Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
PIPERAZINYL SUBSTITUTED CYCLOHEXANE 1,4-DIAMINES
Document Type and Number:
WIPO Patent Application WO/2006/104686
Kind Code:
A1
Abstract:
The present invention relates to piperazine substituted cyclohexane-1,4-diamine compounds of Formula (I) and pharmaceutically acceptable forms thereof, as &agr 1a/&agr 1d adrenoreceptor modulators for the treatment of benign prostatic hypertrophy and lower urinary tract symptoms. The present invention also relates to pharmaceutical compositions comprising said new compounds, new processes to prepare these new compounds and new uses as a medicine as well as methods of treatment.

Inventors:
CHIU GEORGE (US)
LI SHENGJIAN (US)
CONNOLLY PETER J (US)
PULITO VIRGINIA L (US)
LIU JINGCHUN (US)
MIDDLETON STEVEN A (US)
Application Number:
PCT/US2006/009164
Publication Date:
October 05, 2006
Filing Date:
March 15, 2006
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
JANSSEN PHARMACEUTICA NV (BE)
CHIU GEORGE (US)
LI SHENGJIAN (US)
CONNOLLY PETER J (US)
PULITO VIRGINIA L (US)
LIU JINGCHUN (US)
MIDDLETON STEVEN A (US)
International Classes:
A61K31/496; C07D401/04
Foreign References:
US20040220192A12004-11-04
Attorney, Agent or Firm:
Johnson, Philip S. (New Brunswick, New Jersey, US)
Download PDF:
Claims:
What is claimed is:
1. A compound of Formula (I) or a pharmaceutically acceptable form thereof, wherein Ri is selected from the group consisting of (1) aryl, (2) arylC18alkyl, (3) C3.8cycloalkyl, (4) C3.8cycloalkylC18alkyl, (5) heteroaryl, (6) heteroarylCisalkyl, (7) heterocyclyl, and (8) heterocyclylCi.8ahcyl, wherein each aryl, Cs^cycloalkyl, heteroaryl and heterocyclyl is unsubstituted or substituted with one, two, three or four substituents independently selected from the group consisting of (i) C18alkyl, (ϋ) Ci8alkoxy, (iii) Ci8alkoxyC18alkyl, (iv) haloCi8alkyl, (v) haloCi.8alkoxy, (vi) hydroxyCi_8alkyl, (vii) Ci8allcoxycarbonyl, (viii) SO2 substituted with a substituent selected from the group consisting of Ci8alkyl, C3.scycloalkyl, aryl, heteroaryl, and heterocyclyl, (ix) amino unsubstituted or mono or disubstituted with Ci.8alkyl, (x) cyano, (xi) halogen, (xii) hydroxy, (xiii) nitro, (xiv) aminoCigalkyl unsubstituted or mono or disubstituted on amino with Cisalkyl, (xv) arylCi8alkyl, (xvi) arylCi8alkoxy, (xvii) heteroarylCi.8alkyl, (xviii) heterocyclylC18alkyl; (xix) C(O) substituted with a substituent selected from the group consisting of hydrogen, C^alkyl, C38cycloalkyl, aryl, heteroaryl, and heterocyclyl, (xx) S(O) substituted with a substituent selected from the group consisting of CiSalkyl, C38cycloalkyl, aryl, heteroaryl, and heterocyclyl, (xxi) C(O)N substituted on nitrogen with two substituents selected from the group consisting of hydrogen, C18alkyl, C3.8cycloalkyl, aryl, heteroaryl, and heterocyclyl, (xxii) SO2N substituted on nitrogen with two substituents selected from the group consisting of hydrogen, Ci8alkyl, C38cycloalkyl, aryl, heteroaryl, and heterocyclyl, (xxiii) NHSO2 substituted on sulfur with a substituent selected from the group consisting of Ci8alkyl, C^cycloalkyl, aryl, heteroaryl, and heterocyclyl, (xxiv) NHC(O) substituted on carbonyl with a substituent selected from the group consisting of hydrogen, Ci8alkyl, C3.8cycloalkyl, aryl, heteroaryl, and heterocyclyl, (xxv) NHSO2N substituted on nitrogen with two substituents selected from the group consisting of hydrogen, Q.8alkyl, C38cycloalkyl, aryl, heteroaryl, and heterocyclyl, (xxvi) NHC(O)N substituted on nitrogen with two substituents selected from the group consisting of hydrogen, Ci8alkyl, C3Scycloalkyl, aryl, heteroaryl, and heterocyclyl, (xxvii) C38cycloalkyl, (xxviii) aryl, (xxix) heteroaryl, and (xxx) heterocyclyl; R2 is selected from the group consisting of hydrogen and Ci8alkyl; R3 is zero, one, two, three or four substituents independently selected from the group consisting of (1) C18alkyl, (2) C1gallcoxy, (3) C18alkoxyCi8alkyl, (4) haloC18alkyl, (5) haloCisalkoxy , (6) hydroxyC18alkyl, (7) Ci.salkoxycarbonyl, (8) SO2 substituted with a substituent selected from the group consisting of Ci8alkyl, C38cycloalkyl, aryl, heteroaryl, and heterocyclyl, (9) amino unsubstituted or mono or disubstituted with C18alkyl, (10) cyano, (11) halogen, (12) hydroxy, (13) nitro, (14) aminoCi.8alkyl unsubstituted or mono or disubstituted on amino with C18alkyl, (15) aryl, (16) arylC18alkyl, (17) arylCi.8alkoxy, (18) C3.8cycloalkyl, (19) C38cycloalkylC18alkyl, (20) C38cycloalkylC18alkoxy, (21) heteroaryl, (22) heteroarylQ.salkyl, (23) heterocyclyl, (24) heterocyclylCisalkyl, (25) C(O) substituted with a substituent selected from the group consisting of hydrogen, C18alkyl, C3_scycloalkyl, aryl, heteroaryl, and heterocyclyl, (26) S(O) substituted with a substituent selected from the group consisting of C18alkyl, C3.8cycloalkyl, aryl, heteroaryl, and heterocyclyl, (27) SO2 substituted with a substituent selected from the group consisting of C18alkyl, C38CyClOaIlCyI, aryl, heteroaryl, and heterocyclyl, (28) C(O)N substituted on nitrogen with two substituents selected from the group consisting of hydrogen, C18alkyl, C3.8cycloalkyl, aryl, heteroaryl, and heterocyclyl, (29) SO2N substituted on nitrogen with two substituents selected from the group consisting of hydrogen, Ci8alkyl, C38cycloalkyl, aryl, heteroaryl, and heterocyclyl, (30) NHSO2 substituted on sulfur with a substituent selected from the group consisting of Ci.8alkyl, C38cycloalkyl, aryl, heteroaryl, and heterocyclyl, (31) NHC(O) substituted on carbonyl with a substituent selected from the group consisting of hydrogen, Ci8alkyl, C3.8cycloalkyl, aryl, heteroaryl, and heterocyclyl, (32) NHSO2N substituted on nitrogen with two substituents selected from the group consisting of hydrogen, Q.galkyl, C3.8cycloalkyl, aryl, heteroaryl, and heterocyclyl, (33) NHC(O)N substituted on nitrogen with two substituents selected from the group consisting of hydrogen, Ci8alkyl, C38cycloalkyl, aryl, heteroaryl, and heterocyclyl, and (34) C3.8cycloalkoxy; wherein each aryl, C38cycloalkyl, heteroaryl and heterocyclyl is unsubstituted or substituted with one or two substituents independently selected from the group consisting of (i) C18alkyl, (ϋ) C18alkoxy, (iii) Ci8alkoxyCi8alkyl, (iv) haloCi8alkyl, (v) haloCi8alkoxy, (vi) hydroxyCi8alkyl, (vii) Ci.8alkoxycarbonyl, (viii) Ci8alkylsulfonyl, (ix) amino unsubstituted or mono or disubstituted with Ci8alkyl, (x) cyano, (xi) halogen, (xii) hydroxy, (xiii) nitro, and (xiv) aminoCigalkyl unsubstituted or mono or disubstituted on amino with Ci8alkyl; and R4 and R5 is each selected from hydrogen or is each one or two substituents independently selected from the group consisting of C^alkyl, Qgalkoxy, amino, Ci8alkylamino, cyano, halogen, oxo and nitro.
2. A compound as claimed in claim 1 wherein Ri is aryl unsubstituted or substituted with one, two, three or four substituents independently selected from the group consisting of (i) Cugalkyl, (ii) Ci.8alkoxy, (iii) haloCi8alkoxy, and (iv) halogen.
3. A compound as claimed in claim 1 wherein Ri is aryl unsubstituted or substituted with one, two, three or four substituents independently selected from the group consisting of Ci.8alkoxy and halogen.
4. A compound as claimed in claim 1 wherein R2 is hydrogen.
5. A compound as claimed in claim 1 wherein R3 is zero, one, two, three or four substituents independently selected from the group consisting of (1) C^alkyl, (2) C1Salkoxy, (3) haloCi8alkoxy, and (4) C3.gcycloalkylCi8alkoxy.
6. A compound as claimed in claim 1 R3 is zero, one, two, three or four substituents independently selected from the group consisting of Ci8alkoxy and C38cycloalkylCi8alk:oxy.
7. A compound as claimed in claim 1 wherein R4 and R5 is each hydrogen.
8. A compound of Formula (I), wherein the compound is a compound of Formula (Ia) and pharmaceutically acceptable forms thereof, wherein Ri is selected from the group consisting of 3,4(OCH3)2phenyl, 5Cl2OCH3phenyl and 5Cl2Fphenyl; and R3 is selected from the group consisting of 3OCH2cyclopropyl and 3OCH(CH3)2.
9. A compound of Formula (I) wherein the compound is a compound of Formula (Ib) and pharmaceutically acceptable forms thereof, wherein Ri is selected from the group consisting of 3,4(OCH3)2phenyl, 5Cl2OCH3phenyl and 5Cl2Fphenyl; and R3 is selected from the group consisting of 3OCH2cyclopropyl and 3OCH(CH3)2.
10. A compound as claimed in claim 1 wherein the compound is selected from the group consisting of : and pharmaceutically acceptable forms thereof.
11. A compound as claimed in claim 1 wherein the compound is selected from the group consisting of : 5chloroNc/.y { 4 [4(3isopropoxypyridin2yl)piperazin 1 yl]cyclohexyl } 2 methoxybenzenesulfonamide, 5chloro2fluoroNcw{4[4(3isopropoxypyridin2yl)piperazinlyl] cyclohexyl } benzenesulfonamide, 5chloroNcώ{4[4(3cyclopropylmethoxypyridin2yl)piρerazinlyl] cyclohexyl } 2methoxybenzenesulf onamide, and 5chloroNcw{4[4(3cyclopropylmethoxypyridin2yl)piperazinlyl] cyclohexyl}2fluorobenzenesulfonamide.
12. The compound of any of claim 1 to 11, wherein the compound is an ocia/ocid adrenoreceptor modulator.
13. The compound of claim 12, wherein the compound is a prodrug form thereof.
14. The compound of any of claim 1 to 13, wherein the compound is an isolated form thereof.
15. An αla/αid adrenoreceptor modulator characterized in that it is a compound as claimed in claim 1.
16. An αia/αid adrenoreceptor antagonist characterized in that it is a compound as claimed in claim 1.
17. The compound of claim 14, wherein the compound is a metabolite form thereof.
18. ' The compound of any of claim 1 to 14, wherein the compound is labeled with a ligand for use as a marker, and wherein the ligand is a radioligand selected from deuterium or tritium.
19. A pharmaceutical composition, comprising a therapeutically effective amount of a compound according to claim 1 and a pharmaceutically acceptable carrier.
20. A process for preparing a pharmaceutical composition according to claim 19, comprising the step of intimately mixing a compound according to claim 1 with a pharmaceutically acceptable carrier.
21. Use of the compound of any of claim 1 to 17 as an 0Cia/αid adrenoreceptor antagonist comprising contacting one or both of the 0Cia or aid adrenoreceptors with the compound.
22. The use of claim 21, wherein the use further comprises use of the compound in a pharmaceutical composition, medicine or medicament for the treatment of an ctia/ocid adrenoreceptor mediated disease.
23. Use of the compound of any of claim 1 to 14 for the manufacture of a medicament for treating an 0Ciald adrenoreceptor mediated disease.
24. Use of the compound of any of claim 1 to 14 as a medicine for treating an (Xia/oCid adrenoreceptor mediated disease.
25. A method for treating an αia/αid adrenoreceptor mediated disease, comprising administering to a patient in need of such treatment an effective amount of a compound according to claim 1.
26. A method according to claim 25 wherein the effective amount of a compound according to claim 1 is in a range of about 0.001 mg/kg to about 300 mg/kg of body weight per day.
27. A method of treating LUTS comprising administering to a patient in need of such treatment an effective amount of a compound according to claim 1.
28. A method according to claim 27 wherein the effective amount of a compound according to claim 1 is in a range of about 0.001 mg/kg to about 300 mg/kg of body weight per day.
29. A method of treating BPH comprising administering to a patient in need of such treatment an effective amount of a compound according to claim 1.
30. A method according to claim 29 wherein the effective amount of a compound according to claim 1 is in a range of about 0.001 mg/kg to about 300 mg/kg of body weight per day.
31. A process for preparing compound as claimed in claim 1 comprising the steps of a) reacting an intermediate compound of formula Al with an intermediate compound of formula A2, thus forming an intermediate compound of formula A3: wherein X is selected from halogen or other suitable leaving group; b) transforming an intermediate compound of formula A3 in an intermediate compound of formula A4: c) reacting an intermediate compound of formula A4 with an intermediate compound of formula A5, thus forming an intermediate compound of formula A6: d) transforming an intermediate compound of formula A6 an intermediate compound of formula A7: e) reacting an intermediate compound of formula A7 with an intermediate compound of formula A8 thus forming compound of formula A9, which are mixtures of cis and trans isomers of compounds of Formula (I): .
32. A process as claimed in claim 31, further comprising the step of separating the cis isomers of formula AlO, and the trans isomers of formula Al 1:.
33. A process as claimed in claim 31 or claim 32, further comprising the step of converting the compounds of Formula (I) into pharmaceutically acceptable salt forms by reaction with an appropriate acid or base.
Description:
CROSS REFERENCE TO RELATED APPLICATIONS

