Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
PHARMACEUTICAL COMPOSITION FOR TREATING AND/OR PREVENTING TYPE I DIABETES AND APPLICATION THEREOF
Document Type and Number:
WIPO Patent Application WO/2013/163887
Kind Code:
A1
Abstract:
The present invention provides a composition for treating and/or preventing type I diabetes and an application thereof. The active ingredient of the composition is 1.) or 2.) or 3.), as follows: 1.) a mixture of a type I diabetes protein antigen and an immunosuppressor, 2.) a mixture of a type I diabetes protein antigenic epitope polypeptide and an immunosuppressor, 3.) a mixture of a type I diabetes protein antigen, a type I diabetes protein antigenic epitope polypeptide, and an immunosuppressor; the type I diabetes protein antigen is at least one of insulin, glutamic acid decarboxylase, and islet amyloid polypeptide, and the immunosuppressor is at least one of dexamethasone, cyclosporine A, tacrolimus, mycophenolate mofetil, azathioprine, prednisone, early prednisolone, anti-CD4 monoclonal antibody, and anti-CD3 monoclonal antibody.

Inventors:
WANG BIN (CN)
ZHENG GUOXING (CN)
GENG SHUANG (CN)
WANG YIZHONG (CN)
YU QINGLING (CN)
Application Number:
PCT/CN2013/000429
Publication Date:
November 07, 2013
Filing Date:
April 12, 2013
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
BEIJING ADVACCINE BIOTECHNOLOGY CO LTD (CN)
International Classes:
A61K31/52; A61K38/28; A61K31/573; A61K38/13; A61K38/16; A61K39/395; A61P3/10; A61P37/02
Other References:
MATTHEWS, J.B. ET AL.: "Developing combination immunotherapies for type 1 diabetes: recommendations from the ITN-JDRF type I diabetes combination therapy assessment group", CLINICAL AND EXPERIMENTAL IMMUNOLOGY, vol. 160, no. 2, May 2010 (2010-05-01), pages 176 - 184, XP055172497
BRESSON, D. ET AL.: "Genetic-induced variations in the GAD65 T-cell repertoire governs efficacy of anti-CD3/GAD65 combination therapy in new-onset type 1 diabetes", MOLECULAR THERAPY, vol. 18, no. 2, February 2010 (2010-02-01), pages 307 - 316, XP002667930
BRESSON, D. ET AL.: "Anti-CD3 and nasal proinsulin combination therapy enhances remission from recent-onset autoimmune diabetes by inducing Tregs", THE JOURNAL OF CLINICAL INVESTIGATION, vol. 116, no. 5, May 2006 (2006-05-01), pages 1371 - 1381, XP008167683
ZHANG, XIN: "Research Progress on Islet Amyloid Polypeptide", CHINESE BULLETIN OF LIFE SCIENCE, vol. 22, no. 6, June 2010 (2010-06-01), pages 567 - 574, XP008175282
"Report of the expert committee on the diagnosis and classification of diabetes mellitus", DIABETES CARE, vol. 20, 1997, pages 1183 - 1197
ATKINSON MA; LEITER EH: "The NOD mouse model of type I diabetes: As good as it gets?", NATURE, vol. 5, 1999, pages 60601 - 604
ATKINSON MA; MACLAREN NK: "The pathogenesis of insulin-dependent diabetes mellitus", N ENGL J MED, vol. 331, 1994, pages 1428 - 1436
BENOIST C; MATHIS D: "Autoimmune diabetes: Retrovirus as trigger, precipitator or marker?", NATURE, vol. 388, 1997, pages 833 - 834
BJORK S.: "The cost of diabetes and diabetes care", DIABETES RES CLIN PRACT, vol. 54, no. 1, 2001, pages 13 - 18
DEVENDRA, D. ET AL., DIABETES, vol. 54, 2005, pages 2549
STARWALT, S. ET AL., PROTEIN ENG., vol. 16, 2003, pages 147
LEE, L. ET AL., PNAS, vol. 102, 2005, pages 15995
HU, C. ET AL., J. CLIN. INVEST., vol. 117, 2007, pages 3857
AMRANI, A. ET AL., NATURE, vol. 406, 2000, pages 739
ARIF, T. I. TREE; T. P. ASTILL ET AL.: "Autoreactive T cell responses show proinflammatory polarization in diabetes but a regulatory phenotype in health", THE JOURNAL OF CLINICAL INVESTIGATION, vol. 113, no. 3, 2004, pages 451 - 463, XP055070221, DOI: doi:10.1172/JCI200419585
ITAMAR RAZ; ROY ELDOR; YAAKOV NAPARSTEK, TRENDS IN BIOTECHNOLOGY, vol. 23, 2005, pages 128
ENEE, E. ET AL., J IMMUNO/, vol. 180, 2008, pages 5430
XIURONG LONG; WENBING DU; ZHONGPU SU; QINZHENG WEI: "Detection of glutamic acid decarboxylase antibodies in children with diabetes mellitus", CHINESE JOURNAL OF PEDIATRICS, vol. 10, 1998
Attorney, Agent or Firm:
JEEKAI & PARTNERS (CN)
北京纪凯知识产权代理有限公司 (CN)
Download PDF:
Claims:
权利要求

1、 组合物, 其活性成分为如下 1 ) 或 2) 或 3 ) :

1 ) I型糖尿病的蛋白抗原和免疫抑制剂的混合物;

2) 所述 I型糖尿病的蛋白抗原的表位多肽和所述免疫抑制剂的混合物;

3 ) 所述 I型糖尿病的蛋白抗原、 所述 I型糖尿病的蛋白抗原的表位多肽和所 述免疫抑制剂的混合物;

所述 I型糖尿病的蛋白抗原为胰岛素、 谷氨酸脱羧酶和胰岛淀粉样多肽中的至 少一种; 所述免疫抑制剂为地塞米松, 环孢素 A, 他克莫司, 骁悉, 硫唑嘌呤, 强 的松, 早基强的松龙, 抗 CD4单克隆抗体和抗 CD3单克隆抗体中的至少一种。

2、 根据权利要求 1 所述的组合物, 其特征在于: 所述表位多肽为单一抗原表 位的多肽或多个抗原表位组合而成的多肽。

3、 根据权利要求 1 所述的组合物, 其特征在于: 所述胰岛素为人胰岛素、 狗 胰岛素, 或猫胰岛素; 所述谷氨酸脱羧酶为人谷氨酸脱羧酶、 狗谷氨酸脱羧酶, 或 猫谷氨酸脱羧酶; 所述胰岛淀粉样多肽为人胰岛淀粉样多肽、 狗胰岛淀粉样多肽, 或猫胰岛淀粉样多肽; 所述表位多肽来源于人、 狗、 猫或化学合成。

4、 根据权利要求 3 所述的组合物, 其特征在于: 所述人胰岛素的所述表位多 肽的氨基酸序列如序列表中序列 1或序列 2或序列 3或序列 12或序列 13所示; 所 述狗胰岛素的所述表位多肽的氨基酸序列如序列表中序列 4或序列 5或序列 12或 序列 13所示; 所述猫胰岛素的所述表位多肽的氨基酸序列如序列表中序列 6或序 列 7或序列 12或序列 13所示。

5、 根据权利要求 3 所述的组合物, 其特征在于: 所述人谷氨酸脱羧酶的所述 表位多肽的氨基酸序列如序列表中序列 8所示。

6、 根据权利要求 3 所述的组合物, 其特征在于: 所述人胰岛淀粉样多肽的所 述表位多肽的氨基酸序列如序列表中序列 9所示; 所述狗胰岛淀粉样多肽的所述表 位多肽的氨基酸序列如序列表中序列 10所示; 所述猫胰岛淀粉样多肽的所述表位 多肽的氨基酸序列如序列表中序列 11所示。

7、 根据权利要求 1-6中任一所述的组合物, 其特征在于: 1 ) 中所述 I型糖尿 病的蛋白抗原与所述免疫抑制剂使用的质量配比为 1 : 20到 20: 1; 2) 中所述表位 多肽与所述免疫抑制剂使用的质量配比为 1 : 1。

8、根据权利要求 1-6中任一所述的组合物, 其特征在于: 所述组合物具有如下 功能中的至少一种:

1 ) 治疗和 /或预防 I型糖尿病;

2) 提高 CD4+ CD25+调节性 T细胞增殖水平;

3 ) 提高 CD4+ CD25+调节性 T细胞与 CD4+T细胞的比例;

4) 提高 T细胞对 IL-10的分泌水平;

5 ) 抑制自身免疫反应性 CD8 T细胞的杀伤作用 6) 控制 I型糖尿病患者血糖水平;

7) 提高外周血单核细胞和 /或脾脏细胞中 IL-10和 /或 TGF-β的转录水平;

8) 抑制 DC细胞成熟。

9、 根据权利要求 7所述的组合物, 其特征在于: 所述组合物具有如下功能中 的至少一种:

1 ) 治疗和 /或预防 I型糖尿病;

2) 提高 CD4+ CD25+调节性 T细胞增殖水平;

3 ) 提高 CD4+ CD25+调节性 T细胞与 CD4+T细胞的比例;

4) 提高 T细胞对 IL-10的分泌水平;

5 ) 抑制自身免疫反应性 CD8 T细胞的杀伤作用

6) 控制 I型糖尿病患者血糖水平;

7) 提高外周血单核细胞和 /或脾脏细胞中 IL-10和 /或 TGF-β的转录水平;

8) 抑制 DC细胞成熟。

10、权利要求 1-9中任一所述的组合物在制备治疗和 /或预防 I型糖尿病的产品 中的应用。

11、权利要求 1-9中任一所述的组合物在制备具有如下 a) -h)中至少一种功能 的产品中的应用:

a) 提高 CD4+ CD25+调节性 T细胞占 CD4+T细胞的比例;

b) 提高 CD4+ CD25+调节性 T细胞增殖水平;

c) 提高 T细胞对 IL-10的分泌水平;

d) 控制 I型糖尿病患者的血糖水平;

e) 抑制自身免疫反应性 CD8 T细胞所起的杀伤作用;

