGACGGACTCAT SEQ Sequence

ID NO

CGCGCGTGCTGCAGTTGCCACGAATCTGACATCCATCGAAATTGGAATAGATTCCCA GCAACGACTTTACCGCGCGCCGGGTAAA GACGAACTGGCTTGCGTCTCGATGCACGGCGATTACCGATATGATCGCCTCAAAAATTCG CCAGGAGAACTCGCCCAGGTCGAAG TCCAGCTTCGTGACTCGCTCATTGAGGCCTTAAGAACGCATACCGTCGTTGTTGCTGGAT ACAGCGGTCGCGACGAGAGTGTGAT GCAGGCATTCCGCCAATATGCGGCATCAGGTCCCGCGCGAACAGATTTGCCGCTGTTCTG GACGCAATACGGCGAGGACCCGCCT TTGGACACGGTCAGCGCCTTCCTCTCGACGAACGACGACGAGCCATCCCGCTTCATCGTT CCGGGCGTTTCCTTCGACGATCTCA TGCGGCGGTTGGCGCTCTACCTGTCAAAGGGGCCGGCCAGAGACCGCGTCAATAAAATCC TCGACGAGCATGCGACAACGCCCGT TAACCAGCTCACTGCTTTCGGGCTCCCCCCTCTTCCCCCGACCGGCCTCATCAAAAGCAA CGCAATTCCGCTGACACCGCCGCAG GAGCTTCTTGAGTTTGATTTGCATCAATGGCCGGCCTCCGGAACCGTGTGGGCCACGTTG AGGGAGCTTGGCGACAAACACAATT TTGTCGCCGCGCCGTTCCGATCGAAGATTTATGCGATCGCTATAGCCGAAAGTCTTCGCC TCGCCTTCGGCGAGAATCTGAAAGG GGAAATCAAACGGGTTCCCCTGAACGATGACGATCTGCGATACGAAGACGGCGTCATCAA CCAGCTTGTCCGCCGTGCGACCGTC CTCGCCTTATCGGCCAAGGCAAATTGCCCGTCAGACGGAGAGTCGTTGATCTGGACATCC GAGAAGGTCGAGAATTTGCGCCTGG ACAGGGTCGACTGGAAAGTTCACCAGGCCGTACTGGTCCAGATACGCCCGCTCGGAACCG AGATGGCGCTCGTCCTGAAGCCCAC CCTGTACGTTACCGACAAGAGCGGAGCGATCGCACCCAAGGATACTGAGCGGCTCGTCAA GCAGCGCGTGCTGGGCTATCAGCAC AACAAGGAATTCAACGACGCAACCGAAGCGTGGCGACGTCGCCTCGTGCCTCAGCGCGAT TTTCATGTCCGCTTCCCTGACCATG AAGACGGTATCGATCTGACTTTCTCTGGACGACCGCTGTTTGCGCGAATCACTGACGAGC GCGAGCGTACCGTTTCACTCAGTTC CGCTCAGGAGTTAGCCGCGAGGCAAGCCGGACTTCAACTCGCAGAACCACGACTGAAATT CGCGCGCAAATCGGCAGCCGGACTG GCATTCGACACCCATCCTGTCCGAGGCCTGATCAACAACAGGCCGTTCGATTCCAGCCTC ACCACGACAGGCATAGCTTCCTCCA TCCGCGTCGGAATCATTGCGCCTGCCCAGGACGCCACACGAGTTCACCAGTACCTGTCCC AGCTTCACGTCGCCGCACAGCCAGG GAAGGACGCGGATTATCTCCCGCCGTTTCCAGGTTTCGCGTCCGCCTACCAGTGCCCGCT CGAGATCCCTGCGGTTGGTGAACAA TCTTTCGTCCAGCTTGACGAGCCGGACAGCATGACACCCTCGTCAGCACGCGCTTTGGCC GGAGCAATCACGAGGTCGATTGCCT CCTTGAGCGCGTCGCAGCGTCCCGACGTAACCATCATTTACGTCCCCGATCGCTGGGCTC CGTTGCGCAACTACATGATCGACGA TGAAGAGTTCGATCTACACGATTTCGTCAAGGCGGCGGCGATTCCGAAAGGTTGCGCCAC ACAGTTTGTCGAAGAGGACACCCTC CGTAACACGCAGCAGCAATGCCGCGTGCGCTGGTGGCTCTCGCTTGCCCTGTACGTGAAA AGCATGCGCACGCCGTGGACTTTGG AAGGCCTCAGCGAGAAATCCGCCTACGTGGGTCTCGGCTTCAGCGTCAAACGCAAGACGA CACAGAATGCGGGCGCACACGTCGT GCTGGGCTGTAGCCACCTCTATAGCCCGAACGGCATCGGTCTGCAGTTCCGCCTGAGCAA GATCGAAGATCCAATTATGCGCAAC AAGAATCCCTTCATGAGCTTCGACGATGCAAGACGGCTCGGTGAGGGCATCCGTGAACTG TTTTTCGCCGCCCAACTTCGACTTC CTGAGCGAGTGGTGATCCACAAGCAGACCCCATTCCTTCGCGAAGAACGCAGTGGGCTCC AGGCTGGACTCGAGGGAGTTGCGTG CGTAGAGCTATTGCAGATCTTCGTTGACGACACGCTACGGTATGTGGCGTCCCATCCGAC CTCCGACGGAAAGTTCGAGACCGAC AACTATCCCATCCGGCGGGGAACGACAGTGGTCATCGACGATCACACGGCTCTTCTGTGG GTCCACGGCGCATCTACTGCACTAA ATCCCAGAAGGCACTATTTCCAGGGCAAGCGTCGAATTCCAGCCCCCTTGGTAATTCGGC GTCATGCGGGCACGACCGATTTGAT GACGATCGCCGACGAAGTTCTCGGCTTGTCGAAGATGAATTTCAACAGCTTCGACCTTTA CGGGCAACTTCCAGCGACGATCGAG ACGTCACGCCGCGTTGCGAAGATCGGCGCACTTCTCGATCGCTTCTCGGAACACTCGTAC GATTACCGTCTGTTTATGTAG

48 ATGAGCGTGGACGCCATGATTCGGTCCATCGGGGTTGCGCGAGATCGGCCACTGCTGGTG TTCTTGGGTGCTGGAGCTTCCATGA GTTCCGGCATGCCATCGGCCACACAGTGCATCTGGGAATGGAAGCGGGAAATATTCCTGA CCAACAACCCCGACGTCGAGAAGAC CCAGTTCAGCGAGTTGTCCCTGCCGTCAGTAAGGCTCCGGATTCAAGCCTGGCTGGATCG CCAGCGCCGCTATCCGGCACTGGAT CATCCTGACGAATACAGCACCTACATCGGCGAGTGTTTCGCAAGAAGCGACGACCGCCGA ATCTACTTCGAGAAATGGGTGAAGA GATGTTCGCCGCATCTCGGCTATCAACTGCTGGCGGAACTCGCGCGGCAAGGTTTGGTGG CATCGGTCTGGACAACCAACTTCGA TGCCTTGGCCGCTCGCGCCGCGACCTCCATCAATCTGACCGCCATCGAGATCGGCATCGA TAGCCAGCAGCGTCTGTATCGGGCG CCTGGAGAGGCCGAACTCGCCTGCGTCTCACTCCACGGCGACTATCGATACGATCCGTTG AAGAACACGGCCCCCGAACTCATCA AGCAGGAGAAAGAACTGCGCGAGTCACTGGTGCAGGCCATGCGAACTCACACCGTTCTCG TATGCGGCTACAGCGGGCGCGATGA AAGCGTCATGGCGGCCTTTTCGGACGCCTACGATGCGGCGCATTTCAAAGGCCATCACCC GCTGTTCTGGACGCAGTATGGCGAC TACCCAGCATCGGAGCCGGTCGCCGGACTCCTTGCATCGCCCCTCGATCAGGAACCGGCG AAGTTCCACGTGCCCGGAGCTTCGT TCGACGATCTGATGCGACGTATTGCACTGCATGTGTCGGACGGCGAGGCACGCGAGCGTG TGCGCAAAATTCTGGAAAATTTCAA GACAGCGCCGGTCAACCAGAAGTTGCCCTTTGCCCTGCCGTCATTGCCCGTCACCGGTCT GGTCAAAAGCAACGCCATTCCGCTC ATTCCGCCGGGCGAGTTGATCGAGTTCGATCTGGTGCGGTGGCCGCCGTCAGGTGAAGTC TGGTCGACCTTGAGAGAGATTGGGG ATCGACATGGCTTCGTGGCTGCACCCTTCAGAGGCAAGGTCTACGCGCTGGCCACCATCG AGCAGTTGACCCAGGCGTTCGCTGA CAACGTGAAGGATGGCGCGTTCAATCGGGTGCCGCTGAACAATGACGATCTCCGCTACGA GGATGGCACCGCCAACCAACTGATG CGCAGAGCGACTGTGCTTGCCTTGGCCGGGAAGGCTGGCTGCGCTAACGATGGCGACGCC ATTGTCTGGGACACGTCGCGATCCA AAACGGAGCGCCTGGACCGTCAATTGTGGACGGTGTACGACGCCGTCCTGCTTCAGATTA GGCCTCTTGGGACGAAGCTCGCGCT GGTGCTCAAGCCCACACTCCGAGTCACTGACAGCACTGGTGAAGTTGCACCGAAGGAGAT CGAACGCGCGGTCAAGGTCCGCGTG CTCGGGTACCAGCACAACAAGGAGTTCAACCAGGCGACGGACTTCTGGCGAAAGCGCTTA CTGCCATCGCGTGACCTGCTAGTCC GCTTCCCCGATCTCGACGGCGGCATGACCTTCACCATCTCCGGCCGCCCGATCTTCGCGC GACTCACGGACGAGCGAACCGAGAC CGTCACGCTGAATGATGCGCAGGAGCGCTCGGCCTCTCAAGTTGGCCTGCAACTCGCCGA GCCCAAGCTGGTATTTGCCCGAACC GTCGGCACTGGGCCTGCAACGGACACGCTTCCCGTTCGCGGTCTTTTGCAGAATCGGCCG TTCGATGCCAATCTGACCGACCTCG GCATTGCCACAAATCTGCGAATCGCGGTGATCGCGCCCGCCCGCGATGCGCGCCGTGTCC ACGACTACTTGGGCCAGCTTCATCA GCCCATCGATCCCACGAAATGGGACGCTGACTACTTGATGAGGTTCCCGGGCTTCAGCAG CGCATTTAAATGCCCGCTGGACATT CCACAACCAGGTCAGGCCGCCTTCGTCACGTTGGATGAGCCGCATGACGAATCGCCGCAA TCTGCGCGCACGCTCGCAGGCCGCA TCACCGCGGCCCTCTCCGCATTGCGGGCCACGGAAAACCCAAGCGTCACCATCATCTACA TACCCGCCAGATGGCATGCCCTTCG AGCGTTCGACCTTGAGAGCGAACAGTTCAACCTTCACGATTTTGTGAAGGCCGCGGCCAT CCCGGCTGGTTGCTCCACTCAGTTT CTCGAAGAAAGCACTCTCGCCAACGGTCAGCAATGCCGCGTTCGATGGTGGTTGTCTCTG GCTGTGTACGTGAAAGCCATGCGCA CCCCCTGGGCCCTCACCGGCCTTGATAGGGATTCCGCCTTCGTGGGCCTCGGCTTCAGCG TCCGCCGAAAGATCGACGGCGAAGG CCATGTCGCGCTGGGCTGCAGCCACCTCTACAGCCCCAATGGTCACGGCCTTCAATTCCG CCTGAGCAAGATCGACAACCCGATC ATGCTGCGCAAGAACCCCTTCATGAGCTTCGACGACGCGCGAAAGCTTGGGGAAGGCATC CGAGAGCTGTTCTTCGACGCCCACC TACGCCTTCCCAATCGCGTCGTGGTGCACAAGCAAACGCCTTTCCTGAAGGAGGAGCGCG AGGGGCTGCAAGCTGGCCTGGAGGG CGTGGCCTGCGTCGAGTTGTTGCAGATCTTCGTCGATGACACCTTGCGGTACGTGGCATC GCGCCCGATGCCCAATGGCGACTTC GAGATTCACGGCTATCCGATTCGACGCGGCACAACGGTTGTAGTGGACGATCAGACAGCA TTGCTGTGGGTGCACGGAACCTCTA CCGCTCTCAACCCTAGGCAATCCTACTTTCAGGGGAAGCGCCGAATTCCGGCCCCGCTCG TGATGCGCCGCCACGCCGGCACTAG CGATCTCATGATGCTGGCCGATGAAATCCTTGGCCTGTCCAAGATGAACTTCAACAGCTT TGATCTCTATGGGCAGTTGCCCGCA ACCATCGAAACCTCTCAACGGGTCGCGCGCATCGGTGCCCTGCTTGATCGGTACACCGAG CGTTCGTATGACTACAGGCTTTTCA TGTGA SEQ Sequence

ID NO

49 ATGCTCGAGTTTCGCTACGGCCAGCGCATGGTCTATCCACGGGACGGACTATTTCTGTTC GGTCCAGGCGACGGAGGGCGAGCAC CCATCAATTTCGGCGTGATCGGCACTCCCGCGGGAGTCGCTCGCTTCCGGCAGTGGATGG GCTCGGTCGGCAATGTCATAGACGC CGCCAATGACGACCCGCAGCATGTGCCGTTTCCGGGTTATGGTGCCGCCTTCGCCAGTGC TTGGCCAGACAAGCCACGGCACATC ATCGATAGCATCGACCCCGCGGCTGTCTCGCGGGCTCTTCGCCTGGAGAACAGGAACGAG GCGATCAAAAGCACCGTGGATCTGT ATGTCGACCCACTGGTGGCGGCCGCCGATCGCTTGGAGGCACCTCCGAATTTCTGGTTCG TGGTTATTCCTGAGGAAATCTACAA GCTCGGGCGACCCCAATCAAGCGTCCCCAAGGCGGACCGCATCCGCGGTTCGGTGAAACT GTCCAAGTCTGCTGCCAGGGACTTG ATGTTGGAGCCGACGTTCTTCCCCGAAGATCTGGAAGCGGCGGAGATCTATCAATATGCC ACCCATTTCAGGCGCCAGTTGAAGG CACGTCTGCTCAGAGACCGTATCGTCACTCAGATCGTTAGGGAAACCACATTGGCGCCTA ACGATTTCCTGAACAAAATCGGCAA GCCACTGCGACGATTGGAGGACCCTGCAACGATCGCCTGGAAAATATTGACCGGCGCCTA TTACAAGGATGGTGGACGACCATGG CAGTTGGCCGACGTCAGACCCGGCGTTTGCTATGTCGGCCTCGCCTATAAGCGACAGGAC AATAGTTCCGATGATCGCTTCGCCT GTTGCGCCGCCCAGATGTTTCTTTCGAGCGGTGAAGGCGTCGTATTTCGCGGTGCGCTCG GCCCATGGTTTCATTCCGAATCCAA GCAATTTCATCTGAGCGAGGACGCGGCAAGCAGTTTAGTTGAGATGGTTATCGGCGAATA TCAACAAATGCATGATGGACAGCCG CCCGCTGAGCTGTTCATTCATGCCAAGTCCTCGTTCGCGGACCCGGAATGGAAAGGCTTC AAGGCCGCTGCTCCGGGGACCAATG TCGTAGGAGTGCAGATTTCCGATGCGAAAGACCGCATGAAGCTATACCGGCCCGGTCGAT ATCCGGTCATCCGCGGAACGGCCTT GATATTGCACGAACGCCGCGCGTTCCTCTGGACGTCGGGATTCGCCCCGCGCCTTGATAC CTACCAAGGGCCAGAGACGCCGAAT CCGATAGAAGTCCGCATTCACCGCGGAGATTGCGAACTTGAAACGGTTCTCGGGGACGTG ATGGGCCTGACCAAGATCAATTTCA ATTCTTGCCTGCATAACGATCGATTGCCGGTGACGATACGTTTCGCCGACGCGGTGGGCG ACGTGATCCTCGCGGCACCACGGAC CGGCGAACCGAAGCTGCCGTTCAAGTATTATATATAA

50 ATGGACTACAACCTTTCGAAGGCGCCATCGTTTTCCTTGCTGGACGAGCCGGCCCTCACG TTTAACAGCGAAGACACAGACCTCG ACGAGAACCCGCTGCGCGGCCTTTTGCGTTTCGGTGCCTACAACGGCAAGACGTTCGAGG GCTACACCCCGAAGCTTCGTGTCGC GACAATCGCCCCTGCATCAGGTTGGCCGAAGCTCAAAGGCTTGGTGGACACGATCCGATC AGGTCACGAGGCGAGCGACCGGCGC AACTACGTGCCGTCGTTCCCCGGATTTGAAAACCTGTTTCGCGTTCCGCTCGTCGCGGGG CCGAAGGACGTGCACATTAAGTGGC CCGACGATCTCATGGCCCTGGCGCGTACTGGGGCGCCCCATGAGCGGTTGTTTTCGGCGA TGTCGGAAGCCATGGCGCGTCTCGA TGCGTTGCACGATCAGTTTGATGTCGTCTTGGTACATCTCCCTGATGCGTGGGCAACGGC ATTCACGGCCAACGGATTCGACGCC CACGACGCGTTGAAGGCCCTTGGAGCCCGGTACGCCATCCCAACGCAGGTCATCAACGAT CGCGTTTTCACATTCCGGCTCAAGG CGTCGTTGGCCTGGCGCCTGGCCATCGCGCTCTTCACCAAGGCGGGCGGCATTCCCTGGA AACTCGCGCCGATGGTCGGTGTACC AGAAGACACGGCCTATATCGGTCTCGCCTACGCGTTGCGCGGGGACCCCAAGTCCGCGCA GTTCGTCACGTGCTGCTCGCAGGTG TTCGACGCGGACGGCGGTGGCATGCAGTTCGTCGCTTTCGAGGCCAAGGAGCAGGTGGCG GATCCGCGCGAAGCCAGACGGAACC CGTTTCTCAGTCGGAGCGACATGCGGGCGGTAATGGCACGTAGCCTGAGCCTCTACCTTG GGCGTAATGGTGGACGGCTGCCGCG ACGTCTCGTCGTCCACAAAACGACGTCGTTCAAGGACGAAGAACTCCAAGGCGTTTTCGA CGGCCTGTCGACGGTTCCAGAGGTG GAGTGCATCGAGATCGGCAGCAGCGCCACATGGCGTGGCGTGTGGCTGAAGCAGGGAAAG AAGGGCGGACCCAAAAGTGTGCCTG ATCGAGCGCCGGTGCCGCGGGGAACTGTCCTCACGCGAACGGACCGGTCGGCGCTGTTGT GGGCATCGGGCAATGCCCCGTCGGC AGCGCTCAGCGGTGCCTTGTTTTTCCAGGGAAGCAAGAGCATTCCGCGCCCGCTCAACAT CATCCGTCACGCGGGCAGCGGTCCG CTGGAAGTTGCTGCGTTGGAAACCCTCGCGCTGACCAAAATGGACTGGAACAACGACGCG TTGTACGACCCGGTTCCGGTGACCA TTCGCTATTCGCAACGGCTCGCACGTACCATCGCGAATGTGCCAGATCTTCCGGGGCATG CGTACCCCTATCGCCTCTTCATGTG

A

51 TTGTCCATCAAATCAGAGGAAGATCAGGGCCTTCAGATCGCCGATGGTGTGCCTCTCCAG TTTGAGAGTCCACTTGACCAAGCGG AGTCAGTGCCATTTCCGCCAGCTGAGGTGTTCCAACGGCCCACGTTCTCGTTCGACCCAA GCGGCTCTCGCAATGACAACTGGAC TCAGAGGCAGCTCGATAAGACCGGGCCCTACGATAGAGCGACTTTTGAACGAAAGCGGCC GAGGATTGCTGTCATCTGCGAGGCA CGCCGGCGCGGTGCCATGGCAGAGACGGTCGCGCACTTCCTTGAGGGTCTCCCCGAAGTT CAATCTCACAAAGGCTTTGTACCCC ATGCGACGGGGCTGCTGGGCCGCTTCCGGCTTCAGAAGCCGCAAGTTGAATTCTTCGAGG CCAAGGATGACAGCGCTGACGCCTA CGCTGAAGCCGCCCGTAACGCTCTGTCTGCGGCCGCCACTCGGGACCAGCCATGGGATCT AGCCCTGGTGCAGGTCCAGCGATCC TGGAAGGATCGTCCTGCCACCAGTAGCCCTTACTGGTGGGCGAAGGCTGCGTTCCTGCGG CGCGACGTGCCAGTGCAGGCACTCT CCGCCGAGATGATGGCCATGGGCGACTTCGAGTACGCCTGCGCTTTGGCAAACGTCAGCT TGGCCACTTACGCCAAGCTCGGCGG TACCCCTTGGCTGCTGAAGGCCCGGCCCTCGACAGATCACGAGCTTGTCTTTGGCCTCGG ATCTCATACCCACAAGGAGCGACGT CGAGGTGCAGGGGAACGGGTCGTCGGGATCACGACCGTGTTCTCTAGCCAGGGTAACTAT CTACTAGATGCCCGAACGGCTGCAG TACCGTTCGACCGCTACCCGGAGGCACTGCGCGCCACGCTCATCGAGGCGGTCAAGCGCA TACGGCAAGAGGAGGCCTGGCGCGC GGGCGACACGGTGCGCTTGGTCTTCCATGCCTTCACCCAGATGCGACAAGAGACTGCGGA TGCCGTGGTTGCCGCTGTGGAAAGC ATGGGCCTGAGTGGGGTGAAGTTCGCCTTCCTCCATGTGGCCGAGGACCACCCATTCACG CTGTTCGACCACGCCTCAGCGACTG GCAAGGGTGCCTATGCGCCCGAGCGTGGGCAGGCCGTAGAACTCAGCGACCACGAGTGGC TCCTTTCCCTCACCGGACGGGATCA GATCAGAGCCGCGTCGCAGGGCATCCCTGATCCGGTGCTACTCCGCCTGCACGAGAAATC GACCTTTCGCGACATGCGAACGCTG ACGCGTCAGGTATCGGATTTCGCCTGCCACTCCTGGCGTACTTACGAACGAGCTAGGCTC CCGATCACACTCCTCTACGCCGACG AAATTGCGAAGCAACTCGCAGGCCTCGAGCGTACCCCGGGATGGGACCCCGATACCGCAG TAGTTGGCGCGGTGATGCGCAGGCC TTGGTTCTTGTGA

52 ATGCTCGAGTTTCGCTACGGCCAGCGCATGGTCTATCCACGGGACGGACTATTTCTGTTC GGTCCAGGCGACGGAGGGCGAGCAC CCATCAATTTCGGCGTGATCGGCACTCCCGCGGGAGTCGCTCGCTTCCGGCAGTGGATGG GCTCGGTCGGCAATGTCATAGACGC CGCCAATGACGACCCGCAGCATGTGCCGTTTCCGGGTTATGGTGCCGCCTTCGCCAGTGC TTGGCCAGACAAGCCACGGCACATC ATCGATAGCATCGACCCCGCGGCTGTCTCGCGGGCTCTTCGCCTGGAGAACAGGAACGAG GCGATCAAAAGCACCGTGGATCTGT ATGTCGACCCACTGGTGGCGGCCGCCGATCGCTTGGAGGCACCTCCGAATTTCTGGTTCG TGGTTATTCCTGAGGAAATCTACAA GCTCGGGCGACCCCAATCAAGCGTCCCCAAGGCGGACCGCATCCGCGGTTCGGTGAAACT GTCCAAGTCTGCTGCCAGGGACTTG ATGTTGGAGCCGACGTTCTTCCCCGAAGATCTGGAAGCGGCGGAGATCTATCAATATGCC ACCCATTTCAGGCGCCAGTTGAAGG CACGTCTGCTCAGAGACCGTATCGTCACTCAGATCGTTAGGGAAACCACATTGGCGCCTA ACGATTTCCTGAACAAAATCGGCAA GCCACTGCGACGATTGGAGGACCCTGCAACGATCGCCTGGAAAATATTGACCGGCGCCTA TTACAAGGATGGTGGACGACCATGG CAGTTGGCCGACGTCAGACCCGGCGTTTGCTATGTCGGCCTCGCCTATAAGCGACAGGAC AATAGTTCCGATGATCGCTTCGCCT GTTGCGCCGCCCAGATGTTTCTTTCGAGCGGTGAAGGCGTCGTATTTCGCGGTGCGCTCG GCCCATGGTTTCATTCCGAATCCAA GCAATTTCATCTGAGCGAGGACGCGGCAAGCAGTTTAGTTGAGATGGTTATCGGCGAATA TCAACAAATGCATGATGGACAGCCG CCCGCTGAGCTGTTCATTCATGCCAAGTCCTCGTTCGCGGACCCGGAATGGAAAGGCTTC AAGGCCGCTGCTCCGGGGACCAATG TCGTAGGAGTGCAGATTTCCGATGCGAAAGACCGCATGAAGCTATACCGGCCCGGTCGAT ATCCGGTCATCCGCGGAACGGCCTT GATATTGCACGAACGCCGCGCGTTCCTCTGGACGTCGGGATTCGCCCCGCGCCTTGATAC CTACCAAGGGCCAGAGACGCCGAAT CCGATAGAAGTCCGCATTCACCGCGGAGATTGCGAACTTGAAACGGTTCTCGGGGACGTG ATGGGCCTGACCAAGATCAATTTCA SEQ Sequence

ID NO

ATTCTTGCCTGCATAACGATCGATTGCCGGTGACGATACGTTTCGCCGACGCGGTGG GCGACGTGATCCTCGCGGCACCACGGAC CGGCGAACCGAAGCTGCCGTTCAAGTATTATATATAA

53 ATGCTCGAGTTTCGCTACGGCCAGCGCATGGTCTATCCACGGGACGGACTATTTCTGTTC GGTCCAGGCGACGGAGGGCGAGCAC CCATCAATTTCGGCGTGATCGGCACTCCCGCGGGAGTCGCTCGCTTCCGGCAGTGGATGG GCTCGGTCGGCAATGTCATAGACGC CGCCAATGACGACCCGCAGCATGTGCCGTTTCCGGGTTATGGTGCCGCCTTCGCCAGTGC TTGGCCAGACAAGCCACGGCACATC ATCGATAGCATCGACCCCGCGGCTGTCTCGCGGGCTCTTCGCCTGGAGAACAGGAACGAG GCGATCAAAAGCACCGTGGATCTGT ATGTCGACCCACTGGTGGCGGCCGCCGATCGCTTGGAGGCACCTCCGAATTTCTGGTTCG TGGTTATTCCTGAGGAAATCTACAA GCTCGGGCGACCCCAATCAAGCGTCCCCAAGGCGGACCGCATCCGCGGTTCGGTGAAACT GTCCAAGTCTGCTGCCAGGGACTTG ATGTTGGAGCCGACGTTCTTCCCCGAAGATCTGGAAGCGGCGGAGATCTATCAATATGCC ACCCATTTCAGGCGCCAGTTGAAGG CACGTCTGCTCAGAGACCGTATCGTCACTCAGATCGTTAGGGAAACCACATTGGCGCCTA ACGATTTCCTGAACAAAATCGGCAA GCCACTGCGACGATTGGAGGACCCTGCAACGATCGCCTGGAAAATATTGACCGGCGCCTA TTACAAGGATGGTGGACGACCATGG CAGTTGGCCGACGTCAGACCCGGCGTTTGCTATGTCGGCCTCGCCTATAAGCGACAGGAC AATAGTTCCGATGATCGCTTCGCCT GTTGCGCCGCCCAGATGTTTCTTTCGAGCGGTGAAGGCGTCGTATTTCGCGGTGCGCTCG GCCCATGGTTTCATTCCGAATCCAA GCAATTTCATCTGAGCGAGGACGCGGCAAGCAGTTTAGTTGAGATGGTTATCGGCGAATA TCAACAAATGCATGATGGACAGCCG CCCGCTGAGCTGTTCATTCATGCCAAGTCCTCGTTCGCGGACCCGGAATGGAAAGGCTTC AAGGCCGCTGCTCCGGGGACCAATG TCGTAGGAGTGCAGATTTCCGATGCGAAAGACCGCATGAAGCTATACCGGCCCGGTCGAT ATCCGGTCATCCGCGGAACGGCCTT GATATTGCACGAACGCCGCGCGTTCCTCTGGACGTCGGGATTCGCCCCGCGCCTTGATAC CTACCAAGGGCCAGAGACGCCGAAT CCGATAGAAGTCCGCATTCACCGCGGAGATTGCGAACTTGAAACGGTTCTCGGGGACGTG ATGGGCCTGACCAAGATCAATTTCA ATTCTTGCCTGCATAACGATCGATTGCCGGTGACGATACGTTTCGCCGACGCGGTGGGCG ACGTGATCCTCGCGGCACCACGGAC CGGCGAACCGAAGCTGCCGTTCAAGTATTATATATAA

54 TTGCATCTCAACTACCTGCCGCTACGTTTTACTGCCGACATATTCAAAGGGGGCGCTCTG ACCTTTCCTGAAGGTTCAGAAAAAA ACTGGACCTCCGACGACCCAATCAGCAAAGAGTTGAGCAAGTTGAGAGAGAAGCATGGGG ATTCCCATGTTTTTCATCGAATGGG AAATAAAATCGCCTGCATCCCGGTAGTAGAAAACGCGATCGCAATTGGCACTGAAACAGA CTTCAACATCATCTCCGACTTTCAG TTAGCGAATGCGCTCGCACGCTCAGCATTACATAGATATTTCAAAGCTGCTGGCAGAGAG ACTGTTATCGGCTTTCGCCCTGTCA CGCTCCTACTCGAAAAACATAATCTCGCTTCTAACCGCAAAGACGTATTTGGCATTTTCC CCGAATACACGCTCGACGTTAGGCC GTTAGCTCCGCACGAGGGGGACATCGCGAGCGGAGTTCTTATTGGATTTGGAATCAAATA CGTCTTCCTCCAGAATGTCGCTGAA CTTCAGGCTCAGGGTGTTTCAGCAGCCGGCATGTACGCCGTGCGGTTAGTTGACGAGTCC GAACATCAGTTTGATCGGGCCTACC TCGGACGGATCGACCGCTTCACAAAGGACAACGTAACCCTAGTCGATTCTGACTATGCGG AGTATCCAGCCGATCAGTGCTATTT CGAAGGTAGTCGTACAAATATCGAGGCAGTCGGCCGAAGCCTCCTTGGCAAAGACTACGA TGCCTTTTCGAGCTCGCTTCTTCAG GAAAGCTACAAAGTGACCGGCGCTCCCAATCAGACCCAGCGACTCCATCAACTTGGAGCC TGGTTGGAAGCAAAATCCCCAATTC CGTGCGCCGTCGGCTTAGGAGTGCGGATCGCTAAGAAACCCCATGAGTGTTCACGAGGCA ATGATGCCGGCTACTCCAGATTTTT CGACTCTCCCAAATGTGTCCTTCGCCCTGGAGGTTCGTTAACCGTTCCTTGGCCTGTCGA CAAGCAAATCGACCTCAATGGTCCT TACGACGCAGAGTCATTTCCAAACAAACGGGTGCGCATCGCCGTCATCTGTCCGCAAGAG TTCACCGGGGATGCCGAAGAGTTTT TGAGAAAGCTGAAGGAGGGGCTACCCAACGCTCCTGATGGATCGCCTTTCCGGAAAGGTT TCGTCCGCAAATACCACTTGAGCAG TTGCGATTTTACGTTCCACGAAGTGAAGCGCAGTTCGAATTCCGACGACATTTACAAGGA TGCTTCGTTGGAGGCGTTGAAACAG AAGCCAGACATGGCAATCGCAATCATCCGTTCGCAGTATCGAGGGCTTCCCGATGCGTCG AACCCGTACTACACCACTAAAGCGC GATTGATGGCGCAAGGTGTTCCAGTACAACTATTGAATATCGAAACCATCCGTCGAAAAA GCCTTGACTACATTCTCAATAATAT CGGGCTTGCTATGTACGCGAAGCTTGGCGGAATCCCTTGGACGCTGACCCAGAACAGCGA TATGGCGCACGAGATTATCGTTGGT ATAGGAAGCGCCAGATTGAACGAAAGCCGTCGTGGTGCAGGCGAGCGGGTGATCGGAATT ACGACCGTTTTCAGCGGCGATGGCC AGTACCTGTTGGCAAACAATACTCAAGAGGTGCCTTCAGAAGAGTACGTTGATGCTCTGA CTCAGTCTCTCTCGGAGACTGTGAG TGAACTCAGGAGCCGATTCGGTTGGAGACCAAAAGACAGGGTCCGATTCATCTTCCATCA AAAGTTCAAGAAGTACAAAGATGCT GAAGCTGAGGCAGTTGATCGCTTCGCACGATCACTCAAAGATTTCGACGTGCAATATGCC TTCGTTCATGTCAGTGACTCGCACA ACTGGATGTTGCTAGATCCCGCATCGAGGGGAGTGAAGTTCGGCGACACAATGAAGGGAG TGGCGGTCCCGCAGAGGGGACAATG TGTGCCTCTAGGGCCAAACGCTGCTCTTTTGACTTTGTCCGGGCCATTTCAGGTCAAGAC GCCACTGCAAGGTTGCCCTCATCCA GTACTGGTGAGCATTCACGAGAAGTCCACGTTCAAGAGCGTGGATTATATCGCTCGCCAA ATTTTCAATCTCAGCTTCATCTCAT GGAGGGGTTTCAACCCGTCAACGCTTCCAGTTTCGATTTCTTACTCAGACATGATCGTAG ATCTGTTGGGGCATTTGAGAAGGGT TAAGAACTGGAATCCCGAGACGCTTTCGACCGCACTGAAAGAAAGGCGCTGGTTCCTATG A

55 ATGAAAGCGGACTACATACAAGAACCTTTTTTATTATTTGGCAAAGGCAAAAGTATTTGT CCTAGAGAAGGTATTGCCGAATTAA ATGTATATGACACGGTAATTGAAGCCAGAAAAAATCAATTGCTCATTGGCATAATTGGGA TTGAAGAAGATGTAGAAAATCTGAA AAGTTGGATAAAAAGGTTTGAAAGCTATATTCCTGCAGATCCCAAAGGCAAACAGAAAGG ATTGTTCAAATCGTTTCCGGGATTC CATCAGGACAAAGGGTTCTGTGCAAAATTCATTTACGATTCAAATTATGAGAGGATTCTC TCACCAAATGACATTAAAAGGATTT TGAAAGAACCTGATAGGAATAAGAAAGTATTGGATGCAGTAGAGTTGTTTGGTGAAAACA TTGGCTTTCTCTCTGATATTAAAAA CTGCGACGTAATAATATGCATCATACCGAAAAGCTTTGAAGGTAAAATAGTAAAAGAGAA CAAAGATGATGAACCAGTTGAACAA GTGGCTGAAGATAACGAAGGACCTGAATTGGAACTGAATTTTAGAAGAGCATTAAAAGCC CGTGCAATGAAATACAACACACCTA TTCAGTTGTTGAGAGAATATGTAATGCACGACAGTAACAAATCACAAGATAATGCAACTA AGGCATGGAATTTTTGCACTGCTCT TTATTATAAGGGACTTCAAACCATTCCTTGGAAGTTGGAAGTAGACGAGAACAAACCAAA AGTATGTTTTGTAGGTATTGGATTC TACAAAAGCAGGGACAAGAAAACGATTCAAACCAGTTTAGCACAAATTTTCAATGAAAAT GGAAAAGGTGTGATACTTCGCGGAA CTCCTGTAACTGAAGATAAAGACGATAAAAAACCTCACTTAACTTATGAGCAATCTTTAA GCCTTCTGAAAGATGCCTTGACCAA ATACAAGTTTGCGACAGGTTCAATGCCAGGTAGAGTAGTTTTACACAAGACTTCAAAATA CTATGAGGATGAACTTGACGGCTTT ATTCAAGCAATGCAGGATTTGGGTATAACTGAATACGATATTGTAACTATCATGGAAACC GATTTGCGTTTCTTTAGAAATAATC TTTATCCACCAGTGAGAGGGGCAGTTTTTTCATTGACTGAACAAAGACACATACTTTACA CTAGGGGTTCAGTTCATCAATATCA GACATATCCAGGAATGTATATTCCTGCTCCATTAGAAGTAAGAATAGTAAGTTCCGTTTC ATCTATAAGGACAGTTTGTAAAGAA ATTCTTGGCTTGACAAAAATGAATTGGAACAACACCCAATTCGACAACAAATACCCCATT ACAATTGGCTGTGCAAGACGGGTAG GAGAAATAATGAAATACGTTGGAGAAAATGAATATCCGAAAGAATCTTATGCATATTATA TGTGA

56 ATGAAGGACCTTGTATGGGTCCAGGAATCCTCGTCGGTGAAAGTCCTCCGCGACGGGAAC TATCCCGTGATGCGCGGCACCTTTG TCGAACTCGACGGGAAAGGGCTTCTCTATACGAACGGCAGCATCCCGTACTACGGAACCT ATCCAGGCCAGTATGATCCCAGGCC ATTTCTGCTATGTCCGCACAAAAGCAGCGACAGCACCGTCGCGCAGATCGCCAAAGACGT GCTGTCGATGACGAAGATCAACTGG AATTCGACCCAGATGAACCAGAAGCTGCCCATTCCCATCCGGGCCGCACGAAAGGTTGGT GAGGTTCTTAAATACGTCAGCGATG GAAAGGTCAGTTCCGACTACACCCGATATATGTGA SEQ Sequence

ID NO

57 ATGGACCTGTCGAAGAAATCCCTCAAGACTATCCACATTGAGGAACCGGAGTTGTCTTTC GGCCACGGGCAAACTTGCGACCACC CGAAAGATGGACTGTTTCTCTACGGGCCGCACTCTGGCCCAACACGCACGCGCGAAGTTT CCGTTGGAGTCATTGGAACGAAAGA CGGACTCTCGTATTTTCGGACGTGGGCGATTGCGGCTGGCGGCTTTGTTCCCGTCCCGCC GCGAAAGAAAACCGACAAAGAAAAC AGATTGCACCTCTCGAATTTTCCTGGGTTGGAAGAAGCGTTTGGCATCATGGTCAGCCCG GGAGACTTTGTTCAGCGTACTGTCG ATTACACGGTACTCGACGACGCCACCCGTACGGTGAACCAGCATGAAGCGGTACGCAAAG CGGTGGACCTCTATGTGGGAGAAAT TGAACGCTATGACAACAATGAAGAAAAGACGGTAGACGTTTGGATGTTCATTCTCCCCGA AATCATCTTCGAGCGTTGCAAGCCG CTATCGCGGCGCACCGGCCTTGGCCTGACAAAAGGCGAATTCGCCAAGAGCCAGAAAGAA AGAATTGATCTTCCGTTGTTCAAGG ATGTGATCGACCAGAGCGGCGAGGACATCTTTGACGACGTGCCAGATTTTCACCGCCAGG TGAAAGCGCGTCTGCTCAAGCTAGG TCGCACTTCGCAACTCATCCGCGAAACGACGTTGGCACCCGACAAATTCCTAAATAACGC GGGCTATCCAAAGCGTGGGTTGCAG GATCCGGCGACAGTGGCGTGGAATCTGGCAACTGGACTTTACTACAAAACCCAACCCTTG CCGCCGTGGAAACTCGCGCATGTCA GGCCGGGCGTTTGTTACATCGGACTTGTTTTCAAGATGATTCCGAATGATCCAAAGGAAC ATGCCTGCTGTGCGGCGCAGATGTT TCTTAATGAGAGCGACGCCGTTGTTTTCAGGGGCGCAAATGGCCCGTGGAAAACCGACGA CTTTGAATTCCACCTTCAACCCAAA GAGGCGCAAAGCCTGATTGCCAAAGTGCTCAAAACCTTCGAGGAGAAGCACGGTGTGCCA CCAAAGGAATTTTTCATCCACGGGT GCACAACCTTCAACGAGGATGAATGGAAAGCCTTCAAAAAGGCCACGCCGAAGGGCACCA ATCTTGTCGGCGTCCGCATCAAGGA AACCAAAGGGGAATCCAAGCTGTTCCGTGATGGTGATTATCCGGTAATGAGGGGAACGGC CATCATTCTTGATCACCGAAACGCC TTGCTGTGGACGAATGGATTTGTGCCACGGCTGGACACCTATATTGGGCCTGAGACGCCA AACCCGCTTTTGATAACCGTTCTGC GTAGTACGGGTCGGCGACCTAACATTCGCACCGTTCTTGCTGACATCATGGGCCTTACCA AGATCAACTACAACGCCTGCAACTA CAATGACGGATTGCCCGTCACGATCCGCTTTGCGAGCAAGGTGGGCGATGTGCTGACGAT GGGTTCGGCACGCGACGCAGACAAA CAGCCCCTGAAGTTCTACGTCTAG

[0228] In some cases, a nuclease can be from one or more CRISPR systems, or a variant or derivative thereof. A nuclease from a CRISPR system can be a Cas protein.

[0229] In S. pyogenes, Cas9 can generate a blunt-ended double-stranded break from about 1 bp to about 10 bp upstream of the protospacer-adjacent motif (PAM) via a process mediated by two catalytic domains in the protein: an HNH domain that cleaves the complementary strand of the DNA and a RuvC- like domain that cleaves the non-complementary strand. In some cases, the double-stranded break is at about 3bp upstream of the PAM. See Jinke et al., Science 337, 816-821 (2012) hereby incorporated by reference in its entirety. Cas9 proteins are known to exist in many Type II CRISPR systems including the following as identified in the supplementary information to Makarova et al., Nature Reviews,

Microbiology, Vol. 9, June 2011, pp. 467-477: Methanococcus maripaludis C7; Coryneb acterium diphtheriae; Coryneb acterium efficiens YS-314; Corynebacterium glutamicum ATCC 13032 Kitasato; Coryneb acterium glutamicum ATCC 13032 Bielefeld; Corynebacterium glutamicum R;

Corynebacterium kroppenstedtii DSM 44385; Mycobacterium abscessus ATCC 19977; Nocardia farcinica IFM10152; Rhodococcus erythropolis PR4; Rhodococcus jostii RHA1; Rhodococcus opacus B4 uid36573; Acidothermus cellulolyticus 11B; Arthrobacter chlorophenolicus A6; Kribbella flavida DSM 17836 uid43465; Thermomonospora curvata DSM 43183; Bifidobacterium dentium Bdl;

Bifidobacterium longum DJO10A; Slackia heliotrinireducens DSM 20476; Persephonella marina EX HI; Bacteroides fragilis NCTC 9434; Capnocytophaga ochracea DSM 7271; Flavobacterium psychrophilum JIP02 86; Akkermansia muciniphila ATCC BAA 835; Roseiflexus castenholzii DSM 13941; Roseiflexus RSI; Synechocystis PCC6803; Elusimicrobium minutum Peil91; uncultured Termite group 1 bacterium phylotype Rs D17; Fibrobacter succinogenes S85; Bacillus cereus ATCC 10987; Listeria innocua; Lactobacillus casei; Lactobacillus rhamnosus GG; Lactobacillus salivarius UCC118; Streptococcus agalactiae A909; Streptococcus agalactiae NEM316; Streptococcus agalactiae 2603; Streptococcus dysgalactiae equisimilis GGS 124; Streptococcus equi zooepidemicus MGCS10565; Streptococcus gallolyticus UCN34 uid46061; Streptococcus gordonii Challis subst CHI; Streptococcus mutans NN2025 uid46353; Streptococcus mutans; Streptococcus pyogenes Ml GAS; Streptococcus pyogenes MGAS5005; Streptococcus pyogenes MGAS2096; Streptococcus pyogenes MGAS9429; Streptococcus pyogenes MGAS 10270; Streptococcus pyogenes MGAS6180; Streptococcus

pyogenes MGAS315; Streptococcus pyogenes SSI-1; Streptococcus pyogenes MGAS10750;

Streptococcus pyogenes NZ131; Streptococcus thermophiles CNRZ1066; Streptococcus

thermophiles LMD-9; Streptococcus thermophiles LMG 18311; Clostridium botulinum A3 Loch Maree; Clostridium botulinum B Eklund 17B; Clostridium botulinum Ba4 657; Clostridium botulinum F Langeland; Clostridium cellulolyticum H10; Finegoldia magna ATCC 29328; Eubacterium

rectale ATCC 33656; Mycoplasma gallisepticum; Mycoplasma mobile 163K; Mycoplasma penetrans; Mycoplasma synoviae 53; Streptobacillus moniliformis DSM 12112; Bradyrhizobium BTAil;

Nitrobacter hamburgensis XI 4; Rhodopseudomonas palustris BisB 18; Rhodopseudomonas palustris B is B5; Parvibaculum lavamentivorans DS-1; Dinoroseobacter shibae DFL 12; Gluconacetobacter diazotrophicus Pal 5 FAPERJ; Gluconacetobacter diazotrophicus Pal 5 JGI; Azospirillum B510 uid46085; Rhodospirillum rubrum ATCC 11170; Diaphorobacter TPSY uid29975; Verminephrobacter eiseniae EF01-2; Neisseria meningitides 053442; Neisseria meningitides alpha 14; Neisseria meningitides Z2491; Desulfovibrio salexigens DSM 2638; Campylobacter jejuni doylei 269 97;

Campylobacter jejuni 81116; Campylobacter jejuni; Campylobacter lari RM2100; Helicobacter hepaticus; Wolinella succinogenes; Tolumonas auensis DSM 9187; Pseudoalteromonas atlantica T6c; Shewanella pealeana ATCC 700345; Legionella pneumophila Paris; Actinob acillus succinogenes 130Z; Pasteurella multocida; Francisella tularensis novicida Ul 12; Francisella tularensis holarctica;

Francisella tularensis FSC 198; Francisella tularensis tularensis; Francisella tularensis WY96-3418; and Treponema denticola ATCC 35405. Accordingly, aspects of the present disclosure are directed to a Cas9 protein present in a Type II CRISPR system that are used in combination with the disclosed gene editing system. In some cases, a Cas can be used as a module in the RNase-H like domain containing peptide complex.

[0230] Non-limiting examples of Cas proteins can include Casl, CaslB, Cas2, Cas3, Cas4, Cas5, Cas6, Cas7, Cas8, Cas9 (also known as Csnl or Csxl2), CaslO, Csy 1 , Csy2, Csy3, Csel, Cse2, Cscl, Csc2, Csa5, Csn2, Csm2, Csm3, Csm4, Csm5, Csm6, Cmrl, Cmr3, Cmr4, Cmr5, Cmr6, Csbl, Csb2, Csb3, Csxl7, Csxl4, CsxlO, Csxl6, CsaX, Csx3, Csxl, CsxlS, Csfl, Csf2, CsO, Csf4, Cpfl, c2cl, c2c3, Cas9HiFi, xCas9, CasX, CasY, CasRX. homologues thereof, or modified versions thereof. In some cases, alternatives to Cas can be utilized. For example, in some cases, a Cpfl endonuclease can be used. Cpfl can be phylogenetically close to bacterial and archaea Argonauts. For example, at a C-terminus of Cpfl it may align with an Argonaute. A C terminus of Cpfl can comprise a PIWI domain. In some cases, a catalytically dead Cas protein {e.g., dCas9) may also be used. A Cas can be partially catalytically dead. A Cas protein can have DNA or RNA cleavage activity. A CRISPR enzyme can direct cleavage of one or both strands at a target sequence, such as within a gene sequence and/or within a complement of a gene sequence. For example, a CRISPR enzyme can direct cleavage of one or both strands within or within about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 50, 100, 200, 500, or more base pairs from the first or last nucleotide of a protospacer adjacent motif (PAM) sequence. In some cases a Cas protein can be a high fidelity Cas protein such as Cas9HiFi. In some cases, a Cas can be a partially dead Cas such as a nickase.

Table 4: Stre tococcus o enes Cas9 S Cas9

[0231] In some cases, a Cas9 can be utilized. A Cas9 can refer to a polypeptide with at least or at least about 50%, 60%, 70%, 80%, 90%, 100% sequence identity and/or sequence similarity to a wild type exemplary Cas9 polypeptide (e.g., Cas9 from S. pyogenes). Cas9 can refer to a polypeptide with at most or at most about 50%, 60%, 70%, 80%, 90%, 100% sequence identity and/or sequence similarity to a wild type exemplary Cas9 polypeptide (e.g., from S. pyogenes). Cas9 can refer to the wild type or a modified form of the Cas9 protein that can comprise an amino acid change such as a deletion, insertion, substitution, variant, mutation, fusion, chimera, or any combination thereof. Cas9 can refer to a polypeptide with at least or at least about 50%, 60%, 70%, 80%, 90%, 100% sequence identity and/or sequence similarity to SEQ ID NO: 58.

[0232] While S. pyogenes Cas9 (SpCas9), Table 4, can be used as a CRISPR endonuclease for genome engineering, in some cases it will not be the best endonuclease for every target excision site. For example, the PAM sequence for SpCas9 (5' NGG 3') is abundant throughout the human genome, but a NGG sequence may not be positioned correctly to target a desired gene for modification. In some cases, a different endonuclease can be used to target certain genomic targets. In some cases, synthetic SpCas9- derived variants with non-NGG PAM sequences can be used. Additionally, other Cas9 orthologues from various species have been identified and these "non-SpCas9s" bind a variety of PAM sequences that could also be useful for the present invention. For example, the relatively large size of SpCas9

(approximately 4kb coding sequence) means that plasmids carrying the SpCas9 cDNA cannot be efficiently expressed in a cell. Conversely, the coding sequence for Staphylococcus aureus Cas9 (SaCas9) is approximately 1 kilo base shorter than SpCas9, possibly allowing it to be efficiently expressed in a cell. Similar to SpCas9, the SaCas9 endonuclease is capable of modifying target genes in mammalian cells in vitro and in mice in vivo.

[0233] Alternatives to S. pyogenes Cas9 can include RNA-guided endonucleases from the Cpf 1 family that display cleavage activity in mammalian cells. Unlike Cas9 nucleases, the result of Cpf 1 -mediated DNA cleavage is a double-strand break with a short 3' overhang. Cpfl 's staggered cleavage pattern can open up the possibility of directional gene transfer, analogous to traditional restriction enzyme cloning, which can increase the efficiency of gene editing. Like the Cas9 variants and orthologues described above, Cpfl can also expand the number of sites that can be targeted by CRISPR to AT-rich regions or AT-rich genomes that lack the NGG PAM sites favored by SpCas9. In some cases, a nuclease may comprise a polynucleic acid-unwinding agent, such as a helicase. In other cases, a nuclease may not contain a DNA-unwinding agent. A nuclease that can unwind a polynucleic acid can be Cas or Cpfl.

[0234] In some cases, a nuclease can function in a transposon/transposase system. Transposable elements can be natural, non-viral gene delivery vehicles capable of mediating stable genomic integration and/or disruption. A transposon/transposase can be PiggyBac. PiggyBac can be made up of both a transposon cassette and a transposase. A PiggyBac system transposon can modify a genome at a 'TTAA' site.

[0235] A nuclease can be codon optimized for expression in particular cells, such as eukaryotic cells. A polynucleotide encoding an endonuclease {e.g., an Argonaute) can be codon optimized for expression in particular cells, such as eukaryotic cells. This type of optimization can entail the mutation of foreign- derived {e.g., recombinant) nucleic acids to mimic the codon preferences of the intended host organism or cell while encoding the same protein.

[0236] Transposases may be symmetrically coordinated and exchange roles to alternately activate water and a 3'-OH for successive strand cleavage and transfer by a ping-pong mechanism.

[0237] In some embodiments, RNase-H specifically recognizes an A form RNA strand and a B form DNA strand.

[0238] A nuclease can bind and/or modify {e.g., cleave, methylate, demethylate, etc.) a target nucleic acid and/or a polypeptide associated with target nucleic acid. As described in further detail below, in some cases, a subject nuclease can have enzymatic activity that modifies target nucleic acid. Enzymatic activity may refer to nuclease activity, methyltransferase activity, demethylase activity, DNA repair activity, DNA damage activity, deamination activity, dismutase activity, alkylation activity, depurination activity, oxidation activity, pyrimidine dimer forming activity, integrase activity, transposase activity, recombinase activity, polymerase activity, ligase activity, helicase activity, photolyase activity or glycosylase activity. In other cases, a subject nuclease can have enzymatic activity that modifies a polypeptide associated with a target nucleic acid.

[0239] In some embodiments, in addition to or as a substitute for nucleic acid-cleaving activity, the compositions, polypeptides, methods, and systems described herein can also have a "pasting" function. Accordingly, the compositions, polypeptides, methods, and systems can be used to insert a nucleic acid into a target sequence in addition to or instead of cleaving the target nucleic acid. Such exemplary nucleic acid-insertion activities include, but are not limited to, integrase, flippase, transponase, and recombinase activity. Thus, exemplary polypeptides having such function (nucleic acid-insertion polypeptides) include integrases, recombinases, and flippases. These nucleic acid-insertion polypeptides can, for example, insert a nucleic acid sequence at a site that has been cleaved by a polypeptide of the present disclosure.

[0240] In some cases, an Argonaute nuclease, CRISPR nuclease, or RNase-H like nuclease can contain a nuclear localization sequence (NLS). A nuclear localization sequence can be from SV40. An NLS can be from at least one of: SV40, nucleoplasmin, importin alpha, C-myc, EGL-13, TUS, BORG, hnRNPAl, Mata2, or PY-NLS. An NLS can be on a C-terminus or an N-terminus of a nuclease polypeptide or nucleic acid. In some cases, a nuclease may contain from about 1 to about 10 NLS sequences. A nuclease can contain 1, 2, 3, 4, 5, 6, 7, 8, 9, or up to 10 NLS sequences. A nuclease may contain a SV40 and nuceloplasmin NLS sequence. In some cases, an NLS can be from Simian Vacuolating Virus 40.

[0241] Unwinding Agents

[0242] In some cases, a nucleic acid unwinding agent may be utilized. A nucleic acid unwinding agent may be a polynucleic acid, protein, drug, or system that unwinds a nucleic acid. A nucleic acid unwinding agent can be energy. A nucleic acid unwinding agent can provide energy or heat. Unwinding can refer to the unwinding of a double helix (e.g., of DNA) as well as to unwinding a double-stranded nucleic acid to convert it to a single-stranded nucleic acid or to unwinding DNA from histones. In some embodiments, an unwinding agent is a helicase. In some embodiments, helicases are enzymes that bind nucleic acid or nucleic acid protein complexes. In some embodiments, a helicase is a DNA helicase. In some embodiments, a helicase is an RNA helicase. In some embodiments, a helicase unwinds a polynucleic acid at any position. In some cases, a position that is unwound is found within an immune checkpoint gene. In some cases, a position of a nucleic acid that is unwound encodes a gene involved in disease. In some embodiments, an unwinding agent is an ATPase, helicase, synthetic associated helicase, or topoisomerase.

[0243] In some embodiments, a nucleic acid unwinding agent functions by breaking hydrogen bonds between nucleotide base pairs in double-stranded DNA or RNA. In some cases, unwinding a nucleic acid (e.g., by breaking a hydrogen bond) requires energy. To break hydrogen bonds, nucleic acid unwinding agents can use energy stored in ATP. In some embodiments, a nucleic acid unwinding agent includes an ATPase. For example, a polypeptide with nucleic acid unwinding activity can comprise or be fused to an ATPase. In some embodiments, an ATPase is added to a cellular system.

[0244] In some embodiments, a nucleic acid unwinding agent is a polypeptide. For example, a nucleic acid unwinding peptide can be of prokaryotic origin, archaeal origin, or eukaryotic origin. In some embodiments, a nucleic acid unwinding polypeptide comprises a helicase domain, a topoisomerase domain, a Cas protein domain e.g., a Cas protein domain selected from the group consisting of: Casl, CaslB, Cas2, Cas3, Cas4, Cas5, Cas6, Cas7, Cas8, Cas9, CaslO, Csy l , Csy2, Csy3, Csel, Cse2, Cscl, Csc2, Csa5, Csn2, Csm2, Csm3, Csm4, Csm5, Csm6, Cmrl, Cmr3, Cmr4, Cmr5, Cmr6, Csbl, Csb2, Csb3, Csxl7, Csxl4, CsxIO, Csxl6, CsaX, Csx3, Csxl, CsxIS, Csfl, Csf2, CsO, Csf4, Cpfl, c2c l, c2c3, Cas9HiFi, xCas9, CasX, CasY, CasRX or a catalytically dead nucleic acid unwinding domain such as a dCas domain (e.g., a dCas9 domain).

[0245] In some embodiments, a nucleic acid unwinding agent is a small molecule. For example, a small molecule nucleic acid unwinding agent can unwind a nucleic acid through intercalation, groove binding or covalent binding to the nucleic acid, or a combination thereof. Exemplary small molecule nucleic acid unwinding agents include, but are not limited to, 9-aminoacridine, quinacrine, chloroquine, acriflavin, amsacrine, (Z)-3-(acridin-9-ylamino)-2-(5-chloro-l,3-benzoxazol-2-yl)pr op-2-enal, small molecules that can stabilize quadruplex structures, quarfloxin, quindoline, quinoline -based triazine compounds, BRACO-19, acridines, pyridostatin, and derivatives thereof.

[0246] In some embodiments, a polynucleic acid is unwound in a physical manner. A physical manner can include addition of heat or shearing for example. In some cases, a polynucleic acid such as DNA or RNA can be exposed to heat for nucleic acid unwinding. A DNA or RNA may denature at temperatures from about 50°C to about 150°C. DNA or RNA denatures from about 50 °C to 60 °C, from about 60 °C to about 70 °C, from about 70 °C to about 80 °C, from about 80 °C to about 90 °C, from about 90 °C to about 100 °C, from about 100 °C to about 110 °C, from about 110 °C to about 120 °C, from about 120 °C to about 130 °C, from about 130 °C to about 140 °C, from about 140 °C to about 150 °C.

[0247] In some cases, a polynucleic acid can be denatured via changes in pH. For example, sodium hydroxide (NaOH) can be used to denature a polynucleic acid by increasing a pH to about 25 to about 29. In some cases, a polynucleic acid can be denatured via the addition of a salt.

[0248] In some cases, the disclosed editing system utilizing an unwinding agent can reduce a thermodynamic energetic requirement by about 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 15%, 20%, 25%, 40%, 50%, or up to about 60% as compared to a system that does not employ the disclosed unwinding agent. In some cases, the disclosed editing system utilizing an unwinding agent can reduce an immune response to the unwinding agent by about 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 15%, 20%, 25%, 40%, 50%, or up to about 60% as compared to a system that does not employ the disclosed unwinding agent. In some cases, an unwinding agent can be harvested from bacteria that are

endogenously present in the human body to prevent eliciting an immune response.

[0249] Regulatory domain polypeptide (RDP)

[0250] In some cases, a regulatory domain polypeptide can be part of a nucleic acid editing system. An RDP can regulate a level of an activity, such as editing, of a nucleic acid editing system. Non-limiting examples of RDPs can include recombinases, epigenetic modulators, germ cell repair domains, or DNA repair proteins. In some cases, an RDP can be mined by screening for co-localized DNA repair proteins in a region comprising an RNase-H like domain containing polypeptide.

[0251] Exemplary recombinases that can be used as RDPs include Cre, Hin, Tre, or FLP recombinases. In some cases, recombinases involved in homologous recombination can be utilized. For example an RDP can be RadA, Rad51, RecA, Dmcl, or UvsX. [0252] An epigenetic modulator can be a protein that can modify an epigenome directly through DNA methylation, post-translational modification of chromatin, or by altering a structure of chromatin.

[0253] Exemplary germ cell repair domains can include ATM, ATR, or DNA-PK to name a few. A germ cell repair domain can repair DNA damage though a variety of mechanisms such as nucleotide excision repair (NER), base excision repair (BER), mismatch repair (MMR), DNA double strand break repair (DSBR), and post replication repair (PRR).

[0254] An RDP can be a tunable component of a nucleic acid editing system. For example, an RDP can be swapped in the editing system to achieve a particular outcome. In some cases, an RDP can be selected based on a cell to be targeted, a level of editing efficiency that is sought, or in order to reduce off-target effects of a nucleic acid editing system. A dialing up or a tuning can enhance a parameter (efficiency, safety, speed, or accuracy) of a genomic break repair by about 5%, 10%, 15%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, or up to about 100% as compared to a comparable gene editing system. A dialing down or a tuning can be performed by interchanging a domain such as an RDP to achieve a different effect during a genomic modification. For example, a different effect may be a skewing towards a particular genomic break repair, a recombination, an epigenetic modulation, or a high fidelity repair. In some cases, an RDP may be used to enhance a transgene insertion into a genomic break. In some cases, interchanging a module of a gene editing system can allow for HDR of a double strand break as opposed to NHEJ or MMEJ. Use of a gene editing system disclosed herein can allow for preferential HDR of a double strand break over that of comparable or alternate gene editing systems. In some cases, an HDR repair can preferentially occur in a population of cells from about 5%, 10%, 15%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, or up to about 100% over that which occurs in a comparable gene editing system without said RDP.

[0255] In some cases, the disclosed editing system utilizing an RDP can reduce a thermodynamic energetic requirement by about 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 15%, 20%, 25%, 40%, 50%, or up to about 60% as compared to a system that does not employ the disclosed RDP. In some cases, the disclosed editing system utilizing an RDP can reduce an immune response to the RDP by about 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 15%, 20%, 25%, 40%, 50%, or up to about 60% as compared to a system that does not employ the disclosed RDP. In some cases, an RDP can be harvested from bacteria that are endogenously present in the human body to prevent eliciting an immune response.

[0256] Guiding polynucleic acid

[0257] A guiding polynucleic acid can direct a gene editing system comprising an RHDC polypeptide- encoded protein to a genomic location. In some cases, a guiding polynucleic acid can be a DNA. In other cases, a guiding polynucleic acid can be RNA. A guiding polynucleic acid can be a combination of DNA and RNA. A guiding polynucleic acid can be single stranded, double stranded, or a combination thereof. A guiding polynucleic acid can be at least or at least about 5, 10, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30 or more nucleotides long. A guiding polynucleotide can be at most or at most about 5, 10, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30 or more nucleotides long. A guiding polynucleotide can be about 5, 10, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30 or more nucleotides long. In some cases, a guiding polynucleic acid may be truncated, such as in Table 22. Truncated guiding polynucleic acids can be utilized to determine a minimum binding length.

[0258] A guiding polynucleic acid can be a guide RNA (i.e., "gRNA") that can associate with and direct an RHDC polypeptide to a specific target sequence within a target nucleic acid by virtue of hybridization to a target site of the target nucleic acid. Similarly a guiding polynucleic acid can be a guide RNA (i.e., "gDNA") that can associate with and direct an RHDC polypeptide to a specific target sequence within a target nucleic acid by virtue of hybridization to a target site of the target nucleic acid. In some cases, a guiding polynucleic acid can hybridize with a mismatch between a guiding polynucleic acid and a target nucleic acid. A guiding polynucleic acid can comprise at least about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 25, 30, 35, or up to 40 mismatches when hybridized to a target nucleic acid. In some cases, a guiding polynucleic acid can tolerate mismatches in a recruiting domain, for example at g6, g7, and g8. In some cases, a guiding polynucleic acid can contain mismatches in a stabilization domain. A stabilization domain can be adjacent to a 3' end of a guiding molecule. For example, positions g6-gl6, such as g6, g7, g8, g9, glO, gl l, gl2, gl3, gl4, gl5, and gl6 or any combination thereof, can be mismatched in 16 nucleotide long guide molecules. Mismatches in a recruiting domain can have mismatches preferably in positions g6, g7, and/or g8.

[0259] A method disclosed herein also can comprise introducing into a cell or embryo at least one guide RNA or nucleic acid, e.g., DNA encoding at least one guide RNA. A guide RNA can interact with a RNA-guided endonuclease to direct the endonuclease to a specific target site, at which site the 5' end of the guide RNA base pairs with a specific protospacer sequence in a chromosomal sequence.

[0260] A guide RNA can comprise two RNAs, e.g., CRISPR RNA (crRNA) and transactivating crRNA (tracrRNA). A guide RNA can sometimes comprise a single-guide RNA (sgRNA) formed by fusion of a portion (e.g., a functional portion) of crRNA and tracrRNA. A guide RNA can also be a dual RNA comprising a crRNA and a tracrRNA. A guide RNA can comprise a crRNA and lack a tracrRNA.

Furthermore, a crRNA can hybridize with a target DNA or protospacer sequence.

[0261] As discussed above, a guide RNA can be an expression product. For example, a DNA that encodes a guide RNA can be a vector comprising a sequence coding for the guide RNA. A

guide RNA can be transferred into a cell or organism by transfecting the cell or organism with an isolated guide RNA or plasmid DNA comprising a sequence coding for the guide RNA and a promoter. A guide RNA can also be transferred into a cell or organism in other way, such as using virus-mediated gene delivery.

[0262] A guiding polynucleic acid can be isolated. For example, a guide RNA can be transfected in the form of an isolated RNA into a cell or organism. A guide RNA can be prepared by in vitro transcription using any in vitro transcription system. A guide RNA can be transferred to a cell in the form of isolated RNA rather than in the form of plasmid comprising encoding sequence for a guide RNA.

[0263] A guide RNA can comprise a DNA-targeting segment and a protein binding segment. A DNA- targeting segment (or DNA-targeting sequence, or spacer sequence) comprises a nucleotide sequence that can be complementary to a specific sequence within a target DNA (e.g. , a protospacer). A protein- binding segment (or protein-binding sequence) can interact with a site-directed modifying polypeptide, e.g. an RNA-guided endonuclease such as a Cas protein. By "segment" it is meant a

segment/section/region of a molecule, e.g. , a contiguous stretch of nucleotides in RNA. A segment can also mean a region/section of a complex such that a segment can comprise regions of more than one molecule. For example, in some cases a protein-binding segment of a DNA-targeting RNA is one RNA molecule and the protein-binding segment therefore comprises a region of that RNA molecule. In other cases, the protein-binding segment of a DNA-targeting RNA comprises two separate molecules that are hybridized along a region of complementarity.

[0264] A guiding polynucleic acid can comprise two separate polynucleic acid molecules or a single polynucleic acid molecule. An exemplary single molecule guiding polynucleic acid (e.g., guide RNA) comprises both a DNA-targeting segment and a protein-binding segment.

[0265] In some cases, an RHDC polypeptide or portion thereof can form a complex with a guiding polynucleic acid. A guiding polynucleic acid can provide target specificity to a complex by comprising a nucleotide sequence that can be complementary to a sequence of a target nucleic acid. In some cases, a target nucleic acid can comprise at least a portion of a gene. In some cases, a target nucleic acid can be within an exon of a gene. In other cases, a target nucleic acid can be within an intron of a gene.

[0266] A guiding polynucleic acid can complex with an RHDC polypeptide to provide the RHDC polypeptide site-specific activity. In other words, an RHDC polypeptide can be guided to a target site within a single stranded target nucleic acid sequence e.g. a single stranded region of a double stranded nucleic acid, a chromosomal sequence or an extrachromosomal sequence, e.g. an episomal sequence, a minicircle sequence, a mitochondrial sequence, a chloroplast sequence, an ssRNA, an ssDNA, etc. by virtue of its association with a guiding polynucleic acid.

[0267] In some cases a guiding polynucleic acid can comprise one or more modifications (e.g., a base modification, a backbone modification), to provide the nucleic acid with a new or enhanced feature (e.g., improved stability). A guiding polynucleic acid can comprise a nucleic acid affinity tag. A nucleoside can be a base-sugar combination. A base portion of the nucleoside can be a heterocyclic base. The two most common classes of such heterocyclic bases can be purines and pyrimidines. Nucleotides can be nucleosides that further include a phosphate group covalently linked to a sugar portion of a nucleoside. For those nucleosides that include a pentofuranosyl sugar, a phosphate group can be linked to the 2', the 3', or the 5' hydroxyl moiety of a sugar. In forming guiding polynucleic acids, a phosphate group can covalently link adjacent nucleosides to one another to form a linear polymeric compound. In addition, linear compounds may have internal nucleotide base complementarity and may therefore fold in a manner as to produce a fully or partially double-stranded compound. Within guiding polynucleic acids, a phosphate groups can commonly be referred to as forming a internucleoside backbone of a guiding polynucleic acid. The linkage or backbone of the guiding polynucleic acid can be a 3' to 5'

phosphodiester linkage. In some cases, a guiding polynucleic acid can comprise nucleoside analogs, which can be oxy- or deoxy -analogues of a naturally -occurring DNA and RNA nucleosides

deoxycytidine, deoxyuridine, deoxyadenosine, deoxy guanosine and thymidine. A guiding polynucleic acid can also include a universal base, such as deoxyinosine, or 5-nitroindole.A guiding polynucleic acid can comprise a modified backbone and/or modified internucleoside linkages. Modified backbones can include those that can retain a phosphorus atom in the backbone and those that do not have a phosphorus atom in the backbone. Suitable modified guiding polynucleic acid backbones containing a phosphorus atom therein can include, for example, phosphorothioates, chiral phosphorothioates, phosphorodithioates, phosphotriesters, aminoalkylphosphotriesters, methyl and other alkyl phosphonates such as 3 '-alkylene phosphonates, 5'-alkylene phosphonates, chiral phosphonates, phosphinates, phosphoramidates including 3'-amino phosphoramidate and aminoalkylphosphoramidates, phosphorodiamidates,

thionophosphoramidates, thionoalkylphosphonates, thionoalkylphosphotriesters, selenophosphates, and boranophosphates having normal 3'-5' linkages, 2'-5' linked analogs, and those having inverted polarity wherein one or more internucleotide linkages is a 3' to 3', a 5' to 5' or a 2' to 2' linkage. Suitable guiding polynucleic acids having inverted polarity can comprise a single 3' to 3' linkage at the 3'-most internucleotide linkage (i.e. a single inverted nucleoside residue in which the nucleobase is missing or has a hydroxyl group in place thereof).

[0268] In some cases, a guiding polynucleic acid (e.g., a guide RNA) can also comprise a tail region at a 5' or 3' end that can be essentially single-stranded. For example, a tail region is sometimes not complementarity to any chromosomal sequence in a cell of interest and can sometimes not be complementary to the rest of a guide polynucleic acid. Further, the length of a tail region can vary. A tail region can be more than or more than about 4 nucleotides in length. For example, the length of a tail region can range from or from about 5 to from or from about 60 nucleotides in length.

[0269] In some cases, a guiding polynucleic acid can bind to a region of a genome adjacent to a protospacer adjacent motif (PAM). A guide nucleic acid can comprise a nucleotide sequence (e.g. , a spacer), for example, at or near a 5 ' end or 3' end, that can hybridize to a sequence in a target nucleic acid (e.g. , a protospacer). A spacer of a guide nucleic acid can interact with a target nucleic acid in a sequence-specific manner via hybridization (i.e., base pairing). A spacer sequence can hybridize to a target nucleic acid that is located 5 ' or 3' of a protospacer adjacent motif (PAM). The length of a spacer sequence can be at least or at least about 5, 10, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30 or more nucleotides. The length of a spacer sequence can be at most or at most about 5, 10, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30 or more nucleotides. In some cases, a guiding polynucleic acid can bind to a region from about 1 to about 20 base pairs adjacent to a PAM. In other cases, a guiding polynucleic acid can bind from about 1, 2,3,4,5,6,7,8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, or up to 85 base pairs away from a PAM. Generally, a guiding polynucleic acid binding region can be designed to complement or substantially complement the target nucleic acid sequence or sequences. In some cases, a binding region of a guiding polynucleic acid can incorporate wobble or degenerate bases to bind multiple sequences. In some cases, the binding region can be altered to increase stability. For example, non-natural nucleotides can be incorporated to increase RNA resistance to degradation. In some cases, the binding region can be altered or designed to avoid or reduce secondary structure formation in the binding region. In some cases, the binding region can be designed to optimize G-C content. In some cases, G-C content is preferably between about 40% and about 60% (e.g., 40%, 45%, 50%, 55%, and 60%). In some cases, the binding region can contain modified nucleotides such as, without limitation, methylated or phosphorylated nucleotides.

[0270] In some cases, a guiding polynucleic acid can also comprise a double strand duplex region that can form a secondary structure. For example, a secondary structure formed by a guiding polynucleic acid can comprise a stem (or hairpin) and a loop. A length of a loop and a stem can vary. For example, a loop can range from about 3 to about 10 nucleotides in length, and a stem can range from about 6 to about 20 base pairs in length. A stem can comprise one or more bulges of 1 to about 10 nucleotides. The overall length of a second region can range from about 16 to about 60 nucleotides in length. For example, a loop can be or can be about 4 nucleotides in length and a stem can be or can be about 12 base pairs. In some cases, a 5 ' stem-loop region can be between about 15 and about 50 nucleotides in length (e.g., about 15, 16, 17, 18, 19, 20, 21 , 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or about 50 nucleotides in length). In some cases, a 5' stem-loop region is between about 30-45 nucleotides in length (e.g., about 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, or 45 nucleotides in length). In some cases, a 5 ' stem- loop region is at least about 31 nucleotides in length (e.g., at least about 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, or 45 nucleotides in length). In some cases, a 5' stem-loop structure contains one or more loops or bulges, each loop or bulge of about 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 nucleotides. In some cases, a 5' stem-loop structure contains a stem of between about 10 and 30 complementary base pairs (e.g., 1 1 , 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 , 22, 23, 24, 25, 26, 27, 28, 29, or 30 complementary base pairs). In some cases, a 5 ' stem- loop structure can contain protein-binding, or small molecule-binding structures. In some cases, a 5 ' stem- loop function (e.g., interacting or assembling with a guiding polynucleic acid-guided nuclease) can be conditionally activated by drugs, growth factors, small molecule ligands, or a protein that binds to the protein-binding structure of the 5' stem- loop. In some cases, a 5 ' stem-loop structure can contain non- natural nucleotides. For example, non-natural nucleotides can be incorporated to enhance protein-RNA interaction, protein DNA interaction, or to increase the thermal stability or resistance to degradation of the guiding polynucleic acid. [0271] In some cases, a guiding polynucleic acid may have an intervening sequence between the 5' and 3' stem- loop structures that can be between about 10 and about 50 nucleotides in length (e.g., about 10, 1 1, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 , 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or about 50 nucleotides in length). In some cases, the intervening sequence is designed to be linear, unstructured, substantially linear, or substantially unstructured. In some embodiments, the intervening sequence can contain non-natural nucleotides. For example, non-natural nucleotides can be incorporated to enhance protein-RNA interaction or to increase the activity of the gRNA: nuclease complex. As another example, natural nucleotides can be incorporated to enhance the thermal stability or resistance to degradation of the gRNA. In some cases, a 3 ' stem-loop structure can contain about 3, 4, 5, 6, 7, or 8 nucleotide loop and an about 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 , 22, 23, 24, or 25 nucleotide or longer stem. In some cases, the 3 ' stem- loop can contain a protein-binding, small molecule-binding, hormone-binding, or metabolite -binding structure that can conditionally stabilize the secondary and/or tertiary structure of the gRNA. In some embodiments, the 3 ' stem- loop can contain non-natural nucleotides. For example, non-natural nucleotides can be incorporated to enhance protein- guiding nucleic acid interaction or to increase the activity of the guiding polynucleic acid: nuclease complex. As another example, natural nucleotides can be incorporated to enhance the thermal stability or resistance to degradation of the gRNA or gDNA.

[0272] In some cases, a guiding polynucleic acid can include a termination structure at its 3 ' end. In some cases, a guiding polynucleic acid can include an additional 3 ' hairpin structure, e.g., before the termination structure, that can interact with proteins, small-molecules, hormones, or the like, for stabilization or additional functionality, such as conditional stabilization or conditional regulation of a guiding polynucleic acid: nuclease assembly or activity. In some cases, a guiding polynucleic acid can be optimized to enhance stability, assembly, and/or expression. In some case, a guiding polynucleic acid can be optimized to enhance the activity of a guiding polynucleic acid: nuclease complex as compared to control or comparable guiding polynucleic acid: nuclease structures (gRNA, CRISPR RNP, unmodified gRNA, or unmodified guiding polynucleic acids). In some cases, a guiding polynucleic acid can be optimized for expression by substituting, deleting, or adding one or more nucleotides. In some cases, a nucleotide sequence that provides inefficient transcription from an encoding template nucleic acid can be deleted or substituted. For example, in some cases, a guiding polynucleic acid can be transcribed from a nucleic acid operably linked to an RNA polymerase III promoter. In some cases, a guiding polynucleic acid can be modified for increased stability. Stability can be enhanced by optimizing the stability of the guiding polynucleic acid: nuclease interaction, optimizing assembly of the guiding polynucleic acid: nuclease complex, removing or altering RNA or DNA destabilizing sequence elements, or adding RNA or DNA stabilizing sequence elements. In some embodiments, a guiding polynucleic acid can contain a 5' stem-loop structure proximal to, or adjacent to, the binding region that interacts with the guiding polynucleic acid-guided nuclease. Optimization of the 5 ' stem-loop structure can provide enhanced stability or assembly of the guiding polynucleic acid: nuclease complex. In some cases, the 5 ' stem-loop structure is optimized by increasing the length of the stem portion of the stem-loop structure. For example, a 5 ' stem-loop optimization can be combined with mutations for increased transcription to provide an optimized guiding polynucleic acid. For example, an A-U flip and an elongated stem loop can be combined to provide an optimized guiding polynucleic acid.

[0273] A double stranded-guiding polynucleic acid duplex region can comprise a protein-binding segment that can form a complex with an RNA or DNA-binding protein, such as an Argonaute protein, polypeptide, or functional portion thereof.

[0274] In some cases, a guiding polynucleic acid can comprise a modification. A modification can be a chemical modification. A modification can be selected from 5 'adenylate, 5 ' guanosine-triphosphate cap, 5'N7-Methylguanosine-triphosphate cap, 5 'triphosphate cap, 3 'phosphate, 3'thiophosphate, 5 'phosphate, 5'thiophosphate, Cis-Syn thymidine dimer, trimers, C12 spacer, C3 spacer, C6 spacer, dSpacer, PC spacer, rSpacer, Spacer 18, Spacer 9,3'-3' modifications, 5 '-5 ' modifications, abasic, acridine, azobenzene, biotin, biotin BB, biotin TEG, cholesteryl TEG, desthiobiotin TEG, DNP TEG, DNP-X, DOT A, dT-Biotin, dual biotin, PC biotin, psoralen C2, psoralen C6, TINA, 3 'DABCYL, black hole quencher 1, black hole quencer 2, DABCYL SE, dT-DABCYL, IRDye QC-1, QSY-21, QSY-35, QSY-7, QSY-9, carboxyl linker, thiol linkers, 2'deoxyribonucleoside analog purine, 2'deoxyribonucleoside analog pyrimidine, ribonucleoside analog, 2'-0-methyl ribonucleoside analog, sugar modified analogs, wobble/universal bases, fluorescent dye label, 2'fluoro RNA, 2'0-methyl RNA, methylphosphonate, phosphodiester DNA, phosphodiester RNA, phosphothioate DNA, phosphorothioate RNA, UNA, pseudouridine-5 '-triphosphate, 5-methylcytidine-5' -triphosphate, 2-O-methyl 3phosphorothioate or any combinations thereof. A modification can be a pseudouridine modification. In some cases, a modification cannot affect viability.

[0275] In some cases, a modification is a 2-O-methyl 3 phosphorothioate addition. A 2-O-methyl 3 phosphorothioate addition can be performed from 1 base to 150 bases. A 2-O-methyl 3 phosphorothioate addition can be performed from 1 base to 4 bases. A 2-O-methyl 3 phosphorothioate addition can be performed on 2 bases. A 2-O-methyl 3 phosphorothioate addition can be performed on 4 bases. A modification can also be a truncation. A truncation can be a 5 base truncation. Guiding polynucleic acids can be modified by methods known in the art. In some cases, the modifications can include, but are not limited to, the addition of one or more of the following sequence elements: a 5 ' cap (e.g., a 7- methylguanylate cap); a 3 ' polyadenylated tail; a riboswitch sequence; a stability control sequence; a hairpin; a subcellular localization sequence; a detection sequence or label; or a binding site for one or more proteins. Modifications can also include the introduction of non-natural nucleotides including, but not limited to, one or more of the following: fluorescent nucleotides and methylated nucleotides. In some embodiments, a guiding polynucleic acid can contain from 5' to 3': (i) a binding region of between about 10 and about 50 nucleotides; (ii) a 5' hairpin region containing fewer than four consecutive uracil nucleotides, or a length of at least 31 nucleotides (e.g., from about 31 to about 41 nucleotides); (iii) a 3' hairpin region; and (iv) a transcription termination sequence, wherein the small guide RNA is configured to form a complex with a guiding polynucleic acid-guided nuclease, the complex having increased stability or activity relative to an unmodified complex.

[0276] A guide RNA or guide DNA can target a nucleic acid sequence of or of about 20 nucleotides. A target nucleic acid can be less than or less than about 20 nucleotides. A target nucleic acid can be at least or at least about 5, 10, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30 or more nucleotides. A target nucleic acid can be at most or at most about 5, 10, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30 or more nucleotides. A target nucleic acid sequence can be or can be about 20 bases immediately 5' of the first nucleotide of the PAM. A guide RNA or guide DNA can target a nucleic acid sequence comprising a gene or portion thereof.

[0277] A guide RNA or guide DNA can target a genomic sequence comprising a gene. A gene that can be targeted can be involved in a disease. A disease can be a cancer, a cardiovascular condition, a reproductive condition, a neurological disease, an immunological disease, an organ condition, degeneration, an ocular condition, diabetes, a vascular condition, or a gastrointestinal condition.

[0278] A gene that can be disrupted can be a member of a family of genes. For example, a gene that can be disrupted can improve therapeutic potential of cancer immunotherapy. A gene that can be disrupted can ameliorate one or more symptoms or complications associated with human genetic diseases.

[0279] A gene that can be disrupted can be involved in attenuating TCR signaling, functional avidity, or immunity to cancer. In some cases, a gene to be disrupted is upregulated when a TCR is stimulated. A gene can be involved in inhibiting cellular expansion, functional avidity, or cytokine poly functionality. A gene can be involved in negatively regulating cellular cytokine production. For example, a gene can be involved in inhibiting production of effector cytokines, IFN-gamma and/or TNF for example. A gene can also be involved in inhibiting expression of supportive cytokines such as IL-2 after TCR stimulation.

[0280] A disease can be a neoplasia. Genes associated with neoplasia can be: PTEN; ATM; ATR; EGFR; ERBB2; ERBB3; ERBB4; Notchl; Notch2; Notch3; Notch4; AKT; AKT2; AKT3; HIF; HIFla; HIF3a; Met; HRG; Bcl2; PPAR alpha; PPAR gamma; WT1 (Wilms Tumor); FGF Receptor Family members (5 members: 1, 2, 3, 4, 5); CDKN2a; APC; RB (retinoblastoma); MEN1; VHL; BRCA1;

BRCA2; AR (Androgen Receptor); TSG101; IGF; IGF Receptor; Igfl (4 variants); Igf2 (3 variants); Igf 1 Receptor; Igf 2 Receptor; Bax; Bcl2; caspases family (9 members: 1, 2, 3, 4, 6, 7, 8, 9, 12); Kras; Ape. A disease can be age-related macular degeneration. Genes associated with macular degeneration can be: Abcr; Ccl2; Cc2; cp (ceruloplasmin); Timp3; cathepsinD; Vldlr; Ccr2. A disease can be schizophrenia. Genes associated with schizophrenia can be: Neuregulinl (Nrgl); Erb4 (receptor for Neuregulin);

Complexinl (Cplxl); Tphl Tryptophan hydroxylase; Tph2 Tryptophan hydroxylase 2; Neurexin 1; GSK3; GSK3a; GSK3b. A disorder can be associated with a gene such as: 5-HTT (Slc6a4); COMT; DRD (Drdla); SLC6A3; DAOA; DTNBPl; Dao (Daol). A disease can be a trinucleotide repeat disorder. A trinucleotide repeat disorder can be associated with genes such as: HTT (Huntington's Dx);

SBMA/SMAX1/AR (Kennedy's Dx); FXN/X25 (Friedrich's Ataxia); ATX3 (Machado- Joseph's Dx); ATXN1 and ATXN2 (spinocerebellar ataxias); DMPK (myotonic dystrophy); Atrophin-1 and Atnl (DRPLA Dx); CBP (Creb-BP - global instability); VLDLR (Alzheimer's); Atxn7; AtxnlO. A disease can be fragile X syndrome. Genes associated with fragile X syndrome can be: FMR2; FXR1; FXR2;

mGLUR5. A disease can be secretase related with associated genes selected from: APH-1 (alpha and beta); Presenilin (Psenl); nicastrin, (Ncstn); PEN-2; Nosl; Parpl; Natl; Nat2. A disease can be a prion related disorder with relevant genes being selected from: Prp. A disease can be ALS with relevant genes being: SOD1; ALS2; STEX; FUS; TARDBP; VEGF (VEGF-a; VEGF-b; VEGF-c). A disease can be drug addiction with relevant genes being; Prkce (alcohol); Drd2; Drd4; ABAT (alcohol); GRIA2; Grm5; Grinl; Htrlb; Grin2a; Drd3; Pdyn; Grial (alcohol). A disease can be autism with relevant genes being selected from: Mecp2; BZRAP1; MDGA2; Sema5A; Neurexin 1; Fragile X (FMR2 (AFF2); FXR1; FXR2; Mglur5). A disease can be Alzheimer's disease with relevant genes being selected from: El; CHIP; UCH; UBB; Tau; LRP; PICALM; Clusterin; PS1; SORL1; CR1; Vldlr; Ubal; Uba3; CHIP28 (Aqpl, Aquaporin 1); Uchll; Uchl3; APP. A diease can be inflammation with relevant genes being selected from: IL-10; IL-1 (IL-la; IL-lb); IL-13; IL-17 (IL-17a (CTLA8); IL- 17b; IL-17c; IL-17d; IL- 17f); 11-23; Cx3crl; ptpn22; TNFa; NOD2/CARD15 for IBD; IL-6; IL-12 (IL-12a; IL-12b); CTLA4; Cx3cll. A disease can be Parkinson's disease with relevant genes being selected from: x-Synuclein; DJ- 1; LRRK2; Parkin; ΡΓΝΚ1. A disease can be a blood and coagulation disorders: Anemia (CDAN1, CDAl, RPS19, DBA, PKLR, PKl, NT5C3, UMPHl, PSNl, RHAG, RH50A, NRAMP2, SPTB, ALAS2, ANH1, ASB, ABCB7, ABC7, ASAT); Bare lymphocyte syndrome (TAPBP, TPSN, TAP2, ABCB3, PSF2, RINGl l, MHC2TA, C2TA, RFX5, RFXAP, RFX5), Bleeding disorders (TBXA2R, P2RX1, P2X1); Factor H and factor H-like 1 (HF1, CFH, HUS); Factor V and factor VIII (MCFD2); Factor VII deficiency (F7); Factor X deficiency (F10); Factor XI deficiency (Fl 1); Factor XII deficiency (F12, HAF); Factor XIIIA deficiency (F13A1, F13A); Factor XIIIB deficiency (F13B); Fanconi anemia (FANCA, FACA, FA1, FA, FAA, FAAP95, FAAP90, FLJ34064, FANCB, FANCC, FACC, BRCA2, FANCD1, FANCD2, FANCD, FACD, FAD, FANCE, FACE, FANCF, XRCC9, FANCG, BRIP1, BACH1, FANCJ, PHF9, FANCL, FANCM, KIAA1596); Hemophagocytic lymphohistiocytosis disorders (PRF1, HPLH2, UNC13D, MUNC13-4, HPLH3, HLH3, FHL3); Hemophilia A (F8, F8C, HEMA); Hemophilia B (F9, HEMB), Hemorrhagic disorders (PI, ATT, F5); Leukocyde deficiencies and disorders (ITGB2, CD 18, LCAMB, LAD, EIF2B1, EIF2BA, EIF2B2, EIF2B3, EIF2B5, LVWM, CACH, CLE, EIF2B4); Sickle cell anemia (HBB); Thalassemia (HBA2, HBB, HBD, LCRB, HBAl).Cell dysregulation and oncology diseases and disorders: B-cell non-Hodgkin lymphoma (BCL7A, BCL7); Leukemia (TALI TCL5, SCL, TAL2, FLT3, NBS1, NBS, ZNFN1A1, IK1, LYF1, HOXD4, HOX4B, BCR, CML, PHL, ALL, ARNT, KRAS2, RASK2, GMPS, AF10, ARHGEF12, LARG, KIAA0382, CALM, CLTH, CEBPA, CEBP, CHIC2, BTL, FLT3, KIT, PBT, LPP, NPM1, NUP214, D9S46E, CAN, CAIN, RUNX1, CBFA2, AML1, WHSC1L1, NSD3, FLT3, AF1Q, NPM1, NUMA1, ZNF145, PLZF, PML, MYL, STAT5B, AF10, CALM, CLTH, ARL11, ARLTS1, P2RX7, P2X7, BCR, CML, PHL, ALL, GRAF, NFl, VRNF, WSS, NFNS, PTPNl l, PTP2C, SHP2, NSl, BCL2, CCNDl, PRADl, BCLl, TCRA, GATA1, GF1, ERYF1, NFE1, ABL1, NQOl, DIA4, NMOR1, NUP214, D9S46E, CAN, CAIN). A disease can be an inflammation and/or an immune related diseases and disorders: AIDS (KIR3DL1, NKAT3, NKB1, AMB11, KIR3DS1, IFNG, CXCL12, SDF1); Autoimmune lymphoproliferative syndrome (TNFRSF6, APT1, FAS, CD95, ALPS1A); Combined immunodeficiency, (IL2RG, SCIDX1, SCIDX, IMD4); HIV-1 (CCL5, SCYA5, D17S136E, TCP228), HIV susceptibility or infection (IL10, CSIF, CMKBR2, CCR2, CMKBR5, CCCKR5 (CCR5)); Immunodeficiencies (CD3E, CD3G, AICDA, AID, HIGM2, TNFRSF5, CD40, UNG, DGU, HIGM4, TNFSF5, CD40LG, HIGM1, IGM, FOXP3, IPEX, AIID, XPID, PIDX, TNFRSF14B, TACI); Inflammation (IL-10, IL-1 (IL-la, IL-lb), IL-13, IL-17 (IL-17a (CTLA8), IL-17b, IL-17c, IL-17d, IL-17f), 11-23, Cx3crl, ptpn22, TNFa, NOD2/CARD15 for IBD, IL-6, IL-12 (IL-12a, IL-12b), CTLA4, Cx3cll); Severe combined immunodeficiencies

(SCIDs)(JAK3, JAKL, DCLRE1C, ARTEMIS, SCIDA, RAG1, RAG2, ADA, PTPRC, CD45, LCA, IL7R, CD3D, T3D, IL2RG, SCIDX1, SCIDX, IMD4). A disease can be metabolic, liver, kidney and protein diseases and disorders: Amyloid neuropathy (TTR, PALB); Amyloidosis (APOA1, APP, AAA, CVAP, AD1, GSN, FGA, LYZ, TTR, PALB); Cirrhosis (KRT18, KRT8, CIRH1A, NAIC, TEX292, KIAA1988); Cystic fibrosis (CFTR, ABCC7, CF, MRP7); Glycogen storage diseases (SLC2A2, GLUT2, G6PC, G6PT, G6PT1, GAA, LAMP2, LAMPB, AGL, GDE, GBE1, GYS2, PYGL, PFKM); Hepatic adenoma, 142330 (TCF1, HNFIA, MODY3), Hepatic failure, early onset, and neurologic disorder (SCOD1, SCOl), Hepatic lipase deficiency (LIPC), Hepatoblastoma, cancer and carcinomas (CTNNB1, PDGFRL, PDGRL, PRLTS, ΑΧΓΝ1, ΑΧΓΝ, CTNNB1, TP53, P53, LFS1, IGF2R, MPRI, MET, CASP8, MCH5; Medullary cystic kidney disease (UMOD, HNFJ, FJHN, MCKD2, ADMCKD2);

Phenylketonuria (PAH, PKU1, QDPR, DHPR, PTS); Polycystic kidney and hepatic disease (FCYT, PKHD1, ARPKD, PKD1, PKD2, PKD4, PKDTS, PRKCSH, G19P1, PCLD, SEC63). A disease can be muscular/skeletal diseases and disorders: Becker muscular dystrophy (DMD, BMD, MYF6), Duchenne Muscular Dystrophy (DMD, BMD); Emery -Dreifuss muscular dystrophy (LMNA, LMN1, EMD2, FPLD, CMD1A, HGPS, LGMD1B, LMNA, LMN1, EMD2, FPLD, CMD1A); Facioscapulohumeral muscular dystrophy (FSHMD1A, FSHD1A); Muscular dystrophy (FKRP, MDC1C, LGMD2I, LAMA2, LAMM, LARGE, KIAA0609, MDC1D, FCMD, TTID, MYOT, CAPN3, CANP3, DYSF, LGMD2B, SGCG, LGMD2C, DMDA1, SCG3, SGCA, ADL, DAG2, LGMD2D, DMDA2, SGCB, LGMD2E, SGCD, SGD, LGMD2F, CMD1L, TCAP, LGMD2G, CMD1N, TRIM32, HT2A, LGMD2H, FKRP, MDC1C, LGMD2I, TTN, CMD1G, TMD, LGMD2J, POMT1, CAV3, LGMD1C, SEPN1, SELN, RSMD1, PLEC1, PLTN, EBS1); Osteopetrosis (LRP5, BMND1, LRP7, LR3, OPPG, VBCH2, CLCN7, CLC7, OPTA2, OSTM1, GL, TCIRG1, TIRC7, OC116, OPTB1); Muscular atrophy (VAPB, VAPC, ALS8, SMN1, SMA1, SMA2, SMA3, SMA4, BSCL2, SPG17, GARS, SMAD1, CMT2D, HEXB, IGHMBP2, SMUBP2, CATF1, SMARD1). A disease can be neurological and neuronal diseases and disorders: ALS (SOD1, ALS2, STEX, FUS, TARDBP, VEGF (VEGF-a, VEGF-b, VEGF-c); Alzheimer disease (APP, AAA, CVAP, AD1, APOE, AD2, PSEN2, AD4, STM2, APBB2, FE65L1, NOS3, PLAU, URK, ACE, DCP1, ACE1, MPO, PACIP1, PAXIP1L, PTIP, A2M, BLMH, BMH, PSEN1, AD3);

Autism (Mecp2, BZRAP 1, MDGA2, Sema5A, Neurexin 1, GLOl, MECP2, RTT, PPMX, MRX16, MRX79, NLGN3, NLGN4, KIAA1260, AUTSX2); Fragile X Syndrome (FMR2, FXR1, FXR2, mGLUR5); Huntington's disease and disease like disorders (HD, IT15, PRNP, PRIP, JPH3, JP3, HDL2, TBP, SCA17); Parkinson disease (NR4A2, NURR1, NOT, TINUR, SNCAIP, TBP, SCA17, SNCA, NACP, PARK1, PARK4, DJ1, PARK7, LRRK2, PARK8, PINK1, PARK6, UCHL1, PARK5, SNCA, NACP, PARK1, PARK4, PRKN, PARK2, PDJ, DBH, NDUFV2); Rett syndrome (MECP2, RTT, PPMX, MRX16, MRX79, CDKL5, STK9, MECP2, RTT, PPMX, MRX16, MRX79, x-Synuclein, DJ-1); Schizophrenia (Neuregulinl (Nrgl), Erb4 (receptor for Neuregulin), Complexinl (Cplxl), Tphl Tryptophan hydroxylase, Tph2, Tryptophan hydroxylase 2, Neurexin 1, GSK3, GSK3a, GSK3b, 5-HTT (Slc6a4), COMT, DRD (Drdla), SLC6A3, DAOA, DTNBP1, Dao (Daol)); Secretase Related Disorders (APH-1 (alpha and beta), Presenilin (Psenl), nicastrin, (Ncstn), PEN-2, Nosl, Parpl, Natl, Nat2);

Trinucleotide Repeat Disorders (HTT (Huntington's Dx), SBMA/SMAXl/AR (Kennedy's Dx), FXN/X25 (Friedrich's Ataxia), ATX3 (Machado- Joseph's Dx), ATXN1 and ATXN2 (spinocerebellar ataxias), DMPK (myotonic dystrophy), Atrophin-1 and Atnl (DRPLA Dx), CBP (Creb-BP - global instability), VLDLR (Alzheimer's), Atxn7, AtxnlO). A disease can be an Ocular disease and/or disorder: Age-related macular degeneration (Abcr, Ccl2, Cc2, cp (ceruloplasmin), Timp3, cathepsinD, Vldlr, Ccr2); Cataract (CRYAA, CRYA1, CRYBB2, CRYB2, PITX3, BFSP2, CP49, CP47, CRYAA, CRYA1, PAX6, AN2, MGDA, CRYBA1, CRYB1, CRYGC, CRYG3, CCL, LIM2, MP19, CRYGD, CRYG4, BFSP2, CP49, CP47, HSF4, CTM, HSF4, CTM, MIP, AQPO, CRYAB, CRYA2, CTPP2, CRYBB1, CRYGD, CRYG4, CRYBB2, CRYB2, CRYGC, CRYG3, CCL, CRYAA, CRYA1, GJA8, CX50, CAE1, GJA3, CX46, CZP3, CAE3, CCM1, CAM, KRIT1); Corneal clouding and dystrophy (APOA1, TGFBI, CSD2, CDGG1, CSD, BIGH3, CDG2, TACSTD2, TROP2, M1 S1, VSX1, RINX, PPCD, PPD, KTCN, COL8A2, FECD, PPCD2, PIP5K3, CFD); Cornea plana congenital (KERA, CNA2); Glaucoma (MYOC, TIGR, GLC1A, JOAG, GPOA, OPTN, GLC1E, FIP2, HYPL, NRP, CYP1B1, GLC3A, OPA1, NTG, NPG, CYP1B1, GLC3A); Leber congenital amaurosis (CRB1, RP12, CRX, CORD2, CRD, RPGRIP 1, LCA6, CORD9, RPE65, RP20, AIPL1, LCA4, GUCY2D, GUC2D, LCA1, CORD6, RDH12, LCA3); Macular dystrophy (ELOVL4, ADMD, STGD2, STGD3, RDS, RP7, PRPH2, PRPH, AVMD, AOFMD, VMD2).

[0281] In some cases a disease that can be treated with the disclosed editing system can be associated with a cellular condition. For example, genes associated with cellular performance may be disrupted with the disclosed editing system: PI3K/AKT Signaling: PRKCE; ITGAM; ITGA5; IRAKI; PRKAA2; EIF2AK2; PTEN; EIF4E; PRKCZ; GRK6; MAPK1 ; TSC1; PLK1 ; AKT2; IKBKB; PIK3CA; CDK8; CDKN1B; NFKB2; BCL2; PIK3CB; PPP2R1A; MAPK8; BCL2L1; MAPK3; TSC2; ITGA1; KRAS; EIF4EBP1; RELA; PRKCD; NOS3; PRKAA1; MAPK9; CDK2; PPP2CA; PIM1; ITGB7; YWHAZ; ILK; TP53; RAF1; IKBKG; RELB; DYRK1A; CDKN1A; ITGBl; MAP2K2; JAK1; AKT1; JAK2; PIK3R1; CHUK; PDPK1; PPP2R5C; CTNNB1; MAP2K1; NFKB1; PAK3; ITGB3; CCND1; GSK3A; FRAP1; SFN; ITGA2; TTK; CSNK1A1; BRAF; GSK3B; AKT3; FOXOl; SGK; HSP90AA1;

RPS6KB1. For example, ERK/MAPK Signaling: PRKCE; ITGAM; ITGA5; HSPB1; IRAKI;

PRKAA2; EIF2AK2; RACl; RAP1A; TLN1; EIF4E; ELKl; GRK6; MAPKl; RAC2; PLKl; AKT2; PIK3CA; CDK8; CREBl; PRKCI; PTK2; FOS; RPS6KA4; PIK3CB; PPP2R1A; PIK3C3; MAPK8; MAPK3; ITGA1; ETS1; KRAS; MYCN; EIF4EBP1; PPARG; PRKCD; PRKAA1; MAPK9; SRC; CDK2; PPP2CA; PIM1; PIK3C2A; ITGB7; YWHAZ; PPP1CC; KSR1; PXN; RAF1; FYN; DYRK1A; ITGBl; MAP2K2; PAK4; PIK3R1; STAT3; PPP2R5C; MAP2K1; PAK3; ITGB3; ESRl; ITGA2; MYC; TTK; CSNK1A1; CRKL; BRAF; ATF4; PRKCA; SRF; STAT1; SGK. Glucocorticoid Receptor Signaling: RACl; TAF4B; EP300; SMAD2; TRAF6; PCAF; ELKl; MAPKl; SMAD3; AKT2; IKBKB; NCOR2; UBE2I; PIK3CA; CREBl; FOS; HSPA5; NFKB2; BCL2; MAP3K14; STAT5B; PIK3CB; PIK3C3; MAPK8; BCL2L1; MAPK3; TSC22D3; MAPK10; NRIP1; KRAS; MAPK13; RELA;

STAT5A; MAPK9; NOS2A; PBX1; NR3C1; PIK3C2A; CDKN1C; TRAF2; SERPINE1; NCOA3; MAPK14; TNF; RAF1; IKBKG; MAP3K7; CREBBP; CDKN1A; MAP2K2; JAK1; IL8; NCOA2; AKT1; JAK2; PIK3R1; CHUK; STAT3; MAP2K1; NFKB1; TGFBR1; ESRl; SMAD4; CEBPB; JUN; AR; AKT3; CCL2; MMP1; STAT1; IL6; HSP90AA1. Axonal Guidance Signaling: PRKCE; ITGAM; ROCK1; ITGA5; CXCR4; ADAM 12; IGF1; RACl; RAP1A; E1F4E; PRKCZ; NRP1; NTRK2;

ARHGEF7; SMO; ROCK2; MAPKl; PGF; RAC2; PTPNl l; GNAS; AKT2; PIK3CA; ERBB2; PRKCI; PTK2; CFL1; GNAQ; PIK3CB; CXCL12; PIK3C3; WNT11; PRKD1; GNB2L1; ABL1; MAPK3; ITGA1; KRAS; RHOA; PRKCD; PIK3C2A; ITGB7; GLI2; PXN; VASP; RAF1; FYN; ITGBl;

MAP2K2; PAK4; ADAM 17; AKT1; PIK3R1; GLI1; WNT5A; ADAM 10; MAP2K1; PAK3; ITGB3; CDC42; VEGFA; ITGA2; EPHA8; CRKL; RND1; GSK3B; AKT3; PRKCA. Ephrin Receptor

Signaling: PRKCE; ITGAM; ROCK1; ITGA5; CXCR4; IRAKI; PRKAA2; EIF2AK2; RACl; RAP1A; GRK6; ROCK2; MAPKl; PGF; RAC2; PTPNl l; GNAS; PLKl; AKT2; DOKl; CDK8; CREBl; PTK2; CFL1; GNAQ; MAP3K14; CXCL12; MAPK8; GNB2L1; ABL1; MAPK3; ITGA1; KRAS; RHOA; PRKCD; PRKAA1; MAPK9; SRC; CDK2; PIM1; ITGB7; PXN; RAF1; FYN; DYRK1A; ITGBl; MAP2K2; PAK4, AKT1; JAK2; STAT3; ADAM10; MAP2K1; PAK3; ITGB3; CDC42; VEGFA;

ITGA2; EPHA8; TTK; CSNK1A1; CRKL; BRAF; PTPN13; ATF4; AKT3; SGK. Actin Cytoskeleton Signaling: ACTN4; PRKCE; ITGAM; ROCK1; ITGA5; IRAKI; PRKAA2; EIF2AK2; RACl; INS; ARHGEF7; GRK6; ROCK2; MAPKl; RAC2; PLKl; AKT2; PIK3CA; CDK8; PTK2; CFL1; PIK3CB; MYH9; DIAPH1; PIK3C3; MAPK8; F2R; MAPK3; SLC9A1; ITGA1; KRAS; RHOA; PRKCD;

PRKAA1; MAPK9; CDK2; PIM1; PIK3C2A; ITGB7; PPP1CC; PXN; VIL2; RAF1; GSN; DYRK1A; ITGBl; MAP2K2; PAK4; PIP5K1A; PIK3R1; MAP2K1; PAK3; ITGB3; CDC42; APC; ITGA2; TTK; CSNK1A1; CRKL; BRAF; VAV3; SGK. Huntington's Disease Signaling: PRKCE; IGF1; EP300; RCOR1; PRKCZ; HDAC4; TGM2; MAPKl; CAPNSl; AKT2; EGFR; NCOR2; SP1; CAPN2;

PIK3CA; HDAC5; CREB1; PRKC1; HSPA5; REST; GNAQ; PIK3CB; PIK3C3; MAPK8; IGF1R; PRKD1; GNB2L1; BCL2L1; CAPNl; MAPK3; CASP8; HDAC2; HDAC7A; PRKCD; HDAC11; MAPK9; HDAC9; PIK3C2A; HDAC3; TP53; CASP9; CREBBP; AKT1; PIK3R1; PDPK1; CASP1; APAF1; FRAP1; CASP2; JUN; BAX; ATF4; AKT3; PRKCA; CLTC; SGK; HDAC6; CASP3.

Apoptosis Signaling: PRKCE; ROCKl; BID; IRAKI; PRKAA2; EIF2AK2; BAK1; BIRC4; GRK6; MAPKl; CAPNSl; PLKl; AKT2; IKBKB; CAPN2; CDK8; FAS; NFKB2; BCL2; MAP3K14; MAPK8; BCL2L1; CAPNl; MAPK3; CASP8; KRAS; RELA; PRKCD; PRKAAl; MAPK9; CDK2; PIMl; TP53; TNF; RAF1; IKBKG; RELB; CASP9; DYRK1A; MAP2K2; CHUK; APAF1; MAP2K1; NFKB1;

PAK3; LMNA; CASP2; BIRC2; TTK; CSNK1A1; BRAF; BAX; PRKCA; SGK; CASP3; BIRC3; PARP1. B Cell Receptor Signaling: RACl; PTEN; LYN; ELK1; MAPKl; RAC2; PTPN11; AKT2; IKBKB; PIK3CA; CREB1; SYK; NFKB2; CAMK2A; MAP3K14; PIK3CB; PIK3C3; MAPK8;

BCL2L1; ABL1; MAPK3; ETS1; KRAS; MAPKl 3; RELA; PTPN6; MAPK9; EGR1; PIK3C2A; BTK; MAPK14; RAF1; IKBKG; RELB; MAP3K7; MAP2K2; AKT1; PIK3R1; CHUK; MAP2K1; NFKB1; CDC42; GSK3A; FRAP1; BCL6; BCL10; JUN; GSK3B; ATF4; AKT3; VAV3; RPS6KB1. Leukocyte Extravasation Signaling: ACTN4; CD44; PRKCE; ITGAM; ROCKl; CXCR4; CYBA; RACl; RAPIA; PRKCZ; ROCK2; RAC2; PTPN11; MMP14; PIK3CA; PRKCI; PTK2; PIK3CB; CXCL12; PIK3C3; MAPK8; PRKD1; ABL1; MAPK10; CYBB; MAPKl 3; RHOA; PRKCD; MAPK9; SRC; PIK3C2A; BTK; MAPK14; NOX1; PXN; VIL2; VASP; ITGB1; MAP2K2; CTNND1; PIK3R1; CTNNB1;

CLDN1; CDC42; FUR; ITK; CRKL; VAV3; CTTN; PRKCA; MMP1; MMP9. Integrin Signaling: ACTN4; ITGAM; ROCKl; ITGA5; RACl; PTEN; RAPIA; TLN1; ARHGEF7; MAPKl; RAC2;

CAPNSl; AKT2; CAPN2; PIK3CA; PTK2; PIK3CB; PIK3C3; MAPK8; CAV1; CAPNl; ABL1;

MAPK3; ITGA1; KRAS; RHOA; SRC; PIK3C2A; ITGB7; PPP1CC; ILK; PXN; VASP; RAF1; FYN; ITGB1; MAP2K2; PAK4; AKT1; PIK3R1; TNK2; MAP2K1; PAK3; ITGB3; CDC42; RND3; ITGA2; CRKL; BRAF; GSK3B; AKT3. Acute Phase Response Signaling: IRAKI; SOD2; MYD88; TRAF6; ELK1; MAPKl; PTPN11; AKT2; IKBKB; PIK3CA; FOS; NFKB2; MAP3K14; PIK3CB; MAPK8; RIPK1; MAPK3; IL6ST; KRAS; MAPKl 3; IL6R; RELA; SOCS1; MAPK9; FTL; NR3C1; TRAF2; SERPINE1; MAPK14; TNF; RAF1; PDK1; IKBKG; RELB; MAP3K7; MAP2K2; AKT1; JAK2;

PIK3R1; CHUK; STAT3; MAP2K1; NFKB1; FRAP1; CEBPB; JUN; AKT3; IL1R1; IL6. PTEN Signaling: ITGAM; ITGA5; RACl; PTEN; PRKCZ; BCL2L11; MAPKl; RAC2; AKT2; EGFR;

IKBKB; CBL; PIK3CA; CDKN1B; PTK2; NFKB2; BCL2; PIK3CB; BCL2L1; MAPK3; ITGA1;

KRAS; ITGB7; ILK; PDGFRB; INSR; RAF1; IKBKG; CASP9; CDKN1A; ITGB1; MAP2K2; AKT1; PIK3R1; CHUK; PDGFRA; PDPK1; MAP2K1; NFKB1; ITGB3; CDC42; CCND1; GSK3A; ITGA2; GSK3B; AKT3; FOXOl; CASP3; RPS6KB1. p53 Signaling: PTEN; EP300; BBC3; PCAF; FASN; BRCAl; GADD45A; BIRC5; AKT2; PIK3CA; CHEKl; TP53INP1; BCL2; PIK3CB; PIK3C3; MAPK8; THBS1; ATR; BCL2L1; E2F1; PMAIP1; CHEK2; TNFRSF10B; TP73; RBI; HDAC9; CDK2;

PIK3C2A; MAPK14; TP53; LRDD; CDKN1A; HIPK2; AKT1; PIK3R1; RRM2B; APAF1; CTNNB1; SIRT1; CCNDl; PRKDC; ATM; SFN; CDKN2A; JUN; SNAI2; GSK3B; BAX; AKT3. Aryl

Hydrocarbon Receptor Signaling: HSPB1; EP300; FASN; TGM2; RXRA; MAPK1; NQOl; NCOR2; SP1; ARNT; CDKN1B; FOS; CHEK1; SMARCA4; NFKB2; MAPK8; ALDH1A1; ATR; E2F1;

MAPK3; NRIP1; CHEK2; RELA; TP73; GSTP1; RBI; SRC; CDK2; AHR; NFE2L2; NCOA3; TP53; TNF; CDKN1A; NCOA2; APAF1; NFKB1; CCNDl; ATM; ESR1; CDKN2A; MYC; JUN; ESR2; BAX; IL6; CYP1B1; HSP90AA1. Xenobiotic Metabolism Signaling: PRKCE; EP300; PRKCZ; RXRA; MAPK1; NQOl; NCOR2; PIK3CA; ARNT; PRKCI; NFKB2; CAMK2A; PIK3CB; PPP2R1A; PIK3C3; MAPK8; PRKD1; ALDH1A1; MAPK3; NRIP1; KRAS; MAPK13; PRKCD; GSTP1; MAPK9; NOS2A; ABCB1; AHR; PPP2CA; FTL; NFE2L2; PIK3C2A; PPARGCIA; MAPK14; TNF; RAFl; CREBBP; MAP2K2; PIK3R1; PPP2R5C; MAP2K1; NFKB1; KEAP1; PRKCA; EIF2AK3; IL6; CYP1B1;

HSP90AA1. SAPK/JNK Signaling: PRKCE; IRAKI; PRKAA2; EIF2AK2; RAC1; ELK1; GRK6; MAPK1; GADD45A; RAC2; PLK1; AKT2; PIK3CA; FADD; CDK8; PIK3CB; PIK3C3; MAPK8; RIPK1; GNB2L1; IRS1; MAPK3; MAPK10; DAXX; KRAS; PRKCD; PRKAA1; MAPK9; CDK2; PIM1; PIK3C2A; TRAF2; TP53; LCK; MAP3K7; DYRK1A; MAP2K2; PIK3R1; MAP2K1; PAK3; CDC42; JUN; TTK; CSNKlAl; CRKL; BRAF; SGK. PPAr/RXR Signaling: PRKAA2; EP300; INS; SMAD2; TRAF6; PPARA; FASN; RXRA; MAPK1; SMAD3; GNAS; IKBKB; NCOR2; ABCA1; GNAQ; NFKB2; MAP3K14; STAT5B; MAPK8; IRS1; MAPK3; KRAS; RELA; PRKAA1;

PPARGCIA; NCOA3; MAPK14; INSR; RAFl; IKBKG; RELB; MAP3K7; CREBBP; MAP2K2; JAK2; CHUK; MAP2K1; NFKB1; TGFBRl; SMAD4; JUN; IL1R1; PRKCA; IL6; HSP90AA1; ADIPOQ. NF- KB Signaling: IRAKI; EIF2AK2; EP300; INS; MYD88; PRKCZ: TRAF6; TBK1; AKT2; EGFR; IKBKB; PIK3CA; BTRC; NFKB2; MAP3K14; PIK3CB; PIK3C3; MAPK8; RIPK1; HDAC2; KRAS; RELA; PIK3C2A; TRAF2; TLR4: PDGFRB; TNF; INSR; LCK; IKBKG; RELB; MAP3K7; CREBBP; AKT1; PIK3R1; CHUK; PDGFRA; NFKB1; TLR2; BCL10; GSK3B; AKT3; TNFAIP3; IL1R1.

Neuregulin Signaling: ERBB4; PRKCE; ITGAM; ITGA5: PTEN; PRKCZ; ELK1; MAPK1; PTPN11; AKT2; EGFR; ERBB2; PRKCI; CDKN1B; STAT5B; PRKD1; MAPK3; ITGA1; KRAS; PRKCD; STAT5A; SRC; ITGB7; RAFl; ITGB1; MAP2K2; ADAM 17; AKT1; PIK3R1; PDPK1; MAP2K1; ITGB3; EREG; FRAP1; PSEN1; ITGA2; MYC; NRG1; CRKL; AKT3; PRKCA; HSP90AA1;

RPS6KB1. Wnt & Beta catenin Signaling: CD44; EP300; LRP6; DVL3; CSNKIE; GJAl; SMO; AKT2; PINl; CDH1; BTRC; GNAQ; MARK2; PPP2R1A; WNT11; SRC; DKK1; PPP2CA; SOX6; SFRP2: ILK; LEF1; SOX9; TP53; MAP3K7; CREBBP; TCF7L2; AKT1; PPP2R5C; WNT5A; LRP5; CTNNB1; TGFBRl; CCNDl; GSK3A; DVLl; APC; CDKN2A; MYC; CSNKlAl; GSK3B; AKT3; SOX2. Insulin Receptor Signaling: PTEN; INS; EIF4E; PTPN1; PRKCZ; MAPK1; TSC1; PTPN11; AKT2; CBL; PIK3CA; PRKCI; PIK3CB; PIK3C3; MAPK8; IRS1; MAPK3; TSC2; KRAS; EIF4EBP1; SLC2A4; PIK3C2A; PPP1CC; INSR; RAFl; FYN; MAP2K2; JAK1; AKT1; JAK2; PIK3R1; PDPK1; MAP2K1; GSK3A; FRAP1; CRKL; GSK3B; AKT3; FOXOl; SGK; RPS6KB1. IL-6 Signaling: HSPB1; TRAF6; MAPKAPK2; ELKl; MAPKl; PTPNl l; IKBKB; FOS; NFKB2: MAP3K14; MAPK8; MAPK3;

MAPKIO; IL6ST; KRAS; MAPKl 3; IL6R; RELA; SOCSl; MAPK9; ABCBl; TRAF2; MAPK14; TNF; RAF1; IKBKG; RELB; MAP3K7; MAP2K2; IL8; JAK2; CHUK; STAT3; MAP2K1; NFKBl; CEBPB; JUN; IL1R1; SRF; IL6. Hepatic Cholestasis: PRKCE; IRAKI; INS; MYD88; PRKCZ; TRAF6;

PPARA; RXRA; IKBKB; PRKCI; NFKB2; MAP3K14; MAPK8; PRKD1; MAPKIO; RELA; PRKCD; MAPK9; ABCBl; TRAF2; TLR4; TNF; INSR; IKBKG; RELB; MAP3K7; IL8; CHUK; NR1H2; TJP2; NFKBl; ESRl; SREBFl; FGFR4; JUN; IL1R1; PRKCA; IL6. IGF-1 Signaling: IGFl; PRKCZ; ELKl; MAPKl; PTPNl l; NEDD4; AKT2; PIK3CA; PRKCI; PTK2; FOS; PIK3CB; PIK3C3; MAPK8; IGFIR; IRS1; MAPK3; IGFBP7; KRAS; PIK3C2A; YWHAZ; PXN; RAF1; CASP9; MAP2K2; AKT1;

PIK3R1; PDPK1; MAP2K1; IGFBP2; SFN; JUN; CYR61; AKT3; FOXOl; SRF; CTGF; RPS6KB1. NRF2-mediated Oxidative Stress Response: PRKCE; EP300; SOD2; PRKCZ; MAPKl; SQSTM1; NQOl; PIK3CA; PRKCI; FOS; PIK3CB; PIK3C3; MAPK8; PRKD1; MAPK3; KRAS; PRKCD;

GSTP1; MAPK9; FTL; NFE2L2; PIK3C2A; MAPK14; RAF1; MAP3K7; CREBBP; MAP2K2; AKT1; PIK3R1; MAP2K1; PPIB; JUN; KEAP1; GSK3B; ATF4; PRKCA; EIF2AK3; HSP90AA1. Hepatic Fibrosis/Hepatic Stellate Cell Activation: EDN1; IGFl; KDR; FLT1; SMAD2; FGFR1; MET; PGF; SMAD3; EGFR; FAS; CSF1; NFKB2; BCL2; MYH9; IGFIR; IL6R; RELA; TLR4; PDGFRB; TNF; RELB; IL8; PDGFRA; NFKBl; TGFBR1; SMAD4; VEGFA; BAX; IL1R1; CCL2; HGF; MMP1; STAT1; IL6; CTGF; MMP9. PPAR Signaling: EP300; INS; TRAF6; PPARA; RXRA; MAPKl;

IKBKB; NCOR2; FOS; NFKB2; MAP3K14; STAT5B; MAPK3; NRIP1; KRAS; PPARG; RELA; STAT5A; TRAF2; PPARGCIA; PDGFRB; TNF; INSR; RAF1; IKBKG; RELB; MAP3K7; CREBBP; MAP2K2; CHUK; PDGFRA; MAP2K1; NFKBl; JUN; IL1R1; HSP90AA1. Fc Epsilon RI Signaling: PRKCE; RAC1; PRKCZ; LYN; MAPKl; RAC2; PTPNl l; AKT2; PIK3CA; SYK; PRKCI; PIK3CB; PIK3C3; MAPK8; PRKD1; MAPK3; MAPKIO; KRAS; MAPKl 3; PRKCD; MAPK9; PIK3C2A; BTK; MAPK14; TNF; RAF1; FYN; MAP2K2; AKT1; PIK3R1; PDPK1; MAP2K1; AKT3; VAV3; PRKCA. G-Protein Coupled Receptor Signaling: PRKCE; RAP1A; RGS16; MAPKl; GNAS; AKT2; IKBKB; PIK3CA; CREB1; GNAQ; NFKB2; CAMK2A; PIK3CB; PIK3C3; MAPK3; KRAS; RELA; SRC; PIK3C2A; RAF1; IKBKG; RELB; FYN; MAP2K2; AKT1; PIK3R1; CHUK; PDPK1; STAT3;

MAP2K1; NFKBl; BRAF; ATF4; AKT3; PRKCA, Inositol Phosphate Metabolism: PRKCE; IRAKI; PRKAA2; EIF2AK2; PTEN; GRK6; MAPKl; PLK1; AKT2; PIK3CA; CDK8; PIK3CB; PIK3C3; MAPK8; MAPK3; PRKCD; PRKAA1; MAPK9; CDK2; PIM1; PIK3C2A; DYRK1A; MAP2K2;

PIP5K1A; PIK3R1; MAP2K1; PAK3; ATM; TTK; CSNK1A1; BRAF; SGK. PDGF Signaling:

EIF2AK2; ELKl; ABL2; MAPKl; PIK3CA; FOS; PIK3CB; PIK3C3; MAPK8; CAVl; ABLl; MAPK3; KRAS; SRC; PIK3C2A; PDGFRB; RAF1; MAP2K2; JAK1; JAK2; PIK3R1; PDGFRA; STAT3;

SPHK1; MAP2K1; MYC; JUN; CRKL; PRKCA; SRF; STAT1; SPHK2. VEGF Signaling: ACTN4; ROCK1; KDR; FLT1; ROCK2; MAPKl; PGF; AKT2; PIK3CA; ARNT; PTK2; BCL2; PIK3CB; PIK3C3; BCL2L1; MAPK3; KRAS; HIF1A; NOS3; PIK3C2A; PXN; RAFl; MAP2K2; ELAVL1; AKT1; PIK3R1; MAP2K1; SFN; VEGFA; AKT3; FOXOl; PRKCA. Natural Killer Cell Signaling: PRKCE; RAC1; PRKCZ; MAPKl; RAC2; PTPN11; KIR2DL3; AKT2; PIK3CA; SYK; PRKCI;

PIK3CB; PIK3C3; PRKD1; MAPK3; KRAS; PRKCD; PTPN6; PIK3C2A; LCK; RAFl; FYN;

MAP2K2; PAK4; AKT1; PIK3R1; MAP2K1; PAK3; AKT3; VAV3; PRKCA. Cell Cycle: Gl/S Checkpoint Regulation: HDAC4; SMAD3; SUV39H1; HDAC5; CDKN1B; BTRC; ATR; ABL1; E2F1; HDAC2; HDAC7A; RBI; HDACl l; HDAC9; CDK2; E2F2; HDAC3; TP53; CDKNIA; CCNDl; E2F4; ATM; RBL2; SMAD4; CDKN2A; MYC; NRG1; GSK3B; RBL1; HDAC6. T Cell Receptor Signaling: RAC1; ELK1; MAPKl; IKBKB; CBL; PIK3CA; FOS; NFKB2; PIK3CB; PIK3C3; MAPK8; MAPK3; KRAS; RELA, PIK3C2A; BTK; LCK; RAFl; IKBKG; RELB, FYN; MAP2K2; PIK3R1; CHUK;

MAP2K1; NFKB1; ITK; BCL10; JUN; VAV3. Death Receptor Signaling: CRADD; HSPB1; BID; BIRC4; TBK1; IKBKB; FADD; FAS; NFKB2; BCL2; MAP3K14; MAPK8; RIPK1; CASP8; DAXX; TNFRSF10B; RELA; TRAF2; TNF; IKBKG; RELB; CASP9; CHUK; APAF1; NFKB1; CASP2;

BIRC2; CASP3; BIRC3. FGF Signaling: RAC1; FGFR1; MET; MAPKAPK2; MAPKl; PTPN11; AKT2; PIK3CA; CREB1; PIK3CB; PIK3C3; MAPK8; MAPK3; MAPKl 3; PTPN6; PIK3C2A;

MAPK14; RAFl; AKT1; PIK3R1; STAT3; MAP2K1; FGFR4; CRKL; ATF4; AKT3; PRKCA; HGF. GM-CSF Signaling: LYN; ELK1; MAPKl; PTPN11; AKT2; PIK3CA; CAMK2A; STAT5B; PIK3CB; PIK3C3; GNB2L1; BCL2L1; MAPK3; ETS1; KRAS; RUNX1; PIM1; PIK3C2A; RAFl; MAP2K2; AKT1; JAK2; PIK3R1; STAT3; MAP2K1; CCNDl; AKT3; STAT1. Amyotrophic Lateral Sclerosis Signaling: BID; IGF1; RAC1; BIRC4; PGF; CAPNS1; CAPN2; PIK3CA; BCL2; PIK3CB; PIK3C3; BCL2L1; CAPN1; PIK3C2A; TP53; CASP9; PIK3R1; RAB5A; CASP1; APAF1; VEGFA; BIRC2; BAX; AKT3; CASP3; BIRC3. JAK/Stat Signaling: PTPN1; MAPKl; PTPN11; AKT2; PIK3CA;

STAT5B; PIK3CB; PIK3C3; MAPK3; KRAS; SOCSl; STAT5A; PTPN6; PIK3C2A; RAFl; CDKNIA; MAP2K2; JAK1; AKT1; JAK2; PIK3R1; STAT3; MAP2K1; FRAP1; AKT3; STAT1. Nicotinate and Nicotinamide Metabolism: PRKCE; IRAKI; PRKAA2; EIF2AK2; GRK6; MAPKl; PLK1; AKT2; CDK8; MAPK8; MAPK3; PRKCD; PRKAA1; PBEF1; MAPK9; CDK2; PIM1; DYRK1A; MAP2K2; MAP2K1; PAK3; NT5E; TTK; CSNK1A1; BRAF; SGK. Chemokine Signaling: CXCR4; ROCK2; MAPKl; PTK2; FOS; CFL1; GNAQ; CAMK2A; CXCL12; MAPK8; MAPK3; KRAS; MAPKl 3; RHOA; CCR3; SRC; PPP1CC; MAPK14; NOX1; RAFl; MAP2K2; MAP2K1; JUN; CCL2; PRKCA. IL-2 Signaling: ELK1; MAPKl; PTPN11; AKT2; PIK3CA; SYK; FOS; STAT5B; PIK3CB; PIK3C3; MAPK8; MAPK3; KRAS; SOCSl; STAT5A; PIK3C2A; LCK; RAFl; MAP2K2; JAK1; AKT1;

PIK3R1; MAP2K1; JUN; AKT3. Synaptic Long Term Depression: PRKCE; IGF1; PRKCZ; PRDX6; LYN; MAPKl; GNAS; PRKCI; GNAQ; PPP2R1A; IGF1R; PRKD1; MAPK3; KRAS; GRN; PRKCD; NOS3; NOS2A; PPP2CA; YWHAZ; RAFl; MAP2K2; PPP2R5C; MAP2K1; PRKCA. Estrogen Receptor Signaling: TAF4B; EP300; CARMl; PCAF; MAPKl; NCOR2; SMARCA4; MAPK3; NRIPl; KRAS; SRC; NR3C1; HDAC3; PPARGCIA; RBM9; NCOA3; RAFl; CREBBP; MAP2K2; NCOA2; MAP2K1; PRKDC; ESRl; ESR2. Protein Ubiquitination Pathway: TRAF6; SMURFl; BIRC4; BRCAl; UCHL1; NEDD4; CBL; UBE2I; BTRC; HSPA5; USP7; USP10; FBXW7; USP9X; STUB1; USP22; B2M; BIRC2; PARK2; USP8; USP1; VHL; HSP90AA1; BIRC3. IL-10 Signaling: TRAF6; CCR1; ELK1; IKBKB; SP1; FOS; NFKB2; MAP3K14; MAPK8; MAPK13; RELA; MAPK14; TNF; IKBKG; RELB; MAP3K7; JAK1; CHUK; STAT3; NFKB1; JUN; IL1R1; IL6. VDR/RXR Activation: PRKCE; EP300; PRKCZ; RXRA; GADD45A; HES1; NCOR2; SP1; PRKCI; CDKN1B; PRKD1; PRKCD; RUNX2; KLF4; YYl; NCOA3; CDKNIA; NCOA2; SPPl; LRP5; CEBPB; FOXOl; PRKCA. TGF-beta Signaling: EP300; SMAD2; SMURFl; MAPKl; SMAD3; SMAD1; FOS; MAPK8; MAPK3; KRAS; MAPK9; RUNX2; SERPINE1; RAF1; MAP3K7; CREBBP; MAP2K2; MAP2K1; TGFBR1; SMAD4; JUN; SMAD5. Toll-like Receptor Signaling: IRAKI; EIF2AK2; MYD88; TRAF6; PPARA; ELK1; IKBKB; FOS; NFKB2; MAP3K14; MAPK8; MAPKl 3; RELA; TLR4; MAPK14; IKBKG; RELB; MAP3K7; CHUK; NFKB1; TLR2; JUN. p38 MAPK Signaling: HSPB1; IRAKI; TRAF6;

MAPKAPK2; ELK1; FADD; FAS; CREBl; DDIT3; RPS6KA4; DAXX; MAPKl 3; TRAF2; MAPK14; TNF; MAP3K7; TGFBR1; MYC; ATF4; IL1R1; SRF; STAT1. Neurotrophin/TRK Signaling: NTRK2; MAPKl; PTPN11; PIK3CA; CREBl; FOS; PIK3CB; PIK3C3; MAPK8; MAPK3; KRAS; PIK3C2A; RAF1; MAP2K2; AKT1; PIK3R1; PDPK1; MAP2K1; CDC42; JUN; ATF4. FXR/RXR Activation: INS; PPARA; FASN; RXRA; AKT2; SDC1; MAPK8; APOB; MAPKl 0; PPARG; MTTP; MAPK9; PPARGCIA; TNF; CREBBP; AKT1; SREBF1; FGFR4; AKT3; FOXOl. Synaptic Long Term

Potentiation: PRKCE; RAPIA; EP300; PRKCZ; MAPKl; CREBl; PRKCI; GNAQ; CAMK2A;

PRKD1; MAPK3; KRAS; PRKCD; PPP1CC; RAF1; CREBBP; MAP2K2; MAP2K1 ; ATF4; PRKCA. Calcium Signaling: RAPIA; EP300; HDAC4; MAPKl; HDAC5; CREBl; CAMK2A; MYH9; MAPK3; HDAC2; HDAC7A; HDAC11; HDAC9; HDAC3; CREBBP; CALR; CAMKK2; ATF4; HDAC6. EGF Signaling: ELK1; MAPKl; EGFR; PIK3CA; FOS; PIK3CB; PIK3C3; MAPK8; MAPK3; PIK3C2A; RAF1; JAK1; PIK3R1; STAT3; MAP2K1; JUN; PRKCA; SRF; STAT1. Hypoxia Signaling in the Cardiovascular System: EDN1; PTEN; EP300; NQOl; UBE2I; CREBl; ARNT; HIF1A; SLC2A4; NOS3; TP53; LDHA; AKT1; ATM; VEGFA; JUN; ATF4; VHL; HSP90AA1. LPS/IL-1 Mediated Inhibition of RXR Function LXR/RXR Activation: IRAKI; MYD88; TRAF6; PPARA; RXRA;

ABCA1, MAPK8; ALDH1A1; GSTP1; MAPK9; ABCB1; TRAF2; TLR4; TNF; MAP3K7; NR1H2; SREBF1; JUN; IL1R1 FASN; RXRA; NCOR2; ABCA1; NFKB2; IRF3; RELA; NOS2A; TLR4; TNF; RELB; LDLR; NR1H2; NFKB1; SREBF1; IL1R1; CCL2; IL6; MMP9. Amyloid Processing: PRKCE; CSNK1E; MAPKl; CAPNS1; AKT2; CAPN2; CAPN1; MAPK3; MAPKl 3; MAPT; MAPK14; AKT1; PSEN1; CSNK1A1; GSK3B; AKT3; APP. IL-4 Signaling: AKT2; PIK3CA; PIK3CB; PIK3C3; IRS1; KRAS; SOCS1; PTPN6; NR3C1; PIK3C2A; JAK1; AKT1; JAK2; PIK3R1; FRAP1; AKT3; RPS6KB1. Cell Cycle: G2/M DNA Damage Checkpoint Regulation: EP300; PCAF; BRCAl; GADD45A; PLK1; BTRC; CHEK1; ATR; CHEK2; YWHAZ; TP53; CDKNIA; PRKDC; ATM; SFN; CDKN2A. Nitric Oxide Signaling in the Cardiovascular System: KDR; FLT1; PGF; AKT2; PIK3CA; PIK3CB; PIK3C3; CAV1; PRKCD; NOS3; PIK3C2A; AKT1; PIK3R1; VEGFA; AKT3; HSP90AA1. Purine Metabolism: NME2; SMARCA4; MYH9; RRM2; ADAR; EIF2AK4; PKM2; ENTPD1; RAD51; RRM2B; TJP2; RAD51C; NT5E; POLD1; NME1. cAMP-mediated Signaling: RAP1A; MAPK1; GNAS; CREB1; CAMK2A; MAPK3; SRC; RAF1; MAP2K2; STAT3; MAP2K1; BRAF; ATF4. Mitochondrial Dysfunction Notch Signaling: SOD2; MAPK8; CASP8; MAPKIO; MAPK9; CASP9; PARK7; PSENl; PARK2; APP; CASP3 HES1; JAG1; NUMB; NOTCH4; ADAM 17; NOTCH2; PSENl; NOTCH3; NOTCH1; DLL4. Endoplasmic Reticulum Stress Pathway: HSPA5; MAPK8; XBP1; TRAF2; ATF6; CASP9; ATF4; EIF2AK3; CASP3. Pyrimidine Metabolism: NME2; AICDA; RRM2; EIF2AK4; ENTPD1; RRM2B; NT5E; POLD1; NME1. Parkinson's Signaling: UCHL1; MAPK8; MAPK13; MAPK14; CASP9; PARK7; PARK2; CASP3. Cardiac & Beta Adrenergic Signaling: GNAS; GNAQ; PPP2R1A; GNB2L1; PPP2CA; PPP1CC; PPP2R5C. Glycolysis/ Gluconeogenesis: HK2; GCK; GPI; ALDHlAl; PKM2; LDHA; HK1. Interferon Signaling: IRF1; SOCS1; JAK1; JAK2; IFITM1; STAT1; IFIT3. Sonic Hedgehog Signaling: ARRB2; SMO; GLI2; DYRK1A; GLI1; GSK3B; DYRKIB.

Glycerophospholipid Metabolism: PLD1; GRN; GPAM; YWHAZ; SPHK1; SPHK2. Phospholipid Degradation: PRDX6; PLD1; GRN; YWHAZ; SPHK1; SPHK2. Tryptophan Metabolism: SIAH2; PRMT5; NEDD4; ALDHlAl; CYP1B1; SIAH1. Lysine Degradation: SUV39H1; EHMT2; NSD1; SETD7; PPP2R5C. Nucleotide Excision Repair Pathway: ERCC5; ERCC4; XPA; XPC; ERCCl. Starch and Sucrose Metabolism: UCHL1; HK2; GCK; GPI; HK1. Aminosugars Metabolism: NQOl; HK2; GCK; HK1. Arachidonic Acid Metabolism: PRDX6; GRN; YWHAZ; CYP1B1. Circadian Rhythm Signaling: CSNK1E; CREB1; ATF4; NR1D1. Coagulation System: BDKRB1; F2R; SERPINE1; F3. Dopamine Receptor Signaling: PPP2R1A; PPP2CA; PPP1CC; PPP2R5C. Glutathione Metabolism: IDH2; GSTP1; ANPEP; IDH1. Glycerolipid Metabolism: ALDHlAl; GPAM; SPHK1; SPHK2. Linoleic Acid Metabolism: PRDX6; GRN; YWHAZ; CYP1B1. Methionine Metabolism: DNMT1; DNMT3B; AHCY; DNMT3A. Pyruvate Metabolism: GLOl; ALDHlAl; PKM2; LDHA. Arginine and Proline Metabolism: ALDHlAl; NOS3; NOS2A. Eicosanoid Signaling: PRDX6; GRN; YWHAZ. Fructose and Mannose Metabolism: HK2; GCK; HK1. Galactose Metabolism: HK2; GCK; HK1. Stilbene, Coumarine and Lignin Biosynthesis: PRDX6; PRDXl; TYR. Antigen Presentation Pathway: CALR; B2M. Biosynthesis of Steroids: NQOl; DHCR7. Butanoate Metabolism: ALDHlAl; NLGN1. Citrate Cycle: IDH2; IDH1. Fatty Acid Metabolism: ALDHlAl; CYP1B1. Glycerophospholipid Metabolism: PRDX6; CHKA. Histidine Metabolism: PRMT5; ALDHlAl. Inositol Metabolism: EROIL; APEX1. Metabolism of Xenobiotics by Cytochrome p450: GSTP1; CYP1B1. Methane Metabolism: PRDX6; PRDXl. Phenylalanine Metabolism: PRDX6; PRDXl. Propanoate Metabolism: ALDHlAl; LDHA. Selenoamino Acid Metabolism: PRMT5; AHCY. Sphingolipid Metabolism: SPHK1; SPHK2. Aminophosphonate Metabolism: PRMT5. Androgen and Estrogen Metabolism: PRMT5. Ascorbate and Aldarate Metabolism: ALDHlAl. Bile Acid Biosynthesis: ALDHlAl.

Cysteine Metabolism: LDHA. Fatty Acid Biosynthesis: FASN. Glutamate Receptor Signaling: GNB2L1. NRF2 -mediated Oxidative Stress Response: PRDX1. Pentose Phosphate Pathway: GPL Pentose and Glucuronate Interconversions: UCHL1. Retinol Metabolism: ALDH1A1. Riboflavin Metabolism: TYR. Tyrosine Metabolism: PRMT5, TYR. Ubiquinone Biosynthesis: PRMT5. Valine, Leucine and Isoleucine Degradation: ALDH1A1. Glycine, Serine and Threonine Metabolism: CHKA. Lysine Degradation: ALDH 1 A 1. Pain/Taste: TRPM5; TRPA1. Pain: TRPM7; TRPC5; TRPC6;

TRPC1; Cnrl ; cnr2; Grk2; Trpal; Pome; Cgrp; Crf; Pka; Era; Nr2b; TRPM5; Prkaca; Prkacb; Prkarla; Prkar2a. Mitochondrial Function: AIF; CytC; SMAC (Diablo); Aifm-1; Aifm-2. Developmental Neurology: BMP-4; Chordin (Chrd); Noggin (Nog); WNT (Wnt2; Wnt2b; Wnt3a; Wnt4; Wnt5a; Wnt6; Wnt7b; Wnt8b; Wnt9a; Wnt9b; WntlOa; WntlOb; Wntl6); beta-catenin; Dkk-1; Frizzled related proteins; Otx-2; Gbx2; FGF-8; Reelin; Dabl; unc-86 (Pou4fl or Brn3a); Numb; Rein

[0282] In some cases, an editing system can be used to improve an immune cell performance. Examples of genes involved in cancer or tumor suppression may include ATM (ataxia telangiectasia mutated), ATR (ataxia telangiectasia and Rad3 related), EGFR (epidermal growth factor receptor), ERBB2 (v-erb-b2 erythroblastic leukemia viral oncogene homolog 2), ERBB3 (v-erb-b2 erythroblastic leukemia viral oncogene homolog 3), ERBB4 (v-erb-b2 erythroblastic leukemia viral oncogene homolog 4), Notch 1, Notch2, Notch 3, or Notch 4, for example. A gene and protein associated with a secretase disorder may also be disrupted or introduced and can include PSENEN (presenilin enhancer 2 homolog (C elegans)), CTSB (cathepsin B), PSEN1 (presenilin 1), APP (amyloid beta (A4) precursor protein). APH1B (anterior pharynx defective 1 homolog B (C. elegans)), PSEN2 (presenilin 2 (Alzheimer disease 4)), or BACE1 (beta-site APP-cleaving enzyme 1). It is contemplated that genetic homologues {e.g. , any mammalian version of the gene) of the genes within this applications are covered. For example, genes that can be targeted can further include CD27, CD40, CD122, OX40, GITR, CD137, CD28, ICOS, A2AR, B7-H3, B7-H4, BTLA, CTLA-4, IDO, KIR, LAG3, PD-1, TIM-3, VISTA, HPRT, CCR5, AAVS SITE {e.g. AAVS1, AAVS2, ETC.), PPP1R12C, TRAC, TCRB, or CISH. Therefore, it is contemplated that any one of the aforementioned gene that exhibits or exhibits about 50%, 55%, 60%, 65%, 70%, 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identity (at the nucleic acid or protein level) can be disrupted. It is also contemplated that any of the aforementioned genes that exhibits or exhibits about 50%, 55%, 60%, 65%, 70%, 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identity (at the nucleic acid or protein level) can be disrupted. Some genetic homologues are known in the art, however, in some cases, homologues are unknown. However, homologous genes between mammals can be found by comparing nucleic acid (DNA or RNA) sequences or protein sequences using publically available databases such as NCBI BLAST. Also disclosed herein can be non- human gene equivalents of any one of the aforementioned genes. A non-human equivalent of any of the aforementioned genes can be disrupted with the gene editing system disclosed herein. [0283] A guide RNA can be introduced into a cell or embryo as an RNA molecule. For example, a RNA molecule can be transcribed in vitro and/or can be chemically synthesized. A guide RNA can then be introduced into a cell or embryo as an RNA molecule. A guide RNA can also be introduced into a cell or embryo in the form of a non-RNA nucleic acid molecule, e.g., DNA molecule. For example, a DNA encoding a guide RNA can be operably linked to promoter control sequence for expression of the guide RNA in a cell or embryo of interest. A RNA coding sequence can be operably linked to a promoter sequence that is recognized by RNA polymerase III (Pol III).

[0284] A nucleic acid encoding a guide RNA or guide DNA can be linear. A nucleic acid encoding a guide RNA or guide DNA can also be circular. A nucleic acid encoding a guiding polynucleic acid can also be part of a vector. Some examples of vectors can include plasmid vectors, phagemids, cosmids, artificial/mini-chromosomes, transposons, and viral vectors. For example, a DNA encoding a RNA- guided endonuclease is present in a plasmid vector. Other non-limiting examples of suitable plasmid vectors include pUC, pBR322, pET, pBluescript, and variants thereof. Further, a vector can comprise additional expression control sequences (e.g., enhancer sequences, Kozak sequences, polyadenylation sequences, transcriptional termination sequences, etc.), selectable marker sequences (e.g., antibiotic resistance genes), origins of replication, and the like.

[0285] Suitable methods for introduction of the guiding polynucleic acid, protein, or guiding polynucleic acid: nuclease complex are known in the art and include, for example, electroporation; calcium phosphate precipitation; or PEI, PEG, DEAE, nanoparticle, or liposome mediated transformation. Other suitable transfection methods include direct micro-injection. In some cases, the guiding polynucleic acid and nuclease are introduced separately and the guiding polynucleic acid: nuclease complexes are formed in a cell. In other cases, a guiding polynucleic acid: nuclease complex can be formed and then introduced into a cell. In some cases, multiple, differentially labeled, guiding polynucleic acid: nuclease complexes, each directed to a different genomic targets are formed and then introduced into a cell. When both a nucleic acid guided nuclease and a guide polynucleic acid are introduced into a cell, each can be part of a separate molecule (e.g., one vector containing fusion protein coding sequence and a second vector containing guide polynucleic acid coding sequence) or both can be part of a same molecule (e.g., one vector containing coding (and regulatory) sequence for both a fusion protein and a guiding polynucleic acid). In some cases, a nuclease can be pre-complexed with a guiding polynucleic acid. A complex can be a ribonucleoprotein (RNP) complex.

[0286] In some cases, a GUIDE-Seq analysis can be performed to determine the specificity of engineered guiding polynucleic acids. The general mechanism and protocol of GUIDE-Seq profiling of off -target cleavage by CRISPR system nucleases is discussed in Tsai, S. et al, "GUIDE-Seq enables genome-wide profiling of off-target cleavage by CRISPR system nucleases," Nature, 33: 187-197 (2015).

[0287] A guiding polynucleic acid can be introduced at any functional concentration. For example, a guiding polynucleic acid can be introduced to a cell at lOmicrograms. In other cases, a guiding polynucleic acid can be introduced from 0.5 micrograms to 100 micrograms. A gRNA can be introduced from 0.5, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, or 100 micrograms.

[0288] A sequence of a guiding polynucleic acid need not be 100% complementary to that of its target nucleic acid to be specifically hybridizable or hybridizable. Moreover, a guiding polynucleic acid may hybridize over one or more segments such that intervening or adjacent segments are not involved in the hybridization event (e.g., a loop structure or hairpin structure). For example, a polynucleotide can comprise 60% or more, 65% or more, 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 98% or more, 99% or more, 99.5%, or 100% sequence complementarity to a target region within the target nucleic acid sequence to which it will hybridize. For example, an antisense nucleic acid in which 18 of 20 nucleotides of the antisense compound are complementary to a target region, and would therefore specifically hybridize, would represent 90 percent complementarity. In this example, the remaining non-complementary nucleotides may be clustered or interspersed with complementary nucleotides and need not be contiguous to each other or to complementary nucleotides. Percent complementarity between particular stretches of nucleic acid sequences within nucleic acids can be determined using any convenient method. Exemplary methods include BLAST programs (basic local alignment search tools) and PowerBLAST programs (Altschul et al., J. Mol. Biol., 1990, 215, 403-410; Zhang and Madden, Genome Res., 1997, 7, 649-656) or by using the Gap program (Wisconsin Sequence Analysis Package, Version 8 for Unix, Genetics Computer Group, University Research Park, Madison Wis.), using default settings, which uses the algorithm of Smith and Waterman (Adv. Appl. Math., 1981, 2, 482-489).

[0289] A guiding polynucleic acid can target a gene or portion thereof. In some cases, a cell that is modified can comprise one or more suppressed, disrupted, or knocked out genes and one or more transgenes, such as a receptor.

[0290] Methods and compositions described herein can be used to target a gene from a mammal. A gene that can be targeted can be from any organ or tissue. A gene that can be targeted can be from skin, eyes, heart, liver, lung, kidney, reproductive tract, brain, to name a few. A gene that can be targeted can also be from a number of conditions and diseases

[0291] In some cases, a disruption can result in a reduction of copy number of genomic transcript of a disrupted gene or portion thereof. For example, a target gene that can be disrupted can have reduced transcript quantities compared to the same target gene in an undisrupted cell. A disruption can result in disruption results in less than 145 copies^L, 140 copies^L, 135 copies^L, 130 copies^L, 125 copies^L, 120 copies^L, 115 copies^L, 110 copies^L, 105 copies^L, 100 copies^L, 95 copies/ μΐ,, 190 copies^L, 185 copies^L, 80 copies^L, 75 copies^L, 70 copies^L, 65 copies/ μΐ,, 60 copies^L, 55 copies/ μΐ,, 50 copies^L, 45 copies^L, 40 copies^L, 35 copies^L, 30 copies^L, 25 copies^L, 20 copies/ μΐ,, 15 copies/ μΐ,, 10 copies^L, 5 copies^L, 1 copies^L, or 0.05 copies^L. In some cases, a disruption can result in less than 100 copies^L. [0292] One or more genes in a cell can be knocked out or disrupted using any method. For example, knocking out one or more genes can comprise deleting one or more genes from a genome of a cell. Knocking out can also comprise removing all or a part of a gene sequence from a cell. It is also contemplated that knocking out can comprise replacing all or a part of a gene in a genome of a cell with one or more nucleotides. Knocking out one or more genes can also comprise inserting a sequence in one or more genes thereby disrupting expression of the one or more genes. For example, inserting a sequence can generate a stop codon in the middle of one or more genes. Inserting a sequence can also shift the open reading frame of one or more genes.

[0293] An animal or cell may comprise 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 or more disrupted genomic sequences encoding a protein associated with a disease and zero, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 or more genomically integrated sequences encoding a protein associated with a disease.

DELIVERY INTO A CELL

[0294] The RHDC and nucleic acid unwinding agents, polynucleotides encoding the same, and/or any transgene polynucleotides and compositions comprising the polypeptides and/or polynucleotides described herein can be delivered to a target cell by any suitable means.

[0295] Suitable cells can include but are not limited to eukaryotic and prokaryotic cells and/or cell lines. A suitable cell can be a human primary cell.

[0296] A primary cell can be taken directly from living tissue (i.e. biopsy material) and established for growth in vitro, that have undergone very few population doublings and are therefore more representative of the main functional components and characteristics of tissues from which they are derived from, in comparison to continuous tumorigenic or artificially immortalized cell lines.

[0297] A primary cell can be acquired from a variety of sources such as an organ, vasculature, buffy coat, whole blood, apheresis, plasma, bone marrow, tumor, cell-bank, cryopreservation bank, or a blood sample. A primary cell can be a stem cell. A suitable cell that can be edited with a genomic editing system comprising an Ranse-H like domain can be epithelial cells, fibroblast cells, neural cells, keratinocytes, hematopoietic cells, melanocytes, chondrocytes, lymphocytes (B, NK, and T), macrophages, monocytes, mononuclear cells, cardiac muscle cells, other muscle cells, granulosa cells, cumulus cells, epidermal cells, endothelial cells, pancreatic islet cells, blood cells, blood precursor cells, bone cells, bone precursor cells, neuronal stem cells, primordial stem cells, hepatocytes, keratinocytes, umbilical vein endothelial cells, aortic endothelial cells, microvascular endothelial cells, fibroblasts, liver stellate cells, aortic smooth muscle cells, cardiac myocytes, neurons, Kupffer cells, smooth muscle cells, Schwann cells, and epithelial cells, erythrocytes, platelets, neutrophils, lymphocytes, monocytes, eosinophils, basophils, adipocytes, chondrocytes, pancreatic islet cells, thyroid cells, parathyroid cells, parotid cells, tumor cells, glial cells, astrocytes, red blood cells, white blood cells, macrophages, epithelial cells, somatic cells, pituitary cells, adrenal cells, hair cells, bladder cells, kidney cells, retinal cells, rod cells, cone cells, heart cells, pacemaker cells, spleen cells, antigen presenting cells, memory cells, T cells, B cells, plasma cells, muscle cells, ovarian cells, uterine cells, prostate cells, vaginal epithelial cells, sperm cells, testicular cells, germ cells, egg cells, leydig cells, peritubular cells, Sertoli cells, lutein cells, cervical cells, endometrial cells, mammary cells, follicle cells, mucous cells, ciliated cells, nonkeratinized epithelial cells, keratinized epithelial cells, lung cells, goblet cells, columnar epithelial cells, dopamiergic cells, squamous epithelial cells, osteocytes, osteoblasts, osteoclasts, dopaminergic cells, embryonic stem cells, fibroblasts and fetal fibroblasts. Further, the one or more cells can be pancreatic islet cells and/or cell clusters or the like, including, but not limited to pancreatic a cells, pancreatic β cells, pancreatic δ cells, pancreatic F cells (e.g., PP cells), or pancreatic ε cells. In one instance, the one or more cells can be pancreatic a cells. In another instance, the one or more cells can be pancreatic β cells.

[0298] A human primary cell can be an immune cell. An immune cell can be a T cell, B cell, NK cell, and/or TIL. Non-limiting examples of such cells or cell lines generated from such cells include COS, CHO (e.g., CHO-S, CHO-Kl, CHO-DG44, CHO-DUXBl l, CHO-DUKX, CHOKI SV), VERO, MDCK, WI38, V79, B14AF28-G3, BHK, HaK, NSO, SP2/0-Agl4, HeLa, HEK293 (e.g., HEK293-F, HEK293- H, HEK293-T), and perC6 cells as well as insect cells such as Spodopterafugiperda (Sf), or fungal cells such as Saccharomyces, Pichia and Schizosaccharomyces. In some cases, a cell line can be a CHO-Kl, MDCK or HEK293 cell line. In some cases, suitable primary cells include peripheral blood mononuclear cells (PBMC), peripheral blood lymphocytes (PBL), and other blood cell subsets such as, but not limited to, T cell, a natural killer cell, a monocyte, a natural killer T cell, a monocyte-precursor cell, a hematopoietic stem cell or a non-pluripotent stem cell. In some cases, the cell can be any immune cells including any T-cell such as tumor infiltrating cells (TILs), such as CD3+ T-cells, CD4+ T-cells, CD8+ T-cells, or any other type of T-cell. The T cell can also include memory T cells, memory stem T cells, or effector T cells. The T cells can also be selected from a bulk population, for example, selecting T cells from whole blood. The T cells can also be expanded from a bulk population. The T cells can also be skewed towards particular populations and phenotypes. For example, the T cells can be skewed to phenotypically comprise, CD45RO(-), CCR7(+), CD45RA(+), CD62L(+), CD27(+), CD28(+) and/or IL- 7Ra(+). Suitable cells can be selected that comprise one of more markers selected from a list comprising: CD45RO(-), CCR7(+), CD45RA(+), CD62L(+), CD27(+), CD28(+) and/or IL-7Ra(+). Suitable cells also include stem cells such as, by way of example, embryonic stem cells, induced pluripotent stem cells, hematopoietic stem cells, neuronal stem cells and mesenchymal stem cells. Suitable cells can comprise any number of primary cells, such as human cells, non-human cells, and/or mouse cells. Suitable cells can be progenitor cells. Suitable cells can be derived from the subject to be treated (e.g., subject).

Suitable cells can be derived from a human donor. Suitable cells can be stem memory TSCM cells comprised of CD45RO (-), CCR7(+), CD45RA (+), CD62L+ (L-selectin), CD27+, CD28+ and IL-7Ra+, stem memory cells can also express CD95, IL-2R , CXCR3, and LFA-1, and show numerous functional attributes distinctive of stem memory cells. Suitable cells can be central memory TCM cells comprising L-selectin and CCR7, central memory cells can secrete, for example, IL-2, but not IFNy or IL-4. Suitable cells can also be effector memory T E M cells comprising L-selectin or CCR7 and produce, for example, effector cytokines such as IFNy and IL-4.

[0299] In some cases, modified cells can be a stem memory T SC M cell comprised of CD45RO (-), CCR7(+), CD45RA (+), CD62L+ (L-selectin), CD27+, CD28+ and IL-7Ra+, stem memory cells can also express CD95, IL-2R , CXCR3, and LFA-1, and show numerous functional attributes distinctive of stem memory cells. Engineered cells, such as RHDC polypeptide modified cells can also be central memory T C M cells comprising L-selectin and CCR7, where the central memory cells can secrete, for example, IL-2, but not IFNy or IL-4. Engineered cells can also be effector memory T E M cells comprising L-selectin or CCR7 and produce, for example, effector cytokines such as ΙΚΝγ and IL-4. In some cases a population of cells can be introduced to a subject. For example, a population of cells can be a combination of T cells and NK cells. In other cases, a population can be a combination of naive cells and effector cells.

[0300] A method of attaining suitable cells, such as human primary cells, can comprise selecting cells. In some cases, a cell can comprise a marker that can be selected for the cell. For example, such marker can comprise GFP, a resistance gene, a cell surface marker, an endogenous tag. Cells can be selected using any endogenous marker. Suitable cells can be selected using any technology. Such technology can comprise flow cytometry and/or magnetic columns. The selected cells can then be infused into a subject. The selected cells can also be expanded to large numbers. The selected cells can be expanded prior to infusion.

[0301] In some cases, a suitable cell can be a recombinant cell. A recombinant cell can be an immortalized cell line. A cell line can be: CHO- Kl cells; HEK293 cells; Caco2 cells; U2-OS cells; NIH 3T3 cells; NSO cells; SP2 cells; CHO- S cells; DG44 cells; K-562 cells, U-937 cells; MRC5 cells; IMR90 cells; Jurkat cells; HepG2 cells; HeLa cells; HT-1080 cells; HCT-1 16 cells; Hu-h7 cells; Huvec cells; Molt 4 cells. All these cell lines can be modified by the method described herein to provide cell line models to produce, express, quantify, detect, study a gene or a protein of interest; these models can also be used to screen biologically active molecules of interest in research and production and various fields such as chemical, biofuels, therapeutics and agronomy as non-limiting examples.

[0302] The genomic editing system as described herein can be delivered using vectors, for example containing sequences encoding one or more of the proteins. In some cases, a system as described herein can be delivered absent a viral vector. In some cases, a system as described herein can be delivered absent a viral vector, for example, when the system is greater than one kilobase, without affecting cellular viability. Transgenes encoding polynucleotides can be similarly delivered. Any vector systems can be used including, but not limited to, plasmid vectors, retroviral vectors, lentiviral vectors, adenovirus vectors, poxvirus vectors; herpesvirus vectors and adeno-associated virus vectors, etc.

Furthermore, any of these vectors can comprise one or more transcription factor, nuclease, and/or transgene. Thus, when one or more CRISPR, TALEN, transposon-based, ZFN, meganuclease, or Mega- TAL molecules and/or transgenes are introduced into the cell, CRISPR, TALEN, transposon-based, ZFN, meganuclease, or Mega-TAL molecules and/or transgenes can be carried on the same vector or on different vectors. When multiple vectors are used, each vector can comprise a sequence encoding one or multiple CRISPR, TALEN, transposon-based, ZFN, meganuclease, or Mega-TAL molecules and/or transgenes.

[0303] Conventional viral and non-viral based gene transfer methods can be used to introduce nucleic acids encoding engineered CRISPR, TALEN, transposon-based, ZFN, meganuclease, or Mega-TAL molecules and/or transgenes in cells (e.g., mammalian cells) and target tissues. Such methods can also be used to administer nucleic acids encoding CRISPR, TALEN, transposon-based, ZFN, meganuclease, or Mega-TAL molecules and/or transgenes to cells in vitro. In some examples, nucleic acids encoding CRISPR, TALEN, transposon-based, ZFN, meganuclease, or Mega-TAL molecules and/or transgenes can be administered for in vivo or ex vivo immunotherapy uses. Non-viral vector delivery systems can include DNA plasmids, naked nucleic acid, and nucleic acid complexed with a delivery vehicle such as a liposome or poloxamer. Viral vector delivery systems can include DNA and RNA viruses, which have either episomal or integrated genomes after delivery to the cell.

[0304] Methods of non-viral delivery of nucleic acids include electroporation, lipofection,

nucleofection, gold nanoparticle delivery, microinjection, biolistics, virosomes, liposomes,

immunoliposomes, polycation or lipid: nucleic acid conjugates, naked DNA, mRNA, artificial virions, and agent-enhanced uptake of DNA. Sonoporation using, e.g., the Sonitron 2000 system (Rich-Mar) can also be used for delivery of nucleic acids. Additional exemplary nucleic acid delivery systems include those provided by AMAXA ® Biosystems (Cologne, Germany), Life Technologies (Frederick, Md.), MAXCYTE, Inc. (Rockville, Md.), BTX Molecular Delivery Systems (Holliston, Mass.) and Copernicus Therapeutics Inc. (see for example U.S. Pat. No. 6,008,336). Lipofection reagents are sold commercially (e.g., TRANSFECTAM ® and LIPOFECTIN ® ). Delivery can be to cells (ex vivo administration) or target tissues (in vivo administration). Additional methods of delivery include the use of packaging the nucleic acids to be delivered into EnGeneIC delivery vehicles (EDVs). These EDVs are specifically delivered to target tissues using bispecific antibodies where one arm of the antibody has specificity for the target tissue and the other has specificity for the EDV. The antibody brings the EDVs to the target cell surface and then the EDV is brought into the cell by endocytosis.

[0305] Vectors including viral and non-viral vectors containing nucleic acids encoding engineered CRISPR, TALEN, transposon-based, ZFN, meganuclease, or Mega-TAL molecules, transposon and/or transgenes can also be administered directly to an organism for transduction of cells in vivo.

Alternatively, naked DNA or mRNA can be administered. Administration is by any of the routes normally used for introducing a molecule into ultimate contact with blood or tissue cells including, but not limited to, injection, infusion, topical application and electroporation. More than one route can be used to administer a particular composition. Pharmaceutically acceptable carriers are determined in part by the particular composition being administered, as well as by the particular method used to administer the composition.

[0306] In some cases, a vector encoding for an exogenous transgene can be shuttled to a cellular nuclease. For example, a vector can contain a nuclear localization sequence (NLS). An NLS can be from Simian Vacuolating Virus 40. A vector can also be shuttled by a protein or protein complex. In some cases, Cas9 can be used as a means to shuttle a minicircle vector. A Cas can comprise one or more NLS. In some cases, a vector can be pre-complexed with a Cas protein prior to electroporation. A Cas protein that can be used for shuttling can be a nuclease-deficient Cas9 (dCas9) protein. A Cas protein that can be used for shuttling can be a nuclease-competent Cas9. In some cases, Cas protein can be pre-mixed with a guide RNA and a vector or plasmid encoding an exogenous transgene.

[0307] Vectors can be delivered in vivo by administration to an individual subject, typically by systemic administration {e.g., intravenous, intraperitoneal, intramuscular, subdermal, or intracranial infusion) or topical application, as described below. Alternatively, vectors can be delivered to cells ex vivo, such as cells explanted from an individual subject {e.g., lymphocytes, T cells, bone marrow aspirates, tissue biopsy), followed by reimplantation of the cells into a subject, usually after selection for cells which have incorporated the vector. Prior to or after selection, the cells can be expanded.

[0308] A cell can be transfected with a mutant or chimeric adeno-associated viral vector encoding an exogenous transgene and an editing system comprising an RNase-H like domain containing protein. An AAV vector concentration can be from 0.5 nanograms to 50 micrograms. In some cases, the amount of nucleic acid {e.g., ssDNA, dsDNA, RNA) that can be introduced into the cell by electroporation can be varied to optimize transfection efficiency and/or cell viability. In some cases, less than about 100 picograms of nucleic acid can be added to each cell sample {e.g., one or more cells being electroporated). In some cases, at least about 100 picograms, at least about 200 picograms, at least about 300 picograms, at least about 400 picograms, at least about 500 picograms, at least about 600 picograms, at least about 700 picograms, at least about 800 picograms, at least about 900 picograms, at least about 1 microgram, at least about 1.5 micrograms, at least about 2 micrograms, at least about 2.5 micrograms, at least about 3 micrograms, at least about 3.5 micrograms, at least about 4 micrograms, at least about 4.5 micrograms, at least about 5 micrograms, at least about 5.5 micrograms, at least about 6 micrograms, at least about 6.5 micrograms, at least about 7 micrograms, at least about 7.5 micrograms, at least about 8 micrograms, at least about 8.5 micrograms, at least about 9 micrograms, at least about 9.5 micrograms, at least about 10 micrograms, at least about 11 micrograms, at least about 12 micrograms, at least about 13 micrograms, at least about 14 micrograms, at least about 15 micrograms, at least about 20 micrograms, at least about 25 micrograms, at least about 30 micrograms, at least about 35 micrograms, at least about 40 micrograms, at least about 45 micrograms, or at least about 50 micrograms, of nucleic acid can be added to each cell sample {e.g., one or more cells being electroporated). For example, 1 microgram of dsDNA can be added to each cell sample for electroporation. In some cases, the amount of nucleic acid (e.g., dsDNA) required for optimal transfection efficiency and/or cell viability can be specific to the cell type. In some cases, the amount of nucleic acid (e.g., dsDNA) used for each sample can directly correspond to the transfection efficiency and/or cell viability.

[0309] The transfection efficiency of cells with any of the nucleic acid delivery platforms described herein, for example, nucleofection or electroporation, can be or can be about 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.9%, or more than 99.9%.

[0310] Vectors, plasmids, and genomic editing systems described herein can be delivered by any suitable method, including transfection, electroporation, liposome delivery, membrane fusion techniques, high velocity DNA-coated pellets, viral infection and protoplast fusion. The methods used to construct any embodiment of this invention are known to those with skill in nucleic acid manipulation and include genetic engineering, recombinant engineering, and synthetic techniques. See, e.g., Sambrook et al, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Press, Cold Spring Harbor, NY.

Electroporation using, for example, the Neon® Transfection System (ThermoFisher Scientific) or the AM AX A® Nucleofector (AM AX A® Biosy stems) can also be used for delivery of nucleic acids into a cell. Electroporation parameters can be adjusted to optimize transfection efficiency and/or cell viability. Electroporation devices can have multiple electrical wave form pulse settings such as exponential decay, time constant and square wave. Every cell type has a unique optimal Field Strength (E) that is dependent on the pulse parameters applied (e.g., voltage, capacitance and resistance). Application of optimal field strength causes electropermeabilization through induction of transmembrane voltage, which allows nucleic acids to pass through the cell membrane. In some cases, the electroporation pulse voltage, the electroporation pulse width, number of pulses, cell density, and tip type can be adjusted to optimize transfection efficiency and/or cell viability.

[0311] In some cases, electroporation pulse voltage can be varied to optimize transfection efficiency and/or cell viability. In some cases, the electroporation voltage can be less than about 500 volts. In some cases, the electroporation voltage can be at least about 500 volts, at least about 600 volts, at least about 700 volts, at least about 800 volts, at least about 900 volts, at least about 1000 volts, at least about 1100 volts, at least about 1200 volts, at least about 1300 volts, at least about 1400 volts, at least about 1500 volts, at least about 1600 volts, at least about 1700 volts, at least about 1800 volts, at least about 1900 volts, at least about 2000 volts, at least about 2100 volts, at least about 2200 volts, at least about 2300 volts, at least about 2400 volts, at least about 2500 volts, at least about 2600 volts, at least about 2700 volts, at least about 2800 volts, at least about 2900 volts, or at least about 3000 volts. In some cases, the electroporation pulse voltage required for optimal transfection efficiency and/or cell viability can be specific to the cell type. For example, an electroporation voltage of 1900 volts can optimal (e.g., provide the highest viability and/or transfection efficiency) for macrophage cells. In another example, an electroporation voltage of about 1350 volts can optimal (e.g., provide the highest viability and/or transfection efficiency) for Jurkat cells or primary human cells such as T cells. In some cases, a range of electroporation voltages can be optimal for a given cell type. For example, an electroporation voltage between about 1000 volts and about 1300 volts can optimal (e.g., provide the highest viability and/or transfection efficiency) for human 578T cells.

[0312] In some cases, electroporation pulse width can be varied to optimize transfection efficiency and/or cell viability. In some cases, the electroporation pulse width can be less than about 5 milliseconds. In some cases, the electroporation width can be at least about 5 milliseconds, at least about 6 milliseconds, at least about 7 milliseconds, at least about 8 milliseconds, at least about 9 milliseconds, at least about 10 milliseconds, at least about 11 milliseconds, at least about 12 milliseconds, at least about 13 milliseconds, at least about 14 milliseconds, at least about 15 milliseconds, at least about 16 milliseconds, at least about 17 milliseconds, at least about 18 milliseconds, at least about 19 milliseconds, at least about 20 milliseconds, at least about 21 milliseconds, at least about 22 milliseconds, at least about 23 milliseconds, at least about 24 milliseconds, at least about 25 milliseconds, at least about 26 milliseconds, at least about 27 milliseconds, at least about 28 milliseconds, at least about 29 milliseconds, at least about 30 milliseconds, at least about 31 milliseconds, at least about 32 milliseconds, at least about 33 milliseconds, at least about 34 milliseconds, at least about 35 milliseconds, at least about 36 milliseconds, at least about 37 milliseconds, at least about 38 milliseconds, at least about 39 milliseconds, at least about 40 milliseconds, at least about 41 milliseconds, at least about 42 milliseconds, at least about 43 milliseconds, at least about 44 milliseconds, at least about 45 milliseconds, at least about 46 milliseconds, at least about 47 milliseconds, at least about 48 milliseconds, at least about 49 milliseconds, or at least about 50 milliseconds. In some cases, the electroporation pulse width required for optimal transfection efficiency and/or cell viability can be specific to the cell type. For example, an

electroporation pulse width of 30 milliseconds can optimal (e.g., provide the highest viability and/or transfection efficiency) for macrophage cells. In another example, an electroporation width of about 10 milliseconds can optimal (e.g., provide the highest viability and/or transfection efficiency) for Jurkat cells. In some cases, a range of electroporation widths can be optimal for a given cell type. For example, an electroporation width between about 20 milliseconds and about 30 milliseconds can optimal (e.g., provide the highest viability and/or transfection efficiency) for human 578T cells.

[0313] In some cases, the number of electroporation pulses can be varied to optimize transfection efficiency and/or cell viability. In some cases, electroporation can comprise a single pulse. In some cases, electroporation can comprise more than one pulse. In some cases, electroporation can comprise 2 pulses, 3 pulses, 4 pulses, 5 pulses 6 pulses, 7 pulses, 8 pulses, 9 pulses, or 10 or more pulses. In some cases, the number of electroporation pulses required for optimal transfection efficiency and/or cell viability can be specific to the cell type. For example, electroporation with a single pulse can be optimal (e.g., provide the highest viability and/or transfection efficiency) for macrophage cells. In another example, electroporation with a 3 pulses can be optimal (e.g., provide the highest viability and/or transfection efficiency) for primary cells. In some cases, a range of electroporation widths can be optimal for a given cell type. For example, electroporation with between about 1 to about 3 pulses can be optimal (e.g., provide the highest viability and/or transfection efficiency) for human cells.

[0314] In some cases, the starting cell density for electroporation can be varied to optimize transfection efficiency and/or cell viability. In some cases, the starting cell density for electroporation can be less than about lxlO 5 cells. In some cases, the starting cell density for electroporation can be at least about lxlO 5 cells, at least about 2xl0 5 cells, at least about 3xl0 5 cells, at least about 4xl0 5 cells, at least about 5xl0 5 cells, at least about 6xl0 5 cells, at least about 7xl0 5 cells, at least about 8xl0 5 cells, at least about 9xl0 5 cells, at least about lxlO 6 cells, at least about 1.5xl0 6 cells, at least about 2xl0 6 cells, at least about 2.5xl0 6 cells, at least about 3xl0 6 cells, at least about 3.5xl0 6 cells, at least about 4xl0 6 cells, at least about 4.5xl0 6 cells, at least about 5xl0 6 cells, at least about 5.5xl0 6 cells, at least about 6xl0 6 cells, at least about 6.5xl0 6 cells, at least about 7xl0 6 cells, at least about 7.5xl0 6 cells, at least about 8xl0 6 cells, at least about 8.5xl0 6 cells, at least about 9xl0 6 cells, at least about 9.5xl0 6 cells, at least about lxlO 7 cells, at least about 1.2xl0 7 cells, at least about 1.4xl0 7 cells, at least about 1.6xl0 7 cells, at least about 1.8xl0 7 cells, at least about 2xl0 7 cells, at least about 2.2xl0 7 cells, at least about 2.4xl0 7 cells, at least about 2.6xl0 7 cells, at least about 2.8xl0 7 cells, at least about 3xl0 7 cells, at least about 3.2xl0 7 cells, at least about 3.4xl0 7 cells, at least about 3.6xl0 7 cells, at least about 3.8xl0 7 cells, at least about 4xl0 7 cells, at least about 4.2xl0 7 cells, at least about 4.4xl0 7 cells, at least about 4.6xl0 7 cells, at least about 4.8xl0 7 cells, or at least about 5xl0 7 cells. In some cases, the starting cell density for electroporation required for optimal transfection efficiency and/or cell viability can be specific to the cell type. For example, a starting cell density for electroporation of 1.5x10 6 cells can optimal (e.g., provide the highest viability and/or transfection efficiency) for macrophage cells. In another example, a starting cell density for electroporation of 5x10 6 cells can optimal (e.g., provide the highest viability and/or transfection efficiency) for human cells. In some cases, a range of starting cell densities for electroporation can be optimal for a given cell type. For example, a starting cell density for electroporation between of 5.6xl0 6 and 5 xlO 7 cells can optimal (e.g., provide the highest viability and/or transfection efficiency) for human cells such as T cells.

[0315] In some cases, a guiding polynucleic acid and nuclease can be introduced into cells as a complex. A complex can be a ribonuclear protein complex (RNP). Introduction of an RNP complex can be timed. In some cases, a cell can be synchronized with other cells at Gl, S, and/or M phases of the cell cycle prior to introduction of a guiding polynucleic acid and nuclease. In some cases, an RNP complex can be delivered at a cell phase such that HDR, MMEJ, or NHEJ can be enhanced. In some cases an RNP complex can facilitate homology directed repair.

[0316] Non-homologous end joining (NHEJ) and Homology -directed repair (HDR) can be quantified using a variety of methods. [0317] In some cases, a percent of NHEJ, HDR, or a combination of both can be determined by co- delivering the gene editing molecules, for example a guiding polynucleic acid and an RNase H like domain containing polypeptide, with a donor DNA template that encodes a promoterless GFP into cells. After about 72 hrs., flow cytometry can be performed to quantify the total cell number (Ν Το(3 ι), GFP- positive cell number (N G FP+), and GFP -negative cell number (N G FP-). Among the GFP negative cells, next-generation sequencing can be performed to identify cells without mutations (N G FP- 0 ), and with mutations (NGFP- 1 ). HDR efficiency can be calculated as NGFP+/N To tai X 100%, and NHEJ efficiency will be calculated as Nopp- NTotai 100%.

[0318] In some cases, activity of a DNA editing system may be assayed using a cell expressing a reporter protein or containing a reporter gene. For example, a reporter protein may be engineered to contain an obstruction, such as a stop codon, a frameshift mutation, a spacer, a linker, or a transcriptional terminator; the DNA editing system may then be used to remove the obstruction and the resultant functional reporter protein may be detected. In some cases, the obstruction may be designed such that a specific sequence modification is required to restore functionality of the reporter protein. In other cases, the obstruction may be designed such that any insertion or deletion which results in a frame shift of one or two bases may be sufficient to restore functionality of the reporter protein. Examples of reporter proteins include colorimetric enzymes, metabolic enzymes, fluorescent proteins, enzymes and transporters associated with antibiotic resistance, and luminescent enzymes. Examples of such reporter proteins include β-galactosidase, Chloramphenicol acetyltransferase, Green fluorescent protein, Red fluorescent protein, luciferase, and renilla. Different detection methods may be used for different reporter proteins. For example, the reporter protein may affect cell viability, cell growth, fluorescence, luminescence, or expression of a detectable product. In some cases, the reporter protein may be detected using a colorimetric assay. In some cases, the reporter protein may be a fluorescent protein, and DNA editing may be assayed by measuring the degree of fluorescence in treated cells, or the number of treated cells with at least a threshold level of fluorescence. In some cases, transcript levels of a reporter gene may be assessed. In other cases, a reporter gene may be assessed by sequencing. In some cases, an assay for measuring DNA editing may use a split fluorescence protein system, such as the self-complementing split GFP i-io/ii systems, in which two fragments (Gi-io and Gn) of the GFP protein which can associate by themselves to form a functional GFP signal are linked using a frameshifting linker. Insertions or deletions within the frameshifting linker can restore the frame of the Gn fragment allowing the two fragments to form a functional GFP signal. An example of such an assay is shown in Example 12, and FIGs. 18-25 and FIG. 27-32. As seen in FIG. 32A and FIG. 32B Ago51 and Ago89 both resulted in -1.2% of cells showing GFP fluorescence, a level 2 fold higher than seen in the no Ago control condition (0.6%), indicating successful DNA editing at a level of double that seen at baseline. In some cases, Ago proteins as described herein may result in at least about 1%, 1.1%, 1.2%, 1.3%, 1.4%, 1.5%, 1.6%, 1.7%, 1.8%, 1.9%, 2%, 2.5%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 60%, 70%, 80%, 90%, 95%, 97%, 98%, or 99% of cells exhibiting restored activity of a reporter protein. In some cases, Ago proteins as described herein may result in at least about 1% to 99%, 1% to 10%, 1% to 5%, 1% to 2%, 5% to 50%, 10% to 80%, 10% to 50%, 30% to 70%, or 50% to 80% of cells exhibiting restored activity of a reporter protein. In some cases, Ago proteins as described herein may result in at least about a 1.5 fold, 2 fold, 3 fold, 4 fold, 5 fold, 6 fold, 7 fold, 8 fold, 9 fold, 10 fold, 15 fold, 20 fold, 25 fold, 30 fold, 40 fold, 50 fold, 60 fold, 70 fold, 80 fold, 90 fold, or 100 fold increase in the percentage of cells with restored activity of a reporter as compared to baseline. In some cases, Ago proteins as described herein may result in at least about a 1.2 fold to 10 fold, 1.5 fold to 10 fold, 2 fold to 10 fold, 2 fold to 5 fold, 2 fold to 20 fold, 3 fold to 5 fold, 4 fold to 10 fold, 5 fold to 20 fold, 10 fold to 100 fold, 10 fold to 50 fold or 1.2 fold to 100 fold increase in the percentage of cells with restored activity of a reporter as compared to baseline.

[0319] The percent occurrence of a genomic break repair utilizing HDR over NHEJ or MMEJ can be or can be about 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.9%, or more than 99.9% of cells that are contacted with a genomic editing system comprising an RNase-H like domain. The percent occurrence of a genomic break repair utilizing NHEJ over HDR or MMEJ can be or can be about 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.9%, or more than 99.9% of cells that are contacted with a genomic editing system comprising an RNase-H like domain. The percent occurrence of a genomic break repair utilizing MMEJ over HDR or NHEJ can be or can be about 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.9%, or more than 99.9% of cells that are contacted with a genomic editing system comprising an RNase-H like domain.

[0320] Integration of an exogenous polynucleic acid, such as a TCR, can be measured using any technique. For example, integration can be measured by flow cytometry, surveyor nuclease assay, tracking of indels by decomposition (TIDE), junction PCR, or any combination thereof. In other cases, transgene integration can be measured by PCR. A TIDE analysis can also be performed on engineered cells. Ex vivo cell transfection can also be used for diagnostics, research, or for gene therapy (e.g. , via re- infusion of the transfected cells into the host organism). In some cases, cells are isolated from the subject organism, transfected with a nucleic acid (e.g. , gene or cDNA), and re-infused back into the subject organism (e.g. , subject).

[0321] The amount of RHDC polypeptide-containing modified cells that can be necessary to be therapeutically effective in a subject can vary depending on the viability of the cells, and the efficiency with which the cells have been genetically modified (e.g. , the efficiency with which a transgene has been integrated into one or more cells). In some cases, the product (e.g. , multiplication) of the viability of cells post genetic modification and the efficiency of integration of a transgene can correspond to the therapeutic aliquot of cells available for administration to a subject. In some cases, an increase in the viability of cells post genetic modification can correspond to a decrease in the amount of cells that are necessary for administration to be therapeutically effective in a subject. In some cases, an increase in the efficiency with which a transgene has been integrated into one or more cells can correspond to a decrease in the amount of cells that are necessary for administration to be therapeutically effective in a subject. In some cases, determining an amount of cells that are necessary to be therapeutically effective can comprise determining a function corresponding to a change in the viability of cells over time. In some cases, determining an amount of cells that are necessary to be therapeutically effective can comprise determining a function corresponding to a change in the efficiency with which a transgene can be integrated into one or more cells with respect to time dependent variables (e.g., cell culture time, electroporation time, cell stimulation time).

[0322] As described herein, viral particles, such as AAV, can be used to deliver a viral vector comprising a gene of interest or a transgene, such as an exogenous TCR, into a cell ex vivo or in vivo. In some embodiments, a mutated or chimeric adeno-associated viral vector as disclosed herein can be measured as pfu (plaque forming units). In some cases, the pfu of recombinant virus or mutated or chimeric adeno-associated viral vector of the compositions and methods of the disclosure can be about 10 8 to about 5x 10 10 pfu. In some cases, recombinant viruses of this disclosure are at least about 1 χ 10 8 , 2x 10 8 , 3x 10 8 , 4x 10 8 , 5x 10 8 , 6x 10 8 , 7x 10 8 , 8x 10 8 , 9x 10 8 , 1 χ 10 9 , 2x 10 9 , 3x 10 9 , 4x 10 9 , 5x 10 9 , 6x 10 9 , 7x 10 9 , 8x 10 9 , 9x 10 9 , 1 χ 10 10 , 2x 10 10 , 3x 10 10 , 4x 10 10 , and 5x 10 10 pfu. In some cases, recombinant viruses of this disclosure are at most about Ι χ ΙΟ 8 , 2 χ 10 8 , 3 χ 10 8 , 4 χ 10 8 , 5 χ 10 8 , 6 χ 10 8 , 7 χ 10 8 , 8 χ 10 8 , 9 χ 10 8 , Ι χ ΙΟ 9 , 2 χ 10 9 , 3 χ 10 9 , 4 χ 10 9 , 5 χ 10 9 , 6 χ 10 9 , 7 χ 10 9 , 8 χ 10 9 , 9 χ 10 9 , Ι χ ΙΟ 10 , 2 χ 10 10 , 3 χ 10 10 , 4 χ 10 10 , and 5 χ 10 10 pfu. In some aspects, a mutated or chimeric adeno-associated viral vector of the disclosure can be measured as vector genomes. In some cases, recombinant viruses of this disclosure are 1 χ 10 10 to 3 χ 10 12 vector genomes, or 1 χ 10 9 to 3 χ 10 13 vector genomes, or 1 χ 10 8 to 3 χ 10 14 vector genomes, or at least about lxlO 1 , lxlO 2 , lxlO 3 , lxlO 4 , Ι χ ΙΟ 5 , Ι χ ΙΟ 6 , Ι χ ΙΟ 7 , Ι χ ΙΟ 8 , Ι χ ΙΟ 9 , Ι χ ΙΟ 10 , 1 χ 10 π , Ι χ ΙΟ 12 , Ι χ ΙΟ 13 , Ι χ ΙΟ 14 , lxlO 15 , lxlO 16 , lxlO 17 , and lxlO 18 vector genomes, or are lxlO 8 to 3 χ 10 14 vector genomes, or are at most about lxlO 1 , lxlO 2 , lxlO 3 , lxlO 4 , lxlO 5 , lxlO 6 , lxlO 7 , lxlO 8 , lxlO 9 , lxlO 10 , lxlO 11 , lxlO 12 , lxlO 13 , lxlO 14 , lxlO 15 , lxlO 16 , lxlO 17 , and lxlO 18 vector genomes.

[0323] In some cases, a mutated or chimeric adeno-associated viral vector of the disclosure can be measured using multiplicity of infection (MOI). In some cases, MOI can refer to the ratio, or multiple of vector or viral genomes to the cells to which the nucleic can be delivered. In some cases, the MOI can be lxl0 6 GC/mL. In some cases, the MOI can be lxl0 5 GC/mLto lxl0 7 GC/mL. In some cases, the MOI can be 1 χ 10 4 GC/mL to 1 χ 10 8 GC/mL. In some cases, recombinant viruses of the disclosure are at least about lxlO 1 GC/mL, lxlO 2 GC/mL, lxlO 3 GC/mL, lxlO 4 GC/mL, lxlO 5 GC/mL, lxlO 6 GC/mL, lxlO 7 GC/mL, lxlO 8 GC/mL, lxlO 9 GC/mL, lxlO 10 GC/mL, lxlO 11 GC/mL, lxlO 12 GC/mL, lxlO 13 GC/mL, lxlO 14 GC/mL, lxlO 15 GC/mL, lxlO 16 GC/mL, lxlO 17 GC/mL, and lxlO 18 GC/mL MOI. In some cases, a mutated or chimeric adeno-associated viruses of this disclosure are from about 1 χ 10 8 GC/mL to about 3 x l0 14 GC/mL MOI, or are at most about 1 χ 10 1 GC/mL, Ι χ ΙΟ 2 GC/mL, Ι χ ΙΟ 3 GC/mL, Ι χ ΙΟ 4 GC/mL, l x lO 5 GC/mL, l x lO 6 GC/mL, l x lO 7 GC/mL, l x lO 8 GC/mL, l x lO 9 GC/mL, l x lO 10 GC/mL, 1 x 10" GC/mL, l x lO 12 GC/mL, l x lO 13 GC/mL, l x lO 14 GC/mL, l x lO 15 GC/mL, l x lO 16 GC/mL, l x lO 17 GC/mL, and l 10 18 GC/mL MOI.

[0324] In some aspects, a non-viral vector or nucleic acid can be delivered without the use of a mutated or chimeric adeno-associated viral vector and can be measured according to the quantity of nucleic acid. Generally, any suitable amount of nucleic acid can be used with the compositions and methods of this disclosure. In some cases, nucleic acid can be at least about 1 pg, 10 pg, 100 pg, 1 pg, 10 pg, 100 pg, 200 pg, 300 pg, 400 pg, 500 pg, 600 pg, 700 pg, 800 pg, 900 pg, 1 Mg, 10 Mg, 100 Mg, 200 Mg, 300 Mg, 400 Mg, 500 Mg, 600 Mg, 700 μg, 800 Mg, 900 Mg, 1 ng, 10 ng, 100 ng, 200 ng, 300 ng, 400 ng, 500 ng, 600 ng, 700 ng, 800 ng, 900 ng, 1 mg, 10 mg, 100 mg, 200 mg, 300 mg, 400 mg, 500 mg, 600 mg, 700 mg, 800 mg, 900 mg, 1 g, 2 g, 3 g, 4 g, or 5 g. In some cases, nucleic acid can be at most about 1 pg, 10 pg, 100 pg, 1 pg, 10 pg, 100 pg, 200 pg, 300 pg, 400 pg, 500 pg, 600 pg, 700 pg, 800 pg, 900 pg, 1 Mg, 10 Mg, 100 Mg, 200 Mg, 300 Mg, 400 Mg, 500 Mg, 600 Mg, 700 Mg, 800 Mg, 900 Mg, 1 ng, 10 ng, 100 ng, 200 ng, 300 ng, 400 ng, 500 ng, 600 ng, 700 ng, 800 ng, 900 ng, 1 mg, 10 mg, 100 mg, 200 mg, 300 mg, 400 mg, 500 mg, 600 mg, 700 mg, 800 mg, 900 mg, 1 g, 2 g, 3 g, 4 g, or 5 g.

[0325] Cells (e.g., engineered cells or engineered primary Cells) before, after, and/or during transplantation can be functional. For example, transplanted cells can be functional for at least or at least about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 6, 27, 28, 29, 30, 40, 50, 60, 70, 80, 90, or 100 days after transplantation. Transplanted cells can be functional for at least or at least about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 months after transplantation. Transplanted cells can be functional for at least or at least about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, or 30 years after transplantation. In some cases, transplanted cells can be functional for up to the lifetime of a recipient.

[0326] Further, transplanted cells can function at 100% of its normal intended operation. Transplanted cells can also function 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, or 99% of its normal intended operation.

[0327] Transplanted cells can also function over 100% of its normal intended operation. For example, transplanted cells can function 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 250, 300, 400, 500, 600, 700, 800, 900, 1000 or more % of its normal intended operation.

[0328] One or more cytokines can be introduced with cells of the invention. Cytokines can be utilized to boost cytotoxic T lymphocytes (including adoptively transferred tumor-specific cytotoxic T lymphocytes) to expand within a tumor microenvironment. In some cases, IL-2 can be used to facilitate expansion of the cells described herein. Cytokines such as IL-15 can also be employed. Other relevant cytokines in the field of immunotherapy can also be utilized, such as IL-2, IL-7, IL-12, IL-15, IL-21, or any combination thereof.

[0329] In some cases, IL-2 can be administered beginning within 24 hours of cell infusion and continuing for up to about 4 days (maximum 12 doses). In some cases, IL-2 can be administered for up to about 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 days after an initial administration. Doses of IL-2 can be administered every eight hours. In some cases, IL-2 can be administered from about every 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 hours after an initial administration. In some cases, IL-2 dosing can be stopped if toxicities are detected. In some cases, doses can be delayed or stopped if subjects reach Grade 3 or 4 toxicity due to aldesleukin except for the reversible Grade 3 toxicities common to Aldesleukin such as diarrhea, nausea, vomiting, hypotension, skin changes, anorexia, mucositis, dysphagia, or constitutional symptoms and laboratory changes. In some cases, if these toxicities can be easily reversed within 24 hours by supportive measures, then additional doses can be given. In addition, dosing can be held or stopped at the discretion of a treating physician.

[0330]

PHARMACEUTICAL COMPOSITIONS AND FORMULATIONS

[0331] The compositions described throughout can be formulation into a pharmaceutical medicament and be used to treat a human or mammal, in need thereof, diagnosed with a disease, e.g., cancer. These medicaments can be co-administered with one or more T cells (e.g., engineered T cells) to a human or mammal, together with one or more chemotherapeutic agent or chemotherapeutic compound. The application also provides materials and methods comprising modified polynucleotides and methods of using such polynucleotides for ameliorating one or more symptoms or complications associated with human genetic diseases.

[0332] A chemotherapeutic agent can be a chemical compound useful in the treatment of cancer. The chemotherapeutic cancer agents that can be used in combination with the disclosed T cell include, but are not limited to, mitotic inhibitors (vinca alkaloids). These include vincristine, vinblastine, vindesine and Navelbine™ (vinorelbine, 5'-noranhydroblastine). In yet other cases, chemotherapeutic cancer agents include topoisomerase I inhibitors, such as camptothecin compounds. As used herein, "camptothecin compounds" include Camptosar™ (irinotecan HCL), Hycamtin™ (topotecan HCL) and other compounds derived from camptothecin and its analogues. Another category of chemotherapeutic cancer agents that can be used in the methods and compositions disclosed herein can be podophyllotoxin derivatives, such as etoposide, teniposide and mitopodozide. The present disclosure further encompasses other chemotherapeutic cancer agents known as alkylating agents, which alkylate the genetic material in tumor cells. These include without limitation cisplatin, cyclophosphamide, nitrogen mustard, trimethylene thiophosphoramide, carmustine, busulfan, chlorambucil, belustine, uracil mustard, chlomaphazin, and dacarbazine. The disclosure encompasses antimetabolites as chemotherapeutic agents. Examples of these types of agents include cytosine arabinoside, fluorouracil, methotrexate, mercaptopurine, azathioprime, and procarbazine. An additional category of chemotherapeutic cancer agents that can be used in the methods and compositions disclosed herein includes antibiotics. Examples include without limitation doxorubicin, bleomycin, dactinomycin, daunorubicin, mithramycin, mitomycin, mytomycin C, and daunomycin. There are numerous liposomal formulations commercially available for these compounds. The present disclosure further encompasses other chemotherapeutic cancer agents including without limitation anti-tumor antibodies, dacarbazine, azacytidine, amsacrine, melphalan, ifosfamide and mitoxantrone.

[0333] A patient may be infused with as many cells that can be generated for them. In some cases, cells that are infused into a patient are not all engineered. In some cases, a subject may receive a percentage of engineered cells in a total population of cells that can be introduced. For example, at least 90% of cells that can be introduced into a patient can be engineered. In other instances, at least 40% of cells that are introduced into a patient can be engineered. For example, a patient may receive any number of engineered cells, 10%, 15%, 20%, 25%, 30%,35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% of the total introduced population.

[0334] The disclosed cell herein can be administered in combination with other anti-tumor agents, including cytotoxic/antineoplastic agents and anti-angiogenic agents. Cytotoxic/anti-neoplastic agents can be defined as agents who attack and kill cancer cells.

[0335] Anti-angiogenic agents can also be used. Suitable anti-angiogenic agents for use in the disclosed methods and compositions include anti-VEGF antibodies, including humanized and chimeric antibodies, anti-VEGF aptamers and antisense oligonucleotides. Other inhibitors of angiogenesis include angiostatin, endostatin, interferons, interleukin 1 (including a and β) interleukin 12, retinoic acid, and tissue inhibitors of metalloproteinase-1 and -2. (TIMP-1 and -2). Small molecules, including

topoisomerases such as razoxane, a topoisomerase II inhibitor with anti-angiogenic activity, can also be used.

[0336] In some cases, for example, in the compositions, formulations and methods of treatment, the unit dosage of the composition or formulation administered can be 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95 or 100 mg. In some cases, the total amount of the composition or formulation administered can be 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 40, 50, 60, 70, 80, 90, or 100 g.

[0337] In some cases, the present invention provides a pharmaceutical composition comprising a cell can be administered either alone or together with a pharmaceutically acceptable carrier or excipient, by any routes, and such administration can be carried out in both single and multiple dosages. More particularly, the pharmaceutical composition can be combined with various pharmaceutically acceptable inert carriers in the form of tablets, capsules, lozenges, troches, hand candies, powders, sprays, aqueous suspensions, injectable solutions, elixirs, syrups, and the like. Such carriers include solid diluents or fillers, sterile aqueous media and various non-toxic organic solvents, etc. Moreover, such oral pharmaceutical formulations can be suitably sweetened and/or flavored by means of various agents of the type commonly employed for such purposes.

[0338] In some cases a carrier can be water, saline, ethanol, glycerol, lactose, sucrose, calcium phosphate, gelatin, dextran, agar, pectin, peanut oil, sesame oil, etc., a diluent, a pharmaceutically - acceptable carrier (e.g., phosphate-buffered saline), a pharmaceutically -acceptable excipient, an adjuvant to enhance antigenicity, an immuno stimulatory compound or molecule, and/or other compounds known in the art. The adjuvant herein may contain a suspension of minerals (alum, aluminum hydroxide, aluminum phosphate) on which antigen is adsorbed; or water-in-oil emulsion in which antigen solution is emulsified in oil (MF-59, Freund's incomplete adjuvant), sometimes with the inclusion of killed mycobacteria (Freund's complete adjuvant) to further enhance antigenicity (inhibits degradation of antigen and/or causes influx of macrophages). Adjuvants also include immunostimulatory molecules, such as cytokines, costimulatory molecules, and for example, immunostimulatory DNA or RNA molecules, such as CpG oligonucleotides. Such a dosage formulation is readily ascertainable by one skilled in the art. A dosage may further contain one or more pharmaceutically acceptable salts such as, for example, a mineral acid salt such as a hydrochloride, a hydrobromide, a phosphate, a sulfate, etc.; and the salts of organic acids such as acetates, propionates, malonates, benzoates, etc. Additionally, auxiliary substances, such as wetting or emulsifying agents, pH buffering substances, gels or gelling materials, flavorings, colorants, microspheres, polymers, suspension agents, etc. may also be present herein. In addition, one or more other conventional pharmaceutical ingredients, such as preservatives, humectants, suspending agents, surfactants, antioxidants, anticaking agents, fillers, chelating agents, coating agents, chemical stabilizers, etc. may also be present, especially if the dosage form is a reconstitutable form. Suitable exemplary ingredients include microcrystalline cellulose, carboxymethylcellulose sodium, polysorbate 80, phenyl ethyl alcohol, chlorobutanol, potassium sorbate, sorbic acid, sulfur dioxide, propyl gallate, the parabens, ethyl vanillin, glycerin, phenol, parachlorophenol, gelatin, albumin and a combination thereof. A thorough discussion of pharmaceutically acceptable excipients is available in Remington's pharmaceutical sciences (Mack Pub. Co., N.J. 1991) which is incorporated by reference herein.

[0339] Cells can be extracted from a human as described herein. Cells can be genetically altered ex vivo and used accordingly. These cells can be used for cell-based therapies. These cells can be used to treat disease in a recipient (e.g. , a human). For example, these cells can be used to treat cancer.

[0340] Described herein is a method of treating a disease (e.g. , cancer) in a recipient comprising transplanting to the recipient one or more cells (including organs and/or tissues) comprising engineered cells. Cells prepared by intracellular genomic transplant can be used to treat cancer.

[0341] Described herein is a method of treating a disease (e.g. , cancer) in a recipient comprising transplanting to the recipient one or more Argonaute modified cells (including organs and/or tissues). Generally, modified cells described herein can be expanded by contact with a surface having attached thereto an agent that can stimulate a CD3 TCR complex associated signal and a ligand that can stimulate a co-stimulatory molecule on the surface of the T cells. In particular, cell populations can be stimulated in vitro such as by contact with an anti-CD3 antibody or antigen-binding fragment thereof, or an anti- CD2 antibody immobilized on a surface, or by contact with a protein kinase C activator {e.g. , bryostatin) sometimes in conjunction with a calcium ionophore. For co-stimulation of an accessory molecule on the surface of modified cells, a ligand that binds the accessory molecule can be used. For example, a population of cells can be contacted with an anti-CD3 antibody and an anti-CD28 antibody, under conditions that can stimulate proliferation of the T cells. In some cases, 4- IBB can be used to stimulate cells. For example, cells can be stimulated with 4- IBB and IL-21 or another cytokine. In some cases 5xl0 10 cells will be administered to a subject. In other cases, 5xl0 n cells will be administered to a subject.

[0342] In some embodiments, about 5xl0 10 cells are administered to a subject. In some embodiments, about 5x10 10 cells represent the median amount of cells administered to a subject. In some embodiments, about 5x10 10 cells are necessary to affect a therapeutic response in a subject. In some embodiments, at least about at least about lxlO 7 cells, at least about 2xl0 7 cells, at least about 3xl0 7 cells, at least about 4xl0 7 cells, at least about 5xl0 7 cells, at least about 6xl0 7 cells, at least about 6xl0 7 cells, at least about 8xl0 7 cells, at least about 9x10 7 cells, at least about lxlO 8 cells, at least about 2x10 8 cells, at least about 3xl0 8 cells, at least about 4xl0 8 cells, at least about 5xl0 8 cells, at least about 6xl0 8 cells, at least about 6xl0 8 cells, at least about 8xl0 8 cells, at least about 9xl0 8 cells, at least about lxlO 9 cells, at least about 2xl0 9 cells, at least about 3xl0 9 cells, at least about 4xl0 9 cells, at least about 5xl0 9 cells, at least about 6xl0 9 cells, at least about 6xl0 9 cells, at least about 8xl0 9 cells, at least about 9xl0 9 cells, at least about lxlO 10 cells, at least about 2xl0 10 cells, at least about 3xl0 10 cells, at least about 4xl0 10 cells, at least about 5xl0 10 cells, at least about 6xl0 10 cells, at least about 6xl0 10 cells, at least about 8xl0 10 cells, at least about 9xl0 10 cells, at least about lxlO 11 cells, at least about 2xlO n cells, at least about 3xlO n cells, at least about 4xlO n cells, at least about 5xl0 n cells, at least about 6xlO n cells, at least about 6xlO n cells, at least about 8xlO n cells, at least about 9xlO n cells, or at least about lxlO 12 cells. For example, about 5xl0 10 cells can be administered to a subject. In another example, starting with 3xl0 6 cells, the cells can be expanded to about 5x10 10 cells and administered to a subject. In some cases, cells are expanded to sufficient numbers for therapy. For example, 5 xlO 7 cells can undergo rapid expansion to generate sufficient numbers for therapeutic use. In some cases, sufficient numbers for therapeutic use can be 5xl0 10 . Any number of cells can be infused for therapeutic use. For example, a subject can be infused with a number of cells between lxlO 6 to 5xl0 12 inclusive. A subject can be infused with as many cells that can be generated for them. In some cases, cells that are infused into a subject are not all engineered. For example, at least 90% of cells that are infused into a subject can be engineered. In other instances, at least 40% of cells that are infused into a subject can be engineered. [0343] In some embodiments, a method of the present disclosure comprises calculating and/or administering to a subject an amount of modified cells necessary to affect a therapeutic response in the subject. In some embodiments, calculating the amount of engineered cells necessary to affect a therapeutic response comprises the viability of the cells and/or the efficiency with which a transgene has been integrated into the genome of a cell. In some embodiments, in order to affect a therapeutic response in a subject, modified cells that can be administered to a subject can be viable. In some embodiments, in order to effect a therapeutic response in a subject, at least about 95%, at least about 90%, at least about 85%, at least about 80%, at least about 75%, at least about 70%, at least about 65%, at least about 60%, at least about 55%, at least about 50%, at least about 45%, at least about 40%, at least about 35%, at least about 30%, at least about 25%, at least about 20%, at least about 15%, at least about 10% of the cells are viable cells. In some embodiments, in order to affect a therapeutic response in a subject, the RHDC polypeptide modified cells administered to a subject can be cells that have had one or more transgenes successfully integrated into the genome of the cell. In some embodiments, in order to effect a therapeutic response in a subject, at least about 95%, at least about 90%, at least about 85%, at least about 80%, at least about 75%, at least about 70%, at least about 65%, at least about 60%, at least about 55%, at least about 50%, at least about 45%, at least about 40%, at least about 35%, at least about 30%, at least about 25%, at least about 20%, at least about 15%, at least about 10% of the cells have had one or more transgenes successfully integrated into the genome of the cell.

[0344] The methods disclosed herein can be used for treating or preventing disease including, but not limited to, cancer, cardiovascular diseases, lung diseases, liver diseases, skin diseases, or neurological diseases by administering to a subject in need thereof RNase-H like domain containing peptide modified cells.

[0345] Transplanting can be by any type of transplanting. Sites can include, but not limited to, liver subcapsular space, splenic subcapsular space, renal subcapsular space, omentum, gastric or intestinal submucosa, vascular segment of small intestine, venous sac, testis, brain, spleen, or cornea. For example, transplanting can be subcapsular transplanting. Transplanting can also be intramuscular transplanting. Transplanting can be intraportal transplanting.

[0346] Transplanting can be of one or more cells from a human. For example, the one or more cells can be from an organ, which can be a brain, heart, lungs, eye, stomach, pancreas, kidneys, liver, intestines, uterus, bladder, skin, hair, nails, ears, glands, nose, mouth, lips, spleen, gums, teeth, tongue, salivary glands, tonsils, pharynx, esophagus, large intestine, small intestine, rectum, anus, thyroid gland, thymus gland, bones, cartilage, tendons, ligaments, suprarenal capsule, skeletal muscles, smooth muscles, blood vessels, blood, spinal cord, trachea, ureters, urethra, hypothalamus, pituitary, pylorus, adrenal glands, ovaries, oviducts, uterus, vagina, mammary glands, testes, seminal vesicles, penis, lymph, lymph nodes or lymph vessels. The one or more cells can also be from a brain, heart, liver, skin, intestine, lung, kidney, eye, small bowel, or pancreas. The one or more cells can be from a pancreas, kidney, eye, liver, small bowel, lung, or heart. The one or more cells can be from a pancreas. The one or more cells can be pancreatic islet cells, for example, pancreatic β cells. The one or more cells can be any blood cells, such as peripheral blood mononuclear cell (PBMC), lymphocytes, monocytes or macrophages. The one or more cells can be any immune cells such as lymphocytes, B cells, or T cells.

[0347] The method disclosed herein can also comprise transplanting one or more cells (e.g., autologous cells or allogeneic cells), wherein the one or more cells can be can be any types of cells. For example, the one or more cells can be epithelial cells, fibroblast cells, neural cells, keratinocytes, hematopoietic cells, melanocytes, chondrocytes, lymphocytes (B and T), macrophages, monocytes, mononuclear cells, cardiac muscle cells, other muscle cells, granulosa cells, cumulus cells, epidermal cells, endothelial cells, pancreatic islet cells, blood cells, blood precursor cells, bone cells, bone precursor cells, neuronal stem cells, primordial stem cells, hepatocytes, keratinocytes, umbilical vein endothelial cells, aortic endothelial cells, microvascular endothelial cells, fibroblasts, liver stellate cells, aortic smooth muscle cells, cardiac myocytes, neurons, Kupffer cells, smooth muscle cells, Schwann cells, and epithelial cells, erythrocytes, platelets, neutrophils, lymphocytes, monocytes, eosinophils, basophils, adipocytes, chondrocytes, pancreatic islet cells, thyroid cells, parathyroid cells, parotid cells, tumor cells, glial cells, astrocytes, red blood cells, white blood cells, macrophages, epithelial cells, somatic cells, pituitary cells, adrenal cells, hair cells, bladder cells, kidney cells, retinal cells, rod cells, cone cells, heart cells, pacemaker cells, spleen cells, antigen presenting cells, memory cells, T cells, B cells, plasma cells, muscle cells, ovarian cells, uterine cells, prostate cells, vaginal epithelial cells, sperm cells, testicular cells, germ cells, egg cells, leydig cells, peritubular cells, Sertoli cells, lutein cells, cervical cells, endometrial cells, mammary cells, follicle cells, mucous cells, ciliated cells, nonkeratinized epithelial cells, keratinized epithelial cells, lung cells, goblet cells, columnar epithelial cells, dopamiergic cells, squamous epithelial cells, osteocytes, osteoblasts, osteoclasts, dopaminergic cells, embryonic stem cells, fibroblasts and fetal fibroblasts.

Further, the one or more cells can be pancreatic islet cells and/or cell clusters or the like, including, but not limited to pancreatic a cells, pancreatic β cells, pancreatic δ cells, pancreatic F cells (e.g., PP cells), or pancreatic ε cells. In one instance, the one or more cells can be pancreatic a cells. In another instance, the one or more cells can be pancreatic β cells.

[0348] A donor can be at any stage of development including, but not limited to, fetal, neonatal, young and adult. For example, donor T cells can be isolated from an adult human. Donor human T cells can be under the age of 10, 9, 8, 7, 6, 5, 4, 3, 2, or 1 year(s). For example, T cells can be isolated from a human under the age of 6 years. T cells can also be isolated from a human under the age of 3 years. A donor can be older than 10 years.

Kits

[0349] Disclosed herein can be kits comprising compositions. Disclosed herein can also be kits for the treatment or prevention of a cancer, pathogen infection, immune disorder or allogeneic transplant. In one embodiment, a kit can include a therapeutic or prophylactic composition containing an effective amount of a composition of nuclease modified cells in unit dosage form. In some embodiments, a kit comprises a sterile container which can contain a therapeutic composition of engineered T cells; such containers can be boxes, ampules, bottles, vials, tubes, bags, pouches, blister-packs, or other suitable container forms known in the art. Such containers can be made of plastic, glass, laminated paper, metal foil, or other materials suitable for holding medicaments. In some cases, RHDC polypeptide modified cells can be provided together with instructions for administering the cells to a subject having or at risk of developing a cancer, pathogen infection, immune disorder or allogeneic transplant. Instructions can generally include information about the use of the composition for the treatment or prevention of cancer, pathogen infection, immune disorder or allogeneic transplant. In some cases, a kit can include from about 1 x 10 4 cells to about 1 x 10 12 cells. In some cases a kit can include at least about lxlO 5 cells, at least about lxlO 6 cells, at least about lxlO 7 cells, at least about 4xl0 7 cells, at least about 5xl0 7 cells, at least about 6xl0 7 cells, at least about 6xl0 7 cells, at least about 8xl0 7 cells, at least about 9xl0 7 cells, at least about lxlO 8 cells, at least about 2xl0 8 cells, at least about 3xl0 8 cells, at least about 4xl0 8 cells, at least about 5xl0 8 cells, at least about 6xl0 8 cells, at least about 6xl0 8 cells, at least about 8xl0 8 cells, at least about 9xl0 8 cells, at least about lxlO 9 cells, at least about 2xl0 9 cells, at least about 3xl0 9 cells, at least about 4xl0 9 cells, at least about 5xl0 9 cells, at least about 6xl0 9 cells, at least about 6xl0 9 cells, at least about 8xl0 9 cells, at least about 9xl0 9 cells, at least about lxlO 10 cells, at least about 2xl0 10 cells, at least about 3xl0 10 cells, at least about 4xl0 10 cells, at least about 5xl0 10 cells, at least about 6xl0 10 cells, at least about 6xl0 10 cells, at least about 8xl0 10 cells, at least about 9xl0 10 cells, at least about lxlO 11 cells, at least about 2xlO n cells, at least about 3xlO n cells, at least about 4xlO n cells, at least about 5xl0 n cells, at least about 6xlO n cells, at least about 6xlO n cells, at least about 8xlO n cells, at least about 9xlO n cells, or at least about lxlO 12 cells. For example, about 5xl0 10 cells can be included in a kit. In another example, a kit can include 3xl0 6 cells; the cells can be expanded to about 5xl0 10 cells and administered to a subject.

[0350] In some cases, a kit can include allogenic cells. In some cases, a kit can include cells that can comprise a genomic modification. In some cases, a kit can comprise "off-the-shelf cells. In some cases, a kit can include cells that can be expanded for clinical use. In some cases, a kit can contain contents for a research purpose.

[0351] In some cases, the instructions include at least one of the following: description of the therapeutic agent; dosage schedule and administration for treatment or prevention of a neoplasia, pathogen infection, immune disorder or allogeneic transplant or symptoms thereof; precautions; warnings; indications; counter-indications; overdosage information; adverse reactions; animal pharmacology; clinical studies; and/or references. The instructions can be printed directly on the container (when present), or as a label applied to the container, or as a separate sheet, pamphlet, card, or folder supplied in or with the container. In some cases, instructions provide procedures for administering nuclease modified cells at least about 1, 2, 3, 4, 5, 6, 7, 8, 9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, or up to 2 days, 3 days, 4 days, 5 days, 6 days, or 7 days after administering a chemotherapeutic agent. In some cases, instructions provide procedures for administering engineered cells at least 24 hours after administering a chemotherapeutic agent. Nuclease modified cells can be formulated for intravenous injection. Nuclease modified cells can be formulated for infusion. In some cases a kit can contain products at a pediatric dosage.

[0352] Further uses of the methods, compositions, or kits described herein can include one or more of the following: genome editing, transcriptional or epigenetic regulation, genome imaging, copy number analysis, analysis of living cells, detection of highly repetitive genome sequence or structure, detection of complex genome sequences or structures, detection of gene duplication or rearrangement, enhanced FISH labeling, unwinding of target nucleic acid, large scale diagnostics of diseases and genetic disorders related to genome deletion, duplication, and rearrangement, use of an RNA oligo chip with multiple unique gRNAs or gDNAs for high-throughput imaging and/or diagnostics, multicolor differential detection of target sequences, identification or diagnosis of diseases of unknown cause or origin, and 4- dimensional (e.g., time-lapse) or 5-dimensional (e.g., multicolor time-lapse) imaging of cells (e.g., live cells), tissues, or organisms.

EXAMPLES

Example 1 : Nuclease Mining

Pipeline 1

[0353] An NCBI RefSeq database was used to search the WIPI location of various PIWI sequences using TBlastN. Sequences that were analyzed had WIPI 1 hit +/- lOkb. Amino acid sequences were predicted using GeneMarS for relevant hits. Relevant hits were grouped into protein families, secondary structure and functional enrichment of adjacent regions. Protein family hits were analyzed against the CDD database. Secondary structures were analyzed. Functional enrichment analysis reviewed adjacent regions for domains involved in defense, stress response, Cas system, DNA repair, or toxin defense, FIG. 2

Pipeline 2

[0354] An NCBI RefSeq database was used to search the WIPI location of various PIWI sequences using TBlastN. Sequences that were analyzed had WIPI 1 hit +/- lOkb. Amino acid sequences were predicted using GeneMarS for relevant hits. Relevant hits were analyzed using amino acids in ORFs using RPS-BLAST against the CDD database. Candidate Argonaute sequences were identified.

Results

[0355] Argonaute was encoded in -65% of the sequenced eukaryotic genomes, dispersed over at least four of the five eukaryotic supergroups. In contrast, a position-specific iterative basic local alignment search tool (P SI -BLAST) search of the RefSeq database (November 2013) using representative PIWI domain sequences as queries shows that Ago proteins are encoded in -32% and -9% of the available archaeal and bacterial genomes, respectively, and in 17 of 37 prokaryotic phyla. Similarly to most prokaryotic defense genes42, pAgo shows a patchy distribution, with at most 70% representation in any bacterial or archaeal phylum.

Table 10: Nuclease origin summary

Table 11 : Taxonomic Distribution

Table 12: Taxonomic Distribution

Example 2: Identifying suitable nucleases [0356] A suitable nuclease is identified by secondary structural alignment to an RNase-H protein from individual genome sequences or gene assemblies from metagenomics. RNase-Hl, RNase-HII,

RVE/Transp, Argonaute, Prp8, RuvC, RuvC, RuvX, RNaseT, and DNAPoIII were aligned, and alignment results revealed that these proteins share secondary structural homology. Structural alignments confirm the presence of a nuclease domain.

Example 3: RNase-H-like domain-containing (RHDC) polypeptide constructs

[0357] An RNase-H-like domain-containing (RHDC) polypeptide (e.g., an Argonaute protein) is fused to a nucleic acid unwinding polypeptide (e.g., a helicase domain) via a designed or screened peptide linker sequence, utilizing PCR techniques, molecular cloning or recombinant DNA techniques. The resulting fusion polypeptide is isolated and purified.

Example 4: Synthetic helicase-Argonaute fusion constructs

[0358] A catalytically dead Cas9 (e.g., dCas9), is guided to a target sequence by a single guide RNA (sgRNA). To achieve genomic disruption, dCas9 can be used by itself (whereby it represses transcription through steric hindrance) or as a helicase. DCas9 when fused to an RHDC polypeptide, or functional portion thereof, allows for a two-step genome editing system whereby dCas9 is first directed to the target sequence where it unwinds the double strand helix at a targeted site within the target sequence and in a second step, the RHDC executes a genomic break at the unwound target sequence.

Example 5 : Genomic engineering using RNase-H-like domain-containing (RHDC) polypeptide constructs

Neon transfection of Tee lis

[0359] Unstimulated or stimulated T cells are electroporated using the Neon Transfection System (10 uL Kit, Invitrogen, Life Technologies). Cells are counted and resuspended at a density of 2 x 10 5 cells in 10 uL of T buffer. 1 ug of Argonaute-helicase construct or mRNA and 1 ug of gRNA targeting a target gene (e.g., an immune checkpoint gene) plasmid or mRNA are added to the cell mixture. Cells are electroporated at 1400 V, 10 ms, 3 pulses. After transfection, cells are plated in a 200 uL culturing media in a 48 well plate.

Flow cytometry

[0360] Electroporated T cells are analyzed by flow cytometry 24-48 hours post transfection for expression of the disrupted target gene. Cells are prepped by washing with chilled IX PBS with 0.5% FBS and stained with APC anti-human CD3e (eBiosciences, San Diego) and Fixable Viability Dye eFlour 780 (eBiosciences, San Diego). The following mAbs and reagents are used with the indicated specificity and the appropriate isotype controls. From BD Biosciences: APC-conjugated anti-CD3 (555335), FITC-anti-CD8 (555366), PE-anti-CD8 (555635), PE-anti-CD28 (561793), PE-anti-CD107a (555801), and PE-anti- -2 microglobulin (551337), FITC-anti-HLA-I (555552), APC-anti-CD137 (550890). From Biolegend: APC-anti-PDl (114102), APC-anti-PDLl (329702), FITC-anti-CD45RO (304204), APC-anti-CD62L (304814). From Beckman Coulter: PE-anti-Vbl3.1 (IM2021U). Data are acquired on a FACS Accuri (BD Biosciences) using CellQuest version 3.3 (BD Biosciences) and analyzed by FCS Express version 3.00 (De Novo Software) or Flow Jo version 7.6.1 (Tree Star, Inc.).

Measuring allele modification frequencies using T7E1 assay, TIDE, and sequencing of PCR fragments

[0361] The level of genomic disruption of a target gene in T cells is determined by a T7E1 Nuclease assay (NEB). The percent target disruption is quantified by densitometry. PCR products are ligated to TOPO cloning vector (Invitrogen) then transformed in E. coli. A single clone is picked and sequenced to calculate the indels and insertions. PDl disruption is confirmed by Sanger sequencing. The PCR primers used for the amplification of the target locus are as follows: PD l forward, 5'- GTAAT AAAATGCTCAGC ACAGAATA-3 '(SEQ ID NO: 382); PDl reverse, 5'

GAGAAAA AT ATC ACC AGCTC ATCT-3 ' (SEQ ID NO: 383). For analyzing allele modification frequencies using TIDE (Tracking of Indels by Decomposition), the purified PCR products are Sanger- sequenced using both PCR primers and each sequence chromatogram is analyzed with the online TIDE software. Analyses are performed using a reference sequence from a Cas9 mock-transfected sample. Parameters are set to the default maximum indel size of 10 nucleotides and the decomposition window to cover the largest possible window with high quality traces. All TIDE analyses below the detection sensitivity of 1.5% are set to 0%.

ELISA assays

[0362] Target cells are washed and suspended at 1 χ 10 6 cells/mL in R10 medium. Next, 100 μΐ. of each target cell type is added in triplicate to a 96-well round-bottom plate (Corning). Effector T cells are washed and resuspended at 1 χ 10 6 cells/mL in R10 medium, and then 100 μΐ. of T cells are combined with the target cells in the indicated wells. The plates are incubated at 37°C for 18 to 24 hours. After the incubation, the supernatant is harvested and subjected to an ELISA (eBioscience).

IFNy ELISpot

[0363] RNase-H-like domain-containing (RHDC) fusion construct-edited T cells are plated in ELISpot plates (R&D Systems) at the concentration of 2 χ 10 4 cells per well with irradiated allogenic PBMCs. Another experiment is performed by co-culturing of allogenic PBMCs with irradiated edited T cells. Cells were incubated for 18 hours at a stimulator-to-responder ratio of 1 : 1. Experiments are performed according to the manufacturer's instructions. The spots are automatically quantified using an ELISpot plate reader for scanning and analyzing.

Example 6: Detection of genomic disruption at the protein level

[0364] To determine whether observed knockout frequencies at the genetic level correlate with loss of protein; the expression of target protein after knockout is assessed. Peripheral blood (PB) T-cells and TILs are re-stimulated at day 14 post-electroporation using plate bound anti-CD3 and soluble anti-CD28 antibody and assessed the loss of target gene by Coomassie Blue stained gel.

Example 7: RHDC gene cutting assay Gene Editing Reporter System:

[0365] The RHDC gene cutting assay is a highly sensitive gain-of-function mammalian gene editing reporter system, FIG. 9. Transient plasmid DNA, FIG. 10, was transfected into HEK293T QMS cells in wells of a 24-well plate. All plasmids were prepared from E coli stellar cell using endotoxin-free DNA preparation kit. In summary, 5 χ 10 4 cells were plated in 0.5 ml complete DMEM growth medium per well in a 6-well plate. Cell cultures were incubated under 37°C for approximately 24-36 hours before transfection. Cells were about 60-70% confluent prior to transfection.

A: Immediately before transfection the TransYT-LTl Reagent: DNA complex was made Table 13.

Table 13 : Jram!T-LTl Reagent: DNA complex recipe

[0366] The Reagent: DNA complex was generated by: Warming the JrarasIT-LTl Reagent to room temperature and vortexing gently before use. 50 uL of Opti-MEM I Reduced-Serum Medium was placed in a sterile 1.5ml tube. [¾]^g plasmid DNA was added followed by pipetting to mix completely. 1.5 uL

7ram!T-LTl Reagent was added to the DNA mixture and pipetted gently. A 30 min incubation was finally performed.!

