Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
OPTO-ELECTRONIC SEMICONDUCTOR BODY AND METHOD FOR THE PRODUCTION THEREOF
Document Type and Number:
WIPO Patent Application WO/2008/131735
Kind Code:
A1
Abstract:
The invention relates to an opto-electronic semiconductor body having a semiconductor layer sequence (2) comprising an active layer (23) suitable for generating electromagnetic radiation and a first and a second electrical connection layer (4, 6), wherein the semiconductor body is intended for the emission of electromagnetic radiation from a front side, the first and second electrical connection layers being located on a rear side opposite the front side and electrically insulated from each other by means of a separating layer (5), the first electrical connection layer (4), second electrical connection layer (6), and the separating layer (5) laterally overlapping each other, and a partial area of the second electrical connection layer (6) extending from the rear side through a penetration (3) through the active layer (23) in the direction of the front side. The invention further relates to a method for producing such an opto-electronic semiconductor body.

Inventors:
ENGL KARL (DE)
RODE PATRICK (DE)
HOEPPEL LUTZ (DE)
SABATHIL MATTHIAS (DE)
Application Number:
PCT/DE2008/000702
Publication Date:
November 06, 2008
Filing Date:
April 24, 2008
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
OSRAM OPTO SEMICONDUCTORS GMBH (DE)
ENGL KARL (DE)
RODE PATRICK (DE)
HOEPPEL LUTZ (DE)
SABATHIL MATTHIAS (DE)
International Classes:
H01L33/38; H01L33/00; H01L33/44
Foreign References:
DE102005007601A12005-09-08
US20040184498A12004-09-23
Attorney, Agent or Firm:
EPPING HERMANN FISCHER PATENTANWALTSGESELLSCHAFT MBH (München, DE)
Download PDF:
Claims:

Patentansprüche :

1. Optoelektronischer Halbleiterkörper mit einer Halbleiterschichtenfolge, die eine zur Erzeugung von elektromagnetischer Strahlung geeignete aktive Schicht aufweist, und einer ersten und einer zweiten elektrischen Anschlussschicht, wobei

- der Halbleiterkörper zur Emission elektromagnetischer Strahlung von einer Vorderseite vorgesehen ist,

- die erste und die zweite elektrische Anschlussschicht an einer der Vorderseite gegenüberliegenden Rückseite angeordnet und mittels einer Trennschicht elektrisch gegeneinander isoliert sind,

- die erste elektrische Anschlussschicht, die zweite elektrische Anschlussschicht und die Trennschicht lateral überlappen, und

- sich ein Teilbereich der zweiten elektrischen Anschlussschicht von der Rückseite durch einen Durchbruch der aktiven Schicht hindurch in Richtung zu der Vorderseite hin erstreckt .

2. Optoelektronische Halbleiterkörper gemäß Anspruch 1, bei dem die erste und/oder die zweite elektrische Anschlussschicht einen von der aktiven Zone in Richtung zu der Rückseite hin emittierten Teil der elektromagnetischen Strahlung in Richtung der Vorderseite reflektieren.

3. Optoelektronische Halbleiterkörper gemäß einem der vorhergehenden Ansprüche, bei dem die Halbleiterschichtenfolge frei von einem Aufwachssubstrat ist.

4. Optoelektronischer Halbleiterkörper gemäß einem der vorhergehenden Ansprüche, der an seiner Rückseite ein Trägersubstrat aufweist.

5. Optoelektronischer Halbleiterkörper gemäß einem der vorhergehenden Ansprüche, wobei zwischen der Halbleiterschichtenfolge und der ersten und/oder der zweiten elektrischen Anschlussschicht zumindest stellenweise eine halbleitende oder elektrisch isolierende Spiegelschicht angeordnet ist, die eine Mehrzahl von öffnungen aufweist, und die erste und/oder die zweite elektrische Anschlussschicht durch die öffnungen zu der Halbleiterschichtenfolge verlaufen.

6. Optoelektronischer Halbleiterkörper gemäß einem der vorhergehenden Ansprüche, bei dem die Halbleiterschichtenfolge eine der Rückseite benachbarte StromaufWeitungsschicht aufweist, die ein transparentes leitfähiges Oxid enthält.

7. Optoelektronischer Halbleiterkörper gemäß einem der vorhergehenden Ansprüche, bei dem die erste und/oder die zweite elektrische Anschlussschicht eine Mehrschichtstruktur mit einer Haftvermittlungsschicht, einer Reflektorschicht und/oder einer Stromverteilungsschicht aufweist.

8. Optoelektronischer Halbleiterkörper gemäß einem der vorhergehenden Ansprüche, bei dem die erste elektrische Anschlussschicht einen elektrischen Kontaktbereich aufweist, der zur elektrischen Kontaktierung des Halbleiterkörpers von seiner Vorderseite geeignet ist.

9. Optoelektronischer Halbleiterkörper gemäß einem der vorhergehenden Ansprüche, bei dem die zweite elektrische Anschlussschicht einen elektrischen Kontaktbereich aufweist, der zur elektrischen Kontaktierung des Halbleiterkörpers von seiner Vorderseite geeignet ist.

10. Optoelektronischer Halbleiterkörper gemäß einem der vorhergehenden Ansprüche, bei dem die erste und/oder die zweite elektrische Anschlussschicht einen elektrischen Kontaktbereich aufweist, der zur elektrischen Kontaktierung des Halbleiterkörpers von seiner Rückseite geeignet ist.

11. Optoelektronischer Halbleiterkörper gemäß einem der vorhergehenden Ansprüche, bei dem die Halbleiterschichtenfolge eine an der Vorderseite angeordnete Pufferschicht aufweist, die eine geringe elektrische Leitfähigkeit besitzt und undotiert oder schwach n-dotiert ist.

12. Verfahren zur Herstellung eines optoelektronischen Halbleiterkörpers mit den Schritten:

- Epitaktisches Aufwachsen einer Halbleiterschichtenfolge, die eine zur Erzeugung von elektromagnetischer Strahlung geeignete aktive Schicht aufweist und zur Emission elektromagnetischer Strahlung von einer Vorderseite vorgesehen ist, auf einem Aufwachssubstrat;

- Aufbringen einer ersten elektrischen' Anschlussschicht an einer Rückseite der Halbleiterschichtenfolge;

- Ausbilden eines Durchbruchs in der aktiven Schicht;

- Ausbilden einer Trennschicht an der Rückseite der Halbleiterschichtenfolge; und

- Aufbringen einer zweiten elektrischen Anschlussschicht an der Rückseite der Halbleiterschichtenfolge, wobei

- die erste elektrische Anschlussschicht, die Trennschicht und die zweite elektrische Anschlussschicht lateral überlappend ausgebildet werden,

- ein Teilbereich der zweiten elektrischen Anschlussschicht in dem Durchbruch ausgebildet wird, und

- die zweite elektrische Anschlussschicht mittels der Trenn-

Schicht von der ersten elektrischen Anschlussschicht elektrisch isoliert wird.

13. Verfahren nach Anspruch 12, bei dem zumindest ein Teil des Aufwachssubstrats entfernt wird und an der Rückseite ein Trägersubstrat angeordnet oder ausgebildet wird.

14. Verfahren nach einem Ansprüche 12 bis 13, bei dem

- an der Rückseite der Halbleiterschichtenfolge stellenweise eine halbleitende oder elektrisch isolierende Spiegelschicht ausgebildet wird,

- eine Mehrzahl von öffnungen in der halbleitenden oder e- lektrisch isolierenden Spiegelschicht ausgebildet wird, und

- die erste und/oder die zweite elektrische Anschlussschicht derart aufgebracht werden, dass sie durch die öffnungen hindurch verlaufen.

15. Verfahren gemäß einem der Ansprüche 12 bis 14, bei dem das Epitaktische Aufwachsen der Halbleiterschichtenfolge das Aufwachsen einer Pufferschicht umfasst, die eine geringe e- lektrische Leitfähigkeit besitzt, zumindest ein Teil des Aufwachssubstrates entfernt wird und die Pufferschicht beim Entfernen des Aufwachssubstrats freigelegt wird.