0 提高外周血单核细胞和 /或脾脏细胞中 IL-10和 /或 TGF-β的转录水平; g) 抑制 DC细胞成熟;

h) 降低 DC细胞分泌 CD40、 CD80、 CD83和 CD86中的至少一种。

Description:
治疗和 /或预防 I型糖尿病的药物组合物及其应用 技术领域

本发明涉及一种用于治疗和 /或预防 I型糖尿病的组合物及其应用。

背景技术

世界卫生组织(WHO) 的专家预测, 糖尿病将是 21世纪主要的健康危机, 尤其 在亚洲, 它的威胁比禽流感和艾滋病更加严重。 WHO估计全球的糖尿病患者到 2010 年将增加到两亿人, 到 2025年将超过 3.3亿人。 而从目前的情况分析, 在未来 10年 时间里, 全球所有病例中有 60%都将出现在亚洲。 据透露, 西太平洋地区 (包括中 国)和东南亚地区(包括印度)是世界上糖尿 病患者最多的地区。在世界糖尿病患者 最多的五个国家里, 四个在亚洲。

我国在向小康社会发展过程中, 人们对脂肪与糖类的摄取量未能得到合理的控 制, 在老龄化及多方位应激因素影响下, 糖尿病的发生率已逐年上升, 与 20世纪 90 年代中期相比, 国内许多地区平均每年以千分之一的速度递增 ,我国专家预测糖尿病 发病率在近 10余年间将呈迅速上升趋势, 较 WHO的预测更为严峻。 据我国国内的 调查显示,全国 20岁以上的糖尿病患者达 2500万人以上,糖耐量异常者不低于 3500 万人, 总计在 6000万人以上。 其中, 富裕地区的发病率显著高于贫困地区, 城市发 病率普遍高于农村, 肥胖者高于正常体重者, 高龄者高于低龄者, 而且发病年龄也日 益趋于年轻化。 40岁以下人群新发病例增多, 40岁以上的平均患病率约占糖尿病总 数 87%, 患者高峰年龄在 50岁〜 70岁。 由于我国人口老龄化逐渐加剧, 使糖尿病药 物市场潜力进一步加大。

I型糖尿病是以 CD4 + T细胞, CD8 + T细胞和巨噬细胞浸润胰岛而造成胰岛中 生胰岛素的细胞被破坏为特征的一类自身免疫 疾病。它约占所有糖尿病患者的 5-10% (ADA [American Diabetes Association]. 1997. Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care 20:1183-1197;Atkinson MA, Leiter EH. 1999. The NOD mouse model of type 1 diabetes: As good as it gets? Nature 5:601-604) 。 主要发病机理是自身反应的 T淋巴细胞破坏了胰腺中产生胰岛 素的细胞引起的, 以 CD4 + T 细胞, CD8 + T细胞和巨噬细胞浸润胰岛而造成胰岛中 产生胰岛素的细胞被破坏为特征 (Atkinson MA, Maclaren NK. 1994. The pathogenesis of insulin-dependent diabetes mellitus. N Engl J Med 331: 1428-1436; Benoist C, Mathis D. 1997. Autoimmune diabetes: Retrovirus as trigger, precipitator or marker? Nature 388:833-834;Bjork S. 2001. The cost of diabetes and diabetes care. Diabetes Res Clin Pract 54(Suppl l):13-18

人们已经发现 I型糖尿病胰岛炎现象, 即淋巴细胞浸润胰岛, 以后相继在 I型糖 尿病患者中发现了抗胰岛细胞自身抗体 (ICA), 对胰岛素、 羧肽酶、 热休克蛋白产生 自主反应的 T细胞。

实验证明胰岛素 B链肽 9-23可以结合到 II类组织相容性复合体(MHC)等位基 因叫 I-Ag7。 1型糖尿病或胰岛素依赖型糖尿病, 是一种 T细胞介导性疾病, 导致高 血糖的胰腺 β细胞的自身免疫性破坏的结果。 这胰岛 Β肽可能是一种自身抗原可能 引发的疾病的候选(Devendra, D. et al. Diabetes 54, 2549 ,2005; Starwalt, S. et al. Protein Eng. 16, 147 (2003); Lee, L. et al. PNAS 102, 15995, 2005 ) 。 进一步实验还证明胰岛 素 B链 15至 23氨基酸片段可以被 T细胞识别。 它在糖尿病病人体内可以被检测到 表达干扰素 -β和 IL-17的 CD4+或 CD8 + Τ细胞的生产。这种肽可以与 Β链胰岛素 CTL 克隆反应, 但不会与脾 CD8 Τ细胞反应 (Hu, C. et al. J. Clin. Invest. 117, 3857,2007; Amrani, A. et al. Nature406, 739, 2000 )。实验证明胰岛素 C链肽也是一个一起自身免 疫反应的抗原 (Arif, T. I. Tree, T. P. Astill et al. Autoreactive T cell responses show proinflammatory polarization in diabetes but a regulatory phenotype in health. The Journal of Clinical Investigation, vol. 1 13, no. 3, pp. 451-463, 2004 ) 。

至 1990年 Beakkeskov证明 I型糖尿病患者血清中存在的 64 K抗体就是谷氨酸 脱羧酶 (GAD)自身抗体和自主反应的 T细胞, 认为 GAD是 I型糖尿病自身免疫反应 的关键抗原 (Immune modulation for prevention of type 1 diabetes mellitus. Itamar Razl, Roy Eldor2 and Yaakov Naparstek. TRENDS in Biotechnology 23: 128, 2005; Enee, E. et Ά\. J Immunol^, 5430,2008; 龙秀荣, 杜文斌, 苏钟浦, 魏庆诤.儿童糖尿病的谷氨酸 脱羧酶抗体检测.中华儿科杂志 .1998年第 10期) 。

另夕卜, 有大量的报道发现胰岛淀粉样多肽 (islet amyloid polypeptide, IAPP) 所 形成的淀粉样蛋白沉积, 具有破坏胰岛 beta细胞膜结构、 诱导 beta细胞凋亡和损伤 beta细胞功能、 及激活免疫细胞攻击 beta细胞的作用, 被认为是糖尿病的重要致病 原因之一。最新研究也表明抑制 IAPP的聚集可有效减少 beta细胞的凋亡, 提高胰岛 移植的成功率。 同时, 因此, IAPP已成为糖尿病治疗中一个具有良好前景的 点。

在目前, T1D 的治疗主要以外源性胰岛素替代治疗为主, 患者需每日注射胰岛 素。此方法不仅每天给患者带来极大不方便, 而且易发生注射感染或过敏反应; 且此 治疗方案只能缓解高血糖等临床症状,但常有 血糖波动和低血糖发生,也无法改变自 体病理性 T细胞攻击胰腺的状况, 更加无法恢复受损胰腺功能, 也就不能控制远期 并发症。 即使目前最为有效的胰岛素强化治疗方案, 也仅能减少并发症发生率的 35%〜90%, 同时患者难免遭受着注射所带来的不便和痛苦 。 因此, 寻求调节和抑制 自主免疫反应, 改善甚至恢复胰腺正常功能, 成为从根本上治疗 T1D, 解除患者痛 苦, 提高患者尤其是青少年患者生活质量的必经之 路。

由于 I型糖尿病是 τ细胞引起的自身免疫性疾病, 所以在临床上也使用的免疫 抑制剂来抑制此类疾病, 如: 地塞米松(DMS ), 普乐可复 (FK506), 环孢素 A(CsA), 骁悉 (MMF), 硫唑嘌呤 (Aza), 强的松 (Pred), 早基强的松龙 (MP); 或利用抗体如: 抗 淋巴细胞球蛋白 (ALG), 抗 CD4单克隆抗体 (OKT4), 每年治疗费用在几十亿元。 由 于这些药物是非特异性免疫抑制,所以疗效不 想理,而且大剂量使用免疫抑制剂都有 其毒副作用, 若使用不当, 一方面可因过度抑制机体免疫反应性而引发多 种并发症, 更有导致抑制器官功能衰竭风险。 所以, 急需一种毒性低, 具有特异性疗效的药物。 发明公开

本发明的目的是提供一种组合物。

本发明所提供的组合物的活性成分为如下 1 ) 或 2) 或 3 ) :

1 ) I型糖尿病的蛋白抗原和免疫抑制剂的混合物

2) 所述 I型糖尿病的蛋白抗原的表位多肽和所述免疫 制剂的混合物;

3) 所述 I型糖尿病的蛋白抗原、 所述 I型糖尿病的蛋白抗原的表位多肽和所述 免疫抑制剂的混合物;

上述组合物中的活性成分, 即 I型糖尿病的蛋白抗原、 I型糖尿病的蛋白抗原的 表位多肽和免疫抑制剂可以独立包装, 也可以混合在一起后整体包装。

所述 I型糖尿病的蛋白抗原为胰岛素、谷氨酸脱羧 和胰岛淀粉样多肽中的至少 一种。 所述免疫抑制剂为地塞米松, 环孢素 A, 他克莫司 (普乐可复) , 骁悉, 硫唑 嘌呤, 强的松, 早基强的松龙, 抗 CD4单克隆抗体和抗 CD3单克隆抗体中的至少一 种。 所述表位多肽为单一抗原表位的多肽或多个抗 原表位组合而成的多肽。

其中, 所述胰岛素可来源于人、 狗、猫, 也可以来自于重组基因表达的产物。 人 的胰岛素可以用于狗和猫的 I型糖尿病治疗。 人、 狗、 猫和鼠的基因序列非常相似。 在核酸序列水平上, 鼠与人胰岛素相似性为 95%, 猫与人的相似性为 84%, 狗与人 的相似性为 89%。

所述谷氨酸脱羧酶可来源于人、狗、猫, 也可以来自于重组基因表达的产物。 人 的谷氨酸脱羧酶也用于小鼠 I型糖尿病治疗。在核酸序列水平上,两者的 列相似度 为 90%。

所述胰岛淀粉样多肽可来源于人、 狗、 猫, 也可以来自于重组基因表达的产物。 所述表位多肽可来源于人、 狗、 猫序列, 并可以进行化学合成得到。

所述 I型糖尿病的蛋白抗原具体可为人胰岛素(Insul in) 。 所述人胰岛素的所述 表位多肽的氨基酸序列如序列表中序列 1 (该多肽的名称为 B9-23) , 或序列 2 (该 多肽的名称为 B15-23) , 或序列 3 (该多肽的名称为 C肽) , 或序列 12 (该多肽的 名称为 B23-39) , 或序列 13 (该多肽的名称为 B10-C5 ) 所示。

所述 I型糖尿病的蛋白抗原具体可为狗胰岛素。所 狗胰岛素的所述表位多肽的 氨基酸序列如序列表中序列 4 (该多肽的名称为 B9-23 ) , 或序列 5 (该多肽的名称 为 B15-23 ) , 或序列 12 (该多肽的名称为 B23-39) , 或序列 13 (该多肽的名称为 B10-C5) 所示。