B: Complexes were distributed to cells in complete growth medium

[0367] The JrarasIT-LTl Reagent: DNA complexes were added drop-wise to different areas of the wells. The plate was gently rocked back-and-forth and from side-to-side to evenly distribute the TransYT-

LT1 Reagent: DNA complexes. SThe mixture was incubated under 37°C. Cells were passaged as necessary.

C: Flow cytometry analysis of transfected cells

[0368] Transfected cells were trypsinized utilizing 0.25% Trypsin. The cells were spun down at 500g for 5 minutes and resuspended in DPBS with 5% FBS and 0.5m EDTA and passed through the top-filter of 5ml FACS tubes. Cells were analyzed using a Beckman CytoFlex flow cytometer at Day3, Day 6 and Day 10.

RHDC Gene Editing in HEK293T

[0369] Transient plasmid DNA, FIG. 10, was transfected into HEK293T QMS cells in wells of a 24- well plate. All plasmids were prepared from E coli stellar cell using endotoxin-free DNA preparation kit.

In summary, 5 x 10 4 cells were plated in 0.5 ml complete DMEM growth medium per well in a 6-well plate. Cell cultures were incubated under 37°C for approximately 24-36 hours before transfection. Cells were about 60-70% confluent prior to transfection.

A: Immediately before transfection the gene cutting mixture was generated

Table 14: Recipe for Argonaute gene editing in HEK293T assay

B: Complexes were distributed to cells in complete growth medium

[0370] The mixture was added drop-wise to different areas of the wells. The plate was gently rocked back-and-forth and from side-to-side to evenly distribute the mixture. The mixture was incubated under 37°C. Cells were passaged as necessary.

C: Flow cytometry analysis of transfected cells

[0371] Transfected cells were trypsinized utilizing 0.25% Trypsin. The cells were spun down at 500g for 5 minutes and resuspended in DPBS with 5% FBS and 0.5m EDTA and passed through the top-filter of 5ml FACS tubes. Cells were analyzed using a Beckman CytoFlex flow cytometer at Day3, Day 6 and Day 10.

Table 15: Gene Cutting Assay Comparison

Example 8: Genomic thermodynamic calculation of an Assembled Genetic Editing Molecule

[0372] Measurement of energy of a genomic editing system of Assembled Genetic Editing Molecule

(AGEM) can be calculated by considering the amount of ATP, ADP, and percentage of modified DNA. [0373] AGEM is a modular system comprising an RNase H-like domain-containing (RHDC) polypeptide, a nucleic acid unwinding polypeptide, and an optional regulatory domain polypeptide (RDP), FIG. 34. The energy cost of a genetic thermodynamic reaction can be measured in a biochemical system, by providing finite amount of ATP into the reaction. At the end of the reaction, a quantification of the amount of DNA that is properly modified and the amount of ATP and ADP remaining in the reaction can be analyzed by calculating ([ATP]-[ADP])/[modified DNA], FIG. 33. This formula can estimate how much energy per editing reaction is expended. The exact energy cost per editing event will differ as the modules of the editing system can be interchanged. For example, an RHDC can be interchanged to any nuclease domain (from a CRISPR system, Argonaute system, meganuclease, Zinc Finger nuclease (ZFN), TALEN, or any restriction enzyme system) without affecting the nucleic acid unwinding agent or RDP function.

[0374] A measurement of a genomic thermodynamic reaction of a genome editing molecule can be determined by taking dsDNA that is lOObp in length which contains a perfect matching sequence for the guiding polynucleic acid (gDNA or gRNA) into the reaction. 1 uM of gene editing molecules are added and 1 uM of guide DNA or guide RNA is added such that a ratio is: gene editor: target DNA = 1 : 1. 10: 1 (10 uM) ATP is supplemented into the reaction. The reaction will be performed for 1 hour. At the end of the reaction, stop buffer is added to the reaction (e.g., MOPS). The amount of remaining ATP is measured by a standard ATP assay based on phosphorylation of glycerol to generate a product that is easily quantifiable by colorimetric (OD = 570 nm) or fluorometric (Ex/Em = 535/587 nm) assays. The amount of target DNA that is modified is quantified by a T7 Endonuclease I assay, which recognizes and cleaves non-perfectly matching DNA (the edited DNA) followed by polyacrylamide gel electrophoresis. The total energy consumed by the gene editing molecule is calculated by ([ATP]-[ATP] re maining) / [E ditC d DNA].

Example 9: Helicases that co-localize with Argonauts and their optimized nucleic acid sequences

[0375] The sequences described in Table 16 are optimized to remove any known restriction enzyme recognition sites, cryptic gene expression regulatory sites, sequences that are predicted to sequester transcription or translation, repetitive sequences that are more than 10 bp. The optimization doesn't change protein peptide sequences, and is purely based on the redundancy of codon usage for using different triplets of nucleotides to encode the same amino acid.

Table 16: Nucleotide sequences for Optimized Ago Helicases

SEQ Sequence

ID NO

59 ATGCCCAAAAAGAAAAGGAAAGTGGAAGACCCAAAAAAGAAAAGAAAAGTCGGATCCGGA TCCATGTCTATCTTCGCAAATTC ATTTGAAATTGAGGTTCCCACACTGCCCGCCGAAATATATAAGATCGATCCACAGCCGTC CGAGAGCGACCCCTGGAGGGCAC TGGATTCCTATGAGGAAAGCATAGAACGGACTTGCCGCGGTAGCGCCCACCGCATTAAAA ATTCTGGTGACTGGGCCATCTTG TCCATCGCTGCCACGGATAGTCAAGATGAGCTTCAGGGGCCAGACGGGACCCGCCTGGTT AGGACTAGCGAGACCACAGTGGG GGGTGAGAACGGAAGATACCAAAGCGCCGTGAAACAAGCCCTCCGCAACAGCCTCGAGTG GTTCGTAACAAACCACCTCGACT TTTGGGAGAGGGGGAATAGCCAGGCATTCTACGAATGGGACCCAAGCAATACAGTGGGAA TGTATGACGCCTATCACGGCTAC AAAGCTACCATTGATTATAACGATGGGTACTATCTGACAGTGGACTCTACCGTGAAGTTT ATTAGCTCCAAATCCATCAACGA GTACCTGTCAGAGCTCGGGCGAGACGTAGTGAAGACTCGCTTCTTCGACAGGTATTGCAC ACTGATGTCAGACAGCCGCCCCA GCGTTGAGCTCGTATCCCTGGCAGAGGATTTGACGGTGAGTGACAAGACCATGAACTTCG GTGGGAAGGAGATGTCCGTGATT SEQ Sequence

ID NO

GACTATATCAAATCTGACGACAAGTACTCTCAGGAGGCATTCGATGCTATTGACCCT GATGAGCCGCTTGCCCGCGTTAGATT CCCGTGGAGCGATGACCCAGTTGATACAGCCCCGTCACTGCTGCACCCTCTCCCTAACGG TATCGAACCTAAAATGACCGGTT ATGCCGCCAGAAGTGCCGACGAACGGTGGCGCGACACCGAACGCTTTGCTAAGCGGATTG ATTACGTTCAGGTGTTTGACGAA CAGTGTAACGTCTCCGATGAACCAAGAAGGGGCGGTTCTGTCCACGATTATCCGTCTCTC AAGTTCGGCGGCACCGAAGTTCT TAACCTGGGGCAGCAGAATCCACTCAATACCGACCAGACCGTGAATAGACAGAATTGGAG GTATCTGGTGCGCGACTTCCTGG AGGAGTACGGACCAGCTGTGAGACAACGGGGCGCTGCCCAGATTGATGTTGTTCATCCGG ACGGTCGAAGCGATATGGCAGCA GAGCTCTTTGCCAATCTGTCTAAATACCTGGAGAATTTTGTGGGGATTACGGTGCGGGAC CAGCCCGGTATTGTGTCCCATAG CGACTACCAGAAGCTGCGAGAATGGAGAGAACGGCACGCTGAGGATAGCGATGGAATCTT GGTACTTCAGGAGGACGGTTCAG ATAGGTACCTTGACATCGTGGCGGAGCTGGAGGGGAACCCTACACAGGGGATTACCGTTG GAACATATGAATCATCACTTAGG AGCAGTGGGTTCGATGACAGCATGTATAATATTGCCTGTGGGCTCGCCACCAAAATGGGA GTCAGACCTTTTCTGCTCGATCA ACCTCTGAATGCCGATCTGTTTCTCGGTATGTCAGTGACCGGAGACGAAGTCAACAACGC CACAGCTGTTTTGGTGTCCGGAG AGGATGGGGACTTGATTGGCCAGACCCAGACGAATCTGGCCACCGGCAGTAGCACTGTGA CAGGAAAGGATGTTGCAGCTAGG ATCGTTAGGCAGCAGATCAGTGCCGCCATCGACAGAAATCAACTTGGATACGTAGGAAGC TTGACAATTCATCGGAATGGTCA GTTTGGGGACGGCGAGCTGGAGGGCATCAGAGAGGGCATCGCTGAACTCCAGTCCTCCGG TGATCTCAACGAAGAGTTGACTT GGCAAGCCATTGAAATATCTGATGGCAGCAGCCATAGACTGTACACTGATGACTCCGGAA GTATGGTGCAGACGGGCAGTGTG ATGCCACTCGACGATAAGAGCGTTACAGTGGTTACTTTCGGCTCCCCACACATCCATCAG GCAACCCCTGACCCACTTTATTG CACCATTGCTGACGGAGAGGGAGAAACTGATATCAACCTGATCGGCACTGACATTCTGTC CTTGTCCTTTTTGAATTGGGGCT CCCCAATGATGAAGATGAAGCAACCACTGACCACATACTTGCCAGCCGAGATGCATGACA TTCTGTCAACCGGAACTCAACTG AATCACCCTCCTTTTTAGTAA

60 ATGCCTAAAAAAAAACGGAAGGTTGAGGATCCGAAAAAAAAGCGAAAGGTGGGCAGCGGC TCTATGAGCGATTTTGACCCTAA TGAGAAACAGGGAAGACTGATCGAGAGCACCGATGGCTTGCACCTTGTTGATGCAGGAGC AGGTACCGGCAAAACTTTCACTG TAACACGGAGATACGCCACAATTGTCGAACAGTCTGACGTGGATCCTGCTGATATTCTCT TGGTGACTTTCACAAACAATGCC GCCGCCGAGATGAAAGAGAGAATTGTGTCCCAGTCCGAATATGGGATGCGGGAGCTTACC GACGCTCCTATTCAGACCTTCCA CTCCCTGGCAAACGACCTGTTGGAGGAGCATGGGCACGCTGTGCCTACGTATCTCGGTAT AGATGATAGGATCACAGGGTCTA CACAGATCCTGGAGGATGAGCTTGTCGAGGAGGCACTGTTTGACGAATTCATAGGGCAGT TCATGGACACTAACCCAGAGTAT AACAGTTTCTTCACTGCTATCAGTGATACTACGGAACTCCTGGACCTGATCAAGGAGCTG GCAGCTAAAGGTGTTTTCCCCAC CGCCAAAGGCTGGTACAGGGACGGTGAATCCCACCTGGACGGCGACTTCGAGGCTTTTGA AGACCTCTTCGAAGAAATAAATG AACCAAGAAACGGCGGGTCCAAGCAGTCTAGACTCAGGGCCAAACTGAATAAGTACGGAG AGAATAAAGCTTATCTGCCCGAG GCACCAGAGAGATGGGAAATCAGAGACGGCGGCAAACAGGTCCCAGATACCGTGGCTAGG CGCGTTTTCGAGGAAGACAGGGA GGAGTTGAAGACATTCATTCACGACATGTACCACGCTTATCTTTCCTTCGCTCTGAGGAG AAATTACCTCAATTTCTCTTTCT TGCAGCTGTTCGCTTTTGTACTGCTGTGTGAGGACCACGAACTGCGGGAGGAGCTGGGCT ATGAATATGTAATGGTAGATGAG TTCCAGGACAGTAGCGAGATCCAGTTTAAGCTCACTCTGCTGTTGGCAGGTACCAACAAT ATCTGTGTGGTAGGGGATTGGAA GCAGTCCATATATTCATTCCAATACGCCGACGTCGATAACATAAGGGAATTTGAAACTCG CCTGGAACGCTTTACTACAGAAC TTAATAATGACTATGACAGGATCCAGTACCCCACAACTCCCGTGACCAAGCTGGAACTGG ACACAAACTACCGGTCAACCCAG TCAGTACTGGACTTTACGGAACACGCACTGACGACACCTGCCACATCCAGCGAGTCAGTT GATGTGGATGCCGTGAGGGAGAA GATTACCTCCTTGACCGCTGACGCTGATTACGATAACAGTATCATCGAAGCTATCAGATC CGATAAAGAGCACGAGGCCATTT TGACGAAAATCGATGAAATCACCGGAAATGAAAGCTATGCTGTCGAGAAGGACGGGGAAC TTAGAGCCCCCACCTATTCAGAT ATCGCCGTGGTAACACGCACTAGGGATTTTGGCAGAGACTTGTTGGATGTTGCAGAGGAA TGTGGCCTTCCTATGGCTTATGA GGGCGGGATCGAGGTCTTTAGAACCGACGCGGCAAAACTGCTGCTGGCTTGGTTCAGGAT ACTCGAGCGAGACGCTGATCGAG GGTGGGCTTTGGTACTCGAGGAAGCGGGATATACTATAGACGAGAGCAAAGCCGTGCTGA AGAACGAGGCCTACCCAGAGATG ATGATAGGCTTCAGAGAGGAGCTTAGGAAGCTGGAGACCTTCGGAGGGGTTGCGCGCCGG GTGTTCGAGCGGTATGGCTGTGA AGGTCCTACCGCTGATGTGGTCCTCCATACTGTGCAGTCTGTGTATGAGGCGACCACACT GACTCGCGGGGACCTGATCCGGT TCATAGAAGACGCCATTGAGTCCGGAAGCACACACGAAGTCCAGGCCGGCGCAGGTACTA ACAGTGTCACAGTTCAGACTATT CACGCAACCAAAGGCCTCGAGTACCCAATCGTGATTCTGGCGAACATGAACACCAATAAG TTTCCATCCAGTGGTGGATCCGG CACCGATATCTCATACGACGATCCCATCGGTTTGAGAAGACGCAAACTGTACAGTGAGGT TGCCCATGGGGTCCCATACGTGT ATGACAATTGGAAACTGGACGTGCTGAGACGCTGTCTGCCCCGCGAATATGACGAGGAGA GGAGGCTCCTGTACGTTGCTATT ACACGGGCTGAAAACCACGTGGTTTTCACTGCTGGTGAGAATCCTAACACTTTCCTCGAA GAACTGCCTGTGGATGTCGAAGC GGTCAATCCGGACTTGTCAAGTTTCACACCTGAACCGGTCGACGAGAGCCCATTCGAGGT CGAGATCTCTGCCTCAGAAGGGT CTCCGCGCTTTTCCCCTCATACGTTTATCGATGACGCTGTGTTTGACGACGGAACAGGGG GAAGAGGTATGGAGTTCGGTTCT CAGGTGCACGACTTCGCTGAGGCATATGTGCTTGGGGAAGATGTCACCAGTTCCTCCCCT TAGTAA

61 ATGCCAAAGAAGAAGAGGAAAGTGGAAGACCCAAAAAAGAAAAGGAAAGTGGGATCAGGC TCTATGCACGATGATCACGACAC CGACCACTCCCAGACTGACCTGACAACTAACCCCAAGGACAACTCTAACAACGGGGATAT TGACATCGAGACTGACATTCTCC AGCTTACAGGGGAGGACCTCGAATCTACCTACCCTAACAATCGGTACTTCGGGCAGGTTC ACGAAAACTTCGAAATACCCGCT AGAGAAGAGCAGACAGTTCCCGCTGGCGACGTGCTTCCTCCTAAAATTGCGCAAAACCTG GAGTTCAACCCCTGGTCCCATCA GGCGGAAGCCTTGCAGGTTCTGGATCGGGGCGACAACGTCTGTGTGGCCACCTCAACTTC TAGTGGAAAGACCTTGGTGTACG GTCTGCATATCGCCAGACAGTATTTGGAAGACCCCGAAACACGCAGCCTGATTGTCTACC CTACTAAGGCTCTGTCTAGAGAC CAAGAGCAGGAATTGAACGAATTCCTGCGAAACACGTTGGGGCTCGACATTTCCGTTGGC GTGTACGATGGGGACACCAAATC AGAAGAGAAGAGCCGGATCAGGGATGAATGCAACGTGGTGATAACCAACTTTGTGGGCCT CAATCAGTATCTGGAAAGCCACC ACCTGTGGGCAGACTTCCACAGCAACTGTAGTCTGGTTGTTATTGACGAAGCGCATATGT GGACCGGCCTCGGAGGTATGCAT GTAGCCTGGATTTTGAGGCGAGCCCAGCGGATAATTGACTACTATGGAGGCGATCCACAG TATGTGCTCACTACCGCAACGAT TGGCAACCCAACAGAACACGCATTGGCTCTCACAGGCGAGCCGGCTGCGGTCGTCGACGA GGATGGAAGCCCACGCGGAATTC GGCATCTTGTTTTTTGGGACCCACCAATGAGCGGGGATGACGGATTCACTGATGATATAG ACTCCCCAGCTCTGTCCAAGCGA CCAGCAACAGTGGAGGCACCTGAAGTTTGGGCTCATATGTGTCAGAAGAACGTTCAAAGC CTCCTGTTTTGTGACAGCAGGAA GCTGACAGAGTTGAGCGTGAATAGGGCGAAGAGATTTATATCAGATCCTAAAAATCGGTA TCAAGGACGGCCAGACCTTGCTT CATATCATGCTGGACATGGAAAGCAATCCCGGAGAGGGACAGAATACCAGCTTAAGGAAG GCCAACTCGACGGGGTGTCAACG ACATCTGCCTTGGAAGTCGGCATTAATATCGGGGGGGTCGACGGCACCGTCTTGATGGGT TATCCTGGGTCTCGACAATCATT CTGGCAGCGCATCGGGCGGAGCGGTAGGGGGACAAGAGACGCGCTGTCTGTTTTCGTGCC CTCCCACTCAACCTTGGATCAGT ATATCCTGAGACACCCAGAATATGTCCTGGAAGAGGATCACGAGTCTGCCGTAGTGGATT TGGACAACAACCCAGTTTATTTG CAGCAGTTGAATTGCGCAGCCCAGGAATTGCCCCTGACACGGGATGACGCTGAAGACTTC GGAGGGGAAGAACGCTTGGAGCG GGCAGTCGAATATGGCAGGAGAAAGGGTGACCTTGAGGGCTCCCTGGACAGTGGAGTTAT GTACGCACACCGCGATCGGCCTC AGGACGCAATCTCCCTTTATAGCTCAGGAGGTAACACCTTCGACGTGCGACTGGCAGGTG ATGGATCTATTGATCATCAGCCC SEQ Sequence

ID NO

ATCGGGAGGGACAGGGCATATCGCGATTATCACGAGGGGGCCACAGTGCTTCACCAG GGCGAGCAGTACCAGGTGGTTGAACT GAGGGAGGACATACCCCAACCTTACATTTCACTTGAAAAAGCGAATGTGAGTTATTACAC CCAGTCACAAGGACAGGTAAATA TATATGACACTGTTGTGGAAGATAGTAGAGAGGTAGGGCCGTTTACGCTTAACTGGGGAT ACGGGACAGTTTCTATCCACTAT TCCACTTACCTCAAGCGAGAGATTGGATCTGGCGATGTGTTGGAGCTTGGGAACGAGACC GGGGTGCCTCCGCTCGAGATGAG AACCCAGCTGTGCTGGGCCGAAACCCCTAATGACATCGAGAGAGCCATGTTGAACAAGCA TAGTGAGTATCATAACCCCGAGT GTATTAACCTCCCACCTCGGCTGCACGGCTATCTCGGAGGTATTCATGCTGTTGAGCACG CTATGATCGCCGTCTCTCCACTC GAGTTGAAAGTGGATGGCGGAGATATCGGCGGCCTGGCGACAAACCGCCTGCCCGGCAAT CCTGACAAGTCAGGGTGGTTCAT CTATGATGGAATCGAAGGAGGATTGGGGTTCTCTAGGAGTATTTATGAGCACTTTGAAGA TGTCGCTCGAAGAGCTCATGATC TGATTGTTGACTGTTCATGTGGTCGGGACGAGGGATGCCCAGCATGCACAATGGATGATC GCTGCGGCAATGATAATAGGCCA CTGTATTCACCAGCTGCCGCCGACGTGATTGAGCATCTGCTCGGCGATCAAGAGGAGGAC GACCTGAACGAGCACCTCCCCGA GACAGGGTCTGAAGTAACTCCTGTGGAGGAACAACGCCCACCTGCATCAATATCTTAGTA A

62 ATGCCCAAAAAGAAGAGAAAAGTGGAGGATCCAAAGAAGAAAAGGAAGGTGGGGTCCGGG AGCATGTCCGAGCTGGAGACTAA CATCTTCCCGATTACTAACCTGCACGAGTTGGAGTCCCGCTTTAGGCTGTACAGGGTTAG AGGGTTGAGCATTAATCAGGAAG AATACGATCCCAATACCCAGACCTTGGTTCGGAAACTTAGTTACAGTATGAGGTCACCGG TTGCCGTAATCCTCAGAAACAGC GACCCGTTCCTTGCCCTGCCTATCGATGCTCCAGAACCGATCTCCCCCTATCCACTTGTG CGAGCTACCGCCGTTTTCGAGAA AACGGATGAAGTCTTTACGTTGGATTACGAAAGCCCTACTCCTGAAACTGATGCACTGAG GATCCGCTTTCTTCAATTCATAA TTCAAGGAGCTCTTTTCAGGAATCCCAGTCTGTGGCAGCCCTCAGCAGGGACACCCTTTT TCGAAAGGAGCCCGGTCCTGGAG AAGGCAGGGATTTGCGCATACCGGGGCTTCAGTGTACGGGTCGTCCCCATTGAGGGGGGT AAGCTGGGGATATGCGTTGATGT CAAGCACAGATATGTGTCTAAGAACCCCATAGAAGCCAATATTAAGCGGGAAGAGTTTCG AAAGTACAAAAATGGCCGATGTA TTTACCACTATGGACACAACTGGTATGAGATTAAGCTTCAGGACCATACTGGGTTGAGCG TTTCCGAACAAATGATTTCAAAT GGCACCGCCAAGCCAATTTCCCTGTACCAGTTCATCATGAACAATGCTCCTAAGCCTCTC CCTCGCGAAGTGATAGACATGCC CCCAGACTCTCCCGCCGTCAAGTACATGACCTCTCGCGATGAGGTCAGATATGTACCATC TATTCTCTGTTACCCAGTGTTCG ACACATCAGACCCACGCGTGAAACCTACCCATCGCGGTACCATCCTGCTGCCCAATGTAA GGAGACAGTACATTCATAATTTT GTGAATTCCCACCTGACGGACGTGAGAAGCAAGGATATGGCCATCAGGATCAGCTCTAAG CCAGTGATCGCCCCCACAAAAAT CTTCTTGCCCCCAGATCTGGCGTTTGGTAACAACACCGTGTTCAGCGTCCGGGGTACTCC CGGGACGACCTACGTGAGCCTGG AGCAGCTCGGCCAGACAAGGATTTCAGCTCTCTTCAACCAGAAAATTGGGCCCTACGATA GTAGACCTCTCGACAGGCAGTAT ATGATACTTCCCAAGTCCGTCTGGGACTCACACGGGCCCGTCTTCCTGAACGACTTTAAG AAGATTATGAATGAACTGTACTT GCACGAACTTCCTTATAACCCTATTGTGGTGACCTATAATGATCTGAGTGCTAAGACTTA CGCGCTGCAGGGGAGGGCAATTC TCGACGCCGTCGATAGCGAATTGAGGGAGCCAGGCTACGGCGTCGTCATGATACATGAAA CAGTGGATAGAAGAAATCGCCAG CATGATCAACTGGCCGCCATGGTTATGAGAGAACTTAGGAACCGGAGGCTGTACGTGAGC GTGATCCACACTACAGTGACCAA AGACTGTTACCAGCTGCCTCAAAACGCTCCGATAGGCAAGGCCTACTGCCCTGTGGCCGG AAAGCAGGGTAAACTGAACGGCT ATCTGAGGAATGTGGCCATAACAAAAGTTCTCCTCACAAACGAGCGCTGGCCTTTTGTTA TAAGTACCCCACTTCATGCCGAC TTCACCGTGGCCTTCGACGTGCAGCTGAATACCGCCTGCTTCACATTTATCGGGAAGAGC GGGAGTGACATCCGGACAGTTCT CAAGACCAGCAACCAAAAAGAGCGGTTGAGTAAGGCTCAGGTGCGGCAAACACTGTTGGA GGTGCTGCGCCAGGAGGTCGGCT TTGGAAGGCGCACCATGCAGACTATAGTGGTTCAACGAGACGGCAAGCTGTTTGCTAGCG AGATCGCAGGGGCGAAAGATGCC ATCGAAATTGTTAAAAAAGAGGGCATTCTGCCCAGCGACGTCTCTCTGAACTTCATTGAA ATCCCTAAGAGCAGCGTGGCTCC TTTTCGACTGTTCGATTCCTCTCCTCGGCCGGGACAGCCAGAAATGGCTAACAACCCACG GATAGGATCATACTTCATTGCCA CAAACTACGACGGCTACATCTGTACAACAGGGAAGGAATTTTATCATCCTGGAACCGCTA ATCCACTCCATGTCAAGTATATC GAAGGTAATATGCCTTTCGAGAAGATTCTTGAGGACGTGTACGCATTGACATGTCTCGCG CTGACCCGCCCCGAGGACTGCAC TCGCGAGCCATTCACAATGAAACTCGCCGACATCCGACTGCGGGAACACGCAGGAGGGTA CGATGAAGACGCGCTGGCCTACG ATGACGAAAACGAAAATGACGAGGATAATGAAAATGAGTAGTAA

63 ATGCCAAAGAAGAAGCGCAAAGTCGAAGACCCAAAGAAGAAAAGGAAAGTAGGTTCAGGC TCCATGACGTTCACCGAATACAA GACGGTGGAAAAAGAGATCCTGGATTGTCTGCAAACTGCGGAGCTTGGCTGGAGGTATGA ACCGGGGGATGAAGTGACACTTA AGTACCGGGGCGGGGATGAGCAAGAGATGCTCCTTATACCCATACTGCGAGAGAAGCTGA AGGAACTGAACCATGGAGTGATC ACCGATGACGAGCGGGCCAATATTATTATTCAGAAGCTGAGGGCCTTGAAAGACAACCAA GAGTGGATTAAATGGATCAGAGG GGAGAAAACCTACAAGTTCAGCCAGGATGAACCAAGCAGGAATATAAACCTCATTGACTA CACAGGTGTGGGCAACAACGACT TCCTTGCTAGCAACCAGGTTTGGATTCAGGGAATCGAGCACAGGAGACCGGATATCCTGC TCTTCGTAAACGGAATTCCCGTG GTGGACATCGAGGCAAAGACTGCCTCTCACGGCCATATTGATTGGGCTGAAGGCGCCAAG CAGACGGGGAGATATGACAAAGA AATACCCAATCTCTACTACTCCAACTGTTTCTGTGCCGGAGTGAATGAGCTGCGAATGAA GTATGGTATTCCTGGAGAACGAC TCCAATACTGGCAGCAGTGGAGAGACCCTTACCCACACACCCACATTCCTAGTTTTGACG AGATGAAGTGTACAATCTATGGT CTTTTCGACCGGACCAATTTGCTTGATATTATTCAGAACTTCATTGTCTTCGAAACTGAA CAGAGCAAGACTATCAAGAAAAT AGCTAGATACCAGCAATTCCGCGCCGCCAATAAAATCGTGGCTAGAGCACTCAACCTTGA TCAGGAAAGTGGTCAACGGCGGG GCATCGTGTGGCATACACAGGGCAGCGGGAAGTCATTGACAATGTTGTTTGCCGCCCGAA AGTTGTGGAATGACTCCAAACTT AAGCAACCCACTATCATTATTGTGGTGGATCGGGAGCAGCTGCAGGATCAAATGATCGGT GAGTTGTTCAAGACCAATTCAGA AAACGTCGCCGTAGCCGTCTCCATCCAAGACCTGCGCCGACTCGTTGCAGAGGGCGACGG TTACCGGGGCATCATCGTGACCA TAGTAAACAAATTCGAGGGCATGCAGATCGAAATCAGCAAACGCGCTAACATAGTCATGC TCGTGGATGAAGCTCATAGGACC CAGTACGGCGATCTCGGGATCTTCATGCGGTCAGCGATGCCCAATGCAAGTCTTTTCGGG CTGACGGGAACACCTCTCGAACT CGACGATCGGAATACACCCAGAGCGTTTGGCCGCAAACTCGGGGAAGACAGATTCGAAAG GTACATGGACAGGTATTCAATCG AGGATTCCCTTAGAGACGGCGCCACGCGCCCTATCCATTACGAGGTCCGCGCGACCGATT GGACGGTCGCTTACACAGACCTT GACAAAAAATTTGAGGCTTTGTTCGCTGATCGCTCTCCTGAGGAACGAAAAGCGCTGATG GGCGAGGCTAAACTCGACGCCAT CCTGAAACACCCTAAACGGATAGCACAGGTGGCCAATGATATTGCTAATCATTTCATCGA ACACATAAGACCGAACGGATTTA AGGCAATGGTTGTGTGCAGGGATAAAGAGATGTGCGCGCTCTACAAAACTGCTCTGGATC AGCTGCTGGCACCGGAAGTGAGC CTGATCATCATCAGCGAGGACCCCACTCATGACGTCGACAGTATCAAACCGTACTACCTT GGAGACACACAAAGAAGAAATGC CGTCGACGACTTCAAGAACCCTGCCCCCAAATCCCAAGAAGAAAGGGATAACCCCGATAA CAGATTTAAAAGGGTGGAGATAC TGATCGTGTGTGATATGCTGCTCACCGGATTCGACGCCCCGATACTGCAGGTCATGTACC TCGATAAGTCCATGAGAGATCAT ACCCTTCTGCAGGCTATCGCCAGGGTAAATCGCCCATACTCTGAGTTGAAGGAGTTCGGG CTGATCCTGGACTATTTTGGGAT GTTCGAGAAACTGAATGACGCACTCAACTACGATAAAAACGAGCTTGGGGAAGTGGCCTT TCCTTACGGTAAATTCAGGGATA TGTTCAGAACCAATATAACGGAATTGCTGGACCTCTTCATCGGGATCCCACACGATGGCT CCCACCAGAGTGCAATGCGCGTT CTGATTATGTTGAACGACAACGATGAGAAACGCGAACAGTTCGAGAAGCTGTTCCGCAAT GTTAGGGTGCTTTTCGAGACTCT GCAGCCAGACGAATTCTTGCGAGACTTTCTCTATGATTATGAGTGGCTGTGCAAACTGTA CATGATCTACCTTAAAAAGTTCT ATCCAGCAGAGCACTTTGAGATAAGCGAGGAGGACGGGGCAAAGACCAGACAGCTCATTC GAGAGCACGTGGATGTTAAGGAG SEQ Sequence

ID NO

ATCGAGGAGGAGTTCCCGACCTACAAGCTGGATGAAAACTACTTGACTAAAATAAAA GATATGAATCCCAATGCCAAAGCACT GGACATCGAGGCAATGTTGGACGCTGAGATTAGGATCAGGCTGGATGAGGACGAAGACGT GCGCCCACTGTCTGAGCGCCTTA AGCATATAATTGAGCAGAAGCGGGCAGGAACTCTCGCAGGGATAACTCTGCTTAAAGAGC TGGAGGATTTGACAAAGCAGGTG GTCGATGTAATCCAAGAAACCCAGCGACCTGTGGTGGACTCTATTGCAAAGGAGGTCGCG AAGCGCGTACCGAATATCCCGCA GGGCGAAGCAATGGCTGTTGCCCAGGCTATCATAGCTAAGGCTAAGGAGAAATGCTTCGA GAACTGGTTCTTGCAGAACTATA TGGACACTGAGCTGTACCGCGAGTTCACCATTTTGCTTGCAACACAGTTCAAGAATCTGC AGCTGCACGGTGCAGGCAAAGAT TTCGTAGAGAGGTGTATACGCCTCTTGAAAAAGGCGAGGTTTGCCGGAAAGGATAAGTAG TAA

64 ATGCCAAAGAAAAAGCGGAAGGTCGAGGACCCTAAGAAAAAGAGAAAAGTGGGCTCCGGG TCAATGAACATTATTCTTGATAA GTCTGTAGAGCTGTTGTTCGTCTTCATTTGTAAAACAGTGATTTTTATCAACTATTACAC ACGCAACTACTATTGCGTTTACC CTATTACCACCGATCTGCAGATAAATGTTGTCAACAATATGGAAGAGAACTGGCATTACA CAAATTCCTTTCTTATCAATAAG CATTTTATCGATATTGTGTCTAAAAACTGTGTTCGGATTGTGTGTAAGATCAATTACTTG GATAAAAAGGAGGATATCGAGAA GCTCCTGCACTCCATCGCTGCCACCCTGGGCGGAGTCTACATCGAGGATTACAATCCCTT GAAGAATGAGTTTAGCTTTTACA TATGGAAGAGAATCCTGAATAAAAAGATCAAGGATCTGAAAAGCGAGGAGCTGGAAAAAC GGATGGAAGATCTGGGCATTAAA GACATAAAAAATAAGACCCTTCTCGATTACGTTACTAAAAAGTACGAGAATGAAATCAAC TTTAAGATCATTAACGAGGAAAA AGTCAATTGGAACGAGCTTAACTATGAGATCAAGGAGAAGATTGTGCTTGGAGCCATAAA GGCACACCCAGCGATCCGCAAAC TCATTGAGTACAAAGAGGAAGAACTGTTGGAGGACATTGGGCAGAAGATCCTCACTTATT TCACCATCACCGTCGAATCCGAC GAAAATGAGAATTATTTCCTGGTGGTCATGCCCAAACATCGGATCATTAGCTCCGAGACT ATCTATGAAATGCTGAAGTCAAA CAAAATTGACATTAATAAGCTGAAGCGGGACCTGCTCGGGGGCAGCGTCTTCATAACAAC ATCCCGGAAGGGCGTTCGGCGGA AAAAGGTGAAGATTAAAAAGATTATCAGCCCCAAGGAGCGCGAGTATCGGAAGTACGTTG AAATCATTAATAACTACTACAAG GAGAAGGGTATTCCTATCAAGGTCGGGGGTGAAGACATCCACTGTTATATTCTCATCGGA GAAGAGAAGATTGATGTTTACCA CACTAAGAATGCACTGCTGTACAAAGGTATCGACGAAAAAACCCAGAAAATTATACTGGA TAAAGGCAAGTTTCTGCACGAGC TCGAAACCGCAAAGCAGATTCTGAGCAAATACGGCAATCTGATTGACTTCGACGGTGAGT TCTCTAATATCCTCACTAAGGAC GGCTACGTGATGACACAGCTGTCTACCGTGCCCAAAATAAATATCAAGCTGAGAACTAAA AATGGCATCAAAACCTACAATTA TCTGAAACTGATGTATCTCTTTGATTGGATTTTCAATAAAACCCTGAACGACCGGGAAAT TTTCCTCCCGCTTGTGATTCCCC CAATGTTGAAAGAAAAGGAGAAAATAGGCATTTATATCTTTTATTCCAACATCTCCGATG TGGAGCTGAACTTCATTAAAGAC ATTTTCCGGAAGCTCTCAATCCTGCACAAACTGGATAAAAACATACCAAAGATTGAAATT AAACTCGAAAAGGAAATTGATTT CGAGGATTACGCTAACTCTCGGGCGATTATTACCCAAACTGTGCTGAATAATTCTGAGGA GAAAGAACAGCCCTTCCTCATCT GTATCTCTCCAAAGCTGCCAAACAACGAGTTTGACGAGCTGAAATCACACCTGTTCTCAT ACCAACAAACTACTTTCCATCAA TTCATGTATCCTTTCAATCTGAAAAGATGCTTGAACGACGACGACTTTAAAAAACCCTTC ATTAATTCAATCCTTTCTCAGTT CTTTCACAAGATGGGCATGTACCTGTTTAGTTTCTCCGAAGAGCTGGGAGACTACGACTT CATCATTGGGTACGACATCACGA AGGAAAAAGACGAAAATGATAAGATCAAGGGTATCGGGGGATCAGCTATCATCTACAACA GCCATGGCCACGTAATCACCACC GTGACCTTCGAGGACGTACACACCTCCAGCGAGATAGCTAGGTATGAGAAGCTCTTTGCA AAGGTGTATAGCGAACTGGTTCC CCACCTGAACTTGAATAATAAGAGGAAGATAAAAATACTTCTGTTGAAAGACGGCAGAAT CTTTAAGAAGGAGTTGGAGAAAT TGTCTCTTATCAGCAAGAAGTATGGGTTTGAGATAATTTACATCGACGTGCGCAAAAGCA CTAAGCTGCGCTTTTTCGACATC AAATCTAAAAAAGCTGTACCCGAAGGTAAGAACGCATATACCAAATTCGGTCGAGCCTAT TATGTGAGTAGTCACTACTATAA AAGGTTCCTGAAGCAGCCCATCAAGATTGTCGAGAAGTACAGGATCGATGACGGTTCTTA CAAGGGAGTGAAAATAGAGGAAA AGGATATAAAGCAGCTGATTCTTCTCACAAAAATCAATTTTAGTCAGCTGATGCCCGATA AAATGAAGCTGCCAGCCCCAGTC CACTACGCTCATAAACATGTCAATGCGGTGCGAAGAGGCTGGAAGGTGGATGATAAGACT ATCCTCCGGAATGGATGTCTGCC TACTATCTAGTAA

65 ATGCCCAAAAAGAAACGGAAGGTGGAAGATCCCAAAAAGAAACGCAAAGTCGGAAGCGGG TCCATGGACTTGAATGAGTTCAT GGAGATCATCCACCCAATGCTGCCTTCCGGCGGGCTGGATGAAAACCAGATGAACGTGGT GATACATGGCCAGGGACCATTGT GGGTGATTGCCGGGCCTGGAAGCGGCAAGACCGAAACCCTGGTGATCCGGACTCTGAAAC TGATATTCGTGGACAACGTGAAT CCAAAGAGTATTGTTATTACAACGTTTACAGAGAAGGCGGCCAAGAATATAAAGGACAGA ATCAGCAACTACGCCTACCTGAT CTATCAAAAGTACCCAGAACTGCAGCGGAACCTGGACGTTAATGATATCTACATAGGTAC TTTGCACTCCCTGTGCAACCAGA TCATGCTGGAGTACAGATACCCAGGGTATGAGAATTATAGGCTCATGGATGATATTGAAC AATACCTGTTCGTCCATGAGCAC AGCGACGCTGTAAAGCATCATCACAAATACCAGGATATGTGGAATCACTTTAAATACTTG GAAAACAAATGGAACCGCAGTTT CAACTCCAGATGGGGGAGAACCCAGGTGGCCACAACCCTCTTTAACCGGATCGTGGAGTA CCTCATAGACATAGAGGAACTTA AGCAGAGCGATGAGAAGTGGGCTGTGCAGCTCGCAGACGCTTATGAGAACTACGTCCAGC TGCTGGAAATCCACCATAGGTGC GACTTTTCCCATCTCCAGAAGAAATTTCTGGAATTCCTGAACACGAAACTGGGCGAGTTG TTCATTAAAGGGGATGGTTCTCT GAGACACCCTGGGATTTCCCACGTACTGGTCGACGAGTATCAAGATACGAACCCCATCCA GGAAGCCATTTACTTCAAAATGG CCGAGAATACCCATAACCTGTGTGTAGTAGGAGATGACGACCAGGCGCTCTATCGATTCA GAGGCGGAACTGTGGAATGTATG GTAAATTTCGGGAATGCTTGTCACCGCGAATGGGGCATTACCCTCGAACGGGTGAATACG GTCTTTCTGAACAATAACTATCG GTCCCATAGGGAAATAGTTAATTACTGTAACAAGTTTATAACTTCTTTCCCTGTGATGCA GAAGATCGGAGCCAGAGTGAAGG ATAAACCTGAACTTAACCCCAAGTCCGATATTTCTGGCAATTACCCCGCAGTTGCCTACA TTACAGGGCGGACCATTGAGGAG ACAGCAAATAATTTTGCCAATTTCGTCAGGTACCTCCTGGACGAAGGCGTGGTGTCCAAG CCATCCGACTGTGCGCTCCTTAT GAAATCTGTGCGCGAAAATCGCAATTGGGCGGAGCCCTTCAAGAAGGCTCTGAACAAGGT CGGGATCGAAGTATACAACCCTA GATCCAGGAAATTTCTCGAGCAGGAGGAAGTGATGGCCGCACTTGGAGCTTTTATCACCA TTATTGACCCCAAGCAGAATGCG CTCAGGAAGGTTTGCAACGAAAACATACAGAGACTGGTGAATCGCTGGGTGGACACATAC AGGAATGTGGCATCCGAGAGCCC GGAACTGCGAAAGTACGTGGACTGTTCTATCAAGAGCATCGCCAAACGAAATCTGGGTGA AAGGCTGAATATTAATATTAGCG AGATCTTGTACAGGATACTCGCCCACCCCCCCTTTTCCGATTGGCTGGACGACCCGGAGC GAAGCTATAGGCTTGGGAAACTC ACCCAGCTGTTCGAGAAGTATTCTTCCATCCCCTACGATACCCCAGGGTCTACACGAGGA CTCCTTAAAATGTCATCTAAGAA TAACGGAGAAATTAGTTTCCGCTGGAGACAAAATTTTTATAATTCTTTTATTGGACTGCT CAGTACTGAAGGGCTGAACGATC CTGAGGATGAGGAAATTATCTGTCCTCCAGATCGCCTGCCGATTATGACCATCCATCAAG CCAAAGGTTTGGAGTTCCCCTTT GTCTTCGTGTATGGCTTGCGGTTGAAGGGAGACAAGCCAAATGAGTCCGCAATTATAGAG GAAGACTTGTACAAGTATAGGAA AATCAAGTATAGTATCAACTTTACCCCACTGGAAAGAACGCAGCAAGACCTGATCCGACT GTACTATGTTGCCTATTCAAGGG CTAAGTATGCTCTGATTCACCTTGTACCAAGAAATCATATGGGGTCAAAGGGCTTCGGGT TTATTGGAAATAACTTTAGCCTC TTCTCTGCTATCGTGAAAAAAATCTAGTAA

66 ATGCCCAAAAAGAAGCGCAAAGTGGAAGATCCTAAGAAAAAAAGAAAAGTTGGCTCCGGA TCTATGCCAGTGTATCTTAACCG GTTCCTTTTGGACCACCTGACCTCACCTCTGTCATTGCCTGCCTTTCGAGTTGAACTTGA TCCCCCTCCATCAAAGGACGAAG TCCACCCCCTGCTGGCGCTGGTTGGACGCGAAGCCGGTGGGTTGGTGCGGTTTCAGAACA GGCTCATCGGCTGGGAAGCACCG CGGGCACTCGAGGGACAGGTGCGGCGGGGTAAGCAGTCTTACAGACTTGTGCCCCTGGGA AGACAAGCACTGAACCTGCGCAA SEQ Sequence

ID NO

GCCAGAGGAACGACAGGCTCTGGAGAATCTCTATCGGATTAGACTCGAGAATATCCT GAAAGCTTTGGCCAAGCGCCACCGGG CCAGGGTGGAGCGCCGGGGCAATGGACTGTTCCTTTGGCGGCCCGAAAATCCCCGAGAAG AAAAAGAGGGGTGGCACTTGTAC AGAGGATCCCTGTATCGCATCCATCTTTACCCAGATGGCGAAGTGATCCTCGAGGTGGAT GTCCAACACCGCTTCCAGCCCAC CTTGCACTTGGAGGAGTGGCTTCAGCGGGGTTACCCTTTGCCACGCCGAGTTACAAACGC ATATGAAGATGAGAAAGAGTGGG CTCTTCTGGGGATCGAGGAAGGGAAGGACCCACGCAGTTTTCTCCTTGATGGTGGGGAGT CCCTGTTGGATTACCACCGAAAA AAGGGCCGGCTGGCCGAAGGACAGGATCCAGGCAGAGTTGTATGGGTCGCCCGAGGAAAG GAACGAGAACGCATCCCACACCT GTCTGTCCTGTTGAAGCCAGTGATTACTATGGAACTGCTGGCGGAGGTGGCTGAAGTGAC CCAGGAAGCTCTCCCTGCCCTGC AGCTGGAGCCGGAGGAACGACTCAAAGACATCAGGCGATTCGCTGAGCCCGTCTTGCAGG CTTTCGGAAAGCGCGAGACTGCT AAGCCGCTTGAGGGTCGGGCCCAAAGGCTTCCAAGACCATCCCTTCTCGCACGGGGAAAA AAGCGAGTCGGCAAGGTAGCGGA CGTGCTGGAAAAGGGAGCATTGAGCCCAGGGGAAACCCGACTCGCCCTTCTTGCATGGGA AGGCGACGGGAAGGCTAAAGGGG GACTCGCCTATCTCGAGGAGCGCCTGCAGGGCGTGGGCTCAGCCAGCGGAATCAAACTGG AGTTGAAAAGAAGATTTCTCCCT AGAGGGGACAACCTGGAGATGGCCCAAGTCTTTGAGGAACTGTCCCAAGAGGGTGTCGGA GCCGGGCTGTTGCTCACTCCCAG GCTCACCGAAGGCGAAAGACGAGAGCTGAAGAATACGGCCGCCTCACACGGTCTGGCACT TCAGCTCCTTAATCCATTTGACC CTGGAGATATCTACAGAGTTAACAACGCTCTGCTCGGCTTTCTTGCAAAGGCGGGCTGGC TGTTCCTCAGGCTGGAGGGGACA TACCCTGCAGATCTGGTGGTGGCCTACGATGCAGGGGGGGAGTCCCTGAGGTTTGGCGGG GCGTGTTTTGCACACCTGACAGA CGGTACACATCTGGGTTTTAGCCTCCCGGCCGCCCAAGGAGGCGAACGGATGGCTGAGGA AGTCGCTTGGGAACTCCTTCGCC CTCTGTTGCTGAGATACAGGAAGGCGAAGGGACAGACTCCTGGCCGGATCTTCCTGCTGC GGGACGGCAAAATCCAGAAAGAA GAGTTTCGAAAGGTTGAGGAAGAGTTGCGAAAAAGGAATATTCCATATGCACTCTTCTCT GTTAGGAAGACAGGAGCTCCACG GCTCTTCAGCAAGAATGGACCCCTTGGGGACGGCCTTTTCCTGAGGCTTCCAGAGGAGGA GGGTGGATTCCTGCTCCTGAGCG CCGAAGGCGGGAAGGGCACGCCTAGGCCTGTGAAATACGTCCTGGAAGCTGGAGAAGTAG ACCTTAATCTGGAGGAAGCAGCT AGGCAGTTGTATCACCTGTCCCGCATATACCCGGGCTCAGGATATCGGTTTCCCAGACTG CCCGCGCCCCTCCATATGGTTGA TAGGATGGTGAGGGAAGTGGCGAGACTGGGCGGGTCCCACAACCTGCGGCTGAAAGAGGA ACAGCTCTTCTTTCTGTAGTAA

67 ATGCCAAAGAAGAAAAGGAAAGTGGAAGACCCGAAGAAGAAGCGCAAGGTCGGCTCTGGG AGCATGCATCCTGAGGGAGCAGA CCTGATCCAAAGAAACCGGGCAGTGCACCGAATGCTTGTGGATGGCGTGACTGTGGAGTA TAGGACCTCCGAGGGGGCAATCC GGGGGGCCCAGGCGCGGGTCATAGACTTCGATGATCCAGAAAATAATGATTGGTTGGCAG TTAACCAGTTTACTGTGGTGGAG AATCGCCATCGGCGCCGCCCAGATGTCGTCCTTTTCGTCAATGGGCTGCCACTCGCAGTG ATTGAATTTAAGAACCCAACCGA TAAAAAGGCAACAATATGGAGTGCATACAGGCAATTGCAAACATACAAAGCCGAGATCCC CTCCCTGCTCGTGTATAATGAGG CCCTGGTGATTTCCGATGGATTGGAGGCAAGGATCGGCACGCTGACCGCAGACAGAGACC GATTCATGCCCTGGAGGACAATC ACAGGCGAAGATGTGGCCCCAGCCGAGATGCCCCAACTCGAGGTCCTGTTGAAGGGAGTG TTCGAACGGCGAAGATTTCTGGA GCTGGTGCGCGGCTTTGTCGTTTTTGAAGACGAAGGGGGGGGTAAACTGGCCAAAAAGAT GGCCGGGTACCACCAGTTCCATG CTGTGAGAGTGGCCGTCGAAGAGACACTGCGGGCAGCCGCCAGATATGAGGCAGGACGCC AACCTGGGGGAAAACCCGGCGAC CGAAGAATAGGGGTCGTCTGGCATACCCAGGGCTCCGGCAAAAGCTTGACCATGGTGTTT TACGCCGGCCGCATAATTAGGCA TCCCCGAATGGAAAACCCAACTATCGTGGTACTCACAGATCGCAATGATTTGGACGGACA GTTGTTTGGTGTCTTCTCTCGGT GCCGCGAACTTCTCGGGCAAGATCCTATCCAGGCCGAAAGCCGCGCCCACCTGCGGGAGT TGCTTCAGGGGCGGCAAAGTGGA GGAGTGATTTTCACCACAATTCAAAAATTCCTCCCAGAGGAGAAGGGGGATCGATACCCA CAGCTGTCTGATAGGCGCAATAT CGTTGTTATCGCCGACGAGGCACACAGGAGTCAGTATGATTTCATTGACGGTTTCGCTAG ACATATGAGGGATGCCCTGCCGA ATGCTAGCTTCATAGGCTTCACAGGCACACCTCTCGAGCTGGATGATAGAAACACCCGCT CAGTGTTCGGAGATTACATTAGC ATATACGACATACAAAGAGCAGTGCTTGACGGCGCTACCGTGCCAATCTACTATGAGTCA AGACTCGCCAAACTGGACCTTCC TGAGGAACTGAAGCCAAAAGTGGATGAGGAATTTGAGGAAGTGACCGAATCCGAGGAAGT CGAGCGAAAAGAGCGCCTGAAGA CAAAGTGGGCCCAGCTGGAAGCGGTAGTAGGGGCGGAAAAACGGCTGAGACTGGTGGCCC AGGACATTGTGACTCATTTCGAG CAACGCCTGGAAGCTCTGGACGGAAAAGCCATGATTGTATGTATGTCCCGGAGGATTTGT GTTGAGCTCTATAACGAAATTGT TAGACTGCGCCCAGCCTGGCATAACGATGGGGATGATAAAGGCGTGATCAAAGTGGTGAT GACCGGAAGCGCCTCAGATCCAG TTGAATGGCAGTCCCATATTCGGAACAAACAGAGACGGGAATTCCTGGCCAAAAAGCGCT TTCGCGACCCTGCTGACCCCTTT AAGCTGGTCATTGTGCGCGACATGTGGCTCACCGGGTTCGATTGCCCTTCCCTTCACACT ATGTACCTGGACAAACCGATGAG GGCTCACGGCCTCATGCAGGCCATTGCCAGAGTCAACCGGGTGTTTAGGGACAAACCTGG TGGCCTGGTGGTCGATTATCTGG GACTCGCTCACGAACTGAAAGCCGCACTGGCCACCTATACGGAGTCTGGCGGAACAGGGC GAACAGCCATAGATCAATCTGAA GCTGTCGCCGTGATGGAAGAGAAATACGAAATCTGCCGAAACCTGTTTCACGGCTTTGAC TGGTCCCTGTGGAAAACTGGCAG ACCCGAAGAAAGACTCGCCCTGCTTCCAGCCGCCCAGGAGCATATTCTCGCGCAGGAGAA CGGGAAAGAGCGCCTCCTGCAGG CCGTGAGTGAGCTGTCTAGAGCGTTTGCCCTTGCTCTGCCTCACGAAAAGGCACTGGCCA TCCGGGACGACGTCGCATTTTTT CAGGCCGTTAGGGCCGCCCTCGCAAAACGCGCCAGCTCTGAAGAGAGGACCGAAGAAGAC TTGGATCACGCCATCAGACAGAT TGTTTCTAGAGCTCTGATGCCCGAGGGGGTAGTAGATTTGTTCGCTGCCGCCGGCCTCAA GAAGCCGGACATCAGCATTCTGT CCGAGGAATTTCTGGCCGAGGTCAGAGGAATGCCTCAGCGGAATCTGGCTGTGGAGCTGC TCCGAAAACTGCTGGAGGGCGAG ATAAAGACGCGGCGCAAGAAGAACGTCGTCCAAGCGCGCTCTTTTGCCGAAATGCTGGAG CAAGCCATTAGAAGATATCAGAA TCGGGCCGTTGAAGCGGCTCAGGTGATCGAGGAATTGATCGCGCTCGCACGGGAAATGCG GGAGGCAGACAGGCGAGGACAGG CTCTGGGCCTTAGTGAAGAAGAGTTGGCCTTTTACGATGCATTGGAGACCAACGACAGTG CTGTGAAGGTTCTCGGCGAGCCA ACTCTTCGCGAGATTGCAAGGGAACTCGTGGATACTGTCAGAAGAAACGTGACAATCGAC TGGACCGAGCGAGAAAATGTGAG AGCCCATCTGAGGCGCTTGGTGAAGAGGGTCTTGCGCAAGTATGGATACCCACCCGATAA GCAGGAGAGGGCAACCCAGACTG TGCTCGAGCAGGCAGAGGTACTCTCAGAGCAGTGGGCCGCCTAGTAA

Table 17: Argonaute nucleotide sequences containing IX Nuclear localization sequence (NLS) from

Simian Vacuolating Virus 40

SEQ Sequence

ID NO

68 ATGCCAAAGAAAAAGAGGAAAGTCGAGGATCCGAAGAAGAAACGGAAGGTGGGTTCCGGT TCTATGCCTTCAGCTCAACGGTGCAT CTGGGAGTGGAAGAGGGATATCTTCGTGACCAAGAATCCGACGCTCCGGGAGTCCGTGGA TGAACTTAGCTTGCCAGGGACCAGGC GCATCGTACAGGGATGGATCGACCAGCAAGCCCAATACCCGGAAGATGGGTCAGCAGACG AATATAGCTTTTATGCCGAAGAGTGC TACCCAACCTCTCATGACCGGCGAGCGTTCTTCCATCGCTTCATTGCCGAGGCGAGACCG CATATCGGCTACAAGCTGGTTGCGCA GTTGGCAGAAGCAGGGTTCTTGAGAACCATTTGGACGACCAACTTTGACGGACTGGTTAG CAGAGCGTGCACAGCGGCTAACGTCG TGTGCGTGGAAGTGGGCATGGACACACCCCACAGGGCCTCACGACCGCAAGGGGATGACG AAGTCAGACTGGTGTCCCTCCACGGT GACTTTAGGTATGACCTGCTGAAGAACACCGCCAATGAGCTGCGCGAGCAGGATTTGGCC CTTAGGGAGGAACTGCTGCACGAACT CAAAGACTACGACCTGGTGGTCATCGGATATTCAGGGCGGGACGACAGCCTTATGCAAGT GCTCTCTGCTGCCTACAGCGACCGCG CATCTTGTAGGCTCTACTGGTGCGGGTTTGGCGCGGAACCAGCACCGGAAGTGAGGCACC TTATTAAGAGCATCGACCCAGCCCGA GAGAGCGCGTTCTACGTGGATACCGCCGGATTTGACGACGTAATGAGCAGGCTTGCACTC AGGCGACTGAGCGGTGAAAGCCTCGA AAGGGCCCAGAAGCTCATAGAAAGCGTCACCCCGGTTGCTGGCAAAAAGATGGCCTTTAG TGTTCCACCATTGGCCCCTAGCGCCT TGGTGAAGGGTAATGCCTACCGATTGACCTGTCCGGCAAACGTCTTGAAACTTGATATCG AACTTCCCGAGCACGGTTCCTGGCGC GATTGGCTGTCCGAACGAATGACTCCAGAAAGGGGGCAGGCCGTTGTGTTCGAGAAGGGA GCACTGGTTTTGGCCGACATGGCGGT TACCGCTAAAGTTTTCGATGGATTTCTTAGGGTGAGCCCGACACGGGTGGAGATAAGTGA CGAGAACATCATCGCTGACGGCCGGA TCGCCAGTCTTTACCGACGAGCTCTCGTGAGCAGTGCCGCAAAAGCGCTCCAGATCCAAA CCGACCACAGGAGGAGGATATGGGAG CCCGTGCACTATGATACAAGGCAACTCGACGATGTGACGTACCGCGTGCATCGAGCCGTC TCCCTGACGATAGTAGGGATAGAGGG AGTGCCCCATGTGGTGCTGATGCCAGAGGTCGTCGCATCTACGTTGGCGGGCGACCTTGC GCCGGTTGACAGTCAAAAGACTCTCC GCAATGCCATTTACGGGTTCCAACATAACGATAAGTTTGATGCCGACCTCAGCTATTGGA CCCACCGCCTTGTTGAGAAGGAGCTG GCTTCCAGCGGCGAGGGCGTTTTCGTATTGAGCAAAGTGCCACTTTATGCGGGCCTGGCA CAAAAAGGTAAAGCTCCTCTCCCACA CAGGTTTGCACGCCACGCTAAACAGCATGGAATTATTGTGCCCGACGCACCGCTTGTTTT CAGCGCCAAGGTTGGCTCTGGAGAGG TACGAAACCCCAATCCGCTGCATGGGCTGGTGCAAAACCGGCCATGGGACCACTCTCTTA CGGCGTCTGGTTTGTGTCCGAGTACA GATGCTAGCGTGATCTGCCCCGCAGACGCTGCTCCGAGGTTTGAGAGATTCCTCCAATCT ATGCAGGAGGTAGCAAGACCAAGCCA GAGCGAGAGGGACTATTTGCATGATTTTCCCGGCTTCCCTGCGGCCTTTGGACTGCCACT CCGAATGCCCGTGAGAGGGGACGCAA ACTGGATTACCATCGACGACGGAGTGAGCACCGATGCCCTGACAGGGGCTAAGCAACTGG CGCACCGAGTGTGCCAAGCACTCGAC CACCTCCGCAGAGCAAGGCCCTCTGACACGGCGATCGTGTTCGTTCCCAGGAGATGGGAA CCATATAAGGTAGTGGACACGCAGCA CGAAAGATTCAATTTCCACGATTACATTAAGGCCTACGCGGCCAGGCACAGTCAGAGCAC GCAGTTCGTCAGAGAAGAGACCATCC AAAGCCAATACGTGTGTAGGGTCCGGTGGTGGTTGAGTTTGGCACTGTATGTTAAGGCTA TGCGGACCCCCTGGCGGCTGGATGCG CTTGATGAGAATACGGCTTTTGTTGGTATAGGGTACTCCCTGGACGCAGAGGCAGGGAGG GGCAACCATGTACTGCTCGGCTGCAG CCACCTGTATTCTGCGAGGGGTGAGGGATTGCAGTTTAGGCTGGGCCGAATCGAGAATCC CGTGGTGCGAGGAAGGAACCCCTTCA TGAGCGAGGACGACGCAAGGAGGACCGGAGACACCATCCGGCAGCTTTTCTACGATAGCA AAATGCATATTCCGACAAGGGTGGTG ATACACAAGAGGACAAGGTTCACTGACGAGGAGCAGAGGGGGTTGGTACAAGGATTGGAC GGTGTGAGGAATATCGAGCTGATAGA GATCAACCAGGAAGAGAGCTTGCGATATCTCAGCAGCCAGATGAAGGACGGCAGATTTGA GATCGACAAGTTCCCCCTGTTCAGGG GTACCACAATAGTTGAGTCAGATGACACTGCATTGCTGTGGGTGCATGGAGCCACACCCA GCGCCGTGAACAAGTACTGGAGGTAC TACCAGGGGAAGCGCCGCATTCCGGCGCCATTGAGGATTCGAAGGTTCCTCGGGCAAAGC GACGTAGTGCAGATCGCGACCGAGAT CTTGGGACTGTCTAAAATGAACTGGAATACGCTTGACTACTATTCAAGGATGCCTGCGAC TCTGGATTCTGCAGGCAGTATTGCCA AGTTCGGGTCATATCTTGATGGGTTTACGAGCGCACCCTATGATTACAGACTTCTGATCT AGTAA

ATGCCTAAAAAGAAAAGGAAGGTAGAGGACCCCAAGAAAAAGCGCAAAGTAGGGAGC GGTAGCATGAACTATACCGCTGCTAACAC AGCGAACTTCCCGATATTTCTGAGCGAAATAAGCTTTCTCACAACCAATAACATTTGCTT GAACTGTTTCAAGCTTAACTACCAGG TAACGAGGAAGATCGGTAACCGATTTTCATGGCAGTTCAGCAGGAAATTCCCCGACGTTG TAGTGATATTCGAAGACAACTGCTTC TGGGTCCTGGCAAAGGACGAGAAGTTCTTCCCCTCACCACAACAGTGGAAGGAAGCACTT AGCGATATCCAGGAGGTTCTTAGAGA GGACATCGGGGACCACTACTACAGCATCTATTGGCTTAAAGACTTTCAAATAAAGGCCCT GGTGACCGCCCAACTGGCGGTGAGGA TACTCAAGATTTTCGGCAAATTTAGCTACCCAATCGTCTTTCCCAAGGATAGCCAGATAT CAGAAAATCAAGTGCAGGTCAGGCGC GAAGTTGACTTTTGGGCCGAGATCATCAATGACACCAACCCCGCAATCTGTCTGACCGTG GATAGTAGCATTGTGTACAGTGGCGA CCTTGAACAGTTTTACGAAAACCACCCCTACAGGCAAGACGCCGCTAAGCTGCTGGTGGG ACTGAAGGTGAAGACCATCGAAACCA ATGGCACCGCGAAGATCATACGGATCGCCGGTACCATAGGCGAGCGCAGAGAAGACTTGC TGAAGAAGGCCACAGGCTCAATGTCA CGACGGAAACTGGAGGAAGCCCATCTCGAACAACCCGTCGTCGCAGTCCAGTTCGGAAAG AACCCCCAGGAGTACATATACCCGCT TGCGGCCCTTAAACCTAGCGTGACCGACGAAGATGAGAGCCTCTTCCAGGTCAACCACGG AGACTTGTTGAAGGAGACCAAGATCC TGTATGCGGAGAGGCAGGAGCTTCTGAAGCTGTACAAGCAGGAGGCCCAGAAAACCCTGA ACAACTTTGGGTTCCAGTTGAGGGAG AGGTCCATCAATTCTCAGGAATATCCTGAGGTGTTTTGGACTCCCAGCATCAGCCTGGAG CAAACCCCAATCTTGTTTGGCAAGGG GGAGCGAGGTGAAAAAAGAGAGATTTTGAAGGGCCTGAGCAAAGGCGGAGTGTACAAAAG GCACAGGGAATACGTGGACACAGCTC GCAAAATTCGCCTGGCCATACTTAAGCCCGCTAACCTCCGCGTGGGCGACTTTCGGGAGC AACTTGAGAAGCGATTGAAGCTTTAT AAGTTTGAGACAATTCTGCCACCGGAGAACCAAATTAACTTCAGTGTCGAAGGCGAAGGT TCCGAAAAGAGGGCCCGATTGGAAGA AGCGGTCGACAGACTCATAAGGGGGGAGATCCCCGTAGACATTGCACTGGTGTTCCTCCC GCAGAGCGATAGGAATGCAGACAACA CCGAGGAGGGAAGCCTTTACAGTTGGATCAAGAGAAAATTCCTCGATAGGGGCGTGATTA CACAGATGATTTATGAGAAAACGCTT AACAATAAGTCACAGTACAACAACATCCTGAACCAGGTGGTGCCGGGGATTCTTGCGAAG CTGGGAAACCTGCCATACGTTCTTGC AGAGCCGCTTGAGATAGCCGACTACTTCATAGGCCTGGATGTGGGGCGGATGCCAAAGAA GAATCTTCCGGGGAGCCTCAACGTGT GCGCGTCTGTCAGGCTCTATGGCAAGCAAGGCGAGTTCGTGCGCTGCCGCGTCGAGGACA GCTTGACCGAGGGCGAAGAGATTCCC CAGCGGATCCTGGAAAATTGCCTGCCCCAAGCAGAACTTAAAAACCAAACTGTCCTTATC TACAGAGATGGTAAATTCCAGGGAAA GGAGGTGGATAACCTTTTGGCTAGGGCTCGCGCAATCAATGCCAAGTTCATACTGGTTGA GTGCTACAAGACCGGTATCCCCCGAC TGTATAACTTCGAGCAAAAACAGATCAACGCACCCTCCAAGGGGCTGGCACTCGCGTTGA GCAACCGAGAGGTGATCTTGATTACG AGCCAAGTGAGCGAGAAGATAGGCGTTCCTCGGCCACTTAGACTCAAAGTGAATGAGCTG GGTGAACAGGTGAACCTGAAGCAGCT GGTCGATACCACTCTTAAACTCACGCTGCTCCACTATGGGTCTCTGAAAGACCCACGGCT GCCTATTCCCCTGTACGGTGCCGACA TCATAGCCTATCGGCGGCTGCAAGGAATCTACCCATCCCTTCTCGAGGATGATTGTCAGT TCTGGCTGTAGTAA

ATGCCGAAGAAAAAGCGCAAGGTAGAAGACCCTAAAAAGAAGCGGAAAGTTGGCAGC GGGTCAATGAACACGCCTTTGACGCATTA CGTGCTCACCGAGTGGGAATCCGATACAAATACTAATGTATTGCACATCCACCTGTACAC CCTCCCCGTTAGGAACGTGTTCGAGC AGCACAAGGAGAACGGTAACGCATGTTTCGATCTTCGCAAGCTGAATAGGAGTCTGATCA TCGACTTCTACGACCAATATATCGTG AGCTGGCAGCCTATAGAAAACTGGGGCGAGTACACCTTCACCCAGCACGAATACCGCAGT ATAAACCCAACAATACTGGCCGAGAG GGCCATCCTCGAACGACTCCTCTTGCGGACAATCGAAAGCGTCCAGCCCAAGAAGGAGAT CGCAGCTGGTTCCCGCAAGTTTACCT GGCTGAAGGCAGAGAAGGTCGTGGAGAACATTAGCATCCACAGGGTAATCCAGTGCGACG TAACCGTGGACTACGCCGGCAAGATC TCTGTGGGCTTTGACCTCAATCACAGCTATAGGACAAATGAGAGCGTGTACGACCTCATG AAGTCTAACGCCATCTTTAAGGGAGA CCGCGTGATAGACATTTACAATAACCTGCACTACGAGTTTGTAGAGATTTCCAACTCCAC AATAAATGACTCCATCCCCGAGCTCA ACCAAAGTGTCGTCAACTACTTTACGAAGGAGCGAAAGCAAGCATGGAAAGTGGATAAGC TGGAACAGAGCATGCCAGTCGTGTAC CTCAAGGCATTCAACGGCAGTAGGATTGCATACGCGCCTGCGATGCTCCAAAAAGAGCTG ACCTTTGAGAGTCTCCCGACCAACGT AGTACGGCAGACGTCAGAAATATTCAAGCAAAATGCCAATCAGAAAATCAAGACCTTGCT GGATGAAATCCAAAAGATTCTTGCCC GCACCGACAAGATCAAATTCAACAAGCAGAAGCTGTTGGTTCAGCAGGCCGGCTACGAGA TACTTGAACTGTCCAACCCAAACCTC CAGTTTGGGAAGAACGTTACTCAGACGCAACTGAAGTATGGACTGGATAAAGGCGGAGTT GTGGCCTCCAAGCCGCTCAGCATCAA TCTTCTGGTCTACCCGGAACTTATAGACACCAAGCTCGATGTGATCAACGATTTCAATGA CAAACTGAACGCTTTGTCCCACAAAT GGGGCGTGCCCCTGAGTATCCTGAAGAAGTCTGGAGCGTACCGCAACAGACCCATTGATT TCACTAACCCCCACCAGCTCGCGATT CTGTTGAAGGAACTGACCAAGAACCTTTTCCAGGAACTCACGCTTGTGATAATACCGGAA AAGATCAGCGGCATGTGGTACGATCT GGTTAAAAAGGAATTTGGCGGCAATAGCAGTGTTCCGACGCAATTTATCACCATCGAGAC ACTTCAGAAGGCAAACGACTATATTC TGGGGAACCTGCTCCTTGGCCTCTATAGCAAGTCCGGCATCCAACCATGGATTCTTAATA GCCCCCTTAGCTCCGACTGCTTCATC GGTCTGGACGTATCACATGAGGCGGGTCGCCACAGCACCGGGATAGTCCAAGTCGTAGGA AAGGACGGGCGCGTGTTGTCATCCAA GGCGAATACGAGCAATGAAGCCGGCGAGAAGATCCGCCACGAGACCATGTGCCAAATAGT GTATAGCGCCATCGACCAGTACCAGC AACACTACAACGAGAGGCCTAAGCACGTGACCTTCCACCGCGACGGTTTTTGCAGGGAGG ACCTGCTGTCACTCGACGAGGTGATG AACTCCCTGGATGTCCAGTACGACATGGTGGAGATCATCAAAAAAACCAATCGGCGAATG GCACTGACCGTCGGCAAACAAGGATG GGAAACCAAGCCAGGACTGTGCTACCTGAAGGACGAGAGCGCCTATCTGATCGCCACCAA TCCGCACCCGAGGGTGGGCACCGCGC AACCCATCAAGATTATCAAGAAGAAGGGGAGCCTCCCTATCGAGGCCATTATACAGGACA TCTACCACCTGAGCTTCATGCATATC GGCTCACTGCTTAAGTGCCGACTCCCCATCACAACTTATTACGCCGATCTGTCTAGCACC TTCTTTAACCGCCAATGGCTTCCGAT CGATAGTGGCGAGGCCCTTCACTTCGTGTAGTAA

71 ATGCCGAAAAAGAAGCGGAAAGTTGAGGACCCCAAGAAAAAGCGCAAGGTGGGCAGCGGC TCCATGCTTATCTGGCAATTCAAGAG AATGCTCTACTGCCAGGCCAACAACATCAAAGAGGAAAAATTCAAAGACCTGGAGAGCGA GCGAAATCAAAACACTATCCAGAGCT ATTTTGACCTGAAGGGCGGCTATCCGGAAAGATATAGCCAGGAGGAATACTCCGCTTATT TCGAGCATTGCTTCCCGAAGTCTATC AACCGGAAGTATTTCATGCAGAAAATAGTAGAGGGCCGAAATCCGAGCATAGGTCACAAG TGTTTGGGTGCCCTGTTCGACTGCAA AAAGGTAAACCACATCTGGACAACCAACTTCGACGAGCTCATCGAGAATGGGATTAAAAG CGTCAACAATGCCAGCAGCTTCGAGG TCATTAGTATCGACAATCAGAGGCAGCTGGCCAACCTCAACAACTACCCAAGGGTGGTAA AACTTCACGGCGACTACAGGTACGAC AAGCTCCAAAATACCGTTGACGAACTGCAGACGCTGGAGAAGGACCTCCATAAGTACTTC GCCGATGTGCAAAGCAAGACCGGCTT GATTGTGATAGGCTACGGCGGAAACGACCAGAGCATCATGTCCGCCTTTGAAAAGACTTT GGAGGCCGACAACCCGTTCCCGTTTG GGCTTTACTGGTGCGTGAGGACGGGCCAGAAAACCAACAAGAAGGTAATCGAATTCATAG AGAAGGTTCACCAGAAGAACAAGGAA AAGCTTGCTGCGTTCATCGAAATCGACTCTTTTGACGATTTTCTTTATGAGCTGTATAAG ACGAACAACCTTGCCAACGATCACAT TGAAAATATCGCCAAAAGCCGCTTCGAAAAAAGGAAGGCTTTTACAGCCCCCCAGATCGG CACCTCCTTTACGCCTATAAAGCTTA ACGCCATAAAGGCCAAGACTTACCCGAAAAGCATCTATTCCTTTAAAACTGACCTCAAGG GGGGCAAGGATGACTGGGATAAACTC AGGGAAATCATTAAGGACCAACCGGTGAGCGCGGCTCTGACCAATGAAAACACGGTCGCC TTCGCAAGTGTCAACGACATCAAGAA ACTCTTCTCACACACACTGAAGTCAGAGATCACCACCGTGGACATAGATGACAAGTTGAT CTATCGGCAGGAGTCTTTCTACCTGG GCATGCTTTACGATCTGATAGAGCACAACCTCCTGAAGAAGTTCAAGTTGGAGAAAGTGC CCAACAATAGGCTCCGCAAGTATTAT AGCAAAAACTACAAGCTGAATACCGAGGAGCTTCAGAAGTCCAAGATCAAGACCAGCCTG TCCGTCTACGAAGCGTTCGAGATTCA AATAGAATTCCACAATAAAGAGCTGTTCCTCATTATCCTTCCGTCCATCCACATAGACGA CAAAGCCGGGCTGAGCCGATTTGAGA AACAGGAGATAGCCAATAAGATCATAAGCAAAAGGTGGAACCGCATGGTTAACAACCAGC TTAGGTTCTGGCTGGGGCTCCTTAAG AACGATAACACTAACATAGAGTTCAGCATCGACAGTTTCAAGATTGATTTGGAAGAAAAG TTCTCCGGCGTCGGGAGCTTTACATC CTCTTACTACATCTTTAAGGGCGCGTTTATTTCCAACGAACCCAAGCTTAGCTTCCATAT CTCCGACAGCAATTACAAAACAGTGC ACCCCCTGAAAGGCCTCAAGAACTTCGGTCCACTGGATTACTCATTTGAAAGCAAACAGA CCAATCAGCAGGCTATTAAACTTGGT ATAATCACTCCGATCAGCGGCATGCAACGGATACTCAAACACCTGAACGAACTTAATAAC GAGATCCGCGCAGCTACGGAAAAGGA GTACCTGACCGATTATTACCCCTTTAGCAACATCTACAAGAGATACCTTGACATCCCGCA GAATAAGGATAGTAAATTCTTGGAAC TCGTGAATGAAGCCGAAGTGAACAAACTGAACCACCTCGAGTTTTATGACTTCCTCAAAC GCAAAATTGATTACTTCTATACAATT AGGGGCGAGTTCGACGTGCTTGTGTTGTATTTTCCCAAAGGCTGGACTAAGTTCCGCGAG CTGAAAAATGACAGTGTCTACTTTGA TCTGCACGACTCCATCAAGCTGTACTGTGCTAAGAAGAATATCAAGATCCAATTCGTGGA AGATAAGAGTATAGACTACCTCGACC CGGCCAAGGTTAAATGGTGGTTGAGCCTCGGCTTGTATGTCAAAGCGAACGGGCTGCCCT GGCGGAACGTGGTCGTAAACGAAAGC ACCGCGTTTGTCGGGCTCGACTTCGCGGTCCAGCGAATAAACAACAGTAACAAGTACGTG CTGGGTAGCTCACAGATCTTCGACAG CTCCGGACAAGGACTCAGGTTTCTGTTGCAGCCCATCGAACACCCTGTGTTTATCGGTAA AAACCCCTTCATGAGCAAGGAAGATG CGCGACGGATGATTCTTAAATTGAAGGAAGCGTATTTTAGGATTGACGGTAACTCCAAGC TGGAAAAACTGGTGGTGCACAAAGTA CTGCATTACACAAATGATGAGATGACCGGCATTTCCGAGGCGCTGGAAGGTATTGAGAAC ATTGAGCTTCTGCAAATACAGAAGTA TAGTAAGTGGAGGGCAATTAGAGGGGACATCGATCGGTATACGGGAAAGGTGAAGACCGA CCCGCACAATTTCCCGATCCAACGGG GGACAGTGATCCAGCTCGACGACTTCTCTTTCCTTCTGTGGACACATGGAAGTGTACAGG AAGACGACGTGGCTGGTAGGCACATG AATTACTACCAGGGTAAGCGCGGGATTCCCGCACCACTTCTCATACGGAGGTTTCGCGGC ACCGATCCGATTGAAATGACCGTGCG AGACATCCTGTCACTCACCAAGATGAACTGGAACGGAGGCGAACTTTACAAGACTCTGCC GGTGACCCTGGATTTCTCTAAACGGC TTTCTAAGTATGCGAAGCAGGCAGAGACCCTCCAGGCAATACCCTACGACTTTCGGTTCT TCATGTAGTAA

72 ATGCCCAAGAAAAAGCGAAAGGTAGAGGACCCCAAAAAGAAACGCAAAGTGGGCTCCGGA AGCCTGAAGCTGAACCACTTCCCCCT TAATCCCGACCTCCCCCTGTACATCACAGAATATGCCCACCGGAACCCGCGAGCGTTGCT CGGATTCGTTAGGGGCCAAGGTTTCT GGGCGCAACAGGTCGGAGAACAGGTACAAGTGTACCACGGTAGACCGCAGCCCACGTTCA GGGGAGTTCAGGTGATCAGCCATACC AGGTTGGACCCCGACCATCCGGCTTTTGACCAAGGCGTTTTGAGCCTCATCCGACAAGCA CTGGTGAGGGCGGGATACGTGCTGAC CTACAGGGAGAGGATGGCTATTCATCCCAGACTGGAGAGGGTTGTGCTGAGACCCCCGGA CCGGCACCCAGCAGAGTTGACCGTCC ATGCACATCTGCGATGGGAATGGGAGCTTGAAAGGCACAGCGGACAACGCTGGCTGGTTC TTCGACCCGGCAGGCGACATCTGAGC GCCCTTCCATGGCCCGCAGAAGCAGTACAAATGTGGTCCGCCGCTCTTCCGGCCACCTGC CAGAAGCTGCACGCCCTTTGTCTGGA CCGAGGCCAACAGATGGCCCTTTTGCGGCAAGAGGACGGCTGGCACTTCGCCAATCCCGG TGCTGCCACTCAAGGAAGGTGGCACC TGTCCTTTAGCCCCCAGGCCCTTCACGAGCTGGGACTGGCACAGGCTGCGCACCATGCGG CTGCATTTAGGTGGGACGAGGTACAG CGACTCGTGCAACTGACTGACCTGTGGAAGCCCTTCGTGACCTCTCTGGAGCCCCTTGAG GTAGCTGCCCCCATCATTGCCGGGAA AAGGCTGAGGTTTGGACGGGGTCTTGGCCGCGATGTCACGGAGGTGCACAAGCGAGGTAT CCTGGAACCACCCCCACTGCCCGTGC GACTGGCTGTCGTGTCTCCCCATCTTCCTGATGAGCACGCGAACGCCCAGTTGAGGCGGG AGTTGCTTGCTCACCTCCTCCCGCGA CACCAAGTACTGAGATCAGCGGAGAGCCGGCAAGGCCTCCACGAGCACCTGAGGAGGCAA GATCAGGACGATACCCTGTATACCTT TTGGTCAGGCGGCGAGTACAGGAAGCTGGGCTTGCCCCCCTTCGATCTCGCACGAGGCCT GCACACCTACGACCCAGCTAGCGGCC AGCTGCAACAACCGGCTGCCCTGGCACCAGCACCCGCGCAGGCCACGCAAGCGGGTAGGC AGCTGATAGCCCTGGTGGTGTTGCCC GACGACCTGACGCGGTCTGTCCGGGACACCCTGTTTCAGCAGCTCCAGCAGTTGGGCCTT AGGTGTCTGTTTAGTGTGAGCAGGAC CCTGCTGCACCGACCACGCACAGAGTATATGGCATGGGTAAACATGGCCGTCAAGTTGGC TAGGACTGCAGGGGCCGTGCCTTGGG ACCTGGCAGACCTGCCCGGTGTCACCGAGCAGACGTTTTTCGTAGGCGTTGATCTGGGGC ATGACCACACCCACCAACAGTCCCTC CCGGCCTTCACCCTGCACGACCATAGGGGACGCCCTCTTCAAAGCTGGACGCCTCCCCGA CGCACCAATAATGAGAGGCTGTCATT GGCCGAGCTTAAGAAGGGGTTGCATAGGCTTCTTGCACGCAGGAGCGTGGACCAAGTGAT CGTGCATCGAGACGGCCGATTCCTTG CTGGCGAGGTGGACGACTTCACTCTGGCGTTGCATGATCTCGGCATCCCGCAGTTTAGCT TGTTGGCAATCAAAAAAAGCAACCAC AGCGTGGCGGTGCAAGCAGAGGAAGGATCCGTGCTTAGCCTGGACGAACGACGATGCCTT CTTGTTACTAATACCCAAGCCGCGCT TCCGCGGCCCACGGAGTTGGAACTGGTCCATAGCGACAGGCTTAGTTTGGCGACCCTGAC CGAACAAGTATTCTGGCTGACCCGCG TCTTCATGAACAACGCGCAGCATGCGGGCAGCGATCCAGCCACCATCGAATGGGCCAACG GCATAGCCAGGACTGGACAGCGAGTG CCCCTGGCCGGGTGGCGGCTGTAGTAA

73 ATGCCAAAGAAGAAGCGAAAAGTGGAGGACCCTAAGAAAAAAAGAAAGGTGGGCTCAGGG AGCATGGAGGCGTACATAACGGAGAT GGTGTCCAGGGAGAGGGCCAACGAGCTGGAGGTTTACGTGTACGTGTTTCCACGGAAGCA ATCCGACAACAACTACGAGGGTGTGT ATCACATAATGAGGGCGTGGCAACGGGCTAATGACCTGCCTCTGGCGTATAATCAACATA CGATCATGGCATTTTCCCCCGTGAGG CATATGTGTGGCTACACGCCGATGGAGACGCAGAAACGCCATATTAACATTGACTCCCCA TTCGAGAGAGCCCTGCTGGAGCGACT GATAAAGAACAGCCTGATTTTTACAGCCGAGCGCCATTTGCATGCCAAGCGGGTAGGCCA TGCGCTTCGGCTGAACCAGGTGCAGC AAATCCGGCAGGTGATCATCTATGAGGCCATCGAGCTCTATGTAAATATCATTGAGAATA GAATAAGCATCGGCTTTCACCTCACC CACCAGTTCGAGTACGTATACACTCTCCAGAGCATGATAGAACAGGGAAAAACAATCAGA CCTGGAATGCGCGTCGTGCATTCTAA CGGAAGGCAGCATTATACCTACACCGTGGAGAACGTAGCAACATATGGGGTGACCGACAG ATGCCCGCTGCTGCAGACCAGCATTT ACCAATACTACGTCGAAAAAGGCGCGCAGCACATTTTGCGCACCTTCACCCGATCCACCA GGGTGATCCACGTAAGAACGAAAGAG CAGAGGTTGAGCTACGCGGCGACACTCCTGAAACCGCTGTGTACTTTTGAGACCATGCAA CCCCAGGACGTGCTCAATGTCAGCAA GTGCATCAAACTTAGCGCGAGCAAACGAATGAAATGTACTTACAGGTGGATTCAGCAACT CCGGGCACAGTACCGACACCTGACCT TTGCGCCGAACCCCTTCACGATCGCCCAGAATGGCTATAAACTTGATCAGCTCAGCACCC CCAAGGTGCACTTCCACAGAGACTAC GCCACCGTCGTGAGCGGAATGAAGACCGGCAAGCTTTACAAAGGCGGTAATATCAAGATC AGCGTGCTCTTCGACGAGGACTTTTA CTTGAAACACCACATCACCAAGAAGGACATATATCAATTCATTGCAGTCCTGCAGAAAAT CGCCATCGCACAAGGCGTGAACATGA CCATAAGCACGAGCACCAAGTCCATTACGGGCAAGTTCACGGACGACTTTTTCCACCACT TCACCGAGGAGGTCGAAGCACTGCAG CCCATCTTCGCGCAAACCACAGTTCTGGCATTCATTACCAGTACCCACCTGAGCAACAAG AAAACCAGGAGTTACCAGCTGCTGAA ACAGTACTTCGGCGGCAAGTGGGACATTGCCTCTCAAGTCATCACGGAGAAGACGATTGA GGCGTTCCAAAAAATCTTGCACAAGC ACGGCCTGAAGAATTTCTACCCCAATGACGAACAGCACTGTCTCCGCGTGATCGATGTCC TCAAGAATGAGAGCTTCTACTACACG GTCATGAACATCCTCTTGGGAGTATATGTGAAAAGCGGCATCCAGCCCTGGATCCTTGCT AATACAACCCACTCAGACTGCTTCAT CGGCATCGACGTTAGCCACGAGAACGGAAACTCTGCGGCTGGGATGATGAATGTTATCGG CAGCCAGGGCCACCTTATCCAACAGG CGCCCCTGAACGGCATATTGGCGGGAGAAAAGATTGACGACACCCTGCTCGCAAACTTGC TTAAACAAATGATTAAGGCATACCAC ACCCAGTTCCAGCGCTTTCCCAAGCATATAACAATCCACAGGGACGGCTTTTGGAGAGAA CACACTGCACTGGTCGAGAAGATCAT GAGCCACTATGAGATTACCTACGACATCGTCGAGATCATCAAAAAGCCTAATAGGAGGAT GGCTTTCTTCAACAGCGTGGACAACA CCTTTAGCACCAGGCAGGGGACAGTGTACCAACGGGGCAACGAAGCCTTTCTGTGCGCCA CTAACCCTCAGCAGAAAGTGGGCATG GCACAACCAATCAAAATACATCAGGTGACCAAGACCCTGCCCTTCTCACACATCATAGAA GATGTCTACAACCTCAGCTTCCTTCA TATTCACGCTATGAATAAGATGCGACTGCCGGCCACCATACATTATGCCGACCTGTCTGC CACCGCTTACCAGAGGGGCCAAGTGA TGCCCAGGAGCGGTAACCAGACAAATCTGCCTTTCGTGTAGTAA

74 ATGCCTAAAAAGAAACGCAAGGTAGAGGATCCCAAGAAGAAAAGGAAGGTGGGGAGCGGG AGCGTTCACGCATTGCTCGCTCTGCT CGCGAACCGAGCCGGTGGAAGGACCGCCAGAATGGGAGACAGCTTGCTCACGTGGAGCCC TCCTGAGTCTCTGCTGCTTGAAGGGA CCCTGAGCTGGCGCGGCAACACCTACACATACCGGCTTCGCCCACTGGCGAGAAGGGTGC TCAACCCTAGGAATCCCAGTGAGAGA GACGCCTTGTCCGCGTTGGCGCGACGACTCCTCCGAGAAGTGCTTGAGCAATTCAGGCGC GAGGGGTTTTGGGTTGAAGGTTGGGC CTTTTACAGGAAGGAGCACGCACGGGGTCCCGGGTGGCGCGTGCTGAAAGGTGCGGCGCT GGATCTGTGGGTTTCAGCCGAGGGGG CCATGGTATTGGAGGTGGATCCGACTTATCGAATCCTGTGTGACATGACACTCGAGGCGT GGCTTGCACAGGGACATCCACCCCCG AAACGCGTCAAGAACGCGTACAACGACAGGACATGGGAACTCCTGGGTCTGGGTGAGGAG GACCCGCAAGGCATTCTTTTGCCAGG CGGGCTGAACCTCGTCGAGTACCACGCTAGTAAGGGCAGAATCAGAGACGGCGGGTGGGG TCGGGTTGCGTGGGTGGCAAATCCTA AAGACGCCAAAGAGAAGATCCCGCATTTGACGAGCTTGTTGATCCCCGTCTTGACCCTGG AAGACCTGCATGAAGAGGGGGGCTCT AACTTGGCCCTCTCCATCCCGTGGAATCAAAGGCAAGAGGAAACCCTTAAAGTGGCCCTG TCCGTGGCTCGCCGACTCGGCGTCGA ACACCCCAAGCCCGTCGAGGCCAAAGCCTGGAGGATGAGGATGCCAGAGCTTCGCGCACG ACGCAGGGTGGGTAAGCCAGCGGACG CCCTTAGAGTGGGGCTGTACCGGGCTCAAGAGACTACCCTCGCACTGCTTCGGCTCGATG GCGGCAGAGGATGGCCTGACTTTCTG CTTAAAGCATTGGAGAACGCTTTTAGGGCCAGCCAGGCTAGGCTTCATGTTAGGGAAATC CACGCGGATCCTAGCCAGCCCCTTGC ATTTAGAGAAGCCTTGGAAGAAGCGAAAGAAGCAGGTGTGCAGGCTGTCCTCGTACTCAC CCCCCCACTGAGTTGGGAGGAGCGAC ACCGCTTGAAAGCACTGTTCCTCAAAGAAGGACTCCCAAGTCAACTTCTGAACGTCCCCA TACAGAGGGAGGAAAGGCATCGGTTG GAAAACGCCCTGCTCGGGCTCCTGGCGAAAGCGGGTCTCCAAGTAGTCGCCCTTGAGGGC GCATACCCTGCTGATTTGACAGTTGG ATTTGATGCCGGAGGCCGCAAGTCCTTTAGGTTCGGAGGTGCCGCATGTGCTGTCGGCTC CGACGGAGGTCACTTGCTGTGGAGTC TGCCGGAAGCCCAAGCGGGCGAACGGATACCAGGCGAAGTAGTTTGGGACCTGTTGGAGG AGGCGTTGCTGGTGTTTAAGAGAAAA AGAGGGCGGTTGCCCAGCCGGGTGCTTCTGCTGAGGGATGGCAGGCTTCCCAAGGACGAG TTCACCCTGGCACTTGCAAAGCTGAG GCAGCTCGGCATTGGCTTCGACCTCGTGTCCGTAAGGAAGAGTGGAGGCGGAAGGATTTA TCCGACCCGGGGAAGATTGCTTGACG GCCTTCTGGTGCCCGTTGAAGAGAGGACTTTTTTGCTCCTGACGGTGCATAGGGAGTTCA GAGGCACCCCACGGCCCCTCAAATTG GTACACGAAGAAGGTGAGACACCTCTGGAGGCTCTCGCAGAGCAGATCTACCACCTGACG AGGCTGTATCCTGCATCAGGTTTCGC ATTTCCCAGACTGCCCGCACCCCTGCACTTGGCAGATAGGCTCGTGAAAGAGGTGGGCCG ATTGGGCGTGAGGCATCTCAAGGAAG TAGACAGGGAAAAGCTGTTCTTTGTATAGTAA

75 ATGCCTAAGAAGAAGCGAAAAGTGGAAGACCCAAAAAAGAAAAGGAAGGTGGGTAGCGGC AGCATGAACGCCGTGACCGTGGGCAG CACCCCAAGCGCCCAGGTACTCGTCGGTGTTCAGCCATACGACGAAACCACCCTGGAGAG CCTGAGAAGTAAACACCGCGGAGACT ATCTCTTTAAAAGGGGGGGAGAGAACGGCGATAGCATACTTGCTGTGGCCCTGAAACCGA GTCTGCCGGTCATCGGAGCAACCGAG GAGGATGTAATTCTTGCCGAGAGCCCATGGTTGTTGGCTCCACTTGCCTTGGAGACTTTG CTGCAATGCTTCGTGAGGCTTCAAAG GCCCATCCTGAAAGCTAGGCATCCCCTGAGAGTGCTCTCACAAAAACCGGCAAATCTTTT CCCAGCCGATGCGGGGGTCCCCCAGT GGCTGCAGAGGAGACTGGTGCTGGAATTCGACACGCGCACTGTTAGGGACAGGTCAGACG CTGCCTCTGTCGTGCTGGCATGTGGC GTGAGGACTCGGAATTTGATTGATGCCGACTGCGCGACACTGATAGCAGCCGGTGTCCCC CTTGTGAATCGATACGTGGTGACGAG GCACCCTGCGGATGATCCCCGAGTGCAGGGCTATTTGAGGCTCGCCGGGAGGGTGACCAG GATAGATGGCCCCAACCTGTACTTGG AGGATCATGGCGATGGAGCAGCTGTGATCAAGGCCTCCATGGCCTATCTGGAGCCCAGGA GGGAGAACGTGATTTGGTGTGCCCAC CATTTGCTGGGGAGAAATGCGGATAGAGTACTGGCGGAAGCGGATAACGCAGCCGCAAAG CACTTGAGCGGTCCCGAACGATTGGC CGTAGTGAAGAAGACTTTCGACTACCTTAGGAGCCAGAACATCGAGCTTGCGCCTGGAGT GCCCCTCACTCTGGGTAACGTTGTGG GGAATGACAAGGGTTCTTGGATCTTCCGGACGGAAACTCTGCCCAAGCCCCACCTGGTGT TCGACCCGAGCGGGACCCGGATCGAT AGGTGGAATGAGAGGGGATTGGACGCTCACGGGCCCTATGATCAAAGGACCTTCACCCCT AAACAACTGAGGATTGCCGTCATATG TCAACTGCCCTACGAAGGCCAGGTCGATGCGTTCCTGGCAAAATTTCTCGACGGCCTTCC AGACGTGAAGACCGGCTACGGGGACC GGGCCAGGGCGCCTTATGCCAAGGGGTTCATCAGGAGGTACGGTCTGGAGAAGCCCAAGG TGAGCACCTTCGCAACAAAAGGCGCT ACTGCTAAGGACTATGCCGCTGCATGTAGGGCGGCTGTGGAGGACGCAACCGCAAGCGGC TTCGAGTGGAATCTGGCTATCGTGCA GATCGACAAGGATTTCAAGGAGCTGAGTGACGTGGAGAATCCCTACTTCACCACCAAGGC CCTGCTGCTGAAGCATCGGGTGCCCG TCCAAGAGGTGACGCTGGAGACGATGAGGTTGGCAGACGAACAGCTGGTGTACGTGTTGA ACAACATGAGCGTAGCCACCTACGCC AAAGTGGGCGGTACTCCCTGGCTCTTGAAAGCGCAACCAACCGTGGCCCATGAGTTGGTA GTTGGAATCGGAAGCCAGACTTTTAG TGCCTCAAGGCTGGGTGAGAAAGAGAGGGTTGTAGGCCTTACCACCGTGTTCTCCTCCGA CGGGAAATACCTGCTGGACGACCGGA CTAGCGCCGTTGATTACGACAACTATAGCGAAGAGCTGTTTAAGAGCTTGTCCCGGTCAA TAGAATCAGTAAGGATCGCCGATAAC TGGCGAAGTACGGACAGTGTCAGGCTGATTTTCCATGTTTTCAAGCAGATGGCGGACGAG GAAGCCGACGCGGTTGACAAGTTGGT GCAAAAGCTGGGTTTGGCACAGGTTAAGTTCGCGTTTCTGCACATCGTGGATGACCACCC ATTCGCCCTGTTTGACGAGAAGAACA TAGGTACAAAGACATGGGGTGGGATATTCAAGGGCGTCTTGGCACCGGAAAGGGGCCTCG CGGTAAACCTCTCTGGGGCCGAAACC CTGTTGTGCTTCACAGGCGGCAGGGAACTGAAACAGGCGAAGGATGGCCTGCCCGTGCCT AGTCTGCTGCGACTGCACCACAGGAG TACGTTCAGGGACATGACCTACCTGACGGGGCAAGCCTTCAACTTCAGCTGTCACACCTG GCGCATGTTCACACCCGCTCCTGTTC CCATCACAATACATTACAGCGAGCTGATGGCGCGACTCCTTACGGGCCTCAGGCACGTCC CGGATTGGGATCCAGACACAATGCTG ACCCCCATCAGTCGAACCCGGTGGTTCCTGTAGTAA

76 ATGCCCAAGAAGAAAAGGAAGGTAGAGGATCCAAAGAAAAAGCGGAAGGTTGGAAGTGGA AGCCTCCCCATCGTCCTGAACGCCTT CCCACTTAAAGTACCCGAACTGGAGCTGGAAGTTAGGCAAATACCGTACGATAAAGAGAC GCTTGACGGCCTCAGGGCTGCGCACA AGGCCACCCACGCTTTCCGCAGGCAGGGCGACAACATACTGATTTTTTCCGGTGATGGCA CATTTCCCGCGTCTGGGACGCCTCAA ACTATTGCACTGAAGGACAATTTCGGCGTGTTCTACAGCCTCGTGAAGGATGGTCTTATC CGCCACCTTGCGGGGCTCGGGAGGAA TCCCAGCGGGTTCAACCCCATAGAGTTGGTGTCCGCAAAACCCGAAGACAACCTGCTGGT CCCCATACTCGGCGATGCGTATCCTT TTAAGGTGTGCGCGAAATACAGCATTGACACCAGAACCGTGCTGGGGCACCCATGTCTGG TGATCGATTGCACGACCAGGAGGGTG TTGAAGGAAAATGGCTTGTTCTTTTTGAACGCTGGGTTCGACCTCGCGGGCAGGTACGTG GTGACGGAGCAAGATGACGGGTACAG GAAATTGCTCGGCAGCGTGAGCGGCTGTAAGGGTGAAACGCTGTACGTGACTAGGCCCGA TGGCCAAGTGGTGCAGGCCGAGGCTA AAAACGTGTACCTGGAGGCATCCCGCACAAATTTCGACGACTATATTCTGCACACCCACA GGGCTCAGAAGGACGCGATCGTTGAA CGAATCAGACAGTCCGTTTCCGTGTTTAATGGGGGCGAAAATAAGAAAGCCCGAATCGAC ACGCTGAAGAAGTATATCCAGTCCAA AACCATTCCCTTGATCGACGGCACCAGGATTGAGATCCAAGATTCCCCTAACATACAGAA AGACTGCGGCCAGATGCAAAAACCGG TATTCGTCTTTAACGACAACGGCGAGGCGGACTGGGCGGAGAAGGGGCTGACCCAATCTG GGCCGTACACCAAGAGGACCTTCGAC AGGAATGACCCCTCCATTTGCGTGATCTGCGCCCAACATGACAAGGGACGCGTTGAGCAG TTCGTCAGGAAGTTGCTTAAGGGCAT TCCAAACTCCAAATACTTCAGCAACGGTCTCGAGGGGAAGTTTACCCTGGGCACTAGCAG GGTAGAAGTGTTCGCGACCGCTACTG ACAGCGTAGACGCCTACAAGAACGCTATTGAAGCCGCAATACGGAAGAAGGCCGACGACG GCGGCAGGTGGGACCTGGCCCTGGTT CAAGTGAGGCAGAGCTTTAAGAAGTTGAAAGTGACCGAGAACCCCTACTACCTTGGCAAA AGTCTGTTCTTCCTCCACCAGGTGCC CGTCCAGGACTTTACCATTGAGCTGTTGGCTCAGTCCGACTACTCCCTCGGCTACTCTCT GAATAACATGGCCCTTGCATGCTACG CGAAGATGGGCGGTGTGCCCTGGCTGCTTAAATCTTCACCCACCCTCAGCCATGAGCTTG TGATAGGCATCGGCTCCGCCAACATC GGCCAGGAGAGAGGAGCTGATAATCAGAGAATTATGGGCATCACCACTGTGTTCAGCGGA GACGGCAGCTATATCGTGAGCAATAC ATCTAAGGCTGTTGTCCCCGAAGCTTACTGCGAGGCCCTTACCGCCGTACTTGGCGAAAC CATCGAAAAGATTCAGAAGAGGATGA ACTGGCAGAAGGGCGATACCATCAGATTGATCTTCCACGCTCAGGTCAAGAAATTCAACA AGGAGGAAATCGAAGCGGTCAGAGCC GTCATTGAGAAATATCGGGAATACCAGATCGAGTACACTTTTCTGAAGATAAGCGAAAAC CACGGGCTTCACATGTTCGATAGTGC AACCGCAGGGGTGCAAAAGGGCCGACTTGCCCCTCCGAGGGGGAAGACGTTCAAGCTGAG CAAACATGAGATGCTGGTTTATCTGA TAGGGCAGAGGGAGCTGCGGCAAGACACCGATGGTCATCCCAGGGGCGTCATCCTTGATG TTCACAAGGACAGTACATTCAAAGAC ATCACCTACCTTTCAGCCCAGCTCTACTCATTTGCCAGCCACAGCTGGCGCTCTTACTTT CCCAACCCTATGCCAGTAACCATTTC ATACAGCGATCTGATCGCTCGAAACCTTGGTTGGCTGAACCAACTGCCCGGGTGGAACGA CTCCGTGATGATCGGAAAGATCGGGC AAAGCCAGTGGTTCCTGTAGTAA

77 ATGCCGAAGAAGAAACGAAAGGTTGAGGACCCCAAAAAGAAAAGGAAGGTGGGGAGCGGC AGCATGAATAACATACCCATCAGGCT GAACTTTTTCGCCCTGAAGAACCAGAACATTAGCTTCAGGATCTACAGGCAGGACTTCAA CGGCCAGAAAAAACAGGACGGGTACT ACAGGACCAAGCTGCCCATCAACGACTCTTCTGACACCTACGCGGAGTACTGGGTGACAA CCCAGCCCAAGGATGGCTTCGAGAGG GTGTACTGCCTGGGTTCCTCAAACCCTAAGCTCACCGTCCGAATCATGTGGGAGAGCTTC CTGGATAGGGTCCAGAAGTCCCTGAG CTCCGACGAATATATCCTTTACGGTAACGGATTTAGCCGGAAGGTCGCCGTGATCATCGG CAGGCACAGGGAGGGCAATGAGGTGA TCCAGATAGAGCCCTATTACCTGAAGGCCGAGAAGAAGTTCGGCTTTCTGGTGGACTTCG CATTTAAGAAGGCCAAGGACGTGCCC TATAGCATCAGGGTTCAGCAGCTGAGCCTGTCACTGAACAAGTATGGGAAGAGCAACGCC GACTACTATAGCGACAAGCTGGATAA GATAAAGTTCTTTATGCAGAAGTTTAAGCAGAGGCTTTTCCCATTTAGCTTGGATAACGA GGATTACGACATCGAGAACGAGCTGT ATCTGATGAGGAGCTACCCGCTCAAGATGAAGACCTACATATTCTCTAATGGCAAGGAAA GCAACAGCCAGGTGCAGGGTCTCAAA ACCTACGGACCGCTGGCGAATCTCGATAAGGAGCCACTGTTCGTGTTCATGTTCGAGTCC CAGGACAGGAACGAGGCCCTGGAGCT CTATTCTAGCCTGCTGGGCAAGACGTACACCAACATATTTGCTGGCATGGAGAGCGTGTA CAAAATCAAACTCGCAAAAGAGAATG TGAAGCACATCATCATCCCCAGCCTTACCAAGGAGGGTCTGCAAGTGGTGGAGCAAGAGC TGCAAACTATCGTGGAGAGTCATCAG GACAAGAAGGTGATTGGGATATTTGTAATGAATGAAAAGGTGCCCTCATCCATCACCGGT TTCAGCCCCTACCACTACGTCAAGTA CATCTTCACAGAGAAACGCATTCCCCTCCAGACAGTGAGGTGCGAGAGGATCGCTGCCAG GGATGGCCTCAAATGGAGCGTTGGCA ACATCGGCCTCCAAATTTTCGCTAAATTGGGCGGCATCCCCTGGAAAGTCAAGCCGAGTA ACGATAAGTGCATCATTTTTGGCCTG GGCTGCGCCCACAAAAAAGACGAACTGGGAAACATTAACAAATACTTCGCCTACAGCGTG TGCATGGACAGCAGCGGCATTTACCG AAAGATTAATGTGCTCGGCGATGCAAAGGAGCGCACTGATTACATCCTTCAACTGCGGGA GAACATCAAAAGCGTGATAAGCGAGA ATCTGGACGGGAGCATTGAAAAGTGCGTGATTCACCTGCCCTTCAAAATTAAGAACGACG AGATCAGGTACATAAAATCCAGCGTG CAGGAGATCGCGCACCTGTATTCCGACATAGAATTTCAATTTATCAAGATCAACACGGAC AACAAGTTTTTCGGATACGCTGAAAA CAACAGCAAGGTACCCTACGAGAGCAGCTACATACAACTGAGCAGCAACGAGTTCCTGGT GTGGTTCGAAGGCCTGCAGTACGGGA AGGAGCTGGTGAAGAAAAAGGTAGGTAACCCCGTGCACATTGAGTTCATGCAGATCGATG AGTTGGATCCCGAAAAGAAGCGGCGA TATCTGCAGGATATCATAAACCTGAGCGGTGCCAACTGGCGAGGTTTTAACGCCAAACTG TCTCCAATCAGCATCTACTACCCCAA CATCATAGCCAATTTCATTTCAGAGTTCAGGGAGTTCCAGCCCGAAGGCGACGTGGACCT GACCAACTTTTACATTCCCTGGTTCC TGTAGTAA

78 ATGCCCAAGAAGAAGCGCAAAGTAGAGGACCCTAAGAAAAAACGCAAGGTCGGCAGTGGC AGCATGCATAACATCGAAATCAACAC CTTCGTCAACAGCTTTGCCATTAAACCCAACAACTCCATGTCCTTCCTGCTCGGCGCAGG CGCGTCTATATCCTCCGGGATCCTGT CTGGCGGACAGATGGTGTGGGACTTTAAACGGAACCTCTATTGTGCGTCCAAAAACATAC GCACCAGCAATTTTCCCGATATGAGC AAAAAGAATGCGCAGGACGAGATCCAACGCTTTTTTGATGGGCAGGCCGGAAATCCTAGC CTGTGGTCCTCCGAGGAGTATAGTTT CTACTTCGAGAGGTGTTATCCGGCGAGGAAAGACAGGGAGCTGTACATACAGAACAAGGT ACGAGACGTCAAGCCGTCATTGGGGT ATCTCTGCCTCGGGGAATTGATCATACACGAGAAGATCGGTGTAGTATCAACCACAAACT TTGATGACCTGGTGTTGGCCGGCATC CATTCAATAAGACCGGACCTGAGTGTGAAGACCATCAGCAGTGCCCTCAAAAATAGCACG GGATTCTTCGTGAACGACGGGTTCCC GAACATCATTAAGCTGCACGGCGATTACTTGTACGATAAGCTGAAGAATACCGATAAGGA GCTGCAAAAGCTCGAGACGGAGATCA GCGGAATTTTTCGAGATGCCGTCAAGAGTGGCGGGCTCATCGTACTTGGCTACGCCGGCA ACGACAACAGCGTGATGAGCGTCCTG GAGGAGCTCGTAAGCTCCGGGCAAATCAGGTACGGCGTGTTCTGGTGCCAACCGAAGGGC TTCCCCCTGTCCAAGCGAGCGCGGGA GTTTATTGAGAAGGCTTGCGCCTACAATGAGGAATCCGGGGTTGTCGAGATCAACAATTT TGACGACTTTATGTACCGCCTGTTCC TTACACTCAACATCCAAAACTCATTTATCGACAGCATGTGGGAACAGAGCGGCATGAAGC AGCCGATCCTCTATGAGAATATCGGA CGACACAAGTCCACCGCCGTGACGAACGCCCTGTGCGCCCTGCAGTACCCCCGAAAATGC TACGTCTTCAACGCGAATATATCAAG CTGGAAGGAACTGCGCGAGACGATAAACGACACGTGCGTGGCAGTGCTGTATAAGGGCAT GGTTTGGGCGCTGGGCAGCAAAGCAG GCATCGTGCATGCGTTCGCCGGGAAGATCAATGGAGACATATACGAACTCGACATCCCGT TGTACATGATGAAACTCGAGGATTCT GACATCCTGGGCATGTTTTACGACATCATAGGACGCGGCCTTCAGCGAAAGGGGCTGGTG AGCTACGGTAATAGGAAACATCACAA ATACTTCAACCCCTCCAGCAAACGGTTCAAGAACGGTCAAAACATCTACGACGCGGTCAA GATATCACTGAGTTTCGTGGACGATC AGCTCGTGCTCATCCTGCTGCCTACGGTGCATCTGCTGAAACGCGACGGGACGGAGCTGG AGAAATTTGACTACCAAAAATTGGTG TCCCAGGAGATGGCAACACACTACAACAAAGTGGTGGACAGCGAGATAGAGATCTGGCTG AAATTCATCTCTAATAACGGCAAGAT AATCTTTGAGCTGGGGAACGCAATACTGGAATTTAACAACGTCCGCATCCAGTACTCTGG TAACGGTAACCTCAGCAAGTGCTACC AGGTGAGCGAGCCCGAGCTCACGTTCAGTTACGAAAAGGACAACTGCATCGCTACCAACC AACTGCGGGGTCTGATCAACTATGGA CCCATAGAGACTTACGTGAACAAAGCCATCAGGTTGGCTGTACTCAGCCCTAAGGAGTGT GCCGCGGACATTTGGAAACACCTGCA GAAGTTGAATGAGCATCACGTCACCTCCCTTATTCAGGATGCAAATTTTCTGCCGGAGTA CACCGGCTTTCAGAACGTTTTTAGGT GCAACCTTGACATTCCCAATGGGAACGATGTGCATAGGTTCAAAGGCTACAGTATAGACA AGGTCATGCAACTCAACGCAAAGAGC TACTTTTACGGGATCTGCAAGTACATTGATGCATTCGAGACACAAAGGAGCCAATACGAC CTCCTCGTCATCTATATACCTAAGCA GTTGACCCACATCCGAGAGGCCAAGAATAACTTCGAATATTTCGACCTGCACGACAGCCT GAAGATTTATTGCGCTGGTAAAGGTA TAGTCACGCAGATCATCGAGGAACACAGTGTTTATACTAACAATGACACCGCCAAGATCA TATGGGGTCTCTCAACGGCCATATTC ACCAAGACCGCCGGAAGGTTGTGGAAACCCAGACGCTATTCCATGAACACCGCTTACGTC GGCCTGTCATATGTGCAGAGCGTTAA GAACAACGAGAAAGTCAGCATCGGTTGCAGTCAGCTGTTCGACGCCGAAGGCAATGGAAT GAAGCTTTACCTGAGACCCTTGATGA ACCCCCAGATAATTCAAAATAACCCTTTTATGCGGAGCGACGACGCTTGCAGGCTTATGT CAAACCTTAAGCGGATGTATGACGAC AGTGTCCCGCTCTACAAACTGAATAGGATCGTGATCCACAAAACTACGTTCTTCACTAAA GAAGAGATGGAAGGCATCACCAAAGG GCTGGCTGGAGTGGATGACATAGAGTTGCTCCAGATCCAGGAGTTCACAGCTTGGCGAGC AATACGCTTCGACTACGACAAGATCG CACCGTTTCCGATACAGAGGGGCACAGTGATTCTGGGGTGGGGCCACTTTAGTTACTTGG ATACCTGGAAGTGTACCACCTAGTAA

79 ATGCCTAAGAAAAAGCGAAAGGTCGAGGATCCAAAGAAGAAACGGAAGGTGGGCAGCGGC TCCATGCAAGAACACCTGAAGACGAA CATACTGAACTTTAAATGGCCCAACTCTGCTCCGACCATCTACCTGACATTGGAGGACAT TGAGGGGAGCCACCCTATCCACAAAA GCAAATTTTCTAGACAGATAAAAGAAGTGTTCCCCGACGCGGATTTGAGTAACAAGGACC AGATCTTTACGACATTCACGACCGAA ATCCCAGACGCCCCAAGCATAAAACTGAACCTTGTGGACGGCCGAGAATTGCGGATCTAT AAACAGTTCCTCAAGCACAAGCTGCG GTCATATTTCAAATCTAAGGACTACATCGTGGTCAAGAATTTCGTGGGCGACGTTCAAGT GTGGATGCCGAGCAAAAAGGGTAACA CCGCAGATTACAACCTGTACTATAAGTTTAGCTTTAAGATCCAATTTGCCAAACTGACGG ACCTCCCCGAGCTGATCGTAAGCTAC GATGGCACCTCCAAGGTGCTCACGACGTCCGTTAAGGACATCGAAGATTCAGAGCTCATC AAGCGATGCGTCTACGGCCAAAAGAC GTTTAACTACCAAATGGACTTGGACACCGAAGAGAAGCAAGAGTTTTACAACGCGATACA GTTTGACCAGGCCTACCCAATTTTCA ACCTTTCCCTGGCAAGGGCACTCGACATCCCCATAGAGGAGCCAATAAGGCCGATCAACA AATACCAAAAATACGTAGCCCTGATT AACAATTTCGCAACTAATTACCTTTTCAAGGAGGACTTCAAGGTTATCTTCCCGTTTAAA ACAGACACGTTCATCGACGTGCCTAT AAATCGGATAAATCACATCGACCCCCAAGTCGGCCTGTTGGAATTCGGAAAAGATCAATA TGGCAACAAGAAAACCCACCTGGTAC CTAAAAAGGCAATGAACATCTTGAATCCATACCGGCGACCTAATAATCAGAACATCAAAA TCTTTTTCATCTGTCACACAAGCCAC AAAGACTCCGTGCTCAGCTTCTATCAGAATCTGAAGGAAGGAGTAAACACGGAGAAGAAC TACTACAAAGGACTTGAAGCCTACGT GAACATTAAGGCAAGTAGTAGCAAGGAGCATTTTATCGAGTTCACGAACGAGAATGACCC CATCCCGGAGATCGTGGAGAAGCTTG AGAGCCTCACATTTGATCATGACAATGTTCTCTACGCGGCGTTCTATCTCTCCCCCTTCG ACAAATTCACCCAGAATCCGGAGGAC CGGGAAATTTACATCCAAATAAAGGAGTTGTTCCTGAACGAAGGTATCGTGACCCAAGTT GTCGATTACGAGAAAATGGTCGTCAA TATCGAGAATCAGTATAACTTCCAGTTCAGCCTGCAAAACATGGCCCTCGCCATTCATGC TAAGCTGGGCGGTGCCCCGTGGAAGC TGGCCGTGACCGACAAGAAGGAATTGGTCATCGGGGTTGGAGCGTTTACAAATCAAGGCG AGAACAGACGCTATATTGCTTCCGCC TTCTCCTTTCAGAATAACGGCCTCTTCCGCAAGTTCGAGTACTTCGATCAAAGCGAGACC GACCTCCTGGCTGGCAGTATCTGCAA AGCCATCCGCGACTTCACCAGCGTAGCGGAGGCAGATAAGGTCGTTATCCATTTCTATAA GGAGATGAGTTACGAGGAGCTTAAAC CCATCATTCGGGGCATGCACACGCTTGGGCTGAAGATACCCCTTTACATACTTAACATAA ACAAGACTGAAGCCGAGGATATTATC GCCTACGACCTGAATTGGAACAAAAAGCTGATGCCCGTCAGCGGCACCTACATTCGCATC TCCGAAAATCATTTCCTGCTCTTCAA TAACGCACGATATCCTAATTCCCAACGGTACGCCGACACGGATGGTTACCCGTTTCCCAT TAAGATTAAGGTCAGCTCTCCGGACG AGGATGCCTTTGAAGATGCAGATGTGGTCCTGGAGCTGCTTACTCAGGTTTATCAATTTA GTAGACTGTATTGGAAAAGTCTTCGC CAACAAAATGTACCTATCACCATCAAGTACCCAGAGATGGTAGCCCAGATTGCCCCCCAT TTCAACAACGGGGTGCCCGACGATGC CAAGGATGCTCTGTGGTTCCTGTAGTAA

80 ATGCCTAAGAAAAAACGGAAAGTGGAGGATCCCAAAAAGAAGCGGAAGGTCGGCAGCGGC TCAATGGCCTATCCAATCGCTGACGA CCGGCGAAAGTACTTCCACAGTCTTTTCGAGAACAAGGAGCCGTACATCGGATACAAGGC TCTGTGTCTGCTGGCCAAGAACGACA TCATCAAGAGCGTGTGGACGACCAACTTTGACGGGTTGACTGTGCGGACCGCATTCCAAA GTAACTTGACCCCCATAGAAATAACC CTCGACAACGCAGACAGACTGTTTAGGAACCAAAGCAAGAGAGAGCTGCTGAGCATATCA CTTCATGGCGACTATAAGTATAGCAC GCTGAAAAATACCGAGAAGGAGTTGGACTCACAGGACGGCACCTTCAGCGAGCATCTGGG TAACTATCACGTCGACAAGAACCTGA TTGTGATAGGTTATTCAGGGCGCGACAAAAGTCTGATGAAATCCCTGAACGATGCATTCA CCAAGAGGGGCACCGGCAGGCTGTAT TGGTGCGGCTACGGTGACAAGATCAACACTGAGGTGGAAGAACTTATACGCAACGTACGA ACCGCTGGAAGGGAAGCCTTCTACAT ATCCACCGATGGTTTTGATAAGACGCTGATCGACCTTTCTAAAAGCGCTCTGGAGGACAA CAGCATGAGCCTCGAAAGCCTTAATT CCATCCTGAAACTGGCAAACAACGAGGAGCTCTCAAAGATCGAATTTAGCCAGAGCATCA CCAGGACCGACAAATACCTGAAGAGT AATCTGCACGCAATTGTGTTCCCCAAGGAGATATTCCAGTTTGAAGTCGAGTTTGGCGAC AACAAGCCCTGGTCATTCCTTAAAGA CAAAACTAACAACACCGACATATGCGCCATCCCCTTCAAGAGGAAGGTTTACGCCCTGGG CACGCTCAGCGGTATATCTAGCGTGT TCAAAAACGTGCTCAAAAGCGAGATTAGGAGGGTACCAATCTCCAAGTTCGACATCGACA ATGTGAGCAGCTTTAGGTCTCTCATG ATCCAAACGGTGATCAAGCACTTTCTGTCATACGGAATCTTCGACAGCAACCTCAAGGAC AAACTGTGGCTTAGAAATTCCGACAA TTCCTTCGGGGACAAGAAAATACACAAGGCGATTTACCTCAGCTTCTACTTCGATAAGAG CAGCAAATTCGGCTACATTAGCTTCA GCCCCAGCATACACATAACCTCCGATAACGAGATCAGCAAGGAGGTGAAACAAAGGATTA GCAAAGAGATCTTGGAAAAGCTCCGA AACGATAAGTTTGACGAAATACTGGAGTACTGGAACACCATACTGTTCAATTACAAAAAT CTTAAGTTCGAGTACCCCCTTAACAG CGGGACCGGATTCGAGTTCCAAATAAGCCGAAACACTGCGTTTGCCGAAATCATGGTGCT GGACCCGAACTATCGAGTCTATAAAC CAAGCGATTACAACAACAAGCTGACCCAGTTCAGAGGTGTGCAGTATCTGGAGCCGCAAC TGATCTTTCAGAACTCACTGAGTAAC TCCCACACCAAGGACTACCACCCCATGAGGGCGTTGACCAATAACAGGCCATACGACAAC AACTTGAATGGCATCATCTATTCAAA CGAGGTCAATTTGGCCGTGATTTGCGGGGAAAACTACTCCAAAAACCTCTACGACTTCCT GAACCAGCTTAACCTTAAACACCCCA CAGACAACATCAACCCCGATTTCCTTATAGAATATCCTGGCTTCGCGAGCGCCTACAACC TCCCCATCAACATCCCATACTATGAG GACGCGGACAAGTGGATTAACATAGATTTGGAGAAGAGCAACAAGTCCGACAGCGAGAAC GCCATCATCGTTGCACGCCTCATCAC AAGCAAAATCGAGCAGATCATAAACATACAGTCTCAGCACACCATCGTCATCTTCATCCC CAAAGAGTGGCAGGCCTTCGAGAGCT TCCAGGAAAATGGCGAGGACTTCGACCTCCACGACTACATCAAGGCGTTTAGTGCATCCA AGGGCGTGAGCACCCAGCTCATCAGG GAGGAGACACTGTCAGACAGGTTGAAATGCCAGGTCTACTGGTGGCTGTCTCTGAGTTTT TATGTAAAGTCTCTGCGCACGCCATG GGTCTTGAATAATCAGGAGAAAAACACCGCCTACGCCGGCATAGGCTACAGCATTAAGAA GAACAGCAATGACACCGAGGTGGTGA TCGGTTGCAGCCACATTTACGATTCTAATGGCCAGGGCCTGAAGTACAAGTTGAGTAAAG TAGATAATTACATCCTGGATAAGCAG AGCAATCCCTTCATGAGCTATAATGACGCGTTTCAGTTCGGCGTGTCAATTAGGGAACTG TTCTACAATAGCCTGGACAGGCTCCC CGAGAGGGTGGTTATCCATAAGCGGACCAAGTTTACGAACGACGAGATAAAAGGTATTAC TGCCAGCCTCAACATGGCGGGGATTA CCAAGATAGATCTCATTGAAATCAACTACGAGACGGAGGCTAGGTTTCTCTCCATGAACG TATTCAACGGCCTTCTGGGCATAGAC AAATTCCCTATCAGTAGGGGTACCTGCATTATTACGAATAAGTACGAAGCCCTCCTTTGG ACCCACGGCATCGTGCCCTCCGTGAA GAATCCCATTCACAAGTATTACCTGGGCGGCAGGAGCATCCCAGCCCCGATCAAAATTAC TAGGCATTACGGCGAGAGCGATCTGA ATACTATTGCCATCGAGATCCTCGGCCTCACCAAAATGAATTGGAATAGCTTTGACCTTT ACAGCAAGCTCCCTGCGACGATTAAC TCCTCAAATCAGATAGCCCGGATCGGTAAGTTGCTGGCGCGCTTTGAGGGCAAGACCTAT GATTATAGGCTCTTTATTTAGTAA

81 ATGCCCAAGAAGAAGCGAAAGGTAGAGGACCCAAAGAAAAAAAGGAAGGTGGGCTCCGGA TCTCTGGACAGTTTCCACCTCGTGCA GACAGAGAAAAAGGCCATCGCAATGCCAAAGCAGAAGCTTGCGGTTAATGCACTCCCCAT TAGCCTGAAAGAGCAGGAGCAGCACA AGCTGTTCTTTTTTAGCAAGGAAAAGCAGGGCGAGCGAGCCCCGCTCACCAGGAAAGAAT ATCCTGACAGCTTCGCCAAGAGGTAC CCCAAGAGCTCCAAAGAGTACGACGTGCTGTACACGGACTTCACCCCAGAGCCAGCTGAG GATGGGTTTGAAATTGATATCGACCT GGAGGAGGCACCTGGCCTTGCCAAGCACTACTTGCACAAAAGGATCTTTGAGGCCTTTAA GGGAGTAGCTGACTTCAGAAAGCGGG ATTTCATCAACGGTGTGGAGCTTTGGTTCAGGGACAAACCCGCCGACGAAGTTAATTTCC GGGCCTACAAGAAGTTTAAGATTACC ACCCGCAGAACTTGGTTCTCCGCAGGCTGGGCCCTGTTCATACAATACACCGGCCATTCC TTTATTCACCCGGTGGCGATCAATAG CGAAGAGGCCGCAGTGGACACTACGGAACTCACGCGGGTTGCTTATAACCGACACATCTT CCACTACGAGGAGATCCCCGAAGACA AACTGAGTGAGATAGATTTCAGTAAGATGTACCCCGTGGTGAACTTCAACATTAGGGATA AAATGCAGCAGTTCCCCGTTATCGAT CCATTCAAAAACAAGGTCAAGGAATATGTCGACGAAATAGACAGGTTCAAGAACATGTAT CTGATCGCGCCAGCGGTTGAGGAGGT GCTTCCGTTTACTTTCAACGACGACAACTGGTGCGAGATCAAGATCGGCACCTACCATAC CGTGCCCAATGCCGGTTCCAAATTGG TTTTCCGCGATGGGCAAACCGAGATACACCCGTTCTACGGTATCAGGAACCACGGCCCTT TCATGCCCCCCAAACACAGCCACATA AGGTTTTTGTTTATCATGAGCAAGAGGGACATCAAGGGCGCTGGTAAGCAATTCTATGAA TACTTGAAGGGGGAGGTAAAAGGAGT GGACGGGTTCAACAGGTATGCTAATATACCGTCATCCCTGAGGGGTGAGATGATCGAGTT TGAGAACGAGCAAAACCCCCTGCCGG AGATTATCGACGGCTTGAACAACATGGAGCGAGAAGCGGGCGTGGCCTACTTCGCCTTCT ATATCAGCCCCATCGACCGAGAAGTG AGGAACAGGAAGGAGAGGTTGGTGTACTACAGGGTTAAGGAGGAGCTGCTGAAGAGAAAG ATTGCCTCACAAGTGGTAGAAAGGAG CACTATCGAGAAGGCCGACTTCCGCTACAGCATCCCCAACATCGCCGTTGCCACAGTGGC CAAGCTGGGAGGCATCCCGTGGAAGC TTACTCAACCCCCAGAAGCAGAGCTGATCGTGGGCATAGGCGCATTCCAGCCACGCGAGT TCGACAAGCGATATCTGGGCAGCGCC TTTTGCTTCCAAGGCGACGGAACCTTTAGCGGCCTGAGGTGTTTCACCAAGGACGAACCC CATATGCTTGCTGGCAGCATCAGGGA AGCGGTTCAAAGGTACGCCGATGAAAACAGGCAAGTGGAACGGCTGGTTATCCATTTCTA CAAAACCATGAGCTATGACGAGAGGA AGCCGATCCTGGCCACCTTGAAAGAACTCGGCCTGGACATTCCCGTTGTGGTGGTCACTA TCAACAAGACTGAATACGAGCAGACA ATCCTCTTTGACCTGAATTCTAGCATGAGGCTGCCGCTGAGTGGTACCTATTTCAGCCAG CGCAGGGACGACATCCTGCTGAGCAA CAACACCAGGTACCGCAAAGACAGCGAGGTGAAGAGGGGTTTCCCTTTTCCCGTGAGACT GCAGCTGTGGTGCTCCAAGGAGGGCC TGCTGGACGACGAGGGTTTTAGGGAGCGACTGATCACCCAAGTGTATAGGTTTTCTCGGC TTTACTGGAAGAGCGTGTCTCAACAG AATCTGCCCGTGACCATTAAGTATCCCGAGATGCTGGCCGAAAAGTTCCCATACTTTAAC TCAAGGAGCCTTCCTAGCTTCGGCGA AAAAAGCCTGTGGTTCTTGTAGTAA

82 ATGCCTAAGAAGAAGCGGAAGGTGGAAGACCCGAAGAAAAAACGAAAGGTGGGCTCCGGA AGCATGAACAACACCATAAACAAAAT AGACTTCGGCGCGTTTCTGAGATCATTCAAGCAGAACCTGGACGGTAGCTTTTCTTTCCT TCTGGGAGCAGGCGCGAGTGTGAGCA GCGGCGTACAGTCTGCAAGCGACTGCATTTGGGACTGGAAAAAAGACATTTTTCTGGCCC AAAACCTTCAATTTGAGGAGTTTCTG GACATCCATAGTGACTTCTGTAAAGATAAAATCCAAAAGTGGTTGGATGAGCAGGGCGTG TTTCCCAAGCGAGACTCAGAGGAAGA GTACGTGTTTTATGCCGAGAAAGCGTACCCAATGGAACAGGACAGGACCAAGTATTTCGA GAACCTTTGCGCGGACAAAACCCCCT ACATAGGGTATAAACTGCTGATGCTGCTGAACAAATACGGAGTTCTGAAATCCGTGTGGA CAACGAATTTTGACGGTCTGATAGAA CGCGCAGCGCACCAAGCCGATCTGACGCCCATCGCCGTTACCCTCGACAACCCCGAAAGG ATTAGCCGAAACGAGAGTAAATCTGA GCTGCTCTACGTGGCACTCCACGGTGACTACAAGTATAGCAAGCTGAAGAACACAGCCCA AGAGCTGGACGCGCAAGAAATTCTCT TCACCGAACGCCTGAAGTCTTACTTCATCGATAAGAATTTGGTGGTGATCGGTTACAGCG GTCGAGACAAAAGTTTGATGCACACC TTGTGCGAGGCTTTTATGACGAAGGGGTGCGGTCGGCTTTACTGGTGCGGCTACGGTAAC AAGATTACCTCTGAAGTGCAGAACTT CCTCAACAGAATAAACGATTCAGGTAGGGAAGCCGTGTACGTGGACACCGATGGGTTCGA TGCCACCCTCGTGTCTATTATGAAGT TTTGCTACGAGGATCAATTCGACAAGAAAATCGAAATCGGCAAGTATCTCAAGGGCCTGT CAAGGGTGAAGCATATTATCCCTTTC AGCGTTGAGAATACCACGTTCACCGGCTGCGCCAAGACCAACCTGTACCCCTTGATCATC CCCCAAGACATATTCCAGTTCGAGAT AGAGAGCCCCGAAGGTAGCAGCAAATGGACCTTCATTAAAGAGAAGATTAAGGGCAAGGA CATTATCGCTGCCCCTTACGAGAAAA TAGTCTACGCATACGGGCTGCCAAACTCAATCTACAACGTATTCAGTAAGGAGCTGATCG GCGAGATCAAGAGGGTTCCCATCAGC CTGAGTAACATCAAAGACAACAGCACCCTCAAGAATATCATCCTGAAGGTGCTGATATGT TCTCTGAGCAGTAACGCGGGACTCAG GGCGAGTATGAGCAAGAAGATCATCTGGAATGAGAAAGAGAGGTTCCAGAGCAACGTTTT TAAGGCAATAAAGATCGACATCGTTT TCATCAATAGCGAAAAGTACGCCCTCATCTCAATCACCCCTACCCTCTATTTCAACAAGG AGGGCAACTACACGACGCTGCAGAAG CAGGAAATTACGCGGAGCTACATTGACAAGCTGTACAATAAGATTTATGAGGAAACCCTT TGTTACTGGGAGGCCATCCTGTTTAA GCAGCAGACCAAGATCTGCTTCGACTACCCGCTCAATTCCGGGAACGGCTGTTTCTTCAA GGTTAGCTCTAACAGGGGCGAAGCCC TGTTCAATAATCCGAATAAGCCGTACGTGATTACTAACGACATCATACTTAAACGCAAAA TCTACGAAGGCATCATAATCGACGAG CCCCTCCTGAACTTCTCAGGGTCAACCAGCGCCCACATCATTATGGACTCCAATCCGATG CGCGGTCTCAACAACAATAACCCATA TGATCACTTCATTGCAAGCAAGTTTAGGGACGTTTCTATCCACATCGGAGTCGTGTGTCC CTGTACATATAGCGACAGGTTTTTTA GCTTTCTGAACGAGCTGCAAAGTCCGATAAAGAATAACAATCCTAACTCAGACTACATCC AGAACTATAACGGATTCAGCCAGATA TACGCAAGCATTCTTAATATCCCAGCGATCAACAGCCAATACTGGATCTCATGCCGCGAA GAGCAGGATAACAGCATCTCTTTGGC TAGGAACCTGTGTAAATACGCGAACCAGATGGCCACTAACATGCCAGGTATAATAGTTAC CTTCTTCATTCCTAACAGCTGGAGCA ACCACAAGAGTTTCAAAGAATGTGGCGAGGTATTCGACCTCCACAGTTACATCAAGGCTT TCGCCGCACAGCACGGTTTTACAACC CAAATCATTGAAGAGCGAACTCTCACAAATCTCTCCATGAAAAAGGAGATCTATTGGTGG CTGAGCCTGGCGTTCTTTGTAAAGGC TATGCGAGTACCATGGACCCTGGCCAATCTGGACCAGAACACCGCCTTCGCCGGCATCGG CTACTCCCTGAGCAAAAAGCAAAGCG GCAAATTCAATATCGTTATCGGCTGTAGCCATATCTATAATTCTGAGGGCCAAGGCCTGA GGTACAAGCTCTCAAAGATAGATAAT CCAATCTTGGACCGGAAAAACAACCCGTACCTGACCTATAATGAGGCGTATAAGTTGGGC GTGAACATACAGAATCTGTTCATTCA GAGCATGGACAAACTCCCGAAGCGAGTAGTGATCCACAAAAGGATCCCGTTCCTGGAGGA CGAGATAAAGGGCATTACCGAGGCGT TGGCCCAGGCCAACATCACGAATGTTGACCTCATCACTATCACGATCGAAAAGAACATCA GATGCCTGGATCAGTTCTTCTACAAT GGTCAAGCCAAGAACAGCAACTTCCCACTGCATAGGGGCACCTGCATGAAGCTCAGTGAT ACCGAGTGTCTGTTGTGGACCCACGG CGTGGTGGACTCAATTAAGGCGGGCAGGAACTACTACTCTGGTGGCAAGGGTATCCCCTC CCCCCTCCGCATATCAAAGTTTTACG GCGCAGGCTCTATGAAGACTATATGCAACGAAATCCTGGGGTTCACAAAGATGAATTGGA ATAGCTTTAACTTCTATACCAAGCTT CCCGCGACCATCGACACCAGCAACACGCTGGCGCAAGTGGGGAACATGCTCGATAATTAC AACGGTATTACATACGATTACAGGTA TTTCATCTAGTAA

83 ATGCCCAAAAAGAAACGCAAGGTCGAGGACCCTAAGAAGAAGAGGAAAGTAGGGTCTGGC TCTATGCAACTGAACTATTTCCCCAT CCAGTTTGACTTTTCTGACTACCAGGTCATCACGCAGCCCTACTCCGACGAGAGATTGAA AGAACTCAGGCAGGCCTACAACGCCA GCTATTCCTTCTTTCGGGACGGCAACCTTATCGTAATTTCCAATAAAGAGGACGAGGAAA ACCAATTGACGGGCAACGTCGAAAAC CGCAGCGTGTTCGACGATGCCAAAGTTACCGCCAGCATGGTCAAGCATATATTCTTTAGG ACGTTCAAGGACAGGTTCCAAGGCTT CATCCCCGTGGACTTTTACCCCTTCCGATTCTACAGCAGACAAGAGAAGGACGACCTTAT TCTGAACCACCTGCCCGAAAAACTTA AGCATAAAATCGCCTTTAAGAAACTGATCGAGGTGCAGCTCAGGGAGACGAATCTTAATT CAACCCAGGGCTTTGCTTTCGTCGTC AACATCAGGAGAAATTGGGTGTTTAACATTTCCTGTCTCGAGCTTTATCAGGAAGGCTTT GACCTCACAGATTTTGAAGTGCTCCA TGCGGAGACGCTTCCCGGGTTGGACAATATCCTGGCCCCGAACGAGGACTTCGTTGGCCT TCTCAAGAGCATCAACGGCGAGACTG CCATTGTGAGCACTAGCGAGGGTGCCCGCTCCTATTCACTGCAGGAGCTCTTCATTCGCA AGACTAAGCACAACATACAGGCGTAC CTCAACTTCGCCACCGGGGAAAAAAAGTGCGACCAGATCCTTGCAGCCGTGTCCCAGGAA CGAATCCGGAAGCAGAACCCCGTGAA TCAATTCAGCGAGATATCCAACATCGCGAAGCATCTTTTTTCAGACAAAGGCAATCCAGT GCTGTTCCAGAATATGGATGGCTTTT GTTTTAAAGTTGACACCACGCCGATGCAGGTACAAAACTCCATGAACCTGCAAACTCCCA CGTTCATCTACGACCACGCGGGTACC AAGACGAACACCCGCAACGCGGACCAGGGGCTGAGCTACTACGGCCCCTACGATAGCCTC ACCTTCGACATTAAGAAGCCAAGAGT TCTCTCTATCTGCCATAAGACCAACCGAGGCTCCTTTACGCGCTTCCTCCACGACCTCAA AGACGGGCTCCCCAATAGCAGCTGGT TCAAGAAGGGCCTCCTGAAGAAGTACGAGCTTCAAGAGGTGAATTACCTCATCCAGGAGA TCAGCGACTACAGGTTGGAGGACTAC CTGGAAGTGATCTCAAACTACGATGATGAGAAGCCGCACCTGGCAATCATCGAAATTCCA GATAGGTTCAAAAAACTGTCCGACCG GGACAACCCCTATTTCAAGATTAAGGCAAAGCTGCTGAGCCTTGAGATTCCCGTACAATT TGTGCGCAGCACGACTTTGAGCAGCT ACAGCGAATACATACTTAATCCGCTTGCATTGCAAATCTATGCGAAACTCGGCGGCACGC CTTGGGTTCTTCCGGCCCAACGCTCC GTTGACCGCGAAATCGTTATTGGCATAGGTCACTCATGGCTTCGGAGTGGCATGTATAAG GGTGCTGAAAACAGCAGGGTGGTCGG CATTACTACGTTTATGTCTAGCGATGGCCAATACCTCCTGGGCGACAAGGTGAAAGACGT GCCTTACGAGTCTTACTTCGAGGAGT TGCTGAAGAGTCTCAAAAGTAGCATAAGCAGACTCTCCGATGAGTATGCCTGGCAGGATG GCGACACAGTGCGCCTCATTTTCCAC ATCTTCAAACCCATCAAGAACGTTGAGTTCGATGTCATTAGCCAGCTTGTGAAGGACATC AGCCAGTTCAACATAAAGTTCGCGTT TGTGACCATTAGCAAGTCACACCCGTCTATTCTCTTTGACACGAGTCAGCAAGGCGAGAA AAAGTACGGCTCTAACCAGGTGATAG GGCAGTACATCCCTCAGAGGGGTAGCAATATCTTCATAGATGACGAAACCAGCCTGGTGC AGATGCTGGGCGCCAGGGAACTTAAA ACTGCCAAACACGGGATGAGCACCCCAATCCAAATCAAACTTAGGACACCGCAGGGTAAC CATAACGACCAAGAACTGAAGGATTT GATGTTTTACGATCTTAACTACATTACCCAGCAGATCTATAGTTTTACTTACTTGAGCTG GAGGAGCTTTTTGCCACGCGAGGAAC CGGCCACAATGCTCTACTCCAACTTGATATCCCGACTTCTTGGGAAGATGAGGAGCATCC CTGAATGGGATGCGGATAAGCTCAAT TATACCCTTAAAAGGAAGAAATGGTTCCTGTAGTAA

84 ATGCCCAAAAAGAAGCGGAAAGTCGAAGACCCCAAGAAGAAGAGAAAGGTGGGCTCCGGC AGCGTGGGCGACAAGACCTTCAGCTT CAAGGTGTATAGGAAACTGAAACAGCAGAACGACACCAAGGAAGACGAGATATACCTTTA CAATTTGCCCCAAGGCGAGACCCTGA ATGATTACAAGCCATATTGGATCAGTTTTACCCCGAAGGACGGATTCGAAGAATACATCG CTAATTCTTACTTGAGCATCGGCCTG TCAAAAAAGTACCTGTTCAATAGATTCGTGGAGACGCTCAGCAACTCAAAACTGCACTTC ACCTACAAGGTCAAAAGGAAATTCAC CGACTGGTACGTCGATTTCGTAATCGCGCAGTACAGCCAGGGAGACAGGATCATCTACAT GAGCCCCTACTTCCTGGAAGAGCAAA ACACCTACGGCTTCATCATCGACTTCAAGTTCAGCAAGAAGGATGGTATCCCCTTCGATA AGGAGGTGCAAAAGCTGTCCCTTTCA CTGGATAGCAACGGCCGCAGCAACAAAAACTATTACTCTGACAAATTTAGGCTGGTGAAC AATTTCATTAAGGAGATTTACACCTC CATAAAGAACATCGGGACCAGTAATAATCCTATCACCATTTCCAGCAACCTCATAGAGAC CACCGTGTTCCACCTGAACAAGAAAG AGTACATCTTTAGCAATAACAACGTAAGCTCTAGCCAGTTCCAGGGCGTGAGGAATTTCG GTGTCTATAAGAATATCCCCCAGGAC GTGATCTTCGCGTTCATATTCGAGGATAGGTTCAGGAGCTTCGCCAACGAGCTGTATCTG AGCCTTACCGGAAAATTGAACCCCGG GACCTTTCCCGGACTGGAGCAGATGTTCGGCATCAGCATCAACACCAAAAACGTGAGACA GATCAAGTTGGAGAACTACTCTCTGG ATTCAATGCTTAGGGTGGTGAATGACGTGAAGAGCTTGCAGGAGAACAATCCCGATAAGA AGATCGTGGGAATCTACGTGGAAGAC TGCACCATCGACAGCGAGGACATCCCTGCGTCCAACAACTACTACTTTCTGAAGTATCAC TTTATCAAAAATGACCTGCCACTGCA GGTTGTGAATTATCGGAAGCTGGGCGAAAGGAATTCTCTGAAATGGAGTACCTCCAACCT GGCCCTGGCCATGTTCGCAAAGATGG GCGGCATCCCCTGGGTCGTAAAACCGTCTAATAAGAACTGCTTGATTCTTGGCATCGGAT CTAGTCATAAGATAAACCGGGAGACC GGCGATATACTTAAATACTTTGCATACACCATATGTCTCGACTCCAGTGGCCTGTACAAG GCCCTTGAGGTGCTGGCCGACGAGGA GAGCGAGGTGAGCTACCTTGAGAAGCTTACTGCCAATCTGGTCGCCATACTGAAGGAACA AAAGACCAATTACGGCACCTGTGTGC TGCACCTGCCCTTCAAGATTAAGAAAAAAGAGGTAGCCGCCATTAGTGATGCCATAAAAC AAATCAACGACATCGAGCTGGTGGTG GTAAAGATCAATGTGGATAACAAGTATTTCGGATACTCCTTCCACAACACATTGGTGCCC TACGAGAGCAGCTTCGTGAAGCTTTC TAAGGATGAGTATCTGGTGTGGTTCGAGGGCCTGCTGTACGGCAAAGAGATCGTAGATAA GAGGTTGAGCAACCCCGTGCACATCC AATTCTTGAACATCACCAACAGGAAGAACTTCGATGAGCAGGCGTTTCTGCAGGACATTC TGAATTTGAGCGGAGCCAACTGGAGG GGCTTCAACGCCAAAAGCATCCCTATCTCAATTTACTATTCTCAAATCATCGCGAGGTAC ACCGAGGCCTTCGAAAACATCGACGG TTACAAGGAGGGTACTATCTCTAACGACAAACCCTGGTTCCTGTAGTAA

85 ATGCCGAAGAAAAAGCGAAAAGTGGAAGACCCCAAAAAGAAGCGGAAGGTGGGCAGCGGC AGCATGGACAATTTGGCTCTCTCTGC GCTTCAGCTGGACAGTAGATTGGATCACTGTATGGTATATCAATACAGGATCGTGTACCA TAAGTTCGACGAAACAGAGGCGGGTG AAAAACTGGCAAGAAAGGCCGCCTACGAACTGTGGAAGGTAAACAACTTCGGACTGCTCA CCAACCTGGGTGCCAGTAGCATCCTG TCCCTTAAGAGCCTGAGTCAGCTGTCTATCGATTCACCGCTGTTGCAGGCAAGTTTGAAA GCTGACGGCCAGTTGGAGCTGGATTG CGGTAACGAACAGCATCAGGAGGCGCTGCAGAGACTCGTGAACCAGGACATAAACAAAGC GGCTTGGAACCTCAAACAAGCGAGCG AGGGGAAGCTTGATTGCCGAAAATCACCAGGCGGGCACGCCGAAATCTTCGAGCCAAGTC ACAGTAGTCGGATCAAGGCCCACAGT ACCTATTTGGATGCCTTCTGCACCGTAAGGCTGATTCCCGAAGTGCTGTCAGACGGGACA GTGCTGATAGGGTTGCATCTTAAGCA CAGCCTGACCGCGAAGGCGGACATCTCTCTTCAGTGGGTCATTGATCATAGGCCCGATTG GCTGATATCCATAGAGAAGGTGCGCC ACAGGTATTACGAGCCCGGCAAAGCACCCCTCGTTGCGGAGTTCGTGAAAGTCGATGATT CCATCAACGGATCATCCCTTCTCCCA CACTTGGGCAAATCCCTTGTCGCTTACCACCAGGAGAAAGGGCTGCTTTCAGCCGGACAG CTCGCAGAGGCAGCCACCAGCTCACT CATCAAAGTGCGCTACGGACAGAAGGAGGCAGACCACGTTGCTAGCTTGGTGGAACCCAT GTTTGATTTCGATACTCTGTCAAAGA TTGACAGCCCCTTCCTGAATAGGCTCGCCAAAGACCTGAAGTGGAGCTTGGACGATAGAA TAAAGACAAGCGCGGAGATGGTCAAG AGGCTCTACCTGCCCGGGTTTAATCGAAAGTTGGTACAAGTTGACTACCAGAATCTGAGC AGGAAGAGGTTCAACCACAACCTTAT GCTCCAGTTCGCGGATGGGGCAAGGAGCGGCCATGAACAAGACGTCCTGAAATACAAGGC TTTCGCCGACATGACCAGGGCTAGGG TAATCCCACTCGTGGTAGGAGAGAGGAACAACACCGAAAGCAATAGACAATTGCTCCGGA ACGCCTATAACGCACTGAGGCAACTT ACCAAGGCCGAATTGCCCCCCTTCACGTCATTTCCCCCCAGCATCGGAAACGCCGACGAG TTGGACGCACGGCTGCACAAGAAATG TCCCGACAACGCCATCCTGCTTATCGGGCTCACAGAGAAGAGTGACAAAGCCGCGATCAG GGACACGGCGTTCAACTACGGCCTGG CCACCCAGTTCATGAGGCTCGATCACAAGCCCAAGGTTTACGACAGCTTCTACTTCAATA ACGTCGCAGCGGGCCTGTTCTCCAAG GGAGGAGGGCAACTGTGCGCCGTGAACGACATGCCCGGTGAGACTGAACTGTTTATCGGT CTGGACATGGGCGGCGTGAATGTAAG GGCGCCAGGTTTCGCATTCCTGTTTCTCAACTCTGGCGCGCAACTGGGCTGGCAGCTGGC TGACAAGCAGCAGGGCGAGAAAATGC AGGACGACGCTCTCAGCAATCTGCTGGAGAAGTCTCTCAAAACCTACCTGAGGAGCACCG ACGGGCTTTTGCCAAGGAGGATAACT CTGCACAGGGACGGCAGGTTTTACGAGAGCATCAATGTGATAGAACAGTTTGAGCAGAAG CACGGGGTCAAGCTCGATGTTCTGGA AGTCTTGAAAAGCGGAGCCCCGGTGCTGTACCGGAGAGAACGCAGTGCGGACGGTAAGAA AGTTTTCAGCAACCCAGGGGTTGGCG ATGCCGTCTTCCTTAGCGACAGGGAGGTCATTCTTAGCACTTACAGCGGCGAGGAACTTG GGAAGTCATGGGGTAACAAGGTGAGT GTGAGGCCACTTCGACTCCGAAAGAGATACGGCGAGACCGCATTGAGCGTGTTGGCCCAT CAGGTGTTGGTCCTGTCTAGGATCCA TGGGGCCAGCCTCTACCGACACCCCCGACTTCCGGTGACCACCCACCACGCGGACAGGTT CGCAACCTTGCGGCAAGATGCGTGCA TAGACGCACTTAGTAAGATGGATAGACTGTGTCCGGTGTATCTGTAGTAA

86 ATGCCTAAGAAGAAGAGGAAAGTGGAGGATCCCAAAAAGAAACGAAAGGTCGGCAGCGGT TCTATGAGCGAGCTGGAGACCAACAT CTTCCCAATCACCAACTTGCATGAGCTTGAAAGCAGGTTCAGGTTGTATAGGGTGAGGGG CCTGAGCATCAACCAAGAGGAGTACG ACCCCAACACCCAGACATTGGTGAGGAAGCTGAGCTACAGCATGAGGTCTCCCGTAGCTG TGATACTTAGGAACAGCGACCCGTTC CTGGCTCTTCCAATCGACGCACCCGAGCCCATCTCTCCGTACCCGCTCGTGAGAGCCACT GCTGTGTTCGAGAAGACGGACGAGGT ATTTACTCTCGATTACGAAAGCCCAACTCCCGAGACAGATGCGCTGCGAATAAGGTTCCT GCAATTTATCATCCAAGGCGCGCTGT TTAGGAATCCCAGCCTGTGGCAGCCCTCAGCTGGCACCCCCTTCTTCGAGAGGAGCCCCG TGTTGGAGAAGGCCGGCATTTGCGCG TACCGAGGCTTCTCAGTGCGAGTCGTGCCCATAGAAGGTGGTAAACTGGGAATCTGTGTG GACGTTAAGCACAGGTACGTCAGCAA AAACCCCATCGAAGCAAACATCAAGCGCGAGGAATTCAGGAAATACAAGAACGGCAGGTG CATATACCACTACGGCCACAACTGGT ACGAGATCAAGTTGCAAGACCACACTGGGCTGTCCGTGTCAGAGCAGATGATCAGCAACG GGACGGCCAAACCCATAAGCTTGTAT CAGTTCATTATGAATAACGCGCCCAAGCCCCTGCCCAGGGAGGTCATAGACATGCCTCCC GACTCACCCGCAGTCAAATACATGAC CAGCAGGGATGAGGTGCGCTACGTGCCCTCCATCCTTTGTTATCCGGTCTTTGACACCTC TGACCCCAGGGTGAAGCCGACGCATA GGGGCACAATCCTCCTCCCTAACGTGAGGCGACAGTATATCCACAATTTCGTGAACTCAC ACCTGACCGATGTGCGATCCAAAGAC ATGGCAATCCGAATCAGCAGCAAGCCAGTTATCGCCCCTACCAAGATTTTCCTGCCGCCT GACCTGGCATTCGGCAACAACACCGT GTTCAGCGTAAGAGGCACACCCGGGACCACGTATGTTAGCCTGGAGCAGCTGGGCCAGAC GCGGATAAGCGCCCTCTTCAATCAGA AAATAGGCCCTTATGACAGCAGGCCGCTGGATAGGCAGTACATGATTCTGCCGAAAAGCG TGTGGGACTCCCACGGGCCAGTATTT CTGAATGACTTTAAGAAAATCATGAACGAGCTGTACCTGCACGAACTGCCCTACAATCCC ATCGTCGTGACCTACAACGACTTGAG CGCCAAGACCTACGCGCTTCAGGGAAGGGCTATTCTGGACGCCGTGGACAGCGAACTGAG AGAGCCGGGATACGGCGTGGTTATGA TACACGAGACGGTGGACCGCCGGAATAGACAGCACGACCAGCTTGCCGCGATGGTGATGA GGGAGCTGCGGAACAGGAGGCTGTAT GTGAGCGTGATCCATACCACGGTGACGAAGGACTGTTACCAATTGCCCCAGAACGCCCCC ATTGGCAAGGCCTACTGCCCGGTAGC AGGCAAGCAGGGCAAACTCAATGGCTACTTGAGGAACGTGGCCATTACCAAGGTGCTTCT GACCAACGAGAGGTGGCCCTTCGTTA TATCTACCCCGCTGCATGCGGACTTTACCGTTGCCTTCGACGTGCAGCTTAACACCGCTT GCTTCACATTCATCGGCAAGAGCGGC TCCGACATCCGGACCGTTTTGAAGACCAGTAACCAAAAGGAGAGGTTGAGCAAGGCACAA GTAAGGCAGACGCTCCTGGAAGTGCT CCGCCAGGAGGTTGGCTTCGGTCGACGGACCATGCAGACCATAGTGGTTCAGAGGGATGG CAAATTGTTTGCCAGTGAGATCGCGG GAGCAAAAGACGCTATAGAGATAGTGAAGAAAGAAGGCATCTTGCCCAGCGATGTGTCAC TGAATTTCATCGAAATCCCCAAGAGC AGCGTCGCCCCATTTAGGCTGTTCGATAGCAGCCCCAGGCCAGGGCAGCCTGAAATGGCG AACAACCCAAGAATCGGCTCCTACTT CATCGCGACGAATTACGACGGTTACATTTGCACCACCGGCAAGGAGTTTTACCATCCCGG TACGGCAAATCCTCTCCACGTGAAGT ACATCGAGGGAAATATGCCATTTGAGAAGATCCTGGAGGACGTGTACGCCTTGACTTGCT TGGCGTTGACCAGGCCCGAAGACTGC ACAAGGGAACCCTTCACCATGAAACTGGCCGATATCCGACTGAGGGAACATGCCGGAGGC TACGACGAAGATGCATTGGCGTATGA TGATGAAAATGAGAACGACGAGGATAACGAGAATGAATAGTAA

87 ATGCCGAAAAAAAAGCGCAAGGTGGAGGATCCAAAAAAGAAACGGAAAGTGGGATCTGGC TCCATGAACTACACAGAGGCCAAGAC CGCCAATAGCCCCTTGTTCCTTAGCGAGATTAGTAGTTTGACACTTAAGAATAGCTGCCT GAATTGTTTTAAGCTGAACCATCAGG TCACCCGGAAAATAGGCAACAGGTTCTCTTGGCAGTTCAGCCACAAGTTCCCTGACGTCG TGGTAGTGTTCGAGGACAATTGCTTT TGGGTGCTGGCTAAAGATGAAAAGAGTTTGCCTAGTCCACAGCAGTGGAAGGAAGCACTG TCAGACATACAGGAAGTGCTGAGGGA AGACATTGGGGACCACTACTACAGCATTCACTGGTTGAAAGACTTCCAGATAACCGCCCT GGTCACCGCGCAGCTGGCTGTGCGGA TTTTGAAGATATTTGGGAAGTTTAGCTACCCGATCGTGTTCCCCAAGGACAGTCAGATCT CTGAAAACCAGGTGCAGGTGCGAAGG GAAGTGGATTTCTGGGCTGAGATAATCAACGACACGGACCCAGCAATATGCCTGACGGTG GAAAGCAGCATCGTTTACTCTGGCGA CTTGGAACAGTTTTACGAAAATCATCCGTACCGACAGGACGCCGTGAAACTTCTCGTAGG GCTGAAAGTGAAAACTATCGAAACCA ACGGCATCGCGAAGATTATCAAAATTGCCGGGACCATCGGAGAAAAGCGGGAGGAACTGC TGACCAAGGCAACCGGGTCCATAAGC AGGCGCAAATTGGAGGAGGCACACCTGGGCCAACCTGTGGTGGCCGTGCAGTTCGGCAAG AATCCGAGAGAATACATCTATCCCCT TGCCGCGCTCAAACCGTGTATGACCGACAAAGACGAGAGCCTGTTTCAAGTGAACTATGG CGAGCTTCTGAAGAAGACTAAGATTT TCTACGCCGAACGGCAGGAGTTGCTGAAATTGTATAAACAGGAGGCGCAGAAGACGCTGA ACAACTTCGGCTTCCAGCTCCGGGAG CGGTCAATCAATAGCAGGGAGAACCCCGACTTTTTCTGGACCCCCTCAATTTCCCTTGAA CAAACGCCCATCTTGTTTGGCAAAGG TGAGCGAGGTGAGAAACGAGAGACCTTGAAAGGCTTGAGCAAAGGCGGCGTGTACAAGAG ACATAGGGAGTACGTCGACCCCGCGA GAAAGATTAGGCTGGCCATCCTGAAGCCGGCCAATCTCAAGGTTGGGGATTTTAGGGAGC AGCTCGAGAAGCGACTGAAGCTCTAT AAGTTCGAGACCATCCTTCCCCCCGAGAATCAAATCAATTTTAGCGTAGAGGGCGTGGGC TATGAAAAACGAGCCCGCTTGGAAGA GGCCGTGGACCAACTGATTAGGGGGGAGATACCCGTGGATATCGCTCTTGTCTTTCTTCC GCAGGAGGACCGAAACGCCGACAACA CCGAGGAGGGGAGCCTTTACTCATGGATCAAGAAGAAGTTCCTTGACAGGGTTGTGATAA CGCAAATGATCTATGAGAAAACGCTT AACTATAAGAACAATTACAAGAACATCCTCGATCAGGTGGTGCCTGGAATCCTTGCGAAA CTTGGTAATCTGCCTTACGTGCTCGC AGAGCCACTGGAAATCGCCGACTACTTCATTGGCCTGGATGTGGGTCGCATGCCTAAGAA AAACCTCCCCGGGTCACTTAACGTGT GCGCGTCCGTAAGGTTGTACGGGAAGCAGGGCGAGTTTGTGCGGTGCCGAGTCGAAGATA GTCTCACCGAAGGTGAAGAGATCCCC CAGAGAATCCTGGAGAATTGTCTGCCCCAAGCCGAGTTGAAGAACCAGACCGTGCTGATA TACAGGGACGGTAAGTTCCAGGGCAA GGAGGTGGATAACTTGCTGGCCCGAGCCAGGGCCATTAAGAGCAAATTCATACTTGTCGA ATGCTATAAAACGGGCATCCCCAGAC TGTATAACTTCAAGCAAAAACAGATCGACGCGCCCAGTAAGGGCCTGGCGTTCGCTCTGA GTAACAGGGAGGTGATCCTGATCACG TCCCAGGTTAGCGAAAAGATCGGCGTGCCGCGACCTCTGAGGCTTAAGGTACATGAGCTG GGAGAGCAGGTAAATCTGAAGCAACT GGTGGACACCACACTCAAGCTGACCCTGCTCCACTATGGGTCTCTTAAGGACCCGAGGCT GCCCATCCCCCTTTACGGCGCTGACA TCATCGCGTATAGGAGGTTGCAGGGAATATATCCCTCTTTGCTGGAGGACGATTGTCAGT TCTGGCTGTAGTAA

88 ATGCCAAAGAAAAAAAGGAAAGTCGAGGACCCCAAAAAGAAGCGAAAAGTGGGCAGCGGC TCCTTGGACAATTACATACTGACCGA GTACAAGGCCGGCATCCACGCCAGCGAGATCAAGATACACATCTACCGGATGCCCGTCAA GGATCTTGAGAAAATCGACTATGAGT ACGGGAAGTACACACGCGACCTCAGACAAAAAAACAGGAAGACGATATCCTTTTACCGCT CTCTGATCGGCAGCTTTGAGAAGCTC ACCATCGTGCCCAAGGGATACGAGAAGTACGAGTATAGATCAATTAAACTCGACCAGAGT GAGGAGTCACTCCAGGAGAGGAAACT GCTGGAGAGGCTGATCTTCGACGGCCTTAGGGACAGCAATAGGAACCACTTTATGAGCAC CGAGCAGAGCATCATCGAGAAAGAGC CCATCAAGTCCCTGAGCAAGTGCAAAATCCACCGGGGTATCTACATAGACATCACCGTGA AAGAGAAAGGCGACATCTTCATCGGT TTCGAGCTGAAGCACTCCATCCAGAGCACCCACACGATTATCAAGGCTCTGAAGGAGAAG AAACTGAACAAGGGCGATAAGGTGTT TGACTTTCTGAACAGCGCCCACTACGAGTTCGAGGGGATTAGCGACAAAACCATCAGCGA CCCCCTTCCCGAACTGGGCAACAAGA GCATTATCCAGCACTACAAAACGAAACCCAGCATCTACTGCCACCTCGTGAAAAAACCGA ACATGCCCGCCATCCTGGTACGCAGC AAGAGCGGCAAGGTGTATCCTTACCCCCCACAGCTGCTTAAGAAGGAGTGCCTGATGAAG GATGTGCCGGCTAAGGAGCACAGCTC TATCAAGCTGAACCCCAACGATAAGATCAACTACAGCATTGAGATCATGAAGAGAATCAT AGATGCGTTCGAGAACAGGTATTTCC CCATCGGCTTTGAAAAGAACAACCTGAACATCGCCAAGCTCGGATACAGGAGGAGGCTGG TCCCGGATCCCCTGCTGAGGATTGGC AACGGAGCCACCTGCAACCACAGAGACCTCAAGGGTGCCTTCCTTAGGCACAAGATTTAT GACAGCGTGAGCTCCCCTATCTACTA CCAGCTTCTGCTTGACCAACCCTTCGAAAGGGAGTGGCAGAAAAAGATGAGCGAAGCGTT CATTACGAAGATGGAAAACCGGAGCA GGCAGTGGGGCATAAAGCTTCAGTGTACCGGGAACCAGATCCTCCCTACCTCTAACCCGT ACGCGCTGAGACTGCATCTTAAGGAC ATCAACCTGGATACCGACATCATTAGCGTGGTCCTGTTGGACGAGACCAAACAAGAAGGC GAGGAGGTTTACTCTACCATCAAAAA AGAGCTGGGTGGCACCAGGGGCGCACATACCCAGGTAATCCTGATCGATAGCCTGAAGAA CGAATACACTATCCCCCAGATACTGT TGGGAATCTACACCAAGGCTGGATTGCAGCCCTGGGTCTTGCACCAGCCGTTGCACGCCG ACTGCTACGTTGGCTACGACGTGAGC CATGAAAATGGCAGGCACACCACTGGCATAGTGCAAGTGTTCGGCAAAGACGGGTCACAG ATCTTCAGTCAGCCCATTAGCAGCGC GGAGGCCGGAGAGAAGGTGTCAAAGGAGACCATTCAGACTATGGTGATACACGTTCTTTA CTATTACCAGAAGAAAGTTGGCAAGA TGCCACAGCACATTGTCTTCCACAGGGACGGCCGAGGATACGTAGAGGAGATAGACTGGA TTAAAGACATATTGAGTAATAGGGAC CTCACCAACGGCCAAAGCATCGCTTTCGATTACATCTCAGTGATCAAAGAGTGTGGTCGG CGCATGGCTTACTTTGACGACATAAA GAAGAAGTATGTGAACGTGCCCGGGATTGCCTACCTGGACGACAACGCCCAAAAGGCCTA TCTTTGCAGCACCAATCCATACGAAA AAGTAGGGATGAGCAAACCTATTAAGATTGTGAAGAAGATTGGCGAGATGACCCTGGAGC AGATCGTAGAAGACATCTATCACCTG AGTTTTATGAATATCGACACCGATAGGAAGGTGAGGCTGCCCGTGACTACCAATTACGCC GATAAGTCTTCAACGTTTTTCTCTCG CGGCTATCTGTCATCACAAAAGAAAGGAATTGGCTTCGTATAGTAA

89 ATGCCGAAAAAGAAAAGGAAAGTGGAGGACCCCAAAAAAAAGCGGAAGGTCGGGAGTGGC TCCGTGGCCGCTTTGAAGCGCTACTT TAATGACAAGAACCTGATCGTGATAGGCTACTCTGGCAGGGACAAGAGCCTGATGAGTGC GCTTACCGAGGCTTTCTCTGAGAAGG GCTCTGGCCGCATCTACTGGTGCGGCTACGGCAGCCACATTTCCCCCGAGGTGGAAAGCT TGTTGAGGACCGCGCGAGAGGCAAAC CGCGACGCCTACTATATCGACACCGATGGGTTCGACAAAACCATGTTCAGCCTGGTAATA AACTGCTTCCAGGCGGATATCGAAAA GAAGAAAGAGATAATGAGCATCCTGGAGTCTGCTCCCGAGGACAACGATACCAGCCCGTT CTCAATTCACATCACCAGGACGGATA AATACCTTAAGTCCAACCTCTACCCGATCATCTTTCCTAAGGAGCTGTTTCAGTTTGAGA TAGAATATCATGAGGGCGAACGACCA TGGACCCTGCTGAGAGAGATCACCAAAGACCAGAACATCATCGCCGTGCCCTACAAGCAA AAAGTCTACGCCTTGTCAACGGGATC AGCTATCAACAACGTGTTTGGTAGCCGGTTGAAATCAGATATAGAGAGGATTCCCGTGTC TATGGATGACATTGAGCGCAAGTCTA GTTACAGGGAGCTCTTCCTGAGGGCCACCCTTCAGTCTATAGCCATTATAAGGGGCCTGA ACGTGGACATACGACACAATACCCTT TGGCGGAGCGACATCTTTAGGAACGACAATGGCACCCTCATCCACGAAGCGATCGAGTGT TCCCTGGTGTTTGTGCCCCAACAGAA GTATGCCCTGTTGAGCTTGAGGCCCACCATCTACATAGAGAACTCTCATACGGTTAGCAA GGAGAAAAAGCAGGAGTACGCCAGGA TCTACCTGGATAAGATGTGGAATAAAGCGTACAGCACGAAGTTGGCCCAGTGGGAATCTA TAATCTTTGGAGACACGAGGCTCGCC TTCGAGGTGCCGCAAAATTCAGGATCCGGGTTTAAGTTTCTGATAAGCCACAACTGCGGC TTCAGCGAAATCCAGTATCAAGACAA CACCGAAAGGGGATACAGTAGCAAGAGCTACGACAACAAGAGGACGATCTATAGGGGCTT GCAGCTGAAGGAACCCGAGCTGGAAT TTGTCAATACGTTTGCAGACCGGCCCTTCCTGGACAGCAACCCCATGCGAGGCCTGAGCA ATCACAGGCCGTACGACAGCTGGCAG AAAGACGTTCTCTTGCAGAACGTGCGGTTGGGCGTGATTTGCCCGAACACGCACACCGAC CGATTCCACTCTTTTCTGCAGCAGCT TAACACCACAATTCAAGCCAATGACGATAGCGACTACATTCAGTCCTACACCGGTTTCCA TAGCATTTACAAGACTCTGCTGGAAA TCCCCGATAACGGGACCGACAAATGGATAAACATCGAGGATACCCCCAAGGACACCATCA GTCTGGTTCAGAGTATATGTCACCAA GCGAACCGACTGGCCGACAAGTACCCGGGCATCGTGGTGGTGATTTTCATCCCCGCATTT TGGTCTATCCATCGACAGTTCAAACA CAACGGGGAGAGCTTCGATTTGCACAACTACATCAAGGCCTACGCCGCACAACATAGCTT CACTACCCAAATCATTGAGGAAAAGA CGCTGCGCGACCACATGGTCTGCGAAATTTGTTGGTGGCTGTCACTCGCACTGTTCGTTA AGGCTATGCGAATCCCGTGGGCACTG GCCAATTTGGACTCTGACACCGCTTACGCGGGTATAGGGTACTCAGTGAAGACCAACAGC AAAGGCAACGTCGACATAGTGCTTGG ATGTTCACATATATACAACGCAAAGGGCCAGGGTCTCAGATACAAACTCTCTAAGGTCGA GCAGCCCCAATTCGATGGCAAGAAAA ATCCTTACCTTACGTATGAAGAGGCCTTCAAGTTTGGAATTACCATACGCGAGTTGTTCG TCAAAAGTATGGACCGGCTTCCCAGG AGGGTTGTGATTCACAAGCGGACGCCGTTCAAAAAGGAGGAAATAGAGGGAATCACTCAC GCGTTGACTCAGGCTGGCATTAAGGA CATCGATCTCATTACGATCAATTACGAGTACGACGCCAAGTTCATAGCGCAGAAGGTATA CTATGACAACATCAGCGACGATTCAT ATCCCGTAAGTAGGGGCACCTGCATCAAATTGTCCAGCCGAAATGCGCTGCTGTGGACAC ACGGCGTGGTTCCCTCAATCCGGGAG AGACGACGCTACTACCCCGGTGGGCGCTGTATTCCCGCACCCCTGAAGATAACAAAATAC TACGGTAAAGGCGATCTTCCGACAAT CGCCAGCGAGATTATTGGATTTACTAAGATGAATTGGAACAGTTTTAATCTGTACACGAA ACTGCCCGCCACCATAGATACGAGCA ATACATTGGCGCAGGTCGGCAATCTGTTGCATCAGTATAACGGCGCAACTTACGACTACC GATATTTCATCTAGTAA

90 ATGCCCAAGAAAAAAAGAAAGGTGGAAGACCCTAAGAAGAAGCGCAAAGTGGGATCCGGC TCTATGTTGGAGACGAATATCAGGGT GGTGCGGCCTGGTCCGCAGCTGTGCGTTCCTGTACGCAGGGTGATCGTGTCCGGTCAAAC CTTGGCTCCCGACCTCCTGGAGAGGC TGTGTAACCTGCTGCGAAGGAGGTACGGCATTAGCGCCGCAAGAATACCGGGCTCCGTGA GCGAGCTGTTCGTTGCGACCGACCGG CAGGTGGAGAAGGTGACACTGGAAGAAGATAACTGGCAACTGACCGCCGTGGACTCCAAC GACCCTACTCGAATCATGTCCATCTC TAACACGGACGATGAGAGCTTTATAAGCATCCTGATCGAACGCGCGCTCCTTGCCCAGAT CGCCAGTCGAAGCCTCTTTTGGACCC TCGACTCTCCTCGAATTTGGTATGAGAAGAACCCGTTCCAAAGGAATGAAGGCGTAGCCG TCTACCACAGGTACGAGGTGGATGCG CTCCCCCTCGGCGACGCAGGCATTGGCATCTCAGTGGATGTTTCAACGGCCTTTTTTAGC GAGCACACCCTGGAGTACTACTTCGC CCCCAACCTGATTAGCGGCGAGAGCAAGACGCGACAGGACGAATTCCACAAGTTCACCGG CCGACAAGCTGGTCAAAAGGGGACGC TGCTTTACAATAACGGCAGGAGTAAGGTGAAGTGCTATTTCGAGAACAATAGGGTGGGCC TGACATGTGGCGCAACCGGCCAAATG AAACTCGAGGGAATCACGTATCCCAGCCTGTACCACTACTATGCGAGCAAGTATAGCGCA TTGCAGATCAACGAGAACGATGCCGC AGTGCAAGTGTCTTTCCCTGGCTTGGACCGCCCAGTTCCGGTAGCCGCCAGGCTCCTGTC CCTCCGAGTGATGAACGACGACGTGC CCGATGGTCTGAGCTCCGTCGACAAGATCCCTCCAAGGAACCGCAAGTACCTTATCGAGC AGTTTTGGAAGTGCCTGGAGCCGAGA CCCTTCGGGAATGTGGCCCCTGGTGTCTTCGACGGCTTCTGGAGACCCAACAACGAAAGG GTGCATTACATCCAGCTGCCCGAGAT TAACTTTGGACAAGGCCAAAAAGCAGAACCGCCTGACGTACGCTCCGTTGCATCCATCAA AAACTATTTTAGGCGACGACTGGAAT TGCTGGGTCACGCGGGGTGTTACCACTTTCCGCCCTCAGCCCCCAGGACAATCTTCTGCG CCTACCCGCAGTCATTGGGTGAGGAG ATCCCGGAAAAGTTGGTGAACGGGATCGTCAATGTGCTGAACAAGTGGACCGGCCTCAGC TTCTGTAGCAACCTGGTAAGCTACAG CACGGCCAGCGAGGCGTACGGTAAATTGAGGAGGGCCGAGAGTGCCGGCGTGGTCCTGTT CATCTTGGACGAGGAGCCGGCAGTCT ACTACGACGCGAGCTTCAATCTTGAGGGCTGGAGGGTAAAGCGCGTAACCGAGCCTGTGC TGCGCCAGCAGCATAAGTATCTGACC AACGGCGTGTGGGACCGGAAGAGGCAAGAGTATAGTTTGGGGAGGGGGCAGAGTCGCTGG GAAAGCTTCATCAATTTGATCGGATT GGACGTTATCCAGCAACTCGATGCCATTCCGTATAGGATCCCCAACATCGGCCCCTACGA AGGCCAGCTGATAATCGACGTGGGGC ATGACAGGCAATTCTTCGCCGTGTCACTGCTTATTGTGAGATCAGAAGACAAAGTGCCCG CATTTAACATCAGCAGCCAGGTCCAG CACAAGGCGGATCATAAGCACGAAAGCATTAACCCGGTGCTGTTGAAGGACACCATCATT AACGTGTTCAAGACCGCCAAACGGAG GACTTTTGATCCTCTGACTAGCCTGTTGATCATGCGGGATGGCAACGTGCAGGGCAGCGA GATCGGCGGGATAGACAACGCCCTGG TCGAACTTAGGCAACTTGGCATAATCTCCCCCGATGCGAGGCTGGACATCGTGGGCGTAC ACAAGGAATCTGTAAGCTCCATCAGG CTCTGGGACGTTGACGTAAGGGGGGAGGTAAGCAACCCGATCGAGGGCACCGGTCTGTCA GTCAACTCATCTCTGTACCTGGTGGC GTGCACAGGTGAGGCCACGCTGACCCAAGGCACCGCAGAGCCCGTGGCCATCGTCGCAAA CAACAGGTGCCTGAGTATTGCCGATG CAGCCCTGAGCGCCTTTCTGGCAGCCCAACTGAACTGGAGCAGCCCGGGAGTCGCCCAGC GCCTGCCCCTGCCTCTGAAAAGAACA GATGAGGAACTTACCGCTAGGAGCGATCAAGAAATTAGGAGGATAAGGTAGTAA

91 ATGCCAAAGAAGAAACGAAAAGTGGAAGATCCCAAGAAAAAAAGGAAAGTTGGTAGCGGC AGTATGATAATGAGCCTGGAGAGCAA TATCTTCACTTTTAGCAACCTCGGGACACTTACCACGCAGTACCGACTGTATGAGATCAG AGGCCTGCAGAAAAGGCACCAAGAGT ACTACCAGAACAGGCAAATCCTGATCCACCGACTCTCCTACCTTCTGAAAAATGCCGTAA CTATCATAGAGCGCGACGAGAAACTG TACCTTGTTGTAGCTGCCGATGCCCCGGAACCACCCAATAGTTATCCCATCGTTAGGGGC GTCATCTACTTCAAGCCCACCGGCCA GATTCTGACCCTGGACTACAGCCTCCGAACACCCCAGAACGAAGAGATCTGCCAGAGGTT CCTCCATTTCATGGTACAAAGTGCCC TGTTTCAAAACGCGAATTTGTGGCAACCCAGCGCCGGAAAGGCTTTCTTCGAGAAAAAGC CCTCATTCGAGTTCGGATCAATTCTG TTGTTTCAGGGATTTAGCGTTAGGCCCATATTCACCAAGGACAAGATCGGCCTGTGTGTA GACATCCACCATAAATTCGTCAGCAA AGAACCCCTCCCTAGCTACCTGAACTTCAACGAGTTCCAAAAATACAGAGGCGTGTCATG CATCTACCATTTCGGCCACCAGTGGT ACGAGATCCAACTCTCTGAACTCTCCGAGCTTAACGCGACGGAGGCAATGGTACCCATCG AGAATAAGTTCGTGACCCTTATTAAC TACATCACCCAGCAAGCCAGGAAGCCCATCCCGGAAGAGCTGGCAAACGTGTCACAGGAC GCAGCCGTCGTGCACTACTTTAACAA TCAGAACCAGGACAGGATGGCGGTGACGAGTCTGTGCTATCAGGTTTACGACAACTCTTA TCCAGAAATCCGAAAGTACCACCAGC ACACCATTCTGAAGCCACACATCCGCCGCAGCGCGATCCACGGAATAGTGCAGAAGTATC TCGCGGAGCTCAGGTTCGGCGACATA ACCCTGAAGGTATCAACTATCCCCGAGCTGGTGCCCCAGGAGATGTTCAACCTGCCCGAC TATTGCTTCGGCAACGATTACAAACT GAGCGTGAAAGGAAGCGAGGGCACAGCCCAGATTAGCCTCGACCAGGTCGGGAAGCAGCG CCTTGAGCTGCTGAGTAAGGCTGAAG CTGGTATCTACGTGCAGGAAAAGTTCGACCGCCAATACATTCTCCTGCCCCAAACCGTGG GGGACAGCTTCGGGAGCCGGTTCATC GACGACCTCAAGAAGACCGTGGACAAGCTGTACCCCGCTGGAGGAGGGTACGACCCGAAG ATCATTTACTACCCCGACCGAGGTCT CCGGACCTACATCGAGCAGGGTAGGGCTATACTGAAAACAGTTGAAGAGAACGAGCTGCA GCCCGGCTACGGTATCGTAATGCTTC ATGACAGTCCGGATCGACTGCTCAGACAACACGACAAACTCGCAGCTCTGGTCATTAGGG AGCTGAAGGACTACGATCTGTACGTG GCCGTCATCCACAGCAAGACCGGGAGGGAGTGCTATGAGTTGAGATATAACAACCAGGGC GAGCCCTTCTATGCAGTAATACATGA AAAACGGGGGAAGCTCTACGGCTACATGAGAGGGGTGGCGCTCAATAAGGTGCTTCTCAC CAACGAGAGGTGGCCCTTTGTGCTTT CTACCCCCCTGAATGCGGACGTGGTGATCGGAATCGACGTCAAGCACCACACCGCCGGTT ACATAGTCGTCAACAAGAACGGGAGC AGGATCTGGACTCTGCCCACGATCACGAGCAAGCAGAAGGAGAGGCTGCCCAGTATCCAA ATAAAGGCGAGCTTGATCGAGATCAT CACTAAGGAGGCCGAGCAAACAGTAGATCAGCTGCACAACATAGTGATACATAGGGACGG ACGAATACACGAAAGCGAGATCGAGG GCGCCAAGCAGGCGATGGCCGAGTTGATTAGCAGGTGTACGCTGCCTGTGAACGCCACAC TCACGATCCTGGAAGTGGCGAAGAGC AGCCCCGTTAGCTTTAGGCTGTTTGATGTCTCCAATACCAATTCTAAGGACCCGTTTGTG CAAAACCCACAAGTCGGGTGCTACTA CATTGCCAACAGCACTGACGCCTACCTGTGTAGCACGGGGAGGGCGTTTCTCAAGTTTGG CACCGTGAACCCCCTGCACATAAGGT ATGTGGAAGGTACGCTCCCCCTTAAACTGTGTTTGGAAGACGTGTACTATCTGACAGCCC TGCCTTGGACGAAACCCGACGGGTGC ATCAGGTACCCCATTACCGTAAAGATCAACGACAGGAGGCTTGGGGAGGACGCCAGTGAG TACGACGAAGACGCCCTGCGCTTCGA GCTGTTCGAGTCTCTCGAGTCCGAGGATGACTTTGACGAGATGACCGACAGCGACTTTAA TCAGGAGGAGACAATGGTGTAGTAA

92 ATGCCTAAGAAAAAAAGAAAAGTCGAGGATCCCAAGAAGAAGCGGAAGGTGGGGTCCGGG TCTATGCTCACACAAGAACAATTTAT ACGCAACTTTAGCGTTATGGCCAATGGTGAAGTAGACTTCTTTCTTGGTGCCGGTGCATC TATTGCGAGTGGAATCCCAACTGGGG GTGGCTTGATTTGGGAATTTAAGAGGACACTGTACTGTAGCGAGTGCGGCATCAGCGCCG AAAAGTACAAGGACCTGTCACTCCCA AGCACGCGCAAAACGCTCCAGGACTACTTCGACATTAAAGGGTATTGCCCCAAACAATAT GCGCCTGAGGAATACAGCTTCTATTT CGAGCAATGTTACACCGATCCCATGGCCCGAAAGAGGTTCATCGAGAATATGGTTAGTGG GAGGGAGCCAAGTATAGGTTACCTTT GTCTCGCGGAGGCCGTTATGCAAGGCAAAGTTAAAAACATTTGGACTACCAACTTCGATA GCCTTCTGGAGAATGCCCTCCATAGG CTTTACCCCATGAACAACGTTTTGGTGTGCTCCGAGGCTAATAGAGGCAGTGTGTGCCTG CTCAACCCGACGTACCCAGTCATAGG CAAGCTCCACGGCGACTATCGCTATGATTGGCTCAGGAACACCGAGGACGAATTGCAGCG ACTCGAGACCAGCCTTAAAGGTTACG CGTCCAGCCAACTTACAGGGAAACAACTCGTCGTTATAGGATATAGCGGGAACGATGAGA GCATTATCAGTTTCCTCAAGGATTGC ATAGATAACCCGGCACTGCTTACCAAGGGTCTGCTGTGGGCTGTACGACGCGGTTCCTGG GTAAACCCGAGGGTTAATGAGCTGAT AGAACGGGCGCACAAAATTGGGAAACCAGCCGACGTGATCGAGATCGATGGCTTCGACCA ATTGATGTTCTCAATATACCAGATCC AGAACTACCATAATGAGATTATCGACGGCCAAGGCAGGCTCCTCCAGGTCGGATCTGACA TCCGCCTCACGGGGAAGCCCGTGGAC AGCTTTGTCAAGCTGAACGCTTACAAGGCTGAGTACTGCCCCCTTTGTAACGTGTTCGAG ACAGACATCACATCCTGGAAGGAACT TCGGACCATAACCGGCAGCAGTGACATCATCGCCGGTCTGTTCTCCAAACATATCTATTC TCTGTCTTCCGCAGACAAATTGAAGA CCGTGTTCAGCAAGCACTTTCTCTCTAGCATTAACAAGGAGGAGGCTCCCGAACGGGACA TTCGACGGAACGAGAGTGTGTACATT GGATTGATTTACCAGCTTATTAAGCGGACCCTGCTTTCAAAAGGGATGGTGTCCTTCGCT AAGAATAAGGTCTATAACCCCGACAG CTGCCGCAGCGAGCAAGGCTACCAAGTTTTTGACGCCCTGGAGATCGCGGTCAGCTTCGT TGATGGAAACCTGTACCTGAATCTTA TGCCCACGGTACATGTGAGAGGCTCAAATGGCGAGAGTCTCGACAAAGAGTCCTACCAAA TACAAGTCAACCATGTGGTCAGCACA ATCTACAATAAGCAATACAATGAGAAACTGCGGTTCTGGGAGAGCTTGTGTCTGGACAGT GGTAGAATAATCTTCGAGAACGACGG CTTCAGCATATCATTTGTCGCTCCCGCTGTCTCCCTGGGCGGCAACAATCGAAGAGCTAA GTGGCTTTCCATGCCGTCCTGCAAGT ATGACGAACCACTCATGTGCTTCTCAGACACTGACAAAAGCAAACGAGTTATTAACCAAC TGAAGGGACTCTGCCAGTACGGGCCA ATCGACTGCTCTTATATGCGGGATAGCACCACAAGGCCCAGCGTTAGGCTGGCCGTTCTG AGCCCGAACCAGGACATGGACCGAAT TCTTGCACACCTCAATAAACTCAACACCCACGTCCAAAACAGGGGCAGCGATAATTTCCT GCCCCACTATGAGGGCTTTGAGCAAG TTTACAGAAGGGCTCTGAGCGTCCCTACGAAGGAGCAGAGCAACATCTGCATCGGATACA ACGTGAACGCCATCCTCAAAATGTCT CCTGCAGAGTTTCTGGCTTTTATGAAGCGGGGTATAGAGAAATACTCCCTTCGGTCAAGC GATTTCGATATACTCGTTATTTACAT CCCAGAGTCATTCGCGCATTTCCGGACAGCAACCGAAATTAGTAGCGACTACAATCTGCA CGATGCGCTCAAACTGTATGCCACGG ATAAGGGGATTATCCTTCAACTCATAGAGGAGAAATCTGTGAAGTCATACGACCCCTGCA AAGTAATGTGGGGCTTGTCCACCTCA CTCTACGCGAAGGCGACAGGGGTACTTTGGCATCCAGAGGCAATTAGAAATGACACGGCC TACATAGGGATAAGCTACGCTTTCAG CGAAGAGAAAAGGATTTGTATAGGCTGCAGTCAGCTGTTCGACTCAACCGGGACAGGTAT TCGGATGGTCCTTAGAAAGATAAACA ATCCGATATTTCTGGGGCGATCCAACCCCTACATGAGGGAAGACGACGCTCGAATTATGA TGACCGAGCTCAGGGAGCAGTATTAC CACAGCGCACCTGTGAATACTCTCAAGAGGGTCGTGATCCATAAGACCACGCCCTTCATA CGGGATGAGATAGCCGGTATAATGCA GGCATTTAACGGCATCGAGGTCGAGCTGGTTCAGATTCAAGACTATTGCTCTTGGAGAGG CATACGCTTCGGCGGTGAGCCTGGGA AAACGGCGTTTGGGTTCCCGGTGAAGCGAGGTATGGCCGTAAAACTCGACCGAGAAAGCT TCCTGCTCTGGACCCACGGCTGCGTG ATTCACCCGGAACTGTCAGGCACGCATAACTATTTCAAAGGTTCACGCGGTATCCCAGCA CCCCTCCTGGTCCGCAGGTTTGCGGG TAACGCAAGTGGCGACACATTGGCAAAAGAGATTCTGATGCTTACGAAGATGAACTGGAA CTCCGGTGACAGTCTGTACAAAACCC TTCCCGTGACCCTGGATTTTGCGAAAGTTCTCGCCCGCATGTCTAAGCAAGATGAGGCGA TCTTTGATAAGGCGTACGACTTCAGG TTTTTCATGTAGTAA

93 ATGCCGAAAAAGAAGCGGAAGGTTGAAGATCCAAAGAAGAAGAGGAAGGTGGGGTCTGGG TCAATGCTCCTTAATCATCTCCCAAT CGAGTTCTCCAGCGCACAGTTCGCTGGACACGAAATTGCTTATGTCGACGGCGAGCAGTT GAGGTCCATACGACAGAGACTCACGC GCACGCACTTCGTGTTGAGGGATGGGGACAATGTTCTGCTCTTCCCGTACGAACATGGAA CCGCGACCGAGGGAACCAGGCGAACA TTCGACACGGGCGTTAATTTCAGCGTAGCCAACGCCCTGGCGCGCAACGGCATGCTTCTG CGATTCTTCCAGCACTCTAGAAGTAT TTCCGGCGTCCGACCGGTGAAATTTGTGAAAGACAACCAGAACCTGCTCACGGGTGACGT AGGCCGGTTGTTTGCTATATGTCCGG AGTACAGTTTCGACATCCGACCCCTGGCACCTCAAGACGGCAGCCTTGTGAACGGGGTAC TGGTAAACTTCTCAGCCCGATTTTTG GTGAAGCCCTCCCTCGACGAATTGATTGCGCAGGGGCTCGACCCACGGGGCCTGTATGTT GTTAAAGAGGCAGAAAGAGAATCACC CTACATCCTGCCGATGTTTAATCGGAGATTGGTAGGGCGGATCCAGGACGTGGTCGGAGG TATCGCCAAGCTGGTGGACGAGCGCG AACAGGACCTCCCTGTACATGAACTTCATGTCGAGGCCAACCTGGTCAACTTCGAGAAAG TAGGCAGAGCACTGCTTGGCCGGGAT TACGAGCGAGTGAGTCGACAAGTGCTTCCCACCCTCCATAAGGTGAGCGGCGCAGAGAAA CAGCTCGATCGCTTGGTCCAGCTGCT GACGAGCTTCAAAGACCTCCAGGGTGACATCCCGTGTTGCGACGGCCTGACCGTTAGACT GGCAGGCATACTTACAGATGTGCCCT TCGGCAGTGAGGTGGGCCAATTCCGCAAATTGTCCGCGCCACAGTGCAGCCTCCGCCCAG GGGGAACTATTACGGTGCCGTGGCCC GTGGACGGCAAACTCAATGCCAACGGCCCCTTTGATGCAGACGCCTTCAGCAGGAAGGAA CCAACAATCGGCGTTCTGTTTCCGGA GCAGCACAAGGGTAGTGTAGAAGAGCTGGCCGCTAAACTCAGAGACGGCGCACCGAGCGA TGGAAAGTACCCAAGTCCATTTCCCC AAGGAATGCCCCGGAAGTATAGACTTAGGAAGATGACATATGAGCTGACGCCCACGAAAG TTTCAGGGGACAGGGCCGCAGCCTAC AAGAATGCCGCGCTTGCAGCCGCCCAACAAGAGCTTGATCTCGCTCTGGTGGTCATATCT GAATCAGATAAGGCGTTGCTTGGAGC CGCCAGCCCCTACTACACTGCGAAAGCCACATTGATGAGCCAAGGCGTGCCGGTGCAGGC TATTACCATTGAGACTATCAACAGGC TCAACCCCTACACCTTGAATAATCTGGCACTTTCCCTTTACGCAAAACTCGGCGGGATAC CTTGGACCCTGTCAGTTCAACAGCGA CTGGTCCACGAGATAATTGTAGGGATAGGGTCTGCGAGAGTGGGCTTCGACCGCCTCTCA GAGCGGGAGAGGCTTGTCGGCATCAC GACCGTGTTCTCCGGGGACGGATCATACCTTCTTGGCAATGCAACGACGGAAGCCAGCAG TACCGAATATAGGTCTCGCCTTCTGG AGAGCCTTAGGGCGACTTTGGCAGAGTTGCGAAGACGATTTGGCTGGCAGCGGGGAGATA AATTGAGGATTATCTTCCACCAAAGC TATAAGCGGTACAAGGAGACCGAAGCAACCGCCGTTAGCGACCTCATCGCCGAACTTGAT GAATTCGATGTGGAATTCGCGTTTGT GCAGATCAGTAGCGATCATGACTGGAAGTTGTTCGATGAGAGTGCCACAGGCGTTACGTA TCAGTCCCGGCAAAAGGGAGCGAAGG TGCCGGAACGCGGAGTCATAGTCCCTCTCGGACCTCGCGCTGCGCTGATCACGTTGGTGG GTCCGCATCAACTGAAAACCGACCTG CAAGGGTGCCCCTCCCCCATACTGGTGTCTATCCACCCGAGCTCAACTTTCAAGGATTTG AGTTACGTGTCAAAGCAGGTGTTCGA CTTGACCTTTATGAGTTGGCGAAGCTTTAACCCAAGCACGCAGCCCGTTTCCGTGAGTTA TCCCAACATGGTGGTGGATCTGCTCG GTAACCTGCGGCAAATCCCCAACTTCAATCCCGACATTCTGACGACAAAACTGAGGGAGT CTAGGTGGTTTCTGTAGTAA

94 ATGCCTAAGAAGAAGCGAAAAGTTGAAGACCCCAAAAAAAAGCGCAAGGTCGGGAGCGGA TCTATGATGGGAGCCAGCGATGAGTA TTCCTTTTACGCTGAAAAGGCCTATCCCATAGAAGCGGACAGGCAAAAGTACTTCGAACA GCTGGCGTACAACAAAGCCCCCTACA TTGGCTATAAACTCTTGTGTCTGCTGAATAACGCGGGGCTGATAAAGTCTGTTTGGACCA CAAATTTTGATGGCCTGACGGAAAGG GCCGCTCACCAAATGAACATCACCCCCATCTGCATTACCCTGGACGACCCCGAGAGGATT TTTAGGAATGAGAACTCTCACGAACT GCTGTATATCGCCCTTCACGGCGATTACAAATATAGCAAGCTCAAAAATACCACCCACGA GCTGGACACCCAAAACAATATCTTCA GAGACGCACTGAAGCGATACTTCGTGGATAAGAATCTTATTGTCATAGGATACAGCGGCC GAGATAAAAGCCTGATGAACGCACTT AAAGAGGCATTTTCCCAATCCGGCTCCGGGCGACTGTACTGGTGTGGCTTCGGGGACGAT ATATGCAGCGACGTTAAGGAATTGAT AGACATCGCCAGGAGCAATAATCGGATTGCCTACTTCATCCCGACGGACGGCTTCGATAA GACCATGCTCCAACTTAGTCGCGCCT GTTTCGAGGACGACATTGTGAAGCAGGAGGAAATCAAAAAGCTGATCAAGTCCACGATCA AGAAGGACGAGACGAAGACCAGCTTC CGAATCGAGAGCAGCAGGAACGATAAACTTATTAAGTCTAACCTGCATCCCGTGGCGTTC CCCAAGGACGTGTACCAGTTCGAGAT TAAGACTAACGGCGAGCATCTGTGGAACAACATAGACCAGATCATTGGCGGCAATAAGGA CATAGTTGCCGTACCGTTCAAAGGTA AGGTGTTCGCTGTCTCAAGCATTGCGAAAATCAAGGAGAGGTTCGGGGGCTATATCAAGG GGGAAATATTGAAAGACCCGATTGGC GTCGATGACATCCGCAAAGTATCTGTGTTCCAGCGGCTTATGATGAAGAGCATCCTGATT GGAATCTCTGAGTTGGCAAATCTGGA AACTGATGGAAAGTGGCGCCTTTGGAAAAAGAACACCCTGAGGCGAATCGTAAACGGCAC GGAGTATTTCATCGCCGACGCTGTAG AGCTGTCCTTTTTCTTCGGAAAAGATACCAAGTTTGCCTATCTCAGCATCAAACCGACCA TTTACATTTATACACATAGCGACGAA TTCATACCGAAGGATATAAAGCTGCAATTCACAAAGGAGAAGTTCGACCGACTCTATAAT GCACAATACGACCAATCCCTGGAGGA GTGGAATAATCTCATCTTCCACAACAACAGCCTGAGGTTCACCTTTCCCGTACTGACCAC CTCCGACATGAGCTTTAGCATCAGCA ACAATGTGGCCTTCTCAGGAATTAAGGTTTTGAGTGACAAGTATAAGAGCTACCCCGTTT CTATCGAGCAGAAGCGCATAGTTTTC AAGGGCGTGGAGTTCCTGGAGCCCCAGCTGCTGTTTCAAAATAAGAACAGCAACTTCAAG TCACGCGACTTCCATCCCATGAGGGG ATTGATTAACCACTACCCCTTCGACTACCAGAACAATGGGATCACCAACACGTTTAATGT CAAACTCGGCGTGTTGTGCTCCTCTA AGTACTCTACTAGGCTGTACGAGTTTCTCATGAAATTGAATGCCCAACATAAAGCGCCCG AGAAAAACGAGTACATAATTGACTAT GCTGGATTCAACCAAATCTACAACATCCCTATTGAGATACCGCTGGTAAACGACGAGAAG TGGATGGACGTAAAGTTTAATAGCAG CGTGAGTATCAAAGACGACGCTCTCAACCTGGCAAGAATCATATGCACCCAGATCGAGGC GCTTCACGAGTCTTACAAAACTGACA TGACCATCGTGATCTTCATTCCCAACGAGTGGCAACCCTACAGACATATCGAGGAGGACA CATGGGTTTTTGACCTCCACGACTAC ATCAAAGCATATAGCGCTCAGAAAAGAATTTCCACGCAGTTCATAGAGGAAGATACTCTG AACGATTCATTGACGTGCCAGATATA TTGGTGGCTCAGCCTTAGTTTTTACGTGAAATCCTTGCGGACGCCGTGGGTTCTGAATGC TAACAATAATGAGACCGCTTACGCGG GCATCGGCTACAGTATAAAGAATAACAACGGTGAGGCGTCAATTGTCCTCGGGTGTAGCC ATATTTACGACAGCCACGGCCAGGGC CTCAAGTACAAATTGAGCAGAGTGCAGGACTGCTACATCGACAACAAGCGGAACCCCTAC CTGAGCTACAATGAGGCCTACAACTT TGGCATAAGTATCAGGGAGCTCTTTCTGCACAGCATGGAGTACCTGCCAAAAAGGGTAGT AGTGCATAAACGCACCGAGTTCAAAC CCGACGAAGTGAATGGCATTGTCGACTCACTGCAGATAGCGGGTATCGAGAATATAGACC TTATCTCCATCAACTTCGAGCGGGAA GTTAAATTCATGTCCACTAAATCCAACTACGGGCAGTTGCAAATCGATAACTTTCCCATA CGCAGGGGCACCTGTATCGTGGTGAA CGACTATGAAGCCCTTCTCTGGACCCATGGAATTGTGCCGAGCGTTAAGTCCGATAACAG GACCTTCTATCTGGGCGGACGATCTA TTCCTAGCCCTCTTATCATTAAGAAGCATTACGGTAAGAGCGATATCAACGTTATCGCTA CAGAGATACTGGGTCTTACCAAGATG AATTGGAACTCTTTTGATCTCTACACGAAGCTGCCGGCCACCATCGATAGCTCTAATCAA ATCGCGCGGATCGGGAACCTGCTGAC TAGGTTCGAGGGCAAGACCTATGATTACCGGTTTTTCATTTAGTAA

95 ATGCCCAAGAAAAAGAGGAAGGTCGAAGATCCTAAAAAGAAAAGGAAAGTCGGGTCCGGT AGCATGCCCACCCAGTTCCAGGAGGT GGAAGTGATACTCAACCGCTTCTTTGTAAAGAAACTGTCTCGGCCCGACCTTACGTTCCA TGAGTACCAATGCCAGTTCACCCAGG TTCCAGAGCAAGGCAGCGAACAAAAGGCCATCAGCAGCGTGTGCTACAAGCTCGGTGTGA CCGCCGTGAGGCTGGGCTCATGCATC ATCACCAGGGAGCCCATAGACCCTGAAAGGATGCGCACCAAAGATTGGCAGTTGCAGCTG ATCGGATGCCGAGAGCTGAGCTGCCA AAACTACCGAGAGAGGCAAGCTTTGGAGACTTTCGAGCGAAAAATCCTGGAGGAAAAGCT CAAGGAAACATTTAAGAAGACCATCA TCGAGAAGGACTACGAGTTGGGCCTGATCTGGTGGATATCAGGCGAAGAGGGACTGGAAA AAACCGGTCACGGGTGGGAAGTGCAC AGGGGCAGGCAAATAGACCTCAAGATCGAGACGGACGAAAAGTTGTACCTGGAGATCGAC ATACATCACAGGTTCTACACCCCCTT CAAGCTGGAGTGGTGGCTGAGCGAATACCCCAACATCCAAATCAAGTACGTGCGCAACAC GTACAAGGACAAGAAGAAATGGATAC TGGAGAATTTCGCCGACAAGAGCCCCAACGAGATTCAGATAGAGGCCCTTGGCATCAGCC TTGCGGAATACCACCGGCAAGAAGGT GCTACCCAGCAGGAAATCGACGAGAGTAGGGTTGTGATCGTCAAAAAGATCTCTGACTAC AAGGCGAAACCCGTGTATCACCTGTC TCAGAGGCTGTCCCCGATACTGACCATGGAGACCCTTGCCCAGATCGCCGAGCAGGGTCG GGAAAAGAAGGAGATACAGGGCGTGT TCGATTACATTAGGAAGAACATCGGCACGAGGCTGCAGGAGAGCCAGAAGATCGCGCAGG TCATTTTCAAGAATGTTTATAACCTT AGCAGCCAGCCCGAGATCATGAAGGTGAACGGTTTTGTAATGCCACGCGCGAAGTTGTTG GCAAGGAACAATAAGGAGGTCAACCA GACCGCTAGGATCAAGAGTTTCGGCTGCGCTAAGATCGGAGAAACGAAGTTCGGATGTCT CAATCTGTTCGACAACAAACCGGAGT ACCCGGAGGAGGTACACAAGTGCTTGCTGGCGATTGCGCGGAGCAGTGGGGTCCAGATAA AGATAGATAGCTACTTCACGGGGAGC GACTACCCGAAAGATGACTTGGCCCAGCAAAGGTTCTGGCAACAGTGGGCGGCACAAGGA ATAAAGACGGTGCTGGTCGTGATGCC CTGGTCCCCTCACGAGGAGAAGACAAGACTGCGGATCCAAGCTCTTAAAGCCGGCATCGC AACTCAATTTATGATCCCCACGCCCC AGGATAACCCATACAAAGCATTGAACGTTGCTTTGGGTCTGCTCTGCAAAGCCAAATGGC AACCCGTTTACCTGAAGCCCCTGGAT GACCCCCAGGCCGCAGACCTGATCATCGGCTTCGACACTTCTACCAACAGGCGGCTCTAC TACGGTACAAGCGCCTTCGCGATTCT GGCGAACGGCCAGTCACTGGGCTGGGAGTTGCCTGACATCCAGAGGGGCGAGACATTTAG CGGCCAAAGTATATGGCAGGTAGTGA GCAAACTTGTGCTGAAATTCCAAGACAACTACGACAGCTACCCTAAGAAAATTCTGCTTA TGAGGGATGGACTGGTTCAAGACGGC GAGTTTGAACAGACCATAAGAGAGTTGACCCACCAAGGGATCGACGTGGACATCCTGAGC GTGAGGAAGAGCGGTAGTGGCAGGAT GGGAAGAGAACTGACAAGCGGCAATACTGCCATCACCTATGACGACGCCGAAGTGGGAAC CGTGATATTCTATTCTGCCACCGACT CATTCATACTGCAGACAACCGAGGTAATTAAGACAAAAACGGGCCCACTCGGTTCCGCGC GACCGCTCAGAGTGGTTAGGCACTAC GGGAACACCCCGCTTGAACTGCTCGCGCTGCAAACGTACCACCTGACCCAATTGCATCCC GCCAGCGGCTTTCGGAGCTGTAGGCT CCCCTGGGTTCTGCACTTGGCAGACAGGAGCAGCAAGGAGTTCCAACGGATCGGTCAAAT TTCATTGCTCCAGAACGTGGATAGGG AGAAGCTGATTGCAGTGTAGTAA

96 ATGCCAAAGAAGAAGAGAAAGGTTGAGGATCCCAAGAAAAAGCGGAAGGTCGGCAGTGGC AGCCTGGGAGCCGGTGCCAGCATCAG TTCCGGCATCCAAAGCGCTAATGACTGCATTTGGGACTGGAAGTACTCTATCTACCAAAC TAACTCCGGCAGTCAACGAGTGGCCC TCGTGGACCCTAAGAAATCCGACGCCTCCAAGTCTATCATCCAGAAGTGGCTGGATAATC AACCGAAATTCTCACAGATCGAAGCC CATCAGGAGTACAGCTTCTACGCCCAGGCGGCTTACCCCATTGAGGCGGACCGAATCAAA TACTTTCAGAATCTCTTCCAGGGGAA GTCCCCCTATATCGGCTACAAATTGCTCTGCCTGCTGAACAAGTACGGTGTAGTGAAATC TGTGTGGAGTACCAACTTCGACGGCC TGGTCGAACGGGCAGCACAGCAAGCCAACATCACCCTGATCGCCATCAATCTTGACTGTG TTGACCGCATATATCGAGCAGAAAGC GTGAATGAACTTCTGTATATCGCGCTCCACGGGGACTACAAGTTTAGTACCATAAAGAAT ACCGCGAATGAGCTCGACAGCCAGCA CACCGAGTTCGTATCTGCCATGTGCCGGTACTTCGTCGATAAAAACTTGATCGTCATGGG ATACAGCGGACGCGACAAGTCACTTA TGGACGCCCTGGTCCAAGCGTTTAGCAAGAAGGGTGGGGGGAGACTTTATTGGTGCGGCA TGGGCGAGACCATCACGATCGAGGTG CAAAACCTGATACAGAGAGTGAGGACCGCAGGCCGGTCAGCTTATTATGTAGATACCTCT GGGTTTGACAACACCATGCTGTCACT GGTAAAGTACTGTTTTTCAGAGGACGTCGCCAAACAGCGAGAAATAAACGAAATTTTGAA AATTGTGGAACCGGAGCAGATTACTC CGTTTGAGATTCAAAAGAGCCAGAACAAACGGTATCTCAAGAGCAACCTGCTGCCAATCG TGCTTCCCAAGGAACTCTTTCAGTTT CAGATCTCTTATAACGACACGGCGGACAGGTGGGGATTCTTGCGCGAGAGGATTAAGGAG CGGGAAATCATAGCAGTCCCGTACCA GGACAAAGTATACGCAATCAGCACGGTCTCCATCATTAACGACGTTTTCAAGGACTGTCT CGTAAGCGAGATTGAGCGCACGTCCA TCTCTCTGAATGAGATCGAGCGCAATGGCTGCTTCAAAGAGCTGTTCCTCAAGGCTATTC TCTACGGGTTTAGCCAAATCCGGAAT CTGGGCATCAACTACCGCCACGGCATCATTTGGAAGAAGGAGGCGCTCTACACTGAGCCC GGCAAGACCGTACACGAGGCCATAGA ATGCGGCTTGTCTTTTATACCGCAAGCGAACTACGCTTTGATTAGCATCACACCAAGTTT GCACATCGAATCCAGCAGCCCGATCG AAAAAGAGAAGAAACAAGAGTATAACAGGCGGTACCTTGACAAGATGAGGAATAAAGAGT ACGAGGAAAAGATCCAGGAGTGGTGC AACATACTGTTCTCCGGTAACAAGCTCGTTTTTGACATCCCGCTGCAAAGCAACAACGAC TTGAAGTTCTTCATTTCCAGTAATAG GGGTTTCGCCGAGGTATACAATTACGGTAAGGACATCGAGAAGAGCTACACGCCCAATGC TTACAATACGAAACAGACCATTTACT ACGGCATGCAAATCGAAGAGCCTCAGTTGGAGTTTATCAACTCCATAATCAGTAGGCCGT TCTATGACGTTAACCCAATGAGGGGC CTCTCAAATCACAAACCATTCGACGCGGACTACTATGACAAGTTCCCCCAGGATGTGTGT TTGGGCATTGTGTGTCCGACCAGCTA CAGCCTGATGTTCTCAGAATTCCTGAAGCGCCTGAACACTAAGATCCCAGCACCGAAGTC ATCCGACTACATCCACAACTATATTG GCTTTAACAGCATCTACAACTGCAGGCTGGACATACCGGACATCAATGCCGATCGCTGGG TGAGCATCGGCGACAACCCCCAGAAC GCGGAGGAATTGGCCCGCAACATCTGTATGGAAGCAAAAAAGCTGAGTGAACAATATCCG GGCATCGTGGTTAACATATTCATCCC TACTATCTGGAGCAACTACAGAAACTTTAAACACAACGGTGAATTCTTCGACCTGCATAA CTACATTAAAGCATTTGCGGCACAAA ATCGCTTCACCACGCAACTCATCGAGGAGAAAACTGTTTGTAACACGATGATGTGCGAGA TATCCTGGTGGCTTTCCCTTGCCCTT TTCGTTAAGACCCTGAGGACTCCGTGGACACTGGCTGACCTTAACCCCAACACCGCCTAC GCGGGGATAGGGTATTCAGTTAAAAA GCAGGCCAAGGGCAGGACAGAGATCGTACTGGGGTGTAGCCACATTTACAATGCGCAGGG ACAGGGACTCAAGTACAAACTGAGCA AGGTCGAGCACCCACAGTTCGACAAAAAACGGAACCCATTCTTGAGCTTCGAGGAAGCCT TCAAATTCGGGATGGATATTCTTAAT TTGTTCCAGAGTGCAATGGAAAAACTGCCGCAGAGGGTGGTTATTCATAAACGGACGCCT TTTAGGGAAGAGGAAATAGAAGGGAT TACCAGCGCCCTCAAGCGGGCAGGGATCACGGAGGTGGACCTGATCACTATAACGCAGGA GCGAAACATTAAGTTTATAGCACAGG TTGTCTCCTTCGGCCAACTCAATACCGACGGCTATCCCGTCAACAGAGGCACTTGCATCA AGCTTAGCTCTCGCAATGCACTCCTT TGGACCCACGGCGTCGTCCAGAGCATTCGAGACAAAAGACGGTACTACCAGGGGGGCAGG TGCATTCCGAGCCCGCTGAAAATCAC TAAGTATTACGGCAACGGCGATCTCCAGACTATAGCTAAGGAGATCATCGGTTTCACGAA GATGAATTGGAATAGCTTCAACTTCT ATACGAAGCTGCCAGCGACCATTGACACTAGCAACACCCTGGCCCAAGTGGGCAACCTTC TCAGGAACTATAATGGCACCACCTAC GATTATCGCTACTTTATCTAGTAA

97 ATGCCTAAGAAGAAGAGGAAGGTGGAGGACCCAAAAAAGAAACGAAAGGTGGGGTCTGGC TCTATGCCACACACCTCCCTGCTGTT GAACTTTCTGCCCGTCTCTCTTAGCGGCGACACACGCATCCATGTCGGCTACCGGCCATA TAACGAGGATGTGCTGCGGGAACTGA GGGAGGAGTTCGGCGAAAGCCACGTGTTTAAAAGGGACTACCAGGAGGACACGATAAGCG AGATACCGGTCATCCCCGGAGCCGAG CCCCTTAGCGACAAATCTACTGGCGTGGATCTTGCCGAAGCGCGATGGCTGTGGAAACCA CTTCTGAACGCTGCATTGCTTCGCCT CTTCAGCGGAAGCAGAGAGATCACCTCTGATTATCCAGTCAGCGTGCTTGGTAACCCCAA GAACAACTTCATCAGCCATGCCAATC TCCCCGACTGGGTGAGAATCCTGCCCCTTCTGGAATTCGAGAGCCGAACCCTGTTCGGTG GTAAATCCGGTCCGCAGTTTGGGCTT GTTTGCAACGCCCGAACTAGGCACCAGGTCCTGGCAGGCTGCGACCATCTCATTGAAAGA GGTATAAGTCCCATTGGCCGCTATGT TCAGATCGACCAGCCACAAAGAGACTCCAGACTTGCGCCACGCGGTCTGACTGTTGGTAA GGTGAGCTCTATCGATGGGGACACGT TGATCCTGGAGGATCACCGAAAGGGCTACGAGCGCGTGAAGGCAAGCGACGCTCGCCTTA CCGGCAATCGGGCGGACTTCGACTGG TGCGTGAACGCGCTGTTGCCTGGACAAGGTCAAGCAACGCTGAGCAGGGCGTGGGACGCC ATGAGCGCCCTGAATCAGGGACCCGG CCGCTTGCAAATGATCAATCAGACAGCTGAATATCTGAGGACCGTGAACCTTGAGGCGGT TCCTGGGGTAGCATTTGAGATCGGCG AGTGGCTGAGTTCTACCGATGCTCAGTTTCCTGTGACCGAGACCATCGACCGCCCTACCC TCGTGTTTCATCCCTCCGGCCGACCC AACGACACTTGGAACGAGAGGGGGATAAAGGACAATGGCCCGCACGACCAGAGGACATTC ACCCCCAAACAGTTGAACATCGCCGT GATTTGCCAGGGCAGATTTGAGGGACAGGTAGACAGATTCGTGGGCAAGCTGCTCGATGG CATCCCGGACTTTCAGTTGAGGAACG GCAGGAAGCCCTACGACGACGGTTTCCTTAGCCGGTTTAGGCTGGAGAGGGCCAACGTGC AAACCTTTCAGGCTAACAGTGCGTCC CGCGAGGCTTACGAAGCAGCGTGTGAGGACGCTCTGAAACATGCCGCTGATAACGGCTTT GGCTGGGATCTGGCTATCGTTCAAAT CGAGGAGGATTTCAAGGCGCTGCCTGGGCCCCAAAATCCCTACTACGCCACCAAGGCAAT GCTCCTCCGGAACAACGTAGCCGTGC AGAACATCAGGATCGAAACAATGAGTGAGCCTGACAAAAGCTTGGTCTACACTATGAACC AGGTTTCTCTTGCTTGCTACGCAAAG CTGGGTGGTAGACCTTGGCTCCTCGGTGCCCAACAGAGTGTCGCGCATGAGTTGGTGATT GGACTGGGCAGTCACACCGAGCAACA AAGCAGGTTTGATCAGTCCGTGCGATACGTAGGCATCACCACCGTATTTTCCAGCGATGG AGGCTACCATCTGAGCGAGCGAACCG GAGTAGTGCCCTTTGAAGATTACGCCAAGGAGCTGACAGACACCCTCACTAGGACCATAG AGAGGGTGCGAAGGGAAGACAATTGG AAGAACACTGATAGAGTTCGCCTGGTGTTCCATGCTTTTAAGCAGATTAAGGACATCGAG GCCGAGGCCATCAAACAGGCAGTGGA ATCTCTTGATCTGGAGAACGTTGTGTTCGCATTCGTCCATGTGGCCGAGCACCACCCTTA TTTGATCTTCGACCAAAACCAAGAGG GATTGCCCCACTGGGAAAAGAACAGGAGCAAGCGCAAAGGCGTCTTGGGACCCAGCAGAG GCGTGCATATAAAGTTGGCGGACAGC GAATCCCTTGTGGTATTTGCTGGTGCTAGCGAGTTGAAGCAGGCGGCACACGGTATGCCT CGGGCCTGTCTGCTGAAGCTGCACAG AAACAGCACCTTCAGGGATATGACCTATCTGGCGAGACAAGCCTTCGATTTCACCGCCCA CAGCTGGAGGGTGATGACCCCTGAAC CATTTCCGATCACAATAAAGTACAGCGACTTGATAGCAGAGCGATTGGCGGGTCTCAAAC AAATAGAGACCTGGGACGACGATGCC GTGAGGTTTAGAAATATTGGCAAAGCCCCCTGGTTTCTGTAGTAA

98 ATGCCGAAGAAGAAGCGAAAGGTCGAGGACCCGAAAAAGAAAAGGAAAGTGGGGAGCGGC AGCATGCAGCAGGAGATCCAGCTTAA CATCATCCCCTTCACCGCCCCTGTGGAAGAGGCAGAGTTCGCTTTTTACACCGCCAAGCA AGACGGCTACTGCCCCATCCATAAGG ATGACCTGAACGGGGCCATCGAAGGCCTCGTGGATGAATCAGACCTGCACTACGGCAACT GGCTGTACACTGACTTCGCTCCCGCC AAAGAGAACGCCATCATAATTAGCGTCAATCTCAATGACTGTAAGTACTTCGCCCAGCAC TACTACAGGCACCTTATCAGGACCCA CTTCAAGGGAGTGGCCGACATCATGAGGAAGAATTTCACCAACGAAATCGAGGTCTGGTT CCACAATACCAAAGCCAGCTCTACCA AGTTTAAGGTCTATAACCAGTTTACCCTCAAGGTACAGCACAACAGGGTGACGGACGGAC CGGAACTTGTCGTGTCCTTCGACGGG ACGACGAAGGTGCTGAACAAGTCTATCGCCGAGATACACAACTTCAAAACGGAGCTTTAC AACTGGATAAACTGCAACGGCGAGCT TAATCGCTGGAAATACCTGACCGACGATCAGAAGCTGAATCACGAAAAGAACTACCCGGT AGTGTCAAACACACTTAAACCGCATT TCGACATTGCCTTTGACGTTCCCGATTTTAAGAACCGGTATCCCAAATACTTCACTCTTC TGAATGACTTCTACAACAACTATCTG AATACAGACGCCTTTACTGCGATCTTGCCGCTTTCCGCTGACGGATTCTTCAAGCCAAAT GGCCTGTCAGTGCAGAGGATCAACGG CACTAGCAATGAGCTGCAATTCGGCAATGGCGTCGGCGTGGAGCCCAAAAGGGATCTCAA GCGCCTGAAGCCGTATAAACCCGTGC CCAAACCCAGCAACGTAAAGTTTTTCTTCATCTATCACAAGCCAGATAGGGAGCATGCGG TCAAAAACATCTGGCAGTATTTCAAA GACGGATACAACGGCCAATACCCCTTCCCCAAGATGGAGGAATACATATCTCAGCCCTTC GAGCTTGAGGAGAATGGATCTATCTC ATTCGACAATATCGACGACGCGGTAAGCGTTGTCCAAAAAGCCATCAAGAACAAGGATCG GCTGCCCGACACTAAATACTTTGCGG TATACATCTCCCCCGTACCAAAATGGGAGAAGGACCCTAAACGGAATAGTATCTACCATC GGATGAAAGAGATACTCCTGTACGAG GGGATCACCAGCCAGGTGATCTGGAAGGAGAACATTAGCAAACCGGCTTTCAACCTCTTC TTGCCTAACATCGAAACCGCCATACT GGCCAAGCTGGGAGGCGTCCCCTGGAGGCTCAAGAGGGACACCACGAACGAGTTGATCGT TGGCGTGGGTGCTTTCTACTCAATCA CGCGGAAGTCCAAGTACGTGGGCTCTGCATTTTGCTTCAATAACGAGGGCATCTTTAAGG GGTTCGACTGTTTCGGTGCCAATGAC ACCGACAGCATCGCGGGCTCTATCAGGGAGGCCGTGGGAAAGTTCATCGCGTCTAATTAC AAGGCCACAAGGCTGATCATTCACTT CTATAAGGACCTGTCAAAGAAGGAGCTCAAACCAATCATCGATACACTTCACGCCCTGGG CTTGCCCATCCCAGTGATAGTCGTGA CCATCAATAAAACCGAGAGCAAGGAACTCCTGGCATTTGATACCAGCTCACAAAAGCTCA TGCCCTACTCTGGCACCATCGTGAAG GTGGGAGCCAAGGAGTACCTGCTGTTCAACAACACGCGATACGAGGAAGCATCCGCCCCA ACGGATCGCGAGCACCACTTCCCGGT GAAAATCAGCTTTTTCTCAGACAAGGCGGAGCTGTTGGACGATCCCGCACTGATCAACCA ACTGATCGACCAGGTGTACCAGTTCA GCCGCATGTATTGGAAAAGCGTGAGCCAACAGAACTTGCCCGTAACCATTAAGTATCCCG AGATGGTGGCGGAGATTTTCCCATAC TTTACCCACGATAAATTGCCCGATCATGGAAAGGAGAGCCTGTGGTTCCTGTAGTAA