This present application claims benefit of U.S. Provisional Patent Application Serial No. 60/665952, filed March 29, 2005, which is incorporated herein by reference in its entirety and for all purposes.

FIELD OF THE INVENTION

The present invention relates to, new compounds, more particularly new piperazine substituted cyclohexane-l,4-diamines as selective αi a /αi d adrenoreceptor modulators for the treatment of benign prostatic hypertrophy and/or lower urinary tract symptoms. The present invention also relates to pharmaceutical compositions comprising said new compounds, new processes to prepare these new compounds, to the use of these compounds as αi a /αi d adrenoreceptor modulators and new uses as a medicine as well as methods of treatment.

RELATED ART

The adrenergic receptors (ARs), through which norepinephrine and epinephrine exert their biological activities, are targets for many therapeutically important drugs. The CC 1 -ARs play a dominant role in control of smooth muscle contraction and are important in control of blood pressure, nasal congestion, prostate function, and other processes (Harrison et al., Trends Pharmacol Sd; 1991; 62-67). The Oc 1 -ARs were originally classified by pharmacological profiling into two subtypes, oc la and cc lb (Morrow and Creese, MoI. Pharmacol; 1986; 29: 231- 330; Minneman et al., MoI. Pharmacol; 1988; 33:509-514). Three genes encoding different OC 1 -AR subtypes (oc la , oc lb , and αi d ) have been cloned for a number, of species, including human (Schwinn et al., J.Biol Chem; 1990; 265: 8183-8189; Ramarao et al., J Biol Chem; 1992; 267:21936-21945; Bruno et al., Biochem Biophys Res Commun; 1991; 179: 1485-1490). These three cloned oci-ARs are best differentiated from one another on the basis of the relative binding affinities of a series of antagonist compounds. There is general agreement that the α la - and oCi b -ARs correspond to the pharmacologically defined cc la - and α lb -ARs, while the functional role of the oc ld -AR is less clear, although it appears to mediate contraction of certain blood vessels (Goetz et al., Eur J Pharmacol; 1991; 272:R5-R6). Like other ARs, the Ot 1 -ARs are members of the G-protein coupled receptor super family, and in most cells the primary

2+ functional response to activation of all CC 1 -AR subtypes is an increase in intracellular Ca .

Benign prostatic hyperplasia (BPH) is a non-malignant enlargement of the prostate and is the cause of lower urinary tract symptoms (LUTS) in a large segment of the elderly male

population. Symptoms such as straining, hesitancy, dribbling, weak stream, and incomplete emptying are classified as voiding or obstructive symptoms. Obstructive symptoms are primarily due to pressure upon the urethra from the physical mass of the enlarged prostate gland (the static component) and the increased tone of the smooth muscle of the prostate stroma and bladder neck (the dynamic component) (Caine, J Urol; 1986; 136: 1-4). Irritative or storage symptoms associated with BPH are frequency, urgency, nocturia, dysuria, and burning sensation. Patients feel that these symptoms are more disturbing than the obstructive symptoms. As the urine flow is reduced, due to the bladder outlet obstruction, the wall around the bladder base thickens and becomes hyperactive. Functional studies have established that prostate smooth muscle tone is maintained through OCi-ARs and that these receptors mediate the dynamic component of obstruction. OGi-AR antagonists have successfully been used to treat the obstructive symptoms associated with BPH (Jardin et al., Scientific Communications Int; 1998; pp 559-632). Furthermore, the oci a -AR subtype comprises the majority of cCi-ARs in human prostatic smooth muscle and has been shown to mediate contraction in this tissue. Originally introduced as antihypertensive agents, oCi-AR antagonists have become increasingly important in the management of BPH. CCi-AR antagonists reduce smooth muscle tone in the prostate and lower urinary tract, thereby relaxing the bladder outlet and increasing urinary flow. The major disadvantage of nonselective ^-blockers is their adverse effect profile, particularly vasodilatation leading to dizziness, postural hypotension, asthenia, and occasionally syncope. For this reason, it would be desirable to block OCi-ARs in the lower urinary tract without antagonizing the oci-ARs responsible for maintaining vascular tone.

A number of factors can be involved in lower urinary tract symptoms. Adrenergic stimulation of the bladder results in relaxation due to β-ARs, which dominate over contraction- mediating oci-ARs. Bladder contraction is primarily mediated by muscarinic receptors. Some studies indicate that the contribution from oCi-ARs increases in hyperactive bladders due to bladder outlet obstruction or other conditions (Perlberg et al., Urology; 1982; 20:524-527); Restorick and Mundy, Br J Urol; 1989; 63: 32-35). However another study finds no change in OCi-AR receptor function between normal and hypertrophic bladder due to outlet obstruction (Smith and Chappie, Neurolog Urodyn; 1994; 12: 414-415). It remains unclear, which oc r AR is dominant in the human bladder. One study reported a predominance of the oci a subtype mRNA in the bladder dome, base, and trigone (Walden et al., J Urol; 1997; 157: 414-415). Another report found that the oci d subtype is present as 66% of the OCi-ARs at both the mRNA and protein levels, while the oc la subtype is present as 34% of the total, with no evidence of the

oti b subtype (Malloy et al., J Urol; 1998; 160: 937-943). Drags that selectively antagonize only the oci a - AR subtype appear to have little effect upon the irritative symptoms of BPH. Ro- 70004, a oti a subtype-selective compound was reported to be discontinued in clinical studies when it was found to have poor efficacy in treating these symptoms (Blue et al., Abstract 5 th International Consultation on BPH (June 25-28) 2000). cCi d -ARs may be involved in mediating the irritative symptoms; however, the location of these ai d - ARs is unknown (Piascik and Perez, J Pharmacol Exp Ther; 2001; 298: 403-410).

Studies have demonstrated Central Nervous Systems (CNS) inhibitory effects of oci antagonists upon the sympathetic and somatic outflow to the bladder in cats (Danuser and Thor, J Urol; 1995; 153: 1308-1312; Ramage and Wyllie, Eur J Pharmacol; 1995; 294: 645-650). Intrathecally administered doxazosin caused a decrease in micturition pressure in both normal rats and rats with bladder hypertrophy secondary to outlet obstruction (Ishizuka et al., Br J Pharmacol; 1996; 117:962-966). These effects may be due to a reduction in parasympathetic nerve activity in the spinal cord and ganglia. Other studies used spontaneously hypertensive rats, which have overactive bladders, to demonstrate that cc r AR antagonism only given intrathecally caused a return to normal micturition (Persson et al., Am J Physiol; 1998; 275:R1366-1373, Steers et al. 1999; Exp Physiol; 84:137-147.). Antagonists administered intra-arterially near the bladder, or ablation of peripheral noradrenergic nerves, had no effect upon the bladder overactivity in these animals, indicating that oCi-ARs in the spinal cord control the bladder activity. Spinal CC 1 -ARs may be important targets for pharmacological treatment of BPH symptoms in humans as well. All three OC 1 -AR subtype mRNAs are found throughout the human spinal cord, however the ai d subtype mRNA is present at twice the level of the other subtypes, particularly in the ventral sacral motor neurons and autonomic parasympathetic pathways. (Stafford-Smith et al., MoI Brain Res; 1998; 63:234-261). There may be clinical advantages to the pharmacological blockade of the ocj d -ARs in the CNS in reducing BPH symptoms.

Antagonism of oci d -ARs in the CNS and bladder may be an important activity in reducing the irritative or filling symptoms of BPH and improving patient symptom scores. Tamsulosin (Flomax®, Yamanuchi and Boehringer Ingelheim) is a 0 4 -AR antagonist, which is about 15-fold selective for the 0Ci a and an subtypes over the oci b subtype. Large clinical trials of BPH patients with tamsulosin showed improvement in both obstructive and irritative symptoms, however, cardiovascular and erectile dysfunction side effects were seen (Abrams et al. Br J Urol; 1995; 76:325-336; Chappie et al., Eur Urol; 1996; 29:155-167; Lepor, Urology;

1998; 51:892-900). Patients treated with non-selective oci antagonists also have improvement

in both obstructive and irritative symptoms, although the risk of vascular side effects is greater. Generally, the oc la subtype predominates in arteries at the mRNA and protein levels, while all three subtypes are found in veins. The particular vessel bed is important in that the α la is the subtype found primarily in the splanchnic and coronary arteries, while the oc ld subtype is the predominant subtype found in the aorta. The Ot 1 -AR subtypes in the vasculature have been found to change with age. Contraction of the mammary artery is mediated by both α la and αi b subtypes. The number of oq receptors in the mammary artery doubles with age; however, the ecu subtype increases to a greater extent than the oc la subtype (Raudner et al., Circulation; 1999; 100:2336-2343). The cci b subtype may play a greater role in vascular tone in elderly patients. This suggests that an oci a and ai d -selective antagonist may have less effects upon the vasculature in elderly BPH patients, resulting in fewer cardiovascular side effects than are seen with non-selective Oc 1 antagonists, but provide relief from both obstructive and irritative symptoms.