所述 I型糖尿病的蛋白抗原具体可为猫胰岛素。所 猫胰岛素的所述表位多肽的 氨基酸序列如序列表中序列 6 (该多肽的名称为 B9-23 ) , 或序列 7 (该多肽的名称 为 B15-23 ) , 或序列 12 (该多肽的名称为 B23-39) , 或序列 13 (该多肽的名称为

B10-C5) 所示。

所述 I型糖尿病的蛋白抗原具体可为人谷氨酸脱羧 -65(GAD65)。 所述人谷氨 酸脱羧酶 -65 的所述表位多肽的氨基酸序列如序列表中序列 8 (该多肽的名称为 G114-123 ) 所示。 所述 I型糖尿病的蛋白抗原具体可为人胰岛淀粉样 肽 islet amyloid polypeptide (IAPP)。所述人胰岛淀粉样多肽的所述表位多肽 的氨基酸序列如序列表中的序列 9(该 多肽的名称为 1-36) 所示。

所述 I型糖尿病的蛋白抗原具体可为狗胰岛淀粉样 肽。所述狗胰岛淀粉样多肽 的所述表位多肽的氨基酸序列如序列表中的序 列 10 (该多肽的名称为 1-36) 所示。

所述 I型糖尿病的蛋白抗原具体可为猫胰岛淀粉样 肽。所述猫胰岛淀粉样多肽 的所述表位多肽的氨基酸序列如序列表中的序 列 11 (该多肽的名称为 1-36) 所示。

其中, 序列 1由 15个氨基酸组成; 序列 2由 9个氨基酸组成; 序列 3由 31个氨 基酸组成; 序列 4由 15个氨基酸组成; 序列 5由 9个氨基酸组成; 序列 6由 15个氨 基酸组成; 序列 7由 9个氨基酸组成; 序列 8由 10个氨基酸组成; 序列 9由 37个氨 基酸组成; 序列 10由 37个氨基酸组成; 序列 11由 37个氨基酸组成; 序列 12由 17 个氨基酸组成; 序列 13由 27个氨基酸组成。

上述 1 ) 中所述 I型糖尿病的蛋白抗原与所述免疫抑制剂的使 配比 (质量比) 为 1 : 20到 20: 1, 如 1 : 1到 10: 1。 在本发明中, 所述 I型糖尿病的蛋白抗原与所 述免疫抑制剂的使用配比 (质量比) 具体为 1 : 1 ( 10 4 § 蛋白抗原+1(^ § 免疫抑制 剂) , 或 10: 1 ( 10 4 § 蛋白抗原+1 4 § 免疫抑制剂) 。

上述 2) 中所述表位多肽与所述免疫抑制剂的使用配比 为 lg:lg。

本发明所提供的组合物具有如下功能中的至少 一种:

( 1 ) 治疗和 /或预防脊椎动物 I型糖尿病;

(2) 提高哺乳动物动物 CD4 + CD25+调节性 T细胞增殖水平;

(3 ) 提高哺乳动物 CD4+ CD25+调节性 T细胞与 CD4+T细胞的比例;

(4) 提高哺乳动物 T细胞对 IL-10的分泌水平;

(5)抑制哺乳动物自身免疫反应性 CD8 T细胞的杀伤作用; 在本发明的实施例 中, 所述抑制自主免疫 CD8 T细胞的杀伤作用具体为对胰岛细胞和 /或脾脏细胞的杀 伤作用。

(6) 控制 I型糖尿病患者 (哺乳动物) 血糖水平;

(7) 提高哺乳动物外周血单核细胞和 /或脾脏细胞中 IL-10和 /或 TGF-β的转录 水平;

(8) 抑制哺乳动物 DC细胞成熟; 所述抑制 DC细胞成熟体现为降低 DC分泌 CD40、 CD80、 CD83和 CD86中的至少一种。

所述脊椎动物为哺乳动物, 具体可为小鼠、 家兔、 狗或人。

本发明所提供的组合物在制备治疗和 /或预防 I型糖尿病的产品中的应用也属于 本发明的保护范围。

本发明所提供的组合物在制备具有如下 a) -h) 中至少一种功能的产品中的应用 也属于本发明的保护范围:

a) 提高哺乳动物 CD4+ CD25+调节性 T细胞占 CD4+T细胞的比例;

b) 提高哺乳动物 CD4+CD25+调节性 T细胞增殖水平; c) 提高哺乳动物 T细胞对 IL-10的分泌水平;

d) 控制患 I型糖尿病的哺乳动物血糖水平;

e) 抑制自身免疫反应性 CD8 T细胞所起的杀伤作用;

0 提高外周血单核细胞和 /或脾脏细胞中 IL-10和 /或 TGF-β的转录水平; g) 抑制哺乳动物 DC细胞成熟;

h) 降低哺乳动物 DC细胞分泌 CD40、 CD80、 CD83和 CD86中的至少一种. 所述脊椎动物为哺乳动物, 具体可为小鼠、 家兔、 狗或人。

本发明所提供的药物组合物在治疗和 /或预防 I型糖尿病中应用也属于本发明的 保护范围。

本发明所提供的药物组合物经过注射机体, 体内可以产生 CD4 + CD25+调节性 T 细胞, 从而抑制 I型糖尿病发生。

本发明所提供的药物组合物, 在使用过程中: 1 ) 作为 I型糖尿病的蛋白抗原的 胰岛素浓度为 0.01〜1IU/Kg体重,如 0.15〜0.25IU/Kg体重,免疫抑制剂地塞米松的浓 度为 0.01〜60(^g/Kg体重, 如 l〜5 g/Kg体重;

2)作为 I型糖尿病的蛋白抗原的表位多肽 B23-39浓度为 0.05〜^g/Kg体重, 如

0.1〜0.5 g/Kg体重,免疫抑制剂地塞米松的浓度为 0.01〜^g/Kg体重,如 0.05〜0.2 g/Kg 体重;

3)作为 I型糖尿病的蛋白抗原的表位多肽 B10-C5浓度为 0.05〜^g/Kg体重,如 0.1〜0.5 g/Kg体重,免疫抑制剂地塞米松的浓度为 0.01〜^g/Kg体重,如 0.05〜0.2 g/Kg 体重;

4) 作为 I型糖尿病的蛋白抗原的谷氨酸脱羧酶浓度为 0.05〜^g/Kg 体重, 如 0.1-0.5 g/Kg 体重, 免疫抑制剂地塞米松的浓度为 0.01〜^g/Kg 体重, 如 0.05〜0 g/Kg体重;

5) 作为 I型糖尿病的蛋白抗原的表位多肽 G114-123浓度为 0.05〜^g/Kg体重, 如 0.1〜0.5 g/Kg 体重, 免疫抑制剂地塞米松的浓度为 0.01〜^g/Kg 体重, 如

0.05〜0 g/Kg体重。

本发明所提供的治疗和 /或预防 I型糖尿病的药物组合物可通过注射、 喷射、 滴 鼻、 滴眼、 渗透、 吸收、 物理或化学介导的方法导入机体, 如肌肉、 皮内、 皮下、 静 脉、 粘膜组织; 或是被其他物质混合或包裹后导入机体。

所述药物组合物每 3-30天给药一次, 一般共需 4-8次。

附图说明

图 1为确定 Treg量效关系的结果, 即人胰岛素 (诺和灵 R) 与地塞米松不同剂量 免疫 NOD小鼠后, 检测脾脏 CD4+CD25+调节性 T细胞的比例。 其中, A为流式细胞检 测结果; B为对 A流式细胞检测结果的统计比较结果。 A和 B中, 1均代表第 1组(10+10 组),即注射 10微克人胰岛素(诺和灵 R)混合 10微克地塞米松 ; 2均代表第 2组(100+100 组) , 即注射 100微克人胰岛素 (诺和灵 R) 混合 100微克地塞米松; 3均代表第 3组 (500+100组) , 即注射 500微克人胰岛素 (诺和灵 R)混合 100微克地塞米松; 4均代 表未经免疫的 NOD小鼠对照组。

图 2为确定 Treg增殖量效关系的结果, 即人胰岛素 (诺和灵 R) 与地塞米松不同 剂量免疫 NOD小鼠后, 纯化脾脏 CD4+CD25+调节性 T细胞, 标记 CFSE, 体外用抗原 人胰岛素 (诺和灵 R) 或人胰岛素表位多肽 B9-23重新刺激后, 检测 Treg的增殖情况。 其中, A为流式细胞检测结果; B为对 A流式细胞检测结果的统计比较结果。 A和 B中, 1均代表阳性对照 Anti-CD3; 2均代表无关抗原对照 OVA323-339; 3均代表未刺激阴性 对照; (1、 2、 3均为未经免疫的 NOD小鼠) ; 4均代表 10微克人胰岛素 (诺和灵 R) 混合 10微克地塞米松刺激组; 5均代表 100微克人胰岛素 (诺和灵 R) 混合 100微克地 塞米松刺激组; 6均代表 500微克人胰岛素(诺和灵 R)混合 100微克地塞米松刺激组; 7均代表 10微克人胰岛素表位多肽 B9-23混合 10微克地塞米松刺激组;8均代表 100微克 人胰岛素表位多肽 B9-23混合 100微克地塞米松刺激组 ; 9均代表 500微克人胰岛素表位 多肽 B9-23混合 100微克地塞米松刺激组。

图 3为确定 IL-10量效关系的结果, 即胰岛素抗原与地塞米松不同剂量免疫 NOD 小鼠后, 纯化脾脏 CD4+CD25+调节性 T细胞, 体外用抗原人胰岛素 (诺和灵 R) 或人 胰岛素表位多肽 B9-23重新刺激后, 检测上清中 IL-10表达 (皮克每毫升) 。 1代表阳 性对照 Anti-CD3; 2代表无关抗原对照 OVA323-339; 3代表未刺激阴性对照; (1、 2、 3均为未经免疫的 NOD小鼠) ; 4代表 10微克人胰岛素(诺和灵 R)混合 10微克地塞米 松刺激组; 5代表 100微克人胰岛素 (诺和灵 R)混合 100微克地塞米松刺激组; 6代表 500微克人胰岛素 (诺和灵 R) 混合 100微克地塞米松刺激组; 7代表 10微克人胰岛素 表位多肽 B9-23混合 10微克地塞米松刺激组; 8代表 100微克人胰岛素表位多肽 B9-23 混合 100微克地塞米松刺激组; 9代表 500微克人胰岛素表位多肽 B9-23混合 100微克地 塞米松刺激组。

