Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
PIPERIDINE AMIDE DERIVATIVES AS HIV ATTACHMENT INHIBITORS
Document Type and Number:
WIPO Patent Application WO/2014/025854
Kind Code:
A1
Abstract:
Compounds of Formula I, including pharmaceutically acceptable salts thereof: formule (I): wherein A is selected from the group consisting of:formule (II) and wherein Z is selected from the group consisting of: formule (III):,, and. are useful as HIV attachment inhibitors.

Inventors:
WANG TAO (US)
ZHANG ZHONGXING (US)
KADOW JOHN F (US)
MEANWELL NICHOLAS A (US)
RUEDIGER EDWARD H (CA)
JAMES CLINT A (CA)
DEON DANIEL H (CA)
CARINI DAVID J (US)
JOHNSON BARRY L (US)
Application Number:
PCT/US2013/053903
Publication Date:
February 13, 2014
Filing Date:
August 07, 2013
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
BRISTOL MYERS SQUIBB CO (US)
International Classes:
C07D401/06; A61K31/437; A61K31/454; C07D471/04; A61P31/18
Domestic Patent References:
WO2000012074A22000-03-09
WO2012019003A12012-02-09
Foreign References:
US4110459A1978-08-29
Other References:
GITTO, ROSARIA ET AL: "Synthesis and Biological Characterization of 3-Substituted-1H-indoles as Ligands of GluN2B-Containing N-Methyl-D-aspartate Receptors", JOURNAL OF MEDICINAL CHEMISTRY, vol. 54, no. 24, 3 November 2011 (2011-11-03), pages 8702 - 8706, XP002713016, DOI: 10.1021/jm2008002
GITTO, ROSARIA ET AL: "Development of 3-substituted-1H-indole derivatives as NR2B/NMDA receptor antagonists", BIOORGANIC & MEDICINAL CHEMISTRY, vol. 17, no. 4, 31 December 2008 (2008-12-31) - 2009, pages 1640 - 1647, XP002713017, DOI: 10.1016/j.bmc.2008.12.058
GITTO, ROSARIA ET AL: "Synthesis and Biological Characterization of 3-Substituted 1H-Indoles as Ligands of GluN2B-Containing N-Methyl-D-aspartate Receptors. Part 2", JOURNAL OF MEDICINAL CHEMISTRY, vol. 55, no. 23, 12 November 2012 (2012-11-12), pages 10532 - 10539, XP002713018, DOI: 10.1021/jm301508d
BUEMI, MARIA ROSA ET AL: "Indole derivatives as dual-effective agents for the treatment of neurodegenerative diseases: Synthesis, biological evaluation, and molecular modeling studies", BIOORGANIC & MEDICINAL CHEMISTRY, vol. 21, no. 15, 2 June 2013 (2013-06-02), pages 4575 - 4580, XP002713019, DOI: 10.1016/j.bmc.2013.05.044
Attorney, Agent or Firm:
LEVIS, John F. et al. (P.O. Box 4000Princeton, New Jersey, US)
Download PDF:
Claims:
CLAIMS

What is claimed is:

1. One or more compounds of Formula I, including pharmaceutically acceptable salts thereof:

wherein A is selected from the group consisting of:

wherein

a, b, c, d and e are independently selected from the group consisting of hydrogen, halogen, cyano, nitro, COOR56, XR57, NAXA2, C(0)R7, C(0)NR55R56, B, Q, and E;

B is selected from the group consisting of -C(=NR4b)(R4 ), C(0)NR4UR , aryl, heteroaryl, heteroalicyclic, S(0)2R8, S(O)2NR40R41, C(0)R7, XR8a, (Ci_

6)alkylNR40R41, (Ci_6)alkylCOOR8b; wherein said aryl, heteroaryl, and heteroalicyclic are optionally substituted with one to three same or different halogens or from one to three same or different substituents selected from the group F; wherein aryl is napthyl or substituted phenyl; wherein heteroaryl is a mono or bicyclic system which contains from 3 to 7 ring atoms for a mono cyclic system and up to 12 atoms in a fused bicyclic system, including from 1 to 4 heteroatoms; wherein heteroalicyclic is a 3 to 7 membered mono cyclic ring which may contain from 1 to 2 heteroatoms in the ring skeleton and which may be fused to a benzene or pyridine ring;

Q is selected from the group consisting of (Ci_6)alkyl, (C3_7)cycloalkyl and (C2- 6)alkenyl; wherein said (Ci_6)alkyl and (C2-6)alkenyl are optionally substituted with one to three same or different halogens or from one to three same or different substituents selected from the group consisting of C(0)NR55R56, hydroxy, cyano and XR57;

E is selected from the group consisting of (Ci_6)alkyl, (C3-7)cycloalkyl and (C2- 6)alkenyl; wherein said (Ci_6)alkyl and (C2-6)alkenyl are independently optionally substituted with a member selected from the group consisting of phenyl, heteroaryl, SMe, SPh, -C(0)NR56R57, C(0)R57, S02(Ci_6)alkyl and S02Ph; wherein heteroaryl is a monocyclic system which contains from 3 to 7 ring atoms, including from 1 to 4 heteroatoms;

F is selected from the group consisting of (Ci_6)alkyl, (C3_7)cycloalkyl, aryl, heteroaryl, heteroalicyclic, hydroxy, (Ci_6)alkoxy, aryloxy, (Ci_6)thioalkoxy, cyano, halogen, nitro, -C(0)R57, benzyl, -NR42C(0)-(Ci-6)alkyl, -NR42C(0)-(C3-6)cycloalkyl, -NR42C(0)-aryl, -NR42C(0)-heteroaryl, -NR42C(0)-heteroalicyclic, a 4, 5, or 6 membered ring cyclic N-lactam, -NR42S(0)2-(Ci_6)alkyl, -NR42S(0)2-(C3-6)cycloalkyl, -NR42S(0)2-aryl, -NR42S(0)2-heteroaryl, -NR42S(0)2-heteroalicyclic, S(0)2(Ci_ 6)alkyl, S(0)2aryl, -S(0)2 NR42R43, NR42R43, (Ci_6)alkylC(0)NR42R43, C(0)NR42R43, NHC(0)NR42R43, OC(0)NR42R43, NHC(0)OR54, (Ci_6)alkylNR42R43, COOR54 and (Ci_6)alkylCOOR54; wherein said (Ci_6)alkyl, (C3_7)cycloalkyl, aryl, heteroaryl, heteroalicyclic, (Ci_6)alkoxy, and aryloxy, are optionally substituted with one to nine same or different halogens or from one to five same or different substituents selected from the group G; wherein aryl is phenyl; heteroaryl is a monocyclic system which contains from 3 to 7 ring atoms, including from 1 to 4 heteroatoms; heteroalicyclic is selected from the group consisting of aziridine, azetidine, pyrrolidine, piperazine, piperidine, tetrahydrofuran, tetrahydropyran, azepine, and morpholine; G is selected from the group consisting of (Ci_6)alkyl, (C3_7)cycloalkyl, aryl, heteroaryl, heteroalicyclic, hydroxy, (Ci_6)alkoxy, aryloxy, cyano, halogen, nitro, -C(0)R57, benzyl, -NR48C(0)-(Ci_6)alkyl, -NR48C(0)-(C3- 6)cycloalkyl, -NR48C(0)-aryl, -NR48C(0)-heteroaryl, -NR48C(0)-heteroalicyclic, a 4, 5, or 6 membered ring cyclic N-lactam, -NR48S(0)2-(Ci_6)alkyl, -NR48S(0)2-(C3- 6)cycloalkyl, -NR48S(0)2-aryl, -NR48S(0)2-heteroaryl, -NR48S(0)2-heteroalicyclic, sulfinyl, sulfonyl, sulfonamide, NR48R49, (Ci_6)alkyl C(0)NR48R49, C(0)NR48R49, NHC(0)NR48R49, OC(0)NR48R49, NHC(0)OR54', (Ci_6)alkylNR48R49, COOR54, and (Ci_6)alkylCOOR54; wherein aryl is phenyl; heteroaryl is a monocyclic system which contains from 3 to 7 ring atoms, including from 1 to 4 heteroatoms; heteroalicyclic is selected from the group consisting of aziridine, azetidine, pyrrolidine, piperazine, piperidine, tetrahydrofuran, tetrahydropyran, azepine, and morpholine;

R7 is selected from the group consisting of (Ci_6)alkyl, (C2-6)alkenyl, (C3_7)cycloalkyl, aryl, heteroaryl, and heteroalicyclic; wherein said aryl, heteroaryl, and heteroalicyclic are optionally substituted with one to three same or different halogens or with from one to three same or different substituents selected from the group F; wherein for R7, R8, R8a, R8b aryl is phenyl; heteroaryl is a mono or bicyclic system which contains from 3 to 7 ring atoms for mono cyclic systems and up to 10 atoms in a bicyclic system, including from 1 to 4 heteroatoms; wherein heteroalicyclic is selected from the group consisting of aziridine, azetidine, pyrrolidine, piperazine, piperidine, tetrahydrofuran, tetrahydropyran, azepine, and morpholine;

R8 is selected from the group consisting of hydrogen, (Ci-6)alkyl, (C3_7)cycloalkyl, (C2-6)alkenyl, (C3_7)cycloalkenyl, (C2-6)alkynyl, aryl, heteroaryl, and heteroalicyclic; wherein said (Ci_6)alkyl, (C3_7)cycloalkyl, (C2-6)alkenyl, (C3_7)cycloalkenyl, (C2- 6)alkynyl, aryl, heteroaryl, and heteroalicyclic are optionally substituted with one to six same or different halogens or from one to five same or different substituents selected from the group F or (Ci_6)alkyl, (C3_6)cycloalkyl, cyano, phenyl, aryl, heteroaryl, heteroalicyclic, hydroxy, (Ci_6)alkoxy, halogen, benzyl, primary amine, secondary amine, tertiary amine, ammonium, nitro, thiol, thioether, alcohol, ether, acid, aldehyde, ketone, amide, amidine, guanidine, sulfone, sulfonamide, sulfamide, acyl sulfamide, sulfate, sulfuric acid, sulfamic acid, phosphate, phosphoric acid, boronic ester, boronic acid, squarate, squaric acid, oxime, hydrazine, peroxide, among which ether, peroxide, thioether, secondary amine, tertiary amine, ammonium, ester, ketone, amide, amidine, oxime, hydrazine can be either acyclic or cyclic; heteroaryl is selected from the group consisting of furanyl, thienyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, imidazolyl, oxadiazolyl, thiadiazolyl, pyrazolyl, tetrazolyl, triazolyl, pyridinyl, pyrazinyl, pyridazinyl, and pyrimidinyl;

R8a is a member selected from the group consisting of aryl, heteroaryl, and heteroalicyclic; wherein each member is independently optionally substituted with one to six same or different halogens or from one to five same or different substituents selected from the group F;

8b

R is selected from the group consisting of hydrogen, (Ci_6)alkyl and phenyl;

X is selected from the group consisting of NH or NCH3, O, and S;

R40 and R41 are independently selected from the group consisting of (a) hydrogen; (b) (Ci_6)alkyl or (C3_7)cycloalkyl substituted with one to three same or different halogens or from one to two same or different substituents selected from the group F or different functional groups: (Ci_6)alkyl, (C3_6)cycloalkyl, cyano, phenyl, aryl, heteroaryl, heteroalicyclic, hydroxy, (Ci-6)alkoxy, halogen, benzyl, primary amine, secondary amine, tertiary amine, ammonium, nitro, thiol, thioether, alcohol, ether, acid, aldehyde, ketone, amide, amidine, guanidine, sulfone, sulfonamide, sulfamide, acyl sulfamide, sulfate, sulfuric acid, sulfamic acid, phosphate, phosphoric acid, boronic ester, boronic acid, squarate, squaric acid, oxime, hydrazine, peroxide, among which ether, peroxide, thioether, secondary amine, tertiary amine, ammonium, ester, ketone, amide, amidine, oxime, hydrazine can be either acyclic or cyclic; heteroaryl is selected from the group consisting of furanyl, thienyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, imidazolyl, oxadiazolyl, thiadiazolyl, pyrazolyl, tetrazolyl, triazolyl, pyridinyl, pyrazinyl, pyridazinyl, and pyrimidinyl; and (c) (Ci_6)alkoxy, aryl, heteroaryl or heteroalicyclic; or R40 and R41 taken together with the nitrogen to which they are attached form a member selected from the group consisting of aziridine, azetidine, pyrrolidine, piperazine, 4-NMe piperazine, piperidine, azepine, and morpholine; and wherein said aryl, heteroaryl, and heteroalicyclic are optionally substituted with one to three same or different halogens or from one to two same or different substituents selected from the group F; wherein for R40 and R41 aryl is phenyl; heteroaryl is a monocyclic system which contains from 3 to 6 ring atoms, including from 1 to 4 heteroatoms; heteroalicyclic is selected from the group consisting of aziridine, azetidine, pyrrolidine, piperazine, piperidine, tetrahydrofuran, tetrahydropyran, azepine, and morpholine; provided when B is C(O)NR40R41, at least one of R40 and R41 is not selected from groups (a) or (b);

R42 and R43 are independently selected from the group consisting of hydrogen, (Ci_ 6)alkyl, allyl, (Ci_6)alkoxy, (C3_7)cycloalkyl, aryl, heteroaryl and heteroalicyclic; or R42 and R43 taken together with the nitrogen to which they are attached form a member selected from the group consisting of aziridine, azetidine, pyrrolidine, piperazine, 4- NMe piperazine, piperidine, azepine, and morpholine; and wherein said (Ci_6)alkyl, (Ci_6)alkoxy, (C3_7)cycloalkyl, aryl, heteroaryl, and heteroalicyclic are optionally substituted with one to three same or different halogens or from one to two same or different substituents selected from the group G or different functional groups: (Ci_ 6)alkyl, (C3_6)cycloalkyl, cyano, phenyl, aryl, heteroaryl, heteroalicyclic, hydroxy, (Ci_ 6)alkoxy, halogen, benzyl, primary amine, secondary amine, tertiary amine, ammonium, nitro, thiol, thioether, alcohol, ether, acid, aldehyde, ketone, amide, amidine, guanidine, sulfone, sulfonamide, sulfamide, acyl sulfamide, sulfate, sulfuric acid, sulfamic acid, phosphate, phosphoric acid, boronic ester, boronic acid, squarate, squaric acid, oxime, hydrazine, peroxide, among which ether, peroxide, thioether, secondary amine, tertiary amine, ammonium, ester, ketone, amide, amidine, oxime, hydrazine can be either acyclic or cyclic; heteroaryl is selected from the group consisting of furanyl, thienyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, imidazolyl, oxadiazolyl, thiadiazolyl, pyrazolyl, tetrazolyl, triazolyl, pyridinyl, pyrazinyl, pyridazinyl, and pyrimidinyl; wherein for R42 and R43 aryl is phenyl; heteroaryl is a monocyclic system which contains from 3 to 6 ring atoms, including from 1 to 4 heteroatoms; heteroalicyclic is a member selected from the group consisting of aziridine, azetidine, pyrrolidine, piperazine, piperidine, tetrahydrofuran,

tetrahydropyran, azepine, and morpholine;

R46 is selected from the group consisting of H, phenyl, aryl, heteroaryl and (Ci_6)alkyl, OR57, and NR55R56; R is selected from the group consisting of H, amino, hydroxyl, phenyl, aryl, heteroaryl and (Ci_6)alkyl;

R48 and R49 are independently selected from the group consisting of hydrogen, (Ci-6)alkyl, phenyl, aryl and heteroaryl;

R50 is selected from the group consisting of H, (Ci_6)alkyl, (C3-6)cycloalkyl, and benzyl; wherein each of said (Ci_6)alkyl, (C3_7)cycloalkyl and benzyl are optionally substituted with one to three same or different (Ci_6)alkyl, (C3_6)cycloalkyl, cyano, phenyl, aryl, heteroaryl, heteroalicyclic, hydroxy, (Ci_6)alkoxy, halogen, benzyl, primary amine, secondary amine, tertiary amine, ammonium, nitro, thiol, thioether, alcohol, ether, acid, aldehyde, ketone, amide, amidine, guanidine, sulfone, sulfonamide, sulfamide, acyl sulfamide, sulfate, sulfuric acid, sulfamic acid, phosphate, phosphoric acid, boronic ester, boronic acid, squarate, squaric acid, oxime, hydrazine, peroxide, among which ether, peroxide, thioether, secondary amine, tertiary amine, ammonium, ester, ketone, amide, amidine, oxime, hydrazine can be either acyclic or cyclic; heteroaryl is selected from the group consisting of furanyl, thienyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, imidazolyl, oxadiazolyl, thiadiazolyl, pyrazolyl, tetrazolyl, triazolyl, pyridinyl, pyrazinyl, pyridazinyl, and pyrimidinyl

R54 is selected from the group consisting of hydrogen and (Ci_6)alkyl; R54 is (Ci_6)alkyl;

R55 and R56 are independently selected from the group consisting of hydrogen and (Ci_6)alkyl; and

R57 is selected from the group consisting of hydrogen, (Ci-6)alkyl, aryl, heteroaryl; and A1 and A2 are independently selected from hydrogen, (Ci_6)alkyl, aryl, heteroaryl, SOzD1, S02ND2D3, COD4, COCOD4, COOD4, COND5D6, COCOND5D6,

COCOOD4, C(=ND7)D8, C(=ND9)ND10Dn;

A1 and A2 can either never connect with each other, or conjoin to form a ring structure;

D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, and D11 are each independently selected from the group consisting of H, C1-C50 alkyl, C3-C50 cycloalkyl, C3-C50 alkenyl, C4-C50 cycloalkenyl, phenyl, heteroaryl, C3-C50 amide and C3-C50 ether; heteroaryl is selected from the group consisting of pyridinyl, pyrazinyl, pyridazinyl, pyrimidinyl, furanyl, thienyl, benzothienyl, thiazolyl, isothiazolyl, oxazolyl, benzooxazolyl, isoxazolyl, imidazolyl, benzoimidazolyl, lH-imidazo[4,5-b]pyridin-2-yl, 1H- imidazo[4,5-c]pyridin-2-yl, oxadiazolyl, thiadiazolyl, pyrazolyl, tetrazolyl, tetrazinyl, triazinyl and triazolyl; provided the carbon atoms which comprise the carbon-carbon double bond of said C3-C20 alkenyl or the carbon-carbon triple bond of said C3-C20 alkynyl are not the point of attachment to the nitrogen to which D2, D3, D5, D6, D7, D9, D10, and D11 is attached; wherein said C1-C50 alkyl, C3-C50 cycloalkyl, C3-C50 alkenyl, C4-C50 cycloalkenyl, aryl, phenyl, heteroaryl, C3-C50 amide and C3-C50 ether is optionally substituted with one to three same or different of the following functionalities: (Ci-6)alkyl, (C3-6)cycloalkyl, cyano, phenyl, aryl, heteroaryl, heteroalicyclic, hydroxy, (Ci_6)alkoxy, halogen, benzyl, primary amine, secondary amine, tertiary amine, ammonium, nitro, thiol, thioether, alcohol, ether, acid, aldehyde, ketone, amide, amidine, guanidine, sulfone, sulfonamide, sulfamide, acyl sulfamide, sulfate, sulfuric acid, sulfamic acid, phosphate, phosphoric acid, boronic ester, boronic acid, squarate, squaric acid, oxime, hydrazine, peroxide and steroid, among which ether, peroxide, thioether, secondary amine, tertiary amine, ammonium, ester, ketone, amide, amidine, oxime, hydrazine can be either acyclic or cyclic;