Description:

Beschreibung

Optoelektronischer Halbleiterkörper und Verfahren zur Herstellung eines solchen

Diese Patentanmeldung beansprucht die Priorität der deutschen Patentanmeldungen 102007019773.1 und 102007022947.1, deren Offenbarungsgehalt hiermit durch Rückbezug aufgenommen wird.

Die Erfindung betrifft einen optoelektronischen Halbleiterkörper und ein Verfahren zur Herstellung eines optoelektronischen Halbleiterkörpers.

Es ist eine Aufgabe der vorliegenden Erfindung einen optoelektronischen Halbleiterkörper mit verbesserter Effizienz und/oder verbesserten elektrischen Eigenschaften anzugeben.

Diese Aufgaben werden durch einen optoelektronischen Halbleiterkörper und durch ein Verfahren zum Herstellen eines optoelektronischen Halbleiterkörpers gemäß der unabhängigen Patentansprüche gelöst .

Ausgestaltungen und Weiterbildungen der Erfindung sind in den jeweils abhängigen Ansprüchen angegeben, deren Offenbarungs- gehalt hiermit ausdrücklich in die Beschreibung mit aufgenommen wird.

Ein optoelektronischer Halbleiterkörper gemäß der Erfindung weist eine Halbleiterschichtenfolge auf, die eine zur Erzeugung von elektromagnetischer Strahlung geeignete aktive Schicht enthält.

Die aktive Schicht weist einen pn-übergang, eine Doppelheterostruktur, einen Einfachquantentopf (SQW, Single quantum well) oder eine Mehrfachquantentopfstruktur (MQW, multi quantum well) zur Strahlungserzeugung auf. Die Bezeichnung Quantentopfstruktur entfaltet hierbei keine Bedeutung hinsichtlich der Dimensionalität der Quantisierung. Sie umfasst somit unter anderem Quaήtentröge, Quantendrähte und Quantenpunkte und jede Kombination dieser Strukturen. Beispiele für MQW- Strukturen sind in den Druckschriften WO 01/39282, US 5,831,277, US 6,172,382 Bl und US 5,684,309 beschrieben, deren Offenbarungsgehalt insofern hiermit durch Rückbezug aufgenommen wird.

Der Halbleiterkörper ist zur Emission elektromagnetischer Strahlung von einer Vorderseite vorgesehen. An einer der Vorderseite gegenüberliegenden Rückseite sind eine erste und eine zweite elektrische Anschlussschicht angeordnet. Die erste und die zweite elektrische Anschlussschicht sind mittels einer Trennschicht elektrisch gegeneinander isoliert.

„An einer der Vorderseite gegenüberliegenden Rückseite angeordnet" bedeutet vorliegend, dass zumindest ein Teil der ersten beziehungsweise zweiten elektrischen Anschlussschicht der Halbleiterschichtenfolge in Richtung von der Vorderseite zur Rückseite hin nachfolgt. Es ist jedoch nicht notwendig, dass die gesamte erste beziehungsweise zweite elektrische Anschlussschicht an der Rückseite angeordnet ist. Vielmehr erstreckt sich ein Teilbereich der zweiten elektrischen Anschlussschicht von der Rückseite durch einen Durchbruch der aktiven Schicht hindurch in Richtung zu der Vorderseite hin. Die erste elektrische Anschlussschicht, die zweite elektrische Anschlussschicht und die Trennschicht sind jedoch derart

ausgebildet, dass sie - insbesondere an der Rückseite - lateral überlappen.

Bei einer Ausgestaltung des Halbleiterkörpers reflektieren die erste und/oder die zweite elektrische Anschlussschicht einen von der aktiven Zone in Richtung zu der Rückseite hin emittierten Teil der elektromagnetischen Strahlung in Richtung der Vorderseite.

Vorteilhafterweise ist die lichtemittierende Vorderseite der Halbleiterschichtenfolge frei von elektrischen Kontaktstellen wie Bondpads . Die Gefahr einer Abschattung und/oder Absorption eines Teils der von der aktiven Zone im Betrieb emittierten elektromagnetischen Strahlung durch die elektrischen Kontaktstellen wird auf diese Weise reduziert. Auf aufwendige Verfahrensschritte in Zusammenhang mit der Herstellung einer solchen Kontaktstelle auf der Vorderseite der Halbleiterschichtenfolge, etwa das Polieren der vorderseitigen Oberfläche der Halbleiterschichtenfolge und/oder die Herstellung von MetallStegen zur Stromaufweitung, die eine große Dicke aber geringe laterale Ausdehnung aufweisen, und/oder auf Maßnahmen die die Strominjektion in Bereiche der Halbleiterschichtenfolge unterhalb der elektrischen Kontaktstelle einschränken oder verhindern, etwa das Ausbilden einer elektrisch isolierenden Schicht, einer Schottky-Barriere und/oder eines ionenimplantierten Bereichs unterhalb der Kontaktstelle, kann beispielsweise mit Vorteil verzichtet werden.

Bei einer weiteren Ausgestaltung ist der Halbleiterkörper ein Dünnfilm-Leuchtdiodenchip. Insbesondere weist er an seiner Rückseite ein Trägersubstrat auf. Bei einer Ausgestaltung sind die erste und die zweite Anschlussschicht zumindest

stellenweise zwischen der Halbleiterschichtenfolge und dem Trägersubstrat angeordnet .

Ein Dünnfilm-Leuchtdiodenchip zeichnet sich durch mindestens eines der folgenden charakteristischen Merkmale aus:

- an einer zu einem Trägerelement, insbesondere dem Trägersubstrat, hingewandten Hauptfläche der Strahlungserzeugenden Halbleiterschichtenfolge, bei der es sich insbesondere um eine Strahlungserzeugende Epitaxie-Schichtenfolge handelt, ist eine reflektierende Schicht aufgebracht oder ausgebildet, die zumindest einen Teil der in der Halbleiterschichtenfolge erzeugten elektromagnetischen Strahlung in diese zurückreflektiert ;

- der Dünnfilm-Leuchtdiodenchip weist ein Trägerelement auf, bei dem es sich nicht um das Wachstumssubstrat handelt, auf dem die Halbleiterschichtenfolge epitaktisch gewachsen wurde, sondern um ein separates Trägerelement, das nachträglich an der Halbleiterschichtenfolge befestigt wurde;

- die Halbleiterschichtenfolge weist eine Dicke im Bereich von 20 μm oder weniger, insbesondere im Bereich von 10 μm o- der weniger auf;

- die Halbleiterschichtenfolge ist frei von einem Aufwachssubstrat. Vorliegend bedeutet „frei von einem Aufwachssubstrat, dass ein gegebenenfalls zum Aufwachsen benutztes Aufwachssubstrat von der Halbleiterschichtenfolge entfernt oder zumindest stark gedünnt ist. Insbesondere ist es derart gedünnt, dass es für sich oder zusammen mit der Epitaxie- Schichtenfolge alleine nicht freitragend ist. Der verbleibende Rest des stark gedünnten Aufwachssubstrats ist insbesondere als solches für die Punktion eines Aufwachssubstrates ungeeignet; und

- die Halbleiterschichtenfolge enthält mindestens eine Halbleiterschicht mit zumindest einer Fläche, die eine Durchmi-

schungsstruktur aufweist, die im Idealfall zu einer annähernd ergodischen Verteilung des Lichtes in der Halbleiterschichtenfolge führt, das heißt, sie weist ein möglichst ergodisch stochastisches Streuverhalten auf.

Ein Grundprinzip eines Dünnfilm-Leuchtdiodenchips ist beispielsweise in der Druckschrift I. Schnitzer et al . , Appl . Phys. Lett. 63 (16) 18. Oktober 1993, Seiten 2174 - 2176 beschrieben, deren Offenbarungsgehalt insofern hiermit durch Rückbezug aufgenommen wird. Beispiele für Dünnfilm- Leuchtdiodenchips sind in den Druckschriften EP 0905797 A2 und WO 02/13281 Al beschrieben, deren Offenbarungsgehalt insofern hiermit ebenfalls durch Rückbezug aufgenommen wird.

Ein Dünnfilm-Leuchtdiodenchip ist in guter Näherung ein Lambert' scher Oberflächenstrahler und eignet sich von daher beispielsweise gut für die Anwendung in einem Scheinwerfer, etwa einem Kraftfahrzeugscheinwerfer.

