Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
PEROXIDE CONTAINING POLYOLEFIN FORMULATIONS
Document Type and Number:
WIPO Patent Application WO/2019/046088
Kind Code:
A1
Abstract:
A polyolefin formulation comprising an ethylenic-based (co)polymer composition, an effective amount of a lower temperature decomposing organic peroxide, and an effective amount of a higher temperature decomposing organic peroxide. During mixing of a melt of the polyolefin formulation, the lower temperature decomposing peroxide may be substantially completely decomposed without substantially decomposing the higher temperature decomposing organic peroxide. Also, intermediate composition having a modified rheology and crosslinked polyolefin products made therefrom; methods of making and using same; and articles containing same.

Inventors:
CHAUDHARY BHARAT I (US)
Application Number:
PCT/US2018/047658
Publication Date:
March 07, 2019
Filing Date:
August 23, 2018
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
DOW GLOBAL TECHNOLOGIES LLC (US)
International Classes:
C08K5/14; C08J3/24; H01B3/44
Domestic Patent References:
WO2016200600A12016-12-15
Foreign References:
EP2468813A12012-06-27
US20090023867A12009-01-22
GB1535038A1978-12-06
US20090159129A12009-06-25
US2930083A1960-03-29
US5614592A1997-03-25
EP2468813A12012-06-27
US20160033879W2016-05-24
US5266627A1993-11-30
US5346961A1994-09-13
US4018852A1977-04-19
Other References:
FURUKAWA K ET AL: "Rubber compsn. used for power cable accessories - contg. polyolefin, organic peroxide(s) with different half-life temps., and opt. crosslinking agent, calcium carbonate and/or graphite", WPI / THOMSON,, vol. 1997, no. 2, 29 October 1996 (1996-10-29), XP002638746
Y. C. KIM; K. S. YANG: "Effect of Peroxide Modification on Melt Fracture of Linear Low Density Polyethylene during Extrusion", POLYMER JOURNAL, vol. 31, no. 17, 1999, pages 579 - 584
G. MILANI ET AL.: "A Combined Experimental-Numerical Rheometric and Mechanical Characterization of EPMIEPDM Rubber for Medium Voltage Cable Applications Vulcanized with Peroxides", JOURNAL OF APPLIED POLYMER SCIENCE, 2014
"Introduction to Polymer Chemistry", 1962, WILEY AND SONS, pages: 149 - 151
Attorney, Agent or Firm:
PURCHASE, Claude F. (US)
Download PDF:
Claims:
CLAIMS

1 . A polyolefin formulation comprising from 60 to 99.45 weight percent (wt%) of (A) an ethylenic-based (co)polymer composition consisting essentially of an ethylenic-based (co)polymer or a combination of the ethylenic-based (co)polymer and a polypropylene polymer, with the proviso that the polypropylene polymer is from 0 to < 40 wt% of the polyolefin formulation; from 0.05 to 2.0 wt% of (B) a lower temperature decomposing organic peroxide; and from 0.5 to 5 wt% of (C) a higher temperature decomposing organic peroxide, all based on total weight of the polyolefin formulation; and wherein constituent (C) has a 10- hour half-life temperature that is greater than 1 10.0° C. and/or a 1 -hour half-life temperature that is greater than 130.0° C. and wherein the constituent (B) has a 10-hour half-life temperature that is less than or equal to 1 10.0° C. and/or a 1 -hour half-life temperature that is less than or equal to 130.0° C, all when measured according to the respective Half-Life Temperature Test Method.

2. A polyolefin formulation comprising from 60 to 99.45 weight percent (wt%) of (A) an ethylenic-based (co)polymer composition consisting essentially of an ethylenic-based (co)polymer or a combination of the ethylenic-based (co)polymer and a polypropylene polymer, with the proviso that the polypropylene polymer is from 0 to < 40 wt% of the polyolefin formulation; from 0.05 to 2.0 wt% of (B) a lower temperature decomposing organic peroxide; and from 0.5 to 5 wt% of (C) a higher temperature decomposing organic peroxide, all based on total weight of the polyolefin formulation; and wherein constituent (C) has a 10- hour half-life temperature that is greater than 10° C. higher than the 10-hour half-life temperature of the constituent (B), when measured according to Half-Life Temperature Test Method.

3. The polyolefin formulation of claim 1 or 2, further characterized by any one of limitations (i) to (xiii): (i) the 10-hour half-life temperature of the (C) higher temperature decomposing organic peroxide is at least 1 1 degrees Celsius (° C.) higher than the 10-hour half-life temperature of the (B) lower temperature decomposing organic peroxide; (ii) the 10- hour half-life temperature of the (B) lower temperature decomposing organic peroxide is from 40° to < 1 10.0° C; (iii) the 10-hour half-life temperature of the (C) higher temperature decomposing organic peroxide is from greater than 1 10.0° to 150° C. ; (iv) the 1 -hour half-life temperature of the (B) lower temperature decomposing organic peroxide is from 60° to < 130.0° C ; (v) the 1 -hour half-life temperature of the (C) higher temperature decomposing organic peroxide is from greater than 130.0° to 150° C ; (vi) both (i) and (ii); (vii) both (i) and (iii) ; (viii) both (ii) and (iii); (ix) both (i) and (iv); (x) both (i) and (v); (xi) both (iv) and (v); (xii) each of (i) to (iii); and (xiii) each of (i), (iv), and (v).

4. The polyolefin formulation of any one of claims 1 to 3 further characterized by any one of limitations (i) to (iii) : (i) from 0.1 to 1 .5 wt% of (B), alternatively from 0.2 to 1 .0 wt% of (B) ; (ii) from 0.9 to 4.5 wt% of (C), alternatively from 1 .0 to 3.0 wt% of (C) ; (iii) both (i) and (ii).

5. The polyolefin formulation of any one of claims 1 to 4 described by any one of limitations (i) to (vi): (i) the ethylenic-based (co)polymer is a polyethylene homopolymer; (ii) the ethylenic-based (co)polymer is an ethylene/alpha-olefin copolymer comprising 50 to 99.0 wt% ethylenic monomeric units and 50 to > 0 wt% (C3-C2o)alpha-°lefin-derived comonomeric units; (iii) the ethylenic-based (co)polymer is ethylene/unsaturated carboxylic ester copolymer comprising from 51 to 99.0 wt% ethylenic monomeric units and from 49 to 1 .0 wt% unsaturated carboxylic ester comonomeric units; (iv) the ethylenic-based (co)polymer composition consists essentially of the ethylenic-based (co)polymer of any one of (i) to (iii); and (v) the ethylenic-based (co)polymer composition consists essentially of a combination of the ethylenic-based (co)polymer any one of (i) to (iii) and the polypropylene polymer.

6. The polyolefin formulation of any one of claims 1 to 5 further comprising at least one additive selected from the group consisting of: from 0.05 to less than 2.0 wt% of (D) an antioxidant; from 0.05 to < 2.0 wt% of (E) an alkenyl-functional coagent; from 0.05 to < 2.0 wt% of (F) a tree retardant (e.g., a water tree retardant); from 0.05 to < 2.0 wt% of (G) a hindered amine stabilizer; and from 0.05 to < 10.0 wt% of (H) a calcined clay filler; with the proviso that the total amount of the polyolefin formulation is 100 wt%.

7. A method of making the polyolefin formulation of any one of claims 1 to 6, the method comprising mixing the (A) an ethylenic-based (co)polymer composition, (B) lower temperature decomposing organic peroxide, and (C) higher temperature decomposing organic peroxide, and any additive together to make the polyolefin formulation of any one of claims 1 to 5 and 6, respectively.

8. A method of chemically modifying the polyolefin formulation of any one of claims 1 to 6 in such a way as to modify melt viscosity thereof without completely curing the polyolefin formulation, the method comprising heating the polyolefin formulation at temperature effective for substantially decomposing the (B) lower temperature decomposing organic peroxide and ineffective for substantially decomposing the (C) higher temperature decomposing organic peroxide, thereby substantially decomposing the (B) lower temperature decomposing organic peroxide so as to modify rheology of the polyolefin formulation to give an intermediate composition having a melt viscosity that is greater than the melt viscosity of the polyolefin formulation, all without substantially decomposing the (C) higher temperature decomposing organic peroxide or completely curing the polyolefin formulation or the intermediate composition.

9. A method of curing the polyolefin formulation of any one of claims 1 to 6, the method comprising first heating the polyolefin formulation at a first temperature effective for substantially decomposing the (B) lower temperature decomposing organic peroxide and ineffective for substantially decomposing the (C) higher temperature decomposing organic peroxide, thereby substantially decomposing the (B) lower temperature decomposing organic peroxide so as to modify rheology of the polyolefin formulation to give an intermediate composition having a melt viscosity that is greater than the melt viscosity of the polyolefin formulation, all without substantially decomposing the (C) higher temperature decomposing organic peroxide or completely curing the polyolefin formulation or the intermediate composition; and second heating the intermediate composition at a second temperature that is greater than 10.0° C. higher than the second temperature and is effective for substantially decomposing the (C) higher temperature decomposing organic peroxide, thereby substantially decomposing the (C) higher temperature decomposing organic peroxide and completely cure or substantially crosslink the intermediate composition to give a crosslinked polyolefin product.

10. The method of claim 8 or the method of claim 9, independently further comprising shaping the intermediate composition to give a shaped form composed of the intermediate composition.

1 1. A crosslinked polyolefin product made by the method of curing of claim 9 or 10.

12. A manufactured article comprising a shaped form of a crosslinked polyolefin product prepared by the curing method of claim 10.

13. A coated conductor comprising a conductive core and a coating layer at least partially surrounding the conductive core and comprising the polyolefin formulation of any one of claims 1 to 6, the intermediate composition prepared by the method of claim 8, or the crosslinked polyolefin product of claim 1 1 .

14. A method of conducting electricity, the method comprising applying a voltage across the conductive core of the coated conductor of claim 13, thereby generating a flow of electricity through the conductive core.

Description:
PEROXIDE CONTAINING POLYOLEFIN FORMULATIONS

FIELD

[0001] The field includes polyolefin formulations, products made therefrom, methods of making and using same, and articles containing same.

INTRODUCTION

[0002] US 2,930,083 to J. E. Vostovich, et al. relates to extrusion of cross-linked polyethylene and process of coating wire thereby.

[0003] US 5,614,592 to R. van Drunen, et al. relates to a filler-free peroxide masterbatch and process for making it.

[0004] Y. C. Kim and K. S. Yang published Effect of Peroxide Modification on Melt Fracture of Linear Low Density Polyethylene during Extrusion, Polymer Journal, 1999, volume 31 , number 17, pages 579-584.

[0005] EP 2 468 813 A1 by P. Nylander ("Nylander") relates to a scorch resistant polyethylene composition. Specifically a cross-linkable polyethylene composition, comprising (i) an unsaturated polyethylene having a total amount of carbon-carbon double bonds/1000 carbon atoms of at least 0.1 , and (ii) a cross-linking agent mixture comprising a first and a second peroxide, wherein the first peroxide has a 10-hour-half-life-temperature which is 1 to 10 degrees Celsius higher than that of the second peroxide, and wherein said first peroxide is present in an amount of at least 8 wt% based on the total amount of the first and second peroxide of the cross-linking agent mixture. Nylander seeks to avoid premature crosslinking during extrusion [0061 ].