99 ATGCCCAAGAAAAAGCGGAAGGTTGAGGACCCAAAAAAGAAGAGGAAAGTTGGCAGCGGG AGCATGGAAAATCTGACCCTGAATAT CATCCCTTTCAGCCACCCCGTGCAGGAGCTTGAGATCGGCTTCTATAAGCAAGAGAAACA GGGATGCTACAGCCTGTGGAAGGGCG AGTACCCGCAGTCATTCTGGGACGACTTCAACGAGGAAATGCAAAATTGCGACAAACTCT ACACCAACTTCATTGACACGGAAAAC TGTGATTACAAAGCCAGTGTGGACTTTAGCAAAAACAGACGCCTGGCGGTCCATTACTAC AGCAGGCTGATCTACAACTACTTTGA AACAGTGGCAGATGCCGTGAAAATCAACTTCGTGAAAGATATCCAGATATGGTTCAAGGA CGAGACCAAGAGCACCGCCGTCTATA CCAGTTACAAGCGGTTCACGATCAAGGTCCAGTTCCATAAGGTGACCGAGTCCCCAGAGC TGTTGATCAGCTTCGATGGCAATACC ACGGCCTATAACAAAAGTCTGGCCGAGTTGGACGATTTCCCTCCCGAGCTGATTAACTAC GTTAAGTACAATACCCAAGTGGTGAA GTACGAGTTCGCCGAGGACGCTATTAAGCAGCATATCGAGGAGCTGTACCCGATCCTGAG CAACCCCATCAGGGACTACCTTAAGA TTGCCAGGCCCGATTTTAAGAGGGGCAACAAGTATAAGCCCTACTACAAGAACATTACAG ACTTCTATCACAACCACCTGAACTCC AAAGAGTTTAAAGCTATCCTGCCTATCTCCGAAGACGGTTTCTACAAAATGCCTAAGCAC AAGGTTCACAAAACCAGCTTCAATAG CAATAAACTGAGATTTTTCAATAACACGGACATCGTGCCCCACAACGGGATGAAAAACAT CGGCCCCTATAAGGCGTCCCCCCACC CCAACGTGAGGTTCTTCTTCATCTACCATAAGCCAGACCGAAACTTCGCCGTCAAGACGC TGTACGAATACTTTACGGAAGGGTAC AAGAGCCCAGAGGGCTACCTTTACTTCAAGCCTCTCAAAACCTACATTAAACAGCCCTTT CTCATCGACAAGGATACCAGCATCGC GTTCGAAAGCCCGGAAAGCGCTCTGCGCGAAGTCAAGCAGGGTTTGCTTAACCTGGAAAA GCAGCCCAATACGAAATACGTCGCTA TCTATGTGACCCCCATACATAAGACCGAGACCGACGAGCAGAGGAAGATGCTTTATTACC AGGTCAAGGAAGAATTGCTCAAGCAC GACATATCAAGCCAGGTGATATACAAGGACAACATTGGACATAAGGATTTTAGTTTCTAT CTGCCCAACATCGCCATCGCCCTGCT GGCCAAGATCGATGGAATCCCCTGGAGGCTGGACAGAGACACTAAGGAGGAACTTATCGT GGGCGTAGGCGCATTCACAAGCCTGA ACCACAATATCAAATATGTAGCTAGCGCCTTCTGCTTTAACAACAATGGGGAATTCAAGG GATTCGACTGCTTCAAAGCGAATGAA ACCGAACTTTTGGCTGGCACCATCGGCAAGCAAATCCTGAAGTATGTGGTGGACAACGGC GAGAGCGCCAAGCGCCTGATAATCCA CTTTTACAAAAAGATCAGTAACAAGGAACTCGAGCCCATAAAGAAAATGCTGAACAAGCT GAACCTGACCATCCCCGTAGTGATAG TGACTATCAACAAGACGACCTCAGAAGATAACGTGGCGTTTGACACCAGCAGCCATAACC TGATGCCCGTGAGCGGCACCTACCTC AAAATAGGATGGGACCAGTACCTCCTTTTCAACAACACGAGATACAACGCCAGCGACACC GAGAAGGATAACCCCTTCCCTGTAAA GCTGAGCTTCTCTAGCACCGTAGACAATTACTTCGACGACAGGAAGGTGGTCGAGGAATT GATCGACCAGGTGTATCAGTTCTCCC GCATGTATTGGAAGAGCGTGAAGCAACAGAACCTGCCCGTTACCATCAAGTACCCCGAGA TGGCGGCAGAGATCTTCCCATTTTTT GAAGGCGATAAGCTGCCCGACTTCGGAAAGAATAACCTTTGGTTTCTGTAGTAA

100 ATGCCCAAGAAGAAGAGAAAGGTGGAGGACCCGAAGAAAAAACGAAAGGTTGGCAGCGGC AGCGTGCAGCAGACAGTGGAGCTCAC CCTCTACACAGAAAAACATCCCGACACCCACCCAGAGCTCGTTTATGCCGACGAGTGTCC CGACCTGTGGCAACAGCACAGCGAGC TTACGGGGGACAAATCTCTGTTCTACTCTCTTACGAACCCGGCAGAATGCAAGGGAACCC AGTACACAGTGCAAATCAACCTGAAT AACCAGAAGCAGCGAAGGATCGCCAAGCACATAATTAGCCAGCAACTGTATAATCACTTC CGCCAGACCCAAATCGCTACCTTCGA CAAGATCGACAATGTGGAGGTGTGGACCAAGAACACCCAACAGCCTACCCAGAATTGCAC GGAGTACCTGAGGTTCAGCCTTATAC CCCAATACGCCGTGTTCTCTGACTCATGGGAGCTGGTCGTGTCCTCAAATGGCATATCCA CCGTGTATAACAAGCCTTTGAGCGCA CTGGACCTTCAGACCGACCGATTCAAGGTCGTCGTTGGAGGGGAAGTGGTCAAGTACAAG AACCTGAGCCCCAATCAAAAGCAACA AATAGACGAGGCCTTCCCCAAAATCAATAGGGAACTGGCCGCTGAACTGCATATTAACGA GAAACGCTTTCTCAATAAAGACAAGT ATACGACCACCTACAACCACATTAACAACTTCGTGCGACAGCACCTTCTCACATCCGAGT TCCAGGCACTGTTTTGTCTGAGCGGC GAGATGTTCAACGTACCCGAGGAGCGGATCGGCCAAGTGGCGAAGGGGGCGAACCTGTTG CAGTTTAAGGACGGCAAGACCGGCAT TGACCCATTCAGCTGTGTGTTCGGCAGCAAGAGCATGGACGCACTCGGCATCTACCAACC CAGCCTGAAGCCCCAGGTGAAATTCT TTTTCATCGCCCAGCAAAGCGATATCAACGTGTGCAAAAGCCTGTACGATATTTTCACGA AGGGATACAAGCCCTACGTGGACACA GCCACTGGCGAGCAGAGGTACGTGTTCCCACCCCTGGCGACGTGCATCAAGCAGCCCTTT TCAACCGACCCCAAGGGGAGCATTTA CTTCAGCGACCCTCAAAATGCCCTGAGCGAGATCAAGAGCCAGCTTAACAATAAGCCTCT TGACCCCCAAACGCAGTATGTGAGCA TATACGTGTCACCCATCCCTCGCGACGCCGTCAACAATCCCTACTACGGTCTGTACTTTC AGATTAAGGAGCTGCTGCTCGAAAAG AGGATAACGTCTCAGGTGATCTATAAGGACCGCCCCAACAACCAGTACTTCAACTTCCAT CTGCCCAATATCGCGACTGCCATCCT GGCAAAAATAGGCGGCATCCCGTGGCAGTTGAACTCCCACACGACGAACAAAGATCTGGT GATAGGCGTGGGCGCCTTCCTTAGCG AAAAAGTTGGCGAGAGGTATGTGGGCAGCGCGTTCAGCTTTAACCCCAACGGCCTGTTTA AGAACTTCGACTGCTGTAAAGCGAAC GATCTCGAATCTATCGTAGCCGGGATCAGAAAGGCCATCGGACACTTCGTTGTGGACAGC GAAACAAACCCCCAGAGGCTGATCAT CCACTACTACAAGACCATGTCAAAGAGGGAGGCCAGGCCCATCACGCAGATGCTGAACAC GCTTGGCCTCAACATTCCTGTATTGA TCGTCACAATAAACAAGACGGAGACCAGCGACATTGTTATGTTTGATGAGAAACAGCAGG GCTACATGCCCCTTTCAGGCACCGTA CTGAAGATAAGGAACGATGATTTCCTGCTCTACAACAATAGCAGGTACAAAGAGAACGAA AAGTCAGATATGCTTTTTCCAGTGAG GATCCGCCTGAGTAAGATCGTAAACCAATCCGACAAAGACATCCCAATGACAGACGCCTT CAATTTGCTCAACCAAGTGTACCAGT TCTCACGCATGTATTGGAAGAGCGTTAAGCAGCAAAACCTGCCGATCACGATAAAGTATC CAGAGATGGTGGCCGAGATAGTGCCA CACTTTTCAGAAGCCGAATTGCCGCAGTTCGGAAAGAATAATCTGTGGTTTCTGTAGTAA

101 ATGCCAAAGAAAAAACGGAAGGTCGAGGATCCCAAAAAAAAGAGAAAAGTCGGTAGCGGC AGCATGAACTACACAGCCGCCAACAC GGCCAACAGCCCATTGTTTCTCAGCGAGATTAGCAGCCTTACCTTGAAAAACAGCTGCCT CAACTGCTTCAAACTGAATTACCAGC TGACTCGCGAAATAGGCAATAGGTTCGGCTGGCAGTTCAGTAGGAAGTTCCCTAACGTTG TGGTGGTGTTCGAGGACAACTGTTTC TGGGTTCTCGCTAAAGATGAGAAGAGCTTGCCCTCTCCTCAACAGTGGAAGGAGGCTCTG AGCGACATCCAGGAAGTGCTGCGAGA GGATATCGGAGACCACTACTACAGCATCCACTGGCTTAAAGACTTCCAGATCACCGCCTT GGTGACCGCCCAGCTCGCCGTGCGAA TTCTGAAAATCTTCGGTAAATTCAGCTACCCCATCGTGTTCCCCAAGGACAGTGAAATTA GTGAGAATCAAGTGCAAGTAAGGCGA GAAGTCAACTTCTGGGCCGAGATCATTAACGATACCGACCCCGCCATTTGCCTCACCATC GAAAGCAGCATCGTCTATTCCGGCGA TCTCGAGCAGTTCTACGAAAATCACCCGTACAGGCAAGACGCCGTGAAGCTGCTGGTGGG CCTGAAAGTTAAGACCATTGAGACCA ACGGCACCGCTAAGATCATCAAAATCGCTGGCACTATAGGGGAAAAGCGCGAATACCTGT TGACTAAGGCCACGGGAAGCATATCC CGGCGAAAGTTGGAGGAAGCCCACCTCGCACAACCCGTGGTTGCGGTGCAGTTTGGTAAA AACCCTCAGGAGTACATATACCCCCT GGCTGCCCTCAAACCTTGCATGACCGACAAGGATGAGAGCCTGTTCCAGGTCAATTACGG CGACCTCCTGAAGAAAACCAAGATCT TCTACGCTGAACGACAGAAATTGCTTAAACTGTACAAGCAGGAGGCGCAGAAGACTTTGA ATAACTTCGGTTTTCAGCTTCGGGAA AGGTCCATCAATAGCAGGGAAAATCCAGACTTCTTCTGGACGCCCCCAATTTCATTGGAG CAGACCCCCATCCTGTTTGGGAAGGG TGAGCGCGGTGAAAAGAGGGAGACCCTCAAGGGCCTTTCAAAGGGCGGAGTCTACAAAAG GCACAGGGAGTACGTTGATCCTGCCA GGAAAATTAGGCTGGCCATCCTTAAACCGGACTCTTTTAAAGTGGGCGACTTCAGGGAGC AGCTGGAGAAGCGACTCAAGCTGTAT AAGTTCGAGACGATTCTCCCCCCTGAGAACCAAATCAATTTTTCTGTGGAGGGTGTTGGG AGCGAAAAAAGGGCCCGACTGGAAGA AGCCGTAGACCAGTTGATAGGTGGCGAGATCCCCGTGGACATCGCCCTCGTCTTTCTGCC CCAGGAGGACCGGAACGCGGACAACA CCGAGGAAGGCTCCTTGTATAGCTGGATCAAAAAGAAATTCTTGGATCGGGGGGTGATAA CACAGATGATATATGAGAAAACTCTC AACAATAAGAGCAACTACAATAACATCCTGCACCAGGTGGTTCCCGGCATATTGGCAAAG CTCGGAAACCTGCCGTATGTGCTGGC CGAGCCTCTTGAAATCGCCGACTACTTCATCGGCCTGGACGTCGGAAGGATGCCTAAGAA GAATCTCCCTGGTTCACTGAACGTGT GCGCGTCCGTTAGGCTCTACGGAAAGCAAGGTGAATTCGTCCGATGTAGAGTCGAAGATA GCTTGACCGAGGGGGAGGAAATCCCC CAAAGGATTCTTGAGAATTGTCTGCCGCAGGCAGAACTTAAGAACCAGACCGTCCTGATC TACAGGGACGGGAAATTCCAGGGTAA GGAGGTGGAAAACCTTTTGGCTCGGGCACGAGCCATCAACGCCAAGTTCATCCTGGTAGA GTGCTACAAGACCGGCAGCCCGAGAC TTTACAATTTCGAACAAAAGCAGATTAATAGCCCCAGCAAGGGGCTGGCGCTTGCATTGA GCAACCGGGAGGTCATCCTCATCACC AGCCACGTTAGCGAACAGATCGGCGTGCCTCGGCCTCTCCGCCTGAAGGTGCACGAACTG GGAGAACAGGTGAACCTCAAGCAACT TGTGGACACGACCCTGAAACTGACTCTGCTGCATTATGGCTCTCTGAAGGAACCTCGGCT TCCAATCCCCTTGTACGGAGCCGACG CCATCGCGTATAGGAGGTTGCAAGGAATCTATCCAAGCCTGCTGGAGGACGACTGTCAGT TCTGGTTGTAGTAA 102 ATGCCCAAAAAGAAGAGGAAAGTTGAGGATCCCAAGAAAAAACGAAAAGTGGGTAGCGGT AGCGTTCCAGGCGGTAGGGGACCGCT GCTCGTGCTTAACTTCCTTCCCGCTCGCTTCGACGGCCGAGTTGATGCGGGCACCCTCCC CTTCGAGACCCCTGATAAATTGAGGG CCATTAGGGAGGAACTGAGAACTTCCCATGTAGTTGTAACGCGAGGAAAAGAGGTCGTAT GCGTGCCCTTCGTTAGTGGCGCGAAA TTGATCGGCAAACGAACCACTATCACCGCAGCGGGACCCGACCTCGTCGTACAAACGAGT CTTCTCGAATCCAGCCTGAGGCGGAC CTTGACCGAAAAATGGAAGTACGAATTGCGCAGGGAAAACCCGCTCACCTTTGTGTCAAG GACGCCAGGAAGGGACCTGCTGGAGA AGGCCCTTGGTCGGGAGTTGCCGGGACTCCATGTGTTCCCCGCTTACAGCCTGGACGTGC GCAGATACGGTCCTGGGGGGTTCAGC GGGGTTGTTGTAGGATTGAAGACCCGCTATGAGATCGACCTGCCTGTCGGAGTGCTGCTC AGGAGGGGCGTTCAAGTAAACGGCCT TTATGTCCTGGCTGAAAGCCCCCTCGCGCCTACGTGGCCCTTCCAAGATCCCCACACCAG AAGGCGGCTCGTGGGACAAGTTGTCG CGGTGGATGGCGACAAATTGCGAGTGAGGTGTAGGGACGGGGAGCTGGAACTTGATGCCG CCGAAGCATGGATTGAGCCCAACACT GCCAACTTCTACGCCGTCCTGCGGAAGGCGTGCGGACGCTCTTACGAACGAGACTTTCAC GCCCTGGAAGCCCAAGTCGTGTCCCT GACTAACGCCCAGCAGCGAATCGCCGATACCAACAGGATCGCCGCCAACCTGATAGGCCT TGGTAAATTCGACATCAGTAACGGCT TGACTGCCGAGCTGGGGAAACCACTCAGACTGACTTCCACTCAACATCCACACGTTCGGA CTCTGGCCGAGCCCACATTTGTGTTT GACCAGAGCGGAGACAAAACCGCGCCTTTTCCCGAGACCGGGCTGACCAAGTGGGGCCCA TTGGACGCTGAGAGCTTTACACCCAA GGCACCACACATCGCCGTGGTGGTTCCGCGGCAGTTTCAGGGTCGCGTCGAAACGCTGGT TGAGCGGTTCAGGAACGGCGTGAGGG GCAGCAACGCCTATGCCGAGGGCTTTGTCCGAAAGTTTAGGCTCACCGACTGTACCTTCA GCTTCACCGTTTTTGACGGTGACGCT ACTGACGCAGCCGCATATAGGCAAGCGTGCCTTACCGCCCTGAGTAATGACGAGCAAATT AACCTCGCCTTCGTCTTCACATCAGC CGTGCAGGAGCATCAAACGGGGGACGACAGTCCCTATCTTGTCAGCAAATCCACCTTCAT GAGCCAGGGTATCCCCGTGCAAGAGT ATCAAGTGGAGAACATCATCGGGGATTCAAACTTGGCTTATCCCCTGTCCACGATGGCGC TGGCGTGCTACGCCAAACTGGGTGGC ACCCCTTACGCCATAAGCGATCGAGGACGACCTATGGCACGAGAACTGATCTTCGGCATC GGGTCTGCCCAGGTAAGCGACGGAAG GATGGGCGAAACAGAGCGATTTGTGGGCATTACCACCGTGTTCAATTACGACGGTAGGTA CTTGGTTAGCAACGTTAGCCGCGAGA CACCCTACGAAAGGTACCCGCAAGCCCTGCTTGACGCATTGCGGACTTGCATTGCCGACG TGAAGGTTAGGCAGGGATGGAGGTCC GACGACTTTGTGCGGCTTGTCTTCCATATCTTCAAACCTCTGAAGGACAAGGAAGCACGC GCCGTAAAAGAGCTGGTGACGGAGCT GACGTCTGAATATGCCAGCGTGGAGTTCGCTTTTGTGACAGTGGTGGACGATCACCCGTG GCTGGTGCTCGATGAAAACAGCGATG GGGTTAAGGTTGGGCGAGGGACTAAGGGCAAGCACGTAGCTCGGAGGGGTTTTGCCCTGC CGATTTCCAAAAGGGAGCTTCTTGTG ACGGTTAAAGGTCCCCGGGAAATGAAATCCGATAAGCAAGGGGCTCCCAAGCCCCTCTTG CTCAAGCTCCATCGCGAAAGCACCTT TACAGACATCGACTACCTGGCTTCCCAGGTCTTTCAATTCACCGCCATGAGCTGGCGCAG GCCATACCCTACCAGCAAACCCGTGA CTATAAGCTACAGTGACCTGATTGCGGGACTTCTCGGAAAGCTGCGACACGTGACGAACT GGAATAGCGACATGATCTACATGAAG TTGCGCTTCAGCAGATGGTTCCTGTAGTAA

103 ATGCCTAAGAAGAAGCGCAAAGTCGAAGACCCCAAGAAAAAGCGAAAGGTGGGCTCTGGC AGTATGATTAACAAACTGCAATTCGA CGAGTTTCAGAGGGCCATAGGTATTTCTAAGAACGACACCTTCAGTCTTTTGCTCGGAGC GGGTTGCAGCATCAATAGTGACATCC CTAGCGCGGAAGACTGTATATGGGAGTGGAAGCGAGATATTTACAAAACAAATAACAGTT CTAGCTTCGGCTGGATTGACAATTAC AAGAATCCCAAGACTCAGGAGATCATTCAGAACTGGCTCAACAACCAAGGCATCTATCCC GAACGCGGCTGCAAAGAGGAGTACAG CTTTTACGCCTACAAATGCTATCCCATCGACGAACATAGGCGACAGTATTTTCAGAAAAT CTGTAGTGGTAAAAAGCCATCCATCG GGTACAAACTTATTCCCCTGCTTGCCCGAAAGGGCATGCTTGATAGCGTGTGGACCACGA ATTTGGACGACCTCGTGGTGACCGCC TGTATAGGCAACGGGATCCAGGCGATCGAAATCACGCTCGACTCCGTGCAAAGGTTGAAC AACCGGCCTCAGAACCGACATGAGCT TCCTGTGATCAAACTCCACGGAGATTTTAAGTATGGCGATCTTAAAAACACCGAGGAGGA ACTCCTCAATCAGGATAAAACGTTCA GGGAGAGACTTATTGAATACGTACAAGACAAGCACCTGATCGTGCTCGGCTACAGTGGCC GAGACACCAGCCTGATGGACACACTT AAAGAGGCCTACTCAAAACAGGGGGGTGGAATTCTGTACTGGTGTGGATATGGTGACAAC ATAAACTCCGACATCGCCGAACTGAT TCAAATAGCCACTAAAAATGGCCGACGAGCCTTTTACATCCCCACTGATGGTTTCGATTC TACGCTCCGGAAAATCACACAGATAG TGGTCGAGGATGATAACAACCTGAAAAAAGAGCTTCTCGAGCTTCACCAGACCAGCAATA TCAATGACACTATCACACCTTTTGAT CTGAAGTGCGAGAGGGTGAATAAGCTGTTGAAGTCAAACATATTCCGGATTAGCTTTCCA GACGAAGTGTTCGTTTTCGATGTGAG CATCAGCGATAAACCCTGGAAGTTCGTGGACGAAAGGACTCTTGAGCGCAACGATATTAG CGCCGTTCCCTATAACAAGCAAATCT GGGCATTCGGTAGGCTTGACATCATAAAAGACATCTTCAAAGACGTGATGAACTCAGACA TTCAGCGAAAACCCCTGGCAAACATC AAGATATACAACACGGCGGTTAGTCGGCTGTTGCTTACTACGATTTGCAAGATACTGGCG CTGCAGAGCAACCTTAAGACCGACTA TAAGGGTAAGATATGGACCGAGAACAACAGTAAGTCCATTTCCGGCCACATAGTATACAA TGCCGTGCTGCTGTCCTTTGATCGGA TAAGCGGTGAGTATTACCTTAGCCTCAACCCCGACTTCGTGCTGGCTAACCCCAACATTG AGAAGAGTAGCATACAGACCATAGGA CTGTTCTTCTTCCAGAAGCTGTGGAATCAGCAGTTTAACGAGTACATTAACTATTGGAGG GAAATTTTGTTGAAAAAGAATAATGA GTACGAGTTCCCCATAAATAGCGGAACCGGCTTCAAGTTCAAGATCAAGAACATCCCAGT GTTCACTAACATCTGCGACCTGAATA ACCCTCGCATCAACAATCACAACGTGTCCAGCCACCACCTGCTGCTTCAGGGGGTGCAAT TTAAGGAAATCCCGCTGCTTTTCAGC ACCAACAATGGCAACCGCACGGCCACCGACACCCACCCTATGAGAGGACTTCTCATAAAC AAACCGTATGAAACGGGCGTCAACGA CTTCCTCGAAAAGTCTATCACCCTGGGAATCATAAGCCCCAGTCAGGACGCCCTCAGGTT CTACCAATTCCTGGAAAACCAGAACT CTAAAATCAAAAAGCACAACGACAAGGACAACTACATAATAGACTACGAAGGGTTTTTCG CCATCTACGGCGTTAGTCTCAGCTTC CCAACACCTAACGACAACGAGTGGGAAAGGATCAACGAACCGCTGATTATGGGCATCAAG GAGACCGCCCAACAGATAAAGCAACT GATATGCGACAGCATCGTGAAGATCTCAAGCACGACCAGGAGAAAAATCATCGTCATCTA TATCCCCCAACGCTGGGAGCCCTACA CCTCTTACCAGCTCGATGGTGAGTCATTTGACCTCCATGACTACGTGAAAGCGTTCTGCG CGGAGAAAGGGATTATGAGCCAACTC ATTCGAGAGAAGACCATTAACGATACTATCCAAAAATGCCAGATACATTGGTGGTTGTCT CTGTCATTTTTCGTAAAATCCTTCCG GACCCCATGGATTCTCGCAAATACTAACAACACCACCGCCTTCGCGGGTTTGGGGTACAG TGTAGAAAACAAGAAGGATATTAACG GACATATTGTGCTGGGGTGTAGCCACATTTACAGCTCAAACGGAGAAGGGCTCAAATACA AGCTGGCCAAAATAAGTAATGATAAG ATTCAGTGGAGGCATAAGAAGCCGCACCTCTGCTACGACGACGCGTATGAGTTTGGCAAG TCAATTGTGAACCTGTTCTACGAATC TATGAACGAACTGCCAAAAAGGGTGGTCATCCACAAGAGGACCTTCTATACCGATGAAGA GAAACAAGGGATCATAGACTCCATTA GCGACAATAAGAAAATAGAGAGCATCGACCTCATCGAGATCAACTTTGAAAACAATATAA AGTACGCCTCTAGCAAAATCCACGAC GGAAAGGTAGACATTGACGGATTTAGCGTATCTAGGGGAACCTGCATACAACTCAGCTCT AAGGAGGCGCTCCTGTGGGCGCATGG AGTGATTCCTAGCGTCATTAACCCTAACTGGAACTTCTACCCTGGCGGCAGGTACATACC TAAACCACTTAGGATCATTAAACATT ACGGTACAGGTAGCTTGGAACAGATCGCGAACGAGATTCTGGGCCTGACTAAAATGAATT GGAATAGCCTGAACATGTACAGCCAA TTGCCTGCCACAATTTCAAGCTCCAATGATATAGCTAGGATAGGTAAATTGATAGGGGCG AACAGTATGCACGAATACGACTACCG ATACTTCATCTAGTAA

104 ATGCCTAAGAAGAAAAGAAAGGTGGAGGATCCAAAGAAAAAACGCAAGGTGGGTAGCGGC AGCATGCCATCAGCCGAGAGGTGCAT CTGGGAGTGGAAGAGGGAAATCTTCATCACTAAAAACCCCTTGCTCAGGGAAACCGTCGG CGAGCTGTCCCTCCAGGGCACGAAGG ACCGAATCCAAAAATGGCTCGATCAACGCGGCGAATACCCCGCACTGAACTCCCCAGAGG AATACTCATTTTATGCCGAGGAGTGC TACATCACCGAACAAGACAGGCGGAGCTTTTTTCAGCAGTACGTAGAGGTCGCCAAGCCG CACATAGGTTATAGATTGTTGCCCCT GCTGGCACAGACCAAGATCATAAAAACTGTATGGACGACTAACTTTGACGGGCTTGTCGC CAGGGCCTGTCATTCCAACGACGTGG TGTGCATCGAAGTCGGTCTCGACAATACCCAACGCATTACGCGCCAGCATTCTGAGGGGG AGCTGCGGGTTGTAAGTCTCCACGGC GACTACCGATACGATGAGCTTAAGAATACAGATGAGCAGCTCAGGTACCAGGAGGAGGCG CTTAAAAACAATATAGAGCACGAGCT GCAGGACTACGACCTGGTAGTGATCGGTTACTCCGGCAGGGACCGGAGCCTCATGAACGT ACTCGAAAACATATTCAGCAAGGCCG TGAAGAGCAGGTTGTTTTGGTGTGGCTACGGCGAAACGATAAGCCAGCCCGTTATGGAGT TGTTGGAGCTGGCCCGCAAGAATAAT CGAGACGCATTCTATGTCAGCACCGAAGGCTTCGACGACACCGTTGAAAGAATCAGTAGG AAGCTGCTTGACGGCAACATGCTGTC CAAAGCCTTGGCTGAGATACAGGAGACCACTTGCATCACCAACCAATCTGCCAAATTCAC CGCACCTGAAAACGACATCAGCAGCC TTATTAAGTCAAACGCATACCCCCTCCTGAAGCTCCCGTCTCAGTTCCTTAAAGTGACCC TCAAATACCCGGAGGGGTCCTTTAGT TACATTGATTGGCTTAACTCCAAGGTTGACTTCAAGGAGGTTGTGTTGTCTAAGATAGAC AAGGAGATCATCGCGTTCGCGGATGT TGATAAGCTGAGGAAGTATCTGGGCGAGTTCTACCTGTCTACGCCCACGGTGGTGAACTT TAGCAAAACGGACGTGCTTAACGATA CTCGCATTCAGAGTCTGGTGAGGCGCGGACTTATACAGTCCATCGTAAAAAACCTGAACC TGTCCAGCGACCAGAACAAGCGAATA TGGAATCCAGACGTGAGCTCCATCGAATTCTACAACGGCAAGAAGTACAAAATCATCGAC GCGCTCATCCTCAATCTTAGTTTTAT CAAAGATGACATCTACCTCACGTTCAAACCCGATCTGCTGGTCCTTAACCTCGACGAGAG CCTGCCAGACAACGATATAGTTAAGA CTATCAAGAACAAAAAGTTCGGCTACCAGCACAACAAAGAGTACAGTCAGATCCTGGAGA AGTGGGCCAACCTTATAACGAAGAAG GATTTGGTCGTGAGTGGCGGGAGCGTGTTCTTCCTTGGGAAGAAACCGCTGTATGCCGGA CTTGTGTCTTACGCCGCGAGGAAACT CCCAACAGATTATAACAAGCACGCCACCCAGAAAGGACTGATCATTCAAGACGCGAAACT GATTTTTTGCAGCAATTCCATCTCCA ATGAGATTTCTCACATCAACCCCCTGAAGGGGCTCGTGGAAAATCGCCCGTGGGACTACA AAAACACCAGCTCTGGGCTGTGCCCC GAGATCTGCATTAACGTGATCTCAACCAGGCAGGACGCGGGTGTGGTGAGCAACCTTCTC CGAGGTATTCACGAGAAGTCCTTCCC GGAAAAATCCGAGCAAGATTACTTGCACCCCTTCCATGGGTTCACAAACGCTTTCGGGGT GCCCATCACGATCCCTAAGATCGGTG AGAATACGTGGCGCTTTGTGGACGAAGCACTGAGTGCACAGAAGGCCATCGATAACGCGA AGAACCTCGCGAACCGCATTTGCTAT GAACTTGACAGCCTGAAGAAGCTTGAACTGCGGACGGGCACCGTCGTGATCATATACATC CCCAAGAGATGGGAAGCATTGACATC CATCAAGTCTGAGCATGAGTACTTCGACCTGCATGATTACATCAAGGCCTATGCTGCGCA ACAGGGCATTAGTACGCAATTCGTGC GCGAGAAAACGGTTAATTCAAGCCAAAGCTGCCGGGTAAAATGGTGGCTCAGCCTGGCGT TCTACGTGAAGGCTATGCGCACTCCG TGGCGGTTGGAGAGTATTGATAACCAAACGGCTTTCGTGGGGATAGGGTACAGCATCAAT CGCAATATGCATCCCGAGAATTCCAA GCGGATAATTCTTGGATGCTCCCACATATACTCCGCCCGAGGCGAAGGCATGCAGTTTCA ACTTGGGCGAATTGAAAATCCCATTA TCCACCATCACAATCCCTACATGAGCGAGGAGGACGCTAGACGCACCGGCGAGAAGATAC GACAAATGTTTTTTGATGCCAAGATG CAACTGCCACGCAGGGTCGTCATCCACAAGAGGACCGCTTTCACTGAAGAGGAACAGCGG GGGTTCATACAAGGATTGGAAGGCGT TGAGGACATCGAGCTGATCGAAATTAACTTCGAGGACTCCCTCCGCTATTTGTCTAGTAA GTTTGTAAACAGCAAGCTGGAAATCG ACGGGTTCCCCATCGCTCGGGGGACCGTAATCGTGCAAAGCAGCAACACCGCGCTCCTGT GGGTGCATGGTGCAACCCCTAGCGCG CAAAATCCAACGTTTAAGTATTTCCAAGGCAAACGACGGATCCCCGTGCCCCTTGTCATA AAGCGCTACGTGGGGCAGAGCGACAT TAGCCAGTTGGCGAACGAAATATTGGGCCTCAGCAAAATGAACTGGAACACCTTTGACTA TTACTCCAGGCTTCCTGTAACCCTTG AGAGCGCCAATGATATTGCCCGGATCGGCGTGTATTTCAACAATTTCTCCCCCATGAGCT ACGACTATCGGCTCCTCATATAGTAA

105 ATGCCCAAGAAAAAGCGAAAAGTGGAAGATCCGAAAAAGAAGAGGAAAGTGGGCAGCGGG TCTATGAATAACGTGATGCAGGAGTT TCCCGTCGCAAGCTTCCCCACATTCTTGTCCGAGATCAGTCTGCTTGACATCACACCGAA GAACTTTATCTGCTTTAGGCTCACCC CCGAAATCGAGCGCAAGACCGGTAACAGTTTTAGCTGGCGCTTCAGCCAAAAATTCCCTG ACGCCGTCGTGATTTGGCATAACAAG TTTTTCTGGGTACTCGCTAAGCCCAATAGACCAATGCCCAGCCAGGAGCAGTGGAGAGAA AAGTTGCTGGAAATCTGCGAGGAACT TAAGAAGGACATAGGCGACAGAACCTACGCCATTCAGTGGGTTAGCCAGCCCCAAATAAC CCCTGAGATCCTGTCTCAACTCGCCG TCAGAGTGTTGAAGATCAACTGTAGGTTTAGCTCTCCCAGCGTAATTTCTGTCAATCAAG TTGAAGTGAAGAGGGAGATCGACTTT TGGGCCGAAACAATTGAGATTCAGACCCAGATCCAACCCGCTTTGACCATCACCGTGCAC AGTTCATTCTTCTATCAACGACACCT GGAAGAGTTCTACAATAATCACCCTTACAGGCAGAACCCCGAGCAACTGCTCATCGGCCT CAAGGTGAGGGACATTGAAAGGAATA GCTTCGCGACGATTACTGACATTGTGGGCACCATAGCGGACCACCGCCAGAAGCTGCTCG AGGATGCCACTGGAGCTATTAGTAAG CAAGCCCTTATAGAGGCCCCAGAAGAGCAGCCCGTGGTCGCCGTACAGTTCGGTAAGAAC CAACAACCCTTCTACTACGCAATGGC CGCGTTGCGGCCTTGTATCACCGCCGAGACCGCTAGGAAGTTTGACGTGGACTACGGCAA ACTGCTGTCCGCCACCAAGATACCCT ACTTGGAGCGGAAGGAGCTGTTGGCTCTCTACAAAAAGGAGGCGGGTCAATCTCTGGCGA CTTATGGTTTCCAATTGAAAATCAGC ATCAACAGCAGGAGGCATCCGGAGCTTTTTTTCAGCCCAAGCGTGAAACTGAGCGAGACC AAACTCGTATTCGGGAAAAACCAAAT AGGGGTGCAGGGGCAAATTCTTAGCGGATTGAGCAAGGGTGGGGTGTACAGAAGGCATGA GGACTTCAGCGACCTCTCAAGACCTA TACGCATCGCTGCGCTTAAATTGTGCGACTACCCTGCGAATTCATTTCTGCAAGAGACCC GGCAACGCCTCAAACGGTACGGTTTT GAGACTCTGCTGCCCGTCGAGAATAAGAAAACCCTGCTGGTAGACGATCTGAGCGGGGTC GAAGCACGCGCGAAAGCCGAGGAAGC CGTTGACGAACTGATGGTGAACCACCCCGACATCGTGCTCACTTTCTTGCCGACCAGTGA TAGGCACAGCGACAACACGGAAGGCG GCTCATTGTATAGTTGGATTTATTCCCGACTGCTGCGGCGAGGGATTGCTTCACAGGTTA TCTACGAGGACACGCTTAAGAGTGTG GAGGCGAAATATCTCCTTAACCAGGTGATCCCCGGAATATTGGCAAAACTCGGCAACCTG CCGTTCGTACTTGCGGAGCCCCTGGG AATCGCTGACTACTTCATAGGCCTGGACATCTCCAGGTCAGCAAAGAAACGGGGGTCTGG AACCATGAATGCCTGTGCCAGCGTTA GGCTGTATGGTAGGAAGGGCGAATTTATCAGGTACAGGCTTGAGGACGCACTGATCGAAG GGGAGGAAATACCTCAGCGCATTCTG GAGAGTTTTCTGCCAGCCGCTCAACTGAAGGGCAAGGTAGTGCTCATTTACAGGGACGGC CGATTCTGTGGTGACGAGGTCCAGCA CTTGAAAGAGAGAGCAAAGGCTATAGGAAGCGAGTTCATCCTGGTTGAATGCTACAAGAG TGGGATTCCACGACTGTATAACTGGG AAGAAGAAGTCATAAAGGCACCAACTCTGGGACTGGCCCTTAGGTTGAGTGCGAGAGAAG TGATTCTGGTGACAACCGAGCTGAAC AGCGCAAAAATCGGTCTTCCTTTGCCTCTGCGACTCAGAATTCACGAAGCCGGTCACCAA GTATCTCTCGAGTCTTTGGTAGAAGC CACACTGAAGTTGACCCTCCTCCACCACGGCAGCCTGAACGAACCGCGGCTGCCTATACC ACTGTTTGGTTCCGATCGAATGGCCT ACCGGAGACTCCAGGGCATATATCCCGGATTGTTGGAGGGGGATCGGCAGTTCTGGCTTT AGTAA

106 ATGCCTAAGAAAAAGAGAAAGGTAGAAGACCCAAAGAAGAAGCGGAAGGTGGGCTCCGGT TCAATGAACCTGACTCTGTTCAACGA GATCCTCCCCATCAACATCAGCCAACTGCCCAACCAGTACTTCTACAAGCTGTGCACTGC CGGCGACGTGGACCTGGATTCTCTGG GCAGGAGCATCAAGTACCGGATCCAGAAATACTTCAGAGGAATCTGGGTGTGGAGTACCA ACGACCAACTCCTCATTTCAGACAAG CTCATCGAGTACCCCGAACTGCAAAAGTTCACCCAGTATCTGTGGACCGACCAGTCTAAC CTCACATTCAACCAGCTCGAGGGGAT AGAAATCGAGAACATTAGGTGTTGCACCCCCCAAGGCATCGCTGATTTCTGTAGCCAAGG TCTCATCAAAAAGTACGACCAGCAGA TCAAGAAGATACTCGAACAGTCCAAGACAGCACGGAGAGACTATCATATCAAACTGATCC ACAAGTTCGGCTCCTGGGTGGTGAAC AATCAGCCCTGCATAAGCCTGAGCCTGAAACAGGAGATCGATTTTAACGGAACTCTCCAG GACTACCTGACCAAGTTCCCCAACTC TAACATCATCGGCCTGCATGTGCTCGACATCACTAAGCCTTTCAACACCGCACAGGAGGT CATCAAGATTCTCGGTATCTTGGGTG AGGGAAATCGGCGGCAGCGCCTCCTGACTTGGGTCAAGGAGCCAACCATGAAAAAACTCG TGGAAGAGGCCCCAGATAGTGAGCTC GTAGTTGAGATCGGGAACAAGAAAAAATCCTATCATTACATCATTTCTGCCCTGCGCATC AGAGTCCTCAACCAAGATTACCTGAG GCTGGGGATTAGCGAGAAGCTGCAAATAGTCAGTGAAGAGAGGTTGAAGTACATCGAGCC ACTTTTCCGCATACTGCAATCAGAGG GCTTCCTGGACAAGGTGTATACTAGCCAGCGCAACCCCGAGCTGTTTAGGTCATGCAGCG AGGAATGGGGTTACAATCCCCTGCTG AAGTTCAAGAATAACGCCACTGTTGCGGCGGAATCCGTGCAGTCCACGGTCCAGGTGGTG CAGAAACACGGCGAATTCAGGAAAGC CGACAAAAGCGAAATTAGGATCGCCATACTCAACACACTGAAGAGTGAAAACAGCACCAA ATTGATTGAGATTTTCCGAAACAACT TTAAGCGAAGCTTTAACCAGAATTTGGAGGGAATCGGTAATCAGCTTAAGTATAAACTCA AGTTGGTGGGCCAGCCCATTGCACTG GATCTCAGTAAGAACTCCCTCAGCCTGCTGGACAGCAAAATAGGAGAATTGTCTAAAAAG AAGCCGGACATTGTGATCTGTGTGAT CCCTAACTTCCTTAGCAAGGGCGAAGACGGGCGGACACTTTACGACGATTTGAAGCAGAC GTTCCTCAAATACAATCTCCAATCAC AAATGTTGCAGGAGAAGACTCTCACGACGTCATTTGCCACAAAGAACATCGTGTTGGGCG TGCTGGCGAAAATTGGAAGCGTTCCC TATATTCTGCAAGAACCGCTGACGTACACGGACTTTGTCGTAGGTTTGGACGTGAGCAGG CGACGCAAAAAAAACCTGCAAGGAAC CAACAGCGTAGCCGCCATGACCCGAATCTACAGCAATCAAGGCGAACTGGTCCACTATAG CATCCGAGACGCAACCATCGACGGCG AGATCATTCCCAAGAGGATGCTCTACGACCTCTTTCCACTTCACGAATATCAGGGCAAAC GCGTGGTGATTCACCGGGACGGAAAC TTCCCCGAGGAAGAGCGCCAGGCACTCGAGGAAATTGCCGAAAAGATTGACGCGAAGTTC TACTTCGTAAGCATTATCAAATCTGG CAATCCCAGGATCTACGGTAGGACCAAAAACGAAGAGGGCATCGGCAGTTATCGCAAGGC ACCTAAGGGTAGCATTTTCCTCCTCA GCGAGACGGAGGCCTTGCTTATCAGCAGCGACTTTCCGGACCGCTTCAGGGCCACGCCAC AGCCTCTCAGAATTAAGACGTTTGGC AACTTTCCCCTTCAAAGCGCCGTCCATAGCGTTCTGTCACTCACCTACCTGCACTACGGT TCCGAGCGCCCACCGAGGCTGCCGGT GTCTACCTACTACGCAGATAGCATTAGCACTATGGTATCCAAGGGCATTAAGCCCAAGGA CGTTGACGGCAATATACCCTTTTGGC TGTAGTAA

107 ATGCCCAAAAAAAAGAGGAAGGTGGAGGACCCGAAGAAGAAGCGCAAAGTGGGTAGCGGG TCCATGAAAGAGTTTAACGTCATTAC CGAGTTCAAGAACGGCATAAACAGCAAATCTATTGAGATCTACATCTACAAAATGATGGT CCGAGATTTCGAGAAGCGACACAATG AAAATTACGACGTGGTGAAGGAGCTGATTAACCTTAACAACAACTCCACCATAGTGTTCT ACGAGCAGTACATCGCCTCCTTTAAG GAGATTGAGAAATGGGGGAACGAGCAATACATAAATGTGGAGAAGAGGGCTATCAACCTG GAGTCCAACGAGAAGAAAATTCTGGA GAGGCTCCTGCTGAAGGAAATCAAAAATAACATAGACAATAACAAGTACAAGGTCGTCAA GGACAGCATATACATCAATAAGCCAG TGTACAACGAGAAGGGCATCAAAATTGACAGGTATTTCAATCTGGACATAAACGTTGAGT CAAACGGAGACATTATCATCGGGTTT GACATCTCCCATAACTTCGAGTATATCAACACTCTGGAGTATGAAATAAAGAACAATAAT ATCAAGATTGGGGACCGGGTAAAGGA CTACTTCTACAACCTGACCTATGAGTACGTGGGCATCGCCCCCTTTACTATCTCCGAGGA AAACGAGTACATGGGCTGCTCAATCG TCGACTATTATGAGAACAAGAACCAGAGCTATATTGTGAATAAACTGCCTAAAGACATGA AGGCCATCCTGGTAAAGAATAATAAG AACTCTATATTTCCCTACATCCCGAGCAGGCTTAAAAAGGTGTGCAGATTCGAAAACCTT CCCCAGAACGTGCTGAGGGACTTTAA CACGAGGGTGAAGCAGAAGACAAACGAAAAAATGCAGTTCATGGTTGACGAAGTGATCAA CATCGTGAAGAATTCCGAGCATATCG ACGTCAAAAAGAAAAACATGATGTGCGATAACATTGGGTACAAGATCGAGGACCTGCAAC AGCCCGACCTGCTCTTCGGTAACGCC AGGGCCCAGAGGTACCCCCTCTATGGTCTCAAAAACTTCGGGGTGTACGAAAACAAGCGG ATAGAGATCAAATACTTCATAGACCC CATCCTCGCCAAGTCAAAGATGAACTTGGAGAAAATCTCCAAATTTTGTGACGAGCTGGA ACAGTTTAGCAGCAAGCTGGGCGTGG GGCTCAACCGGGTTAAGCTGAACAACATAGTTAATTTCAAAGAAATCCGCATGGACAATG AGGACATTTTCAGCTACGAGATAAGA AAGATAGTGAGCAACTATAATGAAACTACCATCGTAATCCTGAGCGAGGAGAACCTGAAT AAGTACTACAACATCATTAAGAAAAC ATTCAGCGGCGGAAACGAGGTGCCCACCCAGTGCATCGGTTTCAATACGCTGAGCTACAC GGAAAAAAACAAAGATTCTATCTTCC TGAACATTCTGCTGGGGGTTTACGCCAAGAGTGGCATCCAGCCCTGGATCCTGAATGAGA AGTTGAACAGTGACTGCTTTATCGGC CTGGACGTGTCTAGGGAGAATAAGGTCAATAAAGCGGGAGTCATCCAGGTGGTCGGGAAA GACGGCAGGGTGCTCAAAACTAAGGT GATCAGCAGCAGCCAAAGCGGAGAGAAGATCAAGTTGGAGACCCTCAGGGAGATCGTGTT TGAGGCAATCAACAGTTACGAGAATA CGTACCGGTGCAAACCCAAACACATTACTTTCCACCGCGATGGAATCAACCGCGAGGAAC TGGAGAACTTGAAGAACACCATGACC AACCTCGGTGTTGAGTTCGACTACATCGAAATTACCAAAGGCATTAACAGGAGGATCGCC ACTATCAGCGAAGGTGAGGAATGGAA GACGATTATGGGGAGGTGCTACTATAAGGACAACAGCGCGTACGTGTGTACCACCAAGCC TTACGAGGGAATCGGCATGGCCAAGC CCATCCGAATCAGGAGGGTGTTCGGCACGCTCGACATAGAAAAGATTGTCGAAGACGCCT ACAAACTGACCTTTATGCACGTTGGC GCAATTAACAAAATCAGGCTTCCCATTACTACGTACTACGCAGACCTGAGCTCCACTTAC GGCAATCGGGATCTTATCCCCACAAA CATCGACACTAACTGTCTGTACTTTATATAGTAA

108 ATGCCTAAGAAAAAAAGGAAAGTGGAGGACCCAAAGAAGAAGCGGAAGGTGGGCAGCGGT AGCATGCAAGGCACTATATCCATAAA CGAGGTGAGGATCCAGCTTAATACTATTAAGAATCTTTCAGTGTTCAAGTGCAGCCTCAG CGGAATTAGCACCCGCCATAAGAACC AGATCGAGTTCATCCTTCGCAGCGAGCAAAACCGAGTTAGCATCTTTGAGGGTGAAGTGA TCTTTGCGCTTCCCGTCGAACAGCAG AACCTCGAAAGAGATAAGCAGGCTCTGTTCAGCTTCCTGGTCAAACAACAAAGGGATCTC AATCTGAAACAGCTGAGCCTGGTGCC CCTGAGGGAGGTGCCCGAGCGCGTTATCGAGCGACTGACTTTCGCAATGGTTAGCTATCA GGCCATGAAGCAGGGCATCTTCTCTA TCTATGGTCATACATTTTTTCGCCCCACCCTTATGACGGATAGGCTTGCGCACAAGGCGG TGGAAGTCACGACGTGCATCGAGGAT GGCTTCCTCAAGTTTTATCTGGACCCGACGTACATTGCACTGACATGCATAACGGACACA GCACGCGAAAATAGGGAGAACCTGGA ACTGGTCGGGCTCTGCTCTTTCCGCAACAAAAACCTTTGTAGCCTTGTCAGGCCGGACGG CTCATGCAACTGCCTCATACCTGGTA AGTTGGGGTATTACGTCCAGGAGATGGGGATTAAGGACGTTGAGGATGATAGCAAGGACT TTCTGGCCAAACGGTTCAATAGCTGT CCCCGGTTTAGTGAGCACACGCGCTTTATACAAGTGAAGGCGAGTAAAAGAGGCACGAAG TACTCCCTGTTCCCTTCTTACGTAGT TTTTAGCAGGTTGTCCCGAATGGACCTGTCCGCTAAGCCAGATGTGCGGTCCAGTTATCG GAAGGCCACATTGATGGACTCTCACG AAAGGCTTAACTTGACCAACGACTGGATAAGACAAATTTTCATGATCGGGCAGAAGGGCC TTCAAAATTGGGGTGTTATAAAGGTC AACCAGACCGAGATTCCCGTTGAAATTGTACTCACAATTGCCCACGCCATCGCGCCCAAG ACTTCTCAAGGCATCTATAAGGCTAT ATTCCTCCCGGACCAGCAAATTACGAATGACAGCAATAACCCAACGCCTCAAACGCTGAG CGGGGGTTGGCTCTTCACGAATAGGG GTGCGTTCGACAGGAGGGATCCTAATAGGCCTTTTAAAGTAATCAGCCCCTACATCATCG TGCCCAACAATGAGCAAAGCATCAGC TCTTGCCGCCAGCTGATCAACTACTTCAGCAACGGCAGGTACAAGGCCCGGTGCAAGGGT GACAGAGACTTTATTGGTATTTCATT GCCCGAAAACAAGGGCAAGTACAACACATCATTTGTCAATGCTTTCGAAGAGGAGGACGG CCTGTATTTCGTTGAAGAGACGATAC AGGGCTACCAGAAGGCGCTGCAAGACATTGTTAGAGACTGGAATATCACGTCCAAGCGGG ACATCAATAAACACGCTATAGTGATC ATACCGGGCGAGAACGATATTGACGACAATCCTTTCTATTATCAACTGAAAAAGGCGTTC GTAGAGGAAGGGATTCCCAGCACCTT CATCACGTACGAGACTATGAACAAAATCAACGACCCCGACATCGCGTTCGGGCCAATCAT GGACAGCCTGTGGTTGAACATTTACA GCAAAATGGGGGGCAAACCGTGGCGCCTCGCTAATAGCCTCGGCAACGTGCACTGCTTTA TCGGTATTGGGTTTGGAATTAACCCC GAGACCACCGGAAACCACATATTCGCAGGGATCGCCCACATCTTCGACAACTACGGGAGT TGGATAGACGTAGCGAGTGATTCCGC CAACCTCTCCCAAAACGATCTGAACTCATTCGAGGGCACGGAAAAGTACACACAGGGGAG TGCTAGCTTTAAGATCAGTCAGAGCG TGTCCCAGTCCATTGTGTATAACGCATTGAAGCTGTACCAACAGAAGCAAACTAAGACCC ACGAAAACGCCACAAACATCGTCCTG CACAAACTGGGCCAGATCTACGAGTGTGAGGTCATCGGGTTCCTCGAAGGAATTCGCCAA GTGCTCGGGAGTCTGGGCGACTGCAA GCTGGGATTGCTGCAAATTGAGCAGGAGCACCACCTGCGCCTCTATGGCGCAGCAGCCCA AACCGGCAAGGAGAACAACACGATCT TTCGCGGTTCAGCACTTCAACTCAACCCGGAGAAGCTGGTTATCGCGTCCACTGGCCGCT CTTACCGGCAGACGAGCTCCGGGCTG TTTATGAATTATCCGGGCATCGGCACCCCCCAGCCGCTCCTGTTGACTTCTATCGTACCG AATCAGCAGATCCTGCAGAAGTACGG CTGTAACGCAAACCAATTCTACTCAAGCGAGGACCTGGCGAAACATGCAATGGCCCTGAC GCAACTTCACTGGGGGTCACTGAAGG ATAATGTAAGATTGCCGATTACCACGCTTTACGCGCAAAAGGTCGCCGACTTGATTAGCA AGACCAACATGCGGATCAATCCAGGC TTGGGCTACTTCCGACCCTGGTTTCTTTAGTAA

109 ATGCCGAAGAAAAAGCGAAAGGTGGAAGACCCAAAGAAGAAACGCAAGGTGGGCTCCGGC AGCATGAATAACCTGACACTGGAGGC CTTTCGGGGCATTGGCACCATCAAGCCACTGTTGTTCTATCGGTACAAGCTGATCGGCAA AGGGAAAATAGAGAATACCTATAAGA CGATACGCAACGCACAGAATCGGATGTCTTTCAACAATAAGTTTAAGGCCACCTTCAGTA AGGATGAAATCATATACACCCTGGAG AAGTTCGAGATTATCCCGACGCTGGATGATGTGACGATCATCTTCGACGGGGAAGAAGTG CTTCCTATAAAGGACAACAACAAGAT TTACAGCGAGGTAATAGAATTTTACATTAACAACAATCTCCGGAACGTTAAGTTCAACTA TAAGTACCCGAAGTACAGGGCTGCCA ATACAAGGGAGATCACGGGCAACGTGATCCTCGACAAAGATATGAACGAAAAGTACAAGA AGAGCAACAAAGGCTTCGAACTCAAA CGGAAGTTCATAATCAGCCCCAAGGTCGACGATGAGGGTAAGGTCACATTGTTCCTGGAC CTGAACGCGTCATTTGACTACGACAA GAACATCTACCAGATGATAAAGGCCGGAATAGATGTGGTAGGAGAGGAGGTCATCAACAT CTGGAGCAATAAGAAGCAGCGCGGTA AGATCAAGGAAATCAGCGACATTAAGATAAACGAACCCTGCAACTTCGGCCAGAGCCTGA TAGATTACTATATAAGCAGCAATCAG GCGTCACGGGTGAATGGATTTACGGAGGAAGAGAAGAACACAAACGTCATCATCGTGGAA AGCGGCAAAAGCCGCCTGTCATACAT ACCGCACGCGCTCAAGCCTATCATAACGCGAGAGTACATCGCCAAGAACGACGAAGTCTT TAGCAAGGAGATAGAAGGGCTCATCA AAATCAATATGAATTACAGGTACGAGATTCTCAAGAGGTTCGTCTCCGACATCGGCACTA TTAAAGAACTGAACAACCTGCGCTTC GAGAAAATCTATATGGACAATATAGAAAGCCTGGGTTACGAGCAGGGTCAACTCAAGGAC CCCGTGCTCATCGGCGGCAAGGGTAT ACTTAAAGACAAAATACATGTCTTCAAGAGCGGCTTCTACAAATCCCCCAATGACGAAAT TAAGTTTGGCGTGATATACCCGAGAG GCTACATAAAAGATACCCAGAGCGTTATCCGAGCCATCTACGACTTTTGCACCGAGGGCA AGTACCAGGGAAAGGATAACATATTC ATCAATAACAAGCTCATGAACATCAAGTTCTCCAATAAGGAGTGCGTCTTTGAAGAGTAC GAGCTCAATGACATAACCGAGTATAA GCGGGCTGCAAATAAGCTCAAAAAGAATGAGAACATAAAGTTCGTGATCGCAATCATCCC CACTATCAATGAAAGTGACATTGAGA ACCCCTACAACCCCTTCAAAAGGGTCTGTGCCGAGATCAACCTCCCCAGCCAAATGATCA GTCTCAAAACTGCAAAGCGGTTCAGC ACCAGCAGGGGCCAATCTGAGTTGTATTTCCTGCATAACATCAGCCTCGGCATTTTGGGC AAAATAGGCGGCGTACCCTGGGTAAT TAAGGACATGCCAGGCGAGGTCGATTGTTTTGTGGGCCTGGACGTGGGCACAAAAGAGAA AGGAATCCACTACCCCGCATGCAGCG TGCTGTTCGACAAGTATGGCAAACTCATTAACTACTACAAGCCGACGATCCCGCAGAGTG GAGAGATCATTAAAACAGACGTGCTG CAGGAGATCTTTGACAAGGTTCTGCTGAGCTACGAGGAGGAGAACGGCCAGTATCCCCGC AACATCGTGATACACAGGGACGGCTT CAGCCGGGAGGACCTGGAGTGGTATAAGAACTACTTCCTGAAAAAAAACATCGAATTCAG CATAGTAGAGGTCCGCAAGAACTTTG CCACGCGACTTGTAAACAACTTCAACGATGAAGTGTCCAACCCAAGCAAAGGTTCATTCA TTTTGAGGGACAACGAAGCGATTGTC GTCACGACGGATATTAACGACAACATGGGAGCGCCCAAACCGATCAAAGTTGAGAAAACG TATGGCGATATTGACATGCTCACAAT TATCAACCAAATTTACGCACTGACACAGATTCACGTGGGGTCCGCGAAATCCCTTAGACT GCCTATAACCACGGGCTACGCCGATA AGATCTGCAAGGCTATCGATTACATCCCGAGCGGCCAAGTCGATAACAGGCTGTTCTTTC TGTAGTAA

110 ATGCCCAAGAAAAAGAGAAAGGTCGAGGACCCGAAGAAGAAAAGGAAAGTGGGCAGCGGC AGCCTGAAAATCAAAATTCTCAAGGA GCCGATGCTGGAGTTTGGCAACGGCGCTCACATATGCCCCAGGACCGGTATCGAAACCCT GGGAGTGTACGATAAGAGAGATGAAC TGAGGAGGAGCGAGCTGCGAATAGGCATTGTGGGTCGGGGCGAGGGCGTGGACCTTCTGG ATGAGTGGCTCGACAAGTGCAAGCGC GGCATCGTGGGTAAAGAGGAGACCAAGTTCCCCAACTTGTTCAGGGGCTTTGGGGGCGTC GATGAGTACCACGGTTTCTACACCAA GATTCTGAGCAGCCCCCAGTATACCCGGACTTTGCAGAAAAGCGAGATTAACAACATCAG CAAGATCACCGCCCGAGAGGACAGGG TAGTGAAGTGCGTGGAGCTGTACTACGAGCAGATCCGATTCCTGTCAGAGAACAGGAGCA TTGACGTGATCGTGTGCGTCGTTCCC AATGATATTTTCGACAGCCTTACTAAGGCCACCGGAGACAAAGACACCGAGTCCCTGGAG GCCTACCTCGAGCACAACTTTAGACG GTTGCTCAAGGCCCGCTGTATGCACCTTGGGATACCCTTGCAGCTTGTGAGGGAGAAGAC CATCCTGAGCGTGAAGCCTAGCATAG ACCAGCAGGACCTTGCCACAAAGGCTTGGAACTTCTGTACGGCCCTCTATTACAAGGGGA ATAGGACTGTACCATGGCGCCTGGTG GAGGATAAATTCAAGCCTAAGACCTGCTACATCGGCATTGGGTTCTATAAGAGTAGAGAC GGCGAAACGGTGAGCACATCACTTGC ACAGGTATTCGACGAGTTCGGCCACGGGGTCATCCTTCGGGGAGCACCAGTTAGCCTGGA CAAACGAGACAAGAGGCCCTACATGG ACGAGTCTCAGGCTTACGAACTGCTGGACAGTGCCCTGGCGGAGTACGAGAAGGCCCTGA TGCAAAAGCCCGCTCGAGTGGTGATC CACAAGAGCAGCAGGTTCCGGCCCACCGAGGTGAGCGGCTTCAGCAGAGTGCTGAACGCG AAAGGAATCAGAACGAAGGACCTCGT GAGCATCACATCAACCGACATCCGCCTGTTCAGCGACAAAAACTATCCCCCCACCCGCGG TACCTTGTTGTCCCTGTCTGAAACAC AAGGAGTACTGTATACCAAGGGAATCGTAGATTTTTACAAGACCTATCCGGGCATGTATA TCCCTTCACCCCTGAGGGTTGAGGCG TTCGAGTCCGACAGCTCTCTTGAAGACTTGTGTAAGGAAATCCTGGGCCTGACCAAAATG AATTGGAACAACACACAACTGGACGG CCGACTGCCCATTACCCTGGAATGCGCCAATAAGGTGGGCGATATCATGAAGTATGTGGA CGCATCCGAAAAGCCACAGGTTGGTG TGGCGCTGTTTATCTTCATGTTGGAGCAACTCGTACCCGGCTGGAAGCTGCCTAAGGTGA GTACATGGGTAGCACGGGTAATTTTC CTGAATATTGTACAGGTGTCTATCGCTCTGCTTGCCGGGATTACTTGGAATAAATGGATG ATGGGCCACAGTTTGTTGCATACCAG CGATGCCCTGCCCCCCTTGCTCGCAGGATTCGCCGCCTACTTCGTTAACACCTTCGTGAC CTACTGGTGGCACAGGGCCAGGCACG CCAACGACACCCTTTGGCGACTTTTTCACCAACTGCACCATGCGCCCCAGAGGATCGAGG TGTTTACTAGCTTCTACAAACACCCA ACGGAAATGGTATTCAACTCTCTTCTTGGCAGTTTCGTGGCCTACGTCGTTATGGGGATC TCCATCGAAGCTGGCGCGTATTACAT CATGTTTGCGGCTCTTGGCGAGATGTTCTACCACAGCAACTTGCGAACACCGCATGTTCT CGGTTATCTCTTTCAACGCCCTGAGA TGCACCGGATCCACCACCAGAGGGACCGACACGAGTGCAACTACAGCGATTTCCCCATCT GGGACATGCTCTTCGGCACCTACGAA AATCCCAGGAGAATAGACGAACCACAGGGGTTTGCCGGCGACAAGGAACAGCAATTCGTT GATATGCTTTTGTTTAGGGACGTGCA TTCCCTCCCCGGGAAGACACAACCAGCTCCCGTACTCGTCAAACCCGACGTGAGGTAGTA A

111 ATGCCGAAAAAGAAGCGGAAAGTAGAGGACCCGAAGAAAAAACGCAAGGTGGGCTCCGGG TCTATGGCCAACCATACCTTTAACAT CCTGACTTTCAACCACCCCCAGGAGGAACAGACCTTCTACTTCACGGACCAGGAGCAAGA CAACCTGACCCGCATCTACAAGAGCC TGGTGCCCGACGAGGTCATCGAGAAATATGGCGAGCAGGATCACTACTACACCTCTTTCA CCGTAGAGAAGGATGGTTTCCTGGCC GTCAGCAAGCCCACAACGCCCCTGTTCGAGACCAAGACTACGGAGGCGGGCGAGGAGAGG AGCTATACCATCAGGAATTCAACGTT CAGCAGCAGCGTGTTGAAACGGTACTACAACAGCCTTATCCACAGCCACTTCAAGGAGAA GGGCTTCCTGGTGAAGCCCAACTTCG TGAGCGACACGGAGGTGTGGCTGCCTAGCGCCAAGCAGGACACGACCGGCAAATACAAAA TATTCGACCGCTTTAGCCTGAAGGTG CAGTTCAAGACCGTCTCTGATTCCCTGGAGTTGCTCGTCACGTTCGAGGGGAAGTCAAAG ATATTCAAAGTACCTGTTAGCACCCT GCTGGAGGATGTGAGCCCCACGGACATCAACTGGGTTGTGTACGAAAAGGGATTGTACAG GTTCGACGAACTCCCGGACAGCGGCA AGAGGGAGTATGACAAGGTTTACCCCGTGTGGACCTTCGAGATCAGGGACGCGCTTATGC AGGGCACCGAAGCCCCAGACAAGACC AACAAGTACAAAAAGTTCAGGGAGGGCATCGACAAGTTCTATAACCAGTATCTGAACACA GAGGAGTTCAAAGCCATCATTCCAAT CACGTCTAATGGCTTCATCCCGGTCAATAAGATCAATGTCGGTAGTGTGAATAATAGTAG CAACAGGCTGCTGTTCGGGGAACAAA AGAGCGGTATCGTGCCAATGGACGGCATGAAGGAACATGGCCCATTCGACTTTTCCAGCA CCAGCAAGATCCATTTCTTCTTTATC TTTCATAAAGACGACCAGCACATCGCCCAAAAGATGGATGGCTATTTCAAAGGCAGCGAG TTCGGGTTCAAGGGACTCACCAAATT CATACACACCCCCTATCACACCGAGAAAGGATTCTCAATCAGGTTTGAGGACCGCGACAA TCCGTGGCCCGAGATCTACGAAGCCG TCACTAACAAGCACTTCGAGTCCGACATACAATACATTGCGATCTACATCAGCCCCTTCA GCAAAAACAGCCCCGACAAGAGTCGG CGCAAAATCTATTACAAGCTCAAAGAACTGCTCTTGAAAGAAGGCGTGAGCAGCCAGGTG ATTGACGGCGAGAAGGTGATGACCAA CGAGAAGTATTACTACAGCCTCCCCAACATAGCAATCGCCATTCTGGCCAAGTTGAATGG CACCCCTTGGAAACTGGACACCAAGC TGAAGAACGAACTGATCGTGGGAATCGGCGCCTTCCGCAACAGCGAGGTTGACATTCAAT ATATCGGCAGCGCGTTCTCTTTCGCA AACAACGGCAAGTTTAATCGCTTTGAGTGCTTCCAGAAGGACCAGACGAAAGAATTGGCG GGAAGCATCATACGGGCGGTGAAGGA GTACGCCAACGTAAACACCGGCATTAAGAGGCTTGTGATCCACTTTTACAAAAGCATGCG ACAGGATGAGCTCCAGCCGATCGAGG ACGGCCTTAAAGACCTCGGCCTGGACATTCCGGTATTCATCGTATCTATCAATAAAACAG AAAGCAGTGATATCGTGGCGTTCGAT AACAGCTGGAAGGATCTGATGCCGATGAGCGGCACATTCATTAAAGTGGGGTACAACAAA TTTCTCCTGTTCAACAACACCAGGTA TAATCCAAAGTTTTACAGCTTCCACGACGGGTTCCCCTTCCCCATCAAACTTAAGATTTT TTGCACTGAAAAGGAACTCGTGGAGG AGTATAAAACGGTTAAAGAGCTGATCGACCAGGTGTACCAATTTAGCCGCATGTACTGGA AGTCTGTCCGCCAGCAGAACCTGCCC GTGACCATTAAGTATCCGGAAATGGTGGCCGAAATGTTGCCTCACTTTGACGGGAATGAG ATACCTGAATTCGGTAAGGACAACTT GTGGTTCCTGTAGTAA

111 ATGCCCAAGAAAAAGCGAAAAGTAGAGGATCCAAAGAAGAAACGGAAGGTCGGCAGCGGA AGTGTGAACCATTACTATTTTTCCGA ATGCAAGGCGGACGAGAAAGCCAGCGACATAGCCATCCACCTTTACACCGTGCCCCTGTC CAACCCCCATGAGAAATACAGCTATG CGCACAGCATCGCCTATGAATTGAGAAAACTCAACTCATACATAACCGTGGCCGCGCACG GTCAGTACATCGCGTCTTTCGAGGAG ATATGCCACTGGGGCGACCACAGGTACATACAGCACGAACATAGACCAATCCAGTGCAGC CTCCCGATGGAGAGGACCATACTGGA AAGACTCCTCAAGAAAGAGCTCGAGAATAGGTGCAAAAGCAGCTATAAGATGGACAACGA CCTTTTCCGGTTGGCTAACGAGCAAA GCATGCACGTGGGCGAGATCAGCATACACCCAGCGATCTACATCTCATTCAGCGTGGAGG AAAATGGTGACATATTTGTTGGCTTC GACTACCAGCACCGGTTCGAGTACCGCAAAACACTCCAAGACGTCATCAACAACGATCCC TCCCTGCTTAAGGAAGGCATGGAAGT GGTGGACCCCTTCAATAGAAGGGCCTACTATTACACTTTTGTGGGCATGGCCGATTATAC CGCCGGACAGAAAAGCCCCTTCCTGC AGCAGTCTGTGATCGACTATTATCTCGAAAAGAATGAGCTGTGGAAGCTCAAGGGTGTGC ACGAAAAAACCCCCGTGGTGCACGTC AAGAGCCGAGACGGTCACTTGCTCCCGTATCTGCCGCACCTGCTCAAATTGACATGTTCA TACGAACAGCTCTTGCCCAGCATGAC CAAGGAAGTCAATCGCCTGATTAAGCTGAGCCCCAACGAGAAGATGAGTAAGTTGTATAC GGAGATGTTTCGATTGCTCCGGCAGC AACAGGTGCTGACCTTCAAGAAGGAAAACGTGCGAGCCGTCAACCTCGGCTACGATGTGA ATGAACTTGACAGCCCGATCATGGAG TTCGGACAAGGCTACAAGACAAACGAGATCTATCGAGGCCTGAAGCAGAGCGGAGTATAC GAGCCCAGCTCAGTGGCCGTGAGCTT TTTTGTTGACCCCGAGCTTAACTACGACCCCCAGAAGCGGAAAGAAGTAGGTTGCTTCGT CAAAAAACTGGAGAGCATGAGCGAGG CCCTGGGAGTAAAACTGAACATAAGCGACCAGCCCCGACAACTTTATGGCCAGCTCCCCA AGGACTTTTTCAAGCAGGACAACCTC TCATATCATTTGAAATCTATCACCGACCAGTTCAGGGGAACGGTGGTGGTTGTTATCGGC ACTGAAGAGAACATCGACCGGGCATA CGTTACAATCAAAAAGGAATTCGGCGGCAAGGAGGATCTGATGACCCAGTTTGTCGGCTT CACCTCCTCCCTCGTCACGGAGAACA ACATTTTTCACTACTACAACATCCTGCTCGGCATCTATGCGAAAGCTGGTGTTCAGCCCT GGATACTCGCCAGCCCAATGCACTCA GACTGTTTCATTGGACTCGACGTAAGCCACGAGCACGGTAAGCACGCATCAGGGATAATA CAAGTGATTGGACGGGACGGCAAGAT TATCAAACAAAAGAGCGTTGCGACAGCAGAGGCCGGAGAGACTATTGCCAATAGCACGAT GGAAGAAATCGTCAACGAAAGCATTT ATTCCTACGAGCAGATCTACGGGGCCAAACCGCGCCACATAACATTCCATAGAGACGGGA TCTGTCGCGAGGACCTCGATTTTCTG CAAGCGTATTTGCGGAGTTTCCAAATCCCATTCGACTTCGTAGAAATCATAAAGAAGCCG CGACGCAGAATGGCGATATACTCTAA TAAGAAGTGGGTCACGAAACAGGGAATATACTACAGTAAGGGCAACACCGCTTATCTGTG TGCCACGGACCCCAGAGAATCCGTGG GTATGGCGCAACTTGTCAAGATCGTACAGAAGACTAACGGATTGAGCGTTCACGAGATAG TGAGCGACGTGTATAAGCTGTCCTTC ATGCACATACACAGTATGCTCAAGACCAGGTTGCCTATCACGATACACTATAGCGACCTC AGCTCAACGTTCCACAACCGGGGCTT GATCCATCCCCGGTCCCAACATGAGAGAGCACTCCCGTTCGTGTAGTAA

113 ATGCCTAAAAAGAAGAGGAAAGTAGAAGATCCAAAGAAAAAGCGAAAGGTGGGAAGCGGC AGCATGACCGGCGAGACTAAAGTGTT GGTCGGGAGGCAACCCTTCGACGTGGATCGGCTGAATGAACTCAGAGACGAATTCCGGGA GACGCACGTGTTCAGAAGGGATGGCA TCGACGATGTCATTGTTGATGTTCCGGTCGTGGCCGGACAGAAGCCCATCGGCAACGTCC AGGAGGAAATAGACCTGGCTAGGTAC CAAAAGGTGTGGCCCTCCCTCCTCAGTGCTGCTCTTGTCCGGGCGTTTAGCGGCGTAAGG GACATCCTGAGCGATAGGCCCGTGAG CGTGGTGGGGAGCACACTGCGGGGTCTGGTTCAACATCCGGAACTCCCCGAATGGATGCA GAAACGCACACTCCTTAGGTTCGACA CCCGGACCATCTATGCTGGTGATAAAAGAACCTTTGGCTTGGTGTGCGAGGCCAGATTGA AAAACCTTATCCAAGGTAGTTGCGCG GAGCTGCTGGCACTTGGAGTTTCCCCACTGGGTCGATATGTCCAAGTCGAGGAGCCACAT TACGATCCCAGGCTTATGAAAAAACG GCGCCTTGTGGGCAGGGTATCAGCGATCTCCGGCGATAATCTGGTGCTGGAGGACCATGC CGAGGGCTTTCCGACCGTGAGTGCAA AGCTGGCATTTCTGGAGGCGCGAAGGGAGATTTTTGACGACTGTGTGCGGAGGATTTTGA ACTCTGATGCGGCCTCCGTGCTGAAC AAGGCCGAAGCTACTGCTGCCTCATTTCACTCAGGGCCAGGTAGGAAAGAGCAAATAGAG GAGGCTCTCAAGTATCTCAGGGAGAA GGTGAGCCTCGAAGCTGTACCCGGAGCGAAATTCGTGATCGGGCCGATGCTGAGTAGCGG CAACAAGGGCTTCCCCATCACGGAGA TGATCCCGAAACCCATTCTCGTGTTCGATCCGAGCGGTACACGGAAGGATGAGTGGAACG AAAGGGGCATTAAGAAGAACGGGCCC TACGACCAGAGGACGTTTTCACCTAAGCAGTTGAAGGTGGCGGTCATTTGCCAGGCGAAG CACGAGGGGCAGGTGGATGGATTCAT CGCGAAGTTCTTGGAAGGTATGCCAGACGTTATGACGGGCAAGAACCGAGTTGCTAGATA TGGTGACGGTTTTCTGCGGCGATTCG CCCTTGAGAAACCTTCTGTGACCTTCTTCACAGCGCCCTCAGCCAAGGCGAGCGATTACC TGGTGGCCAGCCGGGCTGCGCTGACC AAGGCAACGGACGAGGGTTTCAAATGGGACCTCGCGCTTGTGCAAGTGGAGGAGGAGTTT AAGGGATTCGACGACGAGAGCAACCC CTACTATGCCACTAAATCCGTCTTCCTGAAGCGAGACGTGCCGGTCCAAAGTGTACGACT CGAAACCATGGCTCAGGCCGACAGCC AGCTGATTTTCTCTATGAACCACATGAGCCTGGCGACATACGCCAAGCTCGGTGGTACCC CCTGGCTTTTGGCGTCACAGCAGACG GTAGCGCATGAACTGGTTATCGGTCTTGGCAGCCACAGCGTGGCCAACAGCAGGATCGGT AGCCAGCAACGATTCGTCGGGATTAC GACGGTGTTCTCCTCCGACGGGAGCTATCTGCTCTCAGACCGCACGGCGGTTGTCCCCTA TGAGGAGTATGCGACTGCGCTTTACG ATACGCTCAAACGGAGCATCACTACGGTGAGGAAACAAGACAACTGGAGGTCTACGGATA AAGTCCGCCTGGTGTTCCACATGTTC AAGCCCCCCAAGGACACCGAGGCCGAGGCTATAAAACGGACAGTGGACGATCTGGAGCTG GAGAACGTGACTTTCGCCTTCGTGCA CATCGCCCCATCTCATCCCTACCTCATCTTCGACAATACACAAAAGGGAATTGGTTTCCG AGACCCCAAGAAGGGGATACTCGGAC CCGAGAGAGGTCTGCACTTGAAGCTGGGGGACTACGAGTCCTTGATCGTATTCAGCGGCG CAAGCGAGCTGAAACAGGCAAGTGAC GGGATGCCCAGGCCATGCCTGCTCAAGTTGCACCGGCTTAGCACGTTCACTGACATGACG TATCTGGCGCGACAGGCATTCGAGTT TTCAGGTCATTCATGGCGAATGCTCTCCCCAGAACCGTTCCCTATAACTATTAGGTACTC CGACCTGATCGCCGAAAGGCTCGCAG GTCTCAACGCCGTCCCGGGTTGGGACGCGGAGGCTGTCAGATTCGGCCAAATCGGCCGCA CGCTCTGGTTTCTGTAGTAA

114 ATGCCCAAAAAGAAACGGAAGGTGGAGGACCCGAAGAAAAAGCGCAAAGTAGGTAGCGGC AGTATGCGATTGGGGCACATAGGCAA CGGCTGTTACAGGGAAGGCGTTAAAGCACAATTCCAGACACGAGAGAGGGAGGATGCCGG TTCAAGGGCTGCGGCTGCCCAACCCC CGATTAAGCAATTCGGATACACCGATAGACTCGGCCTGAACCTCGCCCCCATAAGGTTTT CTAGCGAAGAGTTTGAAGCCGGACGG ACGGTGTACCGCGACGAGGAACAGTACCGAGCTCTTAGGGAAGCCCATCAAGCCACCCAT GCCTTTAGGTATGACGCAAGGGACGC GGCTATATACGACATCCCTATGGCAGAAGGGGTGGCGCCTCTGGGTACTCCCGTGAGGAT CAAAACTAAGGACCACCTCGCTCTGC TCGGCAAAGCGGCTAACCACGCGCTGCTCGATTGGCTCGCACCACGCAGAACCATTCTGC GGAGGGCGAGACCTCTTCAGTGCTGG GGCAACAGGAAGGCCTCACTGTTGTCAGCCGCCGTGCGGGATCAAGGACTTGCCGAAACA AAGGGTCTGGATGTTCTGGTAAGGCA TTCTTTTGATTTGAGGGCTTTGGGCGCACCTCACCAGGGTGCTGAACCGTACCTTGCCCT GATGTTGGACGTGAGTACGAGCAATG AGCTGGAGATACCTGTGGGCGAGCTTCTGCGCGAGAGATTCGACCCCATCGGTCGATACG TTTGTGCCAGAGCCGACTCTGGCCAA GATAACGTACTTGCTAGGTTGGAAACACTGGGTAGGGTCGTGGGTGTGGATGGTGGTAAG CTTCAACTGAACGACTTTACCGGAGA AGAATTCGTGGACGCTGATTCAGTCACGTTGGAGCCTAGATTGGAGAATCTCGATGCGCT CATTCGCCACTTCTATCCCAGGGATG CGCCAAAAATCCTGGAGGGCCTTCGCAAAAGGAGAGTGCCTTTCTCCACCGCGAACGACA AGCTGGCGAAGATACGAGAAGTGCAC GGAGGAGTAGCCGGCCACCTTGAAACGATTAGGATCGCTGGCATGGCTATAGAGGTGGGT GCCCTGCTGCAGAGAGGCTCTAACCT GTTTCCCCCACTCATAAGCACGGACCGGCCTGGATTTCTGTTCGGCGCTCAAGGTAGGGA AACTGGCGCGTTCCCCGACGTGGGGG TGAAGCAGCATGGGCCCTACAAGTACATGCAACACGAGCGCAATGAACCTGTGATCGCCA TCATCTGCGAGAGCAGGTTTCGGGGT CGGATAGACCAACTCGCCCGAACACTTCGCGATGGTGTCGCGGAAGATGCCTGGCAAGAC GCGATGAGGGGCAGAAATAAGGTGCC GGAAAACCCCTTTAGAGGCGGGCTGATCGGTAAATTGAGATTGTCTCGGGTGCAGTTTGA GTTCGAAGAAGTAACCGAGCCCACTC CCGAAGCCTATCGCGAGGCCATCCTTCGGCTGCTTGCGAGACTCCCAGAGACACCCGACC TCGCGTTGGTTCAAATACGAGCGGAT TTTAAGCAGCTCCGCAACGACAGGAACCCATACTTCGCTGCAAAGGCCGCATTCATGACG GTGGGAGTGCCCGTGCAGTCCGTACA AGCCGAGACTGCGGACATGCAGCCCAGTAATTTGGCCTACATGGCCAACAACCTGGCCCT CGCCGCCTACGCAAAATTGGGCGGTA GTCCGTTCGTGATCTCCACACGCATGCCGGCGACGCATGAGCTCGTGGTTGGCTTGGGCT ACACAGAGGTGTCAGAAGGACGCTTT GGACCGAAGTCCCGATTTGTAGGCATCACCACCGTGTTCCAAGGCGATGGCAGGTACTTG GTGTGGGGGCAAACTAGAGAAGTAGA ATTTGAAAACTACGCCGACGCTCTCTTGGCGAGTCTGAAGACTACCATCGACACAGTGCG CAAGGACAATAACTGGCAGCCACGCG ATCGAGTGAGGTTGGTATTCCACGTGTATAAGCCCCTTAAACATGTCGAGATCGACGCTA TCAAACAGTTGGTGCAGGAGTTGCTG AAGGGCGAACATGAAGTGGAGTTCGCATTTCTGGACATCTCCCGCTTCCACGATTTTGCC CTTTTCGATCCTTCCCAAGAGGGCGT GAATTACTACGCTGACCGCAGACGACTGCTGAAAGGCGTGGGCGTCCCCCTTAGGGGTAT CTGCCTCCAACTGGACGAAAGGAGCG TGCTCTTGCAGCTGACAGGCGCTAAGGAGGTGAAGACCAGTGAACAAGGTCTGCCCAGGC CCCTGCGACTGACGTTGCATTCCGAG AGTGATTTTAGGGACCTCACATACTTGGCGCGACAGGTGTACAGCTTTAGCTACCTCTCC TGGCGCAGCTACTTCCCGGCCATAGA GCCGGTGAGCATTACCTACAGCAGACTTATTGCCAATGCACTTGGCAACCTTAAGAGCAT CCCGAACTGGAACAGCACATTCTTGA CAGCTGGCCCACTGAGGTCAAGGATGTGGTTTCTGTAGTAA 115 ATGCCTAAGAAAAAGAGGAAAGTGGAGGATCCGAAGAAGAAACGAAAGGTCGGCAGCGGC AGCATGTATCTTAACCTCTACGAAAT CAAGATCCCCTACAGGGTTAAACGATTGTACTACTTCAATAAGGAGAACGACCCCAAAGA GTTCGCCCGGAATCTGAGCCGAGTGA ACAACATACGGTTCAACGACAGTAAGGACTTGGTGTGGCTCGAAATCCCCGACATCGACT TCAAGATTACACCCCAGCAGGCGGAA AAGTACAAAATAGAAAAGAATGAGATAATTGGGGAGAAGGAAGACAGCGATCTGTTCGTC AAAACCATTTACAGGTACATCAAAAA AAAGTTCATCGACAATAACTTCTACTATAAACGGGGAAATAACTACATTTCAATCAATGA TAAGTTCCCGCTCGATTCTAATACAA ACGTTAATGCGCACTTGACATATAAGATTAAACTGTACAAGATAAACGAACGGTATTACA TTAGCGTGCTTCCAAAATTCACCTTC CTCAGTGACAAGCCAGCCCTTGAGAGCCCCATCAAGAGCACCTACCTGTTCAACATTAAA AGCGGCAAGACGTTTCCCTATATTAG CGGGCTCAACGGAGTCCTGAAAATTGACCTGGGCGAGAACGGCATAAAGGAGGTCCTTTT TCCGGAGAACTACTATTTCAACTTTA CCTCCAAGGAGGCCGAGAAGTTTGGGTTTTCTAAGGAAATCCATAACATCTACAAGGAAA AAATCTTCAGCGGCTACAAGAAAATC AAACAGAGCTTGTATTTCCTCGAAGACATCATCAATATAAACAATTACAACCTTACCATG GACAAAAAGATCTATGTGAACATAGA ATACGAGTTCAAAAAGGGCATCAGCAGAAACATAAAAGACGTGTTCAAATACAGCTTTTA CAAAAATGACCAGAAGATCAAAATTG CGTTCTTTTTTAGCAGCAAGAAGCAAATCTATGAGATTCAACGCAGCTTGAAGATGCTGT TCCAGAACAAGAATAGCATATTCTAC CAGACCATCTACGAGATGGGGTTCAGCAAGGTGATTTTTCTCCGCGAGCCGAAGACTAAC AGCAGCGCATTTATGTATAACCCCGA GACCTTCGAGATTAGCAACAAAGATTTCTTTGAAAACCTGGAGGGGAACATTATGGCAAT CATTATACTCGACAAGTTTCTGGGCA ATATCGACAGTCTTATCCAAAAATTCCCTGAGAACCTCATCCTTCAACCCATACTCAAAG AGAAACTGGAAAAGATTCAGCCGTAT ATCATTAAGTCCTACGTCTATAAAATGGGAAACTTTATTCCAGAGTGCCAACCATACGTC ATAAGGAACCTGAAGGACAAGAACAA AACCCTCTACATCGGCATCGACCTGTCCCACGACAACTATCTCAAGAAGTCTAACCTCGC CATCAGCGCCGTAAACAACTTCGGTG ACATTATCTACCTGAACAAGTATAAGAACCTTGAGTTGAACGAGAAGATGAACCTCGATA TAGTCGAGAAAGAGTACATACAGATC CTCAACGAGTACTACGAGCGCAATAAGAATTACCCCGAAAACATCATTGTTTTGCGAGAC GGACGCTATCTCGAGGACATAGAGAT CATAAAGAACATACTGAACATTGAGAACATCAAGTACAGCCTCATCGAAGTTAACAAGTC CGTGAATATCAACTCCTGCGAAGACC TTAAAGAGTGGATTATCAAGCTTAGCGACAACAATTTCATATACTATCCCAAAACGTACT TTAACCAGAAAGGTGTAGAGATAAAG ATAATAGAGAACAATACCGACTACAATAATGAGAAAATACTGGAGCAGGTGTACTCACTG ACGAGAGTGGTGCATCCCACCCCCTA CGTAAACTACCGCTTGCCCTACCCCCTGCAAGTCGTCAACAAGGTCGCCCTTACCGAGTT GGAATGGAAGCTTTATATCCCTTACA TGAAATAGTAA

116 ATGCCCAAGAAGAAGCGGAAGGTGGAAGATCCGAAGAAAAAGAGGAAGGTTGGCAGCGGG AGCATGACTGAGGACTTGTACCTCGA CTACGACGCGTTCCTGCGGAGCTTTAAAAGAAACATAGATGTGCCGCACTCCTTTCTCCT GGGAGCAGGTACATCCATTAGCAGTG GCATCCAGACCGCCTACGATTGTATCTGGGAGTGGAAAAAGGACATTTACCTCTCCAAGA ACATCAACGCCGCTGAGTTCTATAAG AACCATAAGGACGAGGCGGTAAGAAAGAGCATCCAAAAGTGGCTGGATAACCAAGGTGAA TACCCAGTTCTCGACAGCACGGAGGA GTATTGCTTTTATGCCGAAAAGGCCTATCCCATCCCCGAGGACCGCCGCAAGTATTTTCT GTCTCTTATCGAAAATAAGGAGCCCT ACATAGGGTATAAGCTCCTCTGTCTGCTGGCCGAGCGCAGCATTGTAAAGGCTGTCTGGA CTACTAATTTCGATGGCTTGACCGTC AGGGCTGCTCATCAGAACAAGTTGACGCCCATTGAGATAACCCTCGATAACTCTGATAGA ATATTTCGCAACCAGTCTACCAAGGA ATTGCTCACAATTGCGCTGCATGGTGACTACAAATTCTCTACGCTGAAAAATACGGAGAA GGAGCTCGACAACCAGAACGACACAT TCAAACAGCAGCTGGGGACGTATCACGTGGACAAGAATATGATCGTAATAGGCTACTCAG GGCGCGACAAGAGCCTCATGGACGCC ATCAGCGAGGCCTTCAGTACGCGGGGTGCAGGGAGGCTTTATTGGTGCGGCTATGGCGAG ACGATCCCCAACGAGGTTAGCGAGCT CATACTGAAAATCAGGTCCCAGGGTCGCGATGCATACTACATATCAACGGATGGATTTGA CAAAACGCTGATACACCTGTCTAAAA GTGCGTTCGAAGACAACCCCGAGATTACGAAAAACATCCAACTCGCGCTCGAAAACAGCG CGGACGAAGAGTACTTTAAGACTGAC TTTTCACTGAACTTTAGCAAGCCGGATAAGTTCATCAAGTCAAACCTCCACCCCATCGTG TTCCCGAAAGAAATCTTTCAATTCGA GCTTGACTTCAAGGAGGACAAGCCTTGGCAACTCCTCAAAACTATTTCACGCGAGACAAA CATTTGCGCCGTGCCGTTCAAGGGTA AGGTGTTCGCACTGGGCACGCTTACTGACATTGGGAACGTCTTCAAGAACCGCCTGAAGA GTGATATAAAGCGCGAAGCAATTAGC ACCTCCGACGTGGATAATGTGAGTGCCTTTAAATCTCTGATGCTGCAGGCTGTGCTGAAG TTTTTCATTGGTATCGAAGGCGTGGA GTCCAACCTCAAAGACAGATTGTGGCTTACCAACGCGGAGCAGCTCGTGGGTGATATTAG TGTGCATAAGGCTATCCACCTCAGCC TGTACTTCGACAAAAACAAAGGATTCGCTTACCTGTCCTTCACCCCCACCGTACAACTCA TCTCTCCTGAGGAAATCAGCAAAATC CAGAAGCAGAGAATCTCTAAGAGTAAACTCGAGAAGCTGTTCAATGACAAGTATGACGAG ATATTGGAGTTCTGGAACCAAAAGCT CTTTAACAATAGCCAAATCAAGTTCGAGTACCCGATCAGCTCAGGTAGTGGGTTTGAGTT CAAAATCTCCGCCAACACCGCATTTG GGGAGATAAACGTATTGGACCCCAACTTTCGCTCCTTTTCCCCTAGAAATTATGACCCGA AGCGCACACAGTTTAAGGGCGTGCAG TTCCTCGAACCGCAGCTGATATTCCGCAACATCAGTACTAATGTGGAATTTAAGGACTAC CACCCGATGAGGGGGCTGGTGAACAA CCGACCGTTCGACGTGAACCTGAACGGTATAATTCATTCTAACGAAATAAACCTCACGGT CATCTGCGGCAAGTCATACGCCAACG ACCTGTATGAATTCCTGAGCAAGCTCCAAGTGAAGCACGCCACTGAGAATGTCAACCCGG ACTATCTTATTGAGTATCCGGGCTTC CAAAGTGTGTTCAACCTGCCACTCAACATACCCCACTTTGACTCTTCCGAGAAGTGGTAC GACATCGACTTCGTAGCTGACAATAA CGGGGAGAACCACGAGAATGCCATTAAGCTTGCCAGACTCATCACCACCAAGATCGACCA GATTGCCTCTACACAGAACCAGAGCA CGGTCGTGGTGTTTATTCCAAATGAATGGCAGTTGTTTGAGGGGTACCTGAATCAGGGGG AGAGTTTCGATTTGCACGATTACATC AAGGCATTCAGCGCTAGTAGGGGCATTTCAACGCAGCTCATCCGCGAGGATACACTGGCG GATACGTTGAAGTGCCAGATCTACTG GTGGCTGAGCCTCTCATTTTACGTTAAAAGCCTGCGAACTCCTTGGATTCTGAATAATCA AGAAAAGAACACGGCCTACGCCGGGA TCGGTTATAGCGTGACTAAAATACAGGACCGGACGGAAACGGTGATCGGCTGTTCCCATA TTTACGATTCCAACGGCCAGGGGCTC AAGTATCGGTTGAGTAAAATTGACGACTACTTCCTTGACAATCGCAATAATCCATTTCTT AGCTATAAGGATGCGTTCCAATTCGG TGTGTCCATACGGGAATTGTTTTACCAGTCCCTGGACAAATTGCCTGAGCGGGTAGTTAT ACACAAGCGGACCCGATTTACCGATG ATGAGATCAATGGTATTAAGGCGTCTCTGAACAAGGCGGGGATTAAGAAGATTGACCTGG TGGAGATTAACTACGAGACGGACGCC CGCTTCGTGGCCATGTCCGTATACCAGAATGCACTGCAGGTAGACCGATTCCCTATCAGT CGGGGTACTTGTATAGTCACAAATAA GTACACTGCCCTTTTGTGGACGCACGGGATTGTCCCAAGTGTACGGCAGCCAAACTACAA GTTCTACCTTGGCGGTAGAAGCATAC CGGCTCCGATCAAGATCACAAAGCATTATGGTGATAGTAATATAGACGTTATCGCCACCG AAATCCTTGGGCTGACCAAAATGAAC TGGAACTCCCTTGACCTTTATAGCAAACTTCCCTCTACGATCGACTCCAGCAATCAGATC GCTCGGATTGGCAAACTGCTCTCCCG GTACGAAGGCAAGACGTACGACTATCGATTGTTTATCTAGTAA

117 ATGCCGAAGAAGAAAAGGAAAGTGGAGGACCCCAAGAAAAAGCGCAAGGTTGGCAGCGGG TCCCTGGAGAACCTCACCATAAACAT AATCCCCTTCAAGCACCCCAGCATCCAAAAAGAATTTGGCTTCTATACCGAGAAGAAGGA GGGCTATTTCCCCATTCATAGGACCG AGTTGCCCAACGAGCTGTGGGACAACCAGAAAGAGGAAGTGGTGAAGCACAAGTTCTACT ACACGAACTTTGAAGACACGGAGGAT TGCGTTCTGAAGACCAAGGTGGACCTGTATAGTAGCACTAAGTTTGCCAAGCATCTGTAC ACGCGATTGGTGTACCAGTATTTCAT TGGGATAGCGGATGCAATCCAGTTCAACTACGTGGGTGACATAGAGGTTTGGCTGCTGGA TGCGAAAGCCAGCACCACCAAATACA ATAGCTACAACAAGTATACCCTGAAAATAGAGTTTAGCGGTCTGACCAAGAGCCCCGCTC TCCTCCTCAGCTATGACAACACTAGT AAGGTAGCGACTACGAGCATAGACGAAATCAACATTCCCACCGAGTACTTCAAGACCGTC GTGTATAACAAAGAAATCCAGAGGTT CAAGTACCTGACCGAGGACGCGAAACAACACCTCGATCAAGTGTATCCCCTGCTCAACAT ACCGTTGAAAAACCATCTTGAGATTC CTCACACCGTTCCCCGCAAGGGCAACAGGTATAAGCCCTACTTTAACCACATTACGACTT TTTACAATAACTATTTGAACACCGAC GAATTCAGGGCCATCCTGCCCCTTGATGAGAATGGATTCTTCAATATCCCAGAGGACAGC ATTTTGAAAACTAGCAAAAATTCTAA CAACCTCCGGTTCTATAAGAAAGTCGGAGTAGATCCCAAGGCTGGAATGAAGAAGCCCGG TCCCTACAAGGCCTCCCCCCACGACA ACGTGAACCTGTTCTTTATCTATCACAAACCCGACGCACATGAATACGCCAAAACGTTGC ATGACTACTTCATGGAGGGGTACAAA AAGTTCTTTCCCCCCCTCAAGAACGTTATCCGGCAGCCGCTGTTCCTGGACAAAGGCACC TCACTTGCATTTGAGAGCTTCGACAG CTGCATCGCCGAGCTGAAAACCCATCTGTTCGACCTCAAAAAAAAGCCCAATACCCGGTA CGTGGCCATCTACGTGAGCCCCATCC ATAAGGAGGACGAAGACAATAAACACCTGTACTACCAGGTCAAAGAAGAGCTGCTTAAAC ATGACATCACCAGCCAGGTGATTTAC AAAGAGTCCATCAAAGATAAATACTTCGGCGCTTTCCTCGAGAATATCGCACCAGCTTTG CTTGCAAAGATCGACGGCATTCCCTG GCGACTGGACAGGGAGTTGAAACAGGAACTGATCGTAGGCGTCGGCGCCTATAAAAGCAG CGTCACCAACACAAGGTTCGTTGGAA GCGCCTTTTGCTTTAACAACAAAGGAGAGTTCAAGAGCTTTGACTGCTTCAGGGAGAAGG AATTCGATCTGATTGCCGGGAAAATC GGCAAGCAGGTGCTCACCTTCATTGAGGAGAACGAGAACAAGTTGGAGAGGCTGATCATC CATTATTTCAAGCCTTTCAACAAGGA TGAGATAGATCTCGTGCAGGAGACCCTCGGCCTGCTGAAGCTGGAAATCCCCATCATCAT CGTGACTATCAATAAGACCGAGAGCT CCGATTACGTCGCTTTTGACACCAACGACGACGCCCTGATGCCCCTGAGCGGCACCATTA TCGAGATAGCACATCTGAAGTATCTG CTGTTCAATAACGCGAAGTACAGCAGCATCGGCTTCGCCAAAGACCACCCCTTCCCCGTT AAGCTCAGTCTGTACTGCACCGACCA GGATTACTTCGAGGACATCGCCATCGTCAAGGAGCTCATAGATCAGGTTTATCAGTTTTC TAGGATGTACTGGAAGAGCGTCAAGC AGCAAAACCTGCCCGTGACAATCAAATACCCCGAGATGGTGGCCCAAATCTTCCCACACT TTGAGGGCGATAAACTGCCTGATTTT GGAAAAAACAATCTCTGGTTTCTGTAGTAA

118 ATGCCGAAAAAGAAGAGGAAGGTTGAAGATCCCAAGAAGAAACGAAAGGTGGGGAGCGGC AGCGTGAGGCTGGTAAACCAGAAAGA GAAACCGGAAGGCGACTACGTGTATGGCTACACTCTCCCAATAGACCCCAGTAACAGGAA CATGAGGCAGCCCTTCTGGATAAGCA TGGATAAAAAGGAGGGCTATGAAGCTCATTTCGTTGGCCCCTATGAGAACATTGAGTTGA CCAAGAGCGTGATCTTCTGGGACCTT CTGAGGAGGACCAGGGAGCAACTCAGCAGCGATAAGTTCACGGAATCAAGAAAAAAGTTC TTTAAGGAGATCTACTTCCCCCTTAA CCTCTACAATGAGGGCAGCCAAGGGCTCGCCGTGCAACCCTACTACCTGAAGATTGATCA GCAATTTGGACTGCTGGTGGATTTTC AATTCAAACTTGACAAAGATTTCACCTTCAGCCGGAAGATTCAACAGCTCAGTCTGACAT TGGATGGGAAGAACCGGAGGAACCTC AACTACTACGTCGACAGGATAACCAAAACCAACCAATTCATCAAGGCCCTCTGGAACATC ATTGGCACCTTCTCCCATAATGAAAA CAAGGAAAACTACACGCTGAGGAACGACTTCTACCCCTGCGCCGCAAGCAGGCTGCGGTC TCGAATGTATCTCTTTTCCAATGGCA GTGAATCCAGGAGCCAGTTCAATGGCTTGAAGGAATACGGCCCACTCCGACCCCTGACAG CCAATCCGACACTGCTGTTTGTGTTC CGGGAACAAGACCGCGACGCCGCGAGAAAACTGGCGATGGCACTTAAAGGCAGCAAAAAG CAAGATCAATACAGCTTCCCCGGGTT CAACTCCCTGTTTAAAGCGGACCTGTTGATCGACGGAAATCCCATGGTCTTGAAAGACTT TTCTATCGAGAGCAGCAGGGAGGTGT TGGCCAGGGTGACAACATCAACATCCAGCTTGTTGCCCATTTTCATCCTGCCCAACCGCG AGGGCGACGGCTACCTGGAGCACAAA GCCATCTTCGCCGAGAACGGCATACCTACTCAAGCGTGCACACTCCAAGTCATTCAGGAC GACGTGACCCTTAGGTGGAGCGTCCC CAACATCGCCCTGCAAATATTCTGCAAAGCGGGTGGCTGGCCCTGGAAAGTGCAGAGCCC CGTAACCGACAACGCCCTGATTATAG GCATAAGTCAGAGCCACAAGTTGAATTATAGTGACGGTAAGACAACTGTGGACAAGCACT TCGCTTTTAGCGTGCTGACTGATTCA AGCGGCCTCTTTCAGAAAATTCAGGTGCTGAGCGAGCAGAAGACGGAGGAGACCTACTTC GAACAACTGAAGCTGAATCTCAAAAG CATCCTGAACGCCAATAGCAAGAACTACCAACGCATCGTGATCCACACCTCATTTAAGCT CAAATACAAAGAAATAAGTGCAATCG AGGAAGTTGTTAGCGAATTTGCAAGGAACAGCAACAGCGCCGACTGCAAGTTCGCCGTTG TGAAGGTTAATCACAAGCATAGGTAC TTCGGGTTTAATCGGGAAGTGAATAGCTTGGTGCCCTACGAGGGAACCGTGTGTAAGCTG GGCGATAGAGAGTACCTGGTCTGGTT CGAGGGTATCTATCAGGAGAAGCCGACCGTTACCAAAGCATTTCCGGGTCCCACCCACAT CGAATTTCTTAAAATCGGGTCTAATA ACGTGATTAGCGACGACCTTTTGTTGCAAGACCTGATGAACTTGAGCGGAGCGAACTGGA GAGGCTTTAATGCGAAGAGTGCTCCG GTATCCATCTTTTACTGCCACCTGGTGGCCGACATCGTGCATGATTTCCAAATCAAAGGC CTCCCTATGCCCGCCATAGATCTTAT ACGACCCTGGTTCATCTAGTAA

119 ATGCCAAAGAAAAAACGAAAAGTAGAAGACCCTAAAAAGAAGCGGAAAGTAGGGTCAGGC TCTATGCTTCAACTGAACGGCTTTAG CATCGAAATCGCCGGAGGTTCCCTGACTGTCTTGAAATCTAAAATCGCGCCTACCGACGT TAAAGAAACCCGCAGGAGCCTGGAAG ACGACTGGTTCACCATGTATCACGAGGGCCACTTGTACTCACTTGCAAAAAACAGCAACG CATCCGGCGGATTGGGTGAGACCGAG CTCCTGGTCCTGTCTGATCATCTGGGTCTTAGGTTCGTTAAGGCTATGTTGGACCAAGCC ATGAGGGGCGTATTCGAGGCCTACGA CCCCGTTAGAGATAGGCCCTTCACATTTCTGGCGCGAAACGTAGATCTCGTAGCCCTCGC GGCAGAAAACCTCGAGTCCAAGCCCA GCCTTCTCTCCAAATTCGAGATCAGGCCCAAGTACGAACTGGAGGCCAAGGTAGTGGAAT TCAGACCGGGCGAGCTGGAACTTATG CTGGCGCTCAATCTGACTACACGGTGGATCTGCAACGCCTCCGTAGACGAGCTCATTGAG AAGAACATACCGGTCCGAGGAATGCA CCTGATCCGACGGAACCGGGAGCCGGGACAGAGAAGCTTGGTTGGCACCTTCGACCGCAT GGAAGGCGACAACGCCCTGCTGCAGG ATGCTTACGACGGACAAGACAAGATAGCAGCCTCACAGGTGAGGATCGAGGGGAGCAAGG AAGTCTTCGCGACCTCTCTGAGGAGG CTCTTGGGCAATCGCTATACCAGTTTCATGCACTCCGTGGATAACGAGTACGGCAAGTTG TGCGGGGGTTTGGGGTTCGACGGCGA ACTTAGGAAGATGCAGGGATTTCTCGCGAAAAAGAGTCCTATACAACTGCACGGAGGTGT AGAAGTGTCCGTGGGGCAGAGGGTAC AACTTACCAATCAGCCTGGGTATAAGACAACAGTTGAGCTTTTGCAGTCAAAGTACTGCT TTGACAGAAGTAGGACGAAGCTCCAC CCCTACGCCTGGGACGGGCTTGCTCGATTCGGCCCATTCGACAGGGGCAGCTTCCCGACG CGATCCCCCAGGATTCTGCTCGTGAC ACCCGACTCCGCGAGCGGTAAGGTCTCTCAAGCTCTGAAGAAATTCCGCGACGGGTTCGG CAGCAGCCAGAGCAGCATGTATGACG GCTTCCTCGACACCTTTCACCTCAGTAATGCTCCTTTCTTCCCCCTTCCCGTGAAGCTGG ACGGCGTGCAGCGCAGCGACGTGGGC AAAGCTTATCGAAAGGCGATCGAAGATAAACTCGCACGAGACGACGACTTCGACGCCGCC TTTAACATTCTCCTGGACGAGCACGC CAATCTGCCGGACAGCCATAACCCCTATCTGGTCGCCAAGTCCATCCTCCTCTCCCACGG CATCCCAGTGCAAGAAGCACGAGTGA GCACTCTGACGGCCAACGAATACAGCCTGCAACACACCTTCAGGAATGTCGCCACAGCCC TGTACGCCAAAATGGGTGGTGTCCCA TGGACCGTTGACCACGGGGAGACCGTGGACGATGAGCTGGTAGTAGGAATCGGAAACGCG GAGCTTAGCGGGAGCAGGTTCGAGAA AAGACAGAGGCACATCGGAATCACGACAGTGTTTAGGGGGGACGGCAACTACCTGCTTAG CAACCTCAGCAAAGAGTGCCGATACG AGGATTACCCGGACGTACTCCGGGAGAGTACCATCGCCGTGTTGAGGGAGGTTAAGCAAA GGAACAATTGGTTGCCGGGTCAAACC GTGCGAATCGTTTTCCACGCCTTCAAGCCTCTGAAAAACGTGGAGATTGCCGACATCATC GCGAGCTCTGTAAAGGAGGTAGGCTC CGAACAGACCATAGAATTTGCATTCTTGAATGTTTCCCTCGACCACTCCTTCACCCTTCT GGACATGGCTCAAAGGGGAATAACGA AGAAGAATCAGACCAAGGGGATATACGTTCCCAGGAGGGGCATGACAGTCCAGGTTGGGC GCTACACCAGGCTTGTAACCAGCATC GGTCCGCACATGGTAAAAAGGGCAAACCTTGCCCTCCCGCGACCCCTGTTGATTCACCTG CACAAGCAGAGCACCTATCGGGACCT GAGCTATCTGAGCGAACAGGTTCTGAACTTTACCACCCTGTCCTGGAGGAGCACCCTCCC CAGCGAGAAGCCTGTTACCATTCTCT ACTCATCACTGATAGCCGACTTGTTGGGAAGGCTCAAGTCAGTGGATGATTGGAGCCCCG CAGTGTTGAATACCAAACTGAGGAAT AGCAAATGGTTCCTGTAGTAA

120 ATGCCGAAGAAAAAGAGGAAGGTTGAAGACCCCAAAAAGAAACGCAAAGTGGGCAGCGGA AGCATGTCCGGCCTTTTCCTGAACTT TTACCAGGTAGACATCCCCACCAAATCCGTACCGATCCACAGCGTAGAGTATAGCCATTA CAGTTCAAAGGAGGCCTTTATCGCGT TGAAAGAAAACTTCCCCTACTTTAGCTTCTACCGGGATGACGACCGAATACTGATCTGGA AGAAAGACAAGGATGCCGAGCTCCCC GAGAAGAACTCATTGATTGAAATTGATTTCACCGAGAAAGCGAAGGTCCTCAGCAAAATA CTCGAGAGGGCCATCATTGACTTCAT CGAGCCAAAGGGCTACAAGATATTCAAGAACAAGTACAGCAACAGCTGGGAAATAGTGAG CATGAAGGACATCCTGAATGGTGGGA TCGAGGGACTCAGCATCAATCGAATCGTGCATTTTTCCCCCTGCTTCTTCTTCAAGGAGA ACAAACTCATGCTGGGTTTCAGCCTT AGCACAAGCCTCAAAAACGTGTTTACCTGGAATAAGGCGGACTTCGAAAGGTACGGCTTT GACATCAAGGGCCTTAAAGGAGACGA AGAGCGGATTTTTGCCAACAAGCAATCCCTTAAGAGGTTCCTGGAGACCAAGGGCGCAGT TGCAATGTATGACCAAATTATCGCAA AGGAAAACAAGAACGCGAAAATGTTTAGCATCATCGACGGCTTCTATCGGTGGCTGGAGA GGAACAAGACTGAAATCCAGCTTCCA TTCGGACTGAAGATAAATTCAGTGTCTAAAAAGTACCTGCCGTTCGAGGATGAGCTGATC AAGAGCGAGATCATCCCTAAGCCCCA AAGGTATTTCTATAGCAATAGGAAGAACACCCAGAGCCTGCGGTACTATGACGAGATGGT GAAGACTTATCAGCCCTACTCTCTGG AGCTCTACCAAAACAAACAGATCAACATCGGAATCATCTGCCCCAGCGAGTACCAGGGAG AGACGGAGGGGTTCATAAAGAAGATC GAACTGAAGCTCAAGGAAGTATTCCATTTCAACAGCCTGATCTTTCACTTCAAGACCATT ACGAACAAGGACCTCGCGTCCTATAA GGAGGTTTTGTACGACGATGAACTGCTGAAGTGCGACCTGATTTACGTCATCGTGAATGA GGCCCAGGAGAAACTCTCACCTAATA ACTCCCCTTACTACGTGTGCAAGGCCAAGTTTATAGGCAATGGCATACCTACGCAAGACA TTCAGATTGAGACCATCCGGCAGAAC TTGAATGCGTTCACAATGACGAACATCTCACTTAACAGCTACGCCAAACTGGGAGGCACC GCGTGGACCATCGAGAAGGAAGACAA ACTTAAGGACGAGCTGGTCATTGGCATCGGCTCCACCCTGTCAGAAAACGGCCAGTTCGT GCTCGGTATCGCACAAATCTTCCATA ATGACGGGCGCTACATGGCGGGTGACTGCAGCCCCCTTTCTACCTTCTCCAACTACGCGG AGAACCTGGAGGATCACCTGTACAAG ACCCTGAAGCCCCTGGTGGAGGAGATGAGCAAAAGCGGCACCTTCCGGCTGATTTTCCAC TTGTTTAAAAGTGCCTCTGAGGAGTA CGAGATACGCGCGATCAACGGCCTGCAGAAGAGGCTGGCGAACTACAATTTCGAATTTGC ACTCGTTCACCTGGCCTATGGACACA ACTTCCGACTCTACTACAACGACGGCAACGGCGACATTAATCAGGGCACATATATACAAC TGTCAAAACACAGCGCCCTGCTCCAC TTCGTTAGCAAGTCAGACTTGCCCCTGAAAATCGACCTGGACAAGCGGTCTACTTTCACC AGCCTGTTTTACATCGCCAAGCAGGT GTACTGGTTCAGCCATCTGAGTCATCGCAGCTATATGCCCAGTAAGAGGACCGTGACCAT CATGTATCCGTCAATCATGGCGAAGA TGACCGAGGAGCTTAAGAAGGTGGAAGGATGGGACTACGAGCGCCTGAAAGCAGTAAGCG ATAAGCTGTGGTTCATCTAGTAA

111 ATGCCGAAGAAAAAAAGGAAGGTGGAGGACCCAAAGAAGAAACGGAAAGTTGGCAGCGGC TCCATGAGCGTGGCGATCGTGAGCCC CCAAATGTACAAGAGTCTGAGCGAGGTGTTTCCTCTGACCGCCTCCCAACTGAACTTTAT GTGCTTTAGGCTGACTCCCGAAATCG AAAAGAAGGATGGTAATAGGCTCAGCTACCATTTCAGTCTGAAGCTGCCGGAAACTGTTG TGATCTGGCACCAGCCCTACTTCTGG GTGTTGGCGAGTAGTAACAGGCAAATCCCCAATAAGGACGAGTTGCAAGAAACTCTGATA AGGATCCAAAACGAGGTGGATGACTT CAAAGAACGACTCTTCGGTTTCCAGAGCGTTCGCCACCCCCAACTCACCCCCTTTATCAT CAGCCTCTTCGCCGTGCAGGTCCTCA AAAAAACAAAGTTCGACTACCCCATTGCATTCAGCAACAACGGTGTAATCGTCAGGAGGG AGCCCGACTTTTGGACGGAGAGCATA GAGCTTCAAGACAGCCTGCATCCTGCCCTCACGCTGACCGTAAGTTCATCAATAGTGTTC CGCGACAACCTCGCGGAGTTCTATGA AAAACATCATCAAAGGGAGAAGCCCGAGCAGTTTCTGATCGGCCTGAAGGTGCAGGAAAT AGAGAGGGGCAACAATGCGATCATCG TGGGACTCGTCGGCACCATCGGCGAGCACCGGGACCAGCTGCTTGAAAAAGCAACCGGGA GCACTAGCAAGCAGGCGCTGCGAGAG GCACCGGACAACCAGCCGGTGGTTGCGATACAGTTCGGCAAGGATACGAAGCAGTTCTAC TACGCAATGGCCGCGTTGCGGCCGTG CGTAACCTCAGAGACGGCAAACCAGTTCGAGGTAGAGTACGGTAAGCTCCTGAAAGCTAC AAAGATAAGCCACCAGGAGCGAACCA ACCTGCTGGCCTCATACAAGAAGACGGCCCAGGAGTCATTGGCCGCTTATGGCATCCGCC TGGAGCTGAGTGTGAATAGCAGGGAT TACCCCAGCTTCTTCTGGCAACCCCCCGTGAAGATCGAAGATACCAAACTTCTGTTTGGC AACGGCATAACCGGCAAGCGGACTGA GGTGCTCAAGGGGCTTTCTATAGGGGGCGTGTACCGACGCCACGGGAAATTCCAGGACAA GTCAAAAGTGATCCAGATCGCGGCTC TTAAGCTTTGCGACGTGACCGTTAGCTTGTTCCTGAAGCAACTTACTCAAAGGCTGGCAA AATACGGCTTCCGAAGCGAGATAATC ACCAAGAAGCCTCTGTCAATCAAGAACCTTGCCACCGCCGAAGCCAGGGCTGCTGTTGAG AAAGCGGTCAATGAGCTCGTGGAAAT ACCCCACGACATCGTGCTTGCCTTCCTGCCTGAGTCCGACAGGCACACCGACGACACGGA TGAGGGTTCCTTCTATCACCAGATCT ACTCCCTTCTCCTCAGAAGACAAATAGCCTCACAAATTATCTACGAGGACACCCTGTCCA ACTCTGGGAACTACCAGTACATCCTG AACCAGGTCATTCCGGGGATCTTGGCGAAACTCGGGAATCTGCCCTTCATTTTGGCGGAA AGCCTCGATATAGCGGACCACTTCAT CGGACTTGACATCAGCAGAATCTCTAAGAAAACGCAGGTCGGGACACGAAACGCGTGCGC CAGCGTGCGACTTTACGGACGCCAGG GTGAATTTATCCGCTACCGGCTTGAAGACGACCTGATCGACGGCGAGGCGATTCCACCCA AGCTGCTGGAAAGGTTGCTGCCTGCG ACCGAGCTTGCGAATAAAACCATACTGATCTACAGGGACGGGAGCTTCGTGGGCAAAGAG GCCGACTATCTTGTGGAGCGAGCCAA GGCGATAGACGCGAAGTTTATCCTCGTCGAGTGTAAGAAATCCGGCGTGCCGCGCTTGTA TAACTTGGAGCAAAAGACCGTGATCG CGCCGAGTCAGGGACTGGCTCTTCGACTGAGCAGTAGGGAAGCAATACTCGTGACCACCA AGGTGCCCGATAAAGTGGGCCTGGCT AGACCCATCCGGCTCACAATCCACGAAAAGGGCCATCAAGTAAGCATCGAATCCGTGCTG GACACTACACTCAAGCTTACTCTTCT TCACCATGGCGCGCTGAAAGAACCGCGACTGCCCATGCCCCTGTATGGGAGCGACAGGAT GGCATACCTCCGGCTGCAGGGGATAC GGCCTAGCGTTATGGAGGGCGACCGCCAATTCTGGCTGTAGTAA

122 ATGCCCAAGAAAAAGAGAAAGGTGGAGGACCCAAAGAAGAAACGGAAAGTTGGCTCTGGG TCAATGAACCTGACCGTAAACCTCGC CCCCATCAGCGTGCAGGGCGACTGCTCAGTCCTGATTGGCAGACAGCGCTACGACGAGCA GAGGCTGGCTGAACTTAGGTCAGACT TTCGGGGCACCCACGTGTTTCGGCGAGACGGTCCAGATAGCATGATTGACATCCCCGTGG TCCCCGACGCGGCACCTCTGGGCAAC CTGAGGGAGACGATCGACCTTAGGCGGTACCAGCGGCTGTGGCCCATGCTTCTGCAGGAG TCCCTCATCCAGCTGCTTGGTAAGCG CCCCATCCAGTCCAGCAAGCCCTTGAAGTTCCTGGGAGCTAGGTCTCCTCTGATCGAGCA CCCGGATCTCCCTGAGTGGTTGAGGC GGGTGAGCGTTACCGAGATCCACACCCGACACATCACCGTGGACGGCAAGCAAATCTACG GTATCGTGTGCGATGTGAGGGCCAAG TCTTTTATCCTCGCCACCTGCAGCGAACTTCTGAAATTCGGCGTGACCATCCTTGGTAGA TACGTCCAAATAGAACAGCCCGCGAT AGACGAGAGAACCATGCCTAAAAGGAAGCTCATCGGCAGGGTAAGGTCCATCCAAGGGGA TGATCTGCTTCTTGACGACTGTGAGG CCGGCTTCGAAAAAGTCGCTGCGAATGAGGCATTTCTCGAGCCGCGGAAGGAAAATTTCG AGGACTGCGTGAGGCAGGTGCTGAAG CGGGACGCCGAGAGGGTGTTGGAGAGGTCAGCTCGCGCCAGCCAAAACCTGGCCGCAGGC CCTGGGAAACTGGAACACATCGACGG AATCATCAGGTATCTTAGGGAGAAGAAGCCCGCAGCGGTGCCCGGCTGCCATTTCGTGAT CGATGCCATGCTCAACACAAACGGCC ACATTTTTCCACCCGGGGAAACAATGGACAAACCCTTCCTCTTGTTCGACCCTAGCGGTT CACGGAGAGAAGACTGGCCCGAGAAG GGCCTTAAAGATCACGGCCCCTATGATGAGCAGGTGTTTTCCCCCAAGTCCCTGAAGATC GCTGTTGTGTGCCAAAGCCGGTTGGA GGGCAGAGTGGACGAGTTTCTGGCGAAGTTTCTCAATGGGATGCCGAAGGTCTTTCAACC CGGCAAGAGCTTCGCCCGCTACGGCG ACGGATTCGTGAAACGATTCAGACTGAACAAGCCCGAGGTGCACTTCTTTCTTGCAGATG GCAACTCCGACGAGGCATACGCCGTG GCCAGCCGCGAGGCACTCGATAAAGCGAGGGATAGCGGGTTCGAGTGGGACCTGGCGATT GTGCAAATTGAGGAGGAGTTCAAGTC ACTGGCCGACGGCTCCAATCCCTACTACACCACTAAGAGCATCTTCTTGCGGAGGGACGT TCCGGTGCAGAGCGTCAGGCTGGAGA CCATGAGCCTGTCAGATAATGACCTGGTGTTCCCCATGAACCACCTGAGCCTCGCTACCT ACGCCAAGCTGGGGGGCACGCCCTGG CTCCTGGCTAGCTCACAAACCGTGGCGCACGAACTGGTGATCGGACTGGGTAGCAGCACC AGCTCCGAATCAAGGCTGGGCAGCCA GATGAGACATGTGGGAATCACCACCGTGTTCAGCAGTGACGGCAGCTACCTGCTTTCTGA TAGAACCGCCGCAGTGCCCTTCGAGC AGTACCCACAAGAGTTGAGGAAAACGTTGCGAAAAACAATCGAGGCCGTCAGGGCCGAGG ACAATTGGCGGAGTAGCGACAAGGTG AGGTTGGTATTCCATTCATTCAAGCCGTTCAAGGACAGCGAGGTAGAAGCCATAGAGGCG CTGACCACCGACCTGGGCCTGGGCGA CGTGAAGGCCGCCTTTCTGCACATTGCGCCCGACCACCCGTTCCTTATCTTCGACCACGA CCAAATGGGCATCGCCGCACGAGGGG GCAAAAAAGGCGTGTTGGGCCCTGCTAGGCAGTTGCACATCCGGCTTAGCGACGCTGAGA GCCTTGTGGTCTTCGCAGGGGCCAGC GAGCTTAAACAGGTGACGGATGGTATGCCGCGACCCGCGCTGCTCAAGCTGCACCCCAAA AGCACCTTCAAAGATATGACCTACCT GGCAAGGCAGGCCTTTGCCTTTAGTGCCCATAGCTGGCGGATGCTGTCCCCCGAACCTTT CCCAATTACTATCCGCTACAGCGACC TGATCGCCGACCGCCTGGCGGGACTCGCGTCTGTTAAGGGCTGGGACCCCGATGCCGTGA CGTTCGGCGCTATCGGTCACAAGCCT TGGTTCTTGTAGTAA

123 ATGCCCAAAAAGAAGCGAAAAGTAGAGGATCCAAAGAAAAAGCGGAAGGTCGGGAGCGGC TCCATGGCGTTTAGGCCCGGTGAACG AGTCAGACCGCAGCTCGCGCTGAATGCGATCAGGGTCCTTACACCCCCTGGCACCATCCC CGCCAGTGTAGTCCAATTCGACAGAG CGCTGCTGCACGCATATCTTGACAGACCCGAGAACGACGTATTCGCTACCCGACACGGGG AGACTGATATGGCGGTCGTACCCCTG ACCAGCGGTGCGAACCTGCCAACGGACAGAATGGGGCTTCCAGCTGCAGAGCACCTCAGG CTGGTATCTGCGCTGACAAGAGAAGC TGTGTTTCGCCTCCTCGCGGCCAGCCCGGAAGCGGATCTGCTGATCCGGCGACGCCCACC GACCGTCGCGGGGAAGAGAGAAAACG TACTTGCAGAGGACATTGGGCTCCCGGACTGGTTGAAGAAAAGACTTGTGCTGGAGTTCG ACACGCGCATATTGCAACCACCGAGA GGGGACGCCTACGTGGTGCTGACGTGTAGTAAAAGGCTGCGCACGACAATAGACGCGAGT TGTCGCACCCTTCTGGAACTCGGTGT ACCACTGACGGGTGCCGCAGTCAGCTCCTGGAGGGAAGATCCTGACCCCAAGGTGAGCCG GCGATTGGCCTACGCTGGGCGCGTTG TAGAAGTAGGGCAGGACACGCTCACTCTGGACGACCACGGAGCTGGTCCGAGTGTTGTCT CCAGCGAAGACGTGTTCCTCGAGCCG ACTCGAGCAAACTTCAACAAGGTGGTGGAAGTGATAACCCAGGGTAACTCCGAACGAGCC TTCAAGGCCGTACAAAAAGCAGAAGC CGAATGGCACGGCGGGAGGCGGACAATCGAAATAGTGCATGGTGTCCTCAACCAACTCGG CAACCGGTCAATGGTTCTTGCCGATG GCGTGCCTCTGCGGCTCGGGGGCTTGATAGACCAAGCGGTCGATAGCGACGCATTCCCCC CAGCCGAGGCGGTGTGGCGCCCTAAG CTCTCATTCGACCCCGTGCACAGCCCCGAGACATCAAATTCCTGGAAACAGCAGTCACTG GACAGGACGGGCCCTTTCGATAGGCA AACCTTTGAAACAAAGAGACCGCGAATCGCGGTTGTCCATCAGGCCGGAAGAAGGGAGGA AGTGGCTGCGGCGATGCGCGATTTCC TCCACGGAAGGCCTGACATCGCCAGCGATACGGGCCTGGTTCCCCACGGTTCAGGACTCC TCGGACGCTTTAGGCTCCACGAACCC GAAGTGAGATACTTTGAGGCCGCAGGCAGGGGGGGACCCGCTTATGCCGACGCAGCACGG AGTGCGCTCAGGGACGCGGCGTCAAG GGACGAACCATGGGACCTCGCAATGGTGCAGGTAGAGCGGGCGTGGCAAGATCGCCCACA TGCCGATAGCCCGTACTGGATGAGCA AGGCAACGTTTCTCAAGAGGGATGTGCCGGTGCAAGCCCTTAGCACAGAAATGTTGGGTC TTGATGCATTTGGGTACGCGAACGCA CTTGCGAACATGTCACTTGCAACGTATGCGAAACTGGGCGGTGCCCCGTGGCTTTTGTTT GCCAGGTCACCAACCGACCATGAACT GGTGGTCGGGCTCGGAAGCCACACTGTAAAAGAGGGCCGAAGGGGTGCGGGTGAGAGGTT TGTCGGTATCGCGACCGTATTCAGCA GCCAGGGCCATTATTTCTTGGATGCCAGGACAGCCGCGGTCCCGTTTGAAGCCTATCCTG CTGCCTTGAGCGACAGCATCGTTGAC GCGATCAAAAGGATTGGACGAGAGGAAGCCTGGCGACCAGGCGAGGCCGTCAGGTTGGTC TTTCACGCCTTCACCCAGTTGAGCCG AGAAACCGTTCAGGCAGTGGAGAGAGCAGTAGCAGGCATCGGGGCCACCAACGTAAGCTT CGCGTTTCTGCACGTTGTCGAAGATC ACCCGTTTACCATGTTTGACCGAGCGTGGCCAGACGGAAAGGCGACATTCGCCCCTGAAA GAGGTCAGGCGCTTCGACTCTCCGAG CGCGAATGGTTGTTGACACTTACCGGCAGGCGCGAAGTTAAGAGCGCCAGTCACGGGCTG CCTGGGCCGGTTCTGTTGCGACTTCA TGACAGCAGCACCTATAGAGACATGCCCGTGCTCGTCCGACAAGCATCCGACTTCGCCTT CCACTCTTGGCGCAGTTTTGGACCCA GCGGACTCCCCATCCCGTTGGTTTACGCGGACGAAATTGCAAAACAGCTCAGCGGCTTGG AAAGAACCCCCGGATGGGACACGGAT GCGGCTGAGGGTGGCCGGGTTATGAGAAAGCCTTGGTTTCTGTAGTAA

124 ATGCCTAAGAAAAAGCGCAAGGTTGAGGACCCGAAAAAGAAGAGGAAGGTCGGCAGCGGG AGCATGCAGCTGAACTACTTCCCCAT AAAGTTTGAGTTTGAAGAGTACCAGATAAAAACTGAGCCCTACAGCGAAGAACGACTTAA AGAGTTGAGGGCCAGTTACAACGCCA CCCACTCCTTTTTTAGAAATGGAGACAATATATGCATTAGCAACAAGGAAGGCGAGGACA TTAGTCTGACCGGCGAGGTGATACCG AAAAGAATTTTCGACGACAGTCAAGTGACCGCCTCATTGATAAAGCACTTGTTTTTCAGG ACGTTCAAGGAGAGGTTCCCCAACTA TATTCCTGTGGACTTTTACCCCTTCCGCTTCTTCTCCGCCCAGGCTAAAGACGACATCAT CTATAACGCCCTGCCCGGCAACCTCC GGAAACGAATCGCTTACAAAAAGCTGATCGAGGTTCAGTTGCGGCTGACGGAAATAAACG GCATCAAGCAGTTTGGCTTCCTGATC AACATTAAACGAAATTGGGTGTTCAACAAGTCATGCTTCGAGCTCCACTCCGAGGGCTAC AACCTGATCGGGGTGGACGTGCTGTA CGCCGAGGAACTGCCGGGGTTGACCGAGGTGCTGGCCCCAAACGAAGAGCTTTTGGGCGT AATCGCGGAAATCGTGGACGACAATG CCAGGATAGAAACCAACGAGGGCATTAAGGAGTTCCCTCTGAACCAGTTGTTCATCAAGA AAAGCAAGTACAACATTGGCAATTAC CTTAGCTTCGCGATCTCTCAGCAAAAGAGCGACGAAATAATGAATCTTATCGAGAGCAAA CGCTCCGACATCTACAATACCAAGGG TCTTTACGACGAGATCTTGAAAATTGCGAACCATCTTTTTTGCGAGAACAGCGCACCCAT ACTGTTTCATAATAAGGACGGATTCT GCTTTACTGTCGATTCCCAGCCGCTCAGTGTGACGAACAGCATGGAATTGAAGACTCCAA CATTCATATACGATCCAGCGGCCACG AAGACGAATTCTAGCAATCCCGACTTGGGCCTGTCCAATTACGGGCCCTACGACTCCAGC ATTTTTGACATAAAGATACCCAACGT GTTGTGCATCTGCAATAGGAATAATCGAGGCAACTTTACAAAGTTTCTGTCTAACCTGAA AGACGGGATACCTCAAAGCCGCTATT TCCAGAAAGGCCTCCAGAAGAAATACGACCTCCAGGATGTGATCCTCAATATCCGAGAAA TCCAGGCCTATAGCATCGCCGACTAC CTTAACGCCATCAGGGACTACGATGAGAACAAGCCTCATCTGGCGATCATCGAGATCCCT GCCAGCTTCAAGAGGCAGGCCGACGT GGCGAACCCCTACTACCAAATTAAGGCCAAGTTGTTGAGCCTGGAGATTCCCGTGCAATT CGTTACCAGCGAGACCATCGGTAACC ACAACGAGTATATCCTGAACTCTATCGCGCTGCAGATCTACGCAAAGCTCGGCGGGACCC CGTGGGTCCTGCCCTCTCAACGCAGC GTTGACAAAGAGATAATCATCGGAATAGGCCATTCCTGGCTTAGGCGCAACCAGTACGCT GGCGCAGAACAGAATAGGGTAGTGGG GATCACGACCTTTATGAGCTCCGATGGCCAGTACCTTCTGGGTGACAAGGTCAAAGATGT TGCCTTCGAGAACTATTTTGAGGAGC TTCTGAAAAGCCTGAAGCAAAGCATCCAGAGGCTCAGCACAGAGCAGGGCTGGAGCGATG GCGACACCGTGAGGCTGATATTCCAC ATATTCAAACCGATAAAGAACACTGAATTCGACGTGATCAGTCAGCTTGTCAGAGACATC ACGCAGTACAAGATTAAGTTCGCATT CGTAACCATCAGCACTGTGCACCCTTCCATGTTGTTCGACATTAATCAGTCCGGTATCGC CAAATACGGTTCCAATATCATGAAGG GACAATACATACCAAACAGGGGCAGCAACGTTTTCCTGGACGAGAAGACATGCATCGTAC AGATGTTCGGCGCGAACGAACTGAAA ACGGCCAAGCAAGGCATGAGCAAGCCCATCCTTATAAACATTCGCACCCCCCAGGGGAAC TACAATTCAAGCGACCTGAACGATCT CCTGTTTTATGACCTGGGGTACATCACACAACAGATATTTAGCTTTACCTACCTCAGCTG GCGGTCCTTCTTGCCCGGTGAAGAGC CGGCGACTATGAAGTACAGTAACCTCATTTCCAAACTTCTCGGGAAGATGCGGAACATCC CTAACTGGGACGCCGACAATCTTAAC TACGGCCTGAAACGGAAAAAGTGGTTCCTGTAGTAA

125 ATGCCCAAAAAGAAGAGGAAAGTGGAGGATCCAAAGAAAAAGAGAAAGGTGGGTAGCGGA AGCATGACCGAGGCCTTCCTCACAAC CAGGAGGGGCTTCGTGCAAAAGCTGACGCTGACCAGGTACGATTACCTGAACTGGATCAT CGAGTCCGAGGCGCAGAAAGCCAAGC TGAAGAACTGGCTTAAGAACAAGAGCGGGTTTCTGACCCACGAGATCGAGGATACCTGTT TCTTCACCTTCGAGAGGCTTCTGGAG GAGAGTACTAAGCAGTATAGAGCCTCCGGCGAGAAAACTCTGTCTGCCCCGTTCAAGAAC ACGCAACTGATCTCAAATCTGATCGG TACCATATTGAAAAAGGAGTTGAGCAAGAAATACAAGCAATTCTTTAGTCAAAACATCTT CATCGTGAGCACCATCGATCTGTATC CATTCAATCTCTTGAAGGCGTTCGAGTTCAACATCGAAGTGTTTGACAGCGGCCACTTCC TTATCCACGTCAACCCAGTGTCTAAA ATTGTAAGCAGCAAGGTTGTGGACAAGGAGTATCTGGACTACCTCAAGAAAAGCAACCTC AACAACAGCAAAACCACCGAGATGGA GTTCGCGGTGATCAACCATGAAAGGAATTTCAGACTTAAATTCGACCTGCTTGACGAATG CATCTTTGAGAAGATAGAGAAGCTGC ACAGCGAGAAGAATATGTTTACAGCCACTTTTGATTACCATTTCCTGGCCAACTTCAGCC CCGAGATCTTCGGCAAAATCGTGGAA CATACTAGCAAGGATCTGAAGCAGGCCATCATGTTCCTGAATGACATACTGAGCAATATC AAGCTGCCGAGCTTTCTCAACCTGCA CGAGGAACGATACTTTAAGGTCAATATCTCCGAATTGGACCGAAAGAATAATCTTCTGAT TGGAAGCAGTTTCGAGGTAATAACCA TATACTCAAAAAGCCAGACCCAGTATGGACTGAGGATTGAGTTCACTCGCGACAGCATAA GCCGGGACGAGCTTATAACAATCTTT CTGAAAAACGAAGAGCTGATCGAGAAACTCAACGACATTAAAGTGGTCCCCGCCACCATC AACGCAAAAATCGAACAGAAGACCGG CTGGAAAAACCCCTACATCACCAATGTTTTCATCGATAACGTGGGTGCCTTCAGCACCAG CAGCCTGCAAAGCGCCTCATACTTCC ACGGCATCTACAAGGCCGTTAACAACTGGAATATCCTGCCCATCGTGTACGAGGACCTCG ACATCAAAGTATTCGAGAACCTGATG CTGCACGCCTTTAACAAGAACGCCACCGAATTCAAGATCCTGGAACCCATCATAATCAAG TCCACGAACGAAATCGACAAACAGGA GGTGCAGAGGAGCATCAAAAACCAGGCCGGCAAGACCATGATCGCAGTGTTCTGCAAGTA CAAGATACCCCATGACAGCTTCGCCC CCCTCAAGGGCTTCAAGTATCAGATCTATCAAGGCGACACCACGGACAATAAGCAGAATA GGGCCAAACTGAGTAACTTCACGTGC AAGTGCCTGGAGAAAATGGGAGGGGTGATTGCGGCAATCGCGGACACAAGCATAGCCGAG GATGGATATTTCATTGGCATCGACCT TGGCCACACCACAAATGGCAAGGAAAAGTTCTCCAACCTCGGAGTGAGCTTGTTTGATAG CCTGGGCATCCTGTTGGGCGATTACG TGGAGAAGGAGATTCCAAGAAGGGAAAACCTCATCGACACGAACTGCCTCAATGCTTTTA AGAAACTTGACAAAATGCTGGAAGCT AAAAAACTGAACAAGCCCAAACACCTGATCATCCATCGGGACGGCAAACTGCACTTCAAG GATATCAACATTCTCGTAAGCTGCGT GGAAACCGTGTGGGGTAAGATAAACGTCGATATAGTCGAGATCATTAAGAGTGGCTTCCC CGTGATGGCTATAAAGGACGAGACCA ACAAACCAATCAATCCCATAAGCGGGACCAGCTACCAGGACGACATCCATAAGTACGCCA TACTCGCCACAAACGTACAAGCCGAC GAACAGTCAGCCGTAATAAACCCGATAATCATAAAACACAAATACGGAGAGCTGGAGTTT AGCAAAATAGTTGAACAGGTGTACTG GTTCACGAAAGTGTATACCAATAACCTGTACAATAGTACCAGGCTCCCAGCGACTACACT CAAGGCCAACAACGTGGTTGGCACGT CTAAGAAGCTCCACAGAAGTACATACTTGGGCTAGTAA 126 ATGCCCAAAAAGAAACGGAAGGTGGAGGACCCTAAGAAAAAACGAAAGGTCGGAAGTGGC AGCGTTCCAGTGTACCTTAATCGGTT CCTGCTGGACCACCTCACATCACCCTTGTCCTTGCCGGCGTTTCGGGTCGAACTGGACCC TCCCCCTTCCAAAGATGAAGTGCACC CGCTCCTGGCTCTCGTCGGTCGGGAAGCGGGAGGGCTCGTGAGGTTCCAGAACAGGCTGA TCGGCTGGGAGGCTCCACGGGCCCTC GAAGGTCAGGTTAGGCGAGGCAAGCAGTCATATAGACTGGTGCCCCTTGGCCGGCAGGCA CTCAATCTTAGAAAACCCGAAGAAAG GCAGGCGCTCGAGAATTTGTATAGGATCCGACTGGAAAACATCTTGAAAGCCCTCGCCAA ACGACATAGGGCTAGAGTCGAACGCA GGGGCAACGGCCTTTTTCTGTGGAGGCCAGAGAATCCCCGAGAGGAGAAGGAGGGGTGGC ACCTTTACCGGGGAAGCCTGTACCGC ATACATCTCTATCCTGACGGCGAAGTGATACTTGAAGTCGACGTGCAGCATCGATTTCAA CCCACTCTCCATCTCGAGGAGTGGCT GCAACGAGGCTATCCACTCCCTAGGCGCGTGACTAACGCCTACGAGGACGAGAAAGAATG GGCACTCCTGGGCATCGAAGAGGGGA AGGATCCCCGCTCTTTTCTCTTGGATGGGGGCGAGTCATTGCTTGACTACCATCGCAAGA AGGGACGATTGGCAGAGGGGCAGGAC CCCGGTCGAGTGGTCTGGGTTGCTAGAGGTAAAGAACGCGAGCGGATCCCACATCTGAGC GTCTTGTTGAAGCCAGTCATCACCAT GGAGCTGCTGGCGGAAGTCGCTGAGGTCACGCAGGAGGCCTTGCCTGCGCTTCAGCTCGA ACCCGAGGAACGGCTGAAGGACATTA GGCGCTTCGCTGAACCTGTACTGCAAGCGTTCGGCAAACGCGAAACTGCAAAACCCCTTG AAGGCAGAGCCCAGCGATTGCCGCGA CCCAGTTTGTTGGCACGGGGAAAAAAGCGAGTGGGCAAAGTAGCGGACGTACTCGAAAAG GGAGCATTGTCACCGGGCGAGACACG GTTGGCCCTGCTCGCATGGGAGGGAGACGGGAAGGCCAAAGGCGGTCTCGCGTACTTGGA GGAGAGGCTTCAGGGCGTCGGGTCTG CATCCGGCATCAAACTTGAACTTAAACGGCGATTTCTGCCCCGAGGCGATAACCTCGAAA TGGCACAGGTGTTTGAGGAGCTCTCC CAGGAAGGAGTAGGTGCCGGTCTGCTTCTGACTCCGCGCCTCACAGAAGGGGAAAGACGC GAACTGAAAAATACTGCGGCGAGCCA TGGGCTCGCTCTCCAACTCCTTAACCCGTTTGACCCTGGCGACATCTACAGGGTGAATAA CGCTCTGCTTGGATTTCTCGCGAAGG CCGGGTGGCTGTTCCTGAGACTGGAGGGAACTTATCCGGCCGACCTGGTGGTGGCCTATG ACGCAGGCGGGGAGAGTCTCCGATTC GGCGGAGCCTGCTTCGCCCACCTGACTGATGGCACGCATCTGGGGTTCAGTCTGCCAGCC GCTCAGGGTGGTGAACGGATGGCCGA GGAGGTCGCGTGGGAGTTGCTGCGACCCCTGCTGTTGAGATACCGGAAAGCGAAGGGCCA GACACCAGGGAGGATCTTTCTGCTCC GCGACGGTAAGATTCAAAAGGAAGAGTTCCGAAAAGTGGAAGAGGAACTGAGAAAGCGCA ATATTCCCTACGCGCTGTTTAGCGTC CGGAAGACGGGGGCTCCCCGACTGTTCAGCAAAAATGGGCCGCTCGGTGACGGTCTTTTT TTGCGACTGCCAGAGGAGGAGGGCGG GTTTCTGTTGCTTAGCGCCGAGGGTGGGAAGGGCACCCCACGGCCGGTTAAGTATGTGTT GGAGGCGGGAGAAGTGGACCTCAACC TGGAGGAAGCTGCCAGGCAATTGTATCACCTGAGTCGCATCTACCCGGGCTCCGGTTACC GATTCCCCAGGCTGCCCGCACCGTTG CATATGGTTGATAGGATGGTGAGGGAGGTTGCACGGCTCGGCGGCAGCCATAACTTGAGA CTCAAAGAAGAACAACTGTTTTTCCT GTAGTAA

127 ATGCCGAAGAAGAAACGAAAGGTGGAGGACCCAAAAAAGAAGCGGAAAGTGGGGAGTGGC AGCATGTTCGTGGAACTGAACGCCTT CCCCATCGACATCCGCAATATCGGTATCGTGGAGGCCTGCGAGGTGCCGTACGACAAGGA GGTGCTTTATAGCCTGCATGATAACC CACAAAAAGATTACCATGCTATCAGAAACGGCAACCAGATATTGATATTTTCTAATAGCA AAAACTACCCCATCCAGGGTACAATC AAGGAGATAAATCTTGCACAGGACTACCGCATCCTGTTTTTCCTTATTAAGGAGTCCATT ATCAAGATCCTGACGCAGATCAAACG GGAGCCTTTCAAGTTCAACCCGATTGAGTTCATCTCACCAAAGGAGAACATCACCGAGAA TATCCTGGGAATCAATTACCCATTTC AAATAAACGCCAAATATTCAATCGATACCAGAATCATTCAGGGGGTGCCCTGCCTCACCA TTGATTGCAGCACGAAGAAATACAAC AAGGAATCCCTGATCTACTTCATTAACGACGGCTTCAACCTGATTAACAGGTACGTGATC TCAAAGCAAAACGAGAAGTATAAGCG CGTAGGTAAGATACTGAGCATTGACAACAACATCGTGACTGTTCAGAGCTGCGACAAGAT AAAGAAGTACTCCGCCGAGGAAATCA CCTTGGAGGCGAACTCTAAGAACACCAAGGACTATCTGGCATACAAGTTCCCCTATAAGT TCGAGCAGATCCAAGAAAGCATTAAG AAGGCGATCAGTACCTTCACCCAGGGGACCTCTAAGCAGATAAACATTGGCAAGATCTGG GACTTTTTCAGCCAGAAAGGCATCTT CCTGTTCAACGGCCACCGAATTAACATAGGGCTGCCTCCCGACATCTCCCAGCAATGCAA GAACCTTGTGTACCCGCGCTTTTTCT TTAGCAACTCCCGAGAAAACAATTCCAAAGAGAACGGCCTGAAGGATTATGGCCCTTACA CCAGGAATTACTTTGACAGGAATAAC CCCAGCATTTGCGTGATTTGCAACGCTAAGGAACAAGGCAAAGTGGAACAGTTCCTGCAC AAATTTCTGAAGGGCATACCCAATAG CCATAACTTTAAGACGGGCTTCGAGGGCAAGTTTCATATTGGCCTCTCTCAGATAGAATT TTTCACGACCAGCGACGACAGCCTGG GCAGCTACCAGTTGGCTATCCAGAAGGCAATCCAAACGAGGACTAACCAAAACTCTAGCC AGTGGGACCTGGCCCTGGTGCAAACC AGGCAGTCCTTCAAGAAATTGTTGGTGGAGCAGAATCCGTACTTTATTAGCAAGAAAATG TTCTTTCAGCATCAGATCCCCGTTCA AGACTTCACCATCGAGCTGACCAATCAGAACGACAAAAACCTGGAGTATTCTCTGAATAA CATGGCTCTGGCGTGCTATGCGAAGA TGAATGGAAAGCCCTGGCTGCTTAAATCAAGCCCTACTATCAGTCATGAGCTGGTTATTG GCATCGGGAGCAGCAACATCATCATC GAGGAGGACAGTCTGAACCAGAGGATCATGGGCATCACCACCGTGTTCAGCGGCGACGGG TCTTACATGGTCTCAAACACTAGCAA GGCGGTGGCGCCCAATGAGTACTGTTGCGCCCTCATAGACACACTTGAGCAAACGATCAA GAAGCTGGAGAAACTTATGAACTGGC AGAGCAATGACACCATTAGGCTCATCTTTCATGCCGCCGTGAAGACCTTCAACAAAAATG AAATCCTCGCCGTAAAGGAAGTGATC AAAAAGTATAGTGAGTACAAGATCGAGTACGCTTTTCTCAAAATCAGCAGCGACCACGGT CTGCACCTGTTCGACCACTCAACTAA GAATGAGAATAAGGGTAAATTGGCTCCCAAGAGGGGTAAGTATTTTGAACTGAGTAGCCA TGAAATTTTGCTGTACCTCGTGGGGC AGAAAGAGCTGAAGCAGGTGAGCGATGGCCACCCCCAGGGCGTGATCGTGTCCCTGCATA AGGACAGCAGCTTTCAGGACCTTAAG TACCTCTCTAATCAGATTTTCAGTTTTAGCTCCCACAGTTGGAGGAGCTACTTTCCCTCT CCCCTGCCCGTGACAATTCATTATAG CGATCTCATCGCGGAGAACCTGGGCTGGCTTAACAAGCTGAGCGGCTGGGACGATACAAT CCTGCTGGGCAAACTTGGACAGACCC AGTGGTTTCTGTAGTAA

128 ATGCCCAAGAAAAAGAGAAAGGTCGAGGACCCGAAGAAGAAGCGAAAGGTAGGAAGCGGT AGCATGAAAAGCAACTTCTTCCCCAT CCAGTTCAACTTCGACGACTTCCATATCCAGAGGCTTCCCTACCAGAAGGAGGTGCTGGA CAAGCTTCGGCAACAACACAATGCGA CCCATAGCTTTTTCCGCAGAGACGATTTTATCTATATTAGCCCAGGGGTAGAGGCCGCAG CGAACCTGGGAGACGTAGTACGCCTC TCTATTACCAAGCACCCCGAGGTCGTTGCTTCTCTTGTTAGGCACATATTCTTTAGGACA ATCAAGGATAAGGTCCCCGGTCTGCT GCCAAGCTTTCACCCATTCACCTTTCCCGCCAAACAGGACAAATACGATCTGGCCCTGAA CATGCTCCCCGAGCGCCTGCAGAATG TTATCACCTACAAGAGGATAACCGAGGTACAGCTTCGATTCAACGAGACCGAAGAGCAAC CCCAGTTCGTCGCCGTAGTTAACCAC AGGTACCAGTGGACTATCGACCGAACTTGCGAGCAATTGGTAAACGAGGGTCTGGACATC CTTGGCCTGGAGGTGAACTCTAGTAC GAGCCCTGATTATTCAGACGGAGTTGTGGCACCAGAGCTGACACTGTTGGGCAGGGTGAT GGCCGTGAACGGGGATCACGCCACAG TAGGGACCAACCAGGGTCCGACAGAGTATGCCCTGTTCGAATTGACCTTGTTCAAGTCCA AGGAGAACATAGTGAACTACCTTGGA TCTTTGGTGGGCGAGGGTAAAGCCGAACAAATAGTCAACCATATCAAACAAGATGAAAGC AGAAGGCTGCAACCGGACGTTGTGAT GAGGGAGATCGAGGAAATGGGAGTGTGGCTGTCTAGGCTGGCCTACAGAAACTTTGACTC CTTTTGCTTCACCATCGGAACGAACA ACGCTGTCAGCGGCCAAGCAGGTATCAGACTGGAGGAGCCAAAGCTGATATTTGACGTCT CAGGTACGAACATACACGCTACCCCC ACAACCGGGCTCAACACCTTCGGCCCCTATAGTAGAAGCACGAGTTTCGACGTTAACTCT CCGAAGATTCTGGTTGTGTTTCACCA GCGGAACGCAGGCCACTTCGCAGAGTTTCTCGCACAGCTGAAGGGCGGCATCGCTCAGCA CGCATACTTTGCTAACGGGATGGTCA GGAAGTATGGTCTCACGGCAATGGAGTACCGGATTGCCGAGATCACTGACTACACCGTGC CCCAATATCTTACCGCCATCAATAAG CTGCTTAGGGCGGAGAACGGAAGCTTTGACATCGCCATCGTGGAGACCTGTGAGGATTTC CGGAGGCTGCCTCCCATGGATAATCC GTATTTTCAGGTTAAGAGTTTGTTGTACAGCCATGGAATCAGCACCCAATTCATCAGAGC GGAAACCGCTCAGAAACCGATTTATT CAATAGATAGCATCGCGCTCCAAATGTACGCCAAATTGGGCGGAACACCATGGACGGTGC CAATAGGGCCGAGCGTAGATCACGAA TTGGTGATAGGCATCGGTAGCTCCATATTGCGCAGCAACCAGTATGCAGGTGCAACCCAA GCTCGAATAGTGGGGATTTCTACCTT CTTCAGCGCCGACGGGAAGTACATAAGCAATAGAAAGACCCAGGACGTGCCTTACGATCA GTACTTCGATGAGCTCTTGCATAACC TTAAAGTCTCCATCGACGAGATTTCCAATAACTACAGCTGGAGCTCAGGCGACCGCATCA GGATCATATTCCACATCTTCAAGCCC ATAAAACACATCGAGGCAGACGTCGTCGCAAGCCTGATGGAACAGTACCAGGAGTTCGAT ATAAAGTTCGCTTTTGTGACCTTTAG CGAGTTCCACCCGTATGTGCTGTTTAATGAAAATGAAAGGGGGGAATTTGATGCGTATAG GAAGGTTTACAAGGGCACCCATGTAC CGTGGCGCGGTTACAATGTTCTGCTGGATCCTCGGTCATGCCTGGTCCAGATGCTGGGAC CCCATGAGATGAAGACCAGCCGGCAC GGCGCTTCTAGGCCCGTCCTTGTGAGAATCCACCGCAGTTCTACGTTTGTAGACCTCGCG TACGTCGTGCAACAGGCCTTTAAGTT TACTAGGCTCTCATTCCGCACGTTCTACCCTGTGCATAGCCCTGTGACGCTGCTCTACAG TAATATGTTGGCCCGACAGCTCAAGG ACCTGAGGGGCATTCCGGGTTGGAACTACGATGTAGCTAGCAGGCAGTTGAGGCACAAGA AATGGTTCCTGTAGTAA

129 ATGCCGAAGAAGAAGCGAAAGGTCGAGGATCCCAAAAAGAAACGGAAGGTTGGCTCCGGG TCTATGGGCAGGCAACTCCAACTGAA CTTTACCCCGCTCAGGGTTAGGGGCGACGCCATCAGACTTCAGGCGCTGCCTTTCGAGGA CGCTCAACAATTTAGGAATCTGCGCG ATGAGCATCGAGCACACTACGCTGTGACGAGAAGGAGCGACCACATCGTGGCCCTCCCAC TTACACTGAATGCCTCCCCAATCGGC GAGGAGAAGATCGTGAGCGTTGTGGAGCATGCGAGTTTGATTCGGCCCCTGCTTGAACAG AGGTTGGTGACCCTTCTGTCCAGTAA CCGGAGGCCGGTGGCCCGGTATAATCCGATCACCACCATTGGAAGAACCTTGCCAACGGG CTTCATAGAAGCCGACCGACACCTCC ATTTGCAGTCCCGCGTGCTTATTGCTATCCGCTCCCTCAAGCTGCCGGACGCCGAGCCCT TGGGATTGCTCTGGGACATCGAAATC CAGAAAACATGCGCGACTAGCCTTGCCGTCCTGCACGCACAAGGGGTACGGCTGGACGGT CTCACAGTGGAACGGCTTGTCCCGGT GGAGGACGTGCGAATGTTGCCTTATAGGCGACTGGTGGGCAGAGTAGGCGCGCTGACCGA TGGCCACGCCCGATTGAGCGAGCGGT TCCAGAACGTCGAAGAATTGCTGCCCCTGGACGAGCTTTACCTGGAGGCCAGTCCGGAGA ACCTGAGGCACCTTCTGCAGCATTTC ATGCGCAACACAAGCGGGCGAGTGCAAGGGAAGATAGACGAGATCGTCTTCGAGAACTCA CGGGGACGCGCTCGGATGGAGCACAT TGCCCGGATCTCCGACTGGCTTAGAGGCCTGGGCGAGATTGAACTGCAGGAGGGTTTGTC TGTAGGCATCGGAAACCTGCTCTCTG AAAAGGACGCCCAGAACTTTCCCAGGTTCACTGAGGGAACGACCCCAACCTACGTGTTTG ACGCTGGGACGTTGAAGAGCGAGTCA AGGGCCGCAGTGGGCCTCAGTAAATTCGGGCCCTACAGCCGGCATGTATTTACACCGACT CGACCCAACGTTTGCGTCATCTGCGA CCGCGCAAGAAGAGGACAGTTTGAGCTGTTCCTGCGGAAATTCCGGGATGGCCTGACTGT TGATGGGAAGTCCCTGCCGTTTGGTC GCGGGTTTCTGGGAATATATGGCCTTCAGGATATCAACCTGACCTTCGTCGAGGCGGATG CATTCACCGCGGACGCGTACCATGCT GCCGCAAGCAAGGCAGTACGGATGGGAGCCGAGGGCGCACCGTGGCACCTGGCACTCGTG CAAACAGAACGCGACAGTCGGCAACT GGCTCCCCCCAAGAATCCGTATTTGGTAGCGAAGGCGGCGTTTCTGTCTAATCAAATTCC TACCCAGTTTGTGGCGTTCGAGACAT TTTCTATGGCGCCTCTGAACCTCGCGTACACACTGAGCAACCTGGCGTTGGCGGTTTATG CCAAGTTGGGCGGCATCCCATGGCTG ATCAAGAGTGATAAAGGTATAGCCCACGAGGTCGTCATCGGGTTGGGTAGTGCCGCGATC GGGGAGTCCCGATTCAGCCGGAAGGA GAGGATTGTCGGCATCACAAGTGTTTTTCGGGGTGACGGCGGGTACCTCTTGTCTAACCT GTCCAATGCCGTGCCCATGAGCAAGT ACGGCGAAGCATTGACCGAATCTCTCCAGGCGACCCTGCAGAGGGTTCGCAATGAGATGA ACTGGATCAGGGGGGACAGCGTTCGG GTCATAGTTCACGCTTTCAAGCCAATGAGGAACACGGAGGTGGAGAGCGTTAAGGCTGCG CTGAAAGAATTCAGCGAGTTCGACCT GCAATTTGCTTTCCTTCACGTTAAGCAAGACCACCCGTACCTCCTTTTTGACGACGACAG CATCGGTACAAAAGGGCGAGGCGAGA AAACCCCCGTGCGAGGCTTGTTCGCGGAGGTCGGACACAACGAGACACTGCTGACCCTGA CCGGACCACAGCAGCTGAAGAGACCC ACCGACGGGCTGCCGAAACCGCTTCTGCTCAGCCTCCATAGGGACTCTACTTTCACAGAT ATAATCTACCTCACGAAGCAGGTGTA CTGGTTTAGCAATCACTCATGGCGGTCTTTCCTGCCAGCAGCGATGCCGGTGACGATATA CTACAGCGACCTGGTGGCTGGTTTGC TCGGAAGACTGGATAGGCTGGGGTCTCGCTGGTCACCGAGTGTAATGCTGGGCAAGATCG GAACCACAAGATGGTTCCTGTAGTAA

130 ATGCCCAAAAAGAAGAGAAAGGTGGAAGATCCCAAGAAAAAGAGGAAGGTGGGTAGCGGG AGCATGAGGGAAACCAACATCTACGA GCTCAGCGGCCTCGAAACCGTGAGTACCAGCTACAGACTTTTCGAGTTGCAGGGCGCGCC AGAGTTCTCTCCTGAGTATTATGCTG GTGTGAGCCGCCTCGTGAGGACGCTTAGCAGGAGACACCAGGCACCCTTCACCAGTATCC AACGGGGCGAGACCATGTTGCTCGCT GCACCCGAGGCCCTGAGCGGTGATCTCGCAGAACACCATAATCTGGCACGCTGGGTGGCG ACCCTGAAGTCACTTGGAGATAGCAT AGAGATAGACTGCAGCGTGAGCGGAGATGAGCTGGACCCCATAAGGCTGCGATTCCTGAA CTTCATGATCCAATCTCCATTGTTCA ACCACGGCGAGCTCTGGCAGCCCAGGGCCGGTGATGCCTTCTACTACCGGAAGCCTGCCG ACACGTTCGACGGAATCGAACTGTTT GAGGGTATTGCCGTGAGGGCCGTGCCCTACCCAGGAGGCGGGTTCGGCGTTATGCTCGAC GCGAGGACTAAGCTGATCTCACAGCG GGCTGTGGGCGCCTACGCGGACCCGAATTTCATAAGGAGGCTGAAAAACACTAGCTGCCT GTACCGAATGGGAGACATCTGGTACG AGATAAAGATCAGTGGCGCGAATCAGACCGTTTCTCACCCCATCCTGTTTAAGGACAACC AGCCCGTGTCACTCAAAGCCTACCTG CACGAACAAGCACGGCAGCCAATCCCCAAGTCTCTGATTGATCTTAAAGGTGACGGCGTG GTGTTGACCTATCGCGGCAGCGATAG CGCCGAGGTCAAAGCGGCACCCGCGGAACTTTGTTTCCCCATAGTAGACACCCATAGCAA GAGGGGTGCCCGGCACCAGAGAAGGA GCATCCAAGCCCCACACATCCGACGCAGCAAGGCTTACCGATTCAAGCAAAGGTTCTTGC GGGACATCAAAATAGGAAATGCCGTG TTGAGCGTGGCCGACCAACCCGCAGCCCTCAAGACCAGGCCCATCGACTTGCCCGAGCTG CAATTCGGCTCCAATAGGATTCTGTA CGGCACGGACAGGGGCGGAGACCGAATCGACCTTCGCCAGTATGCCAAGAATCGGCGAAC GCTGCTGGAGCGCGCAGACGTGGGCT TCTTTGAGACTTCTCCCCTGGAGCCCCAATGTTTGGTACTTCCTAAGAGCGTGATGAACG CATGGGGCAACGAGTTCGTTCGAGAC CTGACTGCCGAAGTGAAGCGACTCCACCCCACCGGTAACTACAAGCCAACCGTAATCGCG TTTGATGATGTCAGCGCAACCGTGGA CGCCAGGAGCCAAGCAGAAGCCATCTTCAAGCTCGCGGAAGACGGGGATCTCCCTCCAGG CGACTGCGCCATTATGATACACCGAA CCAAAGGAAAGGCAAGAGCGCAGGAGGAGCTGCCCGCACTTCTTATAAACAAGCTGAGAA AGAGCTACGGAGTGAATGCCGCCATA TTCCACGCGACTGTCCCCGGCAACGCCTACCGAAGGGAAAGCGCCAGCGATGGCGCTCGC TATGTGCGCAAGCGGGATGAGAAGGG CAGGTTTAGTGGATACCTGACCGGAGCGGCGCTTAACAAGATTCTTCTGCCCAACGCCAA GTGGCCCTTCGTGCTCAAGGACGAGT TGGTGGCAGATATAGTGGTGGGCATAGATGTGAAACATCACACCGCAGCTCTCGTTTTGA TCGCCGAAGGCGGGAGGATTATCAGG CACACTCTTCGCCTCAGCACCAAGAACGAGAAACTCCCTGCTGGTATCGTGGAAACGAAG CTGGTGGAACTGATTTCAAATGAAGC ACCACACCTGAGCAGGCTCACCAAAACAATCGCCATCCATAGGGACGGCAGGATTTGGCC CTCCGAGCTTAAGGGATTGCGAGCAG CCTGTAGGAAGCTTGCCGACGACGGCCACATCGATCCTGCGTTCGATCTGAACGTCTTCG AGGTGAGCAAAAGTGCCCCTGCTAGG CTTAGGCTGTTTAGCGTCGACCGCAGTGCTGGCAGAAAGCCGAGGATTGAAAACCCGGAA CTGGGGGACTGGATGATGCTGACAGA AACCGACGGCTACGTTTGCACGACCGGTGCTCCGCTGTTGAGAGGTGGTGCGGCTAGACC CCTGCATGTAAAGCAGGTCGCAGGTG ATATGAGCTTGCAGGACGCCCTTTCCGACGTGTTCCGACTGAGCTGTCTGACCTGGACTA GGCCCGAGTCATGTAGCAGGTTGCCT ATCAGTTTGAAGCTCTGCGATATGCTGCTGATGGACGAGGGAACTGCCCACGACGAGGAC GAAATCCTTCATGCTAACGACGACAC CCCAGCCGTTAGCGCCTAGTAA

131 ATGCCCAAAAAGAAGAGAAAGGTAGAGGATCCCAAGAAGAAACGAAAAGTAGGCAGCGGC AGTATGGTCGCGCTGAGGCTGAACGG CGTACCCATCTTGTGCGCCGCTGACGTAACCGTGGCCGTGGCGAAGTTGCCGTACACGAA GGAGAGCCTGGACGAGTTGAGGAAGG AGCATGCGGGGAGGTATTTGATTAGGAGAGGCGGAGATGACGGGCAGGAAATCATGTCTG TTCCCTTGCTTGCTGATGCTCCGCAG CTGAGCGATGCCGTTGTGGAAGTTAAGCTGTCAGAAGCCCACTGGTTGCTCGCCTCACTC GCGGTGGAGGCCCTCACCAGGTTGTT CACAGAACTTGGTAGACCTATCCTGCGGTCCCGGCCATTGCGGCTGCTCTCCCAAAAGCC GGCCAATCTTTTTCCGGAGAACGTCG GACTGCCAGACTGGCTGCAAAGGAGGGTTGTGCTGGATTTGGAGACTAGGAAGATCTGGC GGCAGGATGGAGACCCGACATTGGTG CTGCTGTGCGATGTGCGGACTCAAAACTTTATCGACGTGCCAACGGATAAACTGATGGCC ACCGGCGTAAGCGTTATGGGTCGCTA CGTTAGCCGAATGGTGAGCTCTGATGATCCCCGGATCACCTCACATCTGAAGCTCGCCGG CAGGGTCATTAGCATAGAGGGCGACC GACTGCTCCTCGCCGACTTTGGCGAGGGACCGGATAGTATAAGCATTGCTCATGCCTATC TGGAGAGACGACGGGAAAATGTCGAC TGGTGTGTTCAACAGCTGAACCCCGCGAAAGCAGGGCAAATCCTGATGAGCGTGCAGGCC GAGGCTGCGAAATTCTTGAACGGACC TGGCCGATTCGAGCTGATCAAGAGGACATTCGATTACCTGCGCACGCAGAGTATAGAGCT TGTGCCCGACGTGAAGCTGGAGTTGG GGGACTTGATTGGCATGGGAGCCGCACGCTGGCCCTTCCGCCAGGAAACAATTAAGAAGC CTACCCTGGTGTTTGATCCGTCTGGT GTCAAGACCGATACCTGGAACGAGCGAGGGCTTGACAAACACGGACCCTACGACCAGAGG ACCTTCAGCCCCAAGGAAATGAGGAT CGCCGTTATCTGCAGGGAAGCAGACGAAGGTCGGGTTGAAGGATTTCTGGCCAAGTTTCT GGACGGGATGCCACACGTTATCGTCG GGGAGAACCGAAAACCCTATGAAAAGGGATTCATAAGGAGGTTCGCCCTGAGTGCCCCGA AGGTGCACACTTTCACCGCTAAGTCT TCTAGTGTGCCGGACTACCTGAATGCGTGCCGAGCGGCCCTGAAGTTTGCCCACGACCAA GGCTTTGAATGGAGCTTGGCAATCGC GCAAATCGACAAGGACTTTCGGGAACTCCTCGGTCCTGACAATCCCTACTTCGCGATCAA GGCCGCGTTTCTCAAGCAGAGGGTGC CCATCCAGGAGTTGACGCTCGAGACAATGAGCACCCCCGACAGGCAGCTGGTGTACATTT TGAATAACATAAGCCTCGCAAGCTAC GCCAAGATCGGCGGCATTCCGTGGCTGCTTAAGAGCGGTCCTACCGTGGGCCACGAGCTG GTCATTGGTATTGGTAGCCAGACCGT TAGCAGTAGTCGATTGGGCGAGAAGCAACGGGTGGTGGGCATTACCACCGTATTCACCCA CGATGGCAGATACCTTTTGGACGACA GGACGCGAGCCGTGCCATACGGCGAGTACGAAGCAGCTTTGTCCGAGACGCTGACCAGGG CCATAGAGAGGGTAAGGACGGAAGAT AACTGGAGGTCAACCGACGCGGTGCGACTTGTATTCCACGTGTTCCAGCAAATCAAAGAC TACGAGGCCGACGCAGTGGGGAAACT GGTCGAGAATCTCGGCTTCAGCGATGTCAAGTACGCCTTTGTGCATGTCGTTGACAGCCA CCCCTACACCCTGTTTGACGAACACA TGCCAGGCGTTAAGTTTGGCTACGAGATGAAGGGCGCCTACGCACCTGAGAGAGGCCTGT GCATCAGTCTTGGCAGGGACGAACGC CTCCTCAGCTTTACCGGGTCTAGGGAGGTTAAACAAACCCATCATGGCCTCCCAAGGCCA ACCCTTCTTCGACTGCATAGGAACAG TACCTTCCGGGACATGACCTACATCGCCAGGCAGGCTTTCGACTTCGCAAACCACTCATG GAGGATGCTCACCCCAGCGCCCCTCC CCATCACCATCCACTACGCCGAACTCATCGCCCGGTTGTTGGCTGGTCTGAAAGACACAC CCGGCTGGGACGAGGACACAATGCTC GGCC CAGTAGGTAGAAC CCGATGGTTTCTGTAGTAA

132 ATGCCTAAGAAAAAACGCAAAGTAGAAGATCCTAAAAAGAAGAGAAAGGTCGGCTCCGGG AGCATGGATTACATACTTGAATTCGA CGAGTTTATTCGAAGCATCAAGCAGAATATTGATACAAAGTATTCATTCCTGTTGGGGGC TGGCGCTTCAGTCGAATCAGGTATTC CGTGTGCCAGCGAATGCATCTGGGAGTGGAAGAGGGATATCTTCATCAGCCAAAATCCGA CCCTGGCTGAGATGCACAACAACATC AAGAGCCAGAACATTAAGCGCAGCATCCAGAACTGGCTCGATAACCAGGGCACCTACCCA AAGGAGGGCGAGGACATCGAGTATTC CTACTATATTGAGAAGGCTTTCCGGATTCCCGACGACCGGAGGAAGTATTTCGAACGAAA CATCACCGGCAAGACTCCGTCACTGG GCTACCATATCCTGTGTCTGCTGGCGGAACGCGAGATAATCAAGTCCGTTTGGACAACAA ACTTCGACGGCTTGATCATTAAAGCC GCCCATAAGTACCAGTTGGTGCCCATCGAGGTCACCCTCGAGAGCCAAGATAGAATCTAT CGGACGGATGCCAACAAGGAGTTGCT TTGCATAGCCTTGCATGGGGACTACAAGTACGGTCCGCTGAAGAATAGTAAAGAGGAGCT GGACAGCCAGTCTGACATCTTCGTGA ATGCCCTTTCCTTCGAGGCGTCTAAGCGCTATTTTGTGGTGATGGGATACAGTGGGCGCG ACAAAAGCCTCATGCAGGCTATTGAG CGAAGCTTTTGCAGAAGCGGCGCTGGCCGCCTTTACTGGTGTGGATACGGCCGGAACATC GCGCCTGAGGTACGCGTGCTGATCGA GAAGTTGAACTTGTATGGACGCGAAGCGTTCTATATTCCCACGGACGGGTTTGACAAGAC GATGTTGAACATAGCCCATATGTGTT TCGAGGATAAGGAATTGCAGGAAGAAGTGGAGAAACTCAAAGCGGATCTCGGTGCGGGGT ATGAGTGTCGCACCACCACGTTCAGC CCCTACAAGGAAGGGGTGAATAAGATCGTGGACACAAATGTTTACCCGATCAAATTCCCC GACAAGTGCTATCAGTTCGAGGTGAA GAACAGCAGCGTAATGAACCTCTGGGATTACTGCAAGCAGCTGATAGACTATAACATTGT GGCCGTCCCCTATAACGGAATGATCT ACGCCTGGGGAAACCGCAACAGCATCAGCAACATGTGCGGACCAAATGTGAACGGGACGA TCGAACTCGTTCCTCTCACTAGGAAA ATCTTTTTCGACAACGGCACTCTCAAGTCAATGCTCCTTAAAACTTTGCTCATCGTGATT GGAAAGCACTCCAATTGCAAGTATAA CCGAAACAAAATCTGGCGAGAGTCCAAGAAAATCAACTACACTATTAACGGCAAAAACAT TGAAGCGTACCAAGGCATTAGGTTTA GCTTGTTCATGGACTGGAAATACAGCTACCTCACCCTGACCCCCGCTTTCTACTACAAAG ACAGGAACAACGTTAGCAAGGAGGAG AACAAAGAGTTCAGCGACCGGTTTATGGAGCAAATATGTAAGATGCAAGCCAATAAGAAT TACGCCGCGTACATAAAACACTGGAT TAACATTATCTTTCCTGATGGCAAGTCCATCATTTCCATGTACCCGTGTAACAGCGAGAG CGGATTCGAGTTCACCATTGTTAATA AGTCACTGCTGGTCGGACTGCGGAGTAGGCAAGCACTGCATAATCCTGACGATGACATGA AGAAACGGATTTGCATCGGTGGAGCT GAGTTGGCGGACACCGAGCTCAAGTTCTACAATCCGGCTCAGAATGCAATGCACACCGAC TTCCACCCCATGAGGGGCCTTATCAA CAATAAGCCCTACGACTTCTACATGAATAACAGGCTGTTTAAATCTAACATCTCCCTGGG CGTGATCTCTCCTGTGGGTTCAGAGA AAAAGCTGGAGGACTTCCTGGACCGACTCAACAAAAAGCACAAAGTGAACTACAACGTCG ACTATGTCATAGATTATCCTGGGTTT CAGTCCGTCTACGGGGTTGGCCTTTCTGTCCCTCTGATCGCAGAATGGGCGTTGTTGGAT GATAAAATGCTGAATAAAGCCAACCT GTATCAGAGCTGCCTTAACTTCGGGGATCAGATCAAGAAGAAGATTGAGTACCTGAAGAG CCGCGACAGCGTGGACGTGATCATCA TATACATTCCGAAAGAGTACGAGCTGTTCACCTTCTTCAACGACGGAAATATCCATTATG ACCTGCACGACTACGTGAAAGCATTC AGCGTGCAGAGGCACATTAGCACCCAGTTCATACGGGAGAAAACAATTGACTCTGAGCTT GACTGCCAGATCGCGTGGGCCCTCAG CCTCGCTATCTACGTTAAAGCAGGCCGCACTCCGTGGATTCTCAGTGGCTTGAGGACTGA TACCGCCTTCGCCGGCATCGGCTATA GTGTGGACCATATAAAGACCGACAACCAGACCCTTATCGGCTGTAGCCATATTTACGGGG CAGATGGCCAAGGTCTCCGGTACAAG CTCTCCAAGATTAAGGATGTGACCTTCGACAGCAAGAACAATCCCTACCTGTCCGAAAAC GAGGCCTACCAACTCGGCCTGAATAT CAAGGAACTTTTCTTTGATAGCTTCAAGACGTTGCCCCAACGAGTGGTCATACACAAAAG GTTTCCGTTCCAGAAGCAGGAGATCG ATGGCCTGACTAAGTGTCTTGGGTCCGCGGGAGTGAAAGACATAGACCTCATCGAAATCA CCTTGGAGGATCGATTTAGGTGCTTT GAATACGACAGGCGACTCCAGATTGACGGCTACCCCGTGAGGAGGGGCGTGTGCTTCGCC ATCAACGAGAACACCGCCTATCTGTA CACCCACGGTATTGCACCAAGCGTCAAGAATGCCAATCTCCGCTACATACAGGGCGGTAA GAGCATCCCTGCCCCCCTGAAAATCG TTAAGCACTACGGGAACGGCGACCTGGCCCAAATTGCGACAGAGATCTTGGGCCTGTCAA AGATGAATTGGAACAGTTTTGGTCTG TATAGCAAGCTTCCGTGCACTATCCAATCTAGCAACGCTATCGCTCGCGTAGGGTGGCTG CTCTCCCAGTATGAGGGCGTAGTTTA CGACTATAGGAATTTCATGTAGTAA

133 ATGCCCAAAAAGAAGAGGAAGGTAGAAGATCCAAAGAAAAAGCGGAAGGTCGGGAGCGGG TCCATCACCAGCTACCCTTACGCTAG GAACAAGGCCGACATGATTCGCAAGGTTAATTGGAATCTGATCGTGTTCGACGAAGCCCA CAGGATGAGGAATGTCTATAAGAAGT CCAATAAGATCGCCCGAACCCTGCGCGAGGCCACTGCCGGCTATCCCAAGATCCTGCTCA CTGCAACCCCCCTCCAAAACTCCCTC ATGGAGCTCTACGGATTGATATCTTTTATTGACCCCCACATCTTCGGGGATGAGACAACT TTCCGCAGACAGTTTAGTCGCGGCAC CAAGGAAATGAGCGAGATGGACTTTATCGACCTGAAACAACGAATTAAACCCGTGTGTCA CCGCACCCTGAGGCGCCAAGTCACAG AGTACGTTAACTACACTCAGCGCATTCCGATCACCCAGGAGTTCATGCCCACCAACGAAG AATGGGAGCTGTACGAGAAGGTCAGC GCCTATTTGCAACGAGAACATCTCTTCGCGCTCCCCGCGTCACAACGAGCACTTATGACC TTGGTAGTGCGCAAACTGCTCGCCAG CTCTTCATTTGCTATTAGCGATACCCTGCTGAGCCTCATCAAGAGGTTGGAACAACTGCT GGAACAGCTGGACTCCGGCAAGACGG AGATTACCGTAGAACACAGCGATGTCTACGCGGACGTGGACGAGTTTGATGATACAGTGG AGGAGTGGGAGGAGGACGACCAGCCT TCTTACATAGATAAACTGAGCCCAGACGAGATGAAACGGTTGATTCAGGAGGAAAAGGAA GAACTGGAGCAGTACTACAGCCTTGC AAAAAGCATTAAAGAGAACTCAAAGGCTGAGGCCCTCCTCATAGCGCTTGAAAAAGGGTT TGAAAAGCTCAGGATGCTGGGGGCTA ATGAGAAGGCCGTGATCTTCACAGAATCCCGACGCACACAGATGTATCTGAGAGAATTCC TGGAGAGAAACGGCTACGCCGGGAAG ATAGTGCTGTTCAACGGTGAAAACCAAGACGAACAAGCGAAGCAGATCTATGAGCAGTGG TTGGAGAAGCACCGACACGACGACAA GATTACGGGCTCTAAGACGGCGGACATGCGAGCCGCGCTCGTGGAGTACTTTAAGGAGCA GGCTAGTATAATGATAGCGACCGAGA GCGCCAGCGAAGGCATCAATCTGCAATTTTGCAGCTTGGTTGTGAACTATGACTTGCCAT GGAATCCGCAAAGGATAGAGCAACGG ATCGGGAGGTGTCATCGCTATGGTCAAAAGCACGACGTGGTGGTAATAAACTTTCTCAAT TGTAAAAACGAAGCGGACAAGAAAGT AGATGAGATATTGTCCGAGAAGTTTCGGCTGTTTGAGGGCGTATTTGGCAGCAGTGATGA AGTCCTGGGGTCCCTCGAAAGCGGCG TGGATTTCGAGAAGAGAATCCAACAAATCTACCAGACCTGCCGAACCGCGGAAGAAATTG AGCAAGCGTTCAAGAACCTGCAAGCT GAGCTCGACGAGCAAATTCAACTGAAGATGAAGGAGACCCGAATGCATCTTTTGGAAAAC TTCGATGACGAGGTGAGGGAAAAGTT GCGAGACCATTATCACCAAACCTCCCTGCATCTGAATAGGATGGAAAGGTATTTGTGGAA CCTCAGCAAGTACGAGGGGGCACGCG AAGCCATCTTTGACGACGAGACGCTGTCCTTCGTGAAGGACTACGAGACCTATCAGATGA TCAGCCAGGCGAAGAAACAAAACAGT CCAAACGTGCATCACTTTCGATTCTCCCACCCGCTTGCGCAGAAGTGGATCGAACAGGCC AAGAGCAGGGAATTGTTGCCAAAGGA GATAACGTTCAGGTACAGCGACTACAAGGGCAAAGTCTCCATCTTGGAAAGACTCATCGG CAAGGAGGGTTGGTTGAGTCTGGACC TGCTTCACGTCCAGAGCCTTGAGAGCGAACAACACCTCATCTTTAGCGCCATCGACACCG AGGGCGGTCAACTGGACCAGGAGATG TGCGAGAAAATGTTCGAGCTGCCCGCTGTGGAGGGCGAGGAAGTAGAGATATCCGACTCC ATCCGAAACACATTGAGACGAATCTC AGAGGGCCAGCAAGAGGCAATACTGAATGAGATTATGGAACGGGCGTCCGCCTACCTCGA CTCAGAACTCGAGAAACTGGAAAAAT GGTCACAGGACCTCAAGAATAAGCTGGAGAAAGACATTGATGAAATGACGGTGGAGATCG AGCATCTTAAACGGGAAGCTAAATTG ACACGCAACCTGGCAGAAAAACTCGAAAAAAACAAACAGATCAAGGAGCTTGAGAAGAAG CGCAACGAAATGCGCCGGAATCTCTA TGACCAACAGGACGAAATCGATGAACAAAAGGACCGCCTCTTCGAGGAGGTAGAGAAAAA ACTTGAACAACGGACTGCGACGGAGC ACCTCTTCACTATCAAATGGCGGATCGTGTAGTAA

134 ATGCCTAAGAAGAAGAGGAAGGTCGAAGATCCCAAAAAGAAACGAAAGGTTGGATCAGGG TCTCTTCACCTTAACTACCTCCCATT GCGCTTTACCGCCGATATATTCAAGGGTGGTGCTTTGACATTTCCCGAAGGCAGCGAGAA AAACTGGACCAGCGACGATCCAATCA GCAAGGAGCTGAGCAAGTTGCGAGAGAAACACGGAGATAGTCATGTCTTCCACCGGATGG GAAACAAAATTGCATGTATCCCCGTT GTGGAGAACGCCATTGCTATAGGCACCGAGACGGATTTCAACATCATTAGTGACTTTCAG CTGGCTAATGCTCTTGCTCGCAGCGC CCTCCACAGGTACTTCAAAGCTGCGGGAAGGGAGACTGTAATTGGGTTCCGACCCGTAAC CCTTCTCTTGGAAAAACACAACTTGG CCAGCAACAGGAAGGACGTGTTCGGCATTTTCCCCGAGTACACTCTGGACGTCAGGCCTC TTGCACCACATGAGGGCGACATAGCG AGCGGAGTGCTTATCGGCTTTGGAATAAAGTATGTTTTCCTTCAGAACGTAGCCGAGCTG CAGGCACAAGGGGTGAGTGCCGCAGG GATGTACGCCGTGAGGCTGGTAGACGAGAGCGAACATCAATTTGACCGGGCCTACCTGGG AAGGATTGATCGGTTCACAAAAGATA ACGTGACGCTCGTTGACAGCGATTACGCGGAATATCCCGCCGACCAGTGTTACTTCGAGG GAAGCAGGACCAACATCGAAGCCGTG GGCCGAAGTCTCCTGGGGAAAGACTATGATGCCTTCAGCTCAAGCCTTTTGCAGGAGAGC TACAAAGTGACCGGAGCCCCCAACCA AACCCAACGACTGCACCAGTTGGGCGCGTGGCTCGAGGCCAAGAGTCCGATCCCCTGCGC CGTTGGTCTGGGAGTACGGATTGCAA AAAAGCCGCATGAGTGCTCACGAGGCAACGACGCCGGGTACAGCCGCTTTTTCGACAGCC CCAAGTGCGTGCTGCGGCCTGGCGGC TCTCTGACCGTGCCCTGGCCGGTCGACAAGCAGATAGATCTCAATGGCCCTTACGACGCT GAGAGCTTTCCCAACAAGAGGGTACG AATTGCCGTCATCTGCCCTCAGGAATTCACCGGGGATGCGGAAGAGTTCCTCCGGAAGTT GAAGGAGGGCCTTCCTAACGCACCGG ACGGCAGTCCGTTTCGCAAGGGCTTTGTTCGAAAGTACCATTTGTCTAGCTGTGACTTCA CGTTCCATGAGGTTAAGCGGAGCTCA AACAGTGACGACATCTACAAGGATGCGTCCCTTGAGGCACTGAAGCAGAAGCCAGATATG GCAATCGCCATAATCCGGTCCCAATA TCGCGGGCTGCCCGATGCTTCTAATCCCTATTACACGACAAAAGCTAGGCTGATGGCCCA GGGCGTACCAGTTCAACTGCTGAACA TAGAGACCATCAGGAGGAAGTCTTTGGACTACATTCTGAATAACATCGGTCTTGCGATGT ATGCCAAACTTGGAGGAATCCCTTGG ACCCTCACCCAGAATAGCGACATGGCGCACGAGATCATCGTCGGGATAGGGTCAGCCCGG CTCAATGAGAGCAGGAGGGGTGCTGG CGAGAGGGTCATCGGGATCACGACCGTGTTCAGTGGTGACGGACAGTACCTCCTCGCCAA CAACACCCAGGAAGTTCCCAGCGAAG AGTACGTAGACGCATTGACTCAGTCTCTTAGCGAGACAGTATCAGAGCTTAGGAGCCGGT TCGGTTGGCGCCCTAAAGATCGAGTG AGGTTCATATTCCACCAGAAGTTTAAGAAGTACAAAGACGCAGAGGCGGAGGCGGTTGAT AGGTTTGCACGCTCACTGAAAGATTT TGACGTGCAATACGCCTTCGTGCATGTGTCTGATTCTCATAACTGGATGCTGCTGGACCC AGCTAGTCGGGGGGTGAAATTCGGCG ATACGATGAAGGGCGTCGCCGTCCCTCAGCGGGGACAATGTGTGCCCCTGGGGCCAAACG CTGCGCTGCTTACTTTGAGCGGTCCG TTCCAGGTAAAGACCCCACTGCAAGGCTGTCCGCACCCCGTGCTGGTGTCAATTCATGAG AAGAGCACTTTTAAGTCTGTTGATTA CATAGCCCGCCAAATCTTCAATCTCAGCTTCATCAGTTGGAGGGGCTTTAACCCTAGCAC CCTCCCAGTGTCCATTTCCTACTCCG ACATGATCGTAGACCTCTTGGGACATCTTAGACGCGTTAAGAATTGGAATCCGGAAACCC TGTCTACCGCTCTTAAGGAACGAAGG TGGTTTCTGTAGTAA

135 ATGCCCAAGAAGAAGAGAAAAGTGGAAGATCCCAAAAAGAAGCGAAAGGTGGGTAGTGGG AGCATGAATTTCCAGCTGTGCGACCA ACGCAAAGCCATTATCGCCGAACCAGGCCATCTGTTGGTCCTCGGTGGGCCAGGAAGCGG GAAAACTACCGTCGCCCTCTTCAAGG CCAAGCAGAGATTTAGCACTCTGAAACCTAGCCAAGAAATCCTGTTCCTGTCATTCAGTA GAGCTGCCATCAGGCAGGTCCTGCTG CGGTGCAAGGAGATTCTGAAGCCCGCAGAGAGACGCGCTGTCGCCGTTCAAACCTATCAT AGCTTCTGCATGGACATGCTGAGGGC GCACGGTAGACTGCTCCTGGGCCACCCCGTGCGATTCATGTATCCCGGCGACGAGAGGCT TCAAAAGGCCGCATTCGAGGGGGACT GGGAGGCGGAAAGACAAAGGCAAGCCAAAGAGATGGGCATCTTTTGCTTCGACCTTTTCG CGCAAGGCGCAGCTGAGTTGCTCGAG AGGTGTGCCGCACTTAGGAAGCTTATAGGGGACAGCTTCCCCATGATAATAGTGGACGAG TTCCAAGACACCGACGACAACCAATG GCGGATCGTGGCGCAACTTGCCAAGGTAGCGGACATCTTCTGCCTTGCCGACCCCGACCA GAGGATCTTTGACTACCGAGACGACA TCGACCCCCTTCGGATCGAGGGTTTGCGGACCACTCTTGCCCCCAGGGAGTTCGATCTTG GCGGTGAGAATCACCGCTCCCCGAAC GCAGGGATATTGAACTTCGCCAACGCTGTGCTGCATAACCAGAGCCCCCTGCCCGATACC AGCGACATCATGCAACTGCGGTACTG GCCTAGAGCGTTCGCGAGCACCGTGCATGCCTGCGTAGTGTTTACCTTCAGCGAACTCAG GAAACTGGGCGTGGAGAACCCCAGCG TGGCAGTGCTGAGCCGATCCAACGGGCTTATCAGCGATGTGAGCGCCATACTGGCTGAGA AGCACGCGTACAACGGGAGGGAACTG CCAATCGTGGAACACGACGTGGTTTGGGACGCGGAGCTGTCTGCGGCAGCAGCCGTCGTC GTTGCGTCCACCCTGGAGTGGCCAAC AGCCGCTGCAGAGGTTGCTGTTGCCAGGACACTTGCGCTCATAGCAGCCTATTACAAGCT GAAGAACGCCGAGGAACCCACCAAGA GCGCGGCTGAGGCTGCCCAAAAGTACGAGGCGGCTGCAAGCAAGGTGGCCAGTGAGGAGA CCCCAAGGATCAAAGCCGCGAAAGAA TTGCTGGCCGCTCACCAAAGTGGCATCCAGATGGTGGGCGACCCGGTGGCCGATTGGAAG TCTGCGAGGAGGGTATTGCAAGAGAT AAGCGCCCTGGGTGAGTTGTACAGGGAGGTCCGGCTCGTGAGGTTGTTCCGGGCAACCGA CGCCTTGGCTTCCGGCCTGAGCAATA GGTGGTTGGCTACTGGAAGCTACGAGGGCGTGTCCGACCTGGTGAAGGGCATCCTTGAGC AGGAGAAACTGATTGCCGTGGAAAGG GACCCAAGAGGCTGTATACTGATGAACATCCATAAAAGCAAAGGTAAGGAATTCGACGGC GTGGTACTCATTGAGGGGGCATTTAA GTCCCATTTCTTCGATGAGCGGAAGGAAGTCAGCCCCTATGAGAGGTCCAGACGGCTCCT GAGAGTCGGTCTGACCCGCGCTAGGC ATAGGGTGACAATCCTTAGACCTCAGGGAGCGAGGCCCCTTGTGGATCCCATCTAGTAA

136 ATGCCCAAAAAGAAACGAAAGGTAGAAGATCCCAAGAAAAAAAGGAAAGTGGGAAGCGGA AGCATGGAGAACCTGGCTCTTAGTGC GCTGCAACTGGACTCTAAGCTCGACCGCTACATCGTGTGCAGGTACAGAATCGTGTACCA GAAGCGAGACGAGACCATTCCCGGCG AACAGTTGGCCCGGAAGGCGGCCTACGAGATCCAGAAAGCGAATGACTTCGCCCTTTTGA CCAACCTCGGCAATCAACACATCGTT TCCCTCAAGCCCATCTCACAGAGGGGCATTGAAAGCACCCACCTTCAGGCGAATCTCATC GAAGACGGGGACCTGGAGCTCGATTG CTCCATCGAACAACATCAGCAGGCACTCCAGCGGCTCGTGAACCAGGACATCAATAAAGC TGCGTGGAAGCTTAAGAAGAGCTCAC AGGGCAAACTCGATTACAAAAAGGCAGCTAGCGGGAACACCGAGATCTTTGAGCCAATTC ATAGCACTCGAATCAACGCCCGAGCC ACGTATCTTGACGCTTTTTGCTCACTGCAGCTTAGCCCCGAGGTGCTTGCTAATGGAACC GTACTGATAGGGCTGCATCTCAAGCA CAATCTGGTAGCAAAGTCTGACATCTCTTTGCAGTGGATCATTGATAAAAGGCCCGATTG GCTGCAGAGCATCAAGAAGGTGCGGC ACAGGTACTTCGATCCCGGCAAAGCGCCCCTGGTCGCCGAATTCCTGAGGGTGGAGGACT CCCTGAATGGCAACAGCGTCTTGCCC CACATGGGCCAGAGTCTTGTTTCATACCACCAAGCGAAGGGACTCTTGTCAGAAAGACAG CTCGCAGAGGCCACGAAGAGCGTGCT GATAAAGGTAAAATACGGCAAAAACGAGGCGGACCACATCGCATCTCTGGTTGAACCAAT GTTTGATTTCGACACGCTCAGCAAGA TCGATAGTATCTTCCTTAACAAGTTGGCAAAGGACCTGAAGTGGAGCCTGAACGACAGGA TACGCACTTCCGCGAAAATGGTGAAA GGCTTGTATCTCCCAAACTTCAACTGCAAGCTGGAACAGGTTGACTATCAGATCCTTCAC AGGCAGCGACTTAATCACCAACAGAT GCTTCAATTCGCCAACGGGGCGAAATCTTCAAGAGAGCAGGACGTGCTGCGACATAAGGC GTTCGGCAACATGACGCGCACACAAG TTATCCCGCTTATTGCGGGCGAGAAGAACAATACAGAACAAAATAAGCAGCTCCTGTGCA ACGCATACCAAGCATTGCAACAACTG ACCACCACGGAATTGCCTCCGTTCACCAAGTTCCCCAACCCCGTAGAGAACGCAGCCGAG CTGGACGCAAGACTGAATGAACGGTG TCCCCCAAATGCGATACTGCTCATCGGCCTTATCGACAAAAGCGACAAAGTGGCGATCCG CGACACCGCGTTTAGCTACGGTCTTG CAACCCAGTTCATGCGCCTGGATCACAGACCGAACGTCTACAGCCCCTCATATTTCAACA ACGTGGCGGCTGGTTTGTTTTCCAAA GGTGGCGGGCAGCTCTGCGCCATTGATGACATGCCGGGTGAAACCGACTTGTTTATCGGT CTCGACATGGGAGGGATCTCTGTAAG GGCACCAGGCTTCGCGTTTCTGTTTCTGCGATCTGGTGCGCAGTTGGGGTGGCAACTCGC GGACAAACAACAGGGAGAAAGGATGC AGGATGAGGCCCTGATGTCACTGTTGGACAAGTCTCTCACCACCTACCTGAGAAGCTGCT CTGGTGAGCTTCCTAAGCGCATAACC CTCCATAGGGATGGCAAGTTCTACGAAAGCATAGAAGTGATCGAGCAGTTTGAGCAGAAG CACGGCGTGAAAGTAGATGTGCTGGA GGTTCTGAAAAGCGGTGCTCCGGTTTTGTATAGACGAAGCCGCATGGCCGACGGAACCAA GGAGTTTAGCAACCCCAATGTGGGCG ACGCGATCTATCTCAGTGATCATGAGATGATCCTGAGCACGTATAGCGGCGAAGAACTCG GAAAGATATGGGGTGACAAGGTCAGC GTCAGGCCTCTTAGGCTGCGCAAGAGATACGGTGATGTGAGCCTGGAGACCCTGGCACAT CAAGTGCTCGTGCTGTCTAGGATACA CGGCGCTAGCCTGTATCGCCATCCTCGACTGCCCGTGACCACGCACCACGCCGACCGATT CGCAACACTGAGGCAGGAAACATGCA TAGACGCCCTCTCTAAGATGGACCGGCTCTGTCCGGTCTACCTGTAGTAA

137 ATGCCCAAGAAGAAGAGAAAGGTCGAGGACCCGAAAAAGAAGCGAAAGGTAGGTAGTGGT TCCATGGTCGGCGGCTATAAAGTCAG CAATTTGACAGTGGAAGCGTTCGAAGGTATCGGGAGTGTCAACCCGATGCTGTTTTACCA ATACAAAGTCACCGGAAAGGGAAAGT ACGATAATGTGTATAAGATTATCAAAAGCGCACGGTACAAGATGCATTCTAAGAACCGAT TCAAGCCCGTGTTCATCAAGGACGAC AAACTGTACACCCTCGAGAAGCTCCCGGATATAGAAGACCTGGATTTCGCAAACATTAAC TTCGTGAAAAGCGAGGTTCTCAGCAT AGAGGATAATATGTCAATTTATGGCGAGGTGGTGGAATACTATATCAATCTCAAGCTGAA AAAAGTGAAGGTGTTGGGAAAATACC CCAAGTACAGGATCAATTACAGCAAAGAGATTCTCAGTAATACGCTGCTGACACGAGAGC TCAAAGACGAGTTTAAGAAATCAAAT AAGGGTTTTAACCTGAAACGGAAGTTTAGAATTTCCCCCGTGGTGAATAAGATGGGCAAA GTGATACTCTATTTGTCCTGCAGTGC TGATTTCAGCACCAACAAGAACATTTACGAAATGTTGAAAGAGGGCTTGGAGGTTGAGGG GCTGGCCGTTAAGAGCGAGTGGAGCA ATATCAGTGGCAACCTGGTGATCGAGAGCGTACTGGAAACCAAGATATCCGAGCCCACTA GCCTGGGCCAATCCCTGATAGACTAC TATAAGAATAACAACCAGGGCTATAGGGTGAAGGATTTCACCGATGAGGATCTGAATGCC AACATTGTCAACGTGAGAGGAAATAA GAAGATCTATATGTATATTCCGCACGCGTTGAAGCCGATAATCACCCGGGAGTACCTGGC CAAGAACGATCCAGAGTTTTCTAAGG AGATCGAGCAGCTTATCAAGATGAATATGAACTACCGATATGAAACCCTCAAGTCATTTG TGAATGACATCGGGGTCATTGAAGAG CTGAACAACCTGAGCTTCAAAAACAAATACTACGAAGATGTGAAACTGCTGGGTTACTCC AGCGGCAAAATAGACGAACCCGTCCT GATGGGGGCAAAAGGGATCATAAAGAACAAAATGCAGATTTTTTCCAATGGATTCTACAA ACTCCCCGAAGGCAAGGTACGATTTG GCGTTCTGTACCCAAAAGAATTTGATGGCGTGTCAAGGAAAGCTATCCGCGCCATTTATG ACTTCAGTAAGGAGGGCAAATACCAC GGCGAAAGCAACAAGTATATCGCGGAACACCTGATAAACGTGGAGTTCAATCCAAAGGAG TGCATATTTGAGGGATACGAACTGGG CGATATCACCGAATACAAGAAGGCGGCTCTGAAACTTAATAACTACAACAATGTCGACTT CGTAATCGCAATAGTCCCGAACATGT CCGACGAAGAGATAGAGAACAGCTACAATCCGTTCAAGAAAATATGGGCCGAACTGAATC TGCCCAGCCAGATGATTAGCGTCAAG ACGGCCGAAATCTTTGCCAATAGCAGGGATAACACGGCGCTTTACTACCTGCATAACATC GTCCTCGGTATCCTGGGTAAGATAGG AGGGATTCCCTGGGTGGTTAAAGACATGAAGGGCGACGTGGATTGCTTCGTTGGACTCGA TGTCGGCACCAGGGAGAAGGGCATAC ATTACCCCGCCTGCAGCGTTGTGTTTGACAAGTACGGCAAGCTTATTAACTATTACAAGC CTAACATCCCGCAGAACGGAGAGAAG ATTAACACAGAAATACTTCAGGAAATTTTCGACAAGGTGCTCATAAGCTATGAGGAGGAG AATGGAGCCTACCCGAAGAATATCGT GATCCACAGGGACGGCTTTAGCCGAGAGGACCTTGACTGGTATGAGAACTACTTCGGTAA GAAAAACATAAAGTTTAACATCATCG AAGTCAAAAAGTCAACTCCGTTGAAAATCGCCAGTATAAACGAGGGAAATATCACGAATC CTGAAAAGGGTTCCTACATCCTGCGC GGCAACAAAGCCTACATGGTGACCACAGATATTAAGGAAAACCTGGGAAGCCCAAAGCCC CTGAAGATAGAAAAGAGCTACGGCGA CATAGACATGCTCACAGCTCTCAGCCAAATATACGCACTCACGCAAATCCATGTGGGGGC GACCAAAAGCCTGCGCCTCCCAATCA CCACCGGCTACGCCGACAAGATTTGCAAGGCGATCGAGTTCATCCCCCAAGGGCGCGTGG ACAACCGCCTTTTCTTTCTGTAGTAA

138 ATGCCAAAGAAGAAACGAAAAGTGGAAGACCCCAAAAAAAAGCGGAAGGTGGGCAGCGGC AGCATGAACAATCTGATGCTGGAGGC GTTTAAGGGCATTGGCACCATCAAGCCCCTGGTGTTCTATAGGTACAAGCTCATCGGCAA GGGGAAGATTGAGAATACCTACAAGA CGATCAGCAACGCCAAGAATAAGATGAGTTTCAATAACAAGTTCAAAGCGACGTTCAGTA AGGGAGAGACCATCTACACCCTTGAG AAATTCGAGGTCATGCCCAATCTTAACGATGTGACCATTGAGTTCGACGGAGAAGAGGTT CTCCCGATAAAAGACAATAATGAAAT TTACTCCGAAGTCGTGCAATTTTACATCAACAATAACCTTCGAAAGATCAAACTGGATAA CAAATATCAGAAGTATCGAGCAACGA ATACCAGAGAGATAACTGGCAACGTCATACTCGACAAAGACTTCAAGGAGAAGTACAAGA AGTCTAAGTCAGGGTTCCAGCTCAAG CGCAAATTCATAATTTCCCCCAAGGTGAACGACGAGGGTAAGGTAACCCTGTTCCTTGAC CTGAACAGCAGCTTCGACTATGACAA AAACATTTACCAGATGATCAAGGCCGGGATGGACGTGGTGGGGCAGGAAGTGATTAATAC GTGGAATAATAAGAAGCAGAAGGGCA AGATTAAGAAGATTTCTGAGCTGACGATCTCAGAGCCTTGTAACTTCGGCCAGTCCCTTA TCGATTACTACGTTTCCCTCAACCAA GCTGTGAGGGTGAAGAACTTTACGGAAGAGGAAAAGAACACAAACGTTATCGTCGTCCAG GTGGGAAAGGGCGAGGTTGAGTATAT TCCGCACGCGCTCAAACCCATCATTACTAGGGAGTACATAAAGAAATACGATGAGGCCTT CAGCAAAGAGGTAGAAAACCTGATCA AAATCAACATGTCATACAGGTACGAAATACTGAAAAAGTTCATCGACGACATCGGCTCTA TAACCGAACTGAACAACCTTAAGTTT GAGAACACGTACATAGATAACATCGAGTCACTGGGCTACCAACAGGGAAAGCTGAACGAT CCCGTGCTGATAGGCGGCAAAGGCAT CCTGAAGGATAAGATACATGTGTTCAAATCCGGCTTTTACAAAAGCCCCATTGACGAAGT CAAGTTCGGCGTGATTTACCCGAAAG GCCACACCAATGATAGCAAGTCCACCATCCGGGCGATTTATGATTTTTGTACCGACGGGA AATACCAAGGCAAGGACAACATCTTC ATTAACAACAAACTGATGAATATCAAATTTAGCAACCAGGACTGCGTGTTTGAGGAGTAC GAGCTCAATGACATAACGGAGTATAA GCGAGCCGCGAATAAGTTGAAAAACAACGAGAACATCAAGTTTGTAATCGCCATCATCCC CGCGATTGATGAGAGTGATATAGAAA ATCCCTACAACCCTTTTAAGCGGGTCTGCGCCGAGTTGAATCTGCCCAGCCAGATGGTAA GCCTGAAGACCGCGAAAAGATTCGGC ACCAGCAAGGGTAATAACGAGTTGTATTTTCTGCATAACATTAGCCTGGGTATCTTGGGT AAGATAGGGGGGGTCCCTTGGGTCAT TAAGGACATGCCTGGGGAAGTTGACTGCTTCGTGGGCCTGGATGTGGGCACCAAAGAGAA AGGGATCCACTACCCCGCATGCAGCG TCCTTTTCGACAAGTACGGCAAGCTGATTAACTATTACAAGCCCACAATCCCGCAGAGCG GCGAGATCATCAAGACAGACGTGCTG CAGGAGATCTTCGATAAAGTGCTGCTGAGCTACGAGGAGGAGAACGGGCAGTATCCTCGA AACATCGTGATTCACAGGGACGGGTT CAGCAGGGAGGACCTGGAGTGGTATAAGAACTACTTCATCAAAAAGAATATAAACTTCAC GATTGTAGAAATCAAGAAAAACTTCG CCACCCGCGTCGCGAACAACATAAACAATGAAGTGTCCAACCCATTTAAAGGGAGCTTCA TACTGCGCGAGAACGAGGCCATCGTT GTAACCACCGACATCAAAGATAATATCGGCGCTCCGAAACCAATCAAAGTCGAGAAGACA TACGGCGATATTGACATGATGACCAT AATCAACCAGATCTACGCCCTCACGCAAATCCACGTCGGAAGCGCGAAATCTATGAGGCT GCCGATCACGACCGGCTATGCCGACA AAATATGTAAATCCATCGAATACATCCCGAGCGGTAGGGTGGACAACCGGCTCTTCTTCC TGTAGTAA

139 ATGCCGAAAAAGAAACGGAAGGTGGAGGATCCAAAGAAAAAACGCAAAGTTGGCAGCGGC AGCATGATAGCCGTGGAAGAGTGGCA ACCTGCGGACGGACTGACCCTTGAGCCTAATGCAAAGAGGGCTGCGAAGGCTAGAAAGAG GTGCCTGGCCCTGACAGCGGGTCCCG GTGCCGGAAAGACAGAGATGCTCGCACAACGCGCCGACTTCTTGTTGAGGACCGGAACCT GTCGGTACCCCAAGAGGATACTGGCC ATCTCATTCAAAGTGGATGCAAGTAGAAACCTGAAGGACAGAGTGGAGAGGAGGTGCGGC TATGATTTGGCGTCAAGGTTTGACAG TTATACTTTCCACGCGTTCGCCAAAAGGATCATCGACCGCTTTAGGCCGGTGCTGACAGG CAAGGACGCCCTCGACGCAGGCTACA CCATCGTGGATAAGAAGAATGGCCCCTCTAGGACCCAGATCGAGTTCGGCGACCTTGTCC CCCTTGCCATACAAATCCTGCAATCA AGCAAAATTGCACGAAACGCGATCCGCCAAACTTACAGCGACATCTTCCTGGATGAGTTT CAGGACTGTACAAACCTGCAGTACGA CTTGGTAAAACTTGCGTTCCAGGGTACGTCAATACGGCTGACGGCTGTTGGCGATACCAA GCAGAAGATAATGGCCTGGGCTGGAG CCCTGGACGGCATTTTCCAGACGTTTGCCAACGATTTCAACGCCGTGTCCCTGAACATGT ATAGGAATTTCAGAAGCAAGCCACAA CTGCTCAGGGTTCAAAATGAAATTATCAGGAAGTTGGACCCCGATTCCGTGATGCCTGAC GAACAACTTGACGGTGATGAAGGCGA GGTCTATGCGTGGAGGTTCGAGGATAGCTGCAAGGAAGCCGTGTATCTTGCGGACCTTAT CAATGGCTGGATCAACACCGAACAGC TGCCCCCAGCGGAGATCGCCGTACTGGTCAGCAAACAGCTCGACCTCTATGTCGACCACT TGATGACTGAGCTCGAGGCTCGGGGA ATCCCCTACAGGAACGAGCAGCAGCTTCAAGACATCACCATAGAGCCGGCAGCTAGACTC ATTGTGGACTACTTGAGTTGCCTCTA CGGCAAGAGAGAGCCGAAAGCATGGATCCGGCTCATGAACCAGCTGATCCCATTCGCGGA CGAGGAGATCCAATCTAGTGCTCGAA AGGACCTCGACCAGTTGATAAAGAAGCAGAGAAAAAGGGTGAGCGACGCGAAGCACACCG ATTCACCTTTCAGCGATTGGGCACAA CTCGCAATTGAATTCCTGAAGTACATAGGCAGTAAGATGCTGGTGGCACTGAGTCCAGAT TACGAGACGCGCGAGAGGCTGAATGA CGTGATCAGGGAAACTTTCGCGAGGATCAAGGAACTGTTGAAGAGCGAGCCCGACCTGCC CAAGGCGCTGGGCCGGTTTGCCGATG ACCAGGCGGTGCGAATACTGACCATCCACAAGAGCAAGGGCCTGGAATTCGACAGTGTGA TCATCATGGCCGTCGAGAACGAGATA TTCTTCGGGAACCAGGACGAGAATAGGTGCGCTTTCTTCGTAGGTGTGAGCCGAGCAAAA AGGAGGTTGATACTTACCCACGCCGA CCAGAGGGAAAGGCCAGCGTCTGCCAAGCGATGGAATGTTAGTAGAACCGCTCAGACTGA GTACATTAGTTACGTCACCCCTTTCG TGAGGC C AC AGTAGTAA

140 ATGCCGAAGAAAAAACGGAAGGTGGAGGACCCCAAAAAGAAACGCAAAGTGGGTAGCGGC TCAATGCTCGACTTTAGCCTTACCCA GAAAGGTTGGGTGCTGCCCATCGTACTGAACGCCTTTCCGCTCAAGGTACCGGACATGGA GCTCAAATTCGTGCAGATCCCCTACG ACAAGACGACCCTGGACTCACTGAGGTCAAGCCACAAGATGACCCACGTCTTCAGGAGGC AAGGCGACAGTATCCAGATCTTTTCT AGCGACGGCACCTTTCCAAAGAGCGGCACCCCCCAGACCCTCCAACTGAAGGATAATCTG GGAATCTTTTTCTCTCTTGTAAAGGA CGGCCTCCTCAAGCACTTCGCCGGTTTGGGCCGAACCCCGTGCGGATTCAACCCCATTGA GGTCGTGTCAGCTCAGGCCAAAGACA ATCTTCTGGCTAGCATCCTCGGAGAAGCCTACCCGCTGAAAATTTGCGCCAAGTACTCCA TCGACACCAGGACAGTGCAAGGTCAA CCGTGTCTCATCATCGACTGCAGCACTAGGAGAGTGGTTAAAGAGAACTGCCTCTTCTTC CTTAAGACCGGCTTTAACGTGATTGG CCGCTATGTAGTGACCGAGCAGGACGACGGGTTTCGGAAGCTGCTGGGTTTTGTGGAAAA CTGCCACGAAGGCAGGACACTGAGCG TTATAAGGCCAGATGGCCAAGCCGTGCATGCCGAGGCCAAGGACGTGTATCTCGAGGCAT CTAGGGCCAACTTCGACGACTACATC CTTTATACGCACGGAACTAAAAAGGATAGCATCGTGGAGCGAATCAGACAAAGCGTGAGT ATCTTCAACGGCGGTAAGAACAAGAA AGATAGAATCGACGCGCTCAAAAAGTACATCCAGGCCACCAATATAAGCCTTTTGGATGG GACCAGGATCGAAATCGAGGAGCCCA GCGACATTCAGAAGGACTGCGCCCAGATGCAGAAGCCCGTGTTTGTGTTCAATGACAATG GCGAGGCCGACTGGACCGAGAAGGGG CTGACTCAGAACGGCCCCTACACCAAGCGCACCTTCGACCGAAACGACCCCAGCATCTGC GTGATCTGCGCACAACACGACAGGGG GCGAGTGGAGCAGTTCGTTAGGAAACTGCTGAAAGGCATGGCTAACAGCAAATACTTCAG AAACGGCCTTGAGGGCAAGTTCGCGC TGGGAACGTCCCGGGTAGAGGTGTTTGAGACCAGCACAAATAGCGTGGACGCCTATAAGA GCGCGATCGAAGCCGCCATCCGCAAG AAGGCCGATGACGGCGGCAGGTGGGACCTGGCATTGGTTCAAGTTAGGCAGAGCTTCAAG CAGCTGAAGGTGACTGACAACCCCTA CTACTTGGGAAAAAGCCTGTTCTACATGCACCAGGTGCCAGTGCAGGATTTCACTATCGA GCTCCTGAGCCAGTCCGACTATTCAC TGGGCTACAGCCTTAACAACATGAGCCTCGCTTGCTACGCCAAAATGGGAGGAGTGCCCT GGCTGCTCAAGTCCTCTCCCACCCTT AGCCACGAGCTGGTGATCGGCATCGGCAGCGCCAACATTGTCCAGGAGAGGGGGGCACAC AACCAGAGGATCATGGGGATAACCAC CGTATTTAGTGGCGATGGCAGCTACATCGTCAGCAGCACGTCCAAAGCTGTGGTTCCCGA AGCATACTGCGAGGCGCTGACTAGCG TGCTGGGCGAGAATATCGAAAAAATCCAAAGGAGAATGAATTGGCAAAAGGGTGACTCAA TCCGACTGATCTTCCACGCCCAAGTG AAGAAGTTCAACAAGGAGGAGATTCAGGCAGTGCGAGCCGTGATAGACAAGTATAGGGAC TACCAGATCGAGTACGCTTTTGTGAA AATCAGCGAGAACCACGGCCTGCACATGTTTGACAGCTCAACCGCCACCATGCCCAAGGG CAGGTTGGCCACACACAGGGGTAAGA CCTTTAAGCTGTCCAAAAACGAGATGTTGGTCTACCTGATCGGACAGAGGGAGCTGAGAC AGGAAACCGACGGCCACCCCAGGGGT GTCATCGTGAACGTACACAAGGACAGCACTTTCAAAGATATCAAGTACCTGAGCGCCCAA CTGTACTCTTTTGCGAGTCATTCTTG GAGGTCATACTTCCCCAACCCTATGCCCGTGACCATCACCTACAGCGACCTTATCGCCCA CAACCTCGGCTGGCTGAACCAGCTGC CCGGGTGGTCTGACAGCGTAATGATAGGTAAAATCGGTCATAGCCAGTGGTTTCTGTAGT AA

141 ATGCCTAAGAAAAAGAGGAAAGTTGAGGATCCAAAAAAGAAACGAAAGGTAGGCAGCGGC AGCGTAAAGCTTAATCACTTCCCCCT GAATCCCGCTCTTGCAGTGTTCAAGACTACCTACAGGCACAGAAACCCCAGGGGCTTCCT GGGATTCGTTAGGTCACAAGGGTTGA CCGCGGAGAGAGTTGGCGAGGAAGTGTGTGTCTATCACGGTCTTCCCCACCCGGCTTTTA GAGGAGCCACCGCCCAAGGACACACC AGACTGGCGCCTGGTGACACCGATTACGACAGGGGCGTACTTAGTCTGATCGGAGCCGCC CTGCTGAAAGCGGGTTACGTGCTTAC TGAGCGCGAAAGGGCCGCAGTGCACCCCACGCAGCAGAGAGTGCCCCTGCACACCCCTAG GAAACTCCCTGCCGAAATTGCGGTGA ATGCCCATCTTCGATGGGAATGGGAACTGGAACGGCACAGCGGGAAGTCTTGGCTTGTGC TTAGGCCCGGACGCATGTTTTTGAGT GCGCTGAGCTGGCACGATTTGGACCTGAGGGCATGGGCACAGGAGTTGCCCCAGAGCGTA CAGCAACTGCACGCGCTGTGTCTTCG CTCCGGACGACGAGAACGACTGAGGCGCATGGGTAACACGTGGGCGTTCCAACGAGAGGA TAGGGAGCAAGAGGGCAGGTGGCACC TGAGCTTTAGCACTAAGGCGCTTTCCGACCTGAACCTGTCCGGCGATGCTCACCATGCTG CTAGCCTGAGCATGCCCGATGTGCAG AGGCTCGTAAATCTGCCGGGTCTGTGGCAGCCCTTTGTGACAAGCCTTGAAGTCCTTGAG GTGCCTGGTAAGGTGATCGAGGGCAA AAGGCTGAGGTTCGGACGAGGAACAGGGCGCGACGTCACGGATGTACACAAAAGGGGCAT CCTTCACCCTCCGCCGCAGCCAGTGC GCCTTGCGGTCGTGCCCCCCATTCAGGCGGACGAAGAGGCGGATGAGCAGTTGAGACGCG AGCTCCTTGCCCACCTCCTGCCACGG GAAAAGGTGTTGGCCCACCCCGAGGCTTCCCAGGGCCTCAAGAAGCACTTGAATCGAAGG GAAACCGACGACACCTTCTACACCCT GTGGAGCGCTGGAGACTACTGCAAACTGGGGCTGGAACCCTTTGATCTGGTGCGCGACCT CCATAGGTACGACCCCGGCACGGGTC GCCTGCTGGCTCCAGAGAAGTTGCATGGAGCAGCAGCCGCCGCGAGAGAGGCTGGCAGGC AATTGATTGGCCTCGTGATCCTGCCC GACACCATAGGGCGAGATGAGAGGGACGCACTGTCCGACGAACTGGCCAAGCTGGGTGTG AAGAAACTTCAGCACATCCGCAGGGA CATGCTGAACCGGCCCAGGACGCAGTATATGGCCTGGGTGAACGTGGCCGTGAAGCTCGC CCAGAGGGCCGGAGCAGTCAGCTGGG ACCTGGAAAAGTTGCCTGGAGTGTGCGAACAGACCTTCTTCGTTGGCGTGGATCTGGGCC ATGACCATCGGGAGAAGCAAAGCGTC CCGGCCTTCAGCCTGCACGAGTTCCGAGGCAGGCCGGTCGACTGCCTCACCCTTCCAAGG CGAGCCGGAAATGAAAGGTTGAGCCT GGCGGAGCTGAATCAAGGCCTGAGGAAGCTGCTTAAGGGTAAGAGGCCAGCCCAAGTGAT AGTGCATAGGGACGGCAAGTACCTGG AGGGGGAGGTTGATGACTTCATAATCGCTTTGAACGACCTCGGCGTGCCGCGCGTCAGTC TTCTCGCCGTCAAAAAGTCCAACCTC TCCATGGTTGCCGGCGCTAAGGAGGGAGCGTTTTTGCCACTGGACGAGCGGCGGTGTCTG CTGGTTACCAATACCCAAGCCGCGGT AGCTAGGCCGACAGAGCTGGAGGTGATGCACTCAGATCATCTGACTTTCGCCGAGCTGAC CGAGCAAGTGTTCTGGCTGACCCGAG TATTCATGAACAACGCACAGCATGCGGGTAGCGACCCTGCTACCGTAGAGTGGGCGAACG GGATCGCTAGGACCGGAAAGAGAATT GCCCTGTCTGGGTGGTCCGCCTAGTAA

142 ATGCCCAAGAAAAAGCGAAAAGTAGAGGATCCAAAGAAGAAACGGAAGGTCGGCAGCGGA AGTGTGAACCATTACTATTTTTCCGA ATGCAAGGCGGACGAGAAAGCCAGCGACATAGCCATCCACCTTTACACCGTGCCCCTGTC CAACCCCCATGAGAAATACAGCTATG CGCACAGCATCGCCTATGAATTGAGAAAACTCAACTCATACATAACCGTGGCCGCGCACG GTCAGTACATCGCGTCTTTCGAGGAG ATATGCCACTGGGGCGACCACAGGTACATACAGCACGAACATAGACCAATCCAGTGCAGC CTCCCGATGGAGAGGACCATACTGGA AAGACTCCTCAAGAAAGAGCTCGAGAATAGGTGCAAAAGCAGCTATAAGATGGACAACGA CCTTTTCCGGTTGGCTAACGAGCAAA GCATGCACGTGGGCGAGATCAGCATACACCCAGCGATCTACATCTCATTCAGCGTGGAGG AAAATGGTGACATATTTGTTGGCTTC GACTACCAGCACCGGTTCGAGTACCGCAAAACACTCCAAGACGTCATCAACAACGATCCC TCCCTGCTTAAGGAAGGCATGGAAGT GGTGGACCCCTTCAATAGAAGGGCCTACTATTACACTTTTGTGGGCATGGCCGATTATAC CGCCGGACAGAAAAGCCCCTTCCTGC AGCAGTCTGTGATCGACTATTATCTCGAAAAGAATGAGCTGTGGAAGCTCAAGGGTGTGC ACGAAAAAACCCCCGTGGTGCACGTC AAGAGCCGAGACGGTCACTTGCTCCCGTATCTGCCGCACCTGCTCAAATTGACATGTTCA TACGAACAGCTCTTGCCCAGCATGAC CAAGGAAGTCAATCGCCTGATTAAGCTGAGCCCCAACGAGAAGATGAGTAAGTTGTATAC GGAGATGTTTCGATTGCTCCGGCAGC AACAGGTGCTGACCTTCAAGAAGGAAAACGTGCGAGCCGTCAACCTCGGCTACGATGTGA ATGAACTTGACAGCCCGATCATGGAG TTCGGACAAGGCTACAAGACAAACGAGATCTATCGAGGCCTGAAGCAGAGCGGAGTATAC GAGCCCAGCTCAGTGGCCGTGAGCTT TTTTGTTGACCCCGAGCTTAACTACGACCCCCAGAAGCGGAAAGAAGTAGGTTGCTTCGT CAAAAAACTGGAGAGCATGAGCGAGG CCCTGGGAGTAAAACTGAACATAAGCGACCAGCCCCGACAACTTTATGGCCAGCTCCCCA AGGACTTTTTCAAGCAGGACAACCTC TCATATCATTTGAAATCTATCACCGACCAGTTCAGGGGAACGGTGGTGGTTGTTATCGGC ACTGAAGAGAACATCGACCGGGCATA CGTTACAATCAAAAAGGAATTCGGCGGCAAGGAGGATCTGATGACCCAGTTTGTCGGCTT CACCTCCTCCCTCGTCACGGAGAACA ACATTTTTCACTACTACAACATCCTGCTCGGCATCTATGCGAAAGCTGGTGTTCAGCCCT GGATACTCGCCAGCCCAATGCACTCA GACTGTTTCATTGGACTCGACGTAAGCCACGAGCACGGTAAGCACGCATCAGGGATAATA CAAGTGATTGGACGGGACGGCAAGAT TATCAAACAAAAGAGCGTTGCGACAGCAGAGGCCGGAGAGACTATTGCCAATAGCACGAT GGAAGAAATCGTCAACGAAAGCATTT ATTCCTACGAGCAGATCTACGGGGCCAAACCGCGCCACATAACATTCCATAGAGACGGGA TCTGTCGCGAGGACCTCGATTTTCTG CAAGCGTATTTGCGGAGTTTCCAAATCCCATTCGACTTCGTAGAAATCATAAAGAAGCCG CGACGCAGAATGGCGATATACTCTAA TAAGAAGTGGGTCACGAAACAGGGAATATACTACAGTAAGGGCAACACCGCTTATCTGTG TGCCACGGACCCCAGAGAATCCGTGG GTATGGCGCAACTTGTCAAGATCGTACAGAAGACTAACGGATTGAGCGTTCACGAGATAG TGAGCGACGTGTATAAGCTGTCCTTC ATGCACATACACAGTATGCTCAAGACCAGGTTGCCTATCACGATACACTATAGCGACCTC AGCTCAACGTTCCACAACCGGGGCTT GATCCATCCCCGGTCCCAACATGAGAGAGCACTCCCGTTCGTGTAGTAA