Bei einer weiteren Ausgestaltung weist der Halbleiterkörper zwischen der Halbleiterschichtenfolge und der ersten und/oder der zweiten elektrischen Anschlussschicht zumindest stellenweise eine halbleitende oder elektrisch isolierende Spiegelschicht auf. Ein Brechungsindex der Spiegelschicht weicht beispielsweise um 1 oder mehr von dem Brechungsindex einer Schicht der Halbleiterschichtenfolge ab, die der Spiegelschicht in Richtung zur Vorderseite nachfolgt und insbesondere an diese angrenzt . Bei einer Ausgestaltung enthält die Spiegelschicht ein Dielektrikum wie SiO 2 . Bei einer weiteren Ausgestaltung ist die Trennschicht zumindest stellenweise als elektrisch isolierende Spiegelschicht ausgebildet.

Bei einer Weiterbildung enthält die halbleitende oder elektrisch isolierende Spiegelschicht einen verteilten Bragg- Reflektor (DBR, Distributed Bragg Reflector) , der mindestens ein Schichtenpaar mit alternierend hohem und niedrigem Brechungsindex enthält.

Die halbleitende oder elektrisch isolierende Spiegelschicht bedeckt bei einer Ausgestaltung 50 Prozent oder mehr einer rückseitigen Hauptfläche des Halbleiterschichtstapels. Bei einer weiteren Ausgestaltung weist die Spiegelschicht eine Mehrzahl von öffnungen auf, durch welche Teilbereiche der ersten und/oder der zweiten elektrischen Anschlussschicht zu der Halbleiterschichtenfolge verlaufen.

Die halbleitende oder elektrisch isolierende Spiegelschicht weist - beispielsweise aufgrund der änderung des Brechungsindex - einen besonders hohen Reflektionskoeffizienten auf, so dass sie von der aktiven Zone in Richtung der Rückseite emittierte elektromagnetische Strahlung besonders effizient in Richtung der Vorderseite reflektiert. Mittels einer Spiegelschicht, die eine Mehrzahl von öffnungen aufweist, durch welche Teilbereiche der ersten und/oder der zweiten elektrischen Anschlussschicht hindurch verlaufen, wird der Betriebsstrom besonders homogen in die Halbleiterschichtenfolge eingeprägt.

Bei einer weiteren Ausgestaltung weist die Halbleiterschichtenfolge eine der Rückseite benachbarte Stromaufweitungs- schicht auf. Die Stromaufweitungsschicht enthält beispielsweise ein transparentes leitfähiges Oxid (TCO, transparent conducting oxide) . Mittels der Stromaufweitungsschicht wird die Homogenität der Stromeinprägung weiter verbessert .

Bei einer anderen Ausgestaltung weist die erste und/oder die zweite elektrische Anschlussschicht eine Mehrschichtstruktur auf. Beispielsweise weist die erste und/oder die zweite e- lektrische Anschlussschicht eine Haftvermittlungsschicht, eine Reflektorschicht und/oder eine Stromverteilungsschicht auf .

Die Haftvermittlungsschicht ist zweckmäßigerweise der Halbleiterschichtenfolge zugewandt. Vorzugsweise hat sie eine Dicke von 1 ntn oder weniger, insbesondere von 0,5 nm oder weniger. Die Haftvermittlungsschicht kann beispielsweise eine Mo- nolage und/oder eine nicht geschlossene Schicht von Atomen und/oder Molekülen sein. Die Reflektorschicht ist insbesondere der von der Halbleiterschichtenfolge abgewandten Seite der Haftvermittlungsschicht nachgeordnet und grenzt insbesondere an diese an.

Die Haftvermittlungsschicht verbessert die Haftung der Reflektorschicht an einer der ersten beziehungsweise zweiten elektrischen Anschlussschicht vorausgehenden Schicht, insbesondere einer Halbleiterschicht der Halbleiterschichtenfolge, etwa der StromaufWeitungsschicht , oder der Trennschicht. Je nach den Eigenschaften der Reflektorschicht kann auf die Haftvermittlungsschicht auch verzichtet werden.

Die Haftvermittlungsschicht weist beispielsweise Platin und/oder Titan auf. Die Reflektorschicht weist ein elektrisch leitfähiges Material, insbesondere ein Metall, mit einem hohen Reflexionskoeffizienten auf, beispielsweise Silbe ' r, oder besteht daraus.

Zusätzlich weist die erste und/oder die zweite elektrische Anschlussschicht bei einer Weiterbildung eine Stromvertei-

lungsschicht auf, die insbesondere ein Material mit einer besonders guten elektrischen Leitfähigkeit, etwa Gold, enthält.

Bei einer weiteren Ausgestaltung des optoelektronischen Halbleiterkörpers weist die erste elektrische Anschlussschicht einen elektrischen Kontaktbereich - etwa ein Bondpad - auf, der zur elektrischen Kontaktierung des Halbleiterkörpers von seiner Vorderseite geeignet ist. Zusätzlich oder alternativ kann sie einen elektrischen Kontaktbereich aufweisen, der zur elektrischen Kontaktierung des Halbleiterkörpers von seiner Rückseite her geeignet ist. In analoger Weise kann die zweite elektrische Anschlussschicht einen Kontaktbereich aufweisen, der zur elektrischen Kontaktierung des Halbleiterkörpers von seiner Vorderseite geeignet ist und/oder einen elektrischen Kontaktbereich, der zur elektrischen Kontaktierung des Halbleiterkörpers an seiner Rückseite geeignet ist.

Ein elektrischer Kontaktbereich, der zur elektrischen Kontaktierung des Halbleiterkörpers von seiner Vorderseite geeignet ist, ist zweckmäßigerweise seitlich von der Halbleiterschichtenfolge angeordnet. Die elektrischen Kontaktbereiche können 'mit Vorteil großflächig ausgeführt sein, da sie die Emission elektromagnetischer Strahlung aus dem Halbleiterkörper nicht beeinträchtigen. Der Halbleiterkörper ist daher besonders gut zur Verwendung mit hohen Betriebsströmen geeignet . Anders ausgedrückt hat er mit Vorteil eine hohe Stromtragfähigkeit.

Die Anordnung der Kontaktbereiche ist vorteilhafterweise frei wählbar. Der Halbleiterkörper kann zur p-seitigen Kontaktierung und zur n-seitigen Kontaktierung der Halbleiterschichtenfolge von seiner Vorderseite her, zur p-seitigen und 11- seitigen Kontaktierung von seiner Rückseite her, zur p- seitigen Kontaktierung von seiner Vorderseite her und zur n-

- S -

seitigen Kontaktierung von seiner Rückseite, zur n-seitigen Kontaktierung von seiner Vorderseite her und zur p-seitigen Kontaktierung von seiner Rückseite, sowie zur n- und/oder p- seitigen Kontaktierung sowohl von der Vorder- wie von der Rückseite her vorgesehen sein. Die p-Seitige Kontaktierung wird dabei mittels der ersten elektrischen Anschlussschicht und die n-seitige Kontaktierung mittels der zweiten elektrischen Anschlussschicht hergestellt oder umgekehrt.

Bei einer weiteren Ausgestaltung weist die Halbleiterschichtenfolge eine der Vorderseite benachbarte Pufferschicht auf, die insbesondere eine geringe elektrische Leitfähigkeit besitzt. Zum Beispiel ist die Pufferschicht undotiert oder schwach n-dotiert. Bei einer Weiterbildung handelt es sich bei der Pufferschicht um eine ESD-Schutzschicht (ESD, E- lectrostatic Discharge) , welche die Gefahr einer Zerstörung des Halbleiterkörpers durch eine elektrostatische Entladung verringert .

Unter einer Pufferschicht mit einer geringen elektrischen Leitfähigkeit wird vorliegend eine Pufferschicht verstanden, die nicht dazu geeignet ist, einen Betriebsstrom zur aktiven Zone zu leiten, und deren elektrische Leitfähigkeit beispielsweise kleiner oder gleich 20 (ωcm) ^1 ist. Bei einer Weiterbildung ist die, auch als spezifischer Leitwert bezeichnete, elektrische Leitfähigkeit kleiner oder gleich 1 (ωcm) "1 . Unter einer schwachen n-Dotierung wird vorliegend eine n-Dotierung von 2 x 10 17 Atome/cm 3 oder weniger verstanden.