图 4为即发 I型糖尿病治疗效果的血糖检测结果, gpSTZ诱导 NOD小鼠 I型糖尿 病发病后, 分别用高剂量组 (人胰岛素 (诺和灵 R) 100μ § +地塞米松 100μ § ) 和低剂 量组 (人胰岛素 (诺和灵 R) 10μ § +地塞米松 10μ § ) 治疗, 观察血糖变化 (毫摩) 。 其中, 空心圆实线代表发病不治疗组; 实心圆实线代表低剂量治疗组 (10+10) ; 空 心圆虚线代表高剂量治疗组 (100+100) 。

图 5为即发 I型糖尿病治疗效果的 CTL (细胞杀伤) 检测结果, 即 STZ诱导 NOD 小鼠 I型糖尿病发病后, 分别用高剂量组 (人胰岛素 (诺和灵 R) 100μ § +地塞米松 100μ § ) 和低剂量组 (人胰岛素 (诺和灵 R) 10μ § +地塞米松 10μ § ) 治疗, 将与

Insulinl0-18CD8 T细胞表位孵育的细胞标记 CFSE, 转移到治疗后的小鼠体内, 12h后 检测 CTL杀伤。其中, A为流式细胞检测结果; B为对 A流式细胞检测结果的统计比较 结果。 A和 B中, 1均代表第 1组(发病组)小鼠的 CTL检测结果; 2均代表第 2组(10+10 组) , 即注射人胰岛素 10μ § 混合地塞米松 10μ § 组小鼠的 CTL检测结果; 3均代表第 3 组(100+100组), 即注射人胰岛素 100μ § 混合地塞米松 100μ § 组小鼠的 CTL检测结果; 4均代表第 3组 (100+100组) 小鼠事先注射 anti-CD8抗体, 敲除 CD8细胞后的 CTL检 测结果。 图 6为即发 I型糖尿病治疗后血糖与自主免疫 CTL的相关性结果。 每个点代表一 只小鼠。

图 7为即发 I型糖尿病治疗效果的调节性 T细胞(Foxp3 + CD4 + )检测结果, SPSTZ 诱导 NOD小鼠 I型糖尿病发病后, 分别用高剂量组 (人胰岛素 (诺和灵 R) 100μ § + 地塞米松 100μ § )和低剂量组(人胰岛素 (诺和灵 R) 10μ § +地塞米松 10μ § ) 治疗, 检 测治疗后小鼠的调节性 Τ细胞 (Foxp3 + CD4 + ) 占 CD4 + T细胞的百分含量。 其中, 1代 表对照组,即未经免疫且未致病的 NOD小鼠的调节性 T细胞(Foxp3 + CD4 + )检测结果; 2代表第 1组 (发病组)小鼠的调节性 T细胞 (Foxp3 + CD4 + )检测结果 ; 3代表第 2组(10+10 组) , 即注射人胰岛素 10μ § 混合地塞米松 10μ § 组小鼠的调节性 T细胞 (Foxp3 + CD4 + ) 检测结果; 4代表第 3组 (100+100组) , 即注射人胰岛素 100μ § 混合地塞米松 100μ § 组 小鼠的调节性 Τ细胞 (Foxp3 + CD4 + ) 检测结果。

图 8为长期 I型糖尿病治疗效果的生存曲线, 即 NOD小鼠 I型糖尿病发病后, 以 低剂量组 (人胰岛素 (诺和灵 R) 10μ § +地塞米松 10μ § ) 治疗, 定时统计小鼠的存活 率。 其中, 空心圆实线代表第 1组 (发病组) ; 实心圆实线代表第 2组 (治疗组) 。

图 9为长期 I型糖尿病治疗效果的血糖变化检测结果, gpSTZ诱导 NOD小鼠 I型 糖尿病发病后, 用低剂量组 (人胰岛素 (诺和灵 R) 10μ § +地塞米松 10μ § ) 治疗, 观 察血糖变化。 其中, 空心圆实线代表第 1组(发病组) ; 实心圆实线代表第 2组(治疗 组) 。

图 10为长期 T1D治疗效果的 Insulinl0-18 CTL检测结果, SPSTZ诱导 NOD小鼠 I 型糖尿病发病后, 用低剂量组 (人胰岛素 (诺和灵 R) 10μ § +地塞米松 10μ § ) 治疗, 将与 Insulinl0-18CD8 T细胞表位孵育的细胞标记 CFSE, 转移到治疗后的小鼠体内, 12h后检测 CTL杀伤。 其中, 1代表第 1组 (发病组) 小鼠的 CTL检测结果; 2代表第 2 组 (治疗组) , 即注射人胰岛素 10μ § 混合地塞米松 10μ § 组小鼠的 CTL检测结果; 3代 表 Anti-CD8单抗阻断发病组小鼠 CTL的结果。

图 11为长期 I型糖尿病治疗效果的胰岛细胞 CTL检测结果, gpSTZ诱导 NOD小鼠

I型糖尿病发病后, 用低剂量组(人胰岛素(诺和灵 R) 10μ § +地塞米松 10μ § ) 治疗, 将胰腺细胞标记 CFSE, 转移到治疗后的小鼠体内, 12h后检测 CTL杀伤。 其中 1代表 第 1组(发病组)小鼠的 CTL检测结果; 2代表第 2组(治疗组), 即注射人胰岛素 10μ § 混合地塞米松 10μ § 组小鼠的 CTL检测结果。

图 12为家兔 IL-10和 TGF-β量效关系, 即抗原人胰岛素 (诺和灵 R)与地塞米松不 同剂量免疫家兔后,分离脾脏细胞,体外用人 胰岛素(诺和灵 R)重新刺激后, RT-PCR 检测 IL-10和 TGF-β表达。 其中, A为 PBMC中 IL-10和 TGF-β的 RT-PCR电泳图。 具体 的, 泳道 1表示第 1组 (100+100组) , 即注射 100微克人胰岛素混合 100微克地塞米松 组, 泳道 2表示第 2组 (10+10组) , 即注射 10微克人胰岛素混合 10微克地塞米松组, 泳道 3表示第 3组 (10+1组) , 即注射 10微克人胰岛素混合 1微克地塞米松组, 泳道 4 表示第 4组(DEX100组), 即注射 100微克地塞米松组,泳道 5表示第 5组(InslOO组), 即注射 10微克人胰岛素组, 泳道 6表示第 6组(阴性对照组), 即注射 PBS 100微升组。 B为 RT-PCR检测 PBMC和脾脏中 IL-10和 TGF-β表达的柱形图。具体的, B1-1为 PBMC 分泌 IL-10的 RT-PCR检测结果, B1-2为 PBMC分泌 TGF-β的 RT-PCR检测结果, B2-1 为脾细胞分泌 IL-10的 RT-PCR检测结果, B2-2为脾细胞分泌 TGF-β的 RT-PCR检测结 果。 Bl- Bl-2、 B2-1和 B2-2中, 1均代表第 1组 ( 100+100组) , 即注射 100微克人 胰岛素混合 100微克地塞米松组, 2均代表第 2组 (10+10组) , 即注射 10微克人胰岛 素混合 10微克地塞米松组, 3均代表第 3组 (10+1组) , 即注射 10微克人胰岛素混合 1 微克地塞米松组, 4均代表第 4组 (DEX100组) , 即注射 100微克地塞米松组, 5均代 表第 5组 (InslOO组) , 即注射 10微克人胰岛素组。

图 13狗 IL-10和 TGF-β量效关系, 即抗原人胰岛素 (诺和灵 R)与地塞米松不同剂 量免疫 T1D狗后, 在第 -3, 0, 8, 20, 28天分离脾脏细胞, 体外用人胰岛素 (诺和灵 R) 重新刺激后, RT-PCR检测 IL-10和 TGF-β表达。 其中, A为 IL-10表达的检测结果; B为 TGF-β表达的检测结果。 A和 B中的 1, 2, 3, 4, 5均分别代表第 -3, 0, 8, 20, 28天的检测结果。

图 14为狗即发 I型糖尿病治疗效果的 Treg检测结果, 即 Alloxan诱导狗 T1D发病 后, 用胰岛素 +地塞米松治疗, 检测治疗后狗胰腺的 Treg占 CD4 T细胞和占所有细胞 的百分比。 其中, A为 Treg占 CD4 T细胞的百分比; B为 Treg占所有细胞的百分比。 A 和 B中, 1均表示发病组, 2均表示 100+1.5治疗组。

图 15为狗 T1D治疗后生存结果, 即人胰岛素(诺和灵 R)与地塞米松的混合药 物或人胰岛素 (诺和灵 R) 与环孢霉素的混合药物免疫 T1D狗后, 跟踪生存情况。 其中, 1为人胰岛素 (诺和灵 R) (0.15IU/kg体重) 与地塞米松 (l g/kg体重) 组; 2为人胰岛素 (诺和灵 R) (0.15IU/kg体重)与环孢霉素 (100μ § /1¾体重) 组; 3为 发病模型对照组。 灰色为免疫治疗期, 每次 3针。

图 16为狗 T1D治疗后血糖变化结果, 即人胰岛素(诺和灵 R)与地塞米松的混 合药物免疫 T1D 狗后, 跟踪血糖变化情况。 其中, 实线为人胰岛素 (诺和灵 R) (0.15IU/kg体重) 与地塞米松 (l g/kg体重) 组; 虚线为发病模型对照组。 灰色为 免疫治疗期, 每次 3针。 横线为高血糖判定线。

图 17 为狗 T1D治疗后血糖变化结果, 即人胰岛素(诺和灵 R)与环孢霉素的混合 药物免疫 T1D狗后,跟踪血糖变化情况。其中,实线为人 胰岛素(诺和灵 R) (0.15IU/kg 体重)与环孢霉素(10(^g/kg体重)组; 虚线为发病模型对照组。灰色为免疫治疗期, 每次 3针。 横线为高血糖判定线。

图 18为狗 T1D治疗后体重减轻结果, 即人胰岛素 (诺和灵 R) 与地塞米松的混合 药物或人胰岛素 (诺和灵 R) 与环孢霉素的混合药物免疫 T1D狗后, 跟踪体重变化情 况。 其中, 1为人胰岛素 (诺和灵 R) (0.15IU/kg体重) 与地塞米松 (ΙμΒ/kg体重) 组; 2为人胰岛素 (诺和灵 R) (0.15IU/kg体重) 与环孢霉素 (100μ § /1¾体重) 组; 3 为发病模型对照组。 灰色为免疫治疗期, 每次 3针。