[0006] G. Milani, et al. published A Combined Experimental-Numerical Rheometric and Mechanical Characterization of EPM/EPDM Rubber for Medium Voltage Cable Applications Vulcanized with Peroxides, Journal of Applied Polymer Science, 2014, COI: 10.1002/APP.40075.

SUMMARY

[0007] We recognized problems that hurt the performance of hot extrusions of prior peroxide-containing polyolefin compositions (melts), such as hot extrusion of coatings for power cables. At a temperature greater than the melt temperature of the polyolefin but less than the decomposition temperature of the peroxide, during extrusion some prior compositions undergo shear-induced heating. This can undesirably cause a temperature excursion and lead to premature decomposition of the peroxide and concomitant premature crosslinking of the composition. The crosslinking may be to such an extent that the composition can no longer a satisfactory coating for power cables. Other prior compositions have zero-shear viscosities that are too low and/or low-strain extensional viscosities that are too low during hot extrusion, thereby undesirably leading to coatings that sag before they can be crosslinked in a continuous vulcanization (CV) tube. Thus, the prior compositions (as melts) undergo premature peroxide decomposition/premature crosslinking or sagging. These problems are magnified if the polyolefin is an elastomer designed for making flexible crosslinked polyolefin products such as flexible electrical insulation for use in wire and cable applications. Such polyolefin elastomers typically are synthesized with a molecular catalyst such as a metallocene or post-metallocene catalyst and are linear polymers of relatively narrow molecular weight distributions. Melts of such elastomers shear-thin poorly during extrusion as coatings on wires or conductors such that only polymers of high molecular weights (and high shear viscosities) adequately resist sag until the coatings can be crosslinked. These problems plague other processes that mix and shape melts of prior peroxide-containing polyolefin compositions, such as injection molding processes.

[0008] A technical solution to this problem is not obvious from the prior art. Inventiveness is necessary to discover a new polyolefin formulation that, when mixed and melted, exhibits a heretofore conflicting combination of low shear viscosity/low shear-induced heating and high zero-shear viscosity and/or high low-strain extensional viscosity/no sag. Ideally such a composition and process would work in the presence of one or more additives such as antioxidant, coagent, tree retardant, hindered amine stabilizer, and/or filler.

[0009] Our technical solution includes a polyolefin formulation comprising an ethylenic- based (co)polymer composition, an effective amount of a lower temperature decomposing organic peroxide, and an effective amount of a higher temperature decomposing organic peroxide. During mixing of a melt of the polyolefin formulation, the organic peroxides and amounts are chosen and the temperature of the melt is chosen such that the lower temperature decomposing peroxide may be substantially completely decomposed without substantially decomposing the higher temperature decomposing organic peroxide. This allows extrusion of a melt of the polyolefin formulation to give an intermediate composition that has a sufficiently modified rheology (e.g., modified melt viscosity) that prevents sag until it can be crosslinked. Our technical solution also includes the intermediate compositions and crosslinked polyolefin products made therefrom; methods of making and using same; and articles containing same.

[0010] The inventive polyolefin formulations and products are useful in any application in which polyethylenes are utilized, including castings, coatings, extrusions, films, laminates, molded articles, and sheets.

DETAILED DESCRIPTION

[0011] The Summary and Abstract are incorporated here by reference. [0012] During mixing and heating of the polyolefin formulation, the lower temperature decomposing organic peroxide may be substantially decomposed without substantially decomposing the higher temperature decomposing organic peroxide. This selective decomposition gives an inventive intermediate composition that has a modified rheology (e.g., modified melt viscosity) that enables shaping thereof for a particular end use whilst preventing sag thereof until the intermediate composition can be crosslinked. The higher temperature decomposing organic peroxide remains substantially undecomposed in the intermediate composition such that the intermediate composition can be shaped and cured without sag to give the inventive crosslinked polyolefin product (substantially complete crosslinking). For example, the intermediate composition may be extruded as a coating on a conductive core (e.g., wire), and the coating/conductor may be cured in a vulcanization operation in a CV tube to give a power cable comprising the conductive core and a coating of the crosslinked polyolefin product thereon.

[0013] The inventive polyolefin formulation, intermediate composition, and/or crosslinked polyolefin product may have at least one improved property relative to a comparative composition or product that contains either the lower temperature decomposing organic peroxide or the higher temperature decomposing organic peroxide, but not both. The improved property(ies) may be increased melt zero shear viscosity prior to curing and/or increased ultimate degree of crosslinking. Ultimate degree of crosslinking is the maximum extent of coupling of a given ethylenic-based (co)polymer that can be achieved under curing conditions employed such as irradiating versus peroxide/heating, peroxide composition and amount, and temperature.

[0014] Certain inventive embodiments are described below as numbered aspects for easy cross-referencing. Additional embodiments are described elsewhere herein.

[0015] Aspect 1 . A polyolefin formulation comprising from 60 to 99.45 weight percent (wt%) of (A) an ethylenic-based (co)polymer composition consisting essentially of an ethylenic- based (co)polymer or a combination of the ethylenic-based (co)polymer and a polypropylene polymer (50 to 100 wt%, alternatively 75 to 100 wt%, alternatively 95 to 100 wt% propylene comonomeric units), with the proviso that the polypropylene polymer is from 0 to < 40 wt% of the polyolefin formulation; from 0.05 to 2.0 wt% of (B) a lower temperature decomposing organic peroxide; and from 0.5 to 5 wt% of (C) a higher temperature decomposing organic peroxide, all based on total weight of the polyolefin formulation; and wherein constituent (C) has a 10-hour half-life temperature that is greater than 110.0° C. and/or a 1 -hour half-life temperature that is greater than 130.0° C. and wherein the constituent (B) has a 10-hour half-life temperature that is less than or equal to 110.0° C. and/or a 1 -hour half-life temperature that is less than or equal to 130.0° C, all when measured according to the respective Half-Life Temperature Test Method (described later). In embodiments wherein the total wt% of (A) to (C) is less than 100 wt%, the polyolefin formulation further comprises at least one additive such as constituents (D) to (I) described later. In all aspects the total weight of the polyolefin formulation is 100.00 wt%. The polyolefin formulation may be free of polyolefins other than constituent (A).

[0016] Aspect 2. A polyolefin formulation comprising from 60 to 99.45 weight percent (wt%) of (A) an ethylenic-based (co)polymer composition consisting essentially of an ethylenic- based (co)polymer or a combination of the ethylenic-based (co)polymer and a polypropylene polymer (50 to 100 wt%, alternatively 75 to 100 wt%, alternatively 95 to 100 wt% propylene comonomeric units), with the proviso that the polypropylene polymer is from 0 to < 40 wt% of the polyolefin formulation; from 0.05 to 2.0 wt% of (B) a lower temperature decomposing organic peroxide; and from 0.5 to 5 wt% of (C) a higher temperature decomposing organic peroxide, all based on total weight of the polyolefin formulation; and wherein constituent (C) has a 10-hour half-life temperature that is greater than 10° C. higher than the 10-hour half- life temperature of the constituent (B), when measured according to Half-Life Temperature Test Method (described later). In embodiments wherein the total wt% of (A) to (C) is less than 100 wt%, the polyolefin formulation further comprises at least one additive such as constituents (D) to (I) described later. In all aspects the total weight of the polyolefin formulation is 100.00 wt%. The polyolefin formulation may be free of polyolefins other than constituent (A).

[0017] Aspect 3. The polyolefin formulation of aspect 1 or 2, further characterized by any one of limitations (i) to (xiii) : (i) the 10-hour half-life temperature of the (C) higher temperature decomposing organic peroxide is at least 1 1 degrees Celsius (° C), alternatively at least 13° C, alternatively at least 15° C, alternatively at least 17° C, alternatively at least 20.0° C. higher than the 10-hour half-life temperature of the (B) lower temperature decomposing organic peroxide; (ii) the 10-hour half-life temperature of the (B) lower temperature decomposing organic peroxide is from 40° to < 1 10.0° C, alternatively from 60° to 109° C, alternatively from 80° to 109° C, alternatively from 85° to 105° C, alternatively from 90° to 100° C ; (iii) the 10-hour half-life temperature of the (C) higher temperature decomposing organic peroxide is from greater than 1 10.0° to 150° C, alternatively from greater than 1 1 1 ° to 140° C, alternatively from greater than 1 12° to 130° C , alternatively from greater than 1 15.0° to 125° C, alternatively from greater than 1 16° to 120° C ; (iv) the 1 -hour half-life temperature of the (B) lower temperature decomposing organic peroxide is from 60° to < 130.0° C, alternatively from 90° to 129° C, alternatively from 1 10° to 120° C, alternatively from 1 1 1 ° to 1 19° C ; (v) the 1 -hour half-life temperature of the (C) higher temperature decomposing organic peroxide is from greater than 130.0° to 150° C, alternatively from greater than 131 ° to 140° C, alternatively from greater than 132° to 140° C, alternatively from greater than 135.0° to 139° C ; (vi) both (i) and (ii) ; (vii) both (i) and (iii); (viii) both (ii) and (iii) ; (ix) both (i) and (iv) ; (x) both (i) and (v); (xi) both (iv) and (v); (xii) each of (i) to (iii); and (xiii) each of (i), (iv), and (v). In principle an embodiment of the (B) lower temperature decomposing organic peroxide may have a 10-hour half-life temperature that is lower than 40° C. and an embodiment of the (C) higher temperature decomposing organic peroxide may have a 10-hour half-life temperature that is higher than 150° C.

[0018] Aspect 4. The polyolefin formulation of any one of aspects 1 to 3 further characterized by any one of limitations (i) to (iii): (i) from 0.1 to 1 .5 wt% of (B), alternatively from 0.2 to 1 .0 wt% of (B); (ii) from 0.9 to 4.5 wt% of (C), alternatively from 1 .0 to 3.0 wt% of (C); (iii) both (i) and (ii).

[0019] Aspect 5. The polyolefin formulation of any one of aspects 1 to 4 described by any one of limitations (i) to (v) : (i) the ethylenic-based (co)polymer is a polyethylene homopolymer; (ii) the ethylenic-based (co)polymer is an ethylene/alpha-olefin copolymer comprising 50 to 99.0 wt% ethylenic monomeric units and 50 to > 0 wt% (C3-C2o)alpha- olefin-derived comonomeric units; (iii) the ethylenic-based (co)polymer is ethylene/unsaturated carboxylic ester copolymer comprising from 51 to 99.0 wt% ethylenic monomeric units and from 49 to 1 .0 wt% unsaturated carboxylic ester comonomeric units; (iv) the ethylenic-based (co)polymer composition consists essentially of the ethylenic-based (co)polymer of any one of (i) to (iii) ; and (v) the ethylenic-based (co)polymer composition consists essentially of a combination of the ethylenic-based (co)polymer any one of (i) to (iii) and the polypropylene polymer.