Ein erfindungsgemäßes Verfahren zur Herstellung eines optoelektronischen Halbleiterkörpers weist die folgenden Schritte auf :

- Epitaktisches Aufwachsen einer Halbleiterschichtenfolge, die eine zur Erzeugung von elektromagnetischer Strahlung geeignete aktive Schicht aufweist und zur Emission elektromagnetischer Strahlung von einer Vorderseite vorgesehen ist, auf einem Aufwachssubstrat;

- Aufbringen einer ersten elektrischen Anschlussschicht an einer der Vorderseite gegenüberliegenden Rückseite der Halbleiterschichtenfolge ;

- Ausbilden eines Durchbruchs in der aktiven Schicht;

- Ausbilden einer Trennschicht an der Rückseite der Halbleiterschichtenfolge; und

- Aufbringen einer zweiten elektrischen Anschlussschicht an der Rückseite der Halbleiterschichtenfolge, wobei die erste elektrische Anschlussschicht, die zweite e- lektrische Anschlussschicht und die Trennschicht lateral ü- berlappend ausgebildet werden, ein Teilbereich der zweiten elektrischen Anschlussschicht in dem Durchbruch ausgebildet wird und die zweite elektrische Anschlussschicht mittels der Trennschicht von der ersten elektrischen Anschlussschicht i- soliert wird.

Bei einer Ausgestaltung des Verfahrens werden die erste und/oder die zweite elektrische Anschlussschicht reflektierend ausgeführt .

Bei einer weiteren Ausgestaltung des Verfahrens wird nach dem Aufwachsen der Halbleiterschichtenfolge zumindest ein Teil des Aufwachssubstrats entfernt. Das Entfernen des Aufwachssubstrats kann vor oder nach dem Aufbringen der ersten oder der zweiten Anschlussschicht erfolgen. Beispielsweise wird der Teil des Aufwachssubstrats abgesprengt, etwa mittels eines Laser-Abhebeverfahrens .

Bei einer anderen Ausgestaltung wird an der Rückseite des Halbleiterkörpers ein Trägersubstrat angeordnet oder ausgebildet. Bei dem Trägersubstrat kann es sich um ein separates Trägerelement handeln, das beispielsweise mittels eines Löt- oder Klebeschritts mittels einer Lot- oder Klebstoffschicht mit der Halbleiterschichtenfolge verbunden wird. Alternativ kann die erste und/oder die zweite elektrische Anschlussschicht das Trägersubstrat darstellen. Hierzu wird die erste und/oder die zweite elektrische Anschlussschicht beispielsweise galvanisch verstärkt.

Bei einer Ausgestaltung des Verfahrens wird an der Rückseite der Halbleiterschichtenfolge stellenweise eine halbleitende oder elektrisch isolierende Spiegelschicht ausgebildet. Bei einer Weiterbildung dieser Ausgestaltung werden öffnungen in der halbleitenden oder elektrisch isolierenden Spiegelschicht ausgebildet. Dies kann, beispielsweise mittels einer Maske, bereits beim Aufbringen der Spiegelschicht erfolgen. Alternativ können die öffnungen, beispielsweise mittels eines Lithographie-Prozesses, nach dem Aufbringen der Spiegelschicht in dieser erzeugt werden. Die erste und/oder die zweite elektrische Anschlussschicht werden zweckmäßigerweise derart aufgebracht, dass Teilbereiche der ersten und/oder zweiten elektrischen Anschlussschicht durch die öffnungen der Spiegel - schicht hindurch verlaufen.

Bei einer anderen Ausgestaltung des Verfahrens wird an der Rückseite der Halbleiterschichtenfolge eine Stromaufweitungs- schicht aufgebracht, die insbesondere ein transparentes leit- fähiges Oxid enthält .

Bei einer weiteren Ausgestaltung umfasst das epitaktische Aufwachsen der Halbleiterschichtenfolge auf das Aufwachssub-

strat das Aufwachsen einer Pufferschicht. Die Pufferschicht ist insbesondere zwischen der aktiven Zone und dem Aufwachs- Substrat angeordnet. Sie weist beispielsweise eine geringe elektrische Leitfähigkeit auf und ist vorzugsweise undotiert oder schwach n-dotiert. Bei einer Weiterbildung des Verfahrens wird die Pufferschicht beim Entfernen des Aufwachssubstrats freigelegt.

Weitere Vorteile und vorteilhafte Ausgestaltungen ergeben sich aus den folgenden in Verbindung mit den Figuren 1 bis 8 beschriebenen Ausführungsbeispielen .

Es zeigen:

Figuren IA bis IG, schematische Querschnitte durch einen optoelektronischen Halbleiterkörper bei verschiedenen Stadien eines Verfahrens seiner Herstellung gemäß einem ersten Ausführungsbeispiel,

Figur 2, einen schematischen Querschnitt durch einen optoelektronischen Halbleiterkörper gemäß einem zweiten Ausführungsbeispiel ,

Figur 3, einen schematischen Querschnitt durch einen optoelektronischen Halbleiterkörper gemäß einem dritten Ausführungsbeispiel ,

Figur 4, einen schematischen Querschnitt durch einen optoelektronischen Halbleiterkörper gemäß einem vierten Ausführungsbeispiel ,

Figuren 5A, 5B und 6, schematische Draufsichten auf verschiedene Ausgestaltungen von elektrischen Anschluss- schichten, und

Figuren 7 und 8, schematische Querschnitte durch Teilbereiche des optoelektronischen Halbleiterkörpers gemäß dem dritten Ausführungsbeispiel.

In den Ausführungsbeispielen und Figuren sind gleiche oder gleich wirkende Bestandteile mit den gleichen Bezugszeichen versehen. Die Figuren und die Größenverhältnisse der in den Figuren dargestellten Elemente sind grundsätzlich nicht als maßstabsgerecht zu betrachten. Vielmehr können einzelne Elemente, etwa Schichten, zum besseren Verständnis und/oder zur besseren Darstellbarkeit übertrieben groß beziehungsweise dick dargestellt sein.

Figuren IA bis IG zeigen ein Verfahren zur Herstellung eines optoelektronischen Halbleiterkörpers gemäß einem ersten Ausführungsbeispiel in schematischen Schnittdarstellungen bei verschiedenen Stadien des Verfahrens.

Zunächst wird eine Halbleiterschichtenfolge 2 auf einem Aufwachssubstrat 1 epitaktisch aufgewachsen, (siehe Figur IA) . Die Halbleiterschichtenfolge 2 basiert beispielsweise auf einem IIl/V-Verbindungs-Halbleitermaterial oder auf einem Il/VI-Verbindungs-Halbleitermaterial . Die Halbleiterschichtenfolge 2 hat vorliegend eine Dicke zwischen 5 und 7 μm.

Ein III/V-Verbindungs-Halbleitermaterial weist wenigstens ein Element aus der dritten Hauptgruppe, wie beispielswei-se Al, Ga, In, und ein Element aus der V-Hauptgruppe, wie beispielsweise B, N, P, As, auf. Insbesondere umfasst der Begriff

„ III/V-Verbindungs-Halbleitermaterial" die Gruppe der binären, ternären oder quaternären Verbindungen, die wenigstens ein Element aus der dritten Hauptgruppe und wenigstens ein Element aus der fünften Hauptgruppe enthalten, insbesondere Nitrid- und Phosphid-Verbindungs-Halbleiter . Eine solche binäre, ternäre oder quaternäre Verbindung kann zudem beispielsweise ein oder mehrere Dotierstoffe sowie zusätzliche Bestandteile aufweisen. Zu den III/V-Verbindungs- Halbleitermaterial gehören beispielsweise Nitrid-III- Verbindungs-Halbleitermaterial und Phosphid-III-Verbindungs- Halbleitermaterial, etwa GaN, GaAs, und InGaAlP.