图 19为人 PMBC转化 DC受刺激后的 CD40和 IL-10表达, 即分离正常人和 T1D病人 的外周血单核细胞 (PBMC) , 在 GMCSF和 IL-4作用下诱导 CDla + DC, 用胰岛素和 地塞米松刺激后, 检测 CD40和 IL-10的表达。 其中, A为 CD40的表达检测结果; B为 IL-10的表达检测结果。 A和 B中的 1-1和 1-2均为 2份 I型糖尿病患者血样检测结果; 2-1、 2-2和 2-3均为 3份正常人血样检测结果; 1-1、 1-2、 2-1、 2-2和 2-3中的 1均表示阴 性对照组, 2均表示终浓度为 10μ § /ηι1的人胰岛素 (诺和灵 R) 组; 3均表示终浓度为 10 μ§ /ηι1的地塞米松组; 4均表示人胰岛素 (诺和灵 R) 混合地塞米松 (两者终浓度均 为 l(^g/ml) 组。

图 20为药物组合物的抑制剂筛选大量样本结果, 人 PBMC在胰岛素加抑制剂影 响下的免疫 DC细胞分子 CD40, CD80, CD83和 CD86的变化。 其中, 1表示阴性对照 组; 2表示终浓度为 l(^g/ml的人胰岛素 (诺和灵 R) 组; 3表示人胰岛素 (诺和灵 R) 混合地塞米松 (两者终浓度均为 10μ § /ηι1) 组; 4表示人胰岛素 (诺和灵 R) 混合雷帕 霉素 (两者终浓度均为 10μ § /ηι1) 组; 5表示人胰岛素 (诺和灵 R) 混合环孢素 Α (两 者终浓度均为 10 μ§ /ηι1) 组; 6表示人胰岛素 (诺和灵 R) 混合普乐可复 (两者终浓度 均为 10μ § /ηι1) 组。 每个点代表一个病人血样。

实施发明的最佳方式

下述实施例中所使用的实验方法如无特殊说明 , 均为常规方法。

下述实施例中所用的材料、 试剂等, 如无特殊说明, 均可从商业途径得到。 药物来源和混合: 本发明中, 所用的 I型糖尿病的蛋白抗原具体为人胰岛素(诺 和灵 R) (丹麦诺和诺德公司 Novo Nordisk A/S), 1IU胰岛素折合重量为 45.4微克; 所用的 I型糖尿病的蛋白抗原的表位多肽为氨基酸序 是序列表中序列 1的多肽,该 多肽为人胰岛素中 B链上的第 9-23位氨基酸组成的,将其命名为 B9-23 (由北京 aoke 公司合成) ; 所用的免疫抑制剂可为地塞米松 (DEX) (国药准字 H34023626), 雷帕霉素(Rap) (产品号 SR039501 ) , 普乐可复 (FK506) (国药准字 H20080457), 或环孢素 A(CsA) (国药准字 HI 0940045 ) , 均为临床用药, 购自国药集团。 注射前 混合胰岛素和免疫抑制剂。

实施例 1、 NOD小鼠药物量效实验

一、 NOD小鼠免疫

1、 免疫由人胰岛素 (诺和灵 R) 和地塞米松组成的药物组合物

将 NOD小鼠均分为 4组, 每组 3只。 在第 1, 4, 7天, 腹部皮下注射药物组合 物: 第 1组 (10+10组) 每只小鼠分别注射含 10微克人胰岛素 (诺和灵 R) 混合 10 微克地塞米松的 PBS 100微升, 第 2组( 100+100组)每只分别注射 100微克胰岛素 混合 100微克地塞米松的 PBS 100微升, 第 3组 (500+100组)每只分别注射含 500 微克胰岛素混合 100微克地塞米松的 PBS 100微升。

2、 免疫由人胰岛素表位多肽 B9-23和地塞米松组成的药物组合物

将 NOD小鼠均分为 4组, 每组 3只。 在第 1, 4, 7天, 腹部皮下注射药物组合 物: 第 1组 (10+10组) 每只小鼠分别注射含 10微克人胰岛素表位多肽 B9-23混合 10微克地塞米松的 PBS 100微升,第 2组( 100+100组)每只分别注射 100微克 B9-23 混合 100微克地塞米松的 PBS 100微升, 第 3组 (500+100组)每只分别注射含 500 微克 B9-23混合 100微克地塞米松的 PBS 100微升。

二、 检测调节性 T细胞的比例、 增殖及分泌 IL-10的情况确定药物量效关系

1、 检测调节性 T细胞的比例确定药物量效关系

上述步骤一免疫小鼠后第 8天进行检测, 利用调节 T细胞比例, 反映药物 (由 人胰岛素 (诺和灵 R) 和地塞米松组成的药物组合物) 注射产生的抑制效果。

具体方法如下: (1 ) 脱臼处死小鼠, 用 70%乙醇浸泡 15分钟; (2) 在提前紫 外灯灭菌 20 分钟的超净工作台中, 无菌条件下取出小鼠脾脏于提前加有 2ml RPMI1640 培养液的细胞培养皿中; (3 ) 将铜网灼烧后降温放入平皿中, 利用无菌 注射器将脾脏磨碎, 制成细胞悬浮液, 并过滤到 13ml细胞离心管内; (4) 将离心 管口用封口膜封好, 2000rpm离心 10分钟; (5 ) 弃上层培养液, 加 2〜3ml红细胞 裂解液, 悬浮细胞, 裂解 2分钟后, 加等体积 RPMI1640培养基(或胎牛血清) 中止 反应, 将离心管口用封口膜封好, 离心 2000rpm离心 10分钟; (6) 弃上层培养液, 加 3〜4ml的 RPMI1640 (含 2%胎牛血清)培养基悬浮细胞; (7)用玻璃棉 37°C滤 过细胞, 保证细胞充分和玻璃棉结合以除去 B细胞, 得到淋巴细胞; (8)用血球计 数板细胞计数; (9) 用 PBS洗掉培养基, 并最终用 PBS溶液 1ml悬浮 2><10 7 个细 胞; (10)将淋巴细胞染色 CD4和 CD25: 取 10 6 个细胞, 参照抗体说明书用量, 加 入 0.2μ1 PE-anti-CD4和 0.2μ1 APC-anti-CD25 (eBioscience 12-0041 , 17-0251 ) , 室温 避光染色 10min, 清洗两次, 分析 CD4 + CD25 + 调节性 T细胞(简称 Treg) 占 CD4 + T 细胞的百分比。 同时设置未经免疫的 NOD小鼠作为对照组。

结果如图 1所示, 与对照组相比, 第 1组 (10+10组) , 即注射人胰岛素 10μ § 混合地塞米松 10μ § 组, Treg明显上升至 16%, 而其他组则维持在 10%-12%。

2、 检测调节性 T细胞的增殖确定药物量效关系

上述步骤一免疫小鼠后第 8天进行检测, 利用 T细胞增殖试验, CFSE染色, 流 式细胞仪检测, 用来反映 Treg细胞针对胰岛素 (由人胰岛素 (诺和灵 R) 和地塞米 松组成的药物组合物)和 B9-23 (由人胰岛素表位多肽 B9-23和地塞米松组成的药物 组合物) 的增殖能力。

具体方法如下: (1 ) - (9) 同上述步骤 1的(1 ) - (9) ; ( 10)加入 3 M CFSE 储备液至终浓度为 1.5μΜ, 室温下轻轻振荡 8分钟; (11 )加入等体积胎牛血清终止 反应,将细胞放入水浴 10分钟, 2000rpm 5分钟离心,弃上清,悬浮细胞,并用 lmlPBS 溶液洗细胞, 离心弃上清, 重复 3次; (12) 将每组细胞悬液分 4份加入 96孔培养 板中 (每个孔中加入 2xl0 5 个细胞) 。 其中一份作为阳性对照加入 ΙΟΟμΙ Anti-CD3 抗体 (AbDSerotec MCA500GA) 至终浓度为 l g/ml, —份作为无关抗原对照加入 OVA323-339 (氨基酸序列: ISQAVHAAHAEINEAGR ) 作为刺激物至终浓度为 5μ § /ηι1, 一份作为阴性对照不加刺激物, 一份加入特异抗原人胰岛素至终浓度为 10μ § /ηι1, 一份加入特异抗原人胰岛素表位多肽 Β9-23至终浓度为 l(^g/ml。 同时设 有不加刺激物和不用 CFSE染色的细胞对照; (13 ) 将细胞放入细胞培养箱, 37°C, 5% C0 2 培养, 3天后用流式细胞仪检测调节性 T细胞的增殖情况。 同时设置未经免 疫的 NOD小鼠作为对照组。

结果如图 2所示, 与对照组相比, 对于由人胰岛素(诺和灵 R)和地塞米松组成 的药物组合物, 第 1组 (10+10组) , 即注射人胰岛素 10μ § 混合地塞米松 10μ § 组, Treg增殖明显, 而其他组则不增殖; 对于由人胰岛素表位多肽 B9-23和地塞米松组 成的药物组合物, 第 1组 (10+10组) , 即注射人胰岛素表位多肽 B9-23 10μ § 混合 地塞米松 10μ § 组, Treg增殖明显, 而其他组则不增殖。

3、 检测调节性 T细胞分泌 IL-10的情况确定药物量效关系

上述步骤一免疫小鼠后第 8天进行检测, 利用体外抗原刺激, 检测上清中 IL-10 表达, 用来反映 Treg细胞针对胰岛素 (由人胰岛素 (诺和灵 R) 和地塞米松组成的 药物组合物) 和 B9-23 (由人胰岛素表位多肽 B9-23和地塞米松组成的药物组合物) 分泌抑制型细胞因子 IL-10的能力。

具体方法如下: (1 ) - (9) 同上述步骤 1的 (1 ) - ( 9) ; ( 10) 将每组细胞悬 液分 4份加入 96孔培养板中 (每个孔中加入 2χ10 5 个细胞) 。 其中一份作为阳性对 照加入 10(^lAnti-CD3 抗体至终浓度为 ^g/ml, —份作为无关抗原阴性对照加入 OVA323-339作为刺激物至终浓度为 5μ § /ιη1, 一份作为阴性对照不加刺激物,一份加 入特异抗原胰岛素至终浓度为 10μ § /ηι1, 一份加入特异抗原胰岛素 Β9-23表位至终浓 度为 l(^g/ml。 (11 ) 将细胞放入细胞培养箱, 37°C, 5% C0 2 培养, 24小时后, 收 集上清,将 30μ1上清与 30μ1 PBS (含 Ο. ΐμΐ FlexSet微球,为美国 BD公司产品, 558300) 孵育 30分钟, 再加入 3(^1 PBS (含 Ο.ΙμΙ ΡΕ抗体, 为美国 BD公司产品, 558300) 孵育 30分钟, 清洗后, 检测上清中 IL-10, 流式细胞仪分析。 同时设置未经免疫的 NOD小鼠作为对照组。

