Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
PART COATED WITH A HYDROGENATED AMORPHOUS CARBON COATING ON AN UNDERCOAT COMPRISING CHROMIUM, CARBON AND SILICON
Document Type and Number:
WIPO Patent Application WO/2019/243720
Kind Code:
A1
Abstract:
The present application relates to a part comprising a metal substrate, a non-hydrogenated amorphous ta-C or a-C carbon coating that coats the substrate, and an undercoat which is based on chromium (Cr), carbon (C) and silicon (Si) and is disposed between the metal substrate and the amorphous carbon coating and to which the amorphous carbon coating is applied, characterized in that the undercoat comprises, at its interface with the amorphous carbon coating, a ratio of silicon in atomic percent to chromium in atomic percent (Si/Cr) of 0.35 to 0.60, and a ratio of carbon in atomic percent to silicon in atomic percent (C/Si) of 2.5 to 3.5.

Inventors:
BOMBILLON LAURENT (FR)
PROST FABRICE (FR)
Application Number:
PCT/FR2019/051462
Publication Date:
December 26, 2019
Filing Date:
June 17, 2019
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
HYDROMECANIQUE & FROTTEMENT (FR)
International Classes:
C23C28/04; C23C14/06; C23C14/32; C23C14/35; C23C16/26; C23C16/50
Foreign References:
EP2103711A12009-09-23
JP2001269938A2001-10-02
US20170122249A12017-05-04
FR2922358A12009-04-17
FR2995493A12014-03-14
FR2975404A12012-11-23
FR3011305A12015-04-03
Attorney, Agent or Firm:
SANTARELLI (FR)
Download PDF:
Claims:
REVENDICATIONS

1. Pièce comportant un substrat métallique, un revêtement de carbone amorphe hydrogéné, de type a-C:H, revêtant le substrat, et une sous- couche à base de chrome (Cr), de carbone (C) et de silicium (Si) disposée entre le substrat métallique et le revêtement de carbone amorphe et sur laquelle le revêtement de carbone amorphe est appliqué, caractérisée en ce que la sous-couche comporte les proportions atomiques suivantes à son interface avec le revêtement de carbone amorphe :

Un rapport entre une teneur en silicium et une teneur en chrome (Si/Cr) compris entre 0,35 et 0,60, et

Un rapport entre une teneur en carbone et la teneur en silicium (C/Si) compris entre 2,5 et 3,5.

2. Pièce selon la revendication 1 , caractérisée en ce que le rapport entre la teneur en silicium (Si) et la teneur en chrome (Cr) (Si/Cr) de la sous- couche est compris entre 0,38 et 0,6.

3. Pièce selon l’une quelconque des revendications 1 ou 2, caractérisée en ce que le rapport entre la teneur en carbone (C) et la teneur en silicium (Si) (C/Si) de la sous-couche est compris entre 2,8 et 3,2, voire entre 2,9 et 3,1.

4. Pièce selon l’une quelconque des revendications 1 à 3, caractérisée en ce que la sous-couche comporte en outre des atomes d’azote (N), un rapport entre une teneur en azote et la teneur en chrome (N/Cr) étant inférieur à 0,70 à l’interface entre la sous-couche et le revêtement de carbone amorphe.

5. Pièce selon la revendication 4, caractérisée en ce que le rapport entre la teneur en azote et la teneur en chrome (N/Cr) est compris entre 0,26 et 0,70 et le rapport entre la teneur en silicium et la teneur en chrome (Si/Cr) est compris entre 0,40 et 0,55 à l’interface entre la sous-couche et le revêtement de carbone amorphe.

6. Pièce selon l’une quelconque des revendications 1 à 5, caractérisée en ce que la sous-couche a une épaisseur égale ou inférieure à 1 ,1 miti, par exemple comprise entre 0,2 pm et 1 ,1 miti, de préférence comprise entre 0,3 pm et 0,6 pm.

7. Pièce selon l’une quelconque des revendications 1 à 6, caractérisée en ce que le revêtement de carbone amorphe a une épaisseur égale ou supérieure à 0,3 pm, voire à 0,5 pm, voire à 1 pm. 8. Pièce selon l’une quelconque des revendications 1 à 7, caractérisée en ce que le revêtement de carbone amorphe a une épaisseur comprise entre 1 ,5 pm et 3,5 pm.