143 ATGCCTAAGAAAAAGCGGAAAGTTGAAGACCCCAAAAAGAAACGAAAAGTCGGAAGCGGC TCACTGGGGCTGAATAATGAGTCCAA AGAGTTCTTTAAGGGCATTAGCCGCATTTGGAGAAATTACAAGGACTACACCTACCTTGA CGGGATTAAGCTGAGCCAGGCGCAGA TCGATATCATCGAGAAGGAGGAAGACCAATTGCTTATAGAGGGCTACGCCGGCACCGGTA AGTCCCTGACCCTTATATACAAGTTC ATTAACGTGCTGGTTCGGGAAGATGGGAAGAGGGTGCTGTATGTGACTTTTAACGATACG CTGATCGAGGATACGAAAAAACGCCT TAGTTATTGCAACGAGTACAACGAGAATAAAGAGAGGCACCACGTAGAGATTTGCACATT CCATGAGATCGCCAGTAATATCCTGA AAAAAAAGAAGATCATAGACAGGGGTATTGAGAAACTGACGGCTAAAAAGATAGAAGATT ACAAAGGTGCCGCTCTCCGCAGAATT GCGGGAATCCTGGCTAGGTACATCGAGGGGGGAAAGTATTATAGCGAGTTGCCTAAAGAG GAACGCCTCTACAAGACACATGACGA GAACTTTATCAGGGAGGAGGTGGCCTGGATCAAGGCCATGGGCTTTATAGAAAAGGAGAA GTATTTCGAGAAAGATCGCATTGGGA GGTCCAAGAGTATCAGGCTGACGCGCTCACAACGCAAAACTATATTCAAGATATTTGAAA AGTACTGCGAAGAGCAAGAAAACAAA TTCTTCAAAAGCCTCGACTTGGAGGATTACGCCCTGAAGCTCATCCAGAACATAGATAAT TTCGATGACCTTAAGTTCGACTACAT TTTTGTGGACGAGGTACAGGATCTCGATCCCATGCAAATTAAGGCGCTGTGTCTGCTGAC CAATACGAGCATCGTGCTGTCAGGCG ACGCGAATCAGCGGATTTACAAGAAATCTCCCGTGAAGTACGAGGAGCTCGGCCTCAGAA TCAAAGAGAAGGGGAAACGGAAAATT CTGAACAAGAACTATCGGTCCACGGGTGAGATTGTCAAGCTCGCGAACTCAATCAAGTTC TTCGACGAGTCCATCAATAAGTATAA TGAAAAGCAGTTCGTAAAATCCGGTGATCGCCCGATCATCCGGAAGGTGAACGACAAAAA GGGTGCGGTGAAGTTCCTGATCGGCG AGATCAAAAAAATCCACGAAGAGGACCCCTACAAAACAATCGCCATCATCCACCGAGAGA AAAACGAGCTTATCGGCTTCCAAAAG TCCGAGTTCCGAAAGTACCTGGAAGGCCAGCTGTACATGGAAAAATTCAGTGACATCAAG TCCTTTGAGTCAAAGTTTGATTTGAG GGAAAAGAACCAGGTGTTCTACACCAACGGCTACGATGTAAAGGGGCTGGAATTTGATGT GGTGTTCATCATAAACTTCAACACGG CCAACTACCCACTGAGTAAAGAGCTGAAGAAAATCAAGGACGAAAACGACGGCAAGGAAA TGACGCTCATTAAAGACGATGTGCTC GAGTTTATCAATCGCGAGAAGAGGCTGCTGTACGTAGCTATGACCAGGGCCAAAGAAAAG CTGTATCTCGTGGCCGACTGCAAAAA CAGCAACATCAGCAGCTTCATCTACGACTTTAACACCAAGTACTATGAGGCACAAAATTT CAAGAAGAAAGAGATAGAGGAGAACT ACAACCGGTACAAGATTAACATGGAGCGCGAATACGGCATCATCATTGAGGACGACGACT CCAACAACGTTAAGAACAATGACACG AAACAAGAGAACAAGTTTAATACCGAATCTAAGGAAAAGGGCAAAGATGACATCGACAAG ATAAAGGTGTTTTTCATCAACAAGGG AATCGAGGTGGTGGACAACCGAGATAAGAGCGGGTGCTTGTGGATCGTCGCCGGGAAGGA AGCGATCCCTCTTATGAAGAAGTTCG GTGTCCTGGGCTATAACTTCATATTCATCGCAAACGGCGGTCGGGCATCTAAGAACCGGC CAGCCTGGTACCTCAAGAATAGCTAG TAA

144 ATGCCAAAAAAGAAGAGAAAGGTAGAGGATCCCAAGAAGAAACGCAAGGTGGGGTCCGGC AGTATGGACCGCGAGATCATTGAAAA CTTCAACCCCAGCGACCCCAGGACCGAGGGCGAGAAGTATCTGATGGATAACTTTTCAAC CTCCCCCAGGTTTAATGGCTGGACAA TATTTGAGCAGCCCCACATCAACTCAATGAAGCCCGACTTCATCTTGCTGCACCCCCACA AGGGCATCATAATCATAGAAGTGAAG GACTGGAACCTCAGCAGCGAGACATATGAGAACGGCGGTTACATCTGGGGGGAAAACGGC GAGAGGATTAAGAAAAACCCCATCAA TCAAGTAGAAAACTACAAAAACTCTATACTCAAGATGGAACTTACAAACAGCATCGAATT TAGTGAAGTGTTCGGCGACAAATACT TCGCGTGCATAGAAACGGTGGTATACTTTCACAAAGCCAACAAAATTCAAGCCGAGAACT TCTGCAGGAGGAACAATAACTACACC AAGATCTGGACCAAGGACGAGTTCGACTACATATGCAATATCAATAACAAACTGAAGGGC AGTTGTCACACCTATGCCCTGAGCTA CGAAAAAAGCACCCTTGAAGACAACAGAGGTATGCTGAGTAAACTGGTGGAGGAGCTCAA GTGCAATCTCCAGTACAGTGACTACA ACTATGAACGACGCCAACCGATTAAGTTGACCTATGAGCAAGAGAAGTTGGCGAGGCTGC AAAAGAATTCAATCAGGAGGTGGAGC GGCGTGGCAGGCGCTGGCAAGTCCCTGAGTCTGGCGCAAAAAGCCGTGAACGCCCTGAAG GAGGACCATAGCGTTCTGATCCTGAC CTACAACATAACCCTGAGGCACTACCTGCGCGATCTGTGCTCTCAACAGTTCGGACCCGG CTCCTACAAAGGCGAGCGCAAGAAGC TGAGGAGCGACCTGACCATCTGTCACTTTCATGACTTTTTGAGAATCATCATGGCCGAGT ACGAGATCGAGGTCGAACATGACGAA GACGACAACTTCACCCAGCACTGGATAAACAAGATCGACAGTTGCATAAAGGTGAACGGC ATCAAGAGCCACCTCAAGTACGACTA TATCCTGATCGACGAGGGCCAAGACTTTGAAGGCGAATGGATTAGGTTCCTGAAGCAGTT CTTCACCGAGGTGGGTGAGATCTTTA TCGTGTACGACAAGGCCCAGGATCTCTACGAGCATGGCGTGTGGATCGAAGACAGCAACC AAATCAAAAACATCGGCTTTAAGGGC AAGCCCGGGAACCTGAAAATCAGTATGAGGATGCCTGAGAAGATGGTGTACCTGGTGCAG GACATCAGAAATGAGTTCAAGATAGA TGAGGAGGAGATCACCCCAAACGTGAACAGCCAGCAGAGCTTCATCGAGATAACCAAGTG GATTAACTGTATGCCCCTGACGCTCA CTGAAAAGCTCGACCAGATTGAAATACAGGTGGACTTTCTGCGCCGAAACAACAACAGCC TGGAGGATATCACGATCATTACGACC AACGAGGAGACCGGAGTGGAGATAGTGAATAGGTTCAAAAGCAGGGGTATCAAGACCAGC CACGTCTACGATATGGAGAAGCGGGG GAACCAGGCCAGGCGAAGGATGGAAAAATGGAAATTCCAGGGCGGCACCGGCAGACTGAA GATTTGTAGCTATCACAGCTATAAGG GCTGGGAGACTCCGAACATCATCCTTGTGCTGGACGAGCCGAGCACAAAGTATGAAGACG GCATAATTAGTAAGGGGGAGTATAAC GAGAAGAACATTTTCGACGCTATCTTCATTAGCATGTCCAGGGTGAAAAGGAAAGCCCAA ACCGGTGAGTTTAGCTTTACGTGCCT GAATTATCTTAGCGAATACAATAAGATTGAGGGCCTCTTCCACTAGTAA

145 ATGCCCAAGAAAAAGAGGAAGGTTGAGGACCCCAAAAAGAAGCGCAAAGTAGGTAGCGGC TCCATGCTGACCAATAATCAGATTGT GCTGGAGCAGGAACTTCTGGGAAGCATATTCAAAAACAATAACCTGATGCTGAAAGCCCG AGAGAAGATAAAACCGGAGATGTTCC TGTATAGCAAACACATGAACATTTACCTGGGCATCCTCGACATGGTGGCCAACAAGCTGG AGGTGGACCTGATCACCTTTCTCGAG CACCATAAGAAAAGGGTGGGGGATATGGATGGCGTAACTTACGTGACCGAGATCTACACC TGCAGCGCGTCCGACATTGGCTTCAA TACAAAACTTGACATGCTGGTGAACAACTACAAACGGCATCTGTATGTGGAGATGAAGGA CAAAATCAACAGTGATATGAGTCTTG AGGAGATCGAGAGCGAGGTTGAAGGGGTGAAGGTAAAGGTGCACAAATGCAACATCAAGA AAGAACTGGATATAGACAAGCAATAT GACGATTACATCAACTGGCTTTACGACGAAAACAGAGACAAGGGGATGAAAAGCGGCCTG ACCTATCTGGACAAGTATCTCGGCAA CTTCCAGAAGGGCAGGCTCGTCACCGTGTTCGCCAGGAGCGGCGTCGGCAAGACCACGTT CAGCTTGCAGCTGGCCGCCAATATGG CTCTGAAGGGCCACAAGATATTCTACGGGAGCGCAGAGATGACCCGCAACCAGGTCTTTA ACAGGATCGTGGCCTCAGGTTTGAGC CTTAGCGCGAAGGCGATTGATGAGGACACCATCCTGAAGGAGGACAAGGAGAGCATCGCC AAGTTTATGACCAAGGTTATCAACAA CAAGTTCTACGTGTCAACCGAGACCGACTTCGAAAAGTTCATCGACGAGATAAAGGTTTA TAAGCTGCAGAACAGTCTGGACGTGG TGTTCGTGGACTACATTAACAAGTACATCGACTTCACCGACAGGGACATGTTGACCAACA AACTGGGGAAGATCAGCGGCATGCTC AAGAGCCTGGCCATGGAAGAGGATATCTGCGTGGTGCTGATGGCCCAGGCCAATAGAGTG ATTGACAAGAAGGTGGGTGACAATGC CGTCGAAAAAATCGACAGCAGCGACATCCAGGACAGCGCCAGAATCGAGCAAGACAGCGA CCAAGTGATCGGCCTGTACCGGAACG TGAAGCTCGATGATAAAATGTATAGGGAGAACCTGTTCAATCAGGGCAAGCTCAAGTATA ATTCCAAGAACGCCGACGACAATCCG GAATGCATGAACGCTGTGATCATTAAGAACAGGCATGGCGACCGAGGCACGTGTGCACTG AGGTGGCACGGCAGGTACAGCAGGGT CAGCGACTTCTAGTAA

146 ATGCCCAAGAAAAAGCGGAAAGTCGAGGATCCAAAGAAGAAGCGCAAGGTGGGTTCCGGG AGCAAAGGGCGGCACCAGGCGAAACA CTACGCGGACGGCCTGGAAAAAATGCACGGGCAAAGGCCTGTGATTTTCTACACCAACGG CCACGATATATGGATATGGGATGACC ATCCGGCTCAGCACTACCCGCCCAGACGGTTGTACGGATTCTACGCGAAGTCCAGCCTGC AGTATTTGATAAGGCAGCGCAGTGAA CGCAAGGCGCTGAATACGGTGAGCTCTAAAACCGATATACTCGGAGAAAGACTCTACCAG CACGAGGCACTGAAGCGGATCTGCGA ACGCTTCGAGACCAAGCAGAGGAAGGCACTCGCAGTCCAAGCGACCGGCACGGGGAAAAC CCGCTTGTCCATCGCACTTACTGACT CTTGCATGAAGGCCGGGTGGGTGAAAAGGGTGCTTTTCCTGTGCGACCGAAGGGAACTTA GAAAACAAGCTAAGAACGCCTTTAGC GAATTCCTCAGCGCGCCTATTAGCGTACTGACAACGAAAAGTGCGCAGGATACCCACAAT AGAATCTTCGTGGCAACCTACCCCGC GATGATGAAGGTGTACGAGCAACTGGATACGGGATTCTTCGACCTGATCATAGCCGACGA GAGTCACCGAAGTATTTACAACATCT ACGGCGACCTCTTTCGCTATTTTGACGCCCTTCAAGTGGGCCTGACCGCAACCCCCGTGG AGATGGTATCTCGGAGCACCTGCCAG CTCTTCGGGTGTGACTTTAAGCAACCAACTTCTAATTACACACTCGAAACGGCTGTGGAG GAGGGTTATTTGGTGCCCTACCAAGT CGTGAAACATACCACAAAGTTTCTGCGCGATGGGATCAAGGGCCACGCGCTTAGCGCGGA GGAACTGGCGGAGCTGGAGGACAAGG GCATCGATCCTAACACTCTTGATTTCGACGCCGAGCAGATCGACCGAGCGATCTACAATA AAGACACCAATCGGAAAATCCTGCAG AACCTCATGGAGAACGGTATCCGGCAGGCCGATGGCCAGACCCTCGGTAAGACGCTGGTA TTTGCTAGGAACCACAAGCACGCCAA ACTCCTCGAACAGTTGTTCGACGAGCTGTACCCCCAGTACGGCGGTAAGTTCTGTCAGGT TATAGACAACTACGACCCCAGGGCGG AAGAGTTGATAGACGATTTTAAGGGCGAGGGCAGCAACGAACAGCTCACTATAGCAATCT CAGTCGACATGCTCGACACCGGGATT GACGTCCCGGAGATCGTAAACCTCGTATTCGCACGGCCGGTTAAAAGCCCCGTGAAATTT TGGCAAATGGTTGGTCGGGGAACGCG ACTCTGTAAGAATTTGTTTGGACCCGGCAAGCACAAGACGCACTTCCTTATTTTCGACCA CTGGGGAGTCGTGGAGTATCACGGCA TGAAACAACGCGAGGTAACTGTGTCCCAGAGCAAGTCCCTGATGCAGCAATTGTTTGAAA ATAGATTGGAGCTCGCCAAGACCGCG TTGCACCACGCCGAAGCCGACTTTTTTGAGACGATGGCGGGGTGGCTGCACAAAACGATA AATAGCCTGGACGATCGAACGATTGC CGTTTGTGATAAGTGGAAAACTAAGCAGCAAATGTCCGACCTGGAGACGCTTAGACAGTT CGGTGCAAACACCGTCACGCTGCTTG AGTCAGAAATCGCCCCGTTGATGCAATGGCTGGATGTCAGAGGGCATAGTGACGCATATC AGTGGGACCTCCTGGTCTCACAGATC CAACAACAAAAATTGAAGCAGGCGGCAGCCTTCGATGATCTCGCTGGGAGGGCAATCAAT CAACTGTGGCAGTTGCAGATGAATTT GAATCAAGTTAAGGCAAAGTCCGAGTGGATTAAGCAGTGCCGAGAGACGGAGTGGTGGCA GAAGGCGTCCCTGGATGAACTGGAAC AAATGCGACAAGAACTGCGGGGCATTATGCAGTACAGGAACAAGGGTGACATTCCGAAGA CAGAGGCGCCCATCATAGACATAACG GACTCAGAGGAGGTGCGCGAGAAACAATCCTCCTACCTGAACTCAGTTGACATGGTCGCG TATCGGGTCAAGGTTGAACAGGCGCT CCAGGAGCTCTTTGAGAGAAACCCCATCCTTCAGAAGATCCGGAACGGGGAGGCCGTGTC TGAGCGCGAGCTTGAGAACTTGAACG CTCTCGTGCATACACAACACCCGGATATCGATCTCAACACACTTAAAAAGTTCTATGGGA CCGCGGCTCCGATGGATCAAATCCTT CGGACAATAGTAGGCATGGACGGGAACACGGTTAATCAGCGCTTTGCGGCGTTCATACAA CAGTACCCCTCACTGAGTGCGCGCCA AGTTCAATTCCTGTCCCTGCTGAAACGACAAATTGCTCAGAGTGGGGCCATAGAGATTGA CAACTTGTACGAAATGCCATTCGCAG CTATCGGCGAACCCGACAGCGTATTTAGTAACGCGGAACAGATTGATGACCTTCTGGCGA TTGTGGAGAGCTTCGGGAAGCAGCCC CAGCAGCAGTCTACGAGACAGGCCAATGAGACATAGTAA

147 ATGCCGAAAAAGAAACGGAAGGTAGAGGACCCCAAGAAAAAGCGGAAAGTTGGGAGTGGA AGCATGCCGTTCAATAGCAACCTGAT CTTCGTGAAGCTCGACGACCTCAAGAGAGCCTTTCTCGAGGGCGTCCACAGTGGTCACGC CGTGGTGTATGAGGTGAGCGAGGGAC TGAGCACCGAGGATCTGAAGAAAAGGCTTATCAAGGCCAGCGTGATGTACCACTATAGGT ATGGAAGGAACGTGTTTGTCTTCGGC GTCAAGGAGGGCACTAAGGTTGACGATCTTGTACCAGGCCGACGACTCGGCGAGCACGAG GTGAAGGAGGTTCTCAAGGGCATCCC GTCTAACAACCTGGTGTCCATGATGAGCGCCATGCTCAATTACCAGCTCTCTGTGCTTCT CACCAGCAAGGGCTTCCAGTATAGCT ACGAAGAGATGCGGAGGGGCAAGTATCTGTGTGTCAGCAACTATTACGGCAAGCTGATAC GGAACCCCGTGAAGGTTTGCCTCAAG GTAAATGTCATAAGGAGCCTCATTGACGAGCAGGATCAGTACCTGCCCATCGCGCTTAAC TACAGGGTGAAGAAGAGCAGGCGGCT TAGCCCCGAAGTAATGAATGAGATCCACGCGGAGTTCATGGAGGCCTTCCCCAGCTACCT CAACGACCTGAAAATCATAACTCGCG TCTTGAACGACGATATGGTGAGGAACAGGGAACTGAAATTCCTGGAGATCGAGTACAAAC CCCCTGCTATCATTACGTTCCGGTTT CGAGGCAACAGCACCGGCGAAAACGTGACCGACATTCTGAAGCTGGGCCCCTACTTCCTG CCTGGGGAGGAGGAGAAGATCGATGT GGTCTTTGTGTACGAAAATGCTCTCGCTAGCCAGGCGAAGAAACTCACCAAGGTTTTGGA GGATACCATCAAGGACGGGCTGGGCA TAAAGCTGAACATAGACGACGAACATAAGTTCAGCCACGACAAGCCGCTGGGCGACGTTA TTAAGCTGGTGCGCGACCGATTCATC AACAGCGGGAGTTGTCTGCTGGTCCTTAGCAAGGAGAACCGCCTCGGTCCTATCTTCATG AGCATTAAACCGCTCACGCTCAAGAA GAACTTCTACTTCAAGTCTCAATTTATCACCAACGAAACGATTAGCAAACTGGACTCTTA TGCGGTCAAAGCCAATATCGTGAATA GCATCCTGTTCAGGGTTGAAGGTACCCCGTACATGCCCGTTCTGCGGGGCAATATAGACG TACTGGCAAACAATTTGTTCGTGGGC ATCGCCCTGAGTAAGCCTCTGAGGAAGGGCTACACCAAAGGAGGCATAGCCCTCATAGAC CCCTACAGCGCCCGAATTATCACAAG GGCCATCGTGTTGAAGCGCAAGATGAGGAGCGGCAAATTCGAAGCCTCAGACATGCACGA GATCGTGTCCAACATCAAAGGCGTGC TGAAGGACTACAAGGAGCTGTACAACGTCAACGAACTTGTTATACATATCTCCAAGTTTC TGAGCGATGACGAATACGGCCTTTTT TACGAGTACTTGCAGGACCTTAATGTCAACGTGCGACTCCTGAGCATCAGGAAGAGGGAC GACATTACACTGGTTAGGGACGGGAG GATGGACAGCCTGACCATGATCAAGCGCGGCAAGAGTCATGTCGAGGTCATGTATTGGCC TCACGAAAGGGCCTACCACCCCCTTA CTATCAGGATCTACGGCGACAATGTGGACAGGGACGTGATGATGCGACACCTGAGGTTTA TCGAGCTGCTCCGGCACATGTACTAC CCGGCCAGCAGCCGCTTCATAGTTGAGCCCGCGACCATTAGCTACAGCAGGAGGGTCGCC AGATTTGCCCCCTGGCTTTCAGACAA TACCTAGTAA

148 ATGCCCAAGAAAAAACGCAAGGTGGAGGACCCAAAGAAGAAGAGGAAGGTCGGAAGCGGC AGCATGGAGAAACAGACCTTCTACCA GGGCAACATGTACAGGCTGAAGGATGAATTGATACAAGATATCCTCTCTGACATTATCGT GGCGAGAGTAACTAACATGCCAAGCA ATCCCGAAGAAGCCTACAGTGAAATACAGAAGATTGGCGGCATTATACTCAATTACGATG AGATGACCAACAGCGCCTGGGTGGTG GGCAAGGAGTCTCTGCTGCAAAATCACTATCCCGACGACATGAAGGAGGTGCGAGCCTTC TCCTTTTCTGAGCTGTCCAAGGAAAA CAAGACGAAACTGGTCCTTAATATCCTTAACGCCGAGGGCTACCTGCGCGACATTAGGGG GCACCGAGAAGTGGTGAAGTCAATCA ACTCAGAGCGATCAATCATTAGAAAATTCTTGGTGACGGTCGAGTACGATGGTCAACACT TCTATCTCGTAACCCTCCCAAAGTAT AAGATCATAGAGAATCACACAATAATGGAACTCCTCATTGAGGGCAAGATCACCGTCAAA GAGCTCGTCCACAACCTCCTCAAGGA CCCTAAGTGGAAAATCCAGACCAGTCGCAAAGATGTGCCCCTGCCTCCTGGGCACAGGGT CGTGGAGATCATTCTGAAGACTAAAG ATCCCGATCGATACCAGCAGGAACTCGAACGCATCAACGAGTATTTTACTAAGAAGACGG AACTGGGGCCCATTGACGATAGCAAG TATCCAGATGATTATAACATCATTTTCAGAAGCCAGACGCGAGGCAAATACTTGAGCTAT CACAGTGCGCGGACCAAGCTCATCAG ACCGATTAACAAAGAAATCCTCCGAGAAATCTACAGGAGTAACGAATTTATCAAAGCACT GAACATCGCCAAAAAGCTGGTGGCCG ACATCATATACGACAGCACCAAATACCCGGGCAGGGCCATATTCCCCGCCTTTAAGATAG ACGAACGGACGATCTCATACAAGGCC GTGTTCCTGAAGAATAAGACGATAACTGAGAAAACCATCCAACCCTACTACAATATCAAG GGTACCTTTAATTGGCTTTTCACCAA CACGCCGTTCGACGATATTAGCGAGCTGATAATACCAATCCAGTCCCCCGAGTTCTTGAG GGATAAGACCATTGGAGTGTACATCC TGTACCCTGCGAAGTACAGAGAGAACTCCGAAAGCCTGAAAGTGATCCAGAATCTTATCA AGAGCGTAGATAGCACGATCAAACGG CTGAGCGAGTACTTTACATTCCTTCGAAAAGTCAACGAAGGCCTGTCTCTCCCCTCTGCT ATAGATATCATCTCTCGGATCCCGGT TAACTATGAAAACTTGATAGAGAGTGCGTTTACCCGGATCCACAGCAAGAAGGGCGTTGA ATATGACTACCACCTCGCGATAACAC TGATACCTGACATGCGGCAGGAGCAGTTCGATAAAATCAAAGGGTTCTTTTTCAATAACG GGATTCTGCACAAGGCAATAAACATC AATAATCTGAGGGACCCCAGCAAAGACCAAAAGAAGCTGATTGAGAGCATGATCCTCCAG GCACTGTACGCCTTTGGCATCTACTT CTACAGCCTTGACAACCTGAACTACGACTTTATCATAGGTCTCGACGTGACCAGGGAAAT GGACAAGTCTGGTAGGTACTACGGTA TATCCGGAGCCGCGGTGGTCCAAAATAAGAACGGCCAGGTATTGAAGATTATACCGATCA CCAGCCCCCAGAGCAGCAGCGAAACC GCAAACATTAACTACCTCATCGGCAATATCCAACAGGAAGCCGCTGCAATCCTGAATCGG AAGGGATACGCGGACATATTGTTCCT CAGGGACGGCAAAGTGCCCGGTGGCGAACTGGAACAGTTTAAAGAGATCAGCCGCAAGTA CAACTACAGGTTTACTATAATAGAGA TCCTCAAACGACCCCTTGTCCGCTTTTTCTGGGAGAATTACAAGGAGCACACCGTGAAGA GCCCTAGGCATAACTACTACTTCAAG ATAGGCGACACGTATTACTTGACCGCGCATTACTTCACGAATTACCTGAAGGTCCCACTC AAATTGGGTAATACCTATTTCGTGGC CCGAGGAAAGATAAGTAAAAACGTGATTAGCCGCGAGGACATAATGACAATCACAAAGCT CACTAAGCTCAACTATAGCCAGCCCG AGAACCCGGACAAAATGAAGCTGCCTGCCCCCGTGCACCTGAGCCACCGACTGATCAATT ATGAGAGGAGAGAGCTTAAGTTCAAC AGGTATGAGTTTCTTAAGGAAGGAGCGCTTTATTTCCTGTAGTAA

149 ATGCCTAAGAAGAAACGGAAGGTGGAAGATCCAAAAAAGAAGCGAAAGGTTGGTAGCGGC TCAATGGCCTATAGCCTTAACGCTTT CGAACTGGAAATTCCCGACATTGACGCCGACCTCTACAAAGTTGACCCTCAACCCTCTGA TGACCCATATCGAATCCTGGGGGGTT TGGAACGGTCCTTCGAGCAACAACTGGACGGCAAGGCCCAGAAATGGAAACAGGCGGAGG ACGGAGATTGGTATATCGCCGTGATA GGCGCGTCAGAAAGGAAAACTATCGAGTCCCCCTCCAGCGGTACGAGGGCAGGCTACACC ACCACGCATACGCTGGATCCGAGTAG CTTTTGGGACAGGATGGTGTTGCAAAGGGCAATTAGCGACTCTGTACGATGGTACATGAC CAACTATCAGGACTTTTGGTATCATG AGGATGCGGATGCACTCTTTTATCCTTCTCCTAGAGGCAAAGTGGACGAGTACGACGTCT ACACCGGATTTAGTCATAGGGTCGAG TTTTATGACAGCCCACAACTTGTCGTGCGCAGCGTCACTAAGTTCATCTCCAGTGAAAGC CTGGCGGACCGGATCAACCATCAGGG CACAGAAGAAGCAACGGAAAAATACGGTGGTGAGAACTTTAGGCTGGACAGGCCGGAACC AACCAAATGTACTTTGCACGGCATCT CAACCGAGCGAACGGTAAGTGACAAGACGATAGATTTTGGTGACGAGATGCTGTCCGTGT TGGAGTTTGCACAAAGAAAATATGGC AGCGAGTGGGCGGACAAAATCGATCCCGACGAACCATTGGTGCAGATACGCTTCGGGAAC AGCGACCCCTACGACACCGCTCCGAG CCTGCTGAATGCGAGCCCTGAGGAGCTGAATCGCAGGCTGACCAGCGAGGCAGCCCTCAG CGCACAAGAAAGGCAGAAGGCCATAC AGAACTTCATCGGCAGGATACACTACATCCAGGTTGAAGACGAGAAGGTGAGCGTCAGCG ATGACGGCGTACGGCCCACCGAGCAG GGCGACTTCGACTACCCCGATCTTGCGTTTGGCAATGACGAGGTGCTCAGCACCGGCGTC CCGAACGCGGTAGATCCTAGCCAGGA GGTGCACCCGGGCAACTGGCGATGGATAATCAGGGACTACCTGGAGGAATACGGCTTCTG GGAGTCACAACGAAAGCTGTCTGAGA TCGTGCTGGTGTACCCGAGAGGCGAAGAAAGACGGGCAGAGAACCTGTACCAGGACGTTA GGGAGAAGCTTTCAGAGATAGGAGGC GTTCAGATCAGGAGCGATCCACATCGCGTGTGTTACACCGATCAGGTGGAGTTCGACGAA TGGGTGGCTGAATTCGGTGACTCAAT CGACGGTGTTCTTGGATTGATTGAGGGAGATGGAGACGAATACTACGAAATCATAGATGC ATTTGGCGGAGCACCGACCCAGTACG TCAACACTAGCACCTACTCAGAGCACAGAGGGGCGAGCGACGACGTGATCTTTAACACTG CTTGCGGACTGGCCGTGAAGTTGGGC GCATATCCTTTTGGCCTGGCCAACGACCTGAACAGTGACGTGTACCTCGGCCTTAGCGTG GCAGGGGATAGAAGCACAACGGCCAC CGCCGTTGCCATAGACGGAAGAGATGGGAGGATTCTCTATCAAACAGAGGAACCCCTGGG CCAGGGTAGCAGCACAGTAAGCGAGG GCTATCCCGCTAAGCGAATCATCCAGAGGAGCCTGAAGACCGCCTCAAGCGCCTTTGATC GACCAATCGAGAGCTTCGACATTCAC AGGAACGGAGACTTTGGCGACGCTGAGCTGGAAACCCTTAGCAGTGAATTGCCTGCACTC CAGGACCAGGAATATGTGCATACCGA TGTTTCATGGAGCGCCGTCGAGGTAATTGAAAACCACCCTTACAGGCTCTTTAGTGAACG GGGCAGCAGAGCTCCCGATACCGGAG CCTATGCTAAGCTGGACGACGAGCATGTACTGGTTACTACCTTTGGAGAGCCCCAGATCC ACCAAGGTACGCCAAAACCGGTCCTG TGCAAGAGGAGAGCAACGAGCCAAGATCAAGACATCACCGCCATCGGAGAGGACGTGTTC AAACTCAGCTTCCTTAACTGGGGTAG CCCAATGATGAAGATGAAGCCACCTGTTACCACTAAGATTCCGAAGGAACTCAACGAGAT TTTCGAGAAGTGCTCTAGGGTGAGAT ACCCCCCCTTCTAGTAA

150 ATGCCTAAGAAAAAAAGAAAGGTAGAGGACCCGAAGAAGAAGCGCAAGGTCGGCTCCGGA AGCATGAGTCAAGACTCTAGGAGCAC CGAGGTGGAGAGGCAGGCCGAAATACAACCTGGTACCTACCTGTTGAACGGCCGGGGGGA AATTCAGTTGGATGAGGTTGACGCAT TCCAGTACGACCTCAAGGTGAGTGGAGGCGTGGAGCAGTATTGGGATCGGGAACAATTCA CCAGCTCTGCAGCCTACTACCTGGAC CAGGAACACGGGAGCCCTGTCGCTGAGATAGGCAAAATGAACGTGCTCAGCAAGACGGAT TTGTCTAGATCAGTTAGAGTGTGGCA GAGAAACGTGACTCCCATCAATAGGCAGAGCGTTACACTGACCGCAGCCCAACCCGAGGA CCGAGAAAAGATCAAATCATTCGTGC AAAGCTGCTTCAAGAGGGCAGTGCCGACCGAAAAATACAGCTTTCGCTTTCTCAACAAGA TTGTCAGGGATGAGCCCGAGTTCACC ACCGGCAGCGAAGGCTTTTCTGCACATCCGAAGCACGACGTTAAGATACAGGTCACCGCT GATGGCAATGTGCTTGTGCACGTGGA TAGCGGGTTCAGCATCAGGAGCAACAGCACCCTGGACGAAATCTACTCTGAACAGGATAA CCCTTACGGTAAGCGCGTTGCCCACG ACCCCGAGAGGTATGGTACCCAGGGCCAAGGCACCCTTCGCGGTTGGAGCGACTATCGGT ACACAGACCATATTAGCGATGCGGGT AGCTCTGTGAACGAAATGCACAAAGGGGTGGCGGACGAAGAATGGCGGCAACGACTCGCA GAGGAGAATCCCCGACTTCTGAAAGT GGAGTATGGCAACAAAACTAGGAGGCAAGCCCCCCATTTCCTGAGGCTCTCACCGCGGAT CGAGCAGGTGCAGGATCAGGATCGCG AGTTCTATAGCAGGTTTAACAGCCGGAGCGCGATGATGCCCGACGAAAGATTTGAACTGT CTAAAGAGTTCCTGCAGAACGTGAGC CGCTTGCCGGTATTGGACATGGAACTCGAGCCGGGTCCGGTGAACAGCAGTTACGAGTTG CTGGAAATGCGAGAGGAAAACAGGCT GGTTTTTGGAGGGAAGCAGAGGGCTAGAGACCCGGGCAGCGGGCTTAGAGAGAATGGGGT GTATCAAAGTCCCAGTCAGTACCGGC TGGGGGTGTTGACCCCCGAACGATGGGGAGAGAAGGCGAGCGAGCTGATCCCCCTGATTG TGTCCGGCCTGAACGATCTGAGCGCA TCAGCAGGAGTTCGAGCATATGGATACGAATTGGGGGACGTCAGCAATTACACACCCGTG GTTCAGGACCTCCACGAGGAGACGGA CGCTGTGCTCGCCGTGGTCCCCAATAAGGGTGTGGCCGAGGATTTTGGGATAGACGATCC ATACAAGGAGCTGAAAAGAACCCTCC TGCGGAAAGGGATACCCACCCAAATGATGCAAAAGTCCACGGTCGATGAAATCGTGGGTC AAAAGGCGGGAATCGGCAATGACAAG TTTCTGAACGCACTTAGTGCAGTCGTGGCCAAAGTGGGCGGTACCCCATGGCAGATCGAT AGCCTCCCCGGGAAAACCGACGCCTT CATGGGCTTGGACGTAACTTACGACGAGAGTAGCGAGCAGCACGCAGGCGCCAGTGCAAG CGTAGTACTCGCGGATGGGACGACTT TCGCAGCCGAGAGCACCACCCAGCAAGGTGGCGAGAAGTTCAGTGCACGGCATGTAGAAC AGTTCGTGAGGGACCTCGTCTTCGAC TTTGCGGGGGAACAGGGCCGAGACATCGACAGACTGTGCATAATGAGAGATGGGAAGATC AGCGAGGATATTGACGCCGTAAGAGA GGGACTCAGTGGTATTGAGGCGGAGATCGACATAGTTGGCATACGAAAATCCGGGCAACC TCGCATAGCTGAGTTTGACGGTACTC GGTTTCGGATCGCCGAAAAGGGCGTGGGCTTTGTGGACGCCGACAGAAGCCAGTCTATCA TCCATGCATTCGGCAAACCCGAAATC CACGACGACAATCCTGTGGGCACCCCACGAACCTTTCGACTGACCAAGGACTCTGGTCCC ACAGATGTGGAGACCCTGACCCGACA GGCATACTGGTTGTCCGAGATCCATTTTGGAAGCCCCGTTAGGTCCCCTAGGCTCCCCGT GCCAATAGAGTACGCAGACATGGCTG CTGAGTATGTTCGGGAGGAGTACGTCTCACCAGGGACTGTAATAGAAGGGCCAGCATACA TCTAGTAA

151 ATGCCTAAGAAAAAAAGGAAGGTTGAAGACCCGAAGAAGAAACGCAAGGTCGGCAGCGGA AGTATGAAGACGCAGGATGATATCGC GCACAAGCAACCCATTACCATCGAGGTCCAGATCCTGAAGGAGCTCGACAAGCCAAGCCC AAAAATGGCCACCCGGTTCCTCGTGG CCGATAGGGACGGCAACAGGTTTAGCCTGGCTATCTGGAAGAACAACGCACTCAGCGACT ATGACTGGACGATTGGCCAGTGGTAC AGGCTGGAAAACGCCAGAGGAAATGTCTTTAACGGCAAACAGTCCCTCAACGGTAGCAGC AAAATGCGCGCCACTCCACTTGAGGC CAGCGAGGAGGACGAAACCAGCACGGATGATGTGGGACGGGTCGACACAATCCTGGGTAA TATGAGCCCGGACCAGGCTTACCTGA GCCTGTTTCCCATCAGTAGGTCTTTTGATACCCTGTCTGTGTACGAGTACAGCATTGAGG CAGCCGAGGCATTCGAGGATGCGCCG GACACCGTGACCTACAGGTGCGCTGGCAGGCTTCGGAGAATCACGGGTGCGGGGGTCGCT TATGCTGGCTCAATGAGGATCGTGTC AACCCGCAAACTCCCGGACAAGCTCGCGGACCCCTTTAGCTTGAGTGAACCCACGGAGAG GGAACTGAACGCTACGGACGCCAGGG ACAGGCATAGGATAGAGCGGCTTCTGAAGAGCCTCGTGAAGGCCGCCATCGACGATAGCA CCTACGACCCATACCAGATCAACCGA ATCAGGGCCAGGACCCCGAGCATTACCGCTGGCGACGGGCTGTTCGAGGCGTGCTATGAA TTTGCAGCAAGGGTCGATGTGATGCC CTCCGGCGACGCCTTCGTGGGAATTGAGGTAAGGTACCACACGCGGAGCCAGGTCACTGC AGACGTTTACGAAGACAAAACCGCGG AACTGGTGGGCACCATCGTGGAGCATGACCCAGAGAGGTACAACATTAGCGGTACGGGCC GAGTAGTGGGTTTCACTGACCACCAC TTCACCGACGCCCTCGACGAATTGGGCGGTCTTAGTTTGGCGGACTGGTACGCGCAGAAG GATCGCGTCCCAGAGGGGGTATTGGA GGCGCTGCGAGAGAAAAATCCTAGGTTGGTTGATATTCAGTACCAGGAAGACGAACCAGC CAGAATCCACGTCCCGGATTTGCTCA GGGTAGCACCCCGCAAGGAAGTTGTCAAGGAGTTGGATCCCGCCTTCCACAGAAGGTGGG ATCGAGAGGCCAAGATGTTGCCCGAC AAAAGGTTCAGGCACGCCATAGAGTTTGTGGATCATCTCGGGTCCCTGCCGGATATAGAC GCCACGGTGGCACCCGAGCCTTTGGG GCCGTCACTGTCTTACATGAGCACAGCAGTCGACAGGGAGAAGAACCTGCGCTTCAAAGA TGGAAGGACCGCCACCACCCCGTCAA GCGGCATCCGGAGCGGCGTATACCAACAACCGACGAGCTTCGACATCGCCTATGTGTACC CCACCGAGTCTGAACAGGAGAGCAAG CAATTCATTTCTAACTTCGAGAACAAACTGTCCCAGTGCCAGTGCGAACCAACTGCCGCT AGGCACGTTCCTTATGAACTCGGCGG CGAGCTGAGTTACTTGGCTGTCATCAATGAACTTGAGAGCGTGGATGCGGTGCTCGCTGT GGTGCCTCCCCGAGACGATGACCGGA TAACGGCCGGAGACATAACTGACCCCTATCCCGAATTCAAGAAGGGCCTCGGGAAGCAGA AAATACCCAGTCAAATGATCGTGACC GAGAACTTGGGCACAAGATGGGTGATGAACAATACAGCCATGGGCCTGATCGCAGGGGCA GGAGGCGTTCCGTGGAGGGTGGATGA GATGCCGGGTGAGGCCGATTGCTTCATAGGACTGGATGTGACTCGCGACCCGGAAACCGG CCAACACCTTGGCGCTAGTGCCAATG TCGTTTATGCCGACGGAACCGTTTTCGCCTCTAAAACGCAGACCCTGCAGAGTGGGGAAA CGTTCGATGAGCAGAGCATAATCGAC GTGATCAAGGATGTATTCCAGGAGTTCGTTAGGCGCGAGGGGCGATCCCCTGAACACATT GTTATCCATAGGGATGGCCGGCTGTT TGAGGACGCCGACGAAATCCAGGCCCCGTTCGCGGATAGCGGAGTGAGCATAGACATTCT GGACATCAGGAAATCTGGCGCTCCGA GGATTGCCCAATACGAGGACAACAGCTTCAAGATTGACGAGAAAGGCCGACTTTTCATCA GTCAAGATGACACGCATGGATTCATC GCCACAACGGGAAAGCCGGAATTTGATGATAGCGACAACCTGGGCACTCCCAAGACTTTG AGGGTAGTGAGGCGGGCTGGTGACAC ACCGATGCTGACTCTGCTGAAGCAGGTGTACTGGCTTAGCGAGGCACATGTTGGCAGTGT GAGCCGAAGCGTTCGCCTGCCTATCA CAACTTACTATGCAGATCGCTGCGCCGAACATGCGCGGGAGGGGTACCTGCTCCATGGCG AGTTGATCGAGGGTGTGCCATATCTG TAGTAA

152 ATGCCCAAAAAGAAGCGCAAGGTAGAAGACCCAAAGAAGAAACGGAAAGTGGGAAGCGGC TCAATGGAAGTGTCCCCCTTCTTCAA CGAACTGTTCAAGTACTACATATTTCTGTTTTTTGGTTTCAAGGTGAACATCGTGAAATC ACATTACCAGAGCATTAAGAAGCACA AGATAATATTCTATTCCGGTGGGATCATGGACGAGTATTACACTAACGCCTTCCCCATCA ACAAATACTTTATCAACCGCATCATC TCTGAAAACTGCATCCGCTGCCTGTGCAAAATAACCAAGCTCGAGAAAAAAGAGAAGATC GAGGAGTTGCTTTACTCTATCAGCGC CACCCTGGGGGGCATTTACATCGACGATTACAACCCAATGAAGAATAAGTTCAGCTTCTA CATTTGGAAGGGAATCCTGAATAAGA AGATTAAATCCTACGGGTCTGAATGGCTCATTAACAAGATGAAAAACATGGGCTTTAAGG ATCCGGAAAACAAGACGCTGTTGAAC TATGTGAAAAAAAAGTACGAGAAAGACATAAAGTTCGACATCATAAAGAAAGAGAAGATA GAATGGAGTAACCTCGACTGGGAGAT AAAGGAAAAGATAGTGCTGGGCGCCATAAAAACTCACCCTACCATTCGCAAACTGATTGA ATACAAGAATGAGAAATTCATTGACA AAATTGGAAAGAAAATTCTGACTTACTTTAGCATCACAATCACCAGCGACGAGAACGAGA ATTACTTTCTGATCGTCAAGCCCAAG CATAAGATCATCAGCTCAGAGACAATTTACAACATGCTGAAGAACAACAAAATCGACTTT AAAACTCTTGAGAGGAAGCTGCTGAA CGGCAGCGCCCTGATAACCACCAGTAGGGCAGTCGGCAGACGGAAATACGTCAAAATCAA AAAAATCATATCCCCCAAGGAGAAGG AGTATTGGCAACATACCCAGGACATCAATGAGCACTACGAAAAGGAGGGCGTCCCGATCA GCGTCGGCGGTGACGACATCCACTGC TATATCTTCATCGGGGAAGACGATTACGCCTACCACACGAAGAACTCCTTGCTCTACGAG GGTGTGACGGAGGACGTGCAGAAAAT ACTCTTGGATATGGGTAAGTTCCTGGAGGAGCTGGAGACGGCAAAATCTATCCTCAAGCA GGGCAACCTCATAGACTTCAGTCGCG AATTCCTCAACATTAGCACGAAGGACGACTACACCCTTACTCTCCTGAGCACACTGTCCG ATATCAAAGTGAAGCTTAAGACCGAG TCTGGTATCATCACAGGCGACTACCAGAAACTTAGGGAGATCTTTGACTGGATCTTCGAC AAGAGCTTTAACCCCTTGAAGCCTAA GAATTGCTACCTTCCGCTGAGTATTCCCCCCATACTGAATGACAAGAAAAAGATCGGCGT GTACATCTTCTATAGCAATATTAGCG ACCCCGAGCTTAGGTTTATCGAAGGGATCTTTAAGAAACTGGGCCTGATATGCGCCATCA ATAAGAGTGTGCCAAAAATTGAGGTT AAACTCAAGAAGGAAGTGGACTTTGAGGACTACGCCAACAGCAGGATCATAATCACCCAG ACCGTACTGAGCAATCTCGAGGATGG CGAGCAGCCGTTCCTCATATGTATAAGTCCCTTGCTGCCGAATAACGAGTTCGATGAACT CAAAATGCATCTGTTCTCTCACCCGC AGCTGATATTTCACCAATTCATGTATCCGTTCAACCTTCGAAAGTGCCTTGAGAAAGAAT CATTCAAGAAACCCTTCATCAACTCA ATCCTGTCTCAGTTCTTTCACAAAATGGGCATGTACCTCTTTAGTCTGTCTGACGAGCTG GGGAACTACGACTTCATTATTGGTTA CGACATAAGTAGGGAAAAGGATGACATCGGGAAGATAAAAGGTATCGGCGGCTCCGCGAT CATCTACAACAATTACGGCCATGTCA AGTCAATCATAACGTTCGACGACGTAGGGTCTAGCGAGATAGGCAGGTACGACCTCCTGT TCGCGCAGGTGCACAGCGAACTGATA CCCCACCTGAATCTGAACAATAAGCGGAAAATTAAGATTCTGCTTCTCAAAGACGGGCGG ATTTTCAAAAAGGAACTCGAAAAGCT CAGCCAAATCAGCAAGAAGTATAACTTCGAGATCACCTACATTGACGTTCGCAAGAGCAC GCTGCTCCGGTTCTGGGGTGTGCGGA GGGGCAAAGTGGTGCCCGAGTATAAGAATAGCTACGGGAAGTTCGGACGCGCATACTATA TTAGTAGCCATTACTACAACCGCTTT TTCAAGCAACCAATCGCAATCGTGGAGAAGTACCACATAGACGAGGGCAATTACAAACGC GTGGAAATAGAGGAGAATGATATTAA GCAGCTGGTTCTGTTGACCAAGATTAACTACAGCCAACTGATGCCAGATAAGATGCGGCT GCCCGCACCCGTTCACTACGCACACA AGCACGTGAACGCCGTGCGACGGGGCTGGAAGATCAAGGACGTCTCTATACTGAGGAGCG GGTGTCTTCCTACGATCTAGTAA

153 ATGCCTAAGAAGAAAAGAAAGGTGGAAGATCCAAAGAAAAAACGCAAGGTGGGTAGCGGC TCCATGACTAACAAAACCAAACAAAA AAGCAGGAAGCAGAGGTCCCTCATAGAATTTCTTAAGGTGAAGAAGATCAACAAGGAAGA TGGTAAGAACCATAACCTGATCAAGT ATAGCACCGAACGGATCGATACAGGAGTGACCCAGAGCCTCATTGACATCAATATATCCA GTAACATCCTTAAGCTGCGGGGCAGC ATTGCTCAAGAGGTGTTCAAACGGAAAATTGGCGTTTACTACGGGCTTGGGAAGTATTAC GTTGCCGAAAACAAGCTGAAGAACAC CGATCGAATGGATTTCTTGAAGAGGGTCTACGAGACCTTCCCCTATAACTACCTCGATAA ACAGGACCCGCACAGCAAGATCAGCT TTTACGAGTACTACACATTCCAGAAGTCCATCGACAAAGACGTGATAAACCTGCTTGAGC TGCAGAAGATAAACGAGTATAGTTGG GACATACTGGACCCACACATCGCCACGCGCCTTCTCACAAGCTATGTGAAGCTTTACTTG GGCGACTACTTGAAGCCAATCCTGTC CTCTTTCGAGTACGTCCGGGCTCGAATCAAGACAAAGCAAAAGACCGTTCCAATCAAAAT CCCCGTGACCAAGAAGTTCGAGATCC GAACTTTGGGGTACGACCCGACGCAGAGCGAAATTACTCTCGCCATAAAACGACACGCCA GCATGAACGCTGTGCTGTTGAGCAGC TTTCCCCCCGACATCCTCGCGGTTGTGATAACTAAGCTCAAACGCCTCGTGAACGAGGCC GTGAAGCAAGACTACCGAAAGGTCAG AATATACTCCGAGACCCAGCCGGGGAGCGGTACTGCCGCAGTTGTTGAAATCATCAGCGG CAGCCAAAACGTGATGAAGTTTCTCG AAGAGCATCCGAAGGGGGCCATCCACGTTGAAAAGCGACTTAAAGAGCTGGGTAAATCAC TGCAGGAGGTCCGGTACCTTCTTATC GGCGTCTATGACAACAACGTCAGCCTGGAGCGGGCAAAAAAAGACGAAAGATACCACTAC TACTTCACCGAGCATAACGCTTACCT TGTACTTACGCCCGAGGTGCAAAAGGCGCTCTTTGGCAAGTTGATCGACGACTGGAAGAC AAGCATTCTGAATGAGTACCAAAATA AGCTCCACGAGATCACGAGTCTTGGGATGTTTAAGCATTTGGAGACCATACGGGGCATCC CGGTTTCCTTGAAAGAGAGGCTTGTG GTCCGCACCAGCGAGGGCTTGCAAACCGTAGATGACATTAGGGACATTTTGACCAACCCC AAGATTCTTAGTAATATGTTGCCTAT ATCCGAGGACGCGCTCAAGGAGACGCGAAAGCATAAACTGCGAATCACCCTGTTCTGTCC GGAGAAGTTTAGTGAGAGGATTCACC GGACTATTTTCTACGACAAATTGAACCAGTTTCGAGACGGTCTGCTTAGCAACAGCTTCG CAAGCGTGGACGAAATCGAATTGTTC CAGGTCAAAGGCGAAAACTCTAGCGATTATGAGGAGATCATGAAGGACGCTGGCCTTGAT AAAATCCACGATTATACCCTGGCGGT CATCATATTTCCCGAACATTATAGTAAGCGCAACCTTGAGTTGCGCATCTTTTACAACTG GCTGAAAATGCGGTTCTACTCAGAGA ACAAGCCACTGGTTTTCCAGGGCGCTCGGATTGACAGCGTCTTCGGCCGGTATGCGAAGT ACGCATCATACAACCTCATCTTGCAG ATCCCACCTAAATTGGGCATCTACCCGTACTCACTGGAGGAGCACGAGGACTATGACTAC ATCATCGGCATTGATTACACCTATTG GTACGAGAGAGATACGCCTAGTCTGGGCGGTGGCGCCGTGTTGACCAGCCCGTCAGGGCT GATTGAGAGCATATACCCCATCGCAC TCCCGAGCCGCACTGAATCCCTCAACATGTCCAAGATACTGAGCGAATGGTTCACGCGAA CAGTCAAAACGAACCGGCATATCATA GATAAGGGCCACGTGACCGTGCTTATCTCCAGGGACGGCATGATTCCTAAGTACGAACGC CAGACAATCCAGGAGTTCCTGAGTGA ATATAGCGGCGACATGGGCATGACCATAGAGGCAGTAGAAGTTAGGAAACGCATCGCCGT GAGGACCTGGGCTACACAAGAGCCCG TGGCCTACTACAGCCCGATAAAGGTTGGCGACTGTACCTACTATCTGGTCGACGCGCACA CCGGATACCCGCTGGGGGAGAAAGGG AACCGAACCTTCTACAGCTCACCCTATCTCATAGGAAGTTTTTACAGGTTCGAAAAGGGC AAATCCTCCCCCGTGCCAGGTAGCGC AAAGAAGCACGTGATCGAAAGCCTGATAAGACTTCAAAAAATCAATTACGCCACCACCCG CATGGATAACATCAAGTTGCCCCTGC CCGTCGACATCACCCACAAACTCATTAACTTTATCCGGGACACCAAGATGGAAATCAAGG GGGTCGGTATCCCAAACAGTCTCTTT ATGATATAGTAA

154 ATGCCAAAGAAGAAGCGGAAAGTCGAGGACCCTAAAAAGAAACGAAAGGTTGGCAGCGGT AGCATGAAGAACCTGAGATACAAAAT CAACGCCTACAGAATCAAAAAAGACTATATTCCCAAGGAAGTTTATAGATACAGGATCCG CTCCTTCATAGAGAACATTAACATAT ATAGGTTCGTCGGTTTTTACGGAGGCGTGGCCCTCAATCAATCTGAGTTTATCCTTCCGT ACCCGGTCGAAAATCTCGTCCTGGAA TACGACGGAAAAGATGTAAAGCTTGAGCATATCGACACACTGAACCTGGAGGACATCGAG AATAAGGACAAGGAGAAAGCCGAGAA GCTGGTGAGGGGATACCTGACCAGCATATACAAGTTGAAACCCATACTCTACAAGATCCT GCGGGACGTTCGAGAGAGCAAGATCA TTAACGATATCAGAGTGGATCCTATACCCGACTTTACAGTAAAAAGGCACAATAACGAAT ACTACCTTGTCATCGATTTTAACCAC ACCGCGACCGTGTTGAAAAATCTTTGGGACTTCGTGGGAAGGGACAAGCTGAAACTCGAG GATTATATCGGTAAGAAAATCATATT CAAGCCCAACCCGAAGAAGAGGTATACTATAAAGAGCATTGAAAAGCAGAACAAGAAGGA CATTGATGACATTGTCGAGCACATCA TCGAGTACTACAAGTGGACGGAGGAGGAAATTAAGAGCACCTTCGGCGAAATCGACTATA CTCAGCCCATCATCCATTGCGAGGGC ATCCCCTACCCGTTCGCACCGCAATTTTGCAATATCGTATTTACCATGGAAGACTTGGAT GAGAATACCCTCAAGGACCTGCAGAG CTACTGGAGGTTGCCCAACGAGATCAAAGGCAACATTATCAATCAGATCGCTAAAAAACT GCGATTTGTGGAGAACGAGCCAATCG AATTGGAATTCATTAAGTTCAATAACACCCCCCTTATCGTGAAGGACGAAAATGGCAAAC CAACAAAGATATACACCACCAATCGC CTCTTCCGATGGAATTACGATAGTAAATCCAAACTGTACTTGCCCTACGACATCCCTGAC ATAATCAAGAACAAAACACTGACAAC GTTTGTGCTGATCGACGAGAATCTCAAAAACGTGAGTGGTAAGATCAAGAGAAAGGTCTA CCAAATGTTCAAGAATTACAATAAGA TCGCCAGCAAGACTGAGCTCCCGAAATTTGACTTCGCCAATAAATGGAAATACTTCTCTA ACAACAACATCAGGGACGTGATCCGA AAGATTAAGGATGAGTTCAACGAGGAGCTTGGCTTCGCGCTCATTATCGGCAACCGATAC TATGAAAACGATTATTACGAGACCCT GAAGATGCAATTGTTCAACCTGAATATCATCTCCCAAAACATTCTCTGGGAGAATTGGTC AAAAGACGATAATAACTTCATGACAA ACAACCTGCTCATACAAATTATGGGCAAACTCGGAATTAAGTACTTCGCACTGGACGCAA AAGTGAACTATGACTACATCATGGGG TTGGACAGCGGCCTGGGCGCATTCAAAAGCAACAGAGTGTCCGGGTGTACCGTGATCTAT GACAGCGAAGGGAAGATCCGACGGAT TCAACCAATTGACGTGCCCAGCCCTGGGGAAAGGATCCCCATTCACCTGGTAGTGGAGTT CCTGGAGACCAAGACCGACATCAATA TGGAAAACAAAAACATCCTGTTCCTTCGAGACGGCTTTGTGCAGAATAGTGAGAGGGAGG AGTTGAAGAAACTGAGCAAAGAGCTG AATAGTAACATCGAAGTGATCTCAATCCGCAAGAATAACAAGTATAAAGTCTTTACCAGC GACTACGGTATCGGCTCCATTTTTGG CAATGATGGCATATTCCTGCCACATAAAACTACATTCGGAAGCAACCCGGTGAAGCTCAG CACCTGGCTGCGCTTTAACTCCGGGA ATGAGGAAAAATTGAAGATAAATGAGTCTATAATGCAACTTTTGTACGACCTTACCAAAA TGAACTACAGCGCTCTGTACGGGGAG GGTAGGAACCTTCGCATCCCGGCACCGATTCACTACGCCGACAAGTTTGTGAAGGCCCTT GGAAAGAACTGGAAAATAGACGAAGA GTTGCTGAAGCATGGCTTCCTCTACTTCATCTAGTAA

155 ATGCCCAAAAAGAAAAGGAAAGTGGAGGATCCGAAGAAAAAGAGGAAGGTAGGCTCCGGG AGCATGAAGCCAGTGAACTTGGATGA AAACAGCCTCAACGACGTCCCGGTAGGCGACACCTATGCTGTCCGCTTCACTCTTGATGC AGTCTTCGAGAACGAAGGGCAGTATC CCCGGAGGAATCTGAAATTCACAGACGGAGGGGGGGATGACCGAACCATCACTATTTGGA AAAACTCTGCACCCGAGGAAATTTAC GAGGCGGACTATGAGCGCGGTGCGACGTATCTTATTACCGCCGTCGAGTATGACATCGAC GAAGGTAATGACGGCGAGCGATACCA GAATCTCACAGTCCAATCAGATGCTACCTTGCTGGAGATGAGCGGTCCCCCTAGTACCGA AGAGGCCTTGGAAGACGGCCTCGCCG AAACCCCAGATACTAGCGCCGATTCAGGTGACCACGGGTTGACAACCTTTAGGACTACAG ACGACCTGCCGGATTATGACGTCTAT GAGTACGAGCTGGTGCCGAAGCAAGGATTCCGGCCGTCCGGAGAAAATGCCCTCCGAGCC ACATACAGGGCACGACGCAAGGTCCG CCAGCAGTTGGACGTAACACCCGTCGTGGTCGGCGATGCGTTTAAGCTTGTGTCTCTGGT CAAGCTGGCCCACGAGCGGGTCGAGC TTCCGCGATTCAAGATCAACGAGGTTGACGAGAGGCCCATCGTCTACGCCGATGAGGATG ACAGGGATGTGTTGGGGGAAATGCTC GGTGAGATCCTCAAGGACGCGAAACGGGACCAGTACGACATCCATGGCATCGACAAAATA CTGGAGCCAGAGCCCGTCATAGAGAA AGAGGGCTTCAGGCTCCACGAACGGTACAACCTGACCGTGGAAGTTCTCCCTAGCAGGGC CGCTTACCTGCACGTGGACTATCGAC ATCGGATATTGAGCGACAGGACCCTGGATCAACTCGATGAAGACGAAATCCACCCTGGCC TGCGCGTGACCCCCTCATATAGGGAC ATGGGTCTGTACGTTATAGGCGTTGGGCCGGAGACGGTGACCGATAAGCTGCATATCGAG GGCAACAAGAGCCTGGTCCAATACCA TCGGGAAGAGCCGTGGGTGGACCCGGCGAAGGTGCAAGAAATCAAAGACGCAGATAGGGA AGTGATCTGGACCGTGAGGCAACGGG GCGATGGCACCGAGATGGCATTCCCGCCGGAGCTGCTCGCGCTTCAAGGGCACCCCGAAA ATTTGGCCCAGTTCGCCAGCGACTTT GCTGAACAACAAAGGCTCAACACGCGCCTTTCCGCTGAGCAATGCATCACCAAGGCTAAA AGGTTTGTGGAGCGACTCGGGCCCTT GCAATTCGACGGACACACTGTGGAATTCGAGACCAACCCGCTGTTGGGCGATCGGAACAT AGCCATAGATGGTCTGTTTCACCCGG AAGCAAACGTGCTGCAGTTTAGCGGAGGCCAGACCGGCACCCACCCCTCAGATGTGACAC AGCTGGGCGTGTACGAAGCCCCGGAC CCCTTCAGGGTGTGCCACATCAGGATGGAGAAGCGGGACAAAAGAATACAGAGGGGTTGG AGTACCTTGGAGACGAAGCTGGAGCA GATTGGAGCGCCTCCCGACAGTGTCGAGGAGGTCACGTTCGACGCCACAATGAGCCCTGA CCAGTTGGGTATGGAGATAGCGGCCG AGATACCGGACGACCATGATTACGACGCGGCCTTCTGCACATTGCCACCTAAAGACACCG GCTACTTTGACACCGCAGACCCCGAG CGAGTTTACGATGAACTTAAGAAAGTGTTGGCCACCAAAGACCTTAACTCCCAATTCGCG TATGAAGCAACGCTGGACGAGCGCTT TACAATAATCAATATAGCACTGGGTCTTGTCGCCGCAGCGGGAGGTATTCCGTTCACAAT CGAGAGGGCGTTGCCAGGCGATAGCG AACTCCACCTGGGAATCGATGTAACCCACCAATACGACGAGTCCGCGAATGGCAACCACA TTCACCTCGCTGCTGCGACGACGGCT ATCCACGCTGATGGAGCTGTACTGGGCTACACCTCCAGCCGCCCTCAGTCTGGGGAAAAG ATTCCCCCCAAGGAGCTGAAAGAGAT CATCAAGCAAGCGGTGATGGGCTTTCGCACACGCTACGATCGCTACCCAAATCATATAAC CATCCACAGGGACGGGTTCGCAAACG AGGACCTGTCCGAGGTAGAAAAGTTTCTGACGGACCTCGACGTTGAATATGATGTTGTCG AGATCAGGAAGCAGGCCCCAGCGCGC GTCTTGAAATACAGTGGTGCCCACTTCGACACGCCTCAAAAGGCGACCGCCGCAATCTAC GAAGACATCCCGAAAGCGATTGTAGC GACGTTTGGTGAACCCGAGACTCTCGCTAGCCGGGAGTCAACCGGGCTTCCCCAACCAAT CACGGTGGAAAGGGTGCACGGAGAGA CCCCCATCGAGACACTTGCTGCGCAAACCTACCTGCTGAGCCAAGCCCACATAGGCGCCA GTAACGCTACAGCACGCTTGCCCATA ACCACCATGTATGCCGACTTGGCTAGTGCAGCGGCAGCCAGGCAACACCTTCCCCCGACC AACAAGCTGAGGGATAAGATCGGATT CATCTAGTAA

156 ATGCCCAAAAAGAAGAGGAAGGTAGAGGACCCTAAAAAAAAAAGAAAGGTAGGTTCCGGA TCCATGGAAGAAAATCTGTATCTTGA ATACGACGCTTTCTTGAGGAGTGTGAAGCGCAACGTGGACGTCCCTCATAGTTTCTTGCT TGGAGCCGGAGCTTCCATCTCCTCCG GAATTCAGTCTGCATACGACTGTATATGGGAGTGGAAGAGAGATATCTACATCACGAAGA ATATAAACGCCGCCGAGTACTATAAA AATCATAAAAACGAAACGGTTCGCAAATCAATACAGAAGTGGCTGGACAACCATGGCAAC TACCCCATCCTGGATGCAGCAGAAGA GTACACATTTTACGCCGAGAAAGCTCATCCAATCGCTGACGATAGGAGAAAGTACTTCTT TAGTCTGATTGAGAATAAAGAACCAT ATATCGGTTACAAATTGCTGTGCTTTCTCGCTTCACAGGGGATTGTAAAGAGTGTATGGA CGACCAATTTTGACGGGCTGATTGTA CGAGCTGCTCACCAGAATAATTTGACGCCTATAGAAATCACCTTGGATAACGCGGAGCGC ATATTCCGAAATCAGAGTACTAAGGA GCTTCTCTGCATAGCTCTGCACGGTGACTACAAATATAGCACCTTGAAGAATACTGATAC CGAACTGGATAACCAACACGAAATTT TTCAGGAGCACCTCGGAAATTATCACGTAGATAAAAATTTTATAGTAGCTGGTTATAGTG GACGCGACAAGTCTCTGATGGATGCA CTCAAGGCCGCTTATTCCAAGAAAGGATCTGGTAGGTTGTATTGGTGTGGCTATGGTGAG AAGATAAATTCTGAAGTGAAAGATCT TCTTAAGTATATTAGAGCGAGTGGGAGGGAAGCATACTATATAGCTACGGATGGGTTTGA CAAAATGCTCATACACTTGTCAAAGG CAATATTTGAGGATAGCCAAGAGCTGAGTGAAAAAATCCAGAAAATACTCGAAAGCACGA ATCAAACCGAGACCTTCAACACAGAA TTCAAGTTGGAGTTTAAAAAAACCGACAAATATATCAAATCAAATCTGCACCCTATTGTT TTTCCTAAGGAAGTATTTCAGTTGCA GATCGAGTATGGCAATGAAAAACCGTGGTCCTTCCTGAAAACACTGACAACTCAAACGAA CATTAGCGCCGTACCGTTCAAAGGCA ATGTCTACGCACTTGGTACGCTTAGCGAGATCAATTCCATCTTCAAGCCGTATCTTAAAA GCGAGGTCAAGAGGGAAGCGATCAGC CGATTCGACATCGAAAACGTCACCGCATTCAAAAACCTCATGTTGACAGCCATATCCAAA TATTTTTGCTACACGAAAGAAGTGAA CTCTAACTACAAAGATAAGATTTGGTTGAAAAACATCCTGTCCAAGGTGGGGGATATCAC TGTTCACAAAGCAATTTTCATATCCC TGTACTTTGACAAGAATTCCCATTTTGGTTATATGGCGTTCGCTCCTACCGTTTATTTGG ATTCCGACTGCGAAATTGAGAAGAGT CAAAAGCAATCCATCAGTAAGAATTTGCTTGAGAAGTTGTATAATAACAAATATAACGAA GAGCTCGAACTGTGGAATGGTATCTT GTTTAATCATAAGAAAGTGAAATTTGAATATCCTCCCTTGTCTGGTACGGGGTTCGAATT TCAGATATCAAGCAACACTGCCTTCG GGGAGATAGACGTGATTGATAACAAGTACCGCTCTTACGTCCCCCAGAATTATGATAATA AGCAGACTCAGTTCCGGGGAATCCAG TTTTTGGAGCCGCAGCTGATATTTAAGAACATCGCAACGAACTCTGACTTCAAGGATTAT CATCCCATGCGAGGACTGATTAACAA CCGACCATATGATGTAAATCTCAACGGGATTATCCACTCCAATGAAATTAACCTCTCAAT CATCTGTAGCCAAAAGTATGGAGAAA GGTTGTTCGCATTCTTGACACAGCTCAATAGTAAGCACAGTACAGAAAATATCAACACTG ACTACCTGATAGATTACCCCGGCTTC CTGTCCGCCTTTAATCTGCCCATCAACATCCCAGCCACCAACGATGACGCTAGCTGGATG GACATCAACTTCGTAGCAGATAACTC TAAAGAAACACACGAGAACGCTATACGACTCGCGAGGGCAATTACCAATAAGATCGAGAA GATTTCTGCTATACAAAGCGCCAGCA CTATAGTAATCTTTATACCTTTCGAGTGGCAGCCCTTCGAAACATATATTAACGAAATAG AGACGTTTGATTTGCACGACTACATT AAAGCGTTTAGCGCCAGCAAGGGGATATCAACGCAACTTATTCGGGAGGACACCCTTGAC GATAAGCTCAAGTGCCAAATATACTG GTGGTTGTCTCTTTCTTTTTACGTGAAGAGCCTCAGGACCCCATGGATATTGAACAACCA GGAGCGGAAAACAGCTTATGCCGGAA TTGGGTACTCCATAAGCAAGGTAAAGAACAAGTCAGAGATCGTGATCGGATGTTCACATA TATATGATTCAAATGGCCAAGGCCTT AAGTATCGCCTCTCAAAAATTGATAACTACTTTCTCGATAAGCAAAATAATCCGTACCTG TCTTATAAGGACGCTTTTCAATTTGG GGTTAGTATCAGAGAGCTCTTCTATCAGTCACTCGATTCTCTGCCAGAAAGGGTCGTCAT CCATAAAAGGACAAAATTCACCGAGG ATGAGATCAATGGGATAAAGGCTTCACTCAACCAGGCTGGTATTAAGAAGATTGATCTTA TAGAGATCAACTACGATATAGATGCA AAATTCGTTGCCATGAACGTGTTCGATAACAAATTGCAGGTCGATAAATTCCCGATATCC AGAGGAACATGCATTGTGACAAATAA ACGGACGGCGTTGTTGTGGACGCATGGTATAGTACCTTCAGTTAAGCAGCCCAATTATAA GTTCTACCTGGGCGGGCGCTCTATCC CTGCGCCCATAAAGATTACCAAGCATCACGGAGAAAGCAACATTGATGTGATAGCTAGTG AGATCCTCGGACTCACAAAAATGAAT TGGAATAGCCTGGATCTCTACAGTAAACTTCCCTCTACGATAGATTCTTCTAACCAGATT GCTAAGATAGGAAAACTTCTGTCTCG CTTTGAGGGCCGCTCATATGACTACAGGCTGTTTATTTAGTAA

157 ATGCCCAAAAAGAAACGAAAGGTCGAAGACCCTAAGAAAAAGCGCAAGGTAGGTTCAGGC TCTATGTCTGTGGACGCTATGATCAG GAGTATCGGGGTCGCACGGGACCGCCCGCTTCTCGTTTTCCTCGGGGCAGGTGCCTCAAT GAGCAGTGGTATGCCGTCCGCCACTC AATGTATCTGGGAGTGGAAACGAGAAATCTTCTTGACAAACAACCCCGACGTTGAGAAGA CCCAGTTCTCCGAGCTGAGCCTTCCC AGCGTCAGATTGCGCATCCAAGCATGGCTGGATCGGCAACGACGCTATCCCGCTCTTGAT CATCCCGACGAGTATTCTACCTACAT AGGTGAGTGCTTTGCACGCTCTGACGACCGCAGAATCTACTTCGAGAAGTGGGTCAAACG CTGTAGTCCGCACCTTGGATACCAAC TGCTTGCCGAATTGGCACGGCAGGGGCTTGTGGCCAGCGTTTGGACTACTAATTTCGATG CCTTGGCGGCTCGCGCAGCTACGTCC ATCAATCTCACTGCAATCGAGATTGGAATTGATTCACAGCAAAGACTGTACCGGGCGCCG GGCGAGGCGGAACTGGCGTGTGTGAG TCTGCATGGAGATTATCGGTATGATCCTTTGAAAAACACCGCTCCAGAACTCATAAAACA AGAGAAGGAGCTCAGAGAGTCACTTG TCCAAGCGATGAGAACTCACACAGTCCTGGTTTGCGGCTATAGTGGTCGGGATGAGAGTG TCATGGCAGCGTTTTCCGATGCCTAT GACGCAGCTCATTTTAAGGGTCATCACCCCCTCTTCTGGACACAGTACGGCGATTATCCC GCCAGTGAGCCCGTAGCTGGACTTCT TGCTTCACCGCTGGATCAGGAACCTGCGAAGTTCCACGTGCCTGGGGCATCATTCGATGA TCTTATGCGCAGGATAGCACTCCACG TGAGTGACGGTGAAGCGCGCGAGCGGGTGCGGAAGATTCTTGAGAACTTCAAGACGGCAC CAGTTAACCAGAAGCTCCCCTTTGCC TTGCCTAGTCTTCCTGTGACGGGTCTCGTCAAGTCAAACGCCATTCCGTTGATACCGCCT GGAGAGCTTATAGAATTTGATCTTGT CCGGTGGCCGCCGTCCGGTGAAGTTTGGAGCACGCTCCGGGAAATAGGGGATAGACACGG ATTCGTAGCTGCCCCTTTTCGCGGGA AGGTGTATGCTCTGGCTACGATAGAGCAACTGACACAAGCCTTCGCGGACAATGTAAAGG ATGGCGCGTTCAACAGGGTGCCGCTG AATAATGATGACCTCCGCTACGAGGACGGAACCGCCAATCAGCTGATGCGACGCGCTACT GTTCTGGCTTTGGCTGGGAAAGCTGG ATGCGCGAACGATGGGGATGCCATTGTGTGGGACACGTCTCGCTCAAAAACCGAAAGATT GGATAGGCAACTTTGGACTGTATACG ATGCAGTACTTCTGCAGATTCGGCCGCTGGGAACTAAGCTCGCGCTCGTACTTAAGCCTA CGCTGCGGGTTACGGATTCAACTGGC GAGGTAGCCCCGAAAGAAATTGAACGGGCAGTCAAGGTGCGCGTATTGGGATACCAGCAT AACAAAGAGTTCAACCAGGCGACCGA CTTTTGGAGGAAAAGGCTCCTGCCCTCAAGAGATCTCCTTGTCAGATTTCCTGATCTGGA TGGTGGAATGACTTTCACGATTTCAG GTCGGCCAATATTCGCCCGGCTCACCGACGAAAGGACTGAAACTGTCACACTGAACGATG CCCAAGAGCGATCAGCATCTCAAGTG GGGTTGCAGCTTGCAGAGCCTAAACTGGTGTTTGCACGCACTGTAGGTACGGGTCCCGCA ACGGACACCCTCCCGGTTAGAGGATT GCTGCAAAATAGACCTTTCGATGCTAATCTGACAGACTTGGGCATCGCGACGAACCTGAG GATCGCGGTTATTGCGCCCGCTCGGG ACGCCAGAAGGGTACATGACTATCTTGGGCAGCTGCATCAGCCTATAGATCCTACAAAGT GGGATGCGGACTATCTGATGAGGTTT CCCGGCTTCAGCTCCGCTTTTAAATGCCCTTTGGACATTCCGCAGCCGGGCCAGGCAGCT TTTGTAACACTTGACGAGCCACACGA TGAGAGTCCTCAATCAGCGCGGACCCTTGCAGGCCGAATCACAGCGGCACTGTCTGCATT GAGGGCGACGGAGAATCCCTCTGTTA CAATAATATATATTCCGGCGCGCTGGCACGCGCTGCGAGCATTCGATCTCGAATCAGAGC AATTCAATCTTCATGACTTTGTTAAG GCCGCCGCAATTCCAGCGGGCTGTTCCACACAGTTTCTGGAGGAGTCAACTCTTGCAAAT GGCCAACAGTGCAGAGTGCGATGGTG GCTTAGCCTCGCTGTTTACGTAAAGGCAATGCGCACCCCGTGGGCTTTGACGGGACTCGA TAGGGACTCTGCCTTTGTAGGGCTGG GCTTCTCTGTAAGACGAAAGATCGATGGCGAAGGTCACGTCGCGTTGGGTTGTTCTCATC TTTATAGCCCAAATGGTCATGGTTTG CAGTTCCGCTTGAGTAAGATTGATAATCCGATAATGCTGCGAAAAAATCCTTTTATGTCC TTTGACGACGCTAGAAAGTTGGGCGA AGGCATCAGGGAATTGTTTTTTGACGCCCACCTCCGGCTGCCGAATCGCGTAGTTGTTCA TAAACAGACCCCGTTTCTTAAAGAGG AGCGGGAAGGGCTCCAAGCAGGTCTCGAGGGAGTCGCGTGTGTGGAACTCTTGCAAATTT TTGTAGACGATACGTTGCGATATGTG GCTAGTCGACCAATGCCGAATGGAGATTTCGAAATCCATGGCTATCCTATCCGAAGGGGC ACCACAGTAGTGGTCGACGACCAGAC CGCATTGTTGTGGGTACACGGCACATCAACCGCGCTCAACCCGCGGCAGAGCTATTTTCA GGGCAAACGCCGCATACCGGCCCCCC TTGTGATGAGGCGGCACGCGGGGACGTCTGATCTGATGATGTTGGCGGACGAAATATTGG GACTGTCCAAAATGAATTTTAACAGT TTTGACCTGTATGGCCAACTCCCGGCAACCATCGAAACGAGCCAAAGAGTCGCGAGGATA GGCGCTCTGCTGGACCGCTATACGGA ACGGTCATACGATTATCGACTCTTTATGTAGTAA

158 ATGCCTAAAAAAAAAAGGAAAGTCGAAGATCCGAAAAAGAAACGCAAAGTAGGGAGTGGT AGCATGATCAAACACCTCAAGTTCGA CGAGTTCCTTCGCAGCGTGTCAATTAGTAAGGATAACACGTACTCCATGCTTATCGGTGC CGGGTGCTCAATCACTAGTGATATCC AATCTGCCTATGACTGCATATGGGAATGGAAGAAAATAATTTACAAGTCCAATAACTTGA ATACTCAGGACTGGATAGAGAATTAC AAATCCCCCAAAACACAAGACGTGATACAAAAATGGCTTGACAACCAGGGAAACAACCCT GAGAAAGATAATATCGAAGAGTACTC ATTCTACGCAAAGAAATGCTTTCCGATAGATGAAAATAGACGCCAGTACTTCCAAAAAAT CTGCGCTAATAAGAAGCCCAGCGTCG GATATCGAGCCATTCCTCTCCTGGTGAAGCAAGGCATGCTCGACTCAATTTGGACAACCA ATTTTGATGATCTTGTTAATGTGGCG TGTATAGGTGGTGGCGTTCAGGGGATTGACATATCCCTTCAGACGGTAAACCGCATAAAT CAACGCAATCAAAGCAAAAATGAACT GCCTATTATAAAGCTCCACGGGGATTTCAAGTATGGCGACCTTAAGAACACGAGTGAGGA ACTTCAGAATCAAGACGAAACGCTTA GATCAAAACTTTTGGACTACTTGAGCGATAAGAATCTCATAGTCATTGGCTATAGTGGTC GGGACAACTCACTCATGGAGAGCTTG AAAGAGACTTATTCAAAACCTGGTGCGGGAATATTGTTTTGGTGTGGGTATGGGAACAGT CCATCAAACCAAGTGAAGGAACTCCT TAAATTTATCAAGGATAAGGGGCGCAGCGCATTCTATGTTTCCACTGAGGGATTCGATAA CACCATGCTGAACCTGACCAAGCATG TTATTGAGGACGATGATAACCTCAAAGAGGAATTCAGAGAACTCAAGAAGAGTATCATTA ATAAAAATACAACGACCCCGTTTACG TTGAACCCGGAACGAATCAATAAGGTACTGAAAAGTAACCTCTTTCCTATTACATTCCCC AAAGAGATCTTCGTATTCAATGCGAC CTTCGATAAGAAACCTTGGGAGCTTGTTAAGGAAAAAACTCTGAGTGACTATGAAATTTC AGCGATTCCATTTGAAAAAGACATAT GGGCATTTGGGACTGCTAATAACGTCTACGAAAAGTTTGCAGATATCATTAAGGGCGAGA TCCAACGGAAGCCCCTGACCGATATC CGGCTTTATAATCACAACATAAAGTTCCTGCTCCTGTCAAGCCTCTGCAAGCTGTTCTCA AAAACCTACAATCTGAAAACGGACTT TCGGTCTAAGATTTGGGATGAGAGCTCATACAAAACGGTTCACAACCAAAAGGTCTATAA CGCTATAAAGATCGATCTCGTCAAAA TACAAGAACAGTCATATTTGTCACTCAATCCAGACTTTCAATTGGCAGATGATAACGTTC CCAATGATATCAACCAGCAGGTTGGA CTGGAATTTTTTCATAAGATCTATAACGACAAATTTAACGACTATATAAACATCTGGAGA AAGAAGATCCTCGAAACTACGTCATA CGAATTGCCACTGAACTCCGGCACCGGGTTCGTATTTAAAATCTCTAAGAATCCAATTTT CACAAATATAGATGACCTTAATTCCA ACTATACGAACGAGCACAATATACCCATAAACATGATTAAACTTAAGGGGGTTCAATTCA AAGAGACGAACCTCCTCTTTAGTTCA CAAAATGGAGATAAAGTGGTTAAGGAGACCCACCCAATGAGAGGCCTCGTCAATCATAGC CCGTTCGATAAGGGATTGAGTAGTCT TAAAAACACTACGATCAACCTGGGGATCGTATGCCCCCAACAGGATAGCGAAAATTTTTA TACTTTTTTGAATAAACAAAACCAAG AGATTAAGAACGTTAATATTAAGGATCAATATGTAATCGATTACAAAGGATTTCACAACA CATACGGTTTGAGTCTGAACATACCT ACTACGAGCAGTCCTAATTGGGAAATGACTAACGAGCCTGTCTCAAGGGACTCAAAGAAA ATAATTCATGAAATCAAGAATAATAT TTGCGACAAGATAAATAAGCTTTGTAGTATAGGCGGACAGAAGACAATAGTAATATTTAT CCCTAAACGCTGGGACAACTTCGTAC ACTATAATGATGCCGTGGAAAGCTTTGATCTTCACGATTATATCAAAGCGTTCTGTACCG AAAAAAAGGTTACGTCTCAGTTGATA CGGGAAAAGACGATACTCGATAATAACCTCGAGTGCCAGATCAACTGGTGGTTGTCACTC AGTTATTTTGTAAAGTCCTTCCGAAC ACCGTGGGTAATCGACAACACCGACAATAAAACAGCTTTTGCGGGCATTGGTTATTCAGT AGAGTCCAAAAAAGAGGATAAGGGGC ACATTATACTTGGCTGTTCCCATATTTACAGTAGTAACGGGGAGGGTCTCAAGTATAAGC TTTCCAAGGTTAATGATAAAATAGAA TGGATCAAGAAAAAGCCGCATCTGTCCTACGACGATGCTTACGAATTTGGTAAAAATGTG ATCAACCTGTTTTACGAAAGCATGAA TGAGGTGCCAAAACGAGTGGTAATTCACAAACGCACCTTTTACACTGAAGATGAGAAGCA AGGCATACTTGACTCTTTGCACGATA ACAAGAAAATAGAAAACATAGACTTGATAGAAATAAATTTCGAAGACAACATAAGGTACG TCTCCTCTAAGATATATAATCGGGAG GCAAAAATCGACGGTTACTCAGTATCACGCGGTACCTGTATCCTTCTTAACGAAAAAGAG GCACTTTTGTACGCCCATGGCGTAAT CCCGAGCGTGAAGAATCCGAGTTATAATTTTTATCCGGGAGGAAGGTACATACCGAAGCC ATTGAGGATAATAAAGCATTATGGAG TTGGTTCCCTGGAACAAATAGCAAATGAAATACTGGGTCTCACTAAGATGAACTGGAACT CTCTGAACATGTATAGCCAAATGCCT GCCACGATCGACTCAAGTAATAAGATAGCCAAAATAGGGAAACTCATAGAGAATAGGGAT AAAGTAGAGTACGATTATCGGTATTT TATCTAGTAA

159 ATGAAAATTATAGATAAGGAAACCTTCATCAGAAGTTTTAAAGTTTTGAGCAATCAATCC TTTGACCTGTTCCTGGGCGCTGGCGC CTCCATATCTAGCGGTATCCCTTCCGGAGGCGACCTCGTCTGGCATTTTAAGCGCGAAAT ACTGAATTCCAACGGGAAGATAAATA TTAAAAAATTTCAAGATCTTAAGATAGAAGATAATAAGAAGGTTATACAAAGTTTCTTTG AGGAGACTGAGGAGAACAACATTATT AATCCTTATTCCTATTATTTTAACAAATGTTATCCAGACCCCTTGATAAGAAAAGAATTC TTGACGAATCTTGTGAGGGACAAGAA GCCTTCCATAGGATTTATGTGCCTGTCTGCTCTCGTGGAGCAGCAAAAAATCAACACAGT ATGGACAACTAACTTCGATGACTTGA TTGAGAAGGCGATTAACGGATTGAATTACAAGTCCTGTCAAATTGTCTCACCCGAGAATG CGGGCAGCGTGAATAACTTTCGAACT GATATCCCCACTGTTGTTAAGCTTCACGGAGATTTTAGGTATGACCCACTGCAGAATACT GACGAAGAGTTGCAGAAACTCGAAGA GTCCTTGCATAAGTATTTCGTAGAGGCAAGCACAAAGAGGGGACTTCTCGTAATGGGCTA TTCTGGGTCAGATGAGTCTGTGCTGC AAAGCCTTGAGAAGGCGCTGGAAGAGAACAACGCGTTCCCTAAGGGACTCATTTGGTGCA TCCCCAAAAGTGTCACCCCAAACCAA CGACTGGTCCGAATTATATCTAAGGCTAATGAGCAGAACCAGCGGTCCGGATTTATGATT ATCGACAGTTTCGATTATTTCTTGCA TGAACTCTACAAAATATGCGACCTTACGAATGACTATATCGACTCTATTACCAAGGAGAG ATTTGAAAAAAGGCAGTCATTTAGGC TTAACCAAACTCCGTCCTCTACTCTGCCAATCTTGCTGAACGCAATAAAAGCAAAGCACT TCCCGAAAAGTACCTTTCTGACTAAA ACGAATATCTCAGGCATAGGTAAGTGGAAACGCTTGCGAGACGCTATAGGAAATAGCTCT ATAGTCGGATCTTTCGGTAAGAACGA TTCTCTCAGACTTTTTGGAAGTGAACAAGACATTAATAATGTACTTAAGAACTACTTGAT TGATGATTTGAAGATCAGTGATATCC CAGAGCACCTTTTTTTCCATTCTGATTCATTCTACATTGGCATGCTTTATGAACTGATTG AAAAGTGTTTGATTAAAGATTATGGG CTGTCAGTATATGCAAAGGGGAGAACTATCAGAAAGTTCTATTCAATCAATAACCCGCTG CCGGAATCTGAAATCGCAGATATTAA GAAGAGAAACAATAATTTTAACATCGACAAAAATATAAATGTATTTGAGGCGTTCGAGTT CTCCATAGAATTCATTAATAAGGAGC TGTTCCTGTTGCTGTGTCCCACCATACATATTCAGACTAAACTCGGAGGTGAGGTCAATC GCAATATCTCTCAGTACCTGTCAAAC ACAATCATCAGCAATAGGTATAATAACAAATATGGGAAAAAGCTGAATTGGTGGATTAAC GAGCTCAAGAAGTATAACAAGGACTT GGTTTTTAAATTGGGGGACTTTGAGATACGATTGACAGATTATTACTCCACGAGCGCTAA GCGCGTTAAAGATGACATCTACTGTT TTGACGGATTTACTAAGTTGAGTGAGCCCAGTATATATTTCCACTATCAAGACGAAGCAA AGCAGAGTATCCATCCCATAAGTGGA CTGAAGATACTCGGTCCATTGGAAGAATCATTCGAGGCAAACGGTACATCTTCCACAGTC AACCTTGCCATCATTACTCCGGACTT TGGCTTCTCCAAACTCAAGGCGCACCTCGAAAGTTTGCTTAATACAATTTCCCCTATATG GGAGAAGGAATACTTGAAGGAGTTCC CTGGTTTCGATAACGTTTTTAAGAAGCACCTGATAATACCCAATTCTATTCAAAGCGAGT ATGTAATCAGCATACCTAATAATGAT GTAAAACAGTTCTCAGCAATTCAATTCTACGACTACCTGAAGAGTAAGATCGACCGACTC GCTCTGAAGTCCAATGACATTGATTG TCTTGTAATATACATACCCGACCAGTGGAAGAACTTCCGAGAGCTGAAAAATGAAAACAC ATATTATGACCTTCACGACAGTCTTA AACTCTACTGCGTAAAAAAGGGGTTGCGAATCCAGTTCATCGAAGATAAAAGCATTAATT ATAAAGACCAAGCCAAGATCCGGTGG TGGCTGTCTCTGGGGCTCTACGTGAAGTCTAACGGCACTCCCTGGAAGATCAAAACAGAT AATACAGAGACTGCCTTTGTGGGCCT CGGTTACGCTATACGACAAAATGTTAAGAATAAGGTTGTTCTCGGGTCTTCACAGATTTT CGACGGTTATGGGAATGGTCTCAAGT TTCTTTTGCAGCCCATAGAGAAGCCAATTTTTTACAATAAAAACCCCTTCATGAGCAAAG AGGACTCTTTTCGGCTTATCAGTAAT ATACGAAACACATATCATAAGATCGATCCAGTTATCGGACTTAAGAAACTCGTGTTGCAT AAGACAACTCATTTTACTTCAGAGGA GATGGAGGGGATCTCTAATGCTTTGGAAGGCATAGACAATATTGAACTCTTGCAGATTCA GCAATTCTCATCATGGAGGGCAATTA AGCTTATGAAAAATGCCACAAAGCACGATTTTAATGGTTATCCGATCGATCGCGGAACTA TAATTCAACTCGACGACTTCTCTTTC CTTCTGTGGACACACGGGCTTATAGAGAACCAAGAGCTGAACGGTAAGTACTACCAGGGA AAAAGAGGAATACCGGCTCCGCTTCT TATTAAGAGATTTAGAGGCACGGATCCAATAGAGACGGTGGCAAACGATATTCTTAAGCT GACCAAGATGAATTGGAATGGTGCAG AGCTCTATAAAACCTTTCCTGTAACGATTGATTTCAGTAAAAAACTTTCAGTCATGGGGA AGTAGTAA

160 ATGCCGAAAAAGAAAAGGAAGGTTGAGGATCCTAAAAAAAAAAGAAAGGTCGGCAGCGGG TCTATGTTCGACATTGGATCAATGGT GAGAGTTAGGGGTCGAGACTGGGTCGTGTTGCCTGGCAGTTCCGCAGACTTTCTCCTGCT TAAGCCACTCGGCGGATCAGATGCAG AAACGACAGGGGTTTATGCCGGTCCCGGCGGCGAAGTTGTGAGATCAGCGACTTTTGCGC CACCCGATCCGCAAGCGTTTGGAACA GCCTCTGGCGCTCGGCTTCTCCTGAATGCAGCTAGATTGGCCGTTAGGTCCGGCGCTGGA CCGTTCCGCTCCCTTGGCAGGCTGGG GGTAGAACCACGCCCATATCAACTTGTCCCCCTCCTTATGGCCCTGAGACAAAGTACCGC CCGGCTCCTTATTGCCGACGATGTAG GTATAGGAAAGACAGTTGAAGCGGCACTCATCGCCAGGGAGCTGCTTGACCGCGGAGAGA TAGAGCGATTCGCTGTGCTTTGTCCG CCCCATCTGGCTGGTCAGTGGGTAGGTGAGCTGAGGAGCAAGTTTGGGATAGATGCCGTC GCGGTCCTCCCCGGAACCGCGCGAAG ACTGGAGCGCGGCTGTAACCCAGGCCAATCTGTGTTCGCCAGATACCCTTTCGCAGTTGT CTCTCTCGACTTGGTCAAATCAGACC GATGGCGCCAGGATTTTTTGCAGAACGCCCCCGAGTTTGTTATCGTCGACGAAGCGCACG CCAGTGCTGAGGGCGAGGGGTTGGGC GCGCGAAGACATCAGAGATATCGCCTTTTGGAGGACCTTGCGCGAGACCCAGAGCGACAC TTGATACTCGTGACAGCTACGCCACA CAGCGGAAAGGAGGACGCATTCAGATCCCTTTTGAGATTGCTCAACCCTGAATTCGCCGC TCTGCCACTGGATCTCTCCGGCGCTC AAAACGAAAGAGCTCGGGCAGCTATCGCTCGACACTTGGTGCAGCGGAGGAGGGGTGACA TCACTGCATACCTTCACGAGGACACC CCATTTCCAGTCCGAAGGGACGCCGAGGTTAAGTATACTCTGCACCCCGATTATGCGGCA TTGTTCGAGGACGTTCTGGCCTATGC AAGGGAGTCCGTGCACGTTCCAGGCGAGGCGCATAGTCGGACGCGGATACGCTGGTGGGC CGCCCTGGGACTGCTTCGGGCTTTGG CTTCTTCACCCCAAGCAGCCGCAGCCACTCTCCGGGAAAGAGCAAGCACCGAAGGCGAGA CTGATGAAGCAGTTATTGAAAGACTT GGCAGGGAACTGGTGCTTGACCCCGAAGACGGTGAACATGGGCTGCTGGACGTCACCCCT GGAGCGCAGGTCGACGGTGAAGAAAG CGGGACCACGCGACGCCTTCTCGCACTCGCAGAGAGGGCCGACGCTCTGGCTGGGGCCAA AGACCGGAAGCTCGCACTCCTGACCG CACAGGTCAGGGATCTTCTGCAGGAAGGTTTCGCGCCGATAGTTTTTTGTAGGTTCATTG CGACCGCGGAGGCAGTAGCGGAGCAC TTGAGGGGAGTTCTGAAAGGAGCTGAAGTCGTGGCTGTCACAGGAAGGCTGACGCCAGAT GAGCGCGTCGCCCGCATCGAAGAGCT TGCACCCCACGAGCGACGGGTTCTTGTGGCAACGGACTGCCTTAGTGAGGGCATTAATCT CCAAGCTGCCTTCAGCGCAGTAGTAC ACTATGATCTCCCCTGGAACCCTACCAGGCTCGATCAAAGGGAGGGCCGAATTGACCGAT ATGGTCAACGATCACCAGAGGTCCGA GTGCTTACATTGTATGGGGAGGATAACAGGATAGATACTCTGATACTGGATGTTTTGATC CGAAAGCATCGGCTGATCCGGGCTAC CTTGGGAATGGGTGTCCCCGCTCCCGACGAGGCAGAAGGATTGCTTGACGTGCTGTTGGC GCGAGTACTGGAACCCGAACGAAGAG GTTCTATTCAGCCATTGCTTCTGGATGAAGTGCAGGCTTTTGATTTGAAATGGCGCGATG CGGCTGAAAACGAAAAAAGGTCAAGG TCACGATTCGCCCAGAACTCTATAAGGCCCGAAGAAGTAGCAGGGGAACTCGCAGCGGTA CGGGAAGCGCTCGGAGACGCTCGAGC CGCTCAGGACTTCGTTCTTGATGCACTGCGAGGGGCCGGTGTTCAGGTGACGCCGCGCCC CGACGGAAGCTTCGAAGCGGACCCCA CCCAAGCCGATGTAGCACCGGAGGTCCGCGACTTTCTGCGGGGAGCAAGGCGCTTCAGAT TTGACGCACGGGTAGAACGAGGTGTG ACGCCCTTGGCGCGGAACCACCCATTGGTCGAGCAACTTGCAAGCACTGTACTGGGTCAG GCTCTGGAGTCTCCGCAGGAGGCCGC AGCCAAGCGCGTAGGCGTCATTCGGACCTCTGGCGTAAGTACTCAGACCACTCTTTTGCT CCTTCGATGGAGATTTCATCTTTCCG GACGAAAGGGAAACCGATCTTGGCAAACTCTTGCTGAAGAACTTGATCTTCTGGCTTACG CAGGAAGGGCAGAGGATCCGCAGTGG TTGGACGCTGAGGCCACCAGAGCTTTGCTCGATCTGACCCCTCAGGGTAACTTGGATCCG GTGCAGAAAGAGGAACGCCTTACTCG GACGCTTGAGGGACTTAGCGCTTTGGAGGGGGTTTTGGACCAGCGAGGAAGGGATAGAGC CGCAGCTCTGCTTGACGCTCACGAGA GAGTACGGGGAGCAGCGCGAGGGCAAGGGGTGACCTATTCTGCGGAGCCTCCTGGCCCCC CGGATCTGCTTGGTGTCTATCTCTTT CTCCCCGCACCAAGACTCGGAGGCCTCGCCTAGTAA

[0376] In some cases, a polypeptide construct as described herein can comprise one or more domains. Domains of a polypeptide construct can be arranged in any order. In some cases, a domain organization of a polypeptide construct is in the configuration: (ArgoN);(ArgoLl);PAZ;ArgoL2;ArgoMid;Piwi. In some cases, a domain organization of a polypeptide construct is in the configuration:

SIR2;(ArgoN);(ArgoLl);ArgoL2;ArgoMid;Piwi. In some cases, a domain organization of a polypeptide construct is in the configuration: (ArgoN); (ArgoLl);(ArgoL2);ArgoMid;Piwi. In some cases, a polypeptide construct contains a DEDX domain. In some cases, a polypeptide construct is absent a DEDX domain. In some cases, a polypeptide construct is adjacent to a helicase in a natural setting. In some cases, a polypeptide construct comprises the sequence of SEQ ID NO: 190, a modified version thereof, a portion thereof, or a functional fragment thereof. In some cases, a polypeptide construct comprises a genetically similar, phylogenetically similar, or functionally similar Argonaute or helicase sequence as those in Table 18 (SEQ ID NO: 161- SEQ ID NO: 252). In some cases, a polypeptide construct comprises a sequence of that is from about 50%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or up to 100% identical to SEQ ID NO: 190, SEQ ID NO: 211, SEQ ID NO: 215, or SEQ ID NO: 249.

Table 18: Argonaute and helicase DNA sequences

SEQ ID NO Argonaute # Sequence

ATGCCATCAGCCGAGAGGTGCATCTGGGAGTGGAAGAGGGAAATCTTCATCACTAAAAAC CCCTTGCTCAGG

161 36 GAAACCGTCGGCGAGCTGTCCCTCCAGGGCACGAAGGACCGAATCCAAAAATGGCTCGAT CAACGCGGCGAA

TACCCCGCACTGAACTCCCCAGAGGAATACTCATTTTATGCCGAGGAGTGCTACATCACC GAACAAGACAGG CGGAGCTTTTTTCAGCAGTACGTAGAGGTCGCCAAGCCGCACATAGGTTATAGATTGTTG CCCCTGCTGGCA CAGACCAAGATCATAAAAACTGTATGGACGACTAACTTTGACGGGCTTGTCGCCAGGGCC TGTCATTCCAAC GACGTGGTGTGCATCGAAGTCGGTCTCGACAATACCCAACGCATTACGCGCCAGCATTCT GAGGGGGAGCTG CGGGTTGTAAGTCTCCACGGCGACTACCGATACGATGAGCTTAAGAATACAGATGAGCAG CTCAGGTACCAG GAGGAGGCGCTTAAAAACAATATAGAGCACGAGCTGCAGGACTACGACCTGGTAGTGATC GGTTACTCCGGC AGGGACCGGAGCCTCATGAACGTACTCGAAAACATATTCAGCAAGGCCGTGAAGAGCAGG TTGTTTTGGTGT GGCTACGGCGAAACGATAAGCCAGCCCGTTATGGAGTTGTTGGAGCTGGCCCGCAAGAAT AATCGAGACGCA TTCTATGTCAGCACCGAAGGCTTCGACGACACCGTTGAAAGAATCAGTAGGAAGCTGCTT GACGGCAACATG CTGTCCAAAGCCTTGGCTGAGATACAGGAGACCACTTGCATCACCAACCAATCTGCCAAA TTCACCGCACCT GAAAACGACATCAGCAGCCTTATTAAGTCAAACGCATACCCCCTCCTGAAGCTCCCGTCT CAGTTCCTTAAA GTGACCCTCAAATACCCGGAGGGGTCCTTTAGTTACATTGATTGGCTTAACTCCAAGGTT GACTTCAAGGAG GTTGTGTTGTCTAAGATAGACAAGGAGATCATCGCGTTCGCGGATGTTGATAAGCTGAGG AAGTATCTGGGC GAGTTCTACCTGTCTACGCCCACGGTGGTGAACTTTAGCAAAACGGACGTGCTTAACGAT ACTCGCATTCAG AGTCTGGTGAGGCGCGGACTTATACAGTCCATCGTAAAAAACCTGAACCTGTCCAGCGAC CAGAACAAGCGA SEQ

ID NO Argonaute # Sequence

ATATGGAATCCAGACGTGAGCTCCATCGAATTCTACAACGGCAAGAAGTACAAAATCATC GACGCGCTCATC CTCAATCTTAGTTTTATCAAAGATGACATCTACCTCACGTTCAAACCCGATCTGCTGGTC CTTAACCTCGAC GAGAGCCTGCCAGACAACGATATAGTTAAGACTATCAAGAACAAAAAGTTCGGCTACCAG CACAACAAAGAG TACAGTCAGATCCTGGAGAAGTGGGCCAACCTTATAACGAAGAAGGATTTGGTCGTGAGT GGCGGGAGCGTG TTCTTCCTTGGGAAGAAACCGCTGTATGCCGGACTTGTGTCTTACGCCGCGAGGAAACTC CCAACAGATTAT AACAAGCACGCCACCCAGAAAGGACTGATCATTCAAGACGCGAAACTGATTTTTTGCAGC AATTCCATCTCC AATGAGATTTCTCACATCAACCCCCTGAAGGGGCTCGTGGAAAATCGCCCGTGGGACTAC AAAAACACCAGC TCTGGGCTGTGCCCCGAGATCTGCATTAACGTGATCTCAACCAGGCAGGACGCGGGTGTG GTGAGCAACCTT CTCCGAGGTATTCACGAGAAGTCCTTCCCGGAAAAATCCGAGCAAGATTACTTGCACCCC TTCCATGGGTTC ACAAACGCTTTCGGGGTGCCCATCACGATCCCTAAGATCGGTGAGAATACGTGGCGCTTT GTGGACGAAGCA CTGAGTGCACAGAAGGCCATCGATAACGCGAAGAACCTCGCGAACCGCATTTGCTATGAA CTTGACAGCCTG AAGAAGCTTGAACTGCGGACGGGCACCGTCGTGATCATATACATCCCCAAGAGATGGGAA GCATTGACATCC ATCAAGTCTGAGCATGAGTACTTCGACCTGCATGATTACATCAAGGCCTATGCTGCGCAA CAGGGCATTAGT ACGCAATTCGTGCGCGAGAAAACGGTTAATTCAAGCCAAAGCTGCCGGGTAAAATGGTGG CTCAGCCTGGCG TTCTACGTGAAGGCTATGCGCACTCCGTGGCGGTTGGAGAGTATTGATAACCAAACGGCT TTCGTGGGGATA GGGTACAGCATCAATCGCAATATGCATCCCGAGAATTCCAAGCGGATAATTCTTGGATGC TCCCACATATAC TCCGCCCGAGGCGAAGGCATGCAGTTTCAACTTGGGCGAATTGAAAATCCCATTATCCAC CATCACAATCCC TACATGAGCGAGGAGGACGCTAGACGCACCGGCGAGAAGATACGACAAATGTTTTTTGAT GCCAAGATGCAA CTGCCACGCAGGGTCGTCATCCACAAGAGGACCGCTTTCACTGAAGAGGAACAGCGGGGG TTCATACAAGGA TTGGAAGGCGTTGAGGACATCGAGCTGATCGAAATTAACTTCGAGGACTCCCTCCGCTAT TTGTCTAGTAAG TTTGTAAACAGCAAGCTGGAAATCGACGGGTTCCCCATCGCTCGGGGGACCGTAATCGTG CAAAGCAGCAAC ACCGCGCTCCTGTGGGTGCATGGTGCAACCCCTAGCGCGCAAAATCCAACGTTTAAGTAT TTCCAAGGCAAA CGACGGATCCCCGTGCCCCTTGTCATAAAGCGCTACGTGGGGCAGAGCGACATTAGCCAG TTGGCGAACGAA ATATTGGGCCTCAGCAAAATGAACTGGAACACCTTTGACTATTACTCCAGGCTTCCTGTA ACCCTTGAGAGC GCCAATGATATTGCCCGGATCGGCGTGTATTTCAACAATTTCTCCCCCATGAGCTACGAC TATCGGCTCCTC ATA

ATGATCAAACACCTCAAGTTCGACGAGTTCCTTCGCAGCGTGTCAATTAGTAAGGAT AACACGTACTCCATG

162 90 CTTATCGGTGCCGGGTGCTCAATCACTAGTGATATCCAATCTGCCTATGACTGCATATGG GAATGGAAGAAA

ATAATTTACAAGTCCAATAACTTGAATACTCAGGACTGGATAGAGAATTACAAATCCCCC AAAACACAAGAC GTGATACAAAAATGGCTTGACAACCAGGGAAACAACCCTGAGAAAGATAATATCGAAGAG TACTCATTCTAC GCAAAGAAATGCTTTCCGATAGATGAAAATAGACGCCAGTACTTCCAAAAAATCTGCGCT AATAAGAAGCCC AGCGTCGGATATCGAGCCATTCCTCTCCTGGTGAAGCAAGGCATGCTCGACTCAATTTGG ACAACCAATTTT GATGATCTTGTTAATGTGGCGTGTATAGGTGGTGGCGTTCAGGGGATTGACATATCCCTT CAGACGGTAAAC CGCATAAATCAACGCAATCAAAGCAAAAATGAACTGCCTATTATAAAGCTCCACGGGGAT TTCAAGTATGGC GACCTTAAGAACACGAGTGAGGAACTTCAGAATCAAGACGAAACGCTTAGATCAAAACTT TTGGACTACTTG AGCGATAAGAATCTCATAGTCATTGGCTATAGTGGTCGGGACAACTCACTCATGGAGAGC TTGAAAGAGACT TATTCAAAACCTGGTGCGGGAATATTGTTTTGGTGTGGGTATGGGAACAGTCCATCAAAC CAAGTGAAGGAA CTCCTTAAATTTATCAAGGATAAGGGGCGCAGCGCATTCTATGTTTCCACTGAGGGATTC GATAACACCATG CTGAACCTGACCAAGCATGTTATTGAGGACGATGATAACCTCAAAGAGGAATTCAGAGAA CTCAAGAAGAGT ATCATTAATAAAAATACAACGACCCCGTTTACGTTGAACCCGGAACGAATCAATAAGGTA CTGAAAAGTAAC CTCTTTCCTATTACATTCCCCAAAGAGATCTTCGTATTCAATGCGACCTTCGATAAGAAA CCTTGGGAGCTT GTTAAGGAAAAAACTCTGAGTGACTATGAAATTTCAGCGATTCCATTTGAAAAAGACATA TGGGCATTTGGG ACTGCTAATAACGTCTACGAAAAGTTTGCAGATATCATTAAGGGCGAGATCCAACGGAAG CCCCTGACCGAT ATCCGGCTTTATAATCACAACATAAAGTTCCTGCTCCTGTCAAGCCTCTGCAAGCTGTTC TCAAAAACCTAC AATCTGAAAACGGACTTTCGGTCTAAGATTTGGGATGAGAGCTCATACAAAACGGTTCAC AACCAAAAGGTC TATAACGCTATAAAGATCGATCTCGTCAAAATACAAGAACAGTCATATTTGTCACTCAAT CCAGACTTTCAA TTGGCAGATGATAACGTTCCCAATGATATCAACCAGCAGGTTGGACTGGAATTTTTTCAT AAGATCTATAAC GACAAATTTAACGACTATATAAACATCTGGAGAAAGAAGATCCTCGAAACTACGTCATAC GAATTGCCACTG AACTCCGGCACCGGGTTCGTATTTAAAATCTCTAAGAATCCAATTTTCACAAATATAGAT GACCTTAATTCC AACTATACGAACGAGCACAATATACCCATAAACATGATTAAACTTAAGGGGGTTCAATTC AAAGAGACGAAC CTCCTCTTTAGTTCACAAAATGGAGATAAAGTGGTTAAGGAGACCCACCCAATGAGAGGC CTCGTCAATCAT AGCCCGTTCGATAAGGGATTGAGTAGTCTTAAAAACACTACGATCAACCTGGGGATCGTA TGCCCCCAACAG GATAGCGAAAATTTTTATACTTTTTTGAATAAACAAAACCAAGAGATTAAGAACGTTAAT ATTAAGGATCAA TATGTAATCGATTACAAAGGATTTCACAACACATACGGTTTGAGTCTGAACATACCTACT ACGAGCAGTCCT AATTGGGAAATGACTAACGAGCCTGTCTCAAGGGACTCAAAGAAAATAATTCATGAAATC AAGAATAATATT TGCGACAAGATAAATAAGCTTTGTAGTATAGGCGGACAGAAGACAATAGTAATATTTATC CCTAAACGCTGG GACAACTTCGTACACTATAATGATGCCGTGGAAAGCTTTGATCTTCACGATTATATCAAA GCGTTCTGTACC GAAAAAAAGGTTACGTCTCAGTTGATACGGGAAAAGACGATACTCGATAATAACCTCGAG TGCCAGATCAAC TGGTGGTTGTCACTCAGTTATTTTGTAAAGTCCTTCCGAACACCGTGGGTAATCGACAAC ACCGACAATAAA ACAGCTTTTGCGGGCATTGGTTATTCAGTAGAGTCCAAAAAAGAGGATAAGGGGCACATT ATACTTGGCTGT TCCCATATTTACAGTAGTAACGGGGAGGGTCTCAAGTATAAGCTTTCCAAGGTTAATGAT AAAATAGAATGG ATCAAGAAAAAGCCGCATCTGTCCTACGACGATGCTTACGAATTTGGTAAAAATGTGATC AACCTGTTTTAC GAAAGCATGAATGAGGTGCCAAAACGAGTGGTAATTCACAAACGCACCTTTTACACTGAA GATGAGAAGCAA GGCATACTTGACTCTTTGCACGATAACAAGAAAATAGAAAACATAGACTTGATAGAAATA AATTTCGAAGAC AACATAAGGTACGTCTCCTCTAAGATATATAATCGGGAGGCAAAAATCGACGGTTACTCA GTATCACGCGGT ACCTGTATCCTTCTTAACGAAAAAGAGGCACTTTTGTACGCCCATGGCGTAATCCCGAGC GTGAAGAATCCG AGTTATAATTTTTATCCGGGAGGAAGGTACATACCGAAGCCATTGAGGATAATAAAGCAT TATGGAGTTGGT TCCCTGGAACAAATAGCAAATGAAATACTGGGTCTCACTAAGATGAACTGGAACTCTCTG AACATGTATAGC CAAATGCCTGCCACGATCGACTCAAGTAATAAGATAGCCAAAATAGGGAAACTCATAGAG AATAGGGATAAA GTAGAGTACGATTATCGGTATTTTATC SEQ

ID NO Argonaute # Sequence

ATGAGCGAGCTGGAGACCAACATCTTCCCAATCACCAACTTGCATGAGCTTGAAAGCAGG TTCAGGTTGTAT

163 18 AGGGTGAGGGGCCTGAGCATCAACCAAGAGGAGTACGACCCCAACACCCAGACATTGGTG AGGAAGCTGAGC

TACAGCATGAGGTCTCCCGTAGCTGTGATACTTAGGAACAGCGACCCGTTCCTGGCTCTT CCAATCGACGCA CCCGAGCCCATCTCTCCGTACCCGCTCGTGAGAGCCACTGCTGTGTTCGAGAAGACGGAC GAGGTATTTACT CTCGATTACGAAAGCCCAACTCCCGAGACAGATGCGCTGCGAATAAGGTTCCTGCAATTT ATCATCCAAGGC GCGCTGTTTAGGAATCCCAGCCTGTGGCAGCCCTCAGCTGGCACCCCCTTCTTCGAGAGG AGCCCCGTGTTG GAGAAGGCCGGCATTTGCGCGTACCGAGGCTTCTCAGTGCGAGTCGTGCCCATAGAAGGT GGTAAACTGGGA ATCTGTGTGGACGTTAAGCACAGGTACGTCAGCAAAAACCCCATCGAAGCAAACATCAAG CGCGAGGAATTC AGGAAATACAAGAACGGCAGGTGCATATACCACTACGGCCACAACTGGTACGAGATCAAG TTGCAAGACCAC ACTGGGCTGTCCGTGTCAGAGCAGATGATCAGCAACGGGACGGCCAAACCCATAAGCTTG TATCAGTTCATT ATGAATAACGCGCCCAAGCCCCTGCCCAGGGAGGTCATAGACATGCCTCCCGACTCACCC GCAGTCAAATAC ATGACCAGCAGGGATGAGGTGCGCTACGTGCCCTCCATCCTTTGTTATCCGGTCTTTGAC ACCTCTGACCCC AGGGTGAAGCCGACGCATAGGGGCACAATCCTCCTCCCTAACGTGAGGCGACAGTATATC CACAATTTCGTG AACTCACACCTGACCGATGTGCGATCCAAAGACATGGCAATCCGAATCAGCAGCAAGCCA GTTATCGCCCCT ACCAAGATTTTCCTGCCGCCTGACCTGGCATTCGGCAACAACACCGTGTTCAGCGTAAGA GGCACACCCGGG ACCACGTATGTTAGCCTGGAGCAGCTGGGCCAGACGCGGATAAGCGCCCTCTTCAATCAG AAAATAGGCCCT TATGACAGCAGGCCGCTGGATAGGCAGTACATGATTCTGCCGAAAAGCGTGTGGGACTCC CACGGGCCAGTA TTTCTGAATGACTTTAAGAAAATCATGAACGAGCTGTACCTGCACGAACTGCCCTACAAT CCCATCGTCGTG ACCTACAACGACTTGAGCGCCAAGACCTACGCGCTTCAGGGAAGGGCTATTCTGGACGCC GTGGACAGCGAA CTGAGAGAGCCGGGATACGGCGTGGTTATGATACACGAGACGGTGGACCGCCGGAATAGA CAGCACGACCAG CTTGCCGCGATGGTGATGAGGGAGCTGCGGAACAGGAGGCTGTATGTGAGCGTGATCCAT ACCACGGTGACG AAGGACTGTTACCAATTGCCCCAGAACGCCCCCATTGGCAAGGCCTACTGCCCGGTAGCA GGCAAGCAGGGC AAACTCAATGGCTACTTGAGGAACGTGGCCATTACCAAGGTGCTTCTGACCAACGAGAGG TGGCCCTTCGTT ATATCTACCCCGCTGCATGCGGACTTTACCGTTGCCTTCGACGTGCAGCTTAACACCGCT TGCTTCACATTC ATCGGCAAGAGCGGCTCCGACATCCGGACCGTTTTGAAGACCAGTAACCAAAAGGAGAGG TTGAGCAAGGCA CAAGTAAGGCAGACGCTCCTGGAAGTGCTCCGCCAGGAGGTTGGCTTCGGTCGACGGACC ATGCAGACCATA GTGGTTCAGAGGGATGGCAAATTGTTTGCCAGTGAGATCGCGGGAGCAAAAGACGCTATA GAGATAGTGAAG AAAGAAGGCATCTTGCCCAGCGATGTGTCACTGAATTTCATCGAAATCCCCAAGAGCAGC GTCGCCCCATTT AGGCTGTTCGATAGCAGCCCCAGGCCAGGGCAGCCTGAAATGGCGAACAACCCAAGAATC GGCTCCTACTTC ATCGCGACGAATTACGACGGTTACATTTGCACCACCGGCAAGGAGTTTTACCATCCCGGT ACGGCAAATCCT CTCCACGTGAAGTACATCGAGGGAAATATGCCATTTGAGAAGATCCTGGAGGACGTGTAC GCCTTGACTTGC TTGGCGTTGACCAGGCCCGAAGACTGCACAAGGGAACCCTTCACCATGAAACTGGCCGAT ATCCGACTGAGG GAACATGCCGGAGGCTACGACGAAGATGCATTGGCGTATGATGATGAAAATGAGAACGAC GAGGATAACGAG AATGAA

ATGACCGAGGCCTTCCTCACAACCAGGAGGGGCTTCGTGCAAAAGCTGACGCTGACC AGGTACGATTACCTG

164 57 AACTGGATCATCGAGTCCGAGGCGCAGAAAGCCAAGCTGAAGAACTGGCTTAAGAACAAG AGCGGGTTTCTG

ACCCACGAGATCGAGGATACCTGTTTCTTCACCTTCGAGAGGCTTCTGGAGGAGAGTACT AAGCAGTATAGA GCCTCCGGCGAGAAAACTCTGTCTGCCCCGTTCAAGAACACGCAACTGATCTCAAATCTG ATCGGTACCATA TTGAAAAAGGAGTTGAGCAAGAAATACAAGCAATTCTTTAGTCAAAACATCTTCATCGTG AGCACCATCGAT CTGTATCCATTCAATCTCTTGAAGGCGTTCGAGTTCAACATCGAAGTGTTTGACAGCGGC CACTTCCTTATC CACGTCAACCCAGTGTCTAAAATTGTAAGCAGCAAGGTTGTGGACAAGGAGTATCTGGAC TACCTCAAGAAA AGCAACCTCAACAACAGCAAAACCACCGAGATGGAGTTCGCGGTGATCAACCATGAAAGG AATTTCAGACTT AAATTCGACCTGCTTGACGAATGCATCTTTGAGAAGATAGAGAAGCTGCACAGCGAGAAG AATATGTTTACA GCCACTTTTGATTACCATTTCCTGGCCAACTTCAGCCCCGAGATCTTCGGCAAAATCGTG GAACATACTAGC AAGGATCTGAAGCAGGCCATCATGTTCCTGAATGACATACTGAGCAATATCAAGCTGCCG AGCTTTCTCAAC CTGCACGAGGAACGATACTTTAAGGTCAATATCTCCGAATTGGACCGAAAGAATAATCTT CTGATTGGAAGC AGTTTCGAGGTAATAACCATATACTCAAAAAGCCAGACCCAGTATGGACTGAGGATTGAG TTCACTCGCGAC AGCATAAGCCGGGACGAGCTTATAACAATCTTTCTGAAAAACGAAGAGCTGATCGAGAAA CTCAACGACATT AAAGTGGTCCCCGCCACCATCAACGCAAAAATCGAACAGAAGACCGGCTGGAAAAACCCC TACATCACCAAT GTTTTCATCGATAACGTGGGTGCCTTCAGCACCAGCAGCCTGCAAAGCGCCTCATACTTC CACGGCATCTAC AAGGCCGTTAACAACTGGAATATCCTGCCCATCGTGTACGAGGACCTCGACATCAAAGTA TTCGAGAACCTG ATGCTGCACGCCTTTAACAAGAACGCCACCGAATTCAAGATCCTGGAACCCATCATAATC AAGTCCACGAAC GAAATCGACAAACAGGAGGTGCAGAGGAGCATCAAAAACCAGGCCGGCAAGACCATGATC GCAGTGTTCTGC AAGTACAAGATACCCCATGACAGCTTCGCCCCCCTCAAGGGCTTCAAGTATCAGATCTAT CAAGGCGACACC ACGGACAATAAGCAGAATAGGGCCAAACTGAGTAACTTCACGTGCAAGTGCCTGGAGAAA ATGGGAGGGGTG ATTGCGGCAATCGCGGACACAAGCATAGCCGAGGATGGATATTTCATTGGCATCGACCTT GGCCACACCACA AATGGCAAGGAAAAGTTCTCCAACCTCGGAGTGAGCTTGTTTGATAGCCTGGGCATCCTG TTGGGCGATTAC GTGGAGAAGGAGATTCCAAGAAGGGAAAACCTCATCGACACGAACTGCCTCAATGCTTTT AAGAAACTTGAC AAAATGCTGGAAGCTAAAAAACTGAACAAGCCCAAACACCTGATCATCCATCGGGACGGC AAACTGCACTTC AAGGATATCAACATTCTCGTAAGCTGCGTGGAAACCGTGTGGGGTAAGATAAACGTCGAT ATAGTCGAGATC ATTAAGAGTGGCTTCCCCGTGATGGCTATAAAGGACGAGACCAACAAACCAATCAATCCC ATAAGCGGGACC AGCTACCAGGACGACATCCATAAGTACGCCATACTCGCCACAAACGTACAAGCCGACGAA CAGTCAGCCGTA ATAAACCCGATAATCATAAAACACAAATACGGAGAGCTGGAGTTTAGCAAAATAGTTGAA CAGGTGTACTGG TTCACGAAAGTGTATACCAATAACCTGTACAATAGTACCAGGCTCCCAGCGACTACACTC AAGGCCAACAAC GTGGTTGGCACGTCTAAGAAGCTCCACAGAAGTACATACTTGGGC

ATGTTCGTGGAACTGAACGCCTTCCCCATCGACATCCGCAATATCGGTATCGTGGAG GCCTGCGAGGTGCCG

165 59 TACGACAAGGAGGTGCTTTATAGCCTGCATGATAACCCACAAAAAGATTACCATGCTATC AGAAACGGCAAC

CAGATATTGATATTTTCTAATAGCAAAAACTACCCCATCCAGGGTACAATCAAGGAGATA AATCTTGCACAG GACTACCGCATCCTGTTTTTCCTTATTAAGGAGTCCATTATCAAGATCCTGACGCAGATC AAACGGGAGCCT TTCAAGTTCAACCCGATTGAGTTCATCTCACCAAAGGAGAACATCACCGAGAATATCCTG GGAATCAATTAC CCATTTCAAATAAACGCCAAATATTCAATCGATACCAGAATCATTCAGGGGGTGCCCTGC CTCACCATTGAT SEQ

ID NO Argonaute # Sequence

TGCAGCACGAAGAAATACAACAAGGAATCCCTGATCTACTTCATTAACGACGGCTTCAAC CTGATTAACAGG TACGTGATCTCAAAGCAAAACGAGAAGTATAAGCGCGTAGGTAAGATACTGAGCATTGAC AACAACATCGTG ACTGTTCAGAGCTGCGACAAGATAAAGAAGTACTCCGCCGAGGAAATCACCTTGGAGGCG AACTCTAAGAAC ACCAAGGACTATCTGGCATACAAGTTCCCCTATAAGTTCGAGCAGATCCAAGAAAGCATT AAGAAGGCGATC AGTACCTTCACCCAGGGGACCTCTAAGCAGATAAACATTGGCAAGATCTGGGACTTTTTC AGCCAGAAAGGC ATCTTCCTGTTCAACGGCCACCGAATTAACATAGGGCTGCCTCCCGACATCTCCCAGCAA TGCAAGAACCTT GTGTACCCGCGCTTTTTCTTTAGCAACTCCCGAGAAAACAATTCCAAAGAGAACGGCCTG AAGGATTATGGC CCTTACACCAGGAATTACTTTGACAGGAATAACCCCAGCATTTGCGTGATTTGCAACGCT AAGGAACAAGGC AAAGTGGAACAGTTCCTGCACAAATTTCTGAAGGGCATACCCAATAGCCATAACTTTAAG ACGGGCTTCGAG GGCAAGTTTCATATTGGCCTCTCTCAGATAGAATTTTTCACGACCAGCGACGACAGCCTG GGCAGCTACCAG TTGGCTATCCAGAAGGCAATCCAAACGAGGACTAACCAAAACTCTAGCCAGTGGGACCTG GCCCTGGTGCAA ACCAGGCAGTCCTTCAAGAAATTGTTGGTGGAGCAGAATCCGTACTTTATTAGCAAGAAA ATGTTCTTTCAG CATCAGATCCCCGTTCAAGACTTCACCATCGAGCTGACCAATCAGAACGACAAAAACCTG GAGTATTCTCTG AATAACATGGCTCTGGCGTGCTATGCGAAGATGAATGGAAAGCCCTGGCTGCTTAAATCA AGCCCTACTATC AGTCATGAGCTGGTTATTGGCATCGGGAGCAGCAACATCATCATCGAGGAGGACAGTCTG AACCAGAGGATC ATGGGCATCACCACCGTGTTCAGCGGCGACGGGTCTTACATGGTCTCAAACACTAGCAAG GCGGTGGCGCCC AATGAGTACTGTTGCGCCCTCATAGACACACTTGAGCAAACGATCAAGAAGCTGGAGAAA CTTATGAACTGG CAGAGCAATGACACCATTAGGCTCATCTTTCATGCCGCCGTGAAGACCTTCAACAAAAAT GAAATCCTCGCC GTAAAGGAAGTGATCAAAAAGTATAGTGAGTACAAGATCGAGTACGCTTTTCTCAAAATC AGCAGCGACCAC GGTCTGCACCTGTTCGACCACTCAACTAAGAATGAGAATAAGGGTAAATTGGCTCCCAAG AGGGGTAAGTAT TTTGAACTGAGTAGCCATGAAATTTTGCTGTACCTCGTGGGGCAGAAAGAGCTGAAGCAG GTGAGCGATGGC CACCCCCAGGGCGTGATCGTGTCCCTGCATAAGGACAGCAGCTTTCAGGACCTTAAGTAC CTCTCTAATCAG ATTTTCAGTTTTAGCTCCCACAGTTGGAGGAGCTACTTTCCCTCTCCCCTGCCCGTGACA ATTCATTATAGC GATCTCATCGCGGAGAACCTGGGCTGGCTTAACAAGCTGAGCGGCTGGGACGATACAATC CTGCTGGGCAAA CTTGGACAGACCCAGTGGTTTCTG

GTAAAGCTTAATCACTTCCCCCTGAATCCCGCTCTTGCAGTGTTCAAGACTACCTAC AGGCACAGAAACCCC

166 73 AGGGGCTTCCTGGGATTCGTTAGGTCACAAGGGTTGACCGCGGAGAGAGTTGGCGAGGAA GTGTGTGTCTAT

CACGGTCTTCCCCACCCGGCTTTTAGAGGAGCCACCGCCCAAGGACACACCAGACTGGCG CCTGGTGACACC GATTACGACAGGGGCGTACTTAGTCTGATCGGAGCCGCCCTGCTGAAAGCGGGTTACGTG CTTACTGAGCGC GAAAGGGCCGCAGTGCACCCCACGCAGCAGAGAGTGCCCCTGCACACCCCTAGGAAACTC CCTGCCGAAATT GCGGTGAATGCCCATCTTCGATGGGAATGGGAACTGGAACGGCACAGCGGGAAGTCTTGG CTTGTGCTTAGG CCCGGACGCATGTTTTTGAGTGCGCTGAGCTGGCACGATTTGGACCTGAGGGCATGGGCA CAGGAGTTGCCC CAGAGCGTACAGCAACTGCACGCGCTGTGTCTTCGCTCCGGACGACGAGAACGACTGAGG CGCATGGGTAAC ACGTGGGCGTTCCAACGAGAGGATAGGGAGCAAGAGGGCAGGTGGCACCTGAGCTTTAGC ACTAAGGCGCTT TCCGACCTGAACCTGTCCGGCGATGCTCACCATGCTGCTAGCCTGAGCATGCCCGATGTG CAGAGGCTCGTA AATCTGCCGGGTCTGTGGCAGCCCTTTGTGACAAGCCTTGAAGTCCTTGAGGTGCCTGGT AAGGTGATCGAG GGCAAAAGGCTGAGGTTCGGACGAGGAACAGGGCGCGACGTCACGGATGTACACAAAAGG GGCATCCTTCAC CCTCCGCCGCAGCCAGTGCGCCTTGCGGTCGTGCCCCCCATTCAGGCGGACGAAGAGGCG GATGAGCAGTTG AGACGCGAGCTCCTTGCCCACCTCCTGCCACGGGAAAAGGTGTTGGCCCACCCCGAGGCT TCCCAGGGCCTC AAGAAGCACTTGAATCGAAGGGAAACCGACGACACCTTCTACACCCTGTGGAGCGCTGGA GACTACTGCAAA CTGGGGCTGGAACCCTTTGATCTGGTGCGCGACCTCCATAGGTACGACCCCGGCACGGGT CGCCTGCTGGCT CCAGAGAAGTTGCATGGAGCAGCAGCCGCCGCGAGAGAGGCTGGCAGGCAATTGATTGGC CTCGTGATCCTG CCCGACACCATAGGGCGAGATGAGAGGGACGCACTGTCCGACGAACTGGCCAAGCTGGGT GTGAAGAAACTT CAGCACATCCGCAGGGACATGCTGAACCGGCCCAGGACGCAGTATATGGCCTGGGTGAAC GTGGCCGTGAAG CTCGCCCAGAGGGCCGGAGCAGTCAGCTGGGACCTGGAAAAGTTGCCTGGAGTGTGCGAA CAGACCTTCTTC GTTGGCGTGGATCTGGGCCATGACCATCGGGAGAAGCAAAGCGTCCCGGCCTTCAGCCTG CACGAGTTCCGA GGCAGGCCGGTCGACTGCCTCACCCTTCCAAGGCGAGCCGGAAATGAAAGGTTGAGCCTG GCGGAGCTGAAT CAAGGCCTGAGGAAGCTGCTTAAGGGTAAGAGGCCAGCCCAAGTGATAGTGCATAGGGAC GGCAAGTACCTG GAGGGGGAGGTTGATGACTTCATAATCGCTTTGAACGACCTCGGCGTGCCGCGCGTCAGT CTTCTCGCCGTC AAAAAGTCCAACCTCTCCATGGTTGCCGGCGCTAAGGAGGGAGCGTTTTTGCCACTGGAC GAGCGGCGGTGT CTGCTGGTTACCAATACCCAAGCCGCGGTAGCTAGGCCGACAGAGCTGGAGGTGATGCAC TCAGATCATCTG ACTTTCGCCGAGCTGACCGAGCAAGTGTTCTGGCTGACCCGAGTATTCATGAACAACGCA CAGCATGCGGGT AGCGACCCTGCTACCGTAGAGTGGGCGAACGGGATCGCTAGGACCGGAAAGAGAATTGCC CTGTCTGGGTGG TCCGCC

ATGCTCGACTTTAGCCTTACCCAGAAAGGTTGGGTGCTGCCCATCGTACTGAACGCC TTTCCGCTCAAGGTA

167 72 CCGGACATGGAGCTCAAATTCGTGCAGATCCCCTACGACAAGACGACCCTGGACTCACTG AGGTCAAGCCAC

AAGATGACCCACGTCTTCAGGAGGCAAGGCGACAGTATCCAGATCTTTTCTAGCGACGGC ACCTTTCCAAAG

(Helicase) AGCGGCACCCCCCAGACCCTCCAACTGAAGGATAATCTGGGAATCTTTTTCTCTCTTGTA AAGGACGGCCTC

CTCAAGCACTTCGCCGGTTTGGGCCGAACCCCGTGCGGATTCAACCCCATTGAGGTCGTG TCAGCTCAGGCC AAAGACAATCTTCTGGCTAGCATCCTCGGAGAAGCCTACCCGCTGAAAATTTGCGCCAAG TACTCCATCGAC ACCAGGACAGTGCAAGGTCAACCGTGTCTCATCATCGACTGCAGCACTAGGAGAGTGGTT AAAGAGAACTGC CTCTTCTTCCTTAAGACCGGCTTTAACGTGATTGGCCGCTATGTAGTGACCGAGCAGGAC GACGGGTTTCGG AAGCTGCTGGGTTTTGTGGAAAACTGCCACGAAGGCAGGACACTGAGCGTTATAAGGCCA GATGGCCAAGCC GTGCATGCCGAGGCCAAGGACGTGTATCTCGAGGCATCTAGGGCCAACTTCGACGACTAC ATCCTTTATACG CACGGAACTAAAAAGGATAGCATCGTGGAGCGAATCAGACAAAGCGTGAGTATCTTCAAC GGCGGTAAGAAC AAGAAAGATAGAATCGACGCGCTCAAAAAGTACATCCAGGCCACCAATATAAGCCTTTTG GATGGGACCAGG ATCGAAATCGAGGAGCCCAGCGACATTCAGAAGGACTGCGCCCAGATGCAGAAGCCCGTG TTTGTGTTCAAT GACAATGGCGAGGCCGACTGGACCGAGAAGGGGCTGACTCAGAACGGCCCCTACACCAAG CGCACCTTCGAC CGAAACGACCCCAGCATCTGCGTGATCTGCGCACAACACGACAGGGGGCGAGTGGAGCAG TTCGTTAGGAAA CTGCTGAAAGGCATGGCTAACAGCAAATACTTCAGAAACGGCCTTGAGGGCAAGTTCGCG CTGGGAACGTCC CGGGTAGAGGTGTTTGAGACCAGCACAAATAGCGTGGACGCCTATAAGAGCGCGATCGAA GCCGCCATCCGC AAGAAGGCCGATGACGGCGGCAGGTGGGACCTGGCATTGGTTCAAGTTAGGCAGAGCTTC AAGCAGCTGAAG SEQ

ID NO Argonaute # Sequence

GTGACTGACAACCCCTACTACTTGGGAAAAAGCCTGTTCTACATGCACCAGGTGCCAGTG CAGGATTTCACT ATCGAGCTCCTGAGCCAGTCCGACTATTCACTGGGCTACAGCCTTAACAACATGAGCCTC GCTTGCTACGCC AAAATGGGAGGAGTGCCCTGGCTGCTCAAGTCCTCTCCCACCCTTAGCCACGAGCTGGTG ATCGGCATCGGC AGCGCCAACATTGTCCAGGAGAGGGGGGCACACAACCAGAGGATCATGGGGATAACCACC GTATTTAGTGGC GATGGCAGCTACATCGTCAGCAGCACGTCCAAAGCTGTGGTTCCCGAAGCATACTGCGAG GCGCTGACTAGC GTGCTGGGCGAGAATATCGAAAAAATCCAAAGGAGAATGAATTGGCAAAAGGGTGACTCA ATCCGACTGATC TTCCACGCCCAAGTGAAGAAGTTCAACAAGGAGGAGATTCAGGCAGTGCGAGCCGTGATA GACAAGTATAGG GACTACCAGATCGAGTACGCTTTTGTGAAAATCAGCGAGAACCACGGCCTGCACATGTTT GACAGCTCAACC GCCACCATGCCCAAGGGCAGGTTGGCCACACACAGGGGTAAGACCTTTAAGCTGTCCAAA AACGAGATGTTG GTCTACCTGATCGGACAGAGGGAGCTGAGACAGGAAACCGACGGCCACCCCAGGGGTGTC ATCGTGAACGTA CACAAGGACAGCACTTTCAAAGATATCAAGTACCTGAGCGCCCAACTGTACTCTTTTGCG AGTCATTCTTGG AGGTCATACTTCCCCAACCCTATGCCCGTGACCATCACCTACAGCGACCTTATCGCCCAC AACCTCGGCTGG CTGAACCAGCTGCCCGGGTGGTCTGACAGCGTAATGATAGGTAAAATCGGTCATAGCCAG TGGTTTCTG

ATGTTCGACATTGGATCAATGGTGAGAGTTAGGGGTCGAGACTGGGTCGTGTTGCCT GGCAGTTCCGCAGAC

168 92 TTTCTCCTGCTTAAGCCACTCGGCGGATCAGATGCAGAAACGACAGGGGTTTATGCCGGT CCCGGCGGCGAA

GTTGTGAGATCAGCGACTTTTGCGCCACCCGATCCGCAAGCGTTTGGAACAGCCTCTGGC GCTCGGCTTCTC

(Helicase) CTGAATGCAGCTAGATTGGCCGTTAGGTCCGGCGCTGGACCGTTCCGCTCCCTTGGCAGG CTGGGGGTAGAA

CCACGCCCATATCAACTTGTCCCCCTCCTTATGGCCCTGAGACAAAGTACCGCCCGGCTC CTTATTGCCGAC GATGTAGGTATAGGAAAGACAGTTGAAGCGGCACTCATCGCCAGGGAGCTGCTTGACCGC GGAGAGATAGAG CGATTCGCTGTGCTTTGTCCGCCCCATCTGGCTGGTCAGTGGGTAGGTGAGCTGAGGAGC AAGTTTGGGATA GATGCCGTCGCGGTCCTCCCCGGAACCGCGCGAAGACTGGAGCGCGGCTGTAACCCAGGC CAATCTGTGTTC GCCAGATACCCTTTCGCAGTTGTCTCTCTCGACTTGGTCAAATCAGACCGATGGCGCCAG GATTTTTTGCAG AACGCCCCCGAGTTTGTTATCGTCGACGAAGCGCACGCCAGTGCTGAGGGCGAGGGGTTG GGCGCGCGAAGA CATCAGAGATATCGCCTTTTGGAGGACCTTGCGCGAGACCCAGAGCGACACTTGATACTC GTGACAGCTACG CCACACAGCGGAAAGGAGGACGCATTCAGATCCCTTTTGAGATTGCTCAACCCTGAATTC GCCGCTCTGCCA CTGGATCTCTCCGGCGCTCAAAACGAAAGAGCTCGGGCAGCTATCGCTCGACACTTGGTG CAGCGGAGGAGG GGTGACATCACTGCATACCTTCACGAGGACACCCCATTTCCAGTCCGAAGGGACGCCGAG GTTAAGTATACT CTGCACCCCGATTATGCGGCATTGTTCGAGGACGTTCTGGCCTATGCAAGGGAGTCCGTG CACGTTCCAGGC GAGGCGCATAGTCGGACGCGGATACGCTGGTGGGCCGCCCTGGGACTGCTTCGGGCTTTG GCTTCTTCACCC CAAGCAGCCGCAGCCACTCTCCGGGAAAGAGCAAGCACCGAAGGCGAGACTGATGAAGCA GTTATTGAAAGA CTTGGCAGGGAACTGGTGCTTGACCCCGAAGACGGTGAACATGGGCTGCTGGACGTCACC CCTGGAGCGCAG GTCGACGGTGAAGAAAGCGGGACCACGCGACGCCTTCTCGCACTCGCAGAGAGGGCCGAC GCTCTGGCTGGG GCCAAAGACCGGAAGCTCGCACTCCTGACCGCACAGGTCAGGGATCTTCTGCAGGAAGGT TTCGCGCCGATA GTTTTTTGTAGGTTCATTGCGACCGCGGAGGCAGTAGCGGAGCACTTGAGGGGAGTTCTG AAAGGAGCTGAA GTCGTGGCTGTCACAGGAAGGCTGACGCCAGATGAGCGCGTCGCCCGCATCGAAGAGCTT GCACCCCACGAG CGACGGGTTCTTGTGGCAACGGACTGCCTTAGTGAGGGCATTAATCTCCAAGCTGCCTTC AGCGCAGTAGTA CACTATGATCTCCCCTGGAACCCTACCAGGCTCGATCAAAGGGAGGGCCGAATTGACCGA TATGGTCAACGA TCACCAGAGGTCCGAGTGCTTACATTGTATGGGGAGGATAACAGGATAGATACTCTGATA CTGGATGTTTTG ATCCGAAAGCATCGGCTGATCCGGGCTACCTTGGGAATGGGTGTCCCCGCTCCCGACGAG GCAGAAGGATTG CTTGACGTGCTGTTGGCGCGAGTACTGGAACCCGAACGAAGAGGTTCTATTCAGCCATTG CTTCTGGATGAA GTGCAGGCTTTTGATTTGAAATGGCGCGATGCGGCTGAAAACGAAAAAAGGTCAAGGTCA CGATTCGCCCAG AACTCTATAAGGCCCGAAGAAGTAGCAGGGGAACTCGCAGCGGTACGGGAAGCGCTCGGA GACGCTCGAGCC GCTCAGGACTTCGTTCTTGATGCACTGCGAGGGGCCGGTGTTCAGGTGACGCCGCGCCCC GACGGAAGCTTC GAAGCGGACCCCACCCAAGCCGATGTAGCACCGGAGGTCCGCGACTTTCTGCGGGGAGCA AGGCGCTTCAGA TTTGACGCACGGGTAGAACGAGGTGTGACGCCCTTGGCGCGGAACCACCCATTGGTCGAG CAACTTGCAAGC ACTGTACTGGGTCAGGCTCTGGAGTCTCCGCAGGAGGCCGCAGCCAAGCGCGTAGGCGTC ATTCGGACCTCT GGCGTAAGTACTCAGACCACTCTTTTGCTCCTTCGATGGAGATTTCATCTTTCCGGACGA AAGGGAAACCGA TCTTGGCAAACTCTTGCTGAAGAACTTGATCTTCTGGCTTACGCAGGAAGGGCAGAGGAT CCGCAGTGGTTG GACGCTGAGGCCACCAGAGCTTTGCTCGATCTGACCCCTCAGGGTAACTTGGATCCGGTG CAGAAAGAGGAA CGCCTTACTCGGACGCTTGAGGGACTTAGCGCTTTGGAGGGGGTTTTGGACCAGCGAGGA AGGGATAGAGCC GCAGCTCTGCTTGACGCTCACGAGAGAGTACGGGGAGCAGCGCGAGGGCAAGGGGTGACC TATTCTGCGGAG CCTCCTGGCCCCCCGGATCTGCTTGGTGTCTATCTCTTTCTCCCCGCACCAAGACTCGGA GGCCTCGCC

ATGATAGCCGTGGAAGAGTGGCAACCTGCGGACGGACTGACCCTTGAGCCTAATGCA AAGAGGGCTGCGAAG

169 71 GCTAGAAAGAGGTGCCTGGCCCTGACAGCGGGTCCCGGTGCCGGAAAGACAGAGATGCTC GCACAACGCGCC

GACTTCTTGTTGAGGACCGGAACCTGTCGGTACCCCAAGAGGATACTGGCCATCTCATTC AAAGTGGATGCA AGTAGAAACCTGAAGGACAGAGTGGAGAGGAGGTGCGGCTATGATTTGGCGTCAAGGTTT GACAGTTATACT TTCCACGCGTTCGCCAAAAGGATCATCGACCGCTTTAGGCCGGTGCTGACAGGCAAGGAC GCCCTCGACGCA GGCTACACCATCGTGGATAAGAAGAATGGCCCCTCTAGGACCCAGATCGAGTTCGGCGAC CTTGTCCCCCTT GCCATACAAATCCTGCAATCAAGCAAAATTGCACGAAACGCGATCCGCCAAACTTACAGC GACATCTTCCTG GATGAGTTTCAGGACTGTACAAACCTGCAGTACGACTTGGTAAAACTTGCGTTCCAGGGT ACGTCAATACGG CTGACGGCTGTTGGCGATACCAAGCAGAAGATAATGGCCTGGGCTGGAGCCCTGGACGGC ATTTTCCAGACG TTTGCCAACGATTTCAACGCCGTGTCCCTGAACATGTATAGGAATTTCAGAAGCAAGCCA CAACTGCTCAGG GTTCAAAATGAAATTATCAGGAAGTTGGACCCCGATTCCGTGATGCCTGACGAACAACTT GACGGTGATGAA GGCGAGGTCTATGCGTGGAGGTTCGAGGATAGCTGCAAGGAAGCCGTGTATCTTGCGGAC CTTATCAATGGC TGGATCAACACCGAACAGCTGCCCCCAGCGGAGATCGCCGTACTGGTCAGCAAACAGCTC GACCTCTATGTC GACCACTTGATGACTGAGCTCGAGGCTCGGGGAATCCCCTACAGGAACGAGCAGCAGCTT CAAGACATCACC ATAGAGCCGGCAGCTAGACTCATTGTGGACTACTTGAGTTGCCTCTACGGCAAGAGAGAG CCGAAAGCATGG ATCCGGCTCATGAACCAGCTGATCCCATTCGCGGACGAGGAGATCCAATCTAGTGCTCGA AAGGACCTCGAC CAGTTGATAAAGAAGCAGAGAAAAAGGGTGAGCGACGCGAAGCACACCGATTCACCTTTC AGCGATTGGGCA CAACTCGCAATTGAATTCCTGAAGTACATAGGCAGTAAGATGCTGGTGGCACTGAGTCCA GATTACGAGACG CGCGAGAGGCTGAATGACGTGATCAGGGAAACTTTCGCGAGGATCAAGGAACTGTTGAAG AGCGAGCCCGAC CTGCCCAAGGCGCTGGGCCGGTTTGCCGATGACCAGGCGGTGCGAATACTGACCATCCAC AAGAGCAAGGGC SEQ

ID NO Argonaute # Sequence

CTGGAATTCGACAGTGTGATCATCATGGCCGTCGAGAACGAGATATTCTTCGGGAACCAG GACGAGAATAGG TGCGCTTTCTTCGTAGGTGTGAGCCGAGCAAAAAGGAGGTTGATACTTACCCACGCCGAC CAGAGGGAAAGG CCAGCGTCTGCCAAGCGATGGAATGTTAGTAGAACCGCTCAGACTGAGTACATTAGTTAC GTCACCCCTTTC GTGAGGCCACAG

GTGGCCGCTTTGAAGCGCTACTTTAATGACAAGAACCTGATCGTGATAGGCTACTCT GGCAGGGACAAGAGC

170 21 CTGATGAGTGCGCTTACCGAGGCTTTCTCTGAGAAGGGCTCTGGCCGCATCTACTGGTGC GGCTACGGCAGC

CACATTTCCCCCGAGGTGGAAAGCTTGTTGAGGACCGCGCGAGAGGCAAACCGCGACGCC TACTATATCGAC ACCGATGGGTTCGACAAAACCATGTTCAGCCTGGTAATAAACTGCTTCCAGGCGGATATC GAAAAGAAGAAA GAGATAATGAGCATCCTGGAGTCTGCTCCCGAGGACAACGATACCAGCCCGTTCTCAATT CACATCACCAGG ACGGATAAATACCTTAAGTCCAACCTCTACCCGATCATCTTTCCTAAGGAGCTGTTTCAG TTTGAGATAGAA TATCATGAGGGCGAACGACCATGGACCCTGCTGAGAGAGATCACCAAAGACCAGAACATC ATCGCCGTGCCC TACAAGCAAAAAGTCTACGCCTTGTCAACGGGATCAGCTATCAACAACGTGTTTGGTAGC CGGTTGAAATCA GATATAGAGAGGATTCCCGTGTCTATGGATGACATTGAGCGCAAGTCTAGTTACAGGGAG CTCTTCCTGAGG GCCACCCTTCAGTCTATAGCCATTATAAGGGGCCTGAACGTGGACATACGACACAATACC CTTTGGCGGAGC GACATCTTTAGGAACGACAATGGCACCCTCATCCACGAAGCGATCGAGTGTTCCCTGGTG TTTGTGCCCCAA CAGAAGTATGCCCTGTTGAGCTTGAGGCCCACCATCTACATAGAGAACTCTCATACGGTT AGCAAGGAGAAA AAGCAGGAGTACGCCAGGATCTACCTGGATAAGATGTGGAATAAAGCGTACAGCACGAAG TTGGCCCAGTGG GAATCTATAATCTTTGGAGACACGAGGCTCGCCTTCGAGGTGCCGCAAAATTCAGGATCC GGGTTTAAGTTT CTGATAAGCCACAACTGCGGCTTCAGCGAAATCCAGTATCAAGACAACACCGAAAGGGGA TACAGTAGCAAG AGCTACGACAACAAGAGGACGATCTATAGGGGCTTGCAGCTGAAGGAACCCGAGCTGGAA TTTGTCAATACG TTTGCAGACCGGCCCTTCCTGGACAGCAACCCCATGCGAGGCCTGAGCAATCACAGGCCG TACGACAGCTGG CAGAAAGACGTTCTCTTGCAGAACGTGCGGTTGGGCGTGATTTGCCCGAACACGCACACC GACCGATTCCAC TCTTTTCTGCAGCAGCTTAACACCACAATTCAAGCCAATGACGATAGCGACTACATTCAG TCCTACACCGGT TTCCATAGCATTTACAAGACTCTGCTGGAAATCCCCGATAACGGGACCGACAAATGGATA AACATCGAGGAT ACCCCCAAGGACACCATCAGTCTGGTTCAGAGTATATGTCACCAAGCGAACCGACTGGCC GACAAGTACCCG GGCATCGTGGTGGTGATTTTCATCCCCGCATTTTGGTCTATCCATCGACAGTTCAAACAC AACGGGGAGAGC TTCGATTTGCACAACTACATCAAGGCCTACGCCGCACAACATAGCTTCACTACCCAAATC ATTGAGGAAAAG ACGCTGCGCGACCACATGGTCTGCGAAATTTGTTGGTGGCTGTCACTCGCACTGTTCGTT AAGGCTATGCGA ATCCCGTGGGCACTGGCCAATTTGGACTCTGACACCGCTTACGCGGGTATAGGGTACTCA GTGAAGACCAAC AGCAAAGGCAACGTCGACATAGTGCTTGGATGTTCACATATATACAACGCAAAGGGCCAG GGTCTCAGATAC AAACTCTCTAAGGTCGAGCAGCCCCAATTCGATGGCAAGAAAAATCCTTACCTTACGTAT GAAGAGGCCTTC AAGTTTGGAATTACCATACGCGAGTTGTTCGTCAAAAGTATGGACCGGCTTCCCAGGAGG GTTGTGATTCAC AAGCGGACGCCGTTCAAAAAGGAGGAAATAGAGGGAATCACTCACGCGTTGACTCAGGCT GGCATTAAGGAC ATCGATCTCATTACGATCAATTACGAGTACGACGCCAAGTTCATAGCGCAGAAGGTATAC TATGACAACATC AGCGACGATTCATATCCCGTAAGTAGGGGCACCTGCATCAAATTGTCCAGCCGAAATGCG CTGCTGTGGACA CACGGCGTGGTTCCCTCAATCCGGGAGAGACGACGCTACTACCCCGGTGGGCGCTGTATT CCCGCACCCCTG AAGATAACAAAATACTACGGTAAAGGCGATCTTCCGACAATCGCCAGCGAGATTATTGGA TTTACTAAGATG AATTGGAACAGTTTTAATCTGTACACGAAACTGCCCGCCACCATAGATACGAGCAATACA TTGGCGCAGGTC GGCAATCTGTTGCATCAGTATAACGGCGCAACTTACGACTACCGATATTTCATC

ATGGTCGCGCTGAGGCTGAACGGCGTACCCATCTTGTGCGCCGCTGACGTAACCGTG GCCGTGGCGAAGTTG

171 63 CCGTACACGAAGGAGAGCCTGGACGAGTTGAGGAAGGAGCATGCGGGGAGGTATTTGATT AGGAGAGGCGGA

GATGACGGGCAGGAAATCATGTCTGTTCCCTTGCTTGCTGATGCTCCGCAGCTGAGCGAT GCCGTTGTGGAA GTTAAGCTGTCAGAAGCCCACTGGTTGCTCGCCTCACTCGCGGTGGAGGCCCTCACCAGG TTGTTCACAGAA CTTGGTAGACCTATCCTGCGGTCCCGGCCATTGCGGCTGCTCTCCCAAAAGCCGGCCAAT CTTTTTCCGGAG AACGTCGGACTGCCAGACTGGCTGCAAAGGAGGGTTGTGCTGGATTTGGAGACTAGGAAG ATCTGGCGGCAG GATGGAGACCCGACATTGGTGCTGCTGTGCGATGTGCGGACTCAAAACTTTATCGACGTG CCAACGGATAAA CTGATGGCCACCGGCGTAAGCGTTATGGGTCGCTACGTTAGCCGAATGGTGAGCTCTGAT GATCCCCGGATC ACCTCACATCTGAAGCTCGCCGGCAGGGTCATTAGCATAGAGGGCGACCGACTGCTCCTC GCCGACTTTGGC GAGGGACCGGATAGTATAAGCATTGCTCATGCCTATCTGGAGAGACGACGGGAAAATGTC GACTGGTGTGTT CAACAGCTGAACCCCGCGAAAGCAGGGCAAATCCTGATGAGCGTGCAGGCCGAGGCTGCG AAATTCTTGAAC GGACCTGGCCGATTCGAGCTGATCAAGAGGACATTCGATTACCTGCGCACGCAGAGTATA GAGCTTGTGCCC GACGTGAAGCTGGAGTTGGGGGACTTGATTGGCATGGGAGCCGCACGCTGGCCCTTCCGC CAGGAAACAATT AAGAAGCCTACCCTGGTGTTTGATCCGTCTGGTGTCAAGACCGATACCTGGAACGAGCGA GGGCTTGACAAA CACGGACCCTACGACCAGAGGACCTTCAGCCCCAAGGAAATGAGGATCGCCGTTATCTGC AGGGAAGCAGAC GAAGGTCGGGTTGAAGGATTTCTGGCCAAGTTTCTGGACGGGATGCCACACGTTATCGTC GGGGAGAACCGA AAACCCTATGAAAAGGGATTCATAAGGAGGTTCGCCCTGAGTGCCCCGAAGGTGCACACT TTCACCGCTAAG TCTTCTAGTGTGCCGGACTACCTGAATGCGTGCCGAGCGGCCCTGAAGTTTGCCCACGAC CAAGGCTTTGAA TGGAGCTTGGCAATCGCGCAAATCGACAAGGACTTTCGGGAACTCCTCGGTCCTGACAAT CCCTACTTCGCG ATCAAGGCCGCGTTTCTCAAGCAGAGGGTGCCCATCCAGGAGTTGACGCTCGAGACAATG AGCACCCCCGAC AGGCAGCTGGTGTACATTTTGAATAACATAAGCCTCGCAAGCTACGCCAAGATCGGCGGC ATTCCGTGGCTG CTTAAGAGCGGTCCTACCGTGGGCCACGAGCTGGTCATTGGTATTGGTAGCCAGACCGTT AGCAGTAGTCGA TTGGGCGAGAAGCAACGGGTGGTGGGCATTACCACCGTATTCACCCACGATGGCAGATAC CTTTTGGACGAC AGGACGCGAGCCGTGCCATACGGCGAGTACGAAGCAGCTTTGTCCGAGACGCTGACCAGG GCCATAGAGAGG GTAAGGACGGAAGATAACTGGAGGTCAACCGACGCGGTGCGACTTGTATTCCACGTGTTC CAGCAAATCAAA GACTACGAGGCCGACGCAGTGGGGAAACTGGTCGAGAATCTCGGCTTCAGCGATGTCAAG TACGCCTTTGTG CATGTCGTTGACAGCCACCCCTACACCCTGTTTGACGAACACATGCCAGGCGTTAAGTTT GGCTACGAGATG AAGGGCGCCTACGCACCTGAGAGAGGCCTGTGCATCAGTCTTGGCAGGGACGAACGCCTC CTCAGCTTTACC GGGTCTAGGGAGGTTAAACAAACCCATCATGGCCTCCCAAGGCCAACCCTTCTTCGACTG CATAGGAACAGT ACCTTCCGGGACATGACCTACATCGCCAGGCAGGCTTTCGACTTCGCAAACCACTCATGG AGGATGCTCACC CCAGCGCCCCTCCCCATCACCATCCACTACGCCGAACTCATCGCCCGGTTGTTGGCTGGT CTGAAAGACACA CCCGGCTGGGACGAGGACACAATGCTCGGCCCAGTAGGTAGAACCCGATGGTTTCTG SEQ

ID NO Argonaute # Sequence

ATGAACTACACAGCCGCCAACACGGCCAACAGCCCATTGTTTCTCAGCGAGATTAGCAGC CTTACCTTGAAA

172 33 AACAGCTGCCTCAACTGCTTCAAACTGAATTACCAGCTGACTCGCGAAATAGGCAATAGG TTCGGCTGGCAG

TTCAGTAGGAAGTTCCCTAACGTTGTGGTGGTGTTCGAGGACAACTGTTTCTGGGTTCTC GCTAAAGATGAG AAGAGCTTGCCCTCTCCTCAACAGTGGAAGGAGGCTCTGAGCGACATCCAGGAAGTGCTG CGAGAGGATATC GGAGACCACTACTACAGCATCCACTGGCTTAAAGACTTCCAGATCACCGCCTTGGTGACC GCCCAGCTCGCC GTGCGAATTCTGAAAATCTTCGGTAAATTCAGCTACCCCATCGTGTTCCCCAAGGACAGT GAAATTAGTGAG AATCAAGTGCAAGTAAGGCGAGAAGTCAACTTCTGGGCCGAGATCATTAACGATACCGAC CCCGCCATTTGC CTCACCATCGAAAGCAGCATCGTCTATTCCGGCGATCTCGAGCAGTTCTACGAAAATCAC CCGTACAGGCAA GACGCCGTGAAGCTGCTGGTGGGCCTGAAAGTTAAGACCATTGAGACCAACGGCACCGCT AAGATCATCAAA ATCGCTGGCACTATAGGGGAAAAGCGCGAATACCTGTTGACTAAGGCCACGGGAAGCATA TCCCGGCGAAAG TTGGAGGAAGCCCACCTCGCACAACCCGTGGTTGCGGTGCAGTTTGGTAAAAACCCTCAG GAGTACATATAC CCCCTGGCTGCCCTCAAACCTTGCATGACCGACAAGGATGAGAGCCTGTTCCAGGTCAAT TACGGCGACCTC CTGAAGAAAACCAAGATCTTCTACGCTGAACGACAGAAATTGCTTAAACTGTACAAGCAG GAGGCGCAGAAG ACTTTGAATAACTTCGGTTTTCAGCTTCGGGAAAGGTCCATCAATAGCAGGGAAAATCCA GACTTCTTCTGG ACGCCCCCAATTTCATTGGAGCAGACCCCCATCCTGTTTGGGAAGGGTGAGCGCGGTGAA AAGAGGGAGACC CTCAAGGGCCTTTCAAAGGGCGGAGTCTACAAAAGGCACAGGGAGTACGTTGATCCTGCC AGGAAAATTAGG CTGGCCATCCTTAAACCGGACTCTTTTAAAGTGGGCGACTTCAGGGAGCAGCTGGAGAAG CGACTCAAGCTG TATAAGTTCGAGACGATTCTCCCCCCTGAGAACCAAATCAATTTTTCTGTGGAGGGTGTT GGGAGCGAAAAA AGGGCCCGACTGGAAGAAGCCGTAGACCAGTTGATAGGTGGCGAGATCCCCGTGGACATC GCCCTCGTCTTT CTGCCCCAGGAGGACCGGAACGCGGACAACACCGAGGAAGGCTCCTTGTATAGCTGGATC AAAAAGAAATTC TTGGATCGGGGGGTGATAACACAGATGATATATGAGAAAACTCTCAACAATAAGAGCAAC TACAATAACATC CTGCACCAGGTGGTTCCCGGCATATTGGCAAAGCTCGGAAACCTGCCGTATGTGCTGGCC GAGCCTCTTGAA ATCGCCGACTACTTCATCGGCCTGGACGTCGGAAGGATGCCTAAGAAGAATCTCCCTGGT TCACTGAACGTG TGCGCGTCCGTTAGGCTCTACGGAAAGCAAGGTGAATTCGTCCGATGTAGAGTCGAAGAT AGCTTGACCGAG GGGGAGGAAATCCCCCAAAGGATTCTTGAGAATTGTCTGCCGCAGGCAGAACTTAAGAAC CAGACCGTCCTG ATCTACAGGGACGGGAAATTCCAGGGTAAGGAGGTGGAAAACCTTTTGGCTCGGGCACGA GCCATCAACGCC AAGTTCATCCTGGTAGAGTGCTACAAGACCGGCAGCCCGAGACTTTACAATTTCGAACAA AAGCAGATTAAT AGCCCCAGCAAGGGGCTGGCGCTTGCATTGAGCAACCGGGAGGTCATCCTCATCACCAGC CACGTTAGCGAA CAGATCGGCGTGCCTCGGCCTCTCCGCCTGAAGGTGCACGAACTGGGAGAACAGGTGAAC CTCAAGCAACTT GTGGACACGACCCTGAAACTGACTCTGCTGCATTATGGCTCTCTGAAGGAACCTCGGCTT CCAATCCCCTTG TACGGAGCCGACGCCATCGCGTATAGGAGGTTGCAAGGAATCTATCCAAGCCTGCTGGAG GACGACTGTCAG TTCTGGTTG

ATGAACTACACAGAGGCCAAGACCGCCAATAGCCCCTTGTTCCTTAGCGAGATTAGT AGTTTGACACTTAAG

173 19 AATAGCTGCCTGAATTGTTTTAAGCTGAACCATCAGGTCACCCGGAAAATAGGCAACAGG TTCTCTTGGCAG

TTCAGCCACAAGTTCCCTGACGTCGTGGTAGTGTTCGAGGACAATTGCTTTTGGGTGCTG GCTAAAGATGAA AAGAGTTTGCCTAGTCCACAGCAGTGGAAGGAAGCACTGTCAGACATACAGGAAGTGCTG AGGGAAGACATT GGGGACCACTACTACAGCATTCACTGGTTGAAAGACTTCCAGATAACCGCCCTGGTCACC GCGCAGCTGGCT GTGCGGATTTTGAAGATATTTGGGAAGTTTAGCTACCCGATCGTGTTCCCCAAGGACAGT CAGATCTCTGAA AACCAGGTGCAGGTGCGAAGGGAAGTGGATTTCTGGGCTGAGATAATCAACGACACGGAC CCAGCAATATGC CTGACGGTGGAAAGCAGCATCGTTTACTCTGGCGACTTGGAACAGTTTTACGAAAATCAT CCGTACCGACAG GACGCCGTGAAACTTCTCGTAGGGCTGAAAGTGAAAACTATCGAAACCAACGGCATCGCG AAGATTATCAAA ATTGCCGGGACCATCGGAGAAAAGCGGGAGGAACTGCTGACCAAGGCAACCGGGTCCATA AGCAGGCGCAAA TTGGAGGAGGCACACCTGGGCCAACCTGTGGTGGCCGTGCAGTTCGGCAAGAATCCGAGA GAATACATCTAT CCCCTTGCCGCGCTCAAACCGTGTATGACCGACAAAGACGAGAGCCTGTTTCAAGTGAAC TATGGCGAGCTT CTGAAGAAGACTAAGATTTTCTACGCCGAACGGCAGGAGTTGCTGAAATTGTATAAACAG GAGGCGCAGAAG ACGCTGAACAACTTCGGCTTCCAGCTCCGGGAGCGGTCAATCAATAGCAGGGAGAACCCC GACTTTTTCTGG ACCCCCTCAATTTCCCTTGAACAAACGCCCATCTTGTTTGGCAAAGGTGAGCGAGGTGAG AAACGAGAGACC TTGAAAGGCTTGAGCAAAGGCGGCGTGTACAAGAGACATAGGGAGTACGTCGACCCCGCG AGAAAGATTAGG CTGGCCATCCTGAAGCCGGCCAATCTCAAGGTTGGGGATTTTAGGGAGCAGCTCGAGAAG CGACTGAAGCTC TATAAGTTCGAGACCATCCTTCCCCCCGAGAATCAAATCAATTTTAGCGTAGAGGGCGTG GGCTATGAAAAA CGAGCCCGCTTGGAAGAGGCCGTGGACCAACTGATTAGGGGGGAGATACCCGTGGATATC GCTCTTGTCTTT CTTCCGCAGGAGGACCGAAACGCCGACAACACCGAGGAGGGGAGCCTTTACTCATGGATC AAGAAGAAGTTC CTTGACAGGGTTGTGATAACGCAAATGATCTATGAGAAAACGCTTAACTATAAGAACAAT TACAAGAACATC CTCGATCAGGTGGTGCCTGGAATCCTTGCGAAACTTGGTAATCTGCCTTACGTGCTCGCA GAGCCACTGGAA ATCGCCGACTACTTCATTGGCCTGGATGTGGGTCGCATGCCTAAGAAAAACCTCCCCGGG TCACTTAACGTG TGCGCGTCCGTAAGGTTGTACGGGAAGCAGGGCGAGTTTGTGCGGTGCCGAGTCGAAGAT AGTCTCACCGAA GGTGAAGAGATCCCCCAGAGAATCCTGGAGAATTGTCTGCCCCAAGCCGAGTTGAAGAAC CAGACCGTGCTG ATATACAGGGACGGTAAGTTCCAGGGCAAGGAGGTGGATAACTTGCTGGCCCGAGCCAGG GCCATTAAGAGC AAATTCATACTTGTCGAATGCTATAAAACGGGCATCCCCAGACTGTATAACTTCAAGCAA AAACAGATCGAC GCGCCCAGTAAGGGCCTGGCGTTCGCTCTGAGTAACAGGGAGGTGATCCTGATCACGTCC CAGGTTAGCGAA AAGATCGGCGTGCCGCGACCTCTGAGGCTTAAGGTACATGAGCTGGGAGAGCAGGTAAAT CTGAAGCAACTG GTGGACACCACACTCAAGCTGACCCTGCTCCACTATGGGTCTCTTAAGGACCCGAGGCTG CCCATCCCCCTT TACGGCGCTGACATCATCGCGTATAGGAGGTTGCAGGGAATATATCCCTCTTTGCTGGAG GACGATTGTCAG TTCTGGCTG

ATGACTAACAAAACCAAACAAAAAAGCAGGAAGCAGAGGTCCCTCATAGAATTTCTT AAGGTGAAGAAGATC

174 85 AACAAGGAAGATGGTAAGAACCATAACCTGATCAAGTATAGCACCGAACGGATCGATACA GGAGTGACCCAG

AGCCTCATTGACATCAATATATCCAGTAACATCCTTAAGCTGCGGGGCAGCATTGCTCAA GAGGTGTTCAAA CGGAAAATTGGCGTTTACTACGGGCTTGGGAAGTATTACGTTGCCGAAAACAAGCTGAAG AACACCGATCGA ATGGATTTCTTGAAGAGGGTCTACGAGACCTTCCCCTATAACTACCTCGATAAACAGGAC CCGCACAGCAAG ATCAGCTTTTACGAGTACTACACATTCCAGAAGTCCATCGACAAAGACGTGATAAACCTG CTTGAGCTGCAG AAGATAAACGAGTATAGTTGGGACATACTGGACCCACACATCGCCACGCGCCTTCTCACA AGCTATGTGAAG SEQ

ID NO Argonaute # Sequence

CTTTACTTGGGCGACTACTTGAAGCCAATCCTGTCCTCTTTCGAGTACGTCCGGGCTCGA ATCAAGACAAAG CAAAAGACCGTTCCAATCAAAATCCCCGTGACCAAGAAGTTCGAGATCCGAACTTTGGGG TACGACCCGACG CAGAGCGAAATTACTCTCGCCATAAAACGACACGCCAGCATGAACGCTGTGCTGTTGAGC AGCTTTCCCCCC GACATCCTCGCGGTTGTGATAACTAAGCTCAAACGCCTCGTGAACGAGGCCGTGAAGCAA GACTACCGAAAG GTCAGAATATACTCCGAGACCCAGCCGGGGAGCGGTACTGCCGCAGTTGTTGAAATCATC AGCGGCAGCCAA AACGTGATGAAGTTTCTCGAAGAGCATCCGAAGGGGGCCATCCACGTTGAAAAGCGACTT AAAGAGCTGGGT AAATCACTGCAGGAGGTCCGGTACCTTCTTATCGGCGTCTATGACAACAACGTCAGCCTG GAGCGGGCAAAA AAAGACGAAAGATACCACTACTACTTCACCGAGCATAACGCTTACCTTGTACTTACGCCC GAGGTGCAAAAG GCGCTCTTTGGCAAGTTGATCGACGACTGGAAGACAAGCATTCTGAATGAGTACCAAAAT AAGCTCCACGAG ATCACGAGTCTTGGGATGTTTAAGCATTTGGAGACCATACGGGGCATCCCGGTTTCCTTG AAAGAGAGGCTT GTGGTCCGCACCAGCGAGGGCTTGCAAACCGTAGATGACATTAGGGACATTTTGACCAAC CCCAAGATTCTT AGTAATATGTTGCCTATATCCGAGGACGCGCTCAAGGAGACGCGAAAGCATAAACTGCGA ATCACCCTGTTC TGTCCGGAGAAGTTTAGTGAGAGGATTCACCGGACTATTTTCTACGACAAATTGAACCAG TTTCGAGACGGT CTGCTTAGCAACAGCTTCGCAAGCGTGGACGAAATCGAATTGTTCCAGGTCAAAGGCGAA AACTCTAGCGAT TATGAGGAGATCATGAAGGACGCTGGCCTTGATAAAATCCACGATTATACCCTGGCGGTC ATCATATTTCCC GAACATTATAGTAAGCGCAACCTTGAGTTGCGCATCTTTTACAACTGGCTGAAAATGCGG TTCTACTCAGAG AACAAGCCACTGGTTTTCCAGGGCGCTCGGATTGACAGCGTCTTCGGCCGGTATGCGAAG TACGCATCATAC AACCTCATCTTGCAGATCCCACCTAAATTGGGCATCTACCCGTACTCACTGGAGGAGCAC GAGGACTATGAC TACATCATCGGCATTGATTACACCTATTGGTACGAGAGAGATACGCCTAGTCTGGGCGGT GGCGCCGTGTTG ACCAGCCCGTCAGGGCTGATTGAGAGCATATACCCCATCGCACTCCCGAGCCGCACTGAA TCCCTCAACATG TCCAAGATACTGAGCGAATGGTTCACGCGAACAGTCAAAACGAACCGGCATATCATAGAT AAGGGCCACGTG ACCGTGCTTATCTCCAGGGACGGCATGATTCCTAAGTACGAACGCCAGACAATCCAGGAG TTCCTGAGTGAA TATAGCGGCGACATGGGCATGACCATAGAGGCAGTAGAAGTTAGGAAACGCATCGCCGTG AGGACCTGGGCT ACACAAGAGCCCGTGGCCTACTACAGCCCGATAAAGGTTGGCGACTGTACCTACTATCTG GTCGACGCGCAC ACCGGATACCCGCTGGGGGAGAAAGGGAACCGAACCTTCTACAGCTCACCCTATCTCATA GGAAGTTTTTAC AGGTTCGAAAAGGGCAAATCCTCCCCCGTGCCAGGTAGCGCAAAGAAGCACGTGATCGAA AGCCTGATAAGA CTTCAAAAAATCAATTACGCCACCACCCGCATGGATAACATCAAGTTGCCCCTGCCCGTC GACATCACCCAC AAACTCATTAACTTTATCCGGGACACCAAGATGGAAATCAAGGGGGTCGGTATCCCAAAC AGTCTCTTTATG ATA

ATGCCGTTCAATAGCAACCTGATCTTCGTGAAGCTCGACGACCTCAAGAGAGCCTTT CTCGAGGGCGTCCAC

175 79 AGTGGTCACGCCGTGGTGTATGAGGTGAGCGAGGGACTGAGCACCGAGGATCTGAAGAAA AGGCTTATCAAG

GCCAGCGTGATGTACCACTATAGGTATGGAAGGAACGTGTTTGTCTTCGGCGTCAAGGAG GGCACTAAGGTT GACGATCTTGTACCAGGCCGACGACTCGGCGAGCACGAGGTGAAGGAGGTTCTCAAGGGC ATCCCGTCTAAC AACCTGGTGTCCATGATGAGCGCCATGCTCAATTACCAGCTCTCTGTGCTTCTCACCAGC AAGGGCTTCCAG TATAGCTACGAAGAGATGCGGAGGGGCAAGTATCTGTGTGTCAGCAACTATTACGGCAAG CTGATACGGAAC CCCGTGAAGGTTTGCCTCAAGGTAAATGTCATAAGGAGCCTCATTGACGAGCAGGATCAG TACCTGCCCATC GCGCTTAACTACAGGGTGAAGAAGAGCAGGCGGCTTAGCCCCGAAGTAATGAATGAGATC CACGCGGAGTTC ATGGAGGCCTTCCCCAGCTACCTCAACGACCTGAAAATCATAACTCGCGTCTTGAACGAC GATATGGTGAGG AACAGGGAACTGAAATTCCTGGAGATCGAGTACAAACCCCCTGCTATCATTACGTTCCGG TTTCGAGGCAAC AGCACCGGCGAAAACGTGACCGACATTCTGAAGCTGGGCCCCTACTTCCTGCCTGGGGAG GAGGAGAAGATC GATGTGGTCTTTGTGTACGAAAATGCTCTCGCTAGCCAGGCGAAGAAACTCACCAAGGTT TTGGAGGATACC ATCAAGGACGGGCTGGGCATAAAGCTGAACATAGACGACGAACATAAGTTCAGCCACGAC AAGCCGCTGGGC GACGTTATTAAGCTGGTGCGCGACCGATTCATCAACAGCGGGAGTTGTCTGCTGGTCCTT AGCAAGGAGAAC CGCCTCGGTCCTATCTTCATGAGCATTAAACCGCTCACGCTCAAGAAGAACTTCTACTTC AAGTCTCAATTT ATCACCAACGAAACGATTAGCAAACTGGACTCTTATGCGGTCAAAGCCAATATCGTGAAT AGCATCCTGTTC AGGGTTGAAGGTACCCCGTACATGCCCGTTCTGCGGGGCAATATAGACGTACTGGCAAAC AATTTGTTCGTG GGCATCGCCCTGAGTAAGCCTCTGAGGAAGGGCTACACCAAAGGAGGCATAGCCCTCATA GACCCCTACAGC GCCCGAATTATCACAAGGGCCATCGTGTTGAAGCGCAAGATGAGGAGCGGCAAATTCGAA GCCTCAGACATG CACGAGATCGTGTCCAACATCAAAGGCGTGCTGAAGGACTACAAGGAGCTGTACAACGTC AACGAACTTGTT ATACATATCTCCAAGTTTCTGAGCGATGACGAATACGGCCTTTTTTACGAGTACTTGCAG GACCTTAATGTC AACGTGCGACTCCTGAGCATCAGGAAGAGGGACGACATTACACTGGTTAGGGACGGGAGG ATGGACAGCCTG ACCATGATCAAGCGCGGCAAGAGTCATGTCGAGGTCATGTATTGGCCTCACGAAAGGGCC TACCACCCCCTT ACTATCAGGATCTACGGCGACAATGTGGACAGGGACGTGATGATGCGACACCTGAGGTTT ATCGAGCTGCTC CGGCACATGTACTACCCGGCCAGCAGCCGCTTCATAGTTGAGCCCGCGACCATTAGCTAC AGCAGGAGGGTC GCCAGATTTGCCCCCTGGCTTTCAGACAATACC

ATGGAAGTGTCCCCCTTCTTCAACGAACTGTTCAAGTACTACATATTTCTGTTTTTT GGTTTCAAGGTGAAC

176 84 ATCGTGAAATCACATTACCAGAGCATTAAGAAGCACAAGATAATATTCTATTCCGGTGGG ATCATGGACGAG

TATTACACTAACGCCTTCCCCATCAACAAATACTTTATCAACCGCATCATCTCTGAAAAC TGCATCCGCTGC CTGTGCAAAATAACCAAGCTCGAGAAAAAAGAGAAGATCGAGGAGTTGCTTTACTCTATC AGCGCCACCCTG GGGGGCATTTACATCGACGATTACAACCCAATGAAGAATAAGTTCAGCTTCTACATTTGG AAGGGAATCCTG AATAAGAAGATTAAATCCTACGGGTCTGAATGGCTCATTAACAAGATGAAAAACATGGGC TTTAAGGATCCG GAAAACAAGACGCTGTTGAACTATGTGAAAAAAAAGTACGAGAAAGACATAAAGTTCGAC ATCATAAAGAAA GAGAAGATAGAATGGAGTAACCTCGACTGGGAGATAAAGGAAAAGATAGTGCTGGGCGCC ATAAAAACTCAC CCTACCATTCGCAAACTGATTGAATACAAGAATGAGAAATTCATTGACAAAATTGGAAAG AAAATTCTGACT TACTTTAGCATCACAATCACCAGCGACGAGAACGAGAATTACTTTCTGATCGTCAAGCCC AAGCATAAGATC ATCAGCTCAGAGACAATTTACAACATGCTGAAGAACAACAAAATCGACTTTAAAACTCTT GAGAGGAAGCTG CTGAACGGCAGCGCCCTGATAACCACCAGTAGGGCAGTCGGCAGACGGAAATACGTCAAA ATCAAAAAAATC ATATCCCCCAAGGAGAAGGAGTATTGGCAACATACCCAGGACATCAATGAGCACTACGAA AAGGAGGGCGTC CCGATCAGCGTCGGCGGTGACGACATCCACTGCTATATCTTCATCGGGGAAGACGATTAC GCCTACCACACG AAGAACTCCTTGCTCTACGAGGGTGTGACGGAGGACGTGCAGAAAATACTCTTGGATATG GGTAAGTTCCTG GAGGAGCTGGAGACGGCAAAATCTATCCTCAAGCAGGGCAACCTCATAGACTTCAGTCGC GAATTCCTCAAC ATTAGCACGAAGGACGACTACACCCTTACTCTCCTGAGCACACTGTCCGATATCAAAGTG AAGCTTAAGACC SEQ

ID NO Argonaute # Sequence

GAGTCTGGTATCATCACAGGCGACTACCAGAAACTTAGGGAGATCTTTGACTGGATCTTC GACAAGAGCTTT AACCCCTTGAAGCCTAAGAATTGCTACCTTCCGCTGAGTATTCCCCCCATACTGAATGAC AAGAAAAAGATC GGCGTGTACATCTTCTATAGCAATATTAGCGACCCCGAGCTTAGGTTTATCGAAGGGATC TTTAAGAAACTG GGCCTGATATGCGCCATCAATAAGAGTGTGCCAAAAATTGAGGTTAAACTCAAGAAGGAA GTGGACTTTGAG GACTACGCCAACAGCAGGATCATAATCACCCAGACCGTACTGAGCAATCTCGAGGATGGC GAGCAGCCGTTC CTCATATGTATAAGTCCCTTGCTGCCGAATAACGAGTTCGATGAACTCAAAATGCATCTG TTCTCTCACCCG CAGCTGATATTTCACCAATTCATGTATCCGTTCAACCTTCGAAAGTGCCTTGAGAAAGAA TCATTCAAGAAA CCCTTCATCAACTCAATCCTGTCTCAGTTCTTTCACAAAATGGGCATGTACCTCTTTAGT CTGTCTGACGAG CTGGGGAACTACGACTTCATTATTGGTTACGACATAAGTAGGGAAAAGGATGACATCGGG AAGATAAAAGGT ATCGGCGGCTCCGCGATCATCTACAACAATTACGGCCATGTCAAGTCAATCATAACGTTC GACGACGTAGGG TCTAGCGAGATAGGCAGGTACGACCTCCTGTTCGCGCAGGTGCACAGCGAACTGATACCC CACCTGAATCTG AACAATAAGCGGAAAATTAAGATTCTGCTTCTCAAAGACGGGCGGATTTTCAAAAAGGAA CTCGAAAAGCTC AGCCAAATCAGCAAGAAGTATAACTTCGAGATCACCTACATTGACGTTCGCAAGAGCACG CTGCTCCGGTTC TGGGGTGTGCGGAGGGGCAAAGTGGTGCCCGAGTATAAGAATAGCTACGGGAAGTTCGGA CGCGCATACTAT ATTAGTAGCCATTACTACAACCGCTTTTTCAAGCAACCAATCGCAATCGTGGAGAAGTAC CACATAGACGAG GGCAATTACAAACGCGTGGAAATAGAGGAGAATGATATTAAGCAGCTGGTTCTGTTGACC AAGATTAACTAC AGCCAACTGATGCCAGATAAGATGCGGCTGCCCGCACCCGTTCACTACGCACACAAGCAC GTGAACGCCGTG CGACGGGGCTGGAAGATCAAGGACGTCTCTATACTGAGGAGCGGGTGTCTTCCTACGATC

ATGGCCTATAGCCTTAACGCTTTCGAACTGGAAATTCCCGACATTGACGCCGACCTC TACAAAGTTGACCCT

177 81 CAACCCTCTGATGACCCATATCGAATCCTGGGGGGTTTGGAACGGTCCTTCGAGCAACAA CTGGACGGCAAG

GCCCAGAAATGGAAACAGGCGGAGGACGGAGATTGGTATATCGCCGTGATAGGCGCGTCA GAAAGGAAAACT ATCGAGTCCCCCTCCAGCGGTACGAGGGCAGGCTACACCACCACGCATACGCTGGATCCG AGTAGCTTTTGG GACAGGATGGTGTTGCAAAGGGCAATTAGCGACTCTGTACGATGGTACATGACCAACTAT CAGGACTTTTGG TATCATGAGGATGCGGATGCACTCTTTTATCCTTCTCCTAGAGGCAAAGTGGACGAGTAC GACGTCTACACC GGATTTAGTCATAGGGTCGAGTTTTATGACAGCCCACAACTTGTCGTGCGCAGCGTCACT AAGTTCATCTCC AGTGAAAGCCTGGCGGACCGGATCAACCATCAGGGCACAGAAGAAGCAACGGAAAAATAC GGTGGTGAGAAC TTTAGGCTGGACAGGCCGGAACCAACCAAATGTACTTTGCACGGCATCTCAACCGAGCGA ACGGTAAGTGAC AAGACGATAGATTTTGGTGACGAGATGCTGTCCGTGTTGGAGTTTGCACAAAGAAAATAT GGCAGCGAGTGG GCGGACAAAATCGATCCCGACGAACCATTGGTGCAGATACGCTTCGGGAACAGCGACCCC TACGACACCGCT CCGAGCCTGCTGAATGCGAGCCCTGAGGAGCTGAATCGCAGGCTGACCAGCGAGGCAGCC CTCAGCGCACAA GAAAGGCAGAAGGCCATACAGAACTTCATCGGCAGGATACACTACATCCAGGTTGAAGAC GAGAAGGTGAGC GTCAGCGATGACGGCGTACGGCCCACCGAGCAGGGCGACTTCGACTACCCCGATCTTGCG TTTGGCAATGAC GAGGTGCTCAGCACCGGCGTCCCGAACGCGGTAGATCCTAGCCAGGAGGTGCACCCGGGC AACTGGCGATGG ATAATCAGGGACTACCTGGAGGAATACGGCTTCTGGGAGTCACAACGAAAGCTGTCTGAG ATCGTGCTGGTG TACCCGAGAGGCGAAGAAAGACGGGCAGAGAACCTGTACCAGGACGTTAGGGAGAAGCTT TCAGAGATAGGA GGCGTTCAGATCAGGAGCGATCCACATCGCGTGTGTTACACCGATCAGGTGGAGTTCGAC GAATGGGTGGCT GAATTCGGTGACTCAATCGACGGTGTTCTTGGATTGATTGAGGGAGATGGAGACGAATAC TACGAAATCATA GATGCATTTGGCGGAGCACCGACCCAGTACGTCAACACTAGCACCTACTCAGAGCACAGA GGGGCGAGCGAC GACGTGATCTTTAACACTGCTTGCGGACTGGCCGTGAAGTTGGGCGCATATCCTTTTGGC CTGGCCAACGAC CTGAACAGTGACGTGTACCTCGGCCTTAGCGTGGCAGGGGATAGAAGCACAACGGCCACC GCCGTTGCCATA GACGGAAGAGATGGGAGGATTCTCTATCAAACAGAGGAACCCCTGGGCCAGGGTAGCAGC ACAGTAAGCGAG GGCTATCCCGCTAAGCGAATCATCCAGAGGAGCCTGAAGACCGCCTCAAGCGCCTTTGAT CGACCAATCGAG AGCTTCGACATTCACAGGAACGGAGACTTTGGCGACGCTGAGCTGGAAACCCTTAGCAGT GAATTGCCTGCA CTCCAGGACCAGGAATATGTGCATACCGATGTTTCATGGAGCGCCGTCGAGGTAATTGAA AACCACCCTTAC AGGCTCTTTAGTGAACGGGGCAGCAGAGCTCCCGATACCGGAGCCTATGCTAAGCTGGAC GACGAGCATGTA CTGGTTACTACCTTTGGAGAGCCCCAGATCCACCAAGGTACGCCAAAACCGGTCCTGTGC AAGAGGAGAGCA ACGAGCCAAGATCAAGACATCACCGCCATCGGAGAGGACGTGTTCAAACTCAGCTTCCTT AACTGGGGTAGC CCAATGATGAAGATGAAGCCACCTGTTACCACTAAGATTCCGAAGGAACTCAACGAGATT TTCGAGAAGTGC TCTAGGGTGAGATACCCCCCCTTC

ATGAAGACGCAGGATGATATCGCGCACAAGCAACCCATTACCATCGAGGTCCAGATC CTGAAGGAGCTCGAC

178 83 AAGCCAAGCCCAAAAATGGCCACCCGGTTCCTCGTGGCCGATAGGGACGGCAACAGGTTT AGCCTGGCTATC

TGGAAGAACAACGCACTCAGCGACTATGACTGGACGATTGGCCAGTGGTACAGGCTGGAA AACGCCAGAGGA AATGTCTTTAACGGCAAACAGTCCCTCAACGGTAGCAGCAAAATGCGCGCCACTCCACTT GAGGCCAGCGAG GAGGACGAAACCAGCACGGATGATGTGGGACGGGTCGACACAATCCTGGGTAATATGAGC CCGGACCAGGCT TACCTGAGCCTGTTTCCCATCAGTAGGTCTTTTGATACCCTGTCTGTGTACGAGTACAGC ATTGAGGCAGCC GAGGCATTCGAGGATGCGCCGGACACCGTGACCTACAGGTGCGCTGGCAGGCTTCGGAGA ATCACGGGTGCG GGGGTCGCTTATGCTGGCTCAATGAGGATCGTGTCAACCCGCAAACTCCCGGACAAGCTC GCGGACCCCTTT AGCTTGAGTGAACCCACGGAGAGGGAACTGAACGCTACGGACGCCAGGGACAGGCATAGG ATAGAGCGGCTT CTGAAGAGCCTCGTGAAGGCCGCCATCGACGATAGCACCTACGACCCATACCAGATCAAC CGAATCAGGGCC AGGACCCCGAGCATTACCGCTGGCGACGGGCTGTTCGAGGCGTGCTATGAATTTGCAGCA AGGGTCGATGTG ATGCCCTCCGGCGACGCCTTCGTGGGAATTGAGGTAAGGTACCACACGCGGAGCCAGGTC ACTGCAGACGTT TACGAAGACAAAACCGCGGAACTGGTGGGCACCATCGTGGAGCATGACCCAGAGAGGTAC AACATTAGCGGT ACGGGCCGAGTAGTGGGTTTCACTGACCACCACTTCACCGACGCCCTCGACGAATTGGGC GGTCTTAGTTTG GCGGACTGGTACGCGCAGAAGGATCGCGTCCCAGAGGGGGTATTGGAGGCGCTGCGAGAG AAAAATCCTAGG TTGGTTGATATTCAGTACCAGGAAGACGAACCAGCCAGAATCCACGTCCCGGATTTGCTC AGGGTAGCACCC CGCAAGGAAGTTGTCAAGGAGTTGGATCCCGCCTTCCACAGAAGGTGGGATCGAGAGGCC AAGATGTTGCCC GACAAAAGGTTCAGGCACGCCATAGAGTTTGTGGATCATCTCGGGTCCCTGCCGGATATA GACGCCACGGTG GCACCCGAGCCTTTGGGGCCGTCACTGTCTTACATGAGCACAGCAGTCGACAGGGAGAAG AACCTGCGCTTC AAAGATGGAAGGACCGCCACCACCCCGTCAAGCGGCATCCGGAGCGGCGTATACCAACAA CCGACGAGCTTC GACATCGCCTATGTGTACCCCACCGAGTCTGAACAGGAGAGCAAGCAATTCATTTCTAAC TTCGAGAACAAA CTGTCCCAGTGCCAGTGCGAACCAACTGCCGCTAGGCACGTTCCTTATGAACTCGGCGGC GAGCTGAGTTAC TTGGCTGTCATCAATGAACTTGAGAGCGTGGATGCGGTGCTCGCTGTGGTGCCTCCCCGA GACGATGACCGG SEQ

ID NO Argonaute # Sequence

ATAACGGCCGGAGACATAACTGACCCCTATCCCGAATTCAAGAAGGGCCTCGGGAAGCAG AAAATACCCAGT CAAATGATCGTGACCGAGAACTTGGGCACAAGATGGGTGATGAACAATACAGCCATGGGC CTGATCGCAGGG GCAGGAGGCGTTCCGTGGAGGGTGGATGAGATGCCGGGTGAGGCCGATTGCTTCATAGGA CTGGATGTGACT CGCGACCCGGAAACCGGCCAACACCTTGGCGCTAGTGCCAATGTCGTTTATGCCGACGGA ACCGTTTTCGCC TCTAAAACGCAGACCCTGCAGAGTGGGGAAACGTTCGATGAGCAGAGCATAATCGACGTG ATCAAGGATGTA TTCCAGGAGTTCGTTAGGCGCGAGGGGCGATCCCCTGAACACATTGTTATCCATAGGGAT GGCCGGCTGTTT GAGGACGCCGACGAAATCCAGGCCCCGTTCGCGGATAGCGGAGTGAGCATAGACATTCTG GACATCAGGAAA TCTGGCGCTCCGAGGATTGCCCAATACGAGGACAACAGCTTCAAGATTGACGAGAAAGGC CGACTTTTCATC AGTCAAGATGACACGCATGGATTCATCGCCACAACGGGAAAGCCGGAATTTGATGATAGC GACAACCTGGGC ACTCCCAAGACTTTGAGGGTAGTGAGGCGGGCTGGTGACACACCGATGCTGACTCTGCTG AAGCAGGTGTAC TGGCTTAGCGAGGCACATGTTGGCAGTGTGAGCCGAAGCGTTCGCCTGCCTATCACAACT TACTATGCAGAT CGCTGCGCCGAACATGCGCGGGAGGGGTACCTGCTCCATGGCGAGTTGATCGAGGGTGTG CCATATCTG

ATGAAGCCAGTGAACTTGGATGAAAACAGCCTCAACGACGTCCCGGTAGGCGACACC TATGCTGTCCGCTTC

179 87 ACTCTTGATGCAGTCTTCGAGAACGAAGGGCAGTATCCCCGGAGGAATCTGAAATTCACA GACGGAGGGGGG

GATGACCGAACCATCACTATTTGGAAAAACTCTGCACCCGAGGAAATTTACGAGGCGGAC TATGAGCGCGGT GCGACGTATCTTATTACCGCCGTCGAGTATGACATCGACGAAGGTAATGACGGCGAGCGA TACCAGAATCTC ACAGTCCAATCAGATGCTACCTTGCTGGAGATGAGCGGTCCCCCTAGTACCGAAGAGGCC TTGGAAGACGGC CTCGCCGAAACCCCAGATACTAGCGCCGATTCAGGTGACCACGGGTTGACAACCTTTAGG ACTACAGACGAC CTGCCGGATTATGACGTCTATGAGTACGAGCTGGTGCCGAAGCAAGGATTCCGGCCGTCC GGAGAAAATGCC CTCCGAGCCACATACAGGGCACGACGCAAGGTCCGCCAGCAGTTGGACGTAACACCCGTC GTGGTCGGCGAT GCGTTTAAGCTTGTGTCTCTGGTCAAGCTGGCCCACGAGCGGGTCGAGCTTCCGCGATTC AAGATCAACGAG GTTGACGAGAGGCCCATCGTCTACGCCGATGAGGATGACAGGGATGTGTTGGGGGAAATG CTCGGTGAGATC CTCAAGGACGCGAAACGGGACCAGTACGACATCCATGGCATCGACAAAATACTGGAGCCA GAGCCCGTCATA GAGAAAGAGGGCTTCAGGCTCCACGAACGGTACAACCTGACCGTGGAAGTTCTCCCTAGC AGGGCCGCTTAC CTGCACGTGGACTATCGACATCGGATATTGAGCGACAGGACCCTGGATCAACTCGATGAA GACGAAATCCAC CCTGGCCTGCGCGTGACCCCCTCATATAGGGACATGGGTCTGTACGTTATAGGCGTTGGG CCGGAGACGGTG ACCGATAAGCTGCATATCGAGGGCAACAAGAGCCTGGTCCAATACCATCGGGAAGAGCCG TGGGTGGACCCG GCGAAGGTGCAAGAAATCAAAGACGCAGATAGGGAAGTGATCTGGACCGTGAGGCAACGG GGCGATGGCACC GAGATGGCATTCCCGCCGGAGCTGCTCGCGCTTCAAGGGCACCCCGAAAATTTGGCCCAG TTCGCCAGCGAC TTTGCTGAACAACAAAGGCTCAACACGCGCCTTTCCGCTGAGCAATGCATCACCAAGGCT AAAAGGTTTGTG GAGCGACTCGGGCCCTTGCAATTCGACGGACACACTGTGGAATTCGAGACCAACCCGCTG TTGGGCGATCGG AACATAGCCATAGATGGTCTGTTTCACCCGGAAGCAAACGTGCTGCAGTTTAGCGGAGGC CAGACCGGCACC CACCCCTCAGATGTGACACAGCTGGGCGTGTACGAAGCCCCGGACCCCTTCAGGGTGTGC CACATCAGGATG GAGAAGCGGGACAAAAGAATACAGAGGGGTTGGAGTACCTTGGAGACGAAGCTGGAGCAG ATTGGAGCGCCT CCCGACAGTGTCGAGGAGGTCACGTTCGACGCCACAATGAGCCCTGACCAGTTGGGTATG GAGATAGCGGCC GAGATACCGGACGACCATGATTACGACGCGGCCTTCTGCACATTGCCACCTAAAGACACC GGCTACTTTGAC ACCGCAGACCCCGAGCGAGTTTACGATGAACTTAAGAAAGTGTTGGCCACCAAAGACCTT AACTCCCAATTC GCGTATGAAGCAACGCTGGACGAGCGCTTTACAATAATCAATATAGCACTGGGTCTTGTC GCCGCAGCGGGA GGTATTCCGTTCACAATCGAGAGGGCGTTGCCAGGCGATAGCGAACTCCACCTGGGAATC GATGTAACCCAC CAATACGACGAGTCCGCGAATGGCAACCACATTCACCTCGCTGCTGCGACGACGGCTATC CACGCTGATGGA GCTGTACTGGGCTACACCTCCAGCCGCCCTCAGTCTGGGGAAAAGATTCCCCCCAAGGAG CTGAAAGAGATC ATCAAGCAAGCGGTGATGGGCTTTCGCACACGCTACGATCGCTACCCAAATCATATAACC ATCCACAGGGAC GGGTTCGCAAACGAGGACCTGTCCGAGGTAGAAAAGTTTCTGACGGACCTCGACGTTGAA TATGATGTTGTC GAGATCAGGAAGCAGGCCCCAGCGCGCGTCTTGAAATACAGTGGTGCCCACTTCGACACG CCTCAAAAGGCG ACCGCCGCAATCTACGAAGACATCCCGAAAGCGATTGTAGCGACGTTTGGTGAACCCGAG ACTCTCGCTAGC CGGGAGTCAACCGGGCTTCCCCAACCAATCACGGTGGAAAGGGTGCACGGAGAGACCCCC ATCGAGACACTT GCTGCGCAAACCTACCTGCTGAGCCAAGCCCACATAGGCGCCAGTAACGCTACAGCACGC TTGCCCATAACC ACCATGTATGCCGACTTGGCTAGTGCAGCGGCAGCCAGGCAACACCTTCCCCCGACCAAC AAGCTGAGGGAT AAGATCGGATTCATC

ATGAAGAACCTGAGATACAAAATCAACGCCTACAGAATCAAAAAAGACTATATTCCC AAGGAAGTTTATAGA

180 86 TACAGGATCCGCTCCTTCATAGAGAACATTAACATATATAGGTTCGTCGGTTTTTACGGA GGCGTGGCCCTC

AATCAATCTGAGTTTATCCTTCCGTACCCGGTCGAAAATCTCGTCCTGGAATACGACGGA AAAGATGTAAAG CTTGAGCATATCGACACACTGAACCTGGAGGACATCGAGAATAAGGACAAGGAGAAAGCC GAGAAGCTGGTG AGGGGATACCTGACCAGCATATACAAGTTGAAACCCATACTCTACAAGATCCTGCGGGAC GTTCGAGAGAGC AAGATCATTAACGATATCAGAGTGGATCCTATACCCGACTTTACAGTAAAAAGGCACAAT AACGAATACTAC CTTGTCATCGATTTTAACCACACCGCGACCGTGTTGAAAAATCTTTGGGACTTCGTGGGA AGGGACAAGCTG AAACTCGAGGATTATATCGGTAAGAAAATCATATTCAAGCCCAACCCGAAGAAGAGGTAT ACTATAAAGAGC ATTGAAAAGCAGAACAAGAAGGACATTGATGACATTGTCGAGCACATCATCGAGTACTAC AAGTGGACGGAG GAGGAAATTAAGAGCACCTTCGGCGAAATCGACTATACTCAGCCCATCATCCATTGCGAG GGCATCCCCTAC CCGTTCGCACCGCAATTTTGCAATATCGTATTTACCATGGAAGACTTGGATGAGAATACC CTCAAGGACCTG CAGAGCTACTGGAGGTTGCCCAACGAGATCAAAGGCAACATTATCAATCAGATCGCTAAA AAACTGCGATTT GTGGAGAACGAGCCAATCGAATTGGAATTCATTAAGTTCAATAACACCCCCCTTATCGTG AAGGACGAAAAT GGCAAACCAACAAAGATATACACCACCAATCGCCTCTTCCGATGGAATTACGATAGTAAA TCCAAACTGTAC TTGCCCTACGACATCCCTGACATAATCAAGAACAAAACACTGACAACGTTTGTGCTGATC GACGAGAATCTC AAAAACGTGAGTGGTAAGATCAAGAGAAAGGTCTACCAAATGTTCAAGAATTACAATAAG ATCGCCAGCAAG ACTGAGCTCCCGAAATTTGACTTCGCCAATAAATGGAAATACTTCTCTAACAACAACATC AGGGACGTGATC CGAAAGATTAAGGATGAGTTCAACGAGGAGCTTGGCTTCGCGCTCATTATCGGCAACCGA TACTATGAAAAC GATTATTACGAGACCCTGAAGATGCAATTGTTCAACCTGAATATCATCTCCCAAAACATT CTCTGGGAGAAT TGGTCAAAAGACGATAATAACTTCATGACAAACAACCTGCTCATACAAATTATGGGCAAA CTCGGAATTAAG TACTTCGCACTGGACGCAAAAGTGAACTATGACTACATCATGGGGTTGGACAGCGGCCTG GGCGCATTCAAA AGCAACAGAGTGTCCGGGTGTACCGTGATCTATGACAGCGAAGGGAAGATCCGACGGATT CAACCAATTGAC GTGCCCAGCCCTGGGGAAAGGATCCCCATTCACCTGGTAGTGGAGTTCCTGGAGACCAAG ACCGACATCAAT SEQ

ID NO Argonaute # Sequence

ATGGAAAACAAAAACATCCTGTTCCTTCGAGACGGCTTTGTGCAGAATAGTGAGAGGGAG GAGTTGAAGAAA CTGAGCAAAGAGCTGAATAGTAACATCGAAGTGATCTCAATCCGCAAGAATAACAAGTAT AAAGTCTTTACC AGCGACTACGGTATCGGCTCCATTTTTGGCAATGATGGCATATTCCTGCCACATAAAACT ACATTCGGAAGC AACCCGGTGAAGCTCAGCACCTGGCTGCGCTTTAACTCCGGGAATGAGGAAAAATTGAAG ATAAATGAGTCT ATAATGCAACTTTTGTACGACCTTACCAAAATGAACTACAGCGCTCTGTACGGGGAGGGT AGGAACCTTCGC ATCCCGGCACCGATTCACTACGCCGACAAGTTTGTGAAGGCCCTTGGAAAGAACTGGAAA ATAGACGAAGAG TTGCTGAAGCATGGCTTCCTCTACTTCATC

ATGAGTCAAGACTCTAGGAGCACCGAGGTGGAGAGGCAGGCCGAAATACAACCTGGT ACCTACCTGTTGAAC

181 82 GGCCGGGGGGAAATTCAGTTGGATGAGGTTGACGCATTCCAGTACGACCTCAAGGTGAGT GGAGGCGTGGAG

CAGTATTGGGATCGGGAACAATTCACCAGCTCTGCAGCCTACTACCTGGACCAGGAACAC GGGAGCCCTGTC GCTGAGATAGGCAAAATGAACGTGCTCAGCAAGACGGATTTGTCTAGATCAGTTAGAGTG TGGCAGAGAAAC GTGACTCCCATCAATAGGCAGAGCGTTACACTGACCGCAGCCCAACCCGAGGACCGAGAA AAGATCAAATCA TTCGTGCAAAGCTGCTTCAAGAGGGCAGTGCCGACCGAAAAATACAGCTTTCGCTTTCTC AACAAGATTGTC AGGGATGAGCCCGAGTTCACCACCGGCAGCGAAGGCTTTTCTGCACATCCGAAGCACGAC GTTAAGATACAG GTCACCGCTGATGGCAATGTGCTTGTGCACGTGGATAGCGGGTTCAGCATCAGGAGCAAC AGCACCCTGGAC GAAATCTACTCTGAACAGGATAACCCTTACGGTAAGCGCGTTGCCCACGACCCCGAGAGG TATGGTACCCAG GGCCAAGGCACCCTTCGCGGTTGGAGCGACTATCGGTACACAGACCATATTAGCGATGCG GGTAGCTCTGTG AACGAAATGCACAAAGGGGTGGCGGACGAAGAATGGCGGCAACGACTCGCAGAGGAGAAT CCCCGACTTCTG AAAGTGGAGTATGGCAACAAAACTAGGAGGCAAGCCCCCCATTTCCTGAGGCTCTCACCG CGGATCGAGCAG GTGCAGGATCAGGATCGCGAGTTCTATAGCAGGTTTAACAGCCGGAGCGCGATGATGCCC GACGAAAGATTT GAACTGTCTAAAGAGTTCCTGCAGAACGTGAGCCGCTTGCCGGTATTGGACATGGAACTC GAGCCGGGTCCG GTGAACAGCAGTTACGAGTTGCTGGAAATGCGAGAGGAAAACAGGCTGGTTTTTGGAGGG AAGCAGAGGGCT AGAGACCCGGGCAGCGGGCTTAGAGAGAATGGGGTGTATCAAAGTCCCAGTCAGTACCGG CTGGGGGTGTTG ACCCCCGAACGATGGGGAGAGAAGGCGAGCGAGCTGATCCCCCTGATTGTGTCCGGCCTG AACGATCTGAGC GCATCAGCAGGAGTTCGAGCATATGGATACGAATTGGGGGACGTCAGCAATTACACACCC GTGGTTCAGGAC CTCCACGAGGAGACGGACGCTGTGCTCGCCGTGGTCCCCAATAAGGGTGTGGCCGAGGAT TTTGGGATAGAC GATCCATACAAGGAGCTGAAAAGAACCCTCCTGCGGAAAGGGATACCCACCCAAATGATG CAAAAGTCCACG GTCGATGAAATCGTGGGTCAAAAGGCGGGAATCGGCAATGACAAGTTTCTGAACGCACTT AGTGCAGTCGTG GCCAAAGTGGGCGGTACCCCATGGCAGATCGATAGCCTCCCCGGGAAAACCGACGCCTTC ATGGGCTTGGAC GTAACTTACGACGAGAGTAGCGAGCAGCACGCAGGCGCCAGTGCAAGCGTAGTACTCGCG GATGGGACGACT TTCGCAGCCGAGAGCACCACCCAGCAAGGTGGCGAGAAGTTCAGTGCACGGCATGTAGAA CAGTTCGTGAGG GACCTCGTCTTCGACTTTGCGGGGGAACAGGGCCGAGACATCGACAGACTGTGCATAATG AGAGATGGGAAG ATCAGCGAGGATATTGACGCCGTAAGAGAGGGACTCAGTGGTATTGAGGCGGAGATCGAC ATAGTTGGCATA CGAAAATCCGGGCAACCTCGCATAGCTGAGTTTGACGGTACTCGGTTTCGGATCGCCGAA AAGGGCGTGGGC TTTGTGGACGCCGACAGAAGCCAGTCTATCATCCATGCATTCGGCAAACCCGAAATCCAC GACGACAATCCT GTGGGCACCCCACGAACCTTTCGACTGACCAAGGACTCTGGTCCCACAGATGTGGAGACC CTGACCCGACAG GCATACTGGTTGTCCGAGATCCATTTTGGAAGCCCCGTTAGGTCCCCTAGGCTCCCCGTG CCAATAGAGTAC GCAGACATGGCTGCTGAGTATGTTCGGGAGGAGTACGTCTCACCAGGGACTGTAATAGAA GGGCCAGCATAC ATC

CTCCCCATCGTCCTGAACGCCTTCCCACTTAAAGTACCCGAACTGGAGCTGGAAGTT AGGCAAATACCGTAC

182 8 GATAAAGAGACGCTTGACGGCCTCAGGGCTGCGCACAAGGCCACCCACGCTTTCCGCAGG CAGGGCGACAAC

ATACTGATTTTTTCCGGTGATGGCACATTTCCCGCGTCTGGGACGCCTCAAACTATTGCA CTGAAGGACAAT TTCGGCGTGTTCTACAGCCTCGTGAAGGATGGTCTTATCCGCCACCTTGCGGGGCTCGGG AGGAATCCCAGC GGGTTCAACCCCATAGAGTTGGTGTCCGCAAAACCCGAAGACAACCTGCTGGTCCCCATA CTCGGCGATGCG TATCCTTTTAAGGTGTGCGCGAAATACAGCATTGACACCAGAACCGTGCTGGGGCACCCA TGTCTGGTGATC GATTGCACGACCAGGAGGGTGTTGAAGGAAAATGGCTTGTTCTTTTTGAACGCTGGGTTC GACCTCGCGGGC AGGTACGTGGTGACGGAGCAAGATGACGGGTACAGGAAATTGCTCGGCAGCGTGAGCGGC TGTAAGGGTGAA ACGCTGTACGTGACTAGGCCCGATGGCCAAGTGGTGCAGGCCGAGGCTAAAAACGTGTAC CTGGAGGCATCC CGCACAAATTTCGACGACTATATTCTGCACACCCACAGGGCTCAGAAGGACGCGATCGTT GAACGAATCAGA CAGTCCGTTTCCGTGTTTAATGGGGGCGAAAATAAGAAAGCCCGAATCGACACGCTGAAG AAGTATATCCAG TCCAAAACCATTCCCTTGATCGACGGCACCAGGATTGAGATCCAAGATTCCCCTAACATA CAGAAAGACTGC GGCCAGATGCAAAAACCGGTATTCGTCTTTAACGACAACGGCGAGGCGGACTGGGCGGAG AAGGGGCTGACC CAATCTGGGCCGTACACCAAGAGGACCTTCGACAGGAATGACCCCTCCATTTGCGTGATC TGCGCCCAACAT GACAAGGGACGCGTTGAGCAGTTCGTCAGGAAGTTGCTTAAGGGCATTCCAAACTCCAAA TACTTCAGCAAC GGTCTCGAGGGGAAGTTTACCCTGGGCACTAGCAGGGTAGAAGTGTTCGCGACCGCTACT GACAGCGTAGAC GCCTACAAGAACGCTATTGAAGCCGCAATACGGAAGAAGGCCGACGACGGCGGCAGGTGG GACCTGGCCCTG GTTCAAGTGAGGCAGAGCTTTAAGAAGTTGAAAGTGACCGAGAACCCCTACTACCTTGGC AAAAGTCTGTTC TTCCTCCACCAGGTGCCCGTCCAGGACTTTACCATTGAGCTGTTGGCTCAGTCCGACTAC TCCCTCGGCTAC TCTCTGAATAACATGGCCCTTGCATGCTACGCGAAGATGGGCGGTGTGCCCTGGCTGCTT AAATCTTCACCC ACCCTCAGCCATGAGCTTGTGATAGGCATCGGCTCCGCCAACATCGGCCAGGAGAGAGGA GCTGATAATCAG AGAATTATGGGCATCACCACTGTGTTCAGCGGAGACGGCAGCTATATCGTGAGCAATACA TCTAAGGCTGTT GTCCCCGAAGCTTACTGCGAGGCCCTTACCGCCGTACTTGGCGAAACCATCGAAAAGATT CAGAAGAGGATG AACTGGCAGAAGGGCGATACCATCAGATTGATCTTCCACGCTCAGGTCAAGAAATTCAAC AAGGAGGAAATC GAAGCGGTCAGAGCCGTCATTGAGAAATATCGGGAATACCAGATCGAGTACACTTTTCTG AAGATAAGCGAA AACCACGGGCTTCACATGTTCGATAGTGCAACCGCAGGGGTGCAAAAGGGCCGACTTGCC CCTCCGAGGGGG AAGACGTTCAAGCTGAGCAAACATGAGATGCTGGTTTATCTGATAGGGCAGAGGGAGCTG CGGCAAGACACC GATGGTCATCCCAGGGGCGTCATCCTTGATGTTCACAAGGACAGTACATTCAAAGACATC ACCTACCTTTCA GCCCAGCTCTACTCATTTGCCAGCCACAGCTGGCGCTCTTACTTTCCCAACCCTATGCCA GTAACCATTTCA TACAGCGATCTGATCGCTCGAAACCTTGGTTGGCTGAACCAACTGCCCGGGTGGAACGAC TCCGTGATGATC GGAAAGATCGGGCAAAGCCAGTGGTTCCTG SEQ

ID NO Argonaute # Sequence

ATGAAAGAGTTTAACGTCATTACCGAGTTCAAGAACGGCATAAACAGCAAATCTATTGAG ATCTACATCTAC

183 39 AAAATGATGGTCCGAGATTTCGAGAAGCGACACAATGAAAATTACGACGTGGTGAAGGAG CTGATTAACCTT

AACAACAACTCCACCATAGTGTTCTACGAGCAGTACATCGCCTCCTTTAAGGAGATTGAG AAATGGGGGAAC GAGCAATACATAAATGTGGAGAAGAGGGCTATCAACCTGGAGTCCAACGAGAAGAAAATT CTGGAGAGGCTC CTGCTGAAGGAAATCAAAAATAACATAGACAATAACAAGTACAAGGTCGTCAAGGACAGC ATATACATCAAT AAGCCAGTGTACAACGAGAAGGGCATCAAAATTGACAGGTATTTCAATCTGGACATAAAC GTTGAGTCAAAC GGAGACATTATCATCGGGTTTGACATCTCCCATAACTTCGAGTATATCAACACTCTGGAG TATGAAATAAAG AACAATAATATCAAGATTGGGGACCGGGTAAAGGACTACTTCTACAACCTGACCTATGAG TACGTGGGCATC GCCCCCTTTACTATCTCCGAGGAAAACGAGTACATGGGCTGCTCAATCGTCGACTATTAT GAGAACAAGAAC CAGAGCTATATTGTGAATAAACTGCCTAAAGACATGAAGGCCATCCTGGTAAAGAATAAT AAGAACTCTATA TTTCCCTACATCCCGAGCAGGCTTAAAAAGGTGTGCAGATTCGAAAACCTTCCCCAGAAC GTGCTGAGGGAC TTTAACACGAGGGTGAAGCAGAAGACAAACGAAAAAATGCAGTTCATGGTTGACGAAGTG ATCAACATCGTG AAGAATTCCGAGCATATCGACGTCAAAAAGAAAAACATGATGTGCGATAACATTGGGTAC AAGATCGAGGAC CTGCAACAGCCCGACCTGCTCTTCGGTAACGCCAGGGCCCAGAGGTACCCCCTCTATGGT CTCAAAAACTTC GGGGTGTACGAAAACAAGCGGATAGAGATCAAATACTTCATAGACCCCATCCTCGCCAAG TCAAAGATGAAC TTGGAGAAAATCTCCAAATTTTGTGACGAGCTGGAACAGTTTAGCAGCAAGCTGGGCGTG GGGCTCAACCGG GTTAAGCTGAACAACATAGTTAATTTCAAAGAAATCCGCATGGACAATGAGGACATTTTC AGCTACGAGATA AGAAAGATAGTGAGCAACTATAATGAAACTACCATCGTAATCCTGAGCGAGGAGAACCTG AATAAGTACTAC AACATCATTAAGAAAACATTCAGCGGCGGAAACGAGGTGCCCACCCAGTGCATCGGTTTC AATACGCTGAGC TACACGGAAAAAAACAAAGATTCTATCTTCCTGAACATTCTGCTGGGGGTTTACGCCAAG AGTGGCATCCAG CCCTGGATCCTGAATGAGAAGTTGAACAGTGACTGCTTTATCGGCCTGGACGTGTCTAGG GAGAATAAGGTC AATAAAGCGGGAGTCATCCAGGTGGTCGGGAAAGACGGCAGGGTGCTCAAAACTAAGGTG ATCAGCAGCAGC CAAAGCGGAGAGAAGATCAAGTTGGAGACCCTCAGGGAGATCGTGTTTGAGGCAATCAAC AGTTACGAGAAT ACGTACCGGTGCAAACCCAAACACATTACTTTCCACCGCGATGGAATCAACCGCGAGGAA CTGGAGAACTTG AAGAACACCATGACCAACCTCGGTGTTGAGTTCGACTACATCGAAATTACCAAAGGCATT AACAGGAGGATC GCCACTATCAGCGAAGGTGAGGAATGGAAGACGATTATGGGGAGGTGCTACTATAAGGAC AACAGCGCGTAC GTGTGTACCACCAAGCCTTACGAGGGAATCGGCATGGCCAAGCCCATCCGAATCAGGAGG GTGTTCGGCACG CTCGACATAGAAAAGATTGTCGAAGACGCCTACAAACTGACCTTTATGCACGTTGGCGCA ATTAACAAAATC AGGCTTCCCATTACTACGTACTACGCAGACCTGAGCTCCACTTACGGCAATCGGGATCTT ATCCCCACAAAC ATCGACACTAACTGTCTGTACTTTATA

ATGTCTGTGGACGCTATGATCAGGAGTATCGGGGTCGCACGGGACCGCCCGCTTCTC GTTTTCCTCGGGGCA

184 89 GGTGCCTCAATGAGCAGTGGTATGCCGTCCGCCACTCAATGTATCTGGGAGTGGAAACGA GAAATCTTCTTG

ACAAACAACCCCGACGTTGAGAAGACCCAGTTCTCCGAGCTGAGCCTTCCCAGCGTCAGA TTGCGCATCCAA GCATGGCTGGATCGGCAACGACGCTATCCCGCTCTTGATCATCCCGACGAGTATTCTACC TACATAGGTGAG TGCTTTGCACGCTCTGACGACCGCAGAATCTACTTCGAGAAGTGGGTCAAACGCTGTAGT CCGCACCTTGGA TACCAACTGCTTGCCGAATTGGCACGGCAGGGGCTTGTGGCCAGCGTTTGGACTACTAAT TTCGATGCCTTG GCGGCTCGCGCAGCTACGTCCATCAATCTCACTGCAATCGAGATTGGAATTGATTCACAG CAAAGACTGTAC CGGGCGCCGGGCGAGGCGGAACTGGCGTGTGTGAGTCTGCATGGAGATTATCGGTATGAT CCTTTGAAAAAC ACCGCTCCAGAACTCATAAAACAAGAGAAGGAGCTCAGAGAGTCACTTGTCCAAGCGATG AGAACTCACACA GTCCTGGTTTGCGGCTATAGTGGTCGGGATGAGAGTGTCATGGCAGCGTTTTCCGATGCC TATGACGCAGCT CATTTTAAGGGTCATCACCCCCTCTTCTGGACACAGTACGGCGATTATCCCGCCAGTGAG CCCGTAGCTGGA CTTCTTGCTTCACCGCTGGATCAGGAACCTGCGAAGTTCCACGTGCCTGGGGCATCATTC GATGATCTTATG CGCAGGATAGCACTCCACGTGAGTGACGGTGAAGCGCGCGAGCGGGTGCGGAAGATTCTT GAGAACTTCAAG ACGGCACCAGTTAACCAGAAGCTCCCCTTTGCCTTGCCTAGTCTTCCTGTGACGGGTCTC GTCAAGTCAAAC GCCATTCCGTTGATACCGCCTGGAGAGCTTATAGAATTTGATCTTGTCCGGTGGCCGCCG TCCGGTGAAGTT TGGAGCACGCTCCGGGAAATAGGGGATAGACACGGATTCGTAGCTGCCCCTTTTCGCGGG AAGGTGTATGCT CTGGCTACGATAGAGCAACTGACACAAGCCTTCGCGGACAATGTAAAGGATGGCGCGTTC AACAGGGTGCCG CTGAATAATGATGACCTCCGCTACGAGGACGGAACCGCCAATCAGCTGATGCGACGCGCT ACTGTTCTGGCT TTGGCTGGGAAAGCTGGATGCGCGAACGATGGGGATGCCATTGTGTGGGACACGTCTCGC TCAAAAACCGAA AGATTGGATAGGCAACTTTGGACTGTATACGATGCAGTACTTCTGCAGATTCGGCCGCTG GGAACTAAGCTC GCGCTCGTACTTAAGCCTACGCTGCGGGTTACGGATTCAACTGGCGAGGTAGCCCCGAAA GAAATTGAACGG GCAGTCAAGGTGCGCGTATTGGGATACCAGCATAACAAAGAGTTCAACCAGGCGACCGAC TTTTGGAGGAAA AGGCTCCTGCCCTCAAGAGATCTCCTTGTCAGATTTCCTGATCTGGATGGTGGAATGACT TTCACGATTTCA GGTCGGCCAATATTCGCCCGGCTCACCGACGAAAGGACTGAAACTGTCACACTGAACGAT GCCCAAGAGCGA TCAGCATCTCAAGTGGGGTTGCAGCTTGCAGAGCCTAAACTGGTGTTTGCACGCACTGTA GGTACGGGTCCC GCAACGGACACCCTCCCGGTTAGAGGATTGCTGCAAAATAGACCTTTCGATGCTAATCTG ACAGACTTGGGC ATCGCGACGAACCTGAGGATCGCGGTTATTGCGCCCGCTCGGGACGCCAGAAGGGTACAT GACTATCTTGGG CAGCTGCATCAGCCTATAGATCCTACAAAGTGGGATGCGGACTATCTGATGAGGTTTCCC GGCTTCAGCTCC GCTTTTAAATGCCCTTTGGACATTCCGCAGCCGGGCCAGGCAGCTTTTGTAACACTTGAC GAGCCACACGAT GAGAGTCCTCAATCAGCGCGGACCCTTGCAGGCCGAATCACAGCGGCACTGTCTGCATTG AGGGCGACGGAG AATCCCTCTGTTACAATAATATATATTCCGGCGCGCTGGCACGCGCTGCGAGCATTCGAT CTCGAATCAGAG CAATTCAATCTTCATGACTTTGTTAAGGCCGCCGCAATTCCAGCGGGCTGTTCCACACAG TTTCTGGAGGAG TCAACTCTTGCAAATGGCCAACAGTGCAGAGTGCGATGGTGGCTTAGCCTCGCTGTTTAC GTAAAGGCAATG CGCACCCCGTGGGCTTTGACGGGACTCGATAGGGACTCTGCCTTTGTAGGGCTGGGCTTC TCTGTAAGACGA AAGATCGATGGCGAAGGTCACGTCGCGTTGGGTTGTTCTCATCTTTATAGCCCAAATGGT CATGGTTTGCAG TTCCGCTTGAGTAAGATTGATAATCCGATAATGCTGCGAAAAAATCCTTTTATGTCCTTT GACGACGCTAGA AAGTTGGGCGAAGGCATCAGGGAATTGTTTTTTGACGCCCACCTCCGGCTGCCGAATCGC GTAGTTGTTCAT AAACAGACCCCGTTTCTTAAAGAGGAGCGGGAAGGGCTCCAAGCAGGTCTCGAGGGAGTC GCGTGTGTGGAA CTCTTGCAAATTTTTGTAGACGATACGTTGCGATATGTGGCTAGTCGACCAATGCCGAAT GGAGATTTCGAA ATCCATGGCTATCCTATCCGAAGGGGCACCACAGTAGTGGTCGACGACCAGACCGCATTG TTGTGGGTACAC GGCACATCAACCGCGCTCAACCCGCGGCAGAGCTATTTTCAGGGCAAACGCCGCATACCG GCCCCCCTTGTG ATGAGGCGGCACGCGGGGACGTCTGATCTGATGATGTTGGCGGACGAAATATTGGGACTG TCCAAAATGAAT SEQ