[0020] Aspect 6. The polyolefin formulation of any one of aspects 1 to 5 further comprising at least one additive selected from the group consisting of: from 0.05 to less than 2.0 wt% of

(D) an antioxidant; from 0.05 to < 2.0 wt% of (E) an alkenyl-functional coagent; from 0.05 to

< 2.0 wt% of (F) a tree retardant (e.g., a water tree retardant); from 0.05 to < 2.0 wt% of (G) a hindered amine stabilizer; and from 0.05 to < 10.0 wt% of (H) a calcined clay filler; with the proviso that the total amount of the polyolefin formulation is 100 wt%. In some aspects the polyolefin formulation does not comprise the polypropylene polymer and further comprises the (D) antioxidant; (E) alkenyl-functional coagent; (F) tree retardant; (G) hindered amine stabilizer; and (H) calcined clay filler. In some aspects the polyolefin formulation comprises the polypropylene polymer and further comprises the (D) antioxidant; (E) alkenyl-functional coagent; (F) tree retardant; (G) hindered amine stabilizer; and (H) calcined clay filler.

[0021] Aspect 7. A method of making the polyolefin formulation of any one of aspects 1 to

6, the method comprising mixing the (A) an ethylenic-based (co)polymer, (B) lower temperature decomposing organic peroxide, and (C) higher temperature decomposing organic peroxide, and any additive together to make the polyolefin formulation of any one of aspects 1 to 5 and 6, respectively.

[0022] Aspect 8. A method of chemically modifying the polyolefin formulation of any one of aspects 1 to 6 in such a way as to modify melt viscosity thereof without completely curing the polyolefin formulation, the method comprising heating the polyolefin formulation at temperature effective for substantially decomposing the (B) lower temperature decomposing organic peroxide and ineffective for substantially decomposing the (C) higher temperature decomposing organic peroxide, thereby substantially decomposing the (B) lower temperature decomposing organic peroxide so as to modify rheology of the polyolefin formulation to give an intermediate composition having a melt viscosity that is greater than the melt viscosity of the polyolefin formulation, all without substantially decomposing the (C) higher temperature decomposing organic peroxide or completely curing the polyolefin formulation or the intermediate composition.

[0023] Aspect 9. A method of curing the polyolefin formulation of any one of aspects 1 to 6, the method comprising first heating the polyolefin formulation at a first temperature effective for substantially decomposing the (B) lower temperature decomposing organic peroxide and ineffective for substantially decomposing the (C) higher temperature decomposing organic peroxide, thereby substantially decomposing the (B) lower temperature decomposing organic peroxide so as to modify rheology of the polyolefin formulation to give an intermediate composition having a melt viscosity that is greater than the melt viscosity of the polyolefin formulation, all without substantially decomposing the (C) higher temperature decomposing organic peroxide or completely curing the polyolefin formulation or the intermediate composition; and second heating the intermediate composition at a second temperature that is greater than 10.0° C. higher than the second temperature and is effective for substantially decomposing the (C) higher temperature decomposing organic peroxide, thereby substantially decomposing the (C) higher temperature decomposing organic peroxide and completely cure or substantially crosslink the intermediate composition to give a crosslinked polyolefin product. The curing step involves heating for long enough at a sufficiently high temperature (typically greater than or equal to 150° C.) in order to substantially decompose the (C) higher temperature decomposing organic peroxide.

[0024] Aspect 10. The method of aspect 8 or the method of aspect 9, independently further comprising shaping the intermediate composition to give a shaped form composed of the intermediate composition. The shaping step is done before the second heating step of aspect 9. In some aspects the shaping comprises coating, drawing, extruding, molding, or pressing the intermediate composition and the shaped form made thereby comprises a coating, a drawn article, an extruded article, a molded article, or a pressed article. The second heating step of aspect 9 gives the shaped form as the crosslinked polyolefin product. In some aspects the 10-hour and/or 1 -hour half-life temperature of each of constituents (B) and (C) of the polyolefin formulation may be chosen to be especially useful for hot extrusion of coatings of the intermediate composition on conductive cores for power cables. Temperature used for hot extrusion of such coatings for power cables may be from 130° to 150° C. Extrusion conditions may also include die dimensions and extrusion rates. The second heating step may be done without sagging of the coating of the intermediate composition prior to curing the same in a CV tube to give a coated conductor.

[0025] Aspect 1 1 . A crosslinked polyolefin product made by the method of curing of aspect 9 or 10.

[0026] Aspect 12. A manufactured article comprising a shaped form of a crosslinked polyolefin product prepared by the curing method of aspect 1 1 . In some aspects the manufactured article is selected from: coatings, films, sheets, and injection molded articles. E.g., coatings of power cables, agricultural film, food packaging, garment bags, grocery bags, heavy-duty sacks, industrial sheeting, pallet and shrink wraps, bags, buckets, freezer containers, lids, and toys.

[0027] Aspect 13. A coated conductor comprising a conductive core and a coating layer at least partially surrounding the conductive core and comprising the polyolefin formulation of any one of aspects 1 to 6, the intermediate composition prepared by the method of aspect 8, or the crosslinked polyolefin product of aspect 11 . The coated conductor may be made by an extrusion embodiment of the method of aspect 10.

[0028] Aspect 14. A method of conducting electricity, the method comprising applying a voltage across the conductive core of the coated conductor of aspect 13, thereby generating a flow of electricity through the conductive core.

[0029] Any numbered aspect may be amended by any one limitation of a later Example.

[0030] The term "coagent" means a compound that enhances crosslinking, i.e., a curing coagent. Typical coagents are acyclic or cyclic compounds that contain carbon atoms in their respective backbone or ring substructure. Thus, the backbone or ring substructure of the conventional coagent is based on carbon (carbon-based substructure).

[0031] The term "(co)polymer" is a condensed form of "homopolymer or copolymer". A homopolymer is a macromolecule composed of monomeric units derived from only one monomer and no comonomer. A copolymer is a macromolecule or collection of macromolecules having monomeric units, made by polymerizing a monomer, and one or more different types of comonomeric units, made by polymerizing one or more different comonomers. Monomers and comonomers are polymerizable molecules. A monomeric unit, also called a monomer unit or "mer", is the largest constitutional unit contributed by (derived from) a single monomer molecule to the structure of the macromolecule(s). A comonomeric unit, also called a comonomer unit or "comer", is the largest constitutional unit contributed by (derived from) a single comonomer molecule to the structure of the macromolecule(s). Each unit is typically divalent. A "bipolymer" is a copolymer made from a monomer and one comonomer. A "terpolymer" is a copolymer made from a monomer and two different comonomers. An ethylenic-based copolymer is such a copolymer wherein the monomeric units are derived from the monomer ethylene (CH2=CH2) and comprise on average per molecule, at least 50 weight percent, and the comonomeric units are derived from one or more comonomers described herein and comprise on average per molecule, from > 0 to at most 50 weight percent, of the macromolecules.

[0032] The terms "curing" and "crosslinking" are used interchangeably herein to mean forming a crosslinked product (network polymer).

[0033] The term "ethylenic-based (co)polymer" means a macromolecule containing from 50 to 100 wt% repeat units derived from H2C=CH2 and from 50 to 0 wt%, respectively, of one or more comonomers selected from (C3-C2o)alpha-°lefi n s, vinyl acetate, and alkyl acrylates and being free of a polypropylene polymer. The ethylenic-based (co)polymer may be a polyethylene homopolymer having 100 wt% ethylenic monomeric units and 0 wt% comonomeric units or an ethylene/comonomer copolymer having > 50 to < 100 wt% ethylenic monomeric units and > 0 to < 50 wt%, alternatively 1 to < 50 wt%, alternatively 5 to < 50 wt% comonomeric units.

[0034] The terms "lower" and "higher" modifying the expression "temperature decomposing organic peroxide" are relative to each other.

[0035] The term "(meth)acrylate" includes acrylate, methacrylate, and a combination thereof. The (meth)acrylate may be unsubstituted.

[0036] As described above, rheology of the intermediate composition, in melt form, is modified relative to rheology of the polyolefin formulation, in melt form, from which it is made.

The relative extent of rheology modification may be characterized by the Dynamic Oscillatory

Shear Viscosity Test Method and/or the Extensional Viscosity Test Method and/or the Zero

Shear Viscosity Test Method, described later. In some aspects the characterization is by the

Dynamic Oscillatory Shear Viscosity Test Method and/or the Zero Shear Viscosity Test

Method, alternatively the Dynamic Oscillatory Shear Viscosity Test Method and its V100 and/or V0.1/V100 test values measured at 135° C. For comparison purposes, the characterization may be performed on embodiments of the polyolefin formulation consisting of constituents (A), (B), and (C), and embodiments of the intermediate composition prepared therefrom. For comparison purposes, the characterization may be performed after subjecting the embodiments of the polyolefin formulation consisting of constituents (A), (B), and (C) to rheology modification at a given melt mixing temperature (e.g., 135° C.) for a time period calculated to be equal to at least six times (6x) or more of the half-life of the (B) lower temperature decomposing organic peroxide, wherein for calculating the time period (not for doing the rheology modification) the half-life of (B) is measured in dodecane at that temperature (e.g., 135° C), thereby giving the intermediate composition, which is rheology modified. The time period may be calculated to be equal to at least 6x, alternatively at least 12 times (12x), alternatively at least 18 times (18x) the half-life of the (B) in dodecane at that temperature; and at most 60 times (60x), alternatively at most 45 times (45x), alternatively at most 30 times (30x) the half-life of the (B) in dodecane at that temperature.

[0037] The extent of thermally irreversible bonds formed between molecules of the polyolefin formulation to give the intermediate composition is measurably less than the extent of thermally irreversible bonds formed between molecules of the intermediate composition to give the crosslinked polyolefin product. This difference may be characterized by the Gel Content Test Method, described later. In general, the higher the gel content the greater the extent of thermally irreversible bonds formed between molecules, and vice versa. The intermediate composition may have a gel content (insoluble fraction) of from 0% to less than (<) 40%, alternatively from 0% to < 30%, alternatively from 0% to < 20%, alternatively from 0% to < 10%, alternatively from 0% to < 5%, alternatively from 0% to < 1 %, alternatively from greater than (>) 0% to less than (<) 40%, alternatively from > 0% to < 30%, alternatively from

> 0% to < 20%, alternatively from > 0% to < 10%, alternatively from > 0% to < 5%, alternatively from > 0% to < 1 %. In some aspects the intermediate composition may have a minimum gel content of 0%, alternatively 0.01 %, alternatively 0.05%, alternatively 0.1 %. The crosslinked polyolefin product may have a gel content (insoluble fraction) of from greater than or equal to (>) 40% to 100%, alternatively from > 50% to 100%, alternatively from > 60% to 100%, alternatively from > 70% to 100%, alternatively > 40% to < 100%, alternatively from

> 50% to < 100%, alternatively from > 60% to < 100%, alternatively from > 70% to < 100%. In some aspects the crosslinked polyolefin product may have a maximum gel content of 99%, alternatively 95%, alternatively 90%. The foregoing gel contents are characterized by the Gel Content Test Method.