Z is selected from the group consisting of:

Ii, , I3, 14, 15, , I7, 18, ¾, I10 and In are each independently selected from the group consisting of H, halogen, CN, (Ci-6)alkyl, (C3-6) cycloalkyl, (C2-6) alkenyl, (C4-6) cycloalkenyl, (C2-6) alkynyl, CR8iR820R83, COR84, COOR85, or CONR86R87 ; wherein each of said alkyl and cycloalkyl being optionally substituted with one to three same or different cyano, phenyl, aryl, heteroaryl, heteroalicyclic, hydroxy, (Ci_6)alkoxy, halogen, benzyl, primary amine, secondary amine, tertiary amine, ammonium, nitro, thiol, thioether, alcohol, ether, acid, aldehyde, ketone, amide, amidine, guanidine, sulfone, sulfonamide, sulfamide, acyl sulfamide, sulfate, sulfuric acid, sulfamic acid, phosphate, phosphoric acid, boronic ester, boronic acid, squarate, squaric acid, oxime, hydrazine, peroxide, among which ether, peroxide, thioether, secondary amine, tertiary amine, ammonium, ester, ketone, amide, amidine, oxime, hydrazine can be either acyclic or cyclic; heteroaryl is selected from the group consisting of furanyl, thienyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, imidazolyl, oxadiazolyl, thiadiazolyl, pyrazolyl, tetrazolyl, triazolyl, pyridinyl, pyrazinyl, pyridazinyl, and pyrimidinyl; le, , ¾, and I10 are also each independently selected from the group consisting of OH, OR85 or R86R87;

In is also selected from from the group consisting of phenyl and heteroaryl; wherein said phenyl and heteroaryl are independently optionally substituted with one to three same or different halogens or from one to three same or different substituents selected from Group C; heteroaryl is selected from the group consisting of pyridinyl, pyrazinyl, pyridazinyl, pyrimidinyl, furanyl, thienyl, benzothienyl, thiazolyl, isothiazolyl, oxazolyl, benzooxazolyl, isoxazolyl, imidazolyl, benzo imidazolyl, 1H- imidazo[4,5-b]pyridin-2-yl, lH-imidazo[4,5-c]pyridin-2-yl, oxadiazolyl, thiadiazolyl, pyrazolyl, tetrazolyl, tetrazinyl, triazinyl and triazolyl; Rsi, R-82, R83, R84, Res, Rs6, and Rs7 are each independently selected from the group consisting of H, (Ci_6)alkyl, (C3-6) cycloalkyl, (C2-6) alkenyl, (C4-6) cycloalkenyl, (C2- 6) alkynyl;

J is selected from C^XB2), O, NR3, S;

B1 and B2 are selected indenpendently from the group consisting of hydrogen, (Ci_ 6)alkyl, (C3_7)cycloalkyl, aryl, heteroaryl, heteroalicyclic, hydroxy, (Ci_6)alkoxy, aryloxy, (Ci_6)thioalkoxy, cyano, halogen, nitro, -C(0)R57, benzyl, -NR42C(0)-(Ci_ 6)alkyl, -NR42C(0)-(C3_6)cycloalkyl, -NR42C(0)-aryl, -NR42C(0)-heteroaryl, - NR42C(0)-heteroalicyclic, a 4, 5, or 6 membered ring cyclic N-lactam, -NR42S(0)2- (Ci-6)alkyl, -NR42S(0)2-(C3-6)cycloalkyl, -NR42S(0)2-aryl, -NR42S(0)2-heteroaryl, - NR42S(0)2-heteroalicyclic, S(0)2(Ci_6)alkyl, S(0)2aryl, -S(0)2 NR42R43, NR42R43, (Ci_6)alkylC(0)NR42R43, C(0)NR42R43, NHC(0)NR42R43, OC(0)NR42R43,

NHC(0)OR54, (Ci_6)alkylNR42R43, COOR54 and (Ci_6)alkylCOOR54; wherein said (Ci_6)alkyl, (C3_7)cycloalkyl, aryl, heteroaryl, heteroalicyclic, (Ci_6)alkoxy, and aryloxy, are optionally substituted with one to nine same or different halogens or from one to five same or different substituents selected from the group G; wherein aryl is phenyl; heteroaryl is a monocyclic system which contains from 3 to 7 ring atoms, including from 1 to 4 heteroatoms; heteroalicyclic is selected from the group consisting of aziridine, azetidine, pyrrolidine, piperazine, piperidine, tetrahydrofuran, tetrahydropyran, azepine, and morpholine;

L is a chain containing 1-20 groups selected from the group consisting of C(B1)(B2), O, NR3, S, S(O), S(02), C(0)0, C(0)NA1, OC(0)NA1, NA1C(0)NA1, and Group D, provided that O, S(O), S(02), and C(0)0 do not directly bond to each other;

Aris selected from the group consisting of phenyl and heteroaryl; wherein said phenyl and heteroaryl are independently optionally substituted with one to three same or different halogens or from one to three same or different substituents selected from Group C; heteroaryl is selected from the group consisting of pyridinyl, pyrazinyl, pyridazinyl, pyrimidinyl, furanyl, thienyl, benzothienyl, thiazolyl, isothiazolyl, oxazolyl, benzooxazolyl, isoxazolyl, imidazolyl, benzoimidazolyl, lH-imidazo[4,5- b]pyridin-2-yl, lH-imidazo[4,5-c]pyridin-2-yl, oxadiazolyl, thiadiazolyl, pyrazolyl, tetrazolyl, tetrazinyl, triazinyl and triazolyl;

Group C is selected from the group consisting of OH, OR8, NAXA2, CN, COOR8, CONA^2, S02R8, S02N A1 A2, (C1-C4) alkyl, (C3-C6) cycloalkyl, and group D; and wherein said alkyl or cycloalkyl group is optionally substituted with one to three substitutions selected from the group of F, OH, OR8, NAXA2, COOR8, CONA^2, S02R8, S02N AXA2; and

Group D is selected from the group consisting of phenyl and heteroaryl; wherein said phenyl and heteroaryl are independently optionally substituted with one to three same or different halogens or from one to three same or different substituents selected from Group C; heteroaryl is selected from the group consisting of pyridinyl, pyrazinyl, pyridazinyl, pyrimidinyl, furanyl, thienyl, benzothienyl, thiazolyl, isothiazolyl, oxazolyl, benzooxazolyl, isoxazolyl, imidazolyl, benzoimidazolyl, lH-imidazo[4,5- b]pyridin-2-yl, lH-imidazo[4,5-c]pyridin-2-yl, oxadiazolyl, thiadiazolyl, pyrazolyl, tetrazolyl, tetrazinyl, triazinyl and triazolyl.

2. One or more compounds, including pharmaceutically acceptable salts thereof, which are selected from the group of:

One or more compounds, including pharmaceutically acceptable salts thereof, are selected from the group of:

4. A pharmaceutical composition which comprises an antiviral effective amount of one or more of the compounds of Formula I as claimed in claim 2, together with one or more pharmaceutically acceptable carriers, excipients and/or diluents.

5. The pharmaceutical composition of claim 4, useful for treating infection by HIV, which additionally comprises an antiviral effective amount of an AIDS treatment agent selected from the group consisting of:

(a) an AIDS antiviral agent;

(b) an anti-infective agent;

(c) an immunomodulator; and

(d) another HIV entry inhibitor.

6. A method for treating a mammal infected with the HIV virus comprising administering to said mammal an antiviral effective amount of a compound of Formula I as claimed in claim 2, and one or more pharmaceutically acceptable carriers, excipients and/or diluents.

7. The method of claim 6, comprising administering to said mammal an antiviral effective amount of a compound of Formula I, in combination with an antiviral effective amount of an AIDS treatment agent selected from the group consisting of an AIDS antiviral agent; an anti-infective agent; an immunomodulator; and another HIV entry inhibitor.

8. A pharmaceutical composition which comprises an antiviral effective amount of one or more of the compounds of Formula I as claimed in claim 3, together with one or more pharmaceutically acceptable carriers, excipients and/or diluents.

9. A method for treating a mammal infected with the HIV virus comprising administering to said mammal an antiviral effective amount of a compound of Formula I as claimed in claim 3, and one or more pharmaceutically acceptable carriers, excipients and/or diluents.

Description:
PIPERIDI E AMIDE DERIVATIVES AS HIV ATTACHMENT INHIBITORS

CROSS REFERENCE TO RELATED INVENTION

This application claims the benefit of U.S. provisional application serial number 61/681,306 filed August 9, 2012.

FIELD OF THE INVENTION

This invention provides compounds having drug and bio-affecting properties, their pharmaceutical compositions and methods of use. In particular, the invention herein is directed to piperidine amides as HIV attachment inhibitors that possess unique antiviral activity, as well as to methods for making these compounds, and to compositions containing these compounds.

BACKGROUND OF THE INVENTION

HrV-1 (human immunodeficiency virus -1) infection remains a major medical problem, with an estimated 45-50 million people infected worldwide at the end of 2010. The number of cases of HIV and AIDS (acquired immunodeficiency syndrome) has risen rapidly. In 2005, approximately 5.0 million new infections were reported, and 3.1 million people died from AIDS. Currently available drugs for the treatment of HIV include nucleoside reverse transcriptase (RT) inhibitors zidovudine (or AZT or RETROVIR®), didanosine (or VIDEX®), stavudine (or ZERIT®), lamivudine (or 3TC or EPIVIR®), zalcitabine (or DDC or HIVID®), abacavir succinate (or ZIAGEN®), tenofovir disoproxil fumarate salt (or VIREAD®), emtricitabine (or FTC - EMTRIVA®); non- nucleoside reverse transcriptase inhibitors: nevirapine (or VIRAMUNE®), delavirdine (or RESCRIPTOR®), efavirenz (or SUSTIVA®), etravirine (INTELENCE ®) and rilpivirine (EDURANT ®), and peptidomimetic protease inhibitors or approved formulations:

saquinavir, indinavir, ritonavir, nelfinavir, amprenavir, lopinavir, KALETRA® (lopinavir and Ritonavir), darunavir, atazanavir (REYATAZ®) and tipranavir (APTIVUS®), and integrase inhibitors such as raltegravir (ISENTRESS ®), and entry inhibitors such as enfuvirtide (T-20) (FUZEON ®) and maraviroc (SELZENTRY ®). Several single pill combinations have been also approved, which include COMBIVIR® (contains lamivudine and zidovudine), TRIZIVIR® (contains abacavir, zidovudine, and lamivudine), Epzicom® (contains abacavir and lamivudine), TRUVADA® (contains tenofovir disoproxil fumarate and emtricitabine), ATRIPLA® (contains efavirenz, emtricitabine and tenofovir disoproxil fumarate) and COMPLERA® (contains emtricitabine, rilpivirine, and tenofovir disoproxil fumarate).

Each of these drugs can only transiently restrain viral replication if used alone. However, when used in combination, these drugs have a profound effect on viremia and disease progression. In fact, significant reductions in death rates among AIDS patients have been documented as a consequence of the widespread application of combination therapy. However, despite these impressive results, 30 to 50% of patients may ultimately fail combination drug therapies. Insufficient drug potency, non-compliance, restricted tissue penetration and drug-specific limitations within certain cell types (e.g., most nucleoside analogs cannot be phosphorylated in resting cells) may account for the incomplete suppression of sensitive viruses. Furthermore, the high replication rate and rapid turnover of HIV- 1 combined with the frequent incorporation of mutations, leads to the appearance of drug-resistant variants and treatment failures when sub-optimal drug concentrations are present. Therefore, novel anti-HIV agents exhibiting distinct resistance patterns, and favorable pharmacokinetic as well as safety profiles are needed to provide more treatment options. Improved HIV fusion inhibitors and HIV entry coreceptor antagonists are two examples of new classes of anti-HIV agents further being studied by a number of investigators.

HIV attachment inhibitors are a novel subclass of antiviral compounds that bind to the HIV surface glycoprotein gpl20, and interfere with the interaction between the surface protein gpl20 and the host cell receptor CD4. Thus, they prevent HIV from attaching to the human CD4 T-cell, and block HIV replication in the first stage of the HIV life cycle. The properties of HIV attachment inhibitors have been improved in an effort to obtain compounds with maximized utility and efficacy as antiviral agents. A disclosure describing indoles of which the structure shown below for BMS-705 is representative, has been disclosed in U.S. Patent No. 6,469,006 (Antiviral

Indoleoxoacetyl Piperazine Derivatives). groups

piperazine amide

BMS-705

Two other compounds, referred to in the literature as BMS-806 and BMS-043 have been described in both the academic and patent art:

azaindole oxo acetyl groups

BMS-806 BMS-043

Some description of their properties in human clinical trials has been disclosed in the literature.

It should be noted that in all three of these structures, a piperazine amide (in these three structures a piperazine phenyl amide) is present and this group is directly attached to an oxoacetyl moiety. The oxoacetyl group is attached at the 3 -position of 4-fluoro indole in BMS-705 and to the 3 position of substituted azaindoles in BMS-806 and BMS-043.

In an effort to obtain improved anti-HIV compounds, later publications described in part, modified substitution patterns on the indoles and azaindoles. Examples of such efforts include: (1) novel substituted indoleoxoacetic piperazine derivatives, (2) substituted piperazinyloxoacetylindole derivatives, and (3) substituted azaindoleoxoacetic piperazine derivatives.

Replacement of these groups with other heteroaromatics or substituted heteroaromatics or bicyclic hydrocarbons was also shown to be feasible. Examples include: (1) indole, azaindole and related heterocyclic amidopiperazine derivatives; (2) bicyclo [4.4.0] antiviral derivatives; and (3) diazaindole derivatives. A select few replacements for the piperazine amide portion of the molecules have also been described in the art and among these examples are (1) some piperidine alkenes; (2) some pyrrolidine amides; (3) some N-aryl or heteroaryl piperazines; (4) some piperazinyl ureas; and (5) some carboline-containing compounds.

Method(s) for preparing prodrugs for this class of compounds are disclosed in

Prodrugs of Piperazine and Substituted Piperidine Antiviral Agents (Ueda et al, U.S. 7,745,625 or WO 2005/090367).

A published PCT patent application WO 2003/103607 discloses an assay useful for assaying some HIV inhibitors.

Several published patent applications describe combination studies with piperazine benzamide inhibitors, for example, U.S. Publication No. 2005/0215543 (WO 2005/102391), U.S. Publication No. 2005/0215544 (WO 2005/102328), and U.S.

7,776,863 (WO 2005/102392).

A publication on new compounds in this class of attachment inhibitors (Wang, J. et al, Org. Biol. Chem., 3: 1781-1786 (2005)) and a patent application on some more remotely related compounds have appeared in WO 2005/016344.

Published patent applications WO 2005/016344 and WO 2005/121094 also describe piperazine derivatives which are HIV inhibitors. Other references in the HIV attachment area include U.S. 7,851,476; U.S. 7,396,830; U.S. 7,504,399; U.S. 7,348,337 and U.S. 7,354,924 and WO 2007/103456. A literature reference is J. Med. Chem., 50:6535 (2007).

What is therefore needed in the art are new HIV attachment inhibitor compounds, and compositions thereof, which are efficacious against HIV infection.

Of particular interest are new piperidine amide derivatives as HIV attachment inhibitor compounds, described herein. The compounds of the present invention are piperidine amide derivatives, which are believed to be structurally distinct from the piperazine aryl amide HIV attachment inhibitors set forth in the existing literature.

SUMMARY OF THE INVENTION

The present invention provides one or more compounds of Formula I below, the pharmaceutically acceptable salts and/or solvates (e.g., hydrates) thereof, their pharmaceutical formulations, and their use in patients suffering from or susceptible to a virus such as HIV. The compounds of Formula I, their pharmaceutically acceptable salts and/or solvates are effective antiviral agents, particularly as inhibitors of HIV. They are useful for the treatment of HIV and AIDS.

One embodiment of the present invention is directed to a one or more compounds of Formula I, including pharmaceutically acceptable salts thereof:

I

wherein A is selected from the group consisting of:

wherein

a, b, c, d and e are independently selected from the group consisting of hydrogen, halogen, cyano, nitro, COOR 56 , XR 57 , NA X A 2 , C(0)R 7 , C(0)NR 55 R 56 , B, Q, and E; B is selected from the group consisting of -C(=NR 46 )(R 47 ), C(O)NR 40 R 41 , aryl, heteroaryl, heteroalicyclic, S(0) 2 R 8 , S(O) 2 NR 40 R 41 , C(0)R 7 , XR 8a , (Ci_ 6 )alkylNR 40 R 41 , (Ci_6)alkylCOOR 8b ; wherein said aryl, heteroaryl, and heteroalicyclic are optionally substituted with one to three same or different halogens or from one to three same or different substituents selected from the group F; wherein aryl is napthyl or substituted phenyl; wherein heteroaryl is a mono or bicyclic system which contains from 3 to 7 ring atoms for a mono cyclic system and up to 12 atoms in a fused bicyclic system, including from 1 to 4 heteroatoms; wherein heteroalicyclic is a 3 to 7 membered mono cyclic ring which may contain from 1 to 2 heteroatoms in the ring skeleton and which may be fused to a benzene or pyridine ring;

Q is selected from the group consisting of (Ci_6)alkyl, (C3_7)cycloalkyl and (C2-6)alkenyl; wherein said (Ci_6)alkyl and (C2-6)alkenyl are optionally substituted with one to three same or different halogens or from one to three same or different substituents selected from the group consisting of C(0)NR 55 R 56 , hydroxy, cyano and XR 57 ;

E is selected from the group consisting of (Ci_6)alkyl, (C3_7)cycloalkyl and (C2-6)alkenyl; wherein said (Ci_6)alkyl and (C2-6)alkenyl are independently optionally substituted with a member selected from the group consisting of phenyl, heteroaryl, SMe,

SPh, -C(0)NR 56 R 57 , C(0)R 57 , S0 2 (Ci_ 6 )alkyl and S0 2 Ph; wherein heteroaryl is a monocyclic system which contains from 3 to 7 ring atoms, including from 1 to 4 heteroatoms;

F is selected from the group consisting of (Ci_6)alkyl, (C3_7)cycloalkyl, aryl, heteroaryl, heteroalicyclic, hydroxy, (Ci_6)alkoxy, aryloxy, (Ci_6)thioalkoxy, cyano, halogen, nitro, -C(0)R 57 , benzyl, -NR 42 C(0)-(Ci_ 6 )alkyl, -NR 42 C(0)-(C 3 -6)cycloalkyl, -NR 42 C(0)- aryl, -NR 42 C(0)-heteroaryl, -NR 42 C(0)-heteroalicyclic, a 4, 5, or 6 membered ring cyclic N-lactam, -NR 42 S(0) 2 -(Ci_ 6 )alkyl, -NR 42 S(0) 2 -(C 3 -6)cycloalkyl, -NR 42 S(0)2- aryl, -NR 42 S(0) 2 -heteroaryl, -NR 42 S(0)2-heteroalicyclic, S(0) 2 (Ci_ 6 )alkyl,

S(0) 2 aryl, -S(0)2 NR 42 R 43 , NR 42 R 43 , (Ci- 6 )alkylC(0)NR 42 R 43 , C(0)NR 42 R 43 ,