ID NO Argonaute # Sequence

TTTAACAGTTTTGACCTGTATGGCCAACTCCCGGCAACCATCGAAACGAGCCAAAGAGTC GCGAGGATAGGC GCTCTGCTGGACCGCTATACGGAACGGTCATACGATTATCGACTCTTTATG

ATGCCACACACCTCCCTGCTGTTGAACTTTCTGCCCGTCTCTCTTAGCGGCGACACA CGCATCCATGTCGGC

185 29 TACCGGCCATATAACGAGGATGTGCTGCGGGAACTGAGGGAGGAGTTCGGCGAAAGCCAC GTGTTTAAAAGG

GACTACCAGGAGGACACGATAAGCGAGATACCGGTCATCCCCGGAGCCGAGCCCCTTAGC GACAAATCTACT GGCGTGGATCTTGCCGAAGCGCGATGGCTGTGGAAACCACTTCTGAACGCTGCATTGCTT CGCCTCTTCAGC GGAAGCAGAGAGATCACCTCTGATTATCCAGTCAGCGTGCTTGGTAACCCCAAGAACAAC TTCATCAGCCAT GCCAATCTCCCCGACTGGGTGAGAATCCTGCCCCTTCTGGAATTCGAGAGCCGAACCCTG TTCGGTGGTAAA TCCGGTCCGCAGTTTGGGCTTGTTTGCAACGCCCGAACTAGGCACCAGGTCCTGGCAGGC TGCGACCATCTC ATTGAAAGAGGTATAAGTCCCATTGGCCGCTATGTTCAGATCGACCAGCCACAAAGAGAC TCCAGACTTGCG CCACGCGGTCTGACTGTTGGTAAGGTGAGCTCTATCGATGGGGACACGTTGATCCTGGAG GATCACCGAAAG GGCTACGAGCGCGTGAAGGCAAGCGACGCTCGCCTTACCGGCAATCGGGCGGACTTCGAC TGGTGCGTGAAC GCGCTGTTGCCTGGACAAGGTCAAGCAACGCTGAGCAGGGCGTGGGACGCCATGAGCGCC CTGAATCAGGGA CCCGGCCGCTTGCAAATGATCAATCAGACAGCTGAATATCTGAGGACCGTGAACCTTGAG GCGGTTCCTGGG GTAGCATTTGAGATCGGCGAGTGGCTGAGTTCTACCGATGCTCAGTTTCCTGTGACCGAG ACCATCGACCGC CCTACCCTCGTGTTTCATCCCTCCGGCCGACCCAACGACACTTGGAACGAGAGGGGGATA AAGGACAATGGC CCGCACGACCAGAGGACATTCACCCCCAAACAGTTGAACATCGCCGTGATTTGCCAGGGC AGATTTGAGGGA CAGGTAGACAGATTCGTGGGCAAGCTGCTCGATGGCATCCCGGACTTTCAGTTGAGGAAC GGCAGGAAGCCC TACGACGACGGTTTCCTTAGCCGGTTTAGGCTGGAGAGGGCCAACGTGCAAACCTTTCAG GCTAACAGTGCG TCCCGCGAGGCTTACGAAGCAGCGTGTGAGGACGCTCTGAAACATGCCGCTGATAACGGC TTTGGCTGGGAT CTGGCTATCGTTCAAATCGAGGAGGATTTCAAGGCGCTGCCTGGGCCCCAAAATCCCTAC TACGCCACCAAG GCAATGCTCCTCCGGAACAACGTAGCCGTGCAGAACATCAGGATCGAAACAATGAGTGAG CCTGACAAAAGC TTGGTCTACACTATGAACCAGGTTTCTCTTGCTTGCTACGCAAAGCTGGGTGGTAGACCT TGGCTCCTCGGT GCCCAACAGAGTGTCGCGCATGAGTTGGTGATTGGACTGGGCAGTCACACCGAGCAACAA AGCAGGTTTGAT CAGTCCGTGCGATACGTAGGCATCACCACCGTATTTTCCAGCGATGGAGGCTACCATCTG AGCGAGCGAACC GGAGTAGTGCCCTTTGAAGATTACGCCAAGGAGCTGACAGACACCCTCACTAGGACCATA GAGAGGGTGCGA AGGGAAGACAATTGGAAGAACACTGATAGAGTTCGCCTGGTGTTCCATGCTTTTAAGCAG ATTAAGGACATC GAGGCCGAGGCCATCAAACAGGCAGTGGAATCTCTTGATCTGGAGAACGTTGTGTTCGCA TTCGTCCATGTG GCCGAGCACCACCCTTATTTGATCTTCGACCAAAACCAAGAGGGATTGCCCCACTGGGAA AAGAACAGGAGC AAGCGCAAAGGCGTCTTGGGACCCAGCAGAGGCGTGCATATAAAGTTGGCGGACAGCGAA TCCCTTGTGGTA TTTGCTGGTGCTAGCGAGTTGAAGCAGGCGGCACACGGTATGCCTCGGGCCTGTCTGCTG AAGCTGCACAGA AACAGCACCTTCAGGGATATGACCTATCTGGCGAGACAAGCCTTCGATTTCACCGCCCAC AGCTGGAGGGTG ATGACCCCTGAACCATTTCCGATCACAATAAAGTACAGCGACTTGATAGCAGAGCGATTG GCGGGTCTCAAA CAAATAGAGACCTGGGACGACGATGCCGTGAGGTTTAGAAATATTGGCAAAGCCCCCTGG TTTCTG

ATGTCCGGCCTTTTCCTGAACTTTTACCAGGTAGACATCCCCACCAAATCCGTACCG ATCCACAGCGTAGAG

186 52 TATAGCCATTACAGTTCAAAGGAGGCCTTTATCGCGTTGAAAGAAAACTTCCCCTACTTT AGCTTCTACCGG

GATGACGACCGAATACTGATCTGGAAGAAAGACAAGGATGCCGAGCTCCCCGAGAAGAAC TCATTGATTGAA ATTGATTTCACCGAGAAAGCGAAGGTCCTCAGCAAAATACTCGAGAGGGCCATCATTGAC TTCATCGAGCCA AAGGGCTACAAGATATTCAAGAACAAGTACAGCAACAGCTGGGAAATAGTGAGCATGAAG GACATCCTGAAT GGTGGGATCGAGGGACTCAGCATCAATCGAATCGTGCATTTTTCCCCCTGCTTCTTCTTC AAGGAGAACAAA CTCATGCTGGGTTTCAGCCTTAGCACAAGCCTCAAAAACGTGTTTACCTGGAATAAGGCG GACTTCGAAAGG TACGGCTTTGACATCAAGGGCCTTAAAGGAGACGAAGAGCGGATTTTTGCCAACAAGCAA TCCCTTAAGAGG TTCCTGGAGACCAAGGGCGCAGTTGCAATGTATGACCAAATTATCGCAAAGGAAAACAAG AACGCGAAAATG TTTAGCATCATCGACGGCTTCTATCGGTGGCTGGAGAGGAACAAGACTGAAATCCAGCTT CCATTCGGACTG AAGATAAATTCAGTGTCTAAAAAGTACCTGCCGTTCGAGGATGAGCTGATCAAGAGCGAG ATCATCCCTAAG CCCCAAAGGTATTTCTATAGCAATAGGAAGAACACCCAGAGCCTGCGGTACTATGACGAG ATGGTGAAGACT TATCAGCCCTACTCTCTGGAGCTCTACCAAAACAAACAGATCAACATCGGAATCATCTGC CCCAGCGAGTAC CAGGGAGAGACGGAGGGGTTCATAAAGAAGATCGAACTGAAGCTCAAGGAAGTATTCCAT TTCAACAGCCTG ATCTTTCACTTCAAGACCATTACGAACAAGGACCTCGCGTCCTATAAGGAGGTTTTGTAC GACGATGAACTG CTGAAGTGCGACCTGATTTACGTCATCGTGAATGAGGCCCAGGAGAAACTCTCACCTAAT AACTCCCCTTAC TACGTGTGCAAGGCCAAGTTTATAGGCAATGGCATACCTACGCAAGACATTCAGATTGAG ACCATCCGGCAG AACTTGAATGCGTTCACAATGACGAACATCTCACTTAACAGCTACGCCAAACTGGGAGGC ACCGCGTGGACC ATCGAGAAGGAAGACAAACTTAAGGACGAGCTGGTCATTGGCATCGGCTCCACCCTGTCA GAAAACGGCCAG TTCGTGCTCGGTATCGCACAAATCTTCCATAATGACGGGCGCTACATGGCGGGTGACTGC AGCCCCCTTTCT ACCTTCTCCAACTACGCGGAGAACCTGGAGGATCACCTGTACAAGACCCTGAAGCCCCTG GTGGAGGAGATG AGCAAAAGCGGCACCTTCCGGCTGATTTTCCACTTGTTTAAAAGTGCCTCTGAGGAGTAC GAGATACGCGCG ATCAACGGCCTGCAGAAGAGGCTGGCGAACTACAATTTCGAATTTGCACTCGTTCACCTG GCCTATGGACAC AACTTCCGACTCTACTACAACGACGGCAACGGCGACATTAATCAGGGCACATATATACAA CTGTCAAAACAC AGCGCCCTGCTCCACTTCGTTAGCAAGTCAGACTTGCCCCTGAAAATCGACCTGGACAAG CGGTCTACTTTC ACCAGCCTGTTTTACATCGCCAAGCAGGTGTACTGGTTCAGCCATCTGAGTCATCGCAGC TATATGCCCAGT AAGAGGACCGTGACCATCATGTATCCGTCAATCATGGCGAAGATGACCGAGGAGCTTAAG AAGGTGGAAGGA TGGGACTACGAGCGCCTGAAAGCAGTAAGCGATAAGCTGTGGTTCATC

ATGAAAAGCAACTTCTTCCCCATCCAGTTCAACTTCGACGACTTCCATATCCAGAGG CTTCCCTACCAGAAG

187 60 GAGGTGCTGGACAAGCTTCGGCAACAACACAATGCGACCCATAGCTTTTTCCGCAGAGAC GATTTTATCTAT

ATTAGCCCAGGGGTAGAGGCCGCAGCGAACCTGGGAGACGTAGTACGCCTCTCTATTACC AAGCACCCCGAG GTCGTTGCTTCTCTTGTTAGGCACATATTCTTTAGGACAATCAAGGATAAGGTCCCCGGT CTGCTGCCAAGC TTTCACCCATTCACCTTTCCCGCCAAACAGGACAAATACGATCTGGCCCTGAACATGCTC CCCGAGCGCCTG CAGAATGTTATCACCTACAAGAGGATAACCGAGGTACAGCTTCGATTCAACGAGACCGAA GAGCAACCCCAG TTCGTCGCCGTAGTTAACCACAGGTACCAGTGGACTATCGACCGAACTTGCGAGCAATTG GTAAACGAGGGT CTGGACATCCTTGGCCTGGAGGTGAACTCTAGTACGAGCCCTGATTATTCAGACGGAGTT GTGGCACCAGAG CTGACACTGTTGGGCAGGGTGATGGCCGTGAACGGGGATCACGCCACAGTAGGGACCAAC CAGGGTCCGACA SEQ

ID NO Argonaute # Sequence

GAGTATGCCCTGTTCGAATTGACCTTGTTCAAGTCCAAGGAGAACATAGTGAACTACCTT GGATCTTTGGTG GGCGAGGGTAAAGCCGAACAAATAGTCAACCATATCAAACAAGATGAAAGCAGAAGGCTG CAACCGGACGTT GTGATGAGGGAGATCGAGGAAATGGGAGTGTGGCTGTCTAGGCTGGCCTACAGAAACTTT GACTCCTTTTGC TTCACCATCGGAACGAACAACGCTGTCAGCGGCCAAGCAGGTATCAGACTGGAGGAGCCA AAGCTGATATTT GACGTCTCAGGTACGAACATACACGCTACCCCCACAACCGGGCTCAACACCTTCGGCCCC TATAGTAGAAGC ACGAGTTTCGACGTTAACTCTCCGAAGATTCTGGTTGTGTTTCACCAGCGGAACGCAGGC CACTTCGCAGAG TTTCTCGCACAGCTGAAGGGCGGCATCGCTCAGCACGCATACTTTGCTAACGGGATGGTC AGGAAGTATGGT CTCACGGCAATGGAGTACCGGATTGCCGAGATCACTGACTACACCGTGCCCCAATATCTT ACCGCCATCAAT AAGCTGCTTAGGGCGGAGAACGGAAGCTTTGACATCGCCATCGTGGAGACCTGTGAGGAT TTCCGGAGGCTG CCTCCCATGGATAATCCGTATTTTCAGGTTAAGAGTTTGTTGTACAGCCATGGAATCAGC ACCCAATTCATC AGAGCGGAAACCGCTCAGAAACCGATTTATTCAATAGATAGCATCGCGCTCCAAATGTAC GCCAAATTGGGC GGAACACCATGGACGGTGCCAATAGGGCCGAGCGTAGATCACGAATTGGTGATAGGCATC GGTAGCTCCATA TTGCGCAGCAACCAGTATGCAGGTGCAACCCAAGCTCGAATAGTGGGGATTTCTACCTTC TTCAGCGCCGAC GGGAAGTACATAAGCAATAGAAAGACCCAGGACGTGCCTTACGATCAGTACTTCGATGAG CTCTTGCATAAC CTTAAAGTCTCCATCGACGAGATTTCCAATAACTACAGCTGGAGCTCAGGCGACCGCATC AGGATCATATTC CACATCTTCAAGCCCATAAAACACATCGAGGCAGACGTCGTCGCAAGCCTGATGGAACAG TACCAGGAGTTC GATATAAAGTTCGCTTTTGTGACCTTTAGCGAGTTCCACCCGTATGTGCTGTTTAATGAA AATGAAAGGGGG GAATTTGATGCGTATAGGAAGGTTTACAAGGGCACCCATGTACCGTGGCGCGGTTACAAT GTTCTGCTGGAT CCTCGGTCATGCCTGGTCCAGATGCTGGGACCCCATGAGATGAAGACCAGCCGGCACGGC GCTTCTAGGCCC GTCCTTGTGAGAATCCACCGCAGTTCTACGTTTGTAGACCTCGCGTACGTCGTGCAACAG GCCTTTAAGTTT ACTAGGCTCTCATTCCGCACGTTCTACCCTGTGCATAGCCCTGTGACGCTGCTCTACAGT AATATGTTGGCC CGACAGCTCAAGGACCTGAGGGGCATTCCGGGTTGGAACTACGATGTAGCTAGCAGGCAG TTGAGGCACAAG AAATGGTTCCTG

ATGCAAGGCACTATATCCATAAACGAGGTGAGGATCCAGCTTAATACTATTAAGAAT CTTTCAGTGTTCAAG

188 40 TGCAGCCTCAGCGGAATTAGCACCCGCCATAAGAACCAGATCGAGTTCATCCTTCGCAGC GAGCAAAACCGA

GTTAGCATCTTTGAGGGTGAAGTGATCTTTGCGCTTCCCGTCGAACAGCAGAACCTCGAA AGAGATAAGCAG GCTCTGTTCAGCTTCCTGGTCAAACAACAAAGGGATCTCAATCTGAAACAGCTGAGCCTG GTGCCCCTGAGG GAGGTGCCCGAGCGCGTTATCGAGCGACTGACTTTCGCAATGGTTAGCTATCAGGCCATG AAGCAGGGCATC TTCTCTATCTATGGTCATACATTTTTTCGCCCCACCCTTATGACGGATAGGCTTGCGCAC AAGGCGGTGGAA GTCACGACGTGCATCGAGGATGGCTTCCTCAAGTTTTATCTGGACCCGACGTACATTGCA CTGACATGCATA ACGGACACAGCACGCGAAAATAGGGAGAACCTGGAACTGGTCGGGCTCTGCTCTTTCCGC AACAAAAACCTT TGTAGCCTTGTCAGGCCGGACGGCTCATGCAACTGCCTCATACCTGGTAAGTTGGGGTAT TACGTCCAGGAG ATGGGGATTAAGGACGTTGAGGATGATAGCAAGGACTTTCTGGCCAAACGGTTCAATAGC TGTCCCCGGTTT AGTGAGCACACGCGCTTTATACAAGTGAAGGCGAGTAAAAGAGGCACGAAGTACTCCCTG TTCCCTTCTTAC GTAGTTTTTAGCAGGTTGTCCCGAATGGACCTGTCCGCTAAGCCAGATGTGCGGTCCAGT TATCGGAAGGCC ACATTGATGGACTCTCACGAAAGGCTTAACTTGACCAACGACTGGATAAGACAAATTTTC ATGATCGGGCAG AAGGGCCTTCAAAATTGGGGTGTTATAAAGGTCAACCAGACCGAGATTCCCGTTGAAATT GTACTCACAATT GCCCACGCCATCGCGCCCAAGACTTCTCAAGGCATCTATAAGGCTATATTCCTCCCGGAC CAGCAAATTACG AATGACAGCAATAACCCAACGCCTCAAACGCTGAGCGGGGGTTGGCTCTTCACGAATAGG GGTGCGTTCGAC AGGAGGGATCCTAATAGGCCTTTTAAAGTAATCAGCCCCTACATCATCGTGCCCAACAAT GAGCAAAGCATC AGCTCTTGCCGCCAGCTGATCAACTACTTCAGCAACGGCAGGTACAAGGCCCGGTGCAAG GGTGACAGAGAC TTTATTGGTATTTCATTGCCCGAAAACAAGGGCAAGTACAACACATCATTTGTCAATGCT TTCGAAGAGGAG GACGGCCTGTATTTCGTTGAAGAGACGATACAGGGCTACCAGAAGGCGCTGCAAGACATT GTTAGAGACTGG AATATCACGTCCAAGCGGGACATCAATAAACACGCTATAGTGATCATACCGGGCGAGAAC GATATTGACGAC AATCCTTTCTATTATCAACTGAAAAAGGCGTTCGTAGAGGAAGGGATTCCCAGCACCTTC ATCACGTACGAG ACTATGAACAAAATCAACGACCCCGACATCGCGTTCGGGCCAATCATGGACAGCCTGTGG TTGAACATTTAC AGCAAAATGGGGGGCAAACCGTGGCGCCTCGCTAATAGCCTCGGCAACGTGCACTGCTTT ATCGGTATTGGG TTTGGAATTAACCCCGAGACCACCGGAAACCACATATTCGCAGGGATCGCCCACATCTTC GACAACTACGGG AGTTGGATAGACGTAGCGAGTGATTCCGCCAACCTCTCCCAAAACGATCTGAACTCATTC GAGGGCACGGAA AAGTACACACAGGGGAGTGCTAGCTTTAAGATCAGTCAGAGCGTGTCCCAGTCCATTGTG TATAACGCATTG AAGCTGTACCAACAGAAGCAAACTAAGACCCACGAAAACGCCACAAACATCGTCCTGCAC AAACTGGGCCAG ATCTACGAGTGTGAGGTCATCGGGTTCCTCGAAGGAATTCGCCAAGTGCTCGGGAGTCTG GGCGACTGCAAG CTGGGATTGCTGCAAATTGAGCAGGAGCACCACCTGCGCCTCTATGGCGCAGCAGCCCAA ACCGGCAAGGAG AACAACACGATCTTTCGCGGTTCAGCACTTCAACTCAACCCGGAGAAGCTGGTTATCGCG TCCACTGGCCGC TCTTACCGGCAGACGAGCTCCGGGCTGTTTATGAATTATCCGGGCATCGGCACCCCCCAG CCGCTCCTGTTG ACTTCTATCGTACCGAATCAGCAGATCCTGCAGAAGTACGGCTGTAACGCAAACCAATTC TACTCAAGCGAG GACCTGGCGAAACATGCAATGGCCCTGACGCAACTTCACTGGGGGTCACTGAAGGATAAT GTAAGATTGCCG ATTACCACGCTTTACGCGCAAAAGGTCGCCGACTTGATTAGCAAGACCAACATGCGGATC AATCCAGGCTTG GGCTACTTCCGACCCTGGTTTCTT

GTTCCAGTGTACCTTAATCGGTTCCTGCTGGACCACCTCACATCACCCTTGTCCTTG CCGGCGTTTCGGGTC

189 58 GAACTGGACCCTCCCCCTTCCAAAGATGAAGTGCACCCGCTCCTGGCTCTCGTCGGTCGG GAAGCGGGAGGG

CTCGTGAGGTTCCAGAACAGGCTGATCGGCTGGGAGGCTCCACGGGCCCTCGAAGGTCAG GTTAGGCGAGGC AAGCAGTCATATAGACTGGTGCCCCTTGGCCGGCAGGCACTCAATCTTAGAAAACCCGAA GAAAGGCAGGCG CTCGAGAATTTGTATAGGATCCGACTGGAAAACATCTTGAAAGCCCTCGCCAAACGACAT AGGGCTAGAGTC GAACGCAGGGGCAACGGCCTTTTTCTGTGGAGGCCAGAGAATCCCCGAGAGGAGAAGGAG GGGTGGCACCTT TACCGGGGAAGCCTGTACCGCATACATCTCTATCCTGACGGCGAAGTGATACTTGAAGTC GACGTGCAGCAT CGATTTCAACCCACTCTCCATCTCGAGGAGTGGCTGCAACGAGGCTATCCACTCCCTAGG CGCGTGACTAAC GCCTACGAGGACGAGAAAGAATGGGCACTCCTGGGCATCGAAGAGGGGAAGGATCCCCGC TCTTTTCTCTTG GATGGGGGCGAGTCATTGCTTGACTACCATCGCAAGAAGGGACGATTGGCAGAGGGGCAG GACCCCGGTCGA GTGGTCTGGGTTGCTAGAGGTAAAGAACGCGAGCGGATCCCACATCTGAGCGTCTTGTTG AAGCCAGTCATC ACCATGGAGCTGCTGGCGGAAGTCGCTGAGGTCACGCAGGAGGCCTTGCCTGCGCTTCAG CTCGAACCCGAG GAACGGCTGAAGGACATTAGGCGCTTCGCTGAACCTGTACTGCAAGCGTTCGGCAAACGC GAAACTGCAAAA SEQ

ID NO Argonaute # Sequence

CCCCTTGAAGGCAGAGCCCAGCGATTGCCGCGACCCAGTTTGTTGGCACGGGGAAAAAAG CGAGTGGGCAAA GTAGCGGACGTACTCGAAAAGGGAGCATTGTCACCGGGCGAGACACGGTTGGCCCTGCTC GCATGGGAGGGA GACGGGAAGGCCAAAGGCGGTCTCGCGTACTTGGAGGAGAGGCTTCAGGGCGTCGGGTCT GCATCCGGCATC AAACTTGAACTTAAACGGCGATTTCTGCCCCGAGGCGATAACCTCGAAATGGCACAGGTG TTTGAGGAGCTC TCCCAGGAAGGAGTAGGTGCCGGTCTGCTTCTGACTCCGCGCCTCACAGAAGGGGAAAGA CGCGAACTGAAA AATACTGCGGCGAGCCATGGGCTCGCTCTCCAACTCCTTAACCCGTTTGACCCTGGCGAC ATCTACAGGGTG AATAACGCTCTGCTTGGATTTCTCGCGAAGGCCGGGTGGCTGTTCCTGAGACTGGAGGGA ACTTATCCGGCC GACCTGGTGGTGGCCTATGACGCAGGCGGGGAGAGTCTCCGATTCGGCGGAGCCTGCTTC GCCCACCTGACT GATGGCACGCATCTGGGGTTCAGTCTGCCAGCCGCTCAGGGTGGTGAACGGATGGCCGAG GAGGTCGCGTGG GAGTTGCTGCGACCCCTGCTGTTGAGATACCGGAAAGCGAAGGGCCAGACACCAGGGAGG ATCTTTCTGCTC CGCGACGGTAAGATTCAAAAGGAAGAGTTCCGAAAAGTGGAAGAGGAACTGAGAAAGCGC AATATTCCCTAC GCGCTGTTTAGCGTCCGGAAGACGGGGGCTCCCCGACTGTTCAGCAAAAATGGGCCGCTC GGTGACGGTCTT TTTTTGCGACTGCCAGAGGAGGAGGGCGGGTTTCTGTTGCTTAGCGCCGAGGGTGGGAAG GGCACCCCACGG CCGGTTAAGTATGTGTTGGAGGCGGGAGAAGTGGACCTCAACCTGGAGGAAGCTGCCAGG CAATTGTATCAC CTGAGTCGCATCTACCCGGGCTCCGGTTACCGATTCCCCAGGCTGCCCGCACCGTTGCAT ATGGTTGATAGG ATGGTGAGGGAGGTTGCACGGCTCGGCGGCAGCCATAACTTGAGACTCAAAGAAGAACAA CTGTTTTTCCTG

ATGAATAACCTGACACTGGAGGCCTTTCGGGGCATTGGCACCATCAAGCCACTGTTG TTCTATCGGTACAAG

190 41 CTGATCGGCAAAGGGAAAATAGAGAATACCTATAAGACGATACGCAACGCACAGAATCGG ATGTCTTTCAAC

AATAAGTTTAAGGCCACCTTCAGTAAGGATGAAATCATATACACCCTGGAGAAGTTCGAG ATTATCCCGACG CTGGATGATGTGACGATCATCTTCGACGGGGAAGAAGTGCTTCCTATAAAGGACAACAAC AAGATTTACAGC GAGGTAATAGAATTTTACATTAACAACAATCTCCGGAACGTTAAGTTCAACTATAAGTAC CCGAAGTACAGG GCTGCCAATACAAGGGAGATCACGGGCAACGTGATCCTCGACAAAGATATGAACGAAAAG TACAAGAAGAGC AACAAAGGCTTCGAACTCAAACGGAAGTTCATAATCAGCCCCAAGGTCGACGATGAGGGT AAGGTCACATTG TTCCTGGACCTGAACGCGTCATTTGACTACGACAAGAACATCTACCAGATGATAAAGGCC GGAATAGATGTG GTAGGAGAGGAGGTCATCAACATCTGGAGCAATAAGAAGCAGCGCGGTAAGATCAAGGAA ATCAGCGACATT AAGATAAACGAACCCTGCAACTTCGGCCAGAGCCTGATAGATTACTATATAAGCAGCAAT CAGGCGTCACGG GTGAATGGATTTACGGAGGAAGAGAAGAACACAAACGTCATCATCGTGGAAAGCGGCAAA AGCCGCCTGTCA TACATACCGCACGCGCTCAAGCCTATCATAACGCGAGAGTACATCGCCAAGAACGACGAA GTCTTTAGCAAG GAGATAGAAGGGCTCATCAAAATCAATATGAATTACAGGTACGAGATTCTCAAGAGGTTC GTCTCCGACATC GGCACTATTAAAGAACTGAACAACCTGCGCTTCGAGAAAATCTATATGGACAATATAGAA AGCCTGGGTTAC GAGCAGGGTCAACTCAAGGACCCCGTGCTCATCGGCGGCAAGGGTATACTTAAAGACAAA ATACATGTCTTC AAGAGCGGCTTCTACAAATCCCCCAATGACGAAATTAAGTTTGGCGTGATATACCCGAGA GGCTACATAAAA GATACCCAGAGCGTTATCCGAGCCATCTACGACTTTTGCACCGAGGGCAAGTACCAGGGA AAGGATAACATA TTCATCAATAACAAGCTCATGAACATCAAGTTCTCCAATAAGGAGTGCGTCTTTGAAGAG TACGAGCTCAAT GACATAACCGAGTATAAGCGGGCTGCAAATAAGCTCAAAAAGAATGAGAACATAAAGTTC GTGATCGCAATC ATCCCCACTATCAATGAAAGTGACATTGAGAACCCCTACAACCCCTTCAAAAGGGTCTGT GCCGAGATCAAC CTCCCCAGCCAAATGATCAGTCTCAAAACTGCAAAGCGGTTCAGCACCAGCAGGGGCCAA TCTGAGTTGTAT TTCCTGCATAACATCAGCCTCGGCATTTTGGGCAAAATAGGCGGCGTACCCTGGGTAATT AAGGACATGCCA GGCGAGGTCGATTGTTTTGTGGGCCTGGACGTGGGCACAAAAGAGAAAGGAATCCACTAC CCCGCATGCAGC GTGCTGTTCGACAAGTATGGCAAACTCATTAACTACTACAAGCCGACGATCCCGCAGAGT GGAGAGATCATT AAAACAGACGTGCTGCAGGAGATCTTTGACAAGGTTCTGCTGAGCTACGAGGAGGAGAAC GGCCAGTATCCC CGCAACATCGTGATACACAGGGACGGCTTCAGCCGGGAGGACCTGGAGTGGTATAAGAAC TACTTCCTGAAA AAAAACATCGAATTCAGCATAGTAGAGGTCCGCAAGAACTTTGCCACGCGACTTGTAAAC AACTTCAACGAT GAAGTGTCCAACCCAAGCAAAGGTTCATTCATTTTGAGGGACAACGAAGCGATTGTCGTC ACGACGGATATT AACGACAACATGGGAGCGCCCAAACCGATCAAAGTTGAGAAAACGTATGGCGATATTGAC ATGCTCACAATT ATCAACCAAATTTACGCACTGACACAGATTCACGTGGGGTCCGCGAAATCCCTTAGACTG CCTATAACCACG GGCTACGCCGATAAGATCTGCAAGGCTATCGATTACATCCCGAGCGGCCAAGTCGATAAC AGGCTGTTCTTT CTG

ATGAACTATACCGCTGCTAACACAGCGAACTTCCCGATATTTCTGAGCGAAATAAGC TTTCTCACAACCAAT

191 1 AACATTTGCTTGAACTGTTTCAAGCTTAACTACCAGGTAACGAGGAAGATCGGTAACCGA TTTTCATGGCAG

TTCAGCAGGAAATTCCCCGACGTTGTAGTGATATTCGAAGACAACTGCTTCTGGGTCCTG GCAAAGGACGAG AAGTTCTTCCCCTCACCACAACAGTGGAAGGAAGCACTTAGCGATATCCAGGAGGTTCTT AGAGAGGACATC GGGGACCACTACTACAGCATCTATTGGCTTAAAGACTTTCAAATAAAGGCCCTGGTGACC GCCCAACTGGCG GTGAGGATACTCAAGATTTTCGGCAAATTTAGCTACCCAATCGTCTTTCCCAAGGATAGC CAGATATCAGAA AATCAAGTGCAGGTCAGGCGCGAAGTTGACTTTTGGGCCGAGATCATCAATGACACCAAC CCCGCAATCTGT CTGACCGTGGATAGTAGCATTGTGTACAGTGGCGACCTTGAACAGTTTTACGAAAACCAC CCCTACAGGCAA GACGCCGCTAAGCTGCTGGTGGGACTGAAGGTGAAGACCATCGAAACCAATGGCACCGCG AAGATCATACGG ATCGCCGGTACCATAGGCGAGCGCAGAGAAGACTTGCTGAAGAAGGCCACAGGCTCAATG TCACGACGGAAA CTGGAGGAAGCCCATCTCGAACAACCCGTCGTCGCAGTCCAGTTCGGAAAGAACCCCCAG GAGTACATATAC CCGCTTGCGGCCCTTAAACCTAGCGTGACCGACGAAGATGAGAGCCTCTTCCAGGTCAAC CACGGAGACTTG TTGAAGGAGACCAAGATCCTGTATGCGGAGAGGCAGGAGCTTCTGAAGCTGTACAAGCAG GAGGCCCAGAAA ACCCTGAACAACTTTGGGTTCCAGTTGAGGGAGAGGTCCATCAATTCTCAGGAATATCCT GAGGTGTTTTGG ACTCCCAGCATCAGCCTGGAGCAAACCCCAATCTTGTTTGGCAAGGGGGAGCGAGGTGAA AAAAGAGAGATT TTGAAGGGCCTGAGCAAAGGCGGAGTGTACAAAAGGCACAGGGAATACGTGGACACAGCT CGCAAAATTCGC CTGGCCATACTTAAGCCCGCTAACCTCCGCGTGGGCGACTTTCGGGAGCAACTTGAGAAG CGATTGAAGCTT TATAAGTTTGAGACAATTCTGCCACCGGAGAACCAAATTAACTTCAGTGTCGAAGGCGAA GGTTCCGAAAAG AGGGCCCGATTGGAAGAAGCGGTCGACAGACTCATAAGGGGGGAGATCCCCGTAGACATT GCACTGGTGTTC CTCCCGCAGAGCGATAGGAATGCAGACAACACCGAGGAGGGAAGCCTTTACAGTTGGATC AAGAGAAAATTC CTCGATAGGGGCGTGATTACACAGATGATTTATGAGAAAACGCTTAACAATAAGTCACAG TACAACAACATC CTGAACCAGGTGGTGCCGGGGATTCTTGCGAAGCTGGGAAACCTGCCATACGTTCTTGCA GAGCCGCTTGAG ATAGCCGACTACTTCATAGGCCTGGATGTGGGGCGGATGCCAAAGAAGAATCTTCCGGGG AGCCTCAACGTG TGCGCGTCTGTCAGGCTCTATGGCAAGCAAGGCGAGTTCGTGCGCTGCCGCGTCGAGGAC AGCTTGACCGAG SEQ

ID NO Argonaute # Sequence

GGCGAAGAGATTCCCCAGCGGATCCTGGAAAATTGCCTGCCCCAAGCAGAACTTAAAAAC CAAACTGTCCTT ATCTACAGAGATGGTAAATTCCAGGGAAAGGAGGTGGATAACCTTTTGGCTAGGGCTCGC GCAATCAATGCC AAGTTCATACTGGTTGAGTGCTACAAGACCGGTATCCCCCGACTGTATAACTTCGAGCAA AAACAGATCAAC GCACCCTCCAAGGGGCTGGCACTCGCGTTGAGCAACCGAGAGGTGATCTTGATTACGAGC CAAGTGAGCGAG AAGATAGGCGTTCCTCGGCCACTTAGACTCAAAGTGAATGAGCTGGGTGAACAGGTGAAC CTGAAGCAGCTG GTCGATACCACTCTTAAACTCACGCTGCTCCACTATGGGTCTCTGAAAGACCCACGGCTG CCTATTCCCCTG TACGGTGCCGACATCATAGCCTATCGGCGGCTGCAAGGAATCTACCCATCCCTTCTCGAG GATGATTGTCAG TTCTGGCTG

ATCACCAGCTACCCTTACGCTAGGAACAAGGCCGACATGATTCGCAAGGTTAATTGG AATCTGATCGTGTTC

192 65 GACGAAGCCCACAGGATGAGGAATGTCTATAAGAAGTCCAATAAGATCGCCCGAACCCTG CGCGAGGCCACT

GCCGGCTATCCCAAGATCCTGCTCACTGCAACCCCCCTCCAAAACTCCCTCATGGAGCTC TACGGATTGATA

(Helicase) TCTTTTATTGACCCCCACATCTTCGGGGATGAGACAACTTTCCGCAGACAGTTTAGTCGC GGCACCAAGGAA

ATGAGCGAGATGGACTTTATCGACCTGAAACAACGAATTAAACCCGTGTGTCACCGCACC CTGAGGCGCCAA GTCACAGAGTACGTTAACTACACTCAGCGCATTCCGATCACCCAGGAGTTCATGCCCACC AACGAAGAATGG GAGCTGTACGAGAAGGTCAGCGCCTATTTGCAACGAGAACATCTCTTCGCGCTCCCCGCG TCACAACGAGCA CTTATGACCTTGGTAGTGCGCAAACTGCTCGCCAGCTCTTCATTTGCTATTAGCGATACC CTGCTGAGCCTC ATCAAGAGGTTGGAACAACTGCTGGAACAGCTGGACTCCGGCAAGACGGAGATTACCGTA GAACACAGCGAT GTCTACGCGGACGTGGACGAGTTTGATGATACAGTGGAGGAGTGGGAGGAGGACGACCAG CCTTCTTACATA GATAAACTGAGCCCAGACGAGATGAAACGGTTGATTCAGGAGGAAAAGGAAGAACTGGAG CAGTACTACAGC CTTGCAAAAAGCATTAAAGAGAACTCAAAGGCTGAGGCCCTCCTCATAGCGCTTGAAAAA GGGTTTGAAAAG CTCAGGATGCTGGGGGCTAATGAGAAGGCCGTGATCTTCACAGAATCCCGACGCACACAG ATGTATCTGAGA GAATTCCTGGAGAGAAACGGCTACGCCGGGAAGATAGTGCTGTTCAACGGTGAAAACCAA GACGAACAAGCG AAGCAGATCTATGAGCAGTGGTTGGAGAAGCACCGACACGACGACAAGATTACGGGCTCT AAGACGGCGGAC ATGCGAGCCGCGCTCGTGGAGTACTTTAAGGAGCAGGCTAGTATAATGATAGCGACCGAG AGCGCCAGCGAA GGCATCAATCTGCAATTTTGCAGCTTGGTTGTGAACTATGACTTGCCATGGAATCCGCAA AGGATAGAGCAA CGGATCGGGAGGTGTCATCGCTATGGTCAAAAGCACGACGTGGTGGTAATAAACTTTCTC AATTGTAAAAAC GAAGCGGACAAGAAAGTAGATGAGATATTGTCCGAGAAGTTTCGGCTGTTTGAGGGCGTA TTTGGCAGCAGT GATGAAGTCCTGGGGTCCCTCGAAAGCGGCGTGGATTTCGAGAAGAGAATCCAACAAATC TACCAGACCTGC CGAACCGCGGAAGAAATTGAGCAAGCGTTCAAGAACCTGCAAGCTGAGCTCGACGAGCAA ATTCAACTGAAG ATGAAGGAGACCCGAATGCATCTTTTGGAAAACTTCGATGACGAGGTGAGGGAAAAGTTG CGAGACCATTAT CACCAAACCTCCCTGCATCTGAATAGGATGGAAAGGTATTTGTGGAACCTCAGCAAGTAC GAGGGGGCACGC GAAGCCATCTTTGACGACGAGACGCTGTCCTTCGTGAAGGACTACGAGACCTATCAGATG ATCAGCCAGGCG AAGAAACAAAACAGTCCAAACGTGCATCACTTTCGATTCTCCCACCCGCTTGCGCAGAAG TGGATCGAACAG GCCAAGAGCAGGGAATTGTTGCCAAAGGAGATAACGTTCAGGTACAGCGACTACAAGGGC AAAGTCTCCATC TTGGAAAGACTCATCGGCAAGGAGGGTTGGTTGAGTCTGGACCTGCTTCACGTCCAGAGC CTTGAGAGCGAA CAACACCTCATCTTTAGCGCCATCGACACCGAGGGCGGTCAACTGGACCAGGAGATGTGC GAGAAAATGTTC GAGCTGCCCGCTGTGGAGGGCGAGGAAGTAGAGATATCCGACTCCATCCGAAACACATTG AGACGAATCTCA GAGGGCCAGCAAGAGGCAATACTGAATGAGATTATGGAACGGGCGTCCGCCTACCTCGAC TCAGAACTCGAG AAACTGGAAAAATGGTCACAGGACCTCAAGAATAAGCTGGAGAAAGACATTGATGAAATG ACGGTGGAGATC GAGCATCTTAAACGGGAAGCTAAATTGACACGCAACCTGGCAGAAAAACTCGAAAAAAAC AAACAGATCAAG GAGCTTGAGAAGAAGCGCAACGAAATGCGCCGGAATCTCTATGACCAACAGGACGAAATC GATGAACAAAAG GACCGCCTCTTCGAGGAGGTAGAGAAAAAACTTGAACAACGGACTGCGACGGAGCACCTC TTCACTATCAAA TGGCGGATCGTG

GTGAACCATTACTATTTTTCCGAATGCAAGGCGGACGAGAAAGCCAGCGACATAGCC ATCCACCTTTACACC

193 44 GTGCCCCTGTCCAACCCCCATGAGAAATACAGCTATGCGCACAGCATCGCCTATGAATTG AGAAAACTCAAC

TCATACATAACCGTGGCCGCGCACGGTCAGTACATCGCGTCTTTCGAGGAGATATGCCAC TGGGGCGACCAC AGGTACATACAGCACGAACATAGACCAATCCAGTGCAGCCTCCCGATGGAGAGGACCATA CTGGAAAGACTC CTCAAGAAAGAGCTCGAGAATAGGTGCAAAAGCAGCTATAAGATGGACAACGACCTTTTC CGGTTGGCTAAC GAGCAAAGCATGCACGTGGGCGAGATCAGCATACACCCAGCGATCTACATCTCATTCAGC GTGGAGGAAAAT GGTGACATATTTGTTGGCTTCGACTACCAGCACCGGTTCGAGTACCGCAAAACACTCCAA GACGTCATCAAC AACGATCCCTCCCTGCTTAAGGAAGGCATGGAAGTGGTGGACCCCTTCAATAGAAGGGCC TACTATTACACT TTTGTGGGCATGGCCGATTATACCGCCGGACAGAAAAGCCCCTTCCTGCAGCAGTCTGTG ATCGACTATTAT CTCGAAAAGAATGAGCTGTGGAAGCTCAAGGGTGTGCACGAAAAAACCCCCGTGGTGCAC GTCAAGAGCCGA GACGGTCACTTGCTCCCGTATCTGCCGCACCTGCTCAAATTGACATGTTCATACGAACAG CTCTTGCCCAGC ATGACCAAGGAAGTCAATCGCCTGATTAAGCTGAGCCCCAACGAGAAGATGAGTAAGTTG TATACGGAGATG TTTCGATTGCTCCGGCAGCAACAGGTGCTGACCTTCAAGAAGGAAAACGTGCGAGCCGTC AACCTCGGCTAC GATGTGAATGAACTTGACAGCCCGATCATGGAGTTCGGACAAGGCTACAAGACAAACGAG ATCTATCGAGGC CTGAAGCAGAGCGGAGTATACGAGCCCAGCTCAGTGGCCGTGAGCTTTTTTGTTGACCCC GAGCTTAACTAC GACCCCCAGAAGCGGAAAGAAGTAGGTTGCTTCGTCAAAAAACTGGAGAGCATGAGCGAG GCCCTGGGAGTA AAACTGAACATAAGCGACCAGCCCCGACAACTTTATGGCCAGCTCCCCAAGGACTTTTTC AAGCAGGACAAC CTCTCATATCATTTGAAATCTATCACCGACCAGTTCAGGGGAACGGTGGTGGTTGTTATC GGCACTGAAGAG AACATCGACCGGGCATACGTTACAATCAAAAAGGAATTCGGCGGCAAGGAGGATCTGATG ACCCAGTTTGTC GGCTTCACCTCCTCCCTCGTCACGGAGAACAACATTTTTCACTACTACAACATCCTGCTC GGCATCTATGCG AAAGCTGGTGTTCAGCCCTGGATACTCGCCAGCCCAATGCACTCAGACTGTTTCATTGGA CTCGACGTAAGC CACGAGCACGGTAAGCACGCATCAGGGATAATACAAGTGATTGGACGGGACGGCAAGATT ATCAAACAAAAG AGCGTTGCGACAGCAGAGGCCGGAGAGACTATTGCCAATAGCACGATGGAAGAAATCGTC AACGAAAGCATT TATTCCTACGAGCAGATCTACGGGGCCAAACCGCGCCACATAACATTCCATAGAGACGGG ATCTGTCGCGAG GACCTCGATTTTCTGCAAGCGTATTTGCGGAGTTTCCAAATCCCATTCGACTTCGTAGAA ATCATAAAGAAG CCGCGACGCAGAATGGCGATATACTCTAATAAGAAGTGGGTCACGAAACAGGGAATATAC TACAGTAAGGGC AACACCGCTTATCTGTGTGCCACGGACCCCAGAGAATCCGTGGGTATGGCGCAACTTGTC AAGATCGTACAG AAGACTAACGGATTGAGCGTTCACGAGATAGTGAGCGACGTGTATAAGCTGTCCTTCATG CACATACACAGT ATGCTCAAGACCAGGTTGCCTATCACGATACACTATAGCGACCTCAGCTCAACGTTCCAC AACCGGGGCTTG SEQ

ID NO Argonaute # Sequence

ATCCATCCCCGGTCCCAACATGAGAGAGCACTCCCGTTCGTG

ATGAATTTCCAGCTGTGCGACCAACGCAAAGCCATTATCGCCGAACCAGGCCATCTG TTGGTCCTCGGTGGG

194 67 CCAGGAAGCGGGAAAACTACCGTCGCCCTCTTCAAGGCCAAGCAGAGATTTAGCACTCTG AAACCTAGCCAA

GAAATCCTGTTCCTGTCATTCAGTAGAGCTGCCATCAGGCAGGTCCTGCTGCGGTGCAAG GAGATTCTGAAG

(Helicase) CCCGCAGAGAGACGCGCTGTCGCCGTTCAAACCTATCATAGCTTCTGCATGGACATGCTG AGGGCGCACGGT

AGACTGCTCCTGGGCCACCCCGTGCGATTCATGTATCCCGGCGACGAGAGGCTTCAAAAG GCCGCATTCGAG GGGGACTGGGAGGCGGAAAGACAAAGGCAAGCCAAAGAGATGGGCATCTTTTGCTTCGAC CTTTTCGCGCAA GGCGCAGCTGAGTTGCTCGAGAGGTGTGCCGCACTTAGGAAGCTTATAGGGGACAGCTTC CCCATGATAATA GTGGACGAGTTCCAAGACACCGACGACAACCAATGGCGGATCGTGGCGCAACTTGCCAAG GTAGCGGACATC TTCTGCCTTGCCGACCCCGACCAGAGGATCTTTGACTACCGAGACGACATCGACCCCCTT CGGATCGAGGGT TTGCGGACCACTCTTGCCCCCAGGGAGTTCGATCTTGGCGGTGAGAATCACCGCTCCCCG AACGCAGGGATA TTGAACTTCGCCAACGCTGTGCTGCATAACCAGAGCCCCCTGCCCGATACCAGCGACATC ATGCAACTGCGG TACTGGCCTAGAGCGTTCGCGAGCACCGTGCATGCCTGCGTAGTGTTTACCTTCAGCGAA CTCAGGAAACTG GGCGTGGAGAACCCCAGCGTGGCAGTGCTGAGCCGATCCAACGGGCTTATCAGCGATGTG AGCGCCATACTG GCTGAGAAGCACGCGTACAACGGGAGGGAACTGCCAATCGTGGAACACGACGTGGTTTGG GACGCGGAGCTG TCTGCGGCAGCAGCCGTCGTCGTTGCGTCCACCCTGGAGTGGCCAACAGCCGCTGCAGAG GTTGCTGTTGCC AGGACACTTGCGCTCATAGCAGCCTATTACAAGCTGAAGAACGCCGAGGAACCCACCAAG AGCGCGGCTGAG GCTGCCCAAAAGTACGAGGCGGCTGCAAGCAAGGTGGCCAGTGAGGAGACCCCAAGGATC AAAGCCGCGAAA GAATTGCTGGCCGCTCACCAAAGTGGCATCCAGATGGTGGGCGACCCGGTGGCCGATTGG AAGTCTGCGAGG AGGGTATTGCAAGAGATAAGCGCCCTGGGTGAGTTGTACAGGGAGGTCCGGCTCGTGAGG TTGTTCCGGGCA ACCGACGCCTTGGCTTCCGGCCTGAGCAATAGGTGGTTGGCTACTGGAAGCTACGAGGGC GTGTCCGACCTG GTGAAGGGCATCCTTGAGCAGGAGAAACTGATTGCCGTGGAAAGGGACCCAAGAGGCTGT ATACTGATGAAC ATCCATAAAAGCAAAGGTAAGGAATTCGACGGCGTGGTACTCATTGAGGGGGCATTTAAG TCCCATTTCTTC GATGAGCGGAAGGAAGTCAGCCCCTATGAGAGGTCCAGACGGCTCCTGAGAGTCGGTCTG ACCCGCGCTAGG CATAGGGTGACAATCCTTAGACCTCAGGGAGCGAGGCCCCTTGTGGATCCCATC

GTTCCAGGCGGTAGGGGACCGCTGCTCGTGCTTAACTTCCTTCCCGCTCGCTTCGAC GGCCGAGTTGATGCG

195 34 GGCACCCTCCCCTTCGAGACCCCTGATAAATTGAGGGCCATTAGGGAGGAACTGAGAACT TCCCATGTAGTT

GTAACGCGAGGAAAAGAGGTCGTATGCGTGCCCTTCGTTAGTGGCGCGAAATTGATCGGC AAACGAACCACT ATCACCGCAGCGGGACCCGACCTCGTCGTACAAACGAGTCTTCTCGAATCCAGCCTGAGG CGGACCTTGACC GAAAAATGGAAGTACGAATTGCGCAGGGAAAACCCGCTCACCTTTGTGTCAAGGACGCCA GGAAGGGACCTG CTGGAGAAGGCCCTTGGTCGGGAGTTGCCGGGACTCCATGTGTTCCCCGCTTACAGCCTG GACGTGCGCAGA TACGGTCCTGGGGGGTTCAGCGGGGTTGTTGTAGGATTGAAGACCCGCTATGAGATCGAC CTGCCTGTCGGA GTGCTGCTCAGGAGGGGCGTTCAAGTAAACGGCCTTTATGTCCTGGCTGAAAGCCCCCTC GCGCCTACGTGG CCCTTCCAAGATCCCCACACCAGAAGGCGGCTCGTGGGACAAGTTGTCGCGGTGGATGGC GACAAATTGCGA GTGAGGTGTAGGGACGGGGAGCTGGAACTTGATGCCGCCGAAGCATGGATTGAGCCCAAC ACTGCCAACTTC TACGCCGTCCTGCGGAAGGCGTGCGGACGCTCTTACGAACGAGACTTTCACGCCCTGGAA GCCCAAGTCGTG TCCCTGACTAACGCCCAGCAGCGAATCGCCGATACCAACAGGATCGCCGCCAACCTGATA GGCCTTGGTAAA TTCGACATCAGTAACGGCTTGACTGCCGAGCTGGGGAAACCACTCAGACTGACTTCCACT CAACATCCACAC GTTCGGACTCTGGCCGAGCCCACATTTGTGTTTGACCAGAGCGGAGACAAAACCGCGCCT TTTCCCGAGACC GGGCTGACCAAGTGGGGCCCATTGGACGCTGAGAGCTTTACACCCAAGGCACCACACATC GCCGTGGTGGTT CCGCGGCAGTTTCAGGGTCGCGTCGAAACGCTGGTTGAGCGGTTCAGGAACGGCGTGAGG GGCAGCAACGCC TATGCCGAGGGCTTTGTCCGAAAGTTTAGGCTCACCGACTGTACCTTCAGCTTCACCGTT TTTGACGGTGAC GCTACTGACGCAGCCGCATATAGGCAAGCGTGCCTTACCGCCCTGAGTAATGACGAGCAA ATTAACCTCGCC TTCGTCTTCACATCAGCCGTGCAGGAGCATCAAACGGGGGACGACAGTCCCTATCTTGTC AGCAAATCCACC TTCATGAGCCAGGGTATCCCCGTGCAAGAGTATCAAGTGGAGAACATCATCGGGGATTCA AACTTGGCTTAT CCCCTGTCCACGATGGCGCTGGCGTGCTACGCCAAACTGGGTGGCACCCCTTACGCCATA AGCGATCGAGGA CGACCTATGGCACGAGAACTGATCTTCGGCATCGGGTCTGCCCAGGTAAGCGACGGAAGG ATGGGCGAAACA GAGCGATTTGTGGGCATTACCACCGTGTTCAATTACGACGGTAGGTACTTGGTTAGCAAC GTTAGCCGCGAG ACACCCTACGAAAGGTACCCGCAAGCCCTGCTTGACGCATTGCGGACTTGCATTGCCGAC GTGAAGGTTAGG CAGGGATGGAGGTCCGACGACTTTGTGCGGCTTGTCTTCCATATCTTCAAACCTCTGAAG GACAAGGAAGCA CGCGCCGTAAAAGAGCTGGTGACGGAGCTGACGTCTGAATATGCCAGCGTGGAGTTCGCT TTTGTGACAGTG GTGGACGATCACCCGTGGCTGGTGCTCGATGAAAACAGCGATGGGGTTAAGGTTGGGCGA GGGACTAAGGGC AAGCACGTAGCTCGGAGGGGTTTTGCCCTGCCGATTTCCAAAAGGGAGCTTCTTGTGACG GTTAAAGGTCCC CGGGAAATGAAATCCGATAAGCAAGGGGCTCCCAAGCCCCTCTTGCTCAAGCTCCATCGC GAAAGCACCTTT ACAGACATCGACTACCTGGCTTCCCAGGTCTTTCAATTCACCGCCATGAGCTGGCGCAGG CCATACCCTACC AGCAAACCCGTGACTATAAGCTACAGTGACCTGATTGCGGGACTTCTCGGAAAGCTGCGA CACGTGACGAAC TGGAATAGCGACATGATCTACATGAAGTTGCGCTTCAGCAGATGGTTCCTG

ATGCAGCAGGAGATCCAGCTTAACATCATCCCCTTCACCGCCCCTGTGGAAGAGGCA GAGTTCGCTTTTTAC

196 30 ACCGCCAAGCAAGACGGCTACTGCCCCATCCATAAGGATGACCTGAACGGGGCCATCGAA GGCCTCGTGGAT

GAATCAGACCTGCACTACGGCAACTGGCTGTACACTGACTTCGCTCCCGCCAAAGAGAAC GCCATCATAATT AGCGTCAATCTCAATGACTGTAAGTACTTCGCCCAGCACTACTACAGGCACCTTATCAGG ACCCACTTCAAG GGAGTGGCCGACATCATGAGGAAGAATTTCACCAACGAAATCGAGGTCTGGTTCCACAAT ACCAAAGCCAGC TCTACCAAGTTTAAGGTCTATAACCAGTTTACCCTCAAGGTACAGCACAACAGGGTGACG GACGGACCGGAA CTTGTCGTGTCCTTCGACGGGACGACGAAGGTGCTGAACAAGTCTATCGCCGAGATACAC AACTTCAAAACG GAGCTTTACAACTGGATAAACTGCAACGGCGAGCTTAATCGCTGGAAATACCTGACCGAC GATCAGAAGCTG AATCACGAAAAGAACTACCCGGTAGTGTCAAACACACTTAAACCGCATTTCGACATTGCC TTTGACGTTCCC GATTTTAAGAACCGGTATCCCAAATACTTCACTCTTCTGAATGACTTCTACAACAACTAT CTGAATACAGAC GCCTTTACTGCGATCTTGCCGCTTTCCGCTGACGGATTCTTCAAGCCAAATGGCCTGTCA GTGCAGAGGATC AACGGCACTAGCAATGAGCTGCAATTCGGCAATGGCGTCGGCGTGGAGCCCAAAAGGGAT CTCAAGCGCCTG AAGCCGTATAAACCCGTGCCCAAACCCAGCAACGTAAAGTTTTTCTTCATCTATCACAAG CCAGATAGGGAG CATGCGGTCAAAAACATCTGGCAGTATTTCAAAGACGGATACAACGGCCAATACCCCTTC CCCAAGATGGAG SEQ

ID NO Argonaute # Sequence

GAATACATATCTCAGCCCTTCGAGCTTGAGGAGAATGGATCTATCTCATTCGACAATATC GACGACGCGGTA AGCGTTGTCCAAAAAGCCATCAAGAACAAGGATCGGCTGCCCGACACTAAATACTTTGCG GTATACATCTCC CCCGTACCAAAATGGGAGAAGGACCCTAAACGGAATAGTATCTACCATCGGATGAAAGAG ATACTCCTGTAC GAGGGGATCACCAGCCAGGTGATCTGGAAGGAGAACATTAGCAAACCGGCTTTCAACCTC TTCTTGCCTAAC ATCGAAACCGCCATACTGGCCAAGCTGGGAGGCGTCCCCTGGAGGCTCAAGAGGGACACC ACGAACGAGTTG ATCGTTGGCGTGGGTGCTTTCTACTCAATCACGCGGAAGTCCAAGTACGTGGGCTCTGCA TTTTGCTTCAAT AACGAGGGCATCTTTAAGGGGTTCGACTGTTTCGGTGCCAATGACACCGACAGCATCGCG GGCTCTATCAGG GAGGCCGTGGGAAAGTTCATCGCGTCTAATTACAAGGCCACAAGGCTGATCATTCACTTC TATAAGGACCTG TCAAAGAAGGAGCTCAAACCAATCATCGATACACTTCACGCCCTGGGCTTGCCCATCCCA GTGATAGTCGTG ACCATCAATAAAACCGAGAGCAAGGAACTCCTGGCATTTGATACCAGCTCACAAAAGCTC ATGCCCTACTCT GGCACCATCGTGAAGGTGGGAGCCAAGGAGTACCTGCTGTTCAACAACACGCGATACGAG GAAGCATCCGCC CCAACGGATCGCGAGCACCACTTCCCGGTGAAAATCAGCTTTTTCTCAGACAAGGCGGAG CTGTTGGACGAT CCCGCACTGATCAACCAACTGATCGACCAGGTGTACCAGTTCAGCCGCATGTATTGGAAA AGCGTGAGCCAA CAGAACTTGCCCGTAACCATTAAGTATCCCGAGATGGTGGCGGAGATTTTCCCATACTTT ACCCACGATAAA TTGCCCGATCATGGAAAGGAGAGCCTGTGGTTCCTG

ATGTATCTTAACCTCTACGAAATCAAGATCCCCTACAGGGTTAAACGATTGTACTAC TTCAATAAGGAGAAC

197 47 GACCCCAAAGAGTTCGCCCGGAATCTGAGCCGAGTGAACAACATACGGTTCAACGACAGT AAGGACTTGGTG

TGGCTCGAAATCCCCGACATCGACTTCAAGATTACACCCCAGCAGGCGGAAAAGTACAAA ATAGAAAAGAAT GAGATAATTGGGGAGAAGGAAGACAGCGATCTGTTCGTCAAAACCATTTACAGGTACATC AAAAAAAAGTTC ATCGACAATAACTTCTACTATAAACGGGGAAATAACTACATTTCAATCAATGATAAGTTC CCGCTCGATTCT AATACAAACGTTAATGCGCACTTGACATATAAGATTAAACTGTACAAGATAAACGAACGG TATTACATTAGC GTGCTTCCAAAATTCACCTTCCTCAGTGACAAGCCAGCCCTTGAGAGCCCCATCAAGAGC ACCTACCTGTTC AACATTAAAAGCGGCAAGACGTTTCCCTATATTAGCGGGCTCAACGGAGTCCTGAAAATT GACCTGGGCGAG AACGGCATAAAGGAGGTCCTTTTTCCGGAGAACTACTATTTCAACTTTACCTCCAAGGAG GCCGAGAAGTTT GGGTTTTCTAAGGAAATCCATAACATCTACAAGGAAAAAATCTTCAGCGGCTACAAGAAA ATCAAACAGAGC TTGTATTTCCTCGAAGACATCATCAATATAAACAATTACAACCTTACCATGGACAAAAAG ATCTATGTGAAC ATAGAATACGAGTTCAAAAAGGGCATCAGCAGAAACATAAAAGACGTGTTCAAATACAGC TTTTACAAAAAT GACCAGAAGATCAAAATTGCGTTCTTTTTTAGCAGCAAGAAGCAAATCTATGAGATTCAA CGCAGCTTGAAG ATGCTGTTCCAGAACAAGAATAGCATATTCTACCAGACCATCTACGAGATGGGGTTCAGC AAGGTGATTTTT CTCCGCGAGCCGAAGACTAACAGCAGCGCATTTATGTATAACCCCGAGACCTTCGAGATT AGCAACAAAGAT TTCTTTGAAAACCTGGAGGGGAACATTATGGCAATCATTATACTCGACAAGTTTCTGGGC AATATCGACAGT CTTATCCAAAAATTCCCTGAGAACCTCATCCTTCAACCCATACTCAAAGAGAAACTGGAA AAGATTCAGCCG TATATCATTAAGTCCTACGTCTATAAAATGGGAAACTTTATTCCAGAGTGCCAACCATAC GTCATAAGGAAC CTGAAGGACAAGAACAAAACCCTCTACATCGGCATCGACCTGTCCCACGACAACTATCTC AAGAAGTCTAAC CTCGCCATCAGCGCCGTAAACAACTTCGGTGACATTATCTACCTGAACAAGTATAAGAAC CTTGAGTTGAAC GAGAAGATGAACCTCGATATAGTCGAGAAAGAGTACATACAGATCCTCAACGAGTACTAC GAGCGCAATAAG AATTACCCCGAAAACATCATTGTTTTGCGAGACGGACGCTATCTCGAGGACATAGAGATC ATAAAGAACATA CTGAACATTGAGAACATCAAGTACAGCCTCATCGAAGTTAACAAGTCCGTGAATATCAAC TCCTGCGAAGAC CTTAAAGAGTGGATTATCAAGCTTAGCGACAACAATTTCATATACTATCCCAAAACGTAC TTTAACCAGAAA GGTGTAGAGATAAAGATAATAGAGAACAATACCGACTACAATAATGAGAAAATACTGGAG CAGGTGTACTCA CTGACGAGAGTGGTGCATCCCACCCCCTACGTAAACTACCGCTTGCCCTACCCCCTGCAA GTCGTCAACAAG GTCGCCCTTACCGAGTTGGAATGGAAGCTTTATATCCCTTACATGAAA

ATGGAGGCGTACATAACGGAGATGGTGTCCAGGGAGAGGGCCAACGAGCTGGAGGTT TACGTGTACGTGTTT

198 5 CCACGGAAGCAATCCGACAACAACTACGAGGGTGTGTATCACATAATGAGGGCGTGGCAA CGGGCTAATGAC

CTGCCTCTGGCGTATAATCAACATACGATCATGGCATTTTCCCCCGTGAGGCATATGTGT GGCTACACGCCG ATGGAGACGCAGAAACGCCATATTAACATTGACTCCCCATTCGAGAGAGCCCTGCTGGAG CGACTGATAAAG AACAGCCTGATTTTTACAGCCGAGCGCCATTTGCATGCCAAGCGGGTAGGCCATGCGCTT CGGCTGAACCAG GTGCAGCAAATCCGGCAGGTGATCATCTATGAGGCCATCGAGCTCTATGTAAATATCATT GAGAATAGAATA AGCATCGGCTTTCACCTCACCCACCAGTTCGAGTACGTATACACTCTCCAGAGCATGATA GAACAGGGAAAA ACAATCAGACCTGGAATGCGCGTCGTGCATTCTAACGGAAGGCAGCATTATACCTACACC GTGGAGAACGTA GCAACATATGGGGTGACCGACAGATGCCCGCTGCTGCAGACCAGCATTTACCAATACTAC GTCGAAAAAGGC GCGCAGCACATTTTGCGCACCTTCACCCGATCCACCAGGGTGATCCACGTAAGAACGAAA GAGCAGAGGTTG AGCTACGCGGCGACACTCCTGAAACCGCTGTGTACTTTTGAGACCATGCAACCCCAGGAC GTGCTCAATGTC AGCAAGTGCATCAAACTTAGCGCGAGCAAACGAATGAAATGTACTTACAGGTGGATTCAG CAACTCCGGGCA CAGTACCGACACCTGACCTTTGCGCCGAACCCCTTCACGATCGCCCAGAATGGCTATAAA CTTGATCAGCTC AGCACCCCCAAGGTGCACTTCCACAGAGACTACGCCACCGTCGTGAGCGGAATGAAGACC GGCAAGCTTTAC AAAGGCGGTAATATCAAGATCAGCGTGCTCTTCGACGAGGACTTTTACTTGAAACACCAC ATCACCAAGAAG GACATATATCAATTCATTGCAGTCCTGCAGAAAATCGCCATCGCACAAGGCGTGAACATG ACCATAAGCACG AGCACCAAGTCCATTACGGGCAAGTTCACGGACGACTTTTTCCACCACTTCACCGAGGAG GTCGAAGCACTG CAGCCCATCTTCGCGCAAACCACAGTTCTGGCATTCATTACCAGTACCCACCTGAGCAAC AAGAAAACCAGG AGTTACCAGCTGCTGAAACAGTACTTCGGCGGCAAGTGGGACATTGCCTCTCAAGTCATC ACGGAGAAGACG ATTGAGGCGTTCCAAAAAATCTTGCACAAGCACGGCCTGAAGAATTTCTACCCCAATGAC GAACAGCACTGT CTCCGCGTGATCGATGTCCTCAAGAATGAGAGCTTCTACTACACGGTCATGAACATCCTC TTGGGAGTATAT GTGAAAAGCGGCATCCAGCCCTGGATCCTTGCTAATACAACCCACTCAGACTGCTTCATC GGCATCGACGTT AGCCACGAGAACGGAAACTCTGCGGCTGGGATGATGAATGTTATCGGCAGCCAGGGCCAC CTTATCCAACAG GCGCCCCTGAACGGCATATTGGCGGGAGAAAAGATTGACGACACCCTGCTCGCAAACTTG CTTAAACAAATG ATTAAGGCATACCACACCCAGTTCCAGCGCTTTCCCAAGCATATAACAATCCACAGGGAC GGCTTTTGGAGA GAACACACTGCACTGGTCGAGAAGATCATGAGCCACTATGAGATTACCTACGACATCGTC GAGATCATCAAA AAGCCTAATAGGAGGATGGCTTTCTTCAACAGCGTGGACAACACCTTTAGCACCAGGCAG GGGACAGTGTAC CAACGGGGCAACGAAGCCTTTCTGTGCGCCACTAACCCTCAGCAGAAAGTGGGCATGGCA CAACCAATCAAA ATACATCAGGTGACCAAGACCCTGCCCTTCTCACACATCATAGAAGATGTCTACAACCTC AGCTTCCTTCAT ATTCACGCTATGAATAAGATGCGACTGCCGGCCACCATACATTATGCCGACCTGTCTGCC ACCGCTTACCAG SEQ

ID NO Argonaute # Sequence

AGGGGCCAAGTGATGCCCAGGAGCGGTAACCAGACAAATCTGCCTTTCGTG

ATGACCGGCGAGACTAAAGTGTTGGTCGGGAGGCAACCCTTCGACGTGGATCGGCTG AATGAACTCAGAGAC

199 45 GAATTCCGGGAGACGCACGTGTTCAGAAGGGATGGCATCGACGATGTCATTGTTGATGTT CCGGTCGTGGCC

GGACAGAAGCCCATCGGCAACGTCCAGGAGGAAATAGACCTGGCTAGGTACCAAAAGGTG TGGCCCTCCCTC CTCAGTGCTGCTCTTGTCCGGGCGTTTAGCGGCGTAAGGGACATCCTGAGCGATAGGCCC GTGAGCGTGGTG GGGAGCACACTGCGGGGTCTGGTTCAACATCCGGAACTCCCCGAATGGATGCAGAAACGC ACACTCCTTAGG TTCGACACCCGGACCATCTATGCTGGTGATAAAAGAACCTTTGGCTTGGTGTGCGAGGCC AGATTGAAAAAC CTTATCCAAGGTAGTTGCGCGGAGCTGCTGGCACTTGGAGTTTCCCCACTGGGTCGATAT GTCCAAGTCGAG GAGCCACATTACGATCCCAGGCTTATGAAAAAACGGCGCCTTGTGGGCAGGGTATCAGCG ATCTCCGGCGAT AATCTGGTGCTGGAGGACCATGCCGAGGGCTTTCCGACCGTGAGTGCAAAGCTGGCATTT CTGGAGGCGCGA AGGGAGATTTTTGACGACTGTGTGCGGAGGATTTTGAACTCTGATGCGGCCTCCGTGCTG AACAAGGCCGAA GCTACTGCTGCCTCATTTCACTCAGGGCCAGGTAGGAAAGAGCAAATAGAGGAGGCTCTC AAGTATCTCAGG GAGAAGGTGAGCCTCGAAGCTGTACCCGGAGCGAAATTCGTGATCGGGCCGATGCTGAGT AGCGGCAACAAG GGCTTCCCCATCACGGAGATGATCCCGAAACCCATTCTCGTGTTCGATCCGAGCGGTACA CGGAAGGATGAG TGGAACGAAAGGGGCATTAAGAAGAACGGGCCCTACGACCAGAGGACGTTTTCACCTAAG CAGTTGAAGGTG GCGGTCATTTGCCAGGCGAAGCACGAGGGGCAGGTGGATGGATTCATCGCGAAGTTCTTG GAAGGTATGCCA GACGTTATGACGGGCAAGAACCGAGTTGCTAGATATGGTGACGGTTTTCTGCGGCGATTC GCCCTTGAGAAA CCTTCTGTGACCTTCTTCACAGCGCCCTCAGCCAAGGCGAGCGATTACCTGGTGGCCAGC CGGGCTGCGCTG ACCAAGGCAACGGACGAGGGTTTCAAATGGGACCTCGCGCTTGTGCAAGTGGAGGAGGAG TTTAAGGGATTC GACGACGAGAGCAACCCCTACTATGCCACTAAATCCGTCTTCCTGAAGCGAGACGTGCCG GTCCAAAGTGTA CGACTCGAAACCATGGCTCAGGCCGACAGCCAGCTGATTTTCTCTATGAACCACATGAGC CTGGCGACATAC GCCAAGCTCGGTGGTACCCCCTGGCTTTTGGCGTCACAGCAGACGGTAGCGCATGAACTG GTTATCGGTCTT GGCAGCCACAGCGTGGCCAACAGCAGGATCGGTAGCCAGCAACGATTCGTCGGGATTACG ACGGTGTTCTCC TCCGACGGGAGCTATCTGCTCTCAGACCGCACGGCGGTTGTCCCCTATGAGGAGTATGCG ACTGCGCTTTAC GATACGCTCAAACGGAGCATCACTACGGTGAGGAAACAAGACAACTGGAGGTCTACGGAT AAAGTCCGCCTG GTGTTCCACATGTTCAAGCCCCCCAAGGACACCGAGGCCGAGGCTATAAAACGGACAGTG GACGATCTGGAG CTGGAGAACGTGACTTTCGCCTTCGTGCACATCGCCCCATCTCATCCCTACCTCATCTTC GACAATACACAA AAGGGAATTGGTTTCCGAGACCCCAAGAAGGGGATACTCGGACCCGAGAGAGGTCTGCAC TTGAAGCTGGGG GACTACGAGTCCTTGATCGTATTCAGCGGCGCAAGCGAGCTGAAACAGGCAAGTGACGGG ATGCCCAGGCCA TGCCTGCTCAAGTTGCACCGGCTTAGCACGTTCACTGACATGACGTATCTGGCGCGACAG GCATTCGAGTTT TCAGGTCATTCATGGCGAATGCTCTCCCCAGAACCGTTCCCTATAACTATTAGGTACTCC GACCTGATCGCC GAAAGGCTCGCAGGTCTCAACGCCGTCCCGGGTTGGGACGCGGAGGCTGTCAGATTCGGC CAAATCGGCCGC ACGCTCTGGTTTCTG

CTGAAAATCAAAATTCTCAAGGAGCCGATGCTGGAGTTTGGCAACGGCGCTCACATA TGCCCCAGGACCGGT

200 42 ATCGAAACCCTGGGAGTGTACGATAAGAGAGATGAACTGAGGAGGAGCGAGCTGCGAATA GGCATTGTGGGT

CGGGGCGAGGGCGTGGACCTTCTGGATGAGTGGCTCGACAAGTGCAAGCGCGGCATCGTG GGTAAAGAGGAG ACCAAGTTCCCCAACTTGTTCAGGGGCTTTGGGGGCGTCGATGAGTACCACGGTTTCTAC ACCAAGATTCTG AGCAGCCCCCAGTATACCCGGACTTTGCAGAAAAGCGAGATTAACAACATCAGCAAGATC ACCGCCCGAGAG GACAGGGTAGTGAAGTGCGTGGAGCTGTACTACGAGCAGATCCGATTCCTGTCAGAGAAC AGGAGCATTGAC GTGATCGTGTGCGTCGTTCCCAATGATATTTTCGACAGCCTTACTAAGGCCACCGGAGAC AAAGACACCGAG TCCCTGGAGGCCTACCTCGAGCACAACTTTAGACGGTTGCTCAAGGCCCGCTGTATGCAC CTTGGGATACCC TTGCAGCTTGTGAGGGAGAAGACCATCCTGAGCGTGAAGCCTAGCATAGACCAGCAGGAC CTTGCCACAAAG GCTTGGAACTTCTGTACGGCCCTCTATTACAAGGGGAATAGGACTGTACCATGGCGCCTG GTGGAGGATAAA TTCAAGCCTAAGACCTGCTACATCGGCATTGGGTTCTATAAGAGTAGAGACGGCGAAACG GTGAGCACATCA CTTGCACAGGTATTCGACGAGTTCGGCCACGGGGTCATCCTTCGGGGAGCACCAGTTAGC CTGGACAAACGA GACAAGAGGCCCTACATGGACGAGTCTCAGGCTTACGAACTGCTGGACAGTGCCCTGGCG GAGTACGAGAAG GCCCTGATGCAAAAGCCCGCTCGAGTGGTGATCCACAAGAGCAGCAGGTTCCGGCCCACC GAGGTGAGCGGC TTCAGCAGAGTGCTGAACGCGAAAGGAATCAGAACGAAGGACCTCGTGAGCATCACATCA ACCGACATCCGC CTGTTCAGCGACAAAAACTATCCCCCCACCCGCGGTACCTTGTTGTCCCTGTCTGAAACA CAAGGAGTACTG TATACCAAGGGAATCGTAGATTTTTACAAGACCTATCCGGGCATGTATATCCCTTCACCC CTGAGGGTTGAG GCGTTCGAGTCCGACAGCTCTCTTGAAGACTTGTGTAAGGAAATCCTGGGCCTGACCAAA ATGAATTGGAAC AACACACAACTGGACGGCCGACTGCCCATTACCCTGGAATGCGCCAATAAGGTGGGCGAT ATCATGAAGTAT GTGGACGCATCCGAAAAGCCACAGGTTGGTGTGGCGCTGTTTATCTTCATGTTGGAGCAA CTCGTACCCGGC TGGAAGCTGCCTAAGGTGAGTACATGGGTAGCACGGGTAATTTTCCTGAATATTGTACAG GTGTCTATCGCT CTGCTTGCCGGGATTACTTGGAATAAATGGATGATGGGCCACAGTTTGTTGCATACCAGC GATGCCCTGCCC CCCTTGCTCGCAGGATTCGCCGCCTACTTCGTTAACACCTTCGTGACCTACTGGTGGCAC AGGGCCAGGCAC GCCAACGACACCCTTTGGCGACTTTTTCACCAACTGCACCATGCGCCCCAGAGGATCGAG GTGTTTACTAGC TTCTACAAACACCCAACGGAAATGGTATTCAACTCTCTTCTTGGCAGTTTCGTGGCCTAC GTCGTTATGGGG ATCTCCATCGAAGCTGGCGCGTATTACATCATGTTTGCGGCTCTTGGCGAGATGTTCTAC CACAGCAACTTG CGAACACCGCATGTTCTCGGTTATCTCTTTCAACGCCCTGAGATGCACCGGATCCACCAC CAGAGGGACCGA CACGAGTGCAACTACAGCGATTTCCCCATCTGGGACATGCTCTTCGGCACCTACGAAAAT CCCAGGAGAATA GACGAACCACAGGGGTTTGCCGGCGACAAGGAACAGCAATTCGTTGATATGCTTTTGTTT AGGGACGTGCAT TCCCTCCCCGGGAAGACACAACCAGCTCCCGTACTCGTCAAACCCGACGTGAGG

AAAGGGCGGCACCAGGCGAAACACTACGCGGACGGCCTGGAAAAAATGCACGGGCAA AGGCCTGTGATTTTC

201 78 TACACCAACGGCCACGATATATGGATATGGGATGACCATCCGGCTCAGCACTACCCGCCC AGACGGTTGTAC

GGATTCTACGCGAAGTCCAGCCTGCAGTATTTGATAAGGCAGCGCAGTGAACGCAAGGCG CTGAATACGGTG

(Helicase) AGCTCTAAAACCGATATACTCGGAGAAAGACTCTACCAGCACGAGGCACTGAAGCGGATC TGCGAACGCTTC

GAGACCAAGCAGAGGAAGGCACTCGCAGTCCAAGCGACCGGCACGGGGAAAACCCGCTTG TCCATCGCACTT ACTGACTCTTGCATGAAGGCCGGGTGGGTGAAAAGGGTGCTTTTCCTGTGCGACCGAAGG GAACTTAGAAAA CAAGCTAAGAACGCCTTTAGCGAATTCCTCAGCGCGCCTATTAGCGTACTGACAACGAAA AGTGCGCAGGAT ACCCACAATAGAATCTTCGTGGCAACCTACCCCGCGATGATGAAGGTGTACGAGCAACTG GATACGGGATTC SEQ

ID NO Argonaute # Sequence

TTCGACCTGATCATAGCCGACGAGAGTCACCGAAGTATTTACAACATCTACGGCGACCTC TTTCGCTATTTT GACGCCCTTCAAGTGGGCCTGACCGCAACCCCCGTGGAGATGGTATCTCGGAGCACCTGC CAGCTCTTCGGG TGTGACTTTAAGCAACCAACTTCTAATTACACACTCGAAACGGCTGTGGAGGAGGGTTAT TTGGTGCCCTAC CAAGTCGTGAAACATACCACAAAGTTTCTGCGCGATGGGATCAAGGGCCACGCGCTTAGC GCGGAGGAACTG GCGGAGCTGGAGGACAAGGGCATCGATCCTAACACTCTTGATTTCGACGCCGAGCAGATC GACCGAGCGATC TACAATAAAGACACCAATCGGAAAATCCTGCAGAACCTCATGGAGAACGGTATCCGGCAG GCCGATGGCCAG ACCCTCGGTAAGACGCTGGTATTTGCTAGGAACCACAAGCACGCCAAACTCCTCGAACAG TTGTTCGACGAG CTGTACCCCCAGTACGGCGGTAAGTTCTGTCAGGTTATAGACAACTACGACCCCAGGGCG GAAGAGTTGATA GACGATTTTAAGGGCGAGGGCAGCAACGAACAGCTCACTATAGCAATCTCAGTCGACATG CTCGACACCGGG ATTGACGTCCCGGAGATCGTAAACCTCGTATTCGCACGGCCGGTTAAAAGCCCCGTGAAA TTTTGGCAAATG GTTGGTCGGGGAACGCGACTCTGTAAGAATTTGTTTGGACCCGGCAAGCACAAGACGCAC TTCCTTATTTTC GACCACTGGGGAGTCGTGGAGTATCACGGCATGAAACAACGCGAGGTAACTGTGTCCCAG AGCAAGTCCCTG ATGCAGCAATTGTTTGAAAATAGATTGGAGCTCGCCAAGACCGCGTTGCACCACGCCGAA GCCGACTTTTTT GAGACGATGGCGGGGTGGCTGCACAAAACGATAAATAGCCTGGACGATCGAACGATTGCC GTTTGTGATAAG TGGAAAACTAAGCAGCAAATGTCCGACCTGGAGACGCTTAGACAGTTCGGTGCAAACACC GTCACGCTGCTT GAGTCAGAAATCGCCCCGTTGATGCAATGGCTGGATGTCAGAGGGCATAGTGACGCATAT CAGTGGGACCTC CTGGTCTCACAGATCCAACAACAAAAATTGAAGCAGGCGGCAGCCTTCGATGATCTCGCT GGGAGGGCAATC AATCAACTGTGGCAGTTGCAGATGAATTTGAATCAAGTTAAGGCAAAGTCCGAGTGGATT AAGCAGTGCCGA GAGACGGAGTGGTGGCAGAAGGCGTCCCTGGATGAACTGGAACAAATGCGACAAGAACTG CGGGGCATTATG CAGTACAGGAACAAGGGTGACATTCCGAAGACAGAGGCGCCCATCATAGACATAACGGAC TCAGAGGAGGTG CGCGAGAAACAATCCTCCTACCTGAACTCAGTTGACATGGTCGCGTATCGGGTCAAGGTT GAACAGGCGCTC CAGGAGCTCTTTGAGAGAAACCCCATCCTTCAGAAGATCCGGAACGGGGAGGCCGTGTCT GAGCGCGAGCTT GAGAACTTGAACGCTCTCGTGCATACACAACACCCGGATATCGATCTCAACACACTTAAA AAGTTCTATGGG ACCGCGGCTCCGATGGATCAAATCCTTCGGACAATAGTAGGCATGGACGGGAACACGGTT AATCAGCGCTTT GCGGCGTTCATACAACAGTACCCCTCACTGAGTGCGCGCCAAGTTCAATTCCTGTCCCTG CTGAAACGACAA ATTGCTCAGAGTGGGGCCATAGAGATTGACAACTTGTACGAAATGCCATTCGCAGCTATC GGCGAACCCGAC AGCGTATTTAGTAACGCGGAACAGATTGATGACCTTCTGGCGATTGTGGAGAGCTTCGGG AAGCAGCCCCAG CAGCAGTCTACGAGACAGGCCAATGAGACA

ATGGATTACATACTTGAATTCGACGAGTTTATTCGAAGCATCAAGCAGAATATTGAT ACAAAGTATTCATTC

202 64 CTGTTGGGGGCTGGCGCTTCAGTCGAATCAGGTATTCCGTGTGCCAGCGAATGCATCTGG GAGTGGAAGAGG

GATATCTTCATCAGCCAAAATCCGACCCTGGCTGAGATGCACAACAACATCAAGAGCCAG AACATTAAGCGC AGCATCCAGAACTGGCTCGATAACCAGGGCACCTACCCAAAGGAGGGCGAGGACATCGAG TATTCCTACTAT ATTGAGAAGGCTTTCCGGATTCCCGACGACCGGAGGAAGTATTTCGAACGAAACATCACC GGCAAGACTCCG TCACTGGGCTACCATATCCTGTGTCTGCTGGCGGAACGCGAGATAATCAAGTCCGTTTGG ACAACAAACTTC GACGGCTTGATCATTAAAGCCGCCCATAAGTACCAGTTGGTGCCCATCGAGGTCACCCTC GAGAGCCAAGAT AGAATCTATCGGACGGATGCCAACAAGGAGTTGCTTTGCATAGCCTTGCATGGGGACTAC AAGTACGGTCCG CTGAAGAATAGTAAAGAGGAGCTGGACAGCCAGTCTGACATCTTCGTGAATGCCCTTTCC TTCGAGGCGTCT AAGCGCTATTTTGTGGTGATGGGATACAGTGGGCGCGACAAAAGCCTCATGCAGGCTATT GAGCGAAGCTTT TGCAGAAGCGGCGCTGGCCGCCTTTACTGGTGTGGATACGGCCGGAACATCGCGCCTGAG GTACGCGTGCTG ATCGAGAAGTTGAACTTGTATGGACGCGAAGCGTTCTATATTCCCACGGACGGGTTTGAC AAGACGATGTTG AACATAGCCCATATGTGTTTCGAGGATAAGGAATTGCAGGAAGAAGTGGAGAAACTCAAA GCGGATCTCGGT GCGGGGTATGAGTGTCGCACCACCACGTTCAGCCCCTACAAGGAAGGGGTGAATAAGATC GTGGACACAAAT GTTTACCCGATCAAATTCCCCGACAAGTGCTATCAGTTCGAGGTGAAGAACAGCAGCGTA ATGAACCTCTGG GATTACTGCAAGCAGCTGATAGACTATAACATTGTGGCCGTCCCCTATAACGGAATGATC TACGCCTGGGGA AACCGCAACAGCATCAGCAACATGTGCGGACCAAATGTGAACGGGACGATCGAACTCGTT CCTCTCACTAGG AAAATCTTTTTCGACAACGGCACTCTCAAGTCAATGCTCCTTAAAACTTTGCTCATCGTG ATTGGAAAGCAC TCCAATTGCAAGTATAACCGAAACAAAATCTGGCGAGAGTCCAAGAAAATCAACTACACT ATTAACGGCAAA AACATTGAAGCGTACCAAGGCATTAGGTTTAGCTTGTTCATGGACTGGAAATACAGCTAC CTCACCCTGACC CCCGCTTTCTACTACAAAGACAGGAACAACGTTAGCAAGGAGGAGAACAAAGAGTTCAGC GACCGGTTTATG GAGCAAATATGTAAGATGCAAGCCAATAAGAATTACGCCGCGTACATAAAACACTGGATT AACATTATCTTT CCTGATGGCAAGTCCATCATTTCCATGTACCCGTGTAACAGCGAGAGCGGATTCGAGTTC ACCATTGTTAAT AAGTCACTGCTGGTCGGACTGCGGAGTAGGCAAGCACTGCATAATCCTGACGATGACATG AAGAAACGGATT TGCATCGGTGGAGCTGAGTTGGCGGACACCGAGCTCAAGTTCTACAATCCGGCTCAGAAT GCAATGCACACC GACTTCCACCCCATGAGGGGCCTTATCAACAATAAGCCCTACGACTTCTACATGAATAAC AGGCTGTTTAAA TCTAACATCTCCCTGGGCGTGATCTCTCCTGTGGGTTCAGAGAAAAAGCTGGAGGACTTC CTGGACCGACTC AACAAAAAGCACAAAGTGAACTACAACGTCGACTATGTCATAGATTATCCTGGGTTTCAG TCCGTCTACGGG GTTGGCCTTTCTGTCCCTCTGATCGCAGAATGGGCGTTGTTGGATGATAAAATGCTGAAT AAAGCCAACCTG TATCAGAGCTGCCTTAACTTCGGGGATCAGATCAAGAAGAAGATTGAGTACCTGAAGAGC CGCGACAGCGTG GACGTGATCATCATATACATTCCGAAAGAGTACGAGCTGTTCACCTTCTTCAACGACGGA AATATCCATTAT GACCTGCACGACTACGTGAAAGCATTCAGCGTGCAGAGGCACATTAGCACCCAGTTCATA CGGGAGAAAACA ATTGACTCTGAGCTTGACTGCCAGATCGCGTGGGCCCTCAGCCTCGCTATCTACGTTAAA GCAGGCCGCACT CCGTGGATTCTCAGTGGCTTGAGGACTGATACCGCCTTCGCCGGCATCGGCTATAGTGTG GACCATATAAAG ACCGACAACCAGACCCTTATCGGCTGTAGCCATATTTACGGGGCAGATGGCCAAGGTCTC CGGTACAAGCTC TCCAAGATTAAGGATGTGACCTTCGACAGCAAGAACAATCCCTACCTGTCCGAAAACGAG GCCTACCAACTC GGCCTGAATATCAAGGAACTTTTCTTTGATAGCTTCAAGACGTTGCCCCAACGAGTGGTC ATACACAAAAGG TTTCCGTTCCAGAAGCAGGAGATCGATGGCCTGACTAAGTGTCTTGGGTCCGCGGGAGTG AAAGACATAGAC CTCATCGAAATCACCTTGGAGGATCGATTTAGGTGCTTTGAATACGACAGGCGACTCCAG ATTGACGGCTAC CCCGTGAGGAGGGGCGTGTGCTTCGCCATCAACGAGAACACCGCCTATCTGTACACCCAC GGTATTGCACCA AGCGTCAAGAATGCCAATCTCCGCTACATACAGGGCGGTAAGAGCATCCCTGCCCCCCTG AAAATCGTTAAG CACTACGGGAACGGCGACCTGGCCCAAATTGCGACAGAGATCTTGGGCCTGTCAAAGATG AATTGGAACAGT TTTGGTCTGTATAGCAAGCTTCCGTGCACTATCCAATCTAGCAACGCTATCGCTCGCGTA GGGTGGCTGCTC TCCCAGTATGAGGGCGTAGTTTACGACTATAGGAATTTCATG SEQ

ID NO Argonaute # Sequence

ATGAACAATCTGATGCTGGAGGCGTTTAAGGGCATTGGCACCATCAAGCCCCTGGTGTTC TATAGGTACAAG

203 70 CTCATCGGCAAGGGGAAGATTGAGAATACCTACAAGACGATCAGCAACGCCAAGAATAAG ATGAGTTTCAAT

AACAAGTTCAAAGCGACGTTCAGTAAGGGAGAGACCATCTACACCCTTGAGAAATTCGAG GTCATGCCCAAT CTTAACGATGTGACCATTGAGTTCGACGGAGAAGAGGTTCTCCCGATAAAAGACAATAAT GAAATTTACTCC GAAGTCGTGCAATTTTACATCAACAATAACCTTCGAAAGATCAAACTGGATAACAAATAT CAGAAGTATCGA GCAACGAATACCAGAGAGATAACTGGCAACGTCATACTCGACAAAGACTTCAAGGAGAAG TACAAGAAGTCT AAGTCAGGGTTCCAGCTCAAGCGCAAATTCATAATTTCCCCCAAGGTGAACGACGAGGGT AAGGTAACCCTG TTCCTTGACCTGAACAGCAGCTTCGACTATGACAAAAACATTTACCAGATGATCAAGGCC GGGATGGACGTG GTGGGGCAGGAAGTGATTAATACGTGGAATAATAAGAAGCAGAAGGGCAAGATTAAGAAG ATTTCTGAGCTG ACGATCTCAGAGCCTTGTAACTTCGGCCAGTCCCTTATCGATTACTACGTTTCCCTCAAC CAAGCTGTGAGG GTGAAGAACTTTACGGAAGAGGAAAAGAACACAAACGTTATCGTCGTCCAGGTGGGAAAG GGCGAGGTTGAG TATATTCCGCACGCGCTCAAACCCATCATTACTAGGGAGTACATAAAGAAATACGATGAG GCCTTCAGCAAA GAGGTAGAAAACCTGATCAAAATCAACATGTCATACAGGTACGAAATACTGAAAAAGTTC ATCGACGACATC GGCTCTATAACCGAACTGAACAACCTTAAGTTTGAGAACACGTACATAGATAACATCGAG TCACTGGGCTAC CAACAGGGAAAGCTGAACGATCCCGTGCTGATAGGCGGCAAAGGCATCCTGAAGGATAAG ATACATGTGTTC AAATCCGGCTTTTACAAAAGCCCCATTGACGAAGTCAAGTTCGGCGTGATTTACCCGAAA GGCCACACCAAT GATAGCAAGTCCACCATCCGGGCGATTTATGATTTTTGTACCGACGGGAAATACCAAGGC AAGGACAACATC TTCATTAACAACAAACTGATGAATATCAAATTTAGCAACCAGGACTGCGTGTTTGAGGAG TACGAGCTCAAT GACATAACGGAGTATAAGCGAGCCGCGAATAAGTTGAAAAACAACGAGAACATCAAGTTT GTAATCGCCATC ATCCCCGCGATTGATGAGAGTGATATAGAAAATCCCTACAACCCTTTTAAGCGGGTCTGC GCCGAGTTGAAT CTGCCCAGCCAGATGGTAAGCCTGAAGACCGCGAAAAGATTCGGCACCAGCAAGGGTAAT AACGAGTTGTAT TTTCTGCATAACATTAGCCTGGGTATCTTGGGTAAGATAGGGGGGGTCCCTTGGGTCATT AAGGACATGCCT GGGGAAGTTGACTGCTTCGTGGGCCTGGATGTGGGCACCAAAGAGAAAGGGATCCACTAC CCCGCATGCAGC GTCCTTTTCGACAAGTACGGCAAGCTGATTAACTATTACAAGCCCACAATCCCGCAGAGC GGCGAGATCATC AAGACAGACGTGCTGCAGGAGATCTTCGATAAAGTGCTGCTGAGCTACGAGGAGGAGAAC GGGCAGTATCCT CGAAACATCGTGATTCACAGGGACGGGTTCAGCAGGGAGGACCTGGAGTGGTATAAGAAC TACTTCATCAAA AAGAATATAAACTTCACGATTGTAGAAATCAAGAAAAACTTCGCCACCCGCGTCGCGAAC AACATAAACAAT GAAGTGTCCAACCCATTTAAAGGGAGCTTCATACTGCGCGAGAACGAGGCCATCGTTGTA ACCACCGACATC AAAGATAATATCGGCGCTCCGAAACCAATCAAAGTCGAGAAGACATACGGCGATATTGAC ATGATGACCATA ATCAACCAGATCTACGCCCTCACGCAAATCCACGTCGGAAGCGCGAAATCTATGAGGCTG CCGATCACGACC GGCTATGCCGACAAAATATGTAAATCCATCGAATACATCCCGAGCGGTAGGGTGGACAAC CGGCTCTTCTTC CTG

ATGGGCAGGCAACTCCAACTGAACTTTACCCCGCTCAGGGTTAGGGGCGACGCCATC AGACTTCAGGCGCTG

204 61 CCTTTCGAGGACGCTCAACAATTTAGGAATCTGCGCGATGAGCATCGAGCACACTACGCT GTGACGAGAAGG

AGCGACCACATCGTGGCCCTCCCACTTACACTGAATGCCTCCCCAATCGGCGAGGAGAAG ATCGTGAGCGTT GTGGAGCATGCGAGTTTGATTCGGCCCCTGCTTGAACAGAGGTTGGTGACCCTTCTGTCC AGTAACCGGAGG CCGGTGGCCCGGTATAATCCGATCACCACCATTGGAAGAACCTTGCCAACGGGCTTCATA GAAGCCGACCGA CACCTCCATTTGCAGTCCCGCGTGCTTATTGCTATCCGCTCCCTCAAGCTGCCGGACGCC GAGCCCTTGGGA TTGCTCTGGGACATCGAAATCCAGAAAACATGCGCGACTAGCCTTGCCGTCCTGCACGCA CAAGGGGTACGG CTGGACGGTCTCACAGTGGAACGGCTTGTCCCGGTGGAGGACGTGCGAATGTTGCCTTAT AGGCGACTGGTG GGCAGAGTAGGCGCGCTGACCGATGGCCACGCCCGATTGAGCGAGCGGTTCCAGAACGTC GAAGAATTGCTG CCCCTGGACGAGCTTTACCTGGAGGCCAGTCCGGAGAACCTGAGGCACCTTCTGCAGCAT TTCATGCGCAAC ACAAGCGGGCGAGTGCAAGGGAAGATAGACGAGATCGTCTTCGAGAACTCACGGGGACGC GCTCGGATGGAG CACATTGCCCGGATCTCCGACTGGCTTAGAGGCCTGGGCGAGATTGAACTGCAGGAGGGT TTGTCTGTAGGC ATCGGAAACCTGCTCTCTGAAAAGGACGCCCAGAACTTTCCCAGGTTCACTGAGGGAACG ACCCCAACCTAC GTGTTTGACGCTGGGACGTTGAAGAGCGAGTCAAGGGCCGCAGTGGGCCTCAGTAAATTC GGGCCCTACAGC CGGCATGTATTTACACCGACTCGACCCAACGTTTGCGTCATCTGCGACCGCGCAAGAAGA GGACAGTTTGAG CTGTTCCTGCGGAAATTCCGGGATGGCCTGACTGTTGATGGGAAGTCCCTGCCGTTTGGT CGCGGGTTTCTG GGAATATATGGCCTTCAGGATATCAACCTGACCTTCGTCGAGGCGGATGCATTCACCGCG GACGCGTACCAT GCTGCCGCAAGCAAGGCAGTACGGATGGGAGCCGAGGGCGCACCGTGGCACCTGGCACTC GTGCAAACAGAA CGCGACAGTCGGCAACTGGCTCCCCCCAAGAATCCGTATTTGGTAGCGAAGGCGGCGTTT CTGTCTAATCAA ATTCCTACCCAGTTTGTGGCGTTCGAGACATTTTCTATGGCGCCTCTGAACCTCGCGTAC ACACTGAGCAAC CTGGCGTTGGCGGTTTATGCCAAGTTGGGCGGCATCCCATGGCTGATCAAGAGTGATAAA GGTATAGCCCAC GAGGTCGTCATCGGGTTGGGTAGTGCCGCGATCGGGGAGTCCCGATTCAGCCGGAAGGAG AGGATTGTCGGC ATCACAAGTGTTTTTCGGGGTGACGGCGGGTACCTCTTGTCTAACCTGTCCAATGCCGTG CCCATGAGCAAG TACGGCGAAGCATTGACCGAATCTCTCCAGGCGACCCTGCAGAGGGTTCGCAATGAGATG AACTGGATCAGG GGGGACAGCGTTCGGGTCATAGTTCACGCTTTCAAGCCAATGAGGAACACGGAGGTGGAG AGCGTTAAGGCT GCGCTGAAAGAATTCAGCGAGTTCGACCTGCAATTTGCTTTCCTTCACGTTAAGCAAGAC CACCCGTACCTC CTTTTTGACGACGACAGCATCGGTACAAAAGGGCGAGGCGAGAAAACCCCCGTGCGAGGC TTGTTCGCGGAG GTCGGACACAACGAGACACTGCTGACCCTGACCGGACCACAGCAGCTGAAGAGACCCACC GACGGGCTGCCG AAACCGCTTCTGCTCAGCCTCCATAGGGACTCTACTTTCACAGATATAATCTACCTCACG AAGCAGGTGTAC TGGTTTAGCAATCACTCATGGCGGTCTTTCCTGCCAGCAGCGATGCCGGTGACGATATAC TACAGCGACCTG GTGGCTGGTTTGCTCGGAAGACTGGATAGGCTGGGGTCTCGCTGGTCACCGAGTGTAATG CTGGGCAAGATC GGAAC C ACAAGATGGTTC CTG

ATGGCCTATCCAATCGCTGACGACCGGCGAAAGTACTTCCACAGTCTTTTCGAGAAC AAGGAGCCGTACATC

205 12 GGATACAAGGCTCTGTGTCTGCTGGCCAAGAACGACATCATCAAGAGCGTGTGGACGACC AACTTTGACGGG

TTGACTGTGCGGACCGCATTCCAAAGTAACTTGACCCCCATAGAAATAACCCTCGACAAC GCAGACAGACTG TTTAGGAACCAAAGCAAGAGAGAGCTGCTGAGCATATCACTTCATGGCGACTATAAGTAT AGCACGCTGAAA AATACCGAGAAGGAGTTGGACTCACAGGACGGCACCTTCAGCGAGCATCTGGGTAACTAT CACGTCGACAAG AACCTGATTGTGATAGGTTATTCAGGGCGCGACAAAAGTCTGATGAAATCCCTGAACGAT GCATTCACCAAG AGGGGCACCGGCAGGCTGTATTGGTGCGGCTACGGTGACAAGATCAACACTGAGGTGGAA GAACTTATACGC SEQ

ID NO Argonaute # Sequence

AACGTACGAACCGCTGGAAGGGAAGCCTTCTACATATCCACCGATGGTTTTGATAAGACG CTGATCGACCTT TCTAAAAGCGCTCTGGAGGACAACAGCATGAGCCTCGAAAGCCTTAATTCCATCCTGAAA CTGGCAAACAAC GAGGAGCTCTCAAAGATCGAATTTAGCCAGAGCATCACCAGGACCGACAAATACCTGAAG AGTAATCTGCAC GCAATTGTGTTCCCCAAGGAGATATTCCAGTTTGAAGTCGAGTTTGGCGACAACAAGCCC TGGTCATTCCTT AAAGACAAAACTAACAACACCGACATATGCGCCATCCCCTTCAAGAGGAAGGTTTACGCC CTGGGCACGCTC AGCGGTATATCTAGCGTGTTCAAAAACGTGCTCAAAAGCGAGATTAGGAGGGTACCAATC TCCAAGTTCGAC ATCGACAATGTGAGCAGCTTTAGGTCTCTCATGATCCAAACGGTGATCAAGCACTTTCTG TCATACGGAATC TTCGACAGCAACCTCAAGGACAAACTGTGGCTTAGAAATTCCGACAATTCCTTCGGGGAC AAGAAAATACAC AAGGCGATTTACCTCAGCTTCTACTTCGATAAGAGCAGCAAATTCGGCTACATTAGCTTC AGCCCCAGCATA CACATAACCTCCGATAACGAGATCAGCAAGGAGGTGAAACAAAGGATTAGCAAAGAGATC TTGGAAAAGCTC CGAAACGATAAGTTTGACGAAATACTGGAGTACTGGAACACCATACTGTTCAATTACAAA AATCTTAAGTTC GAGTACCCCCTTAACAGCGGGACCGGATTCGAGTTCCAAATAAGCCGAAACACTGCGTTT GCCGAAATCATG GTGCTGGACCCGAACTATCGAGTCTATAAACCAAGCGATTACAACAACAAGCTGACCCAG TTCAGAGGTGTG CAGTATCTGGAGCCGCAACTGATCTTTCAGAACTCACTGAGTAACTCCCACACCAAGGAC TACCACCCCATG AGGGCGTTGACCAATAACAGGCCATACGACAACAACTTGAATGGCATCATCTATTCAAAC GAGGTCAATTTG GCCGTGATTTGCGGGGAAAACTACTCCAAAAACCTCTACGACTTCCTGAACCAGCTTAAC CTTAAACACCCC ACAGACAACATCAACCCCGATTTCCTTATAGAATATCCTGGCTTCGCGAGCGCCTACAAC CTCCCCATCAAC ATCCCATACTATGAGGACGCGGACAAGTGGATTAACATAGATTTGGAGAAGAGCAACAAG TCCGACAGCGAG AACGCCATCATCGTTGCACGCCTCATCACAAGCAAAATCGAGCAGATCATAAACATACAG TCTCAGCACACC ATCGTCATCTTCATCCCCAAAGAGTGGCAGGCCTTCGAGAGCTTCCAGGAAAATGGCGAG GACTTCGACCTC CACGACTACATCAAGGCGTTTAGTGCATCCAAGGGCGTGAGCACCCAGCTCATCAGGGAG GAGACACTGTCA GACAGGTTGAAATGCCAGGTCTACTGGTGGCTGTCTCTGAGTTTTTATGTAAAGTCTCTG CGCACGCCATGG GTCTTGAATAATCAGGAGAAAAACACCGCCTACGCCGGCATAGGCTACAGCATTAAGAAG AACAGCAATGAC ACCGAGGTGGTGATCGGTTGCAGCCACATTTACGATTCTAATGGCCAGGGCCTGAAGTAC AAGTTGAGTAAA GTAGATAATTACATCCTGGATAAGCAGAGCAATCCCTTCATGAGCTATAATGACGCGTTT CAGTTCGGCGTG TCAATTAGGGAACTGTTCTACAATAGCCTGGACAGGCTCCCCGAGAGGGTGGTTATCCAT AAGCGGACCAAG TTTACGAACGACGAGATAAAAGGTATTACTGCCAGCCTCAACATGGCGGGGATTACCAAG ATAGATCTCATT GAAATCAACTACGAGACGGAGGCTAGGTTTCTCTCCATGAACGTATTCAACGGCCTTCTG GGCATAGACAAA TTCCCTATCAGTAGGGGTACCTGCATTATTACGAATAAGTACGAAGCCCTCCTTTGGACC CACGGCATCGTG CCCTCCGTGAAGAATCCCATTCACAAGTATTACCTGGGCGGCAGGAGCATCCCAGCCCCG ATCAAAATTACT AGGCATTACGGCGAGAGCGATCTGAATACTATTGCCATCGAGATCCTCGGCCTCACCAAA ATGAATTGGAAT AGCTTTGACCTTTACAGCAAGCTCCCTGCGACGATTAACTCCTCAAATCAGATAGCCCGG ATCGGTAAGTTG CTGGCGCGCTTTGAGGGCAAGACCTATGATTATAGGCTCTTTATT

ATGAACCTGACCGTAAACCTCGCCCCCATCAGCGTGCAGGGCGACTGCTCAGTCCTG ATTGGCAGACAGCGC

206 54 TACGACGAGCAGAGGCTGGCTGAACTTAGGTCAGACTTTCGGGGCACCCACGTGTTTCGG CGAGACGGTCCA

GATAGCATGATTGACATCCCCGTGGTCCCCGACGCGGCACCTCTGGGCAACCTGAGGGAG ACGATCGACCTT AGGCGGTACCAGCGGCTGTGGCCCATGCTTCTGCAGGAGTCCCTCATCCAGCTGCTTGGT AAGCGCCCCATC CAGTCCAGCAAGCCCTTGAAGTTCCTGGGAGCTAGGTCTCCTCTGATCGAGCACCCGGAT CTCCCTGAGTGG TTGAGGCGGGTGAGCGTTACCGAGATCCACACCCGACACATCACCGTGGACGGCAAGCAA ATCTACGGTATC GTGTGCGATGTGAGGGCCAAGTCTTTTATCCTCGCCACCTGCAGCGAACTTCTGAAATTC GGCGTGACCATC CTTGGTAGATACGTCCAAATAGAACAGCCCGCGATAGACGAGAGAACCATGCCTAAAAGG AAGCTCATCGGC AGGGTAAGGTCCATCCAAGGGGATGATCTGCTTCTTGACGACTGTGAGGCCGGCTTCGAA AAAGTCGCTGCG AATGAGGCATTTCTCGAGCCGCGGAAGGAAAATTTCGAGGACTGCGTGAGGCAGGTGCTG AAGCGGGACGCC GAGAGGGTGTTGGAGAGGTCAGCTCGCGCCAGCCAAAACCTGGCCGCAGGCCCTGGGAAA CTGGAACACATC GACGGAATCATCAGGTATCTTAGGGAGAAGAAGCCCGCAGCGGTGCCCGGCTGCCATTTC GTGATCGATGCC ATGCTCAACACAAACGGCCACATTTTTCCACCCGGGGAAACAATGGACAAACCCTTCCTC TTGTTCGACCCT AGCGGTTCACGGAGAGAAGACTGGCCCGAGAAGGGCCTTAAAGATCACGGCCCCTATGAT GAGCAGGTGTTT TCCCCCAAGTCCCTGAAGATCGCTGTTGTGTGCCAAAGCCGGTTGGAGGGCAGAGTGGAC GAGTTTCTGGCG AAGTTTCTCAATGGGATGCCGAAGGTCTTTCAACCCGGCAAGAGCTTCGCCCGCTACGGC GACGGATTCGTG AAACGATTCAGACTGAACAAGCCCGAGGTGCACTTCTTTCTTGCAGATGGCAACTCCGAC GAGGCATACGCC GTGGCCAGCCGCGAGGCACTCGATAAAGCGAGGGATAGCGGGTTCGAGTGGGACCTGGCG ATTGTGCAAATT GAGGAGGAGTTCAAGTCACTGGCCGACGGCTCCAATCCCTACTACACCACTAAGAGCATC TTCTTGCGGAGG GACGTTCCGGTGCAGAGCGTCAGGCTGGAGACCATGAGCCTGTCAGATAATGACCTGGTG TTCCCCATGAAC CACCTGAGCCTCGCTACCTACGCCAAGCTGGGGGGCACGCCCTGGCTCCTGGCTAGCTCA CAAACCGTGGCG CACGAACTGGTGATCGGACTGGGTAGCAGCACCAGCTCCGAATCAAGGCTGGGCAGCCAG ATGAGACATGTG GGAATCACCACCGTGTTCAGCAGTGACGGCAGCTACCTGCTTTCTGATAGAACCGCCGCA GTGCCCTTCGAG CAGTACCCACAAGAGTTGAGGAAAACGTTGCGAAAAACAATCGAGGCCGTCAGGGCCGAG GACAATTGGCGG AGTAGCGACAAGGTGAGGTTGGTATTCCATTCATTCAAGCCGTTCAAGGACAGCGAGGTA GAAGCCATAGAG GCGCTGACCACCGACCTGGGCCTGGGCGACGTGAAGGCCGCCTTTCTGCACATTGCGCCC GACCACCCGTTC CTTATCTTCGACCACGACCAAATGGGCATCGCCGCACGAGGGGGCAAAAAAGGCGTGTTG GGCCCTGCTAGG CAGTTGCACATCCGGCTTAGCGACGCTGAGAGCCTTGTGGTCTTCGCAGGGGCCAGCGAG CTTAAACAGGTG ACGGATGGTATGCCGCGACCCGCGCTGCTCAAGCTGCACCCCAAAAGCACCTTCAAAGAT ATGACCTACCTG GCAAGGCAGGCCTTTGCCTTTAGTGCCCATAGCTGGCGGATGCTGTCCCCCGAACCTTTC CCAATTACTATC CGCTACAGCGACCTGATCGCCGACCGCCTGGCGGGACTCGCGTCTGTTAAGGGCTGGGAC CCCGATGCCGTG ACGTTCGGCGCTATCGGTCACAAGCCTTGGTTCTTG

ATGATAATGAGCCTGGAGAGCAATATCTTCACTTTTAGCAACCTCGGGACACTTACC ACGCAGTACCGACTG

207 23 TATGAGATCAGAGGCCTGCAGAAAAGGCACCAAGAGTACTACCAGAACAGGCAAATCCTG ATCCACCGACTC

TCCTACCTTCTGAAAAATGCCGTAACTATCATAGAGCGCGACGAGAAACTGTACCTTGTT GTAGCTGCCGAT GCCCCGGAACCACCCAATAGTTATCCCATCGTTAGGGGCGTCATCTACTTCAAGCCCACC GGCCAGATTCTG ACCCTGGACTACAGCCTCCGAACACCCCAGAACGAAGAGATCTGCCAGAGGTTCCTCCAT TTCATGGTACAA AGTGCCCTGTTTCAAAACGCGAATTTGTGGCAACCCAGCGCCGGAAAGGCTTTCTTCGAG AAAAAGCCCTCA TTCGAGTTCGGATCAATTCTGTTGTTTCAGGGATTTAGCGTTAGGCCCATATTCACCAAG GACAAGATCGGC SEQ

ID NO Argonaute # Sequence

CTGTGTGTAGACATCCACCATAAATTCGTCAGCAAAGAACCCCTCCCTAGCTACCTGAAC TTCAACGAGTTC CAAAAATACAGAGGCGTGTCATGCATCTACCATTTCGGCCACCAGTGGTACGAGATCCAA CTCTCTGAACTC TCCGAGCTTAACGCGACGGAGGCAATGGTACCCATCGAGAATAAGTTCGTGACCCTTATT AACTACATCACC CAGCAAGCCAGGAAGCCCATCCCGGAAGAGCTGGCAAACGTGTCACAGGACGCAGCCGTC GTGCACTACTTT AACAATCAGAACCAGGACAGGATGGCGGTGACGAGTCTGTGCTATCAGGTTTACGACAAC TCTTATCCAGAA ATCCGAAAGTACCACCAGCACACCATTCTGAAGCCACACATCCGCCGCAGCGCGATCCAC GGAATAGTGCAG AAGTATCTCGCGGAGCTCAGGTTCGGCGACATAACCCTGAAGGTATCAACTATCCCCGAG CTGGTGCCCCAG GAGATGTTCAACCTGCCCGACTATTGCTTCGGCAACGATTACAAACTGAGCGTGAAAGGA AGCGAGGGCACA GCCCAGATTAGCCTCGACCAGGTCGGGAAGCAGCGCCTTGAGCTGCTGAGTAAGGCTGAA GCTGGTATCTAC GTGCAGGAAAAGTTCGACCGCCAATACATTCTCCTGCCCCAAACCGTGGGGGACAGCTTC GGGAGCCGGTTC ATCGACGACCTCAAGAAGACCGTGGACAAGCTGTACCCCGCTGGAGGAGGGTACGACCCG AAGATCATTTAC TACCCCGACCGAGGTCTCCGGACCTACATCGAGCAGGGTAGGGCTATACTGAAAACAGTT GAAGAGAACGAG CTGCAGCCCGGCTACGGTATCGTAATGCTTCATGACAGTCCGGATCGACTGCTCAGACAA CACGACAAACTC GCAGCTCTGGTCATTAGGGAGCTGAAGGACTACGATCTGTACGTGGCCGTCATCCACAGC AAGACCGGGAGG GAGTGCTATGAGTTGAGATATAACAACCAGGGCGAGCCCTTCTATGCAGTAATACATGAA AAACGGGGGAAG CTCTACGGCTACATGAGAGGGGTGGCGCTCAATAAGGTGCTTCTCACCAACGAGAGGTGG CCCTTTGTGCTT TCTACCCCCCTGAATGCGGACGTGGTGATCGGAATCGACGTCAAGCACCACACCGCCGGT TACATAGTCGTC AACAAGAACGGGAGCAGGATCTGGACTCTGCCCACGATCACGAGCAAGCAGAAGGAGAGG CTGCCCAGTATC CAAATAAAGGCGAGCTTGATCGAGATCATCACTAAGGAGGCCGAGCAAACAGTAGATCAG CTGCACAACATA GTGATACATAGGGACGGACGAATACACGAAAGCGAGATCGAGGGCGCCAAGCAGGCGATG GCCGAGTTGATT AGCAGGTGTACGCTGCCTGTGAACGCCACACTCACGATCCTGGAAGTGGCGAAGAGCAGC CCCGTTAGCTTT AGGCTGTTTGATGTCTCCAATACCAATTCTAAGGACCCGTTTGTGCAAAACCCACAAGTC GGGTGCTACTAC ATTGCCAACAGCACTGACGCCTACCTGTGTAGCACGGGGAGGGCGTTTCTCAAGTTTGGC ACCGTGAACCCC CTGCACATAAGGTATGTGGAAGGTACGCTCCCCCTTAAACTGTGTTTGGAAGACGTGTAC TATCTGACAGCC CTGCCTTGGACGAAACCCGACGGGTGCATCAGGTACCCCATTACCGTAAAGATCAACGAC AGGAGGCTTGGG GAGGACGCCAGTGAGTACGACGAAGACGCCCTGCGCTTCGAGCTGTTCGAGTCTCTCGAG TCCGAGGATGAC TTTGACGAGATGACCGACAGCGACTTTAATCAGGAGGAGACAATGGTG

GTGGGCGACAAGACCTTCAGCTTCAAGGTGTATAGGAAACTGAAACAGCAGAACGAC ACCAAGGAAGACGAG

208 16 ATATACCTTTACAATTTGCCCCAAGGCGAGACCCTGAATGATTACAAGCCATATTGGATC AGTTTTACCCCG

AAGGACGGATTCGAAGAATACATCGCTAATTCTTACTTGAGCATCGGCCTGTCAAAAAAG TACCTGTTCAAT AGATTCGTGGAGACGCTCAGCAACTCAAAACTGCACTTCACCTACAAGGTCAAAAGGAAA TTCACCGACTGG TACGTCGATTTCGTAATCGCGCAGTACAGCCAGGGAGACAGGATCATCTACATGAGCCCC TACTTCCTGGAA GAGCAAAACACCTACGGCTTCATCATCGACTTCAAGTTCAGCAAGAAGGATGGTATCCCC TTCGATAAGGAG GTGCAAAAGCTGTCCCTTTCACTGGATAGCAACGGCCGCAGCAACAAAAACTATTACTCT GACAAATTTAGG CTGGTGAACAATTTCATTAAGGAGATTTACACCTCCATAAAGAACATCGGGACCAGTAAT AATCCTATCACC ATTTCCAGCAACCTCATAGAGACCACCGTGTTCCACCTGAACAAGAAAGAGTACATCTTT AGCAATAACAAC GTAAGCTCTAGCCAGTTCCAGGGCGTGAGGAATTTCGGTGTCTATAAGAATATCCCCCAG GACGTGATCTTC GCGTTCATATTCGAGGATAGGTTCAGGAGCTTCGCCAACGAGCTGTATCTGAGCCTTACC GGAAAATTGAAC CCCGGGACCTTTCCCGGACTGGAGCAGATGTTCGGCATCAGCATCAACACCAAAAACGTG AGACAGATCAAG TTGGAGAACTACTCTCTGGATTCAATGCTTAGGGTGGTGAATGACGTGAAGAGCTTGCAG GAGAACAATCCC GATAAGAAGATCGTGGGAATCTACGTGGAAGACTGCACCATCGACAGCGAGGACATCCCT GCGTCCAACAAC TACTACTTTCTGAAGTATCACTTTATCAAAAATGACCTGCCACTGCAGGTTGTGAATTAT CGGAAGCTGGGC GAAAGGAATTCTCTGAAATGGAGTACCTCCAACCTGGCCCTGGCCATGTTCGCAAAGATG GGCGGCATCCCC TGGGTCGTAAAACCGTCTAATAAGAACTGCTTGATTCTTGGCATCGGATCTAGTCATAAG ATAAACCGGGAG ACCGGCGATATACTTAAATACTTTGCATACACCATATGTCTCGACTCCAGTGGCCTGTAC AAGGCCCTTGAG GTGCTGGCCGACGAGGAGAGCGAGGTGAGCTACCTTGAGAAGCTTACTGCCAATCTGGTC GCCATACTGAAG GAACAAAAGACCAATTACGGCACCTGTGTGCTGCACCTGCCCTTCAAGATTAAGAAAAAA GAGGTAGCCGCC ATTAGTGATGCCATAAAACAAATCAACGACATCGAGCTGGTGGTGGTAAAGATCAATGTG GATAACAAGTAT TTCGGATACTCCTTCCACAACACATTGGTGCCCTACGAGAGCAGCTTCGTGAAGCTTTCT AAGGATGAGTAT CTGGTGTGGTTCGAGGGCCTGCTGTACGGCAAAGAGATCGTAGATAAGAGGTTGAGCAAC CCCGTGCACATC CAATTCTTGAACATCACCAACAGGAAGAACTTCGATGAGCAGGCGTTTCTGCAGGACATT CTGAATTTGAGC GGAGCCAACTGGAGGGGCTTCAACGCCAAAAGCATCCCTATCTCAATTTACTATTCTCAA ATCATCGCGAGG TACACCGAGGCCTTCGAAAACATCGACGGTTACAAGGAGGGTACTATCTCTAACGACAAA CCCTGGTTCCTG

ATGAGCGTGGCGATCGTGAGCCCCCAAATGTACAAGAGTCTGAGCGAGGTGTTTCCT CTGACCGCCTCCCAA

209 53 CTGAACTTTATGTGCTTTAGGCTGACTCCCGAAATCGAAAAGAAGGATGGTAATAGGCTC AGCTACCATTTC

AGTCTGAAGCTGCCGGAAACTGTTGTGATCTGGCACCAGCCCTACTTCTGGGTGTTGGCG AGTAGTAACAGG CAAATCCCCAATAAGGACGAGTTGCAAGAAACTCTGATAAGGATCCAAAACGAGGTGGAT GACTTCAAAGAA CGACTCTTCGGTTTCCAGAGCGTTCGCCACCCCCAACTCACCCCCTTTATCATCAGCCTC TTCGCCGTGCAG GTCCTCAAAAAAACAAAGTTCGACTACCCCATTGCATTCAGCAACAACGGTGTAATCGTC AGGAGGGAGCCC GACTTTTGGACGGAGAGCATAGAGCTTCAAGACAGCCTGCATCCTGCCCTCACGCTGACC GTAAGTTCATCA ATAGTGTTCCGCGACAACCTCGCGGAGTTCTATGAAAAACATCATCAAAGGGAGAAGCCC GAGCAGTTTCTG ATCGGCCTGAAGGTGCAGGAAATAGAGAGGGGCAACAATGCGATCATCGTGGGACTCGTC GGCACCATCGGC GAGCACCGGGACCAGCTGCTTGAAAAAGCAACCGGGAGCACTAGCAAGCAGGCGCTGCGA GAGGCACCGGAC AACCAGCCGGTGGTTGCGATACAGTTCGGCAAGGATACGAAGCAGTTCTACTACGCAATG GCCGCGTTGCGG CCGTGCGTAACCTCAGAGACGGCAAACCAGTTCGAGGTAGAGTACGGTAAGCTCCTGAAA GCTACAAAGATA AGCCACCAGGAGCGAACCAACCTGCTGGCCTCATACAAGAAGACGGCCCAGGAGTCATTG GCCGCTTATGGC ATCCGCCTGGAGCTGAGTGTGAATAGCAGGGATTACCCCAGCTTCTTCTGGCAACCCCCC GTGAAGATCGAA GATACCAAACTTCTGTTTGGCAACGGCATAACCGGCAAGCGGACTGAGGTGCTCAAGGGG CTTTCTATAGGG GGCGTGTACCGACGCCACGGGAAATTCCAGGACAAGTCAAAAGTGATCCAGATCGCGGCT CTTAAGCTTTGC GACGTGACCGTTAGCTTGTTCCTGAAGCAACTTACTCAAAGGCTGGCAAAATACGGCTTC CGAAGCGAGATA ATCACCAAGAAGCCTCTGTCAATCAAGAACCTTGCCACCGCCGAAGCCAGGGCTGCTGTT GAGAAAGCGGTC AATGAGCTCGTGGAAATACCCCACGACATCGTGCTTGCCTTCCTGCCTGAGTCCGACAGG CACACCGACGAC SEQ

ID NO Argonaute # Sequence

ACGGATGAGGGTTCCTTCTATCACCAGATCTACTCCCTTCTCCTCAGAAGACAAATAGCC TCACAAATTATC TACGAGGACACCCTGTCCAACTCTGGGAACTACCAGTACATCCTGAACCAGGTCATTCCG GGGATCTTGGCG AAACTCGGGAATCTGCCCTTCATTTTGGCGGAAAGCCTCGATATAGCGGACCACTTCATC GGACTTGACATC AGCAGAATCTCTAAGAAAACGCAGGTCGGGACACGAAACGCGTGCGCCAGCGTGCGACTT TACGGACGCCAG GGTGAATTTATCCGCTACCGGCTTGAAGACGACCTGATCGACGGCGAGGCGATTCCACCC AAGCTGCTGGAA AGGTTGCTGCCTGCGACCGAGCTTGCGAATAAAACCATACTGATCTACAGGGACGGGAGC TTCGTGGGCAAA GAGGCCGACTATCTTGTGGAGCGAGCCAAGGCGATAGACGCGAAGTTTATCCTCGTCGAG TGTAAGAAATCC GGCGTGCCGCGCTTGTATAACTTGGAGCAAAAGACCGTGATCGCGCCGAGTCAGGGACTG GCTCTTCGACTG AGCAGTAGGGAAGCAATACTCGTGACCACCAAGGTGCCCGATAAAGTGGGCCTGGCTAGA CCCATCCGGCTC ACAATCCACGAAAAGGGCCATCAAGTAAGCATCGAATCCGTGCTGGACACTACACTCAAG CTTACTCTTCTT CACCATGGCGCGCTGAAAGAACCGCGACTGCCCATGCCCCTGTATGGGAGCGACAGGATG GCATACCTCCGG CTGCAGGGGATACGGCCTAGCGTTATGGAGGGCGACCGCCAATTCTGGCTG

ATGGAAGAAAATCTGTATCTTGAATACGACGCTTTCTTGAGGAGTGTGAAGCGCAAC GTGGACGTCCCTCAT

210 88 AGTTTCTTGCTTGGAGCCGGAGCTTCCATCTCCTCCGGAATTCAGTCTGCATACGACTGT ATATGGGAGTGG

AAGAGAGATATCTACATCACGAAGAATATAAACGCCGCCGAGTACTATAAAAATCATAAA AACGAAACGGTT CGCAAATCAATACAGAAGTGGCTGGACAACCATGGCAACTACCCCATCCTGGATGCAGCA GAAGAGTACACA TTTTACGCCGAGAAAGCTCATCCAATCGCTGACGATAGGAGAAAGTACTTCTTTAGTCTG ATTGAGAATAAA GAACCATATATCGGTTACAAATTGCTGTGCTTTCTCGCTTCACAGGGGATTGTAAAGAGT GTATGGACGACC AATTTTGACGGGCTGATTGTACGAGCTGCTCACCAGAATAATTTGACGCCTATAGAAATC ACCTTGGATAAC GCGGAGCGCATATTCCGAAATCAGAGTACTAAGGAGCTTCTCTGCATAGCTCTGCACGGT GACTACAAATAT AGCACCTTGAAGAATACTGATACCGAACTGGATAACCAACACGAAATTTTTCAGGAGCAC CTCGGAAATTAT CACGTAGATAAAAATTTTATAGTAGCTGGTTATAGTGGACGCGACAAGTCTCTGATGGAT GCACTCAAGGCC GCTTATTCCAAGAAAGGATCTGGTAGGTTGTATTGGTGTGGCTATGGTGAGAAGATAAAT TCTGAAGTGAAA GATCTTCTTAAGTATATTAGAGCGAGTGGGAGGGAAGCATACTATATAGCTACGGATGGG TTTGACAAAATG CTCATACACTTGTCAAAGGCAATATTTGAGGATAGCCAAGAGCTGAGTGAAAAAATCCAG AAAATACTCGAA AGCACGAATCAAACCGAGACCTTCAACACAGAATTCAAGTTGGAGTTTAAAAAAACCGAC AAATATATCAAA TCAAATCTGCACCCTATTGTTTTTCCTAAGGAAGTATTTCAGTTGCAGATCGAGTATGGC AATGAAAAACCG TGGTCCTTCCTGAAAACACTGACAACTCAAACGAACATTAGCGCCGTACCGTTCAAAGGC AATGTCTACGCA CTTGGTACGCTTAGCGAGATCAATTCCATCTTCAAGCCGTATCTTAAAAGCGAGGTCAAG AGGGAAGCGATC AGCCGATTCGACATCGAAAACGTCACCGCATTCAAAAACCTCATGTTGACAGCCATATCC AAATATTTTTGC TACACGAAAGAAGTGAACTCTAACTACAAAGATAAGATTTGGTTGAAAAACATCCTGTCC AAGGTGGGGGAT ATCACTGTTCACAAAGCAATTTTCATATCCCTGTACTTTGACAAGAATTCCCATTTTGGT TATATGGCGTTC GCTCCTACCGTTTATTTGGATTCCGACTGCGAAATTGAGAAGAGTCAAAAGCAATCCATC AGTAAGAATTTG CTTGAGAAGTTGTATAATAACAAATATAACGAAGAGCTCGAACTGTGGAATGGTATCTTG TTTAATCATAAG AAAGTGAAATTTGAATATCCTCCCTTGTCTGGTACGGGGTTCGAATTTCAGATATCAAGC AACACTGCCTTC GGGGAGATAGACGTGATTGATAACAAGTACCGCTCTTACGTCCCCCAGAATTATGATAAT AAGCAGACTCAG TTCCGGGGAATCCAGTTTTTGGAGCCGCAGCTGATATTTAAGAACATCGCAACGAACTCT GACTTCAAGGAT TATCATCCCATGCGAGGACTGATTAACAACCGACCATATGATGTAAATCTCAACGGGATT ATCCACTCCAAT GAAATTAACCTCTCAATCATCTGTAGCCAAAAGTATGGAGAAAGGTTGTTCGCATTCTTG ACACAGCTCAAT AGTAAGCACAGTACAGAAAATATCAACACTGACTACCTGATAGATTACCCCGGCTTCCTG TCCGCCTTTAAT CTGCCCATCAACATCCCAGCCACCAACGATGACGCTAGCTGGATGGACATCAACTTCGTA GCAGATAACTCT AAAGAAACACACGAGAACGCTATACGACTCGCGAGGGCAATTACCAATAAGATCGAGAAG ATTTCTGCTATA CAAAGCGCCAGCACTATAGTAATCTTTATACCTTTCGAGTGGCAGCCCTTCGAAACATAT ATTAACGAAATA GAGACGTTTGATTTGCACGACTACATTAAAGCGTTTAGCGCCAGCAAGGGGATATCAACG CAACTTATTCGG GAGGACACCCTTGACGATAAGCTCAAGTGCCAAATATACTGGTGGTTGTCTCTTTCTTTT TACGTGAAGAGC CTCAGGACCCCATGGATATTGAACAACCAGGAGCGGAAAACAGCTTATGCCGGAATTGGG TACTCCATAAGC AAGGTAAAGAACAAGTCAGAGATCGTGATCGGATGTTCACATATATATGATTCAAATGGC CAAGGCCTTAAG TATCGCCTCTCAAAAATTGATAACTACTTTCTCGATAAGCAAAATAATCCGTACCTGTCT TATAAGGACGCT TTTCAATTTGGGGTTAGTATCAGAGAGCTCTTCTATCAGTCACTCGATTCTCTGCCAGAA AGGGTCGTCATC CATAAAAGGACAAAATTCACCGAGGATGAGATCAATGGGATAAAGGCTTCACTCAACCAG GCTGGTATTAAG AAGATTGATCTTATAGAGATCAACTACGATATAGATGCAAAATTCGTTGCCATGAACGTG TTCGATAACAAA TTGCAGGTCGATAAATTCCCGATATCCAGAGGAACATGCATTGTGACAAATAAACGGACG GCGTTGTTGTGG ACGCATGGTATAGTACCTTCAGTTAAGCAGCCCAATTATAAGTTCTACCTGGGCGGGCGC TCTATCCCTGCG CCCATAAAGATTACCAAGCATCACGGAGAAAGCAACATTGATGTGATAGCTAGTGAGATC CTCGGACTCACA AAAATGAATTGGAATAGCCTGGATCTCTACAGTAAACTTCCCTCTACGATAGATTCTTCT AACCAGATTGCT AAGATAGGAAAACTTCTGTCTCGCTTTGAGGGCCGCTCATATGACTACAGGCTGTTTATT

ATGGACAATTTGGCTCTCTCTGCGCTTCAGCTGGACAGTAGATTGGATCACTGTATG GTATATCAATACAGG

111 17 ATCGTGTACCATAAGTTCGACGAAACAGAGGCGGGTGAAAAACTGGCAAGAAAGGCCGCC TACGAACTGTGG

AAGGTAAACAACTTCGGACTGCTCACCAACCTGGGTGCCAGTAGCATCCTGTCCCTTAAG AGCCTGAGTCAG CTGTCTATCGATTCACCGCTGTTGCAGGCAAGTTTGAAAGCTGACGGCCAGTTGGAGCTG GATTGCGGTAAC GAACAGCATCAGGAGGCGCTGCAGAGACTCGTGAACCAGGACATAAACAAAGCGGCTTGG AACCTCAAACAA GCGAGCGAGGGGAAGCTTGATTGCCGAAAATCACCAGGCGGGCACGCCGAAATCTTCGAG CCAAGTCACAGT AGTCGGATCAAGGCCCACAGTACCTATTTGGATGCCTTCTGCACCGTAAGGCTGATTCCC GAAGTGCTGTCA GACGGGACAGTGCTGATAGGGTTGCATCTTAAGCACAGCCTGACCGCGAAGGCGGACATC TCTCTTCAGTGG GTCATTGATCATAGGCCCGATTGGCTGATATCCATAGAGAAGGTGCGCCACAGGTATTAC GAGCCCGGCAAA GCACCCCTCGTTGCGGAGTTCGTGAAAGTCGATGATTCCATCAACGGATCATCCCTTCTC CCACACTTGGGC AAATCCCTTGTCGCTTACCACCAGGAGAAAGGGCTGCTTTCAGCCGGACAGCTCGCAGAG GCAGCCACCAGC TCACTCATCAAAGTGCGCTACGGACAGAAGGAGGCAGACCACGTTGCTAGCTTGGTGGAA CCCATGTTTGAT TTCGATACTCTGTCAAAGATTGACAGCCCCTTCCTGAATAGGCTCGCCAAAGACCTGAAG TGGAGCTTGGAC GATAGAATAAAGACAAGCGCGGAGATGGTCAAGAGGCTCTACCTGCCCGGGTTTAATCGA AAGTTGGTACAA GTTGACTACCAGAATCTGAGCAGGAAGAGGTTCAACCACAACCTTATGCTCCAGTTCGCG GATGGGGCAAGG AGCGGCCATGAACAAGACGTCCTGAAATACAAGGCTTTCGCCGACATGACCAGGGCTAGG GTAATCCCACTC SEQ

ID NO Argonaute # Sequence

GTGGTAGGAGAGAGGAACAACACCGAAAGCAATAGACAATTGCTCCGGAACGCCTATAAC GCACTGAGGCAA CTTACCAAGGCCGAATTGCCCCCCTTCACGTCATTTCCCCCCAGCATCGGAAACGCCGAC GAGTTGGACGCA CGGCTGCACAAGAAATGTCCCGACAACGCCATCCTGCTTATCGGGCTCACAGAGAAGAGT GACAAAGCCGCG ATCAGGGACACGGCGTTCAACTACGGCCTGGCCACCCAGTTCATGAGGCTCGATCACAAG CCCAAGGTTTAC GACAGCTTCTACTTCAATAACGTCGCAGCGGGCCTGTTCTCCAAGGGAGGAGGGCAACTG TGCGCCGTGAAC GACATGCCCGGTGAGACTGAACTGTTTATCGGTCTGGACATGGGCGGCGTGAATGTAAGG GCGCCAGGTTTC GCATTCCTGTTTCTCAACTCTGGCGCGCAACTGGGCTGGCAGCTGGCTGACAAGCAGCAG GGCGAGAAAATG CAGGACGACGCTCTCAGCAATCTGCTGGAGAAGTCTCTCAAAACCTACCTGAGGAGCACC GACGGGCTTTTG CCAAGGAGGATAACTCTGCACAGGGACGGCAGGTTTTACGAGAGCATCAATGTGATAGAA CAGTTTGAGCAG AAGCACGGGGTCAAGCTCGATGTTCTGGAAGTCTTGAAAAGCGGAGCCCCGGTGCTGTAC CGGAGAGAACGC AGTGCGGACGGTAAGAAAGTTTTCAGCAACCCAGGGGTTGGCGATGCCGTCTTCCTTAGC GACAGGGAGGTC ATTCTTAGCACTTACAGCGGCGAGGAACTTGGGAAGTCATGGGGTAACAAGGTGAGTGTG AGGCCACTTCGA CTCCGAAAGAGATACGGCGAGACCGCATTGAGCGTGTTGGCCCATCAGGTGTTGGTCCTG TCTAGGATCCAT GGGGCCAGCCTCTACCGACACCCCCGACTTCCGGTGACCACCCACCACGCGGACAGGTTC GCAACCTTGCGG CAAGATGCGTGCATAGACGCACTTAGTAAGATGGATAGACTGTGTCCGGTGTATCTG

ATGAATAACGTGATGCAGGAGTTTCCCGTCGCAAGCTTCCCCACATTCTTGTCCGAG ATCAGTCTGCTTGAC

212 37 ATCACACCGAAGAACTTTATCTGCTTTAGGCTCACCCCCGAAATCGAGCGCAAGACCGGT AACAGTTTTAGC

TGGCGCTTCAGCCAAAAATTCCCTGACGCCGTCGTGATTTGGCATAACAAGTTTTTCTGG GTACTCGCTAAG CCCAATAGACCAATGCCCAGCCAGGAGCAGTGGAGAGAAAAGTTGCTGGAAATCTGCGAG GAACTTAAGAAG GACATAGGCGACAGAACCTACGCCATTCAGTGGGTTAGCCAGCCCCAAATAACCCCTGAG ATCCTGTCTCAA CTCGCCGTCAGAGTGTTGAAGATCAACTGTAGGTTTAGCTCTCCCAGCGTAATTTCTGTC AATCAAGTTGAA GTGAAGAGGGAGATCGACTTTTGGGCCGAAACAATTGAGATTCAGACCCAGATCCAACCC GCTTTGACCATC ACCGTGCACAGTTCATTCTTCTATCAACGACACCTGGAAGAGTTCTACAATAATCACCCT TACAGGCAGAAC CCCGAGCAACTGCTCATCGGCCTCAAGGTGAGGGACATTGAAAGGAATAGCTTCGCGACG ATTACTGACATT GTGGGCACCATAGCGGACCACCGCCAGAAGCTGCTCGAGGATGCCACTGGAGCTATTAGT AAGCAAGCCCTT ATAGAGGCCCCAGAAGAGCAGCCCGTGGTCGCCGTACAGTTCGGTAAGAACCAACAACCC TTCTACTACGCA ATGGCCGCGTTGCGGCCTTGTATCACCGCCGAGACCGCTAGGAAGTTTGACGTGGACTAC GGCAAACTGCTG TCCGCCACCAAGATACCCTACTTGGAGCGGAAGGAGCTGTTGGCTCTCTACAAAAAGGAG GCGGGTCAATCT CTGGCGACTTATGGTTTCCAATTGAAAATCAGCATCAACAGCAGGAGGCATCCGGAGCTT TTTTTCAGCCCA AGCGTGAAACTGAGCGAGACCAAACTCGTATTCGGGAAAAACCAAATAGGGGTGCAGGGG CAAATTCTTAGC GGATTGAGCAAGGGTGGGGTGTACAGAAGGCATGAGGACTTCAGCGACCTCTCAAGACCT ATACGCATCGCT GCGCTTAAATTGTGCGACTACCCTGCGAATTCATTTCTGCAAGAGACCCGGCAACGCCTC AAACGGTACGGT TTTGAGACTCTGCTGCCCGTCGAGAATAAGAAAACCCTGCTGGTAGACGATCTGAGCGGG GTCGAAGCACGC GCGAAAGCCGAGGAAGCCGTTGACGAACTGATGGTGAACCACCCCGACATCGTGCTCACT TTCTTGCCGACC AGTGATAGGCACAGCGACAACACGGAAGGCGGCTCATTGTATAGTTGGATTTATTCCCGA CTGCTGCGGCGA GGGATTGCTTCACAGGTTATCTACGAGGACACGCTTAAGAGTGTGGAGGCGAAATATCTC CTTAACCAGGTG ATCCCCGGAATATTGGCAAAACTCGGCAACCTGCCGTTCGTACTTGCGGAGCCCCTGGGA ATCGCTGACTAC TTCATAGGCCTGGACATCTCCAGGTCAGCAAAGAAACGGGGGTCTGGAACCATGAATGCC TGTGCCAGCGTT AGGCTGTATGGTAGGAAGGGCGAATTTATCAGGTACAGGCTTGAGGACGCACTGATCGAA GGGGAGGAAATA CCTCAGCGCATTCTGGAGAGTTTTCTGCCAGCCGCTCAACTGAAGGGCAAGGTAGTGCTC ATTTACAGGGAC GGCCGATTCTGTGGTGACGAGGTCCAGCACTTGAAAGAGAGAGCAAAGGCTATAGGAAGC GAGTTCATCCTG GTTGAATGCTACAAGAGTGGGATTCCACGACTGTATAACTGGGAAGAAGAAGTCATAAAG GCACCAACTCTG GGACTGGCCCTTAGGTTGAGTGCGAGAGAAGTGATTCTGGTGACAACCGAGCTGAACAGC GCAAAAATCGGT CTTCCTTTGCCTCTGCGACTCAGAATTCACGAAGCCGGTCACCAAGTATCTCTCGAGTCT TTGGTAGAAGCC ACACTGAAGTTGACCCTCCTCCACCACGGCAGCCTGAACGAACCGCGGCTGCCTATACCA CTGTTTGGTTCC GATCGAATGGCCTACCGGAGACTCCAGGGCATATATCCCGGATTGTTGGAGGGGGATCGG CAGTTCTGGCTT

ATGAACCTGACTCTGTTCAACGAGATCCTCCCCATCAACATCAGCCAACTGCCCAAC CAGTACTTCTACAAG

213 38 CTGTGCACTGCCGGCGACGTGGACCTGGATTCTCTGGGCAGGAGCATCAAGTACCGGATC CAGAAATACTTC

AGAGGAATCTGGGTGTGGAGTACCAACGACCAACTCCTCATTTCAGACAAGCTCATCGAG TACCCCGAACTG CAAAAGTTCACCCAGTATCTGTGGACCGACCAGTCTAACCTCACATTCAACCAGCTCGAG GGGATAGAAATC GAGAACATTAGGTGTTGCACCCCCCAAGGCATCGCTGATTTCTGTAGCCAAGGTCTCATC AAAAAGTACGAC CAGCAGATCAAGAAGATACTCGAACAGTCCAAGACAGCACGGAGAGACTATCATATCAAA CTGATCCACAAG TTCGGCTCCTGGGTGGTGAACAATCAGCCCTGCATAAGCCTGAGCCTGAAACAGGAGATC GATTTTAACGGA ACTCTCCAGGACTACCTGACCAAGTTCCCCAACTCTAACATCATCGGCCTGCATGTGCTC GACATCACTAAG CCTTTCAACACCGCACAGGAGGTCATCAAGATTCTCGGTATCTTGGGTGAGGGAAATCGG CGGCAGCGCCTC CTGACTTGGGTCAAGGAGCCAACCATGAAAAAACTCGTGGAAGAGGCCCCAGATAGTGAG CTCGTAGTTGAG ATCGGGAACAAGAAAAAATCCTATCATTACATCATTTCTGCCCTGCGCATCAGAGTCCTC AACCAAGATTAC CTGAGGCTGGGGATTAGCGAGAAGCTGCAAATAGTCAGTGAAGAGAGGTTGAAGTACATC GAGCCACTTTTC CGCATACTGCAATCAGAGGGCTTCCTGGACAAGGTGTATACTAGCCAGCGCAACCCCGAG CTGTTTAGGTCA TGCAGCGAGGAATGGGGTTACAATCCCCTGCTGAAGTTCAAGAATAACGCCACTGTTGCG GCGGAATCCGTG CAGTCCACGGTCCAGGTGGTGCAGAAACACGGCGAATTCAGGAAAGCCGACAAAAGCGAA ATTAGGATCGCC ATACTCAACACACTGAAGAGTGAAAACAGCACCAAATTGATTGAGATTTTCCGAAACAAC TTTAAGCGAAGC TTTAACCAGAATTTGGAGGGAATCGGTAATCAGCTTAAGTATAAACTCAAGTTGGTGGGC CAGCCCATTGCA CTGGATCTCAGTAAGAACTCCCTCAGCCTGCTGGACAGCAAAATAGGAGAATTGTCTAAA AAGAAGCCGGAC ATTGTGATCTGTGTGATCCCTAACTTCCTTAGCAAGGGCGAAGACGGGCGGACACTTTAC GACGATTTGAAG CAGACGTTCCTCAAATACAATCTCCAATCACAAATGTTGCAGGAGAAGACTCTCACGACG TCATTTGCCACA AAGAACATCGTGTTGGGCGTGCTGGCGAAAATTGGAAGCGTTCCCTATATTCTGCAAGAA CCGCTGACGTAC ACGGACTTTGTCGTAGGTTTGGACGTGAGCAGGCGACGCAAAAAAAACCTGCAAGGAACC AACAGCGTAGCC GCCATGACCCGAATCTACAGCAATCAAGGCGAACTGGTCCACTATAGCATCCGAGACGCA ACCATCGACGGC GAGATCATTCCCAAGAGGATGCTCTACGACCTCTTTCCACTTCACGAATATCAGGGCAAA CGCGTGGTGATT CACCGGGACGGAAACTTCCCCGAGGAAGAGCGCCAGGCACTCGAGGAAATTGCCGAAAAG ATTGACGCGAAG TTCTACTTCGTAAGCATTATCAAATCTGGCAATCCCAGGATCTACGGTAGGACCAAAAAC GAAGAGGGCATC SEQ

ID NO Argonaute # Sequence

GGCAGTTATCGCAAGGCACCTAAGGGTAGCATTTTCCTCCTCAGCGAGACGGAGGCCTTG CTTATCAGCAGC GACTTTCCGGACCGCTTCAGGGCCACGCCACAGCCTCTCAGAATTAAGACGTTTGGCAAC TTTCCCCTTCAA AGCGCCGTCCATAGCGTTCTGTCACTCACCTACCTGCACTACGGTTCCGAGCGCCCACCG AGGCTGCCGGTG TCTACCTACTACGCAGATAGCATTAGCACTATGGTATCCAAGGGCATTAAGCCCAAGGAC GTTGACGGCAAT ATACCCTTTTGGCTG

ATGCTCCTTAATCATCTCCCAATCGAGTTCTCCAGCGCACAGTTCGCTGGACACGAA ATTGCTTATGTCGAC

214 25 GGCGAGCAGTTGAGGTCCATACGACAGAGACTCACGCGCACGCACTTCGTGTTGAGGGAT GGGGACAATGTT

CTGCTCTTCCCGTACGAACATGGAACCGCGACCGAGGGAACCAGGCGAACATTCGACACG GGCGTTAATTTC AGCGTAGCCAACGCCCTGGCGCGCAACGGCATGCTTCTGCGATTCTTCCAGCACTCTAGA AGTATTTCCGGC GTCCGACCGGTGAAATTTGTGAAAGACAACCAGAACCTGCTCACGGGTGACGTAGGCCGG TTGTTTGCTATA TGTCCGGAGTACAGTTTCGACATCCGACCCCTGGCACCTCAAGACGGCAGCCTTGTGAAC GGGGTACTGGTA AACTTCTCAGCCCGATTTTTGGTGAAGCCCTCCCTCGACGAATTGATTGCGCAGGGGCTC GACCCACGGGGC CTGTATGTTGTTAAAGAGGCAGAAAGAGAATCACCCTACATCCTGCCGATGTTTAATCGG AGATTGGTAGGG CGGATCCAGGACGTGGTCGGAGGTATCGCCAAGCTGGTGGACGAGCGCGAACAGGACCTC CCTGTACATGAA CTTCATGTCGAGGCCAACCTGGTCAACTTCGAGAAAGTAGGCAGAGCACTGCTTGGCCGG GATTACGAGCGA GTGAGTCGACAAGTGCTTCCCACCCTCCATAAGGTGAGCGGCGCAGAGAAACAGCTCGAT CGCTTGGTCCAG CTGCTGACGAGCTTCAAAGACCTCCAGGGTGACATCCCGTGTTGCGACGGCCTGACCGTT AGACTGGCAGGC ATACTTACAGATGTGCCCTTCGGCAGTGAGGTGGGCCAATTCCGCAAATTGTCCGCGCCA CAGTGCAGCCTC CGCCCAGGGGGAACTATTACGGTGCCGTGGCCCGTGGACGGCAAACTCAATGCCAACGGC CCCTTTGATGCA GACGCCTTCAGCAGGAAGGAACCAACAATCGGCGTTCTGTTTCCGGAGCAGCACAAGGGT AGTGTAGAAGAG CTGGCCGCTAAACTCAGAGACGGCGCACCGAGCGATGGAAAGTACCCAAGTCCATTTCCC CAAGGAATGCCC CGGAAGTATAGACTTAGGAAGATGACATATGAGCTGACGCCCACGAAAGTTTCAGGGGAC AGGGCCGCAGCC TACAAGAATGCCGCGCTTGCAGCCGCCCAACAAGAGCTTGATCTCGCTCTGGTGGTCATA TCTGAATCAGAT AAGGCGTTGCTTGGAGCCGCCAGCCCCTACTACACTGCGAAAGCCACATTGATGAGCCAA GGCGTGCCGGTG CAGGCTATTACCATTGAGACTATCAACAGGCTCAACCCCTACACCTTGAATAATCTGGCA CTTTCCCTTTAC GCAAAACTCGGCGGGATACCTTGGACCCTGTCAGTTCAACAGCGACTGGTCCACGAGATA ATTGTAGGGATA GGGTCTGCGAGAGTGGGCTTCGACCGCCTCTCAGAGCGGGAGAGGCTTGTCGGCATCACG ACCGTGTTCTCC GGGGACGGATCATACCTTCTTGGCAATGCAACGACGGAAGCCAGCAGTACCGAATATAGG TCTCGCCTTCTG GAGAGCCTTAGGGCGACTTTGGCAGAGTTGCGAAGACGATTTGGCTGGCAGCGGGGAGAT AAATTGAGGATT ATCTTCCACCAAAGCTATAAGCGGTACAAGGAGACCGAAGCAACCGCCGTTAGCGACCTC ATCGCCGAACTT GATGAATTCGATGTGGAATTCGCGTTTGTGCAGATCAGTAGCGATCATGACTGGAAGTTG TTCGATGAGAGT GCCACAGGCGTTACGTATCAGTCCCGGCAAAAGGGAGCGAAGGTGCCGGAACGCGGAGTC ATAGTCCCTCTC GGACCTCGCGCTGCGCTGATCACGTTGGTGGGTCCGCATCAACTGAAAACCGACCTGCAA GGGTGCCCCTCC CCCATACTGGTGTCTATCCACCCGAGCTCAACTTTCAAGGATTTGAGTTACGTGTCAAAG CAGGTGTTCGAC TTGACCTTTATGAGTTGGCGAAGCTTTAACCCAAGCACGCAGCCCGTTTCCGTGAGTTAT CCCAACATGGTG GTGGATCTGCTCGGTAACCTGCGGCAAATCCCCAACTTCAATCCCGACATTCTGACGACA AAACTGAGGGAG TCTAGGTGGTTTCTG

TTGGACAATTACATACTGACCGAGTACAAGGCCGGCATCCACGCCAGCGAGATCAAG ATACACATCTACCGG

215 20 ATGCCCGTCAAGGATCTTGAGAAAATCGACTATGAGTACGGGAAGTACACACGCGACCTC AGACAAAAAAAC

AGGAAGACGATATCCTTTTACCGCTCTCTGATCGGCAGCTTTGAGAAGCTCACCATCGTG CCCAAGGGATAC GAGAAGTACGAGTATAGATCAATTAAACTCGACCAGAGTGAGGAGTCACTCCAGGAGAGG AAACTGCTGGAG AGGCTGATCTTCGACGGCCTTAGGGACAGCAATAGGAACCACTTTATGAGCACCGAGCAG AGCATCATCGAG AAAGAGCCCATCAAGTCCCTGAGCAAGTGCAAAATCCACCGGGGTATCTACATAGACATC ACCGTGAAAGAG AAAGGCGACATCTTCATCGGTTTCGAGCTGAAGCACTCCATCCAGAGCACCCACACGATT ATCAAGGCTCTG AAGGAGAAGAAACTGAACAAGGGCGATAAGGTGTTTGACTTTCTGAACAGCGCCCACTAC GAGTTCGAGGGG ATTAGCGACAAAACCATCAGCGACCCCCTTCCCGAACTGGGCAACAAGAGCATTATCCAG CACTACAAAACG AAACCCAGCATCTACTGCCACCTCGTGAAAAAACCGAACATGCCCGCCATCCTGGTACGC AGCAAGAGCGGC AAGGTGTATCCTTACCCCCCACAGCTGCTTAAGAAGGAGTGCCTGATGAAGGATGTGCCG GCTAAGGAGCAC AGCTCTATCAAGCTGAACCCCAACGATAAGATCAACTACAGCATTGAGATCATGAAGAGA ATCATAGATGCG TTCGAGAACAGGTATTTCCCCATCGGCTTTGAAAAGAACAACCTGAACATCGCCAAGCTC GGATACAGGAGG AGGCTGGTCCCGGATCCCCTGCTGAGGATTGGCAACGGAGCCACCTGCAACCACAGAGAC CTCAAGGGTGCC TTCCTTAGGCACAAGATTTATGACAGCGTGAGCTCCCCTATCTACTACCAGCTTCTGCTT GACCAACCCTTC GAAAGGGAGTGGCAGAAAAAGATGAGCGAAGCGTTCATTACGAAGATGGAAAACCGGAGC AGGCAGTGGGGC ATAAAGCTTCAGTGTACCGGGAACCAGATCCTCCCTACCTCTAACCCGTACGCGCTGAGA CTGCATCTTAAG GACATCAACCTGGATACCGACATCATTAGCGTGGTCCTGTTGGACGAGACCAAACAAGAA GGCGAGGAGGTT TACTCTACCATCAAAAAAGAGCTGGGTGGCACCAGGGGCGCACATACCCAGGTAATCCTG ATCGATAGCCTG AAGAACGAATACACTATCCCCCAGATACTGTTGGGAATCTACACCAAGGCTGGATTGCAG CCCTGGGTCTTG CACCAGCCGTTGCACGCCGACTGCTACGTTGGCTACGACGTGAGCCATGAAAATGGCAGG CACACCACTGGC ATAGTGCAAGTGTTCGGCAAAGACGGGTCACAGATCTTCAGTCAGCCCATTAGCAGCGCG GAGGCCGGAGAG AAGGTGTCAAAGGAGACCATTCAGACTATGGTGATACACGTTCTTTACTATTACCAGAAG AAAGTTGGCAAG ATGCCACAGCACATTGTCTTCCACAGGGACGGCCGAGGATACGTAGAGGAGATAGACTGG ATTAAAGACATA TTGAGTAATAGGGACCTCACCAACGGCCAAAGCATCGCTTTCGATTACATCTCAGTGATC AAAGAGTGTGGT CGGCGCATGGCTTACTTTGACGACATAAAGAAGAAGTATGTGAACGTGCCCGGGATTGCC TACCTGGACGAC AACGCCCAAAAGGCCTATCTTTGCAGCACCAATCCATACGAAAAAGTAGGGATGAGCAAA CCTATTAAGATT GTGAAGAAGATTGGCGAGATGACCCTGGAGCAGATCGTAGAAGACATCTATCACCTGAGT TTTATGAATATC GACACCGATAGGAAGGTGAGGCTGCCCGTGACTACCAATTACGCCGATAAGTCTTCAACG TTTTTCTCTCGC GGCTATCTGTCATCACAAAAGAAAGGAATTGGCTTCGTA

ATGGTCGGCGGCTATAAAGTCAGCAATTTGACAGTGGAAGCGTTCGAAGGTATCGGG AGTGTCAACCCGATG

216 69 CTGTTTTACCAATACAAAGTCACCGGAAAGGGAAAGTACGATAATGTGTATAAGATTATC AAAAGCGCACGG

TACAAGATGCATTCTAAGAACCGATTCAAGCCCGTGTTCATCAAGGACGACAAACTGTAC ACCCTCGAGAAG CTCCCGGATATAGAAGACCTGGATTTCGCAAACATTAACTTCGTGAAAAGCGAGGTTCTC AGCATAGAGGAT SEQ

ID NO Argonaute # Sequence

AATATGTCAATTTATGGCGAGGTGGTGGAATACTATATCAATCTCAAGCTGAAAAAAGTG AAGGTGTTGGGA AAATACCCCAAGTACAGGATCAATTACAGCAAAGAGATTCTCAGTAATACGCTGCTGACA CGAGAGCTCAAA GACGAGTTTAAGAAATCAAATAAGGGTTTTAACCTGAAACGGAAGTTTAGAATTTCCCCC GTGGTGAATAAG ATGGGCAAAGTGATACTCTATTTGTCCTGCAGTGCTGATTTCAGCACCAACAAGAACATT TACGAAATGTTG AAAGAGGGCTTGGAGGTTGAGGGGCTGGCCGTTAAGAGCGAGTGGAGCAATATCAGTGGC AACCTGGTGATC GAGAGCGTACTGGAAACCAAGATATCCGAGCCCACTAGCCTGGGCCAATCCCTGATAGAC TACTATAAGAAT AACAACCAGGGCTATAGGGTGAAGGATTTCACCGATGAGGATCTGAATGCCAACATTGTC AACGTGAGAGGA AATAAGAAGATCTATATGTATATTCCGCACGCGTTGAAGCCGATAATCACCCGGGAGTAC CTGGCCAAGAAC GATCCAGAGTTTTCTAAGGAGATCGAGCAGCTTATCAAGATGAATATGAACTACCGATAT GAAACCCTCAAG TCATTTGTGAATGACATCGGGGTCATTGAAGAGCTGAACAACCTGAGCTTCAAAAACAAA TACTACGAAGAT GTGAAACTGCTGGGTTACTCCAGCGGCAAAATAGACGAACCCGTCCTGATGGGGGCAAAA GGGATCATAAAG AACAAAATGCAGATTTTTTCCAATGGATTCTACAAACTCCCCGAAGGCAAGGTACGATTT GGCGTTCTGTAC CCAAAAGAATTTGATGGCGTGTCAAGGAAAGCTATCCGCGCCATTTATGACTTCAGTAAG GAGGGCAAATAC CACGGCGAAAGCAACAAGTATATCGCGGAACACCTGATAAACGTGGAGTTCAATCCAAAG GAGTGCATATTT GAGGGATACGAACTGGGCGATATCACCGAATACAAGAAGGCGGCTCTGAAACTTAATAAC TACAACAATGTC GACTTCGTAATCGCAATAGTCCCGAACATGTCCGACGAAGAGATAGAGAACAGCTACAAT CCGTTCAAGAAA ATATGGGCCGAACTGAATCTGCCCAGCCAGATGATTAGCGTCAAGACGGCCGAAATCTTT GCCAATAGCAGG GATAACACGGCGCTTTACTACCTGCATAACATCGTCCTCGGTATCCTGGGTAAGATAGGA GGGATTCCCTGG GTGGTTAAAGACATGAAGGGCGACGTGGATTGCTTCGTTGGACTCGATGTCGGCACCAGG GAGAAGGGCATA CATTACCCCGCCTGCAGCGTTGTGTTTGACAAGTACGGCAAGCTTATTAACTATTACAAG CCTAACATCCCG CAGAACGGAGAGAAGATTAACACAGAAATACTTCAGGAAATTTTCGACAAGGTGCTCATA AGCTATGAGGAG GAGAATGGAGCCTACCCGAAGAATATCGTGATCCACAGGGACGGCTTTAGCCGAGAGGAC CTTGACTGGTAT GAGAACTACTTCGGTAAGAAAAACATAAAGTTTAACATCATCGAAGTCAAAAAGTCAACT CCGTTGAAAATC GCCAGTATAAACGAGGGAAATATCACGAATCCTGAAAAGGGTTCCTACATCCTGCGCGGC AACAAAGCCTAC ATGGTGACCACAGATATTAAGGAAAACCTGGGAAGCCCAAAGCCCCTGAAGATAGAAAAG AGCTACGGCGAC ATAGACATGCTCACAGCTCTCAGCCAAATATACGCACTCACGCAAATCCATGTGGGGGCG ACCAAAAGCCTG CGCCTCCCAATCACCACCGGCTACGCCGACAAGATTTGCAAGGCGATCGAGTTCATCCCC CAAGGGCGCGTG GACAACCGCCTTTTCTTTCTG

ATGGACCGCGAGATCATTGAAAACTTCAACCCCAGCGACCCCAGGACCGAGGGCGAG AAGTATCTGATGGAT

217 76 AACTTTTCAACCTCCCCCAGGTTTAATGGCTGGACAATATTTGAGCAGCCCCACATCAAC TCAATGAAGCCC

GACTTCATCTTGCTGCACCCCCACAAGGGCATCATAATCATAGAAGTGAAGGACTGGAAC CTCAGCAGCGAG

(Helicase) ACATATGAGAACGGCGGTTACATCTGGGGGGAAAACGGCGAGAGGATTAAGAAAAACCCC ATCAATCAAGTA

GAAAACTACAAAAACTCTATACTCAAGATGGAACTTACAAACAGCATCGAATTTAGTGAA GTGTTCGGCGAC AAATACTTCGCGTGCATAGAAACGGTGGTATACTTTCACAAAGCCAACAAAATTCAAGCC GAGAACTTCTGC AGGAGGAACAATAACTACACCAAGATCTGGACCAAGGACGAGTTCGACTACATATGCAAT ATCAATAACAAA CTGAAGGGCAGTTGTCACACCTATGCCCTGAGCTACGAAAAAAGCACCCTTGAAGACAAC AGAGGTATGCTG AGTAAACTGGTGGAGGAGCTCAAGTGCAATCTCCAGTACAGTGACTACAACTATGAACGA CGCCAACCGATT AAGTTGACCTATGAGCAAGAGAAGTTGGCGAGGCTGCAAAAGAATTCAATCAGGAGGTGG AGCGGCGTGGCA GGCGCTGGCAAGTCCCTGAGTCTGGCGCAAAAAGCCGTGAACGCCCTGAAGGAGGACCAT AGCGTTCTGATC CTGACCTACAACATAACCCTGAGGCACTACCTGCGCGATCTGTGCTCTCAACAGTTCGGA CCCGGCTCCTAC AAAGGCGAGCGCAAGAAGCTGAGGAGCGACCTGACCATCTGTCACTTTCATGACTTTTTG AGAATCATCATG GCCGAGTACGAGATCGAGGTCGAACATGACGAAGACGACAACTTCACCCAGCACTGGATA AACAAGATCGAC AGTTGCATAAAGGTGAACGGCATCAAGAGCCACCTCAAGTACGACTATATCCTGATCGAC GAGGGCCAAGAC TTTGAAGGCGAATGGATTAGGTTCCTGAAGCAGTTCTTCACCGAGGTGGGTGAGATCTTT ATCGTGTACGAC AAGGCCCAGGATCTCTACGAGCATGGCGTGTGGATCGAAGACAGCAACCAAATCAAAAAC ATCGGCTTTAAG GGCAAGCCCGGGAACCTGAAAATCAGTATGAGGATGCCTGAGAAGATGGTGTACCTGGTG CAGGACATCAGA AATGAGTTCAAGATAGATGAGGAGGAGATCACCCCAAACGTGAACAGCCAGCAGAGCTTC ATCGAGATAACC AAGTGGATTAACTGTATGCCCCTGACGCTCACTGAAAAGCTCGACCAGATTGAAATACAG GTGGACTTTCTG CGCCGAAACAACAACAGCCTGGAGGATATCACGATCATTACGACCAACGAGGAGACCGGA GTGGAGATAGTG AATAGGTTCAAAAGCAGGGGTATCAAGACCAGCCACGTCTACGATATGGAGAAGCGGGGG AACCAGGCCAGG CGAAGGATGGAAAAATGGAAATTCCAGGGCGGCACCGGCAGACTGAAGATTTGTAGCTAT CACAGCTATAAG GGCTGGGAGACTCCGAACATCATCCTTGTGCTGGACGAGCCGAGCACAAAGTATGAAGAC GGCATAATTAGT AAGGGGGAGTATAACGAGAAGAACATTTTCGACGCTATCTTCATTAGCATGTCCAGGGTG AAAAGGAAAGCC CAAACCGGTGAGTTTAGCTTTACGTGCCTGAATTATCTTAGCGAATACAATAAGATTGAG GGCCTCTTCCAC

CTGGGGCTGAATAATGAGTCCAAAGAGTTCTTTAAGGGCATTAGCCGCATTTGGAGA AATTACAAGGACTAC

218 75 ACCTACCTTGACGGGATTAAGCTGAGCCAGGCGCAGATCGATATCATCGAGAAGGAGGAA GACCAATTGCTT

ATAGAGGGCTACGCCGGCACCGGTAAGTCCCTGACCCTTATATACAAGTTCATTAACGTG CTGGTTCGGGAA

(Helicase) GATGGGAAGAGGGTGCTGTATGTGACTTTTAACGATACGCTGATCGAGGATACGAAAAAA CGCCTTAGTTAT

TGCAACGAGTACAACGAGAATAAAGAGAGGCACCACGTAGAGATTTGCACATTCCATGAG ATCGCCAGTAAT ATCCTGAAAAAAAAGAAGATCATAGACAGGGGTATTGAGAAACTGACGGCTAAAAAGATA GAAGATTACAAA GGTGCCGCTCTCCGCAGAATTGCGGGAATCCTGGCTAGGTACATCGAGGGGGGAAAGTAT TATAGCGAGTTG CCTAAAGAGGAACGCCTCTACAAGACACATGACGAGAACTTTATCAGGGAGGAGGTGGCC TGGATCAAGGCC ATGGGCTTTATAGAAAAGGAGAAGTATTTCGAGAAAGATCGCATTGGGAGGTCCAAGAGT ATCAGGCTGACG CGCTCACAACGCAAAACTATATTCAAGATATTTGAAAAGTACTGCGAAGAGCAAGAAAAC AAATTCTTCAAA AGCCTCGACTTGGAGGATTACGCCCTGAAGCTCATCCAGAACATAGATAATTTCGATGAC CTTAAGTTCGAC TACATTTTTGTGGACGAGGTACAGGATCTCGATCCCATGCAAATTAAGGCGCTGTGTCTG CTGACCAATACG AGCATCGTGCTGTCAGGCGACGCGAATCAGCGGATTTACAAGAAATCTCCCGTGAAGTAC GAGGAGCTCGGC CTCAGAATCAAAGAGAAGGGGAAACGGAAAATTCTGAACAAGAACTATCGGTCCACGGGT GAGATTGTCAAG CTCGCGAACTCAATCAAGTTCTTCGACGAGTCCATCAATAAGTATAATGAAAAGCAGTTC GTAAAATCCGGT GATCGCCCGATCATCCGGAAGGTGAACGACAAAAAGGGTGCGGTGAAGTTCCTGATCGGC GAGATCAAAAAA ATCCACGAAGAGGACCCCTACAAAACAATCGCCATCATCCACCGAGAGAAAAACGAGCTT ATCGGCTTCCAA AAGTCCGAGTTCCGAAAGTACCTGGAAGGCCAGCTGTACATGGAAAAATTCAGTGACATC AAGTCCTTTGAG SEQ

ID NO Argonaute # Sequence

TCAAAGTTTGATTTGAGGGAAAAGAACCAGGTGTTCTACACCAACGGCTACGATGTAAAG GGGCTGGAATTT GATGTGGTGTTCATCATAAACTTCAACACGGCCAACTACCCACTGAGTAAAGAGCTGAAG AAAATCAAGGAC GAAAACGACGGCAAGGAAATGACGCTCATTAAAGACGATGTGCTCGAGTTTATCAATCGC GAGAAGAGGCTG CTGTACGTAGCTATGACCAGGGCCAAAGAAAAGCTGTATCTCGTGGCCGACTGCAAAAAC AGCAACATCAGC AGCTTCATCTACGACTTTAACACCAAGTACTATGAGGCACAAAATTTCAAGAAGAAAGAG ATAGAGGAGAAC TACAACCGGTACAAGATTAACATGGAGCGCGAATACGGCATCATCATTGAGGACGACGAC TCCAACAACGTT AAGAACAATGACACGAAACAAGAGAACAAGTTTAATACCGAATCTAAGGAAAAGGGCAAA GATGACATCGAC AAGATAAAGGTGTTTTTCATCAACAAGGGAATCGAGGTGGTGGACAACCGAGATAAGAGC GGGTGCTTGTGG ATCGTCGCCGGGAAGGAAGCGATCCCTCTTATGAAGAAGTTCGGTGTCCTGGGCTATAAC TTCATATTCATC GCAAACGGCGGTCGGGCATCTAAGAACCGGCCAGCCTGGTACCTCAAGAATAGC

ATGAACAACACCATAAACAAAATAGACTTCGGCGCGTTTCTGAGATCATTCAAGCAG AACCTGGACGGTAGC

219 14 TTTTCTTTCCTTCTGGGAGCAGGCGCGAGTGTGAGCAGCGGCGTACAGTCTGCAAGCGAC TGCATTTGGGAC

TGGAAAAAAGACATTTTTCTGGCCCAAAACCTTCAATTTGAGGAGTTTCTGGACATCCAT AGTGACTTCTGT AAAGATAAAATCCAAAAGTGGTTGGATGAGCAGGGCGTGTTTCCCAAGCGAGACTCAGAG GAAGAGTACGTG TTTTATGCCGAGAAAGCGTACCCAATGGAACAGGACAGGACCAAGTATTTCGAGAACCTT TGCGCGGACAAA ACCCCCTACATAGGGTATAAACTGCTGATGCTGCTGAACAAATACGGAGTTCTGAAATCC GTGTGGACAACG AATTTTGACGGTCTGATAGAACGCGCAGCGCACCAAGCCGATCTGACGCCCATCGCCGTT ACCCTCGACAAC CCCGAAAGGATTAGCCGAAACGAGAGTAAATCTGAGCTGCTCTACGTGGCACTCCACGGT GACTACAAGTAT AGCAAGCTGAAGAACACAGCCCAAGAGCTGGACGCGCAAGAAATTCTCTTCACCGAACGC CTGAAGTCTTAC TTCATCGATAAGAATTTGGTGGTGATCGGTTACAGCGGTCGAGACAAAAGTTTGATGCAC ACCTTGTGCGAG GCTTTTATGACGAAGGGGTGCGGTCGGCTTTACTGGTGCGGCTACGGTAACAAGATTACC TCTGAAGTGCAG AACTTCCTCAACAGAATAAACGATTCAGGTAGGGAAGCCGTGTACGTGGACACCGATGGG TTCGATGCCACC CTCGTGTCTATTATGAAGTTTTGCTACGAGGATCAATTCGACAAGAAAATCGAAATCGGC AAGTATCTCAAG GGCCTGTCAAGGGTGAAGCATATTATCCCTTTCAGCGTTGAGAATACCACGTTCACCGGC TGCGCCAAGACC AACCTGTACCCCTTGATCATCCCCCAAGACATATTCCAGTTCGAGATAGAGAGCCCCGAA GGTAGCAGCAAA TGGACCTTCATTAAAGAGAAGATTAAGGGCAAGGACATTATCGCTGCCCCTTACGAGAAA ATAGTCTACGCA TACGGGCTGCCAAACTCAATCTACAACGTATTCAGTAAGGAGCTGATCGGCGAGATCAAG AGGGTTCCCATC AGCCTGAGTAACATCAAAGACAACAGCACCCTCAAGAATATCATCCTGAAGGTGCTGATA TGTTCTCTGAGC AGTAACGCGGGACTCAGGGCGAGTATGAGCAAGAAGATCATCTGGAATGAGAAAGAGAGG TTCCAGAGCAAC GTTTTTAAGGCAATAAAGATCGACATCGTTTTCATCAATAGCGAAAAGTACGCCCTCATC TCAATCACCCCT ACCCTCTATTTCAACAAGGAGGGCAACTACACGACGCTGCAGAAGCAGGAAATTACGCGG AGCTACATTGAC AAGCTGTACAATAAGATTTATGAGGAAACCCTTTGTTACTGGGAGGCCATCCTGTTTAAG CAGCAGACCAAG ATCTGCTTCGACTACCCGCTCAATTCCGGGAACGGCTGTTTCTTCAAGGTTAGCTCTAAC AGGGGCGAAGCC CTGTTCAATAATCCGAATAAGCCGTACGTGATTACTAACGACATCATACTTAAACGCAAA ATCTACGAAGGC ATCATAATCGACGAGCCCCTCCTGAACTTCTCAGGGTCAACCAGCGCCCACATCATTATG GACTCCAATCCG ATGCGCGGTCTCAACAACAATAACCCATATGATCACTTCATTGCAAGCAAGTTTAGGGAC GTTTCTATCCAC ATCGGAGTCGTGTGTCCCTGTACATATAGCGACAGGTTTTTTAGCTTTCTGAACGAGCTG CAAAGTCCGATA AAGAATAACAATCCTAACTCAGACTACATCCAGAACTATAACGGATTCAGCCAGATATAC GCAAGCATTCTT AATATCCCAGCGATCAACAGCCAATACTGGATCTCATGCCGCGAAGAGCAGGATAACAGC ATCTCTTTGGCT AGGAACCTGTGTAAATACGCGAACCAGATGGCCACTAACATGCCAGGTATAATAGTTACC TTCTTCATTCCT AACAGCTGGAGCAACCACAAGAGTTTCAAAGAATGTGGCGAGGTATTCGACCTCCACAGT TACATCAAGGCT TTCGCCGCACAGCACGGTTTTACAACCCAAATCATTGAAGAGCGAACTCTCACAAATCTC TCCATGAAAAAG GAGATCTATTGGTGGCTGAGCCTGGCGTTCTTTGTAAAGGCTATGCGAGTACCATGGACC CTGGCCAATCTG GACCAGAACACCGCCTTCGCCGGCATCGGCTACTCCCTGAGCAAAAAGCAAAGCGGCAAA TTCAATATCGTT ATCGGCTGTAGCCATATCTATAATTCTGAGGGCCAAGGCCTGAGGTACAAGCTCTCAAAG ATAGATAATCCA ATCTTGGACCGGAAAAACAACCCGTACCTGACCTATAATGAGGCGTATAAGTTGGGCGTG AACATACAGAAT CTGTTCATTCAGAGCATGGACAAACTCCCGAAGCGAGTAGTGATCCACAAAAGGATCCCG TTCCTGGAGGAC GAGATAAAGGGCATTACCGAGGCGTTGGCCCAGGCCAACATCACGAATGTTGACCTCATC ACTATCACGATC GAAAAGAACATCAGATGCCTGGATCAGTTCTTCTACAATGGTCAAGCCAAGAACAGCAAC TTCCCACTGCAT AGGGGCACCTGCATGAAGCTCAGTGATACCGAGTGTCTGTTGTGGACCCACGGCGTGGTG GACTCAATTAAG GCGGGCAGGAACTACTACTCTGGTGGCAAGGGTATCCCCTCCCCCCTCCGCATATCAAAG TTTTACGGCGCA GGCTCTATGAAGACTATATGCAACGAAATCCTGGGGTTCACAAAGATGAATTGGAATAGC TTTAACTTCTAT ACCAAGCTTCCCGCGACCATCGACACCAGCAACACGCTGGCGCAAGTGGGGAACATGCTC GATAATTACAAC GGTATTACATACGATTACAGGTATTTCATC

ATGATGGGAGCCAGCGATGAGTATTCCTTTTACGCTGAAAAGGCCTATCCCATAGAA GCGGACAGGCAAAAG

220 26 TACTTCGAACAGCTGGCGTACAACAAAGCCCCCTACATTGGCTATAAACTCTTGTGTCTG CTGAATAACGCG

GGGCTGATAAAGTCTGTTTGGACCACAAATTTTGATGGCCTGACGGAAAGGGCCGCTCAC CAAATGAACATC ACCCCCATCTGCATTACCCTGGACGACCCCGAGAGGATTTTTAGGAATGAGAACTCTCAC GAACTGCTGTAT ATCGCCCTTCACGGCGATTACAAATATAGCAAGCTCAAAAATACCACCCACGAGCTGGAC ACCCAAAACAAT ATCTTCAGAGACGCACTGAAGCGATACTTCGTGGATAAGAATCTTATTGTCATAGGATAC AGCGGCCGAGAT AAAAGCCTGATGAACGCACTTAAAGAGGCATTTTCCCAATCCGGCTCCGGGCGACTGTAC TGGTGTGGCTTC GGGGACGATATATGCAGCGACGTTAAGGAATTGATAGACATCGCCAGGAGCAATAATCGG ATTGCCTACTTC ATCCCGACGGACGGCTTCGATAAGACCATGCTCCAACTTAGTCGCGCCTGTTTCGAGGAC GACATTGTGAAG CAGGAGGAAATCAAAAAGCTGATCAAGTCCACGATCAAGAAGGACGAGACGAAGACCAGC TTCCGAATCGAG AGCAGCAGGAACGATAAACTTATTAAGTCTAACCTGCATCCCGTGGCGTTCCCCAAGGAC GTGTACCAGTTC GAGATTAAGACTAACGGCGAGCATCTGTGGAACAACATAGACCAGATCATTGGCGGCAAT AAGGACATAGTT GCCGTACCGTTCAAAGGTAAGGTGTTCGCTGTCTCAAGCATTGCGAAAATCAAGGAGAGG TTCGGGGGCTAT ATCAAGGGGGAAATATTGAAAGACCCGATTGGCGTCGATGACATCCGCAAAGTATCTGTG TTCCAGCGGCTT ATGATGAAGAGCATCCTGATTGGAATCTCTGAGTTGGCAAATCTGGAAACTGATGGAAAG TGGCGCCTTTGG AAAAAGAACACCCTGAGGCGAATCGTAAACGGCACGGAGTATTTCATCGCCGACGCTGTA GAGCTGTCCTTT TTCTTCGGAAAAGATACCAAGTTTGCCTATCTCAGCATCAAACCGACCATTTACATTTAT ACACATAGCGAC GAATTCATACCGAAGGATATAAAGCTGCAATTCACAAAGGAGAAGTTCGACCGACTCTAT AATGCACAATAC SEQ

ID NO Argonaute # Sequence

GACCAATCCCTGGAGGAGTGGAATAATCTCATCTTCCACAACAACAGCCTGAGGTTCACC TTTCCCGTACTG ACCACCTCCGACATGAGCTTTAGCATCAGCAACAATGTGGCCTTCTCAGGAATTAAGGTT TTGAGTGACAAG TATAAGAGCTACCCCGTTTCTATCGAGCAGAAGCGCATAGTTTTCAAGGGCGTGGAGTTC CTGGAGCCCCAG CTGCTGTTTCAAAATAAGAACAGCAACTTCAAGTCACGCGACTTCCATCCCATGAGGGGA TTGATTAACCAC TACCCCTTCGACTACCAGAACAATGGGATCACCAACACGTTTAATGTCAAACTCGGCGTG TTGTGCTCCTCT AAGTACTCTACTAGGCTGTACGAGTTTCTCATGAAATTGAATGCCCAACATAAAGCGCCC GAGAAAAACGAG TACATAATTGACTATGCTGGATTCAACCAAATCTACAACATCCCTATTGAGATACCGCTG GTAAACGACGAG AAGTGGATGGACGTAAAGTTTAATAGCAGCGTGAGTATCAAAGACGACGCTCTCAACCTG GCAAGAATCATA TGCACCCAGATCGAGGCGCTTCACGAGTCTTACAAAACTGACATGACCATCGTGATCTTC ATTCCCAACGAG TGGCAACCCTACAGACATATCGAGGAGGACACATGGGTTTTTGACCTCCACGACTACATC AAAGCATATAGC GCTCAGAAAAGAATTTCCACGCAGTTCATAGAGGAAGATACTCTGAACGATTCATTGACG TGCCAGATATAT TGGTGGCTCAGCCTTAGTTTTTACGTGAAATCCTTGCGGACGCCGTGGGTTCTGAATGCT AACAATAATGAG ACCGCTTACGCGGGCATCGGCTACAGTATAAAGAATAACAACGGTGAGGCGTCAATTGTC CTCGGGTGTAGC CATATTTACGACAGCCACGGCCAGGGCCTCAAGTACAAATTGAGCAGAGTGCAGGACTGC TACATCGACAAC AAGCGGAACCCCTACCTGAGCTACAATGAGGCCTACAACTTTGGCATAAGTATCAGGGAG CTCTTTCTGCAC AGCATGGAGTACCTGCCAAAAAGGGTAGTAGTGCATAAACGCACCGAGTTCAAACCCGAC GAAGTGAATGGC ATTGTCGACTCACTGCAGATAGCGGGTATCGAGAATATAGACCTTATCTCCATCAACTTC GAGCGGGAAGTT AAATTCATGTCCACTAAATCCAACTACGGGCAGTTGCAAATCGATAACTTTCCCATACGC AGGGGCACCTGT ATCGTGGTGAACGACTATGAAGCCCTTCTCTGGACCCATGGAATTGTGCCGAGCGTTAAG TCCGATAACAGG ACCTTCTATCTGGGCGGACGATCTATTCCTAGCCCTCTTATCATTAAGAAGCATTACGGT AAGAGCGATATC AACGTTATCGCTACAGAGATACTGGGTCTTACCAAGATGAATTGGAACTCTTTTGATCTC TACACGAAGCTG CCGGCCACCATCGATAGCTCTAATCAAATCGCGCGGATCGGGAACCTGCTGACTAGGTTC GAGGGCAAGACC TATGATTACCGGTTTTTCATT

ATGCGATTGGGGCACATAGGCAACGGCTGTTACAGGGAAGGCGTTAAAGCACAATTC CAGACACGAGAGAGG

221 46 GAGGATGCCGGTTCAAGGGCTGCGGCTGCCCAACCCCCGATTAAGCAATTCGGATACACC GATAGACTCGGC

CTGAACCTCGCCCCCATAAGGTTTTCTAGCGAAGAGTTTGAAGCCGGACGGACGGTGTAC CGCGACGAGGAA CAGTACCGAGCTCTTAGGGAAGCCCATCAAGCCACCCATGCCTTTAGGTATGACGCAAGG GACGCGGCTATA TACGACATCCCTATGGCAGAAGGGGTGGCGCCTCTGGGTACTCCCGTGAGGATCAAAACT AAGGACCACCTC GCTCTGCTCGGCAAAGCGGCTAACCACGCGCTGCTCGATTGGCTCGCACCACGCAGAACC ATTCTGCGGAGG GCGAGACCTCTTCAGTGCTGGGGCAACAGGAAGGCCTCACTGTTGTCAGCCGCCGTGCGG GATCAAGGACTT GCCGAAACAAAGGGTCTGGATGTTCTGGTAAGGCATTCTTTTGATTTGAGGGCTTTGGGC GCACCTCACCAG GGTGCTGAACCGTACCTTGCCCTGATGTTGGACGTGAGTACGAGCAATGAGCTGGAGATA CCTGTGGGCGAG CTTCTGCGCGAGAGATTCGACCCCATCGGTCGATACGTTTGTGCCAGAGCCGACTCTGGC CAAGATAACGTA CTTGCTAGGTTGGAAACACTGGGTAGGGTCGTGGGTGTGGATGGTGGTAAGCTTCAACTG AACGACTTTACC GGAGAAGAATTCGTGGACGCTGATTCAGTCACGTTGGAGCCTAGATTGGAGAATCTCGAT GCGCTCATTCGC CACTTCTATCCCAGGGATGCGCCAAAAATCCTGGAGGGCCTTCGCAAAAGGAGAGTGCCT TTCTCCACCGCG AACGACAAGCTGGCGAAGATACGAGAAGTGCACGGAGGAGTAGCCGGCCACCTTGAAACG ATTAGGATCGCT GGCATGGCTATAGAGGTGGGTGCCCTGCTGCAGAGAGGCTCTAACCTGTTTCCCCCACTC ATAAGCACGGAC CGGCCTGGATTTCTGTTCGGCGCTCAAGGTAGGGAAACTGGCGCGTTCCCCGACGTGGGG GTGAAGCAGCAT GGGCCCTACAAGTACATGCAACACGAGCGCAATGAACCTGTGATCGCCATCATCTGCGAG AGCAGGTTTCGG GGTCGGATAGACCAACTCGCCCGAACACTTCGCGATGGTGTCGCGGAAGATGCCTGGCAA GACGCGATGAGG GGCAGAAATAAGGTGCCGGAAAACCCCTTTAGAGGCGGGCTGATCGGTAAATTGAGATTG TCTCGGGTGCAG TTTGAGTTCGAAGAAGTAACCGAGCCCACTCCCGAAGCCTATCGCGAGGCCATCCTTCGG CTGCTTGCGAGA CTCCCAGAGACACCCGACCTCGCGTTGGTTCAAATACGAGCGGATTTTAAGCAGCTCCGC AACGACAGGAAC CCATACTTCGCTGCAAAGGCCGCATTCATGACGGTGGGAGTGCCCGTGCAGTCCGTACAA GCCGAGACTGCG GACATGCAGCCCAGTAATTTGGCCTACATGGCCAACAACCTGGCCCTCGCCGCCTACGCA AAATTGGGCGGT AGTCCGTTCGTGATCTCCACACGCATGCCGGCGACGCATGAGCTCGTGGTTGGCTTGGGC TACACAGAGGTG TCAGAAGGACGCTTTGGACCGAAGTCCCGATTTGTAGGCATCACCACCGTGTTCCAAGGC GATGGCAGGTAC TTGGTGTGGGGGCAAACTAGAGAAGTAGAATTTGAAAACTACGCCGACGCTCTCTTGGCG AGTCTGAAGACT ACCATCGACACAGTGCGCAAGGACAATAACTGGCAGCCACGCGATCGAGTGAGGTTGGTA TTCCACGTGTAT AAGCCCCTTAAACATGTCGAGATCGACGCTATCAAACAGTTGGTGCAGGAGTTGCTGAAG GGCGAACATGAA GTGGAGTTCGCATTTCTGGACATCTCCCGCTTCCACGATTTTGCCCTTTTCGATCCTTCC CAAGAGGGCGTG AATTACTACGCTGACCGCAGACGACTGCTGAAAGGCGTGGGCGTCCCCCTTAGGGGTATC TGCCTCCAACTG GACGAAAGGAGCGTGCTCTTGCAGCTGACAGGCGCTAAGGAGGTGAAGACCAGTGAACAA GGTCTGCCCAGG CCCCTGCGACTGACGTTGCATTCCGAGAGTGATTTTAGGGACCTCACATACTTGGCGCGA CAGGTGTACAGC TTTAGCTACCTCTCCTGGCGCAGCTACTTCCCGGCCATAGAGCCGGTGAGCATTACCTAC AGCAGACTTATT GCCAATGCACTTGGCAACCTTAAGAGCATCCCGAACTGGAACAGCACATTCTTGACAGCT GGCCCACTGAGG TCAAGGATGTGGTTTCTG

CTGGAGAACCTCACCATAAACATAATCCCCTTCAAGCACCCCAGCATCCAAAAAGAA TTTGGCTTCTATACC

222 49 GAGAAGAAGGAGGGCTATTTCCCCATTCATAGGACCGAGTTGCCCAACGAGCTGTGGGAC AACCAGAAAGAG

GAAGTGGTGAAGCACAAGTTCTACTACACGAACTTTGAAGACACGGAGGATTGCGTTCTG AAGACCAAGGTG GACCTGTATAGTAGCACTAAGTTTGCCAAGCATCTGTACACGCGATTGGTGTACCAGTAT TTCATTGGGATA GCGGATGCAATCCAGTTCAACTACGTGGGTGACATAGAGGTTTGGCTGCTGGATGCGAAA GCCAGCACCACC AAATACAATAGCTACAACAAGTATACCCTGAAAATAGAGTTTAGCGGTCTGACCAAGAGC CCCGCTCTCCTC CTCAGCTATGACAACACTAGTAAGGTAGCGACTACGAGCATAGACGAAATCAACATTCCC ACCGAGTACTTC AAGACCGTCGTGTATAACAAAGAAATCCAGAGGTTCAAGTACCTGACCGAGGACGCGAAA CAACACCTCGAT CAAGTGTATCCCCTGCTCAACATACCGTTGAAAAACCATCTTGAGATTCCTCACACCGTT CCCCGCAAGGGC AACAGGTATAAGCCCTACTTTAACCACATTACGACTTTTTACAATAACTATTTGAACACC GACGAATTCAGG GCCATCCTGCCCCTTGATGAGAATGGATTCTTCAATATCCCAGAGGACAGCATTTTGAAA ACTAGCAAAAAT TCTAACAACCTCCGGTTCTATAAGAAAGTCGGAGTAGATCCCAAGGCTGGAATGAAGAAG CCCGGTCCCTAC AAGGCCTCCCCCCACGACAACGTGAACCTGTTCTTTATCTATCACAAACCCGACGCACAT GAATACGCCAAA ACGTTGCATGACTACTTCATGGAGGGGTACAAAAAGTTCTTTCCCCCCCTCAAGAACGTT ATCCGGCAGCCG SEQ

ID NO Argonaute # Sequence

CTGTTCCTGGACAAAGGCACCTCACTTGCATTTGAGAGCTTCGACAGCTGCATCGCCGAG CTGAAAACCCAT CTGTTCGACCTCAAAAAAAAGCCCAATACCCGGTACGTGGCCATCTACGTGAGCCCCATC CATAAGGAGGAC GAAGACAATAAACACCTGTACTACCAGGTCAAAGAAGAGCTGCTTAAACATGACATCACC AGCCAGGTGATT TACAAAGAGTCCATCAAAGATAAATACTTCGGCGCTTTCCTCGAGAATATCGCACCAGCT TTGCTTGCAAAG ATCGACGGCATTCCCTGGCGACTGGACAGGGAGTTGAAACAGGAACTGATCGTAGGCGTC GGCGCCTATAAA AGCAGCGTCACCAACACAAGGTTCGTTGGAAGCGCCTTTTGCTTTAACAACAAAGGAGAG TTCAAGAGCTTT GACTGCTTCAGGGAGAAGGAATTCGATCTGATTGCCGGGAAAATCGGCAAGCAGGTGCTC ACCTTCATTGAG GAGAACGAGAACAAGTTGGAGAGGCTGATCATCCATTATTTCAAGCCTTTCAACAAGGAT GAGATAGATCTC GTGCAGGAGACCCTCGGCCTGCTGAAGCTGGAAATCCCCATCATCATCGTGACTATCAAT AAGACCGAGAGC TCCGATTACGTCGCTTTTGACACCAACGACGACGCCCTGATGCCCCTGAGCGGCACCATT ATCGAGATAGCA CATCTGAAGTATCTGCTGTTCAATAACGCGAAGTACAGCAGCATCGGCTTCGCCAAAGAC CACCCCTTCCCC GTTAAGCTCAGTCTGTACTGCACCGACCAGGATTACTTCGAGGACATCGCCATCGTCAAG GAGCTCATAGAT CAGGTTTATCAGTTTTCTAGGATGTACTGGAAGAGCGTCAAGCAGCAAAACCTGCCCGTG ACAATCAAATAC CCCGAGATGGTGGCCCAAATCTTCCCACACTTTGAGGGCGATAAACTGCCTGATTTTGGA AAAAACAATCTC TGGTTTCTG

ATGCTGACCAATAATCAGATTGTGCTGGAGCAGGAACTTCTGGGAAGCATATTCAAA AACAATAACCTGATG

223 77 CTGAAAGCCCGAGAGAAGATAAAACCGGAGATGTTCCTGTATAGCAAACACATGAACATT TACCTGGGCATC

CTCGACATGGTGGCCAACAAGCTGGAGGTGGACCTGATCACCTTTCTCGAGCACCATAAG AAAAGGGTGGGG GATATGGATGGCGTAACTTACGTGACCGAGATCTACACCTGCAGCGCGTCCGACATTGGC TTCAATACAAAA

(Helicase) CTTGACATGCTGGTGAACAACTACAAACGGCATCTGTATGTGGAGATGAAGGACAAAATC AACAGTGATATG

AGTCTTGAGGAGATCGAGAGCGAGGTTGAAGGGGTGAAGGTAAAGGTGCACAAATGCAAC ATCAAGAAAGAA CTGGATATAGACAAGCAATATGACGATTACATCAACTGGCTTTACGACGAAAACAGAGAC AAGGGGATGAAA AGCGGCCTGACCTATCTGGACAAGTATCTCGGCAACTTCCAGAAGGGCAGGCTCGTCACC GTGTTCGCCAGG AGCGGCGTCGGCAAGACCACGTTCAGCTTGCAGCTGGCCGCCAATATGGCTCTGAAGGGC CACAAGATATTC TACGGGAGCGCAGAGATGACCCGCAACCAGGTCTTTAACAGGATCGTGGCCTCAGGTTTG AGCCTTAGCGCG AAGGCGATTGATGAGGACACCATCCTGAAGGAGGACAAGGAGAGCATCGCCAAGTTTATG ACCAAGGTTATC AACAACAAGTTCTACGTGTCAACCGAGACCGACTTCGAAAAGTTCATCGACGAGATAAAG GTTTATAAGCTG CAGAACAGTCTGGACGTGGTGTTCGTGGACTACATTAACAAGTACATCGACTTCACCGAC AGGGACATGTTG ACCAACAAACTGGGGAAGATCAGCGGCATGCTCAAGAGCCTGGCCATGGAAGAGGATATC TGCGTGGTGCTG ATGGCCCAGGCCAATAGAGTGATTGACAAGAAGGTGGGTGACAATGCCGTCGAAAAAATC GACAGCAGCGAC ATCCAGGACAGCGCCAGAATCGAGCAAGACAGCGACCAAGTGATCGGCCTGTACCGGAAC GTGAAGCTCGAT GATAAAATGTATAGGGAGAACCTGTTCAATCAGGGCAAGCTCAAGTATAATTCCAAGAAC GCCGACGACAAT CCGGAATGCATGAACGCTGTGATCATTAAGAACAGGCATGGCGACCGAGGCACGTGTGCA CTGAGGTGGCAC GGCAGGTACAGCAGGGTCAGCGACTTC

CTTCACCTTAACTACCTCCCATTGCGCTTTACCGCCGATATATTCAAGGGTGGTGCT TTGACATTTCCCGAA

224 66 GGCAGCGAGAAAAACTGGACCAGCGACGATCCAATCAGCAAGGAGCTGAGCAAGTTGCGA GAGAAACACGGA

GATAGTCATGTCTTCCACCGGATGGGAAACAAAATTGCATGTATCCCCGTTGTGGAGAAC GCCATTGCTATA GGCACCGAGACGGATTTCAACATCATTAGTGACTTTCAGCTGGCTAATGCTCTTGCTCGC AGCGCCCTCCAC AGGTACTTCAAAGCTGCGGGAAGGGAGACTGTAATTGGGTTCCGACCCGTAACCCTTCTC TTGGAAAAACAC AACTTGGCCAGCAACAGGAAGGACGTGTTCGGCATTTTCCCCGAGTACACTCTGGACGTC AGGCCTCTTGCA CCACATGAGGGCGACATAGCGAGCGGAGTGCTTATCGGCTTTGGAATAAAGTATGTTTTC CTTCAGAACGTA GCCGAGCTGCAGGCACAAGGGGTGAGTGCCGCAGGGATGTACGCCGTGAGGCTGGTAGAC GAGAGCGAACAT CAATTTGACCGGGCCTACCTGGGAAGGATTGATCGGTTCACAAAAGATAACGTGACGCTC GTTGACAGCGAT TACGCGGAATATCCCGCCGACCAGTGTTACTTCGAGGGAAGCAGGACCAACATCGAAGCC GTGGGCCGAAGT CTCCTGGGGAAAGACTATGATGCCTTCAGCTCAAGCCTTTTGCAGGAGAGCTACAAAGTG ACCGGAGCCCCC AACCAAACCCAACGACTGCACCAGTTGGGCGCGTGGCTCGAGGCCAAGAGTCCGATCCCC TGCGCCGTTGGT CTGGGAGTACGGATTGCAAAAAAGCCGCATGAGTGCTCACGAGGCAACGACGCCGGGTAC AGCCGCTTTTTC GACAGCCCCAAGTGCGTGCTGCGGCCTGGCGGCTCTCTGACCGTGCCCTGGCCGGTCGAC AAGCAGATAGAT CTCAATGGCCCTTACGACGCTGAGAGCTTTCCCAACAAGAGGGTACGAATTGCCGTCATC TGCCCTCAGGAA TTCACCGGGGATGCGGAAGAGTTCCTCCGGAAGTTGAAGGAGGGCCTTCCTAACGCACCG GACGGCAGTCCG TTTCGCAAGGGCTTTGTTCGAAAGTACCATTTGTCTAGCTGTGACTTCACGTTCCATGAG GTTAAGCGGAGC TCAAACAGTGACGACATCTACAAGGATGCGTCCCTTGAGGCACTGAAGCAGAAGCCAGAT ATGGCAATCGCC ATAATCCGGTCCCAATATCGCGGGCTGCCCGATGCTTCTAATCCCTATTACACGACAAAA GCTAGGCTGATG GCCCAGGGCGTACCAGTTCAACTGCTGAACATAGAGACCATCAGGAGGAAGTCTTTGGAC TACATTCTGAAT AACATCGGTCTTGCGATGTATGCCAAACTTGGAGGAATCCCTTGGACCCTCACCCAGAAT AGCGACATGGCG CACGAGATCATCGTCGGGATAGGGTCAGCCCGGCTCAATGAGAGCAGGAGGGGTGCTGGC GAGAGGGTCATC GGGATCACGACCGTGTTCAGTGGTGACGGACAGTACCTCCTCGCCAACAACACCCAGGAA GTTCCCAGCGAA GAGTACGTAGACGCATTGACTCAGTCTCTTAGCGAGACAGTATCAGAGCTTAGGAGCCGG TTCGGTTGGCGC CCTAAAGATCGAGTGAGGTTCATATTCCACCAGAAGTTTAAGAAGTACAAAGACGCAGAG GCGGAGGCGGTT GATAGGTTTGCACGCTCACTGAAAGATTTTGACGTGCAATACGCCTTCGTGCATGTGTCT GATTCTCATAAC TGGATGCTGCTGGACCCAGCTAGTCGGGGGGTGAAATTCGGCGATACGATGAAGGGCGTC GCCGTCCCTCAG CGGGGACAATGTGTGCCCCTGGGGCCAAACGCTGCGCTGCTTACTTTGAGCGGTCCGTTC CAGGTAAAGACC CCACTGCAAGGCTGTCCGCACCCCGTGCTGGTGTCAATTCATGAGAAGAGCACTTTTAAG TCTGTTGATTAC ATAGCCCGCCAAATCTTCAATCTCAGCTTCATCAGTTGGAGGGGCTTTAACCCTAGCACC CTCCCAGTGTCC ATTTCCTACTCCGACATGATCGTAGACCTCTTGGGACATCTTAGACGCGTTAAGAATTGG AATCCGGAAACC CTGTCTACCGCTCTTAAGGAACGAAGGTGGTTTCTG

ATGCAACTGAACTATTTCCCCATCCAGTTTGACTTTTCTGACTACCAGGTCATCACG CAGCCCTACTCCGAC

225 15 GAGAGATTGAAAGAACTCAGGCAGGCCTACAACGCCAGCTATTCCTTCTTTCGGGACGGC AACCTTATCGTA

ATTTCCAATAAAGAGGACGAGGAAAACCAATTGACGGGCAACGTCGAAAACCGCAGCGTG TTCGACGATGCC AAAGTTACCGCCAGCATGGTCAAGCATATATTCTTTAGGACGTTCAAGGACAGGTTCCAA GGCTTCATCCCC GTGGACTTTTACCCCTTCCGATTCTACAGCAGACAAGAGAAGGACGACCTTATTCTGAAC CACCTGCCCGAA SEQ

ID NO Argonaute # Sequence

AAACTTAAGCATAAAATCGCCTTTAAGAAACTGATCGAGGTGCAGCTCAGGGAGACGAAT CTTAATTCAACC CAGGGCTTTGCTTTCGTCGTCAACATCAGGAGAAATTGGGTGTTTAACATTTCCTGTCTC GAGCTTTATCAG GAAGGCTTTGACCTCACAGATTTTGAAGTGCTCCATGCGGAGACGCTTCCCGGGTTGGAC AATATCCTGGCC CCGAACGAGGACTTCGTTGGCCTTCTCAAGAGCATCAACGGCGAGACTGCCATTGTGAGC ACTAGCGAGGGT GCCCGCTCCTATTCACTGCAGGAGCTCTTCATTCGCAAGACTAAGCACAACATACAGGCG TACCTCAACTTC GCCACCGGGGAAAAAAAGTGCGACCAGATCCTTGCAGCCGTGTCCCAGGAACGAATCCGG AAGCAGAACCCC GTGAATCAATTCAGCGAGATATCCAACATCGCGAAGCATCTTTTTTCAGACAAAGGCAAT CCAGTGCTGTTC CAGAATATGGATGGCTTTTGTTTTAAAGTTGACACCACGCCGATGCAGGTACAAAACTCC ATGAACCTGCAA ACTCCCACGTTCATCTACGACCACGCGGGTACCAAGACGAACACCCGCAACGCGGACCAG GGGCTGAGCTAC TACGGCCCCTACGATAGCCTCACCTTCGACATTAAGAAGCCAAGAGTTCTCTCTATCTGC CATAAGACCAAC CGAGGCTCCTTTACGCGCTTCCTCCACGACCTCAAAGACGGGCTCCCCAATAGCAGCTGG TTCAAGAAGGGC CTCCTGAAGAAGTACGAGCTTCAAGAGGTGAATTACCTCATCCAGGAGATCAGCGACTAC AGGTTGGAGGAC TACCTGGAAGTGATCTCAAACTACGATGATGAGAAGCCGCACCTGGCAATCATCGAAATT CCAGATAGGTTC AAAAAACTGTCCGACCGGGACAACCCCTATTTCAAGATTAAGGCAAAGCTGCTGAGCCTT GAGATTCCCGTA CAATTTGTGCGCAGCACGACTTTGAGCAGCTACAGCGAATACATACTTAATCCGCTTGCA TTGCAAATCTAT GCGAAACTCGGCGGCACGCCTTGGGTTCTTCCGGCCCAACGCTCCGTTGACCGCGAAATC GTTATTGGCATA GGTCACTCATGGCTTCGGAGTGGCATGTATAAGGGTGCTGAAAACAGCAGGGTGGTCGGC ATTACTACGTTT ATGTCTAGCGATGGCCAATACCTCCTGGGCGACAAGGTGAAAGACGTGCCTTACGAGTCT TACTTCGAGGAG TTGCTGAAGAGTCTCAAAAGTAGCATAAGCAGACTCTCCGATGAGTATGCCTGGCAGGAT GGCGACACAGTG CGCCTCATTTTCCACATCTTCAAACCCATCAAGAACGTTGAGTTCGATGTCATTAGCCAG CTTGTGAAGGAC ATCAGCCAGTTCAACATAAAGTTCGCGTTTGTGACCATTAGCAAGTCACACCCGTCTATT CTCTTTGACACG AGTCAGCAAGGCGAGAAAAAGTACGGCTCTAACCAGGTGATAGGGCAGTACATCCCTCAG AGGGGTAGCAAT ATCTTCATAGATGACGAAACCAGCCTGGTGCAGATGCTGGGCGCCAGGGAACTTAAAACT GCCAAACACGGG ATGAGCACCCCAATCCAAATCAAACTTAGGACACCGCAGGGTAACCATAACGACCAAGAA CTGAAGGATTTG ATGTTTTACGATCTTAACTACATTACCCAGCAGATCTATAGTTTTACTTACTTGAGCTGG AGGAGCTTTTTG CCACGCGAGGAACCGGCCACAATGCTCTACTCCAACTTGATATCCCGACTTCTTGGGAAG ATGAGGAGCATC CCTGAATGGGATGCGGATAAGCTCAATTATACCCTTAAAAGGAAGAAATGGTTCCTG

ATGTTGGAGACGAATATCAGGGTGGTGCGGCCTGGTCCGCAGCTGTGCGTTCCTGTA CGCAGGGTGATCGTG

226 22 TCCGGTCAAACCTTGGCTCCCGACCTCCTGGAGAGGCTGTGTAACCTGCTGCGAAGGAGG TACGGCATTAGC

GCCGCAAGAATACCGGGCTCCGTGAGCGAGCTGTTCGTTGCGACCGACCGGCAGGTGGAG AAGGTGACACTG GAAGAAGATAACTGGCAACTGACCGCCGTGGACTCCAACGACCCTACTCGAATCATGTCC ATCTCTAACACG GACGATGAGAGCTTTATAAGCATCCTGATCGAACGCGCGCTCCTTGCCCAGATCGCCAGT CGAAGCCTCTTT TGGACCCTCGACTCTCCTCGAATTTGGTATGAGAAGAACCCGTTCCAAAGGAATGAAGGC GTAGCCGTCTAC CACAGGTACGAGGTGGATGCGCTCCCCCTCGGCGACGCAGGCATTGGCATCTCAGTGGAT GTTTCAACGGCC TTTTTTAGCGAGCACACCCTGGAGTACTACTTCGCCCCCAACCTGATTAGCGGCGAGAGC AAGACGCGACAG GACGAATTCCACAAGTTCACCGGCCGACAAGCTGGTCAAAAGGGGACGCTGCTTTACAAT AACGGCAGGAGT AAGGTGAAGTGCTATTTCGAGAACAATAGGGTGGGCCTGACATGTGGCGCAACCGGCCAA ATGAAACTCGAG GGAATCACGTATCCCAGCCTGTACCACTACTATGCGAGCAAGTATAGCGCATTGCAGATC AACGAGAACGAT GCCGCAGTGCAAGTGTCTTTCCCTGGCTTGGACCGCCCAGTTCCGGTAGCCGCCAGGCTC CTGTCCCTCCGA GTGATGAACGACGACGTGCCCGATGGTCTGAGCTCCGTCGACAAGATCCCTCCAAGGAAC CGCAAGTACCTT ATCGAGCAGTTTTGGAAGTGCCTGGAGCCGAGACCCTTCGGGAATGTGGCCCCTGGTGTC TTCGACGGCTTC TGGAGACCCAACAACGAAAGGGTGCATTACATCCAGCTGCCCGAGATTAACTTTGGACAA GGCCAAAAAGCA GAACCGCCTGACGTACGCTCCGTTGCATCCATCAAAAACTATTTTAGGCGACGACTGGAA TTGCTGGGTCAC GCGGGGTGTTACCACTTTCCGCCCTCAGCCCCCAGGACAATCTTCTGCGCCTACCCGCAG TCATTGGGTGAG GAGATCCCGGAAAAGTTGGTGAACGGGATCGTCAATGTGCTGAACAAGTGGACCGGCCTC AGCTTCTGTAGC AACCTGGTAAGCTACAGCACGGCCAGCGAGGCGTACGGTAAATTGAGGAGGGCCGAGAGT GCCGGCGTGGTC CTGTTCATCTTGGACGAGGAGCCGGCAGTCTACTACGACGCGAGCTTCAATCTTGAGGGC TGGAGGGTAAAG CGCGTAACCGAGCCTGTGCTGCGCCAGCAGCATAAGTATCTGACCAACGGCGTGTGGGAC CGGAAGAGGCAA GAGTATAGTTTGGGGAGGGGGCAGAGTCGCTGGGAAAGCTTCATCAATTTGATCGGATTG GACGTTATCCAG CAACTCGATGCCATTCCGTATAGGATCCCCAACATCGGCCCCTACGAAGGCCAGCTGATA ATCGACGTGGGG CATGACAGGCAATTCTTCGCCGTGTCACTGCTTATTGTGAGATCAGAAGACAAAGTGCCC GCATTTAACATC AGCAGCCAGGTCCAGCACAAGGCGGATCATAAGCACGAAAGCATTAACCCGGTGCTGTTG AAGGACACCATC ATTAACGTGTTCAAGACCGCCAAACGGAGGACTTTTGATCCTCTGACTAGCCTGTTGATC ATGCGGGATGGC AACGTGCAGGGCAGCGAGATCGGCGGGATAGACAACGCCCTGGTCGAACTTAGGCAACTT GGCATAATCTCC CCCGATGCGAGGCTGGACATCGTGGGCGTACACAAGGAATCTGTAAGCTCCATCAGGCTC TGGGACGTTGAC GTAAGGGGGGAGGTAAGCAACCCGATCGAGGGCACCGGTCTGTCAGTCAACTCATCTCTG TACCTGGTGGCG TGCACAGGTGAGGCCACGCTGACCCAAGGCACCGCAGAGCCCGTGGCCATCGTCGCAAAC AACAGGTGCCTG AGTATTGCCGATGCAGCCCTGAGCGCCTTTCTGGCAGCCCAACTGAACTGGAGCAGCCCG GGAGTCGCCCAG CGCCTGCCCCTGCCTCTGAAAAGAACAGATGAGGAACTTACCGCTAGGAGCGATCAAGAA ATTAGGAGGATA AGG

GTGCAGCAGACAGTGGAGCTCACCCTCTACACAGAAAAACATCCCGACACCCACCCA GAGCTCGTTTATGCC

227 32 GACGAGTGTCCCGACCTGTGGCAACAGCACAGCGAGCTTACGGGGGACAAATCTCTGTTC TACTCTCTTACG

AACCCGGCAGAATGCAAGGGAACCCAGTACACAGTGCAAATCAACCTGAATAACCAGAAG CAGCGAAGGATC GCCAAGCACATAATTAGCCAGCAACTGTATAATCACTTCCGCCAGACCCAAATCGCTACC TTCGACAAGATC GACAATGTGGAGGTGTGGACCAAGAACACCCAACAGCCTACCCAGAATTGCACGGAGTAC CTGAGGTTCAGC CTTATACCCCAATACGCCGTGTTCTCTGACTCATGGGAGCTGGTCGTGTCCTCAAATGGC ATATCCACCGTG TATAACAAGCCTTTGAGCGCACTGGACCTTCAGACCGACCGATTCAAGGTCGTCGTTGGA GGGGAAGTGGTC AAGTACAAGAACCTGAGCCCCAATCAAAAGCAACAAATAGACGAGGCCTTCCCCAAAATC AATAGGGAACTG GCCGCTGAACTGCATATTAACGAGAAACGCTTTCTCAATAAAGACAAGTATACGACCACC TACAACCACATT AACAACTTCGTGCGACAGCACCTTCTCACATCCGAGTTCCAGGCACTGTTTTGTCTGAGC GGCGAGATGTTC AACGTACCCGAGGAGCGGATCGGCCAAGTGGCGAAGGGGGCGAACCTGTTGCAGTTTAAG GACGGCAAGACC GGCATTGACCCATTCAGCTGTGTGTTCGGCAGCAAGAGCATGGACGCACTCGGCATCTAC CAACCCAGCCTG SEQ

ID NO Argonaute # Sequence

AAGCCCCAGGTGAAATTCTTTTTCATCGCCCAGCAAAGCGATATCAACGTGTGCAAAAGC CTGTACGATATT TTCACGAAGGGATACAAGCCCTACGTGGACACAGCCACTGGCGAGCAGAGGTACGTGTTC CCACCCCTGGCG ACGTGCATCAAGCAGCCCTTTTCAACCGACCCCAAGGGGAGCATTTACTTCAGCGACCCT CAAAATGCCCTG AGCGAGATCAAGAGCCAGCTTAACAATAAGCCTCTTGACCCCCAAACGCAGTATGTGAGC ATATACGTGTCA CCCATCCCTCGCGACGCCGTCAACAATCCCTACTACGGTCTGTACTTTCAGATTAAGGAG CTGCTGCTCGAA AAGAGGATAACGTCTCAGGTGATCTATAAGGACCGCCCCAACAACCAGTACTTCAACTTC CATCTGCCCAAT ATCGCGACTGCCATCCTGGCAAAAATAGGCGGCATCCCGTGGCAGTTGAACTCCCACACG ACGAACAAAGAT CTGGTGATAGGCGTGGGCGCCTTCCTTAGCGAAAAAGTTGGCGAGAGGTATGTGGGCAGC GCGTTCAGCTTT AACCCCAACGGCCTGTTTAAGAACTTCGACTGCTGTAAAGCGAACGATCTCGAATCTATC GTAGCCGGGATC AGAAAGGCCATCGGACACTTCGTTGTGGACAGCGAAACAAACCCCCAGAGGCTGATCATC CACTACTACAAG ACCATGTCAAAGAGGGAGGCCAGGCCCATCACGCAGATGCTGAACACGCTTGGCCTCAAC ATTCCTGTATTG ATCGTCACAATAAACAAGACGGAGACCAGCGACATTGTTATGTTTGATGAGAAACAGCAG GGCTACATGCCC CTTTCAGGCACCGTACTGAAGATAAGGAACGATGATTTCCTGCTCTACAACAATAGCAGG TACAAAGAGAAC GAAAAGTCAGATATGCTTTTTCCAGTGAGGATCCGCCTGAGTAAGATCGTAAACCAATCC GACAAAGACATC CCAATGACAGACGCCTTCAATTTGCTCAACCAAGTGTACCAGTTCTCACGCATGTATTGG AAGAGCGTTAAG CAGCAAAACCTGCCGATCACGATAAAGTATCCAGAGATGGTGGCCGAGATAGTGCCACAC TTTTCAGAAGCC GAATTGCCGCAGTTCGGAAAGAATAATCTGTGGTTTCTG

GACCTGTTCCTGGGCGCTGGCGCCTCCATATCTAGCGGTATCCCTTCCGGAGGCGAC CTCGTCTGGCATTTT

228 91 AAGCGCGAAATACTGAATTCCAACGGGAAGATAAATATTAAAAAATTTCAAGATCTTAAG ATAGAAGATAAT

AAGAAGGTTATACAAAGTTTCTTTGAGGAGACTGAGGAGAACAACATTATTAATCCTTAT TCCTATTATTTT AACAAATGTTATCCAGACCCCTTGATAAGAAAAGAATTCTTGACGAATCTTGTGAGGGAC AAGAAGCCTTCC ATAGGATTTATGTGCCTGTCTGCTCTCGTGGAGCAGCAAAAAATCAACACAGTATGGACA ACTAACTTCGAT GACTTGATTGAGAAGGCGATTAACGGATTGAATTACAAGTCCTGTCAAATTGTCTCACCC GAGAATGCGGGC AGCGTGAATAACTTTCGAACTGATATCCCCACTGTTGTTAAGCTTCACGGAGATTTTAGG TATGACCCACTG CAGAATACTGACGAAGAGTTGCAGAAACTCGAAGAGTCCTTGCATAAGTATTTCGTAGAG GCAAGCACAAAG AGGGGACTTCTCGTAATGGGCTATTCTGGGTCAGATGAGTCTGTGCTGCAAAGCCTTGAG AAGGCGCTGGAA GAGAACAACGCGTTCCCTAAGGGACTCATTTGGTGCATCCCCAAAAGTGTCACCCCAAAC CAACGACTGGTC CGAATTATATCTAAGGCTAATGAGCAGAACCAGCGGTCCGGATTTATGATTATCGACAGT TTCGATTATTTC TTGCATGAACTCTACAAAATATGCGACCTTACGAATGACTATATCGACTCTATTACCAAG GAGAGATTTGAA AAAAGGCAGTCATTTAGGCTTAACCAAACTCCGTCCTCTACTCTGCCAATCTTGCTGAAC GCAATAAAAGCA AAGCACTTCCCGAAAAGTACCTTTCTGACTAAAACGAATATCTCAGGCATAGGTAAGTGG AAACGCTTGCGA GACGCTATAGGAAATAGCTCTATAGTCGGATCTTTCGGTAAGAACGATTCTCTCAGACTT TTTGGAAGTGAA CAAGACATTAATAATGTACTTAAGAACTACTTGATTGATGATTTGAAGATCAGTGATATC CCAGAGCACCTT TTTTTCCATTCTGATTCATTCTACATTGGCATGCTTTATGAACTGATTGAAAAGTGTTTG ATTAAAGATTAT GGGCTGTCAGTATATGCAAAGGGGAGAACTATCAGAAAGTTCTATTCAATCAATAACCCG CTGCCGGAATCT GAAATCGCAGATATTAAGAAGAGAAACAATAATTTTAACATCGACAAAAATATAAATGTA TTTGAGGCGTTC GAGTTCTCCATAGAATTCATTAATAAGGAGCTGTTCCTGTTGCTGTGTCCCACCATACAT ATTCAGACTAAA CTCGGAGGTGAGGTCAATCGCAATATCTCTCAGTACCTGTCAAACACAATCATCAGCAAT AGGTATAATAAC AAATATGGGAAAAAGCTGAATTGGTGGATTAACGAGCTCAAGAAGTATAACAAGGACTTG GTTTTTAAATTG GGGGACTTTGAGATACGATTGACAGATTATTACTCCACGAGCGCTAAGCGCGTTAAAGAT GACATCTACTGT TTTGACGGATTTACTAAGTTGAGTGAGCCCAGTATATATTTCCACTATCAAGACGAAGCA AAGCAGAGTATC CATCCCATAAGTGGACTGAAGATACTCGGTCCATTGGAAGAATCATTCGAGGCAAACGGT ACATCTTCCACA GTCAACCTTGCCATCATTACTCCGGACTTTGGCTTCTCCAAACTCAAGGCGCACCTCGAA AGTTTGCTTAAT ACAATTTCCCCTATATGGGAGAAGGAATACTTGAAGGAGTTCCCTGGTTTCGATAACGTT TTTAAGAAGCAC CTGATAATACCCAATTCTATTCAAAGCGAGTATGTAATCAGCATACCTAATAATGATGTA AAACAGTTCTCA GCAATTCAATTCTACGACTACCTGAAGAGTAAGATCGACCGACTCGCTCTGAAGTCCAAT GACATTGATTGT CTTGTAATATACATACCCGACCAGTGGAAGAACTTCCGAGAGCTGAAAAATGAAAACACA TATTATGACCTT CACGACAGTCTTAAACTCTACTGCGTAAAAAAGGGGTTGCGAATCCAGTTCATCGAAGAT AAAAGCATTAAT TATAAAGACCAAGCCAAGATCCGGTGGTGGCTGTCTCTGGGGCTCTACGTGAAGTCTAAC GGCACTCCCTGG AAGATCAAAACAGATAATACAGAGACTGCCTTTGTGGGCCTCGGTTACGCTATACGACAA AATGTTAAGAAT AAGGTTGTTCTCGGGTCTTCACAGATTTTCGACGGTTATGGGAATGGTCTCAAGTTTCTT TTGCAGCCCATA GAGAAGCCAATTTTTTACAATAAAAACCCCTTCATGAGCAAAGAGGACTCTTTTCGGCTT ATCAGTAATATA CGAAACACATATCATAAGATCGATCCAGTTATCGGACTTAAGAAACTCGTGTTGCATAAG ACAACTCATTTT ACTTCAGAGGAGATGGAGGGGATCTCTAATGCTTTGGAAGGCATAGACAATATTGAACTC TTGCAGATTCAG CAATTCTCATCATGGAGGGCAATTAAGCTTATGAAAAATGCCACAAAGCACGATTTTAAT GGTTATCCGATC GATCGCGGAACTATAATTCAACTCGACGACTTCTCTTTCCTTCTGTGGACACACGGGCTT ATAGAGAACCAA GAGCTGAACGGTAAGTACTACCAGGGAAAAAGAGGAATACCGGCTCCGCTTCTTATTAAG AGATTTAGAGGC ACGGATCCAATAGAGACGGTGGCAAACGATATTCTTAAGCTGACCAAGATGAATTGGAAT GGTGCAGAGCTC TATAAAACCTTTCCTGTAACGATTGATTTCAGTAAAAAACTTTCAGTCATGGGGAAG