9. Pièce selon l’une quelconque des revendications 1 à 8, caractérisée en ce qu’elle comporte en outre une couche à base de chrome, déposée sur le substrat et sur laquelle est formée la sous-couche, la couche à base de chrome étant une couche de chrome (Cr) et/ou une couche de nitrure de chrome, par exemple CrN ou Cr2N, ou tout composé intermédiaire.

10. Pièce selon l’une quelconque des revendications 1 à 9, caractérisée en ce que la couche à base de chrome a une épaisseur de quelques dixièmes de micromètre, de préférence une épaisseur égale ou inférieure à 1 pm, voire 0,6 pm, par exemple comprise entre 0,1 pm et 0,5 pm, voire entre 0,3 pm et 0,5 pm.

Description:
Pièce revêtue par un revêtement de carbone amorphe hydrogéné sur une sous-couche comportant du chrome, du carbone et du silicium

La présente invention concerne une pièce revêtue comportant un substrat métallique revêtu d’une sous-couche et d’un revêtement de carbone amorphe hydrogéné, lequel est déposé sur la sous-couche comportant du chrome, du carbone et du silicium.

Les pièces, comportant un revêtement, considérées ici, sont par exemple des organes de frottements pour les secteurs de l'automobile, de l’aéronautique ou encore du spatial.

Dans le domaine automobile, il s’agit par exemple de pièces de distributions comme des linguets, des poussoirs, ou encore des cames pour réduire le frottement entre ces pièces. Il peut aussi s’agir d’axes de piston, pour en réduire l’usure et protéger les surfaces contre le grippage.

Un revêtement tel que décrit ici peut aussi s’appliquer aux composants comme les segments, les jupes de piston, les chemises.

Dans les exemples non limitatifs qui précédent les revêtements sont souvent amenés à fonctionner en milieu lubrifié.

Bien évidemment, les revêtements de carbone amorphe, hydrogénés ou non, ont des applications multiples qui ne se limitent pas aux composants pour l’automobile, l’aéronautique ou le spatial. Des éléments de guidage ou coulissant, comme par exemple sur des moules pour la plasturgie, peuvent aussi être revêtus par un tel revêtement pour en minimiser l’usure et le frottement sans lubrification.

Les revêtements de carbone amorphe sont souvent nommés « DLC » (pour « Diamond Like Carbon »). Ils désignent des matériaux carbonés généralement obtenus sous forme d’une couche mince et par des technologies de dépôt sous vide.

Ces revêtements peuvent par exemple être classés en deux familles : ceux comportant de l’hydrogène (H) et ceux sans hydrogène. Parmi les revêtements avec hydrogène, des revêtements DLC qui possèdent un fort intérêt industriel sont :

- Les revêtements « a-C:H » (pour « carbone amorphe hydrogéné »). Ces revêtements sont généralement réalisés par dépôt chimique en phase vapeur assisté par plasma d'un précurseur gazeux carboné (lequel est par exemple de l’acétylène (C2H2)).

Parmi les revêtements sans hydrogène, des revêtements DLC qui possèdent un fort intérêt industriel sont :

- Les revêtements « a-C » (pour « carbone amorphe »), qui sont généralement réalisés par pulvérisation cathodique magnétron d'une cible de graphite.

- Et surtout, les revêtements « ta-C » (pour « carbone amorphe tétraédrique »), qui sont généralement réalisés par évaporation par arc d'une cible de graphite.

Les trois types de revêtement susmentionnés sont donc chacun obtenu par une technologie différente.

En outre, actuellement, pour chaque type de revêtement DLC tel que ceux susmentionnés (réalisés avec des technologies différentes, comme illustré ci-dessus), il est souvent nécessaire d'utiliser une sous-couche spécifique pour que le revêtement adhère sur un substrat donné.

Dans le cas des revêtements de DLC hydrogéné, ou a-C:H en particulier, il existe différentes variantes de technologies de dépôt pour réaliser ces revêtements à partir de la dissociation de gaz hydrocarboné. Historiquement, un des procédés utilisé pour déposer des DLC hydrogénés est décrit dans le document FR 2 922 358. Ce document concerne un procédé de traitement de surface d'une pièce au moyen de sources élémentaires de plasma par résonance cyclotronique électronique. Ce procédé donne des revêtements DLC de qualité satisfaisante.