NHC(0)NR 42 R 43 , OC(0)NR 42 R 43 , NHC(0)OR 54 , (Ci_ 6 )alkylNR 42 R 43 , COOR 54 and (Ci_ 6 )alkylCOOR 54 ; wherein said (Ci_6)alkyl, (C3_7)cycloalkyl, aryl, heteroaryl,

heteroalicyclic, (Ci_6)alkoxy, and aryloxy, are optionally substituted with one to nine same or different halogens or from one to five same or different substituents selected from the group G; wherein aryl is phenyl; heteroaryl is a monocyclic system which contains from 3 to 7 ring atoms, including from 1 to 4 heteroatoms; heteroalicyclic is selected from the group consisting of aziridine, azetidine, pyrrolidine, piperazine, piperidine, tetrahydrofuran, tetrahydropyran, azepine, and morpholine; G is selected from the group consisting of (Ci_6)alkyl, (C3_7)cycloalkyl, aryl, heteroaryl, heteroalicyclic, hydroxy, (Ci-6)alkoxy, aryloxy, cyano, halogen, nitro, -C(0)R 57 , benzyl, -NR 48 C(0)-(Ci_ 6 )alkyl, -NR 48 C(0)-(C 3 - 6 )cycloalkyl, -NR 48 C(0)-aryl, -NR 48 C(0)- heteroaryl, -NR 48 C(0)-heteroalicyclic, a 4, 5, or 6 membered ring cyclic N- lactam, -NR 48 S(0) 2 -(Ci_ 6 )alkyl, -NR 48 S(0) 2 - (C 3 - 6 )cycloalkyl, -NR 48 S(0)2- aryl, -NR 48 S(0)2-heteroaryl, -NR 48 S(0)2-heteroalicyclic, sulfinyl, sulfonyl, sulfonamide, NR 48 R 49 , (Ci_ 6 )alkyl C(0)NR 48 R 49 , C(0)NR 48 R 49 , NHC(0)NR 48 R 49 , OC(0)NR 48 R 49 , NHC(0)OR 54' , (Ci_ 6 )alkylNR 48 R 49 , COOR 54 , and (Ci_ 6 )alkylCOOR 54 ; wherein aryl is phenyl; heteroaryl is a monocyclic system which contains from 3 to 7 ring atoms, including from 1 to 4 heteroatoms; heteroalicyclic is selected from the group consisting of aziridine, azetidine, pyrrolidine, piperazine, piperidine, tetrahydrofuran, tetrahydropyran, azepine, and morpholine;

R 7 is selected from the group consisting of (Ci_6)alkyl, (C2-6)alkenyl, (C3_7)cycloalkyl, aryl, heteroaryl, and heteroalicyclic; wherein said aryl, heteroaryl, and heteroalicyclic are optionally substituted with one to three same or different halogens or with from one to three same or different substituents selected from the group F; wherein for R 7 , R 8 , R 8a , R 8b aryl is phenyl; heteroaryl is a mono or bicyclic system which contains from 3 to 7 ring atoms for mono cyclic systems and up to 10 atoms in a bicyclic system, including from 1 to 4 heteroatoms; wherein heteroalicyclic is selected from the group consisting of aziridine, azetidine, pyrrolidine, piperazine, piperidine,

tetrahydrofuran, tetrahydropyran, azepine, and morpholine; R 8 is selected from the group consisting of hydrogen, (Ci-6)alkyl, (C3_7)cycloalkyl, (C 2- 6 )alkenyl, (C3_7)cycloalkenyl, (C2-6)alkynyl, aryl, heteroaryl, and heteroalicyclic; wherein said (Ci-6)alkyl, (C3_7)cycloalkyl, (C2-6)alkenyl, (C3_7)cycloalkenyl, (C2-6)alkynyl, aryl, heteroaryl, and heteroalicyclic are optionally substituted with one to six same or different halogens or from one to five same or different substituents selected from the group F or (Ci_6)alkyl, (C3_6)cycloalkyl, cyano, phenyl, aryl, heteroaryl, heteroalicyclic, hydroxy, (Ci_ 6)alkoxy, halogen, benzyl, primary amine, secondary amine, tertiary amine, ammonium, nitro, thiol, thioether, alcohol, ether, acid, aldehyde, ketone, amide, amidine, guanidine, sulfone, sulfonamide, sulfamide, acyl sulfamide, sulfate, sulfuric acid, sulfamic acid, phosphate, phosphoric acid, boronic ester, boronic acid, squarate, squaric acid, oxime, hydrazine, peroxide, among which ether, peroxide, thioether, secondary amine, tertiary amine, ammonium, ester, ketone, amide, amidine, oxime, hydrazine can be either acyclic or cyclic; heteroaryl is selected from the group consisting of furanyl, thienyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, imidazolyl, oxadiazolyl, thiadiazolyl, pyrazolyl, tetrazolyl, triazolyl, pyridinyl, pyrazinyl, pyridazinyl, and pyrimidinyl;

R 8a is a member selected from the group consisting of aryl, heteroaryl, and

heteroalicyclic; wherein each member is independently optionally substituted with one to six same or different halogens or from one to five same or different substituents selected from the group F;

R 8b is selected from the group consisting of hydrogen, (Ci_6)alkyl and phenyl; X is selected from the group consisting of NH or NCH 3 , O, and S;

R 40 and R 41 are independently selected from the group consisting of (a) hydrogen; (b) (Ci_ 6 )alkyl or (C3_7)cycloalkyl substituted with one to three same or different halogens or from one to two same or different substituents selected from the group F or different functional groups: (Ci_6)alkyl, (C3_6)cycloalkyl, cyano, phenyl, aryl, heteroaryl, heteroalicyclic, hydroxy, (Ci_6)alkoxy, halogen, benzyl, primary amine, secondary amine, tertiary amine, ammonium, nitro, thiol, thioether, alcohol, ether, acid, aldehyde, ketone, amide, amidine, guanidine, sulfone, sulfonamide, sulfamide, acyl sulfamide, sulfate, sulfuric acid, sulfamic acid, phosphate, phosphoric acid, boronic ester, boronic acid, squarate, squaric acid, oxime, hydrazine, peroxide, among which ether, peroxide, thioether, secondary amine, tertiary amine, ammonium, ester, ketone, amide, amidine, oxime, hydrazine can be either acyclic or cyclic; heteroaryl is selected from the group consisting of furanyl, thienyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, imidazolyl, oxadiazolyl, thiadiazolyl, pyrazolyl, tetrazolyl, triazolyl, pyridinyl, pyrazinyl, pyridazinyl, and pyrimidinyl; and (c) (Ci_6)alkoxy, aryl, heteroaryl or heteroalicyclic; or R 40 and R 41 taken together with the nitrogen to which they are attached form a member selected from the group consisting of aziridine, azetidine, pyrrolidine, piperazine, 4-NMe piperazine, piperidine, azepine, and morpholine; and wherein said aryl, heteroaryl, and heteroalicyclic are optionally substituted with one to three same or different halogens or from one to two same or different substituents selected from the group F; wherein for R 40 and R 41 aryl is phenyl; heteroaryl is a monocyclic system which contains from 3 to 6 ring atoms, including from 1 to 4 heteroatoms; heteroalicyclic is selected from the group consisting of aziridine, azetidine, pyrrolidine, piperazine, piperidine, tetrahydrofuran, tetrahydropyran, azepine, and morpholine; provided when B is C(O)NR 40 R 41 , at least one of R 40 and R 41 is not selected from groups (a) or (b);

R 42 and R 43 are independently selected from the group consisting of hydrogen, (Ci_6)alkyl, allyl, (Ci_6)alkoxy, (C3_7)cycloalkyl, aryl, heteroaryl and heteroalicyclic; or R 42 and R 43 taken together with the nitrogen to which they are attached form a member selected from the group consisting of aziridine, azetidine, pyrrolidine, piperazine, 4-NMe piperazine, piperidine, azepine, and morpholine; and wherein said (Ci_6)alkyl, (Ci_6)alkoxy, (C3- 7)cycloalkyl, aryl, heteroaryl, and heteroalicyclic are optionally substituted with one to three same or different halogens or from one to two same or different substituents selected from the group G or different functional groups: (Ci_6)alkyl, (C3_6)cycloalkyl, cyano, phenyl, aryl, heteroaryl, heteroalicyclic, hydroxy, (Ci_6)alkoxy, halogen, benzyl, primary amine, secondary amine, tertiary amine, ammonium, nitro, thiol, thioether, alcohol, ether, acid, aldehyde, ketone, amide, amidine, guanidine, sulfone, sulfonamide, sulfamide, acyl sulfamide, sulfate, sulfuric acid, sulfamic acid, phosphate, phosphoric acid, boronic ester, boronic acid, squarate, squaric acid, oxime, hydrazine, peroxide, among which ether, peroxide, thioether, secondary amine, tertiary amine, ammonium, ester, ketone, amide, amidine, oxime, hydrazine can be either acyclic or cyclic; heteroaryl is selected from the group consisting of furanyl, thienyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, imidazolyl, oxadiazolyl, thiadiazolyl, pyrazolyl, tetrazolyl, triazolyl, pyridinyl, pyrazinyl, pyridazinyl, and pyrimidinyl; wherein for R 42 and R 43 aryl is phenyl; heteroaryl is a monocyclic system which contains from 3 to 6 ring atoms, including from 1 to 4 heteroatoms; heteroalicyclic is a member selected from the group consisting of aziridine, azetidine, pyrrolidine, piperazine, piperidine, tetrahydrofuran, tetrahydropyran, azepine, and morpholine;

R 46 is selected from the group consisting of H, phenyl, aryl, heteroaryl and (Ci_6)alkyl, OR 57 , and NR 55 R 56 ; R is selected from the group consisting of H, amino, hydroxyl, phenyl, aryl, heteroaryl and (Ci_6)alkyl; R 48 and R 49 are independently selected from the group consisting of hydrogen, (Ci_6)alkyl, phenyl, aryl and heteroaryl;

R 50 is selected from the group consisting of H, (Ci_6)alkyl, (C3-6)cycloalkyl, and benzyl; wherein each of said (Ci_6)alkyl, (C3_7)cycloalkyl and benzyl are optionally substituted with one to three same or different (Ci_6)alkyl, (C3_6)cycloalkyl, cyano, phenyl, aryl, heteroaryl, heteroalicyclic, hydroxy, (Ci_6)alkoxy, halogen, benzyl, primary amine, secondary amine, tertiary amine, ammonium, nitro, thiol, thioether, alcohol, ether, acid, aldehyde, ketone, amide, amidine, guanidine, sulfone, sulfonamide, sulfamide, acyl sulfamide, sulfate, sulfuric acid, sulfamic acid, phosphate, phosphoric acid, boronic ester, boronic acid, squarate, squaric acid, oxime, hydrazine, peroxide, among which ether, peroxide, thioether, secondary amine, tertiary amine, ammonium, ester, ketone, amide, amidine, oxime, hydrazine can be either acyclic or cyclic; heteroaryl is selected from the group consisting of furanyl, thienyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, imidazolyl, oxadiazolyl, thiadiazolyl, pyrazolyl, tetrazolyl, triazolyl, pyridinyl, pyrazinyl, pyridazinyl, and pyrimidinyl

R 54 is selected from the group consisting of hydrogen and (Ci_6)alkyl; R 54 is (Ci- 6 )alkyl;

R 55 and R 56 are independently selected from the group consisting of hydrogen and (Ci_ 6 )alkyl; and

R 57 is selected from the group consisting of hydrogen, (Ci_6)alkyl, aryl, heteroaryl; and

A 1 and A 2 are independently selected from hydrogen, (Ci_6)alkyl, aryl, heteroaryl, SO2D 1 , S0 2 ND 2 D 3 , COD 4 , COCOD 4 , COOD 4 , COND 5 D 6 , COCOND 5 D 6 , COCOOD 4 ,

C(=ND 7 )D 8 , C(=ND 9 )ND 10 D n ; A 1 and A 2 can either never connect with each other, or conjoin to form a ring structure;

D 1 , D 2 , D 3 , D 4 , D 5 , D 6 , D 7 , D 8 , D 9 , D 10 , and D 11 are each independently selected from the group consisting of H, C1-C50 alkyl, C3-C50 cycloalkyl, C3-C50 alkenyl, C4-C50 cycloalkenyl, phenyl, heteroaryl, C3-C50 amide and C3-C50 ether; heteroaryl is selected from the group consisting of pyridinyl, pyrazinyl, pyridazinyl, pyrimidinyl, furanyl, thienyl, benzothienyl, thiazolyl, isothiazolyl, oxazolyl, benzooxazolyl, isoxazolyl, imidazolyl, benzoimidazolyl, lH-imidazo[4,5-b]pyridin-2-yl, lH-imidazo[4,5-c]pyridin- 2-yl, oxadiazolyl, thiadiazolyl, pyrazolyl, tetrazolyl, tetrazinyl, triazinyl and triazolyl; provided the carbon atoms which comprise the carbon-carbon double bond of said C3-C2 0 alkenyl or the carbon-carbon triple bond of said C3-C2 0 alkynyl are not the point of attachment to the nitrogen to which D 2 , D 3 , D 5 , D 6 , D 7 , D 9 , D 10 , and D 11 is attached; wherein said C1-C50 alkyl, C3-C50 cycloalkyl, C3-C50 alkenyl, C4-C50 cycloalkenyl, aryl, phenyl, heteroaryl, C3-C50 amide and C3-C50 ether is optionally substituted with one to three same or different of the following functionalities: (Ci_6)alkyl, (C3_6)cycloalkyl, cyano, phenyl, aryl, heteroaryl, heteroalicyclic, hydroxy, (Ci_6)alkoxy, halogen, benzyl, primary amine, secondary amine, tertiary amine, ammonium, nitro, thiol, thioether, alcohol, ether, acid, aldehyde, ketone, amide, amidine, guanidine, sulfone, sulfonamide, sulfamide, acyl sulfamide, sulfate, sulfuric acid, sulfamic acid, phosphate, phosphoric acid, boronic ester, boronic acid, squarate, squaric acid, oxime, hydrazine, peroxide and steroid, among which ether, peroxide, thioether, secondary amine, tertiary amine, ammonium, ester, ketone, amide, amidine, oxime, hydrazine can be either acyclic or cyclic;

Z is selected from the group consisting of:

Ii, , , I 4 , 15, , I7, , ¾, I10 and In are each independently selected from the group consisting of H, halogen, CN, (Ci-6)alkyl, (C3-6) cycloalkyl, (C2-6) alkenyl, (C4-6) cycloalkenyl, (C 2 - 6 ) alkynyl, CR 8 iR820R 8 3, COR 84 , COOR 85 , or CONR 86 R 87 ; wherein each of said alkyl and cycloalkyl being optionally substituted with one to three same or different cyano, phenyl, aryl, heteroaryl, heteroalicyclic, hydroxy, (Ci_6)alkoxy, halogen, benzyl, primary amine, secondary amine, tertiary amine, ammonium, nitro, thiol, thioether, alcohol, ether, acid, aldehyde, ketone, amide, amidine, guanidine, sulfone, sulfonamide, sulfamide, acyl sulfamide, sulfate, sulfuric acid, sulfamic acid, phosphate, phosphoric acid, boronic ester, boronic acid, squarate, squaric acid, oxime, hydrazine, peroxide, among which ether, peroxide, thioether, secondary amine, tertiary amine, ammonium, ester, ketone, amide, amidine, oxime, hydrazine can be either acyclic or cyclic; heteroaryl is selected from the group consisting of furanyl, thienyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, imidazolyl, oxadiazolyl, thiadiazolyl, pyrazolyl, tetrazolyl, triazolyl, pyridinyl, pyrazinyl, pyridazinyl, and pyrimidinyl; i6, 1 8 , ¾, and I1 0 are also each independently selected from the group consisting of OH, OR 85 or R 86 R 87;

In is also selected from from the group consisting of phenyl and heteroaryl; wherein said phenyl and heteroaryl are independently optionally substituted with one to three same or different halogens or from one to three same or different substituents selected from Group C; heteroaryl is selected from the group consisting of pyridinyl, pyrazinyl, pyridazinyl, pyrimidinyl, furanyl, thienyl, benzothienyl, thiazolyl, isothiazolyl, oxazolyl,

benzooxazolyl, isoxazolyl, imidazolyl, benzoimidazolyl, lH-imidazo[4,5-b]pyridin-2-yl, lH-imidazo[4,5-c]pyridin-2-yl, oxadiazolyl, thiadiazolyl, pyrazolyl, tetrazolyl, tetrazinyl, triazinyl and triazolyl;

R 8 i, R 8 2, R 8 3, R 84 , R 8 5, R 8 6, and R 87 are each independently selected from the group consisting of H, (Ci-6)alkyl, (C3-6) cycloalkyl, (C2-6) alkenyl, (C4-6) cycloalkenyl, (C2 alkynyl;

J is selected from C^XB 2 ), O, NR 3 , S; B 1 and B 2 are selected indenpendently from the group consisting of hydrogen, (Ci_6)alkyl, (C3-7)cycloalkyl, aryl, heteroaryl, heteroalicyclic, hydroxy, (Ci-6)alkoxy, aryloxy, (Ci- 6 )thioalkoxy, cyano, halogen, nitro, -C(0)R 57 , benzyl, -NR 42 C(0)-(Ci_

6)alkyl, -NR 42 C(0)-(C 3 - 6 )cycloalkyl, -NR 42 C(0)-aryl, -NR 42 C(0)-heteroaryl, -NR 42 C(0)- heteroalicyclic, a 4, 5, or 6 membered ring cyclic N-lactam, -NR 42 S(0) 2 -(Ci_

6)alkyl, -NR 42 S(0) 2 -(C 3 -6)cycloalkyl, -NR 42 S(0)2-aryl, -NR 42 S(0) 2 - heteroaryl, -NR 42 S(0)2-heteroalicyclic, S(0) 2 (Ci_ 6 )alkyl, S(0) 2 aryl, -S(0)2 NR 42 R 43 , NR 42 R 43 , (Ci_ 6 )alkylC(0)NR 42 R 43 , C(0)NR 42 R 43 , NHC(0)NR 42 R 43 , OC(0)NR 42 R 43 , NHC(0)OR 54 , (Ci_ 6 )alkylNR 42 R 43 , COOR 54 and (Ci_ 6 )alkylCOOR 54 ; wherein said (Ci_ 6)alkyl, (C3_7)cycloalkyl, aryl, heteroaryl, heteroalicyclic, (Ci_6)alkoxy, and aryloxy, are optionally substituted with one to nine same or different halogens or from one to five same or different substituents selected from the group G; wherein aryl is phenyl;

heteroaryl is a monocyclic system which contains from 3 to 7 ring atoms, including from 1 to 4 heteroatoms; heteroalicyclic is selected from the group consisting of aziridine, azetidine, pyrrolidine, piperazine, piperidine, tetrahydrofuran, tetrahydropyran, azepine, and morpholine;

L is a chain containing 1-20 groups selected from the group consisting of C(B 1 )(B 2 ), O, NR 3 , S, S(O), S(0 2 ), C(0)0, C(0)NA 1 , OC(0)NA 1 , NA 1 C(0)NA 1 , and Group D, provided that O, S(O), S(0 2 ), and C(0)0 do not directly bond to each other;

Ar is selected from the group consisting of phenyl and heteroaryl; wherein said phenyl and heteroaryl are independently optionally substituted with one to three same or different halogens or from one to three same or different substituents selected from Group C; heteroaryl is selected from the group consisting of pyridinyl, pyrazinyl, pyridazinyl, pyrimidinyl, furanyl, thienyl, benzothienyl, thiazolyl, isothiazolyl, oxazolyl,

benzooxazolyl, isoxazolyl, imidazolyl, benzoimidazolyl, lH-imidazo[4,5-b]pyridin-2-yl, lH-imidazo[4,5-c]pyridin-2-yl, oxadiazolyl, thiadiazolyl, pyrazolyl, tetrazolyl, tetrazinyl, triazinyl and triazolyl;

Group C is selected from the group consisting of OH, OR 8 , NA X A 2 , CN, COOR 8 , CONA^ 2 , S0 2 R 8 , S0 2 N A X A 2 , (C1-C4) alkyl, (C 3 -C 6 ) cycloalkyl, and group D; and wherein said alkyl or cycloalkyl group is optionally substituted with one to three substitutions selected from the group of F, OH, OR 8 , NA X A 2 , COOR 8 , CONA^ 2 , S0 2 R 8 , S0 2 N A 1 A 2 ; and

Group D is selected from the group consisting of phenyl and heteroaryl; wherein said phenyl and heteroaryl are independently optionally substituted with one to three same or different halogens or from one to three same or different substituents selected from Group C; heteroaryl is selected from the group consisting of pyridinyl, pyrazinyl, pyridazinyl, pyrimidinyl, furanyl, thienyl, benzothienyl, thiazolyl, isothiazolyl, oxazolyl,

benzooxazolyl, isoxazolyl, imidazolyl, benzoimidazolyl, lH-imidazo[4,5-b]pyridin-2-yl, lH-imidazo[4,5-c]pyridin-2-yl, oxadiazolyl, thiadiazolyl, pyrazolyl, tetrazolyl, tetrazinyl, triazinyl and triazolyl.