ATGCCTTCAGCTCAACGGTGCATCTGGGAGTGGAAGAGGGATATCTTCGTGACCAAG AATCCGACGCTCCGG

229 0 GAGTCCGTGGATGAACTTAGCTTGCCAGGGACCAGGCGCATCGTACAGGGATGGATCGAC CAGCAAGCCCAA

TACCCGGAAGATGGGTCAGCAGACGAATATAGCTTTTATGCCGAAGAGTGCTACCCAACC TCTCATGACCGG CGAGCGTTCTTCCATCGCTTCATTGCCGAGGCGAGACCGCATATCGGCTACAAGCTGGTT GCGCAGTTGGCA GAAGCAGGGTTCTTGAGAACCATTTGGACGACCAACTTTGACGGACTGGTTAGCAGAGCG TGCACAGCGGCT AACGTCGTGTGCGTGGAAGTGGGCATGGACACACCCCACAGGGCCTCACGACCGCAAGGG GATGACGAAGTC AGACTGGTGTCCCTCCACGGTGACTTTAGGTATGACCTGCTGAAGAACACCGCCAATGAG CTGCGCGAGCAG GATTTGGCCCTTAGGGAGGAACTGCTGCACGAACTCAAAGACTACGACCTGGTGGTCATC GGATATTCAGGG CGGGACGACAGCCTTATGCAAGTGCTCTCTGCTGCCTACAGCGACCGCGCATCTTGTAGG CTCTACTGGTGC GGGTTTGGCGCGGAACCAGCACCGGAAGTGAGGCACCTTATTAAGAGCATCGACCCAGCC CGAGAGAGCGCG TTCTACGTGGATACCGCCGGATTTGACGACGTAATGAGCAGGCTTGCACTCAGGCGACTG AGCGGTGAAAGC CTCGAAAGGGCCCAGAAGCTCATAGAAAGCGTCACCCCGGTTGCTGGCAAAAAGATGGCC TTTAGTGTTCCA CCATTGGCCCCTAGCGCCTTGGTGAAGGGTAATGCCTACCGATTGACCTGTCCGGCAAAC GTCTTGAAACTT SEQ

ID NO Argonaute # Sequence

GATATCGAACTTCCCGAGCACGGTTCCTGGCGCGATTGGCTGTCCGAACGAATGACTCCA GAAAGGGGGCAG GCCGTTGTGTTCGAGAAGGGAGCACTGGTTTTGGCCGACATGGCGGTTACCGCTAAAGTT TTCGATGGATTT CTTAGGGTGAGCCCGACACGGGTGGAGATAAGTGACGAGAACATCATCGCTGACGGCCGG ATCGCCAGTCTT TACCGACGAGCTCTCGTGAGCAGTGCCGCAAAAGCGCTCCAGATCCAAACCGACCACAGG AGGAGGATATGG GAGCCCGTGCACTATGATACAAGGCAACTCGACGATGTGACGTACCGCGTGCATCGAGCC GTCTCCCTGACG ATAGTAGGGATAGAGGGAGTGCCCCATGTGGTGCTGATGCCAGAGGTCGTCGCATCTACG TTGGCGGGCGAC CTTGCGCCGGTTGACAGTCAAAAGACTCTCCGCAATGCCATTTACGGGTTCCAACATAAC GATAAGTTTGAT GCCGACCTCAGCTATTGGACCCACCGCCTTGTTGAGAAGGAGCTGGCTTCCAGCGGCGAG GGCGTTTTCGTA TTGAGCAAAGTGCCACTTTATGCGGGCCTGGCACAAAAAGGTAAAGCTCCTCTCCCACAC AGGTTTGCACGC CACGCTAAACAGCATGGAATTATTGTGCCCGACGCACCGCTTGTTTTCAGCGCCAAGGTT GGCTCTGGAGAG GTACGAAACCCCAATCCGCTGCATGGGCTGGTGCAAAACCGGCCATGGGACCACTCTCTT ACGGCGTCTGGT TTGTGTCCGAGTACAGATGCTAGCGTGATCTGCCCCGCAGACGCTGCTCCGAGGTTTGAG AGATTCCTCCAA TCTATGCAGGAGGTAGCAAGACCAAGCCAGAGCGAGAGGGACTATTTGCATGATTTTCCC GGCTTCCCTGCG GCCTTTGGACTGCCACTCCGAATGCCCGTGAGAGGGGACGCAAACTGGATTACCATCGAC GACGGAGTGAGC ACCGATGCCCTGACAGGGGCTAAGCAACTGGCGCACCGAGTGTGCCAAGCACTCGACCAC CTCCGCAGAGCA AGGCCCTCTGACACGGCGATCGTGTTCGTTCCCAGGAGATGGGAACCATATAAGGTAGTG GACACGCAGCAC GAAAGATTCAATTTCCACGATTACATTAAGGCCTACGCGGCCAGGCACAGTCAGAGCACG CAGTTCGTCAGA GAAGAGACCATCCAAAGCCAATACGTGTGTAGGGTCCGGTGGTGGTTGAGTTTGGCACTG TATGTTAAGGCT ATGCGGACCCCCTGGCGGCTGGATGCGCTTGATGAGAATACGGCTTTTGTTGGTATAGGG TACTCCCTGGAC GCAGAGGCAGGGAGGGGCAACCATGTACTGCTCGGCTGCAGCCACCTGTATTCTGCGAGG GGTGAGGGATTG CAGTTTAGGCTGGGCCGAATCGAGAATCCCGTGGTGCGAGGAAGGAACCCCTTCATGAGC GAGGACGACGCA AGGAGGACCGGAGACACCATCCGGCAGCTTTTCTACGATAGCAAAATGCATATTCCGACA AGGGTGGTGATA CACAAGAGGACAAGGTTCACTGACGAGGAGCAGAGGGGGTTGGTACAAGGATTGGACGGT GTGAGGAATATC GAGCTGATAGAGATCAACCAGGAAGAGAGCTTGCGATATCTCAGCAGCCAGATGAAGGAC GGCAGATTTGAG ATCGACAAGTTCCCCCTGTTCAGGGGTACCACAATAGTTGAGTCAGATGACACTGCATTG CTGTGGGTGCAT GGAGCCACACCCAGCGCCGTGAACAAGTACTGGAGGTACTACCAGGGGAAGCGCCGCATT CCGGCGCCATTG AGGATTCGAAGGTTCCTCGGGCAAAGCGACGTAGTGCAGATCGCGACCGAGATCTTGGGA CTGTCTAAAATG AACTGGAATACGCTTGACTACTATTCAAGGATGCCTGCGACTCTGGATTCTGCAGGCAGT ATTGCCAAGTTC GGGTCATATCTTGATGGGTTTACGAGCGCACCCTATGATTACAGACTTCTGATC

GTTCACGCATTGCTCGCTCTGCTCGCGAACCGAGCCGGTGGAAGGACCGCCAGAATG GGAGACAGCTTGCTC

230 6 ACGTGGAGCCCTCCTGAGTCTCTGCTGCTTGAAGGGACCCTGAGCTGGCGCGGCAACACC TACACATACCGG

CTTCGCCCACTGGCGAGAAGGGTGCTCAACCCTAGGAATCCCAGTGAGAGAGACGCCTTG TCCGCGTTGGCG CGACGACTCCTCCGAGAAGTGCTTGAGCAATTCAGGCGCGAGGGGTTTTGGGTTGAAGGT TGGGCCTTTTAC AGGAAGGAGCACGCACGGGGTCCCGGGTGGCGCGTGCTGAAAGGTGCGGCGCTGGATCTG TGGGTTTCAGCC GAGGGGGCCATGGTATTGGAGGTGGATCCGACTTATCGAATCCTGTGTGACATGACACTC GAGGCGTGGCTT GCACAGGGACATCCACCCCCGAAACGCGTCAAGAACGCGTACAACGACAGGACATGGGAA CTCCTGGGTCTG GGTGAGGAGGACCCGCAAGGCATTCTTTTGCCAGGCGGGCTGAACCTCGTCGAGTACCAC GCTAGTAAGGGC AGAATCAGAGACGGCGGGTGGGGTCGGGTTGCGTGGGTGGCAAATCCTAAAGACGCCAAA GAGAAGATCCCG CATTTGACGAGCTTGTTGATCCCCGTCTTGACCCTGGAAGACCTGCATGAAGAGGGGGGC TCTAACTTGGCC CTCTCCATCCCGTGGAATCAAAGGCAAGAGGAAACCCTTAAAGTGGCCCTGTCCGTGGCT CGCCGACTCGGC GTCGAACACCCCAAGCCCGTCGAGGCCAAAGCCTGGAGGATGAGGATGCCAGAGCTTCGC GCACGACGCAGG GTGGGTAAGCCAGCGGACGCCCTTAGAGTGGGGCTGTACCGGGCTCAAGAGACTACCCTC GCACTGCTTCGG CTCGATGGCGGCAGAGGATGGCCTGACTTTCTGCTTAAAGCATTGGAGAACGCTTTTAGG GCCAGCCAGGCT AGGCTTCATGTTAGGGAAATCCACGCGGATCCTAGCCAGCCCCTTGCATTTAGAGAAGCC TTGGAAGAAGCG AAAGAAGCAGGTGTGCAGGCTGTCCTCGTACTCACCCCCCCACTGAGTTGGGAGGAGCGA CACCGCTTGAAA GCACTGTTCCTCAAAGAAGGACTCCCAAGTCAACTTCTGAACGTCCCCATACAGAGGGAG GAAAGGCATCGG TTGGAAAACGCCCTGCTCGGGCTCCTGGCGAAAGCGGGTCTCCAAGTAGTCGCCCTTGAG GGCGCATACCCT GCTGATTTGACAGTTGGATTTGATGCCGGAGGCCGCAAGTCCTTTAGGTTCGGAGGTGCC GCATGTGCTGTC GGCTCCGACGGAGGTCACTTGCTGTGGAGTCTGCCGGAAGCCCAAGCGGGCGAACGGATA CCAGGCGAAGTA GTTTGGGACCTGTTGGAGGAGGCGTTGCTGGTGTTTAAGAGAAAAAGAGGGCGGTTGCCC AGCCGGGTGCTT CTGCTGAGGGATGGCAGGCTTCCCAAGGACGAGTTCACCCTGGCACTTGCAAAGCTGAGG CAGCTCGGCATT GGCTTCGACCTCGTGTCCGTAAGGAAGAGTGGAGGCGGAAGGATTTATCCGACCCGGGGA AGATTGCTTGAC GGCCTTCTGGTGCCCGTTGAAGAGAGGACTTTTTTGCTCCTGACGGTGCATAGGGAGTTC AGAGGCACCCCA CGGCCCCTCAAATTGGTACACGAAGAAGGTGAGACACCTCTGGAGGCTCTCGCAGAGCAG ATCTACCACCTG ACGAGGCTGTATCCTGCATCAGGTTTCGCATTTCCCAGACTGCCCGCACCCCTGCACTTG GCAGATAGGCTC GTGAAAGAGGTGGGCCGATTGGGCGTGAGGCATCTCAAGGAAGTAGACAGGGAAAAGCTG TTCTTTGTA

GTGAGGCTGGTAAACCAGAAAGAGAAACCGGAAGGCGACTACGTGTATGGCTACACT CTCCCAATAGACCCC

231 50 AGTAACAGGAACATGAGGCAGCCCTTCTGGATAAGCATGGATAAAAAGGAGGGCTATGAA GCTCATTTCGTT

GGCCCCTATGAGAACATTGAGTTGACCAAGAGCGTGATCTTCTGGGACCTTCTGAGGAGG ACCAGGGAGCAA CTCAGCAGCGATAAGTTCACGGAATCAAGAAAAAAGTTCTTTAAGGAGATCTACTTCCCC CTTAACCTCTAC AATGAGGGCAGCCAAGGGCTCGCCGTGCAACCCTACTACCTGAAGATTGATCAGCAATTT GGACTGCTGGTG GATTTTCAATTCAAACTTGACAAAGATTTCACCTTCAGCCGGAAGATTCAACAGCTCAGT CTGACATTGGAT GGGAAGAACCGGAGGAACCTCAACTACTACGTCGACAGGATAACCAAAACCAACCAATTC ATCAAGGCCCTC TGGAACATCATTGGCACCTTCTCCCATAATGAAAACAAGGAAAACTACACGCTGAGGAAC GACTTCTACCCC TGCGCCGCAAGCAGGCTGCGGTCTCGAATGTATCTCTTTTCCAATGGCAGTGAATCCAGG AGCCAGTTCAAT GGCTTGAAGGAATACGGCCCACTCCGACCCCTGACAGCCAATCCGACACTGCTGTTTGTG TTCCGGGAACAA GACCGCGACGCCGCGAGAAAACTGGCGATGGCACTTAAAGGCAGCAAAAAGCAAGATCAA TACAGCTTCCCC GGGTTCAACTCCCTGTTTAAAGCGGACCTGTTGATCGACGGAAATCCCATGGTCTTGAAA GACTTTTCTATC GAGAGCAGCAGGGAGGTGTTGGCCAGGGTGACAACATCAACATCCAGCTTGTTGCCCATT TTCATCCTGCCC AACCGCGAGGGCGACGGCTACCTGGAGCACAAAGCCATCTTCGCCGAGAACGGCATACCT ACTCAAGCGTGC ACACTCCAAGTCATTCAGGACGACGTGACCCTTAGGTGGAGCGTCCCCAACATCGCCCTG CAAATATTCTGC AAAGCGGGTGGCTGGCCCTGGAAAGTGCAGAGCCCCGTAACCGACAACGCCCTGATTATA GGCATAAGTCAG SEQ

ID NO Argonaute # Sequence

AGCCACAAGTTGAATTATAGTGACGGTAAGACAACTGTGGACAAGCACTTCGCTTTTAGC GTGCTGACTGAT TCAAGCGGCCTCTTTCAGAAAATTCAGGTGCTGAGCGAGCAGAAGACGGAGGAGACCTAC TTCGAACAACTG AAGCTGAATCTCAAAAGCATCCTGAACGCCAATAGCAAGAACTACCAACGCATCGTGATC CACACCTCATTT AAGCTCAAATACAAAGAAATAAGTGCAATCGAGGAAGTTGTTAGCGAATTTGCAAGGAAC AGCAACAGCGCC GACTGCAAGTTCGCCGTTGTGAAGGTTAATCACAAGCATAGGTACTTCGGGTTTAATCGG GAAGTGAATAGC TTGGTGCCCTACGAGGGAACCGTGTGTAAGCTGGGCGATAGAGAGTACCTGGTCTGGTTC GAGGGTATCTAT CAGGAGAAGCCGACCGTTACCAAAGCATTTCCGGGTCCCACCCACATCGAATTTCTTAAA ATCGGGTCTAAT AACGTGATTAGCGACGACCTTTTGTTGCAAGACCTGATGAACTTGAGCGGAGCGAACTGG AGAGGCTTTAAT GCGAAGAGTGCTCCGGTATCCATCTTTTACTGCCACCTGGTGGCCGACATCGTGCATGAT TTCCAAATCAAA GGCCTCCCTATGCCCGCCATAGATCTTATACGACCCTGGTTCATC

ATGCAAGAACACCTGAAGACGAACATACTGAACTTTAAATGGCCCAACTCTGCTCCG ACCATCTACCTGACA

232 11 TTGGAGGACATTGAGGGGAGCCACCCTATCCACAAAAGCAAATTTTCTAGACAGATAAAA GAAGTGTTCCCC

GACGCGGATTTGAGTAACAAGGACCAGATCTTTACGACATTCACGACCGAAATCCCAGAC GCCCCAAGCATA AAACTGAACCTTGTGGACGGCCGAGAATTGCGGATCTATAAACAGTTCCTCAAGCACAAG CTGCGGTCATAT TTCAAATCTAAGGACTACATCGTGGTCAAGAATTTCGTGGGCGACGTTCAAGTGTGGATG CCGAGCAAAAAG GGTAACACCGCAGATTACAACCTGTACTATAAGTTTAGCTTTAAGATCCAATTTGCCAAA CTGACGGACCTC CCCGAGCTGATCGTAAGCTACGATGGCACCTCCAAGGTGCTCACGACGTCCGTTAAGGAC ATCGAAGATTCA GAGCTCATCAAGCGATGCGTCTACGGCCAAAAGACGTTTAACTACCAAATGGACTTGGAC ACCGAAGAGAAG CAAGAGTTTTACAACGCGATACAGTTTGACCAGGCCTACCCAATTTTCAACCTTTCCCTG GCAAGGGCACTC GACATCCCCATAGAGGAGCCAATAAGGCCGATCAACAAATACCAAAAATACGTAGCCCTG ATTAACAATTTC GCAACTAATTACCTTTTCAAGGAGGACTTCAAGGTTATCTTCCCGTTTAAAACAGACACG TTCATCGACGTG CCTATAAATCGGATAAATCACATCGACCCCCAAGTCGGCCTGTTGGAATTCGGAAAAGAT CAATATGGCAAC AAGAAAACCCACCTGGTACCTAAAAAGGCAATGAACATCTTGAATCCATACCGGCGACCT AATAATCAGAAC ATCAAAATCTTTTTCATCTGTCACACAAGCCACAAAGACTCCGTGCTCAGCTTCTATCAG AATCTGAAGGAA GGAGTAAACACGGAGAAGAACTACTACAAAGGACTTGAAGCCTACGTGAACATTAAGGCA AGTAGTAGCAAG GAGCATTTTATCGAGTTCACGAACGAGAATGACCCCATCCCGGAGATCGTGGAGAAGCTT GAGAGCCTCACA TTTGATCATGACAATGTTCTCTACGCGGCGTTCTATCTCTCCCCCTTCGACAAATTCACC CAGAATCCGGAG GACCGGGAAATTTACATCCAAATAAAGGAGTTGTTCCTGAACGAAGGTATCGTGACCCAA GTTGTCGATTAC GAGAAAATGGTCGTCAATATCGAGAATCAGTATAACTTCCAGTTCAGCCTGCAAAACATG GCCCTCGCCATT CATGCTAAGCTGGGCGGTGCCCCGTGGAAGCTGGCCGTGACCGACAAGAAGGAATTGGTC ATCGGGGTTGGA GCGTTTACAAATCAAGGCGAGAACAGACGCTATATTGCTTCCGCCTTCTCCTTTCAGAAT AACGGCCTCTTC CGCAAGTTCGAGTACTTCGATCAAAGCGAGACCGACCTCCTGGCTGGCAGTATCTGCAAA GCCATCCGCGAC TTCACCAGCGTAGCGGAGGCAGATAAGGTCGTTATCCATTTCTATAAGGAGATGAGTTAC GAGGAGCTTAAA CCCATCATTCGGGGCATGCACACGCTTGGGCTGAAGATACCCCTTTACATACTTAACATA AACAAGACTGAA GCCGAGGATATTATCGCCTACGACCTGAATTGGAACAAAAAGCTGATGCCCGTCAGCGGC ACCTACATTCGC ATCTCCGAAAATCATTTCCTGCTCTTCAATAACGCACGATATCCTAATTCCCAACGGTAC GCCGACACGGAT GGTTACCCGTTTCCCATTAAGATTAAGGTCAGCTCTCCGGACGAGGATGCCTTTGAAGAT GCAGATGTGGTC CTGGAGCTGCTTACTCAGGTTTATCAATTTAGTAGACTGTATTGGAAAAGTCTTCGCCAA CAAAATGTACCT ATCACCATCAAGTACCCAGAGATGGTAGCCCAGATTGCCCCCCATTTCAACAACGGGGTG CCCGACGATGCC AAGGATGCTCTGTGGTTCCTG

ATGACTGAGGACTTGTACCTCGACTACGACGCGTTCCTGCGGAGCTTTAAAAGAAAC ATAGATGTGCCGCAC

233 48 TCCTTTCTCCTGGGAGCAGGTACATCCATTAGCAGTGGCATCCAGACCGCCTACGATTGT ATCTGGGAGTGG

AAAAAGGACATTTACCTCTCCAAGAACATCAACGCCGCTGAGTTCTATAAGAACCATAAG GACGAGGCGGTA AGAAAGAGCATCCAAAAGTGGCTGGATAACCAAGGTGAATACCCAGTTCTCGACAGCACG GAGGAGTATTGC TTTTATGCCGAAAAGGCCTATCCCATCCCCGAGGACCGCCGCAAGTATTTTCTGTCTCTT ATCGAAAATAAG GAGCCCTACATAGGGTATAAGCTCCTCTGTCTGCTGGCCGAGCGCAGCATTGTAAAGGCT GTCTGGACTACT AATTTCGATGGCTTGACCGTCAGGGCTGCTCATCAGAACAAGTTGACGCCCATTGAGATA ACCCTCGATAAC TCTGATAGAATATTTCGCAACCAGTCTACCAAGGAATTGCTCACAATTGCGCTGCATGGT GACTACAAATTC TCTACGCTGAAAAATACGGAGAAGGAGCTCGACAACCAGAACGACACATTCAAACAGCAG CTGGGGACGTAT CACGTGGACAAGAATATGATCGTAATAGGCTACTCAGGGCGCGACAAGAGCCTCATGGAC GCCATCAGCGAG GCCTTCAGTACGCGGGGTGCAGGGAGGCTTTATTGGTGCGGCTATGGCGAGACGATCCCC AACGAGGTTAGC GAGCTCATACTGAAAATCAGGTCCCAGGGTCGCGATGCATACTACATATCAACGGATGGA TTTGACAAAACG CTGATACACCTGTCTAAAAGTGCGTTCGAAGACAACCCCGAGATTACGAAAAACATCCAA CTCGCGCTCGAA AACAGCGCGGACGAAGAGTACTTTAAGACTGACTTTTCACTGAACTTTAGCAAGCCGGAT AAGTTCATCAAG TCAAACCTCCACCCCATCGTGTTCCCGAAAGAAATCTTTCAATTCGAGCTTGACTTCAAG GAGGACAAGCCT TGGCAACTCCTCAAAACTATTTCACGCGAGACAAACATTTGCGCCGTGCCGTTCAAGGGT AAGGTGTTCGCA CTGGGCACGCTTACTGACATTGGGAACGTCTTCAAGAACCGCCTGAAGAGTGATATAAAG CGCGAAGCAATT AGCACCTCCGACGTGGATAATGTGAGTGCCTTTAAATCTCTGATGCTGCAGGCTGTGCTG AAGTTTTTCATT GGTATCGAAGGCGTGGAGTCCAACCTCAAAGACAGATTGTGGCTTACCAACGCGGAGCAG CTCGTGGGTGAT ATTAGTGTGCATAAGGCTATCCACCTCAGCCTGTACTTCGACAAAAACAAAGGATTCGCT TACCTGTCCTTC ACCCCCACCGTACAACTCATCTCTCCTGAGGAAATCAGCAAAATCCAGAAGCAGAGAATC TCTAAGAGTAAA CTCGAGAAGCTGTTCAATGACAAGTATGACGAGATATTGGAGTTCTGGAACCAAAAGCTC TTTAACAATAGC CAAATCAAGTTCGAGTACCCGATCAGCTCAGGTAGTGGGTTTGAGTTCAAAATCTCCGCC AACACCGCATTT GGGGAGATAAACGTATTGGACCCCAACTTTCGCTCCTTTTCCCCTAGAAATTATGACCCG AAGCGCACACAG TTTAAGGGCGTGCAGTTCCTCGAACCGCAGCTGATATTCCGCAACATCAGTACTAATGTG GAATTTAAGGAC TACCACCCGATGAGGGGGCTGGTGAACAACCGACCGTTCGACGTGAACCTGAACGGTATA ATTCATTCTAAC GAAATAAACCTCACGGTCATCTGCGGCAAGTCATACGCCAACGACCTGTATGAATTCCTG AGCAAGCTCCAA GTGAAGCACGCCACTGAGAATGTCAACCCGGACTATCTTATTGAGTATCCGGGCTTCCAA AGTGTGTTCAAC CTGCCACTCAACATACCCCACTTTGACTCTTCCGAGAAGTGGTACGACATCGACTTCGTA GCTGACAATAAC GGGGAGAACCACGAGAATGCCATTAAGCTTGCCAGACTCATCACCACCAAGATCGACCAG ATTGCCTCTACA CAGAACCAGAGCACGGTCGTGGTGTTTATTCCAAATGAATGGCAGTTGTTTGAGGGGTAC CTGAATCAGGGG GAGAGTTTCGATTTGCACGATTACATCAAGGCATTCAGCGCTAGTAGGGGCATTTCAACG CAGCTCATCCGC SEQ

ID NO Argonaute # Sequence

GAGGATACACTGGCGGATACGTTGAAGTGCCAGATCTACTGGTGGCTGAGCCTCTCATTT TACGTTAAAAGC CTGCGAACTCCTTGGATTCTGAATAATCAAGAAAAGAACACGGCCTACGCCGGGATCGGT TATAGCGTGACT AAAATACAGGACCGGACGGAAACGGTGATCGGCTGTTCCCATATTTACGATTCCAACGGC CAGGGGCTCAAG TATCGGTTGAGTAAAATTGACGACTACTTCCTTGACAATCGCAATAATCCATTTCTTAGC TATAAGGATGCG TTCCAATTCGGTGTGTCCATACGGGAATTGTTTTACCAGTCCCTGGACAAATTGCCTGAG CGGGTAGTTATA CACAAGCGGACCCGATTTACCGATGATGAGATCAATGGTATTAAGGCGTCTCTGAACAAG GCGGGGATTAAG AAGATTGACCTGGTGGAGATTAACTACGAGACGGACGCCCGCTTCGTGGCCATGTCCGTA TACCAGAATGCA CTGCAGGTAGACCGATTCCCTATCAGTCGGGGTACTTGTATAGTCACAAATAAGTACACT GCCCTTTTGTGG ACGCACGGGATTGTCCCAAGTGTACGGCAGCCAAACTACAAGTTCTACCTTGGCGGTAGA AGCATACCGGCT CCGATCAAGATCACAAAGCATTATGGTGATAGTAATATAGACGTTATCGCCACCGAAATC CTTGGGCTGACC AAAATGAACTGGAACTCCCTTGACCTTTATAGCAAACTTCCCTCTACGATCGACTCCAGC AATCAGATCGCT CGGATTGGCAAACTGCTCTCCCGGTACGAAGGCAAGACGTACGACTATCGATTGTTTATC

ATGGAAAATCTGACCCTGAATATCATCCCTTTCAGCCACCCCGTGCAGGAGCTTGAG ATCGGCTTCTATAAG

234 31 CAAGAGAAACAGGGATGCTACAGCCTGTGGAAGGGCGAGTACCCGCAGTCATTCTGGGAC GACTTCAACGAG

GAAATGCAAAATTGCGACAAACTCTACACCAACTTCATTGACACGGAAAACTGTGATTAC AAAGCCAGTGTG GACTTTAGCAAAAACAGACGCCTGGCGGTCCATTACTACAGCAGGCTGATCTACAACTAC TTTGAAACAGTG GCAGATGCCGTGAAAATCAACTTCGTGAAAGATATCCAGATATGGTTCAAGGACGAGACC AAGAGCACCGCC GTCTATACCAGTTACAAGCGGTTCACGATCAAGGTCCAGTTCCATAAGGTGACCGAGTCC CCAGAGCTGTTG ATCAGCTTCGATGGCAATACCACGGCCTATAACAAAAGTCTGGCCGAGTTGGACGATTTC CCTCCCGAGCTG ATTAACTACGTTAAGTACAATACCCAAGTGGTGAAGTACGAGTTCGCCGAGGACGCTATT AAGCAGCATATC GAGGAGCTGTACCCGATCCTGAGCAACCCCATCAGGGACTACCTTAAGATTGCCAGGCCC GATTTTAAGAGG GGCAACAAGTATAAGCCCTACTACAAGAACATTACAGACTTCTATCACAACCACCTGAAC TCCAAAGAGTTT AAAGCTATCCTGCCTATCTCCGAAGACGGTTTCTACAAAATGCCTAAGCACAAGGTTCAC AAAACCAGCTTC AATAGCAATAAACTGAGATTTTTCAATAACACGGACATCGTGCCCCACAACGGGATGAAA AACATCGGCCCC TATAAGGCGTCCCCCCACCCCAACGTGAGGTTCTTCTTCATCTACCATAAGCCAGACCGA AACTTCGCCGTC AAGACGCTGTACGAATACTTTACGGAAGGGTACAAGAGCCCAGAGGGCTACCTTTACTTC AAGCCTCTCAAA ACCTACATTAAACAGCCCTTTCTCATCGACAAGGATACCAGCATCGCGTTCGAAAGCCCG GAAAGCGCTCTG CGCGAAGTCAAGCAGGGTTTGCTTAACCTGGAAAAGCAGCCCAATACGAAATACGTCGCT ATCTATGTGACC CCCATACATAAGACCGAGACCGACGAGCAGAGGAAGATGCTTTATTACCAGGTCAAGGAA GAATTGCTCAAG CACGACATATCAAGCCAGGTGATATACAAGGACAACATTGGACATAAGGATTTTAGTTTC TATCTGCCCAAC ATCGCCATCGCCCTGCTGGCCAAGATCGATGGAATCCCCTGGAGGCTGGACAGAGACACT AAGGAGGAACTT ATCGTGGGCGTAGGCGCATTCACAAGCCTGAACCACAATATCAAATATGTAGCTAGCGCC TTCTGCTTTAAC AACAATGGGGAATTCAAGGGATTCGACTGCTTCAAAGCGAATGAAACCGAACTTTTGGCT GGCACCATCGGC AAGCAAATCCTGAAGTATGTGGTGGACAACGGCGAGAGCGCCAAGCGCCTGATAATCCAC TTTTACAAAAAG ATCAGTAACAAGGAACTCGAGCCCATAAAGAAAATGCTGAACAAGCTGAACCTGACCATC CCCGTAGTGATA GTGACTATCAACAAGACGACCTCAGAAGATAACGTGGCGTTTGACACCAGCAGCCATAAC CTGATGCCCGTG AGCGGCACCTACCTCAAAATAGGATGGGACCAGTACCTCCTTTTCAACAACACGAGATAC AACGCCAGCGAC ACCGAGAAGGATAACCCCTTCCCTGTAAAGCTGAGCTTCTCTAGCACCGTAGACAATTAC TTCGACGACAGG AAGGTGGTCGAGGAATTGATCGACCAGGTGTATCAGTTCTCCCGCATGTATTGGAAGAGC GTGAAGCAACAG AACCTGCCCGTTACCATCAAGTACCCCGAGATGGCGGCAGAGATCTTCCCATTTTTTGAA GGCGATAAGCTG CCCGACTTCGGAAAGAATAACCTTTGGTTTCTG

ATGAACACGCCTTTGACGCATTACGTGCTCACCGAGTGGGAATCCGATACAAATACT AATGTATTGCACATC

235 2 CACCTGTACACCCTCCCCGTTAGGAACGTGTTCGAGCAGCACAAGGAGAACGGTAACGCA TGTTTCGATCTT

CGCAAGCTGAATAGGAGTCTGATCATCGACTTCTACGACCAATATATCGTGAGCTGGCAG CCTATAGAAAAC TGGGGCGAGTACACCTTCACCCAGCACGAATACCGCAGTATAAACCCAACAATACTGGCC GAGAGGGCCATC CTCGAACGACTCCTCTTGCGGACAATCGAAAGCGTCCAGCCCAAGAAGGAGATCGCAGCT GGTTCCCGCAAG TTTACCTGGCTGAAGGCAGAGAAGGTCGTGGAGAACATTAGCATCCACAGGGTAATCCAG TGCGACGTAACC GTGGACTACGCCGGCAAGATCTCTGTGGGCTTTGACCTCAATCACAGCTATAGGACAAAT GAGAGCGTGTAC GACCTCATGAAGTCTAACGCCATCTTTAAGGGAGACCGCGTGATAGACATTTACAATAAC CTGCACTACGAG TTTGTAGAGATTTCCAACTCCACAATAAATGACTCCATCCCCGAGCTCAACCAAAGTGTC GTCAACTACTTT ACGAAGGAGCGAAAGCAAGCATGGAAAGTGGATAAGCTGGAACAGAGCATGCCAGTCGTG TACCTCAAGGCA TTCAACGGCAGTAGGATTGCATACGCGCCTGCGATGCTCCAAAAAGAGCTGACCTTTGAG AGTCTCCCGACC AACGTAGTACGGCAGACGTCAGAAATATTCAAGCAAAATGCCAATCAGAAAATCAAGACC TTGCTGGATGAA ATCCAAAAGATTCTTGCCCGCACCGACAAGATCAAATTCAACAAGCAGAAGCTGTTGGTT CAGCAGGCCGGC TACGAGATACTTGAACTGTCCAACCCAAACCTCCAGTTTGGGAAGAACGTTACTCAGACG CAACTGAAGTAT GGACTGGATAAAGGCGGAGTTGTGGCCTCCAAGCCGCTCAGCATCAATCTTCTGGTCTAC CCGGAACTTATA GACACCAAGCTCGATGTGATCAACGATTTCAATGACAAACTGAACGCTTTGTCCCACAAA TGGGGCGTGCCC CTGAGTATCCTGAAGAAGTCTGGAGCGTACCGCAACAGACCCATTGATTTCACTAACCCC CACCAGCTCGCG ATTCTGTTGAAGGAACTGACCAAGAACCTTTTCCAGGAACTCACGCTTGTGATAATACCG GAAAAGATCAGC GGCATGTGGTACGATCTGGTTAAAAAGGAATTTGGCGGCAATAGCAGTGTTCCGACGCAA TTTATCACCATC GAGACACTTCAGAAGGCAAACGACTATATTCTGGGGAACCTGCTCCTTGGCCTCTATAGC AAGTCCGGCATC CAACCATGGATTCTTAATAGCCCCCTTAGCTCCGACTGCTTCATCGGTCTGGACGTATCA CATGAGGCGGGT CGCCACAGCACCGGGATAGTCCAAGTCGTAGGAAAGGACGGGCGCGTGTTGTCATCCAAG GCGAATACGAGC AATGAAGCCGGCGAGAAGATCCGCCACGAGACCATGTGCCAAATAGTGTATAGCGCCATC GACCAGTACCAG CAACACTACAACGAGAGGCCTAAGCACGTGACCTTCCACCGCGACGGTTTTTGCAGGGAG GACCTGCTGTCA CTCGACGAGGTGATGAACTCCCTGGATGTCCAGTACGACATGGTGGAGATCATCAAAAAA ACCAATCGGCGA ATGGCACTGACCGTCGGCAAACAAGGATGGGAAACCAAGCCAGGACTGTGCTACCTGAAG GACGAGAGCGCC TATCTGATCGCCACCAATCCGCACCCGAGGGTGGGCACCGCGCAACCCATCAAGATTATC AAGAAGAAGGGG AGCCTCCCTATCGAGGCCATTATACAGGACATCTACCACCTGAGCTTCATGCATATCGGC TCACTGCTTAAG TGCCGACTCCCCATCACAACTTATTACGCCGATCTGTCTAGCACCTTCTTTAACCGCCAA TGGCTTCCGATC GATAGTGGCGAGGCCCTTCACTTCGTG SEQ

ID NO Argonaute # Sequence

ATGATTAACAAACTGCAATTCGACGAGTTTCAGAGGGCCATAGGTATTTCTAAGAACGAC ACCTTCAGTCTT

236 35 TTGCTCGGAGCGGGTTGCAGCATCAATAGTGACATCCCTAGCGCGGAAGACTGTATATGG GAGTGGAAGCGA

GATATTTACAAAACAAATAACAGTTCTAGCTTCGGCTGGATTGACAATTACAAGAATCCC AAGACTCAGGAG ATCATTCAGAACTGGCTCAACAACCAAGGCATCTATCCCGAACGCGGCTGCAAAGAGGAG TACAGCTTTTAC GCCTACAAATGCTATCCCATCGACGAACATAGGCGACAGTATTTTCAGAAAATCTGTAGT GGTAAAAAGCCA TCCATCGGGTACAAACTTATTCCCCTGCTTGCCCGAAAGGGCATGCTTGATAGCGTGTGG ACCACGAATTTG GACGACCTCGTGGTGACCGCCTGTATAGGCAACGGGATCCAGGCGATCGAAATCACGCTC GACTCCGTGCAA AGGTTGAACAACCGGCCTCAGAACCGACATGAGCTTCCTGTGATCAAACTCCACGGAGAT TTTAAGTATGGC GATCTTAAAAACACCGAGGAGGAACTCCTCAATCAGGATAAAACGTTCAGGGAGAGACTT ATTGAATACGTA CAAGACAAGCACCTGATCGTGCTCGGCTACAGTGGCCGAGACACCAGCCTGATGGACACA CTTAAAGAGGCC TACTCAAAACAGGGGGGTGGAATTCTGTACTGGTGTGGATATGGTGACAACATAAACTCC GACATCGCCGAA CTGATTCAAATAGCCACTAAAAATGGCCGACGAGCCTTTTACATCCCCACTGATGGTTTC GATTCTACGCTC CGGAAAATCACACAGATAGTGGTCGAGGATGATAACAACCTGAAAAAAGAGCTTCTCGAG CTTCACCAGACC AGCAATATCAATGACACTATCACACCTTTTGATCTGAAGTGCGAGAGGGTGAATAAGCTG TTGAAGTCAAAC ATATTCCGGATTAGCTTTCCAGACGAAGTGTTCGTTTTCGATGTGAGCATCAGCGATAAA CCCTGGAAGTTC GTGGACGAAAGGACTCTTGAGCGCAACGATATTAGCGCCGTTCCCTATAACAAGCAAATC TGGGCATTCGGT AGGCTTGACATCATAAAAGACATCTTCAAAGACGTGATGAACTCAGACATTCAGCGAAAA CCCCTGGCAAAC ATCAAGATATACAACACGGCGGTTAGTCGGCTGTTGCTTACTACGATTTGCAAGATACTG GCGCTGCAGAGC AACCTTAAGACCGACTATAAGGGTAAGATATGGACCGAGAACAACAGTAAGTCCATTTCC GGCCACATAGTA TACAATGCCGTGCTGCTGTCCTTTGATCGGATAAGCGGTGAGTATTACCTTAGCCTCAAC CCCGACTTCGTG CTGGCTAACCCCAACATTGAGAAGAGTAGCATACAGACCATAGGACTGTTCTTCTTCCAG AAGCTGTGGAAT C AGC AGTTTAACGAGTAC ATTAACTATTGGAGGGAAATTTTGTTGAAAAAGAATAATGAGTACGAGTTC C C C ATAAATAGCGGAACCGGCTTCAAGTTCAAGATCAAGAACATCCCAGTGTTCACTAACATC TGCGACCTGAAT AACCCTCGCATCAACAATCACAACGTGTCCAGCCACCACCTGCTGCTTCAGGGGGTGCAA TTTAAGGAAATC CCGCTGCTTTTCAGCACCAACAATGGCAACCGCACGGCCACCGACACCCACCCTATGAGA GGACTTCTCATA AACAAACCGTATGAAACGGGCGTCAACGACTTCCTCGAAAAGTCTATCACCCTGGGAATC ATAAGCCCCAGT CAGGACGCCCTCAGGTTCTACCAATTCCTGGAAAACCAGAACTCTAAAATCAAAAAGCAC AACGACAAGGAC AACTACATAATAGACTACGAAGGGTTTTTCGCCATCTACGGCGTTAGTCTCAGCTTCCCA ACACCTAACGAC AACGAGTGGGAAAGGATCAACGAACCGCTGATTATGGGCATCAAGGAGACCGCCCAACAG ATAAAGCAACTG ATATGCGACAGCATCGTGAAGATCTCAAGCACGACCAGGAGAAAAATCATCGTCATCTAT ATCCCCCAACGC TGGGAGCCCTACACCTCTTACCAGCTCGATGGTGAGTCATTTGACCTCCATGACTACGTG AAAGCGTTCTGC GCGGAGAAAGGGATTATGAGCCAACTCATTCGAGAGAAGACCATTAACGATACTATCCAA AAATGCCAGATA CATTGGTGGTTGTCTCTGTCATTTTTCGTAAAATCCTTCCGGACCCCATGGATTCTCGCA AATACTAACAAC ACCACCGCCTTCGCGGGTTTGGGGTACAGTGTAGAAAACAAGAAGGATATTAACGGACAT ATTGTGCTGGGG TGTAGCCACATTTACAGCTCAAACGGAGAAGGGCTCAAATACAAGCTGGCCAAAATAAGT AATGATAAGATT CAGTGGAGGCATAAGAAGCCGCACCTCTGCTACGACGACGCGTATGAGTTTGGCAAGTCA ATTGTGAACCTG TTCTACGAATCTATGAACGAACTGCCAAAAAGGGTGGTCATCCACAAGAGGACCTTCTAT ACCGATGAAGAG AAACAAGGGATCATAGACTCCATTAGCGACAATAAGAAAATAGAGAGCATCGACCTCATC GAGATCAACTTT GAAAACAATATAAAGTACGCCTCTAGCAAAATCCACGACGGAAAGGTAGACATTGACGGA TTTAGCGTATCT AGGGGAACCTGCATACAACTCAGCTCTAAGGAGGCGCTCCTGTGGGCGCATGGAGTGATT CCTAGCGTCATT AACCCTAACTGGAACTTCTACCCTGGCGGCAGGTACATACCTAAACCACTTAGGATCATT AAACATTACGGT ACAGGTAGCTTGGAACAGATCGCGAACGAGATTCTGGGCCTGACTAAAATGAATTGGAAT AGCCTGAACATG TACAGCCAATTGCCTGCCACAATTTCAAGCTCCAATGATATAGCTAGGATAGGTAAATTG ATAGGGGCGAAC AGTATGCACGAATACGACTACCGATACTTCATC

ATGAATAACATACCCATCAGGCTGAACTTTTTCGCCCTGAAGAACCAGAACATTAGC TTCAGGATCTACAGG

237 9 CAGGACTTCAACGGCCAGAAAAAACAGGACGGGTACTACAGGACCAAGCTGCCCATCAAC GACTCTTCTGAC

ACCTACGCGGAGTACTGGGTGACAACCCAGCCCAAGGATGGCTTCGAGAGGGTGTACTGC CTGGGTTCCTCA AACCCTAAGCTCACCGTCCGAATCATGTGGGAGAGCTTCCTGGATAGGGTCCAGAAGTCC CTGAGCTCCGAC GAATATATCCTTTACGGTAACGGATTTAGCCGGAAGGTCGCCGTGATCATCGGCAGGCAC AGGGAGGGCAAT GAGGTGATCCAGATAGAGCCCTATTACCTGAAGGCCGAGAAGAAGTTCGGCTTTCTGGTG GACTTCGCATTT AAGAAGGCCAAGGACGTGCCCTATAGCATCAGGGTTCAGCAGCTGAGCCTGTCACTGAAC AAGTATGGGAAG AGCAACGCCGACTACTATAGCGACAAGCTGGATAAGATAAAGTTCTTTATGCAGAAGTTT AAGCAGAGGCTT TTCCCATTTAGCTTGGATAACGAGGATTACGACATCGAGAACGAGCTGTATCTGATGAGG AGCTACCCGCTC AAGATGAAGACCTACATATTCTCTAATGGCAAGGAAAGCAACAGCCAGGTGCAGGGTCTC AAAACCTACGGA CCGCTGGCGAATCTCGATAAGGAGCCACTGTTCGTGTTCATGTTCGAGTCCCAGGACAGG AACGAGGCCCTG GAGCTCTATTCTAGCCTGCTGGGCAAGACGTACACCAACATATTTGCTGGCATGGAGAGC GTGTACAAAATC AAACTCGCAAAAGAGAATGTGAAGCACATCATCATCCCCAGCCTTACCAAGGAGGGTCTG CAAGTGGTGGAG CAAGAGCTGCAAACTATCGTGGAGAGTCATCAGGACAAGAAGGTGATTGGGATATTTGTA ATGAATGAAAAG GTGCCCTCATCCATCACCGGTTTCAGCCCCTACCACTACGTCAAGTACATCTTCACAGAG AAACGCATTCCC CTCCAGACAGTGAGGTGCGAGAGGATCGCTGCCAGGGATGGCCTCAAATGGAGCGTTGGC AACATCGGCCTC CAAATTTTCGCTAAATTGGGCGGCATCCCCTGGAAAGTCAAGCCGAGTAACGATAAGTGC ATCATTTTTGGC CTGGGCTGCGCCCACAAAAAAGACGAACTGGGAAACATTAACAAATACTTCGCCTACAGC GTGTGCATGGAC AGCAGCGGCATTTACCGAAAGATTAATGTGCTCGGCGATGCAAAGGAGCGCACTGATTAC ATCCTTCAACTG CGGGAGAACATCAAAAGCGTGATAAGCGAGAATCTGGACGGGAGCATTGAAAAGTGCGTG ATTCACCTGCCC TTCAAAATTAAGAACGACGAGATCAGGTACATAAAATCCAGCGTGCAGGAGATCGCGCAC CTGTATTCCGAC ATAGAATTTCAATTTATCAAGATCAACACGGACAACAAGTTTTTCGGATACGCTGAAAAC AACAGCAAGGTA CCCTACGAGAGCAGCTACATACAACTGAGCAGCAACGAGTTCCTGGTGTGGTTCGAAGGC CTGCAGTACGGG AAGGAGCTGGTGAAGAAAAAGGTAGGTAACCCCGTGCACATTGAGTTCATGCAGATCGAT GAGTTGGATCCC GAAAAGAAGCGGCGATATCTGCAGGATATCATAAACCTGAGCGGTGCCAACTGGCGAGGT TTTAACGCCAAA CTGTCTCCAATCAGCATCTACTACCCCAACATCATAGCCAATTTCATTTCAGAGTTCAGG GAGTTCCAGCCC GAAGGCGACGTGGACCTGACCAACTTTTACATTCCCTGGTTCCTG SEQ

ID NO Argonaute # Sequence

ATGCATAACATCGAAATCAACACCTTCGTCAACAGCTTTGCCATTAAACCCAACAACTCC ATGTCCTTCCTG

238 10 CTCGGCGCAGGCGCGTCTATATCCTCCGGGATCCTGTCTGGCGGACAGATGGTGTGGGAC TTTAAACGGAAC

CTCTATTGTGCGTCCAAAAACATACGCACCAGCAATTTTCCCGATATGAGCAAAAAGAAT GCGCAGGACGAG ATCCAACGCTTTTTTGATGGGCAGGCCGGAAATCCTAGCCTGTGGTCCTCCGAGGAGTAT AGTTTCTACTTC GAGAGGTGTTATCCGGCGAGGAAAGACAGGGAGCTGTACATACAGAACAAGGTACGAGAC GTCAAGCCGTCA TTGGGGTATCTCTGCCTCGGGGAATTGATCATACACGAGAAGATCGGTGTAGTATCAACC ACAAACTTTGAT GACCTGGTGTTGGCCGGCATCCATTCAATAAGACCGGACCTGAGTGTGAAGACCATCAGC AGTGCCCTCAAA AATAGCACGGGATTCTTCGTGAACGACGGGTTCCCGAACATCATTAAGCTGCACGGCGAT TACTTGTACGAT AAGCTGAAGAATACCGATAAGGAGCTGCAAAAGCTCGAGACGGAGATCAGCGGAATTTTT CGAGATGCCGTC AAGAGTGGCGGGCTCATCGTACTTGGCTACGCCGGCAACGACAACAGCGTGATGAGCGTC CTGGAGGAGCTC GTAAGCTCCGGGCAAATCAGGTACGGCGTGTTCTGGTGCCAACCGAAGGGCTTCCCCCTG TCCAAGCGAGCG CGGGAGTTTATTGAGAAGGCTTGCGCCTACAATGAGGAATCCGGGGTTGTCGAGATCAAC AATTTTGACGAC TTTATGTACCGCCTGTTCCTTACACTCAACATCCAAAACTCATTTATCGACAGCATGTGG GAACAGAGCGGC ATGAAGCAGCCGATCCTCTATGAGAATATCGGACGACACAAGTCCACCGCCGTGACGAAC GCCCTGTGCGCC CTGCAGTACCCCCGAAAATGCTACGTCTTCAACGCGAATATATCAAGCTGGAAGGAACTG CGCGAGACGATA AACGACACGTGCGTGGCAGTGCTGTATAAGGGCATGGTTTGGGCGCTGGGCAGCAAAGCA GGCATCGTGCAT GCGTTCGCCGGGAAGATCAATGGAGACATATACGAACTCGACATCCCGTTGTACATGATG AAACTCGAGGAT TCTGACATCCTGGGCATGTTTTACGACATCATAGGACGCGGCCTTCAGCGAAAGGGGCTG GTGAGCTACGGT AATAGGAAACATCACAAATACTTCAACCCCTCCAGCAAACGGTTCAAGAACGGTCAAAAC ATCTACGACGCG GTCAAGATATCACTGAGTTTCGTGGACGATCAGCTCGTGCTCATCCTGCTGCCTACGGTG CATCTGCTGAAA CGCGACGGGACGGAGCTGGAGAAATTTGACTACCAAAAATTGGTGTCCCAGGAGATGGCA ACACACTACAAC AAAGTGGTGGACAGCGAGATAGAGATCTGGCTGAAATTCATCTCTAATAACGGCAAGATA ATCTTTGAGCTG GGGAACGCAATACTGGAATTTAACAACGTCCGCATCCAGTACTCTGGTAACGGTAACCTC AGCAAGTGCTAC CAGGTGAGCGAGCCCGAGCTCACGTTCAGTTACGAAAAGGACAACTGCATCGCTACCAAC CAACTGCGGGGT CTGATCAACTATGGACCCATAGAGACTTACGTGAACAAAGCCATCAGGTTGGCTGTACTC AGCCCTAAGGAG TGTGCCGCGGACATTTGGAAACACCTGCAGAAGTTGAATGAGCATCACGTCACCTCCCTT ATTCAGGATGCA AATTTTCTGCCGGAGTACACCGGCTTTCAGAACGTTTTTAGGTGCAACCTTGACATTCCC AATGGGAACGAT GTGCATAGGTTCAAAGGCTACAGTATAGACAAGGTCATGCAACTCAACGCAAAGAGCTAC TTTTACGGGATC TGCAAGTACATTGATGCATTCGAGACACAAAGGAGCCAATACGACCTCCTCGTCATCTAT ATACCTAAGCAG TTGACCCACATCCGAGAGGCCAAGAATAACTTCGAATATTTCGACCTGCACGACAGCCTG AAGATTTATTGC GCTGGTAAAGGTATAGTCACGCAGATCATCGAGGAACACAGTGTTTATACTAACAATGAC ACCGCCAAGATC ATATGGGGTCTCTCAACGGCCATATTCACCAAGACCGCCGGAAGGTTGTGGAAACCCAGA CGCTATTCCATG AACACCGCTTACGTCGGCCTGTCATATGTGCAGAGCGTTAAGAACAACGAGAAAGTCAGC ATCGGTTGCAGT CAGCTGTTCGACGCCGAAGGCAATGGAATGAAGCTTTACCTGAGACCCTTGATGAACCCC CAGATAATTCAA AATAACCCTTTTATGCGGAGCGACGACGCTTGCAGGCTTATGTCAAACCTTAAGCGGATG TATGACGACAGT GTCCCGCTCTACAAACTGAATAGGATCGTGATCCACAAAACTACGTTCTTCACTAAAGAA GAGATGGAAGGC ATCACCAAAGGGCTGGCTGGAGTGGATGACATAGAGTTGCTCCAGATCCAGGAGTTCACA GCTTGGCGAGCA ATACGCTTCGACTACGACAAGATCGCACCGTTTCCGATACAGAGGGGCACAGTGATTCTG GGGTGGGGCCAC TTTAGTTACTTGGATAC CTGGAAGTGTAC CAC C

ATGAACGCCGTGACCGTGGGCAGCACCCCAAGCGCCCAGGTACTCGTCGGTGTTCAG CCATACGACGAAACC

239 7 ACCCTGGAGAGCCTGAGAAGTAAACACCGCGGAGACTATCTCTTTAAAAGGGGGGGAGAG AACGGCGATAGC

ATACTTGCTGTGGCCCTGAAACCGAGTCTGCCGGTCATCGGAGCAACCGAGGAGGATGTA ATTCTTGCCGAG AGCCCATGGTTGTTGGCTCCACTTGCCTTGGAGACTTTGCTGCAATGCTTCGTGAGGCTT CAAAGGCCCATC CTGAAAGCTAGGCATCCCCTGAGAGTGCTCTCACAAAAACCGGCAAATCTTTTCCCAGCC GATGCGGGGGTC CCCCAGTGGCTGCAGAGGAGACTGGTGCTGGAATTCGACACGCGCACTGTTAGGGACAGG TCAGACGCTGCC TCTGTCGTGCTGGCATGTGGCGTGAGGACTCGGAATTTGATTGATGCCGACTGCGCGACA CTGATAGCAGCC GGTGTCCCCCTTGTGAATCGATACGTGGTGACGAGGCACCCTGCGGATGATCCCCGAGTG CAGGGCTATTTG AGGCTCGCCGGGAGGGTGACCAGGATAGATGGCCCCAACCTGTACTTGGAGGATCATGGC GATGGAGCAGCT GTGATCAAGGCCTCCATGGCCTATCTGGAGCCCAGGAGGGAGAACGTGATTTGGTGTGCC CACCATTTGCTG GGGAGAAATGCGGATAGAGTACTGGCGGAAGCGGATAACGCAGCCGCAAAGCACTTGAGC GGTCCCGAACGA TTGGCCGTAGTGAAGAAGACTTTCGACTACCTTAGGAGCCAGAACATCGAGCTTGCGCCT GGAGTGCCCCTC ACTCTGGGTAACGTTGTGGGGAATGACAAGGGTTCTTGGATCTTCCGGACGGAAACTCTG CCCAAGCCCCAC CTGGTGTTCGACCCGAGCGGGACCCGGATCGATAGGTGGAATGAGAGGGGATTGGACGCT CACGGGCCCTAT GATCAAAGGACCTTCACCCCTAAACAACTGAGGATTGCCGTCATATGTCAACTGCCCTAC GAAGGCCAGGTC GATGCGTTCCTGGCAAAATTTCTCGACGGCCTTCCAGACGTGAAGACCGGCTACGGGGAC CGGGCCAGGGCG CCTTATGCCAAGGGGTTCATCAGGAGGTACGGTCTGGAGAAGCCCAAGGTGAGCACCTTC GCAACAAAAGGC GCTACTGCTAAGGACTATGCCGCTGCATGTAGGGCGGCTGTGGAGGACGCAACCGCAAGC GGCTTCGAGTGG AATCTGGCTATCGTGCAGATCGACAAGGATTTCAAGGAGCTGAGTGACGTGGAGAATCCC TACTTCACCACC AAGGCCCTGCTGCTGAAGCATCGGGTGCCCGTCCAAGAGGTGACGCTGGAGACGATGAGG TTGGCAGACGAA CAGCTGGTGTACGTGTTGAACAACATGAGCGTAGCCACCTACGCCAAAGTGGGCGGTACT CCCTGGCTCTTG AAAGCGCAACCAACCGTGGCCCATGAGTTGGTAGTTGGAATCGGAAGCCAGACTTTTAGT GCCTCAAGGCTG GGTGAGAAAGAGAGGGTTGTAGGCCTTACCACCGTGTTCTCCTCCGACGGGAAATACCTG CTGGACGACCGG ACTAGCGCCGTTGATTACGACAACTATAGCGAAGAGCTGTTTAAGAGCTTGTCCCGGTCA ATAGAATCAGTA AGGATCGCCGATAACTGGCGAAGTACGGACAGTGTCAGGCTGATTTTCCATGTTTTCAAG CAGATGGCGGAC GAGGAAGCCGACGCGGTTGACAAGTTGGTGCAAAAGCTGGGTTTGGCACAGGTTAAGTTC GCGTTTCTGCAC ATCGTGGATGACCACCCATTCGCCCTGTTTGACGAGAAGAACATAGGTACAAAGACATGG GGTGGGATATTC AAGGGCGTCTTGGCACCGGAAAGGGGCCTCGCGGTAAACCTCTCTGGGGCCGAAACCCTG TTGTGCTTCACA GGCGGCAGGGAACTGAAACAGGCGAAGGATGGCCTGCCCGTGCCTAGTCTGCTGCGACTG CACCACAGGAGT ACGTTCAGGGACATGACCTACCTGACGGGGCAAGCCTTCAACTTCAGCTGTCACACCTGG CGCATGTTCACA CCCGCTCCTGTTCCCATCACAATACATTACAGCGAGCTGATGGCGCGACTCCTTACGGGC CTCAGGCACGTC CCGGATTGGGATCCAGACACAATGCTGACCCCCATCAGTCGAACCCGGTGGTTCCTG SEQ

ID NO Argonaute # Sequence

CTGGACAGTTTCCACCTCGTGCAGACAGAGAAAAAGGCCATCGCAATGCCAAAGCAGAAG CTTGCGGTTAAT

240 13 GCACTCCCCATTAGCCTGAAAGAGCAGGAGCAGCACAAGCTGTTCTTTTTTAGCAAGGAA AAGCAGGGCGAG

CGAGCCCCGCTCACCAGGAAAGAATATCCTGACAGCTTCGCCAAGAGGTACCCCAAGAGC TCCAAAGAGTAC GACGTGCTGTACACGGACTTCACCCCAGAGCCAGCTGAGGATGGGTTTGAAATTGATATC GACCTGGAGGAG GCACCTGGCCTTGCCAAGCACTACTTGCACAAAAGGATCTTTGAGGCCTTTAAGGGAGTA GCTGACTTCAGA AAGCGGGATTTCATCAACGGTGTGGAGCTTTGGTTCAGGGACAAACCCGCCGACGAAGTT AATTTCCGGGCC TACAAGAAGTTTAAGATTACCACCCGCAGAACTTGGTTCTCCGCAGGCTGGGCCCTGTTC ATACAATACACC GGCCATTCCTTTATTCACCCGGTGGCGATCAATAGCGAAGAGGCCGCAGTGGACACTACG GAACTCACGCGG GTTGCTTATAACCGACACATCTTCCACTACGAGGAGATCCCCGAAGACAAACTGAGTGAG ATAGATTTCAGT AAGATGTACCCCGTGGTGAACTTCAACATTAGGGATAAAATGCAGCAGTTCCCCGTTATC GATCCATTCAAA AACAAGGTCAAGGAATATGTCGACGAAATAGACAGGTTCAAGAACATGTATCTGATCGCG CCAGCGGTTGAG GAGGTGCTTCCGTTTACTTTCAACGACGACAACTGGTGCGAGATCAAGATCGGCACCTAC CATACCGTGCCC AATGCCGGTTCCAAATTGGTTTTCCGCGATGGGCAAACCGAGATACACCCGTTCTACGGT ATCAGGAACCAC GGCCCTTTCATGCCCCCCAAACACAGCCACATAAGGTTTTTGTTTATCATGAGCAAGAGG GACATCAAGGGC GCTGGTAAGCAATTCTATGAATACTTGAAGGGGGAGGTAAAAGGAGTGGACGGGTTCAAC AGGTATGCTAAT ATACCGTCATCCCTGAGGGGTGAGATGATCGAGTTTGAGAACGAGCAAAACCCCCTGCCG GAGATTATCGAC GGCTTGAACAACATGGAGCGAGAAGCGGGCGTGGCCTACTTCGCCTTCTATATCAGCCCC ATCGACCGAGAA GTGAGGAACAGGAAGGAGAGGTTGGTGTACTACAGGGTTAAGGAGGAGCTGCTGAAGAGA AAGATTGCCTCA CAAGTGGTAGAAAGGAGCACTATCGAGAAGGCCGACTTCCGCTACAGCATCCCCAACATC GCCGTTGCCACA GTGGCCAAGCTGGGAGGCATCCCGTGGAAGCTTACTCAACCCCCAGAAGCAGAGCTGATC GTGGGCATAGGC GCATTCCAGCCACGCGAGTTCGACAAGCGATATCTGGGCAGCGCCTTTTGCTTCCAAGGC GACGGAACCTTT AGCGGCCTGAGGTGTTTCACCAAGGACGAACCCCATATGCTTGCTGGCAGCATCAGGGAA GCGGTTCAAAGG TACGCCGATGAAAACAGGCAAGTGGAACGGCTGGTTATCCATTTCTACAAAACCATGAGC TATGACGAGAGG AAGCCGATCCTGGCCACCTTGAAAGAACTCGGCCTGGACATTCCCGTTGTGGTGGTCACT ATCAACAAGACT GAATACGAGCAGACAATCCTCTTTGACCTGAATTCTAGCATGAGGCTGCCGCTGAGTGGT ACCTATTTCAGC CAGCGCAGGGACGACATCCTGCTGAGCAACAACACCAGGTACCGCAAAGACAGCGAGGTG AAGAGGGGTTTC CCTTTTCCCGTGAGACTGCAGCTGTGGTGCTCCAAGGAGGGCCTGCTGGACGACGAGGGT TTTAGGGAGCGA CTGATCACCCAAGTGTATAGGTTTTCTCGGCTTTACTGGAAGAGCGTGTCTCAACAGAAT CTGCCCGTGACC ATTAAGTATCCCGAGATGCTGGCCGAAAAGTTCCCATACTTTAACTCAAGGAGCCTTCCT AGCTTCGGCGAA AAAAGCCTGTGGTTCTTG

ATGCTTATCTGGCAATTCAAGAGAATGCTCTACTGCCAGGCCAACAACATCAAAGAG GAAAAATTCAAAGAC

241 3 CTGGAGAGCGAGCGAAATCAAAACACTATCCAGAGCTATTTTGACCTGAAGGGCGGCTAT CCGGAAAGATAT

AGCCAGGAGGAATACTCCGCTTATTTCGAGCATTGCTTCCCGAAGTCTATCAACCGGAAG TATTTCATGCAG AAAATAGTAGAGGGCCGAAATCCGAGCATAGGTCACAAGTGTTTGGGTGCCCTGTTCGAC TGCAAAAAGGTA AACCACATCTGGACAACCAACTTCGACGAGCTCATCGAGAATGGGATTAAAAGCGTCAAC AATGCCAGCAGC TTCGAGGTCATTAGTATCGACAATCAGAGGCAGCTGGCCAACCTCAACAACTACCCAAGG GTGGTAAAACTT CACGGCGACTACAGGTACGACAAGCTCCAAAATACCGTTGACGAACTGCAGACGCTGGAG AAGGACCTCCAT AAGTACTTCGCCGATGTGCAAAGCAAGACCGGCTTGATTGTGATAGGCTACGGCGGAAAC GACCAGAGCATC ATGTCCGCCTTTGAAAAGACTTTGGAGGCCGACAACCCGTTCCCGTTTGGGCTTTACTGG TGCGTGAGGACG GGCCAGAAAACCAACAAGAAGGTAATCGAATTCATAGAGAAGGTTCACCAGAAGAACAAG GAAAAGCTTGCT GCGTTCATCGAAATCGACTCTTTTGACGATTTTCTTTATGAGCTGTATAAGACGAACAAC CTTGCCAACGAT CACATTGAAAATATCGCCAAAAGCCGCTTCGAAAAAAGGAAGGCTTTTACAGCCCCCCAG ATCGGCACCTCC TTTACGCCTATAAAGCTTAACGCCATAAAGGCCAAGACTTACCCGAAAAGCATCTATTCC TTTAAAACTGAC CTCAAGGGGGGCAAGGATGACTGGGATAAACTCAGGGAAATCATTAAGGACCAACCGGTG AGCGCGGCTCTG ACCAATGAAAACACGGTCGCCTTCGCAAGTGTCAACGACATCAAGAAACTCTTCTCACAC ACACTGAAGTCA GAGATCACCACCGTGGACATAGATGACAAGTTGATCTATCGGCAGGAGTCTTTCTACCTG GGCATGCTTTAC GATCTGATAGAGCACAACCTCCTGAAGAAGTTCAAGTTGGAGAAAGTGCCCAACAATAGG CTCCGCAAGTAT TATAGCAAAAACTACAAGCTGAATACCGAGGAGCTTCAGAAGTCCAAGATCAAGACCAGC CTGTCCGTCTAC GAAGCGTTCGAGATTCAAATAGAATTCCACAATAAAGAGCTGTTCCTCATTATCCTTCCG TCCATCCACATA GACGACAAAGCCGGGCTGAGCCGATTTGAGAAACAGGAGATAGCCAATAAGATCATAAGC AAAAGGTGGAAC CGCATGGTTAACAACCAGCTTAGGTTCTGGCTGGGGCTCCTTAAGAACGATAACACTAAC ATAGAGTTCAGC ATCGACAGTTTCAAGATTGATTTGGAAGAAAAGTTCTCCGGCGTCGGGAGCTTTACATCC TCTTACTACATC TTTAAGGGCGCGTTTATTTCCAACGAACCCAAGCTTAGCTTCCATATCTCCGACAGCAAT TACAAAACAGTG CACCCCCTGAAAGGCCTCAAGAACTTCGGTCCACTGGATTACTCATTTGAAAGCAAACAG ACCAATCAGCAG GCTATTAAACTTGGTATAATCACTCCGATCAGCGGCATGCAACGGATACTCAAACACCTG AACGAACTTAAT AACGAGATCCGCGCAGCTACGGAAAAGGAGTACCTGACCGATTATTACCCCTTTAGCAAC ATCTACAAGAGA TACCTTGACATCCCGCAGAATAAGGATAGTAAATTCTTGGAACTCGTGAATGAAGCCGAA GTGAACAAACTG AACCACCTCGAGTTTTATGACTTCCTCAAACGCAAAATTGATTACTTCTATACAATTAGG GGCGAGTTCGAC GTGCTTGTGTTGTATTTTCCCAAAGGCTGGACTAAGTTCCGCGAGCTGAAAAATGACAGT GTCTACTTTGAT CTGCACGACTCCATCAAGCTGTACTGTGCTAAGAAGAATATCAAGATCCAATTCGTGGAA GATAAGAGTATA GACTACCTCGACCCGGCCAAGGTTAAATGGTGGTTGAGCCTCGGCTTGTATGTCAAAGCG AACGGGCTGCCC TGGCGGAACGTGGTCGTAAACGAAAGCACCGCGTTTGTCGGGCTCGACTTCGCGGTCCAG CGAATAAACAAC AGTAACAAGTACGTGCTGGGTAGCTCACAGATCTTCGACAGCTCCGGACAAGGACTCAGG TTTCTGTTGCAG CCCATCGAACACCCTGTGTTTATCGGTAAAAACCCCTTCATGAGCAAGGAAGATGCGCGA CGGATGATTCTT AAATTGAAGGAAGCGTATTTTAGGATTGACGGTAACTCCAAGCTGGAAAAACTGGTGGTG CACAAAGTACTG CATTACACAAATGATGAGATGACCGGCATTTCCGAGGCGCTGGAAGGTATTGAGAACATT GAGCTTCTGCAA ATACAGAAGTATAGTAAGTGGAGGGCAATTAGAGGGGACATCGATCGGTATACGGGAAAG GTGAAGACCGAC CCGCACAATTTCCCGATCCAACGGGGGACAGTGATCCAGCTCGACGACTTCTCTTTCCTT CTGTGGACACAT GGAAGTGTACAGGAAGACGACGTGGCTGGTAGGCACATGAATTACTACCAGGGTAAGCGC GGGATTCCCGCA CCACTTCTCATACGGAGGTTTCGCGGCACCGATCCGATTGAAATGACCGTGCGAGACATC CTGTCACTCACC AAGATGAACTGGAACGGAGGCGAACTTTACAAGACTCTGCCGGTGACCCTGGATTTCTCT AAACGGCTTTCT AAGTATGCGAAGCAGGCAGAGACCCTCCAGGCAATACCCTACGACTTTCGGTTCTTCATG SEQ

ID NO Argonaute # Sequence

ATGCTTCAACTGAACGGCTTTAGCATCGAAATCGCCGGAGGTTCCCTGACTGTCTTGAAA TCTAAAATCGCG

242 51 CCTACCGACGTTAAAGAAACCCGCAGGAGCCTGGAAGACGACTGGTTCACCATGTATCAC GAGGGCCACTTG

TACTCACTTGCAAAAAACAGCAACGCATCCGGCGGATTGGGTGAGACCGAGCTCCTGGTC CTGTCTGATCAT CTGGGTCTTAGGTTCGTTAAGGCTATGTTGGACCAAGCCATGAGGGGCGTATTCGAGGCC TACGACCCCGTT AGAGATAGGCCCTTCACATTTCTGGCGCGAAACGTAGATCTCGTAGCCCTCGCGGCAGAA AACCTCGAGTCC AAGCCCAGCCTTCTCTCCAAATTCGAGATCAGGCCCAAGTACGAACTGGAGGCCAAGGTA GTGGAATTCAGA CCGGGCGAGCTGGAACTTATGCTGGCGCTCAATCTGACTACACGGTGGATCTGCAACGCC TCCGTAGACGAG CTCATTGAGAAGAACATACCGGTCCGAGGAATGCACCTGATCCGACGGAACCGGGAGCCG GGACAGAGAAGC TTGGTTGGCACCTTCGACCGCATGGAAGGCGACAACGCCCTGCTGCAGGATGCTTACGAC GGACAAGACAAG ATAGCAGCCTCACAGGTGAGGATCGAGGGGAGCAAGGAAGTCTTCGCGACCTCTCTGAGG AGGCTCTTGGGC AATCGCTATACCAGTTTCATGCACTCCGTGGATAACGAGTACGGCAAGTTGTGCGGGGGT TTGGGGTTCGAC GGCGAACTTAGGAAGATGCAGGGATTTCTCGCGAAAAAGAGTCCTATACAACTGCACGGA GGTGTAGAAGTG TCCGTGGGGCAGAGGGTACAACTTACCAATCAGCCTGGGTATAAGACAACAGTTGAGCTT TTGCAGTCAAAG TACTGCTTTGACAGAAGTAGGACGAAGCTCCACCCCTACGCCTGGGACGGGCTTGCTCGA TTCGGCCCATTC GACAGGGGCAGCTTCCCGACGCGATCCCCCAGGATTCTGCTCGTGACACCCGACTCCGCG AGCGGTAAGGTC TCTCAAGCTCTGAAGAAATTCCGCGACGGGTTCGGCAGCAGCCAGAGCAGCATGTATGAC GGCTTCCTCGAC ACCTTTCACCTCAGTAATGCTCCTTTCTTCCCCCTTCCCGTGAAGCTGGACGGCGTGCAG CGCAGCGACGTG GGCAAAGCTTATCGAAAGGCGATCGAAGATAAACTCGCACGAGACGACGACTTCGACGCC GCCTTTAACATT CTCCTGGACGAGCACGCCAATCTGCCGGACAGCCATAACCCCTATCTGGTCGCCAAGTCC ATCCTCCTCTCC CACGGCATCCCAGTGCAAGAAGCACGAGTGAGCACTCTGACGGCCAACGAATACAGCCTG CAACACACCTTC AGGAATGTCGCCACAGCCCTGTACGCCAAAATGGGTGGTGTCCCATGGACCGTTGACCAC GGGGAGACCGTG GACGATGAGCTGGTAGTAGGAATCGGAAACGCGGAGCTTAGCGGGAGCAGGTTCGAGAAA AGACAGAGGCAC ATCGGAATCACGACAGTGTTTAGGGGGGACGGCAACTACCTGCTTAGCAACCTCAGCAAA GAGTGCCGATAC GAGGATTACCCGGACGTACTCCGGGAGAGTACCATCGCCGTGTTGAGGGAGGTTAAGCAA AGGAACAATTGG TTGCCGGGTCAAACCGTGCGAATCGTTTTCCACGCCTTCAAGCCTCTGAAAAACGTGGAG ATTGCCGACATC ATCGCGAGCTCTGTAAAGGAGGTAGGCTCCGAACAGACCATAGAATTTGCATTCTTGAAT GTTTCCCTCGAC CACTCCTTCACCCTTCTGGACATGGCTCAAAGGGGAATAACGAAGAAGAATCAGACCAAG GGGATATACGTT CCCAGGAGGGGCATGACAGTCCAGGTTGGGCGCTACACCAGGCTTGTAACCAGCATCGGT CCGCACATGGTA AAAAGGGCAAACCTTGCCCTCCCGCGACCCCTGTTGATTCACCTGCACAAGCAGAGCACC TATCGGGACCTG AGCTATCTGAGCGAACAGGTTCTGAACTTTACCACCCTGTCCTGGAGGAGCACCCTCCCC AGCGAGAAGCCT GTTACCATTCTCTACTCATCACTGATAGCCGACTTGTTGGGAAGGCTCAAGTCAGTGGAT GATTGGAGCCCC GCAGTGTTGAATACCAAACTGAGGAATAGCAAATGGTTCCTG

CTGGGAGCCGGTGCCAGCATCAGTTCCGGCATCCAAAGCGCTAATGACTGCATTTGG GACTGGAAGTACTCT

243 28 ATCTACCAAACTAACTCCGGCAGTCAACGAGTGGCCCTCGTGGACCCTAAGAAATCCGAC GCCTCCAAGTCT

ATCATCCAGAAGTGGCTGGATAATCAACCGAAATTCTCACAGATCGAAGCCCATCAGGAG TACAGCTTCTAC GCCCAGGCGGCTTACCCCATTGAGGCGGACCGAATCAAATACTTTCAGAATCTCTTCCAG GGGAAGTCCCCC TATATCGGCTACAAATTGCTCTGCCTGCTGAACAAGTACGGTGTAGTGAAATCTGTGTGG AGTACCAACTTC GACGGCCTGGTCGAACGGGCAGCACAGCAAGCCAACATCACCCTGATCGCCATCAATCTT GACTGTGTTGAC CGCATATATCGAGCAGAAAGCGTGAATGAACTTCTGTATATCGCGCTCCACGGGGACTAC AAGTTTAGTACC ATAAAGAATACCGCGAATGAGCTCGACAGCCAGCACACCGAGTTCGTATCTGCCATGTGC CGGTACTTCGTC GATAAAAACTTGATCGTCATGGGATACAGCGGACGCGACAAGTCACTTATGGACGCCCTG GTCCAAGCGTTT AGCAAGAAGGGTGGGGGGAGACTTTATTGGTGCGGCATGGGCGAGACCATCACGATCGAG GTGCAAAACCTG ATACAGAGAGTGAGGACCGCAGGCCGGTCAGCTTATTATGTAGATACCTCTGGGTTTGAC AACACCATGCTG TCACTGGTAAAGTACTGTTTTTCAGAGGACGTCGCCAAACAGCGAGAAATAAACGAAATT TTGAAAATTGTG GAACCGGAGCAGATTACTCCGTTTGAGATTCAAAAGAGCCAGAACAAACGGTATCTCAAG AGCAACCTGCTG CCAATCGTGCTTCCCAAGGAACTCTTTCAGTTTCAGATCTCTTATAACGACACGGCGGAC AGGTGGGGATTC TTGCGCGAGAGGATTAAGGAGCGGGAAATCATAGCAGTCCCGTACCAGGACAAAGTATAC GCAATCAGCACG GTCTCCATCATTAACGACGTTTTCAAGGACTGTCTCGTAAGCGAGATTGAGCGCACGTCC ATCTCTCTGAAT GAGATCGAGCGCAATGGCTGCTTCAAAGAGCTGTTCCTCAAGGCTATTCTCTACGGGTTT AGCCAAATCCGG AATCTGGGCATCAACTACCGCCACGGCATCATTTGGAAGAAGGAGGCGCTCTACACTGAG CCCGGCAAGACC GTACACGAGGCCATAGAATGCGGCTTGTCTTTTATACCGCAAGCGAACTACGCTTTGATT AGCATCACACCA AGTTTGCACATCGAATCCAGCAGCCCGATCGAAAAAGAGAAGAAACAAGAGTATAACAGG CGGTACCTTGAC AAGATGAGGAATAAAGAGTACGAGGAAAAGATCCAGGAGTGGTGCAACATACTGTTCTCC GGTAACAAGCTC GTTTTTGACATCCCGCTGCAAAGCAACAACGACTTGAAGTTCTTCATTTCCAGTAATAGG GGTTTCGCCGAG GTATACAATTACGGTAAGGACATCGAGAAGAGCTACACGCCCAATGCTTACAATACGAAA CAGACCATTTAC TACGGCATGCAAATCGAAGAGCCTCAGTTGGAGTTTATCAACTCCATAATCAGTAGGCCG TTCTATGACGTT AACCCAATGAGGGGCCTCTCAAATCACAAACCATTCGACGCGGACTACTATGACAAGTTC CCCCAGGATGTG TGTTTGGGCATTGTGTGTCCGACCAGCTACAGCCTGATGTTCTCAGAATTCCTGAAGCGC CTGAACACTAAG ATCCCAGCACCGAAGTCATCCGACTACATCCACAACTATATTGGCTTTAACAGCATCTAC AACTGCAGGCTG GACATACCGGACATCAATGCCGATCGCTGGGTGAGCATCGGCGACAACCCCCAGAACGCG GAGGAATTGGCC CGCAACATCTGTATGGAAGCAAAAAAGCTGAGTGAACAATATCCGGGCATCGTGGTTAAC ATATTCATCCCT ACTATCTGGAGCAACTACAGAAACTTTAAACACAACGGTGAATTCTTCGACCTGCATAAC TACATTAAAGCA TTTGCGGCACAAAATCGCTTCACCACGCAACTCATCGAGGAGAAAACTGTTTGTAACACG ATGATGTGCGAG ATATCCTGGTGGCTTTCCCTTGCCCTTTTCGTTAAGACCCTGAGGACTCCGTGGACACTG GCTGACCTTAAC CCCAACACCGCCTACGCGGGGATAGGGTATTCAGTTAAAAAGCAGGCCAAGGGCAGGACA GAGATCGTACTG GGGTGTAGCCACATTTACAATGCGCAGGGACAGGGACTCAAGTACAAACTGAGCAAGGTC GAGCACCCACAG TTCGACAAAAAACGGAACCCATTCTTGAGCTTCGAGGAAGCCTTCAAATTCGGGATGGAT ATTCTTAATTTG TTCCAGAGTGCAATGGAAAAACTGCCGCAGAGGGTGGTTATTCATAAACGGACGCCTTTT AGGGAAGAGGAA ATAGAAGGGATTACCAGCGCCCTCAAGCGGGCAGGGATCACGGAGGTGGACCTGATCACT ATAACGCAGGAG CGAAACATTAAGTTTATAGCACAGGTTGTCTCCTTCGGCCAACTCAATACCGACGGCTAT CCCGTCAACAGA GGCACTTGCATCAAGCTTAGCTCTCGCAATGCACTCCTTTGGACCCACGGCGTCGTCCAG AGCATTCGAGAC AAAAGACGGTACTACCAGGGGGGCAGGTGCATTCCGAGCCCGCTGAAAATCACTAAGTAT TACGGCAACGGC SEQ

ID NO Argonaute # Sequence

GATCTCCAGACTATAGCTAAGGAGATCATCGGTTTCACGAAGATGAATTGGAATAGCTTC AACTTCTATACG AAGCTGCCAGCGACCATTGACACTAGCAACACCCTGGCCCAAGTGGGCAACCTTCTCAGG AACTATAATGGC ACCACCTACGATTATCGCTACTTTATC

ATGGCCAACCATACCTTTAACATCCTGACTTTCAACCACCCCCAGGAGGAACAGACC TTCTACTTCACGGAC

244 43 CAGGAGCAAGACAACCTGACCCGCATCTACAAGAGCCTGGTGCCCGACGAGGTCATCGAG AAATATGGCGAG

CAGGATCACTACTACACCTCTTTCACCGTAGAGAAGGATGGTTTCCTGGCCGTCAGCAAG CCCACAACGCCC CTGTTCGAGACCAAGACTACGGAGGCGGGCGAGGAGAGGAGCTATACCATCAGGAATTCA ACGTTCAGCAGC AGCGTGTTGAAACGGTACTACAACAGCCTTATCCACAGCCACTTCAAGGAGAAGGGCTTC CTGGTGAAGCCC AACTTCGTGAGCGACACGGAGGTGTGGCTGCCTAGCGCCAAGCAGGACACGACCGGCAAA TACAAAATATTC GACCGCTTTAGCCTGAAGGTGCAGTTCAAGACCGTCTCTGATTCCCTGGAGTTGCTCGTC ACGTTCGAGGGG AAGTCAAAGATATTCAAAGTACCTGTTAGCACCCTGCTGGAGGATGTGAGCCCCACGGAC ATCAACTGGGTT GTGTACGAAAAGGGATTGTACAGGTTCGACGAACTCCCGGACAGCGGCAAGAGGGAGTAT GACAAGGTTTAC CCCGTGTGGACCTTCGAGATCAGGGACGCGCTTATGCAGGGCACCGAAGCCCCAGACAAG ACCAACAAGTAC AAAAAGTTCAGGGAGGGCATCGACAAGTTCTATAACCAGTATCTGAACACAGAGGAGTTC AAAGCCATCATT CCAATCACGTCTAATGGCTTCATCCCGGTCAATAAGATCAATGTCGGTAGTGTGAATAAT AGTAGCAACAGG CTGCTGTTCGGGGAACAAAAGAGCGGTATCGTGCCAATGGACGGCATGAAGGAACATGGC CCATTCGACTTT TCCAGCACCAGCAAGATCCATTTCTTCTTTATCTTTCATAAAGACGACCAGCACATCGCC CAAAAGATGGAT GGCTATTTCAAAGGCAGCGAGTTCGGGTTCAAGGGACTCACCAAATTCATACACACCCCC TATCACACCGAG AAAGGATTCTCAATCAGGTTTGAGGACCGCGACAATCCGTGGCCCGAGATCTACGAAGCC GTCACTAACAAG CACTTCGAGTCCGACATACAATACATTGCGATCTACATCAGCCCCTTCAGCAAAAACAGC CCCGACAAGAGT CGGCGCAAAATCTATTACAAGCTCAAAGAACTGCTCTTGAAAGAAGGCGTGAGCAGCCAG GTGATTGACGGC GAGAAGGTGATGACCAACGAGAAGTATTACTACAGCCTCCCCAACATAGCAATCGCCATT CTGGCCAAGTTG AATGGCACCCCTTGGAAACTGGACACCAAGCTGAAGAACGAACTGATCGTGGGAATCGGC GCCTTCCGCAAC AGCGAGGTTGACATTCAATATATCGGCAGCGCGTTCTCTTTCGCAAACAACGGCAAGTTT AATCGCTTTGAG TGCTTCCAGAAGGACCAGACGAAAGAATTGGCGGGAAGCATCATACGGGCGGTGAAGGAG TACGCCAACGTA AACACCGGCATTAAGAGGCTTGTGATCCACTTTTACAAAAGCATGCGACAGGATGAGCTC CAGCCGATCGAG GACGGCCTTAAAGACCTCGGCCTGGACATTCCGGTATTCATCGTATCTATCAATAAAACA GAAAGCAGTGAT ATCGTGGCGTTCGATAACAGCTGGAAGGATCTGATGCCGATGAGCGGCACATTCATTAAA GTGGGGTACAAC AAATTTCTCCTGTTCAACAACACCAGGTATAATCCAAAGTTTTACAGCTTCCACGACGGG TTCCCCTTCCCC ATCAAACTTAAGATTTTTTGCACTGAAAAGGAACTCGTGGAGGAGTATAAAACGGTTAAA GAGCTGATCGAC CAGGTGTACCAATTTAGCCGCATGTACTGGAAGTCTGTCCGCCAGCAGAACCTGCCCGTG ACCATTAAGTAT CCGGAAATGGTGGCCGAAATGTTGCCTCACTTTGACGGGAATGAGATACCTGAATTCGGT AAGGACAACTTG TGGTTCCTG

GTGAACCATTACTATTTTTCCGAATGCAAGGCGGACGAGAAAGCCAGCGACATAGCC ATCCACCTTTACACC

245 74 GTGCCCCTGTCCAACCCCCATGAGAAATACAGCTATGCGCACAGCATCGCCTATGAATTG AGAAAACTCAAC

TCATACATAACCGTGGCCGCGCACGGTCAGTACATCGCGTCTTTCGAGGAGATATGCCAC TGGGGCGACCAC AGGTACATACAGCACGAACATAGACCAATCCAGTGCAGCCTCCCGATGGAGAGGACCATA CTGGAAAGACTC CTCAAGAAAGAGCTCGAGAATAGGTGCAAAAGCAGCTATAAGATGGACAACGACCTTTTC CGGTTGGCTAAC GAGCAAAGCATGCACGTGGGCGAGATCAGCATACACCCAGCGATCTACATCTCATTCAGC GTGGAGGAAAAT GGTGACATATTTGTTGGCTTCGACTACCAGCACCGGTTCGAGTACCGCAAAACACTCCAA GACGTCATCAAC AACGATCCCTCCCTGCTTAAGGAAGGCATGGAAGTGGTGGACCCCTTCAATAGAAGGGCC TACTATTACACT TTTGTGGGCATGGCCGATTATACCGCCGGACAGAAAAGCCCCTTCCTGCAGCAGTCTGTG ATCGACTATTAT CTCGAAAAGAATGAGCTGTGGAAGCTCAAGGGTGTGCACGAAAAAACCCCCGTGGTGCAC GTCAAGAGCCGA GACGGTCACTTGCTCCCGTATCTGCCGCACCTGCTCAAATTGACATGTTCATACGAACAG CTCTTGCCCAGC ATGACCAAGGAAGTCAATCGCCTGATTAAGCTGAGCCCCAACGAGAAGATGAGTAAGTTG TATACGGAGATG TTTCGATTGCTCCGGCAGCAACAGGTGCTGACCTTCAAGAAGGAAAACGTGCGAGCCGTC AACCTCGGCTAC GATGTGAATGAACTTGACAGCCCGATCATGGAGTTCGGACAAGGCTACAAGACAAACGAG ATCTATCGAGGC CTGAAGCAGAGCGGAGTATACGAGCCCAGCTCAGTGGCCGTGAGCTTTTTTGTTGACCCC GAGCTTAACTAC GACCCCCAGAAGCGGAAAGAAGTAGGTTGCTTCGTCAAAAAACTGGAGAGCATGAGCGAG GCCCTGGGAGTA AAACTGAACATAAGCGACCAGCCCCGACAACTTTATGGCCAGCTCCCCAAGGACTTTTTC AAGCAGGACAAC CTCTCATATCATTTGAAATCTATCACCGACCAGTTCAGGGGAACGGTGGTGGTTGTTATC GGCACTGAAGAG AACATCGACCGGGCATACGTTACAATCAAAAAGGAATTCGGCGGCAAGGAGGATCTGATG ACCCAGTTTGTC GGCTTCACCTCCTCCCTCGTCACGGAGAACAACATTTTTCACTACTACAACATCCTGCTC GGCATCTATGCG AAAGCTGGTGTTCAGCCCTGGATACTCGCCAGCCCAATGCACTCAGACTGTTTCATTGGA CTCGACGTAAGC CACGAGCACGGTAAGCACGCATCAGGGATAATACAAGTGATTGGACGGGACGGCAAGATT ATCAAACAAAAG AGCGTTGCGACAGCAGAGGCCGGAGAGACTATTGCCAATAGCACGATGGAAGAAATCGTC AACGAAAGCATT TATTCCTACGAGCAGATCTACGGGGCCAAACCGCGCCACATAACATTCCATAGAGACGGG ATCTGTCGCGAG GACCTCGATTTTCTGCAAGCGTATTTGCGGAGTTTCCAAATCCCATTCGACTTCGTAGAA ATCATAAAGAAG CCGCGACGCAGAATGGCGATATACTCTAATAAGAAGTGGGTCACGAAACAGGGAATATAC TACAGTAAGGGC AACACCGCTTATCTGTGTGCCACGGACCCCAGAGAATCCGTGGGTATGGCGCAACTTGTC AAGATCGTACAG AAGACTAACGGATTGAGCGTTCACGAGATAGTGAGCGACGTGTATAAGCTGTCCTTCATG CACATACACAGT ATGCTCAAGACCAGGTTGCCTATCACGATACACTATAGCGACCTCAGCTCAACGTTCCAC AACCGGGGCTTG ATCCATCCCCGGTCCCAACATGAGAGAGCACTCCCGTTCGTG

ATGGAGAACCTGGCTCTTAGTGCGCTGCAACTGGACTCTAAGCTCGACCGCTACATC GTGTGCAGGTACAGA

246 68 ATCGTGTACCAGAAGCGAGACGAGACCATTCCCGGCGAACAGTTGGCCCGGAAGGCGGCC TACGAGATCCAG

AAAGCGAATGACTTCGCCCTTTTGACCAACCTCGGCAATCAACACATCGTTTCCCTCAAG CCCATCTCACAG AGGGGCATTGAAAGCACCCACCTTCAGGCGAATCTCATCGAAGACGGGGACCTGGAGCTC GATTGCTCCATC GAACAACATCAGCAGGCACTCCAGCGGCTCGTGAACCAGGACATCAATAAAGCTGCGTGG AAGCTTAAGAAG AGCTCACAGGGCAAACTCGATTACAAAAAGGCAGCTAGCGGGAACACCGAGATCTTTGAG CCAATTCATAGC ACTCGAATCAACGCCCGAGCCACGTATCTTGACGCTTTTTGCTCACTGCAGCTTAGCCCC GAGGTGCTTGCT AATGGAACCGTACTGATAGGGCTGCATCTCAAGCACAATCTGGTAGCAAAGTCTGACATC TCTTTGCAGTGG SEQ

ID NO Argonaute # Sequence

ATCATTGATAAAAGGCCCGATTGGCTGCAGAGCATCAAGAAGGTGCGGCACAGGTACTTC GATCCCGGCAAA GCGCCCCTGGTCGCCGAATTCCTGAGGGTGGAGGACTCCCTGAATGGCAACAGCGTCTTG CCCCACATGGGC CAGAGTCTTGTTTCATACCACCAAGCGAAGGGACTCTTGTCAGAAAGACAGCTCGCAGAG GCCACGAAGAGC GTGCTGATAAAGGTAAAATACGGCAAAAACGAGGCGGACCACATCGCATCTCTGGTTGAA CCAATGTTTGAT TTCGACACGCTCAGCAAGATCGATAGTATCTTCCTTAACAAGTTGGCAAAGGACCTGAAG TGGAGCCTGAAC GACAGGATACGCACTTCCGCGAAAATGGTGAAAGGCTTGTATCTCCCAAACTTCAACTGC AAGCTGGAACAG GTTGACTATCAGATCCTTCACAGGCAGCGACTTAATCACCAACAGATGCTTCAATTCGCC AACGGGGCGAAA TCTTCAAGAGAGCAGGACGTGCTGCGACATAAGGCGTTCGGCAACATGACGCGCACACAA GTTATCCCGCTT ATTGCGGGCGAGAAGAACAATACAGAACAAAATAAGCAGCTCCTGTGCAACGCATACCAA GCATTGCAACAA CTGACCACCACGGAATTGCCTCCGTTCACCAAGTTCCCCAACCCCGTAGAGAACGCAGCC GAGCTGGACGCA AGACTGAATGAACGGTGTCCCCCAAATGCGATACTGCTCATCGGCCTTATCGACAAAAGC GACAAAGTGGCG ATCCGCGACACCGCGTTTAGCTACGGTCTTGCAACCCAGTTCATGCGCCTGGATCACAGA CCGAACGTCTAC AGCCCCTCATATTTCAACAACGTGGCGGCTGGTTTGTTTTCCAAAGGTGGCGGGCAGCTC TGCGCCATTGAT GACATGCCGGGTGAAACCGACTTGTTTATCGGTCTCGACATGGGAGGGATCTCTGTAAGG GCACCAGGCTTC GCGTTTCTGTTTCTGCGATCTGGTGCGCAGTTGGGGTGGCAACTCGCGGACAAACAACAG GGAGAAAGGATG CAGGATGAGGCCCTGATGTCACTGTTGGACAAGTCTCTCACCACCTACCTGAGAAGCTGC TCTGGTGAGCTT CCTAAGCGCATAACCCTCCATAGGGATGGCAAGTTCTACGAAAGCATAGAAGTGATCGAG CAGTTTGAGCAG AAGCACGGCGTGAAAGTAGATGTGCTGGAGGTTCTGAAAAGCGGTGCTCCGGTTTTGTAT AGACGAAGCCGC ATGGCCGACGGAACCAAGGAGTTTAGCAACCCCAATGTGGGCGACGCGATCTATCTCAGT GATCATGAGATG ATCCTGAGCACGTATAGCGGCGAAGAACTCGGAAAGATATGGGGTGACAAGGTCAGCGTC AGGCCTCTTAGG CTGCGCAAGAGATACGGTGATGTGAGCCTGGAGACCCTGGCACATCAAGTGCTCGTGCTG TCTAGGATACAC GGCGCTAGCCTGTATCGCCATCCTCGACTGCCCGTGACCACGCACCACGCCGACCGATTC GCAACACTGAGG CAGGAAACATGCATAGACGCCCTCTCTAAGATGGACCGGCTCTGTCCGGTCTACCTG

ATGCAGCTGAACTACTTCCCCATAAAGTTTGAGTTTGAAGAGTACCAGATAAAAACT GAGCCCTACAGCGAA

247 56 GAACGACTTAAAGAGTTGAGGGCCAGTTACAACGCCACCCACTCCTTTTTTAGAAATGGA GACAATATATGC

ATTAGCAACAAGGAAGGCGAGGACATTAGTCTGACCGGCGAGGTGATACCGAAAAGAATT TTCGACGACAGT CAAGTGACCGCCTCATTGATAAAGCACTTGTTTTTCAGGACGTTCAAGGAGAGGTTCCCC AACTATATTCCT GTGGACTTTTACCCCTTCCGCTTCTTCTCCGCCCAGGCTAAAGACGACATCATCTATAAC GCCCTGCCCGGC AACCTCCGGAAACGAATCGCTTACAAAAAGCTGATCGAGGTTCAGTTGCGGCTGACGGAA ATAAACGGCATC AAGCAGTTTGGCTTCCTGATCAACATTAAACGAAATTGGGTGTTCAACAAGTCATGCTTC GAGCTCCACTCC GAGGGCTACAACCTGATCGGGGTGGACGTGCTGTACGCCGAGGAACTGCCGGGGTTGACC GAGGTGCTGGCC CCAAACGAAGAGCTTTTGGGCGTAATCGCGGAAATCGTGGACGACAATGCCAGGATAGAA ACCAACGAGGGC ATTAAGGAGTTCCCTCTGAACCAGTTGTTCATCAAGAAAAGCAAGTACAACATTGGCAAT TACCTTAGCTTC GCGATCTCTCAGCAAAAGAGCGACGAAATAATGAATCTTATCGAGAGCAAACGCTCCGAC ATCTACAATACC AAGGGTCTTTACGACGAGATCTTGAAAATTGCGAACCATCTTTTTTGCGAGAACAGCGCA CCCATACTGTTT CATAATAAGGACGGATTCTGCTTTACTGTCGATTCCCAGCCGCTCAGTGTGACGAACAGC ATGGAATTGAAG ACTCCAACATTCATATACGATCCAGCGGCCACGAAGACGAATTCTAGCAATCCCGACTTG GGCCTGTCCAAT TACGGGCCCTACGACTCCAGCATTTTTGACATAAAGATACCCAACGTGTTGTGCATCTGC AATAGGAATAAT CGAGGCAACTTTACAAAGTTTCTGTCTAACCTGAAAGACGGGATACCTCAAAGCCGCTAT TTCCAGAAAGGC CTCCAGAAGAAATACGACCTCCAGGATGTGATCCTCAATATCCGAGAAATCCAGGCCTAT AGCATCGCCGAC TACCTTAACGCCATCAGGGACTACGATGAGAACAAGCCTCATCTGGCGATCATCGAGATC CCTGCCAGCTTC AAGAGGCAGGCCGACGTGGCGAACCCCTACTACCAAATTAAGGCCAAGTTGTTGAGCCTG GAGATTCCCGTG CAATTCGTTACCAGCGAGACCATCGGTAACCACAACGAGTATATCCTGAACTCTATCGCG CTGCAGATCTAC GCAAAGCTCGGCGGGACCCCGTGGGTCCTGCCCTCTCAACGCAGCGTTGACAAAGAGATA ATCATCGGAATA GGCCATTCCTGGCTTAGGCGCAACCAGTACGCTGGCGCAGAACAGAATAGGGTAGTGGGG ATCACGACCTTT ATGAGCTCCGATGGCCAGTACCTTCTGGGTGACAAGGTCAAAGATGTTGCCTTCGAGAAC TATTTTGAGGAG CTTCTGAAAAGCCTGAAGCAAAGCATCCAGAGGCTCAGCACAGAGCAGGGCTGGAGCGAT GGCGACACCGTG AGGCTGATATTCCACATATTCAAACCGATAAAGAACACTGAATTCGACGTGATCAGTCAG CTTGTCAGAGAC ATCACGCAGTACAAGATTAAGTTCGCATTCGTAACCATCAGCACTGTGCACCCTTCCATG TTGTTCGACATT AATCAGTCCGGTATCGCCAAATACGGTTCCAATATCATGAAGGGACAATACATACCAAAC AGGGGCAGCAAC GTTTTCCTGGACGAGAAGACATGCATCGTACAGATGTTCGGCGCGAACGAACTGAAAACG GCCAAGCAAGGC ATGAGCAAGCCCATCCTTATAAACATTCGCACCCCCCAGGGGAACTACAATTCAAGCGAC CTGAACGATCTC CTGTTTTATGACCTGGGGTACATCACACAACAGATATTTAGCTTTACCTACCTCAGCTGG CGGTCCTTCTTG CCCGGTGAAGAGCCGGCGACTATGAAGTACAGTAACCTCATTTCCAAACTTCTCGGGAAG ATGCGGAACATC CCTAACTGGGACGCCGACAATCTTAACTACGGCCTGAAACGGAAAAAGTGGTTCCTG

CTGAAGCTGAACCACTTCCCCCTTAATCCCGACCTCCCCCTGTACATCACAGAATAT GCCCACCGGAACCCG

248 4 CGAGCGTTGCTCGGATTCGTTAGGGGCCAAGGTTTCTGGGCGCAACAGGTCGGAGAACAG GTACAAGTGTAC

CACGGTAGACCGCAGCCCACGTTCAGGGGAGTTCAGGTGATCAGCCATACCAGGTTGGAC CCCGACCATCCG GCTTTTGACCAAGGCGTTTTGAGCCTCATCCGACAAGCACTGGTGAGGGCGGGATACGTG CTGACCTACAGG GAGAGGATGGCTATTCATCCCAGACTGGAGAGGGTTGTGCTGAGACCCCCGGACCGGCAC CCAGCAGAGTTG ACCGTCCATGCACATCTGCGATGGGAATGGGAGCTTGAAAGGCACAGCGGACAACGCTGG CTGGTTCTTCGA CCCGGCAGGCGACATCTGAGCGCCCTTCCATGGCCCGCAGAAGCAGTACAAATGTGGTCC GCCGCTCTTCCG GCCACCTGCCAGAAGCTGCACGCCCTTTGTCTGGACCGAGGCCAACAGATGGCCCTTTTG CGGCAAGAGGAC GGCTGGCACTTCGCCAATCCCGGTGCTGCCACTCAAGGAAGGTGGCACCTGTCCTTTAGC CCCCAGGCCCTT CACGAGCTGGGACTGGCACAGGCTGCGCACCATGCGGCTGCATTTAGGTGGGACGAGGTA CAGCGACTCGTG CAACTGACTGACCTGTGGAAGCCCTTCGTGACCTCTCTGGAGCCCCTTGAGGTAGCTGCC CCCATCATTGCC GGGAAAAGGCTGAGGTTTGGACGGGGTCTTGGCCGCGATGTCACGGAGGTGCACAAGCGA GGTATCCTGGAA CCACCCCCACTGCCCGTGCGACTGGCTGTCGTGTCTCCCCATCTTCCTGATGAGCACGCG AACGCCCAGTTG AGGCGGGAGTTGCTTGCTCACCTCCTCCCGCGACACCAAGTACTGAGATCAGCGGAGAGC CGGCAAGGCCTC CACGAGCACCTGAGGAGGCAAGATCAGGACGATACCCTGTATACCTTTTGGTCAGGCGGC GAGTACAGGAAG CTGGGCTTGCCCCCCTTCGATCTCGCACGAGGCCTGCACACCTACGACCCAGCTAGCGGC CAGCTGCAACAA CCGGCTGCCCTGGCACCAGCACCCGCGCAGGCCACGCAAGCGGGTAGGCAGCTGATAGCC CTGGTGGTGTTG SEQ

ID NO Argonaute # Sequence

CCCGACGACCTGACGCGGTCTGTCCGGGACACCCTGTTTCAGCAGCTCCAGCAGTTGGGC CTTAGGTGTCTG TTTAGTGTGAGCAGGACCCTGCTGCACCGACCACGCACAGAGTATATGGCATGGGTAAAC ATGGCCGTCAAG TTGGCTAGGACTGCAGGGGCCGTGCCTTGGGACCTGGCAGACCTGCCCGGTGTCACCGAG CAGACGTTTTTC GTAGGCGTTGATCTGGGGCATGACCACACCCACCAACAGTCCCTCCCGGCCTTCACCCTG CACGACCATAGG GGACGCCCTCTTCAAAGCTGGACGCCTCCCCGACGCACCAATAATGAGAGGCTGTCATTG GCCGAGCTTAAG AAGGGGTTGCATAGGCTTCTTGCACGCAGGAGCGTGGACCAAGTGATCGTGCATCGAGAC GGCCGATTCCTT GCTGGCGAGGTGGACGACTTCACTCTGGCGTTGCATGATCTCGGCATCCCGCAGTTTAGC TTGTTGGCAATC AAAAAAAGCAACCACAGCGTGGCGGTGCAAGCAGAGGAAGGATCCGTGCTTAGCCTGGAC GAACGACGATGC CTTCTTGTTACTAATACCCAAGCCGCGCTTCCGCGGCCCACGGAGTTGGAACTGGTCCAT AGCGACAGGCTT AGTTTGGCGACCCTGACCGAACAAGTATTCTGGCTGACCCGCGTCTTCATGAACAACGCG CAGCATGCGGGC AGCGATCCAGCCACCATCGAATGGGCCAACGGCATAGCCAGGACTGGACAGCGAGTGCCC CTGGCCGGGTGG CGGCTG

ATGCCCACCCAGTTCCAGGAGGTGGAAGTGATACTCAACCGCTTCTTTGTAAAGAAA CTGTCTCGGCCCGAC

249 27 CTTACGTTCCATGAGTACCAATGCCAGTTCACCCAGGTTCCAGAGCAAGGCAGCGAACAA AAGGCCATCAGC

AGCGTGTGCTACAAGCTCGGTGTGACCGCCGTGAGGCTGGGCTCATGCATCATCACCAGG GAGCCCATAGAC CCTGAAAGGATGCGCACCAAAGATTGGCAGTTGCAGCTGATCGGATGCCGAGAGCTGAGC TGCCAAAACTAC CGAGAGAGGCAAGCTTTGGAGACTTTCGAGCGAAAAATCCTGGAGGAAAAGCTCAAGGAA ACATTTAAGAAG ACCATCATCGAGAAGGACTACGAGTTGGGCCTGATCTGGTGGATATCAGGCGAAGAGGGA CTGGAAAAAACC GGTCACGGGTGGGAAGTGCACAGGGGCAGGCAAATAGACCTCAAGATCGAGACGGACGAA AAGTTGTACCTG GAGATCGACATACATCACAGGTTCTACACCCCCTTCAAGCTGGAGTGGTGGCTGAGCGAA TACCCCAACATC CAAATCAAGTACGTGCGCAACACGTACAAGGACAAGAAGAAATGGATACTGGAGAATTTC GCCGACAAGAGC CCCAACGAGATTCAGATAGAGGCCCTTGGCATCAGCCTTGCGGAATACCACCGGCAAGAA GGTGCTACCCAG CAGGAAATCGACGAGAGTAGGGTTGTGATCGTCAAAAAGATCTCTGACTACAAGGCGAAA CCCGTGTATCAC CTGTCTCAGAGGCTGTCCCCGATACTGACCATGGAGACCCTTGCCCAGATCGCCGAGCAG GGTCGGGAAAAG AAGGAGATACAGGGCGTGTTCGATTACATTAGGAAGAACATCGGCACGAGGCTGCAGGAG AGCCAGAAGATC GCGCAGGTCATTTTCAAGAATGTTTATAACCTTAGCAGCCAGCCCGAGATCATGAAGGTG AACGGTTTTGTA ATGCCACGCGCGAAGTTGTTGGCAAGGAACAATAAGGAGGTCAACCAGACCGCTAGGATC AAGAGTTTCGGC TGCGCTAAGATCGGAGAAACGAAGTTCGGATGTCTCAATCTGTTCGACAACAAACCGGAG TACCCGGAGGAG GTACACAAGTGCTTGCTGGCGATTGCGCGGAGCAGTGGGGTCCAGATAAAGATAGATAGC TACTTCACGGGG AGCGACTACCCGAAAGATGACTTGGCCCAGCAAAGGTTCTGGCAACAGTGGGCGGCACAA GGAATAAAGACG GTGCTGGTCGTGATGCCCTGGTCCCCTCACGAGGAGAAGACAAGACTGCGGATCCAAGCT CTTAAAGCCGGC ATCGCAACTCAATTTATGATCCCCACGCCCCAGGATAACCCATACAAAGCATTGAACGTT GCTTTGGGTCTG CTCTGCAAAGCCAAATGGCAACCCGTTTACCTGAAGCCCCTGGATGACCCCCAGGCCGCA GACCTGATCATC GGCTTCGACACTTCTACCAACAGGCGGCTCTACTACGGTACAAGCGCCTTCGCGATTCTG GCGAACGGCCAG TCACTGGGCTGGGAGTTGCCTGACATCCAGAGGGGCGAGACATTTAGCGGCCAAAGTATA TGGCAGGTAGTG AGCAAACTTGTGCTGAAATTCCAAGACAACTACGACAGCTACCCTAAGAAAATTCTGCTT ATGAGGGATGGA CTGGTTCAAGACGGCGAGTTTGAACAGACCATAAGAGAGTTGACCCACCAAGGGATCGAC GTGGACATCCTG AGCGTGAGGAAGAGCGGTAGTGGCAGGATGGGAAGAGAACTGACAAGCGGCAATACTGCC ATCACCTATGAC GACGCCGAAGTGGGAACCGTGATATTCTATTCTGCCACCGACTCATTCATACTGCAGACA ACCGAGGTAATT AAGACAAAAACGGGCCCACTCGGTTCCGCGCGACCGCTCAGAGTGGTTAGGCACTACGGG AACACCCCGCTT GAACTGCTCGCGCTGCAAACGTACCACCTGACCCAATTGCATCCCGCCAGCGGCTTTCGG AGCTGTAGGCTC CCCTGGGTTCTGCACTTGGCAGACAGGAGCAGCAAGGAGTTCCAACGGATCGGTCAAATT TCATTGCTCCAG AACGTGGATAGGGAGAAGCTGATTGCAGTG

ATGCTCACACAAGAACAATTTATACGCAACTTTAGCGTTATGGCCAATGGTGAAGTA GACTTCTTTCTTGGT

250 24 GCCGGTGCATCTATTGCGAGTGGAATCCCAACTGGGGGTGGCTTGATTTGGGAATTTAAG AGGACACTGTAC

TGTAGCGAGTGCGGCATCAGCGCCGAAAAGTACAAGGACCTGTCACTCCCAAGCACGCGC AAAACGCTCCAG GACTACTTCGACATTAAAGGGTATTGCCCCAAACAATATGCGCCTGAGGAATACAGCTTC TATTTCGAGCAA TGTTACACCGATCCCATGGCCCGAAAGAGGTTCATCGAGAATATGGTTAGTGGGAGGGAG CCAAGTATAGGT TACCTTTGTCTCGCGGAGGCCGTTATGCAAGGCAAAGTTAAAAACATTTGGACTACCAAC TTCGATAGCCTT CTGGAGAATGCCCTCCATAGGCTTTACCCCATGAACAACGTTTTGGTGTGCTCCGAGGCT AATAGAGGCAGT GTGTGCCTGCTCAACCCGACGTACCCAGTCATAGGCAAGCTCCACGGCGACTATCGCTAT GATTGGCTCAGG AACACCGAGGACGAATTGCAGCGACTCGAGACCAGCCTTAAAGGTTACGCGTCCAGCCAA CTTACAGGGAAA CAACTCGTCGTTATAGGATATAGCGGGAACGATGAGAGCATTATCAGTTTCCTCAAGGAT TGCATAGATAAC CCGGCACTGCTTACCAAGGGTCTGCTGTGGGCTGTACGACGCGGTTCCTGGGTAAACCCG AGGGTTAATGAG CTGATAGAACGGGCGCACAAAATTGGGAAACCAGCCGACGTGATCGAGATCGATGGCTTC GACCAATTGATG TTCTCAATATACCAGATCCAGAACTACCATAATGAGATTATCGACGGCCAAGGCAGGCTC CTCCAGGTCGGA TCTGACATCCGCCTCACGGGGAAGCCCGTGGACAGCTTTGTCAAGCTGAACGCTTACAAG GCTGAGTACTGC CCCCTTTGTAACGTGTTCGAGACAGACATCACATCCTGGAAGGAACTTCGGACCATAACC GGCAGCAGTGAC ATCATCGCCGGTCTGTTCTCCAAACATATCTATTCTCTGTCTTCCGCAGACAAATTGAAG ACCGTGTTCAGC AAGCACTTTCTCTCTAGCATTAACAAGGAGGAGGCTCCCGAACGGGACATTCGACGGAAC GAGAGTGTGTAC ATTGGATTGATTTACCAGCTTATTAAGCGGACCCTGCTTTCAAAAGGGATGGTGTCCTTC GCTAAGAATAAG GTCTATAACCCCGACAGCTGCCGCAGCGAGCAAGGCTACCAAGTTTTTGACGCCCTGGAG ATCGCGGTCAGC TTCGTTGATGGAAACCTGTACCTGAATCTTATGCCCACGGTACATGTGAGAGGCTCAAAT GGCGAGAGTCTC GACAAAGAGTCCTACCAAATACAAGTCAACCATGTGGTCAGCACAATCTACAATAAGCAA TACAATGAGAAA CTGCGGTTCTGGGAGAGCTTGTGTCTGGACAGTGGTAGAATAATCTTCGAGAACGACGGC TTCAGCATATCA TTTGTCGCTCCCGCTGTCTCCCTGGGCGGCAACAATCGAAGAGCTAAGTGGCTTTCCATG CCGTCCTGCAAG TATGACGAACCACTCATGTGCTTCTCAGACACTGACAAAAGCAAACGAGTTATTAACCAA CTGAAGGGACTC TGCCAGTACGGGCCAATCGACTGCTCTTATATGCGGGATAGCACCACAAGGCCCAGCGTT AGGCTGGCCGTT CTGAGCCCGAACCAGGACATGGACCGAATTCTTGCACACCTCAATAAACTCAACACCCAC GTCCAAAACAGG GGCAGCGATAATTTCCTGCCCCACTATGAGGGCTTTGAGCAAGTTTACAGAAGGGCTCTG AGCGTCCCTACG AAGGAGCAGAGCAACATCTGCATCGGATACAACGTGAACGCCATCCTCAAAATGTCTCCT GCAGAGTTTCTG GCTTTTATGAAGCGGGGTATAGAGAAATACTCCCTTCGGTCAAGCGATTTCGATATACTC GTTATTTACATC SEQ

ID NO Argonaute # Sequence

CCAGAGTCATTCGCGCATTTCCGGACAGCAACCGAAATTAGTAGCGACTACAATCTGCAC GATGCGCTCAAA CTGTATGCCACGGATAAGGGGATTATCCTTCAACTCATAGAGGAGAAATCTGTGAAGTCA TACGACCCCTGC AAAGTAATGTGGGGCTTGTCCACCTCACTCTACGCGAAGGCGACAGGGGTACTTTGGCAT CCAGAGGCAATT AGAAATGACACGGCCTACATAGGGATAAGCTACGCTTTCAGCGAAGAGAAAAGGATTTGT ATAGGCTGCAGT CAGCTGTTCGACTCAACCGGGACAGGTATTCGGATGGTCCTTAGAAAGATAAACAATCCG ATATTTCTGGGG CGATCCAACCCCTACATGAGGGAAGACGACGCTCGAATTATGATGACCGAGCTCAGGGAG CAGTATTACCAC AGCGCACCTGTGAATACTCTCAAGAGGGTCGTGATCCATAAGACCACGCCCTTCATACGG GATGAGATAGCC GGTATAATGCAGGCATTTAACGGCATCGAGGTCGAGCTGGTTCAGATTCAAGACTATTGC TCTTGGAGAGGC ATACGCTTCGGCGGTGAGCCTGGGAAAACGGCGTTTGGGTTCCCGGTGAAGCGAGGTATG GCCGTAAAACTC GACCGAGAAAGCTTCCTGCTCTGGACCCACGGCTGCGTGATTCACCCGGAACTGTCAGGC ACGCATAACTAT TTCAAAGGTTCACGCGGTATCCCAGCACCCCTCCTGGTCCGCAGGTTTGCGGGTAACGCA AGTGGCGACACA TTGGCAAAAGAGATTCTGATGCTTACGAAGATGAACTGGAACTCCGGTGACAGTCTGTAC AAAACCCTTCCC GTGACCCTGGATTTTGCGAAAGTTCTCGCCCGCATGTCTAAGCAAGATGAGGCGATCTTT GATAAGGCGTAC GACTTCAGGTTTTTCATG

ATGAGGGAAACCAACATCTACGAGCTCAGCGGCCTCGAAACCGTGAGTACCAGCTAC AGACTTTTCGAGTTG

251 62 CAGGGCGCGCCAGAGTTCTCTCCTGAGTATTATGCTGGTGTGAGCCGCCTCGTGAGGACG CTTAGCAGGAGA

CACCAGGCACCCTTCACCAGTATCCAACGGGGCGAGACCATGTTGCTCGCTGCACCCGAG GCCCTGAGCGGT GATCTCGCAGAACACCATAATCTGGCACGCTGGGTGGCGACCCTGAAGTCACTTGGAGAT AGCATAGAGATA GACTGCAGCGTGAGCGGAGATGAGCTGGACCCCATAAGGCTGCGATTCCTGAACTTCATG ATCCAATCTCCA TTGTTCAACCACGGCGAGCTCTGGCAGCCCAGGGCCGGTGATGCCTTCTACTACCGGAAG CCTGCCGACACG TTCGACGGAATCGAACTGTTTGAGGGTATTGCCGTGAGGGCCGTGCCCTACCCAGGAGGC GGGTTCGGCGTT ATGCTCGACGCGAGGACTAAGCTGATCTCACAGCGGGCTGTGGGCGCCTACGCGGACCCG AATTTCATAAGG AGGCTGAAAAACACTAGCTGCCTGTACCGAATGGGAGACATCTGGTACGAGATAAAGATC AGTGGCGCGAAT CAGACCGTTTCTCACCCCATCCTGTTTAAGGACAACCAGCCCGTGTCACTCAAAGCCTAC CTGCACGAACAA GCACGGCAGCCAATCCCCAAGTCTCTGATTGATCTTAAAGGTGACGGCGTGGTGTTGACC TATCGCGGCAGC GATAGCGCCGAGGTCAAAGCGGCACCCGCGGAACTTTGTTTCCCCATAGTAGACACCCAT AGCAAGAGGGGT GCCCGGCACCAGAGAAGGAGCATCCAAGCCCCACACATCCGACGCAGCAAGGCTTACCGA TTCAAGCAAAGG TTCTTGCGGGACATCAAAATAGGAAATGCCGTGTTGAGCGTGGCCGACCAACCCGCAGCC CTCAAGACCAGG CCCATCGACTTGCCCGAGCTGCAATTCGGCTCCAATAGGATTCTGTACGGCACGGACAGG GGCGGAGACCGA ATCGACCTTCGCCAGTATGCCAAGAATCGGCGAACGCTGCTGGAGCGCGCAGACGTGGGC TTCTTTGAGACT TCTCCCCTGGAGCCCCAATGTTTGGTACTTCCTAAGAGCGTGATGAACGCATGGGGCAAC GAGTTCGTTCGA GACCTGACTGCCGAAGTGAAGCGACTCCACCCCACCGGTAACTACAAGCCAACCGTAATC GCGTTTGATGAT GTCAGCGCAACCGTGGACGCCAGGAGCCAAGCAGAAGCCATCTTCAAGCTCGCGGAAGAC GGGGATCTCCCT CCAGGCGACTGCGCCATTATGATACACCGAACCAAAGGAAAGGCAAGAGCGCAGGAGGAG CTGCCCGCACTT CTTATAAACAAGCTGAGAAAGAGCTACGGAGTGAATGCCGCCATATTCCACGCGACTGTC CCCGGCAACGCC TACCGAAGGGAAAGCGCCAGCGATGGCGCTCGCTATGTGCGCAAGCGGGATGAGAAGGGC AGGTTTAGTGGA TACCTGACCGGAGCGGCGCTTAACAAGATTCTTCTGCCCAACGCCAAGTGGCCCTTCGTG CTCAAGGACGAG TTGGTGGCAGATATAGTGGTGGGCATAGATGTGAAACATCACACCGCAGCTCTCGTTTTG ATCGCCGAAGGC GGGAGGATTATCAGGCACACTCTTCGCCTCAGCACCAAGAACGAGAAACTCCCTGCTGGT ATCGTGGAAACG AAGCTGGTGGAACTGATTTCAAATGAAGCACCACACCTGAGCAGGCTCACCAAAACAATC GCCATCCATAGG GACGGCAGGATTTGGCCCTCCGAGCTTAAGGGATTGCGAGCAGCCTGTAGGAAGCTTGCC GACGACGGCCAC ATCGATCCTGCGTTCGATCTGAACGTCTTCGAGGTGAGCAAAAGTGCCCCTGCTAGGCTT AGGCTGTTTAGC GTCGACCGCAGTGCTGGCAGAAAGCCGAGGATTGAAAACCCGGAACTGGGGGACTGGATG ATGCTGACAGAA ACCGACGGCTACGTTTGCACGACCGGTGCTCCGCTGTTGAGAGGTGGTGCGGCTAGACCC CTGCATGTAAAG CAGGTCGCAGGTGATATGAGCTTGCAGGACGCCCTTTCCGACGTGTTCCGACTGAGCTGT CTGACCTGGACT AGGCCCGAGTCATGTAGCAGGTTGCCTATCAGTTTGAAGCTCTGCGATATGCTGCTGATG GACGAGGGAACT GCCCACGACGAGGACGAAATCCTTCATGCTAACGACGACACCCCAGCCGTTAGCGCC

ATGGCGTTTAGGCCCGGTGAACGAGTCAGACCGCAGCTCGCGCTGAATGCGATCAGG GTCCTTACACCCCCT

252 55 GGCACCATCCCCGCCAGTGTAGTCCAATTCGACAGAGCGCTGCTGCACGCATATCTTGAC AGACCCGAGAAC

GACGTATTCGCTACCCGACACGGGGAGACTGATATGGCGGTCGTACCCCTGACCAGCGGT GCGAACCTGCCA ACGGACAGAATGGGGCTTCCAGCTGCAGAGCACCTCAGGCTGGTATCTGCGCTGACAAGA GAAGCTGTGTTT CGCCTCCTCGCGGCCAGCCCGGAAGCGGATCTGCTGATCCGGCGACGCCCACCGACCGTC GCGGGGAAGAGA GAAAACGTACTTGCAGAGGACATTGGGCTCCCGGACTGGTTGAAGAAAAGACTTGTGCTG GAGTTCGACACG CGCATATTGCAACCACCGAGAGGGGACGCCTACGTGGTGCTGACGTGTAGTAAAAGGCTG CGCACGACAATA GACGCGAGTTGTCGCACCCTTCTGGAACTCGGTGTACCACTGACGGGTGCCGCAGTCAGC TCCTGGAGGGAA GATCCTGACCCCAAGGTGAGCCGGCGATTGGCCTACGCTGGGCGCGTTGTAGAAGTAGGG CAGGACACGCTC ACTCTGGACGACCACGGAGCTGGTCCGAGTGTTGTCTCCAGCGAAGACGTGTTCCTCGAG CCGACTCGAGCA AACTTCAACAAGGTGGTGGAAGTGATAACCCAGGGTAACTCCGAACGAGCCTTCAAGGCC GTACAAAAAGCA GAAGCCGAATGGCACGGCGGGAGGCGGACAATCGAAATAGTGCATGGTGTCCTCAACCAA CTCGGCAACCGG TCAATGGTTCTTGCCGATGGCGTGCCTCTGCGGCTCGGGGGCTTGATAGACCAAGCGGTC GATAGCGACGCA TTCCCCCCAGCCGAGGCGGTGTGGCGCCCTAAGCTCTCATTCGACCCCGTGCACAGCCCC GAGACATCAAAT TCCTGGAAACAGCAGTCACTGGACAGGACGGGCCCTTTCGATAGGCAAACCTTTGAAACA AAGAGACCGCGA ATCGCGGTTGTCCATCAGGCCGGAAGAAGGGAGGAAGTGGCTGCGGCGATGCGCGATTTC CTCCACGGAAGG CCTGACATCGCCAGCGATACGGGCCTGGTTCCCCACGGTTCAGGACTCCTCGGACGCTTT AGGCTCCACGAA CCCGAAGTGAGATACTTTGAGGCCGCAGGCAGGGGGGGACCCGCTTATGCCGACGCAGCA CGGAGTGCGCTC AGGGACGCGGCGTCAAGGGACGAACCATGGGACCTCGCAATGGTGCAGGTAGAGCGGGCG TGGCAAGATCGC CCACATGCCGATAGCCCGTACTGGATGAGCAAGGCAACGTTTCTCAAGAGGGATGTGCCG GTGCAAGCCCTT AGCACAGAAATGTTGGGTCTTGATGCATTTGGGTACGCGAACGCACTTGCGAACATGTCA CTTGCAACGTAT GCGAAACTGGGCGGTGCCCCGTGGCTTTTGTTTGCCAGGTCACCAACCGACCATGAACTG GTGGTCGGGCTC GGAAGCCACACTGTAAAAGAGGGCCGAAGGGGTGCGGGTGAGAGGTTTGTCGGTATCGCG ACCGTATTCAGC AGCCAGGGCCATTATTTCTTGGATGCCAGGACAGCCGCGGTCCCGTTTGAAGCCTATCCT GCTGCCTTGAGC GACAGCATCGTTGACGCGATCAAAAGGATTGGACGAGAGGAAGCCTGGCGACCAGGCGAG GCCGTCAGGTTG SEQ

ID NO Argonaute # Sequence

GTCTTTCACGCCTTCACCCAGTTGAGCCGAGAAACCGTTCAGGCAGTGGAGAGAGCAGTA GCAGGCATCGGG GCCACCAACGTAAGCTTCGCGTTTCTGCACGTTGTCGAAGATCACCCGTTTACCATGTTT GACCGAGCGTGG CCAGACGGAAAGGCGACATTCGCCCCTGAAAGAGGTCAGGCGCTTCGACTCTCCGAGCGC GAATGGTTGTTG ACACTTACCGGCAGGCGCGAAGTTAAGAGCGCCAGTCACGGGCTGCCTGGGCCGGTTCTG TTGCGACTTCAT GACAGCAGCACCTATAGAGACATGCCCGTGCTCGTCCGACAAGCATCCGACTTCGCCTTC CACTCTTGGCGC AGTTTTGGACCCAGCGGACTCCCCATCCCGTTGGTTTACGCGGACGAAATTGCAAAACAG CTCAGCGGCTTG GAAAGAACCCCCGGATGGGACACGGATGCGGCTGAGGGTGGCCGGGTTATGAGAAAGCCT TGGTTTCTG

Table 19: Argonaute nucleic acid sequences containing 2 nuclear localization sequences and a cloning sequence

SEQ Argonaute Sequence

ID NO

253 36 GGTGTCGTGAGGATCCATGCCTAAGAAGAAAAGAAAGGTGGAGGATCCAAAGAAAAAACG CAAGGTGGGTAG

CGGCAGCATGCCATCAGCCGAGAGGTGCATCTGGGAGTGGAAGAGGGAAATCTTCATCAC TAAAAACCCCTT GCTCAGGGAAACCGTCGGCGAGCTGTCCCTCCAGGGCACGAAGGACCGAATCCAAAAATG GCTCGATCAACG CGGCGAATACCCCGCACTGAACTCCCCAGAGGAATACTCATTTTATGCCGAGGAGTGCTA CATCACCGAACA AGACAGGCGGAGCTTTTTTCAGCAGTACGTAGAGGTCGCCAAGCCGCACATAGGTTATAG ATTGTTGCCCCT GCTGGCACAGACCAAGATCATAAAAACTGTATGGACGACTAACTTTGACGGGCTTGTCGC CAGGGCCTGTCA TTCCAACGACGTGGTGTGCATCGAAGTCGGTCTCGACAATACCCAACGCATTACGCGCCA GCATTCTGAGGG GGAGCTGCGGGTTGTAAGTCTCCACGGCGACTACCGATACGATGAGCTTAAGAATACAGA TGAGCAGCTCAG GTACCAGGAGGAGGCGCTTAAAAACAATATAGAGCACGAGCTGCAGGACTACGACCTGGT AGTGATCGGTTA CTCCGGCAGGGACCGGAGCCTCATGAACGTACTCGAAAACATATTCAGCAAGGCCGTGAA GAGCAGGTTGTT TTGGTGTGGCTACGGCGAAACGATAAGCCAGCCCGTTATGGAGTTGTTGGAGCTGGCCCG CAAGAATAATCG AGACGCATTCTATGTCAGCACCGAAGGCTTCGACGACACCGTTGAAAGAATCAGTAGGAA GCTGCTTGACGG CAACATGCTGTCCAAAGCCTTGGCTGAGATACAGGAGACCACTTGCATCACCAACCAATC TGCCAAATTCAC CGCACCTGAAAACGACATCAGCAGCCTTATTAAGTCAAACGCATACCCCCTCCTGAAGCT CCCGTCTCAGTT CCTTAAAGTGACCCTCAAATACCCGGAGGGGTCCTTTAGTTACATTGATTGGCTTAACTC CAAGGTTGACTT CAAGGAGGTTGTGTTGTCTAAGATAGACAAGGAGATCATCGCGTTCGCGGATGTTGATAA GCTGAGGAAGTA TCTGGGCGAGTTCTACCTGTCTACGCCCACGGTGGTGAACTTTAGCAAAACGGACGTGCT TAACGATACTCG CATTCAGAGTCTGGTGAGGCGCGGACTTATACAGTCCATCGTAAAAAACCTGAACCTGTC CAGCGACCAGAA CAAGCGAATATGGAATCCAGACGTGAGCTCCATCGAATTCTACAACGGCAAGAAGTACAA AATCATCGACGC GCTCATCCTCAATCTTAGTTTTATCAAAGATGACATCTACCTCACGTTCAAACCCGATCT GCTGGTCCTTAA CCTCGACGAGAGCCTGCCAGACAACGATATAGTTAAGACTATCAAGAACAAAAAGTTCGG CTACCAGCACAA CAAAGAGTACAGTCAGATCCTGGAGAAGTGGGCCAACCTTATAACGAAGAAGGATTTGGT CGTGAGTGGCGG GAGCGTGTTCTTCCTTGGGAAGAAACCGCTGTATGCCGGACTTGTGTCTTACGCCGCGAG GAAACTCCCAAC AGATTATAACAAGCACGCCACCCAGAAAGGACTGATCATTCAAGACGCGAAACTGATTTT TTGCAGCAATTC CATCTCCAATGAGATTTCTCACATCAACCCCCTGAAGGGGCTCGTGGAAAATCGCCCGTG GGACTACAAAAA CACCAGCTCTGGGCTGTGCCCCGAGATCTGCATTAACGTGATCTCAACCAGGCAGGACGC GGGTGTGGTGAG CAACCTTCTCCGAGGTATTCACGAGAAGTCCTTCCCGGAAAAATCCGAGCAAGATTACTT GCACCCCTTCCA TGGGTTCACAAACGCTTTCGGGGTGCCCATCACGATCCCTAAGATCGGTGAGAATACGTG GCGCTTTGTGGA CGAAGCACTGAGTGCACAGAAGGCCATCGATAACGCGAAGAACCTCGCGAACCGCATTTG CTATGAACTTGA CAGCCTGAAGAAGCTTGAACTGCGGACGGGCACCGTCGTGATCATATACATCCCCAAGAG ATGGGAAGCATT GACATCCATCAAGTCTGAGCATGAGTACTTCGACCTGCATGATTACATCAAGGCCTATGC TGCGCAACAGGG CATTAGTACGCAATTCGTGCGCGAGAAAACGGTTAATTCAAGCCAAAGCTGCCGGGTAAA ATGGTGGCTCAG CCTGGCGTTCTACGTGAAGGCTATGCGCACTCCGTGGCGGTTGGAGAGTATTGATAACCA AACGGCTTTCGT GGGGATAGGGTACAGCATCAATCGCAATATGCATCCCGAGAATTCCAAGCGGATAATTCT TGGATGCTCCCA CATATACTCCGCCCGAGGCGAAGGCATGCAGTTTCAACTTGGGCGAATTGAAAATCCCAT TATCCACCATCA CAATCCCTACATGAGCGAGGAGGACGCTAGACGCACCGGCGAGAAGATACGACAAATGTT TTTTGATGCCAA GATGCAACTGCCACGCAGGGTCGTCATCCACAAGAGGACCGCTTTCACTGAAGAGGAACA GCGGGGGTTCAT ACAAGGATTGGAAGGCGTTGAGGACATCGAGCTGATCGAAATTAACTTCGAGGACTCCCT CCGCTATTTGTC TAGTAAGTTTGTAAACAGCAAGCTGGAAATCGACGGGTTCCCCATCGCTCGGGGGACCGT AATCGTGCAAAG CAGCAACACCGCGCTCCTGTGGGTGCATGGTGCAACCCCTAGCGCGCAAAATCCAACGTT TAAGTATTTCCA AGGCAAACGACGGATCCCCGTGCCCCTTGTCATAAAGCGCTACGTGGGGCAGAGCGACAT TAGCCAGTTGGC GAACGAAATATTGGGCCTCAGCAAAATGAACTGGAACACCTTTGACTATTACTCCAGGCT TCCTGTAACCCT TGAGAGCGCCAATGATATTGCCCGGATCGGCGTGTATTTCAACAATTTCTCCCCCATGAG CTACGACTATCG GCTCCTCATATAGTAACTCGAGGTTAACTTGT

254 90 GGTGTCGTGAGGATCCATGCCTAAAAAAAAAAGGAAAGTCGAAGATCCGAAAAAGAAACG CAAAGTAGGGAG

TGGTAGCATGATCAAACACCTCAAGTTCGACGAGTTCCTTCGCAGCGTGTCAATTAGTAA GGATAACACGTA CTCCATGCTTATCGGTGCCGGGTGCTCAATCACTAGTGATATCCAATCTGCCTATGACTG CATATGGGAATG GAAGAAAATAATTTACAAGTCCAATAACTTGAATACTCAGGACTGGATAGAGAATTACAA ATCCCCCAAAAC ACAAGACGTGATACAAAAATGGCTTGACAACCAGGGAAACAACCCTGAGAAAGATAATAT CGAAGAGTACTC ATTCTACGCAAAGAAATGCTTTCCGATAGATGAAAATAGACGCCAGTACTTCCAAAAAAT CTGCGCTAATAA GAAGCCCAGCGTCGGATATCGAGCCATTCCTCTCCTGGTGAAGCAAGGCATGCTCGACTC AATTTGGACAAC CAATTTTGATGATCTTGTTAATGTGGCGTGTATAGGTGGTGGCGTTCAGGGGATTGACAT ATCCCTTCAGAC GGTAAACCGCATAAATCAACGCAATCAAAGCAAAAATGAACTGCCTATTATAAAGCTCCA CGGGGATTTCAA GTATGGCGACCTTAAGAACACGAGTGAGGAACTTCAGAATCAAGACGAAACGCTTAGATC AAAACTTTTGGA SEQ Argonaute Sequence

ID NO

CTACTTGAGCGATAAGAATCTCATAGTCATTGGCTATAGTGGTCGGGACAACTCACT CATGGAGAGCTTGAA AGAGACTTATTCAAAACCTGGTGCGGGAATATTGTTTTGGTGTGGGTATGGGAACAGTCC ATCAAACCAAGT GAAGGAACTCCTTAAATTTATCAAGGATAAGGGGCGCAGCGCATTCTATGTTTCCACTGA GGGATTCGATAA CACCATGCTGAACCTGACCAAGCATGTTATTGAGGACGATGATAACCTCAAAGAGGAATT CAGAGAACTCAA GAAGAGTATCATTAATAAAAATACAACGACCCCGTTTACGTTGAACCCGGAACGAATCAA TAAGGTACTGAA AAGTAACCTCTTTCCTATTACATTCCCCAAAGAGATCTTCGTATTCAATGCGACCTTCGA TAAGAAACCTTG GGAGCTTGTTAAGGAAAAAACTCTGAGTGACTATGAAATTTCAGCGATTCCATTTGAAAA AGACATATGGGC ATTTGGGACTGCTAATAACGTCTACGAAAAGTTTGCAGATATCATTAAGGGCGAGATCCA ACGGAAGCCCCT GACCGATATCCGGCTTTATAATCACAACATAAAGTTCCTGCTCCTGTCAAGCCTCTGCAA GCTGTTCTCAAA AACCTACAATCTGAAAACGGACTTTCGGTCTAAGATTTGGGATGAGAGCTCATACAAAAC GGTTCACAACCA AAAGGTCTATAACGCTATAAAGATCGATCTCGTCAAAATACAAGAACAGTCATATTTGTC ACTCAATCCAGA CTTTCAATTGGCAGATGATAACGTTCCCAATGATATCAACCAGCAGGTTGGACTGGAATT TTTTCATAAGAT CTATAACGACAAATTTAACGACTATATAAACATCTGGAGAAAGAAGATCCTCGAAACTAC GTCATACGAATT GCCACTGAACTCCGGCACCGGGTTCGTATTTAAAATCTCTAAGAATCCAATTTTCACAAA TATAGATGACCT TAATTCCAACTATACGAACGAGCACAATATACCCATAAACATGATTAAACTTAAGGGGGT TCAATTCAAAGA GACGAACCTCCTCTTTAGTTCACAAAATGGAGATAAAGTGGTTAAGGAGACCCACCCAAT GAGAGGCCTCGT CAATCATAGCCCGTTCGATAAGGGATTGAGTAGTCTTAAAAACACTACGATCAACCTGGG GATCGTATGCCC CCAACAGGATAGCGAAAATTTTTATACTTTTTTGAATAAACAAAACCAAGAGATTAAGAA CGTTAATATTAA GGATCAATATGTAATCGATTACAAAGGATTTCACAACACATACGGTTTGAGTCTGAACAT ACCTACTACGAG CAGTCCTAATTGGGAAATGACTAACGAGCCTGTCTCAAGGGACTCAAAGAAAATAATTCA TGAAATCAAGAA TAATATTTGCGACAAGATAAATAAGCTTTGTAGTATAGGCGGACAGAAGACAATAGTAAT ATTTATCCCTAA ACGCTGGGACAACTTCGTACACTATAATGATGCCGTGGAAAGCTTTGATCTTCACGATTA TATCAAAGCGTT CTGTACCGAAAAAAAGGTTACGTCTCAGTTGATACGGGAAAAGACGATACTCGATAATAA CCTCGAGTGCCA GATCAACTGGTGGTTGTCACTCAGTTATTTTGTAAAGTCCTTCCGAACACCGTGGGTAAT CGACAACACCGA CAATAAAACAGCTTTTGCGGGCATTGGTTATTCAGTAGAGTCCAAAAAAGAGGATAAGGG GCACATTATACT TGGCTGTTCCCATATTTACAGTAGTAACGGGGAGGGTCTCAAGTATAAGCTTTCCAAGGT TAATGATAAAAT AGAATGGATCAAGAAAAAGCCGCATCTGTCCTACGACGATGCTTACGAATTTGGTAAAAA TGTGATCAACCT GTTTTACGAAAGCATGAATGAGGTGCCAAAACGAGTGGTAATTCACAAACGCACCTTTTA CACTGAAGATGA GAAGCAAGGCATACTTGACTCTTTGCACGATAACAAGAAAATAGAAAACATAGACTTGAT AGAAATAAATTT CGAAGACAACATAAGGTACGTCTCCTCTAAGATATATAATCGGGAGGCAAAAATCGACGG TTACTCAGTATC ACGCGGTACCTGTATCCTTCTTAACGAAAAAGAGGCACTTTTGTACGCCCATGGCGTAAT CCCGAGCGTGAA GAATCCGAGTTATAATTTTTATCCGGGAGGAAGGTACATACCGAAGCCATTGAGGATAAT AAAGCATTATGG AGTTGGTTCCCTGGAACAAATAGCAAATGAAATACTGGGTCTCACTAAGATGAACTGGAA CTCTCTGAACAT GTATAGCCAAATGCCTGCCACGATCGACTCAAGTAATAAGATAGCCAAAATAGGGAAACT CATAGAGAATAG GGATAAAGTAGAGTACGATTATCGGTATTTTATCTAGTAACTCGAGGTTAACTTGT

255 18 GGTGTCGTGAGGATCCATGCCTAAGAAGAAGAGGAAAGTGGAGGATCCCAAAAAGAAACG AAAGGTCGGCAG

CGGTTCTATGAGCGAGCTGGAGACCAACATCTTCCCAATCACCAACTTGCATGAGCTTGA AAGCAGGTTCAG GTTGTATAGGGTGAGGGGC CTGAGC ATC AAC CAAGAGGAGTACGAC C C C AAC AC C CAGAC ATTGGTGAGGAA GCTGAGCTACAGCATGAGGTCTCCCGTAGCTGTGATACTTAGGAACAGCGACCCGTTCCT GGCTCTTCCAAT CGACGCACCCGAGCCCATCTCTCCGTACCCGCTCGTGAGAGCCACTGCTGTGTTCGAGAA GACGGACGAGGT ATTTACTCTCGATTACGAAAGCCCAACTCCCGAGACAGATGCGCTGCGAATAAGGTTCCT GCAATTTATCAT CCAAGGCGCGCTGTTTAGGAATCCCAGCCTGTGGCAGCCCTCAGCTGGCACCCCCTTCTT CGAGAGGAGCCC CGTGTTGGAGAAGGCCGGCATTTGCGCGTACCGAGGCTTCTCAGTGCGAGTCGTGCCCAT AGAAGGTGGTAA ACTGGGAATCTGTGTGGACGTTAAGCACAGGTACGTCAGCAAAAACCCCATCGAAGCAAA CATCAAGCGCGA GGAATTCAGGAAATACAAGAACGGCAGGTGCATATACCACTACGGCCACAACTGGTACGA GATCAAGTTGCA AGACCACACTGGGCTGTCCGTGTCAGAGCAGATGATCAGCAACGGGACGGCCAAACCCAT AAGCTTGTATCA GTTCATTATGAATAACGCGCCCAAGCCCCTGCCCAGGGAGGTCATAGACATGCCTCCCGA CTCACCCGCAGT CAAATACATGACCAGCAGGGATGAGGTGCGCTACGTGCCCTCCATCCTTTGTTATCCGGT CTTTGACACCTC TGACCCCAGGGTGAAGCCGACGCATAGGGGCACAATCCTCCTCCCTAACGTGAGGCGACA GTATATCCACAA TTTCGTGAACTCACACCTGACCGATGTGCGATCCAAAGACATGGCAATCCGAATCAGCAG CAAGCCAGTTAT CGCCCCTACCAAGATTTTCCTGCCGCCTGACCTGGCATTCGGCAACAACACCGTGTTCAG CGTAAGAGGCAC ACCCGGGACCACGTATGTTAGCCTGGAGCAGCTGGGCCAGACGCGGATAAGCGCCCTCTT CAATCAGAAAAT AGGCCCTTATGACAGCAGGCCGCTGGATAGGCAGTACATGATTCTGCCGAAAAGCGTGTG GGACTCCCACGG GCCAGTATTTCTGAATGACTTTAAGAAAATCATGAACGAGCTGTACCTGCACGAACTGCC CTACAATCCCAT CGTCGTGACCTACAACGACTTGAGCGCCAAGACCTACGCGCTTCAGGGAAGGGCTATTCT GGACGCCGTGGA CAGCGAACTGAGAGAGCCGGGATACGGCGTGGTTATGATACACGAGACGGTGGACCGCCG GAATAGACAGCA CGACCAGCTTGCCGCGATGGTGATGAGGGAGCTGCGGAACAGGAGGCTGTATGTGAGCGT GATCCATACCAC GGTGACGAAGGACTGTTACCAATTGCCCCAGAACGCCCCCATTGGCAAGGCCTACTGCCC GGTAGCAGGCAA GCAGGGCAAACTCAATGGCTACTTGAGGAACGTGGCCATTACCAAGGTGCTTCTGACCAA CGAGAGGTGGCC CTTCGTTATATCTACCCCGCTGCATGCGGACTTTACCGTTGCCTTCGACGTGCAGCTTAA CACCGCTTGCTT CACATTCATCGGCAAGAGCGGCTCCGACATCCGGACCGTTTTGAAGACCAGTAACCAAAA GGAGAGGTTGAG CAAGGCACAAGTAAGGCAGACGCTCCTGGAAGTGCTCCGCCAGGAGGTTGGCTTCGGTCG ACGGACCATGCA GACCATAGTGGTTCAGAGGGATGGCAAATTGTTTGCCAGTGAGATCGCGGGAGCAAAAGA CGCTATAGAGAT AGTGAAGAAAGAAGGCATCTTGCCCAGCGATGTGTCACTGAATTTCATCGAAATCCCCAA GAGCAGCGTCGC CCCATTTAGGCTGTTCGATAGCAGCCCCAGGCCAGGGCAGCCTGAAATGGCGAACAACCC AAGAATCGGCTC CTACTTCATCGCGACGAATTACGACGGTTACATTTGCACCACCGGCAAGGAGTTTTACCA TCCCGGTACGGC AAATCCTCTCCACGTGAAGTACATCGAGGGAAATATGCCATTTGAGAAGATCCTGGAGGA CGTGTACGCCTT GACTTGCTTGGCGTTGACCAGGCCCGAAGACTGCACAAGGGAACCCTTCACCATGAAACT GGCCGATATCCG ACTGAGGGAACATGCCGGAGGCTACGACGAAGATGCATTGGCGTATGATGATGAAAATGA GAACGACGAGGA SEQ Argonaute Sequence

ID NO

TAACGAGAATGAATAGTAACTCGAGGTTAACTTGT

256 57 GGTGTCGTGAGGATCCATGCCCAAAAAGAAGAGGAAAGTGGAGGATCCAAAGAAAAAGAG AAAGGTGGGTAG

CGGAAGCATGACCGAGGCCTTCCTCACAACCAGGAGGGGCTTCGTGCAAAAGCTGACGCT GACCAGGTACGA TTACCTGAACTGGATCATCGAGTCCGAGGCGCAGAAAGCCAAGCTGAAGAACTGGCTTAA GAACAAGAGCGG GTTTCTGACCCACGAGATCGAGGATACCTGTTTCTTCACCTTCGAGAGGCTTCTGGAGGA GAGTACTAAGCA GTATAGAGCCTCCGGCGAGAAAACTCTGTCTGCCCCGTTCAAGAACACGCAACTGATCTC AAATCTGATCGG TACCATATTGAAAAAGGAGTTGAGCAAGAAATACAAGCAATTCTTTAGTCAAAACATCTT CATCGTGAGCAC CATCGATCTGTATCCATTCAATCTCTTGAAGGCGTTCGAGTTCAACATCGAAGTGTTTGA CAGCGGCCACTT CCTTATCCACGTCAACCCAGTGTCTAAAATTGTAAGCAGCAAGGTTGTGGACAAGGAGTA TCTGGACTACCT CAAGAAAAGCAACCTCAACAACAGCAAAACCACCGAGATGGAGTTCGCGGTGATCAACCA TGAAAGGAATTT CAGACTTAAATTCGACCTGCTTGACGAATGCATCTTTGAGAAGATAGAGAAGCTGCACAG CGAGAAGAATAT GTTTACAGCCACTTTTGATTACCATTTCCTGGCCAACTTCAGCCCCGAGATCTTCGGCAA AATCGTGGAACA TACTAGCAAGGATCTGAAGCAGGCCATCATGTTCCTGAATGACATACTGAGCAATATCAA GCTGCCGAGCTT TCTCAACCTGCACGAGGAACGATACTTTAAGGTCAATATCTCCGAATTGGACCGAAAGAA TAATCTTCTGAT TGGAAGCAGTTTCGAGGTAATAACCATATACTCAAAAAGCCAGACCCAGTATGGACTGAG GATTGAGTTCAC TCGCGACAGCATAAGCCGGGACGAGCTTATAACAATCTTTCTGAAAAACGAAGAGCTGAT CGAGAAACTCAA CGACATTAAAGTGGTCCCCGCCACCATCAACGCAAAAATCGAACAGAAGACCGGCTGGAA AAACCCCTACAT CACCAATGTTTTCATCGATAACGTGGGTGCCTTCAGCACCAGCAGCCTGCAAAGCGCCTC ATACTTCCACGG CATCTACAAGGCCGTTAACAACTGGAATATCCTGCCCATCGTGTACGAGGACCTCGACAT CAAAGTATTCGA GAACCTGATGCTGCACGCCTTTAACAAGAACGCCACCGAATTCAAGATCCTGGAACCCAT CATAATCAAGTC CACGAACGAAATCGACAAACAGGAGGTGCAGAGGAGCATCAAAAACCAGGCCGGCAAGAC CATGATCGCAGT GTTCTGCAAGTACAAGATACCCCATGACAGCTTCGCCCCCCTCAAGGGCTTCAAGTATCA GATCTATCAAGG CGACACCACGGACAATAAGCAGAATAGGGCCAAACTGAGTAACTTCACGTGCAAGTGCCT GGAGAAAATGGG AGGGGTGATTGCGGCAATCGCGGACACAAGCATAGCCGAGGATGGATATTTCATTGGCAT CGACCTTGGCCA CACCACAAATGGCAAGGAAAAGTTCTCCAACCTCGGAGTGAGCTTGTTTGATAGCCTGGG CATCCTGTTGGG CGATTACGTGGAGAAGGAGATTCCAAGAAGGGAAAACCTCATCGACACGAACTGCCTCAA TGCTTTTAAGAA ACTTGACAAAATGCTGGAAGCTAAAAAACTGAACAAGCCCAAACACCTGATCATCCATCG GGACGGCAAACT GCACTTCAAGGATATCAACATTCTCGTAAGCTGCGTGGAAACCGTGTGGGGTAAGATAAA CGTCGATATAGT CGAGATCATTAAGAGTGGCTTCCCCGTGATGGCTATAAAGGACGAGACCAACAAACCAAT CAATCCCATAAG CGGGACCAGCTACCAGGACGACATCCATAAGTACGCCATACTCGCCACAAACGTACAAGC CGACGAACAGTC AGCCGTAATAAACCCGATAATCATAAAACACAAATACGGAGAGCTGGAGTTTAGCAAAAT AGTTGAACAGGT GTACTGGTTCACGAAAGTGTATACCAATAACCTGTACAATAGTACCAGGCTCCCAGCGAC TACACTCAAGGC CAACAACGTGGTTGGCACGTCTAAGAAGCTCCACAGAAGTACATACTTGGGCTAGTAACT CGAGGTTAACTT GT

257 59 GGTGTCGTGAGGATCCATGCCGAAGAAGAAACGAAAGGTGGAGGACCCAAAAAAGAAGCG GAAAGTGGGGAG

TGGCAGCATGTTCGTGGAACTGAACGCCTTCCCCATCGACATCCGCAATATCGGTATCGT GGAGGCCTGCGA GGTGCCGTACGACAAGGAGGTGCTTTATAGCCTGCATGATAACCCACAAAAAGATTACCA TGCTATCAGAAA CGGCAACCAGATATTGATATTTTCTAATAGCAAAAACTACCCCATCCAGGGTACAATCAA GGAGATAAATCT TGCACAGGACTACCGCATCCTGTTTTTCCTTATTAAGGAGTCCATTATCAAGATCCTGAC GCAGATCAAACG GGAGCCTTTCAAGTTCAACCCGATTGAGTTCATCTCACCAAAGGAGAACATCACCGAGAA TATCCTGGGAAT CAATTACCCATTTCAAATAAACGCCAAATATTCAATCGATACCAGAATCATTCAGGGGGT GCCCTGCCTCAC CATTGATTGCAGCACGAAGAAATACAACAAGGAATCCCTGATCTACTTCATTAACGACGG CTTCAACCTGAT TAACAGGTACGTGATCTCAAAGCAAAACGAGAAGTATAAGCGCGTAGGTAAGATACTGAG CATTGACAACAA CATCGTGACTGTTCAGAGCTGCGACAAGATAAAGAAGTACTCCGCCGAGGAAATCACCTT GGAGGCGAACTC TAAGAACACCAAGGACTATCTGGCATACAAGTTCCCCTATAAGTTCGAGCAGATCCAAGA AAGCATTAAGAA GGCGATCAGTACCTTCACCCAGGGGACCTCTAAGCAGATAAACATTGGCAAGATCTGGGA CTTTTTCAGCCA GAAAGGCATCTTCCTGTTCAACGGCCACCGAATTAACATAGGGCTGCCTCCCGACATCTC CCAGCAATGCAA GAACCTTGTGTACCCGCGCTTTTTCTTTAGCAACTCCCGAGAAAACAATTCCAAAGAGAA CGGCCTGAAGGA TTATGGCCCTTACACCAGGAATTACTTTGACAGGAATAACCCCAGCATTTGCGTGATTTG CAACGCTAAGGA ACAAGGCAAAGTGGAACAGTTCCTGCACAAATTTCTGAAGGGCATACCCAATAGCCATAA CTTTAAGACGGG CTTCGAGGGCAAGTTTCATATTGGCCTCTCTCAGATAGAATTTTTCACGACCAGCGACGA CAGCCTGGGCAG CTACCAGTTGGCTATCCAGAAGGCAATCCAAACGAGGACTAACCAAAACTCTAGCCAGTG GGACCTGGCCCT GGTGCAAACCAGGCAGTCCTTCAAGAAATTGTTGGTGGAGCAGAATCCGTACTTTATTAG CAAGAAAATGTT CTTTCAGCATCAGATCCCCGTTCAAGACTTCACCATCGAGCTGACCAATCAGAACGACAA AAACCTGGAGTA TTCTCTGAATAACATGGCTCTGGCGTGCTATGCGAAGATGAATGGAAAGCCCTGGCTGCT TAAATCAAGCCC TACTATCAGTCATGAGCTGGTTATTGGCATCGGGAGCAGCAACATCATCATCGAGGAGGA CAGTCTGAACCA GAGGATCATGGGCATCACCACCGTGTTCAGCGGCGACGGGTCTTACATGGTCTCAAACAC TAGCAAGGCGGT GGCGCCCAATGAGTACTGTTGCGCCCTCATAGACACACTTGAGCAAACGATCAAGAAGCT GGAGAAACTTAT GAACTGGCAGAGCAATGACACCATTAGGCTCATCTTTCATGCCGCCGTGAAGACCTTCAA CAAAAATGAAAT CCTCGCCGTAAAGGAAGTGATCAAAAAGTATAGTGAGTACAAGATCGAGTACGCTTTTCT CAAAATCAGCAG CGACCACGGTCTGCACCTGTTCGACCACTCAACTAAGAATGAGAATAAGGGTAAATTGGC TCCCAAGAGGGG TAAGTATTTTGAACTGAGTAGCCATGAAATTTTGCTGTACCTCGTGGGGCAGAAAGAGCT GAAGCAGGTGAG CGATGGCCACCCCCAGGGCGTGATCGTGTCCCTGCATAAGGACAGCAGCTTTCAGGACCT TAAGTACCTCTC TAATCAGATTTTCAGTTTTAGCTCCCACAGTTGGAGGAGCTACTTTCCCTCTCCCCTGCC CGTGACAATTCA TTATAGCGATCTCATCGCGGAGAACCTGGGCTGGCTTAACAAGCTGAGCGGCTGGGACGA TACAATCCTGCT GGGCAAACTTGGACAGACCCAGTGGTTTCTGTAGTAACTCGAGGTTAACTTGT

258 73 GGTGTCGTGAGGATCCATGCCTAAGAAAAAGAGGAAAGTTGAGGATCCAAAAAAGAAACG AAAGGTAGGCAG

CGGCAGCGTAAAGCTTAATCACTTCCCCCTGAATCCCGCTCTTGCAGTGTTCAAGACTAC CTACAGGCACAG SEQ Argonaute Sequence

ID NO

AAACCCCAGGGGCTTCCTGGGATTCGTTAGGTCACAAGGGTTGACCGCGGAGAGAGT TGGCGAGGAAGTGTG TGTCTATCACGGTCTTCCCCACCCGGCTTTTAGAGGAGCCACCGCCCAAGGACACACCAG ACTGGCGCCTGG TGACACCGATTACGACAGGGGCGTACTTAGTCTGATCGGAGCCGCCCTGCTGAAAGCGGG TTACGTGCTTAC TGAGCGCGAAAGGGCCGCAGTGCACCCCACGCAGCAGAGAGTGCCCCTGCACACCCCTAG GAAACTCCCTGC CGAAATTGCGGTGAATGCCCATCTTCGATGGGAATGGGAACTGGAACGGCACAGCGGGAA GTCTTGGCTTGT GCTTAGGCCCGGACGCATGTTTTTGAGTGCGCTGAGCTGGCACGATTTGGACCTGAGGGC ATGGGCACAGGA GTTGCCCCAGAGCGTACAGCAACTGCACGCGCTGTGTCTTCGCTCCGGACGACGAGAACG ACTGAGGCGCAT GGGTAACACGTGGGCGTTCCAACGAGAGGATAGGGAGCAAGAGGGCAGGTGGCACCTGAG CTTTAGCACTAA GGCGCTTTCCGACCTGAACCTGTCCGGCGATGCTCACCATGCTGCTAGCCTGAGCATGCC CGATGTGCAGAG GCTCGTAAATCTGCCGGGTCTGTGGCAGCCCTTTGTGACAAGCCTTGAAGTCCTTGAGGT GCCTGGTAAGGT GATCGAGGGCAAAAGGCTGAGGTTCGGACGAGGAACAGGGCGCGACGTCACGGATGTACA CAAAAGGGGCAT CCTTCACCCTCCGCCGCAGCCAGTGCGCCTTGCGGTCGTGCCCCCCATTCAGGCGGACGA AGAGGCGGATGA GCAGTTGAGACGCGAGCTCCTTGCCCACCTCCTGCCACGGGAAAAGGTGTTGGCCCACCC CGAGGCTTCCCA GGGCCTCAAGAAGCACTTGAATCGAAGGGAAACCGACGACACCTTCTACACCCTGTGGAG CGCTGGAGACTA CTGCAAACTGGGGCTGGAACCCTTTGATCTGGTGCGCGACCTCCATAGGTACGACCCCGG CACGGGTCGCCT GCTGGCTCCAGAGAAGTTGCATGGAGCAGCAGCCGCCGCGAGAGAGGCTGGCAGGCAATT GATTGGCCTCGT GATCCTGCCCGACACCATAGGGCGAGATGAGAGGGACGCACTGTCCGACGAACTGGCCAA GCTGGGTGTGAA GAAACTTCAGCACATCCGCAGGGACATGCTGAACCGGCCCAGGACGCAGTATATGGCCTG GGTGAACGTGGC CGTGAAGCTCGCCCAGAGGGCCGGAGCAGTCAGCTGGGACCTGGAAAAGTTGCCTGGAGT GTGCGAACAGAC CTTCTTCGTTGGCGTGGATCTGGGCCATGACCATCGGGAGAAGCAAAGCGTCCCGGCCTT CAGCCTGCACGA GTTCCGAGGCAGGCCGGTCGACTGCCTCACCCTTCCAAGGCGAGCCGGAAATGAAAGGTT GAGCCTGGCGGA GCTGAATCAAGGCCTGAGGAAGCTGCTTAAGGGTAAGAGGCCAGCCCAAGTGATAGTGCA TAGGGACGGCAA GTACCTGGAGGGGGAGGTTGATGACTTCATAATCGCTTTGAACGACCTCGGCGTGCCGCG CGTCAGTCTTCT CGCCGTCAAAAAGTCCAACCTCTCCATGGTTGCCGGCGCTAAGGAGGGAGCGTTTTTGCC ACTGGACGAGCG GCGGTGTCTGCTGGTTACCAATACCCAAGCCGCGGTAGCTAGGCCGACAGAGCTGGAGGT GATGCACTCAGA TCATCTGACTTTCGCCGAGCTGACCGAGCAAGTGTTCTGGCTGACCCGAGTATTCATGAA CAACGCACAGCA TGCGGGTAGCGACCCTGCTACCGTAGAGTGGGCGAACGGGATCGCTAGGACCGGAAAGAG AATTGCCCTGTC TGGGTGGTCCGCCTAGTAACTCGAGGTTAACTTGT

259 72 GGTGTCGTGAGGATCCATGCCGAAGAAAAAACGGAAGGTGGAGGACCCCAAAAAGAAACG CAAAGTGGGTAG

CGGCTCAATGCTCGACTTTAGCCTTACCCAGAAAGGTTGGGTGCTGCCCATCGTACTGAA CGCCTTTCCGCT

(Helicase) CAAGGTACCGGACATGGAGCTCAAATTCGTGCAGATCCCCTACGACAAGACGACCCTGGA CTCACTGAGGTC

AAGCCACAAGATGACCCACGTCTTCAGGAGGCAAGGCGACAGTATCCAGATCTTTTCTAG CGACGGCACCTT TCCAAAGAGCGGCACCCCCCAGACCCTCCAACTGAAGGATAATCTGGGAATCTTTTTCTC TCTTGTAAAGGA CGGCCTCCTCAAGCACTTCGCCGGTTTGGGCCGAACCCCGTGCGGATTCAACCCCATTGA GGTCGTGTCAGC TCAGGCCAAAGACAATCTTCTGGCTAGCATCCTCGGAGAAGCCTACCCGCTGAAAATTTG CGCCAAGTACTC CATCGACACCAGGACAGTGCAAGGTCAACCGTGTCTCATCATCGACTGCAGCACTAGGAG AGTGGTTAAAGA GAACTGCCTCTTCTTCCTTAAGACCGGCTTTAACGTGATTGGCCGCTATGTAGTGACCGA GCAGGACGACGG GTTTCGGAAGCTGCTGGGTTTTGTGGAAAACTGCCACGAAGGCAGGACACTGAGCGTTAT AAGGCCAGATGG CCAAGCCGTGCATGCCGAGGCCAAGGACGTGTATCTCGAGGCATCTAGGGCCAACTTCGA CGACTACATCCT TTATACGCACGGAACTAAAAAGGATAGCATCGTGGAGCGAATCAGACAAAGCGTGAGTAT CTTCAACGGCGG TAAGAACAAGAAAGATAGAATCGACGCGCTCAAAAAGTACATCCAGGCCACCAATATAAG CCTTTTGGATGG GACCAGGATCGAAATCGAGGAGCCCAGCGACATTCAGAAGGACTGCGCCCAGATGCAGAA GCCCGTGTTTGT GTTCAATGACAATGGCGAGGCCGACTGGACCGAGAAGGGGCTGACTCAGAACGGCCCCTA CACCAAGCGCAC CTTCGACCGAAACGACCCCAGCATCTGCGTGATCTGCGCACAACACGACAGGGGGCGAGT GGAGCAGTTCGT TAGGAAACTGCTGAAAGGCATGGCTAACAGCAAATACTTCAGAAACGGCCTTGAGGGCAA GTTCGCGCTGGG AACGTCCCGGGTAGAGGTGTTTGAGACCAGCACAAATAGCGTGGACGCCTATAAGAGCGC GATCGAAGCCGC CATCCGCAAGAAGGCCGATGACGGCGGCAGGTGGGACCTGGCATTGGTTCAAGTTAGGCA GAGCTTCAAGCA GCTGAAGGTGACTGACAACCCCTACTACTTGGGAAAAAGCCTGTTCTACATGCACCAGGT GCCAGTGCAGGA TTTCACTATCGAGCTCCTGAGCCAGTCCGACTATTCACTGGGCTACAGCCTTAACAACAT GAGCCTCGCTTG CTACGCCAAAATGGGAGGAGTGCCCTGGCTGCTCAAGTCCTCTCCCACCCTTAGCCACGA GCTGGTGATCGG CATCGGCAGCGCCAACATTGTCCAGGAGAGGGGGGCACACAACCAGAGGATCATGGGGAT AACCACCGTATT TAGTGGCGATGGCAGCTACATCGTCAGCAGCACGTCCAAAGCTGTGGTTCCCGAAGCATA CTGCGAGGCGCT GACTAGCGTGCTGGGCGAGAATATCGAAAAAATCCAAAGGAGAATGAATTGGCAAAAGGG TGACTCAATCCG ACTGATCTTCCACGCCCAAGTGAAGAAGTTCAACAAGGAGGAGATTCAGGCAGTGCGAGC CGTGATAGACAA GTATAGGGACTACCAGATCGAGTACGCTTTTGTGAAAATCAGCGAGAACCACGGCCTGCA CATGTTTGACAG CTCAACCGCCACCATGCCCAAGGGCAGGTTGGCCACACACAGGGGTAAGACCTTTAAGCT GTCCAAAAACGA GATGTTGGTCTACCTGATCGGACAGAGGGAGCTGAGACAGGAAACCGACGGCCACCCCAG GGGTGTCATCGT GAACGTACACAAGGACAGCACTTTCAAAGATATCAAGTACCTGAGCGCCCAACTGTACTC TTTTGCGAGTCA TTCTTGGAGGTCATACTTCCCCAACCCTATGCCCGTGACCATCACCTACAGCGACCTTAT CGCCCACAACCT CGGCTGGCTGAACCAGCTGCCCGGGTGGTCTGACAGCGTAATGATAGGTAAAATCGGTCA TAGCCAGTGGTT TCTGTAGTAACTCGAGGTTAACTTGT

260 92 GGTGTCGTGAGGATCCATGCCGAAAAAGAAAAGGAAGGTTGAGGATCCTAAAAAAAAAAG AAAGGTCGGCAG

CGGGTCTATGTTCGACATTGGATCAATGGTGAGAGTTAGGGGTCGAGACTGGGTCGTGTT GCCTGGCAGTTC

(Helicase) CGCAGACTTTCTCCTGCTTAAGCCACTCGGCGGATCAGATGCAGAAACGACAGGGGTTTA TGCCGGTCCCGG

CGGCGAAGTTGTGAGATCAGCGACTTTTGCGCCACCCGATCCGCAAGCGTTTGGAACAGC CTCTGGCGCTCG GCTTCTCCTGAATGCAGCTAGATTGGCCGTTAGGTCCGGCGCTGGACCGTTCCGCTCCCT TGGCAGGCTGGG GGTAGAACCACGCCCATATCAACTTGTCCCCCTCCTTATGGCCCTGAGACAAAGTACCGC CCGGCTCCTTAT TGCCGACGATGTAGGTATAGGAAAGACAGTTGAAGCGGCACTCATCGCCAGGGAGCTGCT TGACCGCGGAGA SEQ Argonaute Sequence

ID NO

GATAGAGCGATTCGCTGTGCTTTGTCCGCCCCATCTGGCTGGTCAGTGGGTAGGTGA GCTGAGGAGCAAGTT TGGGATAGATGCCGTCGCGGTCCTCCCCGGAACCGCGCGAAGACTGGAGCGCGGCTGTAA CCCAGGCCAATC TGTGTTCGCCAGATACCCTTTCGCAGTTGTCTCTCTCGACTTGGTCAAATCAGACCGATG GCGCCAGGATTT TTTGCAGAACGCCCCCGAGTTTGTTATCGTCGACGAAGCGCACGCCAGTGCTGAGGGCGA GGGGTTGGGCGC GCGAAGACATCAGAGATATCGCCTTTTGGAGGACCTTGCGCGAGACCCAGAGCGACACTT GATACTCGTGAC AGCTACGCCACACAGCGGAAAGGAGGACGCATTCAGATCCCTTTTGAGATTGCTCAACCC TGAATTCGCCGC TCTGCCACTGGATCTCTCCGGCGCTCAAAACGAAAGAGCTCGGGCAGCTATCGCTCGACA CTTGGTGCAGCG GAGGAGGGGTGACATCACTGCATACCTTCACGAGGACACCCCATTTCCAGTCCGAAGGGA CGCCGAGGTTAA GTATACTCTGCACCCCGATTATGCGGCATTGTTCGAGGACGTTCTGGCCTATGCAAGGGA GTCCGTGCACGT TCCAGGCGAGGCGCATAGTCGGACGCGGATACGCTGGTGGGCCGCCCTGGGACTGCTTCG GGCTTTGGCTTC TTCACCCCAAGCAGCCGCAGCCACTCTCCGGGAAAGAGCAAGCACCGAAGGCGAGACTGA TGAAGCAGTTAT TGAAAGACTTGGCAGGGAACTGGTGCTTGACCCCGAAGACGGTGAACATGGGCTGCTGGA CGTCACCCCTGG AGCGCAGGTCGACGGTGAAGAAAGCGGGACCACGCGACGCCTTCTCGCACTCGCAGAGAG GGCCGACGCTCT GGCTGGGGCCAAAGACCGGAAGCTCGCACTCCTGACCGCACAGGTCAGGGATCTTCTGCA GGAAGGTTTCGC GCCGATAGTTTTTTGTAGGTTCATTGCGACCGCGGAGGCAGTAGCGGAGCACTTGAGGGG AGTTCTGAAAGG AGCTGAAGTCGTGGCTGTCACAGGAAGGCTGACGCCAGATGAGCGCGTCGCCCGCATCGA AGAGCTTGCACC CCACGAGCGACGGGTTCTTGTGGCAACGGACTGCCTTAGTGAGGGCATTAATCTCCAAGC TGCCTTCAGCGC AGTAGTACACTATGATCTCCCCTGGAACCCTACCAGGCTCGATCAAAGGGAGGGCCGAAT TGACCGATATGG TCAACGATCACCAGAGGTCCGAGTGCTTACATTGTATGGGGAGGATAACAGGATAGATAC TCTGATACTGGA TGTTTTGATCCGAAAGCATCGGCTGATCCGGGCTACCTTGGGAATGGGTGTCCCCGCTCC CGACGAGGCAGA AGGATTGCTTGACGTGCTGTTGGCGCGAGTACTGGAACCCGAACGAAGAGGTTCTATTCA GCCATTGCTTCT GGATGAAGTGCAGGCTTTTGATTTGAAATGGCGCGATGCGGCTGAAAACGAAAAAAGGTC AAGGTCACGATT CGCCCAGAACTCTATAAGGCCCGAAGAAGTAGCAGGGGAACTCGCAGCGGTACGGGAAGC GCTCGGAGACGC TCGAGCCGCTCAGGACTTCGTTCTTGATGCACTGCGAGGGGCCGGTGTTCAGGTGACGCC GCGCCCCGACGG AAGCTTCGAAGCGGACCCCACCCAAGCCGATGTAGCACCGGAGGTCCGCGACTTTCTGCG GGGAGCAAGGCG CTTCAGATTTGACGCACGGGTAGAACGAGGTGTGACGCCCTTGGCGCGGAACCACCCATT GGTCGAGCAACT TGCAAGCACTGTACTGGGTCAGGCTCTGGAGTCTCCGCAGGAGGCCGCAGCCAAGCGCGT AGGCGTCATTCG GACCTCTGGCGTAAGTACTCAGACCACTCTTTTGCTCCTTCGATGGAGATTTCATCTTTC CGGACGAAAGGG AAACCGATCTTGGCAAACTCTTGCTGAAGAACTTGATCTTCTGGCTTACGCAGGAAGGGC AGAGGATCCGCA GTGGTTGGACGCTGAGGCCACCAGAGCTTTGCTCGATCTGACCCCTCAGGGTAACTTGGA TCCGGTGCAGAA AGAGGAACGCCTTACTCGGACGCTTGAGGGACTTAGCGCTTTGGAGGGGGTTTTGGACCA GCGAGGAAGGGA TAGAGCCGCAGCTCTGCTTGACGCTCACGAGAGAGTACGGGGAGCAGCGCGAGGGCAAGG GGTGACCTATTC TGCGGAGCCTCCTGGCCCCCCGGATCTGCTTGGTGTCTATCTCTTTCTCCCCGCACCAAG ACTCGGAGGCCT CGCCTAGTAACTCGAGGTTAACTTGT

261 71 GGTGTCGTGAGGATCCATGCCGAAAAAGAAACGGAAGGTGGAGGATCCAAAGAAAAAACG CAAAGTTGGCAG

CGGCAGCATGATAGCCGTGGAAGAGTGGCAACCTGCGGACGGACTGACCCTTGAGCCTAA TGCAAAGAGGGC TGCGAAGGCTAGAAAGAGGTGCCTGGCCCTGACAGCGGGTCCCGGTGCCGGAAAGACAGA GATGCTCGCACA ACGCGCCGACTTCTTGTTGAGGACCGGAACCTGTCGGTACCCCAAGAGGATACTGGCCAT CTCATTCAAAGT GGATGCAAGTAGAAACCTGAAGGACAGAGTGGAGAGGAGGTGCGGCTATGATTTGGCGTC AAGGTTTGACAG TTATACTTTCCACGCGTTCGCCAAAAGGATCATCGACCGCTTTAGGCCGGTGCTGACAGG CAAGGACGCCCT CGACGCAGGCTACACCATCGTGGATAAGAAGAATGGCCCCTCTAGGACCCAGATCGAGTT CGGCGACCTTGT CCCCCTTGCCATACAAATCCTGCAATCAAGCAAAATTGCACGAAACGCGATCCGCCAAAC TTACAGCGACAT CTTCCTGGATGAGTTTCAGGACTGTACAAACCTGCAGTACGACTTGGTAAAACTTGCGTT CCAGGGTACGTC AATACGGCTGACGGCTGTTGGCGATACCAAGCAGAAGATAATGGCCTGGGCTGGAGCCCT GGACGGCATTTT CCAGACGTTTGCCAACGATTTCAACGCCGTGTCCCTGAACATGTATAGGAATTTCAGAAG CAAGCCACAACT GCTCAGGGTTCAAAATGAAATTATCAGGAAGTTGGACCCCGATTCCGTGATGCCTGACGA ACAACTTGACGG TGATGAAGGCGAGGTCTATGCGTGGAGGTTCGAGGATAGCTGCAAGGAAGCCGTGTATCT TGCGGACCTTAT CAATGGCTGGATCAACACCGAACAGCTGCCCCCAGCGGAGATCGCCGTACTGGTCAGCAA ACAGCTCGACCT CTATGTCGACCACTTGATGACTGAGCTCGAGGCTCGGGGAATCCCCTACAGGAACGAGCA GCAGCTTCAAGA CATCACCATAGAGCCGGCAGCTAGACTCATTGTGGACTACTTGAGTTGCCTCTACGGCAA GAGAGAGCCGAA AGCATGGATCCGGCTCATGAACCAGCTGATCCCATTCGCGGACGAGGAGATCCAATCTAG TGCTCGAAAGGA CCTCGACCAGTTGATAAAGAAGCAGAGAAAAAGGGTGAGCGACGCGAAGCACACCGATTC ACCTTTCAGCGA TTGGGCACAACTCGCAATTGAATTCCTGAAGTACATAGGCAGTAAGATGCTGGTGGCACT GAGTCCAGATTA CGAGACGCGCGAGAGGCTGAATGACGTGATCAGGGAAACTTTCGCGAGGATCAAGGAACT GTTGAAGAGCGA GCCCGACCTGCCCAAGGCGCTGGGCCGGTTTGCCGATGACCAGGCGGTGCGAATACTGAC CATCCACAAGAG CAAGGGCCTGGAATTCGACAGTGTGATCATCATGGCCGTCGAGAACGAGATATTCTTCGG GAACCAGGACGA GAATAGGTGCGCTTTCTTCGTAGGTGTGAGCCGAGCAAAAAGGAGGTTGATACTTACCCA CGCCGACCAGAG GGAAAGGCCAGCGTCTGCCAAGCGATGGAATGTTAGTAGAACCGCTCAGACTGAGTACAT TAGTTACGTCAC CCCTTTCGTGAGGCCACAGTAGTAACTCGAGGTTAACTTGT

262 21 GGTGTCGTGAGGATCCATGCCGAAAAAGAAAAGGAAAGTGGAGGACCCCAAAAAAAAGCG GAAGGTCGGGAG

TGGCTCCGTGGCCGCTTTGAAGCGCTACTTTAATGACAAGAACCTGATCGTGATAGGCTA CTCTGGCAGGGA CAAGAGCCTGATGAGTGCGCTTACCGAGGCTTTCTCTGAGAAGGGCTCTGGCCGCATCTA CTGGTGCGGCTA CGGCAGCCACATTTCCCCCGAGGTGGAAAGCTTGTTGAGGACCGCGCGAGAGGCAAACCG CGACGCCTACTA TATCGACACCGATGGGTTCGACAAAACCATGTTCAGCCTGGTAATAAACTGCTTCCAGGC GGATATCGAAAA GAAGAAAGAGATAATGAGCATCCTGGAGTCTGCTCCCGAGGACAACGATACCAGCCCGTT CTCAATTCACAT CACCAGGACGGATAAATACCTTAAGTCCAACCTCTACCCGATCATCTTTCCTAAGGAGCT GTTTCAGTTTGA GATAGAATATCATGAGGGCGAACGACCATGGACCCTGCTGAGAGAGATCACCAAAGACCA GAACATCATCGC CGTGCCCTACAAGCAAAAAGTCTACGCCTTGTCAACGGGATCAGCTATCAACAACGTGTT TGGTAGCCGGTT SEQ Argonaute Sequence

ID NO

GAAATCAGATATAGAGAGGATTCCCGTGTCTATGGATGACATTGAGCGCAAGTCTAG TTACAGGGAGCTCTT CCTGAGGGCCACCCTTCAGTCTATAGCCATTATAAGGGGCCTGAACGTGGACATACGACA CAATACCCTTTG GCGGAGCGACATCTTTAGGAACGACAATGGCACCCTCATCCACGAAGCGATCGAGTGTTC CCTGGTGTTTGT GCCCCAACAGAAGTATGCCCTGTTGAGCTTGAGGCCCACCATCTACATAGAGAACTCTCA TACGGTTAGCAA GGAGAAAAAGCAGGAGTACGCCAGGATCTACCTGGATAAGATGTGGAATAAAGCGTACAG CACGAAGTTGGC CCAGTGGGAATCTATAATCTTTGGAGACACGAGGCTCGCCTTCGAGGTGCCGCAAAATTC AGGATCCGGGTT TAAGTTTCTGATAAGCCACAACTGCGGCTTCAGCGAAATCCAGTATCAAGACAACACCGA AAGGGGATACAG TAGCAAGAGCTACGACAACAAGAGGACGATCTATAGGGGCTTGCAGCTGAAGGAACCCGA GCTGGAATTTGT CAATACGTTTGCAGACCGGCCCTTCCTGGACAGCAACCCCATGCGAGGCCTGAGCAATCA CAGGCCGTACGA CAGCTGGCAGAAAGACGTTCTCTTGCAGAACGTGCGGTTGGGCGTGATTTGCCCGAACAC GCACACCGACCG ATTCCACTCTTTTCTGCAGCAGCTTAACACCACAATTCAAGCCAATGACGATAGCGACTA CATTCAGTCCTA CACCGGTTTCCATAGCATTTACAAGACTCTGCTGGAAATCCCCGATAACGGGACCGACAA ATGGATAAACAT CGAGGATACCCCCAAGGACACCATCAGTCTGGTTCAGAGTATATGTCACCAAGCGAACCG ACTGGCCGACAA GTACCCGGGCATCGTGGTGGTGATTTTCATCCCCGCATTTTGGTCTATCCATCGACAGTT CAAACACAACGG GGAGAGCTTCGATTTGCACAACTACATCAAGGCCTACGCCGCACAACATAGCTTCACTAC CCAAATCATTGA GGAAAAGACGCTGCGCGACCACATGGTCTGCGAAATTTGTTGGTGGCTGTCACTCGCACT GTTCGTTAAGGC TATGCGAATCCCGTGGGCACTGGCCAATTTGGACTCTGACACCGCTTACGCGGGTATAGG GTACTCAGTGAA GACCAACAGCAAAGGCAACGTCGACATAGTGCTTGGATGTTCACATATATACAACGCAAA GGGCCAGGGTCT CAGATACAAACTCTCTAAGGTCGAGCAGCCCCAATTCGATGGCAAGAAAAATCCTTACCT TACGTATGAAGA GGCCTTCAAGTTTGGAATTACCATACGCGAGTTGTTCGTCAAAAGTATGGACCGGCTTCC CAGGAGGGTTGT GATTCACAAGCGGACGCCGTTCAAAAAGGAGGAAATAGAGGGAATCACTCACGCGTTGAC TCAGGCTGGCAT TAAGGACATCGATCTCATTACGATCAATTACGAGTACGACGCCAAGTTCATAGCGCAGAA GGTATACTATGA CAACATCAGCGACGATTCATATCCCGTAAGTAGGGGCACCTGCATCAAATTGTCCAGCCG AAATGCGCTGCT GTGGACACACGGCGTGGTTCCCTCAATCCGGGAGAGACGACGCTACTACCCCGGTGGGCG CTGTATTCCCGC ACCCCTGAAGATAACAAAATACTACGGTAAAGGCGATCTTCCGACAATCGCCAGCGAGAT TATTGGATTTAC TAAGATGAATTGGAACAGTTTTAATCTGTACACGAAACTGCCCGCCACCATAGATACGAG CAATACATTGGC GCAGGTCGGCAATCTGTTGCATCAGTATAACGGCGCAACTTACGACTACCGATATTTCAT CTAGTAACTCGA GGTTAACTTGT

263 63 GGTGTCGTGAGGATCCATGCCCAAAAAGAAGAGAAAGGTAGAGGATCCCAAGAAGAAACG AAAAGTAGGCAG

CGGCAGTATGGTCGCGCTGAGGCTGAACGGCGTACCCATCTTGTGCGCCGCTGACGTAAC CGTGGCCGTGGC GAAGTTGCCGTACACGAAGGAGAGCCTGGACGAGTTGAGGAAGGAGCATGCGGGGAGGTA TTTGATTAGGAG AGGCGGAGATGACGGGCAGGAAATCATGTCTGTTCCCTTGCTTGCTGATGCTCCGCAGCT GAGCGATGCCGT TGTGGAAGTTAAGCTGTCAGAAGCCCACTGGTTGCTCGCCTCACTCGCGGTGGAGGCCCT CACCAGGTTGTT CACAGAACTTGGTAGACCTATCCTGCGGTCCCGGCCATTGCGGCTGCTCTCCCAAAAGCC GGCCAATCTTTT TCCGGAGAACGTCGGACTGCCAGACTGGCTGCAAAGGAGGGTTGTGCTGGATTTGGAGAC TAGGAAGATCTG GCGGCAGGATGGAGACCCGACATTGGTGCTGCTGTGCGATGTGCGGACTCAAAACTTTAT CGACGTGCCAAC GGATAAACTGATGGCCACCGGCGTAAGCGTTATGGGTCGCTACGTTAGCCGAATGGTGAG CTCTGATGATCC CCGGATCACCTCACATCTGAAGCTCGCCGGCAGGGTCATTAGCATAGAGGGCGACCGACT GCTCCTCGCCGA CTTTGGCGAGGGACCGGATAGTATAAGCATTGCTCATGCCTATCTGGAGAGACGACGGGA AAATGTCGACTG GTGTGTTCAACAGCTGAACCCCGCGAAAGCAGGGCAAATCCTGATGAGCGTGCAGGCCGA GGCTGCGAAATT CTTGAACGGACCTGGCCGATTCGAGCTGATCAAGAGGACATTCGATTACCTGCGCACGCA GAGTATAGAGCT TGTGCCCGACGTGAAGCTGGAGTTGGGGGACTTGATTGGCATGGGAGCCGCACGCTGGCC CTTCCGCCAGGA AACAATTAAGAAGCCTACCCTGGTGTTTGATCCGTCTGGTGTCAAGACCGATACCTGGAA CGAGCGAGGGCT TGACAAACACGGACCCTACGACCAGAGGACCTTCAGCCCCAAGGAAATGAGGATCGCCGT TATCTGCAGGGA AGCAGACGAAGGTCGGGTTGAAGGATTTCTGGCCAAGTTTCTGGACGGGATGCCACACGT TATCGTCGGGGA GAACCGAAAACCCTATGAAAAGGGATTCATAAGGAGGTTCGCCCTGAGTGCCCCGAAGGT GCACACTTTCAC CGCTAAGTCTTCTAGTGTGCCGGACTACCTGAATGCGTGCCGAGCGGCCCTGAAGTTTGC CCACGACCAAGG CTTTGAATGGAGCTTGGCAATCGCGCAAATCGACAAGGACTTTCGGGAACTCCTCGGTCC TGACAATCCCTA CTTCGCGATCAAGGCCGCGTTTCTCAAGCAGAGGGTGCCCATCCAGGAGTTGACGCTCGA GACAATGAGCAC CCCCGACAGGCAGCTGGTGTACATTTTGAATAACATAAGCCTCGCAAGCTACGCCAAGAT CGGCGGCATTCC GTGGCTGCTTAAGAGCGGTCCTACCGTGGGCCACGAGCTGGTCATTGGTATTGGTAGCCA GACCGTTAGCAG TAGTCGATTGGGCGAGAAGCAACGGGTGGTGGGCATTACCACCGTATTCACCCACGATGG CAGATACCTTTT GGACGACAGGACGCGAGCCGTGCCATACGGCGAGTACGAAGCAGCTTTGTCCGAGACGCT GACCAGGGCCAT AGAGAGGGTAAGGACGGAAGATAACTGGAGGTCAACCGACGCGGTGCGACTTGTATTCCA CGTGTTCCAGCA AATCAAAGACTACGAGGCCGACGCAGTGGGGAAACTGGTCGAGAATCTCGGCTTCAGCGA TGTCAAGTACGC CTTTGTGCATGTCGTTGACAGCCACCCCTACACCCTGTTTGACGAACACATGCCAGGCGT TAAGTTTGGCTA CGAGATGAAGGGCGCCTACGCACCTGAGAGAGGCCTGTGCATCAGTCTTGGCAGGGACGA ACGCCTCCTCAG CTTTACCGGGTCTAGGGAGGTTAAACAAACCCATCATGGCCTCCCAAGGCCAACCCTTCT TCGACTGCATAG GAACAGTACCTTCCGGGACATGACCTACATCGCCAGGCAGGCTTTCGACTTCGCAAACCA CTCATGGAGGAT GCTCACCCCAGCGCCCCTCCCCATCACCATCCACTACGCCGAACTCATCGCCCGGTTGTT GGCTGGTCTGAA AGACACACCCGGCTGGGACGAGGACACAATGCTCGGCCCAGTAGGTAGAACCCGATGGTT TCTGTAGTAACT CGAGGTTAACTTGT

264 33 GGTGTCGTGAGGATCCATGCCAAAGAAAAAACGGAAGGTCGAGGATCCCAAAAAAAAGAG AAAAGTCGGTAG

CGGCAGCATGAACTACACAGCCGCCAACACGGCCAACAGCCCATTGTTTCTCAGCGAGAT TAGCAGCCTTAC CTTGAAAAACAGCTGCCTCAACTGCTTCAAACTGAATTACCAGCTGACTCGCGAAATAGG CAATAGGTTCGG CTGGCAGTTCAGTAGGAAGTTCCCTAACGTTGTGGTGGTGTTCGAGGACAACTGTTTCTG GGTTCTCGCTAA AGATGAGAAGAGCTTGCCCTCTCCTCAACAGTGGAAGGAGGCTCTGAGCGACATCCAGGA AGTGCTGCGAGA GGATATCGGAGACCACTACTACAGCATCCACTGGCTTAAAGACTTCCAGATCACCGCCTT GGTGACCGCCCA SEQ Argonaute Sequence

ID NO

GCTCGCCGTGCGAATTCTGAAAATCTTCGGTAAATTCAGCTACCCCATCGTGTTCCC CAAGGACAGTGAAAT TAGTGAGAATCAAGTGCAAGTAAGGCGAGAAGTCAACTTCTGGGCCGAGATCATTAACGA TACCGACCCCGC CATTTGCCTCACCATCGAAAGCAGCATCGTCTATTCCGGCGATCTCGAGCAGTTCTACGA AAATCACCCGTA CAGGCAAGACGCCGTGAAGCTGCTGGTGGGCCTGAAAGTTAAGACCATTGAGACCAACGG CACCGCTAAGAT CATCAAAATCGCTGGCACTATAGGGGAAAAGCGCGAATACCTGTTGACTAAGGCCACGGG AAGCATATCCCG GCGAAAGTTGGAGGAAGCCCACCTCGCACAACCCGTGGTTGCGGTGCAGTTTGGTAAAAA CCCTCAGGAGTA CATATACCCCCTGGCTGCCCTCAAACCTTGCATGACCGACAAGGATGAGAGCCTGTTCCA GGTCAATTACGG CGACCTCCTGAAGAAAACCAAGATCTTCTACGCTGAACGACAGAAATTGCTTAAACTGTA CAAGCAGGAGGC GCAGAAGACTTTGAATAACTTCGGTTTTCAGCTTCGGGAAAGGTCCATCAATAGCAGGGA AAATCCAGACTT CTTCTGGACGCCCCCAATTTCATTGGAGCAGACCCCCATCCTGTTTGGGAAGGGTGAGCG CGGTGAAAAGAG GGAGACCCTCAAGGGCCTTTCAAAGGGCGGAGTCTACAAAAGGCACAGGGAGTACGTTGA TCCTGCCAGGAA AATTAGGCTGGCCATCCTTAAACCGGACTCTTTTAAAGTGGGCGACTTCAGGGAGCAGCT GGAGAAGCGACT CAAGCTGTATAAGTTCGAGACGATTCTCCCCCCTGAGAACCAAATCAATTTTTCTGTGGA GGGTGTTGGGAG CGAAAAAAGGGCCCGACTGGAAGAAGCCGTAGACCAGTTGATAGGTGGCGAGATCCCCGT GGACATCGCCCT CGTCTTTCTGCCCCAGGAGGACCGGAACGCGGACAACACCGAGGAAGGCTCCTTGTATAG CTGGATCAAAAA GAAATTCTTGGATCGGGGGGTGATAACACAGATGATATATGAGAAAACTCTCAACAATAA GAGCAACTACAA TAACATCCTGCACCAGGTGGTTCCCGGCATATTGGCAAAGCTCGGAAACCTGCCGTATGT GCTGGCCGAGCC TCTTGAAATCGCCGACTACTTCATCGGCCTGGACGTCGGAAGGATGCCTAAGAAGAATCT CCCTGGTTCACT GAACGTGTGCGCGTCCGTTAGGCTCTACGGAAAGCAAGGTGAATTCGTCCGATGTAGAGT CGAAGATAGCTT GACCGAGGGGGAGGAAATCCCCCAAAGGATTCTTGAGAATTGTCTGCCGCAGGCAGAACT TAAGAACCAGAC CGTCCTGATCTACAGGGACGGGAAATTCCAGGGTAAGGAGGTGGAAAACCTTTTGGCTCG GGCACGAGCCAT CAACGCCAAGTTCATCCTGGTAGAGTGCTACAAGACCGGCAGCCCGAGACTTTACAATTT CGAACAAAAGCA GATTAATAGCCCCAGCAAGGGGCTGGCGCTTGCATTGAGCAACCGGGAGGTCATCCTCAT CACCAGCCACGT TAGCGAACAGATCGGCGTGCCTCGGCCTCTCCGCCTGAAGGTGCACGAACTGGGAGAACA GGTGAACCTCAA GCAACTTGTGGACACGACCCTGAAACTGACTCTGCTGCATTATGGCTCTCTGAAGGAACC TCGGCTTCCAAT CCCCTTGTACGGAGCCGACGCCATCGCGTATAGGAGGTTGCAAGGAATCTATCCAAGCCT GCTGGAGGACGA CTGTCAGTTCTGGTTGTAGTAACTCGAGGTTAACTTGT

265 19 GGTGTCGTGAGGATCCATGCCGAAAAAAAAGCGCAAGGTGGAGGATCCAAAAAAGAAACG GAAAGTGGGATC

TGGCTCCATGAACTACACAGAGGCCAAGACCGCCAATAGCCCCTTGTTCCTTAGCGAGAT TAGTAGTTTGAC ACTTAAGAATAGCTGCCTGAATTGTTTTAAGCTGAACCATCAGGTCACCCGGAAAATAGG CAACAGGTTCTC TTGGCAGTTCAGCCACAAGTTCCCTGACGTCGTGGTAGTGTTCGAGGACAATTGCTTTTG GGTGCTGGCTAA AGATGAAAAGAGTTTGCCTAGTCCACAGCAGTGGAAGGAAGCACTGTCAGACATACAGGA AGTGCTGAGGGA AGACATTGGGGACCACTACTACAGCATTCACTGGTTGAAAGACTTCCAGATAACCGCCCT GGTCACCGCGCA GCTGGCTGTGCGGATTTTGAAGATATTTGGGAAGTTTAGCTACCCGATCGTGTTCCCCAA GGACAGTCAGAT CTCTGAAAACCAGGTGCAGGTGCGAAGGGAAGTGGATTTCTGGGCTGAGATAATCAACGA CACGGACCCAGC AATATGCCTGACGGTGGAAAGCAGCATCGTTTACTCTGGCGACTTGGAACAGTTTTACGA AAATCATCCGTA CCGACAGGACGCCGTGAAACTTCTCGTAGGGCTGAAAGTGAAAACTATCGAAACCAACGG CATCGCGAAGAT TATCAAAATTGCCGGGACCATCGGAGAAAAGCGGGAGGAACTGCTGACCAAGGCAACCGG GTCCATAAGCAG GCGCAAATTGGAGGAGGCACACCTGGGCCAACCTGTGGTGGCCGTGCAGTTCGGCAAGAA TCCGAGAGAATA CATCTATCCCCTTGCCGCGCTCAAACCGTGTATGACCGACAAAGACGAGAGCCTGTTTCA AGTGAACTATGG CGAGCTTCTGAAGAAGACTAAGATTTTCTACGCCGAACGGCAGGAGTTGCTGAAATTGTA TAAACAGGAGGC GCAGAAGACGCTGAACAACTTCGGCTTCCAGCTCCGGGAGCGGTCAATCAATAGCAGGGA GAACCCCGACTT TTTCTGGACCCCCTCAATTTCCCTTGAACAAACGCCCATCTTGTTTGGCAAAGGTGAGCG AGGTGAGAAACG AGAGACCTTGAAAGGCTTGAGCAAAGGCGGCGTGTACAAGAGACATAGGGAGTACGTCGA CCCCGCGAGAAA GATTAGGCTGGCCATCCTGAAGCCGGCCAATCTCAAGGTTGGGGATTTTAGGGAGCAGCT CGAGAAGCGACT GAAGCTCTATAAGTTCGAGACCATCCTTCCCCCCGAGAATCAAATCAATTTTAGCGTAGA GGGCGTGGGCTA TGAAAAACGAGCCCGCTTGGAAGAGGCCGTGGACCAACTGATTAGGGGGGAGATACCCGT GGATATCGCTCT TGTCTTTCTTCCGCAGGAGGACCGAAACGCCGACAACACCGAGGAGGGGAGCCTTTACTC ATGGATCAAGAA GAAGTTCCTTGACAGGGTTGTGATAACGCAAATGATCTATGAGAAAACGCTTAACTATAA GAACAATTACAA GAACATCCTCGATCAGGTGGTGCCTGGAATCCTTGCGAAACTTGGTAATCTGCCTTACGT GCTCGCAGAGCC ACTGGAAATCGCCGACTACTTCATTGGCCTGGATGTGGGTCGCATGCCTAAGAAAAACCT CCCCGGGTCACT TAACGTGTGCGCGTCCGTAAGGTTGTACGGGAAGCAGGGCGAGTTTGTGCGGTGCCGAGT CGAAGATAGTCT CACCGAAGGTGAAGAGATCCCCCAGAGAATCCTGGAGAATTGTCTGCCCCAAGCCGAGTT GAAGAACCAGAC CGTGCTGATATACAGGGACGGTAAGTTCCAGGGCAAGGAGGTGGATAACTTGCTGGCCCG AGCCAGGGCCAT TAAGAGCAAATTCATACTTGTCGAATGCTATAAAACGGGCATCCCCAGACTGTATAACTT CAAGCAAAAACA GATCGACGCGCCCAGTAAGGGCCTGGCGTTCGCTCTGAGTAACAGGGAGGTGATCCTGAT CACGTCCCAGGT TAGCGAAAAGATCGGCGTGCCGCGACCTCTGAGGCTTAAGGTACATGAGCTGGGAGAGCA GGTAAATCTGAA GCAACTGGTGGACACCACACTCAAGCTGACCCTGCTCCACTATGGGTCTCTTAAGGACCC GAGGCTGCCCAT CCCCCTTTACGGCGCTGACATCATCGCGTATAGGAGGTTGCAGGGAATATATCCCTCTTT GCTGGAGGACGA TTGTCAGTTCTGGCTGTAGTAACTCGAGGTTAACTTGT

266 85 GGTGTCGTGAGGATCCATGCCTAAGAAGAAAAGAAAGGTGGAAGATCCAAAGAAAAAACG CAAGGTGGGTAG

CGGCTCCATGACTAACAAAACCAAACAAAAAAGCAGGAAGCAGAGGTCCCTCATAGAATT TCTTAAGGTGAA GAAGATCAACAAGGAAGATGGTAAGAACCATAACCTGATCAAGTATAGCACCGAACGGAT CGATACAGGAGT GACCCAGAGCCTCATTGACATCAATATATCCAGTAACATCCTTAAGCTGCGGGGCAGCAT TGCTCAAGAGGT GTTCAAACGGAAAATTGGCGTTTACTACGGGCTTGGGAAGTATTACGTTGCCGAAAACAA GCTGAAGAACAC CGATCGAATGGATTTCTTGAAGAGGGTCTACGAGACCTTCCCCTATAACTACCTCGATAA ACAGGACCCGCA CAGCAAGATCAGCTTTTACGAGTACTACACATTCCAGAAGTCCATCGACAAAGACGTGAT AAACCTGCTTGA GCTGCAGAAGATAAACGAGTATAGTTGGGACATACTGGACCCACACATCGCCACGCGCCT TCTCACAAGCTA SEQ Argonaute Sequence

ID NO

TGTGAAGCTTTACTTGGGCGACTACTTGAAGCCAATCCTGTCCTCTTTCGAGTACGT CCGGGCTCGAATCAA GACAAAGCAAAAGACCGTTCCAATCAAAATCCCCGTGACCAAGAAGTTCGAGATCCGAAC TTTGGGGTACGA CCCGACGCAGAGCGAAATTACTCTCGCCATAAAACGACACGCCAGCATGAACGCTGTGCT GTTGAGCAGCTT TCCCCCCGACATCCTCGCGGTTGTGATAACTAAGCTCAAACGCCTCGTGAACGAGGCCGT GAAGCAAGACTA CCGAAAGGTCAGAATATACTCCGAGACCCAGCCGGGGAGCGGTACTGCCGCAGTTGTTGA AATCATCAGCGG CAGCCAAAACGTGATGAAGTTTCTCGAAGAGCATCCGAAGGGGGCCATCCACGTTGAAAA GCGACTTAAAGA GCTGGGTAAATCACTGCAGGAGGTCCGGTACCTTCTTATCGGCGTCTATGACAACAACGT CAGCCTGGAGCG GGCAAAAAAAGACGAAAGATACCACTACTACTTCACCGAGCATAACGCTTACCTTGTACT TACGCCCGAGGT GCAAAAGGCGCTCTTTGGCAAGTTGATCGACGACTGGAAGACAAGCATTCTGAATGAGTA CCAAAATAAGCT CCACGAGATCACGAGTCTTGGGATGTTTAAGCATTTGGAGACCATACGGGGCATCCCGGT TTCCTTGAAAGA GAGGCTTGTGGTCCGCACCAGCGAGGGCTTGCAAACCGTAGATGACATTAGGGACATTTT GACCAACCCCAA GATTCTTAGTAATATGTTGCCTATATCCGAGGACGCGCTCAAGGAGACGCGAAAGCATAA ACTGCGAATCAC CCTGTTCTGTCCGGAGAAGTTTAGTGAGAGGATTCACCGGACTATTTTCTACGACAAATT GAACCAGTTTCG AGACGGTCTGCTTAGCAACAGCTTCGCAAGCGTGGACGAAATCGAATTGTTCCAGGTCAA AGGCGAAAACTC TAGCGATTATGAGGAGATCATGAAGGACGCTGGCCTTGATAAAATCCACGATTATACCCT GGCGGTCATCAT ATTTCCCGAACATTATAGTAAGCGCAACCTTGAGTTGCGCATCTTTTACAACTGGCTGAA AATGCGGTTCTA CTCAGAGAACAAGCCACTGGTTTTCCAGGGCGCTCGGATTGACAGCGTCTTCGGCCGGTA TGCGAAGTACGC ATCATACAACCTCATCTTGCAGATCCCACCTAAATTGGGCATCTACCCGTACTCACTGGA GGAGCACGAGGA CTATGACTACATCATCGGCATTGATTACACCTATTGGTACGAGAGAGATACGCCTAGTCT GGGCGGTGGCGC CGTGTTGACCAGCCCGTCAGGGCTGATTGAGAGCATATACCCCATCGCACTCCCGAGCCG CACTGAATCCCT CAACATGTCCAAGATACTGAGCGAATGGTTCACGCGAACAGTCAAAACGAACCGGCATAT CATAGATAAGGG CCACGTGACCGTGCTTATCTCCAGGGACGGCATGATTCCTAAGTACGAACGCCAGACAAT CCAGGAGTTCCT GAGTGAATATAGCGGCGACATGGGCATGACCATAGAGGCAGTAGAAGTTAGGAAACGCAT CGCCGTGAGGAC CTGGGCTACACAAGAGCCCGTGGCCTACTACAGCCCGATAAAGGTTGGCGACTGTACCTA CTATCTGGTCGA CGCGCACACCGGATACCCGCTGGGGGAGAAAGGGAACCGAACCTTCTACAGCTCACCCTA TCTCATAGGAAG TTTTTACAGGTTCGAAAAGGGCAAATCCTCCCCCGTGCCAGGTAGCGCAAAGAAGCACGT GATCGAAAGCCT GATAAGACTTCAAAAAATCAATTACGCCACCACCCGCATGGATAACATCAAGTTGCCCCT GCCCGTCGACAT CACCCACAAACTCATTAACTTTATCCGGGACACCAAGATGGAAATCAAGGGGGTCGGTAT CCCAAACAGTCT CTTTATGATATAGTAACTCGAGGTTAACTTGT

267 79 GGTGTCGTGAGGATCCATGCCGAAAAAGAAACGGAAGGTAGAGGACCCCAAGAAAAAGCG GAAAGTTGGGAG

TGGAAGCATGCCGTTCAATAGCAACCTGATCTTCGTGAAGCTCGACGACCTCAAGAGAGC CTTTCTCGAGGG CGTCCACAGTGGTCACGCCGTGGTGTATGAGGTGAGCGAGGGACTGAGCACCGAGGATCT GAAGAAAAGGCT TATCAAGGCCAGCGTGATGTACCACTATAGGTATGGAAGGAACGTGTTTGTCTTCGGCGT CAAGGAGGGCAC TAAGGTTGACGATCTTGTACCAGGCCGACGACTCGGCGAGCACGAGGTGAAGGAGGTTCT CAAGGGCATCCC GTCTAACAACCTGGTGTCCATGATGAGCGCCATGCTCAATTACCAGCTCTCTGTGCTTCT CACCAGCAAGGG CTTCCAGTATAGCTACGAAGAGATGCGGAGGGGCAAGTATCTGTGTGTCAGCAACTATTA CGGCAAGCTGAT ACGGAACCCCGTGAAGGTTTGCCTCAAGGTAAATGTCATAAGGAGCCTCATTGACGAGCA GGATCAGTACCT GCCCATCGCGCTTAACTACAGGGTGAAGAAGAGCAGGCGGCTTAGCCCCGAAGTAATGAA TGAGATCCACGC GGAGTTCATGGAGGCCTTCCCCAGCTACCTCAACGACCTGAAAATCATAACTCGCGTCTT GAACGACGATAT GGTGAGGAACAGGGAACTGAAATTCCTGGAGATCGAGTACAAACCCCCTGCTATCATTAC GTTCCGGTTTCG AGGCAACAGCACCGGCGAAAACGTGACCGACATTCTGAAGCTGGGCCCCTACTTCCTGCC TGGGGAGGAGGA GAAGATCGATGTGGTCTTTGTGTACGAAAATGCTCTCGCTAGCCAGGCGAAGAAACTCAC CAAGGTTTTGGA GGATACCATCAAGGACGGGCTGGGCATAAAGCTGAACATAGACGACGAACATAAGTTCAG CCACGACAAGCC GCTGGGCGACGTTATTAAGCTGGTGCGCGACCGATTCATCAACAGCGGGAGTTGTCTGCT GGTCCTTAGCAA GGAGAACCGCCTCGGTCCTATCTTCATGAGCATTAAACCGCTCACGCTCAAGAAGAACTT CTACTTCAAGTC TCAATTTATCACCAACGAAACGATTAGCAAACTGGACTCTTATGCGGTCAAAGCCAATAT CGTGAATAGCAT CCTGTTCAGGGTTGAAGGTACCCCGTACATGCCCGTTCTGCGGGGCAATATAGACGTACT GGCAAACAATTT GTTCGTGGGCATCGCCCTGAGTAAGCCTCTGAGGAAGGGCTACACCAAAGGAGGCATAGC CCTCATAGACCC CTACAGCGCCCGAATTATCACAAGGGCCATCGTGTTGAAGCGCAAGATGAGGAGCGGCAA ATTCGAAGCCTC AGACATGCACGAGATCGTGTCCAACATCAAAGGCGTGCTGAAGGACTACAAGGAGCTGTA CAACGTCAACGA ACTTGTTATACATATCTCCAAGTTTCTGAGCGATGACGAATACGGCCTTTTTTACGAGTA CTTGCAGGACCT TAATGTCAACGTGCGACTCCTGAGCATCAGGAAGAGGGACGACATTACACTGGTTAGGGA CGGGAGGATGGA CAGCCTGACCATGATCAAGCGCGGCAAGAGTCATGTCGAGGTCATGTATTGGCCTCACGA AAGGGCCTACCA CCCCCTTACTATCAGGATCTACGGCGACAATGTGGACAGGGACGTGATGATGCGACACCT GAGGTTTATCGA GCTGCTCCGGCACATGTACTACCCGGCCAGCAGCCGCTTCATAGTTGAGCCCGCGACCAT TAGCTACAGCAG GAGGGTCGCCAGATTTGCCCCCTGGCTTTCAGACAATACCTAGTAACTCGAGGTTAACTT GT

268 84 GGTGTCGTGAGGATCCATGCCCAAAAAGAAGCGCAAGGTAGAAGACCCAAAGAAGAAACG GAAAGTGGGAAG

CGGCTCAATGGAAGTGTCCCCCTTCTTCAACGAACTGTTCAAGTACTACATATTTCTGTT TTTTGGTTTCAA GGTGAACATCGTGAAATCACATTACCAGAGCATTAAGAAGCACAAGATAATATTCTATTC CGGTGGGATCAT GGACGAGTATTACACTAACGCCTTCCCCATCAACAAATACTTTATCAACCGCATCATCTC TGAAAACTGCAT CCGCTGCCTGTGCAAAATAACCAAGCTCGAGAAAAAAGAGAAGATCGAGGAGTTGCTTTA CTCTATCAGCGC CACCCTGGGGGGCATTTACATCGACGATTACAACCCAATGAAGAATAAGTTCAGCTTCTA CATTTGGAAGGG AATCCTGAATAAGAAGATTAAATCCTACGGGTCTGAATGGCTCATTAACAAGATGAAAAA CATGGGCTTTAA GGATCCGGAAAACAAGACGCTGTTGAACTATGTGAAAAAAAAGTACGAGAAAGACATAAA GTTCGACATCAT AAAGAAAGAGAAGATAGAATGGAGTAACCTCGACTGGGAGATAAAGGAAAAGATAGTGCT GGGCGCCATAAA AACTCACCCTACCATTCGCAAACTGATTGAATACAAGAATGAGAAATTCATTGACAAAAT TGGAAAGAAAAT TCTGACTTACTTTAGCATCACAATCACCAGCGACGAGAACGAGAATTACTTTCTGATCGT CAAGCCCAAGCA TAAGATCATCAGCTCAGAGACAATTTACAACATGCTGAAGAACAACAAAATCGACTTTAA AACTCTTGAGAG SEQ Argonaute Sequence

ID NO

GAAGCTGCTGAACGGCAGCGCCCTGATAACCACCAGTAGGGCAGTCGGCAGACGGAA ATACGTCAAAATCAA AAAAATCATATCCCCCAAGGAGAAGGAGTATTGGCAACATACCCAGGACATCAATGAGCA CTACGAAAAGGA GGGCGTCCCGATCAGCGTCGGCGGTGACGACATCCACTGCTATATCTTCATCGGGGAAGA CGATTACGCCTA CCACACGAAGAACTCCTTGCTCTACGAGGGTGTGACGGAGGACGTGCAGAAAATACTCTT GGATATGGGTAA GTTCCTGGAGGAGCTGGAGACGGCAAAATCTATCCTCAAGCAGGGCAACCTCATAGACTT CAGTCGCGAATT CCTCAACATTAGCACGAAGGACGACTACACCCTTACTCTCCTGAGCACACTGTCCGATAT CAAAGTGAAGCT TAAGACCGAGTCTGGTATCATCACAGGCGACTACCAGAAACTTAGGGAGATCTTTGACTG GATCTTCGACAA GAGCTTTAACCCCTTGAAGCCTAAGAATTGCTACCTTCCGCTGAGTATTCCCCCCATACT GAATGACAAGAA AAAGATCGGCGTGTACATCTTCTATAGCAATATTAGCGACCCCGAGCTTAGGTTTATCGA AGGGATCTTTAA GAAACTGGGCCTGATATGCGCCATCAATAAGAGTGTGCCAAAAATTGAGGTTAAACTCAA GAAGGAAGTGGA CTTTGAGGACTACGCCAACAGCAGGATCATAATCACCCAGACCGTACTGAGCAATCTCGA GGATGGCGAGCA GCCGTTCCTCATATGTATAAGTCCCTTGCTGCCGAATAACGAGTTCGATGAACTCAAAAT GCATCTGTTCTC TCACCCGCAGCTGATATTTCACCAATTCATGTATCCGTTCAACCTTCGAAAGTGCCTTGA GAAAGAATCATT CAAGAAACCCTTCATCAACTCAATCCTGTCTCAGTTCTTTCACAAAATGGGCATGTACCT CTTTAGTCTGTC TGACGAGCTGGGGAACTACGACTTCATTATTGGTTACGACATAAGTAGGGAAAAGGATGA CATCGGGAAGAT AAAAGGTATCGGCGGCTCCGCGATCATCTACAACAATTACGGCCATGTCAAGTCAATCAT AACGTTCGACGA CGTAGGGTCTAGCGAGATAGGCAGGTACGACCTCCTGTTCGCGCAGGTGCACAGCGAACT GATACCCCACCT GAATCTGAACAATAAGCGGAAAATTAAGATTCTGCTTCTCAAAGACGGGCGGATTTTCAA AAAGGAACTCGA AAAGCTCAGCCAAATCAGCAAGAAGTATAACTTCGAGATCACCTACATTGACGTTCGCAA GAGCACGCTGCT CCGGTTCTGGGGTGTGCGGAGGGGCAAAGTGGTGCCCGAGTATAAGAATAGCTACGGGAA GTTCGGACGCGC ATACTATATTAGTAGCCATTACTACAACCGCTTTTTCAAGCAACCAATCGCAATCGTGGA GAAGTACCACAT AGACGAGGGCAATTACAAACGCGTGGAAATAGAGGAGAATGATATTAAGCAGCTGGTTCT GTTGACCAAGAT TAACTACAGCCAACTGATGCCAGATAAGATGCGGCTGCCCGCACCCGTTCACTACGCACA CAAGCACGTGAA CGCCGTGCGACGGGGCTGGAAGATCAAGGACGTCTCTATACTGAGGAGCGGGTGTCTTCC TACGATCTAGTA ACTCGAGGTTAACTTGT

269 81 GGTGTCGTGAGGATCCATGCCTAAGAAGAAACGGAAGGTGGAAGATCCAAAAAAGAAGCG AAAGGTTGGTAG

CGGCTCAATGGCCTATAGCCTTAACGCTTTCGAACTGGAAATTCCCGACATTGACGCCGA CCTCTACAAAGT TGACCCTCAACCCTCTGATGACCCATATCGAATCCTGGGGGGTTTGGAACGGTCCTTCGA GCAACAACTGGA CGGCAAGGCCCAGAAATGGAAACAGGCGGAGGACGGAGATTGGTATATCGCCGTGATAGG CGCGTCAGAAAG GAAAACTATCGAGTCCCCCTCCAGCGGTACGAGGGCAGGCTACACCACCACGCATACGCT GGATCCGAGTAG CTTTTGGGACAGGATGGTGTTGCAAAGGGCAATTAGCGACTCTGTACGATGGTACATGAC CAACTATCAGGA CTTTTGGTATCATGAGGATGCGGATGCACTCTTTTATCCTTCTCCTAGAGGCAAAGTGGA CGAGTACGACGT CTACACCGGATTTAGTCATAGGGTCGAGTTTTATGACAGCCCACAACTTGTCGTGCGCAG CGTCACTAAGTT CATCTCCAGTGAAAGCCTGGCGGACCGGATCAACCATCAGGGCACAGAAGAAGCAACGGA AAAATACGGTGG TGAGAACTTTAGGCTGGACAGGCCGGAACCAACCAAATGTACTTTGCACGGCATCTCAAC CGAGCGAACGGT AAGTGACAAGACGATAGATTTTGGTGACGAGATGCTGTCCGTGTTGGAGTTTGCACAAAG AAAATATGGCAG CGAGTGGGCGGACAAAATCGATCCCGACGAACCATTGGTGCAGATACGCTTCGGGAACAG CGACCCCTACGA CACCGCTCCGAGCCTGCTGAATGCGAGCCCTGAGGAGCTGAATCGCAGGCTGACCAGCGA GGCAGCCCTCAG CGCACAAGAAAGGCAGAAGGCCATACAGAACTTCATCGGCAGGATACACTACATCCAGGT TGAAGACGAGAA GGTGAGCGTCAGCGATGACGGCGTACGGCCCACCGAGCAGGGCGACTTCGACTACCCCGA TCTTGCGTTTGG CAATGACGAGGTGCTCAGCACCGGCGTCCCGAACGCGGTAGATCCTAGCCAGGAGGTGCA CCCGGGCAACTG GCGATGGATAATCAGGGACTACCTGGAGGAATACGGCTTCTGGGAGTCACAACGAAAGCT GTCTGAGATCGT GCTGGTGTACCCGAGAGGCGAAGAAAGACGGGCAGAGAACCTGTACCAGGACGTTAGGGA GAAGCTTTCAGA GATAGGAGGCGTTCAGATCAGGAGCGATCCACATCGCGTGTGTTACACCGATCAGGTGGA GTTCGACGAATG GGTGGCTGAATTCGGTGACTCAATCGACGGTGTTCTTGGATTGATTGAGGGAGATGGAGA CGAATACTACGA AATCATAGATGCATTTGGCGGAGCACCGACCCAGTACGTCAACACTAGCACCTACTCAGA GCACAGAGGGGC GAGCGACGACGTGATCTTTAACACTGCTTGCGGACTGGCCGTGAAGTTGGGCGCATATCC TTTTGGCCTGGC CAACGACCTGAACAGTGACGTGTACCTCGGCCTTAGCGTGGCAGGGGATAGAAGCACAAC GGCCACCGCCGT TGCCATAGACGGAAGAGATGGGAGGATTCTCTATCAAACAGAGGAACCCCTGGGCCAGGG TAGCAGCACAGT AAGCGAGGGCTATCCCGCTAAGCGAATCATCCAGAGGAGCCTGAAGACCGCCTCAAGCGC CTTTGATCGACC AATCGAGAGCTTCGACATTCACAGGAACGGAGACTTTGGCGACGCTGAGCTGGAAACCCT TAGCAGTGAATT GCCTGCACTCCAGGACCAGGAATATGTGCATACCGATGTTTCATGGAGCGCCGTCGAGGT AATTGAAAACCA CCCTTACAGGCTCTTTAGTGAACGGGGCAGCAGAGCTCCCGATACCGGAGCCTATGCTAA GCTGGACGACGA GCATGTACTGGTTACTACCTTTGGAGAGCCCCAGATCCACCAAGGTACGCCAAAACCGGT CCTGTGCAAGAG GAGAGCAACGAGCCAAGATCAAGACATCACCGCCATCGGAGAGGACGTGTTCAAACTCAG CTTCCTTAACTG GGGTAGCCCAATGATGAAGATGAAGCCACCTGTTACCACTAAGATTCCGAAGGAACTCAA CGAGATTTTCGA GAAGTGCTCTAGGGTGAGATACCCCCCCTTCTAGTAACTCGAGGTTAACTTGT

270 83 GGTGTCGTGAGGATCCATGCCTAAGAAAAAAAGGAAGGTTGAAGACCCGAAGAAGAAACG CAAGGTCGGCAG

CGGAAGTATGAAGACGCAGGATGATATCGCGCACAAGCAACCCATTACCATCGAGGTCCA GATCCTGAAGGA GCTCGACAAGCCAAGCCCAAAAATGGCCACCCGGTTCCTCGTGGCCGATAGGGACGGCAA CAGGTTTAGCCT GGCTATCTGGAAGAACAACGCACTCAGCGACTATGACTGGACGATTGGCCAGTGGTACAG GCTGGAAAACGC CAGAGGAAATGTCTTTAACGGCAAACAGTCCCTCAACGGTAGCAGCAAAATGCGCGCCAC TCCACTTGAGGC CAGCGAGGAGGACGAAACCAGCACGGATGATGTGGGACGGGTCGACACAATCCTGGGTAA TATGAGCCCGGA CCAGGCTTACCTGAGCCTGTTTCCCATCAGTAGGTCTTTTGATACCCTGTCTGTGTACGA GTACAGCATTGA GGCAGCCGAGGCATTCGAGGATGCGCCGGACACCGTGACCTACAGGTGCGCTGGCAGGCT TCGGAGAATCAC GGGTGCGGGGGTCGCTTATGCTGGCTCAATGAGGATCGTGTCAACCCGCAAACTCCCGGA CAAGCTCGCGGA CCCCTTTAGCTTGAGTGAACCCACGGAGAGGGAACTGAACGCTACGGACGCCAGGGACAG GCATAGGATAGA GCGGCTTCTGAAGAGCCTCGTGAAGGCCGCCATCGACGATAGCACCTACGACCCATACCA GATCAACCGAAT SEQ Argonaute Sequence

ID NO

CAGGGCCAGGACCCCGAGCATTACCGCTGGCGACGGGCTGTTCGAGGCGTGCTATGA ATTTGCAGCAAGGGT CGATGTGATGCCCTCCGGCGACGCCTTCGTGGGAATTGAGGTAAGGTACCACACGCGGAG CCAGGTCACTGC AGACGTTTACGAAGACAAAACCGCGGAACTGGTGGGCACCATCGTGGAGCATGACCCAGA GAGGTACAACAT TAGCGGTACGGGCCGAGTAGTGGGTTTCACTGACCACCACTTCACCGACGCCCTCGACGA ATTGGGCGGTCT TAGTTTGGCGGACTGGTACGCGCAGAAGGATCGCGTCCCAGAGGGGGTATTGGAGGCGCT GCGAGAGAAAAA TCCTAGGTTGGTTGATATTCAGTACCAGGAAGACGAACCAGCCAGAATCCACGTCCCGGA TTTGCTCAGGGT AGCACCCCGCAAGGAAGTTGTCAAGGAGTTGGATCCCGCCTTCCACAGAAGGTGGGATCG AGAGGCCAAGAT GTTGCCCGACAAAAGGTTCAGGCACGCCATAGAGTTTGTGGATCATCTCGGGTCCCTGCC GGATATAGACGC CACGGTGGCACCCGAGCCTTTGGGGCCGTCACTGTCTTACATGAGCACAGCAGTCGACAG GGAGAAGAACCT GCGCTTCAAAGATGGAAGGACCGCCACCACCCCGTCAAGCGGCATCCGGAGCGGCGTATA CCAACAACCGAC GAGCTTCGACATCGCCTATGTGTACCCCACCGAGTCTGAACAGGAGAGCAAGCAATTCAT TTCTAACTTCGA GAACAAACTGTCCCAGTGCCAGTGCGAACCAACTGCCGCTAGGCACGTTCCTTATGAACT CGGCGGCGAGCT GAGTTACTTGGCTGTCATCAATGAACTTGAGAGCGTGGATGCGGTGCTCGCTGTGGTGCC TCCCCGAGACGA TGACCGGATAACGGCCGGAGACATAACTGACCCCTATCCCGAATTCAAGAAGGGCCTCGG GAAGCAGAAAAT ACCCAGTCAAATGATCGTGACCGAGAACTTGGGCACAAGATGGGTGATGAACAATACAGC CATGGGCCTGAT CGCAGGGGCAGGAGGCGTTCCGTGGAGGGTGGATGAGATGCCGGGTGAGGCCGATTGCTT CATAGGACTGGA TGTGACTCGCGACCCGGAAACCGGCCAACACCTTGGCGCTAGTGCCAATGTCGTTTATGC CGACGGAACCGT TTTCGCCTCTAAAACGCAGACCCTGCAGAGTGGGGAAACGTTCGATGAGCAGAGCATAAT CGACGTGATCAA GGATGTATTCCAGGAGTTCGTTAGGCGCGAGGGGCGATCCCCTGAACACATTGTTATCCA TAGGGATGGCCG GCTGTTTGAGGACGCCGACGAAATCCAGGCCCCGTTCGCGGATAGCGGAGTGAGCATAGA CATTCTGGACAT CAGGAAATCTGGCGCTCCGAGGATTGCCCAATACGAGGACAACAGCTTCAAGATTGACGA GAAAGGCCGACT TTTCATCAGTCAAGATGACACGCATGGATTCATCGCCACAACGGGAAAGCCGGAATTTGA TGATAGCGACAA CCTGGGCACTCCCAAGACTTTGAGGGTAGTGAGGCGGGCTGGTGACACACCGATGCTGAC TCTGCTGAAGCA GGTGTACTGGCTTAGCGAGGCACATGTTGGCAGTGTGAGCCGAAGCGTTCGCCTGCCTAT CACAACTTACTA TGCAGATCGCTGCGCCGAACATGCGCGGGAGGGGTACCTGCTCCATGGCGAGTTGATCGA GGGTGTGCCATA TCTGTAGTAACTCGAGGTTAACTTGT