结果如图 3所示, 对于由人胰岛素 (诺和灵 R) 和地塞米松组成的药物组合物, 第 1组 (10+10组) , 即注射人胰岛素 10μ § 混合地塞米松 10μ § 组, IL-10分泌明显 上升;对于由人胰岛素表位多肽 Β9-23和地塞米松组成的药物组合物,第 1组(10+10 组) , 即注射人胰岛素表位多肽 Β9-23 10μ § 混合地塞米松 10μ § 组, IL-10分泌明显 上升。

综上所述, 本实施例的结果表明, 人胰岛素混合地塞米松可以增强 NOD小鼠的 Treg产生, 并且 Treg针对人胰岛素和人胰岛素表位多肽 B9-23起增殖反应和分泌抑 制型细胞因子 IL-10, 且最佳剂量为人胰岛素 (或人胰岛素表位多肽 B9-23 ) 10μ § 混 合地塞米松 10μ § 。 实施例 2、 NOD小鼠即发 I型糖尿病的治疗效果试验

一、 NOD小鼠的致病及免疫

在实施例 1确定药物量效关系后, 利用 NOD小鼠诱导 I型糖尿病, 判定为高血 糖(>12mmol)后, 进行腹腔注射药物组合物 (由人胰岛素(诺和灵 R)和地塞米松 组成的药物组合物) 。 具体操作如下:

18只 NOD小鼠,连续 5天腹腔注射链脲佐菌素(STZ) ( Sigma Aldrige, S0130) 40mg/kg, 诱导 I型糖尿病。 判定为高血糖(>12m mol) , (首次注射 STZ记为第 1 天, 约 10天后, 即得到 NOD小鼠即发 I型糖尿病模型)后均分为 3组, 每组 6只, 第 1组 (发病组) 不进行治疗, 第 2组 (10+10组) 每只分别注射 10微克人胰岛素 混合 10微克地塞米松的 PBS 100微升作为治疗组, 第 3组 (100+100组) 每只分别 注射含 100微克胰岛素混合 100微克地塞米松的 PBS 100微升作为治疗对照组。 在 将 NOD小鼠判定为高血糖后的第 1, 4, 7天各进行一次腹部皮下注射。

二、 小鼠血糖变化、 CTL及调节性 T细胞比例的检测

1、 小鼠血糖变化检测

不同时间点 (以首次注射 STZ为第 1天计算, 第 5、 7、 11、 17、 19、 24、 28、 32、 37天) 。 检测各组小鼠的血糖变化, 反映药物 (由人胰岛素 (诺和灵 R) 和地 塞米松组成的药物组合物) 注射产生的治疗效果。

具体方法如下: (1 ) 准备血糖试纸和测试仪; (2) 小鼠眼眶采血 ΙΟμΙ滴于血 糖试纸; (3 ) 读数。

结果如图 4所示,第 2组( 10+10组),即注射人胰岛素 10μ § 混合地塞米松 10μ § 的治疗组, 血糖明显得到控制, 稳定在 10-12mmol, 而治疗对照组, 即注射人胰岛素 100μ § 混合地塞米松 100μ § 的第 3组 (100+100组), 则在产生一定效果后血糖又继 续升高, 最终和发病组一样高。

2、 小鼠 CTL检测

在以首次注射 STZ为第 1天计算, 第 37天, 利用体内杀伤性 Τ细胞裂解试验, 来反映 Treg细胞抑制功能对自身免疫反应性 CD8 T细胞的控制作用。

具体方法如下: (1 ) 事先给上述步骤一免疫后的 100+100组小鼠注射 (以首次 注射 STZ为第 1天计算, 第 35, 36天) Anti-CD8单抗 (eBioscience, 克隆 53-6.7), 清除体内 CD8 T细胞作为对照; (2) 将正常的 NOD小鼠脾脏细胞分离计数, 同实 施例一二步骤 1中的 (1 ) - (9) ; (3)等分后分别加入 5μΜ和 20μΜ CFSE室温染 色 8分钟, 各自加入等体积胎牛血清终止反应并用含有血 清的 PBS溶液洗细胞, 离 心弃上清, 重复 3次; (4) 将 20μΜ CFSE细胞孵育 5(^g/ml Insulinl0-18 CD8 T细 胞表位 (氨基酸序列: HLVEALYLV), 37°C, 5% C0 2 培养 30min后清洗; (5 ) 将 5μΜ对照细胞(上述步骤(3)中的 5μΜ CFSE室温染色的细胞)和 20μΜ靶细胞 (上述步骤 (4) 中的 2(^M CFSE细胞孵育 5(^g/ml InsulinlO-18 CD8 T细胞表位得 到的细胞) 1 : 1混合, 尾静脉注射入 (注射 Anti-CD8单抗后的第 1天)上述步骤一 免疫后的 NOD小鼠体内; (6) 12小时后处死小鼠, 分离脾脏细胞, 用流式细胞仪 检测 CFSE信号, 按照公式: 1-靶细胞数 /对照细胞数 X 100%, 计算靶细胞相对对照 细胞的杀伤比例。

结果如图 5所示,第 2组( 10+10组),即注射人胰岛素 10μ § 混合地塞米松 10μ § 组, 病鼠的自身免疫反应性 CD8 Τ细胞所起的杀伤作用得到明显控制, 而治疗对照 组, 即注射人胰岛素 100μ § 混合地塞米松 100μ § 组则仍然很高。 且这种杀伤作用可 以被 CD8的抗体阻断。 并且, 分析血糖水平和杀伤功能相关性后, 发现两者正相关 (如图 6所示) , 也证明治疗改善了自身免疫反应性从而控制血 糖。

3、 小鼠调节性 T细胞比例的检测

上述步骤一免疫小鼠 (以首次注射 STZ为第 1天计算, 第 37天)进行检测, 利 用调节 T细胞比例, 反映药物 (由人胰岛素 (诺和灵 R) 和地塞米松组成的药物组 合物) 注射产生 Treg。

具体方法同实施例 1步骤二 1所述方法。 同时设置未经免疫且未致病的 NOD小 鼠作为对照组。

结果如图 7所示, 与发病组及对照组小鼠相比, 第 2组(10+10组) , 即注射胰 岛素 10μ § 混合地塞米松 10μ § 组, Treg明显上升至 15%,而其他组则维持在 8%-10%。

综上所述, 本实施例的结果表明, 人胰岛素混合地塞米松可以在 NOD小鼠上治 疗 I型糖尿病。 这种治疗效果是由于药物注射后引起的 Treg产生, 抑制了自身免疫 反应性的 CD8 T细胞对胰岛细胞的杀伤。 实施例 3、 NOD小鼠长期 I型糖尿病的治疗效果试验

在实施例 2证明药物组合物(由人胰岛素(诺和灵 R)和地塞米松组成的药物组 合物)对即发 I型糖尿病具有治疗效果后,对长期 I型糖尿病的治疗效果进行治疗评 价, 具体如下:

一、 NOD小鼠的致病及免疫

16只 NOD小鼠, 连续 5天腹腔注射 STZ 40mg/kg, 诱导 I型糖尿病, 发病 2个 月后, 进行注射治疗。 均分为 2组, 每组 8只, 第 1组 (发病组) 不进行治疗, 第 2 组 (治疗组) 每只分别注射 10微克人胰岛素混合 10微克地塞米松的 PBS 100微升 作为治疗组。 在第 1, 4, 7天各进行一次腹部皮下注射, 为 1个疗程, 中间间隔 2 周, 再进行一个疗程。

二、 小鼠生存曲线、 血糖变化及 CTL检测

1、 小鼠生存曲线的检测

对经上述步骤一免疫的小鼠进行生存曲线的检 测,反映治疗对病鼠的生活质量的 提高。具体如下: 自上述步骤一对发病小鼠进行注射治疗时起, 定期对各组小鼠进行 存活率统计, 至 100天。

结果如图 8所示, 第 1组(发病组)小鼠在 60-80天全部死亡, 而第 2组(治疗 组)小鼠在 100天仍然有约 60%的小鼠存活, 证明由人胰岛素(诺和灵 R)和地塞米 松组成的药物组合物可以提高 I型糖尿病的生存质量。

2、 小鼠血糖变化的检测

不同时间点 (以首次注射 STZ前一天为第 0天计算, 第 0、 40、 53、 60、 69、 72、 73、 80、 85、 87、 90、 93、 97、 100天)检测各组小鼠的血糖变化, 反映药物(由 人胰岛素 (诺和灵 R) 和地塞米松组成的药物组合物) 注射产生的治疗效果。

具体方法如下: (1 ) 准备血糖试纸和测试仪; (2) 小鼠眼眶采血 ΙΟμΙ滴于血 糖试纸; (3 ) 读数。 结果如图 9所示,第 2组(治疗组)小鼠经过两个疗程治疗,血糖 显得到控制, 稳定在 10-15mmol, 而第 1组 (发病组) 小鼠的血糖一直较高。

3、 小鼠 CTL检测

在步骤一末次免疫小鼠后(以首次注射 STZ前一天为第 0天计算, 第 60天检测 发病组, 第 100天检测治疗组) , 利用体内杀伤性 T细胞裂解试验, 来反映 Treg细 胞抑制功能对自身免疫反应性 CD8 T细胞的控制作用。

具体方法同实施例 2二中步骤 2所述方法。

另外, 还针对胰岛细胞的杀伤作用做了检测, 即正常 NOD小鼠胰腺细胞分离计 数后, 作为靶细胞检测 CTL。 具体步骤为: (1 ) 在无菌条件下, 处死 NOD小鼠, 做腹部切口暴露肝脏和胰腺; (2) 结扎胰腺入肠的外分泌管, 沿胆道向胰腺内注入 10ml含有 lmg/ml Collagenase P (罗氏 Roche, Cat. No. 11213857001 ) 的 PBS, 分离 胰腺, 37度消化 lh; (3 ) 250 X g离心 1分钟弃上清, PBS清洗两次, 弃尽上清;