Another embodiment of the present invention is directed to a method for treating mammals infected with a virus, especially wherein the virus is HIV, comprising administering to said mammal an antiviral effective amount of a compound of Formula I above, and one or more pharmaceutically acceptable carriers, excipients and/or diluents. Optionally, the compound of Formula I can be administered in combination with an antiviral effective amount of an AIDS treatment agent selected from the group consisting of: (a) an AIDS antiviral agent; (b) an anti-infective agent; (c) an immunomodulator; and (d) other HIV entry inhibitors.

Another embodiment of the present invention is directed to a pharmaceutical composition comprising an antiviral effective amount of a compound of Formula I and one or more pharmaceutically acceptable carriers, excipients, diluents and optionally in combination with an antiviral effective amount of an AIDS treatment agent selected from the group consisting of: (a) an AIDS antiviral agent; (b) an anti-infective agent; (c) an immunomodulator; and (d) other HIV entry inhibitors.

In another embodiment of the invention there is provided one or more methods for making the compounds of Formula I.

The present invention is directed to these, as well as other important ends, hereinafter described. DETAILED DESCRIPTION OF THE EMBODIMENTS

Since the compounds herein set forth may possess asymmetric centers and therefore occur as mixtures of diastereomers and enantiomers, the present invention includes the individual diastereoisomeric and enantiomeric forms of the compounds of Formula I in addition to the mixtures thereof.

Definitions

Unless otherwise specifically set forth elsewhere in the application, one or more of the following terms may be used herein, and shall have the following meanings:

The term "H" refers to hydrogen, including its isotopes.

The term "Ci_ 6 alkyl" as used herein and in the claims (unless specified otherwise) mean straight or branched chain alkyl groups such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, ?-butyl, amyl, hexyl and the like.

"Ci -C 4 fluoroalkyl" refers to F-substituted Ci -C 4 alkyl wherein at least one H atom is substituted with F atom, and each H atom can be independently substituted by F atom.

"Halogen" refers to chlorine, bromine, iodine or fluorine.

An "aryl" or "Ar" group refers to an all carbon monocyclic or fused-ring polycyclic(z.e., rings which share adjacent pairs of carbon atoms) groups having a completely conjugated pi-electron system. Examples, without limitation, of aryl groups are phenyl, napthalenyl and anthracenyl. The aryl group may be substituted or unsubstituted. When substituted the substituted group(s) is preferably one or more selected from alkyl, cycloalkyl, aryl, heteroaryl, heteroalicyclic, hydroxy, alkoxy, aryloxy, heteroaryloxy, heteroalicycloxy, thiohydroxy, thioaryloxy, thioheteroaryloxy, thioheteroalicycloxy, cyano, halogen, nitro, carbonyl, O-carbamyl, N-carbamyl, C-amido, N-amido, C-carboxy, O-carboxy, sulfinyl, sulfonyl, sulfonamido, trihalomethyl, ureido, amino and -NR x R y , wherein R x and R y are independently selected from the group consisting of hydrogen, alkyl, cycloalkyl, aryl, carbonyl, C-carboxy, sulfonyl, trihalomethyl, and, combined, a five- or six-member heteroalicyclic ring.

As used herein, a "heteroaryl" group refers to a monocyclic or fused ring (i.e., rings which share an adjacent pair of atoms) group having in the ring(s) one or more atoms selected from the group consisting of nitrogen, oxygen and sulfur and, in addition, having a completely conjugated pi-electron system. Unless otherwise indicated, the heteroaryl group may be attached at either a carbon or nitrogen atom within the heteroaryl group. It should be noted that the term heteroaryl is intended to encompass an N-oxide of the parent heteroaryl if such an N-oxide is chemically feasible as is known in the art. Examples, without limitation, of heteroaryl groups are furyl, thienyl, benzothienyl, thiazolyl, imidazolyl, oxazolyl, oxadiazolyl, thiadiazolyl, benzothiazolyl, triazolyl, tetrazolyl, isoxazolyl, isothiazolyl, pyrrolyl, pyranyl, tetrahydropyranyl, pyrazolyl, pyridyl, pyrimidinyl, quinolinyl, isoquinolinyl, purinyl, carbazolyl, benzoxazolyl, benzimidazolyl, indolyl, isoindolyl, pyrazinyl. diazinyl, pyrazine, triazinyl, tetrazinyl, and tetrazolyl. When substituted the substituted group(s) is preferably one or more selected from alkyl, cycloalkyl, aryl, heteroaryl, heteroalicyclic, hydroxy, alkoxy, aryloxy, heteroaryloxy, heteroalicycloxy, thioalkoxy, thiohydroxy, thioaryloxy, thioheteroaryloxy, thioheteroalicycloxy, cyano, halogen, nitro, carbonyl, O-carbamyl, N-carbamyl, C-amido, N-amido, C-carboxy, O-carboxy, sulfinyl, sulfonyl, sulfonamido, trihalomethyl, ureido, amino, and -NR x R y , wherein R x and R y are as defined above.

"Heteroalicyclic" group refers to a monocyclic or fused ring group having in the ring(s) one or more atoms selected from the group consisting of nitrogen, oxygen and sulfur. Rings are selected from those which provide stable arrangements of bonds and are not intended to encompass systems which would not exist. The rings may also have one or more double bonds. However, the rings do not have a completely conjugated pi- electron system. Examples, without limitation, of heteroalicyclic groups are azetidinyl, piperidyl, piperazinyl, imidazolinyl, thiazolidinyl, 3-pyrrolidin-l-yl, morpholinyl, thiomorpholinyl and tetrahydropyranyl. When substituted the substituted group(s) is preferably one or more selected from alkyl, cycloalkyl, aryl, heteroaryl, heteroalicyclic, hydroxy, alkoxy, aryloxy, heteroaryloxy, heteroalicycloxy, thiohydroxy, thioalkoxy, thioaryloxy, thioheteroaryloxy, thioheteroalicycloxy, cyano, halogen, nitro, carbonyl, thiocarbonyl, O-carbamyl, N-carbamyl, O-thiocarbamyl, N-thiocarbamyl, C-amido, C- thioamido, N-amido, C-carboxy, O-carboxy, sulfinyl, sulfonyl, sulfonamido,

trihalomethanesulfonamido, trihalomethanesulfonyl, silyl, guanyl, guanidino, ureido, phosphonyl, amino and -NR x R y , wherein R x and R y are as defined above.

An "alkyl" group refers to a saturated aliphatic hydrocarbon including straight chain and branched chain groups. Preferably, the alkyl group has 1 to 20 carbon atoms (whenever a numerical range; e.g., "1-20", is stated herein, it means that the group, in this case the alkyl group may contain 1 carbon atom, 2 carbon atoms, 3 carbon atoms, etc. up to and including 20 carbon atoms). More preferably, it is a medium size alkyl having 1 to 10 carbon atoms. Most preferably, it is a lower alkyl having 1 to 4 carbon atoms. The alkyl group may be substituted or unsubstituted. When substituted, the substituent group(s) is preferably one or more individually selected from trihaloalkyl, cycloalkyl, aryl, heteroaryl, heteroalicyclic, hydroxy, alkoxy, aryloxy, heteroaryloxy,

heteroalicycloxy, thiohydroxy, thioalkoxy, thioaryloxy, thioheteroaryloxy,

thioheteroalicycloxy, cyano, halo, nitro, carbonyl, thiocarbonyl, O-carbamyl, N-carbamyl, O-thiocarbamyl, N-thiocarbamyl, C-amido, C-thioamido, N-amido, C-carboxy, O- carboxy, sulfinyl, sulfonyl, sulfonamido, trihalomethanesulfonamido,

trihalomethanesulfonyl, and combined, a five- or six- member heteroalicyclic ring.

A "cycloalkyl" group refers to an all-carbon monocyclic or fused ring (i.e., rings which share and adjacent pair of carbon atoms) group wherein one or more rings does not have a completely conjugated pi-electron system. Examples, without limitation, of cycloalkyl groups are cyclopropane, cyclobutane, cyclopentane, cyclopentene, cyclohexane, cyclohexene, cycloheptane, cycloheptene and adamantane. A cycloalkyl group may be substituted or unsubstituted. When substituted, the substituent group(s) is preferably one or more individually selected from alkyl, aryl, heteroaryl, heteroalicyclic, hydroxy, alkoxy, aryloxy, heteroaryloxy, heteroalicycloxy, thiohydroxy, thioalkoxy, thioaryloxy, thioheteroaryloxy, thioheteroalicycloxy, cyano, halo, nitro, carbonyl, thiocarbonyl, O-carbamyl, N-carbamyl, O-thiocarbamyl, N-thiocarbamyl, C-amido, C- thioamido, N-amido, C-carboxy, O-carboxy, sulfinyl, sulfonyl, sulfonamido,

trihalomethanesulfonamido, trihalomethanesulfonyl, silyl, guanyl, guanidino, ureido, phosphonyl, amino and -NR x R y with R x and R y as defined above.

An "alkenyl" group refers to an alkyl group, as defined herein, having at least two carbon atoms and at least one carbon-carbon double bond.

An "alkynyl" group refers to an alkyl group, as defined herein, having at least two carbon atoms and at least one carbon-carbon triple bond.

A "hydroxy" group refers to an -OH group.

An "alkoxy" group refers to both an -O-alkyl and an -O-cycloalkyl group as defined herein.

An "aryloxy" group refers to both an -O-aryl and an -O-heteroaryl group, as defined herein. A "heteroaryloxy" group refers to a heteroaryl-O- group with heteroaryl as defined herein.

A "heteroalicycloxy" group refers to a heteroalicyclic-O- group with

heteroalicyclic as defined herein.

A "thiohydroxy" group refers to an -SH group.

A "thioalkoxy" group refers to both an S-alkyl and an -S-cycloalkyl group, as defined herein.

A "thioaryloxy" group refers to both an -S-aryl and an -S-heteroaryl group, as defined herein.

A "thioheteroaryloxy" group refers to a heteroaryl-S- group with heteroaryl as defined herein.

A "thioheteroalicycloxy" group refers to a heteroalicyclic-S- group with heteroalicyclic as defined herein.

A "carbonyl" group refers to a -C(=0)-R" group, where R" is selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, aryl, heteroaryl (bonded through a ring carbon) and heteroalicyclic (bonded through a ring carbon), as each is defined herein.

An "aldehyde" group refers to a carbonyl group where R" is hydrogen.

A "thiocarbonyl" group refers to a -C(=S)-R" group, with R" as defined herein. A "Keto" group refers to a -CC(=0)C- group wherein the carbon on either or both sides of the C=0 may be alkyl, cycloalkyl, aryl or a carbon of a heteroaryl or

heteroalicyclic group.

A "trihalomethanecarbonyl" group refers to a Z 3 CC(=0)- group with said Z being a halogen.

A "C-carboxy" group refers to a -C(=0)0-R" groups, with R" as defined herein.

An "O-carboxy" group refers to a R"C(-0)0-group, with R" as defined herein. A "carboxylic acid" group refers to a C-carboxy group in which R" is hydrogen. A "trihalomethyl" group refers to a -CZ 3 , group wherein Z is a halogen group as defined herein.

A "trihalomethanesulfonyl" group refers to an groups with Z as defined above.

A "trihalomethanesulfonamido" group refers to a group with Z as defined above and R x being H or (Ci-6)alkyl. A "sulfinyl" group refers to a -S(=0)-R" group, with R" being (Ci_6)alkyl.

A "sulfonyl" group refers to a -S(=0) 2 R" group with R" being (Ci-6)alkyl.

A "S-sulfonamido" group refers to a -S(=0) 2 NR x R Y , with R x and R Y independently being H or (Ci_6)alkyl.

A "N-Sulfonamido" group refers to a R"S(=0)2NRx- group, with R x being H or

(Ci -6 )alkyl.

A "O-carbamyl" group refers to a -OC(=0)NR x R y group, with R x and R Y independently being H or (Ci_6)alkyl.

A "N-carbamyl" group refers to a R x OC(=0)NR y group, with R x and R y independently being H or (Ci-6)alkyl.

A "O-thiocarbamyl" group refers to a -OC(=S)NR x R y group, with R x and R y independently being H or (Ci_6)alkyl.

A "N-thiocarbamyl" group refers to a R x OC(=S)NR y - group, with R x and R y independently being H or (Ci_6)alkyl.

An "amino" group refers to an -NH 2 group.

A "C-amido" group refers to a -C(=0)NR x R y group, with R x and R y independently being H or (Ci_6)alkyl.

A "C-thioamido" group refers to a -C(=S)NR x R y group, with R x and R y independently being H or (Ci_6)alkyl.

A "N-amido" group refers to a R x C(=0)NR y - group, with R x and R y independently being H or (Ci_6)alkyl.

An "ureido" group refers to a -NR x C(=0)NR y R y2 group, with R x , R y , and R y2 independently being H or (Ci_6)alkyl.

A "guanidino" group refers to a -R x NC(=N)NR y R y2 group, with R x , R y , and R y2 independently being H or (Ci-6)alkyl.

A "guanyl" group refers to a R x R y NC(=N)- group, with R x and R y independently being H or (Ci_6)alkyl.

A "cyano" group refers to a -CN group.

A "silyl" group refers to a -Si(R")3, with R" being (Ci-6)alkyl or phenyl.

A "phosphonyl" group refers to a P(=0)(OR x ) 2 with R x being (C 1-6 )alkyl.

A "hydrazino" group refers to a -NR x NR y R y2 group, with R x , R y , and R y2 independently being H or (Ci_6)alkyl.

A "4, 5, or 6 membered ring cyclic N-lactam" group refers to

Any two adjacent R groups may combine to form an additional aryl, cycloalkyl, heteroaryl or heterocyclic ring fused to the ring initially bearing those R groups.

It is known in the art that nitrogen atoms in heteroaryl systems can be

"participating in a heteroaryl ring double bond", and this refers to the form of double bonds in the two tautomeric structures which comprise five-member ring heteroaryl groups. This dictates whether nitrogens can be substituted as well understood by chemists in the art. The disclosure and claims of the present invention are based on the known general principles of chemical bonding. It is understood that the claims do not encompass structures known to be unstable or not able to exist based on the literature.

Pharmaceutically acceptable salts and prodrugs of compounds disclosed herein are within the scope of the invention. The term "pharmaceutically acceptable salt" as used herein and in the claims is intended to include nontoxic base addition salts. Suitable salts include those derived from organic and inorganic acids such as, without limitation, hydrochloric acid, hydrobromic acid, phosphoric acid, sulfuric acid, methanesulfonic acid, acetic acid, tartaric acid, lactic acid, sulfinic acid, citric acid, maleic acid, fumaric acid, sorbic acid, aconitic acid, salicylic acid, phthalic acid, and the like. The term "pharmaceutically acceptable salt" as used herein is also intended to include salts of acidic groups, such as a carboxylate, with such counterions as ammonium, alkali metal salts, particularly sodium or potassium, alkaline earth metal salts, particularly calcium or magnesium, and salts with suitable organic bases such as lower alkylamines

(methylamine, ethylamine, cyclohexylamine, and the like) or with substituted lower alkylamines (e.g., hydroxyl-substituted alkylamines such as diethanolamine,

triethanolamine or tris(hydroxymethyl)- aminomethane), or with bases such as piperidine or morpholine.

As stated above, the compounds of the invention also include "prodrugs". The term "prodrug" as used herein encompasses both the term "prodrug esters" and the term "prodrug ethers". The term "prodrug esters" as employed herein includes esters and carbonates formed by reacting one or more hydroxyls of compounds of Formula I with either alkyl, alkoxy, or aryl substituted acylating agents or phosphorylating agent employing procedures known to those skilled in the art to generate acetates, pivalates, methylcarbonates, benzoates, amino acid esters, phosphates, half acid esters such as malonates, succinates or glutarates, and the like.