A uroselective, cardiovascular-sparing oCi-AR antagonist would be expected to provide symptomatic relief of BPH comparable to currently marketed non-selective agents such as terazosin/Hytrin ® , doxazosin/Cardura ® , alfuzosin/Xatral ® /Uroxatral ® and weakly selective tamsulosin/Flomax ® /Harnal ® , without the undesirable side effects of postural hypotension, dizziness, and syncope. Ejaculatory dysfunction, or retrograde ejaculation, is a side effect seen in 10 to 35 % of patients using tamsulosin (Lepor, Urology; 1998; 51:901-906; Andersson and Wyllie, Brit J Urol Lit; 2003; 92:876-877). This activity has been attributed to tamsulosin antagonism at the 5-HT la receptor. This often leads to discontinuation of treatment. Furthermore, the non-selective OC 1 -AR antagonists and tamsulosin are contraindicated for use in conjunction with PDE inhibitors. There is likely to be high co-morbidity between LUTS and erectile dysfunction patients. Patients being treated for LUTS with the current OC 1 -AR blockers will find that they are excluded from using PDE inhibitors. An oc r AR antagonist with a receptor subtype binding profile, which is selective for the oc la and ocid, subtypes, but with relatively little antagonism of the oc lb subtype may effectively treat both obstructive and irritative symptoms of BPH. Such a compound is likely to have a low cardiovascular side effect profile and allow for use in conjunction with PDE inhibitors. Also low binding activity at the 5-HT la receptor is likely to reduce the incidence of ejaculatory side effects.

LUTS also develop in women of a certain age. As in men, LUTS in women include both filling symptoms such as urgency, incontinence and nocturnia, and voiding symptoms such as weak stream, hesitancy, incomplete bladder emptying and abdominal straining. The presence of this condition both in men and women suggests that at least part of the aetiology

may be similar in the two sexes.

Accordingly, there is a need to provide dual selective αi a /cci d adrenoreceptor modulator antagonists, in other words compounds that interact both with the cci a or/and a^ adrenoreceptor but do not interact (or at least interact substantially less) with the a^ adrenoreceptor. The compounds of this invention are believed to be more efficacious drugs mainly for BPH/LUTS patients, and at the same time these compounds should show less unwanted side effects than the existing pharmaceuticals.

SUMMARY OF THE INVENTION

The present invention provides a piperazine substituted cyclohexane-l,4-diamine compound of Formula (I)

and pharmaceutically acceptable forms thereof, wherein

Ri is selected from the group consisting of

(1) aryl,

(2) aryl-Ci -8 alkyl, (3) Ca-gcycloalkyl,

(4) C 3-8 cycloalkyl-Ci -8 alkyl,

(5) heteroaryl,

(6) heteroaryl-Ci-galkyl,

(7) heterocyclyl, and (8) heterocyclyl-Ci-galkyl, wherein each aryl, C 3-8 cycloalkyl, heteroaryl and heterocyclyl is unsubstituted or substituted with one, two, three or four substituents independently selected from the group consisting of (i) C 1-8 alkyl, (ii) Ci -8 alkoxy,

(iii) Ci -8 alkoxy-Ci -8 alkyl,

(iv) halo-Ci-salkyl, (v) halo-Ci-salkoxy, (vi) hydroxy-Ci.galkyl, (vii) Ci-salkoxy-carbonyl, (viii) SO 2 substituted with a substituent selected from the group consisting of Ci -8 alkyl,

C 3 . 8 cycloalkyl, aryl, heteroaryl, and heterocyclyl, (ix) amino unsubstituted or mono- or di-substituted with Ci. 8 alkyl, (x) cyano, (xi) halogen, (xii) hydroxy, (xiii) nitro,

(xiv) amino-Ci -8 alkyl unsubstituted or mono- or di-substituted on amino with Ci -8 alkyl, (xv) aryl-C 1-8 alkyl, (xvi) aryl-Ci -8 alkoxy, (xvii) heteroaryl-Ci. 8 alkyl, (xviii) heterocyclyl-Ci. 8 alkyl; (xix) C(O) substituted with a substituent selected from the group consisting of hydrogen,

C 1-8 alkyl, C 3-8 cycloalkyl, aryl, heteroaryl, and heterocyclyl,

(xx) S(O) substituted with a substituent selected from the group consisting of C 1-8 alkyl, C 3-8 cycloalkyl, aryl, heteroaryl, and heterocyclyl,

(xxi) C(O)N substituted on nitrogen with two substituents selected from the group consisting of hydrogen, Ci -8 alkyl, C 3 . 8 cycloalkyl, aryl, heteroaryl, and heterocyclyl, (xxii) SO 2 N substituted on nitrogen with two substituents selected from the group consisting of hydrogen, Ci. 8 alkyl, C 3-8 cycloalkyl, aryl, heteroaryl, and heterocyclyl, (xxiii) NHSO 2 substituted on sulfur with a substituent selected from the group consisting of

Ci -8 alkyl, C 3-8 CyClOaIlCyI, aryl, heteroaryl, and heterocyclyl, (xxiv) NHC(O) substituted on carbonyl with a substituent selected from the group consisting of hydrogen, C 1-8 alkyl, C 3 . 8 cycloalkyl, aryl, heteroaryl, and heterocyclyl, (xxv) NHSO 2 N substituted on nitrogen with two substituents selected from the group consisting of hydrogen, C 1-8 alkyl, C 3-8 cycloaIkyl, aryl, heteroaryl, and heterocyclyl,

(xxvi) NHC(O)N substituted on nitrogen with two substituents selected from the group consisting of hydrogen, Ci -8 alkyl, C 3-8 cycloalkyl, aryl, heteroaryl, and heterocyclyl, (xxvii) C 3-8 cycloalkyl, (xxviii) aryl, (xxix) heteroaryl, and (xxx) heterocyclyl;

R 2 is selected from the group consisting of hydrogen and Ci -8 alkyl;

R 3 is zero, one, two, three or four substituents independently selected from the group consisting of

(1) C 1-8 alkyl, (2) C 1-8 alkoxy,

(3) C L galkoxy-C L galkyl,

(4) halo-C 1-8 alkyl,

(5) halo-Ci -s alkoxy,

(6) hydroxy-Ci-galkyl, (7) C 1-8 alkoxy-carbonyl,

(8) SO 2 substituted with a substituent selected from the group consisting of Ci. 8 alkyl, C 3 . 8 cycloalkyl, aryl, heteroaryl, and heterocyclyl,

(9) amino unsubstituted or mono- or di-substituted with Q. 8 alkyl,

(10) cyano, (11) halogen,

(12) hydroxy,

(13) nitro,

(14) amino-Ci -8 alkyl unsubstiruted or mono- or di-substituted on amino with Ci -8 alkyl,

(15) aryl, (16) aryl-C 1-8 alkyl,

(17) aryl-Ci. 8 alkoxy,

(18) C 3-8 cycloalkyl,

(19) C 3-8 cycloalkyl-Ci -8 aIkyl,

(20) C 3-8 cycloalkyl-C 1-8 all<:oxy, (21) heteroaryl,

(22) heteroaryl-Ci -8 alkyl,

(23) heterocyclyl,

(24) heterocyclyl-C 1-8 alkyl,

(25) C(O) substituted with a substituent selected from the group consisting of hydrogen, Ci -8 alkyl, C 3-8 cycloalkyl, aryl, heteroaryl, and heterocyclyl,

(26) S(O) substituted with a substituent selected from the group consisting of Ci. 8 alkyl, C 3-8 cycloalkyl, aryl, heteroaryl, and heterocyclyl,

(27) SO 2 substituted with a substituent selected from the group consisting of Ci -8 alkyl, C 3-8 cycloalkyl, aryl, heteroaryl, and heterocyclyl,

(28) C(O)N substituted on nitrogen with two substituents selected from the group consisting of hydrogen, Ci. 8 alkyl, C 3-8 CyClOaIlCyI, aryl, heteroaryl, and heterocyclyl,

(29) SO 2 N substituted on nitrogen with two substituents selected from the group consisting of hydrogen, Ci -8 alkyl, C 3-8 cycloalkyl, aryl, heteroaryl, and heterocyclyl, (30) NHSO 2 substituted on sulfur with a substituent selected from the group consisting of Ci -8 alkyl, C 3 . 8 cycloalkyl, aryl, heteroaryl, and heterocyclyl,

(31) NHC(O) substituted on carbonyl with a substituent selected from the group consisting of hydrogen, C 1-8 alkyl, C 3-8 CyClOaIlCyI, aryl, heteroaryl, and heterocyclyl,

(32) NHSO 2 N substituted on nitrogen with two substituents selected from the group consisting of hydrogen, Ci -8 alkyl, C 3-8 CyClOaIlCyI, aryl, heteroaryl, and heterocyclyl,

(33) NHC(O)N substituted on nitrogen with two substituents selected from the group consisting of hydrogen, Ci -8 alkyl, C 3 . 8 cycloallcyl, aryl, heteroaryl, and heterocyclyl, and

(34) C 3-8 cycloalkoxy; wherein each aryl, C 3-8 cycloalkyl, heteroaryl and heterocyclyl is unsubstituted or substituted with one, two, three or four substituents independently selected from the group consisting of

(i) Q. 8 alkyl,

(ii) Ci -8 alkoxy,

(iii) Ci -8 alkoxy-Ci -8 aIkyl, (iv) halo-C 1-8 alkyl,

(v) halo-C 1-8 alkoxy,

(vi) hydroxy-Ci -8 alkyl,

(vii) Ci. 8 alkoxy-carbonyl,

(viii) Ci -8 alkyl-sulfonyl, (ix) amino unsubstituted or mono- or di-substituted with Ci -8 alkyl,

(x) cyano,

(xi) halogen,

(xii) hydroxy,

(xiii) nitro, and (xiv) amino-C 1-8 alkyl unsubstituted or mono- or di-substituted on amino with Ci -8 alkyl; and

R 4 and R 5 is each selected from hydrogen or is each one, two, three or four substituents independently selected from the group consisting of Ci -8 alkyl, Ci -8 alkoxy, amino, Ci -8 alkyl-amino, cyano, halogen, oxo and nitro.

Examples of the present invention include pharmaceutical compositions comprising a therapeutically effective amount of any of the compounds of Formula (I) described in the

present application and a pharmaceutical acceptable carrier.

An example of the invention is a pharmaceutical composition made by combining any of the compounds of Formula (I) described in the present application and a pharmaceutically acceptable carrier. Another illustration of the invention is a process for making a pharmaceutical composition comprising combining any of the compounds described in the present application and a pharmaceutically acceptable carrier.

It is an aspect of the present invention to provide αi a ld adrenoreceptor modulators, more specifically inhibitors thereof, more interestingly antagonists thereof. The compounds of the present invention are preferably selective dual oci a /ocid adrenoceptor modulators, more specifically inhibitors thereof, more interestingly antagonists thereof.

In another aspect, the invention is directed to methods for preventing contractions of the prostate, bladder and other organs of the lower urinary tract without substantially affecting blood pressure, by administering a compound of Formula (I) described in the present application or a pharmaceutical form comprising it to a mammal (including a human) suffering from contractions of the bladder and other organs of the lower urinary tract in an amount effective for the particular use.

A further object of the present invention is a method of treatment of a patient suffering from Benign Prostatic Hyperplasia (BPH), the method comprising administering an effective amount of a compound of Formula (I) described in the present application or a pharmaceutical form comprising it to a patient suffering from BPH.