271 87 GGTGTCGTGAGGATCCATGCCCAAAAAGAAAAGGAAAGTGGAGGATCCGAAGAAAAAGAG GAAGGTAGGCTC

CGGGAGCATGAAGCCAGTGAACTTGGATGAAAACAGCCTCAACGACGTCCCGGTAGGCGA CACCTATGCTGT CCGCTTCACTCTTGATGCAGTCTTCGAGAACGAAGGGCAGTATCCCCGGAGGAATCTGAA ATTCACAGACGG AGGGGGGGATGACCGAACCATCACTATTTGGAAAAACTCTGCACCCGAGGAAATTTACGA GGCGGACTATGA GCGCGGTGCGACGTATCTTATTACCGCCGTCGAGTATGACATCGACGAAGGTAATGACGG CGAGCGATACCA GAATCTCACAGTCCAATCAGATGCTACCTTGCTGGAGATGAGCGGTCCCCCTAGTACCGA AGAGGCCTTGGA AGACGGCCTCGCCGAAACCCCAGATACTAGCGCCGATTCAGGTGACCACGGGTTGACAAC CTTTAGGACTAC AGACGACCTGCCGGATTATGACGTCTATGAGTACGAGCTGGTGCCGAAGCAAGGATTCCG GCCGTCCGGAGA AAATGCCCTCCGAGCCACATACAGGGCACGACGCAAGGTCCGCCAGCAGTTGGACGTAAC ACCCGTCGTGGT CGGCGATGCGTTTAAGCTTGTGTCTCTGGTCAAGCTGGCCCACGAGCGGGTCGAGCTTCC GCGATTCAAGAT CAACGAGGTTGACGAGAGGCCCATCGTCTACGCCGATGAGGATGACAGGGATGTGTTGGG GGAAATGCTCGG TGAGATCCTCAAGGACGCGAAACGGGACCAGTACGACATCCATGGCATCGACAAAATACT GGAGCCAGAGCC CGTCATAGAGAAAGAGGGCTTCAGGCTCCACGAACGGTACAACCTGACCGTGGAAGTTCT CCCTAGCAGGGC CGCTTACCTGCACGTGGACTATCGACATCGGATATTGAGCGACAGGACCCTGGATCAACT CGATGAAGACGA AATCCACCCTGGCCTGCGCGTGACCCCCTCATATAGGGACATGGGTCTGTACGTTATAGG CGTTGGGCCGGA GACGGTGACCGATAAGCTGCATATCGAGGGCAACAAGAGCCTGGTCCAATACCATCGGGA AGAGCCGTGGGT GGACCCGGCGAAGGTGCAAGAAATCAAAGACGCAGATAGGGAAGTGATCTGGACCGTGAG GCAACGGGGCGA TGGCACCGAGATGGCATTCCCGCCGGAGCTGCTCGCGCTTCAAGGGCACCCCGAAAATTT GGCCCAGTTCGC CAGCGACTTTGCTGAACAACAAAGGCTCAACACGCGCCTTTCCGCTGAGCAATGCATCAC CAAGGCTAAAAG GTTTGTGGAGCGACTCGGGCCCTTGCAATTCGACGGACACACTGTGGAATTCGAGACCAA CCCGCTGTTGGG CGATCGGAACATAGCCATAGATGGTCTGTTTCACCCGGAAGCAAACGTGCTGCAGTTTAG CGGAGGCCAGAC CGGCACCCACCCCTCAGATGTGACACAGCTGGGCGTGTACGAAGCCCCGGACCCCTTCAG GGTGTGCCACAT CAGGATGGAGAAGCGGGACAAAAGAATACAGAGGGGTTGGAGTACCTTGGAGACGAAGCT GGAGCAGATTGG AGCGCCTCCCGACAGTGTCGAGGAGGTCACGTTCGACGCCACAATGAGCCCTGACCAGTT GGGTATGGAGAT AGCGGCCGAGATACCGGACGACCATGATTACGACGCGGCCTTCTGCACATTGCCACCTAA AGACACCGGCTA CTTTGACACCGCAGACCCCGAGCGAGTTTACGATGAACTTAAGAAAGTGTTGGCCACCAA AGACCTTAACTC CCAATTCGCGTATGAAGCAACGCTGGACGAGCGCTTTACAATAATCAATATAGCACTGGG TCTTGTCGCCGC AGCGGGAGGTATTCCGTTCACAATCGAGAGGGCGTTGCCAGGCGATAGCGAACTCCACCT GGGAATCGATGT AACCCACCAATACGACGAGTCCGCGAATGGCAACCACATTCACCTCGCTGCTGCGACGAC GGCTATCCACGC TGATGGAGCTGTACTGGGCTACACCTCCAGCCGCCCTCAGTCTGGGGAAAAGATTCCCCC CAAGGAGCTGAA AGAGATCATCAAGCAAGCGGTGATGGGCTTTCGCACACGCTACGATCGCTACCCAAATCA TATAACCATCCA CAGGGACGGGTTCGCAAACGAGGACCTGTCCGAGGTAGAAAAGTTTCTGACGGACCTCGA CGTTGAATATGA TGTTGTCGAGATCAGGAAGCAGGCCCCAGCGCGCGTCTTGAAATACAGTGGTGCCCACTT CGACACGCCTCA AAAGGCGACCGCCGCAATCTACGAAGACATCCCGAAAGCGATTGTAGCGACGTTTGGTGA ACCCGAGACTCT CGCTAGCCGGGAGTCAACCGGGCTTCCCCAACCAATCACGGTGGAAAGGGTGCACGGAGA GACCCCCATCGA GACACTTGCTGCGCAAACCTACCTGCTGAGCCAAGCCCACATAGGCGCCAGTAACGCTAC AGCACGCTTGCC CATAACCACCATGTATGCCGACTTGGCTAGTGCAGCGGCAGCCAGGCAACACCTTCCCCC GACCAACAAGCT GAGGGATAAGATCGGATTCATCTAGTAACTCGAGGTTAACTTGT

272 86 GGTGTCGTGAGGATCCATGCCAAAGAAGAAGCGGAAAGTCGAGGACCCTAAAAAGAAACG AAAGGTTGGCAG

CGGTAGCATGAAGAACCTGAGATACAAAATCAACGCCTACAGAATCAAAAAAGACTATAT TCCCAAGGAAGT TTATAGATACAGGATCCGCTCCTTCATAGAGAACATTAACATATATAGGTTCGTCGGTTT TTACGGAGGCGT GGCCCTCAATCAATCTGAGTTTATCCTTCCGTACCCGGTCGAAAATCTCGTCCTGGAATA CGACGGAAAAGA SEQ Argonaute Sequence

ID NO

TGTAAAGCTTGAGCATATCGACACACTGAACCTGGAGGACATCGAGAATAAGGACAA GGAGAAAGCCGAGAA GCTGGTGAGGGGATACCTGACCAGCATATACAAGTTGAAACCCATACTCTACAAGATCCT GCGGGACGTTCG AGAGAGCAAGATCATTAACGATATCAGAGTGGATCCTATACCCGACTTTACAGTAAAAAG GCACAATAACGA ATACTACCTTGTCATCGATTTTAACCACACCGCGACCGTGTTGAAAAATCTTTGGGACTT CGTGGGAAGGGA CAAGCTGAAACTCGAGGATTATATCGGTAAGAAAATCATATTCAAGCCCAACCCGAAGAA GAGGTATACTAT AAAGAGCATTGAAAAGCAGAACAAGAAGGACATTGATGACATTGTCGAGCACATCATCGA GTACTACAAGTG GACGGAGGAGGAAATTAAGAGCACCTTCGGCGAAATCGACTATACTCAGCCCATCATCCA TTGCGAGGGCAT CCCCTACCCGTTCGCACCGCAATTTTGCAATATCGTATTTACCATGGAAGACTTGGATGA GAATACCCTCAA GGACCTGCAGAGCTACTGGAGGTTGCCCAACGAGATCAAAGGCAACATTATCAATCAGAT CGCTAAAAAACT GCGATTTGTGGAGAACGAGCCAATCGAATTGGAATTCATTAAGTTCAATAACACCCCCCT TATCGTGAAGGA CGAAAATGGCAAACCAACAAAGATATACACCACCAATCGCCTCTTCCGATGGAATTACGA TAGTAAATCCAA ACTGTACTTGCCCTACGACATCCCTGACATAATCAAGAACAAAACACTGACAACGTTTGT GCTGATCGACGA GAATCTCAAAAACGTGAGTGGTAAGATCAAGAGAAAGGTCTACCAAATGTTCAAGAATTA CAATAAGATCGC CAGCAAGACTGAGCTCCCGAAATTTGACTTCGCCAATAAATGGAAATACTTCTCTAACAA CAACATCAGGGA CGTGATCCGAAAGATTAAGGATGAGTTCAACGAGGAGCTTGGCTTCGCGCTCATTATCGG CAACCGATACTA TGAAAACGATTATTACGAGACCCTGAAGATGCAATTGTTCAACCTGAATATCATCTCCCA AAACATTCTCTG GGAGAATTGGTCAAAAGACGATAATAACTTCATGACAAACAACCTGCTCATACAAATTAT GGGCAAACTCGG AATTAAGTACTTCGCACTGGACGCAAAAGTGAACTATGACTACATCATGGGGTTGGACAG CGGCCTGGGCGC ATTCAAAAGCAACAGAGTGTCCGGGTGTACCGTGATCTATGACAGCGAAGGGAAGATCCG ACGGATTCAACC AATTGACGTGCCCAGCCCTGGGGAAAGGATCCCCATTCACCTGGTAGTGGAGTTCCTGGA GACCAAGACCGA CATCAATATGGAAAACAAAAACATCCTGTTCCTTCGAGACGGCTTTGTGCAGAATAGTGA GAGGGAGGAGTT GAAGAAACTGAGCAAAGAGCTGAATAGTAACATCGAAGTGATCTCAATCCGCAAGAATAA CAAGTATAAAGT CTTTACCAGCGACTACGGTATCGGCTCCATTTTTGGCAATGATGGCATATTCCTGCCACA TAAAACTACATT CGGAAGCAACCCGGTGAAGCTCAGCACCTGGCTGCGCTTTAACTCCGGGAATGAGGAAAA ATTGAAGATAAA TGAGTCTATAATGCAACTTTTGTACGACCTTACCAAAATGAACTACAGCGCTCTGTACGG GGAGGGTAGGAA CCTTCGCATCCCGGCACCGATTCACTACGCCGACAAGTTTGTGAAGGCCCTTGGAAAGAA CTGGAAAATAGA CGAAGAGTTGCTGAAGCATGGCTTCCTCTACTTCATCTAGTAACTCGAGGTTAACTTGT

273 82 GGTGTCGTGAGGATCCATGCCTAAGAAAAAAAGAAAGGTAGAGGACCCGAAGAAGAAGCG CAAGGTCGGCTC

CGGAAGCATGAGTCAAGACTCTAGGAGCACCGAGGTGGAGAGGCAGGCCGAAATACAACC TGGTACCTACCT GTTGAACGGCCGGGGGGAAATTCAGTTGGATGAGGTTGACGCATTCCAGTACGACCTCAA GGTGAGTGGAGG CGTGGAGCAGTATTGGGATCGGGAACAATTCACCAGCTCTGCAGCCTACTACCTGGACCA GGAACACGGGAG CCCTGTCGCTGAGATAGGCAAAATGAACGTGCTCAGCAAGACGGATTTGTCTAGATCAGT TAGAGTGTGGCA GAGAAACGTGACTCCCATCAATAGGCAGAGCGTTACACTGACCGCAGCCCAACCCGAGGA CCGAGAAAAGAT CAAATCATTCGTGCAAAGCTGCTTCAAGAGGGCAGTGCCGACCGAAAAATACAGCTTTCG CTTTCTCAACAA GATTGTCAGGGATGAGCCCGAGTTCACCACCGGCAGCGAAGGCTTTTCTGCACATCCGAA GCACGACGTTAA GATACAGGTCACCGCTGATGGCAATGTGCTTGTGCACGTGGATAGCGGGTTCAGCATCAG GAGCAACAGCAC CCTGGACGAAATCTACTCTGAACAGGATAACCCTTACGGTAAGCGCGTTGCCCACGACCC CGAGAGGTATGG TACCCAGGGCCAAGGCACCCTTCGCGGTTGGAGCGACTATCGGTACACAGACCATATTAG CGATGCGGGTAG CTCTGTGAACGAAATGCACAAAGGGGTGGCGGACGAAGAATGGCGGCAACGACTCGCAGA GGAGAATCCCCG ACTTCTGAAAGTGGAGTATGGCAACAAAACTAGGAGGCAAGCCCCCCATTTCCTGAGGCT CTCACCGCGGAT CGAGCAGGTGCAGGATCAGGATCGCGAGTTCTATAGCAGGTTTAACAGCCGGAGCGCGAT GATGCCCGACGA AAGATTTGAACTGTCTAAAGAGTTCCTGCAGAACGTGAGCCGCTTGCCGGTATTGGACAT GGAACTCGAGCC GGGTCCGGTGAACAGCAGTTACGAGTTGCTGGAAATGCGAGAGGAAAACAGGCTGGTTTT TGGAGGGAAGCA GAGGGCTAGAGACCCGGGCAGCGGGCTTAGAGAGAATGGGGTGTATCAAAGTCCCAGTCA GTACCGGCTGGG GGTGTTGACCCCCGAACGATGGGGAGAGAAGGCGAGCGAGCTGATCCCCCTGATTGTGTC CGGCCTGAACGA TCTGAGCGCATCAGCAGGAGTTCGAGCATATGGATACGAATTGGGGGACGTCAGCAATTA CACACCCGTGGT TCAGGACCTCCACGAGGAGACGGACGCTGTGCTCGCCGTGGTCCCCAATAAGGGTGTGGC CGAGGATTTTGG GATAGACGATCCATACAAGGAGCTGAAAAGAACCCTCCTGCGGAAAGGGATACCCACCCA AATGATGCAAAA GTCCACGGTCGATGAAATCGTGGGTCAAAAGGCGGGAATCGGCAATGACAAGTTTCTGAA CGCACTTAGTGC AGTCGTGGCCAAAGTGGGCGGTACCCCATGGCAGATCGATAGCCTCCCCGGGAAAACCGA CGCCTTCATGGG CTTGGACGTAACTTACGACGAGAGTAGCGAGCAGCACGCAGGCGCCAGTGCAAGCGTAGT ACTCGCGGATGG GACGACTTTCGCAGCCGAGAGCACCACCCAGCAAGGTGGCGAGAAGTTCAGTGCACGGCA TGTAGAACAGTT CGTGAGGGACCTCGTCTTCGACTTTGCGGGGGAACAGGGCCGAGACATCGACAGACTGTG CATAATGAGAGA TGGGAAGATCAGCGAGGATATTGACGCCGTAAGAGAGGGACTCAGTGGTATTGAGGCGGA GATCGACATAGT TGGCATACGAAAATCCGGGCAACCTCGCATAGCTGAGTTTGACGGTACTCGGTTTCGGAT CGCCGAAAAGGG CGTGGGCTTTGTGGACGCCGACAGAAGCCAGTCTATCATCCATGCATTCGGCAAACCCGA AATCCACGACGA CAATCCTGTGGGCACCCCACGAACCTTTCGACTGACCAAGGACTCTGGTCCCACAGATGT GGAGACCCTGAC CCGACAGGCATACTGGTTGTCCGAGATCCATTTTGGAAGCCCCGTTAGGTCCCCTAGGCT CCCCGTGCCAAT AGAGTACGCAGACATGGCTGCTGAGTATGTTCGGGAGGAGTACGTCTCACCAGGGACTGT AATAGAAGGGCC AGCATACATCTAGTAACTCGAGGTTAACTTGT

274 8 GGTGTCGTGAGGATCCATGCCCAAGAAGAAAAGGAAGGTAGAGGATCCAAAGAAAAAGCG GAAGGTTGGAAG

TGGAAGCCTCCCCATCGTCCTGAACGCCTTCCCACTTAAAGTACCCGAACTGGAGCTGGA AGTTAGGCAAAT ACCGTACGATAAAGAGACGCTTGACGGCCTCAGGGCTGCGCACAAGGCCACCCACGCTTT CCGCAGGCAGGG CGACAACATACTGATTTTTTCCGGTGATGGCACATTTCCCGCGTCTGGGACGCCTCAAAC TATTGCACTGAA GGACAATTTCGGCGTGTTCTACAGCCTCGTGAAGGATGGTCTTATCCGCCACCTTGCGGG GCTCGGGAGGAA TCCCAGCGGGTTCAACCCCATAGAGTTGGTGTCCGCAAAACCCGAAGACAACCTGCTGGT CCCCATACTCGG CGATGCGTATCCTTTTAAGGTGTGCGCGAAATACAGCATTGACACCAGAACCGTGCTGGG GCACCCATGTCT GGTGATCGATTGCACGACCAGGAGGGTGTTGAAGGAAAATGGCTTGTTCTTTTTGAACGC TGGGTTCGACCT SEQ Argonaute Sequence

ID NO

CGCGGGCAGGTACGTGGTGACGGAGCAAGATGACGGGTACAGGAAATTGCTCGGCAG CGTGAGCGGCTGTAA GGGTGAAACGCTGTACGTGACTAGGCCCGATGGCCAAGTGGTGCAGGCCGAGGCTAAAAA CGTGTACCTGGA GGCATCCCGCACAAATTTCGACGACTATATTCTGCACACCCACAGGGCTCAGAAGGACGC GATCGTTGAACG AATCAGACAGTCCGTTTCCGTGTTTAATGGGGGCGAAAATAAGAAAGCCCGAATCGACAC GCTGAAGAAGTA TATCCAGTCCAAAACCATTCCCTTGATCGACGGCACCAGGATTGAGATCCAAGATTCCCC TAACATACAGAA AGACTGCGGCCAGATGCAAAAACCGGTATTCGTCTTTAACGACAACGGCGAGGCGGACTG GGCGGAGAAGGG GCTGACCCAATCTGGGCCGTACACCAAGAGGACCTTCGACAGGAATGACCCCTCCATTTG CGTGATCTGCGC CCAACATGACAAGGGACGCGTTGAGCAGTTCGTCAGGAAGTTGCTTAAGGGCATTCCAAA CTCCAAATACTT CAGCAACGGTCTCGAGGGGAAGTTTACCCTGGGCACTAGCAGGGTAGAAGTGTTCGCGAC CGCTACTGACAG CGTAGACGCCTACAAGAACGCTATTGAAGCCGCAATACGGAAGAAGGCCGACGACGGCGG CAGGTGGGACCT GGCCCTGGTTCAAGTGAGGCAGAGCTTTAAGAAGTTGAAAGTGACCGAGAACCCCTACTA CCTTGGCAAAAG TCTGTTCTTCCTCCACCAGGTGCCCGTCCAGGACTTTACCATTGAGCTGTTGGCTCAGTC CGACTACTCCCT CGGCTACTCTCTGAATAACATGGCCCTTGCATGCTACGCGAAGATGGGCGGTGTGCCCTG GCTGCTTAAATC TTCACCCACCCTCAGCCATGAGCTTGTGATAGGCATCGGCTCCGCCAACATCGGCCAGGA GAGAGGAGCTGA TAATCAGAGAATTATGGGCATCACCACTGTGTTCAGCGGAGACGGCAGCTATATCGTGAG CAATACATCTAA GGCTGTTGTCCCCGAAGCTTACTGCGAGGCCCTTACCGCCGTACTTGGCGAAACCATCGA AAAGATTCAGAA GAGGATGAACTGGCAGAAGGGCGATACCATCAGATTGATCTTCCACGCTCAGGTCAAGAA ATTCAACAAGGA GGAAATCGAAGCGGTCAGAGCCGTCATTGAGAAATATCGGGAATACCAGATCGAGTACAC TTTTCTGAAGAT AAGCGAAAACCACGGGCTTCACATGTTCGATAGTGCAACCGCAGGGGTGCAAAAGGGCCG ACTTGCCCCTCC GAGGGGGAAGACGTTCAAGCTGAGCAAACATGAGATGCTGGTTTATCTGATAGGGCAGAG GGAGCTGCGGCA AGACACCGATGGTCATCCCAGGGGCGTCATCCTTGATGTTCACAAGGACAGTACATTCAA AGACATCACCTA CCTTTCAGCCCAGCTCTACTCATTTGCCAGCCACAGCTGGCGCTCTTACTTTCCCAACCC TATGCCAGTAAC CATTTCATACAGCGATCTGATCGCTCGAAACCTTGGTTGGCTGAACCAACTGCCCGGGTG GAACGACTCCGT GATGATCGGAAAGATCGGGCAAAGCCAGTGGTTCCTGTAGTAACTCGAGGTTAACTTGT

275 39 GGTGTCGTGAGGATCCATGCCCAAAAAAAAGAGGAAGGTGGAGGACCCGAAGAAGAAGCG CAAAGTGGGTAG

CGGGTCCATGAAAGAGTTTAACGTCATTACCGAGTTCAAGAACGGCATAAACAGCAAATC TATTGAGATCTA CATCTACAAAATGATGGTCCGAGATTTCGAGAAGCGACACAATGAAAATTACGACGTGGT GAAGGAGCTGAT TAACCTTAACAACAACTCCACCATAGTGTTCTACGAGCAGTACATCGCCTCCTTTAAGGA GATTGAGAAATG GGGGAACGAGCAATACATAAATGTGGAGAAGAGGGCTATCAACCTGGAGTCCAACGAGAA GAAAATTCTGGA GAGGCTCCTGCTGAAGGAAATCAAAAATAACATAGACAATAACAAGTACAAGGTCGTCAA GGACAGCATATA CATCAATAAGCCAGTGTACAACGAGAAGGGCATCAAAATTGACAGGTATTTCAATCTGGA CATAAACGTTGA GTCAAACGGAGACATTATCATCGGGTTTGACATCTCCCATAACTTCGAGTATATCAACAC TCTGGAGTATGA AATAAAGAACAATAATATCAAGATTGGGGACCGGGTAAAGGACTACTTCTACAACCTGAC CTATGAGTACGT GGGCATCGCCCCCTTTACTATCTCCGAGGAAAACGAGTACATGGGCTGCTCAATCGTCGA CTATTATGAGAA CAAGAACCAGAGCTATATTGTGAATAAACTGCCTAAAGACATGAAGGCCATCCTGGTAAA GAATAATAAGAA CTCTATATTTCCCTACATCCCGAGCAGGCTTAAAAAGGTGTGCAGATTCGAAAACCTTCC CCAGAACGTGCT GAGGGACTTTAACACGAGGGTGAAGCAGAAGACAAACGAAAAAATGCAGTTCATGGTTGA CGAAGTGATCAA CATCGTGAAGAATTCCGAGCATATCGACGTCAAAAAGAAAAACATGATGTGCGATAACAT TGGGTACAAGAT CGAGGACCTGCAACAGCCCGACCTGCTCTTCGGTAACGCCAGGGCCCAGAGGTACCCCCT CTATGGTCTCAA AAACTTCGGGGTGTACGAAAACAAGCGGATAGAGATCAAATACTTCATAGACCCCATCCT CGCCAAGTCAAA GATGAACTTGGAGAAAATCTCCAAATTTTGTGACGAGCTGGAACAGTTTAGCAGCAAGCT GGGCGTGGGGCT CAACCGGGTTAAGCTGAACAACATAGTTAATTTCAAAGAAATCCGCATGGACAATGAGGA CATTTTCAGCTA CGAGATAAGAAAGATAGTGAGCAACTATAATGAAACTACCATCGTAATCCTGAGCGAGGA GAACCTGAATAA GTACTACAACATCATTAAGAAAACATTCAGCGGCGGAAACGAGGTGCCCACCCAGTGCAT CGGTTTCAATAC GCTGAGCTACACGGAAAAAAACAAAGATTCTATCTTCCTGAACATTCTGCTGGGGGTTTA CGCCAAGAGTGG CATCCAGCCCTGGATCCTGAATGAGAAGTTGAACAGTGACTGCTTTATCGGCCTGGACGT GTCTAGGGAGAA TAAGGTCAATAAAGCGGGAGTCATCCAGGTGGTCGGGAAAGACGGCAGGGTGCTCAAAAC TAAGGTGATCAG CAGCAGCCAAAGCGGAGAGAAGATCAAGTTGGAGACCCTCAGGGAGATCGTGTTTGAGGC AATCAACAGTTA CGAGAATACGTACCGGTGCAAACCCAAACACATTACTTTCCACCGCGATGGAATCAACCG CGAGGAACTGGA GAACTTGAAGAACACCATGACCAACCTCGGTGTTGAGTTCGACTACATCGAAATTACCAA AGGCATTAACAG GAGGATCGCCACTATCAGCGAAGGTGAGGAATGGAAGACGATTATGGGGAGGTGCTACTA TAAGGACAACAG CGCGTACGTGTGTACCACCAAGCCTTACGAGGGAATCGGCATGGCCAAGCCCATCCGAAT CAGGAGGGTGTT CGGCACGCTCGACATAGAAAAGATTGTCGAAGACGCCTACAAACTGACCTTTATGCACGT TGGCGCAATTAA CAAAATCAGGCTTCCCATTACTACGTACTACGCAGACCTGAGCTCCACTTACGGCAATCG GGATCTTATCCC CACAAACATCGACACTAACTGTCTGTACTTTATATAGTAACTCGAGGTTAACTTGT

276 89 GGTGTCGTGAGGATCCATGCCCAAAAAGAAACGAAAGGTCGAAGACCCTAAGAAAAAGCG CAAGGTAGGTTC

AGGCTCTATGTCTGTGGACGCTATGATCAGGAGTATCGGGGTCGCACGGGACCGCCCGCT TCTCGTTTTCCT CGGGGCAGGTGCCTCAATGAGCAGTGGTATGCCGTCCGCCACTCAATGTATCTGGGAGTG GAAACGAGAAAT CTTCTTGACAAACAACCCCGACGTTGAGAAGACCCAGTTCTCCGAGCTGAGCCTTCCCAG CGTCAGATTGCG CATCCAAGCATGGCTGGATCGGCAACGACGCTATCCCGCTCTTGATCATCCCGACGAGTA TTCTACCTACAT AGGTGAGTGCTTTGCACGCTCTGACGACCGCAGAATCTACTTCGAGAAGTGGGTCAAACG CTGTAGTCCGCA CCTTGGATACCAACTGCTTGCCGAATTGGCACGGCAGGGGCTTGTGGCCAGCGTTTGGAC TACTAATTTCGA TGCCTTGGCGGCTCGCGCAGCTACGTCCATCAATCTCACTGCAATCGAGATTGGAATTGA TTCACAGCAAAG ACTGTACCGGGCGCCGGGCGAGGCGGAACTGGCGTGTGTGAGTCTGCATGGAGATTATCG GTATGATCCTTT GAAAAACACCGCTCCAGAACTCATAAAACAAGAGAAGGAGCTCAGAGAGTCACTTGTCCA AGCGATGAGAAC TCACACAGTCCTGGTTTGCGGCTATAGTGGTCGGGATGAGAGTGTCATGGCAGCGTTTTC CGATGCCTATGA CGCAGCTCATTTTAAGGGTCATCACCCCCTCTTCTGGACACAGTACGGCGATTATCCCGC CAGTGAGCCCGT AGCTGGACTTCTTGCTTCACCGCTGGATCAGGAACCTGCGAAGTTCCACGTGCCTGGGGC ATCATTCGATGA SEQ Argonaute Sequence

ID NO

TCTTATGCGCAGGATAGCACTCCACGTGAGTGACGGTGAAGCGCGCGAGCGGGTGCG GAAGATTCTTGAGAA CTTCAAGACGGCACCAGTTAACCAGAAGCTCCCCTTTGCCTTGCCTAGTCTTCCTGTGAC GGGTCTCGTCAA GTCAAACGCCATTCCGTTGATACCGCCTGGAGAGCTTATAGAATTTGATCTTGTCCGGTG GCCGCCGTCCGG TGAAGTTTGGAGCACGCTCCGGGAAATAGGGGATAGACACGGATTCGTAGCTGCCCCTTT TCGCGGGAAGGT GTATGCTCTGGCTACGATAGAGCAACTGACACAAGCCTTCGCGGACAATGTAAAGGATGG CGCGTTCAACAG GGTGCCGCTGAATAATGATGACCTCCGCTACGAGGACGGAACCGCCAATCAGCTGATGCG ACGCGCTACTGT TCTGGCTTTGGCTGGGAAAGCTGGATGCGCGAACGATGGGGATGCCATTGTGTGGGACAC GTCTCGCTCAAA AACCGAAAGATTGGATAGGCAACTTTGGACTGTATACGATGCAGTACTTCTGCAGATTCG GCCGCTGGGAAC TAAGCTCGCGCTCGTACTTAAGCCTACGCTGCGGGTTACGGATTCAACTGGCGAGGTAGC CCCGAAAGAAAT TGAACGGGCAGTCAAGGTGCGCGTATTGGGATACCAGCATAACAAAGAGTTCAACCAGGC GACCGACTTTTG GAGGAAAAGGCTCCTGCCCTCAAGAGATCTCCTTGTCAGATTTCCTGATCTGGATGGTGG AATGACTTTCAC GATTTCAGGTCGGCCAATATTCGCCCGGCTCACCGACGAAAGGACTGAAACTGTCACACT GAACGATGCCCA AGAGCGATCAGCATCTCAAGTGGGGTTGCAGCTTGCAGAGCCTAAACTGGTGTTTGCACG CACTGTAGGTAC GGGTCCCGCAACGGACACCCTCCCGGTTAGAGGATTGCTGCAAAATAGACCTTTCGATGC TAATCTGACAGA CTTGGGCATCGCGACGAACCTGAGGATCGCGGTTATTGCGCCCGCTCGGGACGCCAGAAG GGTACATGACTA TCTTGGGCAGCTGCATCAGCCTATAGATCCTACAAAGTGGGATGCGGACTATCTGATGAG GTTTCCCGGCTT CAGCTCCGCTTTTAAATGCCCTTTGGACATTCCGCAGCCGGGCCAGGCAGCTTTTGTAAC ACTTGACGAGCC ACACGATGAGAGTCCTCAATCAGCGCGGACCCTTGCAGGCCGAATCACAGCGGCACTGTC TGCATTGAGGGC GACGGAGAATCCCTCTGTTACAATAATATATATTCCGGCGCGCTGGCACGCGCTGCGAGC ATTCGATCTCGA ATCAGAGCAATTCAATCTTCATGACTTTGTTAAGGCCGCCGCAATTCCAGCGGGCTGTTC CACACAGTTTCT GGAGGAGTCAACTCTTGCAAATGGCCAACAGTGCAGAGTGCGATGGTGGCTTAGCCTCGC TGTTTACGTAAA GGCAATGCGCACCCCGTGGGCTTTGACGGGACTCGATAGGGACTCTGCCTTTGTAGGGCT GGGCTTCTCTGT AAGACGAAAGATCGATGGCGAAGGTCACGTCGCGTTGGGTTGTTCTCATCTTTATAGCCC AAATGGTCATGG TTTGCAGTTCCGCTTGAGTAAGATTGATAATCCGATAATGCTGCGAAAAAATCCTTTTAT GTCCTTTGACGA CGCTAGAAAGTTGGGCGAAGGCATCAGGGAATTGTTTTTTGACGCCCACCTCCGGCTGCC GAATCGCGTAGT TGTTCATAAACAGACCCCGTTTCTTAAAGAGGAGCGGGAAGGGCTCCAAGCAGGTCTCGA GGGAGTCGCGTG TGTGGAACTCTTGCAAATTTTTGTAGACGATACGTTGCGATATGTGGCTAGTCGACCAAT GCCGAATGGAGA TTTCGAAATCCATGGCTATCCTATCCGAAGGGGCACCACAGTAGTGGTCGACGACCAGAC CGCATTGTTGTG GGTACACGGCACATCAACCGCGCTCAACCCGCGGCAGAGCTATTTTCAGGGCAAACGCCG CATACCGGCCCC CCTTGTGATGAGGCGGCACGCGGGGACGTCTGATCTGATGATGTTGGCGGACGAAATATT GGGACTGTCCAA AATGAATTTTAACAGTTTTGACCTGTATGGCCAACTCCCGGCAACCATCGAAACGAGCCA AAGAGTCGCGAG GATAGGCGCTCTGCTGGACCGCTATACGGAACGGTCATACGATTATCGACTCTTTATGTA GTAACTCGAGGT TAACTTGT

277 29 GGTGTCGTGAGGATCCATGCCTAAGAAGAAGAGGAAGGTGGAGGACCCAAAAAAGAAACG AAAGGTGGGGTC

TGGCTCTATGCCACACACCTCCCTGCTGTTGAACTTTCTGCCCGTCTCTCTTAGCGGCGA CACACGCATCCA TGTCGGCTACCGGCCATATAACGAGGATGTGCTGCGGGAACTGAGGGAGGAGTTCGGCGA AAGCCACGTGTT TAAAAGGGACTACCAGGAGGACACGATAAGCGAGATACCGGTCATCCCCGGAGCCGAGCC CCTTAGCGACAA ATCTACTGGCGTGGATCTTGCCGAAGCGCGATGGCTGTGGAAACCACTTCTGAACGCTGC ATTGCTTCGCCT CTTCAGCGGAAGCAGAGAGATCACCTCTGATTATCCAGTCAGCGTGCTTGGTAACCCCAA GAACAACTTCAT CAGCCATGCCAATCTCCCCGACTGGGTGAGAATCCTGCCCCTTCTGGAATTCGAGAGCCG AACCCTGTTCGG TGGTAAATCCGGTCCGCAGTTTGGGCTTGTTTGCAACGCCCGAACTAGGCACCAGGTCCT GGCAGGCTGCGA CCATCTCATTGAAAGAGGTATAAGTCCCATTGGCCGCTATGTTCAGATCGACCAGCCACA AAGAGACTCCAG ACTTGCGCCACGCGGTCTGACTGTTGGTAAGGTGAGCTCTATCGATGGGGACACGTTGAT CCTGGAGGATCA CCGAAAGGGCTACGAGCGCGTGAAGGCAAGCGACGCTCGCCTTACCGGCAATCGGGCGGA CTTCGACTGGTG CGTGAACGCGCTGTTGCCTGGACAAGGTCAAGCAACGCTGAGCAGGGCGTGGGACGCCAT GAGCGCCCTGAA TCAGGGACCCGGCCGCTTGCAAATGATCAATCAGACAGCTGAATATCTGAGGACCGTGAA CCTTGAGGCGGT TCCTGGGGTAGCATTTGAGATCGGCGAGTGGCTGAGTTCTACCGATGCTCAGTTTCCTGT GACCGAGACCAT CGACCGCCCTACCCTCGTGTTTCATCCCTCCGGCCGACCCAACGACACTTGGAACGAGAG GGGGATAAAGGA CAATGGCCCGCACGACCAGAGGACATTCACCCCCAAACAGTTGAACATCGCCGTGATTTG CCAGGGCAGATT TGAGGGACAGGTAGACAGATTCGTGGGCAAGCTGCTCGATGGCATCCCGGACTTTCAGTT GAGGAACGGCAG GAAGCCCTACGACGACGGTTTCCTTAGCCGGTTTAGGCTGGAGAGGGCCAACGTGCAAAC CTTTCAGGCTAA CAGTGCGTCCCGCGAGGCTTACGAAGCAGCGTGTGAGGACGCTCTGAAACATGCCGCTGA TAACGGCTTTGG CTGGGATCTGGCTATCGTTCAAATCGAGGAGGATTTCAAGGCGCTGCCTGGGCCCCAAAA TCCCTACTACGC CACCAAGGCAATGCTCCTCCGGAACAACGTAGCCGTGCAGAACATCAGGATCGAAACAAT GAGTGAGCCTGA CAAAAGCTTGGTCTACACTATGAACCAGGTTTCTCTTGCTTGCTACGCAAAGCTGGGTGG TAGACCTTGGCT CCTCGGTGCCCAACAGAGTGTCGCGCATGAGTTGGTGATTGGACTGGGCAGTCACACCGA GCAACAAAGCAG GTTTGATCAGTCCGTGCGATACGTAGGCATCACCACCGTATTTTCCAGCGATGGAGGCTA CCATCTGAGCGA GCGAACCGGAGTAGTGCCCTTTGAAGATTACGCCAAGGAGCTGACAGACACCCTCACTAG GACCATAGAGAG GGTGCGAAGGGAAGACAATTGGAAGAACACTGATAGAGTTCGCCTGGTGTTCCATGCTTT TAAGCAGATTAA GGACATCGAGGCCGAGGCCATCAAACAGGCAGTGGAATCTCTTGATCTGGAGAACGTTGT GTTCGCATTCGT CCATGTGGCCGAGCACCACCCTTATTTGATCTTCGACCAAAACCAAGAGGGATTGCCCCA CTGGGAAAAGAA CAGGAGCAAGCGCAAAGGCGTCTTGGGACCCAGCAGAGGCGTGCATATAAAGTTGGCGGA CAGCGAATCCCT TGTGGTATTTGCTGGTGCTAGCGAGTTGAAGCAGGCGGCACACGGTATGCCTCGGGCCTG TCTGCTGAAGCT GCACAGAAACAGCACCTTCAGGGATATGACCTATCTGGCGAGACAAGCCTTCGATTTCAC CGCCCACAGCTG GAGGGTGATGACCCCTGAACCATTTCCGATCACAATAAAGTACAGCGACTTGATAGCAGA GCGATTGGCGGG TCTCAAACAAATAGAGACCTGGGACGACGATGCCGTGAGGTTTAGAAATATTGGCAAAGC CCCCTGGTTTCT GTAGTAACTCGAGGTTAACTTGT

278 52 GGTGTCGTGAGGATCCATGCCGAAGAAAAAGAGGAAGGTTGAAGACCCCAAAAAGAAACG CAAAGTGGGCAG SEQ Argonaute Sequence

ID NO

CGGAAGCATGTCCGGCCTTTTCCTGAACTTTTACCAGGTAGACATCCCCACCAAATC CGTACCGATCCACAG CGTAGAGTATAGCCATTACAGTTCAAAGGAGGCCTTTATCGCGTTGAAAGAAAACTTCCC CTACTTTAGCTT CTACCGGGATGACGACCGAATACTGATCTGGAAGAAAGACAAGGATGCCGAGCTCCCCGA GAAGAACTCATT GATTGAAATTGATTTCACCGAGAAAGCGAAGGTCCTCAGCAAAATACTCGAGAGGGCCAT CATTGACTTCAT CGAGCCAAAGGGCTACAAGATATTCAAGAACAAGTACAGCAACAGCTGGGAAATAGTGAG CATGAAGGACAT CCTGAATGGTGGGATCGAGGGACTCAGCATCAATCGAATCGTGCATTTTTCCCCCTGCTT CTTCTTCAAGGA GAACAAACTCATGCTGGGTTTCAGCCTTAGCACAAGCCTCAAAAACGTGTTTACCTGGAA TAAGGCGGACTT CGAAAGGTACGGCTTTGACATCAAGGGCCTTAAAGGAGACGAAGAGCGGATTTTTGCCAA CAAGCAATCCCT TAAGAGGTTCCTGGAGACCAAGGGCGCAGTTGCAATGTATGACCAAATTATCGCAAAGGA AAACAAGAACGC GAAAATGTTTAGCATCATCGACGGCTTCTATCGGTGGCTGGAGAGGAACAAGACTGAAAT CCAGCTTCCATT CGGACTGAAGATAAATTCAGTGTCTAAAAAGTACCTGCCGTTCGAGGATGAGCTGATCAA GAGCGAGATCAT CCCTAAGCCCCAAAGGTATTTCTATAGCAATAGGAAGAACACCCAGAGCCTGCGGTACTA TGACGAGATGGT GAAGACTTATCAGCCCTACTCTCTGGAGCTCTACCAAAACAAACAGATCAACATCGGAAT CATCTGCCCCAG CGAGTACCAGGGAGAGACGGAGGGGTTCATAAAGAAGATCGAACTGAAGCTCAAGGAAGT ATTCCATTTCAA CAGCCTGATCTTTCACTTCAAGACCATTACGAACAAGGACCTCGCGTCCTATAAGGAGGT TTTGTACGACGA TGAACTGCTGAAGTGCGACCTGATTTACGTCATCGTGAATGAGGCCCAGGAGAAACTCTC ACCTAATAACTC CCCTTACTACGTGTGCAAGGCCAAGTTTATAGGCAATGGCATACCTACGCAAGACATTCA GATTGAGACCAT CCGGCAGAACTTGAATGCGTTCACAATGACGAACATCTCACTTAACAGCTACGCCAAACT GGGAGGCACCGC GTGGACCATCGAGAAGGAAGACAAACTTAAGGACGAGCTGGTCATTGGCATCGGCTCCAC CCTGTCAGAAAA CGGCCAGTTCGTGCTCGGTATCGCACAAATCTTCCATAATGACGGGCGCTACATGGCGGG TGACTGCAGCCC CCTTTCTACCTTCTCCAACTACGCGGAGAACCTGGAGGATCACCTGTACAAGACCCTGAA GCCCCTGGTGGA GGAGATGAGCAAAAGCGGCACCTTCCGGCTGATTTTCCACTTGTTTAAAAGTGCCTCTGA GGAGTACGAGAT ACGCGCGATCAACGGCCTGCAGAAGAGGCTGGCGAACTACAATTTCGAATTTGCACTCGT TCACCTGGCCTA TGGACACAACTTCCGACTCTACTACAACGACGGCAACGGCGACATTAATCAGGGCACATA TATACAACTGTC AAAACACAGCGCCCTGCTCCACTTCGTTAGCAAGTCAGACTTGCCCCTGAAAATCGACCT GGACAAGCGGTC TACTTTCACCAGCCTGTTTTACATCGCCAAGCAGGTGTACTGGTTCAGCCATCTGAGTCA TCGCAGCTATAT GCCCAGTAAGAGGACCGTGACCATCATGTATCCGTCAATCATGGCGAAGATGACCGAGGA GCTTAAGAAGGT GGAAGGATGGGACTACGAGCGCCTGAAAGCAGTAAGCGATAAGCTGTGGTTCATCTAGTA ACTCGAGGTTAA CTTGT

279 60 GGTGTCGTGAGGATCCATGCCCAAGAAAAAGAGAAAGGTCGAGGACCCGAAGAAGAAGCG AAAGGTAGGAAG

CGGTAGCATGAAAAGCAACTTCTTCCCCATCCAGTTCAACTTCGACGACTTCCATATCCA GAGGCTTCCCTA CCAGAAGGAGGTGCTGGACAAGCTTCGGCAACAACACAATGCGACCCATAGCTTTTTCCG CAGAGACGATTT TATCTATATTAGCCCAGGGGTAGAGGCCGCAGCGAACCTGGGAGACGTAGTACGCCTCTC TATTACCAAGCA CCCCGAGGTCGTTGCTTCTCTTGTTAGGCACATATTCTTTAGGACAATCAAGGATAAGGT CCCCGGTCTGCT GCCAAGCTTTCACCCATTCACCTTTCCCGCCAAACAGGACAAATACGATCTGGCCCTGAA CATGCTCCCCGA GCGCCTGCAGAATGTTATCACCTACAAGAGGATAACCGAGGTACAGCTTCGATTCAACGA GACCGAAGAGCA ACCCCAGTTCGTCGCCGTAGTTAACCACAGGTACCAGTGGACTATCGACCGAACTTGCGA GCAATTGGTAAA CGAGGGTCTGGACATCCTTGGCCTGGAGGTGAACTCTAGTACGAGCCCTGATTATTCAGA CGGAGTTGTGGC ACCAGAGCTGACACTGTTGGGCAGGGTGATGGCCGTGAACGGGGATCACGCCACAGTAGG GACCAACCAGGG TCCGACAGAGTATGCCCTGTTCGAATTGACCTTGTTCAAGTCCAAGGAGAACATAGTGAA CTACCTTGGATC TTTGGTGGGCGAGGGTAAAGCCGAACAAATAGTCAACCATATCAAACAAGATGAAAGCAG AAGGCTGCAACC GGACGTTGTGATGAGGGAGATCGAGGAAATGGGAGTGTGGCTGTCTAGGCTGGCCTACAG AAACTTTGACTC CTTTTGCTTCACCATCGGAACGAACAACGCTGTCAGCGGCCAAGCAGGTATCAGACTGGA GGAGCCAAAGCT GATATTTGACGTCTCAGGTACGAACATACACGCTACCCCCACAACCGGGCTCAACACCTT CGGCCCCTATAG TAGAAGCACGAGTTTCGACGTTAACTCTCCGAAGATTCTGGTTGTGTTTCACCAGCGGAA CGCAGGCCACTT CGCAGAGTTTCTCGCACAGCTGAAGGGCGGCATCGCTCAGCACGCATACTTTGCTAACGG GATGGTCAGGAA GTATGGTCTCACGGCAATGGAGTACCGGATTGCCGAGATCACTGACTACACCGTGCCCCA ATATCTTACCGC CATCAATAAGCTGCTTAGGGCGGAGAACGGAAGCTTTGACATCGCCATCGTGGAGACCTG TGAGGATTTCCG GAGGCTGCCTCCCATGGATAATCCGTATTTTCAGGTTAAGAGTTTGTTGTACAGCCATGG AATCAGCACCCA ATTCATCAGAGCGGAAACCGCTCAGAAACCGATTTATTCAATAGATAGCATCGCGCTCCA AATGTACGCCAA ATTGGGCGGAACACCATGGACGGTGCCAATAGGGCCGAGCGTAGATCACGAATTGGTGAT AGGCATCGGTAG CTCCATATTGCGCAGCAACCAGTATGCAGGTGCAACCCAAGCTCGAATAGTGGGGATTTC TACCTTCTTCAG CGCCGACGGGAAGTACATAAGCAATAGAAAGACCCAGGACGTGCCTTACGATCAGTACTT CGATGAGCTCTT GCATAACCTTAAAGTCTCCATCGACGAGATTTCCAATAACTACAGCTGGAGCTCAGGCGA CCGCATCAGGAT CATATTCCACATCTTCAAGCCCATAAAACACATCGAGGCAGACGTCGTCGCAAGCCTGAT GGAACAGTACCA GGAGTTCGATATAAAGTTCGCTTTTGTGACCTTTAGCGAGTTCCACCCGTATGTGCTGTT TAATGAAAATGA AAGGGGGGAATTTGATGCGTATAGGAAGGTTTACAAGGGCACCCATGTACCGTGGCGCGG TTACAATGTTCT GCTGGATCCTCGGTCATGCCTGGTCCAGATGCTGGGACCCCATGAGATGAAGACCAGCCG GCACGGCGCTTC TAGGCCCGTCCTTGTGAGAATCCACCGCAGTTCTACGTTTGTAGACCTCGCGTACGTCGT GCAACAGGCCTT TAAGTTTACTAGGCTCTCATTCCGCACGTTCTACCCTGTGCATAGCCCTGTGACGCTGCT CTACAGTAATAT GTTGGCCCGACAGCTCAAGGACCTGAGGGGCATTCCGGGTTGGAACTACGATGTAGCTAG CAGGCAGTTGAG GCACAAGAAATGGTTCCTGTAGTAACTCGAGGTTAACTTGT

280 40 GGTGTCGTGAGGATCCATGCCTAAGAAAAAAAGGAAAGTGGAGGACCCAAAGAAGAAGCG GAAGGTGGGCAG

CGGTAGCATGCAAGGCACTATATCCATAAACGAGGTGAGGATCCAGCTTAATACTATTAA GAATCTTTCAGT GTTCAAGTGCAGCCTCAGCGGAATTAGCACCCGCCATAAGAACCAGATCGAGTTCATCCT TCGCAGCGAGCA AAACCGAGTTAGCATCTTTGAGGGTGAAGTGATCTTTGCGCTTCCCGTCGAACAGCAGAA CCTCGAAAGAGA TAAGCAGGCTCTGTTCAGCTTCCTGGTCAAACAACAAAGGGATCTCAATCTGAAACAGCT GAGCCTGGTGCC CCTGAGGGAGGTGCCCGAGCGCGTTATCGAGCGACTGACTTTCGCAATGGTTAGCTATCA GGCCATGAAGCA SEQ Argonaute Sequence

ID NO

GGGCATCTTCTCTATCTATGGTCATACATTTTTTCGCCCCACCCTTATGACGGATAG GCTTGCGCACAAGGC GGTGGAAGTCACGACGTGCATCGAGGATGGCTTCCTCAAGTTTTATCTGGACCCGACGTA CATTGCACTGAC ATGCATAACGGACACAGCACGCGAAAATAGGGAGAACCTGGAACTGGTCGGGCTCTGCTC TTTCCGCAACAA AAACCTTTGTAGCCTTGTCAGGCCGGACGGCTCATGCAACTGCCTCATACCTGGTAAGTT GGGGTATTACGT CCAGGAGATGGGGATTAAGGACGTTGAGGATGATAGCAAGGACTTTCTGGCCAAACGGTT CAATAGCTGTCC CCGGTTTAGTGAGCACACGCGCTTTATACAAGTGAAGGCGAGTAAAAGAGGCACGAAGTA CTCCCTGTTCCC TTCTTACGTAGTTTTTAGCAGGTTGTCCCGAATGGACCTGTCCGCTAAGCCAGATGTGCG GTCCAGTTATCG GAAGGCCACATTGATGGACTCTCACGAAAGGCTTAACTTGACCAACGACTGGATAAGACA AATTTTCATGAT CGGGCAGAAGGGCCTTCAAAATTGGGGTGTTATAAAGGTCAACCAGACCGAGATTCCCGT TGAAATTGTACT CACAATTGCCCACGCCATCGCGCCCAAGACTTCTCAAGGCATCTATAAGGCTATATTCCT CCCGGACCAGCA AATTACGAATGACAGCAATAACCCAACGCCTCAAACGCTGAGCGGGGGTTGGCTCTTCAC GAATAGGGGTGC GTTCGACAGGAGGGATCCTAATAGGCCTTTTAAAGTAATCAGCCCCTACATCATCGTGCC CAACAATGAGCA AAGCATCAGCTCTTGCCGCCAGCTGATCAACTACTTCAGCAACGGCAGGTACAAGGCCCG GTGCAAGGGTGA CAGAGACTTTATTGGTATTTCATTGCCCGAAAACAAGGGCAAGTACAACACATCATTTGT CAATGCTTTCGA AGAGGAGGACGGCCTGTATTTCGTTGAAGAGACGATACAGGGCTACCAGAAGGCGCTGCA AGACATTGTTAG AGACTGGAATATCACGTCCAAGCGGGACATCAATAAACACGCTATAGTGATCATACCGGG CGAGAACGATAT TGACGACAATCCTTTCTATTATCAACTGAAAAAGGCGTTCGTAGAGGAAGGGATTCCCAG CACCTTCATCAC GTACGAGACTATGAACAAAATCAACGACCCCGACATCGCGTTCGGGCCAATCATGGACAG CCTGTGGTTGAA CATTTACAGCAAAATGGGGGGCAAACCGTGGCGCCTCGCTAATAGCCTCGGCAACGTGCA CTGCTTTATCGG TATTGGGTTTGGAATTAACCCCGAGACCACCGGAAACCACATATTCGCAGGGATCGCCCA CATCTTCGACAA CTACGGGAGTTGGATAGACGTAGCGAGTGATTCCGCCAACCTCTCCCAAAACGATCTGAA CTCATTCGAGGG CACGGAAAAGTACACACAGGGGAGTGCTAGCTTTAAGATCAGTCAGAGCGTGTCCCAGTC CATTGTGTATAA CGCATTGAAGCTGTACCAACAGAAGCAAACTAAGACCCACGAAAACGCCACAAACATCGT CCTGCACAAACT GGGCCAGATCTACGAGTGTGAGGTCATCGGGTTCCTCGAAGGAATTCGCCAAGTGCTCGG GAGTCTGGGCGA CTGCAAGCTGGGATTGCTGCAAATTGAGCAGGAGCACCACCTGCGCCTCTATGGCGCAGC AGCCCAAACCGG CAAGGAGAACAACACGATCTTTCGCGGTTCAGCACTTCAACTCAACCCGGAGAAGCTGGT TATCGCGTCCAC TGGCCGCTCTTACCGGCAGACGAGCTCCGGGCTGTTTATGAATTATCCGGGCATCGGCAC CCCCCAGCCGCT CCTGTTGACTTCTATCGTACCGAATCAGCAGATCCTGCAGAAGTACGGCTGTAACGCAAA CCAATTCTACTC AAGCGAGGACCTGGCGAAACATGCAATGGCCCTGACGCAACTTCACTGGGGGTCACTGAA GGATAATGTAAG ATTGCCGATTACCACGCTTTACGCGCAAAAGGTCGCCGACTTGATTAGCAAGACCAACAT GCGGATCAATCC AGGCTTGGGCTACTTCCGACCCTGGTTTCTTTAGTAACTCGAGGTTAACTTGT

281 58 GGTGTCGTGAGGATCCATGCCCAAAAAGAAACGGAAGGTGGAGGACCCTAAGAAAAAACG AAAGGTCGGAAG

TGGCAGCGTTCCAGTGTACCTTAATCGGTTCCTGCTGGACCACCTCACATCACCCTTGTC CTTGCCGGCGTT TCGGGTCGAACTGGACCCTCCCCCTTCCAAAGATGAAGTGCACCCGCTCCTGGCTCTCGT CGGTCGGGAAGC GGGAGGGCTCGTGAGGTTCCAGAACAGGCTGATCGGCTGGGAGGCTCCACGGGCCCTCGA AGGTCAGGTTAG GCGAGGCAAGCAGTCATATAGACTGGTGCCCCTTGGCCGGCAGGCACTCAATCTTAGAAA ACCCGAAGAAAG GCAGGCGCTCGAGAATTTGTATAGGATCCGACTGGAAAACATCTTGAAAGCCCTCGCCAA ACGACATAGGGC TAGAGTCGAACGCAGGGGCAACGGCCTTTTTCTGTGGAGGCCAGAGAATCCCCGAGAGGA GAAGGAGGGGTG GCACCTTTACCGGGGAAGCCTGTACCGCATACATCTCTATCCTGACGGCGAAGTGATACT TGAAGTCGACGT GCAGCATCGATTTCAACCCACTCTCCATCTCGAGGAGTGGCTGCAACGAGGCTATCCACT CCCTAGGCGCGT GACTAACGCCTACGAGGACGAGAAAGAATGGGCACTCCTGGGCATCGAAGAGGGGAAGGA TCCCCGCTCTTT TCTCTTGGATGGGGGCGAGTCATTGCTTGACTACCATCGCAAGAAGGGACGATTGGCAGA GGGGCAGGACCC CGGTCGAGTGGTCTGGGTTGCTAGAGGTAAAGAACGCGAGCGGATCCCACATCTGAGCGT CTTGTTGAAGCC AGTCATCACCATGGAGCTGCTGGCGGAAGTCGCTGAGGTCACGCAGGAGGCCTTGCCTGC GCTTCAGCTCGA ACCCGAGGAACGGCTGAAGGACATTAGGCGCTTCGCTGAACCTGTACTGCAAGCGTTCGG CAAACGCGAAAC TGCAAAACCCCTTGAAGGCAGAGCCCAGCGATTGCCGCGACCCAGTTTGTTGGCACGGGG AAAAAAGCGAGT GGGCAAAGTAGCGGACGTACTCGAAAAGGGAGCATTGTCACCGGGCGAGACACGGTTGGC CCTGCTCGCATG GGAGGGAGACGGGAAGGCCAAAGGCGGTCTCGCGTACTTGGAGGAGAGGCTTCAGGGCGT CGGGTCTGCATC CGGCATCAAACTTGAACTTAAACGGCGATTTCTGCCCCGAGGCGATAACCTCGAAATGGC ACAGGTGTTTGA GGAGCTCTCCCAGGAAGGAGTAGGTGCCGGTCTGCTTCTGACTCCGCGCCTCACAGAAGG GGAAAGACGCGA ACTGAAAAATACTGCGGCGAGCCATGGGCTCGCTCTCCAACTCCTTAACCCGTTTGACCC TGGCGACATCTA CAGGGTGAATAACGCTCTGCTTGGATTTCTCGCGAAGGCCGGGTGGCTGTTCCTGAGACT GGAGGGAACTTA TCCGGCCGACCTGGTGGTGGCCTATGACGCAGGCGGGGAGAGTCTCCGATTCGGCGGAGC CTGCTTCGCCCA CCTGACTGATGGCACGCATCTGGGGTTCAGTCTGCCAGCCGCTCAGGGTGGTGAACGGAT GGCCGAGGAGGT CGCGTGGGAGTTGCTGCGACCCCTGCTGTTGAGATACCGGAAAGCGAAGGGCCAGACACC AGGGAGGATCTT TCTGCTCCGCGACGGTAAGATTCAAAAGGAAGAGTTCCGAAAAGTGGAAGAGGAACTGAG AAAGCGCAATAT TCCCTACGCGCTGTTTAGCGTCCGGAAGACGGGGGCTCCCCGACTGTTCAGCAAAAATGG GCCGCTCGGTGA CGGTCTTTTTTTGCGACTGCCAGAGGAGGAGGGCGGGTTTCTGTTGCTTAGCGCCGAGGG TGGGAAGGGCAC CCCACGGCCGGTTAAGTATGTGTTGGAGGCGGGAGAAGTGGACCTCAACCTGGAGGAAGC TGCCAGGCAATT GTATCACCTGAGTCGCATCTACCCGGGCTCCGGTTACCGATTCCCCAGGCTGCCCGCACC GTTGCATATGGT TGATAGGATGGTGAGGGAGGTTGCACGGCTCGGCGGCAGCCATAACTTGAGACTCAAAGA AGAACAACTGTT TTTCCTGTAGTAACTCGAGGTTAACTTGT

282 41 GGTGTCGTGAGGATCCATGCCGAAGAAAAAGCGAAAGGTGGAAGACCCAAAGAAGAAACG CAAGGTGGGCTC

CGGCAGCATGAATAACCTGACACTGGAGGCCTTTCGGGGCATTGGCACCATCAAGCCACT GTTGTTCTATCG GTACAAGCTGATCGGCAAAGGGAAAATAGAGAATACCTATAAGACGATACGCAACGCACA GAATCGGATGTC TTTCAACAATAAGTTTAAGGCCACCTTCAGTAAGGATGAAATCATATACACCCTGGAGAA GTTCGAGATTAT CCCGACGCTGGATGATGTGACGATCATCTTCGACGGGGAAGAAGTGCTTCCTATAAAGGA CAACAACAAGAT TTACAGCGAGGTAATAGAATTTTACATTAACAACAATCTCCGGAACGTTAAGTTCAACTA TAAGTACCCGAA SEQ jonaute Sequence

ID NO

GTACAGGGCTGCCAATACAAGGGAGATCACGGGCAACGTGATCCTCGACAAAGATAT GAACGAAAAGTACAA GAAGAGCAACAAAGGCTTCGAACTCAAACGGAAGTTCATAATCAGCCCCAAGGTCGACGA TGAGGGTAAGGT CACATTGTTCCTGGACCTGAACGCGTCATTTGACTACGACAAGAACATCTACCAGATGAT AAAGGCCGGAAT AGATGTGGTAGGAGAGGAGGTCATCAACATCTGGAGCAATAAGAAGCAGCGCGGTAAGAT CAAGGAAATCAG CGACATTAAGATAAACGAACCCTGCAACTTCGGCCAGAGCCTGATAGATTACTATATAAG CAGCAATCAGGC GTCACGGGTGAATGGATTTACGGAGGAAGAGAAGAACACAAACGTCATCATCGTGGAAAG CGGCAAAAGCCG CCTGTCATACATACCGCACGCGCTCAAGCCTATCATAACGCGAGAGTACATCGCCAAGAA CGACGAAGTCTT TAGCAAGGAGATAGAAGGGCTCATCAAAATCAATATGAATTACAGGTACGAGATTCTCAA GAGGTTCGTCTC CGACATCGGCACTATTAAAGAACTGAACAACCTGCGCTTCGAGAAAATCTATATGGACAA TATAGAAAGCCT GGGTTACGAGCAGGGTCAACTCAAGGACCCCGTGCTCATCGGCGGCAAGGGTATACTTAA AGACAAAATACA TGTCTTCAAGAGCGGCTTCTACAAATCCCCCAATGACGAAATTAAGTTTGGCGTGATATA CCCGAGAGGCTA CATAAAAGATACCCAGAGCGTTATCCGAGCCATCTACGACTTTTGCACCGAGGGCAAGTA CCAGGGAAAGGA TAACATATTCATCAATAACAAGCTCATGAACATCAAGTTCTCCAATAAGGAGTGCGTCTT TGAAGAGTACGA GCTCAATGACATAACCGAGTATAAGCGGGCTGCAAATAAGCTCAAAAAGAATGAGAACAT AAAGTTCGTGAT CGCAATCATCCCCACTATCAATGAAAGTGACATTGAGAACCCCTACAACCCCTTCAAAAG GGTCTGTGCCGA GATCAACCTCCCCAGCCAAATGATCAGTCTCAAAACTGCAAAGCGGTTCAGCACCAGCAG GGGCCAATCTGA GTTGTATTTCCTGCATAACATCAGCCTCGGCATTTTGGGCAAAATAGGCGGCGTACCCTG GGTAATTAAGGA CATGCCAGGCGAGGTCGATTGTTTTGTGGGCCTGGACGTGGGCACAAAAGAGAAAGGAAT CCACTACCCCGC ATGCAGCGTGCTGTTCGACAAGTATGGCAAACTCATTAACTACTACAAGCCGACGATCCC GCAGAGTGGAGA GATCATTAAAACAGACGTGCTGCAGGAGATCTTTGACAAGGTTCTGCTGAGCTACGAGGA GGAGAACGGCCA GTATCCCCGCAACATCGTGATACACAGGGACGGCTTCAGCCGGGAGGACCTGGAGTGGTA TAAGAACTACTT CCTGAAAAAAAACATCGAATTCAGCATAGTAGAGGTCCGCAAGAACTTTGCCACGCGACT TGTAAACAACTT CAACGATGAAGTGTCCAACCCAAGCAAAGGTTCATTCATTTTGAGGGACAACGAAGCGAT TGTCGTCACGAC GGATATTAACGACAACATGGGAGCGCCCAAACCGATCAAAGTTGAGAAAACGTATGGCGA TATTGACATGCT CACAATTATCAACCAAATTTACGCACTGACACAGATTCACGTGGGGTCCGCGAAATCCCT TAGACTGCCTAT AACCACGGGCTACGCCGATAAGATCTGCAAGGCTATCGATTACATCCCGAGCGGCCAAGT CGATAACAGGCT GTTCTTTCTGTAGTAACTCGAGGTTAACTTGT

283 1 GGTGTCGTGAGGATCCATGCCTAAAAAGAAAAGGAAGGTAGAGGACCCCAAGAAAAAGCG CAAAGTAGGGAG

CGGTAGCATGAACTATACCGCTGCTAACACAGCGAACTTCCCGATATTTCTGAGCGAAAT AAGCTTTCTCAC AACCAATAACATTTGCTTGAACTGTTTCAAGCTTAACTACCAGGTAACGAGGAAGATCGG TAACCGATTTTC ATGGCAGTTCAGCAGGAAATTCCCCGACGTTGTAGTGATATTCGAAGACAACTGCTTCTG GGTCCTGGCAAA GGACGAGAAGTTCTTCCCCTCACCACAACAGTGGAAGGAAGCACTTAGCGATATCCAGGA GGTTCTTAGAGA GGACATCGGGGACCACTACTACAGCATCTATTGGCTTAAAGACTTTCAAATAAAGGCCCT GGTGACCGCCCA ACTGGCGGTGAGGATACTCAAGATTTTCGGCAAATTTAGCTACCCAATCGTCTTTCCCAA GGATAGCCAGAT ATCAGAAAATCAAGTGCAGGTCAGGCGCGAAGTTGACTTTTGGGCCGAGATCATCAATGA CACCAACCCCGC AATCTGTCTGACCGTGGATAGTAGCATTGTGTACAGTGGCGACCTTGAACAGTTTTACGA AAACCACCCCTA CAGGCAAGACGCCGCTAAGCTGCTGGTGGGACTGAAGGTGAAGACCATCGAAACCAATGG CACCGCGAAGAT CATACGGATCGCCGGTACCATAGGCGAGCGCAGAGAAGACTTGCTGAAGAAGGCCACAGG CTCAATGTCACG ACGGAAACTGGAGGAAGCCCATCTCGAACAACCCGTCGTCGCAGTCCAGTTCGGAAAGAA CCCCCAGGAGTA CATATACCCGCTTGCGGCCCTTAAACCTAGCGTGACCGACGAAGATGAGAGCCTCTTCCA GGTCAACCACGG AGACTTGTTGAAGGAGACCAAGATCCTGTATGCGGAGAGGCAGGAGCTTCTGAAGCTGTA CAAGCAGGAGGC CCAGAAAACCCTGAACAACTTTGGGTTCCAGTTGAGGGAGAGGTCCATCAATTCTCAGGA ATATCCTGAGGT GTTTTGGACTCCCAGCATCAGCCTGGAGCAAACCCCAATCTTGTTTGGCAAGGGGGAGCG AGGTGAAAAAAG AGAGATTTTGAAGGGCCTGAGCAAAGGCGGAGTGTACAAAAGGCACAGGGAATACGTGGA CACAGCTCGCAA AATTCGCCTGGCCATACTTAAGCCCGCTAACCTCCGCGTGGGCGACTTTCGGGAGCAACT TGAGAAGCGATT GAAGCTTTATAAGTTTGAGACAATTCTGCCACCGGAGAACCAAATTAACTTCAGTGTCGA AGGCGAAGGTTC CGAAAAGAGGGCCCGATTGGAAGAAGCGGTCGACAGACTCATAAGGGGGGAGATCCCCGT AGACATTGCACT GGTGTTCCTCCCGCAGAGCGATAGGAATGCAGACAACACCGAGGAGGGAAGCCTTTACAG TTGGATCAAGAG AAAATTCCTCGATAGGGGCGTGATTACACAGATGATTTATGAGAAAACGCTTAACAATAA GTCACAGTACAA CAACATCCTGAACCAGGTGGTGCCGGGGATTCTTGCGAAGCTGGGAAACCTGCCATACGT TCTTGCAGAGCC GCTTGAGATAGCCGACTACTTCATAGGCCTGGATGTGGGGCGGATGCCAAAGAAGAATCT TCCGGGGAGCCT CAACGTGTGCGCGTCTGTCAGGCTCTATGGCAAGCAAGGCGAGTTCGTGCGCTGCCGCGT CGAGGACAGCTT GACCGAGGGCGAAGAGATTCCCCAGCGGATCCTGGAAAATTGCCTGCCCCAAGCAGAACT TAAAAACCAAAC TGTCCTTATCTACAGAGATGGTAAATTCCAGGGAAAGGAGGTGGATAACCTTTTGGCTAG GGCTCGCGCAAT CAATGCCAAGTTCATACTGGTTGAGTGCTACAAGACCGGTATCCCCCGACTGTATAACTT CGAGCAAAAACA GATCAACGCACCCTCCAAGGGGCTGGCACTCGCGTTGAGCAACCGAGAGGTGATCTTGAT TACGAGCCAAGT GAGCGAGAAGATAGGCGTTCCTCGGCCACTTAGACTCAAAGTGAATGAGCTGGGTGAACA GGTGAACCTGAA GCAGCTGGTCGATACCACTCTTAAACTCACGCTGCTCCACTATGGGTCTCTGAAAGACCC ACGGCTGCCTAT TCCCCTGTACGGTGCCGACATCATAGCCTATCGGCGGCTGCAAGGAATCTACCCATCCCT TCTCGAGGATGA TTGTCAGTTCTGGCTGTAGTAACTCGAGGTTAACTTGT

284 65 GGTGTCGTGAGGATCCATGCCCAAAAAGAAGAGGAAGGTAGAAGATCCAAAGAAAAAGCG GAAGGTCGGGAG

CGGGTCCATCACCAGCTACCCTTACGCTAGGAACAAGGCCGACATGATTCGCAAGGTTAA TTGGAATCTGAT

(Helicase) CGTGTTCGACGAAGCCCACAGGATGAGGAATGTCTATAAGAAGTCCAATAAGATCGCCCG AACCCTGCGCGA

GGCCACTGCCGGCTATCCCAAGATCCTGCTCACTGCAACCCCCCTCCAAAACTCCCTCAT GGAGCTCTACGG ATTGATATCTTTTATTGACCCCCACATCTTCGGGGATGAGACAACTTTCCGCAGACAGTT TAGTCGCGGCAC CAAGGAAATGAGCGAGATGGACTTTATCGACCTGAAACAACGAATTAAACCCGTGTGTCA CCGCACCCTGAG GCGCCAAGTCACAGAGTACGTTAACTACACTCAGCGCATTCCGATCACCCAGGAGTTCAT GCCCACCAACGA AGAATGGGAGCTGTACGAGAAGGTCAGCGCCTATTTGCAACGAGAACATCTCTTCGCGCT CCCCGCGTCACA SEQ jonaute Sequence

ID NO

ACGAGCACTTATGACCTTGGTAGTGCGCAAACTGCTCGCCAGCTCTTCATTTGCTAT TAGCGATACCCTGCT GAGCCTCATCAAGAGGTTGGAACAACTGCTGGAACAGCTGGACTCCGGCAAGACGGAGAT TACCGTAGAACA CAGCGATGTCTACGCGGACGTGGACGAGTTTGATGATACAGTGGAGGAGTGGGAGGAGGA CGACCAGCCTTC TTACATAGATAAACTGAGCCCAGACGAGATGAAACGGTTGATTCAGGAGGAAAAGGAAGA ACTGGAGCAGTA CTACAGCCTTGCAAAAAGCATTAAAGAGAACTCAAAGGCTGAGGCCCTCCTCATAGCGCT TGAAAAAGGGTT TGAAAAGCTCAGGATGCTGGGGGCTAATGAGAAGGCCGTGATCTTCACAGAATCCCGACG CACACAGATGTA TCTGAGAGAATTCCTGGAGAGAAACGGCTACGCCGGGAAGATAGTGCTGTTCAACGGTGA AAACCAAGACGA ACAAGCGAAGCAGATCTATGAGCAGTGGTTGGAGAAGCACCGACACGACGACAAGATTAC GGGCTCTAAGAC GGCGGACATGCGAGCCGCGCTCGTGGAGTACTTTAAGGAGCAGGCTAGTATAATGATAGC GACCGAGAGCGC CAGCGAAGGCATCAATCTGCAATTTTGCAGCTTGGTTGTGAACTATGACTTGCCATGGAA TCCGCAAAGGAT AGAGCAACGGATCGGGAGGTGTCATCGCTATGGTCAAAAGCACGACGTGGTGGTAATAAA CTTTCTCAATTG TAAAAACGAAGCGGACAAGAAAGTAGATGAGATATTGTCCGAGAAGTTTCGGCTGTTTGA GGGCGTATTTGG CAGCAGTGATGAAGTCCTGGGGTCCCTCGAAAGCGGCGTGGATTTCGAGAAGAGAATCCA ACAAATCTACCA GACCTGCCGAACCGCGGAAGAAATTGAGCAAGCGTTCAAGAACCTGCAAGCTGAGCTCGA CGAGCAAATTCA ACTGAAGATGAAGGAGACCCGAATGCATCTTTTGGAAAACTTCGATGACGAGGTGAGGGA AAAGTTGCGAGA CCATTATCACCAAACCTCCCTGCATCTGAATAGGATGGAAAGGTATTTGTGGAACCTCAG CAAGTACGAGGG GGCACGCGAAGCCATCTTTGACGACGAGACGCTGTCCTTCGTGAAGGACTACGAGACCTA TCAGATGATCAG CCAGGCGAAGAAACAAAACAGTCCAAACGTGCATCACTTTCGATTCTCCCACCCGCTTGC GCAGAAGTGGAT CGAACAGGCCAAGAGCAGGGAATTGTTGCCAAAGGAGATAACGTTCAGGTACAGCGACTA CAAGGGCAAAGT CTCCATCTTGGAAAGACTCATCGGCAAGGAGGGTTGGTTGAGTCTGGACCTGCTTCACGT CCAGAGCCTTGA GAGCGAACAACACCTCATCTTTAGCGCCATCGACACCGAGGGCGGTCAACTGGACCAGGA GATGTGCGAGAA AATGTTCGAGCTGCCCGCTGTGGAGGGCGAGGAAGTAGAGATATCCGACTCCATCCGAAA CACATTGAGACG AATCTCAGAGGGCCAGCAAGAGGCAATACTGAATGAGATTATGGAACGGGCGTCCGCCTA CCTCGACTCAGA ACTCGAGAAACTGGAAAAATGGTCACAGGACCTCAAGAATAAGCTGGAGAAAGACATTGA TGAAATGACGGT GGAGATCGAGCATCTTAAACGGGAAGCTAAATTGACACGCAACCTGGCAGAAAAACTCGA AAAAAACAAACA GATCAAGGAGCTTGAGAAGAAGCGCAACGAAATGCGCCGGAATCTCTATGACCAACAGGA CGAAATCGATGA ACAAAAGGACCGCCTCTTCGAGGAGGTAGAGAAAAAACTTGAACAACGGACTGCGACGGA GCACCTCTTCAC TATCAAATGGCGGATCGTGTAGTAACTCGAGGTTAACTTGT

285 44 GGTGTCGTGAGGATCCATGCCCAAGAAAAAGCGAAAAGTAGAGGATCCAAAGAAGAAACG GAAGGTCGGCAG

CGGAAGTGTGAACCATTACTATTTTTCCGAATGCAAGGCGGACGAGAAAGCCAGCGACAT AGCCATCCACCT TTACACCGTGCCCCTGTCCAACCCCCATGAGAAATACAGCTATGCGCACAGCATCGCCTA TGAATTGAGAAA ACTCAACTCATACATAACCGTGGCCGCGCACGGTCAGTACATCGCGTCTTTCGAGGAGAT ATGCCACTGGGG CGACCACAGGTACATACAGCACGAACATAGACCAATCCAGTGCAGCCTCCCGATGGAGAG GACCATACTGGA AAGACTCCTCAAGAAAGAGCTCGAGAATAGGTGCAAAAGCAGCTATAAGATGGACAACGA CCTTTTCCGGTT GGCTAACGAGCAAAGCATGCACGTGGGCGAGATCAGCATACACCCAGCGATCTACATCTC ATTCAGCGTGGA GGAAAATGGTGACATATTTGTTGGCTTCGACTACCAGCACCGGTTCGAGTACCGCAAAAC ACTCCAAGACGT CATCAACAACGATCCCTCCCTGCTTAAGGAAGGCATGGAAGTGGTGGACCCCTTCAATAG AAGGGCCTACTA TTACACTTTTGTGGGCATGGCCGATTATACCGCCGGACAGAAAAGCCCCTTCCTGCAGCA GTCTGTGATCGA CTATTATCTCGAAAAGAATGAGCTGTGGAAGCTCAAGGGTGTGCACGAAAAAACCCCCGT GGTGCACGTCAA GAGCCGAGACGGTCACTTGCTCCCGTATCTGCCGCACCTGCTCAAATTGACATGTTCATA CGAACAGCTCTT GCCCAGCATGACCAAGGAAGTCAATCGCCTGATTAAGCTGAGCCCCAACGAGAAGATGAG TAAGTTGTATAC GGAGATGTTTCGATTGCTCCGGCAGCAACAGGTGCTGACCTTCAAGAAGGAAAACGTGCG AGCCGTCAACCT CGGCTACGATGTGAATGAACTTGACAGCCCGATCATGGAGTTCGGACAAGGCTACAAGAC AAACGAGATCTA TCGAGGCCTGAAGCAGAGCGGAGTATACGAGCCCAGCTCAGTGGCCGTGAGCTTTTTTGT TGACCCCGAGCT TAACTACGACCCCCAGAAGCGGAAAGAAGTAGGTTGCTTCGTCAAAAAACTGGAGAGCAT GAGCGAGGCCCT GGGAGTAAAACTGAACATAAGCGACCAGCCCCGACAACTTTATGGCCAGCTCCCCAAGGA CTTTTTCAAGCA GGACAACCTCTCATATCATTTGAAATCTATCACCGACCAGTTCAGGGGAACGGTGGTGGT TGTTATCGGCAC TGAAGAGAACATCGACCGGGCATACGTTACAATCAAAAAGGAATTCGGCGGCAAGGAGGA TCTGATGACCCA GTTTGTCGGCTTCACCTCCTCCCTCGTCACGGAGAACAACATTTTTCACTACTACAACAT CCTGCTCGGCAT CTATGCGAAAGCTGGTGTTCAGCCCTGGATACTCGCCAGCCCAATGCACTCAGACTGTTT CATTGGACTCGA CGTAAGCCACGAGCACGGTAAGCACGCATCAGGGATAATACAAGTGATTGGACGGGACGG CAAGATTATCAA ACAAAAGAGCGTTGCGACAGCAGAGGCCGGAGAGACTATTGCCAATAGCACGATGGAAGA AATCGTCAACGA AAGCATTTATTCCTACGAGCAGATCTACGGGGCCAAACCGCGCCACATAACATTCCATAG AGACGGGATCTG TCGCGAGGACCTCGATTTTCTGCAAGCGTATTTGCGGAGTTTCCAAATCCCATTCGACTT CGTAGAAATCAT AAAGAAGCCGCGACGCAGAATGGCGATATACTCTAATAAGAAGTGGGTCACGAAACAGGG AATATACTACAG TAAGGGCAACACCGCTTATCTGTGTGCCACGGACCCCAGAGAATCCGTGGGTATGGCGCA ACTTGTCAAGAT CGTACAGAAGACTAACGGATTGAGCGTTCACGAGATAGTGAGCGACGTGTATAAGCTGTC CTTCATGCACAT ACACAGTATGCTCAAGACCAGGTTGCCTATCACGATACACTATAGCGACCTCAGCTCAAC GTTCCACAACCG GGGCTTGATCCATCCCCGGTCCCAACATGAGAGAGCACTCCCGTTCGTGTAGTAACTCGA GGTTAACTTGT

286 67 GGTGTCGTGAGGATCCATGCCCAAGAAGAAGAGAAAAGTGGAAGATCCCAAAAAGAAGCG AAAGGTGGGTAG

TGGGAGCATGAATTTCCAGCTGTGCGACCAACGCAAAGCCATTATCGCCGAACCAGGCCA TCTGTTGGTCCT

(Helicase) CGGTGGGCCAGGAAGCGGGAAAACTACCGTCGCCCTCTTCAAGGCCAAGCAGAGATTTAG CACTCTGAAACC

TAGCCAAGAAATCCTGTTCCTGTCATTCAGTAGAGCTGCCATCAGGCAGGTCCTGCTGCG GTGCAAGGAGAT TCTGAAGCCCGCAGAGAGACGCGCTGTCGCCGTTCAAACCTATCATAGCTTCTGCATGGA CATGCTGAGGGC GCACGGTAGACTGCTCCTGGGCCACCCCGTGCGATTCATGTATCCCGGCGACGAGAGGCT TCAAAAGGCCGC ATTCGAGGGGGACTGGGAGGCGGAAAGACAAAGGCAAGCCAAAGAGATGGGCATCTTTTG CTTCGACCTTTT CGCGCAAGGCGCAGCTGAGTTGCTCGAGAGGTGTGCCGCACTTAGGAAGCTTATAGGGGA CAGCTTCCCCAT GATAATAGTGGACGAGTTCCAAGACACCGACGACAACCAATGGCGGATCGTGGCGCAACT TGCCAAGGTAGC SEQ Argonaute Sequence

ID NO

GGACATCTTCTGCCTTGCCGACCCCGACCAGAGGATCTTTGACTACCGAGACGACAT CGACCCCCTTCGGAT CGAGGGTTTGCGGACCACTCTTGCCCCCAGGGAGTTCGATCTTGGCGGTGAGAATCACCG CTCCCCGAACGC AGGGATATTGAACTTCGCCAACGCTGTGCTGCATAACCAGAGCCCCCTGCCCGATACCAG CGACATCATGCA ACTGCGGTACTGGCCTAGAGCGTTCGCGAGCACCGTGCATGCCTGCGTAGTGTTTACCTT CAGCGAACTCAG GAAACTGGGCGTGGAGAACCCCAGCGTGGCAGTGCTGAGCCGATCCAACGGGCTTATCAG CGATGTGAGCGC CATACTGGCTGAGAAGCACGCGTACAACGGGAGGGAACTGCCAATCGTGGAACACGACGT GGTTTGGGACGC GGAGCTGTCTGCGGCAGCAGCCGTCGTCGTTGCGTCCACCCTGGAGTGGCCAACAGCCGC TGCAGAGGTTGC TGTTGCCAGGACACTTGCGCTCATAGCAGCCTATTACAAGCTGAAGAACGCCGAGGAACC CACCAAGAGCGC GGCTGAGGCTGCCCAAAAGTACGAGGCGGCTGCAAGCAAGGTGGCCAGTGAGGAGACCCC AAGGATCAAAGC CGCGAAAGAATTGCTGGCCGCTCACCAAAGTGGCATCCAGATGGTGGGCGACCCGGTGGC CGATTGGAAGTC TGCGAGGAGGGTATTGCAAGAGATAAGCGCCCTGGGTGAGTTGTACAGGGAGGTCCGGCT CGTGAGGTTGTT CCGGGCAACCGACGCCTTGGCTTCCGGCCTGAGCAATAGGTGGTTGGCTACTGGAAGCTA CGAGGGCGTGTC CGACCTGGTGAAGGGCATCCTTGAGCAGGAGAAACTGATTGCCGTGGAAAGGGACCCAAG AGGCTGTATACT GATGAACATCCATAAAAGCAAAGGTAAGGAATTCGACGGCGTGGTACTCATTGAGGGGGC ATTTAAGTCCCA TTTCTTCGATGAGCGGAAGGAAGTCAGCCCCTATGAGAGGTCCAGACGGCTCCTGAGAGT CGGTCTGACCCG CGCTAGGCATAGGGTGACAATCCTTAGACCTCAGGGAGCGAGGCCCCTTGTGGATCCCAT CTAGTAACTCGA GGTTAACTTGT

287 34 GGTGTCGTGAGGATCCATGCCCAAAAAGAAGAGGAAAGTTGAGGATCCCAAGAAAAAACG AAAAGTGGGTAG

CGGTAGCGTTCCAGGCGGTAGGGGACCGCTGCTCGTGCTTAACTTCCTTCCCGCTCGCTT CGACGGCCGAGT TGATGCGGGCACCCTCCCCTTCGAGACCCCTGATAAATTGAGGGCCATTAGGGAGGAACT GAGAACTTCCCA TGTAGTTGTAACGCGAGGAAAAGAGGTCGTATGCGTGCCCTTCGTTAGTGGCGCGAAATT GATCGGCAAACG AACCACTATCACCGCAGCGGGACCCGACCTCGTCGTACAAACGAGTCTTCTCGAATCCAG CCTGAGGCGGAC CTTGACCGAAAAATGGAAGTACGAATTGCGCAGGGAAAACCCGCTCACCTTTGTGTCAAG GACGCCAGGAAG GGACCTGCTGGAGAAGGCCCTTGGTCGGGAGTTGCCGGGACTCCATGTGTTCCCCGCTTA CAGCCTGGACGT GCGCAGATACGGTCCTGGGGGGTTCAGCGGGGTTGTTGTAGGATTGAAGACCCGCTATGA GATCGACCTGCC TGTCGGAGTGCTGCTCAGGAGGGGCGTTCAAGTAAACGGCCTTTATGTCCTGGCTGAAAG CCCCCTCGCGCC TACGTGGCCCTTCCAAGATCCCCACACCAGAAGGCGGCTCGTGGGACAAGTTGTCGCGGT GGATGGCGACAA ATTGCGAGTGAGGTGTAGGGACGGGGAGCTGGAACTTGATGCCGCCGAAGCATGGATTGA GCCCAACACTGC CAACTTCTACGCCGTCCTGCGGAAGGCGTGCGGACGCTCTTACGAACGAGACTTTCACGC CCTGGAAGCCCA AGTCGTGTCCCTGACTAACGCCCAGCAGCGAATCGCCGATACCAACAGGATCGCCGCCAA CCTGATAGGCCT TGGTAAATTCGACATCAGTAACGGCTTGACTGCCGAGCTGGGGAAACCACTCAGACTGAC TTCCACTCAACA TCCACACGTTCGGACTCTGGCCGAGCCCACATTTGTGTTTGACCAGAGCGGAGACAAAAC CGCGCCTTTTCC CGAGACCGGGCTGACCAAGTGGGGCCCATTGGACGCTGAGAGCTTTACACCCAAGGCACC ACACATCGCCGT GGTGGTTCCGCGGCAGTTTCAGGGTCGCGTCGAAACGCTGGTTGAGCGGTTCAGGAACGG CGTGAGGGGCAG CAACGCCTATGCCGAGGGCTTTGTCCGAAAGTTTAGGCTCACCGACTGTACCTTCAGCTT CACCGTTTTTGA CGGTGACGCTACTGACGCAGCCGCATATAGGCAAGCGTGCCTTACCGCCCTGAGTAATGA CGAGCAAATTAA CCTCGCCTTCGTCTTCACATCAGCCGTGCAGGAGCATCAAACGGGGGACGACAGTCCCTA TCTTGTCAGCAA ATCCACCTTCATGAGCCAGGGTATCCCCGTGCAAGAGTATCAAGTGGAGAACATCATCGG GGATTCAAACTT GGCTTATCCCCTGTCCACGATGGCGCTGGCGTGCTACGCCAAACTGGGTGGCACCCCTTA CGCCATAAGCGA TCGAGGACGACCTATGGCACGAGAACTGATCTTCGGCATCGGGTCTGCCCAGGTAAGCGA CGGAAGGATGGG CGAAACAGAGCGATTTGTGGGCATTACCACCGTGTTCAATTACGACGGTAGGTACTTGGT TAGCAACGTTAG CCGCGAGACACCCTACGAAAGGTACCCGCAAGCCCTGCTTGACGCATTGCGGACTTGCAT TGCCGACGTGAA GGTTAGGCAGGGATGGAGGTCCGACGACTTTGTGCGGCTTGTCTTCCATATCTTCAAACC TCTGAAGGACAA GGAAGCACGCGCCGTAAAAGAGCTGGTGACGGAGCTGACGTCTGAATATGCCAGCGTGGA GTTCGCTTTTGT GACAGTGGTGGACGATCACCCGTGGCTGGTGCTCGATGAAAACAGCGATGGGGTTAAGGT TGGGCGAGGGAC TAAGGGCAAGCACGTAGCTCGGAGGGGTTTTGCCCTGCCGATTTCCAAAAGGGAGCTTCT TGTGACGGTTAA AGGTCCCCGGGAAATGAAATCCGATAAGCAAGGGGCTCCCAAGCCCCTCTTGCTCAAGCT CCATCGCGAAAG CACCTTTACAGACATCGACTACCTGGCTTCCCAGGTCTTTCAATTCACCGCCATGAGCTG GCGCAGGCCATA CCCTACCAGCAAACCCGTGACTATAAGCTACAGTGACCTGATTGCGGGACTTCTCGGAAA GCTGCGACACGT GACGAACTGGAATAGCGACATGATCTACATGAAGTTGCGCTTCAGCAGATGGTTCCTGTA GTAACTCGAGGT TAACTTGT

288 30 GGTGTCGTGAGGATCCATGCCGAAGAAGAAGCGAAAGGTCGAGGACCCGAAAAAGAAAAG GAAAGTGGGGAG

CGGCAGCATGCAGCAGGAGATCCAGCTTAACATCATCCCCTTCACCGCCCCTGTGGAAGA GGCAGAGTTCGC TTTTTACACCGCCAAGCAAGACGGCTACTGCCCCATCCATAAGGATGACCTGAACGGGGC CATCGAAGGCCT CGTGGATGAATCAGACCTGCACTACGGCAACTGGCTGTACACTGACTTCGCTCCCGCCAA AGAGAACGCCAT CATAATTAGCGTCAATCTCAATGACTGTAAGTACTTCGCCCAGCACTACTACAGGCACCT TATCAGGACCCA CTTCAAGGGAGTGGCCGACATCATGAGGAAGAATTTCACCAACGAAATCGAGGTCTGGTT CCACAATACCAA AGCCAGCTCTACCAAGTTTAAGGTCTATAACCAGTTTACCCTCAAGGTACAGCACAACAG GGTGACGGACGG ACCGGAACTTGTCGTGTCCTTCGACGGGACGACGAAGGTGCTGAACAAGTCTATCGCCGA GATACACAACTT CAAAACGGAGCTTTACAACTGGATAAACTGCAACGGCGAGCTTAATCGCTGGAAATACCT GACCGACGATCA GAAGCTGAATCACGAAAAGAACTACCCGGTAGTGTCAAACACACTTAAACCGCATTTCGA CATTGCCTTTGA CGTTCCCGATTTTAAGAACCGGTATCCCAAATACTTCACTCTTCTGAATGACTTCTACAA CAACTATCTGAA TACAGACGCCTTTACTGCGATCTTGCCGCTTTCCGCTGACGGATTCTTCAAGCCAAATGG CCTGTCAGTGCA GAGGATCAACGGCACTAGCAATGAGCTGCAATTCGGCAATGGCGTCGGCGTGGAGCCCAA AAGGGATCTCAA GCGCCTGAAGCCGTATAAACCCGTGCCCAAACCCAGCAACGTAAAGTTTTTCTTCATCTA TCACAAGCCAGA TAGGGAGCATGCGGTCAAAAACATCTGGCAGTATTTCAAAGACGGATACAACGGCCAATA CCCCTTCCCCAA GATGGAGGAATACATATCTCAGCCCTTCGAGCTTGAGGAGAATGGATCTATCTCATTCGA CAATATCGACGA CGCGGTAAGCGTTGTCCAAAAAGCCATCAAGAACAAGGATCGGCTGCCCGACACTAAATA CTTTGCGGTATA SEQ Argonaute Sequence

ID NO

CATCTCCCCCGTACCAAAATGGGAGAAGGACCCTAAACGGAATAGTATCTACCATCG GATGAAAGAGATACT CCTGTACGAGGGGATCACCAGCCAGGTGATCTGGAAGGAGAACATTAGCAAACCGGCTTT CAACCTCTTCTT GCCTAACATCGAAACCGCCATACTGGCCAAGCTGGGAGGCGTCCCCTGGAGGCTCAAGAG GGACACCACGAA CGAGTTGATCGTTGGCGTGGGTGCTTTCTACTCAATCACGCGGAAGTCCAAGTACGTGGG CTCTGCATTTTG CTTCAATAACGAGGGCATCTTTAAGGGGTTCGACTGTTTCGGTGCCAATGACACCGACAG CATCGCGGGCTC TATCAGGGAGGCCGTGGGAAAGTTCATCGCGTCTAATTACAAGGCCACAAGGCTGATCAT TCACTTCTATAA GGACCTGTCAAAGAAGGAGCTCAAACCAATCATCGATACACTTCACGCCCTGGGCTTGCC CATCCCAGTGAT AGTCGTGACCATCAATAAAACCGAGAGCAAGGAACTCCTGGCATTTGATACCAGCTCACA AAAGCTCATGCC CTACTCTGGCACCATCGTGAAGGTGGGAGCCAAGGAGTACCTGCTGTTCAACAACACGCG ATACGAGGAAGC ATCCGCCCCAACGGATCGCGAGCACCACTTCCCGGTGAAAATCAGCTTTTTCTCAGACAA GGCGGAGCTGTT GGACGATCCCGCACTGATCAACCAACTGATCGACCAGGTGTACCAGTTCAGCCGCATGTA TTGGAAAAGCGT GAGCCAACAGAACTTGCCCGTAACCATTAAGTATCCCGAGATGGTGGCGGAGATTTTCCC ATACTTTACCCA CGATAAATTGCCCGATCATGGAAAGGAGAGCCTGTGGTTCCTGTAGTAACTCGAGGTTAA CTTGT

289 47 GGTGTCGTGAGGATCCATGCCTAAGAAAAAGAGGAAAGTGGAGGATCCGAAGAAGAAACG AAAGGTCGGCAG

CGGCAGCATGTATCTTAACCTCTACGAAATCAAGATCCCCTACAGGGTTAAACGATTGTA CTACTTCAATAA GGAGAACGACCCCAAAGAGTTCGCCCGGAATCTGAGCCGAGTGAACAACATACGGTTCAA CGACAGTAAGGA CTTGGTGTGGCTCGAAATCCCCGACATCGACTTCAAGATTACACCCCAGCAGGCGGAAAA GTACAAAATAGA AAAGAATGAGATAATTGGGGAGAAGGAAGACAGCGATCTGTTCGTCAAAACCATTTACAG GTACATCAAAAA AAAGTTCATCGACAATAACTTCTACTATAAACGGGGAAATAACTACATTTCAATCAATGA TAAGTTCCCGCT CGATTCTAATACAAACGTTAATGCGCACTTGACATATAAGATTAAACTGTACAAGATAAA CGAACGGTATTA CATTAGCGTGCTTCCAAAATTCACCTTCCTCAGTGACAAGCCAGCCCTTGAGAGCCCCAT CAAGAGCACCTA CCTGTTCAACATTAAAAGCGGCAAGACGTTTCCCTATATTAGCGGGCTCAACGGAGTCCT GAAAATTGACCT GGGCGAGAACGGCATAAAGGAGGTCCTTTTTCCGGAGAACTACTATTTCAACTTTACCTC CAAGGAGGCCGA GAAGTTTGGGTTTTCTAAGGAAATCCATAACATCTACAAGGAAAAAATCTTCAGCGGCTA CAAGAAAATCAA ACAGAGCTTGTATTTCCTCGAAGACATCATCAATATAAACAATTACAACCTTACCATGGA CAAAAAGATCTA TGTGAACATAGAATACGAGTTCAAAAAGGGCATCAGCAGAAACATAAAAGACGTGTTCAA ATACAGCTTTTA CAAAAATGACCAGAAGATCAAAATTGCGTTCTTTTTTAGCAGCAAGAAGCAAATCTATGA GATTCAACGCAG CTTGAAGATGCTGTTCCAGAACAAGAATAGCATATTCTACCAGACCATCTACGAGATGGG GTTCAGCAAGGT GATTTTTCTCCGCGAGCCGAAGACTAACAGCAGCGCATTTATGTATAACCCCGAGACCTT CGAGATTAGCAA CAAAGATTTCTTTGAAAACCTGGAGGGGAACATTATGGCAATCATTATACTCGACAAGTT TCTGGGCAATAT CGACAGTCTTATCCAAAAATTCCCTGAGAACCTCATCCTTCAACCCATACTCAAAGAGAA ACTGGAAAAGAT TCAGCCGTATATCATTAAGTCCTACGTCTATAAAATGGGAAACTTTATTCCAGAGTGCCA ACCATACGTCAT AAGGAACCTGAAGGACAAGAACAAAACCCTCTACATCGGCATCGACCTGTCCCACGACAA CTATCTCAAGAA GTCTAACCTCGCCATCAGCGCCGTAAACAACTTCGGTGACATTATCTACCTGAACAAGTA TAAGAACCTTGA GTTGAACGAGAAGATGAACCTCGATATAGTCGAGAAAGAGTACATACAGATCCTCAACGA GTACTACGAGCG CAATAAGAATTACCCCGAAAACATCATTGTTTTGCGAGACGGACGCTATCTCGAGGACAT AGAGATCATAAA GAACATACTGAACATTGAGAACATCAAGTACAGCCTCATCGAAGTTAACAAGTCCGTGAA TATCAACTCCTG CGAAGACCTTAAAGAGTGGATTATCAAGCTTAGCGACAACAATTTCATATACTATCCCAA AACGTACTTTAA CCAGAAAGGTGTAGAGATAAAGATAATAGAGAACAATACCGACTACAATAATGAGAAAAT ACTGGAGCAGGT GTACTCACTGACGAGAGTGGTGCATCCCACCCCCTACGTAAACTACCGCTTGCCCTACCC CCTGCAAGTCGT CAACAAGGTCGCCCTTACCGAGTTGGAATGGAAGCTTTATATCCCTTACATGAAATAGTA ACTCGAGGTTAA CTTGT

290 5 GGTGTCGTGAGGATCCATGCCAAAGAAGAAGCGAAAAGTGGAGGACCCTAAGAAAAAAAG AAAGGTGGGCTC

AGGGAGCATGGAGGCGTACATAACGGAGATGGTGTCCAGGGAGAGGGCCAACGAGCTGGA GGTTTACGTGTA CGTGTTTCCACGGAAGCAATCCGACAACAACTACGAGGGTGTGTATCACATAATGAGGGC GTGGCAACGGGC TAATGACCTGCCTCTGGCGTATAATCAACATACGATCATGGCATTTTCCCCCGTGAGGCA TATGTGTGGCTA CACGCCGATGGAGACGCAGAAACGCCATATTAACATTGACTCCCCATTCGAGAGAGCCCT GCTGGAGCGACT GATAAAGAACAGCCTGATTTTTACAGCCGAGCGCCATTTGCATGCCAAGCGGGTAGGCCA TGCGCTTCGGCT GAACCAGGTGCAGCAAATCCGGCAGGTGATCATCTATGAGGCCATCGAGCTCTATGTAAA TATCATTGAGAA TAGAATAAGCATCGGCTTTCACCTCACCCACCAGTTCGAGTACGTATACACTCTCCAGAG CATGATAGAACA GGGAAAAACAATCAGACCTGGAATGCGCGTCGTGCATTCTAACGGAAGGCAGCATTATAC CTACACCGTGGA GAACGTAGCAACATATGGGGTGACCGACAGATGCCCGCTGCTGCAGACCAGCATTTACCA ATACTACGTCGA AAAAGGCGCGCAGCACATTTTGCGCACCTTCACCCGATCCACCAGGGTGATCCACGTAAG AACGAAAGAGCA GAGGTTGAGCTACGCGGCGACACTCCTGAAACCGCTGTGTACTTTTGAGACCATGCAACC CCAGGACGTGCT CAATGTCAGCAAGTGCATCAAACTTAGCGCGAGCAAACGAATGAAATGTACTTACAGGTG GATTCAGCAACT CCGGGCACAGTACCGACACCTGACCTTTGCGCCGAACCCCTTCACGATCGCCCAGAATGG CTATAAACTTGA TCAGCTCAGCACCCCCAAGGTGCACTTCCACAGAGACTACGCCACCGTCGTGAGCGGAAT GAAGACCGGCAA GCTTTACAAAGGCGGTAATATCAAGATCAGCGTGCTCTTCGACGAGGACTTTTACTTGAA ACACCACATCAC CAAGAAGGACATATATCAATTCATTGCAGTCCTGCAGAAAATCGCCATCGCACAAGGCGT GAACATGACCAT AAGCACGAGCACCAAGTCCATTACGGGCAAGTTCACGGACGACTTTTTCCACCACTTCAC CGAGGAGGTCGA AGCACTGCAGCCCATCTTCGCGCAAACCACAGTTCTGGCATTCATTACCAGTACCCACCT GAGCAACAAGAA AACCAGGAGTTACCAGCTGCTGAAACAGTACTTCGGCGGCAAGTGGGACATTGCCTCTCA AGTCATCACGGA GAAGACGATTGAGGCGTTCCAAAAAATCTTGCACAAGCACGGCCTGAAGAATTTCTACCC CAATGACGAACA GCACTGTCTCCGCGTGATCGATGTCCTCAAGAATGAGAGCTTCTACTACACGGTCATGAA CATCCTCTTGGG AGTATATGTGAAAAGCGGCATCCAGCCCTGGATCCTTGCTAATACAACCCACTCAGACTG CTTCATCGGCAT CGACGTTAGCCACGAGAACGGAAACTCTGCGGCTGGGATGATGAATGTTATCGGCAGCCA GGGCCACCTTAT CCAACAGGCGCCCCTGAACGGCATATTGGCGGGAGAAAAGATTGACGACACCCTGCTCGC AAACTTGCTTAA ACAAATGATTAAGGCATACCACACCCAGTTCCAGCGCTTTCCCAAGCATATAACAATCCA CAGGGACGGCTT SEQ Argonaute Sequence

ID NO

TTGGAGAGAACACACTGCACTGGTCGAGAAGATCATGAGCCACTATGAGATTACCTA CGACATCGTCGAGAT CATCAAAAAGCCTAATAGGAGGATGGCTTTCTTCAACAGCGTGGACAACACCTTTAGCAC CAGGCAGGGGAC AGTGTACCAACGGGGCAACGAAGCCTTTCTGTGCGCCACTAACCCTCAGCAGAAAGTGGG CATGGCACAACC AATCAAAATACATCAGGTGACCAAGACCCTGCCCTTCTCACACATCATAGAAGATGTCTA CAACCTCAGCTT CCTTCATATTCACGCTATGAATAAGATGCGACTGCCGGCCACCATACATTATGCCGACCT GTCTGCCACCGC TTACCAGAGGGGCCAAGTGATGCCCAGGAGCGGTAACCAGACAAATCTGCCTTTCGTGTA GTAACTCGAGGT TAACTTGT

291 45 GGTGTCGTGAGGATCCATGCCTAAAAAGAAGAGGAAAGTAGAAGATCCAAAGAAAAAGCG AAAGGTGGGAAG

CGGCAGCATGACCGGCGAGACTAAAGTGTTGGTCGGGAGGCAACCCTTCGACGTGGATCG GCTGAATGAACT CAGAGACGAATTCCGGGAGACGCACGTGTTCAGAAGGGATGGCATCGACGATGTCATTGT TGATGTTCCGGT CGTGGCCGGACAGAAGCCCATCGGCAACGTCCAGGAGGAAATAGACCTGGCTAGGTACCA AAAGGTGTGGCC CTCCCTCCTCAGTGCTGCTCTTGTCCGGGCGTTTAGCGGCGTAAGGGACATCCTGAGCGA TAGGCCCGTGAG CGTGGTGGGGAGCACACTGCGGGGTCTGGTTCAACATCCGGAACTCCCCGAATGGATGCA GAAACGCACACT CCTTAGGTTCGACACCCGGACCATCTATGCTGGTGATAAAAGAACCTTTGGCTTGGTGTG CGAGGCCAGATT GAAAAACCTTATCCAAGGTAGTTGCGCGGAGCTGCTGGCACTTGGAGTTTCCCCACTGGG TCGATATGTCCA AGTCGAGGAGCCACATTACGATCCCAGGCTTATGAAAAAACGGCGCCTTGTGGGCAGGGT ATCAGCGATCTC CGGCGATAATCTGGTGCTGGAGGACCATGCCGAGGGCTTTCCGACCGTGAGTGCAAAGCT GGCATTTCTGGA GGCGCGAAGGGAGATTTTTGACGACTGTGTGCGGAGGATTTTGAACTCTGATGCGGCCTC CGTGCTGAACAA GGCCGAAGCTACTGCTGCCTCATTTCACTCAGGGCCAGGTAGGAAAGAGCAAATAGAGGA GGCTCTCAAGTA TCTCAGGGAGAAGGTGAGCCTCGAAGCTGTACCCGGAGCGAAATTCGTGATCGGGCCGAT GCTGAGTAGCGG CAACAAGGGCTTCCCCATCACGGAGATGATCCCGAAACCCATTCTCGTGTTCGATCCGAG CGGTACACGGAA GGATGAGTGGAACGAAAGGGGCATTAAGAAGAACGGGCCCTACGACCAGAGGACGTTTTC ACCTAAGCAGTT GAAGGTGGCGGTCATTTGCCAGGCGAAGCACGAGGGGCAGGTGGATGGATTCATCGCGAA GTTCTTGGAAGG TATGCCAGACGTTATGACGGGCAAGAACCGAGTTGCTAGATATGGTGACGGTTTTCTGCG GCGATTCGCCCT TGAGAAACCTTCTGTGACCTTCTTCACAGCGCCCTCAGCCAAGGCGAGCGATTACCTGGT GGCCAGCCGGGC TGCGCTGACCAAGGCAACGGACGAGGGTTTCAAATGGGACCTCGCGCTTGTGCAAGTGGA GGAGGAGTTTAA GGGATTCGACGACGAGAGCAACCCCTACTATGCCACTAAATCCGTCTTCCTGAAGCGAGA CGTGCCGGTCCA AAGTGTACGACTCGAAACCATGGCTCAGGCCGACAGCCAGCTGATTTTCTCTATGAACCA CATGAGCCTGGC GACATACGCCAAGCTCGGTGGTACCCCCTGGCTTTTGGCGTCACAGCAGACGGTAGCGCA TGAACTGGTTAT CGGTCTTGGCAGCCACAGCGTGGCCAACAGCAGGATCGGTAGCCAGCAACGATTCGTCGG GATTACGACGGT GTTCTCCTCCGACGGGAGCTATCTGCTCTCAGACCGCACGGCGGTTGTCCCCTATGAGGA GTATGCGACTGC GCTTTACGATACGCTCAAACGGAGCATCACTACGGTGAGGAAACAAGACAACTGGAGGTC TACGGATAAAGT CCGCCTGGTGTTCCACATGTTCAAGCCCCCCAAGGACACCGAGGCCGAGGCTATAAAACG GACAGTGGACGA TCTGGAGCTGGAGAACGTGACTTTCGCCTTCGTGCACATCGCCCCATCTCATCCCTACCT CATCTTCGACAA TACACAAAAGGGAATTGGTTTCCGAGACCCCAAGAAGGGGATACTCGGACCCGAGAGAGG TCTGCACTTGAA GCTGGGGGACTACGAGTCCTTGATCGTATTCAGCGGCGCAAGCGAGCTGAAACAGGCAAG TGACGGGATGCC CAGGCCATGCCTGCTCAAGTTGCACCGGCTTAGCACGTTCACTGACATGACGTATCTGGC GCGACAGGCATT CGAGTTTTCAGGTCATTCATGGCGAATGCTCTCCCCAGAACCGTTCCCTATAACTATTAG GTACTCCGACCT GATCGCCGAAAGGCTCGCAGGTCTCAACGCCGTCCCGGGTTGGGACGCGGAGGCTGTCAG ATTCGGCCAAAT CGGCCGCACGCTCTGGTTTCTGTAGTAACTCGAGGTTAACTTGT

292 42 GGTGTCGTGAGGATCCATGCCCAAGAAAAAGAGAAAGGTCGAGGACCCGAAGAAGAAAAG GAAAGTGGGCAG

CGGCAGCCTGAAAATCAAAATTCTCAAGGAGCCGATGCTGGAGTTTGGCAACGGCGCTCA CATATGCCCCAG GACCGGTATCGAAACCCTGGGAGTGTACGATAAGAGAGATGAACTGAGGAGGAGCGAGCT GCGAATAGGCAT TGTGGGTCGGGGCGAGGGCGTGGACCTTCTGGATGAGTGGCTCGACAAGTGCAAGCGCGG CATCGTGGGTAA AGAGGAGACCAAGTTCCCCAACTTGTTCAGGGGCTTTGGGGGCGTCGATGAGTACCACGG TTTCTACACCAA GATTCTGAGCAGCCCCCAGTATACCCGGACTTTGCAGAAAAGCGAGATTAACAACATCAG CAAGATCACCGC CCGAGAGGACAGGGTAGTGAAGTGCGTGGAGCTGTACTACGAGCAGATCCGATTCCTGTC AGAGAACAGGAG CATTGACGTGATCGTGTGCGTCGTTCCCAATGATATTTTCGACAGCCTTACTAAGGCCAC CGGAGACAAAGA CACCGAGTCCCTGGAGGCCTACCTCGAGCACAACTTTAGACGGTTGCTCAAGGCCCGCTG TATGCACCTTGG GATACCCTTGCAGCTTGTGAGGGAGAAGACCATCCTGAGCGTGAAGCCTAGCATAGACCA GCAGGACCTTGC CACAAAGGCTTGGAACTTCTGTACGGCCCTCTATTACAAGGGGAATAGGACTGTACCATG GCGCCTGGTGGA GGATAAATTCAAGCCTAAGACCTGCTACATCGGCATTGGGTTCTATAAGAGTAGAGACGG CGAAACGGTGAG CACATCACTTGCACAGGTATTCGACGAGTTCGGCCACGGGGTCATCCTTCGGGGAGCACC AGTTAGCCTGGA CAAACGAGACAAGAGGCCCTACATGGACGAGTCTCAGGCTTACGAACTGCTGGACAGTGC CCTGGCGGAGTA CGAGAAGGCCCTGATGCAAAAGCCCGCTCGAGTGGTGATCCACAAGAGCAGCAGGTTCCG GCCCACCGAGGT GAGCGGCTTCAGCAGAGTGCTGAACGCGAAAGGAATCAGAACGAAGGACCTCGTGAGCAT CACATCAACCGA CATCCGCCTGTTCAGCGACAAAAACTATCCCCCCACCCGCGGTACCTTGTTGTCCCTGTC TGAAACACAAGG AGTACTGTATACCAAGGGAATCGTAGATTTTTACAAGACCTATCCGGGCATGTATATCCC TTCACCCCTGAG GGTTGAGGCGTTCGAGTCCGACAGCTCTCTTGAAGACTTGTGTAAGGAAATCCTGGGCCT GACCAAAATGAA TTGGAACAACACACAACTGGACGGCCGACTGCCCATTACCCTGGAATGCGCCAATAAGGT GGGCGATATCAT GAAGTATGTGGACGCATCCGAAAAGCCACAGGTTGGTGTGGCGCTGTTTATCTTCATGTT GGAGCAACTCGT ACCCGGCTGGAAGCTGCCTAAGGTGAGTACATGGGTAGCACGGGTAATTTTCCTGAATAT TGTACAGGTGTC TATCGCTCTGCTTGCCGGGATTACTTGGAATAAATGGATGATGGGCCACAGTTTGTTGCA TACCAGCGATGC CCTGCCCCCCTTGCTCGCAGGATTCGCCGCCTACTTCGTTAACACCTTCGTGACCTACTG GTGGCACAGGGC CAGGCACGCCAACGACACCCTTTGGCGACTTTTTCACCAACTGCACCATGCGCCCCAGAG GATCGAGGTGTT TACTAGCTTCTACAAACACCCAACGGAAATGGTATTCAACTCTCTTCTTGGCAGTTTCGT GGCCTACGTCGT TATGGGGATCTCCATCGAAGCTGGCGCGTATTACATCATGTTTGCGGCTCTTGGCGAGAT GTTCTACCACAG CAACTTGCGAACACCGCATGTTCTCGGTTATCTCTTTCAACGCCCTGAGATGCACCGGAT CCACCACCAGAG SEQ jonaute Sequence

ID NO

GGACCGACACGAGTGCAACTACAGCGATTTCCCCATCTGGGACATGCTCTTCGGCAC CTACGAAAATCCCAG GAGAATAGACGAACCACAGGGGTTTGCCGGCGACAAGGAACAGCAATTCGTTGATATGCT TTTGTTTAGGGA CGTGCATTCCCTCCCCGGGAAGACACAACCAGCTCCCGTACTCGTCAAACCCGACGTGAG GTAGTAACTCGA GGTTAACTTGT

293 78 GGTGTCGTGAGGATCCATGCCCAAGAAAAAGCGGAAAGTCGAGGATCCAAAGAAGAAGCG CAAGGTGGGTTC

CGGGAGCAAAGGGCGGCACCAGGCGAAACACTACGCGGACGGCCTGGAAAAAATGCACGG GCAAAGGCCTGT

(Helicase) GATTTTCTACACCAACGGCCACGATATATGGATATGGGATGACCATCCGGCTCAGCACTA CCCGCCCAGACG

GTTGTACGGATTCTACGCGAAGTCCAGCCTGCAGTATTTGATAAGGCAGCGCAGTGAACG CAAGGCGCTGAA TACGGTGAGCTCTAAAACCGATATACTCGGAGAAAGACTCTACCAGCACGAGGCACTGAA GCGGATCTGCGA ACGCTTCGAGACCAAGCAGAGGAAGGCACTCGCAGTCCAAGCGACCGGCACGGGGAAAAC CCGCTTGTCCAT CGCACTTACTGACTCTTGCATGAAGGCCGGGTGGGTGAAAAGGGTGCTTTTCCTGTGCGA CCGAAGGGAACT TAGAAAACAAGCTAAGAACGCCTTTAGCGAATTCCTCAGCGCGCCTATTAGCGTACTGAC AACGAAAAGTGC GCAGGATACCCACAATAGAATCTTCGTGGCAACCTACCCCGCGATGATGAAGGTGTACGA GCAACTGGATAC GGGATTCTTCGACCTGATCATAGCCGACGAGAGTCACCGAAGTATTTACAACATCTACGG CGACCTCTTTCG CTATTTTGACGCCCTTCAAGTGGGCCTGACCGCAACCCCCGTGGAGATGGTATCTCGGAG CACCTGCCAGCT CTTCGGGTGTGACTTTAAGCAACCAACTTCTAATTACACACTCGAAACGGCTGTGGAGGA GGGTTATTTGGT GCCCTACCAAGTCGTGAAACATACCACAAAGTTTCTGCGCGATGGGATCAAGGGCCACGC GCTTAGCGCGGA GGAACTGGCGGAGCTGGAGGACAAGGGCATCGATCCTAACACTCTTGATTTCGACGCCGA GCAGATCGACCG AGCGATCTACAATAAAGACACCAATCGGAAAATCCTGCAGAACCTCATGGAGAACGGTAT CCGGCAGGCCGA TGGCCAGACCCTCGGTAAGACGCTGGTATTTGCTAGGAACCACAAGCACGCCAAACTCCT CGAACAGTTGTT CGACGAGCTGTACCCCCAGTACGGCGGTAAGTTCTGTCAGGTTATAGACAACTACGACCC CAGGGCGGAAGA GTTGATAGACGATTTTAAGGGCGAGGGCAGCAACGAACAGCTCACTATAGCAATCTCAGT CGACATGCTCGA CACCGGGATTGACGTCCCGGAGATCGTAAACCTCGTATTCGCACGGCCGGTTAAAAGCCC CGTGAAATTTTG GCAAATGGTTGGTCGGGGAACGCGACTCTGTAAGAATTTGTTTGGACCCGGCAAGCACAA GACGCACTTCCT TATTTTCGACCACTGGGGAGTCGTGGAGTATCACGGCATGAAACAACGCGAGGTAACTGT GTCCCAGAGCAA GTCCCTGATGCAGCAATTGTTTGAAAATAGATTGGAGCTCGCCAAGACCGCGTTGCACCA CGCCGAAGCCGA CTTTTTTGAGACGATGGCGGGGTGGCTGCACAAAACGATAAATAGCCTGGACGATCGAAC GATTGCCGTTTG TGATAAGTGGAAAACTAAGCAGCAAATGTCCGACCTGGAGACGCTTAGACAGTTCGGTGC AAACACCGTCAC GCTGCTTGAGTCAGAAATCGCCCCGTTGATGCAATGGCTGGATGTCAGAGGGCATAGTGA CGCATATCAGTG GGACCTCCTGGTCTCACAGATCCAACAACAAAAATTGAAGCAGGCGGCAGCCTTCGATGA TCTCGCTGGGAG GGCAATCAATCAACTGTGGCAGTTGCAGATGAATTTGAATCAAGTTAAGGCAAAGTCCGA GTGGATTAAGCA GTGCCGAGAGACGGAGTGGTGGCAGAAGGCGTCCCTGGATGAACTGGAACAAATGCGACA AGAACTGCGGGG CATTATGCAGTACAGGAACAAGGGTGACATTCCGAAGACAGAGGCGCCCATCATAGACAT AACGGACTCAGA GGAGGTGCGCGAGAAACAATCCTCCTACCTGAACTCAGTTGACATGGTCGCGTATCGGGT CAAGGTTGAACA GGCGCTCCAGGAGCTCTTTGAGAGAAACCCCATCCTTCAGAAGATCCGGAACGGGGAGGC CGTGTCTGAGCG CGAGCTTGAGAACTTGAACGCTCTCGTGCATACACAACACCCGGATATCGATCTCAACAC ACTTAAAAAGTT CTATGGGACCGCGGCTCCGATGGATCAAATCCTTCGGACAATAGTAGGCATGGACGGGAA CACGGTTAATCA GCGCTTTGCGGCGTTCATACAACAGTACCCCTCACTGAGTGCGCGCCAAGTTCAATTCCT GTCCCTGCTGAA ACGACAAATTGCTCAGAGTGGGGCCATAGAGATTGACAACTTGTACGAAATGCCATTCGC AGCTATCGGCGA ACCCGACAGCGTATTTAGTAACGCGGAACAGATTGATGACCTTCTGGCGATTGTGGAGAG CTTCGGGAAGCA GCCCCAGCAGCAGTCTACGAGACAGGCCAATGAGACATAGTAACTCGAGGTTAACTTGT

294 64 GGTGTCGTGAGGATCCATGCCTAAGAAAAAACGCAAAGTAGAAGATCCTAAAAAGAAGAG AAAGGTCGGCTC

CGGGAGCATGGATTACATACTTGAATTCGACGAGTTTATTCGAAGCATCAAGCAGAATAT TGATACAAAGTA

(Helicase) TTCATTCCTGTTGGGGGCTGGCGCTTCAGTCGAATCAGGTATTCCGTGTGCCAGCGAATG CATCTGGGAGTG

GAAGAGGGATATCTTCATCAGCCAAAATCCGACCCTGGCTGAGATGCACAACAACATCAA GAGCCAGAACAT TAAGCGCAGCATCCAGAACTGGCTCGATAACCAGGGCACCTACCCAAAGGAGGGCGAGGA CATCGAGTATTC CTACTATATTGAGAAGGCTTTCCGGATTCCCGACGACCGGAGGAAGTATTTCGAACGAAA CATCACCGGCAA GACTCCGTCACTGGGCTACCATATCCTGTGTCTGCTGGCGGAACGCGAGATAATCAAGTC CGTTTGGACAAC AAACTTCGACGGCTTGATCATTAAAGCCGCCCATAAGTACCAGTTGGTGCCCATCGAGGT CACCCTCGAGAG CCAAGATAGAATCTATCGGACGGATGCCAACAAGGAGTTGCTTTGCATAGCCTTGCATGG GGACTACAAGTA CGGTCCGCTGAAGAATAGTAAAGAGGAGCTGGACAGCCAGTCTGACATCTTCGTGAATGC CCTTTCCTTCGA GGCGTCTAAGCGCTATTTTGTGGTGATGGGATACAGTGGGCGCGACAAAAGCCTCATGCA GGCTATTGAGCG AAGCTTTTGCAGAAGCGGCGCTGGCCGCCTTTACTGGTGTGGATACGGCCGGAACATCGC GCCTGAGGTACG CGTGCTGATCGAGAAGTTGAACTTGTATGGACGCGAAGCGTTCTATATTCCCACGGACGG GTTTGACAAGAC GATGTTGAACATAGCCCATATGTGTTTCGAGGATAAGGAATTGCAGGAAGAAGTGGAGAA ACTCAAAGCGGA TCTCGGTGCGGGGTATGAGTGTCGCACCACCACGTTCAGCCCCTACAAGGAAGGGGTGAA TAAGATCGTGGA CACAAATGTTTACCCGATCAAATTCCCCGACAAGTGCTATCAGTTCGAGGTGAAGAACAG CAGCGTAATGAA CCTCTGGGATTACTGCAAGCAGCTGATAGACTATAACATTGTGGCCGTCCCCTATAACGG AATGATCTACGC CTGGGGAAACCGCAACAGCATCAGCAACATGTGCGGACCAAATGTGAACGGGACGATCGA ACTCGTTCCTCT CACTAGGAAAATCTTTTTCGACAACGGCACTCTCAAGTCAATGCTCCTTAAAACTTTGCT CATCGTGATTGG AAAGCACTCCAATTGCAAGTATAACCGAAACAAAATCTGGCGAGAGTCCAAGAAAATCAA CTACACTATTAA CGGCAAAAACATTGAAGCGTACCAAGGCATTAGGTTTAGCTTGTTCATGGACTGGAAATA CAGCTACCTCAC CCTGACCCCCGCTTTCTACTACAAAGACAGGAACAACGTTAGCAAGGAGGAGAACAAAGA GTTCAGCGACCG GTTTATGGAGCAAATATGTAAGATGCAAGCCAATAAGAATTACGCCGCGTACATAAAACA CTGGATTAACAT TATCTTTCCTGATGGCAAGTCCATCATTTCCATGTACCCGTGTAACAGCGAGAGCGGATT CGAGTTCACCAT TGTTAATAAGTCACTGCTGGTCGGACTGCGGAGTAGGCAAGCACTGCATAATCCTGACGA TGACATGAAGAA ACGGATTTGCATCGGTGGAGCTGAGTTGGCGGACACCGAGCTCAAGTTCTACAATCCGGC TCAGAATGCAAT GCACACCGACTTCCACCCCATGAGGGGCCTTATCAACAATAAGCCCTACGACTTCTACAT GAATAACAGGCT SEQ Argonaute Sequence

ID NO

GTTTAAATCTAACATCTCCCTGGGCGTGATCTCTCCTGTGGGTTCAGAGAAAAAGCT GGAGGACTTCCTGGA CCGACTCAACAAAAAGCACAAAGTGAACTACAACGTCGACTATGTCATAGATTATCCTGG GTTTCAGTCCGT CTACGGGGTTGGCCTTTCTGTCCCTCTGATCGCAGAATGGGCGTTGTTGGATGATAAAAT GCTGAATAAAGC CAACCTGTATCAGAGCTGCCTTAACTTCGGGGATCAGATCAAGAAGAAGATTGAGTACCT GAAGAGCCGCGA CAGCGTGGACGTGATCATCATATACATTCCGAAAGAGTACGAGCTGTTCACCTTCTTCAA CGACGGAAATAT CCATTATGACCTGCACGACTACGTGAAAGCATTCAGCGTGCAGAGGCACATTAGCACCCA GTTCATACGGGA GAAAACAATTGACTCTGAGCTTGACTGCCAGATCGCGTGGGCCCTCAGCCTCGCTATCTA CGTTAAAGCAGG CCGCACTCCGTGGATTCTCAGTGGCTTGAGGACTGATACCGCCTTCGCCGGCATCGGCTA TAGTGTGGACCA TATAAAGACCGACAACCAGACCCTTATCGGCTGTAGCCATATTTACGGGGCAGATGGCCA AGGTCTCCGGTA CAAGCTCTCCAAGATTAAGGATGTGACCTTCGACAGCAAGAACAATCCCTACCTGTCCGA AAACGAGGCCTA CCAACTCGGCCTGAATATCAAGGAACTTTTCTTTGATAGCTTCAAGACGTTGCCCCAACG AGTGGTCATACA CAAAAGGTTTCCGTTCCAGAAGCAGGAGATCGATGGCCTGACTAAGTGTCTTGGGTCCGC GGGAGTGAAAGA CATAGACCTCATCGAAATCACCTTGGAGGATCGATTTAGGTGCTTTGAATACGACAGGCG ACTCCAGATTGA CGGCTACCCCGTGAGGAGGGGCGTGTGCTTCGCCATCAACGAGAACACCGCCTATCTGTA CACCCACGGTAT TGCACCAAGCGTCAAGAATGCCAATCTCCGCTACATACAGGGCGGTAAGAGCATCCCTGC CCCCCTGAAAAT CGTTAAGCACTACGGGAACGGCGACCTGGCCCAAATTGCGACAGAGATCTTGGGCCTGTC AAAGATGAATTG GAACAGTTTTGGTCTGTATAGCAAGCTTCCGTGCACTATCCAATCTAGCAACGCTATCGC TCGCGTAGGGTG GCTGCTCTCCCAGTATGAGGGCGTAGTTTACGACTATAGGAATTTCATGTAGTAACTCGA GGTTAACTTGT

295 70 GGTGTCGTGAGGATCCATGCCAAAGAAGAAACGAAAAGTGGAAGACCCCAAAAAAAAGCG GAAGGTGGGCAG

CGGCAGCATGAACAATCTGATGCTGGAGGCGTTTAAGGGCATTGGCACCATCAAGCCCCT GGTGTTCTATAG GTACAAGCTCATCGGCAAGGGGAAGATTGAGAATACCTACAAGACGATCAGCAACGCCAA GAATAAGATGAG TTTCAATAACAAGTTCAAAGCGACGTTCAGTAAGGGAGAGACCATCTACACCCTTGAGAA ATTCGAGGTCAT GCCCAATCTTAACGATGTGACCATTGAGTTCGACGGAGAAGAGGTTCTCCCGATAAAAGA CAATAATGAAAT TTACTCCGAAGTCGTGCAATTTTACATCAACAATAACCTTCGAAAGATCAAACTGGATAA CAAATATCAGAA GTATCGAGCAACGAATACCAGAGAGATAACTGGCAACGTCATACTCGACAAAGACTTCAA GGAGAAGTACAA GAAGTCTAAGTCAGGGTTCCAGCTCAAGCGCAAATTCATAATTTCCCCCAAGGTGAACGA CGAGGGTAAGGT AACCCTGTTCCTTGACCTGAACAGCAGCTTCGACTATGACAAAAACATTTACCAGATGAT CAAGGCCGGGAT GGACGTGGTGGGGCAGGAAGTGATTAATACGTGGAATAATAAGAAGCAGAAGGGCAAGAT TAAGAAGATTTC TGAGCTGACGATCTCAGAGCCTTGTAACTTCGGCCAGTCCCTTATCGATTACTACGTTTC CCTCAACCAAGC TGTGAGGGTGAAGAACTTTACGGAAGAGGAAAAGAACACAAACGTTATCGTCGTCCAGGT GGGAAAGGGCGA GGTTGAGTATATTCCGCACGCGCTCAAACCCATCATTACTAGGGAGTACATAAAGAAATA CGATGAGGCCTT CAGCAAAGAGGTAGAAAACCTGATCAAAATCAACATGTCATACAGGTACGAAATACTGAA AAAGTTCATCGA CGACATCGGCTCTATAACCGAACTGAACAACCTTAAGTTTGAGAACACGTACATAGATAA CATCGAGTCACT GGGCTACCAACAGGGAAAGCTGAACGATCCCGTGCTGATAGGCGGCAAAGGCATCCTGAA GGATAAGATACA TGTGTTCAAATCCGGCTTTTACAAAAGCCCCATTGACGAAGTCAAGTTCGGCGTGATTTA CCCGAAAGGCCA CACCAATGATAGCAAGTCCACCATCCGGGCGATTTATGATTTTTGTACCGACGGGAAATA CCAAGGCAAGGA CAACATCTTCATTAACAACAAACTGATGAATATCAAATTTAGCAACCAGGACTGCGTGTT TGAGGAGTACGA GCTCAATGACATAACGGAGTATAAGCGAGCCGCGAATAAGTTGAAAAACAACGAGAACAT CAAGTTTGTAAT CGCCATCATCCCCGCGATTGATGAGAGTGATATAGAAAATCCCTACAACCCTTTTAAGCG GGTCTGCGCCGA GTTGAATCTGCCCAGCCAGATGGTAAGCCTGAAGACCGCGAAAAGATTCGGCACCAGCAA GGGTAATAACGA GTTGTATTTTCTGCATAACATTAGCCTGGGTATCTTGGGTAAGATAGGGGGGGTCCCTTG GGTCATTAAGGA CATGCCTGGGGAAGTTGACTGCTTCGTGGGCCTGGATGTGGGCACCAAAGAGAAAGGGAT CCACTACCCCGC ATGCAGCGTCCTTTTCGACAAGTACGGCAAGCTGATTAACTATTACAAGCCCACAATCCC GCAGAGCGGCGA GATCATCAAGACAGACGTGCTGCAGGAGATCTTCGATAAAGTGCTGCTGAGCTACGAGGA GGAGAACGGGCA GTATCCTCGAAACATCGTGATTCACAGGGACGGGTTCAGCAGGGAGGACCTGGAGTGGTA TAAGAACTACTT CATCAAAAAGAATATAAACTTCACGATTGTAGAAATCAAGAAAAACTTCGCCACCCGCGT CGCGAACAACAT AAACAATGAAGTGTCCAACCCATTTAAAGGGAGCTTCATACTGCGCGAGAACGAGGCCAT CGTTGTAACCAC CGACATCAAAGATAATATCGGCGCTCCGAAACCAATCAAAGTCGAGAAGACATACGGCGA TATTGACATGAT GACCATAATCAACCAGATCTACGCCCTCACGCAAATCCACGTCGGAAGCGCGAAATCTAT GAGGCTGCCGAT CACGACCGGCTATGCCGACAAAATATGTAAATCCATCGAATACATCCCGAGCGGTAGGGT GGACAACCGGCT CTTCTTCCTGTAGTAACTCGAGGTTAACTTGT

296 61 GGTGTCGTGAGGATCCATGCCGAAGAAGAAGCGAAAGGTCGAGGATCCCAAAAAGAAACG GAAGGTTGGCTC

CGGGTCTATGGGCAGGCAACTCCAACTGAACTTTACCCCGCTCAGGGTTAGGGGCGACGC CATCAGACTTCA GGCGCTGCCTTTCGAGGACGCTCAACAATTTAGGAATCTGCGCGATGAGCATCGAGCACA CTACGCTGTGAC GAGAAGGAGCGACCACATCGTGGCCCTCCCACTTACACTGAATGCCTCCCCAATCGGCGA GGAGAAGATCGT GAGCGTTGTGGAGCATGCGAGTTTGATTCGGCCCCTGCTTGAACAGAGGTTGGTGACCCT TCTGTCCAGTAA CCGGAGGCCGGTGGCCCGGTATAATCCGATCACCACCATTGGAAGAACCTTGCCAACGGG CTTCATAGAAGC CGACCGACACCTCCATTTGCAGTCCCGCGTGCTTATTGCTATCCGCTCCCTCAAGCTGCC GGACGCCGAGCC CTTGGGATTGCTCTGGGACATCGAAATCCAGAAAACATGCGCGACTAGCCTTGCCGTCCT GCACGCACAAGG GGTACGGCTGGACGGTCTCACAGTGGAACGGCTTGTCCCGGTGGAGGACGTGCGAATGTT GCCTTATAGGCG ACTGGTGGGCAGAGTAGGCGCGCTGACCGATGGCCACGCCCGATTGAGCGAGCGGTTCCA GAACGTCGAAGA ATTGCTGCCCCTGGACGAGCTTTACCTGGAGGCCAGTCCGGAGAACCTGAGGCACCTTCT GCAGCATTTCAT GCGCAACACAAGCGGGCGAGTGCAAGGGAAGATAGACGAGATCGTCTTCGAGAACTCACG GGGACGCGCTCG GATGGAGCACATTGCCCGGATCTCCGACTGGCTTAGAGGCCTGGGCGAGATTGAACTGCA GGAGGGTTTGTC TGTAGGCATCGGAAACCTGCTCTCTGAAAAGGACGCCCAGAACTTTCCCAGGTTCACTGA GGGAACGACCCC AACCTACGTGTTTGACGCTGGGACGTTGAAGAGCGAGTCAAGGGCCGCAGTGGGCCTCAG TAAATTCGGGCC CTACAGCCGGCATGTATTTACACCGACTCGACCCAACGTTTGCGTCATCTGCGACCGCGC AAGAAGAGGACA GTTTGAGCTGTTCCTGCGGAAATTCCGGGATGGCCTGACTGTTGATGGGAAGTCCCTGCC GTTTGGTCGCGG SEQ Argonaute Sequence

ID NO

GTTTCTGGGAATATATGGCCTTCAGGATATCAACCTGACCTTCGTCGAGGCGGATGC ATTCACCGCGGACGC GTACCATGCTGCCGCAAGCAAGGCAGTACGGATGGGAGCCGAGGGCGCACCGTGGCACCT GGCACTCGTGCA AACAGAACGCGACAGTCGGCAACTGGCTCCCCCCAAGAATCCGTATTTGGTAGCGAAGGC GGCGTTTCTGTC TAATCAAATTCCTACCCAGTTTGTGGCGTTCGAGACATTTTCTATGGCGCCTCTGAACCT CGCGTACACACT GAGCAACCTGGCGTTGGCGGTTTATGCCAAGTTGGGCGGCATCCCATGGCTGATCAAGAG TGATAAAGGTAT AGCCCACGAGGTCGTCATCGGGTTGGGTAGTGCCGCGATCGGGGAGTCCCGATTCAGCCG GAAGGAGAGGAT TGTCGGCATCACAAGTGTTTTTCGGGGTGACGGCGGGTACCTCTTGTCTAACCTGTCCAA TGCCGTGCCCAT GAGCAAGTACGGCGAAGCATTGACCGAATCTCTCCAGGCGACCCTGCAGAGGGTTCGCAA TGAGATGAACTG GATCAGGGGGGACAGCGTTCGGGTCATAGTTCACGCTTTCAAGCCAATGAGGAACACGGA GGTGGAGAGCGT TAAGGCTGCGCTGAAAGAATTCAGCGAGTTCGACCTGCAATTTGCTTTCCTTCACGTTAA GCAAGACCACCC GTACCTCCTTTTTGACGACGACAGCATCGGTACAAAAGGGCGAGGCGAGAAAACCCCCGT GCGAGGCTTGTT CGCGGAGGTCGGACACAACGAGACACTGCTGACCCTGACCGGACCACAGCAGCTGAAGAG ACCCACCGACGG GCTGCCGAAACCGCTTCTGCTCAGCCTCCATAGGGACTCTACTTTCACAGATATAATCTA CCTCACGAAGCA GGTGTACTGGTTTAGCAATCACTCATGGCGGTCTTTCCTGCCAGCAGCGATGCCGGTGAC GATATACTACAG CGACCTGGTGGCTGGTTTGCTCGGAAGACTGGATAGGCTGGGGTCTCGCTGGTCACCGAG TGTAATGCTGGG CAAGATCGGAACCACAAGATGGTTCCTGTAGTAACTCGAGGTTAACTTGT

297 12 GGTGTCGTGAGGATCCATGCCTAAGAAAAAACGGAAAGTGGAGGATCCCAAAAAGAAGCG GAAGGTCGGCAG

CGGCTCAATGGCCTATCCAATCGCTGACGACCGGCGAAAGTACTTCCACAGTCTTTTCGA GAACAAGGAGCC GTACATCGGATACAAGGCTCTGTGTCTGCTGGCCAAGAACGACATCATCAAGAGCGTGTG GACGACCAACTT TGACGGGTTGACTGTGCGGACCGCATTCCAAAGTAACTTGACCCCCATAGAAATAACCCT CGACAACGCAGA CAGACTGTTTAGGAACCAAAGCAAGAGAGAGCTGCTGAGCATATCACTTCATGGCGACTA TAAGTATAGCAC GCTGAAAAATACCGAGAAGGAGTTGGACTCACAGGACGGCACCTTCAGCGAGCATCTGGG TAACTATCACGT CGACAAGAACCTGATTGTGATAGGTTATTCAGGGCGCGACAAAAGTCTGATGAAATCCCT GAACGATGCATT CACCAAGAGGGGCACCGGCAGGCTGTATTGGTGCGGCTACGGTGACAAGATCAACACTGA GGTGGAAGAACT TATACGCAACGTACGAACCGCTGGAAGGGAAGCCTTCTACATATCCACCGATGGTTTTGA TAAGACGCTGAT CGACCTTTCTAAAAGCGCTCTGGAGGACAACAGCATGAGCCTCGAAAGCCTTAATTCCAT CCTGAAACTGGC AAACAACGAGGAGCTCTCAAAGATCGAATTTAGCCAGAGCATCACCAGGACCGACAAATA CCTGAAGAGTAA TCTGCACGCAATTGTGTTCCCCAAGGAGATATTCCAGTTTGAAGTCGAGTTTGGCGACAA CAAGCCCTGGTC ATTCCTTAAAGACAAAACTAACAACACCGACATATGCGCCATCCCCTTCAAGAGGAAGGT TTACGCCCTGGG CACGCTCAGCGGTATATCTAGCGTGTTCAAAAACGTGCTCAAAAGCGAGATTAGGAGGGT ACCAATCTCCAA GTTCGACATCGACAATGTGAGCAGCTTTAGGTCTCTCATGATCCAAACGGTGATCAAGCA CTTTCTGTCATA CGGAATCTTCGACAGCAACCTCAAGGACAAACTGTGGCTTAGAAATTCCGACAATTCCTT CGGGGACAAGAA AATACACAAGGCGATTTACCTCAGCTTCTACTTCGATAAGAGCAGCAAATTCGGCTACAT TAGCTTCAGCCC CAGCATACACATAACCTCCGATAACGAGATCAGCAAGGAGGTGAAACAAAGGATTAGCAA AGAGATCTTGGA AAAGCTCCGAAACGATAAGTTTGACGAAATACTGGAGTACTGGAACACCATACTGTTCAA TTACAAAAATCT TAAGTTCGAGTACCCCCTTAACAGCGGGACCGGATTCGAGTTCCAAATAAGCCGAAACAC TGCGTTTGCCGA AATCATGGTGCTGGACCCGAACTATCGAGTCTATAAACCAAGCGATTACAACAACAAGCT GACCCAGTTCAG AGGTGTGCAGTATCTGGAGCCGCAACTGATCTTTCAGAACTCACTGAGTAACTCCCACAC CAAGGACTACCA CCCCATGAGGGCGTTGACCAATAACAGGCCATACGACAACAACTTGAATGGCATCATCTA TTCAAACGAGGT CAATTTGGCCGTGATTTGCGGGGAAAACTACTCCAAAAACCTCTACGACTTCCTGAACCA GCTTAACCTTAA ACACCCCACAGACAACATCAACCCCGATTTCCTTATAGAATATCCTGGCTTCGCGAGCGC CTACAACCTCCC CATCAACATCCCATACTATGAGGACGCGGACAAGTGGATTAACATAGATTTGGAGAAGAG CAACAAGTCCGA CAGCGAGAACGCCATCATCGTTGCACGCCTCATCACAAGCAAAATCGAGCAGATCATAAA CATACAGTCTCA GCACACCATCGTCATCTTCATCCCCAAAGAGTGGCAGGCCTTCGAGAGCTTCCAGGAAAA TGGCGAGGACTT CGACCTCCACGACTACATCAAGGCGTTTAGTGCATCCAAGGGCGTGAGCACCCAGCTCAT CAGGGAGGAGAC ACTGTCAGACAGGTTGAAATGCCAGGTCTACTGGTGGCTGTCTCTGAGTTTTTATGTAAA GTCTCTGCGCAC GCCATGGGTCTTGAATAATCAGGAGAAAAACACCGCCTACGCCGGCATAGGCTACAGCAT TAAGAAGAACAG CAATGACACCGAGGTGGTGATCGGTTGCAGCCACATTTACGATTCTAATGGCCAGGGCCT GAAGTACAAGTT GAGTAAAGTAGATAATTACATCCTGGATAAGCAGAGCAATCCCTTCATGAGCTATAATGA CGCGTTTCAGTT CGGCGTGTCAATTAGGGAACTGTTCTACAATAGCCTGGACAGGCTCCCCGAGAGGGTGGT TATCCATAAGCG GACCAAGTTTACGAACGACGAGATAAAAGGTATTACTGCCAGCCTCAACATGGCGGGGAT TACCAAGATAGA TCTCATTGAAATCAACTACGAGACGGAGGCTAGGTTTCTCTCCATGAACGTATTCAACGG CCTTCTGGGCAT AGACAAATTCCCTATCAGTAGGGGTACCTGCATTATTACGAATAAGTACGAAGCCCTCCT TTGGACCCACGG CATCGTGCCCTCCGTGAAGAATCCCATTCACAAGTATTACCTGGGCGGCAGGAGCATCCC AGCCCCGATCAA AATTACTAGGCATTACGGCGAGAGCGATCTGAATACTATTGCCATCGAGATCCTCGGCCT CACCAAAATGAA TTGGAATAGCTTTGACCTTTACAGCAAGCTCCCTGCGACGATTAACTCCTCAAATCAGAT AGCCCGGATCGG TAAGTTGCTGGCGCGCTTTGAGGGCAAGACCTATGATTATAGGCTCTTTATTTAGTAACT CGAGGTTAACTT GT

298 54 GGTGTCGTGAGGATCCATGCCCAAGAAAAAGAGAAAGGTGGAGGACCCAAAGAAGAAACG GAAAGTTGGCTC

TGGGTCAATGAACCTGACCGTAAACCTCGCCCCCATCAGCGTGCAGGGCGACTGCTCAGT CCTGATTGGCAG ACAGCGCTACGACGAGCAGAGGCTGGCTGAACTTAGGTCAGACTTTCGGGGCACCCACGT GTTTCGGCGAGA CGGTCCAGATAGCATGATTGACATCCCCGTGGTCCCCGACGCGGCACCTCTGGGCAACCT GAGGGAGACGAT CGACCTTAGGCGGTACCAGCGGCTGTGGCCCATGCTTCTGCAGGAGTCCCTCATCCAGCT GCTTGGTAAGCG CCCCATCCAGTCCAGCAAGCCCTTGAAGTTCCTGGGAGCTAGGTCTCCTCTGATCGAGCA CCCGGATCTCCC TGAGTGGTTGAGGCGGGTGAGCGTTACCGAGATCCACACCCGACACATCACCGTGGACGG CAAGCAAATCTA CGGTATCGTGTGCGATGTGAGGGCCAAGTCTTTTATCCTCGCCACCTGCAGCGAACTTCT GAAATTCGGCGT GACCATCCTTGGTAGATACGTCCAAATAGAACAGCCCGCGATAGACGAGAGAACCATGCC TAAAAGGAAGCT CATCGGCAGGGTAAGGTCCATCCAAGGGGATGATCTGCTTCTTGACGACTGTGAGGCCGG CTTCGAAAAAGT SEQ Argonaute Sequence

ID NO

CGCTGCGAATGAGGCATTTCTCGAGCCGCGGAAGGAAAATTTCGAGGACTGCGTGAG GCAGGTGCTGAAGCG GGACGCCGAGAGGGTGTTGGAGAGGTCAGCTCGCGCCAGCCAAAACCTGGCCGCAGGCCC TGGGAAACTGGA ACACATCGACGGAATCATCAGGTATCTTAGGGAGAAGAAGCCCGCAGCGGTGCCCGGCTG CCATTTCGTGAT CGATGCCATGCTCAACACAAACGGCCACATTTTTCCACCCGGGGAAACAATGGACAAACC CTTCCTCTTGTT CGACCCTAGCGGTTCACGGAGAGAAGACTGGCCCGAGAAGGGCCTTAAAGATCACGGCCC CTATGATGAGCA GGTGTTTTCCCCCAAGTCCCTGAAGATCGCTGTTGTGTGCCAAAGCCGGTTGGAGGGCAG AGTGGACGAGTT TCTGGCGAAGTTTCTCAATGGGATGCCGAAGGTCTTTCAACCCGGCAAGAGCTTCGCCCG CTACGGCGACGG ATTCGTGAAACGATTCAGACTGAACAAGCCCGAGGTGCACTTCTTTCTTGCAGATGGCAA CTCCGACGAGGC ATACGCCGTGGCCAGCCGCGAGGCACTCGATAAAGCGAGGGATAGCGGGTTCGAGTGGGA CCTGGCGATTGT GCAAATTGAGGAGGAGTTCAAGTCACTGGCCGACGGCTCCAATCCCTACTACACCACTAA GAGCATCTTCTT GCGGAGGGACGTTCCGGTGCAGAGCGTCAGGCTGGAGACCATGAGCCTGTCAGATAATGA CCTGGTGTTCCC CATGAACCACCTGAGCCTCGCTACCTACGCCAAGCTGGGGGGCACGCCCTGGCTCCTGGC TAGCTCACAAAC CGTGGCGCACGAACTGGTGATCGGACTGGGTAGCAGCACCAGCTCCGAATCAAGGCTGGG CAGCCAGATGAG ACATGTGGGAATCACCACCGTGTTCAGCAGTGACGGCAGCTACCTGCTTTCTGATAGAAC CGCCGCAGTGCC CTTCGAGCAGTACCCACAAGAGTTGAGGAAAACGTTGCGAAAAACAATCGAGGCCGTCAG GGCCGAGGACAA TTGGCGGAGTAGCGACAAGGTGAGGTTGGTATTCCATTCATTCAAGCCGTTCAAGGACAG CGAGGTAGAAGC CATAGAGGCGCTGACCACCGACCTGGGCCTGGGCGACGTGAAGGCCGCCTTTCTGCACAT TGCGCCCGACCA CCCGTTCCTTATCTTCGACCACGACCAAATGGGCATCGCCGCACGAGGGGGCAAAAAAGG CGTGTTGGGCCC TGCTAGGCAGTTGCACATCCGGCTTAGCGACGCTGAGAGCCTTGTGGTCTTCGCAGGGGC CAGCGAGCTTAA ACAGGTGACGGATGGTATGCCGCGACCCGCGCTGCTCAAGCTGCACCCCAAAAGCACCTT CAAAGATATGAC CTACCTGGCAAGGCAGGCCTTTGCCTTTAGTGCCCATAGCTGGCGGATGCTGTCCCCCGA ACCTTTCCCAAT TACTATCCGCTACAGCGACCTGATCGCCGACCGCCTGGCGGGACTCGCGTCTGTTAAGGG CTGGGACCCCGA TGCCGTGACGTTCGGCGCTATCGGTCACAAGCCTTGGTTCTTGTAGTAACTCGAGGTTAA CTTGT

299 23 GGTGTCGTGAGGATCCATGCCAAAGAAGAAACGAAAAGTGGAAGATCCCAAGAAAAAAAG GAAAGTTGGTAG

CGGCAGTATGATAATGAGCCTGGAGAGCAATATCTTCACTTTTAGCAACCTCGGGACACT TACCACGCAGTA CCGACTGTATGAGATCAGAGGCCTGCAGAAAAGGCACCAAGAGTACTACCAGAACAGGCA AATCCTGATCCA CCGACTCTCCTACCTTCTGAAAAATGCCGTAACTATCATAGAGCGCGACGAGAAACTGTA CCTTGTTGTAGC TGCCGATGCCCCGGAACCACCCAATAGTTATCCCATCGTTAGGGGCGTCATCTACTTCAA GCCCACCGGCCA GATTCTGACCCTGGACTACAGCCTCCGAACACCCCAGAACGAAGAGATCTGCCAGAGGTT CCTCCATTTCAT GGTACAAAGTGCCCTGTTTCAAAACGCGAATTTGTGGCAACCCAGCGCCGGAAAGGCTTT CTTCGAGAAAAA GCCCTCATTCGAGTTCGGATCAATTCTGTTGTTTCAGGGATTTAGCGTTAGGCCCATATT CACCAAGGACAA GATCGGCCTGTGTGTAGACATCCACCATAAATTCGTCAGCAAAGAACCCCTCCCTAGCTA CCTGAACTTCAA CGAGTTCCAAAAATACAGAGGCGTGTCATGCATCTACCATTTCGGCCACCAGTGGTACGA GATCCAACTCTC TGAACTCTCCGAGCTTAACGCGACGGAGGCAATGGTACCCATCGAGAATAAGTTCGTGAC CCTTATTAACTA CATCACCCAGCAAGCCAGGAAGCCCATCCCGGAAGAGCTGGCAAACGTGTCACAGGACGC AGCCGTCGTGCA CTACTTTAACAATCAGAACCAGGACAGGATGGCGGTGACGAGTCTGTGCTATCAGGTTTA CGACAACTCTTA TCCAGAAATCCGAAAGTACCACCAGCACACCATTCTGAAGCCACACATCCGCCGCAGCGC GATCCACGGAAT AGTGCAGAAGTATCTCGCGGAGCTCAGGTTCGGCGACATAACCCTGAAGGTATCAACTAT CCCCGAGCTGGT GCCCCAGGAGATGTTCAACCTGCCCGACTATTGCTTCGGCAACGATTACAAACTGAGCGT GAAAGGAAGCGA GGGCACAGCCCAGATTAGCCTCGACCAGGTCGGGAAGCAGCGCCTTGAGCTGCTGAGTAA GGCTGAAGCTGG TATCTACGTGCAGGAAAAGTTCGACCGCCAATACATTCTCCTGCCCCAAACCGTGGGGGA CAGCTTCGGGAG CCGGTTCATCGACGACCTCAAGAAGACCGTGGACAAGCTGTACCCCGCTGGAGGAGGGTA CGACCCGAAGAT CATTTACTACCCCGACCGAGGTCTCCGGACCTACATCGAGCAGGGTAGGGCTATACTGAA AACAGTTGAAGA GAACGAGCTGCAGCCCGGCTACGGTATCGTAATGCTTCATGACAGTCCGGATCGACTGCT CAGACAACACGA CAAACTCGCAGCTCTGGTCATTAGGGAGCTGAAGGACTACGATCTGTACGTGGCCGTCAT CCACAGCAAGAC CGGGAGGGAGTGCTATGAGTTGAGATATAACAACCAGGGCGAGCCCTTCTATGCAGTAAT ACATGAAAAACG GGGGAAGCTCTACGGCTACATGAGAGGGGTGGCGCTCAATAAGGTGCTTCTCACCAACGA GAGGTGGCCCTT TGTGCTTTCTACCCCCCTGAATGCGGACGTGGTGATCGGAATCGACGTCAAGCACCACAC CGCCGGTTACAT AGTCGTCAACAAGAACGGGAGCAGGATCTGGACTCTGCCCACGATCACGAGCAAGCAGAA GGAGAGGCTGCC CAGTATCCAAATAAAGGCGAGCTTGATCGAGATCATCACTAAGGAGGCCGAGCAAACAGT AGATCAGCTGCA CAACATAGTGATACATAGGGACGGACGAATACACGAAAGCGAGATCGAGGGCGCCAAGCA GGCGATGGCCGA GTTGATTAGCAGGTGTACGCTGCCTGTGAACGCCACACTCACGATCCTGGAAGTGGCGAA GAGCAGCCCCGT TAGCTTTAGGCTGTTTGATGTCTCCAATACCAATTCTAAGGACCCGTTTGTGCAAAACCC ACAAGTCGGGTG CTACTACATTGCCAACAGCACTGACGCCTACCTGTGTAGCACGGGGAGGGCGTTTCTCAA GTTTGGCACCGT GAACCCCCTGCACATAAGGTATGTGGAAGGTACGCTCCCCCTTAAACTGTGTTTGGAAGA CGTGTACTATCT GACAGCCCTGCCTTGGACGAAACCCGACGGGTGCATCAGGTACCCCATTACCGTAAAGAT CAACGACAGGAG GCTTGGGGAGGACGCCAGTGAGTACGACGAAGACGCCCTGCGCTTCGAGCTGTTCGAGTC TCTCGAGTCCGA GGATGACTTTGACGAGATGACCGACAGCGACTTTAATCAGGAGGAGACAATGGTGTAGTA ACTCGAGGTTAA CTTGT

300 16 GGTGTCGTGAGGATCCATGCCCAAAAAGAAGCGGAAAGTCGAAGACCCCAAGAAGAAGAG AAAGGTGGGCTC

CGGCAGCGTGGGCGACAAGACCTTCAGCTTCAAGGTGTATAGGAAACTGAAACAGCAGAA CGACACCAAGGA AGACGAGATATACCTTTACAATTTGCCCCAAGGCGAGACCCTGAATGATTACAAGCCATA TTGGATCAGTTT TACCCCGAAGGACGGATTCGAAGAATACATCGCTAATTCTTACTTGAGCATCGGCCTGTC AAAAAAGTACCT GTTCAATAGATTCGTGGAGACGCTCAGCAACTCAAAACTGCACTTCACCTACAAGGTCAA AAGGAAATTCAC CGACTGGTACGTCGATTTCGTAATCGCGCAGTACAGCCAGGGAGACAGGATCATCTACAT GAGCCCCTACTT CCTGGAAGAGCAAAACACCTACGGCTTCATCATCGACTTCAAGTTCAGCAAGAAGGATGG TATCCCCTTCGA TAAGGAGGTGCAAAAGCTGTCCCTTTCACTGGATAGCAACGGCCGCAGCAACAAAAACTA TTACTCTGACAA ATTTAGGCTGGTGAACAATTTCATTAAGGAGATTTACACCTCCATAAAGAACATCGGGAC CAGTAATAATCC SEQ Argonaute Sequence

ID NO

TATCACCATTTCCAGCAACCTCATAGAGACCACCGTGTTCCACCTGAACAAGAAAGA GTACATCTTTAGCAA TAACAACGTAAGCTCTAGCCAGTTCCAGGGCGTGAGGAATTTCGGTGTCTATAAGAATAT CCCCCAGGACGT GATCTTCGCGTTCATATTCGAGGATAGGTTCAGGAGCTTCGCCAACGAGCTGTATCTGAG CCTTACCGGAAA ATTGAACCCCGGGACCTTTCCCGGACTGGAGCAGATGTTCGGCATCAGCATCAACACCAA AAACGTGAGACA GATCAAGTTGGAGAACTACTCTCTGGATTCAATGCTTAGGGTGGTGAATGACGTGAAGAG CTTGCAGGAGAA CAATCCCGATAAGAAGATCGTGGGAATCTACGTGGAAGACTGCACCATCGACAGCGAGGA CATCCCTGCGTC CAACAACTACTACTTTCTGAAGTATCACTTTATCAAAAATGACCTGCCACTGCAGGTTGT GAATTATCGGAA GCTGGGCGAAAGGAATTCTCTGAAATGGAGTACCTCCAACCTGGCCCTGGCCATGTTCGC AAAGATGGGCGG CATCCCCTGGGTCGTAAAACCGTCTAATAAGAACTGCTTGATTCTTGGCATCGGATCTAG TCATAAGATAAA CCGGGAGACCGGCGATATACTTAAATACTTTGCATACACCATATGTCTCGACTCCAGTGG CCTGTACAAGGC CCTTGAGGTGCTGGCCGACGAGGAGAGCGAGGTGAGCTACCTTGAGAAGCTTACTGCCAA TCTGGTCGCCAT ACTGAAGGAACAAAAGACCAATTACGGCACCTGTGTGCTGCACCTGCCCTTCAAGATTAA GAAAAAAGAGGT AGCCGCCATTAGTGATGCCATAAAACAAATCAACGACATCGAGCTGGTGGTGGTAAAGAT CAATGTGGATAA CAAGTATTTCGGATACTCCTTCCACAACACATTGGTGCCCTACGAGAGCAGCTTCGTGAA GCTTTCTAAGGA TGAGTATCTGGTGTGGTTCGAGGGCCTGCTGTACGGCAAAGAGATCGTAGATAAGAGGTT GAGCAACCCCGT GCACATCCAATTCTTGAACATCACCAACAGGAAGAACTTCGATGAGCAGGCGTTTCTGCA GGACATTCTGAA TTTGAGCGGAGCCAACTGGAGGGGCTTCAACGCCAAAAGCATCCCTATCTCAATTTACTA TTCTCAAATCAT CGCGAGGTACACCGAGGCCTTCGAAAACATCGACGGTTACAAGGAGGGTACTATCTCTAA CGACAAACCCTG GTTCCTGTAGTAACTCGAGGTTAACTTGT

301 53 GGTGTCGTGAGGATCCATGCCGAAGAAAAAAAGGAAGGTGGAGGACCCAAAGAAGAAACG GAAAGTTGGCAG

CGGCTCCATGAGCGTGGCGATCGTGAGCCCCCAAATGTACAAGAGTCTGAGCGAGGTGTT TCCTCTGACCGC CTCCCAACTGAACTTTATGTGCTTTAGGCTGACTCCCGAAATCGAAAAGAAGGATGGTAA TAGGCTCAGCTA CCATTTCAGTCTGAAGCTGCCGGAAACTGTTGTGATCTGGCACCAGCCCTACTTCTGGGT GTTGGCGAGTAG TAACAGGCAAATCCCCAATAAGGACGAGTTGCAAGAAACTCTGATAAGGATCCAAAACGA GGTGGATGACTT CAAAGAACGACTCTTCGGTTTCCAGAGCGTTCGCCACCCCCAACTCACCCCCTTTATCAT CAGCCTCTTCGC CGTGCAGGTCCTCAAAAAAACAAAGTTCGACTACCCCATTGCATTCAGCAACAACGGTGT AATCGTCAGGAG GGAGCCCGACTTTTGGACGGAGAGCATAGAGCTTCAAGACAGCCTGCATCCTGCCCTCAC GCTGACCGTAAG TTCATCAATAGTGTTCCGCGACAACCTCGCGGAGTTCTATGAAAAACATCATCAAAGGGA GAAGCCCGAGCA GTTTCTGATCGGCCTGAAGGTGCAGGAAATAGAGAGGGGCAACAATGCGATCATCGTGGG ACTCGTCGGCAC CATCGGCGAGCACCGGGACCAGCTGCTTGAAAAAGCAACCGGGAGCACTAGCAAGCAGGC GCTGCGAGAGGC ACCGGACAACCAGCCGGTGGTTGCGATACAGTTCGGCAAGGATACGAAGCAGTTCTACTA CGCAATGGCCGC GTTGCGGCCGTGCGTAACCTCAGAGACGGCAAACCAGTTCGAGGTAGAGTACGGTAAGCT CCTGAAAGCTAC AAAGATAAGCCACCAGGAGCGAACCAACCTGCTGGCCTCATACAAGAAGACGGCCCAGGA GTCATTGGCCGC TTATGGCATCCGCCTGGAGCTGAGTGTGAATAGCAGGGATTACCCCAGCTTCTTCTGGCA ACCCCCCGTGAA GATCGAAGATACCAAACTTCTGTTTGGCAACGGCATAACCGGCAAGCGGACTGAGGTGCT CAAGGGGCTTTC TATAGGGGGCGTGTACCGACGCCACGGGAAATTCCAGGACAAGTCAAAAGTGATCCAGAT CGCGGCTCTTAA GCTTTGCGACGTGACCGTTAGCTTGTTCCTGAAGCAACTTACTCAAAGGCTGGCAAAATA CGGCTTCCGAAG CGAGATAATCACCAAGAAGCCTCTGTCAATCAAGAACCTTGCCACCGCCGAAGCCAGGGC TGCTGTTGAGAA AGCGGTCAATGAGCTCGTGGAAATACCCCACGACATCGTGCTTGCCTTCCTGCCTGAGTC CGACAGGCACAC CGACGACACGGATGAGGGTTCCTTCTATCACCAGATCTACTCCCTTCTCCTCAGAAGACA AATAGCCTCACA AATTATCTACGAGGACACCCTGTCCAACTCTGGGAACTACCAGTACATCCTGAACCAGGT CATTCCGGGGAT CTTGGCGAAACTCGGGAATCTGCCCTTCATTTTGGCGGAAAGCCTCGATATAGCGGACCA CTTCATCGGACT TGACATCAGCAGAATCTCTAAGAAAACGCAGGTCGGGACACGAAACGCGTGCGCCAGCGT GCGACTTTACGG ACGCCAGGGTGAATTTATCCGCTACCGGCTTGAAGACGACCTGATCGACGGCGAGGCGAT TCCACCCAAGCT GCTGGAAAGGTTGCTGCCTGCGACCGAGCTTGCGAATAAAACCATACTGATCTACAGGGA CGGGAGCTTCGT GGGCAAAGAGGCCGACTATCTTGTGGAGCGAGCCAAGGCGATAGACGCGAAGTTTATCCT CGTCGAGTGTAA GAAATCCGGCGTGCCGCGCTTGTATAACTTGGAGCAAAAGACCGTGATCGCGCCGAGTCA GGGACTGGCTCT TCGACTGAGCAGTAGGGAAGCAATACTCGTGACCACCAAGGTGCCCGATAAAGTGGGCCT GGCTAGACCCAT CCGGCTCACAATCCACGAAAAGGGCCATCAAGTAAGCATCGAATCCGTGCTGGACACTAC ACTCAAGCTTAC TCTTCTTCACCATGGCGCGCTGAAAGAACCGCGACTGCCCATGCCCCTGTATGGGAGCGA CAGGATGGCATA CCTCCGGCTGCAGGGGATACGGCCTAGCGTTATGGAGGGCGACCGCCAATTCTGGCTGTA GTAACTCGAGGT TAACTTGT

302 88 GGTGTCGTGAGGATCCATGCCCAAAAAGAAGAGGAAGGTAGAGGACCCTAAAAAAAAAAG AAAGGTAGGTTC

CGGATCCATGGAAGAAAATCTGTATCTTGAATACGACGCTTTCTTGAGGAGTGTGAAGCG CAACGTGGACGT CCCTCATAGTTTCTTGCTTGGAGCCGGAGCTTCCATCTCCTCCGGAATTCAGTCTGCATA CGACTGTATATG GGAGTGGAAGAGAGATATCTACATCACGAAGAATATAAACGCCGCCGAGTACTATAAAAA TCATAAAAACGA AACGGTTCGCAAATCAATACAGAAGTGGCTGGACAACCATGGCAACTACCCCATCCTGGA TGCAGCAGAAGA GTACACATTTTACGCCGAGAAAGCTCATCCAATCGCTGACGATAGGAGAAAGTACTTCTT TAGTCTGATTGA GAATAAAGAACCATATATCGGTTACAAATTGCTGTGCTTTCTCGCTTCACAGGGGATTGT AAAGAGTGTATG GACGACCAATTTTGACGGGCTGATTGTACGAGCTGCTCACCAGAATAATTTGACGCCTAT AGAAATCACCTT GGATAACGCGGAGCGCATATTCCGAAATCAGAGTACTAAGGAGCTTCTCTGCATAGCTCT GCACGGTGACTA CAAATATAGCACCTTGAAGAATACTGATACCGAACTGGATAACCAACACGAAATTTTTCA GGAGCACCTCGG AAATTATCACGTAGATAAAAATTTTATAGTAGCTGGTTATAGTGGACGCGACAAGTCTCT GATGGATGCACT CAAGGCCGCTTATTCCAAGAAAGGATCTGGTAGGTTGTATTGGTGTGGCTATGGTGAGAA GATAAATTCTGA AGTGAAAGATCTTCTTAAGTATATTAGAGCGAGTGGGAGGGAAGCATACTATATAGCTAC GGATGGGTTTGA CAAAATGCTCATACACTTGTCAAAGGCAATATTTGAGGATAGCCAAGAGCTGAGTGAAAA AATCCAGAAAAT ACTCGAAAGCACGAATCAAACCGAGACCTTCAACACAGAATTCAAGTTGGAGTTTAAAAA AACCGACAAATA TATCAAATCAAATCTGCACCCTATTGTTTTTCCTAAGGAAGTATTTCAGTTGCAGATCGA GTATGGCAATGA SEQ Argonaute Sequence

ID NO

AAAACCGTGGTCCTTCCTGAAAACACTGACAACTCAAACGAACATTAGCGCCGTACC GTTCAAAGGCAATGT CTACGCACTTGGTACGCTTAGCGAGATCAATTCCATCTTCAAGCCGTATCTTAAAAGCGA GGTCAAGAGGGA AGCGATCAGCCGATTCGACATCGAAAACGTCACCGCATTCAAAAACCTCATGTTGACAGC CATATCCAAATA TTTTTGCTACACGAAAGAAGTGAACTCTAACTACAAAGATAAGATTTGGTTGAAAAACAT CCTGTCCAAGGT GGGGGATATCACTGTTCACAAAGCAATTTTCATATCCCTGTACTTTGACAAGAATTCCCA TTTTGGTTATAT GGCGTTCGCTCCTACCGTTTATTTGGATTCCGACTGCGAAATTGAGAAGAGTCAAAAGCA ATCCATCAGTAA GAATTTGCTTGAGAAGTTGTATAATAACAAATATAACGAAGAGCTCGAACTGTGGAATGG TATCTTGTTTAA TCATAAGAAAGTGAAATTTGAATATCCTCCCTTGTCTGGTACGGGGTTCGAATTTCAGAT ATCAAGCAACAC TGCCTTCGGGGAGATAGACGTGATTGATAACAAGTACCGCTCTTACGTCCCCCAGAATTA TGATAATAAGCA GACTCAGTTCCGGGGAATCCAGTTTTTGGAGCCGCAGCTGATATTTAAGAACATCGCAAC GAACTCTGACTT CAAGGATTATCATCCCATGCGAGGACTGATTAACAACCGACCATATGATGTAAATCTCAA CGGGATTATCCA CTCCAATGAAATTAACCTCTCAATCATCTGTAGCCAAAAGTATGGAGAAAGGTTGTTCGC ATTCTTGACACA GCTCAATAGTAAGCACAGTACAGAAAATATCAACACTGACTACCTGATAGATTACCCCGG CTTCCTGTCCGC CTTTAATCTGCCCATCAACATCCCAGCCACCAACGATGACGCTAGCTGGATGGACATCAA CTTCGTAGCAGA TAACTCTAAAGAAACACACGAGAACGCTATACGACTCGCGAGGGCAATTACCAATAAGAT CGAGAAGATTTC TGCTATACAAAGCGCCAGCACTATAGTAATCTTTATACCTTTCGAGTGGCAGCCCTTCGA AACATATATTAA CGAAATAGAGACGTTTGATTTGCACGACTACATTAAAGCGTTTAGCGCCAGCAAGGGGAT ATCAACGCAACT TATTCGGGAGGACACCCTTGACGATAAGCTCAAGTGCCAAATATACTGGTGGTTGTCTCT TTCTTTTTACGT GAAGAGCCTCAGGACCCCATGGATATTGAACAACCAGGAGCGGAAAACAGCTTATGCCGG AATTGGGTACTC CATAAGCAAGGTAAAGAACAAGTCAGAGATCGTGATCGGATGTTCACATATATATGATTC AAATGGCCAAGG CCTTAAGTATCGCCTCTCAAAAATTGATAACTACTTTCTCGATAAGCAAAATAATCCGTA CCTGTCTTATAA GGACGCTTTTCAATTTGGGGTTAGTATCAGAGAGCTCTTCTATCAGTCACTCGATTCTCT GCCAGAAAGGGT CGTCATCCATAAAAGGACAAAATTCACCGAGGATGAGATCAATGGGATAAAGGCTTCACT CAACCAGGCTGG TATTAAGAAGATTGATCTTATAGAGATCAACTACGATATAGATGCAAAATTCGTTGCCAT GAACGTGTTCGA TAACAAATTGCAGGTCGATAAATTCCCGATATCCAGAGGAACATGCATTGTGACAAATAA ACGGACGGCGTT GTTGTGGACGCATGGTATAGTACCTTCAGTTAAGCAGCCCAATTATAAGTTCTACCTGGG CGGGCGCTCTAT CCCTGCGCCCATAAAGATTACCAAGCATCACGGAGAAAGCAACATTGATGTGATAGCTAG TGAGATCCTCGG ACTCACAAAAATGAATTGGAATAGCCTGGATCTCTACAGTAAACTTCCCTCTACGATAGA TTCTTCTAACCA GATTGCTAAGATAGGAAAACTTCTGTCTCGCTTTGAGGGCCGCTCATATGACTACAGGCT GTTTATTTAGTA ACTCGAGGTTAACTTGT

303 17 GGTGTCGTGAGGATCCATGCCGAAGAAAAAGCGAAAAGTGGAAGACCCCAAAAAGAAGCG GAAGGTGGGCAG

CGGCAGCATGGACAATTTGGCTCTCTCTGCGCTTCAGCTGGACAGTAGATTGGATCACTG TATGGTATATCA ATACAGGATCGTGTACCATAAGTTCGACGAAACAGAGGCGGGTGAAAAACTGGCAAGAAA GGCCGCCTACGA ACTGTGGAAGGTAAACAACTTCGGACTGCTCACCAACCTGGGTGCCAGTAGCATCCTGTC CCTTAAGAGCCT GAGTCAGCTGTCTATCGATTCACCGCTGTTGCAGGCAAGTTTGAAAGCTGACGGCCAGTT GGAGCTGGATTG CGGTAACGAACAGCATCAGGAGGCGCTGCAGAGACTCGTGAACCAGGACATAAACAAAGC GGCTTGGAACCT CAAACAAGCGAGCGAGGGGAAGCTTGATTGCCGAAAATCACCAGGCGGGCACGCCGAAAT CTTCGAGCCAAG TCACAGTAGTCGGATCAAGGCCCACAGTACCTATTTGGATGCCTTCTGCACCGTAAGGCT GATTCCCGAAGT GCTGTCAGACGGGACAGTGCTGATAGGGTTGCATCTTAAGCACAGCCTGACCGCGAAGGC GGACATCTCTCT TCAGTGGGTCATTGATCATAGGCCCGATTGGCTGATATCCATAGAGAAGGTGCGCCACAG GTATTACGAGCC CGGCAAAGCACCCCTCGTTGCGGAGTTCGTGAAAGTCGATGATTCCATCAACGGATCATC CCTTCTCCCACA CTTGGGCAAATCCCTTGTCGCTTACCACCAGGAGAAAGGGCTGCTTTCAGCCGGACAGCT CGCAGAGGCAGC CACCAGCTCACTCATCAAAGTGCGCTACGGACAGAAGGAGGCAGACCACGTTGCTAGCTT GGTGGAACCCAT GTTTGATTTCGATACTCTGTCAAAGATTGACAGCCCCTTCCTGAATAGGCTCGCCAAAGA CCTGAAGTGGAG CTTGGACGATAGAATAAAGACAAGCGCGGAGATGGTCAAGAGGCTCTACCTGCCCGGGTT TAATCGAAAGTT GGTACAAGTTGACTACCAGAATCTGAGCAGGAAGAGGTTCAACCACAACCTTATGCTCCA GTTCGCGGATGG GGCAAGGAGCGGCCATGAACAAGACGTCCTGAAATACAAGGCTTTCGCCGACATGACCAG GGCTAGGGTAAT CCCACTCGTGGTAGGAGAGAGGAACAACACCGAAAGCAATAGACAATTGCTCCGGAACGC CTATAACGCACT GAGGCAACTTACCAAGGCCGAATTGCCCCCCTTCACGTCATTTCCCCCCAGCATCGGAAA CGCCGACGAGTT GGACGCACGGCTGCACAAGAAATGTCCCGACAACGCCATCCTGCTTATCGGGCTCACAGA GAAGAGTGACAA AGCCGCGATCAGGGACACGGCGTTCAACTACGGCCTGGCCACCCAGTTCATGAGGCTCGA TCACAAGCCCAA GGTTTACGACAGCTTCTACTTCAATAACGTCGCAGCGGGCCTGTTCTCCAAGGGAGGAGG GCAACTGTGCGC CGTGAACGACATGCCCGGTGAGACTGAACTGTTTATCGGTCTGGACATGGGCGGCGTGAA TGTAAGGGCGCC AGGTTTCGCATTCCTGTTTCTCAACTCTGGCGCGCAACTGGGCTGGCAGCTGGCTGACAA GCAGCAGGGCGA GAAAATGCAGGACGACGCTCTCAGCAATCTGCTGGAGAAGTCTCTCAAAACCTACCTGAG GAGCACCGACGG GCTTTTGCCAAGGAGGATAACTCTGCACAGGGACGGCAGGTTTTACGAGAGCATCAATGT GATAGAACAGTT TGAGCAGAAGCACGGGGTCAAGCTCGATGTTCTGGAAGTCTTGAAAAGCGGAGCCCCGGT GCTGTACCGGAG AGAACGCAGTGCGGACGGTAAGAAAGTTTTCAGCAACCCAGGGGTTGGCGATGCCGTCTT CCTTAGCGACAG GGAGGTCATTCTTAGCACTTACAGCGGCGAGGAACTTGGGAAGTCATGGGGTAACAAGGT GAGTGTGAGGCC ACTTCGACTCCGAAAGAGATACGGCGAGACCGCATTGAGCGTGTTGGCCCATCAGGTGTT GGTCCTGTCTAG GATCCATGGGGCCAGCCTCTACCGACACCCCCGACTTCCGGTGACCACCCACCACGCGGA CAGGTTCGCAAC CTTGCGGCAAGATGCGTGCATAGACGCACTTAGTAAGATGGATAGACTGTGTCCGGTGTA TCTGTAGTAACT CGAGGTTAACTTGT

304 37 GGTGTCGTGAGGATCCATGCCCAAGAAAAAGCGAAAAGTGGAAGATCCGAAAAAGAAGAG GAAAGTGGGCAG

CGGGTCTATGAATAACGTGATGCAGGAGTTTCCCGTCGCAAGCTTCCCCACATTCTTGTC CGAGATCAGTCT GCTTGACATCACACCGAAGAACTTTATCTGCTTTAGGCTCACCCCCGAAATCGAGCGCAA GACCGGTAACAG TTTTAGCTGGCGCTTCAGCCAAAAATTCCCTGACGCCGTCGTGATTTGGCATAACAAGTT TTTCTGGGTACT CGCTAAGCCCAATAGACCAATGCCCAGCCAGGAGCAGTGGAGAGAAAAGTTGCTGGAAAT CTGCGAGGAACT SEQ Argonaute Sequence

ID NO

TAAGAAGGACATAGGCGACAGAACCTACGCCATTCAGTGGGTTAGCCAGCCCCAAAT AACCCCTGAGATCCT GTCTCAACTCGCCGTCAGAGTGTTGAAGATCAACTGTAGGTTTAGCTCTCCCAGCGTAAT TTCTGTCAATCA AGTTGAAGTGAAGAGGGAGATCGACTTTTGGGCCGAAACAATTGAGATTCAGACCCAGAT CCAACCCGCTTT GACCATCACCGTGCACAGTTCATTCTTCTATCAACGACACCTGGAAGAGTTCTACAATAA TCACCCTTACAG GCAGAACCCCGAGCAACTGCTCATCGGCCTCAAGGTGAGGGACATTGAAAGGAATAGCTT CGCGACGATTAC TGACATTGTGGGCACCATAGCGGACCACCGCCAGAAGCTGCTCGAGGATGCCACTGGAGC TATTAGTAAGCA AGCCCTTATAGAGGCCCCAGAAGAGCAGCCCGTGGTCGCCGTACAGTTCGGTAAGAACCA ACAACCCTTCTA CTACGCAATGGCCGCGTTGCGGCCTTGTATCACCGCCGAGACCGCTAGGAAGTTTGACGT GGACTACGGCAA ACTGCTGTCCGCCACCAAGATACCCTACTTGGAGCGGAAGGAGCTGTTGGCTCTCTACAA AAAGGAGGCGGG TCAATCTCTGGCGACTTATGGTTTCCAATTGAAAATCAGCATCAACAGCAGGAGGCATCC GGAGCTTTTTTT CAGCCCAAGCGTGAAACTGAGCGAGACCAAACTCGTATTCGGGAAAAACCAAATAGGGGT GCAGGGGCAAAT TCTTAGCGGATTGAGCAAGGGTGGGGTGTACAGAAGGCATGAGGACTTCAGCGACCTCTC AAGACCTATACG CATCGCTGCGCTTAAATTGTGCGACTACCCTGCGAATTCATTTCTGCAAGAGACCCGGCA ACGCCTCAAACG GTACGGTTTTGAGACTCTGCTGCCCGTCGAGAATAAGAAAACCCTGCTGGTAGACGATCT GAGCGGGGTCGA AGCACGCGCGAAAGCCGAGGAAGCCGTTGACGAACTGATGGTGAACCACCCCGACATCGT GCTCACTTTCTT GCCGACCAGTGATAGGCACAGCGACAACACGGAAGGCGGCTCATTGTATAGTTGGATTTA TTCCCGACTGCT GCGGCGAGGGATTGCTTCACAGGTTATCTACGAGGACACGCTTAAGAGTGTGGAGGCGAA ATATCTCCTTAA CCAGGTGATCCCCGGAATATTGGCAAAACTCGGCAACCTGCCGTTCGTACTTGCGGAGCC CCTGGGAATCGC TGACTACTTCATAGGCCTGGACATCTCCAGGTCAGCAAAGAAACGGGGGTCTGGAACCAT GAATGCCTGTGC CAGCGTTAGGCTGTATGGTAGGAAGGGCGAATTTATCAGGTACAGGCTTGAGGACGCACT GATCGAAGGGGA GGAAATACCTCAGCGCATTCTGGAGAGTTTTCTGCCAGCCGCTCAACTGAAGGGCAAGGT AGTGCTCATTTA CAGGGACGGCCGATTCTGTGGTGACGAGGTCCAGCACTTGAAAGAGAGAGCAAAGGCTAT AGGAAGCGAGTT CATCCTGGTTGAATGCTACAAGAGTGGGATTCCACGACTGTATAACTGGGAAGAAGAAGT CATAAAGGCACC AACTCTGGGACTGGCCCTTAGGTTGAGTGCGAGAGAAGTGATTCTGGTGACAACCGAGCT GAACAGCGCAAA AATCGGTCTTCCTTTGCCTCTGCGACTCAGAATTCACGAAGCCGGTCACCAAGTATCTCT CGAGTCTTTGGT AGAAGCCACACTGAAGTTGACCCTCCTCCACCACGGCAGCCTGAACGAACCGCGGCTGCC TATACCACTGTT TGGTTCCGATCGAATGGCCTACCGGAGACTCCAGGGCATATATCCCGGATTGTTGGAGGG GGATCGGCAGTT CTGGCTTTAGTAACTCGAGGTTAACTTGT

305 38 GGTGTCGTGAGGATCCATGCCTAAGAAAAAGAGAAAGGTAGAAGACCCAAAGAAGAAGCG GAAGGTGGGCTC

CGGTTCAATGAACCTGACTCTGTTCAACGAGATCCTCCCCATCAACATCAGCCAACTGCC CAACCAGTACTT CTACAAGCTGTGCACTGCCGGCGACGTGGACCTGGATTCTCTGGGCAGGAGCATCAAGTA CCGGATCCAGAA ATACTTCAGAGGAATCTGGGTGTGGAGTACCAACGACCAACTCCTCATTTCAGACAAGCT CATCGAGTACCC CGAACTGCAAAAGTTCACCCAGTATCTGTGGACCGACCAGTCTAACCTCACATTCAACCA GCTCGAGGGGAT AGAAATCGAGAACATTAGGTGTTGCACCCCCCAAGGCATCGCTGATTTCTGTAGCCAAGG TCTCATCAAAAA GTACGACCAGCAGATCAAGAAGATACTCGAACAGTCCAAGACAGCACGGAGAGACTATCA TATCAAACTGAT CCACAAGTTCGGCTCCTGGGTGGTGAACAATCAGCCCTGCATAAGCCTGAGCCTGAAACA GGAGATCGATTT TAACGGAACTCTCCAGGACTACCTGACCAAGTTCCCCAACTCTAACATCATCGGCCTGCA TGTGCTCGACAT CACTAAGCCTTTCAACACCGCACAGGAGGTCATCAAGATTCTCGGTATCTTGGGTGAGGG AAATCGGCGGCA GCGCCTCCTGACTTGGGTCAAGGAGCCAACCATGAAAAAACTCGTGGAAGAGGCCCCAGA TAGTGAGCTCGT AGTTGAGATCGGGAACAAGAAAAAATCCTATCATTACATCATTTCTGCCCTGCGCATCAG AGTCCTCAACCA AGATTACCTGAGGCTGGGGATTAGCGAGAAGCTGCAAATAGTCAGTGAAGAGAGGTTGAA GTACATCGAGCC ACTTTTCCGCATACTGCAATCAGAGGGCTTCCTGGACAAGGTGTATACTAGCCAGCGCAA CCCCGAGCTGTT TAGGTCATGCAGCGAGGAATGGGGTTACAATCCCCTGCTGAAGTTCAAGAATAACGCCAC TGTTGCGGCGGA ATCCGTGCAGTCCACGGTCCAGGTGGTGCAGAAACACGGCGAATTCAGGAAAGCCGACAA AAGCGAAATTAG GATCGCCATACTCAACACACTGAAGAGTGAAAACAGCACCAAATTGATTGAGATTTTCCG AAACAACTTTAA GCGAAGCTTTAACCAGAATTTGGAGGGAATCGGTAATCAGCTTAAGTATAAACTCAAGTT GGTGGGCCAGCC CATTGCACTGGATCTCAGTAAGAACTCCCTCAGCCTGCTGGACAGCAAAATAGGAGAATT GTCTAAAAAGAA GCCGGACATTGTGATCTGTGTGATCCCTAACTTCCTTAGCAAGGGCGAAGACGGGCGGAC ACTTTACGACGA TTTGAAGCAGACGTTCCTCAAATACAATCTCCAATCACAAATGTTGCAGGAGAAGACTCT CACGACGTCATT TGCCACAAAGAACATCGTGTTGGGCGTGCTGGCGAAAATTGGAAGCGTTCCCTATATTCT GCAAGAACCGCT GACGTACACGGACTTTGTCGTAGGTTTGGACGTGAGCAGGCGACGCAAAAAAAACCTGCA AGGAACCAACAG CGTAGCCGCCATGACCCGAATCTACAGCAATCAAGGCGAACTGGTCCACTATAGCATCCG AGACGCAACCAT CGACGGCGAGATCATTCCCAAGAGGATGCTCTACGACCTCTTTCCACTTCACGAATATCA GGGCAAACGCGT GGTGATTCACCGGGACGGAAACTTCCCCGAGGAAGAGCGCCAGGCACTCGAGGAAATTGC CGAAAAGATTGA CGCGAAGTTCTACTTCGTAAGCATTATCAAATCTGGCAATCCCAGGATCTACGGTAGGAC CAAAAACGAAGA GGGCATCGGCAGTTATCGCAAGGCACCTAAGGGTAGCATTTTCCTCCTCAGCGAGACGGA GGCCTTGCTTAT CAGCAGCGACTTTCCGGACCGCTTCAGGGCCACGCCACAGCCTCTCAGAATTAAGACGTT TGGCAACTTTCC CCTTCAAAGCGCCGTCCATAGCGTTCTGTCACTCACCTACCTGCACTACGGTTCCGAGCG CCCACCGAGGCT GCCGGTGTCTACCTACTACGCAGATAGCATTAGCACTATGGTATCCAAGGGCATTAAGCC CAAGGACGTTGA CGGCAATATACCCTTTTGGCTGTAGTAACTCGAGGTTAACTTGT

306 25 GGTGTCGTGAGGATCCATGCCGAAAAAGAAGCGGAAGGTTGAAGATCCAAAGAAGAAGAG GAAGGTGGGGTC

TGGGTCAATGCTCCTTAATCATCTCCCAATCGAGTTCTCCAGCGCACAGTTCGCTGGACA CGAAATTGCTTA TGTCGACGGCGAGCAGTTGAGGTCCATACGACAGAGACTCACGCGCACGCACTTCGTGTT GAGGGATGGGGA CAATGTTCTGCTCTTCCCGTACGAACATGGAACCGCGACCGAGGGAACCAGGCGAACATT CGACACGGGCGT TAATTTCAGCGTAGCCAACGCCCTGGCGCGCAACGGCATGCTTCTGCGATTCTTCCAGCA CTCTAGAAGTAT TTCCGGCGTCCGACCGGTGAAATTTGTGAAAGACAACCAGAACCTGCTCACGGGTGACGT AGGCCGGTTGTT TGCTATATGTCCGGAGTACAGTTTCGACATCCGACCCCTGGCACCTCAAGACGGCAGCCT TGTGAACGGGGT ACTGGTAAACTTCTCAGCCCGATTTTTGGTGAAGCCCTCCCTCGACGAATTGATTGCGCA GGGGCTCGACCC SEQ Argonaute Sequence

ID NO

ACGGGGCCTGTATGTTGTTAAAGAGGCAGAAAGAGAATCACCCTACATCCTGCCGAT GTTTAATCGGAGATT GGTAGGGCGGATCCAGGACGTGGTCGGAGGTATCGCCAAGCTGGTGGACGAGCGCGAACA GGACCTCCCTGT ACATGAACTTCATGTCGAGGCCAACCTGGTCAACTTCGAGAAAGTAGGCAGAGCACTGCT TGGCCGGGATTA CGAGCGAGTGAGTCGACAAGTGCTTCCCACCCTCCATAAGGTGAGCGGCGCAGAGAAACA GCTCGATCGCTT GGTCCAGCTGCTGACGAGCTTCAAAGACCTCCAGGGTGACATCCCGTGTTGCGACGGCCT GACCGTTAGACT GGCAGGCATACTTACAGATGTGCCCTTCGGCAGTGAGGTGGGCCAATTCCGCAAATTGTC CGCGCCACAGTG CAGCCTCCGCCCAGGGGGAACTATTACGGTGCCGTGGCCCGTGGACGGCAAACTCAATGC CAACGGCCCCTT TGATGCAGACGCCTTCAGCAGGAAGGAACCAACAATCGGCGTTCTGTTTCCGGAGCAGCA CAAGGGTAGTGT AGAAGAGCTGGCCGCTAAACTCAGAGACGGCGCACCGAGCGATGGAAAGTACCCAAGTCC ATTTCCCCAAGG AATGCCCCGGAAGTATAGACTTAGGAAGATGACATATGAGCTGACGCCCACGAAAGTTTC AGGGGACAGGGC CGCAGCCTACAAGAATGCCGCGCTTGCAGCCGCCCAACAAGAGCTTGATCTCGCTCTGGT GGTCATATCTGA ATCAGATAAGGCGTTGCTTGGAGCCGCCAGCCCCTACTACACTGCGAAAGCCACATTGAT GAGCCAAGGCGT GCCGGTGCAGGCTATTACCATTGAGACTATCAACAGGCTCAACCCCTACACCTTGAATAA TCTGGCACTTTC CCTTTACGCAAAACTCGGCGGGATACCTTGGACCCTGTCAGTTCAACAGCGACTGGTCCA CGAGATAATTGT AGGGATAGGGTCTGCGAGAGTGGGCTTCGACCGCCTCTCAGAGCGGGAGAGGCTTGTCGG CATCACGACCGT GTTCTCCGGGGACGGATCATACCTTCTTGGCAATGCAACGACGGAAGCCAGCAGTACCGA ATATAGGTCTCG CCTTCTGGAGAGCCTTAGGGCGACTTTGGCAGAGTTGCGAAGACGATTTGGCTGGCAGCG GGGAGATAAATT GAGGATTATCTTCCACCAAAGCTATAAGCGGTACAAGGAGACCGAAGCAACCGCCGTTAG CGACCTCATCGC CGAACTTGATGAATTCGATGTGGAATTCGCGTTTGTGCAGATCAGTAGCGATCATGACTG GAAGTTGTTCGA TGAGAGTGCCACAGGCGTTACGTATCAGTCCCGGCAAAAGGGAGCGAAGGTGCCGGAACG CGGAGTCATAGT CCCTCTCGGACCTCGCGCTGCGCTGATCACGTTGGTGGGTCCGCATCAACTGAAAACCGA CCTGCAAGGGTG CCCCTCCCCCATACTGGTGTCTATCCACCCGAGCTCAACTTTCAAGGATTTGAGTTACGT GTCAAAGCAGGT GTTCGACTTGACCTTTATGAGTTGGCGAAGCTTTAACCCAAGCACGCAGCCCGTTTCCGT GAGTTATCCCAA CATGGTGGTGGATCTGCTCGGTAACCTGCGGCAAATCCCCAACTTCAATCCCGACATTCT GACGACAAAACT GAGGGAGTCTAGGTGGTTTCTGTAGTAACTCGAGGTTAACTTGT

307 20 GGTGTCGTGAGGATCCATGCCAAAGAAAAAAAGGAAAGTCGAGGACCCCAAAAAGAAGCG AAAAGTGGGCAG

CGGCTCCTTGGACAATTACATACTGACCGAGTACAAGGCCGGCATCCACGCCAGCGAGAT CAAGATACACAT CTACCGGATGCCCGTCAAGGATCTTGAGAAAATCGACTATGAGTACGGGAAGTACACACG CGACCTCAGACA AAAAAACAGGAAGACGATATCCTTTTACCGCTCTCTGATCGGCAGCTTTGAGAAGCTCAC CATCGTGCCCAA GGGATACGAGAAGTACGAGTATAGATCAATTAAACTCGACCAGAGTGAGGAGTCACTCCA GGAGAGGAAACT GCTGGAGAGGCTGATCTTCGACGGCCTTAGGGACAGCAATAGGAACCACTTTATGAGCAC CGAGCAGAGCAT CATCGAGAAAGAGCCCATCAAGTCCCTGAGCAAGTGCAAAATCCACCGGGGTATCTACAT AGACATCACCGT GAAAGAGAAAGGCGACATCTTCATCGGTTTCGAGCTGAAGCACTCCATCCAGAGCACCCA CACGATTATCAA GGCTCTGAAGGAGAAGAAACTGAACAAGGGCGATAAGGTGTTTGACTTTCTGAACAGCGC CCACTACGAGTT CGAGGGGATTAGCGACAAAACCATCAGCGACCCCCTTCCCGAACTGGGCAACAAGAGCAT TATCCAGCACTA CAAAACGAAACCCAGCATCTACTGCCACCTCGTGAAAAAACCGAACATGCCCGCCATCCT GGTACGCAGCAA GAGCGGCAAGGTGTATCCTTACCCCCCACAGCTGCTTAAGAAGGAGTGCCTGATGAAGGA TGTGCCGGCTAA GGAGCACAGCTCTATCAAGCTGAACCCCAACGATAAGATCAACTACAGCATTGAGATCAT GAAGAGAATCAT AGATGCGTTCGAGAACAGGTATTTCCCCATCGGCTTTGAAAAGAACAACCTGAACATCGC CAAGCTCGGATA CAGGAGGAGGCTGGTCCCGGATCCCCTGCTGAGGATTGGCAACGGAGCCACCTGCAACCA CAGAGACCTCAA GGGTGCCTTCCTTAGGCACAAGATTTATGACAGCGTGAGCTCCCCTATCTACTACCAGCT TCTGCTTGACCA ACCCTTCGAAAGGGAGTGGCAGAAAAAGATGAGCGAAGCGTTCATTACGAAGATGGAAAA CCGGAGCAGGCA GTGGGGCATAAAGCTTCAGTGTACCGGGAACCAGATCCTCCCTACCTCTAACCCGTACGC GCTGAGACTGCA TCTTAAGGACATCAACCTGGATACCGACATCATTAGCGTGGTCCTGTTGGACGAGACCAA ACAAGAAGGCGA GGAGGTTTACTCTACCATCAAAAAAGAGCTGGGTGGCACCAGGGGCGCACATACCCAGGT AATCCTGATCGA TAGCCTGAAGAACGAATACACTATCCCCCAGATACTGTTGGGAATCTACACCAAGGCTGG ATTGCAGCCCTG GGTCTTGCACCAGCCGTTGCACGCCGACTGCTACGTTGGCTACGACGTGAGCCATGAAAA TGGCAGGCACAC CACTGGCATAGTGCAAGTGTTCGGCAAAGACGGGTCACAGATCTTCAGTCAGCCCATTAG CAGCGCGGAGGC CGGAGAGAAGGTGTCAAAGGAGACCATTCAGACTATGGTGATACACGTTCTTTACTATTA CCAGAAGAAAGT TGGCAAGATGCCACAGCACATTGTCTTCCACAGGGACGGCCGAGGATACGTAGAGGAGAT AGACTGGATTAA AGACATATTGAGTAATAGGGACCTCACCAACGGCCAAAGCATCGCTTTCGATTACATCTC AGTGATCAAAGA GTGTGGTCGGCGCATGGCTTACTTTGACGACATAAAGAAGAAGTATGTGAACGTGCCCGG GATTGCCTACCT GGACGACAACGCCCAAAAGGCCTATCTTTGCAGCACCAATCCATACGAAAAAGTAGGGAT GAGCAAACCTAT TAAGATTGTGAAGAAGATTGGCGAGATGACCCTGGAGCAGATCGTAGAAGACATCTATCA CCTGAGTTTTAT GAATATCGACACCGATAGGAAGGTGAGGCTGCCCGTGACTACCAATTACGCCGATAAGTC TTCAACGTTTTT CTCTCGCGGCTATCTGTCATCACAAAAGAAAGGAATTGGCTTCGTATAGTAACTCGAGGT TAACTTGT

308 69 GGTGTCGTGAGGATCCATGCCCAAGAAGAAGAGAAAGGTCGAGGACCCGAAAAAGAAGCG AAAGGTAGGTAG

TGGTTCCATGGTCGGCGGCTATAAAGTCAGCAATTTGACAGTGGAAGCGTTCGAAGGTAT CGGGAGTGTCAA CCCGATGCTGTTTTACCAATACAAAGTCACCGGAAAGGGAAAGTACGATAATGTGTATAA GATTATCAAAAG CGCACGGTACAAGATGCATTCTAAGAACCGATTCAAGCCCGTGTTCATCAAGGACGACAA ACTGTACACCCT CGAGAAGCTCCCGGATATAGAAGACCTGGATTTCGCAAACATTAACTTCGTGAAAAGCGA GGTTCTCAGCAT AGAGGATAATATGTCAATTTATGGCGAGGTGGTGGAATACTATATCAATCTCAAGCTGAA AAAAGTGAAGGT GTTGGGAAAATACCCCAAGTACAGGATCAATTACAGCAAAGAGATTCTCAGTAATACGCT GCTGACACGAGA GCTCAAAGACGAGTTTAAGAAATCAAATAAGGGTTTTAACCTGAAACGGAAGTTTAGAAT TTCCCCCGTGGT GAATAAGATGGGCAAAGTGATACTCTATTTGTCCTGCAGTGCTGATTTCAGCACCAACAA GAACATTTACGA AATGTTGAAAGAGGGCTTGGAGGTTGAGGGGCTGGCCGTTAAGAGCGAGTGGAGCAATAT CAGTGGCAACCT GGTGATCGAGAGCGTACTGGAAACCAAGATATCCGAGCCCACTAGCCTGGGCCAATCCCT GATAGACTACTA TAAGAATAACAACCAGGGCTATAGGGTGAAGGATTTCACCGATGAGGATCTGAATGCCAA CATTGTCAACGT SEQ Argonaute Sequence

ID NO

GAGAGGAAATAAGAAGATCTATATGTATATTCCGCACGCGTTGAAGCCGATAATCAC CCGGGAGTACCTGGC CAAGAACGATCCAGAGTTTTCTAAGGAGATCGAGCAGCTTATCAAGATGAATATGAACTA CCGATATGAAAC CCTCAAGTCATTTGTGAATGACATCGGGGTCATTGAAGAGCTGAACAACCTGAGCTTCAA AAACAAATACTA CGAAGATGTGAAACTGCTGGGTTACTCCAGCGGCAAAATAGACGAACCCGTCCTGATGGG GGCAAAAGGGAT CATAAAGAACAAAATGCAGATTTTTTCCAATGGATTCTACAAACTCCCCGAAGGCAAGGT ACGATTTGGCGT TCTGTACCCAAAAGAATTTGATGGCGTGTCAAGGAAAGCTATCCGCGCCATTTATGACTT CAGTAAGGAGGG CAAATACCACGGCGAAAGCAACAAGTATATCGCGGAACACCTGATAAACGTGGAGTTCAA TCCAAAGGAGTG CATATTTGAGGGATACGAACTGGGCGATATCACCGAATACAAGAAGGCGGCTCTGAAACT TAATAACTACAA CAATGTCGACTTCGTAATCGCAATAGTCCCGAACATGTCCGACGAAGAGATAGAGAACAG CTACAATCCGTT CAAGAAAATATGGGCCGAACTGAATCTGCCCAGCCAGATGATTAGCGTCAAGACGGCCGA AATCTTTGCCAA TAGCAGGGATAACACGGCGCTTTACTACCTGCATAACATCGTCCTCGGTATCCTGGGTAA GATAGGAGGGAT TCCCTGGGTGGTTAAAGACATGAAGGGCGACGTGGATTGCTTCGTTGGACTCGATGTCGG CACCAGGGAGAA GGGCATACATTACCCCGCCTGCAGCGTTGTGTTTGACAAGTACGGCAAGCTTATTAACTA TTACAAGCCTAA CATCCCGCAGAACGGAGAGAAGATTAACACAGAAATACTTCAGGAAATTTTCGACAAGGT GCTCATAAGCTA TGAGGAGGAGAATGGAGCCTACCCGAAGAATATCGTGATCCACAGGGACGGCTTTAGCCG AGAGGACCTTGA CTGGTATGAGAACTACTTCGGTAAGAAAAACATAAAGTTTAACATCATCGAAGTCAAAAA GTCAACTCCGTT GAAAATCGCCAGTATAAACGAGGGAAATATCACGAATCCTGAAAAGGGTTCCTACATCCT GCGCGGCAACAA AGCCTACATGGTGACCACAGATATTAAGGAAAACCTGGGAAGCCCAAAGCCCCTGAAGAT AGAAAAGAGCTA CGGCGACATAGACATGCTCACAGCTCTCAGCCAAATATACGCACTCACGCAAATCCATGT GGGGGCGACCAA AAGCCTGCGCCTCCCAATCACCACCGGCTACGCCGACAAGATTTGCAAGGCGATCGAGTT CATCCCCCAAGG GCGCGTGGACAACCGCCTTTTCTTTCTGTAGTAACTCGAGGTTAACTTGT

309 76 GGTGTCGTGAGGATCCATGCCAAAAAAGAAGAGAAAGGTAGAGGATCCCAAGAAGAAACG CAAGGTGGGGTC

CGGCAGTATGGACCGCGAGATCATTGAAAACTTCAACCCCAGCGACCCCAGGACCGAGGG CGAGAAGTATCT

(Helicase) GATGGATAACTTTTCAACCTCCCCCAGGTTTAATGGCTGGACAATATTTGAGCAGCCCCA CATCAACTCAAT

GAAGCCCGACTTCATCTTGCTGCACCCCCACAAGGGCATCATAATCATAGAAGTGAAGGA CTGGAACCTCAG CAGCGAGACATATGAGAACGGCGGTTACATCTGGGGGGAAAACGGCGAGAGGATTAAGAA AAACCCCATCAA TCAAGTAGAAAACTACAAAAACTCTATACTCAAGATGGAACTTACAAACAGCATCGAATT TAGTGAAGTGTT CGGCGACAAATACTTCGCGTGCATAGAAACGGTGGTATACTTTCACAAAGCCAACAAAAT TCAAGCCGAGAA CTTCTGCAGGAGGAACAATAACTACACCAAGATCTGGACCAAGGACGAGTTCGACTACAT ATGCAATATCAA TAACAAACTGAAGGGCAGTTGTCACACCTATGCCCTGAGCTACGAAAAAAGCACCCTTGA AGACAACAGAGG TATGCTGAGTAAACTGGTGGAGGAGCTCAAGTGCAATCTCCAGTACAGTGACTACAACTA TGAACGACGCCA ACCGATTAAGTTGACCTATGAGCAAGAGAAGTTGGCGAGGCTGCAAAAGAATTCAATCAG GAGGTGGAGCGG CGTGGCAGGCGCTGGCAAGTCCCTGAGTCTGGCGCAAAAAGCCGTGAACGCCCTGAAGGA GGACCATAGCGT TCTGATCCTGACCTACAACATAACCCTGAGGCACTACCTGCGCGATCTGTGCTCTCAACA GTTCGGACCCGG CTCCTACAAAGGCGAGCGCAAGAAGCTGAGGAGCGACCTGACCATCTGTCACTTTCATGA CTTTTTGAGAAT CATCATGGCCGAGTACGAGATCGAGGTCGAACATGACGAAGACGACAACTTCACCCAGCA CTGGATAAACAA GATCGACAGTTGCATAAAGGTGAACGGCATCAAGAGCCACCTCAAGTACGACTATATCCT GATCGACGAGGG CCAAGACTTTGAAGGCGAATGGATTAGGTTCCTGAAGCAGTTCTTCACCGAGGTGGGTGA GATCTTTATCGT GTACGACAAGGCCCAGGATCTCTACGAGCATGGCGTGTGGATCGAAGACAGCAACCAAAT CAAAAACATCGG CTTTAAGGGCAAGCCCGGGAACCTGAAAATCAGTATGAGGATGCCTGAGAAGATGGTGTA CCTGGTGCAGGA CATCAGAAATGAGTTCAAGATAGATGAGGAGGAGATCACCCCAAACGTGAACAGCCAGCA GAGCTTCATCGA GATAACCAAGTGGATTAACTGTATGCCCCTGACGCTCACTGAAAAGCTCGACCAGATTGA AATACAGGTGGA CTTTCTGCGCCGAAACAACAACAGCCTGGAGGATATCACGATCATTACGACCAACGAGGA GACCGGAGTGGA GATAGTGAATAGGTTCAAAAGCAGGGGTATCAAGACCAGCCACGTCTACGATATGGAGAA GCGGGGGAACCA GGCCAGGCGAAGGATGGAAAAATGGAAATTCCAGGGCGGCACCGGCAGACTGAAGATTTG TAGCTATCACAG CTATAAGGGCTGGGAGACTCCGAACATCATCCTTGTGCTGGACGAGCCGAGCACAAAGTA TGAAGACGGCAT AATTAGTAAGGGGGAGTATAACGAGAAGAACATTTTCGACGCTATCTTCATTAGCATGTC CAGGGTGAAAAG GAAAGCCCAAACCGGTGAGTTTAGCTTTACGTGCCTGAATTATCTTAGCGAATACAATAA GATTGAGGGCCT CTTCCACTAGTAACTCGAGGTTAACTTGT

310 75 GGTGTCGTGAGGATCCATGCCTAAGAAAAAGCGGAAAGTTGAAGACCCCAAAAAGAAACG AAAAGTCGGAAG

CGGCTCACTGGGGCTGAATAATGAGTCCAAAGAGTTCTTTAAGGGCATTAGCCGCATTTG GAGAAATTACAA

(Helicase) GGACTACACCTACCTTGACGGGATTAAGCTGAGCCAGGCGCAGATCGATATCATCGAGAA GGAGGAAGACCA

ATTGCTTATAGAGGGCTACGCCGGCACCGGTAAGTCCCTGACCCTTATATACAAGTTCAT TAACGTGCTGGT TCGGGAAGATGGGAAGAGGGTGCTGTATGTGACTTTTAACGATACGCTGATCGAGGATAC GAAAAAACGCCT TAGTTATTGCAACGAGTACAACGAGAATAAAGAGAGGCACCACGTAGAGATTTGCACATT CCATGAGATCGC CAGTAATATCCTGAAAAAAAAGAAGATCATAGACAGGGGTATTGAGAAACTGACGGCTAA AAAGATAGAAGA TTACAAAGGTGCCGCTCTCCGCAGAATTGCGGGAATCCTGGCTAGGTACATCGAGGGGGG AAAGTATTATAG CGAGTTGCCTAAAGAGGAACGCCTCTACAAGACACATGACGAGAACTTTATCAGGGAGGA GGTGGCCTGGAT CAAGGCCATGGGCTTTATAGAAAAGGAGAAGTATTTCGAGAAAGATCGCATTGGGAGGTC CAAGAGTATCAG GCTGACGCGCTCACAACGCAAAACTATATTCAAGATATTTGAAAAGTACTGCGAAGAGCA AGAAAACAAATT CTTCAAAAGCCTCGACTTGGAGGATTACGCCCTGAAGCTCATCCAGAACATAGATAATTT CGATGACCTTAA GTTCGACTACATTTTTGTGGACGAGGTACAGGATCTCGATCCCATGCAAATTAAGGCGCT GTGTCTGCTGAC CAATACGAGCATCGTGCTGTCAGGCGACGCGAATCAGCGGATTTACAAGAAATCTCCCGT GAAGTACGAGGA GCTCGGCCTCAGAATCAAAGAGAAGGGGAAACGGAAAATTCTGAACAAGAACTATCGGTC CACGGGTGAGAT TGTCAAGCTCGCGAACTCAATCAAGTTCTTCGACGAGTCCATCAATAAGTATAATGAAAA GCAGTTCGTAAA ATCCGGTGATCGCCCGATCATCCGGAAGGTGAACGACAAAAAGGGTGCGGTGAAGTTCCT GATCGGCGAGAT CAAAAAAATCCACGAAGAGGACCCCTACAAAACAATCGCCATCATCCACCGAGAGAAAAA CGAGCTTATCGG CTTCCAAAAGTCCGAGTTCCGAAAGTACCTGGAAGGCCAGCTGTACATGGAAAAATTCAG TGACATCAAGTC SEQ Argonaute Sequence

ID NO

CTTTGAGTCAAAGTTTGATTTGAGGGAAAAGAACCAGGTGTTCTACACCAACGGCTA CGATGTAAAGGGGCT GGAATTTGATGTGGTGTTCATCATAAACTTCAACACGGCCAACTACCCACTGAGTAAAGA GCTGAAGAAAAT CAAGGACGAAAACGACGGCAAGGAAATGACGCTCATTAAAGACGATGTGCTCGAGTTTAT CAATCGCGAGAA GAGGCTGCTGTACGTAGCTATGACCAGGGCCAAAGAAAAGCTGTATCTCGTGGCCGACTG CAAAAACAGCAA CATCAGCAGCTTCATCTACGACTTTAACACCAAGTACTATGAGGCACAAAATTTCAAGAA GAAAGAGATAGA GGAGAACTACAACCGGTACAAGATTAACATGGAGCGCGAATACGGCATCATCATTGAGGA CGACGACTCCAA CAACGTTAAGAACAATGACACGAAACAAGAGAACAAGTTTAATACCGAATCTAAGGAAAA GGGCAAAGATGA CATCGACAAGATAAAGGTGTTTTTCATCAACAAGGGAATCGAGGTGGTGGACAACCGAGA TAAGAGCGGGTG CTTGTGGATCGTCGCCGGGAAGGAAGCGATCCCTCTTATGAAGAAGTTCGGTGTCCTGGG CTATAACTTCAT ATTCATCGCAAACGGCGGTCGGGCATCTAAGAACCGGCCAGCCTGGTACCTCAAGAATAG CTAGTAACTCGA GGTTAACTTGT

311 14 GGTGTCGTGAGGATCCATGCCTAAGAAGAAGCGGAAGGTGGAAGACCCGAAGAAAAAACG AAAGGTGGGCTC

CGGAAGCATGAACAACACCATAAACAAAATAGACTTCGGCGCGTTTCTGAGATCATTCAA GCAGAACCTGGA CGGTAGCTTTTCTTTCCTTCTGGGAGCAGGCGCGAGTGTGAGCAGCGGCGTACAGTCTGC AAGCGACTGCAT TTGGGACTGGAAAAAAGACATTTTTCTGGCCCAAAACCTTCAATTTGAGGAGTTTCTGGA CATCCATAGTGA CTTCTGTAAAGATAAAATCCAAAAGTGGTTGGATGAGCAGGGCGTGTTTCCCAAGCGAGA CTCAGAGGAAGA GTACGTGTTTTATGCCGAGAAAGCGTACCCAATGGAACAGGACAGGACCAAGTATTTCGA GAACCTTTGCGC GGACAAAACCCCCTACATAGGGTATAAACTGCTGATGCTGCTGAACAAATACGGAGTTCT GAAATCCGTGTG GACAACGAATTTTGACGGTCTGATAGAACGCGCAGCGCACCAAGCCGATCTGACGCCCAT CGCCGTTACCCT CGACAACCCCGAAAGGATTAGCCGAAACGAGAGTAAATCTGAGCTGCTCTACGTGGCACT CCACGGTGACTA CAAGTATAGCAAGCTGAAGAACACAGCCCAAGAGCTGGACGCGCAAGAAATTCTCTTCAC CGAACGCCTGAA GTCTTACTTCATCGATAAGAATTTGGTGGTGATCGGTTACAGCGGTCGAGACAAAAGTTT GATGCACACCTT GTGCGAGGCTTTTATGACGAAGGGGTGCGGTCGGCTTTACTGGTGCGGCTACGGTAACAA GATTACCTCTGA AGTGCAGAACTTCCTCAACAGAATAAACGATTCAGGTAGGGAAGCCGTGTACGTGGACAC CGATGGGTTCGA TGCCACCCTCGTGTCTATTATGAAGTTTTGCTACGAGGATCAATTCGACAAGAAAATCGA AATCGGCAAGTA TCTCAAGGGCCTGTCAAGGGTGAAGCATATTATCCCTTTCAGCGTTGAGAATACCACGTT CACCGGCTGCGC CAAGACCAACCTGTACCCCTTGATCATCCCCCAAGACATATTCCAGTTCGAGATAGAGAG CCCCGAAGGTAG CAGCAAATGGACCTTCATTAAAGAGAAGATTAAGGGCAAGGACATTATCGCTGCCCCTTA CGAGAAAATAGT CTACGCATACGGGCTGCCAAACTCAATCTACAACGTATTCAGTAAGGAGCTGATCGGCGA GATCAAGAGGGT TCCCATCAGCCTGAGTAACATCAAAGACAACAGCACCCTCAAGAATATCATCCTGAAGGT GCTGATATGTTC TCTGAGCAGTAACGCGGGACTCAGGGCGAGTATGAGCAAGAAGATCATCTGGAATGAGAA AGAGAGGTTCCA GAGCAACGTTTTTAAGGCAATAAAGATCGACATCGTTTTCATCAATAGCGAAAAGTACGC CCTCATCTCAAT CACCCCTACCCTCTATTTCAACAAGGAGGGCAACTACACGACGCTGCAGAAGCAGGAAAT TACGCGGAGCTA CATTGACAAGCTGTACAATAAGATTTATGAGGAAACCCTTTGTTACTGGGAGGCCATCCT GTTTAAGCAGCA GACCAAGATCTGCTTCGACTACCCGCTCAATTCCGGGAACGGCTGTTTCTTCAAGGTTAG CTCTAACAGGGG CGAAGCCCTGTTCAATAATCCGAATAAGCCGTACGTGATTACTAACGACATCATACTTAA ACGCAAAATCTA CGAAGGCATCATAATCGACGAGCCCCTCCTGAACTTCTCAGGGTCAACCAGCGCCCACAT CATTATGGACTC CAATCCGATGCGCGGTCTCAACAACAATAACCCATATGATCACTTCATTGCAAGCAAGTT TAGGGACGTTTC TATCCACATCGGAGTCGTGTGTCCCTGTACATATAGCGACAGGTTTTTTAGCTTTCTGAA CGAGCTGCAAAG TCCGATAAAGAATAACAATCCTAACTCAGACTACATCCAGAACTATAACGGATTCAGCCA GATATACGCAAG CATTCTTAATATCCCAGCGATCAACAGCCAATACTGGATCTCATGCCGCGAAGAGCAGGA TAACAGCATCTC TTTGGCTAGGAACCTGTGTAAATACGCGAACCAGATGGCCACTAACATGCCAGGTATAAT AGTTACCTTCTT CATTCCTAACAGCTGGAGCAACCACAAGAGTTTCAAAGAATGTGGCGAGGTATTCGACCT CCACAGTTACAT CAAGGCTTTCGCCGCACAGCACGGTTTTACAACCCAAATCATTGAAGAGCGAACTCTCAC AAATCTCTCCAT GAAAAAGGAGATCTATTGGTGGCTGAGCCTGGCGTTCTTTGTAAAGGCTATGCGAGTACC ATGGACCCTGGC CAATCTGGACCAGAACACCGCCTTCGCCGGCATCGGCTACTCCCTGAGCAAAAAGCAAAG CGGCAAATTCAA TATCGTTATCGGCTGTAGCCATATCTATAATTCTGAGGGCCAAGGCCTGAGGTACAAGCT CTCAAAGATAGA TAATCCAATCTTGGACCGGAAAAACAACCCGTACCTGACCTATAATGAGGCGTATAAGTT GGGCGTGAACAT ACAGAATCTGTTCATTCAGAGCATGGACAAACTCCCGAAGCGAGTAGTGATCCACAAAAG GATCCCGTTCCT GGAGGACGAGATAAAGGGCATTACCGAGGCGTTGGCCCAGGCCAACATCACGAATGTTGA CCTCATCACTAT CACGATCGAAAAGAACATCAGATGCCTGGATCAGTTCTTCTACAATGGTCAAGCCAAGAA CAGCAACTTCCC ACTGCATAGGGGCACCTGCATGAAGCTCAGTGATACCGAGTGTCTGTTGTGGACCCACGG CGTGGTGGACTC AATTAAGGCGGGCAGGAACTACTACTCTGGTGGCAAGGGTATCCCCTCCCCCCTCCGCAT ATCAAAGTTTTA CGGCGCAGGCTCTATGAAGACTATATGCAACGAAATCCTGGGGTTCACAAAGATGAATTG GAATAGCTTTAA CTTCTATACCAAGCTTCCCGCGACCATCGACACCAGCAACACGCTGGCGCAAGTGGGGAA CATGCTCGATAA TTACAACGGTATTACATACGATTACAGGTATTTCATCTAGTAACTCGAGGTTAACTTGT

312 26 GGTGTCGTGAGGATCCATGCCTAAGAAGAAGCGAAAAGTTGAAGACCCCAAAAAAAAGCG CAAGGTCGGGAG

CGGATCTATGATGGGAGCCAGCGATGAGTATTCCTTTTACGCTGAAAAGGCCTATCCCAT AGAAGCGGACAG GCAAAAGTACTTCGAACAGCTGGCGTACAACAAAGCCCCCTACATTGGCTATAAACTCTT GTGTCTGCTGAA TAACGCGGGGCTGATAAAGTCTGTTTGGACCACAAATTTTGATGGCCTGACGGAAAGGGC CGCTCACCAAAT GAACATCACCCCCATCTGCATTACCCTGGACGACCCCGAGAGGATTTTTAGGAATGAGAA CTCTCACGAACT GCTGTATATCGCCCTTCACGGCGATTACAAATATAGCAAGCTCAAAAATACCACCCACGA GCTGGACACCCA AAACAATATCTTCAGAGACGCACTGAAGCGATACTTCGTGGATAAGAATCTTATTGTCAT AGGATACAGCGG CCGAGATAAAAGCCTGATGAACGCACTTAAAGAGGCATTTTCCCAATCCGGCTCCGGGCG ACTGTACTGGTG TGGCTTCGGGGACGATATATGCAGCGACGTTAAGGAATTGATAGACATCGCCAGGAGCAA TAATCGGATTGC CTACTTCATCCCGACGGACGGCTTCGATAAGACCATGCTCCAACTTAGTCGCGCCTGTTT CGAGGACGACAT TGTGAAGCAGGAGGAAATCAAAAAGCTGATCAAGTCCACGATCAAGAAGGACGAGACGAA GACCAGCTTCCG AATCGAGAGCAGCAGGAACGATAAACTTATTAAGTCTAACCTGCATCCCGTGGCGTTCCC CAAGGACGTGTA SEQ Argonaute Sequence

ID NO

CCAGTTCGAGATTAAGACTAACGGCGAGCATCTGTGGAACAACATAGACCAGATCAT TGGCGGCAATAAGGA CATAGTTGCCGTACCGTTCAAAGGTAAGGTGTTCGCTGTCTCAAGCATTGCGAAAATCAA GGAGAGGTTCGG GGGCTATATCAAGGGGGAAATATTGAAAGACCCGATTGGCGTCGATGACATCCGCAAAGT ATCTGTGTTCCA GCGGCTTATGATGAAGAGCATCCTGATTGGAATCTCTGAGTTGGCAAATCTGGAAACTGA TGGAAAGTGGCG CCTTTGGAAAAAGAACACCCTGAGGCGAATCGTAAACGGCACGGAGTATTTCATCGCCGA CGCTGTAGAGCT GTCCTTTTTCTTCGGAAAAGATACCAAGTTTGCCTATCTCAGCATCAAACCGACCATTTA CATTTATACACA TAGCGACGAATTCATACCGAAGGATATAAAGCTGCAATTCACAAAGGAGAAGTTCGACCG ACTCTATAATGC ACAATACGACCAATCCCTGGAGGAGTGGAATAATCTCATCTTCCACAACAACAGCCTGAG GTTCACCTTTCC CGTACTGACCACCTCCGACATGAGCTTTAGCATCAGCAACAATGTGGCCTTCTCAGGAAT TAAGGTTTTGAG TGACAAGTATAAGAGCTACCCCGTTTCTATCGAGCAGAAGCGCATAGTTTTCAAGGGCGT GGAGTTCCTGGA GCCCCAGCTGCTGTTTCAAAATAAGAACAGCAACTTCAAGTCACGCGACTTCCATCCCAT GAGGGGATTGAT TAACCACTACCCCTTCGACTACCAGAACAATGGGATCACCAACACGTTTAATGTCAAACT CGGCGTGTTGTG CTCCTCTAAGTACTCTACTAGGCTGTACGAGTTTCTCATGAAATTGAATGCCCAACATAA AGCGCCCGAGAA AAACGAGTACATAATTGACTATGCTGGATTCAACCAAATCTACAACATCCCTATTGAGAT ACCGCTGGTAAA CGACGAGAAGTGGATGGACGTAAAGTTTAATAGCAGCGTGAGTATCAAAGACGACGCTCT CAACCTGGCAAG AATCATATGCACCCAGATCGAGGCGCTTCACGAGTCTTACAAAACTGACATGACCATCGT GATCTTCATTCC CAACGAGTGGCAACCCTACAGACATATCGAGGAGGACACATGGGTTTTTGACCTCCACGA CTACATCAAAGC ATATAGCGCTCAGAAAAGAATTTCCACGCAGTTCATAGAGGAAGATACTCTGAACGATTC ATTGACGTGCCA GATATATTGGTGGCTCAGCCTTAGTTTTTACGTGAAATCCTTGCGGACGCCGTGGGTTCT GAATGCTAACAA TAATGAGACCGCTTACGCGGGCATCGGCTACAGTATAAAGAATAACAACGGTGAGGCGTC AATTGTCCTCGG GTGTAGCCATATTTACGACAGCCACGGCCAGGGCCTCAAGTACAAATTGAGCAGAGTGCA GGACTGCTACAT CGACAACAAGCGGAACCCCTACCTGAGCTACAATGAGGCCTACAACTTTGGCATAAGTAT CAGGGAGCTCTT TCTGCACAGCATGGAGTACCTGCCAAAAAGGGTAGTAGTGCATAAACGCACCGAGTTCAA ACCCGACGAAGT GAATGGCATTGTCGACTCACTGCAGATAGCGGGTATCGAGAATATAGACCTTATCTCCAT CAACTTCGAGCG GGAAGTTAAATTCATGTCCACTAAATCCAACTACGGGCAGTTGCAAATCGATAACTTTCC CATACGCAGGGG CACCTGTATCGTGGTGAACGACTATGAAGCCCTTCTCTGGACCCATGGAATTGTGCCGAG CGTTAAGTCCGA TAACAGGACCTTCTATCTGGGCGGACGATCTATTCCTAGCCCTCTTATCATTAAGAAGCA TTACGGTAAGAG CGATATCAACGTTATCGCTACAGAGATACTGGGTCTTACCAAGATGAATTGGAACTCTTT TGATCTCTACAC GAAGCTGCCGGCCACCATCGATAGCTCTAATCAAATCGCGCGGATCGGGAACCTGCTGAC TAGGTTCGAGGG CAAGACCTATGATTACCGGTTTTTCATTTAGTAACTCGAGGTTAACTTGT