As set forth above, the invention is directed to one or more compounds of Formula I, including pharmaceutically acceptable salts thereof:

I wherein A is selected from the group consisting of:

wherein

a, b, c, d and e are independently selected from the group consisting of hydrogen, halogen, cyano, nitro, COOR 56 , XR 57 , NA X A 2 , C(0)R 7 , C(0)NR 55 R 56 , B, Q, and E;

B is selected from the group consisting of -C(=NR 46 )(R 47 ), C(O)NR 40 R 41 , aryl, heteroaryl, heteroalicyclic, S(0) 2 R 8 , S(O) 2 NR 40 R 41 , C(0)R 7 , XR 8a , (Ci_ 6 )alkylNR 40 R 41 , (Ci_6)alkylCOOR 8b ; wherein said aryl, heteroaryl, and heteroalicyclic are optionally substituted with one to three same or different halogens or from one to three same or different substituents selected from the group F; wherein aryl is napthyl or substituted phenyl; wherein heteroaryl is a mono or bicyclic system which contains from 3 to 7 ring atoms for a mono cyclic system and up to 12 atoms in a fused bicyclic system, including from 1 to 4 heteroatoms; wherein heteroalicyclic is a 3 to 7 membered mono cyclic ring which may contain from 1 to 2 heteroatoms in the ring skeleton and which may be fused to a benzene or pyridine ring; Q is selected from the group consisting of (Ci_6)alkyl, (C3_7)cycloalkyl and (C2-6)alkenyl; wherein said (Ci_6)alkyl and (C2-6)alkenyl are optionally substituted with one to three same or different halogens or from one to three same or different substituents selected from the group consisting of C(0)NR 55 R 56 , hydroxy, cyano and XR 57 ; E is selected from the group consisting of (Ci_6)alkyl, (C3_7)cycloalkyl and (C2-6)alkenyl; wherein said (Ci_6)alkyl and (C2-6)alkenyl are independently optionally substituted with a member selected from the group consisting of phenyl, heteroaryl, SMe, SPh, - C(0)NR 56 R 57 , C(0)R 57 , S0 2 (Ci_ 6 )alkyl and S0 2 Ph; wherein heteroaryl is a monocyclic system which contains from 3 to 7 ring atoms, including from 1 to 4 heteroatoms;

F is selected from the group consisting of (Ci_ 6 )alkyl, (C3_7)cycloalkyl, aryl, heteroaryl, heteroalicyclic, hydroxy, (Ci_6)alkoxy, aryloxy, (Ci_6)thioalkoxy, cyano, halogen, nitro, - C(0)R 57 , benzyl, -NR 42 C(0)-(Ci_ 6 )alkyl, -NR 42 C(0)-(C 3 -6)cycloalkyl, -NR 42 C(0)-aryl, - NR 42 C(0)-heteroaryl, -NR 42 C(0)-heteroalicyclic, a 4, 5, or 6 membered ring cyclic N- lactam, -NR 42 S(0) 2 -(Ci_ 6 )alkyl, -NR 42 S(0) 2 -(C 3 -6)cycloalkyl, -NR 42 S(0)2- aryl, -NR 42 S(0) 2 -heteroaryl, -NR 42 S(0)2-heteroalicyclic, S(0) 2 (Ci_ 6 )alkyl,

S(0) 2 aryl, -S(0)2 NR 42 R 43 , NR 42 R 43 , (Ci_ 6 )alkylC(0)NR 42 R 43 , C(0)NR 42 R 43 ,

NHC(0)NR 42 R 43 , OC(0)NR 42 R 43 , NHC(0)OR 54 , (Ci_ 6 )alkylNR 42 R 43 , COOR 54 and (Ci_ 6)alkylCOOR 54 ; wherein said (Ci-6)alkyl, (C3-7)cycloalkyl, aryl, heteroaryl,

heteroalicyclic, (Ci_6)alkoxy, and aryloxy, are optionally substituted with one to nine same or different halogens or from one to five same or different substituents selected from the group G; wherein aryl is phenyl; heteroaryl is a monocyclic system which contains from 3 to 7 ring atoms, including from 1 to 4 heteroatoms; heteroalicyclic is selected from the group consisting of aziridine, azetidine, pyrrolidine, piperazine, piperidine, tetrahydrofuran, tetrahydropyran, azepine, and morpholine;

G is selected from the group consisting of (Ci_6)alkyl, (C3_7)cycloalkyl, aryl, heteroaryl, heteroalicyclic, hydroxy, (Ci_6)alkoxy, aryloxy, cyano, halogen, nitro, -C(0)R 57 , benzyl, -NR 4S C(0)-(Ci_ 6 )alkyl, -NR 4S C(0)-(C 3 - 6 )cycloalkyl, -NR 48 C(0)-aryl, -NR 48 C(0)- heteroaryl, -NR 48 C(0)-heteroalicyclic, a 4, 5, or 6 membered ring cyclic N- lactam, -NR 48 S(0) 2 -(Ci_ 6 )alkyl, -NR 48 S(0) 2 -(C 3 - 6 )cycloalkyl, -NR 48 S(0)2- aryl, -NR 48 S(0)2-heteroaryl, -NR 48 S(0)2-heteroalicyclic, sulfinyl, sulfonyl, sulfonamide, NR 48 R 49 , (Ci_ 6 )alkyl C(0)NR 48 R 49 , C(0)NR 48 R 49 , NHC(0)NR 48 R 49 , OC(0)NR 48 R 49 , NHC(0)OR 54' , (Ci_ 6 )alkylNR 48 R 49 , COOR 54 , and (Ci_ 6 )alkylCOOR 54 ; wherein aryl is phenyl; heteroaryl is a monocyclic system which contains from 3 to 7 ring atoms, including from 1 to 4 heteroatoms; heteroalicyclic is selected from the group consisting of aziridine, azetidine, pyrrolidine, piperazine, piperidine, tetrahydrofuran, tetrahydropyran, azepine, and morpholine;

R 7 is selected from the group consisting of (Ci_6)alkyl, (C2-6)alkenyl, (C3_7)cycloalkyl, aryl, heteroaryl, and heteroalicyclic; wherein said aryl, heteroaryl, and heteroalicyclic are optionally substituted with one to three same or different halogens or with from one to three same or different substituents selected from the group F; wherein for R 7 , R 8 , R 8a , R 8b aryl is phenyl; heteroaryl is a mono or bicyclic system which contains from 3 to 7 ring atoms for mono cyclic systems and up to 10 atoms in a bicyclic system, including from 1 to 4 heteroatoms; wherein heteroalicyclic is selected from the group consisting of aziridine, azetidine, pyrrolidine, piperazine, piperidine,

tetrahydrofuran, tetrahydropyran, azepine, and morpholine;

R 8 is selected from the group consisting of hydrogen, (Ci-6)alkyl, (C3_7)cycloalkyl, (C 2- 6)alkenyl, (C3-7)cycloalkenyl, (C2-6)alkynyl, aryl, heteroaryl, and heteroalicyclic; wherein said (Ci_6)alkyl, (C3_7)cycloalkyl, (C2-6)alkenyl, (C3_7)cycloalkenyl, (C2-6)alkynyl, aryl, heteroaryl, and heteroalicyclic are optionally substituted with one to six same or different halogens or from one to five same or different substituents selected from the group F or (Ci_6)alkyl, (C3_6)cycloalkyl, cyano, phenyl, aryl, heteroaryl, heteroalicyclic, hydroxy, (Ci_ 6)alkoxy, halogen, benzyl, primary amine, secondary amine, tertiary amine, ammonium, nitro, thiol, thioether, alcohol, ether, acid, aldehyde, ketone, amide, amidine, guanidine, sulfone, sulfonamide, sulfamide, acyl sulfamide, sulfate, sulfuric acid, sulfamic acid, phosphate, phosphoric acid, boronic ester, boronic acid, squarate, squaric acid, oxime, hydrazine, peroxide, among which ether, peroxide, thioether, secondary amine, tertiary amine, ammonium, ester, ketone, amide, amidine, oxime, hydrazine can be either acyclic or cyclic; heteroaryl is selected from the group consisting of furanyl, thienyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, imidazolyl, oxadiazolyl, thiadiazolyl, pyrazolyl, tetrazolyl, triazolyl, pyridinyl, pyrazinyl, pyridazinyl, and pyrimidinyl;

R 8a is a member selected from the group consisting of aryl, heteroaryl, and

heteroalicyclic; wherein each member is independently optionally substituted with one to six same or different halogens or from one to five same or different substituents selected from the group F;

8b

R is selected from the group consisting of hydrogen, (Ci_6)alkyl and phenyl; X is selected from the group consisting of NH or NCH 3 , O, and S; R 40 and R 41 are independently selected from the group consisting of (a) hydrogen; (b) (Ci- 6 )alkyl or (C3_7)cycloalkyl substituted with one to three same or different halogens or from one to two same or different substituents selected from the group F or different functional groups: (Ci_6)alkyl, (C3_6)cycloalkyl, cyano, phenyl, aryl, heteroaryl, heteroalicyclic, hydroxy, (Ci_6)alkoxy, halogen, benzyl, primary amine, secondary amine, tertiary amine, ammonium, nitro, thiol, thioether, alcohol, ether, acid, aldehyde, ketone, amide, amidine, guanidine, sulfone, sulfonamide, sulfamide, acyl sulfamide, sulfate, sulfuric acid, sulfamic acid, phosphate, phosphoric acid, boronic ester, boronic acid, squarate, squaric acid, oxime, hydrazine, peroxide, among which ether, peroxide, thioether, secondary amine, tertiary amine, ammonium, ester, ketone, amide, amidine, oxime, hydrazine can be either acyclic or cyclic; heteroaryl is selected from the group consisting of furanyl, thienyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, imidazolyl, oxadiazolyl, thiadiazolyl, pyrazolyl, tetrazolyl, triazolyl, pyridinyl, pyrazinyl, pyridazinyl, and pyrimidinyl; and (c) (Ci_6)alkoxy, aryl, heteroaryl or heteroalicyclic; or R 40 and R 41 taken together with the nitrogen to which they are attached form a member selected from the group consisting of aziridine, azetidine, pyrrolidine, piperazine, 4-NMe piperazine, piperidine, azepine, and morpholine; and wherein said aryl, heteroaryl, and

heteroalicyclic are optionally substituted with one to three same or different halogens or from one to two same or different substituents selected from the group F; wherein for R 40 and R aryl is phenyl; heteroaryl is a monocyclic system which contains from 3 to 6 ring atoms, including from 1 to 4 heteroatoms; heteroalicyclic is selected from the group consisting of aziridine, azetidine, pyrrolidine, piperazine, piperidine, tetrahydrofuran, tetrahydropyran, azepine, and morpholine; provided when B is C(O)NR 40 R 41 , at least one of R 40 and R 41 is not selected from groups (a) or (b);

R 42 and R 43 are independently selected from the group consisting of hydrogen, (Ci_6)alkyl, allyl, (Ci_6)alkoxy, (C3_7)cycloalkyl, aryl, heteroaryl and heteroalicyclic; or R 42 and R 43 taken together with the nitrogen to which they are attached form a member selected from the group consisting of aziridine, azetidine, pyrrolidine, piperazine, 4-NMe piperazine, piperidine, azepine, and morpholine; and wherein said (Ci_6)alkyl, (Ci_6)alkoxy, (C3- 7)cycloalkyl, aryl, heteroaryl, and heteroalicyclic are optionally substituted with one to three same or different halogens or from one to two same or different substituents selected from the group G or different functional groups: (Ci_6)alkyl, (C3_6)cycloalkyl, cyano, phenyl, aryl, heteroaryl, heteroalicyclic, hydroxy, (Ci-6)alkoxy, halogen, benzyl, primary amine, secondary amine, tertiary amine, ammonium, nitro, thiol, thioether, alcohol, ether, acid, aldehyde, ketone, amide, amidine, guanidine, sulfone, sulfonamide, sulfamide, acyl sulfamide, sulfate, sulfuric acid, sulfamic acid, phosphate, phosphoric acid, boronic ester, boronic acid, squarate, squaric acid, oxime, hydrazine, peroxide, among which ether, peroxide, thioether, secondary amine, tertiary amine, ammonium, ester, ketone, amide, amidine, oxime, hydrazine can be either acyclic or cyclic; heteroaryl is selected from the group consisting of furanyl, thienyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, imidazolyl, oxadiazolyl, thiadiazolyl, pyrazolyl, tetrazolyl, triazolyl, pyridinyl, pyrazinyl, pyridazinyl, and pyrimidinyl; wherein for R 42 and R 43 aryl is phenyl; heteroaryl is a monocyclic system which contains from 3 to 6 ring atoms, including from 1 to 4 heteroatoms; heteroalicyclic is a member selected from the group consisting of aziridine, azetidine, pyrrolidine, piperazine, piperidine, tetrahydrofuran, tetrahydropyran, azepine, and morpholine; R 46 is selected from the group consisting of H, phenyl, aryl, heteroaryl and (Ci_6)alkyl, OR 57 , and NR 55 R 56 ; R is selected from the group consisting of H, amino, hydroxyl, phenyl, aryl, heteroaryl and (Ci-6)alkyl;

R 48 and R 49 are independently selected from the group consisting of hydrogen,

(Ci_6)alkyl, phenyl, aryl and heteroaryl;

R 50 is selected from the group consisting of H, (Ci_6)alkyl, (C3-6)cycloalkyl, and benzyl; wherein each of said (Ci_6)alkyl, (C3_7)cycloalkyl and benzyl are optionally substituted with one to three same or different (Ci_6)alkyl, (C3_6)cycloalkyl, cyano, phenyl, aryl, heteroaryl, heteroalicyclic, hydroxy, (Ci_6)alkoxy, halogen, benzyl, primary amine, secondary amine, tertiary amine, ammonium, nitro, thiol, thioether, alcohol, ether, acid, aldehyde, ketone, amide, amidine, guanidine, sulfone, sulfonamide, sulfamide, acyl sulfamide, sulfate, sulfuric acid, sulfamic acid, phosphate, phosphoric acid, boronic ester, boronic acid, squarate, squaric acid, oxime, hydrazine, peroxide, among which ether, peroxide, thioether, secondary amine, tertiary amine, ammonium, ester, ketone, amide, amidine, oxime, hydrazine can be either acyclic or cyclic; heteroaryl is selected from the group consisting of furanyl, thienyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, imidazolyl, oxadiazolyl, thiadiazolyl, pyrazolyl, tetrazolyl, triazolyl, pyridinyl, pyrazinyl, pyridazinyl, and pyrimidinyl

R 54 is selected from the group consisting of hydrogen and (Ci_6)alkyl; R 54 is (Ci_ 6 )alkyl; R 55 and R 56 are independently selected from the group consisting of hydrogen and (Ci_ 6 )alkyl; and

R 57 is selected from the group consisting of hydrogen, (Ci_6)alkyl, aryl, heteroaryl; and A 1 and A 2 are independently selected from hydrogen, (Ci_6)alkyl, aryl, heteroaryl, SO2D , S0 2 ND 2 D 3 , COD 4 , COCOD 4 , COOD 4 , COND 5 D 6 , COCOND 5 D 6 , COCOOD 4 ,

C(=ND 7 )D 8 , C(=ND 9 )ND 10 D n ; A 1 and A 2 can either never connect with each other, or conjoin to form a ring structure;

D 1 , D 2 , D 3 , D 4 , D 5 , D 6 , D 7 , D 8 , D 9 , D 10 , and D 11 are each independently selected from the group consisting of H, C1-C50 alkyl, C3-C50 cycloalkyl, C3-C50 alkenyl, C4-C50 cycloalkenyl, phenyl, heteroaryl, C3-C50 amide and C3-C50 ether; heteroaryl is selected from the group consisting of pyridinyl, pyrazinyl, pyridazinyl, pyrimidinyl, furanyl, thienyl, benzothienyl, thiazolyl, isothiazolyl, oxazolyl, benzooxazolyl, isoxazolyl, imidazolyl, benzoimidazolyl, lH-imidazo[4,5-b]pyridin-2-yl, lH-imidazo[4,5-c]pyridin- 2-yl, oxadiazolyl, thiadiazolyl, pyrazolyl, tetrazolyl, tetrazinyl, triazinyl and triazolyl; provided the carbon atoms which comprise the carbon-carbon double bond of said C3-C2 0 alkenyl or the carbon-carbon triple bond of said C3-C2 0 alkynyl are not the point of attachment to the nitrogen to which D 2 , D 3 , D 5 , D 6 , D 7 , D 9 , D 10 , and D 11 is attached; wherein said C1-C50 alkyl, C3-C50 cycloalkyl, C3-C50 alkenyl, C4-C50 cycloalkenyl, aryl, phenyl, heteroaryl, C3-C50 amide and C3-C50 ether is optionally substituted with one to three same or different of the following functionalities: (Ci-6)alkyl, (C3-6)cycloalkyl, cyano, phenyl, aryl, heteroaryl, heteroalicyclic, hydroxy, (Ci_6)alkoxy, halogen, benzyl, primary amine, secondary amine, tertiary amine, ammonium, nitro, thiol, thioether, alcohol, ether, acid, aldehyde, ketone, amide, amidine, guanidine, sulfone, sulfonamide, sulfamide, acyl sulfamide, sulfate, sulfuric acid, sulfamic acid, phosphate, phosphoric acid, boronic ester, boronic acid, squarate, squaric acid, oxime, hydrazine, peroxide and steroid, among which ether, peroxide, thioether, secondary amine, tertiary amine, ammonium, ester, ketone, amide, amidine, oxime, hydrazine can be either acyclic or cyclic; Z is selected from the group consisting of:

Ii, , I3, 14, 15, , I7, 1 8 , ¾, I10 and In are each independently selected from the group consisting of H, halogen, CN, (Ci_6)alkyl, (C 3- 6) cycloalkyl, (C 2- 6) alkenyl, (C 4- 6) cycloalkenyl, (C 2 - 6 ) alkynyl, CR 8 iR820R 8 3, COR 84 , COOR 85 , or CONR 86 R 87 ; wherein each of said alkyl and cycloalkyl being optionally substituted with one to three same or different cyano, phenyl, aryl, heteroaryl, heteroalicyclic, hydroxy, (Ci_6)alkoxy, halogen, benzyl, primary amine, secondary amine, tertiary amine, ammonium, nitro, thiol, thioether, alcohol, ether, acid, aldehyde, ketone, amide, amidine, guanidine, sulfone, sulfonamide, sulfamide, acyl sulfamide, sulfate, sulfuric acid, sulfamic acid, phosphate, phosphoric acid, boronic ester, boronic acid, squarate, squaric acid, oxime, hydrazine, peroxide, among which ether, peroxide, thioether, secondary amine, tertiary amine, ammonium, ester, ketone, amide, amidine, oxime, hydrazine can be either acyclic or cyclic; heteroaryl is selected from the group consisting of furanyl, thienyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, imidazolyl, oxadiazolyl, thiadiazolyl, pyrazolyl, tetrazolyl, triazolyl, pyridinyl, pyrazinyl, pyridazinyl, and pyrimidinyl; i6, 1 8 , fc, and I 10 are also each independently selected from the group consisting of OH, OR 85 or R 86 R 87 ;

In is also selected from from the group consisting of phenyl and heteroaryl; wherein said phenyl and heteroaryl are independently optionally substituted with one to three same or different halogens or from one to three same or different substituents selected from Group C; heteroaryl is selected from the group consisting of pyridinyl, pyrazinyl, pyridazinyl, pyrimidinyl, furanyl, thienyl, benzothienyl, thiazolyl, isothiazolyl, oxazolyl,

benzooxazolyl, isoxazolyl, imidazolyl, benzoimidazolyl, lH-imidazo[4,5-b]pyridin-2-yl, lH-imidazo[4,5-c]pyridin-2-yl, oxadiazolyl, thiadiazolyl, pyrazolyl, tetrazolyl, tetrazinyl, triazinyl and triazolyl;

R 8 i, R 8 2, R 8 3, R 84 , R 8 5, R 8 6, and R 87 are each independently selected from the group consisting of H, (Ci_6)alkyl, (C 3- 6) cycloalkyl, (C 2- 6) alkenyl, (C 4 _6) cycloalkenyl, (C 2- 6) alkynyl; J is selected from C^XB 2 ), O, NR 3 , S;

B 1 and B 2 are selected indenpendently from the group consisting of hydrogen, (Ci_6)alkyl, (C 3 -7)cycloalkyl, aryl, heteroaryl, heteroalicyclic, hydroxy, (Ci_6)alkoxy, aryloxy, (Ci_ 6 )thioalkoxy, cyano, halogen, nitro, -C(0)R , benzyl, -NR 42 C(0)-(Ci_ 6 )alkyl, - NR 42 C(0)-(C 3 - 6 )cycloalkyl, -NR 42 C(0)-aryl, -NR 42 C(0)-heteroaryl, -NR 42 C(0)- heteroalicyclic, a 4, 5, or 6 membered ring cyclic N-lactam, -NR 42 S(0) 2 -(Ci_

6)alkyl, -NR 42 S(0) 2 -(C 3 - 6 )cycloalkyl, -NR 42 S(0)2-aryl, -NR 42 S(0) 2 - heteroaryl, -NR 42 S(0)2-heteroalicyclic, S(0) 2 (Ci_ 6 )alkyl, S(0) 2 aryl, -S(0)2 NR 42 R 43 , NR 42 R 43 , (Ci_ 6 )alkylC(0)NR 42 R 43 , C(0)NR 42 R 43 , NHC(0)NR 42 R 43 , OC(0)NR 42 R 43 , NHC(0)OR 54 , (Ci_ 6 )alkylNR 42 R 43 , COOR 54 and (Ci_ 6 )alkylCOOR 54 ; wherein said (Ci_ 6 )alkyl, (C3_7)cycloalkyl, aryl, heteroaryl, heteroalicyclic, (Ci_6)alkoxy, and aryloxy, are optionally substituted with one to nine same or different halogens or from one to five same or different substituents selected from the group G; wherein aryl is phenyl;

heteroaryl is a monocyclic system which contains from 3 to 7 ring atoms, including from 1 to 4 heteroatoms; heteroalicyclic is selected from the group consisting of aziridine, azetidine, pyrrolidine, piperazine, piperidine, tetrahydrofuran, tetrahydropyran, azepine, and morpholine;

L is a chain containing 1-20 groups selected from the group consisting of C(B 1 )(B 2 ), O, NR 3 , S, S(O), S(0 2 ), C(0)0, C(0)NA 1 , OC(0)NA 1 , NA 1 C(0)NA 1 , and Group D, provided that O, S(O), S(0 2 ), and C(0)0 do not directly bond to each other; Ar is selected from the group consisting of phenyl and heteroaryl; wherein said phenyl and heteroaryl are independently optionally substituted with one to three same or different halogens or from one to three same or different substituents selected from Group C; heteroaryl is selected from the group consisting of pyridinyl, pyrazinyl, pyridazinyl, pyrimidinyl, furanyl, thienyl, benzothienyl, thiazolyl, isothiazolyl, oxazolyl,

benzooxazolyl, isoxazolyl, imidazolyl, benzoimidazolyl, lH-imidazo[4,5-b]pyridin-2-yl, lH-imidazo[4,5-c]pyridin-2-yl, oxadiazolyl, thiadiazolyl, pyrazolyl, tetrazolyl, tetrazinyl, triazinyl and triazolyl;

Group C is selected from the group consisting of OH, OR 8 , NA X A 2 , CN, COOR 8 , CONA^ 2 , S0 2 R 8 , S0 2 N A X A 2 , (C1-C4) alkyl, (C 3 -C 6 ) cycloalkyl, and group D; and wherein said alkyl or cycloalkyl group is optionally substituted with one to three substitutions selected from the group of F, OH, OR 8 , NA X A 2 , COOR 8 , CONA^ 2 , S0 2 R 8 , S0 2 N A X A 2 ; and Group D is selected from the group consisting of phenyl and heteroaryl; wherein said phenyl and heteroaryl are independently optionally substituted with one to three same or different halogens or from one to three same or different substituents selected from Group C; heteroaryl is selected from the group consisting of pyridinyl, pyrazinyl, pyridazinyl, pyrimidinyl, furanyl, thienyl, benzothienyl, thiazolyl, isothiazolyl, oxazolyl,

benzooxazolyl, isoxazolyl, imidazolyl, benzoimidazolyl, lH-imidazo[4,5-b]pyridin-2-yl, lH-imidazo[4,5-c]pyridin-2-yl, oxadiazolyl, thiadiazolyl, pyrazolyl, tetrazolyl, tetrazinyl, triazinyl and triazolyl.