A further object of the present invention is a method for the treatment of lower-urinary- tract-symptoms (LUTS), which include, but are not limited to, filling symptoms, urgency, incontinence and nocturia, as well as voiding problems such as weak stream, hesitancy, intermittency, incomplete bladder emptying and abdominal straining, the method comprising administering an effective amount of a compound of Formula (I) described in the present application or a pharmaceutical form comprising it to a patient in need of such treatment.

A further object of the present invention is the use of these compounds as a medicine.

Yet another object of the present invention is the use of a compound of the present invention for the manufacture of a medicament for treating BPH and/or LUTS .

Still another object of the present invention is a method for treating of BPH and/or LUTS, the method comprising administering a therapeutically effective amount of a compound of the present invention in combination with an effective amount of a 5α-reductase agent, such

as, for example, finasteride or durasteride.

Still another object of the present invention is method for treating of BPH and/or LUTS, the method comprising administering a therapeutically effective amount of a compound of the present invention in combination with a therapeutically effective amount of a NK-I inhibitor.

It is still another object of the present invention to provide methods for treating of BPH and/or LUTS, the method comprising administering an therapeutically effective amount of a compound of the present invention in combination with a therapeutically effective amount of anti-antiandrogens, androgen receptor antagonists, selective androgen receptor modulators, a PDE inhibitor, urinary incontinence drugs (e.g. anti-muscarinics) or 5HT-receptor modulators.

DETAILED DESCRIPTION OF THE INVENTION

It should be understood that all compounds described and listed herein are meant to include all hydrates, solvates, polymorphs and pharmaceutically acceptable salts thereof. It should also be understood that unless otherwise indicated compounds of Formula (I) are meant to comprise the stereochemically isomeric forms thereof.

An example of the present invention includes a compound of Formula (I) and pharmaceutically acceptable forms thereof, wherein Ri is aryl unsubstituted or substituted with one, two, three or four substituents independently selected from the group consisting of (i) C 1-8 alkyl, (ii) Ci. 8 alkoxy,

(iii) halo-Ci-galkoxy, and (iv) halogen.

An example of the present invention includes a compound of Formula (I) and pharmaceutically acceptable forms thereof, wherein R 1 is aryl unsubstituted or substituted with one, two, three or four substituents independently selected from the group consisting of Ci. 8 alkoxy and halogen.

An example of the present invention includes a compound of Formula (I) and pharmaceutically acceptable forms thereof, wherein R 2 is hydrogen.

An example of the present invention includes a compound of Formula (I) and pharmaceutically acceptable forms thereof, wherein R 3 is zero, one, two, three or four substituents independently selected from the group consisting of (1) C 1-8 alkyl,

(2) Ci -8 alkoxy,

(3) halo-Ci -8 alkoxy, and

(4) Cs -S CyClOaIkVl-C 1-S aIkOXy.

An example of the present invention includes a compound of Formula (I) and pharmaceutically acceptable forms thereof, wherein R 3 is zero, one, two, three or four substituents independently selected from the group consisting of Ci. 8 alkoxy and C 3 . 8 cycloalkyl-Ci. 8 alkoxy.

An example of the present invention includes a compound of Formula (I) and pharmaceutically acceptable forms thereof, wherein R 4 and R 5 is each hydrogen.

An example of the present invention includes a compound of Formula (I) selected from a compound of Formula (Ia):

wherein Ri and R 3 are dependency selected from: Cpd R 1 R 3

1 3,4-(OCH 3 ) 2 -phenyl 3-OCH 2 -cycloproρyl

3 3,4-(OCH 3 ) 2 -phenyl 3-OCH(CHs) 2

5 5-Cl-2-OCH 3 -phenyl 3-OCH(CH 3 ) 2

7 5-Cl-2-F-phenyl 3-OCH(CH 3 ) 2

9 5-Cl-2-OCH 3 -phenyl 3-OCH 2 -cyclopropyl

11 5-Cl-2-F-phenyl 3-OCH 2 -cyclopropyl and pharmaceutically acceptable forms thereof.

An example of the present invention includes a compound of Formula (Ia) and pharmaceutically acceptable forms thereof, wherein

Ri is selected from 3,4-(OCH 3 ) 2 -phenyl, 5-Cl-2-OCH 3 -phenyl and 5-Cl-2-F-phenyl; and R 3 is selected from 3-OCH 2 -cyclopropyl and 3-OCH(CH 3 ) 2 .

An example of the present invention includes a compound of Formula (I) selected from a compound of Formula (Ib):

wherein Ri, and R 3 are dependently selected from: Cpd R 1 R 3

2 3,4-(OCH 3 ) 2 -phenyl 3-OCH 2 -cyclopropyl

4 3,4-(OCH 3 ) 2 -phenyl 3-OCH(CH 3 ) 2

6 5-Cl-2-OCH 3 -phenyl . 3-OCH(CH 3 ) 2

8 5-Cl-2-F-phenyl 3-OCH(CH 3 ) 2

10 5-Cl-2-OCH 3 -phenyl 3-OCH 2 -cyclopropyl

12 5-Cl-2-F-phenyl 3-OCHrcyclopropyl and pharmaceutically acceptable forms thereof.

An example of the present invention includes a compound of Formula (Ib) and pharmaceutically acceptable forms thereof, wherein

Ri is selected from 3,4-(OCH 3 ) 2 -phenyl, 5-Cl-2-OCH 3 -phenyl and 5-Cl-2-F-phenyl; and R 3 is selected from 3-OCH 2 -cyclopropyl and 3-OCH(CH 3 ) 2 .

Another example of the present invention includes a compound selected from the group consisting of

Cpdl Cpd2 Cpd3

Cpd4 Cpd5 Cpd6

Cpd 7 Cpd 8 Cpd 9

Cpd lO Cpd ll Cpd l2 and pharmaceutically acceptable forms thereof.

Compound Forms

The term "form" means, in reference to compounds of the present invention, such may exist as, without limitation, a salt, stereoisomer, tautomer, crystalline, polymorph, amorphous, solvate, hydrate, ester, prodrug or metabolite form. The present invention encompasses all such compound forms and mixtures thereof.

The term "isolated form" means, in reference to compounds of the present invention, such may exist in an essentially pure state such as, without limitation, an enantiomer, a racemic mixture, a geometric isomer (such as a cis or trans stereoisomer), a mixture of geometric isomers, and the like. The present invention encompasses all such compound forms and mixtures thereof.

Certain compounds of Formula (I) may exist in various stereoisomeric or tautomeric

forms and mixtures thereof. The invention encompasses all such compounds, including active compounds in the form of essentially pure enantiomers, racemic mixtures and tautomers.

The compounds of the present invention may be present in the form of pharmaceutically acceptable salts. For use in medicines, the "pharmaceutically acceptable salts" of the compounds of this invention refer to non-toxic acidic/anionic or basic/cationic salt forms.

Suitable pharmaceutically acceptable salts of the compounds of this invention include acid addition salts which may, for example, be formed by mixing a solution of the compound according to the invention with a solution of a pharmaceutically acceptable acid such as hydrochloric acid, sulphuric acid, fumaric acid, maleic acid, succinic acid, acetic acid, benzoic acid, citric acid, tartaric acid, carbonic acid or phosphoric acid.

Furthermore when the compounds of the present invention carry an acidic moiety, suitable pharmaceutically acceptable salts thereof may include alkali metal salts, e.g. sodium or potassium salts; alkaline earth metal salts, e.g. calcium or magnesium salts; and salts formed with suitable organic ligands, e.g. quaternary ammonium salts. Thus, representative pharmaceutically acceptable salts include the following: acetate, benzenesulfonate, benzoate, bicarbonate, bisulfate, bitartrate, borate, bromide, calcium, camsylate (or camphosulphonate), carbonate, chloride, clavulanate, citrate, dihydrochloride, edetate, fumarate, gluconate, glutamate, hydrabamine, hydrobromine, hydrochloride, iodide, isothionate, lactate, malate, maleate, mandelate, mesylate, nitrate, oleate, pamoate, palmitate, phosphate/diphosphate, salicylate, stearate, sulfate, succinate, tartrate, tosylate.

The invention includes compounds of various isomers and mixtures thereof. The term "isomer" refers to compounds that have the same composition and molecular weight but differ in physical and/or chemical properties. Such substances have the same number and kind of atoms but differ in structure. The structural difference may be in constitution (geometric isomers) or in an ability to rotate the plane of polarized light (stereoisomers).

The term "optical isomer" means isomers of identical constitution that differ only in the spatial arrangement of their groups. Optical isomers rotate the plane of polarized light in different directions. The term "optical activity" means the degree to which an optical isomer rotates the plane of polarized light.

The term "racemate" or "racemic mixture" means an equimolar mixture of two enantiomeric species, wherein each of the isolated species rotates the plane of polarized light in the opposite direction such that the mixture is devoid of optical activity.

The term "enantiomer" means an isomer having a nonsuperimposable mirror image.

The term "diastereomer" means stereoisomers that are not enantiomers.

The term "chiral" means a molecule which, in a given configuration, cannot be superimposed on its mirror image. This is in contrast to achiral molecules which can be superimposed on their mirror images. The two distinct mirror image versions of the chiral molecule are also known as levo

(left-handed), abbreviated L, or dextro (right handed), abbreviated D, depending on which way they rotate polarized light. The symbols "R" and "S" represent the configuration of groups around a stereogenic carbon atom(s).

An isolated form of a chiral or achiral-mixture means those forms that are substantially free of one mirror image molecule. Such substantially pure forms include those wherein one mirror image is present in a range of less than 25% in the mixture, of less than 10%, of less than 5%, of less than 2% or less than 1%.

An example of an enantiomerically enriched form isolated from a racemic form of an achiral mixture includes a dextrorotatory enantiomer, wherein the mixture is substantially free of the levorotatory isomer. In this context, substantially free means the levorotatory isomer may, in a range, comprise less than 25% of the mixture, less than 10 %, less than 5 %, less than 2 % or less than 1 % of the mixture according to the formula:

-, , (mass levorotatory) „ „„

% levorotatory = — XlOO

(mass dextrorotatory) + (mass levorotatory)

Similarly, an example of an enantiomerically enriched form isolated from a racemic form of an achiral mixture includes a levorotatory enantiomer, wherein the mixture is substantially free of the dextrorotatory isomer. In this context, substantially free means the dextrorotatory isomer may, in a range, comprise less than 25% of the mixture, less than 10 %, less than 5 %, less than 2 % or less than 1 % of the mixture according to the formula:

_, , (mass dextrorotatory) < ΛΛ

% dextrorotatory = — X 100

(mass dextrorotatory) + (mass levorotatory) "Geometric isomer" means isomers that differ in the orientation of substituent atoms in relationship to a carbon-carbon double bond, to a cycloalkyl ring, or to a bridged bicyclic system. Substituent atoms (other than hydrogen) on each side of a carbon-carbon double bond may be in an E or Z configuration. In the "E" configuration, the substituents are on opposite sides in relationship to the carbon- carbon double bond. In the "Z" configuration, the substituents are oriented on the same side in relationship to the carbon-carbon double bond.

Substituent atoms (other than hydrogen) attached to a ring system may be in a cis or trans configuration. In the "cis" configuration, the substituents are on the same side in relationship to the plane of the ring; in the "trans" configuration, the substituents are on

opposite sides in relationship to the plane of the ring. Compounds having a mixture of "cis" and "trans" species are designated "cis/trans".