313 46 GGTGTCGTGAGGATCCATGCCCAAAAAGAAACGGAAGGTGGAGGACCCGAAGAAAAAGCG CAAAGTAGGTAG

CGGCAGTATGCGATTGGGGCACATAGGCAACGGCTGTTACAGGGAAGGCGTTAAAGCACA ATTCCAGACACG AGAGAGGGAGGATGCCGGTTCAAGGGCTGCGGCTGCCCAACCCCCGATTAAGCAATTCGG ATACACCGATAG ACTCGGCCTGAACCTCGCCCCCATAAGGTTTTCTAGCGAAGAGTTTGAAGCCGGACGGAC GGTGTACCGCGA CGAGGAACAGTACCGAGCTCTTAGGGAAGCCCATCAAGCCACCCATGCCTTTAGGTATGA CGCAAGGGACGC GGCTATATACGACATCCCTATGGCAGAAGGGGTGGCGCCTCTGGGTACTCCCGTGAGGAT CAAAACTAAGGA CCACCTCGCTCTGCTCGGCAAAGCGGCTAACCACGCGCTGCTCGATTGGCTCGCACCACG CAGAACCATTCT GCGGAGGGCGAGACCTCTTCAGTGCTGGGGCAACAGGAAGGCCTCACTGTTGTCAGCCGC CGTGCGGGATCA AGGACTTGCCGAAACAAAGGGTCTGGATGTTCTGGTAAGGCATTCTTTTGATTTGAGGGC TTTGGGCGCACC TCACCAGGGTGCTGAACCGTACCTTGCCCTGATGTTGGACGTGAGTACGAGCAATGAGCT GGAGATACCTGT GGGCGAGCTTCTGCGCGAGAGATTCGACCCCATCGGTCGATACGTTTGTGCCAGAGCCGA CTCTGGCCAAGA TAACGTACTTGCTAGGTTGGAAACACTGGGTAGGGTCGTGGGTGTGGATGGTGGTAAGCT TCAACTGAACGA CTTTACCGGAGAAGAATTCGTGGACGCTGATTCAGTCACGTTGGAGCCTAGATTGGAGAA TCTCGATGCGCT CATTCGCCACTTCTATCCCAGGGATGCGCCAAAAATCCTGGAGGGCCTTCGCAAAAGGAG AGTGCCTTTCTC CACCGCGAACGACAAGCTGGCGAAGATACGAGAAGTGCACGGAGGAGTAGCCGGCCACCT TGAAACGATTAG GATCGCTGGCATGGCTATAGAGGTGGGTGCCCTGCTGCAGAGAGGCTCTAACCTGTTTCC CCCACTCATAAG CACGGACCGGCCTGGATTTCTGTTCGGCGCTCAAGGTAGGGAAACTGGCGCGTTCCCCGA CGTGGGGGTGAA GCAGCATGGGCCCTACAAGTACATGCAACACGAGCGCAATGAACCTGTGATCGCCATCAT CTGCGAGAGCAG GTTTCGGGGTCGGATAGACCAACTCGCCCGAACACTTCGCGATGGTGTCGCGGAAGATGC CTGGCAAGACGC GATGAGGGGCAGAAATAAGGTGCCGGAAAACCCCTTTAGAGGCGGGCTGATCGGTAAATT GAGATTGTCTCG GGTGCAGTTTGAGTTCGAAGAAGTAACCGAGCCCACTCCCGAAGCCTATCGCGAGGCCAT CCTTCGGCTGCT TGCGAGACTCCCAGAGACACCCGACCTCGCGTTGGTTCAAATACGAGCGGATTTTAAGCA GCTCCGCAACGA CAGGAACCCATACTTCGCTGCAAAGGCCGCATTCATGACGGTGGGAGTGCCCGTGCAGTC CGTACAAGCCGA GACTGCGGACATGCAGCCCAGTAATTTGGCCTACATGGCCAACAACCTGGCCCTCGCCGC CTACGCAAAATT GGGCGGTAGTCCGTTCGTGATCTCCACACGCATGCCGGCGACGCATGAGCTCGTGGTTGG CTTGGGCTACAC AGAGGTGTCAGAAGGACGCTTTGGACCGAAGTCCCGATTTGTAGGCATCACCACCGTGTT CCAAGGCGATGG CAGGTACTTGGTGTGGGGGCAAACTAGAGAAGTAGAATTTGAAAACTACGCCGACGCTCT CTTGGCGAGTCT GAAGACTACCATCGACACAGTGCGCAAGGACAATAACTGGCAGCCACGCGATCGAGTGAG GTTGGTATTCCA CGTGTATAAGCCCCTTAAACATGTCGAGATCGACGCTATCAAACAGTTGGTGCAGGAGTT GCTGAAGGGCGA ACATGAAGTGGAGTTCGCATTTCTGGACATCTCCCGCTTCCACGATTTTGCCCTTTTCGA TCCTTCCCAAGA GGGCGTGAATTACTACGCTGACCGCAGACGACTGCTGAAAGGCGTGGGCGTCCCCCTTAG GGGTATCTGCCT CCAACTGGACGAAAGGAGCGTGCTCTTGCAGCTGACAGGCGCTAAGGAGGTGAAGACCAG TGAACAAGGTCT GCCCAGGCCCCTGCGACTGACGTTGCATTCCGAGAGTGATTTTAGGGACCTCACATACTT GGCGCGACAGGT GTACAGCTTTAGCTACCTCTCCTGGCGCAGCTACTTCCCGGCCATAGAGCCGGTGAGCAT TACCTACAGCAG ACTTATTGCCAATGCACTTGGCAACCTTAAGAGCATCCCGAACTGGAACAGCACATTCTT GACAGCTGGCCC ACTGAGGTCAAGGATGTGGTTTCTGTAGTAACTCGAGGTTAACTTGT

314 49 GGTGTCGTGAGGATCCATGCCGAAGAAGAAAAGGAAAGTGGAGGACCCCAAGAAAAAGCG CAAGGTTGGCAG

CGGGTCCCTGGAGAACCTCACCATAAACATAATCCCCTTCAAGCACCCCAGCATCCAAAA AGAATTTGGCTT SEQ Argonaute Sequence

ID NO

CTATACCGAGAAGAAGGAGGGCTATTTCCCCATTCATAGGACCGAGTTGCCCAACGA GCTGTGGGACAACCA GAAAGAGGAAGTGGTGAAGCACAAGTTCTACTACACGAACTTTGAAGACACGGAGGATTG CGTTCTGAAGAC CAAGGTGGACCTGTATAGTAGCACTAAGTTTGCCAAGCATCTGTACACGCGATTGGTGTA CCAGTATTTCAT TGGGATAGCGGATGCAATCCAGTTCAACTACGTGGGTGACATAGAGGTTTGGCTGCTGGA TGCGAAAGCCAG CACCACCAAATACAATAGCTACAACAAGTATACCCTGAAAATAGAGTTTAGCGGTCTGAC CAAGAGCCCCGC TCTCCTCCTCAGCTATGACAACACTAGTAAGGTAGCGACTACGAGCATAGACGAAATCAA CATTCCCACCGA GTACTTCAAGACCGTCGTGTATAACAAAGAAATCCAGAGGTTCAAGTACCTGACCGAGGA CGCGAAACAACA CCTCGATCAAGTGTATCCCCTGCTCAACATACCGTTGAAAAACCATCTTGAGATTCCTCA CACCGTTCCCCG CAAGGGCAACAGGTATAAGCCCTACTTTAACCACATTACGACTTTTTACAATAACTATTT GAACACCGACGA ATTCAGGGCCATCCTGCCCCTTGATGAGAATGGATTCTTCAATATCCCAGAGGACAGCAT TTTGAAAACTAG CAAAAATTCTAACAACCTCCGGTTCTATAAGAAAGTCGGAGTAGATCCCAAGGCTGGAAT GAAGAAGCCCGG TCCCTACAAGGCCTCCCCCCACGACAACGTGAACCTGTTCTTTATCTATCACAAACCCGA CGCACATGAATA CGCCAAAACGTTGCATGACTACTTCATGGAGGGGTACAAAAAGTTCTTTCCCCCCCTCAA GAACGTTATCCG GCAGCCGCTGTTCCTGGACAAAGGCACCTCACTTGCATTTGAGAGCTTCGACAGCTGCAT CGCCGAGCTGAA AACCCATCTGTTCGACCTCAAAAAAAAGCCCAATACCCGGTACGTGGCCATCTACGTGAG CCCCATCCATAA GGAGGACGAAGACAATAAACACCTGTACTACCAGGTCAAAGAAGAGCTGCTTAAACATGA CATCACCAGCCA GGTGATTTACAAAGAGTCCATCAAAGATAAATACTTCGGCGCTTTCCTCGAGAATATCGC ACCAGCTTTGCT TGCAAAGATCGACGGCATTCCCTGGCGACTGGACAGGGAGTTGAAACAGGAACTGATCGT AGGCGTCGGCGC CTATAAAAGCAGCGTCACCAACACAAGGTTCGTTGGAAGCGCCTTTTGCTTTAACAACAA AGGAGAGTTCAA GAGCTTTGACTGCTTCAGGGAGAAGGAATTCGATCTGATTGCCGGGAAAATCGGCAAGCA GGTGCTCACCTT CATTGAGGAGAACGAGAACAAGTTGGAGAGGCTGATCATCCATTATTTCAAGCCTTTCAA CAAGGATGAGAT AGATCTCGTGCAGGAGACCCTCGGCCTGCTGAAGCTGGAAATCCCCATCATCATCGTGAC TATCAATAAGAC CGAGAGCTCCGATTACGTCGCTTTTGACACCAACGACGACGCCCTGATGCCCCTGAGCGG CACCATTATCGA GATAGCACATCTGAAGTATCTGCTGTTCAATAACGCGAAGTACAGCAGCATCGGCTTCGC CAAAGACCACCC CTTCCCCGTTAAGCTCAGTCTGTACTGCACCGACCAGGATTACTTCGAGGACATCGCCAT CGTCAAGGAGCT CATAGATCAGGTTTATCAGTTTTCTAGGATGTACTGGAAGAGCGTCAAGCAGCAAAACCT GCCCGTGACAAT CAAATACCCCGAGATGGTGGCCCAAATCTTCCCACACTTTGAGGGCGATAAACTGCCTGA TTTTGGAAAAAA CAATCTCTGGTTTCTGTAGTAACTCGAGGTTAACTTGT

315 77 GGTGTCGTGAGGATCCATGCCCAAGAAAAAGAGGAAGGTTGAGGACCCCAAAAAGAAGCG CAAAGTAGGTAG

CGGCTCCATGCTGACCAATAATCAGATTGTGCTGGAGCAGGAACTTCTGGGAAGCATATT CAAAAACAATAA

(Helicase) CCTGATGCTGAAAGCCCGAGAGAAGATAAAACCGGAGATGTTCCTGTATAGCAAACACAT GAACATTTACCT

GGGCATCCTCGACATGGTGGCCAACAAGCTGGAGGTGGACCTGATCACCTTTCTCGAGCA CCATAAGAAAAG GGTGGGGGATATGGATGGCGTAACTTACGTGACCGAGATCTACACCTGCAGCGCGTCCGA CATTGGCTTCAA TACAAAACTTGACATGCTGGTGAACAACTACAAACGGCATCTGTATGTGGAGATGAAGGA CAAAATCAACAG TGATATGAGTCTTGAGGAGATCGAGAGCGAGGTTGAAGGGGTGAAGGTAAAGGTGCACAA ATGCAACATCAA GAAAGAACTGGATATAGACAAGCAATATGACGATTACATCAACTGGCTTTACGACGAAAA CAGAGACAAGGG GATGAAAAGCGGCCTGACCTATCTGGACAAGTATCTCGGCAACTTCCAGAAGGGCAGGCT CGTCACCGTGTT CGCCAGGAGCGGCGTCGGCAAGACCACGTTCAGCTTGCAGCTGGCCGCCAATATGGCTCT GAAGGGCCACAA GATATTCTACGGGAGCGCAGAGATGACCCGCAACCAGGTCTTTAACAGGATCGTGGCCTC AGGTTTGAGCCT TAGCGCGAAGGCGATTGATGAGGACACCATCCTGAAGGAGGACAAGGAGAGCATCGCCAA GTTTATGACCAA GGTTATCAACAACAAGTTCTACGTGTCAACCGAGACCGACTTCGAAAAGTTCATCGACGA GATAAAGGTTTA TAAGCTGCAGAACAGTCTGGACGTGGTGTTCGTGGACTACATTAACAAGTACATCGACTT CACCGACAGGGA CATGTTGACCAACAAACTGGGGAAGATCAGCGGCATGCTCAAGAGCCTGGCCATGGAAGA GGATATCTGCGT GGTGCTGATGGCCCAGGCCAATAGAGTGATTGACAAGAAGGTGGGTGACAATGCCGTCGA AAAAATCGACAG CAGCGACATCCAGGACAGCGCCAGAATCGAGCAAGACAGCGACCAAGTGATCGGCCTGTA CCGGAACGTGAA GCTCGATGATAAAATGTATAGGGAGAACCTGTTCAATCAGGGCAAGCTCAAGTATAATTC CAAGAACGCCGA CGACAATCCGGAATGCATGAACGCTGTGATCATTAAGAACAGGCATGGCGACCGAGGCAC GTGTGCACTGAG GTGGCACGGCAGGTACAGCAGGGTCAGCGACTTCTAGTAACTCGAGGTTAACTTGT

316 66 GGTGTCGTGAGGATCCATGCCTAAGAAGAAGAGGAAGGTCGAAGATCCCAAAAAGAAACG AAAGGTTGGATC

AGGGTCTCTTCACCTTAACTACCTCCCATTGCGCTTTACCGCCGATATATTCAAGGGTGG TGCTTTGACATT TCCCGAAGGCAGCGAGAAAAACTGGACCAGCGACGATCCAATCAGCAAGGAGCTGAGCAA GTTGCGAGAGAA ACACGGAGATAGTCATGTCTTCCACCGGATGGGAAACAAAATTGCATGTATCCCCGTTGT GGAGAACGCCAT TGCTATAGGCACCGAGACGGATTTCAACATCATTAGTGACTTTCAGCTGGCTAATGCTCT TGCTCGCAGCGC CCTCCACAGGTACTTCAAAGCTGCGGGAAGGGAGACTGTAATTGGGTTCCGACCCGTAAC CCTTCTCTTGGA AAAACACAACTTGGCCAGCAACAGGAAGGACGTGTTCGGCATTTTCCCCGAGTACACTCT GGACGTCAGGCC TCTTGCACCACATGAGGGCGACATAGCGAGCGGAGTGCTTATCGGCTTTGGAATAAAGTA TGTTTTCCTTCA GAACGTAGCCGAGCTGCAGGCACAAGGGGTGAGTGCCGCAGGGATGTACGCCGTGAGGCT GGTAGACGAGAG CGAACATCAATTTGACCGGGCCTACCTGGGAAGGATTGATCGGTTCACAAAAGATAACGT GACGCTCGTTGA CAGCGATTACGCGGAATATCCCGCCGACCAGTGTTACTTCGAGGGAAGCAGGACCAACAT CGAAGCCGTGGG CCGAAGTCTCCTGGGGAAAGACTATGATGCCTTCAGCTCAAGCCTTTTGCAGGAGAGCTA CAAAGTGACCGG AGCCCCCAACCAAACCCAACGACTGCACCAGTTGGGCGCGTGGCTCGAGGCCAAGAGTCC GATCCCCTGCGC CGTTGGTCTGGGAGTACGGATTGCAAAAAAGCCGCATGAGTGCTCACGAGGCAACGACGC CGGGTACAGCCG CTTTTTCGACAGCCCCAAGTGCGTGCTGCGGCCTGGCGGCTCTCTGACCGTGCCCTGGCC GGTCGACAAGCA GATAGATCTCAATGGCCCTTACGACGCTGAGAGCTTTCCCAACAAGAGGGTACGAATTGC CGTCATCTGCCC TCAGGAATTCACCGGGGATGCGGAAGAGTTCCTCCGGAAGTTGAAGGAGGGCCTTCCTAA CGCACCGGACGG CAGTCCGTTTCGCAAGGGCTTTGTTCGAAAGTACCATTTGTCTAGCTGTGACTTCACGTT CCATGAGGTTAA GCGGAGCTCAAACAGTGACGACATCTACAAGGATGCGTCCCTTGAGGCACTGAAGCAGAA GCCAGATATGGC AATCGCCATAATCCGGTCCCAATATCGCGGGCTGCCCGATGCTTCTAATCCCTATTACAC GACAAAAGCTAG SEQ Argonaute Sequence

ID NO

GCTGATGGCCCAGGGCGTACCAGTTCAACTGCTGAACATAGAGACCATCAGGAGGAA GTCTTTGGACTACA^ TCTGAATAACATCGGTCTTGCGATGTATGCCAAACTTGGAGGAATCCCTTGGACCCTCAC CCAGAATAGCGA CATGGCGCACGAGATCATCGTCGGGATAGGGTCAGCCCGGCTCAATGAGAGCAGGAGGGG TGCTGGCGAGAG GGTCATCGGGATCACGACCGTGTTCAGTGGTGACGGACAGTACCTCCTCGCCAACAACAC CCAGGAAGTTCC CAGCGAAGAGTACGTAGACGCATTGACTCAGTCTCTTAGCGAGACAGTATCAGAGCTTAG GAGCCGGTTCGG TTGGCGCCCTAAAGATCGAGTGAGGTTCATATTCCACCAGAAGTTTAAGAAGTACAAAGA CGCAGAGGCGGA GGCGGTTGATAGGTTTGCACGCTCACTGAAAGATTTTGACGTGCAATACGCCTTCGTGCA TGTGTCTGATTC TCATAACTGGATGCTGCTGGACCCAGCTAGTCGGGGGGTGAAATTCGGCGATACGATGAA GGGCGTCGCCGT CCCTCAGCGGGGACAATGTGTGCCCCTGGGGCCAAACGCTGCGCTGCTTACTTTGAGCGG TCCGTTCCAGGT AAAGACCCCACTGCAAGGCTGTCCGCACCCCGTGCTGGTGTCAATTCATGAGAAGAGCAC TTTTAAGTCTGT TGATTACATAGCCCGCCAAATCTTCAATCTCAGCTTCATCAGTTGGAGGGGCTTTAACCC TAGCACCCTCCC AGTGTCCATTTCCTACTCCGACATGATCGTAGACCTCTTGGGACATCTTAGACGCGTTAA GAATTGGAATCC GGAAACCCTGTCTACCGCTCTTAAGGAACGAAGGTGGTTTCTGTAGTAACTCGAGGTTAA CTTGT

317 15 GGTGTCGTGAGGATCCATGCCCAAAAAGAAACGCAAGGTCGAGGACCCTAAGAAGAAGAG GAAAGTAGGGTC

TGGCTCTATGCAACTGAACTATTTCCCCATCCAGTTTGACTTTTCTGACTACCAGGTCAT CACGCAGCCCTA CTCCGACGAGAGATTGAAAGAACTCAGGCAGGCCTACAACGCCAGCTATTCCTTCTTTCG GGACGGCAACCT TATCGTAATTTCCAATAAAGAGGACGAGGAAAACCAATTGACGGGCAACGTCGAAAACCG CAGCGTGTTCGA CGATGCCAAAGTTACCGCCAGCATGGTCAAGCATATATTCTTTAGGACGTTCAAGGACAG GTTCCAAGGCTT CATCCCCGTGGACTTTTACCCCTTCCGATTCTACAGCAGACAAGAGAAGGACGACCTTAT TCTGAACCACCT GCCCGAAAAACTTAAGCATAAAATCGCCTTTAAGAAACTGATCGAGGTGCAGCTCAGGGA GACGAATCTTAA TTCAACCCAGGGCTTTGCTTTCGTCGTCAACATCAGGAGAAATTGGGTGTTTAACATTTC CTGTCTCGAGCT TTATCAGGAAGGCTTTGACCTCACAGATTTTGAAGTGCTCCATGCGGAGACGCTTCCCGG GTTGGACAATAT CCTGGCCCCGAACGAGGACTTCGTTGGCCTTCTCAAGAGCATCAACGGCGAGACTGCCAT TGTGAGCACTAG CGAGGGTGCCCGCTCCTATTCACTGCAGGAGCTCTTCATTCGCAAGACTAAGCACAACAT ACAGGCGTACCT CAACTTCGCCACCGGGGAAAAAAAGTGCGACCAGATCCTTGCAGCCGTGTCCCAGGAACG AATCCGGAAGCA GAACCCCGTGAATCAATTCAGCGAGATATCCAACATCGCGAAGCATCTTTTTTCAGACAA AGGCAATCCAGT GCTGTTCCAGAATATGGATGGCTTTTGTTTTAAAGTTGACACCACGCCGATGCAGGTACA AAACTCCATGAA CCTGCAAACTCCCACGTTCATCTACGACCACGCGGGTACCAAGACGAACACCCGCAACGC GGACCAGGGGCT GAGCTACTACGGCCCCTACGATAGCCTCACCTTCGACATTAAGAAGCCAAGAGTTCTCTC TATCTGCCATAA GACCAACCGAGGCTCCTTTACGCGCTTCCTCCACGACCTCAAAGACGGGCTCCCCAATAG CAGCTGGTTCAA GAAGGGCCTCCTGAAGAAGTACGAGCTTCAAGAGGTGAATTACCTCATCCAGGAGATCAG CGACTACAGGTT GGAGGACTACCTGGAAGTGATCTCAAACTACGATGATGAGAAGCCGCACCTGGCAATCAT CGAAATTCCAGA TAGGTTCAAAAAACTGTCCGACCGGGACAACCCCTATTTCAAGATTAAGGCAAAGCTGCT GAGCCTTGAGAT TCCCGTACAATTTGTGCGCAGCACGACTTTGAGCAGCTACAGCGAATACATACTTAATCC GCTTGCATTGCA AATCTATGCGAAACTCGGCGGCACGCCTTGGGTTCTTCCGGCCCAACGCTCCGTTGACCG CGAAATCGTTAT TGGCATAGGTCACTCATGGCTTCGGAGTGGCATGTATAAGGGTGCTGAAAACAGCAGGGT GGTCGGCATTAC TACGTTTATGTCTAGCGATGGCCAATACCTCCTGGGCGACAAGGTGAAAGACGTGCCTTA CGAGTCTTACTT CGAGGAGTTGCTGAAGAGTCTCAAAAGTAGCATAAGCAGACTCTCCGATGAGTATGCCTG GCAGGATGGCGA CACAGTGCGCCTCATTTTCCACATCTTCAAACCCATCAAGAACGTTGAGTTCGATGTCAT TAGCCAGCTTGT GAAGGACATCAGCCAGTTCAACATAAAGTTCGCGTTTGTGACCATTAGCAAGTCACACCC GTCTATTCTCTT TGACACGAGTCAGCAAGGCGAGAAAAAGTACGGCTCTAACCAGGTGATAGGGCAGTACAT CCCTCAGAGGGG TAGCAATATCTTCATAGATGACGAAACCAGCCTGGTGCAGATGCTGGGCGCCAGGGAACT TAAAACTGCCAA ACACGGGATGAGCACCCCAATCCAAATCAAACTTAGGACACCGCAGGGTAACCATAACGA CCAAGAACTGAA GGATTTGATGTTTTACGATCTTAACTACATTACCCAGCAGATCTATAGTTTTACTTACTT GAGCTGGAGGAG CTTTTTGCCACGCGAGGAACCGGCCACAATGCTCTACTCCAACTTGATATCCCGACTTCT TGGGAAGATGAG GAGCATCCCTGAATGGGATGCGGATAAGCTCAATTATACCCTTAAAAGGAAGAAATGGTT CCTGTAGTAACT CGAGGTTAACTTGT

318 22 GGTGTCGTGAGGATCCATGCCCAAGAAAAAAAGAAAGGTGGAAGACCCTAAGAAGAAGCG CAAAGTGGGATC

CGGCTCTATGTTGGAGACGAATATCAGGGTGGTGCGGCCTGGTCCGCAGCTGTGCGTTCC TGTACGCAGGGT GATCGTGTCCGGTCAAACCTTGGCTCCCGACCTCCTGGAGAGGCTGTGTAACCTGCTGCG AAGGAGGTACGG CATTAGCGCCGCAAGAATACCGGGCTCCGTGAGCGAGCTGTTCGTTGCGACCGACCGGCA GGTGGAGAAGGT GACACTGGAAGAAGATAACTGGCAACTGACCGCCGTGGACTCCAACGACCCTACTCGAAT CATGTCCATCTC TAACACGGACGATGAGAGCTTTATAAGCATCCTGATCGAACGCGCGCTCCTTGCCCAGAT CGCCAGTCGAAG CCTCTTTTGGACCCTCGACTCTCCTCGAATTTGGTATGAGAAGAACCCGTTCCAAAGGAA TGAAGGCGTAGC CGTCTACCACAGGTACGAGGTGGATGCGCTCCCCCTCGGCGACGCAGGCATTGGCATCTC AGTGGATGTTTC AACGGCCTTTTTTAGCGAGCACACCCTGGAGTACTACTTCGCCCCCAACCTGATTAGCGG CGAGAGCAAGAC GCGACAGGACGAATTCCACAAGTTCACCGGCCGACAAGCTGGTCAAAAGGGGACGCTGCT TTACAATAACGG CAGGAGTAAGGTGAAGTGCTATTTCGAGAACAATAGGGTGGGCCTGACATGTGGCGCAAC CGGCCAAATGAA ACTCGAGGGAATCACGTATCCCAGCCTGTACCACTACTATGCGAGCAAGTATAGCGCATT GCAGATCAACGA GAACGATGCCGCAGTGCAAGTGTCTTTCCCTGGCTTGGACCGCCCAGTTCCGGTAGCCGC CAGGCTCCTGTC CCTCCGAGTGATGAACGACGACGTGCCCGATGGTCTGAGCTCCGTCGACAAGATCCCTCC AAGGAACCGCAA GTACCTTATCGAGCAGTTTTGGAAGTGCCTGGAGCCGAGACCCTTCGGGAATGTGGCCCC TGGTGTCTTCGA CGGCTTCTGGAGACCCAACAACGAAAGGGTGCATTACATCCAGCTGCCCGAGATTAACTT TGGACAAGGCCA AAAAGCAGAACCGCCTGACGTACGCTCCGTTGCATCCATCAAAAACTATTTTAGGCGACG ACTGGAATTGCT GGGTCACGCGGGGTGTTACCACTTTCCGCCCTCAGCCCCCAGGACAATCTTCTGCGCCTA CCCGCAGTCATT GGGTGAGGAGATCCCGGAAAAGTTGGTGAACGGGATCGTCAATGTGCTGAACAAGTGGAC CGGCCTCAGCTT CTGTAGCAACCTGGTAAGCTACAGCACGGCCAGCGAGGCGTACGGTAAATTGAGGAGGGC CGAGAGTGCCGG CGTGGTCCTGTTCATCTTGGACGAGGAGCCGGCAGTCTACTACGACGCGAGCTTCAATCT TGAGGGCTGGAG SEQ Argonaute Sequence

ID NO

GGTAAAGCGCGTAACCGAGCCTGTGCTGCGCCAGCAGCATAAGTATCTGACCAACGG CGTGTGGGACCGGAA GAGGCAAGAGTATAGTTTGGGGAGGGGGCAGAGTCGCTGGGAAAGCTTCATCAATTTGAT CGGATTGGACGT TATCCAGCAACTCGATGCCATTCCGTATAGGATCCCCAACATCGGCCCCTACGAAGGCCA GCTGATAATCGA CGTGGGGCATGACAGGCAATTCTTCGCCGTGTCACTGCTTATTGTGAGATCAGAAGACAA AGTGCCCGCATT TAACATCAGCAGCCAGGTCCAGCACAAGGCGGATCATAAGCACGAAAGCATTAACCCGGT GCTGTTGAAGGA CACCATCATTAACGTGTTCAAGACCGCCAAACGGAGGACTTTTGATCCTCTGACTAGCCT GTTGATCATGCG GGATGGCAACGTGCAGGGCAGCGAGATCGGCGGGATAGACAACGCCCTGGTCGAACTTAG GCAACTTGGCAT AATCTCCCCCGATGCGAGGCTGGACATCGTGGGCGTACACAAGGAATCTGTAAGCTCCAT CAGGCTCTGGGA CGTTGACGTAAGGGGGGAGGTAAGCAACCCGATCGAGGGCACCGGTCTGTCAGTCAACTC ATCTCTGTACCT GGTGGCGTGCACAGGTGAGGCCACGCTGACCCAAGGCACCGCAGAGCCCGTGGCCATCGT CGCAAACAACAG GTGCCTGAGTATTGCCGATGCAGCCCTGAGCGCCTTTCTGGCAGCCCAACTGAACTGGAG CAGCCCGGGAGT CGCCCAGCGCCTGCCCCTGCCTCTGAAAAGAACAGATGAGGAACTTACCGCTAGGAGCGA TCAAGAAATTAG GAGGATAAGGTAGTAACTCGAGGTTAACTTGT

319 32 GGTGTCGTGAGGATCCATGCCCAAGAAGAAGAGAAAGGTGGAGGACCCGAAGAAAAAACG AAAGGTTGGCAG

CGGCAGCGTGCAGCAGACAGTGGAGCTCACCCTCTACACAGAAAAACATCCCGACACCCA CCCAGAGCTCGT TTATGCCGACGAGTGTCCCGACCTGTGGCAACAGCACAGCGAGCTTACGGGGGACAAATC TCTGTTCTACTC TCTTACGAACCCGGCAGAATGCAAGGGAACCCAGTACACAGTGCAAATCAACCTGAATAA CCAGAAGCAGCG AAGGATCGCCAAGCACATAATTAGCCAGCAACTGTATAATCACTTCCGCCAGACCCAAAT CGCTACCTTCGA CAAGATCGACAATGTGGAGGTGTGGACCAAGAACACCCAACAGCCTACCCAGAATTGCAC GGAGTACCTGAG GTTCAGCCTTATACCCCAATACGCCGTGTTCTCTGACTCATGGGAGCTGGTCGTGTCCTC AAATGGCATATC CACCGTGTATAACAAGCCTTTGAGCGCACTGGACCTTCAGACCGACCGATTCAAGGTCGT CGTTGGAGGGGA AGTGGTCAAGTACAAGAACCTGAGCCCCAATCAAAAGCAACAAATAGACGAGGCCTTCCC CAAAATCAATAG GGAACTGGCCGCTGAACTGCATATTAACGAGAAACGCTTTCTCAATAAAGACAAGTATAC GACCACCTACAA CCACATTAACAACTTCGTGCGACAGCACCTTCTCACATCCGAGTTCCAGGCACTGTTTTG TCTGAGCGGCGA GATGTTCAACGTACCCGAGGAGCGGATCGGCCAAGTGGCGAAGGGGGCGAACCTGTTGCA GTTTAAGGACGG CAAGACCGGCATTGACCCATTCAGCTGTGTGTTCGGCAGCAAGAGCATGGACGCACTCGG CATCTACCAACC CAGCCTGAAGCCCCAGGTGAAATTCTTTTTCATCGCCCAGCAAAGCGATATCAACGTGTG CAAAAGCCTGTA CGATATTTTCACGAAGGGATACAAGCCCTACGTGGACACAGCCACTGGCGAGCAGAGGTA CGTGTTCCCACC CCTGGCGACGTGCATCAAGCAGCCCTTTTCAACCGACCCCAAGGGGAGCATTTACTTCAG CGACCCTCAAAA TGCCCTGAGCGAGATCAAGAGCCAGCTTAACAATAAGCCTCTTGACCCCCAAACGCAGTA TGTGAGCATATA CGTGTCACCCATCCCTCGCGACGCCGTCAACAATCCCTACTACGGTCTGTACTTTCAGAT TAAGGAGCTGCT GCTCGAAAAGAGGATAACGTCTCAGGTGATCTATAAGGACCGCCCCAACAACCAGTACTT CAACTTCCATCT GCCCAATATCGCGACTGCCATCCTGGCAAAAATAGGCGGCATCCCGTGGCAGTTGAACTC CCACACGACGAA CAAAGATCTGGTGATAGGCGTGGGCGCCTTCCTTAGCGAAAAAGTTGGCGAGAGGTATGT GGGCAGCGCGTT CAGCTTTAACCCCAACGGCCTGTTTAAGAACTTCGACTGCTGTAAAGCGAACGATCTCGA ATCTATCGTAGC CGGGATCAGAAAGGCCATCGGACACTTCGTTGTGGACAGCGAAACAAACCCCCAGAGGCT GATCATCCACTA CTACAAGACCATGTCAAAGAGGGAGGCCAGGCCCATCACGCAGATGCTGAACACGCTTGG CCTCAACATTCC TGTATTGATCGTCACAATAAACAAGACGGAGACCAGCGACATTGTTATGTTTGATGAGAA ACAGCAGGGCTA CATGCCCCTTTCAGGCACCGTACTGAAGATAAGGAACGATGATTTCCTGCTCTACAACAA TAGCAGGTACAA AGAGAACGAAAAGTCAGATATGCTTTTTCCAGTGAGGATCCGCCTGAGTAAGATCGTAAA CCAATCCGACAA AGACATCCCAATGACAGACGCCTTCAATTTGCTCAACCAAGTGTACCAGTTCTCACGCAT GTATTGGAAGAG CGTTAAGCAGCAAAACCTGCCGATCACGATAAAGTATCCAGAGATGGTGGCCGAGATAGT GCCACACTTTTC AGAAGCCGAATTGCCGCAGTTCGGAAAGAATAATCTGTGGTTTCTGTAGTAACTCGAGGT TAACTTGT

320 91 GGTGTCGTGAGGATCCATGAAAATTATAGATAAGGAAACCTTCATCAGAAGTTTTAAAGT TTTGAGCAATCA

ATCCTTTGACCTGTTCCTGGGCGCTGGCGCCTCCATATCTAGCGGTATCCCTTCCGGAGG CGACCTCGTCTG GCATTTTAAGCGCGAAATACTGAATTCCAACGGGAAGATAAATATTAAAAAATTTCAAGA TCTTAAGATAGA AGATAATAAGAAGGTTATACAAAGTTTCTTTGAGGAGACTGAGGAGAACAACATTATTAA TCCTTATTCCTA TTATTTTAACAAATGTTATCCAGACCCCTTGATAAGAAAAGAATTCTTGACGAATCTTGT GAGGGACAAGAA GCCTTCCATAGGATTTATGTGCCTGTCTGCTCTCGTGGAGCAGCAAAAAATCAACACAGT ATGGACAACTAA CTTCGATGACTTGATTGAGAAGGCGATTAACGGATTGAATTACAAGTCCTGTCAAATTGT CTCACCCGAGAA TGCGGGCAGCGTGAATAACTTTCGAACTGATATCCCCACTGTTGTTAAGCTTCACGGAGA TTTTAGGTATGA CCCACTGCAGAATACTGACGAAGAGTTGCAGAAACTCGAAGAGTCCTTGCATAAGTATTT CGTAGAGGCAAG CACAAAGAGGGGACTTCTCGTAATGGGCTATTCTGGGTCAGATGAGTCTGTGCTGCAAAG CCTTGAGAAGGC GCTGGAAGAGAACAACGCGTTCCCTAAGGGACTCATTTGGTGCATCCCCAAAAGTGTCAC CCCAAACCAACG ACTGGTCCGAATTATATCTAAGGCTAATGAGCAGAACCAGCGGTCCGGATTTATGATTAT CGACAGTTTCGA TTATTTCTTGCATGAACTCTACAAAATATGCGACCTTACGAATGACTATATCGACTCTAT TACCAAGGAGAG ATTTGAAAAAAGGCAGTCATTTAGGCTTAACCAAACTCCGTCCTCTACTCTGCCAATCTT GCTGAACGCAAT AAAAGCAAAGCACTTCCCGAAAAGTACCTTTCTGACTAAAACGAATATCTCAGGCATAGG TAAGTGGAAACG CTTGCGAGACGCTATAGGAAATAGCTCTATAGTCGGATCTTTCGGTAAGAACGATTCTCT CAGACTTTTTGG AAGTGAACAAGACATTAATAATGTACTTAAGAACTACTTGATTGATGATTTGAAGATCAG TGATATCCCAGA GCACCTTTTTTTCCATTCTGATTCATTCTACATTGGCATGCTTTATGAACTGATTGAAAA GTGTTTGATTAA AGATTATGGGCTGTCAGTATATGCAAAGGGGAGAACTATCAGAAAGTTCTATTCAATCAA TAACCCGCTGCC GGAATCTGAAATCGCAGATATTAAGAAGAGAAACAATAATTTTAACATCGACAAAAATAT AAATGTATTTGA GGCGTTCGAGTTCTCCATAGAATTCATTAATAAGGAGCTGTTCCTGTTGCTGTGTCCCAC CATACATATTCA GACTAAACTCGGAGGTGAGGTCAATCGCAATATCTCTCAGTACCTGTCAAACACAATCAT CAGCAATAGGTA TAATAACAAATATGGGAAAAAGCTGAATTGGTGGATTAACGAGCTCAAGAAGTATAACAA GGACTTGGTTTT TAAATTGGGGGACTTTGAGATACGATTGACAGATTATTACTCCACGAGCGCTAAGCGCGT TAAAGATGACAT CTACTGTTTTGACGGATTTACTAAGTTGAGTGAGCCCAGTATATATTTCCACTATCAAGA CGAAGCAAAGCA SEQ Argonaute Sequence

ID NO

GAGTATCCATCCCATAAGTGGACTGAAGATACTCGGTCCATTGGAAGAATCATTCGA GGCAAACGGTACATC TTCCACAGTCAACCTTGCCATCATTACTCCGGACTTTGGCTTCTCCAAACTCAAGGCGCA CCTCGAAAGTTT GCTTAATACAATTTCCCCTATATGGGAGAAGGAATACTTGAAGGAGTTCCCTGGTTTCGA TAACGTTTTTAA GAAGCACCTGATAATACCCAATTCTATTCAAAGCGAGTATGTAATCAGCATACCTAATAA TGATGTAAAACA GTTCTCAGCAATTCAATTCTACGACTACCTGAAGAGTAAGATCGACCGACTCGCTCTGAA GTCCAATGACAT TGATTGTCTTGTAATATACATACCCGACCAGTGGAAGAACTTCCGAGAGCTGAAAAATGA AAACACATATTA TGACCTTCACGACAGTCTTAAACTCTACTGCGTAAAAAAGGGGTTGCGAATCCAGTTCAT CGAAGATAAAAG CATTAATTATAAAGACCAAGCCAAGATCCGGTGGTGGCTGTCTCTGGGGCTCTACGTGAA GTCTAACGGCAC TCCCTGGAAGATCAAAACAGATAATACAGAGACTGCCTTTGTGGGCCTCGGTTACGCTAT ACGACAAAATGT TAAGAATAAGGTTGTTCTCGGGTCTTCACAGATTTTCGACGGTTATGGGAATGGTCTCAA GTTTCTTTTGCA GCCCATAGAGAAGCCAATTTTTTACAATAAAAACCCCTTCATGAGCAAAGAGGACTCTTT TCGGCTTATCAG TAATATACGAAACACATATCATAAGATCGATCCAGTTATCGGACTTAAGAAACTCGTGTT GCATAAGACAAC TCATTTTACTTCAGAGGAGATGGAGGGGATCTCTAATGCTTTGGAAGGCATAGACAATAT TGAACTCTTGCA GATTCAGCAATTCTCATCATGGAGGGCAATTAAGCTTATGAAAAATGCCACAAAGCACGA TTTTAATGGTTA TCCGATCGATCGCGGAACTATAATTCAACTCGACGACTTCTCTTTCCTTCTGTGGACACA CGGGCTTATAGA GAACCAAGAGCTGAACGGTAAGTACTACCAGGGAAAAAGAGGAATACCGGCTCCGCTTCT TATTAAGAGATT TAGAGGCACGGATCCAATAGAGACGGTGGCAAACGATATTCTTAAGCTGACCAAGATGAA TTGGAATGGTGC AGAGCTCTATAAAACCTTTCCTGTAACGATTGATTTCAGTAAAAAACTTTCAGTCATGGG GAAGTAGTAACT CGAGGTTAACTTGT

321 0 GGTGTCGTGAGGATCCATGCCAAAGAAAAAGAGGAAAGTCGAGGATCCGAAGAAGAAACG GAAGGTGGGTTC

CGGTTCTATGCCTTCAGCTCAACGGTGCATCTGGGAGTGGAAGAGGGATATCTTCGTGAC CAAGAATCCGAC GCTCCGGGAGTCCGTGGATGAACTTAGCTTGCCAGGGACCAGGCGCATCGTACAGGGATG GATCGACCAGCA AGCCCAATACCCGGAAGATGGGTCAGCAGACGAATATAGCTTTTATGCCGAAGAGTGCTA CCCAACCTCTCA TGACCGGCGAGCGTTCTTCCATCGCTTCATTGCCGAGGCGAGACCGCATATCGGCTACAA GCTGGTTGCGCA GTTGGCAGAAGCAGGGTTCTTGAGAACCATTTGGACGACCAACTTTGACGGACTGGTTAG CAGAGCGTGCAC AGCGGCTAACGTCGTGTGCGTGGAAGTGGGCATGGACACACCCCACAGGGCCTCACGACC GCAAGGGGATGA CGAAGTCAGACTGGTGTCCCTCCACGGTGACTTTAGGTATGACCTGCTGAAGAACACCGC CAATGAGCTGCG CGAGCAGGATTTGGCCCTTAGGGAGGAACTGCTGCACGAACTCAAAGACTACGACCTGGT GGTCATCGGATA TTCAGGGCGGGACGACAGCCTTATGCAAGTGCTCTCTGCTGCCTACAGCGACCGCGCATC TTGTAGGCTCTA CTGGTGCGGGTTTGGCGCGGAACCAGCACCGGAAGTGAGGCACCTTATTAAGAGCATCGA CCCAGCCCGAGA GAGCGCGTTCTACGTGGATACCGCCGGATTTGACGACGTAATGAGCAGGCTTGCACTCAG GCGACTGAGCGG TGAAAGCCTCGAAAGGGCCCAGAAGCTCATAGAAAGCGTCACCCCGGTTGCTGGCAAAAA GATGGCCTTTAG TGTTCCACCATTGGCCCCTAGCGCCTTGGTGAAGGGTAATGCCTACCGATTGACCTGTCC GGCAAACGTCTT GAAACTTGATATCGAACTTCCCGAGCACGGTTCCTGGCGCGATTGGCTGTCCGAACGAAT GACTCCAGAAAG GGGGCAGGCCGTTGTGTTCGAGAAGGGAGCACTGGTTTTGGCCGACATGGCGGTTACCGC TAAAGTTTTCGA TGGATTTCTTAGGGTGAGCCCGACACGGGTGGAGATAAGTGACGAGAACATCATCGCTGA CGGCCGGATCGC CAGTCTTTACCGACGAGCTCTCGTGAGCAGTGCCGCAAAAGCGCTCCAGATCCAAACCGA CCACAGGAGGAG GATATGGGAGCCCGTGCACTATGATACAAGGCAACTCGACGATGTGACGTACCGCGTGCA TCGAGCCGTCTC CCTGACGATAGTAGGGATAGAGGGAGTGCCCCATGTGGTGCTGATGCCAGAGGTCGTCGC ATCTACGTTGGC GGGCGACCTTGCGCCGGTTGACAGTCAAAAGACTCTCCGCAATGCCATTTACGGGTTCCA ACATAACGATAA GTTTGATGCCGACCTCAGCTATTGGACCCACCGCCTTGTTGAGAAGGAGCTGGCTTCCAG CGGCGAGGGCGT TTTCGTATTGAGCAAAGTGCCACTTTATGCGGGCCTGGCACAAAAAGGTAAAGCTCCTCT CCCACACAGGTT TGCACGCCACGCTAAACAGCATGGAATTATTGTGCCCGACGCACCGCTTGTTTTCAGCGC CAAGGTTGGCTC TGGAGAGGTACGAAACCCCAATCCGCTGCATGGGCTGGTGCAAAACCGGCCATGGGACCA CTCTCTTACGGC GTCTGGTTTGTGTCCGAGTACAGATGCTAGCGTGATCTGCCCCGCAGACGCTGCTCCGAG GTTTGAGAGATT CCTCCAATCTATGCAGGAGGTAGCAAGACCAAGCCAGAGCGAGAGGGACTATTTGCATGA TTTTCCCGGCTT CCCTGCGGCCTTTGGACTGCCACTCCGAATGCCCGTGAGAGGGGACGCAAACTGGATTAC CATCGACGACGG AGTGAGCACCGATGCCCTGACAGGGGCTAAGCAACTGGCGCACCGAGTGTGCCAAGCACT CGACCACCTCCG CAGAGCAAGGCCCTCTGACACGGCGATCGTGTTCGTTCCCAGGAGATGGGAACCATATAA GGTAGTGGACAC GCAGCACGAAAGATTCAATTTCCACGATTACATTAAGGCCTACGCGGCCAGGCACAGTCA GAGCACGCAGTT CGTCAGAGAAGAGACCATCCAAAGCCAATACGTGTGTAGGGTCCGGTGGTGGTTGAGTTT GGCACTGTATGT TAAGGCTATGCGGACCCCCTGGCGGCTGGATGCGCTTGATGAGAATACGGCTTTTGTTGG TATAGGGTACTC CCTGGACGCAGAGGCAGGGAGGGGCAACCATGTACTGCTCGGCTGCAGCCACCTGTATTC TGCGAGGGGTGA GGGATTGCAGTTTAGGCTGGGCCGAATCGAGAATCCCGTGGTGCGAGGAAGGAACCCCTT CATGAGCGAGGA CGACGCAAGGAGGACCGGAGACACCATCCGGCAGCTTTTCTACGATAGCAAAATGCATAT TCCGACAAGGGT GGTGATACACAAGAGGACAAGGTTCACTGACGAGGAGCAGAGGGGGTTGGTACAAGGATT GGACGGTGTGAG GAATATCGAGCTGATAGAGATCAACCAGGAAGAGAGCTTGCGATATCTCAGCAGCCAGAT GAAGGACGGCAG ATTTGAGATCGACAAGTTCCCCCTGTTCAGGGGTACCACAATAGTTGAGTCAGATGACAC TGCATTGCTGTG GGTGCATGGAGCCACACCCAGCGCCGTGAACAAGTACTGGAGGTACTACCAGGGGAAGCG CCGCATTCCGGC GCCATTGAGGATTCGAAGGTTCCTCGGGCAAAGCGACGTAGTGCAGATCGCGACCGAGAT CTTGGGACTGTC TAAAATGAACTGGAATACGCTTGACTACTATTCAAGGATGCCTGCGACTCTGGATTCTGC AGGCAGTATTGC CAAGTTCGGGTCATATCTTGATGGGTTTACGAGCGCACCCTATGATTACAGACTTCTGAT CTAGTAACTCGA GGTTAACTTGT

322 6 GGTGTCGTGAGGATCCATGCCTAAAAAGAAACGCAAGGTAGAGGATCCCAAGAAGAAAAG GAAGGTGGGGAG

CGGGAGCGTTCACGCATTGCTCGCTCTGCTCGCGAACCGAGCCGGTGGAAGGACCGCCAG AATGGGAGACAG CTTGCTCACGTGGAGCCCTCCTGAGTCTCTGCTGCTTGAAGGGACCCTGAGCTGGCGCGG CAACACCTACAC ATACCGGCTTCGCCCACTGGCGAGAAGGGTGCTCAACCCTAGGAATCCCAGTGAGAGAGA CGCCTTGTCCGC GTTGGCGCGACGACTCCTCCGAGAAGTGCTTGAGCAATTCAGGCGCGAGGGGTTTTGGGT TGAAGGTTGGGC SEQ Argonaute Sequence

ID NO

CTTTTACAGGAAGGAGCACGCACGGGGTCCCGGGTGGCGCGTGCTGAAAGGTGCGGC GCTGGATCTGTGGGT TTCAGCCGAGGGGGCCATGGTATTGGAGGTGGATCCGACTTATCGAATCCTGTGTGACAT GACACTCGAGGC GTGGCTTGCACAGGGACATCCACCCCCGAAACGCGTCAAGAACGCGTACAACGACAGGAC ATGGGAACTCCT GGGTCTGGGTGAGGAGGACCCGCAAGGCATTCTTTTGCCAGGCGGGCTGAACCTCGTCGA GTACCACGCTAG TAAGGGCAGAATCAGAGACGGCGGGTGGGGTCGGGTTGCGTGGGTGGCAAATCCTAAAGA CGCCAAAGAGAA GATCCCGCATTTGACGAGCTTGTTGATCCCCGTCTTGACCCTGGAAGACCTGCATGAAGA GGGGGGCTCTAA CTTGGCCCTCTCCATCCCGTGGAATCAAAGGCAAGAGGAAACCCTTAAAGTGGCCCTGTC CGTGGCTCGCCG ACTCGGCGTCGAACACCCCAAGCCCGTCGAGGCCAAAGCCTGGAGGATGAGGATGCCAGA GCTTCGCGCACG ACGCAGGGTGGGTAAGCCAGCGGACGCCCTTAGAGTGGGGCTGTACCGGGCTCAAGAGAC TACCCTCGCACT GCTTCGGCTCGATGGCGGCAGAGGATGGCCTGACTTTCTGCTTAAAGCATTGGAGAACGC TTTTAGGGCCAG CCAGGCTAGGCTTCATGTTAGGGAAATCCACGCGGATCCTAGCCAGCCCCTTGCATTTAG AGAAGCCTTGGA AGAAGCGAAAGAAGCAGGTGTGCAGGCTGTCCTCGTACTCACCCCCCCACTGAGTTGGGA GGAGCGACACCG CTTGAAAGCACTGTTCCTCAAAGAAGGACTCCCAAGTCAACTTCTGAACGTCCCCATACA GAGGGAGGAAAG GCATCGGTTGGAAAACGCCCTGCTCGGGCTCCTGGCGAAAGCGGGTCTCCAAGTAGTCGC CCTTGAGGGCGC ATACCCTGCTGATTTGACAGTTGGATTTGATGCCGGAGGCCGCAAGTCCTTTAGGTTCGG AGGTGCCGCATG TGCTGTCGGCTCCGACGGAGGTCACTTGCTGTGGAGTCTGCCGGAAGCCCAAGCGGGCGA ACGGATACCAGG CGAAGTAGTTTGGGACCTGTTGGAGGAGGCGTTGCTGGTGTTTAAGAGAAAAAGAGGGCG GTTGCCCAGCCG GGTGCTTCTGCTGAGGGATGGCAGGCTTCCCAAGGACGAGTTCACCCTGGCACTTGCAAA GCTGAGGCAGCT CGGCATTGGCTTCGACCTCGTGTCCGTAAGGAAGAGTGGAGGCGGAAGGATTTATCCGAC CCGGGGAAGATT GCTTGACGGCCTTCTGGTGCCCGTTGAAGAGAGGACTTTTTTGCTCCTGACGGTGCATAG GGAGTTCAGAGG CACCCCACGGCCCCTCAAATTGGTACACGAAGAAGGTGAGACACCTCTGGAGGCTCTCGC AGAGCAGATCTA CCACCTGACGAGGCTGTATCCTGCATCAGGTTTCGCATTTCCCAGACTGCCCGCACCCCT GCACTTGGCAGA TAGGCTCGTGAAAGAGGTGGGCCGATTGGGCGTGAGGCATCTCAAGGAAGTAGACAGGGA AAAGCTGTTCTT TGTATAGTAACTCGAGGTTAACTTGT

323 50 GGTGTCGTGAGGATCCATGCCGAAAAAGAAGAGGAAGGTTGAAGATCCCAAGAAGAAACG AAAGGTGGGGAG

CGGCAGCGTGAGGCTGGTAAACCAGAAAGAGAAACCGGAAGGCGACTACGTGTATGGCTA CACTCTCCCAAT AGACCCCAGTAACAGGAACATGAGGCAGCCCTTCTGGATAAGCATGGATAAAAAGGAGGG CTATGAAGCTCA TTTCGTTGGCCCCTATGAGAACATTGAGTTGACCAAGAGCGTGATCTTCTGGGACCTTCT GAGGAGGACCAG GGAGCAACTCAGCAGCGATAAGTTCACGGAATCAAGAAAAAAGTTCTTTAAGGAGATCTA CTTCCCCCTTAA CCTCTACAATGAGGGCAGCCAAGGGCTCGCCGTGCAACCCTACTACCTGAAGATTGATCA GCAATTTGGACT GCTGGTGGATTTTCAATTCAAACTTGACAAAGATTTCACCTTCAGCCGGAAGATTCAACA GCTCAGTCTGAC ATTGGATGGGAAGAACCGGAGGAACCTCAACTACTACGTCGACAGGATAACCAAAACCAA CCAATTCATCAA GGCCCTCTGGAACATCATTGGCACCTTCTCCCATAATGAAAACAAGGAAAACTACACGCT GAGGAACGACTT CTACCCCTGCGCCGCAAGCAGGCTGCGGTCTCGAATGTATCTCTTTTCCAATGGCAGTGA ATCCAGGAGCCA GTTCAATGGCTTGAAGGAATACGGCCCACTCCGACCCCTGACAGCCAATCCGACACTGCT GTTTGTGTTCCG GGAACAAGACCGCGACGCCGCGAGAAAACTGGCGATGGCACTTAAAGGCAGCAAAAAGCA AGATCAATACAG CTTCCCCGGGTTCAACTCCCTGTTTAAAGCGGACCTGTTGATCGACGGAAATCCCATGGT CTTGAAAGACTT TTCTATCGAGAGCAGCAGGGAGGTGTTGGCCAGGGTGACAACATCAACATCCAGCTTGTT GCCCATTTTCAT CCTGCCCAACCGCGAGGGCGACGGCTACCTGGAGCACAAAGCCATCTTCGCCGAGAACGG CATACCTACTCA AGCGTGCACACTCCAAGTCATTCAGGACGACGTGACCCTTAGGTGGAGCGTCCCCAACAT CGCCCTGCAAAT ATTCTGCAAAGCGGGTGGCTGGCCCTGGAAAGTGCAGAGCCCCGTAACCGACAACGCCCT GATTATAGGCAT AAGTCAGAGCCACAAGTTGAATTATAGTGACGGTAAGACAACTGTGGACAAGCACTTCGC TTTTAGCGTGCT GACTGATTCAAGCGGCCTCTTTCAGAAAATTCAGGTGCTGAGCGAGCAGAAGACGGAGGA GACCTACTTCGA ACAACTGAAGCTGAATCTCAAAAGCATCCTGAACGCCAATAGCAAGAACTACCAACGCAT CGTGATCCACAC CTCATTTAAGCTCAAATACAAAGAAATAAGTGCAATCGAGGAAGTTGTTAGCGAATTTGC AAGGAACAGCAA CAGCGCCGACTGCAAGTTCGCCGTTGTGAAGGTTAATCACAAGCATAGGTACTTCGGGTT TAATCGGGAAGT GAATAGCTTGGTGCCCTACGAGGGAACCGTGTGTAAGCTGGGCGATAGAGAGTACCTGGT CTGGTTCGAGGG TATCTATCAGGAGAAGCCGACCGTTACCAAAGCATTTCCGGGTCCCACCCACATCGAATT TCTTAAAATCGG GTCTAATAACGTGATTAGCGACGACCTTTTGTTGCAAGACCTGATGAACTTGAGCGGAGC GAACTGGAGAGG CTTTAATGCGAAGAGTGCTCCGGTATCCATCTTTTACTGCCACCTGGTGGCCGACATCGT GCATGATTTCCA AATCAAAGGCCTCCCTATGCCCGCCATAGATCTTATACGACCCTGGTTCATCTAGTAACT CGAGGTTAACTT GT

324 11 GGTGTCGTGAGGATCCATGCCTAAGAAAAAGCGAAAGGTCGAGGATCCAAAGAAGAAACG GAAGGTGGGCAG

CGGCTCCATGCAAGAACACCTGAAGACGAACATACTGAACTTTAAATGGCCCAACTCTGC TCCGACCATCTA CCTGACATTGGAGGACATTGAGGGGAGCCACCCTATCCACAAAAGCAAATTTTCTAGACA GATAAAAGAAGT GTTCCCCGACGCGGATTTGAGTAACAAGGACCAGATCTTTACGACATTCACGACCGAAAT CCCAGACGCCCC AAGCATAAAACTGAACCTTGTGGACGGCCGAGAATTGCGGATCTATAAACAGTTCCTCAA GCACAAGCTGCG GTCATATTTCAAATCTAAGGACTACATCGTGGTCAAGAATTTCGTGGGCGACGTTCAAGT GTGGATGCCGAG CAAAAAGGGTAACACCGCAGATTACAACCTGTACTATAAGTTTAGCTTTAAGATCCAATT TGCCAAACTGAC GGACCTCCCCGAGCTGATCGTAAGCTACGATGGCACCTCCAAGGTGCTCACGACGTCCGT TAAGGACATCGA AGATTCAGAGCTCATCAAGCGATGCGTCTACGGCCAAAAGACGTTTAACTACCAAATGGA CTTGGACACCGA AGAGAAGCAAGAGTTTTACAACGCGATACAGTTTGACCAGGCCTACCCAATTTTCAACCT TTCCCTGGCAAG GGCACTCGACATCCCCATAGAGGAGCCAATAAGGCCGATCAACAAATACCAAAAATACGT AGCCCTGATTAA CAATTTCGCAACTAATTACCTTTTCAAGGAGGACTTCAAGGTTATCTTCCCGTTTAAAAC AGACACGTTCAT CGACGTGCCTATAAATCGGATAAATCACATCGACCCCCAAGTCGGCCTGTTGGAATTCGG AAAAGATCAATA TGGCAACAAGAAAACCCACCTGGTACCTAAAAAGGCAATGAACATCTTGAATCCATACCG GCGACCTAATAA TCAGAACATCAAAATCTTTTTCATCTGTCACACAAGCCACAAAGACTCCGTGCTCAGCTT CTATCAGAATCT GAAGGAAGGAGTAAACACGGAGAAGAACTACTACAAAGGACTTGAAGCCTACGTGAACAT TAAGGCAAGTAG SEQ Argonaute Sequence

ID NO

TAGCAAGGAGCATTTTATCGAGTTCACGAACGAGAATGACCCCATCCCGGAGATCGT GGAGAAGCTTGAGAG CCTCACATTTGATCATGACAATGTTCTCTACGCGGCGTTCTATCTCTCCCCCTTCGACAA ATTCACCCAGAA TCCGGAGGACCGGGAAATTTACATCCAAATAAAGGAGTTGTTCCTGAACGAAGGTATCGT GACCCAAGTTGT CGATTACGAGAAAATGGTCGTCAATATCGAGAATCAGTATAACTTCCAGTTCAGCCTGCA AAACATGGCCCT CGCCATTCATGCTAAGCTGGGCGGTGCCCCGTGGAAGCTGGCCGTGACCGACAAGAAGGA ATTGGTCATCGG GGTTGGAGCGTTTACAAATCAAGGCGAGAACAGACGCTATATTGCTTCCGCCTTCTCCTT TCAGAATAACGG CCTCTTCCGCAAGTTCGAGTACTTCGATCAAAGCGAGACCGACCTCCTGGCTGGCAGTAT CTGCAAAGCCAT CCGCGACTTCACCAGCGTAGCGGAGGCAGATAAGGTCGTTATCCATTTCTATAAGGAGAT GAGTTACGAGGA GCTTAAACCCATCATTCGGGGCATGCACACGCTTGGGCTGAAGATACCCCTTTACATACT TAACATAAACAA GACTGAAGCCGAGGATATTATCGCCTACGACCTGAATTGGAACAAAAAGCTGATGCCCGT CAGCGGCACCTA CATTCGCATCTCCGAAAATCATTTCCTGCTCTTCAATAACGCACGATATCCTAATTCCCA ACGGTACGCCGA CACGGATGGTTACCCGTTTCCCATTAAGATTAAGGTCAGCTCTCCGGACGAGGATGCCTT TGAAGATGCAGA TGTGGTCCTGGAGCTGCTTACTCAGGTTTATCAATTTAGTAGACTGTATTGGAAAAGTCT TCGCCAACAAAA TGTACCTATCACCATCAAGTACCCAGAGATGGTAGCCCAGATTGCCCCCCATTTCAACAA CGGGGTGCCCGA CGATGCCAAGGATGCTCTGTGGTTCCTGTAGTAACTCGAGGTTAACTTGT

325 48 GGTGTCGTGAGGATCCATGCCCAAGAAGAAGCGGAAGGTGGAAGATCCGAAGAAAAAGAG GAAGGTTGGCAG

CGGGAGCATGACTGAGGACTTGTACCTCGACTACGACGCGTTCCTGCGGAGCTTTAAAAG AAACATAGATGT GCCGCACTCCTTTCTCCTGGGAGCAGGTACATCCATTAGCAGTGGCATCCAGACCGCCTA CGATTGTATCTG GGAGTGGAAAAAGGACATTTACCTCTCCAAGAACATCAACGCCGCTGAGTTCTATAAGAA CCATAAGGACGA GGCGGTAAGAAAGAGCATCCAAAAGTGGCTGGATAACCAAGGTGAATACCCAGTTCTCGA CAGCACGGAGGA GTATTGCTTTTATGCCGAAAAGGCCTATCCCATCCCCGAGGACCGCCGCAAGTATTTTCT GTCTCTTATCGA AAATAAGGAGCCCTACATAGGGTATAAGCTCCTCTGTCTGCTGGCCGAGCGCAGCATTGT AAAGGCTGTCTG GACTACTAATTTCGATGGCTTGACCGTCAGGGCTGCTCATCAGAACAAGTTGACGCCCAT TGAGATAACCCT CGATAACTCTGATAGAATATTTCGCAACCAGTCTACCAAGGAATTGCTCACAATTGCGCT GCATGGTGACTA CAAATTCTCTACGCTGAAAAATACGGAGAAGGAGCTCGACAACCAGAACGACACATTCAA ACAGCAGCTGGG GACGTATCACGTGGACAAGAATATGATCGTAATAGGCTACTCAGGGCGCGACAAGAGCCT CATGGACGCCAT CAGCGAGGCCTTCAGTACGCGGGGTGCAGGGAGGCTTTATTGGTGCGGCTATGGCGAGAC GATCCCCAACGA GGTTAGCGAGCTCATACTGAAAATCAGGTCCCAGGGTCGCGATGCATACTACATATCAAC GGATGGATTTGA CAAAACGCTGATACACCTGTCTAAAAGTGCGTTCGAAGACAACCCCGAGATTACGAAAAA CATCCAACTCGC GCTCGAAAACAGCGCGGACGAAGAGTACTTTAAGACTGACTTTTCACTGAACTTTAGCAA GCCGGATAAGTT CATCAAGTCAAACCTCCACCCCATCGTGTTCCCGAAAGAAATCTTTCAATTCGAGCTTGA CTTCAAGGAGGA CAAGCCTTGGCAACTCCTCAAAACTATTTCACGCGAGACAAACATTTGCGCCGTGCCGTT CAAGGGTAAGGT GTTCGCACTGGGCACGCTTACTGACATTGGGAACGTCTTCAAGAACCGCCTGAAGAGTGA TATAAAGCGCGA AGCAATTAGCACCTCCGACGTGGATAATGTGAGTGCCTTTAAATCTCTGATGCTGCAGGC TGTGCTGAAGTT TTTCATTGGTATCGAAGGCGTGGAGTCCAACCTCAAAGACAGATTGTGGCTTACCAACGC GGAGCAGCTCGT GGGTGATATTAGTGTGCATAAGGCTATCCACCTCAGCCTGTACTTCGACAAAAACAAAGG ATTCGCTTACCT GTCCTTCACCCCCACCGTACAACTCATCTCTCCTGAGGAAATCAGCAAAATCCAGAAGCA GAGAATCTCTAA GAGTAAACTCGAGAAGCTGTTCAATGACAAGTATGACGAGATATTGGAGTTCTGGAACCA AAAGCTCTTTAA CAATAGCCAAATCAAGTTCGAGTACCCGATCAGCTCAGGTAGTGGGTTTGAGTTCAAAAT CTCCGCCAACAC CGCATTTGGGGAGATAAACGTATTGGACCCCAACTTTCGCTCCTTTTCCCCTAGAAATTA TGACCCGAAGCG CACACAGTTTAAGGGCGTGCAGTTCCTCGAACCGCAGCTGATATTCCGCAACATCAGTAC TAATGTGGAATT TAAGGACTACCACCCGATGAGGGGGCTGGTGAACAACCGACCGTTCGACGTGAACCTGAA CGGTATAATTCA TTCTAACGAAATAAACCTCACGGTCATCTGCGGCAAGTCATACGCCAACGACCTGTATGA ATTCCTGAGCAA GCTCCAAGTGAAGCACGCCACTGAGAATGTCAACCCGGACTATCTTATTGAGTATCCGGG CTTCCAAAGTGT GTTCAACCTGCCACTCAACATACCCCACTTTGACTCTTCCGAGAAGTGGTACGACATCGA CTTCGTAGCTGA CAATAACGGGGAGAACCACGAGAATGCCATTAAGCTTGCCAGACTCATCACCACCAAGAT CGACCAGATTGC CTCTACACAGAACCAGAGCACGGTCGTGGTGTTTATTCCAAATGAATGGCAGTTGTTTGA GGGGTACCTGAA TCAGGGGGAGAGTTTCGATTTGCACGATTACATCAAGGCATTCAGCGCTAGTAGGGGCAT TTCAACGCAGCT CATCCGCGAGGATACACTGGCGGATACGTTGAAGTGCCAGATCTACTGGTGGCTGAGCCT CTCATTTTACGT TAAAAGCCTGCGAACTCCTTGGATTCTGAATAATCAAGAAAAGAACACGGCCTACGCCGG GATCGGTTATAG CGTGACTAAAATACAGGACCGGACGGAAACGGTGATCGGCTGTTCCCATATTTACGATTC CAACGGCCAGGG GCTCAAGTATCGGTTGAGTAAAATTGACGACTACTTCCTTGACAATCGCAATAATCCATT TCTTAGCTATAA GGATGCGTTCCAATTCGGTGTGTCCATACGGGAATTGTTTTACCAGTCCCTGGACAAATT GCCTGAGCGGGT AGTTATACACAAGCGGACCCGATTTACCGATGATGAGATCAATGGTATTAAGGCGTCTCT GAACAAGGCGGG GATTAAGAAGATTGACCTGGTGGAGATTAACTACGAGACGGACGCCCGCTTCGTGGCCAT GTCCGTATACCA GAATGCACTGCAGGTAGACCGATTCCCTATCAGTCGGGGTACTTGTATAGTCACAAATAA GTACACTGCCCT TTTGTGGACGCACGGGATTGTCCCAAGTGTACGGCAGCCAAACTACAAGTTCTACCTTGG CGGTAGAAGCAT ACCGGCTCCGATCAAGATCACAAAGCATTATGGTGATAGTAATATAGACGTTATCGCCAC CGAAATCCTTGG GCTGACCAAAATGAACTGGAACTCCCTTGACCTTTATAGCAAACTTCCCTCTACGATCGA CTCCAGCAATCA GATCGCTCGGATTGGCAAACTGCTCTCCCGGTACGAAGGCAAGACGTACGACTATCGATT GTTTATCTAGTA ACTCGAGGTTAACTTGT

326 31 GGTGTCGTGAGGATCCATGCCCAAGAAAAAGCGGAAGGTTGAGGACCCAAAAAAGAAGAG GAAAGTTGGCAG

CGGGAGCATGGAAAATCTGACCCTGAATATCATCCCTTTCAGCCACCCCGTGCAGGAGCT TGAGATCGGCTT CTATAAGCAAGAGAAACAGGGATGCTACAGCCTGTGGAAGGGCGAGTACCCGCAGTCATT CTGGGACGACTT CAACGAGGAAATGCAAAATTGCGACAAACTCTACACCAACTTCATTGACACGGAAAACTG TGATTACAAAGC CAGTGTGGACTTTAGCAAAAACAGACGCCTGGCGGTCCATTACTACAGCAGGCTGATCTA CAACTACTTTGA AACAGTGGCAGATGCCGTGAAAATCAACTTCGTGAAAGATATCCAGATATGGTTCAAGGA CGAGACCAAGAG CACCGCCGTCTATACCAGTTACAAGCGGTTCACGATCAAGGTCCAGTTCCATAAGGTGAC CGAGTCCCCAGA SEQ Argonaute Sequence

ID NO

GCTGTTGATCAGCTTCGATGGCAATACCACGGCCTATAACAAAAGTCTGGCCGAGTT GGACGATTTCCCTCC CGAGCTGATTAACTACGTTAAGTACAATACCCAAGTGGTGAAGTACGAGTTCGCCGAGGA CGCTATTAAGCA GCATATCGAGGAGCTGTACCCGATCCTGAGCAACCCCATCAGGGACTACCTTAAGATTGC CAGGCCCGATTT TAAGAGGGGCAACAAGTATAAGCCCTACTACAAGAACATTACAGACTTCTATCACAACCA CCTGAACTCCAA AGAGTTTAAAGCTATCCTGCCTATCTCCGAAGACGGTTTCTACAAAATGCCTAAGCACAA GGTTCACAAAAC CAGCTTCAATAGCAATAAACTGAGATTTTTCAATAACACGGACATCGTGCCCCACAACGG GATGAAAAACAT CGGCCCCTATAAGGCGTCCCCCCACCCCAACGTGAGGTTCTTCTTCATCTACCATAAGCC AGACCGAAACTT CGCCGTCAAGACGCTGTACGAATACTTTACGGAAGGGTACAAGAGCCCAGAGGGCTACCT TTACTTCAAGCC TCTCAAAACCTACATTAAACAGCCCTTTCTCATCGACAAGGATACCAGCATCGCGTTCGA AAGCCCGGAAAG CGCTCTGCGCGAAGTCAAGCAGGGTTTGCTTAACCTGGAAAAGCAGCCCAATACGAAATA CGTCGCTATCTA TGTGACCCCCATACATAAGACCGAGACCGACGAGCAGAGGAAGATGCTTTATTACCAGGT CAAGGAAGAATT GCTCAAGCACGACATATCAAGCCAGGTGATATACAAGGACAACATTGGACATAAGGATTT TAGTTTCTATCT GCCCAACATCGCCATCGCCCTGCTGGCCAAGATCGATGGAATCCCCTGGAGGCTGGACAG AGACACTAAGGA GGAACTTATCGTGGGCGTAGGCGCATTCACAAGCCTGAACCACAATATCAAATATGTAGC TAGCGCCTTCTG CTTTAACAACAATGGGGAATTCAAGGGATTCGACTGCTTCAAAGCGAATGAAACCGAACT TTTGGCTGGCAC CATCGGCAAGCAAATCCTGAAGTATGTGGTGGACAACGGCGAGAGCGCCAAGCGCCTGAT AATCCACTTTTA CAAAAAGATCAGTAACAAGGAACTCGAGCCCATAAAGAAAATGCTGAACAAGCTGAACCT GACCATCCCCGT AGTGATAGTGACTATCAACAAGACGACCTCAGAAGATAACGTGGCGTTTGACACCAGCAG CCATAACCTGAT GCCCGTGAGCGGCACCTACCTCAAAATAGGATGGGACCAGTACCTCCTTTTCAACAACAC GAGATACAACGC CAGCGACACCGAGAAGGATAACCCCTTCCCTGTAAAGCTGAGCTTCTCTAGCACCGTAGA CAATTACTTCGA CGACAGGAAGGTGGTCGAGGAATTGATCGACCAGGTGTATCAGTTCTCCCGCATGTATTG GAAGAGCGTGAA GCAACAGAACCTGCCCGTTACCATCAAGTACCCCGAGATGGCGGCAGAGATCTTCCCATT TTTTGAAGGCGA TAAGCTGCCCGACTTCGGAAAGAATAACCTTTGGTTTCTGTAGTAACTCGAGGTTAACTT GT

327 2 GGTGTCGTGAGGATCCATGCCGAAGAAAAAGCGCAAGGTAGAAGACCCTAAAAAGAAGCG GAAAGTTGGCAG

CGGGTCAATGAACACGCCTTTGACGCATTACGTGCTCACCGAGTGGGAATCCGATACAAA TACTAATGTATT GCACATCCACCTGTACACCCTCCCCGTTAGGAACGTGTTCGAGCAGCACAAGGAGAACGG TAACGCATGTTT CGATCTTCGCAAGCTGAATAGGAGTCTGATCATCGACTTCTACGACCAATATATCGTGAG CTGGCAGCCTAT AGAAAACTGGGGCGAGTACACCTTCACCCAGCACGAATACCGCAGTATAAACCCAACAAT ACTGGCCGAGAG GGCCATCCTCGAACGACTCCTCTTGCGGACAATCGAAAGCGTCCAGCCCAAGAAGGAGAT CGCAGCTGGTTC CCGCAAGTTTACCTGGCTGAAGGCAGAGAAGGTCGTGGAGAACATTAGCATCCACAGGGT AATCCAGTGCGA CGTAACCGTGGACTACGCCGGCAAGATCTCTGTGGGCTTTGACCTCAATCACAGCTATAG GACAAATGAGAG CGTGTACGACCTCATGAAGTCTAACGCCATCTTTAAGGGAGACCGCGTGATAGACATTTA CAATAACCTGCA CTACGAGTTTGTAGAGATTTCCAACTCCACAATAAATGACTCCATCCCCGAGCTCAACCA AAGTGTCGTCAA CTACTTTACGAAGGAGCGAAAGCAAGCATGGAAAGTGGATAAGCTGGAACAGAGCATGCC AGTCGTGTACCT CAAGGCATTCAACGGCAGTAGGATTGCATACGCGCCTGCGATGCTCCAAAAAGAGCTGAC CTTTGAGAGTCT CCCGACCAACGTAGTACGGCAGACGTCAGAAATATTCAAGCAAAATGCCAATCAGAAAAT CAAGACCTTGCT GGATGAAATCCAAAAGATTCTTGCCCGCACCGACAAGATCAAATTCAACAAGCAGAAGCT GTTGGTTCAGCA GGCCGGCTACGAGATACTTGAACTGTCCAACCCAAACCTCCAGTTTGGGAAGAACGTTAC TCAGACGCAACT GAAGTATGGACTGGATAAAGGCGGAGTTGTGGCCTCCAAGCCGCTCAGCATCAATCTTCT GGTCTACCCGGA ACTTATAGACACCAAGCTCGATGTGATCAACGATTTCAATGACAAACTGAACGCTTTGTC CCACAAATGGGG CGTGCCCCTGAGTATCCTGAAGAAGTCTGGAGCGTACCGCAACAGACCCATTGATTTCAC TAACCCCCACCA GCTCGCGATTCTGTTGAAGGAACTGACCAAGAACCTTTTCCAGGAACTCACGCTTGTGAT AATACCGGAAAA GATCAGCGGCATGTGGTACGATCTGGTTAAAAAGGAATTTGGCGGCAATAGCAGTGTTCC GACGCAATTTAT CACCATCGAGACACTTCAGAAGGCAAACGACTATATTCTGGGGAACCTGCTCCTTGGCCT CTATAGCAAGTC CGGCATCCAACCATGGATTCTTAATAGCCCCCTTAGCTCCGACTGCTTCATCGGTCTGGA CGTATCACATGA GGCGGGTCGCCACAGCACCGGGATAGTCCAAGTCGTAGGAAAGGACGGGCGCGTGTTGTC ATCCAAGGCGAA TACGAGCAATGAAGCCGGCGAGAAGATCCGCCACGAGACCATGTGCCAAATAGTGTATAG CGCCATCGACCA GTACCAGCAACACTACAACGAGAGGCCTAAGCACGTGACCTTCCACCGCGACGGTTTTTG CAGGGAGGACCT GCTGTCACTCGACGAGGTGATGAACTCCCTGGATGTCCAGTACGACATGGTGGAGATCAT CAAAAAAACCAA TCGGCGAATGGCACTGACCGTCGGCAAACAAGGATGGGAAACCAAGCCAGGACTGTGCTA CCTGAAGGACGA GAGCGCCTATCTGATCGCCACCAATCCGCACCCGAGGGTGGGCACCGCGCAACCCATCAA GATTATCAAGAA GAAGGGGAGCCTCCCTATCGAGGCCATTATACAGGACATCTACCACCTGAGCTTCATGCA TATCGGCTCACT GCTTAAGTGCCGACTCCCCATCACAACTTATTACGCCGATCTGTCTAGCACCTTCTTTAA CCGCCAATGGCT TCCGATCGATAGTGGCGAGGCCCTTCACTTCGTGTAGTAACTCGAGGTTAACTTGT

328 35 GGTGTCGTGAGGATCCATGCCTAAGAAGAAGCGCAAAGTCGAAGACCCCAAGAAAAAGCG AAAGGTGGGCTC

TGGCAGTATGATTAACAAACTGCAATTCGACGAGTTTCAGAGGGCCATAGGTATTTCTAA GAACGACACCTT CAGTCTTTTGCTCGGAGCGGGTTGCAGCATCAATAGTGACATCCCTAGCGCGGAAGACTG TATATGGGAGTG GAAGCGAGATATTTACAAAACAAATAACAGTTCTAGCTTCGGCTGGATTGACAATTACAA GAATCCCAAGAC TCAGGAGATCATTCAGAACTGGCTCAACAACCAAGGCATCTATCCCGAACGCGGCTGCAA AGAGGAGTACAG CTTTTACGCCTACAAATGCTATCCCATCGACGAACATAGGCGACAGTATTTTCAGAAAAT CTGTAGTGGTAA AAAGCCATCCATCGGGTACAAACTTATTCCCCTGCTTGCCCGAAAGGGCATGCTTGATAG CGTGTGGACCAC GAATTTGGACGACCTCGTGGTGACCGCCTGTATAGGCAACGGGATCCAGGCGATCGAAAT CACGCTCGACTC CGTGCAAAGGTTGAACAACCGGCCTCAGAACCGACATGAGCTTCCTGTGATCAAACTCCA CGGAGATTTTAA GTATGGCGATCTTAAAAACACCGAGGAGGAACTCCTCAATCAGGATAAAACGTTCAGGGA GAGACTTATTGA ATACGTACAAGACAAGCACCTGATCGTGCTCGGCTACAGTGGCCGAGACACCAGCCTGAT GGACACACTTAA AGAGGCCTACTCAAAACAGGGGGGTGGAATTCTGTACTGGTGTGGATATGGTGACAACAT AAACTCCGACAT CGCCGAACTGATTCAAATAGCCACTAAAAATGGCCGACGAGCCTTTTACATCCCCACTGA TGGTTTCGATTC TACGCTCCGGAAAATCACACAGATAGTGGTCGAGGATGATAACAACCTGAAAAAAGAGCT TCTCGAGCTTCA SEQ Argonaute Sequence

ID NO

CCAGACCAGCAATATCAATGACACTATCACACCTTTTGATCTGAAGTGCGAGAGGGT GAATAAGCTGTTGAA GTCAAACATATTCCGGATTAGCTTTCCAGACGAAGTGTTCGTTTTCGATGTGAGCATCAG CGATAAACCCTG GAAGTTCGTGGACGAAAGGACTCTTGAGCGCAACGATATTAGCGCCGTTCCCTATAACAA GCAAATCTGGGC ATTCGGTAGGCTTGACATCATAAAAGACATCTTCAAAGACGTGATGAACTCAGACATTCA GCGAAAACCCCT GGCAAACATCAAGATATACAACACGGCGGTTAGTCGGCTGTTGCTTACTACGATTTGCAA GATACTGGCGCT GCAGAGCAACCTTAAGACCGACTATAAGGGTAAGATATGGACCGAGAACAACAGTAAGTC CATTTCCGGCCA CATAGTATACAATGCCGTGCTGCTGTCCTTTGATCGGATAAGCGGTGAGTATTACCTTAG CCTCAACCCCGA CTTCGTGCTGGCTAACCCCAACATTGAGAAGAGTAGCATACAGACCATAGGACTGTTCTT CTTCCAGAAGCT GTGGAATCAGCAGTTTAACGAGTACATTAACTATTGGAGGGAAATTTTGTTGAAAAAGAA TAATGAGTACGA GTTCCCCATAAATAGCGGAACCGGCTTCAAGTTCAAGATCAAGAACATCCCAGTGTTCAC TAACATCTGCGA CCTGAATAACCCTCGCATCAACAATCACAACGTGTCCAGCCACCACCTGCTGCTTCAGGG GGTGCAATTTAA GGAAATCCCGCTGCTTTTCAGCACCAACAATGGCAACCGCACGGCCACCGACACCCACCC TATGAGAGGACT TCTCATAAACAAACCGTATGAAACGGGCGTCAACGACTTCCTCGAAAAGTCTATCACCCT GGGAATCATAAG CCCCAGTCAGGACGCCCTCAGGTTCTACCAATTCCTGGAAAACCAGAACTCTAAAATCAA AAAGCACAACGA CAAGGACAACTACATAATAGACTACGAAGGGTTTTTCGCCATCTACGGCGTTAGTCTCAG CTTCCCAACACC TAACGACAACGAGTGGGAAAGGATCAACGAACCGCTGATTATGGGCATCAAGGAGACCGC CCAACAGATAAA GCAACTGATATGCGACAGCATCGTGAAGATCTCAAGCACGACCAGGAGAAAAATCATCGT CATCTATATCCC CCAACGCTGGGAGCCCTACACCTCTTACCAGCTCGATGGTGAGTCATTTGACCTCCATGA CTACGTGAAAGC GTTCTGCGCGGAGAAAGGGATTATGAGCCAACTCATTCGAGAGAAGACCATTAACGATAC TATCCAAAAATG CCAGATACATTGGTGGTTGTCTCTGTCATTTTTCGTAAAATCCTTCCGGACCCCATGGAT TCTCGCAAATAC TAACAACACCACCGCCTTCGCGGGTTTGGGGTACAGTGTAGAAAACAAGAAGGATATTAA CGGACATATTGT GCTGGGGTGTAGCCACATTTACAGCTCAAACGGAGAAGGGCTCAAATACAAGCTGGCCAA AATAAGTAATGA TAAGATTCAGTGGAGGCATAAGAAGCCGCACCTCTGCTACGACGACGCGTATGAGTTTGG CAAGTCAATTGT GAACCTGTTCTACGAATCTATGAACGAACTGCCAAAAAGGGTGGTCATCCACAAGAGGAC CTTCTATACCGA TGAAGAGAAACAAGGGATCATAGACTCCATTAGCGACAATAAGAAAATAGAGAGCATCGA CCTCATCGAGAT CAACTTTGAAAACAATATAAAGTACGCCTCTAGCAAAATCCACGACGGAAAGGTAGACAT TGACGGATTTAG CGTATCTAGGGGAACCTGCATACAACTCAGCTCTAAGGAGGCGCTCCTGTGGGCGCATGG AGTGATTCCTAG CGTCATTAACCCTAACTGGAACTTCTACCCTGGCGGCAGGTACATACCTAAACCACTTAG GATCATTAAACA TTACGGTACAGGTAGCTTGGAACAGATCGCGAACGAGATTCTGGGCCTGACTAAAATGAA TTGGAATAGCCT GAACATGTACAGCCAATTGCCTGCCACAATTTCAAGCTCCAATGATATAGCTAGGATAGG TAAATTGATAGG GGCGAACAGTATGCACGAATACGACTACCGATACTTCATCTAGTAACTCGAGGTTAACTT GT

329 9 GGTGTCGTGAGGATCCATGCCGAAGAAGAAACGAAAGGTTGAGGACCCCAAAAAGAAAAG GAAGGTGGGGAG

CGGCAGCATGAATAACATACCCATCAGGCTGAACTTTTTCGCCCTGAAGAACCAGAACAT TAGCTTCAGGAT CTACAGGCAGGACTTCAACGGCCAGAAAAAACAGGACGGGTACTACAGGACCAAGCTGCC CATCAACGACTC TTCTGACACCTACGCGGAGTACTGGGTGACAACCCAGCCCAAGGATGGCTTCGAGAGGGT GTACTGCCTGGG TTCCTCAAACCCTAAGCTCACCGTCCGAATCATGTGGGAGAGCTTCCTGGATAGGGTCCA GAAGTCCCTGAG CTCCGACGAATATATCCTTTACGGTAACGGATTTAGCCGGAAGGTCGCCGTGATCATCGG CAGGCACAGGGA GGGCAATGAGGTGATCCAGATAGAGCCCTATTACCTGAAGGCCGAGAAGAAGTTCGGCTT TCTGGTGGACTT CGCATTTAAGAAGGCCAAGGACGTGCCCTATAGCATCAGGGTTCAGCAGCTGAGCCTGTC ACTGAACAAGTA TGGGAAGAGCAACGCCGACTACTATAGCGACAAGCTGGATAAGATAAAGTTCTTTATGCA GAAGTTTAAGCA GAGGCTTTTCCCATTTAGCTTGGATAACGAGGATTACGACATCGAGAACGAGCTGTATCT GATGAGGAGCTA CCCGCTCAAGATGAAGACCTACATATTCTCTAATGGCAAGGAAAGCAACAGCCAGGTGCA GGGTCTCAAAAC CTACGGACCGCTGGCGAATCTCGATAAGGAGCCACTGTTCGTGTTCATGTTCGAGTCCCA GGACAGGAACGA GGCCCTGGAGCTCTATTCTAGCCTGCTGGGCAAGACGTACACCAACATATTTGCTGGCAT GGAGAGCGTGTA CAAAATCAAACTCGCAAAAGAGAATGTGAAGCACATCATCATCCCCAGCCTTACCAAGGA GGGTCTGCAAGT GGTGGAGCAAGAGCTGCAAACTATCGTGGAGAGTCATCAGGACAAGAAGGTGATTGGGAT ATTTGTAATGAA TGAAAAGGTGCCCTCATCCATCACCGGTTTCAGCCCCTACCACTACGTCAAGTACATCTT CACAGAGAAACG CATTCCCCTCCAGACAGTGAGGTGCGAGAGGATCGCTGCCAGGGATGGCCTCAAATGGAG CGTTGGCAACAT CGGCCTCCAAATTTTCGCTAAATTGGGCGGCATCCCCTGGAAAGTCAAGCCGAGTAACGA TAAGTGCATCAT TTTTGGCCTGGGCTGCGCCCACAAAAAAGACGAACTGGGAAACATTAACAAATACTTCGC CTACAGCGTGTG CATGGACAGCAGCGGCATTTACCGAAAGATTAATGTGCTCGGCGATGCAAAGGAGCGCAC TGATTACATCCT TCAACTGCGGGAGAACATCAAAAGCGTGATAAGCGAGAATCTGGACGGGAGCATTGAAAA GTGCGTGATTCA CCTGCCCTTCAAAATTAAGAACGACGAGATCAGGTACATAAAATCCAGCGTGCAGGAGAT CGCGCACCTGTA TTCCGACATAGAATTTCAATTTATCAAGATCAACACGGACAACAAGTTTTTCGGATACGC TGAAAACAACAG CAAGGTACCCTACGAGAGCAGCTACATACAACTGAGCAGCAACGAGTTCCTGGTGTGGTT CGAAGGCCTGCA GTACGGGAAGGAGCTGGTGAAGAAAAAGGTAGGTAACCCCGTGCACATTGAGTTCATGCA GATCGATGAGTT GGATCCCGAAAAGAAGCGGCGATATCTGCAGGATATCATAAACCTGAGCGGTGCCAACTG GCGAGGTTTTAA CGCCAAACTGTCTCCAATCAGCATCTACTACCCCAACATCATAGCCAATTTCATTTCAGA GTTCAGGGAGTT CCAGCCCGAAGGCGACGTGGACCTGACCAACTTTTACATTCCCTGGTTCCTGTAGTAACT CGAGGTTAACTT GT

330 10 GGTGTCGTGAGGATCCATGCCCAAGAAGAAGCGCAAAGTAGAGGACCCTAAGAAAAAACG CAAGGTCGGCAG

TGGCAGCATGCATAACATCGAAATCAACACCTTCGTCAACAGCTTTGCCATTAAACCCAA CAACTCCATGTC CTTCCTGCTCGGCGCAGGCGCGTCTATATCCTCCGGGATCCTGTCTGGCGGACAGATGGT GTGGGACTTTAA ACGGAACCTCTATTGTGCGTCCAAAAACATACGCACCAGCAATTTTCCCGATATGAGCAA AAAGAATGCGCA GGACGAGATCCAACGCTTTTTTGATGGGCAGGCCGGAAATCCTAGCCTGTGGTCCTCCGA GGAGTATAGTTT CTACTTCGAGAGGTGTTATCCGGCGAGGAAAGACAGGGAGCTGTACATACAGAACAAGGT ACGAGACGTCAA GCCGTCATTGGGGTATCTCTGCCTCGGGGAATTGATCATACACGAGAAGATCGGTGTAGT ATCAACCACAAA CTTTGATGACCTGGTGTTGGCCGGCATCCATTCAATAAGACCGGACCTGAGTGTGAAGAC CATCAGCAGTGC SEQ Argonaute Sequence

ID NO

CCTCAAAAATAGCACGGGATTCTTCGTGAACGACGGGTTCCCGAACATCATTAAGCT GCACGGCGATTACTT GTACGATAAGCTGAAGAATACCGATAAGGAGCTGCAAAAGCTCGAGACGGAGATCAGCGG AATTTTTCGAGA TGCCGTCAAGAGTGGCGGGCTCATCGTACTTGGCTACGCCGGCAACGACAACAGCGTGAT GAGCGTCCTGGA GGAGCTCGTAAGCTCCGGGCAAATCAGGTACGGCGTGTTCTGGTGCCAACCGAAGGGCTT CCCCCTGTCCAA GCGAGCGCGGGAGTTTATTGAGAAGGCTTGCGCCTACAATGAGGAATCCGGGGTTGTCGA GATCAACAATTT TGACGACTTTATGTACCGCCTGTTCCTTACACTCAACATCCAAAACTCATTTATCGACAG CATGTGGGAACA GAGCGGCATGAAGCAGCCGATCCTCTATGAGAATATCGGACGACACAAGTCCACCGCCGT GACGAACGCCCT GTGCGCCCTGCAGTACCCCCGAAAATGCTACGTCTTCAACGCGAATATATCAAGCTGGAA GGAACTGCGCGA GACGATAAACGACACGTGCGTGGCAGTGCTGTATAAGGGCATGGTTTGGGCGCTGGGCAG CAAAGCAGGCAT CGTGCATGCGTTCGCCGGGAAGATCAATGGAGACATATACGAACTCGACATCCCGTTGTA CATGATGAAACT CGAGGATTCTGACATCCTGGGCATGTTTTACGACATCATAGGACGCGGCCTTCAGCGAAA GGGGCTGGTGAG CTACGGTAATAGGAAACATCACAAATACTTCAACCCCTCCAGCAAACGGTTCAAGAACGG TCAAAACATCTA CGACGCGGTCAAGATATCACTGAGTTTCGTGGACGATCAGCTCGTGCTCATCCTGCTGCC TACGGTGCATCT GCTGAAACGCGACGGGACGGAGCTGGAGAAATTTGACTACCAAAAATTGGTGTCCCAGGA GATGGCAACACA CTACAACAAAGTGGTGGACAGCGAGATAGAGATCTGGCTGAAATTCATCTCTAATAACGG CAAGATAATCTT TGAGCTGGGGAACGCAATACTGGAATTTAACAACGTCCGCATCCAGTACTCTGGTAACGG TAACCTCAGCAA GTGCTACCAGGTGAGCGAGCCCGAGCTCACGTTCAGTTACGAAAAGGACAACTGCATCGC TACCAACCAACT GCGGGGTCTGATCAACTATGGACCCATAGAGACTTACGTGAACAAAGCCATCAGGTTGGC TGTACTCAGCCC TAAGGAGTGTGCCGCGGACATTTGGAAACACCTGCAGAAGTTGAATGAGCATCACGTCAC CTCCCTTATTCA GGATGCAAATTTTCTGCCGGAGTACACCGGCTTTCAGAACGTTTTTAGGTGCAACCTTGA CATTCCCAATGG GAACGATGTGCATAGGTTCAAAGGCTACAGTATAGACAAGGTCATGCAACTCAACGCAAA GAGCTACTTTTA CGGGATCTGCAAGTACATTGATGCATTCGAGACACAAAGGAGCCAATACGACCTCCTCGT CATCTATATACC TAAGCAGTTGACCCACATCCGAGAGGCCAAGAATAACTTCGAATATTTCGACCTGCACGA CAGCCTGAAGAT TTATTGCGCTGGTAAAGGTATAGTCACGCAGATCATCGAGGAACACAGTGTTTATACTAA CAATGACACCGC CAAGATCATATGGGGTCTCTCAACGGCCATATTCACCAAGACCGCCGGAAGGTTGTGGAA ACCCAGACGCTA TTCCATGAACACCGCTTACGTCGGCCTGTCATATGTGCAGAGCGTTAAGAACAACGAGAA AGTCAGCATCGG TTGCAGTCAGCTGTTCGACGCCGAAGGCAATGGAATGAAGCTTTACCTGAGACCCTTGAT GAACCCCCAGAT AATTCAAAATAACCCTTTTATGCGGAGCGACGACGCTTGCAGGCTTATGTCAAACCTTAA GCGGATGTATGA CGACAGTGTCCCGCTCTACAAACTGAATAGGATCGTGATCCACAAAACTACGTTCTTCAC TAAAGAAGAGAT GGAAGGCATCACCAAAGGGCTGGCTGGAGTGGATGACATAGAGTTGCTCCAGATCCAGGA GTTCACAGCTTG GCGAGCAATACGCTTCGACTACGACAAGATCGCACCGTTTCCGATACAGAGGGGCACAGT GATTCTGGGGTG GGGCCACTTTAGTTACTTGGATACCTGGAAGTGTACCACCTAGTAACTCGAGGTTAACTT GT

331 7 GGTGTCGTGAGGATCCATGCCTAAGAAGAAGCGAAAAGTGGAAGACCCAAAAAAGAAAAG GAAGGTGGGTAG

CGGCAGCATGAACGCCGTGACCGTGGGCAGCACCCCAAGCGCCCAGGTACTCGTCGGTGT TCAGCCATACGA CGAAACCACCCTGGAGAGCCTGAGAAGTAAACACCGCGGAGACTATCTCTTTAAAAGGGG GGGAGAGAACGG CGATAGCATACTTGCTGTGGCCCTGAAACCGAGTCTGCCGGTCATCGGAGCAACCGAGGA GGATGTAATTCT TGCCGAGAGCCCATGGTTGTTGGCTCCACTTGCCTTGGAGACTTTGCTGCAATGCTTCGT GAGGCTTCAAAG GCCCATCCTGAAAGCTAGGCATCCCCTGAGAGTGCTCTCACAAAAACCGGCAAATCTTTT CCCAGCCGATGC GGGGGTCCCCCAGTGGCTGCAGAGGAGACTGGTGCTGGAATTCGACACGCGCACTGTTAG GGACAGGTCAGA CGCTGCCTCTGTCGTGCTGGCATGTGGCGTGAGGACTCGGAATTTGATTGATGCCGACTG CGCGACACTGAT AGCAGCCGGTGTCCCCCTTGTGAATCGATACGTGGTGACGAGGCACCCTGCGGATGATCC CCGAGTGCAGGG CTATTTGAGGCTCGCCGGGAGGGTGACCAGGATAGATGGCCCCAACCTGTACTTGGAGGA TCATGGCGATGG AGCAGCTGTGATCAAGGCCTCCATGGCCTATCTGGAGCCCAGGAGGGAGAACGTGATTTG GTGTGCCCACCA TTTGCTGGGGAGAAATGCGGATAGAGTACTGGCGGAAGCGGATAACGCAGCCGCAAAGCA CTTGAGCGGTCC CGAACGATTGGCCGTAGTGAAGAAGACTTTCGACTACCTTAGGAGCCAGAACATCGAGCT TGCGCCTGGAGT GCCCCTCACTCTGGGTAACGTTGTGGGGAATGACAAGGGTTCTTGGATCTTCCGGACGGA AACTCTGCCCAA GCCCCACCTGGTGTTCGACCCGAGCGGGACCCGGATCGATAGGTGGAATGAGAGGGGATT GGACGCTCACGG GCCCTATGATCAAAGGACCTTCACCCCTAAACAACTGAGGATTGCCGTCATATGTCAACT GCCCTACGAAGG CCAGGTCGATGCGTTCCTGGCAAAATTTCTCGACGGCCTTCCAGACGTGAAGACCGGCTA CGGGGACCGGGC CAGGGCGCCTTATGCCAAGGGGTTCATCAGGAGGTACGGTCTGGAGAAGCCCAAGGTGAG CACCTTCGCAAC AAAAGGCGCTACTGCTAAGGACTATGCCGCTGCATGTAGGGCGGCTGTGGAGGACGCAAC CGCAAGCGGCTT CGAGTGGAATCTGGCTATCGTGCAGATCGACAAGGATTTCAAGGAGCTGAGTGACGTGGA GAATCCCTACTT CACCACCAAGGCCCTGCTGCTGAAGCATCGGGTGCCCGTCCAAGAGGTGACGCTGGAGAC GATGAGGTTGGC AGACGAACAGCTGGTGTACGTGTTGAACAACATGAGCGTAGCCACCTACGCCAAAGTGGG CGGTACTCCCTG GCTCTTGAAAGCGCAACCAACCGTGGCCCATGAGTTGGTAGTTGGAATCGGAAGCCAGAC TTTTAGTGCCTC AAGGCTGGGTGAGAAAGAGAGGGTTGTAGGCCTTACCACCGTGTTCTCCTCCGACGGGAA ATACCTGCTGGA CGACCGGACTAGCGCCGTTGATTACGACAACTATAGCGAAGAGCTGTTTAAGAGCTTGTC CCGGTCAATAGA ATCAGTAAGGATCGCCGATAACTGGCGAAGTACGGACAGTGTCAGGCTGATTTTCCATGT TTTCAAGCAGAT GGCGGACGAGGAAGCCGACGCGGTTGACAAGTTGGTGCAAAAGCTGGGTTTGGCACAGGT TAAGTTCGCGTT TCTGCACATCGTGGATGACCACCCATTCGCCCTGTTTGACGAGAAGAACATAGGTACAAA GACATGGGGTGG GATATTCAAGGGCGTCTTGGCACCGGAAAGGGGCCTCGCGGTAAACCTCTCTGGGGCCGA AACCCTGTTGTG CTTCACAGGCGGCAGGGAACTGAAACAGGCGAAGGATGGCCTGCCCGTGCCTAGTCTGCT GCGACTGCACCA CAGGAGTACGTTCAGGGACATGACCTACCTGACGGGGCAAGCCTTCAACTTCAGCTGTCA CACCTGGCGCAT GTTCACACCCGCTCCTGTTCCCATCACAATACATTACAGCGAGCTGATGGCGCGACTCCT TACGGGCCTCAG GCACGTCCCGGATTGGGATCCAGACACAATGCTGACCCCCATCAGTCGAACCCGGTGGTT CCTGTAGTAACT CGAGGTTAACTTGT

332 13 GGTGTCGTGAGGATCCATGCCCAAGAAGAAGCGAAAGGTAGAGGACCCAAAGAAAAAAAG GAAGGTGGGCTC

CGGATCTCTGGACAGTTTCCACCTCGTGCAGACAGAGAAAAAGGCCATCGCAATGCCAAA GCAGAAGCTTGC SEQ Argonaute Sequence

ID NO

GGTTAATGCACTCCCCATTAGCCTGAAAGAGCAGGAGCAGCACAAGCTGTTCTTTTT TAGCAAGGAAAAGCA GGGCGAGCGAGCCCCGCTCACCAGGAAAGAATATCCTGACAGCTTCGCCAAGAGGTACCC CAAGAGCTCCAA AGAGTACGACGTGCTGTACACGGACTTCACCCCAGAGCCAGCTGAGGATGGGTTTGAAAT TGATATCGACCT GGAGGAGGCACCTGGCCTTGCCAAGCACTACTTGCACAAAAGGATCTTTGAGGCCTTTAA GGGAGTAGCTGA CTTCAGAAAGCGGGATTTCATCAACGGTGTGGAGCTTTGGTTCAGGGACAAACCCGCCGA CGAAGTTAATTT CCGGGCCTACAAGAAGTTTAAGATTACCACCCGCAGAACTTGGTTCTCCGCAGGCTGGGC CCTGTTCATACA ATACACCGGCCATTCCTTTATTCACCCGGTGGCGATCAATAGCGAAGAGGCCGCAGTGGA CACTACGGAACT CACGCGGGTTGCTTATAACCGACACATCTTCCACTACGAGGAGATCCCCGAAGACAAACT GAGTGAGATAGA TTTCAGTAAGATGTACCCCGTGGTGAACTTCAACATTAGGGATAAAATGCAGCAGTTCCC CGTTATCGATCC ATTCAAAAACAAGGTCAAGGAATATGTCGACGAAATAGACAGGTTCAAGAACATGTATCT GATCGCGCCAGC GGTTGAGGAGGTGCTTCCGTTTACTTTCAACGACGACAACTGGTGCGAGATCAAGATCGG CACCTACCATAC CGTGCCCAATGCCGGTTCCAAATTGGTTTTCCGCGATGGGCAAACCGAGATACACCCGTT CTACGGTATCAG GAACCACGGCCCTTTCATGCCCCCCAAACACAGCCACATAAGGTTTTTGTTTATCATGAG CAAGAGGGACAT CAAGGGCGCTGGTAAGCAATTCTATGAATACTTGAAGGGGGAGGTAAAAGGAGTGGACGG GTTCAACAGGTA TGCTAATATACCGTCATCCCTGAGGGGTGAGATGATCGAGTTTGAGAACGAGCAAAACCC CCTGCCGGAGAT TATCGACGGCTTGAACAACATGGAGCGAGAAGCGGGCGTGGCCTACTTCGCCTTCTATAT CAGCCCCATCGA CCGAGAAGTGAGGAACAGGAAGGAGAGGTTGGTGTACTACAGGGTTAAGGAGGAGCTGCT GAAGAGAAAGAT TGCCTCACAAGTGGTAGAAAGGAGCACTATCGAGAAGGCCGACTTCCGCTACAGCATCCC CAACATCGCCGT TGCCACAGTGGCCAAGCTGGGAGGCATCCCGTGGAAGCTTACTCAACCCCCAGAAGCAGA GCTGATCGTGGG CATAGGCGCATTCCAGCCACGCGAGTTCGACAAGCGATATCTGGGCAGCGCCTTTTGCTT CCAAGGCGACGG AACCTTTAGCGGCCTGAGGTGTTTCACCAAGGACGAACCCCATATGCTTGCTGGCAGCAT CAGGGAAGCGGT TCAAAGGTACGCCGATGAAAACAGGCAAGTGGAACGGCTGGTTATCCATTTCTACAAAAC CATGAGCTATGA CGAGAGGAAGCCGATCCTGGCCACCTTGAAAGAACTCGGCCTGGACATTCCCGTTGTGGT GGTCACTATCAA CAAGACTGAATACGAGCAGACAATCCTCTTTGACCTGAATTCTAGCATGAGGCTGCCGCT GAGTGGTACCTA TTTCAGCCAGCGCAGGGACGACATCCTGCTGAGCAACAACACCAGGTACCGCAAAGACAG CGAGGTGAAGAG GGGTTTCCCTTTTCCCGTGAGACTGCAGCTGTGGTGCTCCAAGGAGGGCCTGCTGGACGA CGAGGGTTTTAG GGAGCGACTGATCACCCAAGTGTATAGGTTTTCTCGGCTTTACTGGAAGAGCGTGTCTCA ACAGAATCTGCC CGTGACCATTAAGTATCCCGAGATGCTGGCCGAAAAGTTCCCATACTTTAACTCAAGGAG CCTTCCTAGCTT CGGCGAAAAAAGCCTGTGGTTCTTGTAGTAACTCGAGGTTAACTTGT

333 3 GGTGTCGTGAGGATCCATGCCGAAAAAGAAGCGGAAAGTTGAGGACCCCAAGAAAAAGCG CAAGGTGGGCAG

CGGCTCCATGCTTATCTGGCAATTCAAGAGAATGCTCTACTGCCAGGCCAACAACATCAA AGAGGAAAAATT CAAAGACCTGGAGAGCGAGCGAAATCAAAACACTATCCAGAGCTATTTTGACCTGAAGGG CGGCTATCCGGA AAGATATAGCCAGGAGGAATACTCCGCTTATTTCGAGCATTGCTTCCCGAAGTCTATCAA CCGGAAGTATTT CATGCAGAAAATAGTAGAGGGCCGAAATCCGAGCATAGGTCACAAGTGTTTGGGTGCCCT GTTCGACTGCAA AAAGGTAAACCACATCTGGACAACCAACTTCGACGAGCTCATCGAGAATGGGATTAAAAG CGTCAACAATGC CAGCAGCTTCGAGGTCATTAGTATCGACAATCAGAGGCAGCTGGCCAACCTCAACAACTA CCCAAGGGTGGT AAAACTTCACGGCGACTACAGGTACGACAAGCTCCAAAATACCGTTGACGAACTGCAGAC GCTGGAGAAGGA CCTCCATAAGTACTTCGCCGATGTGCAAAGCAAGACCGGCTTGATTGTGATAGGCTACGG CGGAAACGACCA GAGCATCATGTCCGCCTTTGAAAAGACTTTGGAGGCCGACAACCCGTTCCCGTTTGGGCT TTACTGGTGCGT GAGGACGGGCCAGAAAACCAACAAGAAGGTAATCGAATTCATAGAGAAGGTTCACCAGAA GAACAAGGAAAA GCTTGCTGCGTTCATCGAAATCGACTCTTTTGACGATTTTCTTTATGAGCTGTATAAGAC GAACAACCTTGC CAACGATCACATTGAAAATATCGCCAAAAGCCGCTTCGAAAAAAGGAAGGCTTTTACAGC CCCCCAGATCGG CACCTCCTTTACGCCTATAAAGCTTAACGCCATAAAGGCCAAGACTTACCCGAAAAGCAT CTATTCCTTTAA AACTGACCTCAAGGGGGGCAAGGATGACTGGGATAAACTCAGGGAAATCATTAAGGACCA ACCGGTGAGCGC GGCTCTGACCAATGAAAACACGGTCGCCTTCGCAAGTGTCAACGACATCAAGAAACTCTT CTCACACACACT GAAGTCAGAGATCACCACCGTGGACATAGATGACAAGTTGATCTATCGGCAGGAGTCTTT CTACCTGGGCAT GCTTTACGATCTGATAGAGCACAACCTCCTGAAGAAGTTCAAGTTGGAGAAAGTGCCCAA CAATAGGCTCCG CAAGTATTATAGCAAAAACTACAAGCTGAATACCGAGGAGCTTCAGAAGTCCAAGATCAA GACCAGCCTGTC CGTCTACGAAGCGTTCGAGATTCAAATAGAATTCCACAATAAAGAGCTGTTCCTCATTAT CCTTCCGTCCAT CCACATAGACGACAAAGCCGGGCTGAGCCGATTTGAGAAACAGGAGATAGCCAATAAGAT CATAAGCAAAAG GTGGAACCGCATGGTTAACAACCAGCTTAGGTTCTGGCTGGGGCTCCTTAAGAACGATAA CACTAACATAGA GTTCAGCATCGACAGTTTCAAGATTGATTTGGAAGAAAAGTTCTCCGGCGTCGGGAGCTT TACATCCTCTTA CTACATCTTTAAGGGCGCGTTTATTTCCAACGAACCCAAGCTTAGCTTCCATATCTCCGA CAGCAATTACAA AACAGTGCACCCCCTGAAAGGCCTCAAGAACTTCGGTCCACTGGATTACTCATTTGAAAG CAAACAGACCAA TCAGCAGGCTATTAAACTTGGTATAATCACTCCGATCAGCGGCATGCAACGGATACTCAA ACACCTGAACGA ACTTAATAACGAGATCCGCGCAGCTACGGAAAAGGAGTACCTGACCGATTATTACCCCTT TAGCAACATCTA CAAGAGATACCTTGACATCCCGCAGAATAAGGATAGTAAATTCTTGGAACTCGTGAATGA AGCCGAAGTGAA CAAACTGAACCACCTCGAGTTTTATGACTTCCTCAAACGCAAAATTGATTACTTCTATAC AATTAGGGGCGA GTTCGACGTGCTTGTGTTGTATTTTCCCAAAGGCTGGACTAAGTTCCGCGAGCTGAAAAA TGACAGTGTCTA CTTTGATCTGCACGACTCCATCAAGCTGTACTGTGCTAAGAAGAATATCAAGATCCAATT CGTGGAAGATAA GAGTATAGACTACCTCGACCCGGCCAAGGTTAAATGGTGGTTGAGCCTCGGCTTGTATGT CAAAGCGAACGG GCTGCCCTGGCGGAACGTGGTCGTAAACGAAAGCACCGCGTTTGTCGGGCTCGACTTCGC GGTCCAGCGAAT AAACAACAGTAACAAGTACGTGCTGGGTAGCTCACAGATCTTCGACAGCTCCGGACAAGG ACTCAGGTTTCT GTTGCAGCCCATCGAACACCCTGTGTTTATCGGTAAAAACCCCTTCATGAGCAAGGAAGA TGCGCGACGGAT GATTCTTAAATTGAAGGAAGCGTATTTTAGGATTGACGGTAACTCCAAGCTGGAAAAACT GGTGGTGCACAA AGTACTGCATTACACAAATGATGAGATGACCGGCATTTCCGAGGCGCTGGAAGGTATTGA GAACATTGAGCT TCTGCAAATACAGAAGTATAGTAAGTGGAGGGCAATTAGAGGGGACATCGATCGGTATAC GGGAAAGGTGAA GACCGACCCGCACAATTTCCCGATCCAACGGGGGACAGTGATCCAGCTCGACGACTTCTC TTTCCTTCTGTG GACACATGGAAGTGTACAGGAAGACGACGTGGCTGGTAGGCACATGAATTACTACCAGGG TAAGCGCGGGAT SEQ Argonaute Sequence

ID NO

TCCCGCACCACTTCTCATACGGAGGTTTCGCGGCACCGATCCGATTGAAATGACCGT GCGAGACATCCTGTC ACTCACCAAGATGAACTGGAACGGAGGCGAACTTTACAAGACTCTGCCGGTGACCCTGGA TTTCTCTAAACG GCTTTCTAAGTATGCGAAGCAGGCAGAGACCCTCCAGGCAATACCCTACGACTTTCGGTT CTTCATGTAGTA ACTCGAGGTTAACTTGT

334 51 GGTGTCGTGAGGATCCATGCCAAAGAAAAAACGAAAAGTAGAAGACCCTAAAAAGAAGCG GAAAGTAGGGTC

AGGCTCTATGCTTCAACTGAACGGCTTTAGCATCGAAATCGCCGGAGGTTCCCTGACTGT CTTGAAATCTAA AATCGCGCCTACCGACGTTAAAGAAACCCGCAGGAGCCTGGAAGACGACTGGTTCACCAT GTATCACGAGGG CCACTTGTACTCACTTGCAAAAAACAGCAACGCATCCGGCGGATTGGGTGAGACCGAGCT CCTGGTCCTGTC TGATCATCTGGGTCTTAGGTTCGTTAAGGCTATGTTGGACCAAGCCATGAGGGGCGTATT CGAGGCCTACGA CCCCGTTAGAGATAGGCCCTTCACATTTCTGGCGCGAAACGTAGATCTCGTAGCCCTCGC GGCAGAAAACCT CGAGTCCAAGCCCAGCCTTCTCTCCAAATTCGAGATCAGGCCCAAGTACGAACTGGAGGC CAAGGTAGTGGA ATTCAGACCGGGCGAGCTGGAACTTATGCTGGCGCTCAATCTGACTACACGGTGGATCTG CAACGCCTCCGT AGACGAGCTCATTGAGAAGAACATACCGGTCCGAGGAATGCACCTGATCCGACGGAACCG GGAGCCGGGACA GAGAAGCTTGGTTGGCACCTTCGACCGCATGGAAGGCGACAACGCCCTGCTGCAGGATGC TTACGACGGACA AGACAAGATAGCAGCCTCACAGGTGAGGATCGAGGGGAGCAAGGAAGTCTTCGCGACCTC TCTGAGGAGGCT CTTGGGCAATCGCTATACCAGTTTCATGCACTCCGTGGATAACGAGTACGGCAAGTTGTG CGGGGGTTTGGG GTTCGACGGCGAACTTAGGAAGATGCAGGGATTTCTCGCGAAAAAGAGTCCTATACAACT GCACGGAGGTGT AGAAGTGTCCGTGGGGCAGAGGGTACAACTTACCAATCAGCCTGGGTATAAGACAACAGT TGAGCTTTTGCA GTCAAAGTACTGCTTTGACAGAAGTAGGACGAAGCTCCACCCCTACGCCTGGGACGGGCT TGCTCGATTCGG CCCATTCGACAGGGGCAGCTTCCCGACGCGATCCCCCAGGATTCTGCTCGTGACACCCGA CTCCGCGAGCGG TAAGGTCTCTCAAGCTCTGAAGAAATTCCGCGACGGGTTCGGCAGCAGCCAGAGCAGCAT GTATGACGGCTT CCTCGACACCTTTCACCTCAGTAATGCTCCTTTCTTCCCCCTTCCCGTGAAGCTGGACGG CGTGCAGCGCAG CGACGTGGGCAAAGCTTATCGAAAGGCGATCGAAGATAAACTCGCACGAGACGACGACTT CGACGCCGCCTT TAACATTCTCCTGGACGAGCACGCCAATCTGCCGGACAGCCATAACCCCTATCTGGTCGC CAAGTCCATCCT CCTCTCCCACGGCATCCCAGTGCAAGAAGCACGAGTGAGCACTCTGACGGCCAACGAATA CAGCCTGCAACA CACCTTCAGGAATGTCGCCACAGCCCTGTACGCCAAAATGGGTGGTGTCCCATGGACCGT TGACCACGGGGA GACCGTGGACGATGAGCTGGTAGTAGGAATCGGAAACGCGGAGCTTAGCGGGAGCAGGTT CGAGAAAAGACA GAGGCACATCGGAATCACGACAGTGTTTAGGGGGGACGGCAACTACCTGCTTAGCAACCT CAGCAAAGAGTG CCGATACGAGGATTACCCGGACGTACTCCGGGAGAGTACCATCGCCGTGTTGAGGGAGGT TAAGCAAAGGAA CAATTGGTTGCCGGGTCAAACCGTGCGAATCGTTTTCCACGCCTTCAAGCCTCTGAAAAA CGTGGAGATTGC CGACATCATCGCGAGCTCTGTAAAGGAGGTAGGCTCCGAACAGACCATAGAATTTGCATT CTTGAATGTTTC CCTCGACCACTCCTTCACCCTTCTGGACATGGCTCAAAGGGGAATAACGAAGAAGAATCA GACCAAGGGGAT ATACGTTCCCAGGAGGGGCATGACAGTCCAGGTTGGGCGCTACACCAGGCTTGTAACCAG CATCGGTCCGCA CATGGTAAAAAGGGCAAACCTTGCCCTCCCGCGACCCCTGTTGATTCACCTGCACAAGCA GAGCACCTATCG GGACCTGAGCTATCTGAGCGAACAGGTTCTGAACTTTACCACCCTGTCCTGGAGGAGCAC CCTCCCCAGCGA GAAGCCTGTTACCATTCTCTACTCATCACTGATAGCCGACTTGTTGGGAAGGCTCAAGTC AGTGGATGATTG GAGCCCCGCAGTGTTGAATACCAAACTGAGGAATAGCAAATGGTTCCTGTAGTAACTCGA GGTTAACTTGT

335 28 GGTGTCGTGAGGATCCATGCCAAAGAAGAAGAGAAAGGTTGAGGATCCCAAGAAAAAGCG GAAGGTCGGCAG

TGGCAGCCTGGGAGCCGGTGCCAGCATCAGTTCCGGCATCCAAAGCGCTAATGACTGCAT TTGGGACTGGAA GTACTCTATCTACCAAACTAACTCCGGCAGTCAACGAGTGGCCCTCGTGGACCCTAAGAA ATCCGACGCCTC CAAGTCTATCATCCAGAAGTGGCTGGATAATCAACCGAAATTCTCACAGATCGAAGCCCA TCAGGAGTACAG CTTCTACGCCCAGGCGGCTTACCCCATTGAGGCGGACCGAATCAAATACTTTCAGAATCT CTTCCAGGGGAA GTCCCCCTATATCGGCTACAAATTGCTCTGCCTGCTGAACAAGTACGGTGTAGTGAAATC TGTGTGGAGTAC CAACTTCGACGGCCTGGTCGAACGGGCAGCACAGCAAGCCAACATCACCCTGATCGCCAT CAATCTTGACTG TGTTGACCGCATATATCGAGCAGAAAGCGTGAATGAACTTCTGTATATCGCGCTCCACGG GGACTACAAGTT TAGTACCATAAAGAATACCGCGAATGAGCTCGACAGCCAGCACACCGAGTTCGTATCTGC CATGTGCCGGTA CTTCGTCGATAAAAACTTGATCGTCATGGGATACAGCGGACGCGACAAGTCACTTATGGA CGCCCTGGTCCA AGCGTTTAGCAAGAAGGGTGGGGGGAGACTTTATTGGTGCGGCATGGGCGAGACCATCAC GATCGAGGTGCA AAACCTGATACAGAGAGTGAGGACCGCAGGCCGGTCAGCTTATTATGTAGATACCTCTGG GTTTGACAACAC CATGCTGTCACTGGTAAAGTACTGTTTTTCAGAGGACGTCGCCAAACAGCGAGAAATAAA CGAAATTTTGAA AATTGTGGAACCGGAGCAGATTACTCCGTTTGAGATTCAAAAGAGCCAGAACAAACGGTA TCTCAAGAGCAA CCTGCTGCCAATCGTGCTTCCCAAGGAACTCTTTCAGTTTCAGATCTCTTATAACGACAC GGCGGACAGGTG GGGATTCTTGCGCGAGAGGATTAAGGAGCGGGAAATCATAGCAGTCCCGTACCAGGACAA AGTATACGCAAT CAGCACGGTCTCCATCATTAACGACGTTTTCAAGGACTGTCTCGTAAGCGAGATTGAGCG CACGTCCATCTC TCTGAATGAGATCGAGCGCAATGGCTGCTTCAAAGAGCTGTTCCTCAAGGCTATTCTCTA CGGGTTTAGCCA AATCCGGAATCTGGGCATCAACTACCGCCACGGCATCATTTGGAAGAAGGAGGCGCTCTA CACTGAGCCCGG CAAGACCGTACACGAGGCCATAGAATGCGGCTTGTCTTTTATACCGCAAGCGAACTACGC TTTGATTAGCAT CACACCAAGTTTGCACATCGAATCCAGCAGCCCGATCGAAAAAGAGAAGAAACAAGAGTA TAACAGGCGGTA CCTTGACAAGATGAGGAATAAAGAGTACGAGGAAAAGATCCAGGAGTGGTGCAACATACT GTTCTCCGGTAA CAAGCTCGTTTTTGACATCCCGCTGCAAAGCAACAACGACTTGAAGTTCTTCATTTCCAG TAATAGGGGTTT CGCCGAGGTATACAATTACGGTAAGGACATCGAGAAGAGCTACACGCCCAATGCTTACAA TACGAAACAGAC CATTTACTACGGCATGCAAATCGAAGAGCCTCAGTTGGAGTTTATCAACTCCATAATCAG TAGGCCGTTCTA TGACGTTAACCCAATGAGGGGCCTCTCAAATCACAAACCATTCGACGCGGACTACTATGA CAAGTTCCCCCA GGATGTGTGTTTGGGCATTGTGTGTCCGACCAGCTACAGCCTGATGTTCTCAGAATTCCT GAAGCGCCTGAA CACTAAGATCCCAGCACCGAAGTCATCCGACTACATCCACAACTATATTGGCTTTAACAG CATCTACAACTG CAGGCTGGACATACCGGACATCAATGCCGATCGCTGGGTGAGCATCGGCGACAACCCCCA GAACGCGGAGGA ATTGGCCCGCAACATCTGTATGGAAGCAAAAAAGCTGAGTGAACAATATCCGGGCATCGT GGTTAACATATT CATCCCTACTATCTGGAGCAACTACAGAAACTTTAAACACAACGGTGAATTCTTCGACCT GCATAACTACAT SEQ Argonaute Sequence

ID NO

TAAAGCATTTGCGGCACAAAATCGCTTCACCACGCAACTCATCGAGGAGAAAACTGT TTGTAACACGATGAT GTGCGAGATATCCTGGTGGCTTTCCCTTGCCCTTTTCGTTAAGACCCTGAGGACTCCGTG GACACTGGCTGA CCTTAACCCCAACACCGCCTACGCGGGGATAGGGTATTCAGTTAAAAAGCAGGCCAAGGG CAGGACAGAGAT CGTACTGGGGTGTAGCCACATTTACAATGCGCAGGGACAGGGACTCAAGTACAAACTGAG CAAGGTCGAGCA CCCACAGTTCGACAAAAAACGGAACCCATTCTTGAGCTTCGAGGAAGCCTTCAAATTCGG GATGGATATTCT TAATTTGTTCCAGAGTGCAATGGAAAAACTGCCGCAGAGGGTGGTTATTCATAAACGGAC GCCTTTTAGGGA AGAGGAAATAGAAGGGATTACCAGCGCCCTCAAGCGGGCAGGGATCACGGAGGTGGACCT GATCACTATAAC GCAGGAGCGAAACATTAAGTTTATAGCACAGGTTGTCTCCTTCGGCCAACTCAATACCGA CGGCTATCCCGT CAACAGAGGCACTTGCATCAAGCTTAGCTCTCGCAATGCACTCCTTTGGACCCACGGCGT CGTCCAGAGCAT TCGAGACAAAAGACGGTACTACCAGGGGGGCAGGTGCATTCCGAGCCCGCTGAAAATCAC TAAGTATTACGG CAACGGCGATCTCCAGACTATAGCTAAGGAGATCATCGGTTTCACGAAGATGAATTGGAA TAGCTTCAACTT CTATACGAAGCTGCCAGCGACCATTGACACTAGCAACACCCTGGCCCAAGTGGGCAACCT TCTCAGGAACTA TAATGGCACCACCTACGATTATCGCTACTTTATCTAGTAACTCGAGGTTAACTTGT

336 43 GGTGTCGTGAGGATCCATGCCGAAAAAGAAGCGGAAAGTAGAGGACCCGAAGAAAAAACG CAAGGTGGGCTC

CGGGTCTATGGCCAACCATACCTTTAACATCCTGACTTTCAACCACCCCCAGGAGGAACA GACCTTCTACTT CACGGACCAGGAGCAAGACAACCTGACCCGCATCTACAAGAGCCTGGTGCCCGACGAGGT CATCGAGAAATA TGGCGAGCAGGATCACTACTACACCTCTTTCACCGTAGAGAAGGATGGTTTCCTGGCCGT CAGCAAGCCCAC AACGCCCCTGTTCGAGACCAAGACTACGGAGGCGGGCGAGGAGAGGAGCTATACCATCAG GAATTCAACGTT CAGCAGCAGCGTGTTGAAACGGTACTACAACAGCCTTATCCACAGCCACTTCAAGGAGAA GGGCTTCCTGGT GAAGCCCAACTTCGTGAGCGACACGGAGGTGTGGCTGCCTAGCGCCAAGCAGGACACGAC CGGCAAATACAA AATATTCGACCGCTTTAGCCTGAAGGTGCAGTTCAAGACCGTCTCTGATTCCCTGGAGTT GCTCGTCACGTT CGAGGGGAAGTCAAAGATATTCAAAGTACCTGTTAGCACCCTGCTGGAGGATGTGAGCCC CACGGACATCAA CTGGGTTGTGTACGAAAAGGGATTGTACAGGTTCGACGAACTCCCGGACAGCGGCAAGAG GGAGTATGACAA GGTTTACCCCGTGTGGACCTTCGAGATCAGGGACGCGCTTATGCAGGGCACCGAAGCCCC AGACAAGACCAA CAAGTACAAAAAGTTCAGGGAGGGCATCGACAAGTTCTATAACCAGTATCTGAACACAGA GGAGTTCAAAGC CATCATTCCAATCACGTCTAATGGCTTCATCCCGGTCAATAAGATCAATGTCGGTAGTGT GAATAATAGTAG CAACAGGCTGCTGTTCGGGGAACAAAAGAGCGGTATCGTGCCAATGGACGGCATGAAGGA ACATGGCCCATT CGACTTTTCCAGCACCAGCAAGATCCATTTCTTCTTTATCTTTCATAAAGACGACCAGCA CATCGCCCAAAA GATGGATGGCTATTTCAAAGGCAGCGAGTTCGGGTTCAAGGGACTCACCAAATTCATACA CACCCCCTATCA CACCGAGAAAGGATTCTCAATCAGGTTTGAGGACCGCGACAATCCGTGGCCCGAGATCTA CGAAGCCGTCAC TAACAAGCACTTCGAGTCCGACATACAATACATTGCGATCTACATCAGCCCCTTCAGCAA AAACAGCCCCGA CAAGAGTCGGCGCAAAATCTATTACAAGCTCAAAGAACTGCTCTTGAAAGAAGGCGTGAG CAGCCAGGTGAT TGACGGCGAGAAGGTGATGACCAACGAGAAGTATTACTACAGCCTCCCCAACATAGCAAT CGCCATTCTGGC CAAGTTGAATGGCACCCCTTGGAAACTGGACACCAAGCTGAAGAACGAACTGATCGTGGG AATCGGCGCCTT CCGCAACAGCGAGGTTGACATTCAATATATCGGCAGCGCGTTCTCTTTCGCAAACAACGG CAAGTTTAATCG CTTTGAGTGCTTCCAGAAGGACCAGACGAAAGAATTGGCGGGAAGCATCATACGGGCGGT GAAGGAGTACGC CAACGTAAACACCGGCATTAAGAGGCTTGTGATCCACTTTTACAAAAGCATGCGACAGGA TGAGCTCCAGCC GATCGAGGACGGCCTTAAAGACCTCGGCCTGGACATTCCGGTATTCATCGTATCTATCAA TAAAACAGAAAG CAGTGATATCGTGGCGTTCGATAACAGCTGGAAGGATCTGATGCCGATGAGCGGCACATT CATTAAAGTGGG GTACAACAAATTTCTCCTGTTCAACAACACCAGGTATAATCCAAAGTTTTACAGCTTCCA CGACGGGTTCCC CTTCCCCATCAAACTTAAGATTTTTTGCACTGAAAAGGAACTCGTGGAGGAGTATAAAAC GGTTAAAGAGCT GATCGACCAGGTGTACCAATTTAGCCGCATGTACTGGAAGTCTGTCCGCCAGCAGAACCT GCCCGTGACCAT TAAGTATCCGGAAATGGTGGCCGAAATGTTGCCTCACTTTGACGGGAATGAGATACCTGA ATTCGGTAAGGA CAACTTGTGGTTCCTGTAGTAACTCGAGGTTAACTTGT

337 74 GGTGTCGTGAGGATCCATGCCCAAGAAAAAGCGAAAAGTAGAGGATCCAAAGAAGAAACG GAAGGTCGGCAG

CGGAAGTGTGAACCATTACTATTTTTCCGAATGCAAGGCGGACGAGAAAGCCAGCGACAT AGCCATCCACCT TTACACCGTGCCCCTGTCCAACCCCCATGAGAAATACAGCTATGCGCACAGCATCGCCTA TGAATTGAGAAA ACTCAACTCATACATAACCGTGGCCGCGCACGGTCAGTACATCGCGTCTTTCGAGGAGAT ATGCCACTGGGG CGACCACAGGTACATACAGCACGAACATAGACCAATCCAGTGCAGCCTCCCGATGGAGAG GACCATACTGGA AAGACTCCTCAAGAAAGAGCTCGAGAATAGGTGCAAAAGCAGCTATAAGATGGACAACGA CCTTTTCCGGTT GGCTAACGAGCAAAGCATGCACGTGGGCGAGATCAGCATACACCCAGCGATCTACATCTC ATTCAGCGTGGA GGAAAATGGTGACATATTTGTTGGCTTCGACTACCAGCACCGGTTCGAGTACCGCAAAAC ACTCCAAGACGT CATCAACAACGATCCCTCCCTGCTTAAGGAAGGCATGGAAGTGGTGGACCCCTTCAATAG AAGGGCCTACTA TTACACTTTTGTGGGCATGGCCGATTATACCGCCGGACAGAAAAGCCCCTTCCTGCAGCA GTCTGTGATCGA CTATTATCTCGAAAAGAATGAGCTGTGGAAGCTCAAGGGTGTGCACGAAAAAACCCCCGT GGTGCACGTCAA GAGCCGAGACGGTCACTTGCTCCCGTATCTGCCGCACCTGCTCAAATTGACATGTTCATA CGAACAGCTCTT GCCCAGCATGACCAAGGAAGTCAATCGCCTGATTAAGCTGAGCCCCAACGAGAAGATGAG TAAGTTGTATAC GGAGATGTTTCGATTGCTCCGGCAGCAACAGGTGCTGACCTTCAAGAAGGAAAACGTGCG AGCCGTCAACCT CGGCTACGATGTGAATGAACTTGACAGCCCGATCATGGAGTTCGGACAAGGCTACAAGAC AAACGAGATCTA TCGAGGCCTGAAGCAGAGCGGAGTATACGAGCCCAGCTCAGTGGCCGTGAGCTTTTTTGT TGACCCCGAGCT TAACTACGACCCCCAGAAGCGGAAAGAAGTAGGTTGCTTCGTCAAAAAACTGGAGAGCAT GAGCGAGGCCCT GGGAGTAAAACTGAACATAAGCGACCAGCCCCGACAACTTTATGGCCAGCTCCCCAAGGA CTTTTTCAAGCA GGACAACCTCTCATATCATTTGAAATCTATCACCGACCAGTTCAGGGGAACGGTGGTGGT TGTTATCGGCAC TGAAGAGAACATCGACCGGGCATACGTTACAATCAAAAAGGAATTCGGCGGCAAGGAGGA TCTGATGACCCA GTTTGTCGGCTTCACCTCCTCCCTCGTCACGGAGAACAACATTTTTCACTACTACAACAT CCTGCTCGGCAT CTATGCGAAAGCTGGTGTTCAGCCCTGGATACTCGCCAGCCCAATGCACTCAGACTGTTT CATTGGACTCGA CGTAAGCCACGAGCACGGTAAGCACGCATCAGGGATAATACAAGTGATTGGACGGGACGG CAAGATTATCAA ACAAAAGAGCGTTGCGACAGCAGAGGCCGGAGAGACTATTGCCAATAGCACGATGGAAGA AATCGTCAACGA SEQ Argonaute Sequence

ID NO

AAGCATTTATTCCTACGAGCAGATCTACGGGGCCAAACCGCGCCACATAACATTCCA TAGAGACGGGATCTG TCGCGAGGACCTCGATTTTCTGCAAGCGTATTTGCGGAGTTTCCAAATCCCATTCGACTT CGTAGAAATCAT AAAGAAGCCGCGACGCAGAATGGCGATATACTCTAATAAGAAGTGGGTCACGAAACAGGG AATATACTACAG TAAGGGCAACACCGCTTATCTGTGTGCCACGGACCCCAGAGAATCCGTGGGTATGGCGCA ACTTGTCAAGAT CGTACAGAAGACTAACGGATTGAGCGTTCACGAGATAGTGAGCGACGTGTATAAGCTGTC CTTCATGCACAT ACACAGTATGCTCAAGACCAGGTTGCCTATCACGATACACTATAGCGACCTCAGCTCAAC GTTCCACAACCG GGGCTTGATCCATCCCCGGTCCCAACATGAGAGAGCACTCCCGTTCGTGTAGTAACTCGA GGTTAACTTGT

338 68 GGTGTCGTGAGGATCCATGCCCAAAAAGAAACGAAAGGTAGAAGATCCCAAGAAAAAAAG GAAAGTGGGAAG

CGGAAGCATGGAGAACCTGGCTCTTAGTGCGCTGCAACTGGACTCTAAGCTCGACCGCTA CATCGTGTGCAG GTACAGAATCGTGTACCAGAAGCGAGACGAGACCATTCCCGGCGAACAGTTGGCCCGGAA GGCGGCCTACGA GATCCAGAAAGCGAATGACTTCGCCCTTTTGACCAACCTCGGCAATCAACACATCGTTTC CCTCAAGCCCAT CTCACAGAGGGGCATTGAAAGCACCCACCTTCAGGCGAATCTCATCGAAGACGGGGACCT GGAGCTCGATTG CTCCATCGAACAACATCAGCAGGCACTCCAGCGGCTCGTGAACCAGGACATCAATAAAGC TGCGTGGAAGCT TAAGAAGAGCTCACAGGGCAAACTCGATTACAAAAAGGCAGCTAGCGGGAACACCGAGAT CTTTGAGCCAAT TCATAGCACTCGAATCAACGCCCGAGCCACGTATCTTGACGCTTTTTGCTCACTGCAGCT TAGCCCCGAGGT GCTTGCTAATGGAACCGTACTGATAGGGCTGCATCTCAAGCACAATCTGGTAGCAAAGTC TGACATCTCTTT GCAGTGGATCATTGATAAAAGGCCCGATTGGCTGCAGAGCATCAAGAAGGTGCGGCACAG GTACTTCGATCC CGGCAAAGCGCCCCTGGTCGCCGAATTCCTGAGGGTGGAGGACTCCCTGAATGGCAACAG CGTCTTGCCCCA CATGGGCCAGAGTCTTGTTTCATACCACCAAGCGAAGGGACTCTTGTCAGAAAGACAGCT CGCAGAGGCCAC GAAGAGCGTGCTGATAAAGGTAAAATACGGCAAAAACGAGGCGGACCACATCGCATCTCT GGTTGAACCAAT GTTTGATTTCGACACGCTCAGCAAGATCGATAGTATCTTCCTTAACAAGTTGGCAAAGGA CCTGAAGTGGAG CCTGAACGACAGGATACGCACTTCCGCGAAAATGGTGAAAGGCTTGTATCTCCCAAACTT CAACTGCAAGCT GGAACAGGTTGACTATCAGATCCTTCACAGGCAGCGACTTAATCACCAACAGATGCTTCA ATTCGCCAACGG GGCGAAATCTTCAAGAGAGCAGGACGTGCTGCGACATAAGGCGTTCGGCAACATGACGCG CACACAAGTTAT CCCGCTTATTGCGGGCGAGAAGAACAATACAGAACAAAATAAGCAGCTCCTGTGCAACGC ATACCAAGCATT GCAACAACTGACCACCACGGAATTGCCTCCGTTCACCAAGTTCCCCAACCCCGTAGAGAA CGCAGCCGAGCT GGACGCAAGACTGAATGAACGGTGTCCCCCAAATGCGATACTGCTCATCGGCCTTATCGA CAAAAGCGACAA AGTGGCGATCCGCGACACCGCGTTTAGCTACGGTCTTGCAACCCAGTTCATGCGCCTGGA TCACAGACCGAA CGTCTACAGCCCCTCATATTTCAACAACGTGGCGGCTGGTTTGTTTTCCAAAGGTGGCGG GCAGCTCTGCGC CATTGATGACATGCCGGGTGAAACCGACTTGTTTATCGGTCTCGACATGGGAGGGATCTC TGTAAGGGCACC AGGCTTCGCGTTTCTGTTTCTGCGATCTGGTGCGCAGTTGGGGTGGCAACTCGCGGACAA ACAACAGGGAGA AAGGATGCAGGATGAGGCCCTGATGTCACTGTTGGACAAGTCTCTCACCACCTACCTGAG AAGCTGCTCTGG TGAGCTTCCTAAGCGCATAACCCTCCATAGGGATGGCAAGTTCTACGAAAGCATAGAAGT GATCGAGCAGTT TGAGCAGAAGCACGGCGTGAAAGTAGATGTGCTGGAGGTTCTGAAAAGCGGTGCTCCGGT TTTGTATAGACG AAGCCGCATGGCCGACGGAACCAAGGAGTTTAGCAACCCCAATGTGGGCGACGCGATCTA TCTCAGTGATCA TGAGATGATCCTGAGCACGTATAGCGGCGAAGAACTCGGAAAGATATGGGGTGACAAGGT CAGCGTCAGGCC TCTTAGGCTGCGCAAGAGATACGGTGATGTGAGCCTGGAGACCCTGGCACATCAAGTGCT CGTGCTGTCTAG GATACACGGCGCTAGCCTGTATCGCCATCCTCGACTGCCCGTGACCACGCACCACGCCGA CCGATTCGCAAC ACTGAGGCAGGAAACATGCATAGACGCCCTCTCTAAGATGGACCGGCTCTGTCCGGTCTA CCTGTAGTAACT CGAGGTTAACTTGT

339 56 GGTGTCGTGAGGATCCATGCCTAAGAAAAAGCGCAAGGTTGAGGACCCGAAAAAGAAGAG GAAGGTCGGCAG

CGGGAGCATGCAGCTGAACTACTTCCCCATAAAGTTTGAGTTTGAAGAGTACCAGATAAA AACTGAGCCCTA CAGCGAAGAACGACTTAAAGAGTTGAGGGCCAGTTACAACGCCACCCACTCCTTTTTTAG AAATGGAGACAA TATATGCATTAGCAACAAGGAAGGCGAGGACATTAGTCTGACCGGCGAGGTGATACCGAA AAGAATTTTCGA CGACAGTCAAGTGACCGCCTCATTGATAAAGCACTTGTTTTTCAGGACGTTCAAGGAGAG GTTCCCCAACTA TATTCCTGTGGACTTTTACCCCTTCCGCTTCTTCTCCGCCCAGGCTAAAGACGACATCAT CTATAACGCCCT GCCCGGCAACCTCCGGAAACGAATCGCTTACAAAAAGCTGATCGAGGTTCAGTTGCGGCT GACGGAAATAAA CGGCATCAAGCAGTTTGGCTTCCTGATCAACATTAAACGAAATTGGGTGTTCAACAAGTC ATGCTTCGAGCT CCACTCCGAGGGCTACAACCTGATCGGGGTGGACGTGCTGTACGCCGAGGAACTGCCGGG GTTGACCGAGGT GCTGGCCCCAAACGAAGAGCTTTTGGGCGTAATCGCGGAAATCGTGGACGACAATGCCAG GATAGAAACCAA CGAGGGCATTAAGGAGTTCCCTCTGAACCAGTTGTTCATCAAGAAAAGCAAGTACAACAT TGGCAATTACCT TAGCTTCGCGATCTCTCAGCAAAAGAGCGACGAAATAATGAATCTTATCGAGAGCAAACG CTCCGACATCTA CAATACCAAGGGTCTTTACGACGAGATCTTGAAAATTGCGAACCATCTTTTTTGCGAGAA CAGCGCACCCAT ACTGTTTCATAATAAGGACGGATTCTGCTTTACTGTCGATTCCCAGCCGCTCAGTGTGAC GAACAGCATGGA ATTGAAGACTCCAACATTCATATACGATCCAGCGGCCACGAAGACGAATTCTAGCAATCC CGACTTGGGCCT GTCCAATTACGGGCCCTACGACTCCAGCATTTTTGACATAAAGATACCCAACGTGTTGTG CATCTGCAATAG GAATAATCGAGGCAACTTTACAAAGTTTCTGTCTAACCTGAAAGACGGGATACCTCAAAG CCGCTATTTCCA GAAAGGCCTCCAGAAGAAATACGACCTCCAGGATGTGATCCTCAATATCCGAGAAATCCA GGCCTATAGCAT CGCCGACTACCTTAACGCCATCAGGGACTACGATGAGAACAAGCCTCATCTGGCGATCAT CGAGATCCCTGC CAGCTTCAAGAGGCAGGCCGACGTGGCGAACCCCTACTACCAAATTAAGGCCAAGTTGTT GAGCCTGGAGAT TCCCGTGCAATTCGTTACCAGCGAGACCATCGGTAACCACAACGAGTATATCCTGAACTC TATCGCGCTGCA GATCTACGCAAAGCTCGGCGGGACCCCGTGGGTCCTGCCCTCTCAACGCAGCGTTGACAA AGAGATAATCAT CGGAATAGGCCATTCCTGGCTTAGGCGCAACCAGTACGCTGGCGCAGAACAGAATAGGGT AGTGGGGATCAC GACCTTTATGAGCTCCGATGGCCAGTACCTTCTGGGTGACAAGGTCAAAGATGTTGCCTT CGAGAACTATTT TGAGGAGCTTCTGAAAAGCCTGAAGCAAAGCATCCAGAGGCTCAGCACAGAGCAGGGCTG GAGCGATGGCGA CACCGTGAGGCTGATATTCCACATATTCAAACCGATAAAGAACACTGAATTCGACGTGAT CAGTCAGCTTGT CAGAGACATCACGCAGTACAAGATTAAGTTCGCATTCGTAACCATCAGCACTGTGCACCC TTCCATGTTGTT CGACATTAATCAGTCCGGTATCGCCAAATACGGTTCCAATATCATGAAGGGACAATACAT ACCAAACAGGGG SEQ Argonaute Sequence

ID NO

CAGCAACGTTTTCCTGGACGAGAAGACATGCATCGTACAGATGTTCGGCGCGAACGA ACTGAAAACGGCCAA GCAAGGCATGAGCAAGCCCATCCTTATAAACATTCGCACCCCCCAGGGGAACTACAATTC AAGCGACCTGAA CGATCTCCTGTTTTATGACCTGGGGTACATCACACAACAGATATTTAGCTTTACCTACCT CAGCTGGCGGTC CTTCTTGCCCGGTGAAGAGCCGGCGACTATGAAGTACAGTAACCTCATTTCCAAACTTCT CGGGAAGATGCG GAACATCCCTAACTGGGACGCCGACAATCTTAACTACGGCCTGAAACGGAAAAAGTGGTT CCTGTAGTAACT CGAGGTTAACTTGT

340 4 GGTGTCGTGAGGATCCATGCCCAAGAAAAAGCGAAAGGTAGAGGACCCCAAAAAGAAACG CAAAGTGGGCTC

CGGAAGCCTGAAGCTGAACCACTTCCCCCTTAATCCCGACCTCCCCCTGTACATCACAGA ATATGCCCACCG GAACCCGCGAGCGTTGCTCGGATTCGTTAGGGGCCAAGGTTTCTGGGCGCAACAGGTCGG AGAACAGGTACA AGTGTACCACGGTAGACCGCAGCCCACGTTCAGGGGAGTTCAGGTGATCAGCCATACCAG GTTGGACCCCGA CCATCCGGCTTTTGACCAAGGCGTTTTGAGCCTCATCCGACAAGCACTGGTGAGGGCGGG ATACGTGCTGAC CTACAGGGAGAGGATGGCTATTCATCCCAGACTGGAGAGGGTTGTGCTGAGACCCCCGGA CCGGCACCCAGC AGAGTTGACCGTCCATGCACATCTGCGATGGGAATGGGAGCTTGAAAGGCACAGCGGACA ACGCTGGCTGGT TCTTCGACCCGGCAGGCGACATCTGAGCGCCCTTCCATGGCCCGCAGAAGCAGTACAAAT GTGGTCCGCCGC TCTTCCGGCCACCTGCCAGAAGCTGCACGCCCTTTGTCTGGACCGAGGCCAACAGATGGC CCTTTTGCGGCA AGAGGACGGCTGGCACTTCGCCAATCCCGGTGCTGCCACTCAAGGAAGGTGGCACCTGTC CTTTAGCCCCCA GGCCCTTCACGAGCTGGGACTGGCACAGGCTGCGCACCATGCGGCTGCATTTAGGTGGGA CGAGGTACAGCG ACTCGTGCAACTGACTGACCTGTGGAAGCCCTTCGTGACCTCTCTGGAGCCCCTTGAGGT AGCTGCCCCCAT CATTGCCGGGAAAAGGCTGAGGTTTGGACGGGGTCTTGGCCGCGATGTCACGGAGGTGCA CAAGCGAGGTAT CCTGGAACCACCCCCACTGCCCGTGCGACTGGCTGTCGTGTCTCCCCATCTTCCTGATGA GCACGCGAACGC CCAGTTGAGGCGGGAGTTGCTTGCTCACCTCCTCCCGCGACACCAAGTACTGAGATCAGC GGAGAGCCGGCA AGGCCTCCACGAGCACCTGAGGAGGCAAGATCAGGACGATACCCTGTATACCTTTTGGTC AGGCGGCGAGTA CAGGAAGCTGGGCTTGCCCCCCTTCGATCTCGCACGAGGCCTGCACACCTACGACCCAGC TAGCGGCCAGCT GCAACAACCGGCTGCCCTGGCACCAGCACCCGCGCAGGCCACGCAAGCGGGTAGGCAGCT GATAGCCCTGGT GGTGTTGCCCGACGACCTGACGCGGTCTGTCCGGGACACCCTGTTTCAGCAGCTCCAGCA GTTGGGCCTTAG GTGTCTGTTTAGTGTGAGCAGGACCCTGCTGCACCGACCACGCACAGAGTATATGGCATG GGTAAACATGGC CGTCAAGTTGGCTAGGACTGCAGGGGCCGTGCCTTGGGACCTGGCAGACCTGCCCGGTGT CACCGAGCAGAC GTTTTTCGTAGGCGTTGATCTGGGGCATGACCACACCCACCAACAGTCCCTCCCGGCCTT CACCCTGCACGA CCATAGGGGACGCCCTCTTCAAAGCTGGACGCCTCCCCGACGCACCAATAATGAGAGGCT GTCATTGGCCGA GCTTAAGAAGGGGTTGCATAGGCTTCTTGCACGCAGGAGCGTGGACCAAGTGATCGTGCA TCGAGACGGCCG ATTCCTTGCTGGCGAGGTGGACGACTTCACTCTGGCGTTGCATGATCTCGGCATCCCGCA GTTTAGCTTGTT GGCAATCAAAAAAAGCAACCACAGCGTGGCGGTGCAAGCAGAGGAAGGATCCGTGCTTAG CCTGGACGAACG ACGATGCCTTCTTGTTACTAATACCCAAGCCGCGCTTCCGCGGCCCACGGAGTTGGAACT GGTCCATAGCGA CAGGCTTAGTTTGGCGACCCTGACCGAACAAGTATTCTGGCTGACCCGCGTCTTCATGAA CAACGCGCAGCA TGCGGGCAGCGATCCAGCCACCATCGAATGGGCCAACGGCATAGCCAGGACTGGACAGCG AGTGCCCCTGGC CGGGTGGCGGCTGTAGTAACTCGAGGTTAACTTGT

341 27 GGTGTCGTGAGGATCCATGCCCAAGAAAAAGAGGAAGGTCGAAGATCCTAAAAAGAAAAG GAAAGTCGGGTC

CGGTAGCATGCCCACCCAGTTCCAGGAGGTGGAAGTGATACTCAACCGCTTCTTTGTAAA GAAACTGTCTCG GCCCGACCTTACGTTCCATGAGTACCAATGCCAGTTCACCCAGGTTCCAGAGCAAGGCAG CGAACAAAAGGC CATCAGCAGCGTGTGCTACAAGCTCGGTGTGACCGCCGTGAGGCTGGGCTCATGCATCAT CACCAGGGAGCC CATAGACCCTGAAAGGATGCGCACCAAAGATTGGCAGTTGCAGCTGATCGGATGCCGAGA GCTGAGCTGCCA AAACTACCGAGAGAGGCAAGCTTTGGAGACTTTCGAGCGAAAAATCCTGGAGGAAAAGCT CAAGGAAACATT TAAGAAGACCATCATCGAGAAGGACTACGAGTTGGGCCTGATCTGGTGGATATCAGGCGA AGAGGGACTGGA AAAAACCGGTCACGGGTGGGAAGTGCACAGGGGCAGGCAAATAGACCTCAAGATCGAGAC GGACGAAAAGTT GTACCTGGAGATCGACATACATCACAGGTTCTACACCCCCTTCAAGCTGGAGTGGTGGCT GAGCGAATACCC CAACATCCAAATCAAGTACGTGCGCAACACGTACAAGGACAAGAAGAAATGGATACTGGA GAATTTCGCCGA CAAGAGCCCCAACGAGATTCAGATAGAGGCCCTTGGCATCAGCCTTGCGGAATACCACCG GCAAGAAGGTGC TACCCAGCAGGAAATCGACGAGAGTAGGGTTGTGATCGTCAAAAAGATCTCTGACTACAA GGCGAAACCCGT GTATCACCTGTCTCAGAGGCTGTCCCCGATACTGACCATGGAGACCCTTGCCCAGATCGC CGAGCAGGGTCG GGAAAAGAAGGAGATACAGGGCGTGTTCGATTACATTAGGAAGAACATCGGCACGAGGCT GCAGGAGAGCCA GAAGATCGCGCAGGTCATTTTCAAGAATGTTTATAACCTTAGCAGCCAGCCCGAGATCAT GAAGGTGAACGG TTTTGTAATGCCACGCGCGAAGTTGTTGGCAAGGAACAATAAGGAGGTCAACCAGACCGC TAGGATCAAGAG TTTCGGCTGCGCTAAGATCGGAGAAACGAAGTTCGGATGTCTCAATCTGTTCGACAACAA ACCGGAGTACCC GGAGGAGGTACACAAGTGCTTGCTGGCGATTGCGCGGAGCAGTGGGGTCCAGATAAAGAT AGATAGCTACTT CACGGGGAGCGACTACCCGAAAGATGACTTGGCCCAGCAAAGGTTCTGGCAACAGTGGGC GGCACAAGGAAT AAAGACGGTGCTGGTCGTGATGCCCTGGTCCCCTCACGAGGAGAAGACAAGACTGCGGAT CCAAGCTCTTAA AGCCGGCATCGCAACTCAATTTATGATCCCCACGCCCCAGGATAACCCATACAAAGCATT GAACGTTGCTTT GGGTCTGCTCTGCAAAGCCAAATGGCAACCCGTTTACCTGAAGCCCCTGGATGACCCCCA GGCCGCAGACCT GATCATCGGCTTCGACACTTCTACCAACAGGCGGCTCTACTACGGTACAAGCGCCTTCGC GATTCTGGCGAA CGGCCAGTCACTGGGCTGGGAGTTGCCTGACATCCAGAGGGGCGAGACATTTAGCGGCCA AAGTATATGGCA GGTAGTGAGCAAACTTGTGCTGAAATTCCAAGACAACTACGACAGCTACCCTAAGAAAAT TCTGCTTATGAG GGATGGACTGGTTCAAGACGGCGAGTTTGAACAGACCATAAGAGAGTTGACCCACCAAGG GATCGACGTGGA CATCCTGAGCGTGAGGAAGAGCGGTAGTGGCAGGATGGGAAGAGAACTGACAAGCGGCAA TACTGCCATCAC CTATGACGACGCCGAAGTGGGAACCGTGATATTCTATTCTGCCACCGACTCATTCATACT GCAGACAACCGA GGTAATTAAGACAAAAACGGGCCCACTCGGTTCCGCGCGACCGCTCAGAGTGGTTAGGCA CTACGGGAACAC CCCGCTTGAACTGCTCGCGCTGCAAACGTACCACCTGACCCAATTGCATCCCGCCAGCGG CTTTCGGAGCTG TAGGCTCCCCTGGGTTCTGCACTTGGCAGACAGGAGCAGCAAGGAGTTCCAACGGATCGG TCAAATTTCATT GCTCCAGAACGTGGATAGGGAGAAGCTGATTGCAGTGTAGTAACTCGAGGTTAACTTGT SEQ Argonaute Sequence

ID NO

342 24 GGTGTCGTGAGGATCCATGCCTAAGAAAAAAAGAAAAGTCGAGGATCCCAAGAAGAAGCG GAAGGTGGGGTC

CGGGTCTATGCTCACACAAGAACAATTTATACGCAACTTTAGCGTTATGGCCAATGGTGA AGTAGACTTCTT TCTTGGTGCCGGTGCATCTATTGCGAGTGGAATCCCAACTGGGGGTGGCTTGATTTGGGA ATTTAAGAGGAC ACTGTACTGTAGCGAGTGCGGCATCAGCGCCGAAAAGTACAAGGACCTGTCACTCCCAAG CACGCGCAAAAC GCTCCAGGACTACTTCGACATTAAAGGGTATTGCCCCAAACAATATGCGCCTGAGGAATA CAGCTTCTATTT CGAGCAATGTTACACCGATCCCATGGCCCGAAAGAGGTTCATCGAGAATATGGTTAGTGG GAGGGAGCCAAG TATAGGTTACCTTTGTCTCGCGGAGGCCGTTATGCAAGGCAAAGTTAAAAACATTTGGAC TACCAACTTCGA TAGCCTTCTGGAGAATGCCCTCCATAGGCTTTACCCCATGAACAACGTTTTGGTGTGCTC CGAGGCTAATAG AGGCAGTGTGTGCCTGCTCAACCCGACGTACCCAGTCATAGGCAAGCTCCACGGCGACTA TCGCTATGATTG GCTCAGGAACACCGAGGACGAATTGCAGCGACTCGAGACCAGCCTTAAAGGTTACGCGTC CAGCCAACTTAC AGGGAAACAACTCGTCGTTATAGGATATAGCGGGAACGATGAGAGCATTATCAGTTTCCT CAAGGATTGCAT AGATAACCCGGCACTGCTTACCAAGGGTCTGCTGTGGGCTGTACGACGCGGTTCCTGGGT AAACCCGAGGGT TAATGAGCTGATAGAACGGGCGCACAAAATTGGGAAACCAGCCGACGTGATCGAGATCGA TGGCTTCGACCA ATTGATGTTCTCAATATACCAGATCCAGAACTACCATAATGAGATTATCGACGGCCAAGG CAGGCTCCTCCA GGTCGGATCTGACATCCGCCTCACGGGGAAGCCCGTGGACAGCTTTGTCAAGCTGAACGC TTACAAGGCTGA GTACTGCCCCCTTTGTAACGTGTTCGAGACAGACATCACATCCTGGAAGGAACTTCGGAC CATAACCGGCAG CAGTGACATCATCGCCGGTCTGTTCTCCAAACATATCTATTCTCTGTCTTCCGCAGACAA ATTGAAGACCGT GTTCAGCAAGCACTTTCTCTCTAGCATTAACAAGGAGGAGGCTCCCGAACGGGACATTCG ACGGAACGAGAG TGTGTACATTGGATTGATTTACCAGCTTATTAAGCGGACCCTGCTTTCAAAAGGGATGGT GTCCTTCGCTAA GAATAAGGTCTATAACCCCGACAGCTGCCGCAGCGAGCAAGGCTACCAAGTTTTTGACGC CCTGGAGATCGC GGTCAGCTTCGTTGATGGAAACCTGTACCTGAATCTTATGCCCACGGTACATGTGAGAGG CTCAAATGGCGA GAGTCTCGACAAAGAGTCCTACCAAATACAAGTCAACCATGTGGTCAGCACAATCTACAA TAAGCAATACAA TGAGAAACTGCGGTTCTGGGAGAGCTTGTGTCTGGACAGTGGTAGAATAATCTTCGAGAA CGACGGCTTCAG CATATCATTTGTCGCTCCCGCTGTCTCCCTGGGCGGCAACAATCGAAGAGCTAAGTGGCT TTCCATGCCGTC CTGCAAGTATGACGAACCACTCATGTGCTTCTCAGACACTGACAAAAGCAAACGAGTTAT TAACCAACTGAA GGGACTCTGCCAGTACGGGCCAATCGACTGCTCTTATATGCGGGATAGCACCACAAGGCC CAGCGTTAGGCT GGCCGTTCTGAGCCCGAACCAGGACATGGACCGAATTCTTGCACACCTCAATAAACTCAA CACCCACGTCCA AAACAGGGGCAGCGATAATTTCCTGCCCCACTATGAGGGCTTTGAGCAAGTTTACAGAAG GGCTCTGAGCGT CCCTACGAAGGAGCAGAGCAACATCTGCATCGGATACAACGTGAACGCCATCCTCAAAAT GTCTCCTGCAGA GTTTCTGGCTTTTATGAAGCGGGGTATAGAGAAATACTCCCTTCGGTCAAGCGATTTCGA TATACTCGTTAT TTACATCCCAGAGTCATTCGCGCATTTCCGGACAGCAACCGAAATTAGTAGCGACTACAA TCTGCACGATGC GCTCAAACTGTATGCCACGGATAAGGGGATTATCCTTCAACTCATAGAGGAGAAATCTGT GAAGTCATACGA CCCCTGCAAAGTAATGTGGGGCTTGTCCACCTCACTCTACGCGAAGGCGACAGGGGTACT TTGGCATCCAGA GGCAATTAGAAATGACACGGCCTACATAGGGATAAGCTACGCTTTCAGCGAAGAGAAAAG GATTTGTATAGG CTGCAGTCAGCTGTTCGACTCAACCGGGACAGGTATTCGGATGGTCCTTAGAAAGATAAA CAATCCGATATT TCTGGGGCGATCCAACCCCTACATGAGGGAAGACGACGCTCGAATTATGATGACCGAGCT CAGGGAGCAGTA TTACCACAGCGCACCTGTGAATACTCTCAAGAGGGTCGTGATCCATAAGACCACGCCCTT CATACGGGATGA GATAGCCGGTATAATGCAGGCATTTAACGGCATCGAGGTCGAGCTGGTTCAGATTCAAGA CTATTGCTCTTG GAGAGGCATACGCTTCGGCGGTGAGCCTGGGAAAACGGCGTTTGGGTTCCCGGTGAAGCG AGGTATGGCCGT AAAACTCGACCGAGAAAGCTTCCTGCTCTGGACCCACGGCTGCGTGATTCACCCGGAACT GTCAGGCACGCA TAACTATTTCAAAGGTTCACGCGGTATCCCAGCACCCCTCCTGGTCCGCAGGTTTGCGGG TAACGCAAGTGG CGACACATTGGCAAAAGAGATTCTGATGCTTACGAAGATGAACTGGAACTCCGGTGACAG TCTGTACAAAAC CCTTCCCGTGACCCTGGATTTTGCGAAAGTTCTCGCCCGCATGTCTAAGCAAGATGAGGC GATCTTTGATAA GGCGTACGACTTCAGGTTTTTCATGTAGTAACTCGAGGTTAACTTGT

343 62 GGTGTCGTGAGGATCCATGCCCAAAAAGAAGAGAAAGGTGGAAGATCCCAAGAAAAAGAG GAAGGTGGGTAG

CGGGAGCATGAGGGAAACCAACATCTACGAGCTCAGCGGCCTCGAAACCGTGAGTACCAG CTACAGACTTTT CGAGTTGCAGGGCGCGCCAGAGTTCTCTCCTGAGTATTATGCTGGTGTGAGCCGCCTCGT GAGGACGCTTAG CAGGAGACACCAGGCACCCTTCACCAGTATCCAACGGGGCGAGACCATGTTGCTCGCTGC ACCCGAGGCCCT GAGCGGTGATCTCGCAGAACACCATAATCTGGCACGCTGGGTGGCGACCCTGAAGTCACT TGGAGATAGCAT AGAGATAGACTGCAGCGTGAGCGGAGATGAGCTGGACCCCATAAGGCTGCGATTCCTGAA CTTCATGATCCA ATCTCCATTGTTCAACCACGGCGAGCTCTGGCAGCCCAGGGCCGGTGATGCCTTCTACTA CCGGAAGCCTGC CGACACGTTCGACGGAATCGAACTGTTTGAGGGTATTGCCGTGAGGGCCGTGCCCTACCC AGGAGGCGGGTT CGGCGTTATGCTCGACGCGAGGACTAAGCTGATCTCACAGCGGGCTGTGGGCGCCTACGC GGACCCGAATTT CATAAGGAGGCTGAAAAACACTAGCTGCCTGTACCGAATGGGAGACATCTGGTACGAGAT AAAGATCAGTGG CGCGAATCAGACCGTTTCTCACCCCATCCTGTTTAAGGACAACCAGCCCGTGTCACTCAA AGCCTACCTGCA CGAACAAGCACGGCAGCCAATCCCCAAGTCTCTGATTGATCTTAAAGGTGACGGCGTGGT GTTGACCTATCG CGGCAGCGATAGCGCCGAGGTCAAAGCGGCACCCGCGGAACTTTGTTTCCCCATAGTAGA CACCCATAGCAA GAGGGGTGCCCGGCACCAGAGAAGGAGCATCCAAGCCCCACACATCCGACGCAGCAAGGC TTACCGATTCAA GCAAAGGTTCTTGCGGGACATCAAAATAGGAAATGCCGTGTTGAGCGTGGCCGACCAACC CGCAGCCCTCAA GACCAGGCCCATCGACTTGCCCGAGCTGCAATTCGGCTCCAATAGGATTCTGTACGGCAC GGACAGGGGCGG AGACCGAATCGACCTTCGCCAGTATGCCAAGAATCGGCGAACGCTGCTGGAGCGCGCAGA CGTGGGCTTCTT TGAGACTTCTCCCCTGGAGCCCCAATGTTTGGTACTTCCTAAGAGCGTGATGAACGCATG GGGCAACGAGTT CGTTCGAGACCTGACTGCCGAAGTGAAGCGACTCCACCCCACCGGTAACTACAAGCCAAC CGTAATCGCGTT TGATGATGTCAGCGCAACCGTGGACGCCAGGAGCCAAGCAGAAGCCATCTTCAAGCTCGC GGAAGACGGGGA TCTCCCTCCAGGCGACTGCGCCATTATGATACACCGAACCAAAGGAAAGGCAAGAGCGCA GGAGGAGCTGCC CGCACTTCTTATAAACAAGCTGAGAAAGAGCTACGGAGTGAATGCCGCCATATTCCACGC GACTGTCCCCGG CAACGCCTACCGAAGGGAAAGCGCCAGCGATGGCGCTCGCTATGTGCGCAAGCGGGATGA GAAGGGCAGGTT TAGTGGATACCTGACCGGAGCGGCGCTTAACAAGATTCTTCTGCCCAACGCCAAGTGGCC CTTCGTGCTCAA GGACGAGTTGGTGGCAGATATAGTGGTGGGCATAGATGTGAAACATCACACCGCAGCTCT CGTTTTGATCGC SEQ Argonaute Sequence

ID NO

CGAAGGCGGGAGGATTATCAGGCACACTCTTCGCCTCAGCACCAAGAACGAGAAACT CCCTGCTGGTATCGT GGAAACGAAGCTGGTGGAACTGATTTCAAATGAAGCACCACACCTGAGCAGGCTCACCAA AACAATCGCCAT CCATAGGGACGGCAGGATTTGGCCCTCCGAGCTTAAGGGATTGCGAGCAGCCTGTAGGAA GCTTGCCGACGA CGGCCACATCGATCCTGCGTTCGATCTGAACGTCTTCGAGGTGAGCAAAAGTGCCCCTGC TAGGCTTAGGCT GTTTAGCGTCGACCGCAGTGCTGGCAGAAAGCCGAGGATTGAAAACCCGGAACTGGGGGA CTGGATGATGCT GACAGAAACCGACGGCTACGTTTGCACGACCGGTGCTCCGCTGTTGAGAGGTGGTGCGGC TAGACCCCTGCA TGTAAAGCAGGTCGCAGGTGATATGAGCTTGCAGGACGCCCTTTCCGACGTGTTCCGACT GAGCTGTCTGAC CTGGACTAGGCCCGAGTCATGTAGCAGGTTGCCTATCAGTTTGAAGCTCTGCGATATGCT GCTGATGGACGA GGGAACTGCCCACGACGAGGACGAAATCCTTCATGCTAACGACGACACCCCAGCCGTTAG CGCCTAGTAACT CGAGGTTAACTTGT

344 55 GGTGTCGTGAGGATCCATGCCCAAAAAGAAGCGAAAAGTAGAGGATCCAAAGAAAAAGCG GAAGGTCGGGAG

CGGCTCCATGGCGTTTAGGCCCGGTGAACGAGTCAGACCGCAGCTCGCGCTGAATGCGAT CAGGGTCCTTAC ACCCCCTGGCACCATCCCCGCCAGTGTAGTCCAATTCGACAGAGCGCTGCTGCACGCATA TCTTGACAGACC CGAGAACGACGTATTCGCTACCCGACACGGGGAGACTGATATGGCGGTCGTACCCCTGAC CAGCGGTGCGAA CCTGCCAACGGACAGAATGGGGCTTCCAGCTGCAGAGCACCTCAGGCTGGTATCTGCGCT GACAAGAGAAGC TGTGTTTCGCCTCCTCGCGGCCAGCCCGGAAGCGGATCTGCTGATCCGGCGACGCCCACC GACCGTCGCGGG GAAGAGAGAAAACGTACTTGCAGAGGACATTGGGCTCCCGGACTGGTTGAAGAAAAGACT TGTGCTGGAGTT CGACACGCGCATATTGCAACCACCGAGAGGGGACGCCTACGTGGTGCTGACGTGTAGTAA AAGGCTGCGCAC GACAATAGACGCGAGTTGTCGCACCCTTCTGGAACTCGGTGTACCACTGACGGGTGCCGC AGTCAGCTCCTG GAGGGAAGATCCTGACCCCAAGGTGAGCCGGCGATTGGCCTACGCTGGGCGCGTTGTAGA AGTAGGGCAGGA CACGCTCACTCTGGACGACCACGGAGCTGGTCCGAGTGTTGTCTCCAGCGAAGACGTGTT CCTCGAGCCGAC TCGAGCAAACTTCAACAAGGTGGTGGAAGTGATAACCCAGGGTAACTCCGAACGAGCCTT CAAGGCCGTACA AAAAGCAGAAGCCGAATGGCACGGCGGGAGGCGGACAATCGAAATAGTGCATGGTGTCCT CAACCAACTCGG CAACCGGTCAATGGTTCTTGCCGATGGCGTGCCTCTGCGGCTCGGGGGCTTGATAGACCA AGCGGTCGATAG CGACGCATTCCCCCCAGCCGAGGCGGTGTGGCGCCCTAAGCTCTCATTCGACCCCGTGCA CAGCCCCGAGAC ATCAAATTCCTGGAAACAGCAGTCACTGGACAGGACGGGCCCTTTCGATAGGCAAACCTT TGAAACAAAGAG ACCGCGAATCGCGGTTGTCCATCAGGCCGGAAGAAGGGAGGAAGTGGCTGCGGCGATGCG CGATTTCCTCCA CGGAAGGCCTGACATCGCCAGCGATACGGGCCTGGTTCCCCACGGTTCAGGACTCCTCGG ACGCTTTAGGCT CCACGAACCCGAAGTGAGATACTTTGAGGCCGCAGGCAGGGGGGGACCCGCTTATGCCGA CGCAGCACGGAG TGCGCTCAGGGACGCGGCGTCAAGGGACGAACCATGGGACCTCGCAATGGTGCAGGTAGA GCGGGCGTGGCA AGATCGCCCACATGCCGATAGCCCGTACTGGATGAGCAAGGCAACGTTTCTCAAGAGGGA TGTGCCGGTGCA AGCCCTTAGCACAGAAATGTTGGGTCTTGATGCATTTGGGTACGCGAACGCACTTGCGAA CATGTCACTTGC AACGTATGCGAAACTGGGCGGTGCCCCGTGGCTTTTGTTTGCCAGGTCACCAACCGACCA TGAACTGGTGGT CGGGCTCGGAAGCCACACTGTAAAAGAGGGCCGAAGGGGTGCGGGTGAGAGGTTTGTCGG TATCGCGACCGT ATTCAGCAGCCAGGGCCATTATTTCTTGGATGCCAGGACAGCCGCGGTCCCGTTTGAAGC CTATCCTGCTGC CTTGAGCGACAGCATCGTTGACGCGATCAAAAGGATTGGACGAGAGGAAGCCTGGCGACC AGGCGAGGCCGT CAGGTTGGTCTTTCACGCCTTCACCCAGTTGAGCCGAGAAACCGTTCAGGCAGTGGAGAG AGCAGTAGCAGG CATCGGGGCCACCAACGTAAGCTTCGCGTTTCTGCACGTTGTCGAAGATCACCCGTTTAC CATGTTTGACCG AGCGTGGCCAGACGGAAAGGCGACATTCGCCCCTGAAAGAGGTCAGGCGCTTCGACTCTC CGAGCGCGAATG GTTGTTGACACTTACCGGCAGGCGCGAAGTTAAGAGCGCCAGTCACGGGCTGCCTGGGCC GGTTCTGTTGCG ACTTCATGACAGCAGCACCTATAGAGACATGCCCGTGCTCGTCCGACAAGCATCCGACTT CGCCTTCCACTC TTGGCGCAGTTTTGGACCCAGCGGACTCCCCATCCCGTTGGTTTACGCGGACGAAATTGC AAAACAGCTCAG CGGCTTGGAAAGAACCCCCGGATGGGACACGGATGCGGCTGAGGGTGGCCGGGTTATGAG AAAGCCTTGGTT TCTGTAGTAACTCGAGGTTAACTTGT

Example 10: RHDC Expression and Purification

[0377] A synthetic codon-optimized gene encoding Argo# was cloned into the pETM-30 expression vector. The subcloned Argo plasmids were transformed into Escherichia coli BL21 (DE3) (New England Biolabs) according to manufacturer's instructions. Strains were cultivated in LB medium (Carl Roth) containing 50 μg/ml Kanamycin (Carl Roth) in a bacterial shaking incubator at 37°C and 150 rpm. After overnight incubation, the preculture was used to inoculate expression cultures (150 ml) with a starting OD600 nm of 0.05. The cultures were incubated at 37°C and 150 rpm until OD600 nm of 0.6-0.8 was reached. AGO protein expression was induced by adding 1 mM of isopropyl-b-D-thiogalactoside (IPTG) (Sigma Aldrich). Expression was continued in a bacterial shaker at 30°C and 150 rpm for 6h. Cells were harvested by centrifugation at 5000 x g for 10 min at 4°C. The pellet was frozen and stored at -80°C. The frozen cells were thawed at 4°C and resuspended in 25 mL Buffer I (50 mM Tris/HCl pH 7.5, 0.5 M Sodium chloride, 5% Glycerol) supplemented with 1 mM Phenylmethanesulfonyl (Carl Roth) and 5 mM β-Mercaptoethanol (Sigma Aldrich). The resuspended cells were disrupted by sonication with a Branson Digital Sonifier (Model 102C, 3 mm tip). Sonication: Step 1: 25% amplitude; 5 sec ON, 2 sec OFF for 2 min; repeat twice; pause for 3 min after each cycle; Step 2: 35% amplitude; 5 sec ON, 2 sec OFF for 30 sec. The lysed pellet was kept on ice during sonication. The lysate was centrifuged for 15 min at 15000 x g at 4°C, after which the supernatant was used for His-Tag affinity chromatography purification. The Ni- NTA agarose (Qiagen) was equilibrated in 10 CV (column volumes) Buffer I supplemented with 5 mM β-Mercaptoethanol and after centrifugation (50 x g for 5 min) diluted with Buffer I in a 1 : 1 ratio. The cleared lysate was incubated with 350 μΐ of the diluted Ni-NTA agarose suspension on a rotary wheel (30 min at 4°C). After centrifugation (50 x g for 5 min) the Ni-NTA agarose beads were transferred to an empty Bio-Spin Chromatography column (Biorad). The column was washed with 60 CV (column volume) of Buffer I supplemented with 5 mM β-Mercaptoethanol. The His-tagged AGO protein was gradually eluted with Buffer I supplemented with 5 mM β-Mercaptoethanol and increasing

concentrations of Imidazole (Elution fraction (EF) 1 : 25 mM - 11 CV; EF 2: 50 mM - 11CV; EF 3: 75 mM - 11 CV; EF 4: 125 mM - 2.5 CV; EF 5: 250 mM - 2.5 CV; EF 6: 250 mM - 2.5 CV; EF 7: 250 mM - 2.5 CV).

[0378] Argo proteins and empty control (only expression vector-control for protein prep impurities) were purified, run on SDS-polyacrylamide gels and stained for lh in coomassie blue then de-stained in a solution containing water/acetic acid/methanol. The protein was quantitated using Image J, FIG. 15A, FIG. 15B, FIG. 15C, FIG. 15D, and FIG. 15E

[0379] To determine if the sonication protocol initially utilized for Argo#41 was functional using other Argo sequences, Argo#17 and Argo#30 together with Argo#41 were tested to see whether sonication conditions hold true for other Argos. As used herein, Argo sequences can be referred to interchangeably as AGO# or Argo#. Sequences for the Argo# can be found, for example, in Table 18. The Control cleavage assay was done with 2.5 uL of each prep. Since AGO#17 and AGO#41 showed ssDNA cleavage, the concentration of used protein preps with Image J using BSA standards was evaluated at: Argo #41: 0,58 μg/reaction, Argo #17: 0,15 μg/reaction, and Argo #30: 0,53 μg/reaction. Based on this, 0,3 μg protein/reaction was utilized, FIG. 16.

Table 20: Argo Protein Quantification

MW [kDa] μΜ μ μL μg/mL

Argo#16 104,72 0,295 0,03 30,86

Argo#17 115,23 0,487 0,06 56,11

Argo#19 118,25 - - -

Argo#20 114,38 4,114 0,47 470,50

Argo#21 128,66 1,260 0,16 162,16

Argo#23 125,36 0,331 0,04 41,48

Argo#25 115,64 - - -

Argo#26 144,52 - - -

Argo#27 116,49 3,819 0,44 444,93

Argo#29 118,77 0,445 0,05 52,91

Argo#30 111,47 1,852 0,21 206,49

Argo#41 118,42 1,920 0,23 227,31

Argo#63 118,35 - - -

Table 21 : Lysis Conditions

Lysis Condition Reagents

Benzonase (1 :10000)

5 mM β-Mercaptoethanol

1 mM PMSF

4

50 mM Tris/HCl pH 7.5

FIG. 13D 500 mM NaCl

5%Glycerol

1 mg/mL Lysozyme

Benzonase (1 :20000)

5 mM β-Mercaptoethanol

1 mM PMSF

5

B-PER Lysis Buffer

FIG. 13E

1 M NaCl

5 mM β-Mercaptoethanol

1 mM PMSF

500 μg/mL Lysozyme

Sonication: no nucleases

20% Amplitude

(5 sec ON, 1 sec OFF)

2 min; 2 cycles

6

50 mM Tris/HCl pH 7.5

FIG. 13F 500 mM NaCl

5%Glycerol

5 mM β-Mercaptoethanol

1 mM PMSF

Sonication: no nucleases

35% Amplitude

(5 sec ON, 1 sec OFF)

2 min; 1 cycle

Example 11 : Argonaute Activity Assay

[0380] For activity assays, elution fractions containing Argo protein (EF5) were diluted with Buffer I, containing 5 mM β-Mercaptoethanol and 250 mM Imidazole to a final protein concentration of 30 μg/mL. A total of 10 μΐ protein sample was mixed with 0,25 μΜ sgDNA or sgRNA in 18.5 μΐ of reaction buffer (Ago preloading step: 0,3 μg protein, 0,25 μΜ sgDNA/sgRNA, 20 mM Tris/HCl, 5 mM MnC12; 250 mM NaCl, 83,3 mM Imidazole, 1.6 mM β-Mercaptoethanol, 1.6% Glycerol). The reaction was incubated at 37°C for 15 min. After pre -incubation, ssDNA (0,25 μΜ) or dsDNA (100 ng) templates (1 μΐ) were added and incubated for lh at 37°C.

AGO protein preps: DNase I or Sonication lysis (Lysis Condition 6)

Elution fraction 4 (EF4): 125 mM Imidazole

Elution fraction 5 (EF5): 250 mM Imidazole

sgDNAs (Table 25):

Dl... targeting sgDNA

D2... targeting sgDNA

NT... non-targeting sgDNA

Template: 90 nt ssDNA (Table 24)

Expected cleavage products for Dl: 66 bp, 24 bp

Expected cleavage products for D2: 69 bp, 21 bp

Final buffer concentrations

MnC12: 5 mM

Tris/HCl, pH 8: 15 mM

NaCl: as indicated

Imidazole: 32,25 mM (EF4), 62,5 mM (EF5)

Incubation time:

Pre-incubation (AGO + sgDNA): 15 min at 37°C

Incubation: 1 hour at 37°C

[0381] To inactivate ssDNA cleavage assay reactions, samples were incubated with TBE urea sample buffer (Biorad) in a 1: 1 ratio at 95°C for 10 min. ssDNA cleavage products were resolved on 15% TBE Urea gels (Invitrogen). Gels were incubated for 15 min with SYBR gold Nucleic Acid Gel Stain (Invitrogen) and visualized using a UVsolo TS Imaging System (Biometra, Analytik Jena). dsDNA cleavage assay reactions were inactivated with Proteinase K solution (20 μg/reaction) (Qiagen) for 20 min at room temperature. Samples were mixed with 6x loading dye (New England Biolabs) before they were resolved on a 1% agarose gel, containing ethidium bromide. As a marker, a lkb Generuler Marker (agarose gels) or an in-house prepared ssDNA marker (urea gels) were used, FIG. 14A, FIG. 14B, and FIG. 14C

[0382] To determine if ssDNA cleavage occurs at increased temperatures due to nucleic acid unwinding as a result from the heat, Argo prep, was heated to 95°C for 30 min prior to running of the cleavage assay, FIG. 14D. The undigested plasmid was used as a control to see whether the protein stability is affected by a higher T, FIG. 18. Based on these ssDNA cleavage assays, dsDNA cleavage assays are currently being evaluated and optimized. [0383] To determine Argonaute cutting efficiency utilizing truncated guide polynucleic acids, elution fractions containing Argo protein (EF5) were diluted with Buffer I, containing 5 mM β-Mercaptoethanol and 250 mM Imidazole to a final protein concentration of 30 μg/mL. A total of 10 μΐ protein sample was mixed with 0,08 μΜ sgDNA or sgRNA in 30 μΐ of reaction buffer (protein, truncated sgDNA/sgRNA (Table 22), Tris/HCl, MnC12; NaCl, Imidazole, β-Mercaptoethanol, and Glycerol). The reaction was incubated at 37°C for 15 min. After pre -incubation, ssDNA (0,8 μΜ) template (1 μΐ) was added and incubated for lh at 37°C, FIG. 26A and FIG. 26B.

Table 22: Truncated sgDNA

Table 23: dsDNA Cleavage Assay

SEQ Sequen DNA Sequence

ID ce ID

NO

354 PCR TCAAGCCTCAGACAGTGGTTCAAAGTTTTTTTCTTCCATTTCAGGTGTCGTGACGCCACC ATGGAGAGCGACG amplic AGAGCGGCCTGCCCGCCATGGAGATCGAGTGCCGCATCACCGGCACCCTGAACGGCGTGG AGTTCGAGCTGGT GGGCGGCGGAGAGGGCACCCCCGAGCAGGGCCGCATGACCAACAAGATGAAGAGCACCAA AGGCGCCCTGACC

on - 1- TTCAGCCCCTACCTGCTGAGCCACGTGATGGGCTACGGCTTCTACCACTTCGGCACCTAC CCCAGCGGCTACG GFP AGAACCCCTTCCTGCACGCCATCAACAACGGCGGCTACACCAACACCCGCATCGAGAAGT ACGAGGACGGCGG CGTGCTGCACGTGAGCTTCAGCTACCGCTACGAGGCCGGCCGCGTGATCGGCGACTTCAA GGTGATGGGCACC GGCTTCCCCGAGGACAGCGTGATCTTCACCGACAAGATCATCCGCAGCAACGCCACCGTG GAGCACCTGCACC CCATGGGCGATAACGATCTGGATGGCAGCTTCACCCGCACCTTCAGCCTGCGCGACGGCG GCTACTACAGCTC CGTGGTGGACAGCCACATGCACTTCAAGAGCGCCATCCACCCCAGCATCCTGCAGAACGG GGGCCCCATGTTC GCCTTCCGCCGCGTGGAGGAGGATCACAGCAACACCGAGCTGGGCATCGTGGAGTACCAG CACGCCTTCAAGA CCCCGGATGCAGATGCCGGTGAAGAATAACTGTGCCTTCTAGTTGCCAGCCATCTGTCCC CATGGGCGATAAC GATCTGTTTGCCCCTCCCCCGTGCCTTCCTTGACCCTGGAAGGTGCCACTCCCACTGTCC TTTCCTAATAAAA TGAGGAAATTGCATCGCATTGTCTGAGTAGGTGTCATTCTATTCTGGGGGGTGGGGTGGG GCAGGACAGCAAG GGGGAGGATTGGGAAGACAATAGCAGGCATGC

355 PCR GAAAAACTCATCGAGCATCAAATGAAACTGCAATTTATTCATATCAGGATTATCAATACC ATATTTTTGAAAA

AGCCGTTTCTGTAATGAAGGAGAAAACTCACCGAGGCAGTTCCATAGGATGGCAAGATCC TGGTATCGGTCTG

amplic CGATTCCGACTCGTCCAACATCAATACAACCTATTAATTTCCCCTCGTCAAAAATAAGGT TATCAAGTGAGAA on - ATCACCATGAGTGACGACTGAATCCGGTGAGAATGGCAAAAGTTTATGCATTTCTTTCCA GACTTGTTCAACA SEQ Sequen DNA Sequence

ID ce ID

NO

Kanam GGCCAGCCATTACGCTCGTCATCAAAATCACTCGCATCAACCAAACCGTTATTCATTCGT GATTGCGCCTGAG CGAGACGAAATACGCGATCGCTGTTAAAAGGACAATTACAAACAGGAATCGAATGCAACC GGCGCAGGAACAC

ycin TGCCAGCGCATCAACAATATTTTCACCTGAATCAGGATATTCTTCTAATACCTGGAATGC TGTTTTCCCGGGG ATCGCAGTGGTGAGTAACCATGCATCATCAGGAGTACGGATAAAATGCTTGATGGTCGGA AGAGGCATAAATT CCGTCAGCCAGTTTAGTCTGACCATCTCATCTGTAACATCATTGGCAACGCTACCTTTGC CATGTTTCAGAAA CAACTCTGGCGCATCGGGCTTCCCATACAATCGATAGATTGTCGCACCTGATTGCCCGAC ATTATCGCGAGCC CATTTATACCCATATAAATCAGCATCCATGTTGGAATTTAATCGCGGCCTAGAGCAAGAC GTTTCCCGTTGAA TATGGCTCAT

356 Lineari AGCCTGAATGGCGAATGGGACGCGCCCTGTAGCGGCGCATTAAGCGCGGCGGGTGTGGTG GTTACGCGCAGCG zed TGACCGCTACACTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGCTTTCTTCCCTTCCTTTC TCGCCACGTTCGC CGGCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGTTCCGATTTAGTGCTTT ACGGCACCTCGAC

Plasmi CCCAAAAAACTTGATTAGGGTGATGGTTCACGTAGTGGGCCATCGCCCTGATAGACGGTT TTTCGCCCTTTGA d #89 CGTTGGAGTCCACGTTCTTTAATAGTGGACTCTTGTTCCAAACTGGAACAACACTCAACC CTATCTCGGTCTA TTCTTTTGATTTACAGTTAATTAAAGGGAACAAAAGCTGGCATGTACCGTTCGTATAGCA TACATTATACGAA CGGTACGCTCCAATTCGCCCTTTAATTAACTGTTCCAACTTTCACCATAATGAAATAAGA TCACTACCGGGCG TATTTTTTGAGTTGTCGAGATTTTCAGGAGCTAAGGAAGCTAAAATGGAGAAAAAAATCA CTGGATATACCAC CGAGTACTGCGATGAGTGGCAGGGCGGGGCGTAATTTTTTTAAGGCAGTTATTGGTGCCC TTAAACGCCTGGT TGCTACGCCTGAATAAGTGATAATAAGCGGATGAATGGCAGAAATTCGAAAGCAAATTCG ACCCGGTCGTCGG TTCAGGGCAGGGTCGTTAAATAGCCGCTTATGTCTATTGCTGGTTTACCGGTTTATTGAC TACCGGAAGCAGT GTGACCGTGTGCTTCTCAAATGCCTGAGGCCAGTTTGCTCAGGCTCTCCCCGTGGAGGTA ATAATTGACGATA TGATCCTTTTTTTCTGATCAAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGA CCAAAATCCCTTA ACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTG AGATCCTTTTTTT CTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGTTTGTTTG CCGGATCAAGAGC TACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTTC TTCTAGTGTAGCC GTAGTTAGGCCACCACTTCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAAT CCTGTTACCAGTG GCTGCTGCCAGTGGCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCG GATAAGGCGCAGC GGTCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCG AACTGAGATACCT ACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCC GGTAAGCGGCAGG GTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGT CCTGTCGGGTTTC GCCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGGGCGGAGCCTATGGA AAAACGCCAGCAA CGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGTTCTTTCCTGC GTTATCCCCTGAT TCTGTGGATAACCGTATTACCGCCTTTGAGTGAGCTGATACCGCTCGCCGCAGCCGAACG ACCGAGCGCAGCG AGTCAGTGAGCGAGGAAGCGGAAGAGCGCCCAATACGCAAACCGCCTCTCCCCGCGCGTT GGCCGATTCATTA ATGCAGCTGGCACGACAGGTTTCCCGACTGGAAAGCGGGCAGTGAGCGCAACGCAATTAA TGTGAGTTAGCTC ACTCATTAGGCACCCCAGGCTTTACACTTTATGCTCCCGGCTCGTATGTTGTGTGGAATT GTGAGCGGATAAC AATTTCACACAGGAAACAGCTATGACCATGATTACGCCAAGCGCGCAATTAACCCTCACT AAAGGGAACAAAA GCTGGGTACCGGGCCCCCCCTCGAGGTCGACGGTATCGATAAGCTTGATATCCACTGTGG AATTCGCCCTTTC AAGCCTCAGACAGTGGTTCAAAGTTTTTTTCTTCCATTTCAGGTGTCGTGACGCCACCAT GGAGAGCGACGAG AGCGGCCTGCCCGCCATGGAGATCGAGTGCCGCATCACCGGCACCCTGAACGGCGTGGAG TTCGAGCTGGTGG GCGGCGGAGAGGGCACCCCCGAGCAGGGCCGCATGACCAACAAGATGAAGAGCACCAAAG GCGCCCTGACCTT CAGCCCCTACCTGCTGAGCCACGTGATGGGCTACGGCTTCTACCACTTCGGCACCTACCC CAGCGGCTACGAG AACCCCTTCCTGCACGCCATCAACAACGGCGGCTACACCAACACCCGCATCGAGAAGTAC GAGGACGGCGGCG TGCTGCACGTGAGCTTCAGCTACCGCTACGAGGCCGGCCGCGTGATCGGCGACTTCAAGG TGATGGGCACCGG CTTCCCCGAGGACAGCGTGATCTTCACCGACAAGATCATCCGCAGCAACGCCACCGTGGA GCACCTGCACCCC ATGGGCGATAACGATCTGGATGGCAGCTTCACCCGCACCTTCAGCCTGCGCGACGGCGGC TACTACAGCTCCG TGGTGGACAGCCACATGCACTTCAAGAGCGCCATCCACCCCAGCATCCTGCAGAACGGGG GCCCCATGTTCGC CTTCCGCCGCGTGGAGGAGGATCACAGCAACACCG

AGCTGGGCATCGTGGAGTACCAGCACGCCTTCAAGACCCCGGATGCAGATGCCGGTG AAGAATAACTGTGCCT TCTAGTTGCCAGCCATCTGTCCCCATGGGCGATAACGATCTGTTTGCCCCTCCCCCGTGC CTTCCTTGACCCT GGAAGGTGCCACTCCCACTGTCCTTTCCTAATAAAATGAGGAAATTGCATCGCATTGTCT GAGTAGGTGTCAT TCTATTCTGGGGGGTGGGGTGGGGCAGGACAGCAAGGGGGAGGATTGGGAAGACAATAGC AGGCATGCAAGGG CGAATTCCACATTGGGCTGCAGCCCGGGGGATCCACTAGTTCTAGAGCGGCCGCACCGCG GGAGCTCCAATTC GCCCTATAGTGAGTCGTATTACGCGCGCTCACTGGCCGTCGTTTTACAACGTCGTGACTG GGAAAACCCTGGC GTTACCCAACTTAATCGCCTTGCAGCACATCCCCCTTTCGCCAGCTGGCGTAATAGCGAA GAGGCCCGCACCG ATTAAATTTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAA AATGAAGTTTTAA ATCAATCTAAAGTATATATGAGTAAACTTGGTCTGACAGTCAGAAGAACTCGTCAAGAAG GCGATAGAAGGCG ATGCGCTGCGAATCGGGAGCGGCGATACCGTAAAGCACGAGGAAGCGGTCAGCCCATTCG CCGCCAAGTTCTT CAGCAATATCACGGGTAGCCAACGCTATGTCCTGATAGCGGTCCGCCACACCCAGCCGGC CACAGTCGATGAA TCCAGAAAAGCGGCCATTTTCCACCATGATATTCGGCAAGCAGGCATCGCCATGGGTCAC GACGAGATCCTCG CCGTCGGGCATGCTCGCCTTGAGCCTGGCGAACAGTTCGGCTGGCGCGAGCCCCTGATGT TCTTCGTCCAGAT CATCCTGATCGACAAGACCGGCTTCCATCCGAGTACGTGCTCGCTCGATGCGATGTTTCG CTTGGTGGTCGAA TGGGCAGGTAGCCGGATCAAGCGTATGCAGCCGCCGCATTGCATCAGCCATGATGGATAC TTTCTCGGCAGGA GCAAGGTGAGATGACAGGAGATCCTGCCCCGGCACTTCGCCCAATAGCAGCCAGTCCCTT CCCGCTTCAGTGA CAACGTCGAGCACAGCTGCGCAAGGAACGCCCGTCGTGGCCAGCCACGATAGCCGCGCTG CCTCGTCTTGCAG TTCATTCAGGGCACCGGACAGGTCGGTCTTGACAAAAAGAACCGGGCGCCCCTGCGCTGA CAGCCGGAACACG GCGGCATCAGAGCAGCCGATTGTCTGTTGTGCCCAGTCATAGCCGAATAGCCTCTCCACC CAAGCGGCCGGAG AACCTGCGTGCAATCCATCTTGTTCAATCATTAGTGTCCTTACCAATGCTTAATCAGTGA GGCACCTATCTCA GCGATCTGTCTATTTCGTTCATCCATAGTTGCCTGACTCCCCGTCGTGTAGATAACTACG ATACGGGAGGGCT TACCATCTGGCCCCAGTGCTGCAATGATACCGCGAGACCCACGCTCACCGGCTCCAGATT TATCAGCAATAAA CCAGCCAGCCGGAAGGGCCGAGCGCAGAAGTGGTCCTGCAACTTTATCCGCCTCCATCCA GTCTATTAATTGT TGCCGGGAAGCTAGAGTAAGTAGTTCGCCAGTTAATAGTTTGCGCAACGTTGTTGCCATT GCTACAGGCATCG SEQ Sequen DNA Sequence

ID ce ID

NO

TGGTGTCACGCTCGTCGTTTGGTATGGCTTCATTCAGCTCCGGTTCCCAACGATCAA GGCGAGTTACATGATC CCCCATGTTGTGCAAAAAAGCGGTTAGCTCCTTCGGTCCTCCGATCGTTGTCAGAAGTAA GTTGGCCGCAGTG TTATCACTCATGGTTATGGCAGCACTGCATAATTCTCTTACTGTCATGCCATCCGTAAGA TGCTTTTCTGTGA CTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTGTATGCGGCGACCGAGTTGCTCTT GCCCGGCGTCAAT ACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAACGTTC TTCGGGGCGAAAA CTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCACCCAAC TGATCTTCAGCAT CTTTTACTTTCACCAGCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGCAAAAA AGGGAATAAGGGC GACACGGAAATGTTGAATACTCATACTCTTCCTTTTTCAATATTATTGAAGCATTTATCA GGGTTATTGTCTC ATGAGCGGATACATATTTGAATGTATTTAGAAAAATAAACAAATAGGGGTTCCGCGCACA TTTCCCCGAAAAG TGCCACCTTAATCGCCCTTCCCAACAGTTGCGC

Table 24: ssDNA Cleavage Assay

Table 25: sgDNA/sgRNA

SEQ Sequence ID Nucleotide Sequence

ID NO

359 sgDNA 1 GCTGCCATCCAGATCGTTATC

5'phosphorylated

360 sgDNA 1* GCTGCCATCCAGATCGTTATC

unphosphorylated

361 sgRNA 1 GCUGCCAUCCAGAUCGUUAUC

5'phosphorylated

362 NT gDNA CCCGAATCTCTATCGTGCGG

5'phosphorylated

363 sgDNA21 GCTGCCATCCAGATCGTTATC

5'phosphorylated

364 sgDNA20 GCTGCCATC C AG AT C GT T AT

5'phosphorylated

365 sgDNA19 GCTGCCATCCAGATCGTTA

5'phosphorylated

366 sgDNA18 GCTGCCATCCAGATCGTT

5'phosphorylated

367 sgDNA17 GCTGCCATCCAGATCGT

5'phosphorylated

368 sgDNA16 GCTGCCATCCAGATCG

5'phosphorylated

369 sgDNA15 GCTGCCATCCAGATC

5'phosphorylated

370 sgDNA14 GCTGCCATCCAGAT

5'phosphorylated

371 sgDNA13 GCTGCCATCCAGA

5 ' phosphorylated SEQ Sequence ID Nucleotide Sequence ID NO

372 sgDNA Kan 1 CTATTAATTTCCCCTCGTCAA

5'phosphorylated

373 sgDNA Kan 2 TCTCACTTGATAACCTTATTT

5'phosphorylated

374 sgDNA Kan 3 GATCGCAGTGGTGAGTAACCA

5'phosphorylated

375 sgDNA Kan 4 GGAAGCCCGATGCGCCAGAGT

5'phosphorylated

376 sgDNA Kan 5 CCTGATGATGCATGGTTACTC

5'phosphorylated

Example 12: Mammalian Cell DNA Cutting Assay

[0384] Split fluorescence protein (FP) systems may be used as protein tagging tools in visualization of protein localization in living cells. In this assay a split fluorescence protein system is used to assess DNA cutting activity of different proteins/constructs. An overview of the assay is shown in FIG. 18. Briefly, a cell line was constructed with a frameshift within a fluorescent protein which may be repaired by nonhomologous end joining, repaired cells then display fluorescence. In the self-complementing split GFPi. lo / ii systems, two fragments (Gi-io and Gn) can associate by themselves to form a functional GFP signal. A study by Feng et al (2017) showed that the insertion of a 96 bp linker between Gi-io and Gn minimally affects the fluorescence of GFP signal. Therefore, we deleted 2 bps of the linker to frameshift the linker and GFP fragment, so that the GFP signal was turned off. Different target sites may be selected within the 94 bp linker for DNA cutting. If the linker is cut or nicked insertions or deletions from nonhomologous end joining repair, or from homology directed repair, can make the linker and GFPn in- frame and GFP signal can be detected. The sequence of the GFPi-iom system used was engineered from the sfGFP reported previously (Cabantous, S., Terwilliger, T. C, Waldo, G. S. (2005) Protein tagging and detection with engineered self -assembling fragments of green fluorescent protein. Nat Biotechnol. 23, 102-7).

[0385] This construct was used to make a stable mammalian cell line, 6808. An SFFV promoter was used to control the reporter protein expression and mCherry was used as an expression marker to represent the expression of the GFPi-iom system with inserted 94_linker. For generation of lentivirus, HEK293T cells were transiently transfected the pHR constructs, pCMV-dR8.91, and pMD2.G at a ratio of 9:8: 1, respectively. Viral supernatant was collected 72 h post-transfection, passed through a 0.45 μιη filter, and concentrated 10 χ using the Lenti-X Concentrator (Clontech) by incubating overnight at 4 °C.

[0386] The 6808 reporter cell line was generated by transducing HEK293T cells with lentivirus expressing the above described architecture, examples of this architecture are also shown in FIGs. 19-21 and in FIG. 35. Single cells were sorted by fluorescence activated cell sorting (FACS) using a BD FACS Aria2 for mCherry marker expression to identified transformed cells. [0387] The 6808 reporter cell line was validated using a Cas9 system to target the 94_linker. 6808 cells were seeded at a density of 1 χ 10 5 per well in 12-well plates per well. For transient transfection of cutting and nick experiments, cells were transfected 1 day after seeding with 1.5 μg total of plasmid (sgRNA and Cas9 or Cas9n are on the same plasmid) per well using TransITLTl transfection reagent (Minis) at a ratio of 6 μΐ, transfection reagent for the 1.5 μg plasmid. Transfected cells were collected after 72h transfection to analyze the GFP expression. To analyze GFP expression, cells were dissociated using 0.05% Trypsin EDTA (Life Technologies) and analyzed by flow cytometry on a BD LSRII. Flow cytometry data was analyzed using Flow Jo. 10,000 viable cells were analyzed for each sample. Selected sequences are provided in Table 26.

[0388] A range of control experiments were performed using untransformed HEK293T cells (FIG. 22A), and 6808 cells further exposed to: no plasmids, Cas9 alone, Cas9 and non-targeting guide RNAs, Cas9 with non-targeting guide RNAs and single-stranded oligodeoxynucleotide donors spaning the double stranded break (ssODN_3 or ssODN_4), or a Cas9 nickase (nCas9) with or without non targeting guide RNAs, and single-stranded oligodeoxynucleotide donors (ssODN_3 and ssODN_4) (FIGs. 22B- K). The treated cells were analyzed by Fluorescence-activated cell sorting with a GFP fluorescence cut off of 10 5 . As seen in FIGs. 22A-K the control experiments showed very low rates of fluorescent cells, well below 0.1% in all cases. FIG. 23 shows the results of an experiment using Cas9 and a guide RNA targeting the 94_linker (sgRNA6819, shown in FIG. 19), 17.2% of cells gained fluorescence as a result of this treatment. FIG. 24 shows the results of an experiment using a Cas9 nickase and a guide RNA targeting the 94_Linker (sgRNA6821, shown in FIG. 20), in this case 8.23% of the cells gained fluorescence. The number of fluorescent cells can be further increased by treating the 6806 cells with a Cas9 nickase, a guide RNA targeting the 94_Linker and ssODN_3 or ssODN_4 donors. These treatments resulted in 46.3% (FIG. 25A) and 54.2% (FIG. 25B) of cells becoming fluorescent respectively.

[0389] To analyze the forms of DNA repair occurring in the different treatment conditions DNA from GFP positive cells was collected and sequenced. Since multiple copies of the reporter fragments were integrated in the cells, the NHEJ and HDR percentages in the GFP positive cells were analyzed by MiSeq.

[0390] Transfected cells were collected after 72h transfection to analyze the GFP expression. GFP positive populations cells were bulk sorted by fluorescence activated cell sorting (FACS) using a BD FACS Aria2. 1 million GFP positive cells of each sample were collected to prepare the total DNA (DNeasy Blood & Tissue kit, QIAGEN). The amplicons were fixed at 300 bp and the sgRNA targeting site was in the region that sequencing can efficiently cover. PCR amplifications were performed with KAPA HiFi PCR Kit (KAPABIOSYSTEMS) following the manual. PCR conditions: 95 °C 5 min; 98 °C, 20 s, 64 °C , 20 s, 72 °C 20 s, 23 cycles, 72 °C, 5 min. PCR products were checked by gel electrophoresis for the right amplicon. Then 10 PCRs for each sample were pooled and run on a 75 bp paired-end Miseq sequencing run.

[0391] FIG. 27A shows the results of a sequencing reaction performed on untreated 6808 cells, only 0.5% of the reads showed modifications consistent with non-homologous end joining repair, while 99.5% of the reads showed unmodified DNA. FIG. 27B shows results of sequencing reaction performed on 6808 cells treated with nCas9, a non-targeting guide RNA and ssODN_4, only 0.3% of the reads showed modifications consistent with non-homologous end joining repair, while 99.7% of the reads showed unmodified DNA. FIG. 28 shows results of sequencing reaction performed on 6808 cells treated with nCas9 and sgRNA6821. Interestingly 2.1% of the reads showed modifications consistent with nonhomologous end joining repair, while 97.9% of the reads showed unmodified DNA. FIG. 29 shows results of sequencing reaction performed on 6808 cells treated with nCas9, sgRNA6821 and ssODN_4 donor, 35.8% of the reads showed modifications consistent with homology directed repair, 0.6% of the reads showed modifications consistent with non-homologous end joining repair, 0.7% of the reads showed modifications consistent with mixed homology directed repair and non-homologous end joining repair, and 62.8% of the reads showed unmodified DNA. FIG. 30 shows results of sequencing reaction performed on 6808 cells treated with Cas9 and sgRNA6825, 95.7% of the reads showed modifications consistent with non-homologous end joining repair, and 4.3% of the reads showed unmodified DNA. FIG. 31 shows results of sequencing reaction performed on 6808 cells treated with Cas9, sgRNA6825 and ssODN_4 donor; 10.9% of the reads showed modifications consistent with homology directed repair, 82% of the reads showed modifications consistent with non-homologous end joining repair, 0.9% of the reads showed modifications consistent with mixed homology directed repair and non-homologous end joining repair, and only 10.9% of the reads showed unmodified DNA.

[0392] The 6808 cell assay was used to assess DNA editing activity of different Agos as described herein. The reporter cell line 293T 6808 was seeded at 100K per well in a 12 well plate with 1 ml DMEM medium with 5% FBS. Cells were grown for 24 hours before the transfection using the recipe list in Table 27. 72 hours after transfection, cells were trypsinized from the plate, filtered through 70uM cell strainers and analyzed by FACS as described above. FIG. 32A and 32B show the results of the assay. As seen in FIG. 32A and FIG. 32B some of the Ago proteins resulted in significantly higher percentages of GFP positive cells than the negative controls.

Table 26: Sequences used in the 6808 cell assay.

Description Sequence (5' to 3') SEQ ID

NO:

Non-target guide GGCTGGCGCGGTATGGTCGGC 377

RNA (6823 and

6824)

ssODN_ 03 ACAAACAGTCCTGAGCAAAGATCCAA 378

ATGAAAAAGACGTTGGTGGTGGCGGATCAGAAGGAGGCGGT AGCGGCCCTGGTTCGGGAGGGGAAGGTTCTGCTGGGGGAGG

GAGCGCTGGCGG

ssODN_04 CCGCCAGCGCTCCCTCCCCCAGCAGAA 379

CCTTCCCCTCCCGAACCAGGGCCGCTACCGCCTCCTTCTGA TCCGCCACCACCAACGTCTTTTTCATTTGGATCTTTGCTCA GGACTGTTTGT

94_linker AGACCCCCCGCCAGCGCTCCCTCCCCCAGCAGAACCTTCCC 415

CTCCCGAACCAGGGCCCGCTACCGCCTCCTTCTGATCCGCC ACCACCAACGTC

92_linker GACGTTGGTGGTGGCGGATCAGAAGGAGGCGGTAGCGGCCT 416

GGTTCGGGAGGGGAAGGTTCTGCTGGGGGAGGGAGCGCTGG CGGGGGGTCT

ssODN_ 03 ACAAACAGTCCTGAGCAAAGATCCAAATGAAAAAGACGTTG 417

GTGGTGGCGGATCAGAAGGAGGCGGTAGCGGCCCTGGTTCG GGAGGGGAAGGTTCTGCTGGGGGAGGGAGCGCTGGCGG

ssODN_04 CCGCCAGCGCTCCCTCCCCCAGCAGAACCTTCCCCTCCCGA 418

ACCAGGGCCGCTACCGCCTCCTTCTGATCCGCCACCACCAA CGTCTTTTTCATTTGGATCTTTGCTCAGGACTGTTTGT

sgRNA6819_Targe GGTGGCGGATCAGAAGGAGG 419 ting

sgRNA6821_Targe GATCAGAAGGAGGCGGTAGC 420 ting

sgRNA6823_Targe GGCTGGCGCGGTATGGTCGGC 421 ting

sgRNA6824_Targe GGCTGGCGCGGTATGGTCGGC 422 ting

sgRNA6825_Targe GATCAGAAGGAGGCGGTAGC 423 ting (FIG. 35)

Table 27: Recipe for 6808 cell assay with Ago proteins

Optimized condition using 6808 cell line in 12 well plate

Positive control Plasmid 6821 1.5ug

ssODN 0.8ug

Transit 6ul

Opt medium 200ul complete assay Ago plasmid lug

gDNA 0.25ug

ssODN 0.8ug

pSLQ1339 lug

sgRNAl for dCas9 0.75ug Transit 6ul

Opt medium 200ul

Table 28: Expression Vector utilized in ssDNA cleavage assay

SEQ ID Sequence

NO:

384 TACTGGAACGTTGTGAGGGTAAACAACTGGCGGTATGGATGCGGCGGGACCAGAGAAAAA TCACTCAGGGTCAATGCCA

GCGCTTCGTTAATACAGATGTAGGTGTTCCACAGGGTAGCCAGCAGCATCCTGCGAT GCAGATCCGGAACATAATGGTGC

AGGGCGCTGACTTCCGCGTTTCCAGACTTTACGAAACACGGAAACCGAAGACCATTC ATGTTGTTGCTCAGGTCGCAGAC

GTTTTGCAGCAGCAGTCGCTTCACGTTCGCTCGCGTATCGGTGATTCATTCTGCTAA CCAGTAAGGCAACCCCGCCAGCCT

AGCCGGGTCCTCAACGACAGGAGCACGATCATGCGCACCCGTGGGGCCGCCATGCCG GCGATAATGGCCTGCTTCTCGC

CGAAACGTTTGGTGGCGGGACCAGTGACGAAGGCTTGAGCGAGGGCGTGCAAGATTC CGAATACCGCAAGCGACAGGC

CGATCATCGTCGCGCTCCAGCGAAAGCGGTCCTCGCCGAAAATGACCCAGAGCGCTG CCGGCACCTGTCCTACGAGTTGC

ATGATAAAGAAGACAGTCATAAGTGCGGCGACGATAGTCATGCCCCGCGCCCACCGG AAGGAGCTGACTGGGTTGAAG

GCTCTCAAGGGCATCGGTCGAGATCCCGGTGCCTAATGAGTGAGCTAACTTACATTA ATTGCGTTGCGCTCACTGCCCGCT

TTCCAGTCGGGAAACCTGTCGTGCCAGCTGCATTAATGAATCGGCCAACGCGCGGGG AGAGGCGGTTTGCGTATTGGGC

GCCAGGGTGGTTTTTCTTTTCACCAGTGAGACGGGCAACAGCTGATTGCCCTTCACC GCCTGGCCCTGAGAGAGTTGCAG

CAAGCGGTCCACGCTGGTTTGCCCCAGCAGGCGAAAATCCTGTTTGATGGTGGTTAA CGGCGGGATATAACATGAGCTGT

CTTCGGTATCGTCGTATCCCACTACCGAGATATCCGCACCAACGCGCAGCCCGGACT CGGTAATGGCGCGCATTGCGCCC

AGCGCCATCTGATCGTTGGCAACCAGCATCGCAGTGGGAACGATGCCCTCATTCAGC ATTTGCATGGTTTGTTGAAAACC

GGACATGGCACTCCAGTCGCCTTCCCGTTCCGCTATCGGCTGAATTTGATTGCGAGT GAGATATTTATGCCAGCCAGCCAG

ACGCAGACGCGCCGAGACAGAACTTAATGGGCCCGCTAACAGCGCGATTTGCTGGTG ACCCAATGCGACCAGATGCTCC

ACGCCCAGTCGCGTACCGTCTTCATGGGAGAAAATAATACTGTTGATGGGTGTCTGG TCAGAGACATCAAGAAATAACGC

CGGAACATTAGTGCAGGCAGCTTCCACAGCAATGGCATCCTGGTCATCCAGCGGATA GTTAATGATCAGCCCACTGACGC

GTTGCGCGAGAAGATTGTGCACCGCCGCTTTACAGGCTTCGACGCCGCTTCGTTCTA CCATCGACACCACCACGCTGGCAC

CCAGTTGATCGGCGCGAGATTTAATCGCCGCGACAATTTGCGACGGCGCGTGCAGGG CCAGACTGGAGGTGGCAACGCC

AATCAGCAACGACTGTTTGCCCGCCAGTTGTTGTGCCACGCGGTTGGGAATGTAATT CAGCTCCGCCATCGCCGCTTCCAC

TTTTTCCCGCGTTTTCGCAGAAACGTGGCTGGCCTGGTTCACCACGCGGGAAACGGT CTGATAAGAGACACCGGCATACT

CTGCGACATCGTATAACGTTACTGGTTTCACATTCACCACCCTGAATTGACTCTCTT CCGGGCGCTATCATGCCATACCGCG

AAAGGTTTTGCGCCATTCGATGGTGTCCGGGATCTCGACGCTCTCCCTTATGCGACT CCTGCATTAGGAAGCAGCCCAGTA

GTAGGTTGAGGCCGTTGAGCACCGCCGCCGCAAGGAATGGTGCATGCAAGGAGATGG CGCCCAACAGTCCCCCGGCCAC

GGGGCCTGCCACCATACCCACGCCGAAACAAGCGCTCATGAGCCCGAAGTGGCGAGC CCGATCTTCCCCATCGGTGATGT

CGGCGATATAGGCGCCAGCAACCGCACCTGTGGCGCCGGTGATGCCGGCCACGATGC GTCCGGCGTAGAGGATCGAGA

TCTCGATCCCGCGAAATTAATACGACTCACTATAGGGGAATTGTGAGCGGATAACAA TTCCCCTCTAGAAATAATTTTGTT

TAACTTTAAGAAGGAGATATACCATGAAACATCACCATCACCATCACAACACTAGTA GCAATTCCATGTCCCCTATACTAG

GTTATTGGAAAATTAAGGGCCTTGTGCAACCCACTCGACTTCTTTTGGAATATCTTG AAGAAAAATATGAAGAGCATTTGT

ATGAGCGCGATGAAGGTGATAAATGGCGAAACAAAAAGTTTGAATTGGGTTTGGAGT TTCCCAATCTTCCTTATTATATTG

ATGGTGATGTTAAATTAACACAGTCTATGGCCATCATACGTTATATAGCTGACAAGC ACAACATGTTGGGTGGTTGTCCAA

AAGAGCGTGCAGAGATTTCAATGCTTGAAGGAGCGGTTTTGGATATTAGATACGGTG TTTCGAGAATTGCATATAGTAAA

GACTTTGAAACTCTCAAAGTTGATTTTCTTAGCAAGCTACCTGAAATGCTGAAAATG TTCGAAGATCGTTTATGTCATAAAA

CATATTTAAATGGTGATCATGTAACCCATCCTGACTTCATGTTGTATGACGCTCTTG ATGTTGTTTTATACATGGACCCAAT

GTGCCTGGATGCGTTCCCAAAATTAGTTTGTTTTAAAAAACGTATTGAAGCTATCCC ACAAATTGATAAGTACTTGAAATCC

AGCAAGTATATAGCATGGCCTTTGCAGGGCTGGCAAGCCACGTTTGGTGGTGGCGAC CATCCTCCAACTAGTGGATCTGG

TGGTGGTGGCGGATGGATGAGCGAGAATCTTTATTTTCAGGGCGCCATGGCTGGCAA GGCACACAGGCTGAGTGCTGAG

GAACGGGACCAGCTGCTGCCAAACCTGCGGGCCGTGGGGTGGAATGAACTGGAAGGC CGAGATGCCATCTTCAAACAGT

TCCATTTTAAAGACTTCAACAGGGCTTTTGGCTTCATGACAAGAGTCGCCCTGCAGG CTGAAAAGCTGGACCACCATCCCG

AGTGGTTTAACGTGTACAACAAGGTCCATATCACCTTGAGCACCCACGAATGTGCCG GTCTTTCTGAACGGGATATAAACC

TGGCCAGCTTCATCGAACAAGTTGCCGTGTCTATGACATAGGTACCGGATCCGAATT CGAGCTCCGTCGACAAGCTTGCG

GCCGCACTCGAGCACCACCACCACCACCACTGAGATCCGGCTGCTAACAAAGCCCGA AAGGAAGCTGAGTTGGCTGCTGC

CACCGCTGAGCAATAACTAGCATAACCCCTTGGGGCCTCTAAACGGGTCTTGAGGGG TTTTTTGCTGAAAGGAGGAACTA

TATCCGGATTGGCGAATGGGACGCGCCCTGTAGCGGCGCATTAAGCGCGGCGGGTGT GGTGGTTACGCGCAGCGTGACC

GCTACACTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGCTTTCTTCCCTTCCTTTCTC GCCACGTTCGCCGGCTTTCCCCGTC

A

AGCTCTAAATCGGGGGCTCCCTTTAGGGTTCCGATTTAGTGCTTTACGGCACCTCGA CCCCAAAAAACTTGATTAGGGTGA TGGTTCACGTAGTGGGCCATCGCCCTGATAGACGGTTTTTCGCCCTTTGACGTTGGAGTC CACGTTCTTTAATAGTGGACT CTTGTTCCAAACTGGAACAACACTCAACCCTATCTCGGTCTATTCTTTTGATTTATAAGG GATTTTGCCGATTTCGGCCTAT T

GGTTAAAAAATGAGCTGATTTAACAAAAATTTAACGCGAATTTTAACAAAATATTAA CGTTTACAATTTCAGGTGGCACTT

TTCGGGGAAATGTGCGCGGAACCCCTATTTGTTTATTTTTCTAAATACATTCAAATA TGTATCCGCTCATGAATTAATTCTT

A

GAAAAACTCATCGAGCATCAAATGAAACTGCAATTTATTCATATCAGGATTATCAAT ACCATATTTTTGAAAAAGCCGTTTC

TGTAATGAAGGAGAAAACTCACCGAGGCAGTTCCATAGGATGGCAAGATCCTGGTAT CGGTCTGCGATTCCGACTCGTCC

AACATCAATACAACCTATTAATTTCCCCTCGTCAAAAATAAGGTTATCAAGTGAGAA ATCACCATGAGTGACGACTGAATC

CGGTGAGAATGGCAAAAGTTTATGCATTTCTTTCCAGACTTGTTCAACAGGCCAGCC ATTACGCTCGTCATCAAAATCACT

CGCATCAACCAAACCGTTATTCATTCGTGATTGCGCCTGAGCGAGACGAAATACGCG ATCGCTGTTAAAAGGACAATTAC

AAACAGGAATCGAATGCAACCGGCGCAGGAACACTGCCAGCGCATCAACAATATTTT CACCTGAATCAGGATATTCTTCT

AATACCTGGAATGCTGTTTTCCCGGGGATCGCAGTGGTGAGTAACCATGCATCATCA GGAGTACGGATAAAATGCTTGAT

GGTCGGAAGAGGCATAAATTCCGTCAGCCAGTTTAGTCTGACCATCTCATCTGTAAC ATCATTGGCAACGCTACCTTTGCC ATGTTTCAGAAACAACTCTGGCGCATCGGGCTTCCCATACAATCGATAGATTGTCGCACC TGATTGCCCGACATTATCGCG

AGCCCATTTATACCCATATAAATCAGCATCCATGTTGGAATTTAATCGCGGCCTAGA GCAAGACGTTTCCCGTTGAATATG

GCTCATAACACCCCTTGTATTACTGTTTATGTAAGCAGACAGTTTTATTGTTCATGA CCAAAATCCCTTAACGTGAGTTTTC

GTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTT TTTTCTGCGCGTAATCTGCTGCTTG

CAAACAAAAAAACCACCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCA ACTCTTTTTCCGAAGGTAACTGGC

TTCAGCAGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCAC CACTTCAAGAACTCTGTAGCACCG

CCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGGCGATAAG TCGTGTCTTACCGGGTTGGACTCA

AGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACGGGGGGTTCGTGCACA CAGCCCAGCTTGGAGCGAACG

ACCTACACCGAACTGAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCC GAAGGGAGAAAGGCGGACAGGT

ATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAA ACGCCTGGTATCTTTATAGTC

CTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGG GGCGGAGCCTATGGAAAAACGCC

AGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGTTC TTTCCTGCGTTATCCCCTGATTCTG

T GGATAACCGTATTACCGCCTTTGAGTGAGCTGATACCGCTCGCCGCAGCCGAACGACCGA GCGCAGCGAGTCAGTGAGC

GAGGAAGCGGAAGAGCGCCTGATGCGGTATTTTCTCCTTACGCATCTGTGCGGTATT TCACACCGCATATATGGTGCACTC

TCAGTACAATCTGCTCTGATGCCGCATAGTTAAGCCAGTATACACTCCGCTATCGCT ACGTGACTGGGTCATGGCTGCGCC

CCGACACCCGCCAACACCCGCTGACGCGCCCTGACGGGCTTGTCTGCTCCCGGCATC CGCTTACAGACAAGCTGTGACCG

TCTCCGGGAGCTGCATGTGTCAGAGGTTTTCACCGTCATCACCGAAACGCGCGAGGC AGCTGCGGTAAAGCTCATCAGCG

TGGTCGTGAAGCGATTCACAGATGTCTGCCTGTTCATCCGCGTCCAGCTCGTTGAGT TTCTCCAGAAGCGTTAATGTCTGG

CTTCTGATAAAGCGGGCCATGTTAAGGGCGGTTTTTTCCTGTTTGGTCACTGATGCC TCCGTGTAAGGGGGATTTCTGTTC

ATGGGGGTAATGATACCGATGAAACGAGAGAGGATGCTCACGATACGGGTTACTGAT GATGAACATGCCCGGT