More preferred compounds of Formula I include those which are selected from the group of:

Of the foregoing,

, including

pharmaceutically acceptable salts thereof, are even more preferred.

The compounds of the present invention, according to all the various

embodiments described above, may be administered orally, parenterally (including subcutaneous injections, intravenous, intramuscular, intrasternal injection or infusion techniques), by inhalation spray, or rectally, and by other means, in dosage unit formulations containing non-toxic pharmaceutically acceptable carriers, excipients and diluents available to the skilled artisan. One or more adjuvants may also be included.

Thus, in accordance with the present invention, there is further provided a method of treatment, and a pharmaceutical composition, for treating viral infections such as HIV infection and AIDS. The treatment involves administering to a patient in need of such treatment a pharmaceutical composition which contains an antiviral effective amount of one or more of the compounds of Formula I, together with one or more pharmaceutically acceptable carriers, excipients and/or diluents. As used herein, the term "antiviral effective amount" means the total amount of each active component of the composition and method that is sufficient to show a meaningful patient benefit, i.e., inhibiting, ameliorating, or healing of acute conditions characterized by inhibition of the HIV infection. When applied to an individual active ingredient, administered alone, the term refers to that ingredient alone. When applied to a combination, the term refers to combined amounts of the active ingredients that result in the therapeutic effect, whether administered in combination, serially or simultaneously. The terms "treat, treating, treatment" as used herein and in the claims means preventing, ameliorating or healing diseases associated with HIV infection.

The pharmaceutical compositions of the invention may be in the form of orally administrable suspensions or tablets; as well as nasal sprays, sterile injectable preparations, for example, as sterile injectable aqueous or oleaginous suspensions or suppositories. Pharmaceutically acceptable carriers, excipients and/or diluents may be utilized in the pharmaceutical compositions, and are those utilized in the art of pharmaceutical preparations.

When administered orally as a suspension, these compositions are prepared according to techniques typically known in the art of pharmaceutical formulation and may contain microcrystalline cellulose for imparting bulk, alginic acid or sodium alginate as a suspending agent, methylcellulose as a viscosity enhancer, and sweeteners/flavoring agents known in the art. As immediate release tablets, these compositions may contain microcrystalline cellulose, dicalcium phosphate, starch, magnesium stearate and lactose and/or other excipients, binders, extenders, disintegrants, diluents, and lubricants known in the art.

The injectable solutions or suspensions may be formulated according to known art, using suitable non-toxic, parenterally acceptable diluents or solvents, such as mannitol, 1,3-butanediol, water, Ringer's solution or isotonic sodium chloride solution, or suitable dispersing or wetting and suspending agents, such as sterile, bland, fixed oils, including synthetic mono- or diglycerides, and fatty acids, including oleic acid.

The compounds set forth herein can be administered orally to humans in a dosage range of 1 to 100 mg/kg body weight in divided doses, usually over an extended period, such as days, weeks, months, or even years. One preferred dosage range is 1 to 10 mg/kg body weight orally in divided doses. Another preferred dosage range is 1 to 20 mg/kg body weight in divided doses. It will be understood, however, that the specific dose level and frequency of dosage for any particular patient may be varied and will depend upon a variety of factors including the activity of the specific compound employed, the metabolic stability and length of action of that compound, the age, body weight, general health, sex, diet, mode and time of administration, rate of excretion, drug combination, the severity of the particular condition, and the host undergoing therapy.

Also contemplated herein are combinations of the compounds of Formula I herein set forth, together with one or more agents useful in the treatment of AIDS. For example, the compounds of the invention may be effectively administered, whether at periods of pre-exposure and/or post-exposure, in combination with effective amounts of the AIDS antivirals, immunomodulators, anti-infectives, or vaccines, such as those in the following non-limiting table: ANTIVIRALS

Drug Name Manufacturer Indication Rilpivirine Tibotec HIV infection, AIDS, ARC

(non-nucleoside

reverse transcriptase inhibitor)

Complera ® Gilead HIV infection, AIDS,

ARC; combination with emtricitabine, rilpivirine, and tenofovir disoproxil fumarate

097 Hoechst/Bayer HIV infection,

AIDS, ARC

(non-nucleoside

reverse transcriptase (RT)

inhibitor)

Amprenavir Glaxo Wellcome HIV infection,

141 W94 AIDS, ARC

GW 141 (protease inhibitor)

Abacavir (1592U89) Glaxo Wellcome HIV infection,

GW 1592 AIDS, ARC

(RT inhibitor)

Acemannan Carrington Labs ARC

(Irving, TX)

Acyclovir Burroughs Wellcome HIV infection, AIDS,

ARC

AD-439 Tanox Biosystems HIV infection, AIDS,

ARC AD-519 Tanox Biosystems HIV infection, AIDS,

ARC

Adefovir dipivoxil Gilead Sciences HIV infection

AL-721 Ethigen ARC, PGL (Los Angeles, CA) HIV positive, AIDS

Alpha Interferon Glaxo Wellcome Kaposi's sarcoma,

HIV in combination w/Retrovir

Ansamycin Adria Laboratories ARC

LM 427 (Dublin, OH)

Erbamont

(Stamford, CT)

Antibody which Advanced Biotherapy AIDS, ARC

Neutralizes pH Concepts

Labile alpha aberrant (Rockville, MD)

Interferon

AR177 Aronex Pharm HIV infection, AIDS,

ARC

Beta-fluoro-ddA Nat'l Cancer Institute AIDS-associated

diseases

BMS-234475 Bristol-Myers Squibb/ HIV infection,

(CGP-61755) Novartis AIDS, ARC

(protease inhibitor)

CI-1012 Warner-Lambert HIV-1 infection

Cidofovir Gilead Science CMV retinitis,

herpes, papiUomavims

Curdlan sulfate AJI Pharma USA HIV infection

Cytomegalovirus Medlmmune CMV retinitis

Immune globin

Cytovene Syntex Sight threatening

Ganciclovir CMV

peripheral CMV

retinitis

Darunavir Tibotec- J & J HIV infection, AIDS, ARC (protease inhibitor)

Delaviridine Pharmacia-Upj ohn HIV infection,

AIDS, ARC

(RT inhibitor)

Dextran Sulfate Ueno Fine Chem. AIDS, ARC, HIV

Ind. Ltd. (Osaka, positive

Japan) asymptomatic ddC Hoffman-La Roche HIV infection, AIDS,

Dideoxycytidine ARC ddl Bristol-Myers Squibb HIV infection, AIDS, Dideoxyinosine ARC; combination

with AZT/d4T

DMP-450 AVID HIV infection,

(Camden, NJ) AIDS, ARC

(protease inhibitor)

Efavirenz Bristol Myers Squibb HIV infection,

(DMP 266, Sustiva ® ) AIDS, ARC

(-)6-Chloro-4-(S)- (non-nucleoside RT cyclopropylethynyl- inhibitor)

4(S)-trifluoro- methyl- 1 ,4-dihydro- 2H-3, 1 -benzoxazin- 2-one, STOCRI E

EL10 Elan Corp, PLC HIV infection

(Gainesville, GA)

Etravirine Tibotec/ J & J HIV infection, AIDS, ARC

(non-nucleoside reverse transcriptase inhibitor)

Famciclovir Smith Kline herpes zoster,

herpes simplex

GS 840 Gilead HIV infection,

AIDS, ARC

(reverse transcriptase inhibitor) HBY097 Hoechst Marion HIV infection,

Roussel AIDS, ARC

(non-nucleoside reverse transcriptase inhibitor)

Hypericin VIMRx Pharm. HIV infection, AIDS,

ARC

Recombinant Human Triton Biosciences AIDS, Kaposi's Interferon Beta (Almeda, CA) sarcoma, ARC

Interferon alfa-n3 Interferon Sciences ARC, AIDS Indinavir Merck HIV infection, AIDS,

ARC, asymptomatic HIV positive, also in combination with AZT/ddl/ddC

ISIS 2922 ISIS Pharmaceuticals CMV retinitis

KNI-272 Nat'l Cancer Institute HlV-assoc. diseases Lamivudine, 3TC Glaxo Wellcome HIV infection,

AIDS, ARC

(reverse

transcriptase inhibitor); also with AZT

Lobucavir Bristol-Myers Squibb CMV infection Nelfinavir Agouron HIV infection,

Pharmaceuticals AIDS, ARC

(protease inhibitor)

Nevirapine Boeheringer HIV infection,

Ingleheim AIDS, ARC

(RT inhibitor)

Novapren Novaferon Labs, Inc. HIV inhibitor

(Akron, OH) Peptide T Peninsula Labs AIDS

Octapeptide (Belmont, CA)

Sequence

Trisodium Astra Pharm. CMV retinitis, HIV Phosphonoformate Products, Inc. infection, other CMV infections

PNU- 140690 Pharmacia Upjohn HIV infection,

AIDS, ARC

(protease inhibitor)

Probucol Vyrex HIV infection, AIDS RBC-CD4 Sheffield Med. HIV infection,

Tech (Houston, TX) AIDS, ARC

Ritonavir Abbott HIV infection,

AIDS, ARC

(protease inhibitor)

Saquinavir Hoffmann- HIV infection,

LaRoche AIDS, ARC

(protease inhibitor)

Stavudine; d4T Bristol-Myers Squibb HIV infection, AIDS,

Didehydrodeoxy- ARC

Thymidine

Tipranavir Boehringer Ingelheim HIV infection, AIDS, ARC

(protease inhibitor)

Valaciclovir Glaxo Wellcome Genital HSV & CMV

Infections

Virazole Viratek/ICN asymptomatic HIV Ribavirin (Costa Mesa, CA) positive, LAS, ARC

VX-478 Vertex HIV infection, AIDS,

ARC

Zalcitabine Hoffmann-LaRoche HIV infection, AIDS,

ARC, with AZT Zidovudine; AZT Glaxo Wellcome HIV infection, AIDS,

ARC, Kaposi's

sarcoma, in combination with other therapies

Tenofovir disoproxil, HIV infection,

fumarate salt (Viread ® ) AIDS,

(reverse transcriptase inhibitor)

Emtriva" (Emtricitabine) Gilead HIV infection,

(FTC) AIDS,

(reverse transcriptase inhibitor)

Combivir GSK HIV infection,

AIDS,

(reverse transcriptase inhibitor)

Abacavir succinate GSK HIV infection,

(or Ziagen ® ) AIDS,

(reverse transcriptase inhibitor)

Reyataz Bristol-Myers Squibb HIV infection

(or atazanavir) AIDs, protease

inhibitor

Fuzeon Roche / Trimeris HIV infection

(Enfuvirtide or T-20) AIDs, viral Fusion

inhibitor Lexiva GSK/Vertex HIV infection

(or Fosamprenavir calcium) AIDs, viral protease

inhibitor

Selzentry

Maraviroc; (UK 427857) Pfizer HIV infection

AIDs, (CCR5 antagonist, in development)

Trizivir ® GSK HIV infection

AIDs, (three drug combination) Sch-417690 (vicriviroc) Schering-Plough HIV infection

AIDs, (CCR5 antagonist, in development)

TAK-652 Takeda HIV infection

AIDs, (CCR5 antagonist, in development)

GSK 873140 GSK/ONO HIV infection

(ONO-4128) AIDs, (CCR5 antagonist, in development)

Integrase Inhibitor Merck HIV infection

MK-0518 AIDs

Raltegravir

®

Truvada Gilead Combination of Tenofovir disoproxil fumarate salt (Viread R ) and Emtriva R (Emtricitabine)

Integrase Inhibitor Gilead/Japan Tobacco HIV Infection

GS917/JTK-303 AIDs

Elvitegravir in development

Triple drug combination Gilead/Bristol-Myers Squibb Combination of Tenofovir

®

Atripla disoproxil fumarate salt

(Viread®), Emtriva® (Emtricitabine), and

®

Sustiva (Efavirenz)

®

Festinavir Oncolys BioPharma HIV infection

AIDs

in development

CMX-157 Chimerix HIV infection

Lipid conjugate of AIDs

nucleotide tenofovir

GSK1349572 GSK HIV infection

Integrase inhibitor AIDs IMMUNOMODULATORS

Drug Name Manufacturer Indication AS-101 Wyeth-Ayerst AIDS

Bropirimine Pharmacia Upjohn Advanced AIDS

Acemannan Carrington Labs, Inc. AIDS, ARC

(Irving, TX)

CL246,738 Wyeth AIDS, Kaposi's

Lederle Labs sarcoma FP-21399 Fuki ImmunoPharm Blocks HIV fusion with CD4+ cells

Gamma Interferon Genentech ARC, in combination w/TNF (tumor necrosis factor)

Granulocyte Genetics Institute AIDS

Macrophage Colony Sandoz

Stimulating Factor

Granulocyte Hoechst-Roussel AIDS

Macrophage Colony Immunex

Stimulating Factor Granulocyte Schering-Plough AIDS,

Macrophage Colony combination

Stimulating Factor w/AZT

HIV Core Particle Rorer Seropositive HIV Immunostimulant

IL-2 Cetus AIDS, in combination

Interleukin-2 w/AZT IL-2 Hoffman-LaRoche AIDS, ARC, HIV, in

Interleukin-2 Immunex combination w/AZT

IL-2 Chiron AIDS, increase in

Interleukin-2 CD4 cell counts (aldeslukin)

Immune Globulin Cutter Biological Pediatric AIDS, in

Intravenous (Berkeley, CA) combination w/AZT

(human)

IMREG-1 Imreg AIDS, Kaposi's

(New Orleans, LA) sarcoma, ARC, PGL

IMREG-2 Imreg AIDS, Kaposi's

(New Orleans, LA) sarcoma, ARC, PGL

Imuthiol Diethyl Merieux Institute AIDS, ARC

Dithio Carbamate

Alpha-2 Schering Plough Kaposi's sarcoma Interferon w/AZT, AIDS

Methionine- TNI Pharmaceutical AIDS, ARC

Enkephalin (Chicago, IL)

MTP-PE Ciba-Geigy Corp. Kaposi's sarcoma

Muramyl-Tripeptide

Granulocyte Amgen AIDS, in combination Colony Stimulating w/AZT

Factor

Remune Immune Response Immunotherapeutic

Corp. rCD4 Genentech AIDS, ARC

Recombinant

Soluble Human CD4 rCD4-IgG AIDS, ARC hybrids Recombinant AIDS, ARC

Soluble Human CD4 Interferon Hoffman-La Roche Kaposi's sarcoma Alfa 2a AIDS, ARC,

in combination w/AZT

SK&F 106528 Smith Kline HIV infection Soluble T4

Thymopentin Immunobiology HIV infection

Research Institute

(Annandale, NJ)

Tumor Necrosis Genentech ARC, in combination Factor; TNF w/gamma Interferon

ANTI-INFECTIVES Drug Name Manufacturer Indication

Clindamycin Pharmacia Upjohn PCP

Primaquine Fluconazole Pfizer Cryptococcal

meningitis, candidiasis

Pastille Squibb Corp. Prevention of

Nystatin Pastille oral candidiasis

Ornidyl Merrell Dow PCP

Eflornithine Pentamidine LyphoMed PCP treatment

Isethionate (IM & IV) (Rosemont, IL)

Trimethoprim Antibacterial Trimethoprim/sulfa Antibacterial Piritrexim Burroughs Wellcome PCP treatment

Pentamidine Fisons Corporation PCP prophylaxis

Isethionate for

Inhalation

Spiramycin Rhone-Poulenc Cryptosporidia!

diarrhea

Intraconazole- Janssen-Pharm. Histoplasmosis;

R51211 cryptococcal

meningitis Trimetrexate Warner-Lambert PCP

Daunorubicin NeXstar, Sequus Kaposi's sarcoma

Recombinant Human Ortho Pharm. Corp. Severe anemia

Erythropoietin assoc. with AZT

therapy

Recombinant Human AIDS-related

Growth Hormone wasting, cachexia

Megestrol Acetate Bristol-Myers Squibb Treatment of

anorexia assoc.

W/AIDS Testosterone Alza, Smith Kline AIDS-related wasting

Total Enteral Norwich Eaton Diarrhea and

Nutrition Pharmaceuticals malabsorption

related to AIDS

Additionally, the compounds herein set forth may be used in combination with other HIV entry inhibitors. Examples of such HIV entry inhibitors are discussed in Drugs of the Future, 24(12): 1355-1362 (1999); Cell, 9:243-246 (Oct. 29, 1999); a d Drug Discovery Today, 5(5): 183-194 (May 2000) and Meanwell, N.A. et al, "Inhibitors of the entry of HIV into host cells", Curr. Op. Drug Disc. Dev, 6(4):451-461 (2003).

Specifically the compounds can be utilized in combination with other attachment inhibitors, fusion inhibitors, and chemokine receptor antagonists aimed at either the CCR5 or CXCR4 coreceptor.