Toutefois, dans un souci de compétitivité économique, il est souhaitable de faire progresser la technologie pour obtenir des procédés plus efficaces et donc plus compétitifs. A cet effet, par exemple, le document FR 2 995 493 décrit un dispositif plus efficace permettant, entre autre, un transfert mieux adapté du plasma vers les pièces, de sorte que la vitesse de dépôt de DLC est doublée. Pour cela, le dispositif de dépôt comporte une source de plasma dont l’utilisation est très bien adaptée pour réaliser des revêtements DLC tels que ceux décrits dans le document FR 2 975 404 (et aussi certaines variantes de ce revêtement incluant en plus au préalable une couche de chrome Cr, ou une couche de chrome et une couche de nitrure de chrome CrN).

Cependant, les revêtements, comportant une couche de Cr suivie d’une couche de CrN puis une couche de transition de DLC hydrogéné dopé au silicium (a-C:H:Si) et enfin un revêtement de DLC hydrogéné (a-C:H) tel que décrit dans le document FR 3 011 305, ne parviennent pas à être déposés avec des caractéristiques correctes en utilisant le dispositif décrit dans le document FR 2 995 493. En particulier, un tel revêtement élaboré avec une telle source présente souvent un comportement de mauvaise qualité quand le revêtement est indenté par la méthode Rockwell sous 150 kg (kilogrammes) pour en évaluer l’adhérence selon la norme VDI3198. Au minimum, l’indentation est notée HF3 selon cette norme VDI3198 (ce qui est considéré comme plutôt mauvais ; un bon résultat est noté HF1 et le plus mauvais est noté HF6). L’observation de l’indentation quelques heures après qu’elle a été effectuée montre une dégradation spontanée de la notation de l’indentation vers HF6.

Pour remédier à ce problème, les paramètres de procédé ont été ajustés, en particulier pour réduire les contraintes que subit la couche de transition de DLC hydrogéné dopé au silicium (a-C:H:Si), en particulier en abaissant le flux d’ions que la source de plasma envoie vers les pièces via la réduction de la puissance appliquée à la source de plasma et en abaissant l’énergie des ions via la tension de polarisation. Les améliorations constatées ne suffisent pas à obtenir un revêtement dont l’indentation Rockwell donne satisfaction. La source de plasma est tellement efficace qu’il n’est pas possible d’adoucir suffisamment les conditions de dépôt pour la couche de « a-C:H:Si ».

Ainsi, la présente invention a pour but de résoudre au moins en partie les inconvénients précités. En particulier, un objet de l’invention est de proposer une pièce, comportant un revêtement DLC hydrogéné, en particulier de type a-C:H, qui permette de s’accommoder des caractéristiques du plasma de la source décrite dans le document FR 2 995 493.

La présente invention a aussi pour but de proposer une pièce, avec un revêtement DLC hydrogéné, en particulier de type a-C:H, qui permette d’obtenir un bon comportement au test d’adhérence par indentation Rockwell C du revêtement DLC.

A cet effet, est proposée selon un premier aspect, une pièce comportant un substrat métallique, un revêtement de carbone amorphe hydrogéné, de type a-C:H, revêtant le substrat, et une sous-couche à base de chrome (Cr), de carbone (C) et de silicium (Si) disposée entre le substrat métallique et le revêtement de carbone amorphe et sur laquelle le revêtement de carbone amorphe est appliqué, caractérisée en ce que la sous-couche comporte les proportions atomiques suivantes à son interface avec le revêtement de carbone amorphe (c’est-à-dire à la surface de la sous-couche) :

- Un rapport entre une teneur en silicium et une teneur en chrome (Si/Cr) compris entre 0,35 et 0,60, et

- Un rapport entre une teneur en carbone et la teneur en silicium (C/Si) compris entre 2,5 et 3,5.

Une telle composition de sous-couche présente des teneurs qui sont par exemple mesurables par analyse EDX (Energy Dispersive X-Ray Spectrometry, ou analyse par dispersion en énergie des rayons X) dans un microscope électronique à balayage (MEB), ou par GDOES (Glow Discharge Optical Emission Spectroscopy).

Il est apparu qu’une telle sous-couche permet d’obtenir un résultat d’adhérence du revêtement noté HF1 , stable au cours du temps.