[0038] The constituent (A) ethylenic-based (co)polymer composition: a single phase or multiphase, uniform or non-uniform, continuous phase or discontinuous phase, crosslinkable macromolecule composed of repeat units made from ethylene monomer and optionally one or more olefin-functional comonomers, wherein the macromolecule has a backbone consisting essentially of, or consisting of carbon atoms, or a collection of such crosslinkable macromolecules, which yield a network structure upon being crosslinked. The (A) may be a polyethylene homopolymer containing repeat units derived from ethylene or an ethylene/alpha-olefin interpolymer, also referred to as a copolymer, containing repeat units derived from ethylene and repeat units derived from an alpha-olefin comonomer, which is different than ethylene. Interpolymer includes bipolymers, terpolymers, etc.

[0039] The (A) ethylenic-based (co)polymer composition may be a polyethylene homopolymer containing 99 to 100 wt% ethylenic monomeric units. The polyethylene homopolymer may be high density polyethylene (HDPE) homopolymer made by coordination polymerization or a low density polyethylene (LDPE) homopolymer made by radical polymerization.

[0040] Alternatively, The (A) ethylenic-based (co)polymer composition may be an ethylene/alpha-olefin copolymer containing 50 to < 100 wt% ethylenic monomeric units and 50 to 0 wt% (C3-C2o)alpha-°lefi n -derived comonomeric units. The ethylene/alpha-olefin copolymer embodiment of (A) ethylene/alpha-olefin copolymer may be a linear low density polyethylene (LLDPE), medium density polyethylene (MDPE), or high density polyethylene (HDPE). Alternatively, the polyolefin polymer may be a low density polyethylene (LDPE). The ethylene/alpha-olefin ("a-olefin") interpolymer having an a-olefin content of at least 1 wt%, at least 5 wt%, at least 10 wt%, at least 15 wt%, at least 20 wt%, or at least 25 wt% based on the entire interpolymer weight. These interpolymers can have an alpha-olefin content of less than 50 wt%, less than 45 wt%, less than 40 wt%, or less than 35 wt% based on the entire interpolymer weight. Illustrative ethylene/a-olefin interpolymers are ethylene/propylene, ethylene/1 -butene, ethylene/1 -hexene, ethylene/1 -octene, ethylene/diene containing from 20 to 1 wt% diene comonomeric units, ethylene/propylene/1 -octene, ethylene/propylene/1 - butene, ethylene/1 -butene/1 -octene, ethylene/propylene/diene (EPDM) containing 50 to 100 wt% ethylene monomeric units, 49 to > 0 wt% of propylene comonomeric units, and 20 to 1 wt% diene comonomeric units. The diene used to make the diene comonomeric units in the ethylene/diene copolymer or in EPDM independently may be 1 ,3-butadiene, 1 ,5-hexadiene, 1 ,7-octadiene, ethylidene norbornene, dicyclopentadiene, vinyl norbornene, or a combination of any two or more thereof.

[0041] The (C3-C2o)alpha-olefin of the ethylene/alpha-olefin copolymer aspect of the (A) ethylenic-based (co)polymer composition may be a compound of formula (I): H2C=C(H)-R (I), wherein R is a straight chain (C-| -C-| 8)alkyl group. (C-| -C-| 8)alkyl group is a monovalent unsubstituted saturated hydrocarbon having from 1 to 18 carbon atoms. Examples of R are methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, and octadecyl. In some embodiments the (C3-C2o)alpha-olefin is 1 -propene, 1 -butene, 1 -hexene, or 1 -octene; alternatively 1 -butene, 1 -hexene, or 1 -octene; alternatively 1 -butene or 1 -hexene; alternatively 1 -butene or 1 -octene; alternatively 1 -hexene or 1 -octene; alternatively 1 -butene; alternatively 1 -hexene; alternatively 1 -octene; alternatively a combination of any two of 1 - butene, 1 -hexene, and 1 -octene. Alternatively, the alpha-olefin may have a cyclic structure such as cyclohexane or cyclopentane, resulting in an a-olefin such as 3-cyclohexyl-1 - propene (allyl cyclohexane) and vinyl cyclohexane. The (C3-C2o)alpha-olefin may be used as a comonomer with ethylene monomer.

[0042] The (A) ethylenic-based (co)polymer composition may consist essentially of the crosslinkable ethylene/unsaturated carboxylic ester copolymer or the combination of the crosslinkable ethylene/unsaturated carboxylic ester copolymer and a polypropylene polymer.

[0043] The crosslinkable ethylene/unsaturated carboxylic ester copolymer embodiment of the copolymer embodiment of the ethylenic-based (co)polymer of the (A) ethylenic-based (co)polymer composition is made by copolymerizing ethylene monomer and at least one unsaturated carboxylic ester comonomer. Each unsaturated carboxylic ester comonomer may independently have hydrogen atoms and from 3 to 20 carbon atoms per molecule, i.e., be a (C3-C2o)unsaturated carboxylic ester comonomer. In some aspects the unsaturated carboxylic ester comonomer may be a vinyl (C2-C8)carboxylate and the crosslinkable ethylene/unsaturated carboxylic ester copolymer is an ethylene— vinyl (C2-C8)carboxylate copolymer, which may have a vinyl (C2-C8)carboxylate comonomeric content from > 0 to <

3.5 wt%, alternatively from > 0 to 3.0 wt%, alternatively from > 0 to 2.0 wt%, alternatively from 0.5 to 2.0 wt% based on total weight of the ethylene— vinyl (C2-C8)carboxylate copolymer. In some aspects the vinyl (C2-C8)carboxylate is a vinyl ester of a carboxylic acid anion having from 2 to 8 carbon atoms, alternatively 2 to 4 carbon atoms. The vinyl (C2-

C8)carboxylate may be a vinyl (C2-C4)carboxylate such as vinyl acetate, vinyl propionate, or vinyl butanoate and the crosslinkable ethylene/unsaturated carboxylic ester copolymer may be an ethylene-vinyl (C2-C4)carboxylate bipolymer, alternatively an ethylene-vinyl acetate (EVA) bipolymer, alternatively an ethylene-vinyl propionate bipolymer, alternatively an ethylene-vinyl butanoate bipolymer. The EVA bipolymer consists essentially of ethylene- derived monomeric units and vinyl acetate-derived comonomeric units. The vinyl acetate comonomeric unit content of the EVA bipolymer may be from > 0 to < 3.5 wt%, alternatively from > 0 to 3.0 wt%, alternatively from > 0 to 2.0 wt%, alternatively from 0.5 to 2.0 wt% based on total weight of the EVA bipolymer. The wt% values are on average per molecule of the EVA. Alternatively or additionally, the (A) (e.g., EVA bipolymer) may have a melt index (190° C, 2.16 kg) of from 2 to 60 g/10 min., alternatively 5 to 40 g/10 min. measured according to ASTM D1238-04. [0044] In some aspects the unsaturated carboxylic ester comonomer used to make the crosslinkable ethylene/unsaturated carboxylic ester copolymer embodiment of the copolymer embodiment of the ethylenic-based (co)polymer of the (A) ethylenic-based (co)polymer composition may be a (C-| -C8)alkyl (meth)acrylate and the crosslinkable ethylene/unsaturated carboxylic ester copolymer is an ethylene— (C-| -C8)alkyl

(meth)acrylate copolymer (EAA), which may have a (C-| -C8)alkyl (meth)acrylate comonomeric content from > 0 to < 3.5 wt%, alternatively from > 0 to 3.0 wt%, alternatively from > 0 to 2.0 wt%, alternatively from 0.5 to 2.0 wt%, based on total weight of the ethylene- (C-| -C8)alkyl (meth)acrylate copolymer. In some aspects the (C-| -C8)alkyl may be a (C-| -

C4)alkyl, (C5-C8)alkyl, or (C2-C4)alkyl. The EAA consists essentially of ethylene-derived monomeric units and one or more different types of (C-| -C8)alkyl (meth)acrylate-derived comonomeric units such as ethyl acrylate and/or ethyl methacrylate comonomeric units. The (C-| -C8)alkyl may be methyl, ethyl, 1 , 1 -dimethylethyl, butyl, or 2-ethylhexyl. The

(meth)acrylate may be acrylate, methacrylate, or a combination thereof. The (C-| -C8)alkyl

(meth)acrylate may be ethyl acrylate and the EAA may be ethylene-ethyl acrylate copolymer (EEA) or the (C-| -Cs)alkyl (meth)acrylate may be ethyl methacrylate and the EAA may be ethylene-ethyl methacrylate copolymer (EEMA). The ethyl acrylate or ethyl methacrylate comonomeric unit content of EEA or EEMA, respectively, may independently be from > 0 to < 3.5 wt%, alternatively from > 0 to 3.0 wt%, alternatively from > 0 to 2.0 wt%, alternatively from 0.5 to 2.0 wt% based on total weight of the EEA or EEMA bipolymer.

[0045] In some aspects the comonomer used to make the copolymer embodiment of the ethylenic-based (co)polymer of the (A) ethylenic-based (co)polymer composition may further include an olefin-functional hydrolyzable silane such as the hydrolyzable silane monomer of paragraph [0019] of WO 2016/200600 A1 (PCT/US16/033879 filed May 24, 2016) to Chaudhary; or of US 5,266,627 to Meverden et al. The olefin-functional hydrolyzable silane may be grafted (post-reactor) onto the copolymer embodiment of the ethylenic-based (co)polymer of the (A). Alternatively, the olefin-functional hydrolyzable silane may be copolymerized with ethylene and the comonomer to directly make the copolymer embodiment of the ethylenic-based (co)polymer containing hydrolyzable silyl groups. In some aspects the olefin-functional hydrolyzable silane is vinyltrimethoxysilane (VTMS), vinyltriethoxysilane (VTES), vinyltriacetoxysilane, or gamma-(meth)acryloxy propyl trimethoxy silane and the hydrolyzable silyl groups are 2-trimethoxysilylethyl, 2- triethoxysilylethyl, 2-triacetoxysilylethyl, or 3-trimethoxysilylpropyloxycarbonylethyl or 3- trimethoxysilylpropyloxycarbonylpropyl. [0046] The (A) ethylenic-based (co)polymer composition may be free of a polypropylene polymer. Alternatively the (A) ethylenic-based (co)polymer composition may further comprise a polypropylene polymer containing 99 to 100 wt% propylenic monomeric units; alternatively a propylene/ethylene copolymer containing 50 to < 100 wt% propylenic monomeric units and 50 to 0 wt% ethylenic comonomeric units; alternatively a propylene/ethylene/diene (EPDM) copolymer containing 50 to < 100 wt% propylenic monomeric units, 49 to > 0 wt% of ethylenic units, and 20 to 1 wt% dienic comonomeric units. The diene used to make the dienic comonomeric units may be 1 ,3-butadiene, 1 ,5-hexadiene, 1 ,7-octadiene, ethylidene norbornene, dicyclopentadiene, or vinyl norbornene.