It will be understood that the scope of combinations of the compounds of the invention with AIDS antivirals, immunomodulators, anti-infectives, HIV entry inhibitors or vaccines is not limited to the list in the above Table but includes, in principle, any combination with any pharmaceutical composition useful for the treatment of AIDS.

Preferred combinations are simultaneous or alternating treatments with a compound set forth herein and an inhibitor of HIV protease and/or a non-nucleoside inhibitor of HIV reverse transcriptase. An optional fourth component in the combination is a nucleoside inhibitor of HIV reverse transcriptase, such as AZT, 3TC, ddC or ddl. A preferred inhibitor of HIV protease is REYATAZ® (active ingredient Atazanavir).

Typically a dose of 300 to 600mg is administered once a day. This may be co- administered with a low dose of Ritonavir (50 to 500mgs). Another preferred inhibitor of HIV protease is KALETRA®. Another useful inhibitor of HIV protease is indinavir, which is the sulfate salt of N-(2(R)-hydroxy-l-(S)-indanyl)-2(R)-phenylmethyl-4-(S)- hydroxy-5-(l-(4-(3-pyridyl-methyl)-2(S)-N'-(t-butylcarboxami do)-piperazinyl))- pentaneamide ethanolate, and is synthesized according to U.S. Patent No. 5,413,999. Indinavir is generally administered at a dosage of 800 mg three times a day. Other preferred protease inhibitors are nelfinavir and ritonavir. Another preferred inhibitor of HIV protease is saquinavir which is administered in a dosage of 600 or 1200 mg tid. Preferred non-nucleoside inhibitors of HIV reverse transcriptase include efavirenz. These combinations may have unexpected effects on limiting the spread and degree of infection of HIV. Preferred combinations include those with the following (1) indinavir with efavirenz, and, optionally, AZT and/or 3TC and/or ddl and/or ddC; (2) indinavir, and any of AZT and/or ddl and/or ddC and/or 3TC, in particular, indinavir and AZT and 3TC; (3) stavudine and 3TC and/or zidovudine; (4) zidovudine and lamivudine and 141W94 and 1592U89; (5) zidovudine and lamivudine. (The preparation of ddC, ddl and AZT are also described in EP 0 484 071.)

In such combinations the compound of the present invention and other active agents may be administered separately or in conjunction. In addition, the administration of one element may be prior to, concurrent to, or subsequent to the administration of other agent(s).

METHODS OF SYNTHESIS

The present invention comprises compounds of Formula I, their pharmaceutical formulations, and their use in patients suffering from or susceptible to HIV infection. The compounds of Formula I include pharmaceutically acceptable salts thereof. The compounds may be made by methods available in the art, as well as those described after the Abbreviations and including variations within the skill of the art. Some reagents and intermediates are known in the art. Other reagents and intermediates can be made by methods known in the art using readily available materials. The variables (e.g. numbered "R" substituents) used to describe the synthesis of the compounds are intended only to illustrate how to make the compounds and are not to be confused with variables used in the claims or in other sections of the specification. The following methods are for illustrative purposes and are not intended to limit the scope of the invention.

Abbreviations

One or more of the following abbreviations, most of which are conventional abbreviations well known to those skilled in the art, may be used throughout the description of the invention and the examples: h = hour(s)

rt = room temperature

mol = mole(s)

mmol = millimole(s)

g = gram(s)

mg = milligram(s)

mL = milliliter(s)

TFA = trifluoroacetic Acid

DCE = 1,2-Dichloroethane

CH2CI2 = dichloromethane

TPAP = tetrapropylammonium perruthenate THF = tetrahydrofuran

DEPBT = 3-(diethoxyphosphoryloxy)-l,2,3-benzotriazin-4(3H)-one

DMAP = 4-dimethylaminopyridine

P-EDC = polymer supported l-(3-dimethylaminopropyl)-3-ethylcarbodiimide EDC = l-(3-dimethylaminopropyl)-3-ethylcarbodiimide

DMF = N,N-dimethylformamide

Hunig's Base = N,N-diisopropylethylamine

MCPBA = 777<?to-chloroperbenzoic acid

azaindole = lH-pyrrolo-pyridine

4-azaindole = lH-pyrrolo[3,2-£]pyridine

5- azaindole = lH-pyrrolo[3,2-c]pyridine

6- azaindole = lH-pyrrolo[2,3-c]pyridine

7- azaindole = lH-pyrrolo[2,3-£]pyridine

PMB = 4-methoxybenzyl

DDQ = 2,3-dichloro-5,6-dicyano-l,4-benzoquinone

OTf = trifluoromethanesulfonoxy

ΝΜΜ = 4-methylmorpholine

PIP-COPh = 14jenzoylpiperazine

NaHMDS = sodium hexamethyldisilazide

EDAC = l-(3-dimethylaminopropyl)-3-ethylcarbodiimide

TMS = trimethylsilyl

DCM = dichloromethane

DCE = dichloroethane

MeOH = methanol

THF = tetrahydrofuran

EtOAc = ethyl acetate

LDA = lithium diisopropylamide

TMP-Li = 2,2,6,6-tetramethylpiperidinyl lithium

DME = dimethoxyethane

DIBALH = diisobutylaluminum hydride

HOBT = 1-hydroxybenzotriazole

CBZ = benzyloxycarbonyl

PCC = pyridinium chlorochromate TBTU = 0-(benzotriazol- 1 -yl)-N,N,N',N'-tetramethyluronium tetrafluoroborate

DEBPT = 3-(diethoxyphosphoryloxy)-l,2,3-benzotriazin-4(3H)-one

BOP = benzotriazole- 1 -yl-oxy-tris-(dimethylamino)-phosphoniumhexafluorophosphate Preparation of Compounds of Formula I

Preparation of template A-CO-CO-C1 and A-CO-CO-OH has been described in detail in WO-00076521, WO-0162255, WO-0204440, WO-02062423, WO-02085301, WO-03068221 and US-2004/0063744.

Standard conditions such as reacting amine with acyl halide 1 (Scheme la) and carboxyl acid 3 (Scheme lb) can be used to prepare the desired amide products. Some general references of these methodologies and directions for use are contained in

"Comprehensive Organic Transformation" by Richard C. Larock, Wiley-VCH, New York, 1989, 972 (Carboxylic acids to amides), 979 (Acid halides to amides).

Scheme la

Formula I

Scheme la depicts a general method for forming an amide from piperidine derivative 2 and acyl chloride 1. An appropriate base (from catalytic to an excess amount) selected from sodium hydride, potassium carbonate, triethylamine, DBU, pyridine, DMAP or di-isopropyl ethyl amine was added into a solution of piperidine derivative 2 and acyl chloride 1 in an appropriate solvent selected from dichloromethane, chloroform, benzene, toluene, THF, diethyl ether, dioxane, acetone, N,N- dimethylformamide or pyridine at room temperature. Then reaction was carried out at either room temperature or evaluated temperature up to 150°C over a period of time (30 minutes to 48 hours) to afford the structure of Formula I. Some selected references involving such reactions include a) Indian J. Chem., Sect B 1990, 29, 1077; 2) Z.Naturforsch 1998, 53, 1216; 3) Chem. Pharm. Bull. 1992, 40, 1481 ; 4) Chem.

Heterocycl. Compd. 2002, 38, 539.

Scheme lb

3 Formula I

Alternatively, as shown in Scheme lb, a piperidine derivative 2 can be coupled with an acid 3 using standard amide bond or peptide bond forming coupling reagents. Many reagents for amide bond couplings are known by an organic chemist skilled in the art and nearly all of these are applicable for realizing coupled amide products. The combination of EDAC and triethylamine in tetrahydrofuran or BOPC1 and diisopropyl ethyl amine in chloroform have been utilized most frequently but DEPBT, or other coupling reagents such as PyBop could be utilized. Another useful coupling condition employs HATU ((a) J. Chem.Soc. Chem Comm. 1994, 201; (b) J. Am. Chem. Soc. 1994, 116, 1 1580). Additionally, DEPBT (3-(diethoxyphosphoryloxy)-l,2,3-benzotriazin- 4(3H)-one) and N,N-diisopropylethylamine, commonly known as Hunig's base, represents another efficient method to form the amide bond and provide compounds of Formula I. DEPBT is either purchased from Aldrich or prepared according to the procedure described in Organic Lett., 1999, 1, 91. Typically an inert solvent such as

DMF or THF is used but other aprotic solvents could be used. Furthermore, TBTU with 4-methylmorpholine or triethylamine or diisopropyl ethyl amine in THF or dioxane or DMF has been used.

Examples

The following examples illustrate typical syntheses of the compounds of Formula I as described generally above. These examples are illustrative only and are not intended to limit the invention in any way. The reagents and starting materials are readily available to one of ordinary skill in the art. Chemistry Experimental

Typical Procedures and Characterization of Selected Examples;

Unless otherwise stated, solvents and reagents were used directly as obtained from commercial sources, and reactions were performed under a nitrogen atmosphere. Flash chromatography was conducted on Silica gel 60 (0.040-0.063 particle size; EM Science supply). X H NMR spectra were recorded on Bruker DRX-500f at 500 MHz (or Bruker DPX-300B or Varian Gemini 300 at 300 MHz as stated). The chemical shifts were reported in ppm on the δ scale relative to 6TMS = 0. The following internal references were used for the residual protons in the following solvents: CDCI 3 (¾ 7.26), CD 3 OD (¾ 3.30), and DMSO-i/6 (¾ 2.50). Standard acronyms were employed to describe the multiplicity patterns: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), b (broad), app (apparent). The coupling constant (J) is in Hertz. All Liquid

Chromatography (LC) data were recorded on a Shimadzu LC-10AS liquid chromatograph using a SPD-10AV UV-Vis detector with Mass Spectrometry (MS) data determined using a Micromass Platform for LC in electrospray mode.

HPLC Method fi.e., compound isolation) Compounds purified by preparative HPLC were diluted in methanol (1.2 mL) and purified using a Shimadzu LC-8A or LC-IOA automated preparative HPLC system.

Typical Procedures and Characterization of Selected Examples: Intermediate ACOCOOH or ACOCOCl:

Preparation of intermediate ACOCOOH or ACOCOCl was described in the previous published applications (W. Blair, et al. WO-200076521, O. Wallace, et al WO- 200204440, T. Wang, et al. WO-200162255 and T. Wang, et al. WO-2002062423). Some examples of ACOCOOH are listed in below.

General procedure to prepare Formula I: A)

ACOCOOH

2-Keto acid (1 eq.), amine (1 - 5 eq.), 3-(diethoxyphosphoryloxy)-l,2,3-benzotriazin- 4(3H)-one (DEPBT) or 0-(lH-benzotriazol-l-yl)-N,N,N',N'-tetramethyluronium tetrafluoroborate (TBTU) (1 - 5 eq.) or (2-(7-Aza-lH-benzotriazole-l-yl)-l, 1,3,3- tetramethyluronium hexafluorophosphate) (HATU) (1 - 5 eq.) and Hunig's Base or N- methyl morpholine (1- 100 eq.) were combined in THF or DMF. The mixture was stirred at room temperature or 115°C for 17 hours. THF or DMF was removed via evaporation at reduced pressure and the residue was partitioned between ethyl acetate and saturated aHC0 3 aqueous solution. The aqueous layer was extracted with ethyl acetate. The organic phase was combined and dried over anhydrous MgS0 4 . Concentration in vacuo provided a crude product, which was purified by titration, or recrystallization, or silica gel column chromatography, or Shimadzu automated preparative HPLC System.

B)

ACOCOCI

2-Keto acyl chloride (1 eq.), amine (1 - 5 eq.) and Hunig's Base or Et 3 N (1- 100 eq.) were combined in THF or DMF. The mixture was stirred at room temperature or 1 15°C for 17 hours. THF or DMF was removed via evaporation at reduced pressure and the residue was partitioned between ethyl acetate and saturated aHC0 3 aqueous solution. The aqueous layer was extracted with ethyl acetate. The organic phase was combined and dried over anhydrous MgS0 4 . Concentration in vacuo provided a crude product, which was purified by tritaration, or recrystallization, or silica gel column chromatography, or Shimadzu automated preparative HPLC System. Characterization:

Compound 1004

H

MS (M+H) + Calcd. 359.2

MS (M+H) + Observ. 359.4

Retention Time 2.04 min

LC Condition

Solvent A 90% Water -10% Methanol-0.1% TFA

Solvent B 10% Water -90% Methanol-0.1% TFA

Start % B 0

Final % B 100

Gradient Time 2 min

Flow Rate 5 mL/min

Wavelength 220

Solvent Pair Water - Methanol- TFA

Column XTERRA C-18 S5 4.6 x 50 mm

Compound 1005

MS (M+H) + Calcd. 539

MS (M+H) + Observ. 539

Retention Time 1.51 min

LC Condition

Solvent A 10% MeCN - 90% water - 5mM NH 4 OAc

Solvent B 90% MeCN - 10% water - 5mM NH 4 OAc

Start % B 0

Final % B 100

Gradient Time 2 min

Flow Rate 4 mL/min

Wavelength 220

Solvent Pair MeCN - Water - NH 4 OAc

Column Primesphere C18-HC 4.6 x 30

Compound 1006

MS (M+H) + Calcd. 433.2

MS (M+H) + Observ. 433.3

Retention Time 3.55 min

LC Condition

Solvent A 5% Water -95% Methanol-0.1% TFA

Solvent B 95% Water -5% Methanol-0.1% TFA

Start % B 0

Final % B 100

Gradient Time 4 min

Flow Rate 4 mL/min

Wavelength 220

Solvent Pair Methanol - Water - 0.1%TFA

Column PHENOMENEX-LUNA 4.6 X 50MM S10

NMR

¾ (500 MHz, 13.02 (s, IH), 9.02 (s, IH), 8.32 (s, IH), 8.26 (s, IH), 8.13 DMSO-D6) 6ppm (s, IH), 7.30 (m, 2H), 7.19 (m, 3H), 4.40 (d, IH, J= 15

Hz), 3.60 (d, IH, J= 15 Hz), 3.08 (t, IH, J= 10 Hz), 2.82 (t, IH, J= 10 Hz), 2.55 (m, 2H), 1.85 (m, IH), 1.70 (d, IH, J=10 Hz), 1.58 (d, 1H, J= 10 Hz), 1.22 = 1.11 (m, 2H).

Compound 1009

MS (M+H) + Calcd. 484.2

MS (M+H) + Observ. 484.3

Retention Time 2.59 min

LC Condition

Solvent A 5% Water -95% Methanol-0.1% TFA

Solvent B 95% Water -5% Methanol-0.1% TFA

Start % B 0

Final % B 100

Gradient Time 4 min

Flow Rate 4 mL/min

Wavelength 220

Solvent Pair Methanol - Water - 0.1%TFA

Column PHENOMENEX LUNA 3.0 X 50MM S10

NMR

*H (500 MHz, 11.01 (s, IH), 9.08 (s, IH), 8.16 (s, IH), 7.72 (s, IH), 7.40 CDC1 3 ) 5ppm - 7.27 (m, 5H), 4.73 (m, IH), 4.01 (s, 3H), 3.88 (m, IH),

3.70 (m, IH), 3.05 (m, IH), 2.73 (m, IH), 2.54 (s, 3H), 2.10 - 1.45 (m, 5H).

Synthesis of Compound 2001, 6-(2-(4, 7-dimethoxy-lH-pyrrolof2,3-clpyridin-3-yl)-2- oxoacetyl)-l-phenyl-6-azaspiro[2.5joctane-l-carbonitrile

Step 1:

To a stirred solution of benzyl cyanide (3.5 g) in dry tetrahydrofuran (30 mL), slowly added sodium bistrimethylsilyl amide (42 mL, 1.0M solution in toluene) under nitrogen atmosphere at 0°C. T he reaction mixture was stirred at 0°C for about 30 minutes, before N-Boc-4- piperidinone (5 g) was dissolved in dry tetrahydrofuran (20 mL) was added slowly under nitrogen atmosphere at 0°C. The reaction mixture was stirred at room temperature for 4 hours , before being quenched by saturated ammonium chloride solution (25 mL). The reaction mixture was diluted with ethyl acetate (50 mL) and the aqueous phase was extracted with ethyl acetate (2 x 25 mL). The combined organic layer was washed with brine (50 mL) and dried over anhydrous Na 2 S0 4 . Evaporation of solvents under reduced pressure gave crude product, which was purified by column chromatography using ethyl acetate\ hexane (1.0 : 9.0) as eluent to afford tert-butyl 4- (cyano(phenyl)methylene)piperidine- 1 -carboxylate (5 g) as off white solid. l H NMR (CDC1 3 ): δ 1.49 (s, 9H), 2.43-2.46 (t, 2H), 2.77-2.80 (t, 2H), 3.42-3.45 (t, 2H), 3.61-3.64 (t, 2H),7.27-7.30 (m, 2H), 7.37-7.42 (m, 3H). LCMS: 299 (M + H) + .

Step 2: To a stirred solution of trimethyl sulphoxonium iodide (0.45 g) in dry DMSO (2.5 rnL), potassium tertbutoxide (0.37 g) was slowly added under nitrogen atmosphere at 0°C. The reaction mixture was stirred at 0°C for about 30 minutes and tert-butyl 4- (cyano(phenyl)methylene)piperidine-l-carboxylate (0.5 g) in dry DMSO (2.5 mL) was added slowly under nitrogen atmosphere at 0°C. The reaction mixture was stirred at room temperature for 18 hours, before being quenched by ice water. The reaction mixture was diluted with ethyl acetate (15 mL) and the aqueous phase was extracted with ethyl acetate (2 x 5 mL). The combined organic layer was washed with brine (5.0 mL) and dried over anhydrous Na 2 S0 4 . Evaporation of solvents under reduced pressure gave crude product, which was purified by column chromatography using ethyl acetate\ hexane (3.0 : 7.0) as eluent to afford tert-butyl l-cyano-l-phenyl-6-azaspiro[2.5]octane-6-carboxylate (0.3 g) as white solid. 1H NMR (CDC1 3 ): δ 0.84-0.89 (m, 2H), 1.03-1.07 (m, 2H), 1.49 (s, 9H), 1.81-1.83 (m, 1H), 1.98-2.01 (m, 1H), 3.16-3.19 (m, 1H), 3.36-3.47 (m, 1H), 3.49-3.52 (m, 1H), 3.73-3.75 (m, 1H), 7.31 - 7.40 (m, 5H). LCMS: 313 (M + H) + .

Step 3:

TFA (1 mL) was added into a solution of tert-Butyl l-cyano-l-phenyl-6- azaspiro[2.5]octane-6-carboxylate (0.3 g) in dry DCM (10 mL) at 0°C. The reaction mixture was stirred at room temperature for 18 hours. The volatiles were completely removed under reduced pressure and the resulting crude was diluted with

dichloromethane (10 mL). The organic layer was washed with saturated aHC03 solution (2 x 10 mL), brine (20 mL) and dried over a 2 S0 4 . Evaporation of solvents gave l-phenyl-6-azaspiro[2.5]octane-l-carbonitrile (0.25 g), which was used further without any purification. ¾ NMR (CDC1 3 ): δ 0.87-0..91 (m, 2H), 1.23-1.27 (m, 2H), 1.85-1.87 (m, 1H), 2.02-2.05 (m, 1H), 3.12-3.15 (m, 1H), 3.31-3.39 (m, 1H), 3.43-3.48 (m, 1H), 3.65-3.68 (m, 1H), 7.31 - 7.40 (m, 5H). LCMS: 210 (M - H) + .