Entsprechend weist ein Il/VI-Verbindungs-Halbleitermaterial wenigstens ein Element aus der zweiten Hauptgruppe, wie beispielsweise Be, Mg, Ca, Sr, und ein Element aus der sechsten Hauptgruppe, wie beispielsweise O, S, Se, auf. Insbesondere umfasst ein II/VI-Verbindungs-Halbleitermaterial eine binäre, ternäre oder quaternäre Verbindung, die wenigstens ein Element aus der zweiten Hauptgruppe und wenigstens ein Element aus der sechsten Hauptgruppe umfasst. Eine solche binäre, ternäre oder quaternäre Verbindung kann zudem beispielsweise ein oder mehrere Dotierstoffe sowie zusätzliche Bestandteile aufweisen. Zu den II/VI-Verbindungs-Halbleitermaterialen gehören zum Beispiel ZnO, ZnMgO, CdS, CnCdS, MgBeO.

Die Halbleiterschichtenfolge 2 weist eine n-dotierte Schicht 21 auf, die vorliegend dem Aufwachssubstrat 1 benachbart ist, und eine p-dotierte Schicht 22. Die p-dotierte Schicht 22 ist vorliegend auf der von dem Aufwachssubstrat 1 abgewandten Seite der Halbleiterschichtenfolge 2 angeordnet . Zwischen der n-dotierten Schicht 21 und der p-dotierten Schicht 22 ist die aktive Zone 23 angeordnet.

Bei einer Ausgestaltung ist die Halbleiterschichtenfolge 2 als npn-Schichtenfolge ausgebildet, bei der auf der von der n-dotierten Schicht 21 abgewandten Seite der p-dotierten Schicht 22 eine weiter n-dotierte Schicht ausgebildet ist. Bei einer anderen Ausgestaltung ist die p-dotierte Schicht 22 dem Aufwachssubstrat 1 benachbart und die n-dotierte Schicht 21 ist von dem Aufwachssubstrat 1 abgewandt.

Bei einer Variante des Verfahrens wird auf dem Aufwachssubstrat 1 vor dem Aufwachsen der Halbleiterschichtenfolge 2 eine Pufferschicht aufgebracht, insbesondere epitaktisch aufgewachsen (in den Figuren nicht dargestellt) . Die Pufferschicht bewirkt beispielsweise eine Anpassung der Gitterkonstanten zwischen dem Aufwachssubstrat 1 und einer nachfolgend auf die Pufferschicht aufgewachsenen Schicht der Halbleiterschichtenfolge 2. Bei einer zweckmäßigen Ausgestaltung ist die Pufferschicht undotiert oder schwach n-dotiert. Beispielsweise beträgt die Konzentration eines oder mehrerer n-Dotierstoffe der Pufferschicht 2 x 10 17 Atome/cm 3 oder weniger.

Die undotierte oder schwach n-dotierte Pufferschicht ist nicht dazu geeignet, vom Betriebsstrom des Halbleiterkörpers durchflössen zu werden. Dies wirkt sich jedoch nicht nachteilig aus, da der Halbleiterkörper nicht dazu vorgesehen ist, durch das Aufwachssubstrat 1 oder von einer dem Aufwachssubstrat 1 zugewandten Seite des Halbleiterschichtstapels 2 her mit dem Betriebsstrom versorgt zu werden. Vielmehr verringert die Pufferschicht bei dem fertig gestellten Halbleiterkörper die Gefahr, dass dieser durch eine elektrostatische Entladung beschädigt oder zerstört wird.

Anschließend wird in der aktiven Zone 23 mindestens ein Durchbruch ausgebildet (siehe Figur IB) . Hierzu wird, bei-

spielsweise mittels ätzen durch eine Maske hindurch, ausgehend von einer zweiten Hauptfläche 202 der Halbleiterschichtenfolge 2 eine Vertiefung 3 in der Halbleiterschichtenfolge 2 erzeugt . Vorzugsweise werden mehrere separate Durchbrüche 3 ausgebildet, wodurch mit Vorteil eine besonders homogene laterale Stromverteilung erzielt wird.

Die Vertiefung 3 verläuft von der zweiten Hauptfläche 202 in Richtung einer der zweiten Hauptfläche 202 gegenüber liegenden ersten Hauptfläche 201 der Halbleiterschichtenfolge 2. Die Vertiefung 3 hat beispielsweise die Form eines Kreiszylinders oder eines elliptischen Zylinders, eines Quaders, eines Kegels oder Kegelstumpfs, einer Pyramide oder eines Pyramidenstumpfs. Alternativ kann die Vertiefung 3 auch als Graben ausgebildet sein. Vorzugsweise hat der Graben eine im Wesentlichen ebene Bodenfläche. Bei einer Ausgestaltung vergrößert sich der Querschnitt des Grabens von der Bodenfläche zur zweiten Hauptfläche 202 hin.

Vor oder nach der Ausbildung der Vertiefung 3 wird eine erste KontaktSchicht 4 auf der zweiten Hauptfläche 202 aufgebracht, beispielsweise aufgedampft. Die erste Kontaktschicht 4 weist vorzugsweise ein Material, insbesondere ein Metall, mit einem hohen Reflexionskoeffizienten auf, etwa Silber. Die erste Kontaktschicht 4 kann erste und zweite Teilgebiete aufweisen, deren Schichtdicken sich voneinander unterscheiden. Beispielsweise haben die ersten Teilgebiete eine geringere Schichtdicke als die zweiten Teilgebiete.

Nachfolgend wird eine Trennschicht 5 auf einem Teil der Oberfläche der Vertiefung 3 und auf einem Teil der Oberfläche der ersten elektrischen Anschlussschicht 4 ausgebildet (siehe Figur IC) . Beispielsweise bedeckt die Trennschicht 5 eine um-

laufende Seitenwand oder Seitenwände der Vertiefung 3 zumindest stellenweise, vorzugsweise jedoch vollständig. Zweckmäßigerweise erstreckt sich die Trennschicht 5 in der Vertiefung 3 von der zweiten Hauptfläche 202 zumindest bis zur aktiven Zone 23 und bevorzugt bis zur Bodenfläche der Vertiefung 3.

Die Trennschicht 5 bedeckt zudem zweckmäßigerweise der Vertiefung 3 benachbarte und insbesondere an die Vertiefung 3 angrenzende Seitenflächen 403 der ersten elektrischen Anschlussschicht 4. Zudem bedeckt die Trennschicht 5 vorliegend die von der Halbleiterschichtenfolge 2 abgewandte Hauptfläche 402 der ersten elektrischen Anschlussschicht 4 stellenweise. Beispielsweise bedeckt die Trennschicht 5 die von der Halbleiterschichtenfolge 2 abgewandte Hauptfläche der dünneren, ersten Teilbereiche der ersten elektrischen Anschlussschicht 4. Die Trennschicht ist elektrisch isolierend ausgebildet und weist beispielsweise ein Dielektrikum wie SiO 2 , SiN x oder Si- ON auf oder besteht daraus.

Nachfolgend wird, wie in Figur ID dargestellt, eine zweite elektrische Kontaktschicht 6 hergestellt. Ein Teilbereich der zweiten elektrischen Kontaktschicht 6 ist in der Vertiefung 3 angeordnet, und füllt diese vorzugsweise vollständig aus. Aufgrund der Auskleidung der Seitenwände der Vertiefung 3 mit der Trennschicht 5 tritt kein Kurzschluss der aktiven Zone 23 durch den in der Vertiefung 3 angeordneten Teilbereich der zweiten elektrischen Anschlussschicht 6 auf.

Die zweite elektrische Anschlussschicht 6 bedeckt in Draufsicht auf die zweite Hauptfläche 202 der Halbleiterschichtenfolge 2 die erste elektrische Kontaktschicht 4 stellenweise. Beispielsweise erstreckt sich die zweite elektrische Kontakt-

Schicht von der Vertiefung 3 ausgehend über das erste Teilgebiet oder die ersten Teilgebiete der ersten elektrischen Anschlussschicht 4 in lateraler Richtung zu einem Randbereich der Halbleiterschichtenfolge 2. Zwischen der ersten und zweiten elektrischen Anschlussschicht 4, 6 ist dabei die Trennschicht 5 angeordnet, so dass kein elektrischer Kurzschluss zwischen der ersten und zweiten elektrischen Anschlussschicht 4, 6 auftritt.