The isomeric descriptors ("R," "S," "E," and "Z") indicate atom configurations relative to a core molecule and are intended to be used as defined in the literature. Furthermore, compounds of the present invention may have at least one crystalline, polymorph or amorphous form. The plurality of such forms are included in the scope of the invention. In addition, some of the compounds may form solvates with water (i.e., hydrates) or common organic solvents (e.g., organic esters such as ethanolate and the like). The plurality of such solvates are also intended to be encompassed within the scope of this invention.

Chemical Nomenclature and Definitions

Bond lines drawn into a ring system from a substituent variable indicate that the substituent may be attached to any of the substitutable ring atoms.

As used herein, the following terms are intended to have the following meanings (additional definitions are provided where needed throughout the Specification). The definitions herein may specify that a chemical term has an indicated formula. The particular formula provided is not intended to limit the scope of the invention, but is provided as an illustration of the term. The scope of the per se definition of the term is intended to include the plurality of variations expected to be included by one of ordinary skill in the art.

The term "Ci -8 alkyl," whether used alone or as part of a substituent group, means a straight or branched chain hydrocarbon alkyl radical or alkyldiyl linking group comprising from 1 to 8 carbon atoms, wherein the radical is derived by the removal of one hydrogen atom from a single carbon atom and the alkyldiyl linking group is derived by the removal of one hydrogen atom from each of two carbon atoms in the chain, such as, for example methyl, ethyl, 1-propyl, 2-propyl, 1-butyl, 2-butyl, tertiary butyl, 1-pentyl, 2-pentyl, 3-pentyl, 1-hexyl, 2- hexyl, 3-hexyl, 1-heptyl, 2-heptyl, 3-heptyl, 1-octyl, 2-octyl, 3-octyl and the like. Examples include Ci. s alkyl, Ci -6 alkyl and C 1-4 alkyl groups. Alkyl radicals or linking groups may be attached to a core molecule via a terminal carbon atom or via a carbon atom within the chain. Similarly, substituent variables may be attached to an alkyl linking group when allowed by available valences. The term "C 2 - 8 alkenyl," whether used alone or as part of a substituent group, means a straight or branched chain hydrocarbon alkyl or alkyldiyl radical radical having at least one carbon-carbon double bond, whereby the double bond is derived by the removal of one hydrogen atom from each of two adjacent carbon atoms of the alkyl radical. Atoms may be oriented about the double bond in either the cis (E) or trans (S) conformation. Typical alkenyl

groups comprising from 2 to 8 carbon atoms, such as, for example, ethenyl, propenyl, allyl (2- propenyl), butenyl, pentenyl, hexenyl and the like. Examples include C 2-4 alkenyl groups.

The term "C 2 . 8 alkynyl" whether used alone or as part of a substituent group, means a straight or branched chain hydrocarbon alkyl or alkyldiyl radical radical having at least one carbon-carbon triple bond, whereby the triple bond is derived by the removal of two hydrogen atoms from each of two adjacent carbon atoms of the alkyl radical. Typical alkynyl groups comprising from 2 to 8 carbon atoms, such as, for example, ethynyl, propynyl, butynyl, pentynyl, hexynyl and the like. Examples include C 2 . 4 alkynyl groups.

The term "Ci_ 8 alkoxy," whether used alone or as part of a substituent group, refers to an alkyl or alkyldiyl radical attached through an oxygen linking atom, as in the formula: -O-Ci. 8 alkyl. Typical alkoxy groups comprising from 1 to 8 carbon atoms, such as, for example, methoxy, ethoxy, propoxy, butoxy, pentoxy, hexoxy, heptoxy, octoxy and the like. An alkoxy radical may be attached to a core molecule and further substituted where indicated. Examples include C 1-8 alkoxy or Q^alkoxy groups. The term "C 3-I2 CyClOaIlCyI," whether used alone or as part of a substituent group, refers to a saturated or partially unsaturated, monocyclic or polycyclic hydrocarbon ring system radical derived by the removal of one hydrogen atom from a single ring carbon atom.

The term "C 3 .i 2 cycloalkyl" also includes a C 3- i 0 cycloalkyl, C 5-6 cycloalkyl, C 5-8 cycloalkyl, C 5- i 2 cycloalkyl, C 9 .i 3 cycloalkyl or benzofused-C 3 .i 2 cycloalkyl ring system radical such as, for example, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, lH-indenyl, indanyl, 9Η-fluorenyl, tetrahydro-naphthalenyl, acenaphthenyl, adamantanyl and the like. Examples include Cs-scycloalkyl, C 5 _ 8 cycloalkyl, Q-iocycloalkyl and the like. C 3- i 2 cycloalkyl radicals may be attached to a core molecule and further substituted on any atom when allowed by available valences. The term "heterocyclyl," whether used alone or as part of a substituent group, refers to a saturated or partially unsaturated monocyclic or polycyclic ring radical derived by the removal of one hydrogen atom from a single carbon or nitrogen ring atom. Typical heterocyclyl radicals include 2H-pyrrole, 2-pyrrolinyl, 3-pyrrolinyl, pyrrolidinyl, 1,3- dioxolanyl, 2-imidazolinyl (also referred to as 4,5-dihydro-lH-imidazolyl), imidazolidinyl, 2-pyrazolinyl, pyrazolidinyl, tetrazolyl, tetrazolidinyl, piperidinyl, 1,4-dioxanyl, morpholinyl, 1,4-dithianyl, thiomorpholinyl, piperazinyl, azetidinyl, azepanyl, hexahydro-l,4-diazepinyl, hexahydro-l,4-oxazepanyl, tetrahydro-furanyl, tetrahydro-thienyl, tetrahydro-pyranyl, tetrahydro-pyridazinyl, 1,3-benzodioxolyl (also referred to as benzo[l,3]dioxolyl), 2,3-dihydro- 1,4-benzodioxinyl (also referred to as 2,3-dihydro-benzo[l,4]dioxinyl) and the like.

Heterocyclyl radicals may be attached to a core molecule and further substituted on any atom when allowed by available valences.

The term "hetero" used as a prefix for a ring system refers to the replacement of at least one ring carbon atom with one or more heteroatoms independently selected from N, S, or O. Examples include rings wherein 1, 2, 3 or 4 ring members are a nitrogen atom; or, 0, 1, 2 or 3 ring members are nitrogen atoms and 1 member is an oxygen or sulfur atom. When allowed by available valences, up to two adjacent ring members may be heteroatoms; wherein one heteroatom is nitrogen and the other is one heteroatom selected from N, S or O.

The term "aryl," whether used alone or as part of a substituent group, refers to an aromatic monocyclic or polycyclic hydrocarbon ring radical derived by the removal of one hydrogen atom from a single carbon atom of the ring system. Typical aryl radicals include phenyl, naphthalenyl, azulenyl, anthracenyl and the like. Aryl radicals may be attached to a core molecule and further substituted on any atom when allowed by available valences.

The term "aromatic" refers to a cycloalkylic hydrocarbon ring system having an unsaturated, conjugated π electron system.

The term "heteroaryl," whether used alone or as part of a substituent group, refers to an heteroaromatic monocyclic or polycyclic hydrocarbon ring radical derived by the removal of one hydrogen atom from a single ring carbon atom of the ring system. Typical heteroaryl radicals include furyl, thienyl, pyrrolyl, oxazolyl, thiazolyl, imidazolyl, pyrazolyl, isoxazolyl, isothiazolyl, oxadiazolyl, triazolyl, thiadiazolyl, pyridinyl, pyridazinyl, pyrimidinyl, pyrazinyl, indolizinyl, indolyl, azaindolyl, isoindolyl, benzo[&]furyl, benzo[έ»]thienyl, indazolyl, azaindazolyl, benzimidazolyl, benzthiazolyl, benzoxazolyl, benzisoxazolyl, benzothiadiazolyl, benzotriazolyl, purinyl, 4H-quinolizinyl, quinolinyl, isoquinolinyl, cinnolinyl, phthalzinyl, quinazolinyl, quinoxalinyl, 1,8-naphthyridinyl, pteridinyl and the like. Heteroaryl radicals may be attached to a core molecule and further substituted on any atom when allowed by available valences.

The term "Ci. 8 alkoxy-Ci -8 alkyr' means a radical of the formula: The term "Ci -8 alkoxy-carbonyl" means a radical of the formula: -C(O)-O-Ci -8 alkyl.

The term "Ci -8 alkyl-amino" means a radical of the formula: -NH-Ci. 8 alkyl or -N(C 1-S aUCyI) 2 .

The term "Ci -8 alkyl-sulfonyl" means a radical of the formula: -SO 2 -Ci -S aIlCyI.

The term "amino" means a radical of the formula: -NH 2 .

The term "amino-C 1-8 alkyl" means a radical of the formula: -Ci -S aIlCyI-NH 2 .

The term "aryl-Ci. 8 alkoxy" means a radical of the formula: The term "aryl-Ci -8 alkyl" means a radical of the formula: -C 1-8 alkyl-aryl.

The term "C 3 . 8 cycloalkyl-Ci. 8 alkoxy" means a radical of the formula: -O-Ci -8 alkyl~C 3 .. 8 cycloalkyl. The term "C 3 . 8 cycloalkyl-C 1 . 8 alkyl" means a radical of the formula:

-Ci-salkyl-Cs-scycloalkyl.

The term "heterocyclyl-Ci-salkyl" means a radical of the formula:

The term "heteroaryl-Ci. 8 alkyl" means a radical of the formula: The term "halogen" or "halo" means the group fluoro, chloro, bromo or iodo.

The term "halo-Ci -8 alkoxy" means a radical of the formula: -O-C 1-8 alkyl-(halo) n , wherein one or more halogen atoms may be substituted on Ci -8 alkyl when allowed by available valences (wherein n represents that amount of available valences based on the number of carbon atoms in the chain), and includes monofluoromethyl, difluoromethyl, trifluoromethyl, trifluoroethyl and the like.

The term "halo-Ci. 8 alkyl" means a radical of the formula: -Ci -8 alkyl-(halo) n , wherein one or more halogen atoms may be substituted on Ci -8 alkyl when allowed by available valences (wherein n represents that amount of available valences based on the number of carbon atoms in the chain), and includes monofluoromethyl, difluoromethyl, trifluoromethyl, trifluoroethyl and the like.

The term "hydroxy-Ci_ 8 alkyl" means a radical of the formula: -Ci -8 alkyl-hydroxy, wherein Ci -8 alkyl is substituted on one or more available carbon chain atoms with one or more hydroxy radicals when allowed by available valences.

The term "substituted," refers to a core molecule on which one or more hydrogen atoms have been replaced with one or more functional radical moieties. The number that is allowed by available valences limits the amount of substituents. Substitution is not limited to the core molecule, but may also occur on a substituent radical, whereby the substituent radical becomes a linking group.

The term "independently selected" refers to one or more substituents selected from a group of substituents variable group, wherein the selected substituents may be the same or different.

The term "dependency selected" refers to one or more substituents specified in an

indicated combination of structure variables.

Therapeutic Use

The ability of compounds of the present invention to specifically bind to the αj a as well as to the an receptor makes them useful for the treatment of BPH. The specificity of binding of compounds showing affinity for the αj a and the α 1( j receptor is compared against the binding affinities to other types of alpha receptors.

An aspect of the present invention includes a compound of Formula (T) having an IC 50 (50% inhibition concentration) against the activity of either or both the <% and/or a^ adrenoreceptor in a range of about 25 μM or less, of about 10 μM or less, of about 1 μM or less, of about 0.5 μM or less, of about 0.25 μM or less or of about 0.1 μM or less.