[0047] The (A) ethylenic-based (co)polymer composition may be a blend of two or more different ethylenic-based (co)polymers or a reactor product of polymerization reactions with two or more different catalysts. The (A) ethylenic-based (co)polymer composition may be made in two or more reactors, such as ELITE™ polymers from The Dow Chemical Company.

[0048] The (A) ethylenic-based (co)polymer composition may be made by any suitable process, many of which are well-known in the art. Any conventional or hereafter discovered production process for producing polyolefin polymers may be employed for preparing the (A). Typically the production process comprises one or more polymerization reactions. For example, the ethylenic-based (co)polymer may be a LDPE, which may be prepared using a high pressure polymerization process. Alternatively, the ethylenic-based (co)polymer may be prepared using a coordination polymerization process conducted using one or more polymerization catalysts such as Ziegler-Natta, chromium oxide, metallocene, post- metallocene catalysts. Suitable temperatures are from 0° to 250° C, or 30° or 200° C. Suitable pressures are from atmospheric pressure (101 kPa) to 10,000 atmospheres (approximately 1 ,013 MegaPascals ("MPa")). In most polymerization reactions, the molar ratio of catalyst to polymerizable olefins (monomer/comonomer) employed is from 10 ~12 :1 to 10 "1 :1 , or from 10 9 :1 to 10 5 :1 .

[0049] Polymerization methods suitable for making the crosslinkable ethylene/unsaturated carboxylic ester copolymer embodiment of the copolymer embodiment of the ethylenic- based (co)polymer of the (A) ethylenic-based (co)polymer composition are generally well- known. The crosslinkable ethylene/unsaturated carboxylic ester copolymer may be made by copolymerizing ethylene and one or more unsaturated carboxylic ester comonomers in a reactor at low pressure or high pressure (e.g., without catalyst) to give the crosslinkable ethylene/unsaturated carboxylic ester copolymer. Alternatively, the crosslinkable ethylene/unsaturated carboxylic ester copolymer may be made by a post-reactor grafting method such as reactive extrusion of a polyethylene with a comonomer such as the unsaturated carboxylic ester, optionally initiated or accelerated with peroxides or catalysts, to make a graft copolymer form of the crosslinkable ethylene/unsaturated carboxylic ester copolymer.

[0050] The (A) ethylenic-based (co)polymer composition may be in a bulk form of granules or pellets. The amount of the (A) ethylenic-based (co)polymer composition in the polyolefin formulation may be from 60 to 99.45 wt%, alternatively from 75 to 99.45 wt%, alternatively from 80 to 99.00 wt%, alternatively from 85 to 99.00 wt%, alternatively from 90 to 98 wt%, all based on the total weight of the polyolefin formulation.

[0051] The constituent (B) lower temperature decomposing organic peroxide and the constituent (C) higher temperature decomposing organic peroxide may independently be a monoperoxide of formula RO-O-O-RO or a diperoxide of formula RO-O-O-R-O-O-RO wherein each RO is a (C-| -C2o)alkyl group, a (C-| -C2o)alkyl-C(=0)- group, a (C-| -C2o)alkyl- 0-C(=0)- group, or a (C6-C-| o)a r yl group and R is a divalent group that is a (C2- C-| o)alkylene, a -C(=0)-(C2-Ci o)alkylene, -C(=0)-(C2-C-| o)alkylene-C(=0)-, a (C3- C6)cycloalkylene, or phenylene; with the proviso (a) or (b) : proviso (a) is constituent (B) is free of a -OOH group and has a 10-hour half-life temperature that is less than or equal to 1 10.0° C. and/or a 1 -hour half-life temperature that is less than or equal to 130.0° C. and constituent (C) is free of a -OOH group and has a 10-hour half-life temperature that is greater than 1 10.0° C. and/or a 1 -hour half-life temperature that is greater than 130.0° C ; or proviso (b) is constituent (C) has a 10-hour half-life temperature that is greater than 10° C. higher than the 10-hour half-life temperature of the constituent (B); wherein the half-life temperatures are measured according to the Half-Life Temperature Test Method described later.

[0052] In some aspects the (B) lower temperature decomposing organic peroxide has a 10- hour half-life temperature that is less than or equal to 1 10.0° C. or a 1 -hour half-life temperature that is less than or equal to 130.0° C. In some aspects (B) has 10-hour half-life temperature that is less than or equal to 1 10.0° C. and a 1 -hour half-life temperature that is less than or equal to 130.0° C. In some aspects (B) is a monoperoxide that is (name and [CAS number]) : diisobutyryl peroxide [3437-84-1 ]; cumyl peroxyneodecanoate [26748-47-0]; di(3-methoxybutyl) peroxydicarbonate [52238-68-3]; 1 ,1 ,3,3-tetramethylbutyl peroxyneodecanoate [51240-95-0]; cumyl peroxyneoheptanoate [130097-36-8]; tert-amyl peroxyneodecanoate [68299-16-1 ]; a mixture of peroxydicarbonates [78350-78-4, 19910- 65-7, and 105-65-6]; di-sec-butyl peroxydicarbonate [19910-65-7]; diisopropyl peroxydicarbonate [105-64-6]; di(4-tert-butylcyclohexyl) peroxydicarbonate [15520-1 1 -3]; di(2-ethylhexyl) peroxydicarbonate [161 1 1 -62-9]; tert-butyl peroxyneodecanoate [26748-41 - 4]; dibutyl peroxydicarbonate [16215-49-9]; dicetyl peroxydicarbonate [26322-14-5]; dimyristyl peroxydicarbonate [53220-22-7]; 1 ,1 ,3,3-tetramethylbutyl peroxypivalate [22288- 41 -1 ]; tert-butyl peroxyneoheptanoate [26748-38-9]; tert-amyl peroxypivalate [29240-17-3]; tert-butyl peroxypivalate [927-07-1 ]; di(3,5,5-trimethylhexanoyl) peroxide [3851 -87-4]; dilauroyl peroxide [105-74-8]; didecanoyl peroxide [762-12-9]; 1 ,1 ,3,3-tetramethylbutyl peroxy-2-ethylhexanoate [22288-43-3]; tert-amyl peroxy-2-ethylhexanoate [686-31 -7]; dibenzoyl peroxide [94-36-0]; tert-butyl peroxy-2-ethylhexanoate [3006-82-4]; tert-butyl peroxydiethylacetate [2550-33-6]; tert-butyl peroxyisobutyrate [109-13-7]; tert-amylperoxy 2- ethylhexyl carbonate [70833-40-8]; tert-amyl peroxyacetate [690-83-5]; tert-butyl peroxy- 3,5,5-trimethylhexanoate [13122-18-4]; tert-butylperoxy isopropyl carbonate [2372-21 -6]; tert-butylperoxy 2-ethylhexyl carbonate [34443-12-4]; tert-amyl peroxybenzoate [451 1 -39-1 ]; tert-butyl peroxyacetate [107-71 -1]; tert-butyl peroxybenzoate [614-45-9]; or a combination of any two thereof. In some aspects the (B) is a diperoxide that is (name and [CAS number]): 2,5-dimethyl-2,5-di(2-ethylhexanoylperoxy)hexane [13052-09-0]; 1 ,1 -di(tert-butylperoxy)- 3,3,5-trimethylcyclohexane [6731 -36-8]; 1 ,1 -di(tert-amylperoxy)cyclohexane [15667-10-4]; 1 ,1 -di(tert-butylperoxy)cyclohexane [3006-86-8]; 2,2-di(tert-butylperoxy)butane [2167-23-9]; butyl 4,4-di(tert-butylperoxy)valerate [995-33-5] ; or a combination of any two thereof. In some aspects (B) is a combination of any one of the aforenamed monoperoxides and any one of the aforenamed diperoxides. The aforenamed (B) are commercially available (e.g., from AkzoNobel and/or Gelest Inc.)

[0053] In some aspects the (C) higher temperature decomposing organic peroxide has a 10- hour half-life temperature that is greater than 1 10.0° C. or a 1 -hour half-life temperature that is greater than 130.0° C. In some aspects the (C) higher temperature decomposing organic peroxide has a 10-hour half-life temperature that is greater than 1 10.0° C. and a 1 -hour half- life temperature that is greater than 130.0° C. In some aspects (C) is a monoperoxide that is (name and [CAS number]): dicumyl peroxide [80-43-3]; tert-butyl cumyl peroxide [3457-61 - 2]; di-tert-butyl peroxide [1 10-05-4]; 3,3,5,7,7-pentamethyM ,2,4-trioxepane [215877-64-8]; or a combination of any two thereof. In some aspects the (C) is a diperoxide that is (name and [CAS number]): a di(tert-butylperoxyisopropyl)benzene [25155-25-3] (a single regioisomer or a mixture of two or three regioisomers); 2,5-dimethyl-2,5-di(tert- butylperoxy)hexane [78-63-7]; 2,5-dimethyl-2,5-di(tert-butylperoxy)hexyne-3 [1068-27-5]; 3, 6, 9-triethyl-3, 6, 9-trimethyl-1 ,4,7-triperoxonane [24748-23-0]; or a combination of any two thereof. In some aspects (C) is a combination of any one of the aforenamed monoperoxides and any one of the aforenamed diperoxides. The aforenamed (C) are commercially available (e.g., from AkzoNobel and/or Gelest Inc.)

[0054] The optional constituent (D) antioxidant: an organic molecule that inhibits oxidation, or a collection of such molecules. The (D) antioxidant functions to provide antioxidizing properties to the polyolefin composition and/or crosslinked polyolefin product. Examples of suitable (D) are bis(4-(1 -methyl-1 -phenylethyl)phenyl)amine (e.g., NAUGARD 445); 2,2'- methylene-bis(4-methyl-6-t-butylphenol) (e.g., VANOX MBPC); 2,2'-thiobis(2-t-butyl-5- methylphenol (CAS No. 90-66-4; 4,4 ' -thfobis(2-t~bLsty ~5~!Tfethylphenol) (also known as 4,4'- thiobis(6-tert-butyl-m-cresol), CAS No. 96-69-5, commercially LOWINOX TBM-6) ; 2,2'- thiobis(6-t-butyl-4-methylphenol (CAS No. 90-66-4, commercially LOWINOX TBP-6) ; tris[(4- tert-butyl-3-hydroxy-2,6-dimethylphenyl)methyl]-1 ,3,5-triazine-2,4,6-trione (e.g., CYANOX 1790) ; pentaerythritol tetrakis(3-(3,5-bis(1 , 1 -dimethylethyl)-4-hydroxyphenyl)propionate (e.g. , I RGANOX 1010, CAS Number 6683-19-8); 3,5-bis(1 ,1 -dimethylethyl)-4- hydroxybenzenepropanoic acid 2,2'- thiodiethanediyl ester (e.g., IRGANOX 1035, CAS Number 41484-35-9); distearyl thiodipropionate ("DSTDP") ; dilauryl thiodipropionate (e.g., IRGANOX PS 800): stearyl 3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate (e.g., IRGANOX 1076) ; 2,4-bis(dodecylthiomethyl)-6-methylphenol (I RGANOX 1726); 4,6- bis(octylthiomethyl)-o-cresol (e.g. IRGANOX 1520); and 2',3-bis[[3-[3,5-di-tert-butyl-4- hydroxyphenyl]propionyl]] propionohydrazide (I RGANOX 1024). In some aspects (D) is4,4'- thiobis(2~t-butyl-5-methyiphenoi) (also known as 4,4'-thiobis(6-tert-butyl-m-cresol) ; 2,2'- thiobis(6-t-butyl-4-methylphenol; tris[(4-tert-butyl-3-hydroxy-2,6-dimethylphenyl)methyl]- 1 ,3,5-triazine-2,4,6-trione; distearyl thiodipropionate; or dilauryl thiodipropionate; or a combination of any two or more thereof. The combination may be tris[(4-tert-butyl-3-hydroxy- 2,6-dimethylphenyl)methyl]-1 ,3,5-triazine-2,4,6-trione and distearyl thiodipropionate. In some aspects the polyolefin formulation and crosslinked polyolefin product is free of (D) antioxidant. When present, the (D) antioxidant may be from 0.01 to 1 .5 wt%, alternatively 0.05 to 1 .2 wt%, alternatively 0.1 to 1 .0 wt% of the polyolefin formulation.