Wie in Figur IE gezeigt, wird nachfolgend auf der vom Aufwachssubstrat 1 abgewandten Rückseite der Halbleiterschichtenfolge 2 ein Trägersubstrat 7 mittels einer Lot- oder Klebstoffschicht 8 auf der ersten und der zweiten elektrischen Anschlussschicht 4, 6 befestigt. Vorliegend weist die KlebstoffSchicht 8 eine geringe elektrische Leitfähigkeit auf, insbesondere ist sie elektrisch isolierend. Das Trägersubstrat weist beispielsweise Aluminiumnitrid auf oder besteht daraus. Auch andere, insbesondere isolierende, Trägersubstra- te 7, etwa Glasträgersubstrate sind denkbar.

Es ist auch denkbar, die Verbindung statt mit einer Klebstoffschicht mittels einer elektrisch leitfähigen Lotschicht herzustellen. Zweckmäßigerweise wird bei dieser Variante die Trennschicht 5 auch auf der dem Trägersubstrat 7 zugewandten Fläche der ersten und/oder zweiten elektrischen Anschlussschicht 4, 6 ausgebildet.

In einem nachfolgenden Verfahrensschritt (vergleiche Figur IF) wird das Aufwachssubstrat gedünnt oder vollständig entfernt. Dies kann beispielsweise mittels eines dem Fachmann im Prinzip bekannten Laser-Abhebeverfahrens erfolgen. Hierzu weist das Aufwachssubstrat 1 oder die Halbleiterschichtenfolge 2 vorzugsweise eine Opferschicht auf, die bei Bestrahlung

mit Laserstrahlung zersetzt wird, so dass das Aufwachssubstrat 1 abgesprengt wird. Die Bestrahlung mit Laserstrahlung erfolgt beispielsweise durch das Aufwachssubstrat 1 hindurch.

Schließlich wird die Halbleiterschichtenfolge 2 stellenweise entfernt, um elektrische Kontaktstellen 41, 61 der ersten beziehungsweise zweiten elektrischen Anschlussschicht 4, 6 freizulegen. Die Entfernung erfolgt zum Beispiel mittels eines ätzprozesses, wobei sowohl Trockenätzprozesse als auch nasschemische ätzprozesse geeignet sind.

Bei einer Weiterbildung des Verfahrens werden die Seitenflanken der Halbleiterschichtenfolge 2, der ersten elektrischen Anschlussschicht 4 und/oder der zweiten elektrischen Anschlussschicht 6 ebenfalls mit einer elektrisch isolierenden Schicht 5 zumindest stellenweise, vorzugsweise jedoch vollständig bedeckt (siehe Figur IG) .

Der in Figur IG dargestellte optoelektronische Halbleiterkörper gemäß dem ersten Ausführungsbeispiel ist dazu vorgesehen, von der aktiven Zone 23 im Betrieb erzeugte elektromagnetische Strahlung durch die erste Hauptfläche 201 der Halbleiterschichtenfolge 2 in Richtung seiner von dem Trägersubstrat 7 abgewandten Vorderseite zu emittieren. Von der aktiven Zone 23 in Richtung der Rückseite, also in Richtung der zweiten Hauptfläche 202, emittierte elektromagnetische Strahlung wird von der ersten elektrischen Anschlussschicht 4, der zweiten elektrischen Anschlussschicht 6 und/oder von der Trennschicht 5 in Richtung der Vorderseite zurück reflektiert.

Der Betriebsstrom zum Betrieb des optoelektronischen Halbleiterkörpers wird über die erste elektrische Kontaktstelle 41 und die zweite elektrische Kontaktstelle 61 von der Vorder-

seite her in die Halbleiterschichtenfolge eingeprägt. Die e- lektrischen Kontaktstellen 41, 61 sind vorliegend seitlich von der Halbleiterschichtenfolge 2 angeordnet.

Vorteilhafterweise befinden sich die elektrischen Kontaktstellen 41, 61 nicht im Strahlengang der in Richtung der Vorderseite emittierten elektromagnetischen Strahlung. Zugleich wird mittels der elektrischen Anschlussschichten 4, 6 eine besonders gute thermische Ankopplung an das Trägersubstrat 7 erzielt, so dass im Betrieb des Halbleiterkörpers erzeugte Verlustwärme besonders effizient von der Halbleiterschichtenfolge abgeführt wird.

Mittels der ersten elektrischen Kontaktstelle 41 und der ersten elektrischen Anschlussschicht 4 ist die Halbleiterschichtenfolge 2 vorliegend p-seitig kontaktiert. Die n-seitige Kontaktierung erfolgt vorliegend mittels der zweiten elektrischen Kontaktstelle 61 und der zweiten elektrischen Anschlussschicht 6. Die n- und die p-Seite der Halbleiterschichtenfolge 2, also insbesondere die n-dotierte Schicht 21 und die p-dotierte Schicht 22 können aber auch vertauscht sein.

Die Figuren 5A und 5B zeigen verschiedene Varianten für die Form des Durchbruchs 3 durch die aktive Zone 23 in einer schematischen Draufsicht auf die Vorderseite des optoelektronischen Halbleiterkörpers gemäß der Figur IG. Die Halbleiterschichtenfolge 2 ist dabei zur vereinfachten Darstellung weggelassen.

Bei der in Figur 5A dargestellten Variante haben die Vertiefungen 3 die Form von Gräben, von denen in Figur IG zur vereinfachten Darstellung nur einer dargestellt ist. Die Teilbe-

reiche der zweiten elektrischen Anschlussschicht 6, die sich durch die Durchbrüche 3 der aktiven Schicht 23 hindurch erstrecken, sind bei dieser Variante streifenförmig. Die erste Kontaktschicht 4 stellt, abgesehen von den Durchbrüchen 3, einen vollflächigen Kontakt mit der Halbleiterschichtenfolge 2 her.

Bei der in Figur 5B dargestellten Variante sind die Durchbrüche 3 nicht grabenförmig sondern haben die Form von Zylindern oder Kegelstümpfen. Dementsprechend haben auch die sich durch die Durchbrüche 3 der aktiven Schicht' 23 erstreckenden Teilbereiche der zweiten elektrischen Anschlussschicht 6 einen kreisförmigen Querschnitt.

Sowohl bei dem Ausführungsbeispiel der Figur 5A wie auch bei dem der Figur 5B sind die elektrischen Kontaktstellen 41, 61 streifenförmig ausgeführt und erstrecken sich im Wesentlichen über eine gesamte Seitenlänge des Halbleiterkörpers .

Das in Figur 2 dargestellte zweite Ausführungsbeispiel eines optoelektronischen Halbleiterkörpers unterscheidet sich von dem ersten Ausführungsbeispiel dadurch, dass die Halbleiterschichtenfolge 2 an ihrer Vorderseite eine Aufrauung oder Strukturierung aufweist. Beispielsweise ist die erste Hauptfläche 201 strukturiert, etwa mittels pyramidenartigen, kegelartigen, pyramidenstumpf- und/oder kegelstumpfartigen Vorsprüngen und/oder Vertiefungen. Die Aufrauung beziehungsweise Strukturierung wirkt vorzugsweise als Diffusor für von der aktiven Zone 23 emittierte elektromagnetische Strahlung. Eine solche Aufrauung ist auch für die übrigen Ausführungsbeispiele geeignet, bei denen keine Aufrauung gezeigt ist.

Ein weiterer Unterschied zu dem ersten Ausführungsbeispiel besteht darin, dass die Halbleiterschichtenfolge 2 vorliegend eine Stromverteilungsschicht 9 an ihrer Rückseite aufweist. Die Stromaufweitungsschicht 9 weist vorzugsweise ein transparentes leitfähiges Oxid, beispielsweise Indium-Zinn-Oxid (ITO, Indium-Tin-Oxide) oder Indium-Zink-Oxid (IZO, Indium- Zinc-Oxide) auf. Beispielsweise wird die Stromaufweitungsschicht auf die epitaktisch gewachsenen Halbleiterschichten aufgedampft .