Au surplus, une telle sous-couche s’est aussi révélée particulièrement avantageuse pour un revêtement DLC non-hydrogéné, en particulier de type ta-C, voire a-C. Une telle sous-couche se présente alors comme une couche à gradient de composition à base de chrome (Cr), silicium (Si) et carbone (C) principalement.

La sous-couche s’enrichit progressivement (en partant du substrat et en direction du revêtement DLC) en silicium (Si) et en carbone (C), jusqu’à une composition permettant l’adhérence du revêtement, comme visée ci-dessus.

Dans un exemple particulier, le rapport entre la teneur en silicium et la teneur en chrome (Si/Cr) de la sous-couche au voisinage de l’interface avec le DLC est compris entre 0,38 et 0,60, voire entre 0,40 et 0,60.

Dans un exemple particulier, le rapport entre la teneur en carbone et la teneur en silicium (C/Si) de la sous-couche au voisinage de l’interface avec le DLC est compris entre 2,8 et 3,2, voire entre 2,9 et 3,1.

La sous-couche peut comporter éventuellement de l’azote (N). Ceci est particulièrement avantageux si la pièce comporte en outre une couche de nitrure de chrome, comme décrit ci-après.

Ainsi, dans un exemple de réalisation intéressant, la sous-couche comporte en outre des atomes d’azote (N), un rapport entre une teneur en azote et la teneur en chrome (N/Cr) étant inférieur à 0,70 au voisinage de l’interface avec le DLC, c’est-à-dire à l’interface entre la sous-couche et le revêtement de carbone amorphe.

Selon des exemples avantageux, le rapport entre la teneur en azote et la teneur en chrome (N/Cr) est compris entre 0,26 et 0,70, voire entre 0,29 et 0,67, voire entre 0,35 et 0,65, à l’interface entre la sous-couche et le revêtement de carbone amorphe.

Selon des exemples avantageux, le rapport entre la teneur en silicium et la teneur en chrome (Si/Cr) est compris entre 0,40 et 0,55, voire entre 0,45 et 0,55, à l’interface entre la sous-couche et le revêtement de carbone amorphe.

Dans un exemple privilégié, la sous-couche, avec ou sans azote, a une épaisseur de quelques dixièmes de micromètre ; de préférence une épaisseur égale ou inférieure à environ 1 ,1 miti, par exemple comprise entre environ 0,2 mhh et 1 ,1 miti, de préférence comprise entre environ 0,3 pm et 0,6 pm.

En effet, en pratique, au-delà de 1 ,1 pm il se produit un développement colonnaire, néfaste pour la tenue de la sous-couche, et en- dessous de 0,2 pm, la sous-couche ne produit pas son effet de couche d’adaptation.

Le revêtement de carbone amorphe, a, par exemple, une épaisseur égale ou supérieure à environ 0,3 pm, voire à environ 0,5 pm, voire à environ 1 pm, voire à 1 ,5 pm.

Le revêtement de carbone amorphe, a, par exemple, une épaisseur égale ou inférieure à environ 10 pm, voire à 8 pm, voire même à 3,5 pm.

Le revêtement de carbone amorphe a, par exemple, une épaisseur comprise entre environ 1 ,5 pm et environ 3,5 pm, mais peut atteindre 8 pm lorsqu’un tel revêtement est appliqué à un segment par exemple.

Le substrat métallique est par exemple en acier ou autres alliages métalliques.

Dans des exemples de réalisation intéressants, la pièce comporte en outre une couche à base de chrome, déposée sur le substrat et sur laquelle est formée la sous-couche.

La couche à base de chrome est par exemple une couche de chrome (Cr) et/ou une couche de nitrure de chrome, par exemple CrN ou Cr2N, ou tout composé intermédiaire.

De préférence, la pièce comporte une couche de chrome (Cr), ou une couche de chrome (Cr) suivie d’une couche de nitrure de chrome (par exemple CrN ou Cr2N, ou tout composé intermédiaire).

De préférence, la couche à base de chrome a une épaisseur de quelques dixièmes de micromètre, de préférence une épaisseur égale ou inférieure à environ 1 pm, voire 0,6 pm, par exemple comprise entre environ 0,1 pm et 0,5 pm, voire entre environ 0,3 pm et 0,5 pm.

De plus, il est apparu que la sous-couche pouvait présenter une épaisseur moindre que les sous-couches de l’art antérieur, permettant ainsi d’augmenter l’épaisseur du DLC pour une même épaisseur totale des revêtements (c’est-à-dire en considérant les épaisseurs du DLC, de la sous- couche et d’une couche à base de chrome le cas échéant).