(4)将沉淀重悬于 3ml 25%的 Ficoll溶液中(Roche),在上层依次加入 23% (2ml)、 20% (2ml) 禾卩 11% (2 ml) 的 Ficoll溶液, 800 g离心 10 min, 取交界处胰岛层, PBS清洗两次去除 Ficoll; (5 )将胰岛用 0.25%胰酶 Trypsin (Sigma) 37度消化 10 分钟,制备单细胞(胰岛细胞)悬液; (6)将步骤(5)所得胰岛细胞染色 20uM CFSE, 作为靶细胞, 加入 5uM CFSE染色的效应细胞杀伤。

结果表明, 经 2 个疗程治疗后, 病鼠的自身免疫反应性 CD8 T 细胞针对 InsulinlO-18表位所起的杀伤作用得到明显控制 (第 2组 (治疗组) ) 。 且这种杀伤 作用可以被 CD8的抗体(Anti-CD8单抗) 阻断(图 10) ; 同样, 针对胰岛细胞的杀 伤作用也被治疗控制 (图 11 ) 。 实施例 4、 家兔药物量效试验

在实施例 1-3证明药物组合物(由人胰岛素(诺和灵 R)和地塞米松组成的药物 组合物)对 NOD小鼠 I型糖尿病具有治疗效果后, 进一步对家兔上药物的剂量和效 果进行评价。

一、 家兔的免疫

18只家兔 (新西兰白兔) , 在第 1, 4, 7天, 腹部皮下注射药物组合物 (由人 胰岛素(诺和灵 R)和地塞米松组成的药物组合物)作为一个疗 : 均分为 6组, 每 组 3只, 第 1组( 100+100组)每只分别注射含 100微克人胰岛素混合 100微克地塞 米松的 PBS 100微升, 第 2组( 10+10组)每只分别注射 10微克人胰岛素混合 10微 克地塞米松的 PBS 100微升, 第 3组(10+1组)每只分别注射含 10微克人胰岛素混 合 1微克地塞米松的 PBS 100微升, 第 4组(DEX100组)每只分别注射含 100微克 地塞米松的 PBS 100微升,第 5组(InslOO组)每只分别注射 10微克人胰岛素的 PBS 100微升, 第 6组(阴性对照组)每只分别注射 PBS 100微升。 两周后, 再次注射一 个疗程 (第 21, 24, 27天) 。

二、 检测抑制型细胞因子 IL-10和 TGF-β的分泌 在上述步骤一末次免疫后第 2天(即第 28天)检测家兔 PBMC细胞和脾细胞分 泌抑制型细胞因子 IL-10和 TGF-β的情况,反映药物组合物(由人胰岛素( 诺和灵 R) 和地塞米松组成的药物组合物) 的效果。

具体方法如下: (1 )收集家兔的外周血, Ficoll分离外周血单核细胞(PBMC), 在 15ml离心管中加入 4ml Ficoll400 (Sigma) , 在上层加入 8ml PBS稀释后的家兔 外周血, 1500rpm离心 15分钟, 取交界处的白膜层, 清洗后计数培养, 加入 10μ § /ηι1 的人胰岛素 (诺和灵 R) 刺激; (2) 收集家兔脾脏, 研磨制备单细胞悬液, 裂解红 细胞, 加入 2ml红细胞裂解液 (碧云天) , 室温裂解 2分钟, 2ml血清终止, PBS 清洗后计数培养, 加入 l(^g/ml的人胰岛素 (诺和灵 R) 刺激; (3 ) 刺激 24h, 分 别收集步骤 (1 ) 和步骤 (2) 的细胞, 各按 10 7 cell/ml加入 Trizol; (4) 氯仿抽提 RNA, 利用 ToyoboReverTraAce试剂盒, 按照说明书将 RNA反转录为 cDNA; (5 ) 设计合成兔 HPRT, IL-10, TGF-β引物:

HPRT上游: 5'-CCATCACATTGTAGCCCTCTGT-3'

HPRT下游: 5'— CTTGCGACCTTGACCATCTTT-3'

IL-10上游: 5 '-TATGTTGCCTGGTCTTCCTGG5-3 '

IL-10下游: 5'-CTCCACTGCCTTGCTCTTGT-3'

TGF-β上游: 5'-AACAAGAGCAGAAGGCGAATG-3,

TGF-β下游: 5'-ACAGCAAGGAGAAGCGGATG-3,

以步骤(4)所得 cDNA为模板, 以 HPRT上游和 HPRT下游为引物, 进行 PCR 扩增, 通过电泳将各组的 HPRT条带亮度调整一致; (6) 以步骤 (4) 所得 cDNA 为模板, 以 IL-10上游和 IL-10下游为引物 PCR扩增 IL-10; 以 TGF-β上游和 TGF-β 下游为引物 PCR扩增 TGF-β, 用 1%琼脂糖凝胶电泳区分目的条带, EB染色 1分钟 后拍照, 用 Gelpro软件分析细胞因子转录强度。

结果如图 12所示,在 PBMC和脾脏中, IL-10和 TGF-β转录在第 3组( 10+1组), 即注射 10微克人胰岛素混合 1微克地塞米松组均最高或次高(脾脏中 TGF-β转录在 第 3组 (10+1组) , 即注射 10微克人胰岛素混合 1微克地塞米松组次高) 。 实施例 5、 狗的药物量效试验

在实施例 4摸索药物组合物(由人胰岛素(诺和灵 R)和地塞米松组成的药物组 合物) 在家兔上的量效关系后, 进一步对狗的药物剂量和效果进行评价。

一、 狗的免疫

9只狗 (狼犬) , 体重 15kg, 在第 -3天用 60mg/kg体重的 Alloxan (Sigma) 诱 导 T1D,跟踪血糖,在连续两天血糖值高于 12mM后判定为 T1D发病,记为第 0天。 在第 1, 4, 7天, 腹部皮下注射混合药物作为一个疗程: 均分为 3组, 每组 3只, 第 1组( 100+15组)每只分别注射含 100微克人胰岛素(0.15IU/kg体重)混合 15微克 地塞米松 (l g/kg体重) 的 PBS 100微升, 第 2组 (100+1.5组) 每只分别注射 100 微克人胰岛素混合 1.5微克地塞米松 (0.1μ § /1¾体重) 的 PBS 100微升, 第 3组 (发 病组)每只分别注射 PBS 100微升。两周后,再次注射一个疗程(第 21, 24, 27天)。 二、 狗抑制型细胞因子 IL-10和 TGF-β分泌, 以及调节性 T细胞比例的检测

1、 狗抑制型细胞因子 IL-10和 TGF-β分泌的检测

在第 -3, 0, 8, 20和 28天 (对应于上述步骤一的天数) , 检测抑制型细胞因子 IL-10和 TGF-β的分泌, 反映药物组合物 (由人胰岛素 (诺和灵 R)和地塞米松组成 的药物组合物) 的效果。

具体方法如下: (1 ) 收集狗的外周血, Ficoll分离外周血单核细胞 (PBMC) , 在 15ml离心管中加入 4ml Ficoll400 (Sigma) , 在上层加入 8ml PBS稀释后的狗外 周血, 1500rpm离心 15分钟, 取交界处的白膜层, 清洗后计数培养, 加入 l(^g/ml 人胰岛素 (诺和灵 R) 刺激; (2) 刺激 24h, 收集上述步骤 (1 ) 的细胞, 按 10 7 个 细胞 /ml加入 Trizol; (3 ) 氯仿抽提 R A, 利用 ToyoboReverTraAce试剂盒, 按照 说明书将 RNA反转录为 cDNA; (4) 设计合成狗 HPRT, IL-10, TGF-β引物:

HPRT上游: 5'-AGCTTGCTGGTGAAAAGGAC-3,

HPRT下游: 5'-TTATAGTCAAGGGCATATCC-3,

IL-10上游: 5'-ATGCATGGCTCAGCACCGCT-3,

IL-10下游: 5'-TGTTCTCCAGCACGTTTCAGA-3'

TGF-β上游: 5'-TGGAACTGGTGAAGCGGAAG-3,

TGF-β下游: 5'-TTGCGGAAGTCAATGTAGAGC-3'

以步骤 (3 ) 所得 cDNA为模板, 以 HPRT上游和 HPRT下游为引物, 进行 PCR扩 增, 通过电泳将各组的 HPRT条带亮度调整一致; (5) 以步骤 (3 ) 所得 cDNA为 模板, 以 IL-10上游和 IL-10下游为引物 PCR扩增 IL-10; 以 TGF-β上游和 TGF-β 下游为引物 PCR扩增 TGF-β, 用 1%琼脂糖凝胶电泳区分目的条带, EB染色 1分钟 后拍照, 用 Gelpro软件分析细胞因子转录强度。 同时设置未经免疫, 且未致病的狗 对照。

结果如图 13所示, 在 PBMC中, IL-10和 TGF-β转录水平在治疗组 (第 1组和 第 2组) 均有升高, 剂量依赖不明显。 (图 13 ) 。

2、 狗调节性 T细胞比例的检测

在上述步骤一末次免疫后第 2天 (即第 28天)检测, 利用调节 T细胞比例, 反 映药物组合物 (由人胰岛素 (诺和灵 R) 和地塞米松组成的药物组合物) 注射产生 Trego

上述步骤一末次免疫后第 2天 (即第 28天) 处死动物, 收集胰腺, 制备单细胞 悬液。 具体步骤为: (1 ) 结扎胰腺入肠的外分泌管, 沿胆道向胰腺内注入 100ml含 有 lmg/ml Collagenase P (罗氏 Roche, Cat. No. 11213857001 ) 的 PBS, 分离胰腺, 37度消化 lh; (2) 250g离心 1分钟, 弃上清, PBS清洗两次, 弃尽上清; (3 )将 沉淀重悬于 15ml 25%的 Ficoll溶液中(Roche), 在上层依次加入 23% (9ml)、 20% (6ml) 禾卩 11% (6 ml) 的 Ficoll溶液, 800 g离心 10 min, 取交界处胰岛层, PBS 清洗两次去除 Ficoll; (4) 将胰岛用 0.25%胰酶 Trypsin (Sigma) 37度消化 10分 钟, 制备单细胞悬液; (5 ) 表面染色 CD4 (FITC-anti-CD4, eBioscience 11-5040) , 胞内染色 Foxp3 (PE-anti-Foxp3 , eBioscience 12-5773 ) , 流式检测调节性 T 细胞 (Foxp3 + ) 的比例。

结果如图 14所示, 第 2组 ( 100+1.5组) 的调节性 T细胞 (Foxp3 + ) 占 CD4细 胞比例有所上升, 而且调节性 T细胞 (Foxp3 + ) 占所有细胞比例明显上升。 实施例 6、 狗 I型糖尿病的治疗效果试验