Vorteilhafterweise ist mittels der - wiederum auch für die übrigen Ausführungsbeispiele geeigneten - Stromaufweitungsschicht 9 die Homogenität des mittels der ersten elektrischen Anschlussschicht 4 in die Halbleiterschichtenfolge 2 im Betrieb eingeprägten Betriebsstroms weiter erhöht. Dies kann beispielsweise zweckmäßig sein, wenn die p-dotierte Schicht 22 keine ausreichende Querleitfähigkeit aufweist. In der Regel ist die Querleitfähigkeit der n-dotierten Schicht 21 höher als die der p-dotierten Schicht 22. Auf eine an die zweite elektrische Anschlussschicht 6 angrenzende Stromaufweitungsschicht ist daher bei dem vorliegenden zweiten Ausführungsbeispiel verzichtet.

Weiterhin im Gegensatz zum ersten Ausführungsbeispiel verläuft die zweite elektrische Anschlussschicht 6 bei dem zweiten Ausführungsbeispiel gemäß Figur 2 stellenweise im Inneren der ersten elektrischen Anschlussschicht 4. Mit anderen Worten folgen in Richtung von der Vorderseite zur Rückseite des optoelektronischen Halbleiterkörpers zunächst ein erstes Teilgebiet der ersten elektrischen Anschlussschicht 4, dann ein Teilbereich der zweiten elektrischen Anschlussschicht 6 und schließlich ein weiteres Teilgebiet der ersten elektrischen Anschlussschicht 4 aufeinander.

Zur Herstellung wird beispielsweise zunächst das erste Teilgebiet der ersten elektrischen Anschlussschicht 4 auf die Halbleiterschichtenfolge aufgebracht und mit einer Trennschicht 5 versehen. Anschließend wird die zweite elektrische Anschlussschicht ausgebildet. Dies erfolgt insbesondere analog zum ersten Ausführungsbeispiel (vergleiche Figuren IC und ID) . Anschließend wird eine Trennschicht 5 auch auf die zweite elektrische Anschlussschicht 6 aufgebracht, bevor die erste elektrische Anschlussschicht 4 durch Ausbilden des auf die zweite elektrische Anschlussschicht 6 nachfolgenden Teilgebiets fertig gestellt wird.

Bei einer solchen Ausgestaltung wird vorteilhafterweise auch elektromagnetische Strahlung, die über die Trennschicht 5 in Richtung der Rückseite aus der Halbleiterschichtenfolge 2 austritt, zumindest teilweise in die Halbleiterschichtenfolge 2 - und damit in Richtung der Vorderseite - zurück reflektiert. Die Effizienz des Halbleiterkörpers ist auf diese Weise weiter erhöht.

Schließlich ist die erste elektrische Kontaktstelle 41 bei dem Ausführungsbeispiel der Figur 2 nicht zur Kontaktierung des Halbleiterkörpers von seiner Vorderseite her vorgesehen. Vielmehr weist der optoelektronische Halbleiterkörper gemäß dem zweiten Ausführungsbeispiel ein elektrisch leitfähiges Trägersubstrat 7 auf, das vorliegend mit einer Lotschicht 8, die ein Lötmetall wie AuZn aufweist, an der ersten elektrischen Anschlussschicht 4 mechanisch und elektrisch leitend befestigt ist. Auch ein elektrisch leitfähiger Klebstoff wie mit Silber gefüllter Epoxidharz-Klebstoff ist als Material für die Befestigungsschicht 8 geeignet. Mittels des Trägersubstrats ist der Halbleiterkörper, vorliegend p-seitig, über

die erste elektrische Anschlussschicht 4 von seiner Rückseite her kontaktierbar . Die zweite elektrische Kontaktstelle 61 ist, wie beim ersten Ausführungsbeispiel, zur Kontaktierung von der Vorderseite her vorgesehen.

Bei dem in Figur 3 dargestellten dritten Ausführungsbeispiel ist statt der ersten elektrischen Kontaktschicht die zweite elektrische Kontaktschicht 6 elektrisch leitend mit dem Trägersubstrat 7 verbunden. Die erste elektrische Kontaktschicht 4 ist mittels der Trennschicht 5 von dem elektrisch leitenden Trägersubstrat 7 elektrisch isoliert.

Gemäß dem dritten Ausführungsbeispiel weisen die erste und die zweite elektrische Kontaktschicht 4, 6 eine Reflektorschicht 410 beziehungsweise 610 auf, die der Halbleiterschichtenfolge 2 benachbart ist und ein Metall mit einem hohen Reflexionskoeffizienten enthält, beispielsweise Silber, und eine StromtransportSchicht 420 beziehungsweise 620, die beispielsweise Gold aufweist.

Mittels der Reflektorschicht 410, 610 wird eine besonders effiziente Reflexion von elektromagnetischer Strahlung erzielt. Mit der Stromverteilungsschicht 420, 620 wird eine besonders verlustarme Zuleitung des Betriebsstroms zur Halbleiterschichtenfolge 2 erzielt.

Die Reflektorschicht hat vorzugsweise eine Dicke zwischen 50 nm und 200 nm, besonders bevorzugt zwischen 100 nm und 140 nm, wobei die Grenzen jeweils eingeschlossen sind. Die erste und/oder zweite elektrische Anschlussschicht 4, 6 kann zusätzlich eine Haftvermittlungsschicht aufweisen (in den Figuren nicht gezeigt) . Die Haftvermittlungsschicht weist beispielsweise Platin oder Titan auf und hat zum Beispiel eine

Dicke von 0,1 nm. Zweckmäßigerweise folgen die Reflektorschicht 410, 420 und die Stromtransportschicht 420, 620 der Haftvermittlungsschicht in Richtung von der Vorderseite zur Rückseite hin nach.

Bei dem vorliegenden Ausführungsbeispiel ist ein separates Trägersubstrat 7 mittels einer elektrisch leitfähigen Lotoder Klebstoffschicht 8 auf einen Teilbereich der Trennschicht 5 und auf der zweiten elektrischen Anschlussschicht 6 befestigt. Alternativ kann jedoch auch die zweite elektrische Anschlussschicht 6 als Trägersubstrat 7 ausgebildet sein. Auf die Befestigungsschicht 8 kann dann verzichtet werden. Beispielsweise wird die zweite elektrische Anschlussschicht 6 mittels galvanischer Abscheidung derart verstärkt, dass sie ein mechanisch stabiles und insbesondere freitragendes Trägersubstrat 7 darstellt. Bei dieser Ausgestaltung weist der optoelektronische Halbleiterkörper vorzugsweise kein weiteres Trägersubstrat 7 auf. In analoger Weise kann bei diesem oder einem der anderen Ausführungsbeispiele auch die erste elektrische Anschlussschicht 4 zur Bildung eines Trägersubstrats 7 verstärkt werden.

Bei einer Variante des Halbleiterkörpers mit verstärkter erster und/oder zweiter elektrischer Anschlussschicht 4, 6 ist keine der beiden Anschlussschichten seitlich über die Halbleiterschichtenfolge hinaus geführt, um einen eine vorderseitige Anschlussfläche bereitzustellen. Der Halbleiterkörper weist die erste und die zweite Kontaktstelle 41, 61 dann zweckmäßigerweise an seiner Rückseite auf. Der Halbleiterkörper kann bei dieser Ausgestaltung alternativ oder zusätzlich zur Verstärkung der ersten und/oder zweiten elektrischen Anschlussschicht auch ein Trägersubstrat 7 an seiner Rückseite

aufweisen, das rückseitig die erste und die zweite elektrische Kontaktstelle 41, 61 aufweist.

Ein weiterer Unterschied zwischen dem optoelektronischen Halbleiterkörper gemäß dem dritten Ausführungsbeispiel und den Halbleiterkörpern gemäß der ersten beiden Ausführungsbeispiele besteht darin, dass die Halbleiterschichtenfolge 2 an ihrer Rückseite eine halbleitende oder elektrisch isolierende Spiegelschicht 10 aufweist. Die Spiegelschicht 10 grenzt insbesondere an die zweite Hauptfläche 202 an oder ist dieser zumindest benachbart .