[0055] The optional constituent (E) alkenyl-functional coagent: a molecule that contains a backbone or ring substructure and two or more propenyl, acrylate, and/or vinyl groups bonded thereto, wherein the substructure is composed of carbon atoms and optionally nitrogen atoms, or a collection of such molecules. The (E) alkenyl-functional coagent may be free of silicon atoms. The (E) alkenyl-functional coagent may be a propenyl-functional coagent as described by any one of limitations (i) to (v): (i) (E) is 2-allylphenyl allyl ether; 4- isopropenyl-2,6-dimethylphenyl allyl ether; 2,6-dimethyl-4-allylphenyl allyl ether; 2-methoxy- 4-allylphenyl allyl ether; 2,2'-diallyl bisphenol A; Ο,Ο'-diallyl bisphenol A; or tetramethyl diallylbisphenol A; (ii) (E) is 2,4-diphenyl-4-methyl-1 -pentene or 1 ,3-diisopropenylbenzene; (iii) (E) is triallyl isocyanurate ("TAIC"); triallyl cyanurate ("TAC"); triallyl trimellitate ("TATM"); N,N,N',N',N",N"-hexaallyl-1 ,3,5-triazine-2,4,6-triamine ("HATATA"; also known as

N 2 ,N 2 ,N 4 ,N 4 ,N 6 ,N 6 -hexaallyl-1 ,3,5-triazine-2,4,6-triamine) ; triallyl orthoformate; pentaerythritol triallyl ether; triallyl citrate; or triallyl aconitate; (iv) (E) is a mixture of any two of the propenyl-functional coagents in (i). Alternatively, the (E) may be an acrylate-functional conventional coagent selected from trimethylolpropane triacrylate ("TMPTA"), trimethylolpropane trimethylacrylate ("TMPTMA"), ethoxylated bisphenol A dimethacrylate, 1 ,6-hexanediol diacrylate, pentaerythritol tetraacrylate, dipentaerythritol pentaacrylate, tris(2-hydroxyethyl) isocyanurate triacrylate, and propoxylated glyceryl triacrylate. Alternatively, the (E) may be a vinyl-functional coagent selected from polybutadiene having at least 50 wt% 1 ,2-vinyl content and trivinyl cyclohexane ("TVCH"). Alternatively, the (E) may be an alkenyl-functional coagent described in US 5,346,961 or US 4,018,852. Alternatively, the (E) may be alpha-methyl styrene dimer (AMSD). Alternatively, the (E) may be a combination or any two or more of the foregoing alkenyl-functional coagents. In some aspects the polyolefin formulation and crosslinked polyolefin product is free of (E) alkenyl- functional coagent. When present, the (E) alkenyl-functional coagent may be 0.01 to 4.5 wt%, alternatively 0.05 to 2 wt%, alternatively 0.1 to 1 wt%, alternatively 0.2 to 0.5 wt% of the polyolefin formulation.

[0056] The optional constituent (F) a tree retardant (e.g., a water tree retardant); a molecule that inhibits water and/or electrical treeing, or a collection of such molecules. The tree retardant may be a water tree retardant or electrical tree retardant. The water tree retardant is a compound that inhibits water treeing, which is a process by which polyolefins degrade when exposed to the combined effects of an electric field and humidity or moisture. The electrical tree retardant, also called a voltage stabilizer, is a compound that inhibits electrical treeing, which is an electrical pre-breakdown process in solid electrical insulation due to partial electrical discharges. Electrical treeing can occur in the absence of water. Water treeing and electrical treeing are problems for electrical cables that contain a coated conductor wherein the coating contains a polyolefin. The (F) may be a poly(ethylene glycol) (PEG). In some aspects the polyolefin composition and crosslinked polyolefin product is free of (F) tree retardant. When present, the (F) tree retardant may be from 0.01 to 1 .5 wt%, alternatively 0.05 to 1 .2 wt%, alternatively 0.1 to 1 .0 wt% of the polyolefin composition.

[0057] The optional constituent (G) hindered amine stabilizer: a molecule that contains a basic nitrogen atom that is bonded to at least one sterically bulky organo group and functions as an inhibitor of degradation or decomposition, or a collection of such molecules. The (G) is a compound that has a sterically hindered amino functional group and inhibits oxidative degradation and can also increase the shelf lives of the polyolefin formulation. Examples of suitable (G) are butanedioic acid dimethyl ester, polymer with 4-hydroxy-2,2,6,6-tetramethyl- 1 -piperidine-ethanol (CAS No. 65447-77-0, commercially LOWILITE 62); and N,N'-bisformyl- N,N'-bis(2,2,6,6-tetramethyl-4-piperidinyl)-hexamethylenedia mine (CAS No. 124172-53-8, commercially Uvinul 4050 H). In some aspects the polyolefin composition and crosslinked polyolefin product is free of (G) hindered amine stabilizer. When present, the (G) hindered amine stabilizer may be from 0.001 to 1.5 wt%, alternatively 0.002 to 1 .2 wt%, alternatively 0.002 to 1 .0 wt%, alternatively 0.005 to 0.5 wt%, alternatively 0.01 to 0.2 wt%, alternatively 0.05 to 0.1 wt% of the polyolefin composition.

[0058] The optional constituent (H) calcined clay filler is a treated mineral made by heating a hydrous aluminum phyllosilicate to desiccate (i.e., drive off water) the hydrous aluminum phyllosilicate to give a calcined aluminum phyllosilicate. The treated mineral may comprise the calcined aluminum phyllosilicate and, optionally, zero, one or more of additional elements selected from iron, magnesium, alkali metals, and alkaline earths. The (H) calcined clay may be a calcined kaolin mineral, a calcined smectite mineral, a calcined illite mineral, a calcined chlorite mineral, a calcined sepiolite mineral, or a calcined attapulgite mineral. The calcined kaolin mineral may be a calcined kaolinite, calcined dikite, calcined halloysite, or calcined nacrite. The calcined smectite mineral may be a calcined montmorilonite, a calcined nontronite, a calcined beidellite, or a calcined saponite. The calcined illite mineral may be a calcined clay-mica. The (H) calcined clay may be a calcined montmorillonite, calcined nontronite, calcined beidellite, calcined volkonskoite, calcined hectorite, calcined saponite, calcined sauconite; calcined vermiculite; calcined halloisite; calcined sericite; or a combination of any two or more thereof. In some aspects the calcined clay is a calcined montmorillonite or a calcined kaolin mineral such as Translink 37 from BASF. In some aspects the polyolefin formulation and crosslinked polyolefin product is free of (H) calcined clay. The (H) calcined clay, when present, may be in an amount from > 0 to 39.45 wt%, alternatively from > 0 to 33 wt%, alternatively from > 0 to 25.0 wt%, alternatively from 0.1 to 20 wt%, alternatively from 3 to 10 wt%, all based on the total weight of the polyolefin formulation.

[0059] In addition the polyolefin formulation may further comprise 0.005 to 1 wt%, alternatively 0.005 to 0.5 wt% each of one or more optional additives selected from an acid scavenger, a carbon black, a carrier resin, a colorant, an extender oil, a flame retardant, a lubricant, a metal deactivator, a methyl radical scavenger, a nucleating agent, a plasticizer, a processing aid, a scorch retardant, a slip agent, and a surfactant. In some aspects the polyolefin formulation and crosslinked polyolefin product is free of any one of the immediately foregoing additives.

[0060] The crosslinked polyolefin product: a reaction product that contains networked polyethylenic resins that contain C-C bond crosslinks formed during curing of the polyolefin formulation. The networked polyethylenic resins may comprise reaction products of coupling macromolecules of the (A) ethylenic-based (co)polymer composition to give a network structure. [0061] The crosslinked polyolefin product may also contain by-products of curing such as alcohol by-products of the decomposition or reaction of the (B) and/or (C) lower and higher temperature decomposing organic peroxide, respectively. When the polyolefin formulation further contains one or more of any optional additives or constituents such as (D) antioxidant, the crosslinked polyolefin product may also contain the any one or more of the optional additives or constituents such as (D), or one or more reaction products formed therefrom during the curing of the polyolefin formulation. The crosslinked polyolefin product may be in a divided solid form or in continuous form. The divided solid form may comprise granules, pellets, powder, or a combination of any two or more thereof. The continuous form may be a molded part (e.g., injection molded part) or an extruded part (e.g., a coated conductor or a cable).

[0062] A compound includes all its isotopes and natural abundance and isotopically- enriched forms. The enriched forms may have medical or anti-counterfeiting uses.

[0063] Any compound, composition, formulation, mixture, or product herein may be free of any one of the chemical elements chosen from: H, Li, Be, B, C, N, O, F, Na, Mg, Al, Si, P, S, CI, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Br, Rb, Sr, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, Te, I, Cs, Ba, Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg, TI, Pb, Bi, lanthanoids, and actinoids; with the proviso that chemical elements required by the compound, composition, formulation, mixture, or reaction product (e.g., C and H required by a polyethylene or C, H, and O required by an alcohol) are not excluded.

[0064] The following apply unless indicated otherwise. Alternatively precedes a distinct embodiment. ASTM is ASTM International, West Conshohocken, Pennsylvania, USA. IEC is International Electrotechnical Commission, Geneva, Switzerland. ISO is International Organization for Standardization, Geneva, Switzerland. Any comparative example is used for illustration purposes only and shall not be deemed prior art. Free of or lacks means a complete absence of; alternatively not detectable. lUPAC is International Union of Pure and Applied Chemistry (lUPAC Secretariat, Research Triangle Park, North Carolina, USA). May confers a permitted choice, not an imperative. Operative means functionally capable or effective. Optional(ly) means either is absent (excluded), or alternatively is present (included). PPM are weight based. Properties are measured using standard test methods and conditions therefor (e.g., viscosity: 23° C. and 101 .3 kPa). Ranges include endpoints, subranges, and whole and/or fractional values subsumed therein, except a range of integers does not include fractional values. Room temperature: 23° C. ± 1 ° C.