Another aspect of the present invention includes dual selective α la /oty adrenoreceptor antagonists for treating, ameliorating or preventing a plurality of oc la and/or otu adrenoreceptor mediated disorders or diseases.

The usefulness of a compound of the present invention or composition thereof as a dual selective cc la lcl adrenoreceptor antagonist can be determined according to the methods disclosed herein. The scope of such use includes the treatment of benign prostatic hypertrophy and/or lower urinary tract symptoms.

An aspect of the use for a compound of Formula (T) includes use of an instant compound as a marker, wherein the compound is labeled with a ligand such as a radioligand (selected from deuterium, tritium and the like).

The present invention is further directed to a method for treating, ameliorating or preventing an αi a and/or OCM adrenoreceptor mediated disorder or disease in a subject in need of such treatment, amelioration or prevention comprising administering to the subject a therapeutically or prophylactically effective amount of a compound of Formula (I) or a form or composition thereof.

An aspect of the method of the present invention further includes treating Benign Prostatic Hyperplasia in a subject in need of such treatment comprising administering to the subject in need of such treatment a therapeutically effective amount of a compound of Formula (T) or a form or composition thereof. An aspect of the method of the present invention further includes treating Lower

Urinary Tract Symptoms in a subject in need of such treatment comprising administering to the subject in need of such treatment a therapeutically effective amount of a compound of Formula

(I) or a form or composition thereof.

Another aspect of the method of the present invention further includes administering to the subject an effective amount of a compound of Formula (I) or composition thereof in the form of a medicament. Consequently, the invention encompasses the use of the compound of Formula (I) as a medicament.

Accordingly, the present invention includes the use of a compound of Formula (I) for the manufacture of a medicament for treating any of the diseases, disorders or conditions mentioned in any of the foregoing methods.

The term "α la and/or aid adrenoreceptor mediated disorder or disease" means disorders or diseases such as, but not limited to, contractions of the prostate, bladder and other organs of the lower urinary tract with or without an effect on blood pressure. The scope of such use includes the treatment of BPH and/or LUTS.

The term "LUTS" means disorders or diseases such as, but not limited to, filling symptoms, urgency, incontinence and nocturia, as well as voiding problems such as weak stream, hesitancy, intermnittency, incomplete bladder emptying and abdominal straining.

The present invention thereby includes a method for treating, ameliorating or preventing an cc la and/or Ofo adrenoreceptor mediated disorder or disease in a patient in need thereof comprising administering to the patient an effective amount of a compound of Formula (I) or pharmaceutical composition thereof. The present invention thereby includes a method for treating, ameliorating or preventing BPH and/or LUTS in a patient in need of such treatment comprising administering to the patient an effective amount of a compound of Formula (I) or pharmaceutical composition thereof.

The term "patient" or "subject" means an animal, preferably a mammal, most preferably a human, which has been a patient or the object of treatment, prevention, observation or experiment.

The term "administering" is to be interpreted liberally in accordance with the methods of the present invention. Such methods include therapeutically or prophylactically administering an effective amount of a composition or medicament of the present invention at different times during the course of a therapy or concurrently in a combination form.

Prophylactic administration can occur prior to the manifestation of symptoms characteristic of an cci a and/or α ld adrenoreceptor mediated disorder or disease such that the disorder or disease is treated, ameliorated, prevented or otherwise delayed in its progression. The methods of the

present invention are further to be understood as embracing all therapeutic or prophylactic treatment regimens used by those skilled in the art.

The term "effective amount" refers to that amount of active compound or pharmaceutical agent that elicits the biological or medicinal response in a tissue system, animal or human, that is being sought by a researcher, veterinarian, medical doctor, or other clinician, which includes treating, ameliorating or preventing the symptoms of a syndrome, disorder or disease being treated.

The effective amount of a compound of Formula (I) exemplified in a method of the present invention is in a range of from about 0.001 mg/kg/day to about 300 mg/kg/day. The term "medicament" refers to a product for use in treating, preventing or ameliorating a kinase mediated disease, disorder or condition.

In an example of the method for treating, ameliorating or preventing an 0Ci a -AR and αi d - AR mediated disorder or disease described herein, the method includes treating a patient suffering from BPH and/or LUTS comprising administering to the patient an effective amount of a combination product comprising a compound of Formula (I) or pharmaceutical composition thereof in combination with a BPH and/or LUTS therapeutic agent.

The BPH and/or LUTS therapeutic agent includes a human testosterone 5α-reductase inhibitor agent or 5-α reductase isoenzyme 2 inhibitor agent (such as finasteride or durasteride and the like or mixtures thereof), a NK-I inhibitor, an anti-androgen receptor agonist, an androgen receptor antagonist, a selective androgen receptor modulators, a PDE inhibitor, a urinary incontinence drugs (e.g. anti-muscarinics) or a 5HT-receptor modulator.

With regard to the method for administering a combination product, the term "effective amount" means that amount of the compound of Formula (I) or pharmaceutical composition thereof in combination with that amount of the therapeutic agent which have been adjusted to treat, ameliorate or prevent the symptoms of a syndrome, disorder or disease being treated. An effective amount of a compound of Formula (I) is in a range of from about 0.0002 mg/kg to about 2000 mg/kg of body weight per day.

As those skilled in the art will appreciate, the dosages of the compound of Formula (I) or pharmaceutical composition thereof and the therapeutic agent may be independently optimized and combined to achieve a synergistic result wherein the pathology is reduced more than it would be if either agent were used alone. In accordance with the method of the present invention, the individual components of the combination can be administered separately at different times during the course of therapy or concurrently in divided or single combination

forms. The instant invention is therefore to be understood as embracing all such regimes of simultaneous or alternating treatment and the term "administering" is to be interpreted accordingly.

Wherein the present invention is directed to the administration of a combination of a compound of Formula (I) and another agent for the treatment of BPH, the terms

"therapeutically effective amount" or "prophylactically effective amount" shall mean that amount of the combination of agents taken together so that the combined effect elicits the desired biological or medicinal response.

Representative compounds of the present invention exhibit high selectivity for the α la and α 1(1 adrenergic receptor. Moreover, representative compounds of the present invention show low to very low affinity for the α 1( j receptor. As a consequence thereof, the compounds of the present invention are believed to lower the intraurethral pressure without the unwanted side effects.

These compounds can be administered in dosages effective to antagonize the α la and α 1(1 receptor where such treatment is needed, as in BHP.

Pharmaceutical Compositions

The present invention also has the objective of providing suitable topical, oral, systemic and parenteral pharmaceutical formulations for use in the novel methods of treatment of the present invention. The compositions containing compounds of this invention as the active ingredient for use in the specific antagonism of human oq a adrenergic receptors can be administered in a wide variety of therapeutic dosage forms in conventional vehicles for systemic administration.

The present invention also provides pharmaceutical compositions comprising one or more compounds of this invention in association with a pharmaceutically acceptable carrier. Preferably these compositions are in unit dosage forms such as tablets, pills, capsules, powders, graules, sterile parenteral solutions or suspensions, metered aerosol or liquid sprays, drops, ampoules, autoinjector devices or suppositories; for oral, parenteral, intranasal, sublingual or rectal administration, or for administration by inhalation or insufflation.

In solid compositions such as tablets, the principal active ingredient is mixed with a pharmaceutical carrier, e.g. conventional tableting ingredients such as corn starch, lactose, sucrose, sorbitol, talc, stearic acid, magnesium stearate, dicalcium phosphate or gums, and other pharmaceutical diluents, e.g. water, to form a solid preformulation composition containing a homogenous mixture of a compound of the present invention, or a

pharmaceutically acceptable salt thereof. When referring to these preformulation compositions as homogeneous, it is meant that the active ingredient is dispersed evenly throughout the composition so that the composition may be readily subdivided into equally effective unit dosage forms such as tablets, pills and capsules. This solid preformulation composition is then subdivided into unit dosage forms of the type described above containing from 0.1 to about 500 mg of the active ingredient of the present invention.

The tablets or pills of the novel composition can be coated or otherwise compounded to provide a dosage form affording the advantage of prolonged action. For example, the tablet or pill can comprise an inner dosage and an outer dosage component, the latter being in the form of an envelope over the former. An enteric layer can separate the two components. That enteric layer serves to resist disintegration in the stomach and permits the inner component to pass intact into the duodenum or to be delayed in release. A variety of materials can be used for such enteric layers or coatings, such materials including a number of polymeric acids and mixtures of polymeric acids with such materials as shellac, cetyl alcohol and cellulose acetate. The liquid forms in which the novel compositions of the present invention may be incorporated for administration orally or by injection include aqueous solutions, suitably flavoured syrups, aqueous or oil suspensions, and flavoured emulsions with edible oils such as cottonseed oil, sesame oil, coconut oil or peanut oil, as well as elixirs and similar pharmaceutical vehicles. Suitable dispersing or suspending agents for aqueous suspensions include synthetic and natural gums such as tragacanth, acacia, alginate, dextran, sodium carboxymethyl cellulose, methylcellulose, polyvinyl-pyrrolidone or gelatin.

As used herein, the term "composition" is intended to encompass a product comprising the specified ingredients in the specified amounts, as well as any product which results, directly or indirectly, from combination of the specified ingredients in the specified amounts. An effective but non-toxic amount of the compound desired can be employed as a αi a /αi d antagonistic agent. Advantageously, compounds of the present invention may be administered in a single daily dose, or the total daily dosage may be administered in divided doses of two, three or four times daily. Furthermore, compounds for the present invention can be administered in intranasal form via topical use of suitable intranasal vehicles, or via transdermal routes, using those forms of transdermal skin patches well known to those of ordinary skill in that art. To be administered in the form of a transdermal delivery system, the dosage administration will, of course, be continuous rather than intermittent throughout the dosage regimen.

The dosage regimen utilizing the compounds of the present invention is selected in

accordance with a variety of factors including type, species, age, weight, sex and medical condition of the patient; the severity of the condition to be treated; the route of administration; the renal and hepatic function of the patient; and the particular compound thereof employed. A physician or veterinarian of ordinary skill can readily determine and prescribe the effective amount of the drug required to prevent, counter or arrest the progress of the condition. Optimal precision in achieving concentration of drug within the range that yields efficacy without toxicity requires a regimen based on the kinetics of the drug's availability to target sites. This involves a consideration of the distribution, equilibrium and elimination of a drug.

Compounds of Formula (I) may be administered in any of the foregoing compositions and according to dosage regimens established in the art whenever inhibition of the human αi a -AR or αi a -AR is required. Such inhibition includes inhibition of the human 0Ci a -AR or 0Ci a -AR, selective inhibition of the human α [a -AR or αi a -AR, dual inhibition of the human α la -AR and αi a -AR or selective, dual inhibition of the human α la -AR and CCi 3 -AR. The compounds of Formula (I) may be used alone at appropriate dosages defined by routine testing in order to obtain optimal antagonism of the human αi a -AR or cCi d -AR while minimizing any potential toxicity.

The daily dosage of the products may be varied over a wide range from about 0.001 to about 3,000 mg per adult human per day. For oral administration, the compositions are preferably provided in the form of tablets containing 0. 01, 0.05, 0.1, 0.5, 1.0, 2.5, 5.0, 10.0, 15.0, 25.0, 50.0 and milligrams of the active ingredient for the symptomatic adjustment of the dosage to the patient to be treated. A medicament typically contains from about 0. 01 mg to about 500 mg of the active ingredient, preferably, from about 0.001 mg to about 3000 mg of active ingredient.