在实施例 5 摸索药物组合物 (由人胰岛素 (诺和灵 R)和地塞米松组成的药物 组合物) 在狗上的量效关系后, 加入 (由人胰岛素 (诺和灵 R) 和环孢霉素组成的 药物组合物) , 进一步对狗 I型糖尿病的治疗效果进行评价。

一、 狗的致病及免疫

模型建立如实施例 5。 15只狗 (狼犬) , 体重 15kg, 在第 -5 天用 60mg/kg体 重的 Alloxan (Sigma) 诱导 T1D, 跟踪血糖, 在连续两天血糖值高于 12mM后判定 为 T1D发病, 记为第 0 天。 在第 1, 4, 7 天, 腹部皮下注射混合药物作为一个疗 程:均分为 3 组,每组 5 只,第 1 组每只分别注射含 100微克人胰岛素(0.15IU/kg 体重) 混合 15 微克地塞米松 (l g/kg体重) 的 PBS 100微升, 第 2 组每只分别注 射 100微克人胰岛素混合 1.5毫克环孢霉素 (100μ § /1¾体重) 的 PBS 100微升, 第 3 组 (发病组) 每只分别注射 PBS 100微升。 一周后, 再次注射一个疗程 (第 21, 24, 27天) 。

二、 狗生存曲线、 血糖变化及体重变化

1、 狗生存曲线的检测

对经上述步骤一免疫的狗进行生存曲线的检测 ,反映治疗对病狗的生活质量的提 高。 具体如下: 自上述步骤一对发病狗进行注射治疗时起, 对各组进行存活率统计。

结果如图 15 所示, 第 3组 (发病组)狗在 7天全部死亡, 而第 1 组在 21天有 2只存活 (40%) , 第 2组在 21天仍然有 3只存活 (60%) , 证明由人胰岛素 (诺 和灵 R) 和地塞米松组成的药物组合物及人胰岛素 (诺和灵 R) 和环孢霉素组成的 药物组合物可以提高 I型糖尿病的生存质量。

2、 狗血糖变化的检测

跟踪检测各组狗的血糖变化, 反映药物(由人胰岛素(诺和灵 R)和地塞米松组 成的药物组合物, 及由人胰岛素(诺和灵 R)和环孢霉素组成的药物组合物)注射产 生的治疗效果。

具体方法如下: (1 ) 准备血糖试纸和测试仪; (2) 狗腿静脉采血 ΙΟμΙ滴于血 糖试纸; (3 ) 读数。

结果显示, 第 1 组狗的血糖有所控制, 但出现反跳(如图 16中实线所示) ; 第 2组狗经过两个疗程治疗, 血糖明显得到控制, 稳定在 10-15mmol (如图 17中实线 所示) 。 而第 3组全部死亡 (如图 16和图 17中虚线所示) 。

3、 狗体重变化的检测 跟踪检测各组小鼠的体重变化, 反映药物(由人胰岛素(诺和灵 R)和地塞米松 组成的药物组合物及由人胰岛素(诺和灵 R)和环孢霉素组成的药物组合物)注射产 生的对 "三多一少" 的控制。

结果如图 18所示,第 1 组狗的体重降低有所控制,第 2组狗经过两个疗程治疗, 体重有所恢复。 而第 3组全部死亡。 实施例 7、 人 PBMC诱导 DC的药物效果试验

在实施例 5摸索药物组合物(由人胰岛素(诺和灵 R)和地塞米松组成的药物组 合物)在狗体内的量效关系后, 进一步对人外周血单核细胞(PBMC)诱导树突状 胞 (DC) 的药物效果进行评价。

一、 人血样的采集及处理

正常人血样 3份, I型糖尿病患者血样 2份, 10ml每份。 对正常人和 I型糖尿 病患者共 5份血样, 采用 Ficoll分离 PBMC, 在 15ml离心管中加入 4ml FicolMOO (Sigma), 在上层加入 8ml PBS稀释后的人外周血, 1500rpm离心 15分钟, 取交界 处的白膜层, 清洗后, 在 rhGMCSF (R&D System公司产品)和 rhIL-4 (R&D System 公司产品)刺激 3天后诱导出树突状细胞, 换培养液后进行细胞计数, 将细胞均分为 4孔, 每孔 2 X 10 6 个细胞, 其中 1个孔不加入刺激物, 作为阴性对照组, 另外 3个孔 依次分别加入 1 )抗原人胰岛素(诺和灵 R)至其终浓度为 10μ § /ηι1 ; 2)地塞米松至 其终浓度为 l(^g/ml; 3 )人胰岛素 (诺和灵 R)混合地塞米松,两者终浓度均为 l(^g/ml。

二、 树突状细胞相关标记分子, 及抑制型细胞因子 IL-10分泌的检测

1、 树突状细胞的 CD40, CD80, CD83, CD86, MHCII的检测

在上述步骤一刺激的第 3天, 检测树突状细胞的 CD40, CD80, CD83, CD86, MHCII, 反映药物组合物 (由人胰岛素 (诺和灵 R) 和地塞米松组成的药物组合物) 对 DC成熟的抑制效果。

具体方法如下: (1 ) 收集细胞, 表面双染 CDla-FITC (eBioscience, 11-0019) 和 CD40-PE (eBioscience, 12-0409), CDla-FITC (eBioscience, 11-0019)和 CD80-PE (eBioscience, 12-0809) , CDla-FITC (eBioscience, 11-0019)和 CD83-PE (Biolegend, 305322), CDla-FITC (eBioscience, 11-0019)和 CD86-PE (eBioscience, 12-0869), 或 CDla-FITC (eBioscience, 11-0019) 禾 B MHC-Π-ΡΕ; 按照 0.25μ1每 10 6 个细胞的 比例加入上述抗体; (2) 染色室温避光 10分钟, 清洗细胞, 流式检测。

结果如图 19中 A所示,无论正常人还是 I型糖尿病患者,在 PBMC诱导 DC中, CD40都在混合药物作用下降低, 指示 DC在混合药物作用下较少成熟, 减少了对自 主免疫的协助。

2、 抑制型细胞因子 IL-10分泌的检测

在上述步骤一刺激的第 3天, 检测抑制型细胞因子 IL-1 0的分泌, 反映药物组 合物 (由人胰岛素 (诺和灵 R) 和地塞米松组成的药物组合物) 的抑制效果。

具体方法如下: (1 ) 收集培养上清, 用 FlexSet检测 IL-10的表达量, 将 30μ1 上清与 30μ1 ΡΒ8 (含 Ο.ΐμΐ FlexSet微球)孵育 30分钟,再加入 30μ1 ΡΒ8 (含 Ο. ΙμΙ ΡΕ 抗体) 孵育 30分钟, 清洗后; (2) 流式检测。

结果如图 19中 Β所示, 药物组合物 (由人胰岛素 (诺和灵 R)和地塞米松组成 的药物组合物) 对 IL-10有明显的增强作用, 指示在体外具有抑制自主免疫的效果。 实施例 8、 人 PBMC诱导 DC的免疫抑制剂筛选试验

在实施例 6摸索药物组合物(由人胰岛素(诺和灵 R)和地塞米松组成的药物组 合物) 在人 PBMC诱导 DC的抑制效果后, 进一步对免疫抑制剂筛选以提高药物效 果。

本实施例所涉及的免疫抑制剂为地塞米松 (DEX) , 雷帕霉素 (Rap) , 环孢素

A (CsA) 和他克莫司 (普乐可复, FK506)。

试验材料: I型糖尿病患者血样 25份, 10ml每份。 Ficoll分离 PBMC, 在 15ml 离心管中加入 4ml FicolWOO ( Sigma) , 在上层加入 8ml PBS稀释后的人外周血, 1500rpm离心 15分钟, 取交界处的白膜层, 清洗后, 在 rhGMCSF和 rhIL-4刺激 3 天后诱导出树突状细胞, 换培养液后进行细胞计数,将细胞均分为 6孔,每孔 2 X 10 6 个细胞, 其中 1个孔不加入刺激物, 作为阴性对照组, 另外 5个孔依次分别加入 1 ) 抗原人胰岛素(诺和灵 R)至其终浓度为 10μ § /ηι1 ; 2)人胰岛素(诺和灵 R)混合地 塞米松, 两者终浓度均为 10μ § /ηι1 ; 3 ) 人胰岛素 (诺和灵 R) 混合雷帕霉素, 两者 终浓度均为 l(^g/ml; 4)人胰岛素 (诺和灵 R)混合环孢素 Α,两者终浓度均为 10μ § /ηι1 ; 5 ) 人胰岛素 (诺和灵 R) 混合普乐可复, 两者终浓度均为 10μ § /ηι1。

二、 树突状细胞相关标记分子, 及抑制型细胞因子 IL-10分泌的检测

1、 树突状细胞的 CD40, CD80, CD83 , CD86, MHCII的检测

在上述步骤一刺激的第 3天, 检测树突状细胞的 CD40, CD80, CD83 , CD86, MHCII, 反映上述各药物组合物对 DC成熟的抑制效果。

具体方法如下: (1 ) 收集细胞, 表面双染 CDla-FITC禾 B CD40-PE, CDla和

CD80-PE, CDla-FITC 禾卩 CD83-PE, CDla-FITC 禾卩 CD86-PE, 或 CDla-FITC 和 MHC-II-PE; 按照 0.25μ1每 10 6 细胞的比例加入上述抗体; (2) 染色室温避光 10分 钟, 清洗细胞, 流式检测。

结果显示, 在 PBMC诱导 DC中, CD40, CD80, CD83和 CD86都在混合药物 作用下有所降低。 且地塞米松和环孢素 A的抑制效果较明显。 (图 20)

工业应用

本发明所提供的治疗和 /或预防 I型糖尿病的药物组合物能够提高免疫动物 CD4 + CD25 + 调节性 T细胞占 CD4 + T细胞的比例; 促进 CD4 + CD25 + 调节性 T细胞增 殖; 促进 T细胞分泌 IL-10; 控制 I型糖尿病患者的血糖水平; 抑制自身免疫反应性 CD8 T细胞所起的杀伤作用;提高外周血单核细胞 /或脾脏细胞中 IL-10和 /或 TGF-β 的转录水平; 抑制 DC细胞的成熟; 从而诱导免疫抑制的产生, 进而达到有效地治疗 I型糖尿病的目的。




 
Previous Patent: CONDUCTING DEVICE AND SOCKET

Next Patent: DECORATIVE GLASS BODY