Autrement dit, un rapport entre l’épaisseur du revêtement de carbone amorphe et l’épaisseur de la sous-couche, voire en tenant compte de l’épaisseur de la couche à base de chrome le cas échéant (ep. DLC / ep. sous- couche, ou ep. DLC / (ep. sous-couche + couche à base de chrome)), peut être augmenté. Un tel rapport est par exemple compris entre environ 2,2 et environ 12, voire entre environ 2, 25 et environ 11 ,5, voire entre environ 2,25 et 7,5, voire entre environ 2,27 et environ 7,25.

Par exemple, un rapport entre l’épaisseur du revêtement de carbone amorphe et l’épaisseur totale des revêtements (c’est-à-dire ici la sommes des épaisseurs du revêtement de carbone amorphe, de la sous-couche et de la couche à base de chrome le cas échéant), soit [ep. DLC / (ep.DLC + ep. sous- couche + ep. couche à base de chrome)] est compris entre environ 0,65 et environ 0,9, voire entre environ 0,69 et environ 0,88.

Par exemple, l’épaisseur totale des revêtements (i.e. la sommes des épaisseurs du revêtement de carbone amorphe, de la sous-couche et de la couche à base de chrome le cas échéant) est comprise entre environ 1 ,5 pm et environ 4,9 pm, de préférence entre environ 1 ,8 pm et environ 4,6 pm.

Le tableau ci-dessous présente différents essais, numérotés 1 à 15.

Les proportions atomiques, mesurées par EDX, sont celles de la sous-couche au voisinage de l’interface avec le revêtement (gardant à l’esprit que la sous- couche présente un gradient de composition, la composition visée est celle vers laquelle elle tend à l’interface avec le revêtement DLC).

Dans l’ensemble des essais, on note que le comportement en adhérence du DLC sur la sous-couche est lié à la composition de la surface de la sous-couche.

La présence d’azote en surface n’est pas déterminante pour l’adhérence du DLC. En effet à proportions d’azote (N/Cr) similaires (exemples 9, 12 et 13), l’adhérence peut être jugée bonne ou non. Une présence relativement forte d’azote peut nuire à l’adhérence, comme dans l’exemple 11. L’absence d’azote peut conduire à des bonnes adhérences (exemples 4 à 6, 14 et 15) ou non (exemples 1 à 3, 7, 8,).

En revanche, la proportion de chrome relativement au silicium s’est révélée être un facteur plus déterminant. Une teneur relativement élevée en chrome par rapport au silicium (Si/Cr petit) ne semble pas convenir pour l’adhérence (ex. exemples 1 à 3). Une teneur relativement faible en chrome relativement au silicium (Si/Cr grand) ne semble pas non plus convenir pour l’adhérence du DLC (ex. exemples 7 et 8).

Ainsi, alors que le rapport des compositions Si/Cr est compris entre 0,35 et 0,6, l’ensemble des couches de DLC déposées sur ces sous-couches s’est révélé adhérent (exemples 4, 5, 6, 9, 10, 13, 14 et 15).

Pour obtenir un revêtement tel que décrit précédemment, un équipement de dépôt sous vide tel que décrit ci-dessous est utilisé.

L’équipement de dépôt sous vide comporte principalement une enceinte, un système de pompage, un système de chauffage, configurés pour pomper, chauffer les pièces (substrat) et l’intérieur de l’enceinte, afin accélérer la désorption des gaz et obtenir rapidement un vide, considéré de qualité, dans l’enceinte.

L’équipement de dépôt comporte en outre un porte-substrat adapté, du point de vue de la géométrie, de la polarisation électrique et de la cinématique, aux pièces, ou à la portion des pièces à revêtir.

L’équipement de dépôt sous vide comporte aussi un système de décapage ionique configuré pour bombarder les pièces (substrats) à revêtir par des ions argon (Ar), afin d’éliminer une couche de passivation généralement présente sur les substrats métalliques à revêtir.

L’équipement de dépôt sous vide comporte aussi une cathode magnétron, équipée d’une cible de chrome, pour générer les couches à base de chrome.

De préférence, le système de décapage ionique est configuré pour fonctionner simultanément avec la cathode magnétron. On met ainsi à profit la fin du décapage ionique pour pré-pulvériser la cathode magnétron équipée d’une cible de chrome.