An effective amount of a compound of Formula (I) is a dosage level range of from about 0.001 mg/kg to about 20 mg/kg of body weight per day. Preferably, the range is from about 0.001 to 10 mg/kg of body weight per day. More preferably, the range is from about 0.001 mg/kg to 7 mg/kg of body weight per day. The compounds may be administered on a regimen of 1 to 4 times per day.

Compounds of the present invention may be used alone at appropriate dosages defined by routine testing in order to obtain optimal antagonism of the human α la 1(1 adrenergic receptor while minimizing any potential toxicity. In addition, co-administration or sequential administration of other agents which alleviate the effects of BPH is desirable.

When compounds of Formula (I) are administered in a combination product, the compound of Formula (I) or pharmaceutical composition thereof and the therapeutic agent may

be co-administered or sequentially administered whereby the effects of BPH and/or LUTS is treated, ameliorated or prevented.

Thus, in one embodiment, the method of the present invention includes administration of compounds of this invention and a human testosterone 5-α reductase inhibitor, including inhibitors of 5-α reductase isoenzyme 2.

The dosages of the oci a adrenergic receptor and testosterone 5-α reductase inhibitors are adjusted when combined to achieve desired effects. As those skilled in the art will appreciate, dosages of the 5-α reductase inhibitor and the αi a adrenergic receptor antagonist may be independently optimized and combined to achieve a synergistic result wherein the pathology is reduced more than it would be if either agent were used alone. In accordance with the method of the present invention, the individual components of the combination can be administered separately at different times during the course of therapy or concurrently in divided or single combination forms. The instant invention is therefore to be understood as embracing all such regimes of simultaneous or alternating treatment and the term "administering" is to be interpreted accordingly.

The effective amount of the therapeutic agent selected from a human testosterone 5α- reductase inhibitor agent or 5-α reductase isoenzyme 2 inhibitor agent (such as finasteride or durasteride and the like or mixtures thereof), a NK-I inhibitor, an anti-androgen receptor agonist, an androgen receptor antagonist, a selective androgen receptor modulators, a PDE inhibitor, a urinary incontinence drugs (e.g. anti-muscarinics) or a 5HT-receptor modulator is a dosage level range of from about 0.0002 mg/kg to about 20 mg/kg of body weight per day. Preferably, the range is from about 0.001 to 10 mg/kg of body weight per day. More preferably, the range is from about 0.001 mg/kg to 7 mg/kg of body weight per day.

For the treatment of benign prostatic hyperplasia, compounds of this invention exhibiting αχ a adrenergic receptor antagonism can be combined with a therapeutically effective amount of a 5α-reductase isoenzyme 2 inhibitor, such as finasteride.

Thus, in one embodiment of the present invention, a method of treating BPH is provided which comprises administering to a subject in need of treatment any of the compounds of the present invention in combination with finasteride effective to treat BPH. The dosage of finasteride administered to the subject is about 0.01 mg per subject per day to about 50 mg per subject per day in combination with an α la antagonist. Preferably, the dosage of finasteride in the combination is about 0.2 mg per subject per day to about 10 mg per subject per day, more preferably, about 1 to about 7 mg per subject to day, most preferably,

about 5 mg per subject per day.

In other embodiments of the present inventions, a method of treating BPH is provided which comprises administering to a subject in need of treatment any of the compounds of the present invention in combination with a therapeutically effective amount of an anti- antiandrogenic agent, androgen receptor antagonists, selective androgen receptor modulators, urinary incontinence drugs (e.g. anti-muscarinics) or 5HT-receptor modulators.

A representative compound of Formula (I) or a form thereof for use in the therapeutic methods and pharmaceutical compositions, medicines or medicaments described herein includes a compound selected from:

5-chloro-N-cw-{4-[4-(3-isopropoxy-pyridin-2-yl)-piperazin -l-yl]-cyclohexyl}-2-methoxy- benzenesulfonamide,

5-chloro-2-fluoro-N-cω-{4-[4-(3-isopropoxy-pyridin-2-yl) -piperazin-l-yl]-cyclohexyl}- benzenesulfonamide,

5-chloro-N-cw-{4-[4-(3-cyclopropylmethoxy-pyridin-2-yl)-p iperazin-l-yl]-cyclohexyl}-2- methoxy-benzenesulfonamide, and

5-chloro-N-cw-{4-[4-(3-cyclopropylmethoxy-pyridin-2-yl)-p iperazin-l-yl]-cyclohexyl}-2- fluoro-benzenesulfonamide. Synthetic Methods

Representative compounds of the present invention can be synthesized in accordance with the general synthetic schemes described below and are illustrated more particularly in the specific synthetic examples that follow. The general schemes and specific examples are offered by way of illustration; the invention should not be construed as being limited by the chemical reactions and conditions expressed. The methods for preparing the various starting materials used in the schemes and examples are well within the skill of persons versed in the art. No attempt has been made to optimize the yields obtained in any of the example reactions. One skilled in the art would know how to increase such yields through routine variations in reaction times, temperatures, solvents and/or reagents. During any of the processes for preparation of the compounds of the present invention, it may be necessary and/or desirable to protect sensitive or reactive groups on any of the molecules concerned. This may be achieved by means of conventional protecting groups, such as those described in Protective Groups in Organic Chemistry, ed. J.F.W. McOmie, Plenum Press, 1973; and T.W. Greene & P.G.M. Wuts, Protective Groups in Organic Synthesis, 3rd Edition, John Wiley & Sons, 1999. The protecting groups may be removed at a convenient subsequent stage using methods known in the art.

Synthetic routes

Where the processes for the preparation of the compounds according to the invention give rise to mixtures of stereoisomers, these isomers may be separated by conventional techniques such as preparative chromatography. The compounds may be prepared in racemic form, or individual enantiomers may be prepared either by enantiospecific synthesis or by resolution. The compounds may, for example, be resolved into their component enantiomers by standard techniques, such as the formation of diastereomeric pairs by salt formation with an optically active acid, such as (-)-di-p-toluoyl-D-tartaric acid and/or (+)-di-p-toluoyl-L-tartaric acid followed by fractional crystallization and regeneration of the free base. The compounds may also be resolved by formation of diastereomeric esters or amides, followed by chromatographic separation and removal of the chiral auxiliary. Alternatively, the compounds may be resolved using a chiral HPLC column.

The terms used in describing the invention are commonly used and known to those skilled in the art. Some reagents are referred to as a chemical formula. Other reagents are referred to as abbreviations known to persons skilled in the art. When used herein, the following abbreviations have the indicated meanings:

Cpd compound

DCM dichloromethane

EtOAc ethyl acetate

Et 2 O diethylether

LCMS Liquid Chromatography Mass Spectrometry min/hr(s)/d(s) minute/hour(s)/day(s)

MS Mass Spectrum in m/z (M+H 1" ) m/z mass/charge

Ret. retention time

RT/rt/r.t. room temperature

TEA triethylamine

THF tetrahydrofuran

TLC Thin Layer Chromatography

Specific compounds which are representative of the invention may be prepared as per the following examples offered by way of illustration and not by way of limitation. No attempt has been made to optimize the yields obtained in any of the reactions. One skilled in the art would know how to increase such yields through routine variations in reaction times, temperatures, solvents and/or reagents. Additional compounds may be made according to the synthetic methods of the present invention by one skilled in the art, differing only in possible starting materials, reagents and conditions used in the instant methods.

Scheme A

A R 3 substituted pyridinyl Compound Al (wherein X represents a halogen atom or other suitable leaving group) is dissolved in a solvent (such as DMF, dry THF or DCM and the like), then a R 4 substituted piperazine-1-carboxylic acid tert-butyl ester Compound A2 and K 2 CO 3 are added. The mixture is stirred and heated at 80 0 C for 2 hrs. The solvent is removed and the resulting residue is taken up in a solvent (such as Et 2 O and the like), then washed (such as with H 2 O and the like) and dried (such as with Na 2 SO 4 and the like). The solvent is evaporated from the dry solution to provide a substituted 4-pyridin-2-yl-piperazine-l- carboxylic acid tert-butyl ester Compound A3.

One or more of the R 3 substituents for the Compound Al starting material may be amenable for further substitution using various reagent(s) and reaction conditions, thus enabling the preparation of other compounds that are representative of the invention both as shown herein and further by one skilled in the art.

Compound A3 is dissolved in a solvent (such as dry DCM and the like) and stirred with an acid (such as TFA and the like) at room temperature for 2.5 hrs. The solvent is evaporated to provide a residue which is taken up in a solvent (such as DCM and the like) and treated with a base (such as IN NaOH and the like) to about pH 10. The organic layer is dried (such as with K 2 CO 3 and the like). The solvent is evaporated from the dry solution to provide a substituted 1- pyridin-2-yl-piperazine Compound A4 which is used directly in the next step without further purification.

Compound A4, a R 2 and R 5 substituted (4-oxo-cyclohexyl)-carbamic acid tert-butyl ester Compound A5, a reducing agent (such as NaBH(OAc) 3 and the like), with or without a catalytic amount of an acid (such as HOAc and the like) and a dry solvent (such as anhydrous DCM and the like) are mixed together at r.t. to form a slurry. The mixture is stirred under a nitrogen atmosphere until Compound A5 is no longer detected (using TLC and/or LCMS). The mixture is diluted with a solvent (such as DCM, AcOEt and the like), sequentially washed (with water, NaHCO 3 or NH 4 Cl (saturated) and the like) and dried (such as over Na 2 SO 4 ). The solvent is evaporated from the dry solution to produce a crude product which is purified via flash chromatography (on a silica gel column, using AcOEt or an AcOEt/hexane mixture as eluent) to provide a substituted [4-(4-pyridin-2-yl-piperazin-l-yl)-cyclohexyl]-carbamic acid tert-butyl ester Compound A6 as a mixture (represented by wave bond lines) of cis and trans isomers.

Compound A6 is dissolved in a solvent (such as DCM and the like) at r.t., then stirred into an acid (such as TFA and the like) and a catalytic amount of H 2 O is added. The mixture is stirred for 2 hrs, then the solvent is removed and the resulting residue is taken up in a solvent (such as DCM and the like) and treated with a base (such as IN NaOH, IN KOH and the like) to about pH 10. The organic layer is dried (such as with K 2 CO 3 , Na 2 SO 4 and the like). The

solvent is evaporated from the dry solution to provide a substituted 4-(4-pyridin-2-yl-piperazin- l-yl)-cyclohexylamine Compound A7 as a crude product which is used in the next step without further purification.

Compound A7 and an Ri substituted sulfonyl chloride Compound A8 are dissolved in a solvent (such as DCM and the like). A mild base such as K 2 CO 3 is added and the solution is stirred at r.t. until Compound A7 is no longer detected (using TLC and/or LCMS). The mixture is filtered to provide a solution of a substituted 4-(4-pyridin-2-yl-piperazin-l-yl)-cyclohexyl- amino-sulfonyl Compound A9 as a cis and trans isomer mixture. The substituents for Compound A6, Compound A7 or Compound A9 may be further substituted either before or after deprotection using various reaction materials, reagent(s) and conditions, thus enabling the preparation of other compounds that are representative of the invention by one skilled in the art.

The Compound A9 isomers, i.e., Compound AlO and Compound All are relatively polar and may be separated via chromatographic techniques such as preparative TLC (using an

eluent mixture such as 5% MeOH/DCM and the like). A cis isomer such as Compound AlO is less polar and a trans isomer such as Compound All is more polar.