Die Spiegelschicht kann ein Dielektrikum wie SiO 2 enthalten. Ein Brechungsindex der Spiegelschicht und ein Brechungsindex einer an die zweite Hauptfläche 202 angrenzenden oder dieser zumindest benachbarten Schicht der Halbleiterschichtenfolge unterscheiden sich insbesondere um 1 oder mehr. Vorliegend enthält die Spiegelschicht 10 einen verteilten Bragg- Reflektor (DBR, Distributed Bragg-Reflector) . Der verteilte Bragg-Reflektor weist mindestens ein Schichtenpaar mit alternierend hohem und niedrigem Brechungsindex auf. Bragg- Reflektoren aus dielektrischen Schichten sind dem Fachmann im Prinzip bekannt und werden daher an dieser Stelle nicht näher erläutert. Alternativ zu Schichtenpaaren aus dielektrischen Schichten kann der Bragg-Reflektor auch Schichtenpaare aus transparenten leitfähigen Oxiden wie ITO aufweisen. Eine Spiegelschicht 10 mit einem Bragg-Reflektor mit Schichtenpaaren aus transparenten leitfähigen Oxiden kann halbleitend o- der sogar elektrisch leitfähig sein. Mittels der Spiegelschicht 10 wird eine besonders hohe Reflektivität erzielt.

Beispielsweise reflektieren die erste elektrische Anschlussschicht 4, die zweite elektrische Anschlussschicht 6 und ge-

gebenenfalls die Spiegelschicht 10 80% oder mehr, vorzugsweise 90% oder mehr, und besonders bevorzugt 95% oder mehr der von der aktiven Schicht 23 in Richtung der Rückseite emittierten elektromagnetischen Strahlung in Richtung der Vorderseite zurück.

Die Spiegelschicht 10 bedeckt vorzugsweise 50 Prozent oder mehr der zweiten Hauptfläche 202 der Halbleiterschichtenfolge 2. Sie weist eine oder mehrere öffnungen 110 auf, durch welche sich die erste elektrische Anschlussschicht 4 erstreckt. Im Bereich der öffnungen 110 ist die erste elektrische Anschlussschicht 4 mit der Halbleiterschichtenfolge 2 elektrisch leitend verbunden. Vorzugsweise weist die Spiegel - Schicht 10 eine Mehrzahl von öffnungen 110 auf, die unregelmäßig oder regelmäßig, beispielsweise an Gitterpunkten eines gedachten Gitters, angeordnet sein können. Die Abmessungen der öffnungen sind vorzugsweise relativ gering, sie stellen dann so genannte Knüpfelkontakte für die elektrische Kontak- tierung mittels der ersten elektrischen Anschlussschicht 4 dar.

Eine solche Ausgestaltung ist in Figur 6 in Draufsicht auf die Vorderseite des Halbleiterkörpers gezeigt, wobei die Halbleiterschichtenfolge 2 mit "' der Stromverteilungsschicht 9 weggelassen ist. Im- Unterschied zur Figur 3 ist der zweite elektrische Kontaktbereich 61 in Figur 6 nicht an der Rückseite des Halbleiterkörpers angeordnet, sondern analog zum ersten Ausführungsbeispiel zur Kontaktierung des Halbleiterkörpers von seiner Vorderseite her vorgesehen. Die elektrischen Kontaktbereiche 41, 61 erstrecken sich vorliegend im Wesentlichen über die gesamte Seitenlänge des Halbleiterkörpers .

Die Spiegelschicht 10 weist eine Mehrzahl von öffnungen 110 auf, die vorliegend einen kreisförmigen Querschnitt haben. Die öffnungen 110 sind an den Gitterpunkten eines gedachten rechteckigen oder quadratischen Gitters angeordnet. In ersten öffnungen 110 sind Teilstücke der ersten elektrischen Anschlussschicht 4 angeordnet. Durch zweite öffnungen 110 hindurch verläuft ein Teilbereich der zweiten elektrischen Anschlussschicht 6. Die ersten und die zweiten öffnungen 110 sind vorliegend jeweils in Spalten angeordnet. Andere Anordnungen sind ebenfalls denkbar.

Bei einer Weiterbildung dieses Ausführungsbeispiels, die auch für die übrigen Ausführungsformen geeignet ist, ist die Trennschicht 5 zumindest stellenweise als elektrisch isolierende Spiegelschicht ausgebildet, welche insbesondere einen verteilten Bragg-Reflektor (DBR) aufweist. Beispielsweise ist zumindest ein in der Vertiefung 3 angeordnetes und/oder an diese angrenzendes Teilstück der Trennschicht 5 derart ausgebildet.

Ausschnitte des optoelektronischen Halbleiterkörpers der Figur 3 sind in den Figuren 7 und 8 schematisch dargestellt, wobei die Stromaufweitungsschicht 9 und die Spiegelschicht 10 zur vereinfachten Darstellung weggelassen sind.

Figur 7 zeigt einen Randbereich des Halbleiterkörpers mit der ersten elektrischen Kontaktstelle 41. Die Schnittdarstellung ist gegenüber Figur 3 um 180 Grad gedreht, so dass die erste elektrische Kontaktstelle 41 auf der rechten Seite der Figur 7 angeordnet ist. Die erste elektrische Kontaktstelle 41 ist als Bondpad ausgebildet. Bei der Herstellung des Halbleiterkörpers wird hierzu beispielsweise nach dem Entfernen des Randbereichs der Halbleiterschichtenfolge eine öffnung in der

Trennschicht 5 erzeugt und anschließend das Bondpad 41 in der öffnung abgeschieden.

Figur 8 zeigt einen schematischen Querschnitt der grabenför- migen Vertiefung 3, deren Seitenwände von der Trennschicht 5 bedeckt sind.

Figur 4 zeigt ein viertes Ausführungsbeispiel eines optoelektronischen Halbleiterkörpers. Im Gegensatz zu den vorhergehenden Ausführungsbeispielen ist der Durchbruch 3 durch die aktive Zone 23 bei diesem Ausführungsbeispiel als über die gesamte Dicke der Halbleiterschichtenfolge 2 verlaufender Durchbruch ausgeführt. Der Durchbruch 3 erstreckt sich also vorliegend von der ersten Hauptfläche 201 bis zur zweiten Hauptfläche 202. Der Durchbruch stellt damit ein Loch oder einen Schlitz in der Halbleiterschichtenfolge 2 dar.

Auf der, vorliegend aufgerauten, ersten Hauptfläche 201 ist eine weitere Stromaufweitungsschicht 9', vorliegend zusätzlich zu der an der Rückseite der Halbleiterschichtenfolge 2 angeordneten Stromaufweitungsschicht 9, angeordnet. Die weitere Stromaufweitungsschicht 9' weist beispielsweise ebenfalls ein transparentes leitfähiges Oxid wie ITO auf. Mit der weiteren Stromaufweitungsschicht 9' wird eine besonders homogene Zufuhr des Betriebsstroms zur aktiven Zone 23 mittels der zweiten elektrischen Anschlussschicht 6 erzielt .

Wie beim dritten Ausführungsbeispiel weist auch der Halbleiterkörper gemäß dem vierten Ausführungsbeispiel eine Spiegel - schicht 10 auf. Vorliegend ist die Spiegelschicht 10 alternativ oder zusätzlich zur Trennschicht 5 zwischen der zweiten Hauptfläche 202 der Halbleiterschichtenfolge 2 und der zweiten elektrischen Anschlussschicht 6 angeordnet.

Während bei den ersten drei Ausführungsbeispielen die zweite elektrische Anschlussschicht 6 in Richtung von der Rückseite zur Vorderseite zumindest durch einen Teilbereich der ersten elektrischen Anschlussschicht 4 verläuft, ist dies bei dem vierten Ausführungsbeispiel nicht der Fall. Bei dem vierten Ausführungsbeispiel überdeckt die erste Anschlussschicht 4 in Draufsicht auf die Rückseite des Halbleiterkörpers die zweite Anschlussschicht 6 zumindest stellenweise.

Die Erfindung ist nicht durch die Beschreibung anhand der Ausführungsbeispiele auf diese beschränkt, sondern umfasst jedes neue Merkmal sowie jede Kombination von Merkmalen, was insbesondere jede Kombination von Merkmalen in den Patentansprüchen beinhaltet, auch wenn dieses Merkmal oder diese Kombination selbst nicht explizit in den Patentansprüchen oder Ausführungsbeispielen angegeben ist.