Par exemple, la source de plasma telle que celle décrite dans le document FR 2 995 493 peut être mise en œuvre pour effectuer un décapage ionique efficace des pièces à revêtir et les revêtir d’un revêtement DLC de type a-C:H. L’étape de dépôt de la sous-couche est par exemple configurée pour produire une sous-couche ayant une composition telle que décrite précédemment.

L’étape de dépôt de la sous-couche est par exemple configurée pour en outre produire une sous-couche ayant une épaisseur telle que décrite précédemment.

Dans un exemple de mise en œuvre, le procédé peut optionnellement comporter une étape de dépôt de chrome métallique, par exemple une étape de pulvérisation de chrome. Optionnellement, cette étape de dépôt de chrome métallique comporte une étape d’introduction d’azote simultanément avec l’étape de pulvérisation de chrome de sorte à obtenir une couche de nitrure de chrome, par exemple CrN ou Cr2N ou tout composé intermédiaire.

Une telle couche à base de chrome, éventuellement avec de l’azote, est déposée avec une épaisseur de quelques dixièmes de micromètre, comme décrit précédemment.

Le dépôt se poursuit par l’introduction d’un gaz organosilicié, c’est-à- dire un gaz portant au moins du silicium, typiquement du tétraméthylsilane (aussi nommé TMS, de formule (Si(CH3)4), lequel peut comporter des traces d’oxygène) qui est le plus facile à mettre en œuvre, ou un mélange de silane et d’un hydrocarbure. Sans être exclusif, le TMS est de loin utilisé de façon préférentielle pour sa relativement grande stabilité chimique et sa grande volatilité lui permettant une mise en œuvre facile au moyen d’un débitmètre massique.

En cas de dépôt préalable d’une couche à base de chrome (Cr, et/ou CrN ou Cr2N), le gaz organosilicié est introduit à débit croissant jusqu’à une valeur de débit auquel une teneur en silicium de la sous-couche est au moins égale à environ 0,35 fois sa teneur en chrome et au plus d’environ 0,60 fois la teneur en chrome au voisinage de l’interface. Le rapport de la teneur en carbone ramené à la teneur en silicium est parallèlement compris entre 2,5 et 3,5 au voisinage de l’interface. Lorsqu’une couche à base de chrome avec de l’azote est utilisée, la quantité d’azote injectée peut être graduellement réduite quand la quantité de gaz organosilicié augmente. La quantité d’azote n’est pas nécessairement amenée à 0 mais doit devenir notablement inférieure à celle de gaz organosilicié. L’azote introduit pour produire une couche de CrN (ou Cr2N) peut aussi être ramené abruptement à 0 avant d’introduire le précurseur organosilicié. Néanmoins la diminution progressive de l’azote est un mode préférentiel car il permet une transition progressive d’azote dans la sous- couche.

A titre d’exemple, considérant une couche de CrN, N/Cr vaut alors par exemple 1 et donc la quantité d’azote est possiblement considérée comme excessive. Considérant une couche de Cr2N, N/Cr vaut alors par exemple 0,5 et dans un tel cas, ce ratio peut être conservé.

Pendant l’élaboration des diverses couches minces sous vide décrites précédemment (couche à base de chrome, sous-couche ou encore revêtement DLC), la tension de polarisation du porte-substrat se situe généralement entre -50 V et -100 V (volt).

La pression partielle d’argon pendant le dépôt de ces couches se situe de préférence entre 0,2 Pa et 0,4 Pa.

Lorsque le débit de gaz organosilicié a atteint le niveau requis, l’alimentation électrique de la cathode magnétron est coupée, les gaz réactifs (c’est-à-dire le gaz organosilicié, ou le gaz organosilicié et l’azote suivant le cas) sont arrêtés. Le débit d’argon, le cas échéant, est réduit à une valeur faible voire amené à 0, et de l’acétylène est introduit pour commencer le dépôt du revêtement a-C:H à l’aide de la source de plasma comme décrit dans le document FR 2 995 493. La tension d’accélération des ions sur les pièces est réglée pour permettre l’obtention des caractéristiques du dépôt a-C:H souhaitée. Le dépôt a-C:H est d’autant plus dur que la tension en valeur absolue est élevée, selon les règles de l’art.