[0065] AC Breakdown (ACBD) Strength Test Method (ACBD after crosslinking, unaged or aged (kV/mm)): also known as AC Dielectric Strength. Prepare test specimen as a nominally 0.90 mm (35 mils) thick cured (crosslinked) compression molded plaque using Compression Molding Method 2, described below. Age specimen in a glass U-tube filled with 0.01 Molar (M) aqueous sodium chloride for 21 days at 6 kilovolts (kV) to give aged specimen. Test ACBD Strength of unaged or aged specimen on a Brinkman AC Dielectric Strength Tester using Exxon Univolt N61 transformer oil.

[0066] Compression Molding Method 1 : (used to prepare test samples for melt rheological measurements), compression molded at the following conditions to prevent significant crosslinking due to the decomposition of one or more of the peroxides: 500 pounds per square inch (psi) (3.5 MPa) at 120° C. for 3 minutes, followed by 2500 psi (17 MPa) at 120° C. for 3 minutes, cooling to 30° C. at 2500 psi (17 MPa), and opening the press to remove the resulting molded plaque.

[0067] Compression Molding Method 2: (used to prepare test samples for electrical and mechanical measurements), compression molded at the following conditions to make completely cured (crosslinked) specimens of different dimensions: 500 psi (3.5 MPa) at 125° C. for 3 minutes, followed by 2500 psi (17 MPa) at 180° C. for 20 minutes, cooling to 30° C. at 2500 psi (17 MPa), and opening the press to remove the resulting molded plaque.

[0068] Density is measured according to ASTM D792-13, Standard Test Methods for Density and Specific Gravity (Relative Density) of Plastics by Displacement, Method B (for testing solid plastics in liquids other than water, e.g., in liquid 2-propanol). Test sample is unaged solid in the form of a sheet or molded specimen. Report results in units of grams per cubic centimeter (g/cm^ or g/cc).

[0069] Dielectric Constant and Dissipation Factor Test Methods (Dissipation Factor at 2 kV, 130° C, 60 Hz after crosslinking (%)). Conduct tests according to ASTM D150-1 1 , Standard Test Methods for AC Loss Characteristics and Permitivity (Dielectric Constant) of Solid Electrical Insulation, at 60 Hz on a GUILDLINE High Voltage Capacitance Bridge unit, Model 9920A, with a TETTEX specimen holder and a TETTEX AG Instruments Temperature Control Unit. Test specimen is a cured (crosslinked) 1 .3 mm (50 mils) thick compression molded plaque prepared by Compression Molding Method 2. Degas the plaque in a vacuum oven at 60° C. for five days. Cut a circular disc-shaped specimen having a diameter of 88.9 millimeters (mm, 3.5 inches) from a compression molded and degassed plaque, and test the specimen at 60 Hertz (Hz) and 2 kV applied stress at temperatures of 25°, 40°, 90°, and 130° C.

[0070] Dynamic Oscillatory Shear Viscosity Test Method (V0.1/V100 at 135° C. and V100 at 135° C. (Pa.s)) is conducted over a range from 0.1 radian per second (rad/s., "V0.1 ") to 100 rad/s. ("V100") using a TA Instruments Advanced Rheometric Expansion System at a temperature of 135° C. and 0.25% strain, representative of insulation layer extrusion conditions. V0.1 and V100 are the viscosities at 0.1 rad/s. and 100 rad/s., respectively, and the ratio V0.1/V100 is a measure of shear thinning characteristics. Measured viscosity in pascal-seconds (Pa.s). Test specimen is taken from an unaged compression molded plaque prepared by Compression Molding Method 1 .

[0071] Extensional Viscosity Test Method (Extensional Viscosity at 135° or 150° C, 1/s., Hencky strain of 0.2, 0.5, or 1 (Pa.s); Maximum Extensional Viscosity at 135° or 150° C, 1/s. (Pa.s); and Hencky Strain corresponding To Max. Ext. Viscosity at 135° or 150° C, 1/s.): is measured using an ARES FCU Rheometer with Extensional Viscosity Fixture Geometry and TA Orchestrator Software. Conduct the test at a rate of 1 per second at 135° or 150° C. to simulate extrusion conditions. Report the maximum viscosity value (peak) attained, the maximum Hencky strain attained, and viscosities at Hencky Strains of 0.2, 0.5 and 1 . Test specimen is taken from an unaged compression molded plaque prepared by Compression Molding Method 1 . Measured in poise and converted to kilopascal-seconds (kPa.s), wherein 100,000 poise = 10.0 kPa.s.

[0072] Gel Content Test Method: determine gel content (insoluble fraction) produced in ethylene plastics by crosslinking by extracting the polymer with decahydronaphthalene (decalin) according to ASTM D2765. This is one way of measuring degree or extent of crosslinking. Conduct the test on specimens that come out of the below MDR experiments at 182°C. Use a WILEY mill (20 mesh screen) to prepare powdered samples, at least one gram of material for each sample. Make pouch from a 120 mesh screen. Fabricate pouch carefully to avoid leaks of powdered samples therefrom. The width of the finished pouch is no more than 1 .90 centimeters (cm, 0.75 inch), and the length is no more than 5.08 cm (2 inches). Weigh the empty pouch on an analytical balance. Place 0.3 gram (+/- 0.02 g) of powdered sample into the pouch. Do not to force open the folds in the pouch. Weigh the pouch + sample. Seal the pouch with a staple, and weigh the sealed pouch with sample inside and staple. Place the sealed pouch into a flask containing 1 liter (L) of boiling decahydronaphthalene (decalin) and 10 grams of 2,2'-methylene-bis (4-methyl-6-tertiary butyl phenol). Boil for 6 hours in a flask in a heated mantle, turn off the voltage regulator, and keep cooling water running until (decalin) has cooled below its flash point. When the decalin has cooled, turn off the cooling water, and remove the pouch from the flask. Allow the pouch to cool under a hood to remove as much solvent as possible. Then place the pouch in a vacuum oven set at 150° C. for 4 hours, maintaining a vacuum of 25 inches (635 mm) of mercury. Take the pouch out of the oven, and allow it to cool to room temperature. Record weight of the cooled pouch + remaining sample + staple on an analytical balance. Calculate percent extraction (% Extraction) using the following equation: %Extraction = 100 x (W3- W4)/(W2-W1 ), wherein x indicates multiplication, / indicates division, W1 is weight of empty pouch; W2 is weight of pouch + sample before stapling; W3 is weight of sample, pouch and staple; and W4 is weight of pouch, staple, and remaining sample after extraction. Gel content = 100% - %Extraction.

[0073] Half-Life Temperature Test Method: measured on a solution of organic peroxide at a concentration of 0.1 Molar (M) in dodecane with monitoring of heat flux of decomposition of organic peroxide by differential scanning calorimetry-thermal activity monitoring (DSC-TAM) and compared relative to heat flux of pure dodecane. The heat emitted by the solution is directly related to the organic peroxide concentration [P]. The 1 -hour half-life temperature is the measure of thermal energy at which 50 percent (50.0 percent) of the organic peroxide is decomposed after 60 minutes (60.0 minutes) of heating at that temperature. The 10-hour half-life temperature is the measure of thermal energy at which 50 percent (50.0 percent) of the organic peroxide is decomposed after 600 minutes (600.0 minutes) of heating at that temperature. The 1 -hour half-life temperature is greater than the 10-hour half-life temperature. The greater the 1 -hour or 10-hour half-life temperature of an organic peroxide, the greater the stability of the peroxide in the test method, and the greater the stability of the organic peroxide in the polyolefin formulation.

[0074] Hot Creep Elongation and Hot Set Test Methods (Hot Creep at 200° C, 0.2 MPa after crosslinking (%)): hot creep elongation is measured to determine degree or extent of curing (crosslinking) and hot set is used to measure sample relaxation after hot creep elongation. Base testing on ICEA-T-28-562-2003 test method for power cable insulation materials. Conduct hot creep on a 1 .3 millimeter (mm, 50 mils) thick specimen, prepared by Compression Molding Method 2, in an oven with a glass door and set at 150° or 200° C. using a force of 0.2 megapascal (MPa) stress applied to the bottom of the specimen. Cut three specimens of each sample material from tensile bars made according to ASTM D412 type D. Elongate the specimens for 15 minutes, and measure their percentage increases in length. Report the average of the three values as hot creep. Obtain hot set values for the same specimens after removing the load for 5 minutes under heat and cooling the specimens at room temperature for 10 minutes. A sample that breaks or has a hot creep > 175% fails the test. A sample that does not break and has a hot creep < 175% passes the test.

[0075] Melt index (l 2 ) is measured according to ASTM D1238-04 (190° C, 2.16 kg),

Standard Test Method for Melt Flow Rates of Thermoplastics by Extrusion Platometer, using conditions of 190° C./2.16 kilograms (kg), formerly known as "Condition E" and also known as l2- Report results in units of grams eluted per 10 minutes (g/10 min.) or the equivalent in decigrams per 1 .0 minute (dg/1 min.). 10.0 dg = 1 .00 g. The measured I2 is an amount of a polyolefin polymer (e.g., polyethylene) at 190° C. that can be forced through an extrusion rheometer orifice of inner diameter 2.0955 millimeters (0.0825 inch) during 10 minutes when the polymer is subjected to a force of 2.16 kilograms (kg). I2 is inversely proportional to the weight average molecular weight (M w ) of the polyolefin polymer, although the inverse proportionality is not necessarily linear. Thus, generally the higher the M w , the lower the

[0076] Scorch Time and Ultimate Crosslinking Test Methods (MDR: ts1 at 140° C. (minutes)); and MH-ML (N-m), respectively): Perform Moving Die Rheometer (MDR) analyses on test material using Alpha Technologies Rheometer MDR model 2000 unit. Base testing on ASTM procedure D 5289, "Standard Test Method for Rubber - Property Vulcanization Using Rotorless Cure Meters". Perform the MDR analyses using 6 grams of test material. Test material at 182° or 140° C. at 0.5 degrees arc oscillation for both temperature conditions. Obtain materials for testing directly from the BRABENDER™ mixing bowl after cold pressing. Put test material into the MDR instrument. Elastic torque is measured as a function of time from 0 (start) to 120 minutes at 140° C. or from 0 (start) to 20 minutes at 182° C, respectively, and elastic torque curve versus time is plotted. Assess scorch time, also referred to as time to scorch or resistance to premature crosslinking at extrusion conditions, by ts1 (time for 0.1 13 Newton-meter (N-m) increase in elastic torque from minimum value (ML) at 140° C. Abbreviate scorch time as ts1 @140° C. Ultimate degree of crosslinking is reflected by MH (maximum elastic torque) - ML (minimum elastic torque) at 182° C.