Example 1

N-cω- {4- [4-(3-cyclopropylmethoxy-pyridin-2-yl)-piperazin- 1 -yl]- cyclohexyl}-3,4-dimethoxy-benzenesulfonamide (Cpd 1)

N-trans- { 4-[4-(3-cyclopropylmethoxy-pyridin-2-yl)-piperazin- 1 - yl]-cyclohexyl}-3,4-dimethoxy-benzenesulfonamide (Cpd 2)

2-bromo-ρyridin-3-ol Compound Ia (6.4 g, 36.8 mmol) was dissolved into DMF (100 mL), then bromomethyl-cyclopropaneCompound Ib (5.0 g, 37 mmol) and K 2 CO 3 (7.5 g, 54.3 mmol) were added. The mixture was stirred and heated at 80 0 C for 2 hrs. Excess DMF was removed on a rotary evaporator. The brown residue was mixed with Et 2 O (150 mL), then washed with H 2 O and dried over Na 2 SO 4 . The solvent was evaporated from the dry solution to provide 2-bromo-3-cyclopropylmethoxy-pyridine Compound Ic (7.04 g, yield 84%).

Compound Ic (2.3 g, 10 mmol) and piperazine-1-carboxylic acid tert-butyl ester Compound Id (2.8 g, 15 mmol), CuCN (0.5 g) and K 2 CO 3 (1.38 g, 10 mmol) were mixed and heated at 110 0 C in a sealed tube for 48 hrs. The brown mixture was cooled to room temperature, then dissolved into AcOEt and washed with H 2 O. The organic layer was dried over Na 2 SO 4 . The solvent was evaporated from the dry solution to provide a crude product, as a brown oil which was purified via flash column chromatography (silica gel, 25%-50% AcOEt/Hexane) to provide 4-(3-cyclopropylmethoxy-pyridin-2-yl)-piperazine-l-carboxyli c acid tert-butyl ester Compound Ie (0.70 g, yield 21%) as a yellowish to almost colorless oil.

Compound Ie (0.38 g) was dissolved into DCM and stirred with TFA (0.5 mL) at room temperature for 2.5 hrs. The volatiles were removed on a rotary evaporator to provide a residue which was mixed with DCM and treated with IN NaOH to about pH 10. The organic layer was dried over K 2 CO 3 . The solvent was evaporated from the dry solution to provide l-(3- cyclopropylmethoxy-pyridin-2-yl)-piperazine Compound If (0.176 g) as a yellowish oil which was used directly in the next step without further purification.

Compound If (0.176 g, 0.76 mmol), (4-oxo-cyclohexyl)-carbamic acid tert-butyl ester, Compound Ig, (0.25 g, 1.2 mmol), NaBH(OAc) 3 (0.48 g, 2.27 mmol), HOAc (0.1 mL) and anhydrous DCM (10 mL) were mixed together and stirred under nitrogen atmosphere for 18 hrs. The white slurry became a yellowish solution and Compound If was no longer detected by TLC (100% AcOEt). The reaction mixture was diluted with DCM (80 mL), then sequentially washed with H 2 O and NH 4 Cl (sat.) and dried over Na 2 SO 4 . The solvent was evaporated from the dry solution via rotary evaporator to provide a crude product which was purified via flash column chromatography (100% AcOEt, silica gel) to provide {4-[4-(3-cyclopropylmethoxy- pyridin-2-yl)-piperazin-l-yl]-cyclohexyl}-carbamic acid tert-butyl ester, Compound Ih, (0.185 g, yield 57%) as a white sticky oil. LC-MS (2.429 min.) m/z 431.3 (M+H + ).

Compound Ih was dissolved into DCM and stirred with TFA and a catalytic amount of H 2 O at room temperature for 2 hrs. The volatiles were removed on a rotary evaporator to provide a residue which was mixed with DCM and treated with IN NaOH to about pH 10. The organic layer was dried over K 2 CO 3 . The solvent was evaporated from the dry solution to provide 4-[4-(3-cyclopropylmethoxy-pyridin-2-yl)-piperazin-l-yl]-cyc lohexylamine, Compound Ii, (0.084 g) as a yellowish oil which was used directly in the next step without further purification.

Compound Ii (0.015g, 0.045 mmol) and 3,4-dimethoxy-benzenesulfonyl chloride,

Compound Ij, (0.015 g, 0.063 mmol) were dissolved into DCM (3 mL). K 2 CO 3 (10 mg) was added to the yellowish solution. The resulting yellowish turbid solution was stirred at room temperature and monitored by TLC (5% MeOH/DCM) and LC-MS until Compound Ii was no longer detected. The mixture was filtered and preparative TLC was used (5% MeOH/DCM) to provide N- { 4-[4-(3-cyclopropylmethoxy-pyridin-2-yl)-piperazin- 1 -yl]-cyclohexyl } -3 ,4-

dimethoxy-benzenesulfonamide Compound Ik (0.015 g) as a yellowish oil. LC-MS (2.378 mins.) m/z 531.2 (100, M+H + ). 1 H NMR (CDCl 3 , IMS) δ 0.20-0.40 (m, 2 H), 0.50-0.70 (m, 2 H), 0.70-2.00 (m, 8 H), 2.00-2.55 (m, 2 H), 2.55-2.80 (m, 4 H), 3.40-3.55 (m, 4 H), 3.75 (d, J = 7 Hz, 2 H), 3.82 (s) & 3.88 (s, 6 H), 4.48-4.70 (m, 1 H), 6.60-6.80 (m, 1 H), 6.80-7.05 (m, 2 H), 7.10-7.38 (m, 2 H), 7.38-7.60 (m, 1 H), 7.70-7.90 (m, 1 H).

The cis isomer Compound 1 and the trans isomer Compound 2 were isolated from the mixture.

Following the procedure of Example 1 substituting the appropriate starting materials, reagents and solvents, the following compounds were prepared:

Cpd Name m/z Ret.

3 N-c/s-{4-[4-(3-isopropoxy-pyridin-2-yl)-piperazm-l-yl]- 519 2.309 cyclohexyl}-3,4-dimethoxy-benzenesulfonamide

4 N-ϊrøπs-{4-[4-(3-isopropoxy-pyridin-2-yl)-piperazin-l-yl] - 519 2.309 cyclohexyl } -3 ,4-dimethoxy-benzenesulfonamide

5 5-chloro-N-cώ-{4-[4-(3-isopropoxy-pyridin-2-yl)-piperazin-l - 523 2.560 yl] -cyclohexyl } -2-methoxy-benzenesulf onamide

6 5-chloro-N-frα«5-{4-[4-(3-isopropoxy-pyridin-2-yl)-piperaz in-l- 523 2.560 yl]-cyclohexyl}-2-methoxy-benzenesulfonamide

7 5-chloro-2-fluoro-N-m-{4-[4-(3-isopropoxy-pyridin-2-yl)~ 511 2.535 piperazin- 1 -yl]-cyclohexyl } -benzenesulf onamide

8 5-chloro-2-fluoro-N-ϊrø«5-{4-[4-(3-isopropoxy-pyridin-2-y l)- 511 2.535 piperazin- 1 -yl] -cyclohexyl } -benzenesulf onamide

9 5-chloro-N-cώ-{4-[4-(3-cyclopropylmethoxy-pyridin-2-yl)- 535 2.643 piperazin- 1 -yl]-cyclohexyl } -2-methoxy-benzenesulf onamide

Cpd Name m/z Ret.

10 5-chloro-N-fra».s i -{4-[4-(3-cyclopropylmethoxy-pyridin-2-yl)- 535 2.643 piperazin- 1 -yl] -cyclohexyl } -2-methoxy-benzenesulfonamide

11 5-chloro-N-cw-{4-[4-(3-cyclopropylmethoxy-pyridin-2-yl)- 523 2.636 piperazin- 1 -yl]-cyclohexyl } -2-fluoro~benzenesulf onamide

12 5-chloro-N-frani'-{4-[4-(3-cyclopropylmethoxy-pyridin-2-yl)- 523 2.636 piperazin- 1 -y 1] -cyclohexyl } -2-fluoro-benzenesulf onamide

Biological Examples cci-Adrenergic Receptor Binding Assay

Preparation of COS Cell Membranes

Membranes were prepared from COS-7 cells (African Green monkey kidney SV40- transformed cells) that had been transfected with one of the three oci-AR subtypes (Genbank accession number for the cci a subtype: AF013261; Genbank accession number for the cci b subtype: ΝM000679; Genbank accession number for the a^ subtype: NM000678) using the following method: COS cells from ten 100 mm tissue culture plates were scraped into a 5 mL volume of TE (a mixture of 50 mM Tris-HCl, 5mM EDTA, pH 7.4). The cell suspension was disrupted with a Brinkman Polytron (at a setting of 8) for 10 sec. The disrupted cells were centrifuged at 1000 x g for 10 min at 4 0 C. Supernatants were centrifuged at 34,500 x g for 20 min at 4 0 C. The membrane pellets were suspended in a 2 mL volume of TNE (a mixture of 50 mM Tris-HCl, 5mM EDTA and 150 mM NaCl at pH 7.4). An aliquot of the membrane suspension was stored at -7O 0 C until use. The protein concentration was determined using the BioRad "DC" protein assay kit following membrane solubilization with Triton X-100.

Radio-ligand Binding Assay

Triplicate determinations of radio-ligand binding in the presence of increasing concentrations of testing compound were made. The reagents were added to 96-well polypropylene plate wells. Each assay well contained 140 μL TNE, 25 μL 125 I-2-(β-4- hydroxyphenyl)ethylaminomethyltetralone ( 125 I-HEAT) (specific activity 2200Ci/mmol,

Dupont-New England Nuclear, 50 pM final), 10 μL testing compound dissolved in dimethyl sulfoxide (DMSO) (1 pM to 10 μM in half-log increments, final), and 25 μL appropriate OC 1 -AR membrane subtype suspension in TNE (0.5 ng/μL for the α Ja and α lb subtypes and 13 ng/μL for the ai d subtype). The plate was incubated at rt for 1 hr. The contents of the wells were filtered through a glass filter (type C) (GF/C) membrane Unifilter plate (Packard Instruments) using the Packard Filtermate cell harvester. The filter plates were dried in a vacuum oven for 30 min at 4O 0 C. 25 μL Microscint 20 liquid scintillation fluid (Packard Instuments) was added to each well. The radioactive content was analyzed in the TopCount microplate scintillation counter

(Packard Instruments).

Data Analysis

The Ki values (in nM) shown in Table 1 were determined using GraphPad Prism software. Table 1

Receptor Binding, K 1 (nM) Cpd αla-AR αlb-AR αld-AR

1 189 364 64

3 61 112 19

5 10.7 399 12.4

7 44.7 1855 15.3

9 18.7 601 48.3

11 35.7 952 43.6

In Vivo Models

The ability of a test compound to relax prostatic smooth muscle tissue in vivo may be evaluated using the prostatic intraurethral pressure (IUP) and blood pressure (MAP) in the anesthetized canine model. Alternatively, the ability of a test compound to relax prostate smooth muscle tissue in vivo may be evaluated by evaluating the prostatic intraurethral pressure (IUP) and blood pressure (MAP) in the conscious canine model.

It is to be understood that the preceding description teaches the principles of the present invention, with examples thereof, which have emphasized certain aspects. It will also be understood that the practice of the invention encompasses all of the usual variations, adaptations and modifications as come within the scope of the following claims and then- equivalents. However, numerous other equivalents not specifically elaborated on or discussed may nevertheless fall within the spirit and scope of the present invention and claims and are intended to be included. Throughout this application, various publications are cited. The disclosure of all publications or patents cited herein are entirely incorporated herein by reference as they show the state of the art at the time of the present invention and/or to provide description and enablement of the present invention. Publications refer to any scientific or patent publications, or any other information available in any media format, including all recorded, electronic or printed formats.