[0077] Shore A and Shore D Hardness Test Methods: prepare crosslinked specimens with 6.4 mm (250 mils) thickness and 51 mm diameter, and test using ASTM D2240-15, Standard Test Method for Rubber Property— Durometer Hardness. Record average of 5 measurements. Test specimen is an unaged compression molded plaque prepared by Compression Molding Method 2.

[0078] Tensile Strength, Tensile Elongation, Tensile Modulus, and Tensile Secant Modulus Test Method. Prepare test specimens as Type IV dog-bone-shaped specimen having a nominal 1 .78 mm (70 mils) thickness, cut from plaques prepared by Compression Molding Method 2. Measure tensile properties on unaged crosslinked polyolefin product specimens that have been kept at 23° C. after molding and on aged crosslinked polyolefin product specimens that have been aged for up to 7 days in an oven at 136° C. using a Type II ASTM D5423-93 Testing Mechanical Convection Oven. Conduct tensile measurements according to ASTM D638-10, Standard Test Method for Tensile Properties of Plastics, and UL 1581 , Reference Standard for Electrical Wires, Cables, and Flexible Cords, and UL 2556, Wire and Cable Test Methods, at a displacement rate of 50.8 cm (20 inches) per minute. Record average of 5 measurements. [0079] Zero shear viscosity (Zero Shear Viscosity at 135° C. (Pa.s)) is deduced from the Dynamic Oscillatory Shear Viscosity Test Method or is measured from creep recovery using SR-200, 25.0 Pascals, 3 minutes creep, 15 minutes recovery, 135° C. Test specimen is an unaged compression molded plaque prepared by Compression Molding Method 1 .

EXAMPLES

[0080] Ethylenic-based (co)polymer (A1 ) : a high pressure reactor made, low density polyethylene (LDPE) product, which has a density of 0.922 g/cm 3 , and a melt index (I2) of 1 .8 g/10 min. (190° C, 2.16 kg) and is obtained from The Dow Chemical Company, Midland, Michigan, USA. The Ethylenic-based (co)polymer (A1 ) is made in a tubular high pressure reactor and process of the type described in Introduction to Polymer Chemistry, Stille, Wiley and Sons, New York, 1962, pages 149 to 151 . The process is free radical initiated and is conducted at a pressure from 170 to 310 megapascals (MPa, i.e., 25,000 to 45,000 pounds per square inch (psi)) and a temperature from 200° to 350° C.

[0081] Ethylenic-based (co)polymer (A2): a molecular catalyst-made ethylene/1 -octene elastomeric copolymer developmental product number XUS 38660.00, which has a density of 0.870 g/ cm 3 ; and a melt index (I2) of 4.8 g/10 min. (190° C, 2.16 kg) and is obtained from

The Dow Chemical Company.

[0082] Ethylenic-based (co)polymer (A3): a molecular catalyst-made ethylene/1 -octene elastomeric copolymer developmental product number XUS 38661 .00, which has a density of 0.880 g/ cm 3 ; and a melt index (I2) of 18 g/10 min. (190° C, 2.16 kg) and is obtained from

The Dow Chemical Company.

[0083] Lower temperature decomposing organic peroxide (B1 ) : 1 ,1 -bis(tert-butylperoxy)- 3,3,5-trimethylcyclohexane having a 1 hour half-life temperature of 1 14.9° C. and a 10-hour half-life temperature of 96.4° C. and is obtained as Luperox 231 from Arkema.

[0084] Higher temperature decomposing organic peroxide (C1 ): dicumyl peroxide having a 1 hour half-life temperature of 137.0° C. and a 10-hour half-life temperature of 1 17.1 ° C. and obtained as Perkadox BC-FF from AkzoNobel.

[0085] Antioxidant (D1 ) : 4 > 4'-th obis(2-t-butyl-5-methy phenol) obtained as Lowinox TBM-6 from Addivant.

[0086] Alkenyl-functional coagent (E1 ): alpha-methyl styrene dimer obtained as Nofmer MSD from NOF America Corporation.

[0087] Tree Retardant (F1 ): a polyethylene glycol having an average molecular weight of 20,000 grams/mole and obtained as Polyglykol 20000 SRU from Clariant. [0088] Hindered Amine Stabilizer (G1 ): I ^S-Triazine^Ae-triamine, N2,N2"~1 ,2- ethanediy!bis[N2-[3-[[4,6-bis[buty!(1 ^^^.e-pentamethyi-Apiperidiny aminoj-l ,3,5-triazin- 2-y!]amino]propyi]-N'.N"-dibuty!-N' l N"-bis(1 ,2,2,6,8-pentameihyl-4-pipeiidinyi)- (main component) obtained as Sabostab UV 1 19 from SABO S.p.A. Levate, Italy.

[0089] General Preparation 1 : heat (C1 ) to 60° C. to melt it. Mix (B1 ), a liquid, with melt of (C1 ) to give peroxides mixture. Add (E1 ) to peroxides or peroxides mixture at a 5:1 wt/wt ratio of peroxides/(E1 ) to give a second mixture comprising (B1 ), (C1 ), and (E1 ). Separately mix solids (A2), (D1 ), (F1 ), and (G1 ) in a container by hand to give solids mixture. Compound solids mixture in a 420 imL Brabender batch mixer with cam rotors at 190° C. and 40 rotations per minute (rpm) for 5 minutes to give a blend. Cold press the blend into thin a thin sheet and cut sheet into strips. Harden strips in freezer, and feed hardened strips through a pelletizer to make pellets comprising (A2), (D1 ), (F1 ), and (G1 ). Heat pellets in a glass jar at 50° C. for 2 hours, and spray a measured amount of the second mixture from a syringe onto the heated pellets. Tumble blend the resulting sprayed pellets in the jar for 10 minutes at room temperature, place jar containing sprayed pellets in an oven at 50° C. for 16 hours, next tumble blend the contents of the jar again for 10 minutes at room temperature, then mix the contents of the jar in a 420 imL Brabender mixing bowl using cam rotors at 120 C. and 30 rpm for 10 minutes to give a polyolefin formulation comprising (A2), (B1 ), (C1 ), (D1 ), (E1 ), (F1 ), and (G1 ). The contents of the polyolefin formulation are reported below in Table 1 . Cold press or compression mold samples of the polyolefin formulation, as the case may be according to the relevant test method, and characterize the composition. Results are reported later in Table 2.

[0090] Comparative Example 1 (CE1 ): prepared according to General Preparation 1 and having the composition shown in Table 1 and properties shown in Table 2 below.

[0091] Inventive Examples 1 to 4 (IE1 to IE4): prepared according to General Preparation 1 and having the composition shown in Table 1 and properties shown in Table 2 below.

[0092] Table 1 : compositions of CE1 and IE1 to IE4.

ACBD after crosslinking, unaged

(kV/mm) 39.0±1 .1 38.5±0.4 39.1 ±1 .0 37.2±1 .2 36.0±2.5

ACBD after crosslinking, aged

33.2±1.4 29.7±0.8 30.9±3.0 30.5±0.9 31 .2±2.0 (kV/mm)

Dissipation Factor at 2 kV, 130° C,

0.32 0.21 0.26 0.16 0.22 60 Hz after crosslinking (%)

Ό094] As shown by the data in Ta ble 2, CE1 has relatively inferior melt shear and extensional properties. The essentially similar values of ML (minimum elastic torque, upon melting of the polymer) from the MDR test done at 140° C. indicate that little or no crosslinking of the compositions CE1 and IE1 to IE4 had occurred in the process of incorporating peroxides at temperatures of 120° C. or less. However, in the dynamic oscillatory shear test conducted at the higher temperature of 135° C, the compositions of IE1 to IE4 exhibited enhanced melt shear-thinning characteristics relative to that of CE1 , as evidenced from the values of V0.1/V100. Increases in zero shear and extensional viscosities at 135° C. were also observed with IE1 to IE4 relative to CE1 . In the MDR test conducted at 140° C, lower values of ts1 (i.e., faster crosslinking) were observed with IE1 to IE4 relative to CE1. The temperatures of 135° and 140° C. are representative of temperatures typically used in cable extrusion processes. These findings suggest that greater coupling of polymer chains had occurred "in situ" (during the melt rheological tests conducted at these temperatures) with compositions IE1 to IE4, which contain the relatively faster decomposing Low T. Dec. Peroxide (B1 ), than with composition CE1 , which did not contain Low T. Dec. Peroxide (B1 ).

[0095] The ultimate degrees of crosslinking (as measured by gel content and hot creep) of the inventive examples IE1 to IE4 were sufficiently high. The dielectric strength values of IE1 to IE4 were adequate for insulation layers of power cables, where values of 28 kV/mm or greater are desirable. Surprisingly, the inclusion of Low T. Dec. Peroxide (B1 ) in the compositions of IE1 to IE4 yielded desirably lower dissipation factors at a test temperature of 130° C.

[0096] Comparative Example 2 (CE2): prepared according to General Preparation 1 and having the composition shown in Table 3 and properties shown in Table 4 below.

[0097] Inventive Examples 5 to 7 (IE5 to IE7): prepared according to General Preparation 1 and having the composition shown in Table 3 and properties shown in Table 4 below. [0098] Table 3: compositions of CE2 and IE5 to IE7.

Not

Gel content after extrusion (wt%) < 1 % < 1 % < 1 %

Tested

Hot Creep at 200° C, 0.2 MPa after

Failed

1 14.8 78.4 73.4 crosslinking (%) Test

00100] As indicated by the data in Table 4, CE2 has re atively inferior melt shear and extensional properties. The essentially similar values of ML (minimum elastic torque, upon melting of the polymer) of CE2, IE5 and IE6 from the MDR test done at 140° C. indicate that little or no polymer crosslinking had occurred in the process of incorporating peroxides at temperatures of 120° C. or less. However, in the dynamic oscillatory shear test conducted at the higher temperature of 135° C , the compositions of IE5 and IE6 exhibited enhanced melt shear-thinning characteristics relative to that of CE2, as evidenced from the values of V0.1 /V100. Increases in zero shear and extensional viscosities at 135° C. were also observed with IE5 and IE6 in comparison with CE2. Including a minor amount of LDPE in the composition (IE7) resulted in further improvements in melt rheological properties at 135° C. In the MDR test conducted at 140° C, lower values of ts1 (i.e., faster crosslinking) were observed with IE5 to I E7 relative to CE2. Again, the temperatures of 135° and 140° C. are representative of the temperatures typically used in cable extrusion processes. These findings suggest that greater coupling of polymer chains had occurred "in sitW (during the melt rheological tests conducted at these temperatures) with compositions IE5 to IE7, which contain the relatively faster decomposing Low T. Dec. Peroxide (B1 ), than with composition CE2, which did not contain Low T. Dec. Peroxide (B1 ).

[00101] Incorporate by reference here the below claims as numbered aspects except replace "claim" and "claims" by "aspect" or "aspects," respectively.