Step 4:

To a stirred solution of 2-(4,7-dimethoxy-lH-pyrrolo[2,3-c]pyridin-3-yl)-2-oxoacetic acid (50 mg) in dry DMF (2mL), l-phenyl-6-azaspiro[2.5]octane-l-carbonitrile (30 mg), BOP reagent (60 mg) and DIPEA (0.2 mL) were added. The reaction mixture was stirred at room temperature for 18 hours before solvents were removed under reduced pressure. The resulting oil was diluted with ethyl acetate (50 mL), washed with 10% NaHCC (10 mL) and brine (10 mL). The organic layer was dried over anhydrous a2S0 4 and concentrated using rotary evaporator. The resulting crude was purified by column chromatography using ΜεΟΗ/ΟΗ(¾ (0.5 : 9.5) as eluent to afford 6-(2-(4,7-dimethoxy- 1 H-pyrrolo[2,3 -c]pyridin-3 -yl)-2-oxoacetyl)- 1 -phenyl-6-azaspiro [2.5] octane- 1 - carbonitrile 2001(10 mg) as off white solid. X H NMR (400 MHz, DMSO-d6): δ 0.89- 0..94 (m, 2H), 1.65 (m, 2H), 1.92 (m, 2H), 3.29 (m, 2H), 3.34 (m, 1H), 3.39 (m, 1H), 3.83 (s, 3H), 3.99 (s, 3H), 7.32 - 7.49 (m, 5H), 8.15 (s, 1H), 13.06 (bs,lH). LCMS: 445.1 (M + H) + .

Synthesis of 2002, 6-(2-(4-fluoro-7-(lH-l,2,3-triazol-l-yl)-lH-pyrrolof2,3-clvy ridin-3- yl)-2-oxoacetyl)-l-vhenyl-6-azasvirof2.51octane-l-carbonitri le

2002

To a stirred solution of 2-(4-fluoro-7-(lH-l,2,3-triazol-l-yl)-lH-pyrrolo[2,3-c]pyrid in-3- yl)-2-oxoacetic acid (50 mg) in dry DMF (2 mL), l-phenyl-6-azaspiro[2.5]octane-l- carbonitrile (46 mg), BOP reagent (120 mg) and DIPEA (0.2 mL) were added. The reaction mixture was stirred at room temperature for 18 hours, before solvents were removed under reduced pressure. The resulting oil was diluted with ethyl acetate (50 mL), washed with 10% aHC0 3 (10 mL) and brine (10 mL). The organic layer was dried over anhydrous Na 2 S0 4 and concentrated using rotary evaporator. The resulting crude was purified by column chromatography using MeOH/CHCl 3 (1.5 : 8.5) as eluent to afford 6-(2-(4-fluoro-7-(lH-l,2,3-triazol-l-yl)-lH-pyrrolo[2,3-c]py ridin-3-yl)-2- oxoacetyl)-l-phenyl-6-azaspiro[2.5]octane-l-carbonitrile 2002 (30 mg) as off white solid. ¾ NMR (400 MHz, DMSO-d6): δ 0.82-1.05 (m, 2H), 1.61-1.66 (m, 1H), 1.84-1.93 (m, 2H), 2.01-2.07 (m, 1H), 3.14-3.20 (m, 1H), 3.37-3.65 (m, 1H), 3.67-3.70 (m, 1H), 4.05- 4.12 (m, 1H), 7.32 - 7.51 (m, 5H), 8.11-8.13 (d, 1H), 8.29-8.34 (m, 2H), 9.00-9.02 (d, 2H). LCMS: 468.1 (M - H) + . Synthesis of 2003, 6-(2-(4-methoxy-7-(3-methyl-lH-l,2,4-triazol-l-yl)-lH-vyrrol of2,3- clvyridin-3-yl)-2-oxoacetyl)-l-vhenyl-6-azasvirof2.51octane- l-carbonitrile

To a stirred solution of 2-(4-methoxy-7-(3-methyl-lH-l,2,4-triazol-l-yl)-lH-pyrrolo[2 ,3- c]pyridin-3-yl)-2-oxoacetic acid (50 mg) in dry DMF (2 mL), l-phenyl-6- azaspiro[2.5]octane-l-carbonitrile (42 mg), BOP reagent (110 mg) and DIPEA (0.2 mL) were added. The reaction mixture was stirred at room temperature for 18 hours, before solvents were removed under reduced pressure. The resulting oil was diluted with ethyl acetate (50 mL), washed with 10% aHC0 3 (10 mL) and brine (10 mL). The organic layer was dried over anhydrous Na 2 S0 4 and concentrated using rotary evaporator. The resulting crude was purified by column chromatography using MeOH/CHCl 3 (1.0 : 9.0) as eluent to afford 6-(2-(4-methoxy-7-(3-methyl-lH-l,2,4-triazol-l-yl)-lH-pyrrol o[2,3- c]pyridin-3-yl)-2-oxoacetyl)-l-phenyl-6-azaspiro[2.5]octane- l-carbonitrile 2003 (15 mg) as pale yellow solid. 'H NMR (400 MHz, DMSO-d6): δ 0.82-1.10 (m, 2H), 1.61-1.62 (m, 1H), 1.82-1.98 (m, 2H), 2.01-2.05 (m, 1H), 2.45 (s, 3H), 3.28-3.33 (m, 1H), 3.47-3.55 (m, 1H), 3.62-3.75(m, 1H), 3.98 (s, 3H), 4.05-4.13 (m, 1H), 7.37 - 7.49 (m, 5H), 7.87- 7.90 (d, 1H), 8.18-8.24 (d, 1H), 9.22-9.25 (d, 1H). LCMS: 496.1 (M + H) + .

Synthesis of 2004, l-(4-fluoro-7-(lH-l,2,3-triazol-l-yl)-lH-vyrrolof2,3-clvyrid in-3-yl)-

2-(4-(hvdroxy(l-methyl-lH-imidazol-2-yl)(vhenyl)methyl)vi veridin-l-yl)ethane-l,2- dione

Step 1:

To a stirred solution of 4-benzoylpiperidinium chloride (5 g) in dry DCM (50 mL), triethyl amine (11 mL) and Boc anhydride (6.7 g) were added. The reaction mixture was stirred at room temperature for 4 hours and diluted with water (50 mL). The aqueous phase was extracted with dichloromethane (2 x 25 mL). The combined organic layer was washed with brine (5 OmL) and dried over anhydrous Na 2 S0 4 . Evaporation of solvents under reduced pressure gave crude product, which was treated with hexane to obtain solid. The solid obtained was filtered, washed with cold hexane (50 mL) and dried under vacuum to get tert-butyl 4-benzoylpiperidine- 1 -carboxylate (5 g) as white solid. l H NMR (CDC1 3 ): δ 1.51 (s, 9H), 1.67-1.76 (m, 2H), 1.85-1.88 (m, 2H), 2.87-2.94 (m, 2H), 3.39- 3.45 (m, 1H), 4.16-4.19 (m, 1H), 7.47-7.60 (m, 3H), 7.94-7.96 (m, 2H).

Step 2:

To a stirred solution of n-Butyl lithium (3 mL, 2.8 M solution in hexane) in dry tetrahydrofuran (10 mL), N-methyl imidazole (0.68 g) in tetrahydrofuran (5mL) was slowly added under nitrogen atmosphere at -78°C. The reaction mixture was stirred at - 78°C for 2 hours and tert-butyl 4-benzoylpiperidine- 1 -carboxylate (2 g) in dry tetrahydrofuran (5 mL) was added slowly under nitrogen atmosphere at -78°C. The reaction mixture was stirred at -78°C for 1 hour, before being quenched with saturated ammonium chloride solution (25 mL). The reaction mixture was diluted with dichloromethane\ methanol (50 mL \ 10 mL) mixture and the aqueous phase was extracted with dichloromethane\ methanol (50 mL \ 10 mL) (2 x 60 mL). The combined organic layer was washed with brine (50 mL) and dried over anhydrous Na 2 S0 4 .

Evaporation of solvents under reduced pressure gave crude product. This was treated with hexane\ethyl acetate (1 : 1, 25 mL) to obtain solid. The solid obtained was filtered, washed with hexane\ethyl acetate (1 : 1, 25 mL) and dried under vacuum to get tert-butyl 4-(hydroxy( 1 -methyl- 1 H-imidazol-2-yl)(phenyl)methyl)piperidine- 1 -carboxylate ( 1.2 g) as white solid. ¾ NMR (CDC1 3 ): δ 1.35-1.42 (m, 3H), 1.47 (s, 9H), 2.10-2.13 (d, IH), 2.65-2.79 (m, IH), 2.92-3.05 (m, 2H), 3.46 (s, 3H), 3.83 (s, IH), 4.09-4.12 (m, 2H), 6.83 (s, IH), 7.10(s, IH), 7.24-7.33 (m, 5H). LCMS: 372.0 (M + H) + . Step 3:

TFA (1 mL) was added into a solution of tert-butyl 4-(hydroxy( 1 -methyl- 1 H-imidazol-2- yl)(phenyl)methyl)piperidine- 1 -carboxylate (0.3 g) in dry DCM (10 mL) at 0°C. The reaction mixture was stirred at room temperature for 18 hours. The volatiles were completely removed under reduced pressure and the resulting crude ( 1 -methyl- 1 H- imidazol-2-yl)(phenyl)(piperidin-4-yl)methanol (0.3 g) was used further without any purification. X H NMR (CDC1 3 ): δ 1.37-1.42 (m, 3H), 2.13-2.18 (d, IH), 2.75-2.90 (m, IH), 3.12-3.25 (m, 2H), 3.50 (s, 3H), 3.83 (s, IH), 4.04-4.10 (m, 2H), 6.98 (s, IH), 7.30(s, IH), 7.32-7.38 (m, 5H). LCMS: 272.0 (M + H) + .

Step 4:

To a stirred solution of 2-(4-fluoro-7-(lH-l,2,3-triazol-l-yl)-lH-pyrrolo[2,3-c]pyrid in-3- yl)-2-oxoacetic acid (50 mg) in dry DMF (2 mL), (1 -methyl- lH-imidazol-2- yl)(phenyl)(piperidin-4-yl)methanol (80 mg), BOP reagent (120 mg) and DIPEA (0.5 mL) were added. The reaction mixture was stirred at room temperature for 18 hours, before solvents were removed under reduced pressure. The resulting oil was diluted with ethyl acetate (50 mL), washed with 10% NaHC0 3 (10 mL) and brine (10 mL). The organic layer was dried over anhydrous Na 2 S0 4 and concentrated using rotary evaporator. The resulting crude was purified by column chromatography using MeOH/CHCl 3 (2.0:8.0) as eluent to afford l-(4-fluoro-7-(lH-l,2,3-triazol-l-yl)-lH-pyrrolo[2,3- c]pyridin-3-yl)-2-(4-(hydroxy(l -methyl- lH-imidazol-2-yl)(phenyl)methyl)piperidin-l- yl)ethane-l,2-dione 2004 (25 mg) as white solid.

¾ NMR (400 MHz, DMSO - d 6 ): δ 1.23-1.46 (m, 4H), 2.28-2.32 (m, IH), 2.63-2.87 (m, 3H), 3.16-3.20 (m, 1H), 3.28-3.38 (s, 3H), 3.72-3.81 (m, 1H), 4.32 - 4.42 (dd, 1H), 5.87- 5.97 (d, 1H), 6.82-6.85 (dd, 1H), 6.86-6.99 (dd, 1H), 7.18-7.32 (m, 5H), 8.11 (s, 1H), 8.17-8.27 (dd, 1H), 8.27-8.29 (m, 1H), 9.02 (s, 1H), 13.04 (bs, 1H). LCMS: 529.2 (M + H) + .

Synthesis of 2005, l-f4-fhvdroxyfl-methyl-lH-imidazol-2-yl)fphenyl)methyl)piper idin- l-yl)-2-C4-methoxy-7-C3-methyl-lH-l,2,4-triazol-l-yl)-lH-Oyr roloi2,3-clOyridin-3- yl)ethane-l,2-dione

To a stirred solution of 2-(4-methoxy-7-(3-methyl-lH-l,2,4-triazol-l-yl)-lH-pyrrolo[2 ,3- c]pyridin-3-yl)-2-oxoacetic acid (50 mg) in dry DMF (2 rnL), (1 -methyl- lH-imidazol-2- yl)(phenyl)(piperidin-4-yl)methanol (100 mg), BOP reagent (110 mg) and DIPEA (0.5 mL) were added. The reaction mixture was stirred at room temperature for 18 hours, before solvents were removed under reduced pressure. The resulting oil was diluted with ethyl acetate (50 mL), washed with 10% NaHC0 3 (10 mL) and brine (10 mL). The organic layer was dried over anhydrous a2S0 4 and concentrated using rotary evaporator. The resulting crude was purified by column chromatography using ΜεΟΗ\ΟΗ(¾ (1.5 : 8.5) as eluent to afford l-(4-(hydroxy(l-methyl-lH-imidazol-2- yl)(phenyl)methyl)piperidin- 1 -yl)-2-(4-methoxy-7-(3 -methyl- 1 H- 1 ,2,4-triazol- 1 -yl)- 1 H- pyrrolo[2,3-c]pyridin-3-yl)ethane-l,2-dione 2005 (20 mg) as white solid. ¾ NMR (400 MHz, DMSO - d 6 ): δ 1.23-1.27 (m, 4H), 2.45 (s, 3H), 2.73-2.87 (m, 2H), 3.16 (s, 3H), 3.28-3.38 (m, 2H), 3.92 (s, 3H), 4.08 - 4.12 (m, 1H), 5.87-5.97 ( m, 1H), 6.82-6.95 (m,

2H), 7.18-7.32 (m, 5H), 7.84 (s, 1H), 8.13-8.16 (m, 1H), 8.31 (s, 1H), 9.23 (s, 1H), 12.36 (bs, 1H). LCMS: 555.2 (M + H) + . Synthesis of 2006, l-(4-fluoro-7-(lH-l,2,3-triazol-l-yl)-lH-vyrrolof2,3-clvyrid in-3-yl)- 2-f4-ffl-methyl-lH-imidazol-2-yl)fphenyl)methyl)piperidin-l- yl)ethane-l,2-dione

2006

Step 1:

Concentrated H 2 S0 4 (0.5 mL) was added into a solution of tert-butyl 4-(hydroxy(l- methyl-lH-imidazol-2-yl)(phenyl)methyl)piperidine-l-carboxyl ate (0.5 g) in dry DCM (20 mL) at room temperature. The reaction mixture was stirred at 50°C for about 6 hours and the reaction mixture was cooled to 0°C. The reaction mixture was slowly neutralized with 25% ammonium hydroxide solution and pH was adjusted to 9 - 10. The reaction mixture was diluted with dichloromethane (50 mL) and the aqueous phase was extracted with dichloromethane (2 x 25 mL). The combined organic layer was washed with brine (25 mL) and dried over anhydrous Na 2 S0 4 . Evaporation of solvent under reduced pressure gave crude 4-((l-methyl-lH-imidazol-2-yl)(phenyl)methylene)piperidine (250 mg), which was used further without any purification. l H NMR (CDCI 3 ): δ 1.15-1.23 (m, 1H), 1.43-1.57 (m, 1H), 1.65-1.79 (m, 2H), 2.76-2.79 (m, 1H), 3.05-3.12 (m, 2H), 3.23- 3.39 (m, 1H), 3.57 (s, 3H), 7.06 (s, 1H), 7.32-7.70 (m, 6H). LCMS: 254.6 (M + H) + .

Step 2:

To a stirred solution of 4-((l -methyl- lH-imidazol-2-yl)(phenyl)methylene)piperidine (0.25 g) in dry methanol (20 mL), palladium on carbon (0.040 g) was slowly added under nitrogen atmosphere. The reaction mixture was allowed to stir under hydrogen atmosphere using bladder for 18 hours. After completion of the reaction, the reaction mixture was filtered through celite bed and washed with methanol (3 x 20 mL). The filtrate was concentrated under reduced pressure to afford 4-((l-methyl-lH-imidazol-2- yl)(phenyl)methyl)piperidine (150 mg). X H NMR (CDC1 3 ): δ 0.93-1.03 (m, 2H), 1.55-

1.77 (m, 2H), 2.15-2.23 (m, 2H), 3.10-3.23 (m, 1H), 3.44(s, 3H), 3.50-3.59 (m, 1H), 3.75-

3.78 (d, 1H), 3.95-4.13 (t, 1H), 6.77-6.80 ( s, 1H), 6.83-6.89 ( s, 1Η),7.16-7.42 (m, 5H). LCMS: 256.5 (M + H) + . Step 3:

To a stirred solution of 2-(4-fluoro-7-(lH-l,2,3-triazol-l-yl)-lH-pyrrolo[2,3-c]pyrid in-3- yl)-2-oxoacetic acid (50 mg) in dry DMF (2 mL), 4-((l -methyl- lH-imidazol-2- yl)(phenyl)methyl)piperidine (55mg, 0.21mmol), BOP reagent (120 mg) and DIPEA (0.2 mL) were added. The reaction mixture was stirred at room temperature for 18 hours and solvent was removed under reduced pressure. The resulting oil was diluted with ethyl acetate (50 mL), washed with 10% aHC0 3 (10 mL) and brine (10 mL). The organic layer was dried over anhydrous Na 2 S0 4 and concentrated using rotary evaporator. The resulting crude was purified by column chromatography using MeOH\CHCl 3 (0.5 : 9.5) as eluent to afford l-(4-fluoro-7-(lH-l,2,3-triazol-l-yl)-lH-pyrrolo[2,3-c]pyrid in-3-yl)-2- (4-(( 1 -methyl- 1 H-imidazol-2-yl)(phenyl)methyl)piperidin- 1 -yl)ethane- 1 ,2-dione 2006 (20 mg) as white solid

¾ NMR (400 MHz, DMSO - d 6 ): δ 1.00-1.22 (m, 3H), 1.6-1.8 (m, 1H), 2.13-2.27 (m, 1H), 2.67-2.86 (m, 1H), 2.93-3.15 (m, 1H), 3.44-3.46 (d, 3H), 3.48 - 3.52 (m, 1H), 3.63- 3.71 (m, 1H), 3.86-3.93 (d, 1H), 4.32-4.45 (t, 1H), 6.87-6.97 ( m, 2H), 7.14-7.34 (m, 6H), 8.11 (s, 1H), 8.21-8.22 (d, 1H), 8.28-8.33 (m, 1H), 9.0 (s, 1H), 13.06 (bs, 1H). LCMS: 513.2 (M + H) + .

Synthesis of 2007, l-(4-methoxy-7-(3-methyl-lH-l,2,4-triazol-l-yl)-lH-pyrrolo[2 ,3- clpyridin-3-yl)-2-(4-((l-methyl^H midazol-2-yl)(phenyl)methyl)pw

1,2-dione

To a stirred solution of 2-(4-methoxy-7-(3-methyl-lH-l,2,4-triazol-l-yl)-lH-pyrrolo[2 ,3- c]pyridin-3-yl)-2-oxoacetic acid (50 mg) in dry DMF (2 mL), 4-((l -methyl- lH-imidazol- 2-yl)(phenyl)methyl)piperidine (50 mg), BOP reagent (1 10 mg) and DIPEA (0.2 mL) were added. The reaction mixture was stirred at room temperature for 18 hours, before solvents were removed under reduced pressure. The resulting oil was diluted with ethyl acetate (50 mL), washed with 10% aHC0 3 (10 mL) and brine (10 mL). The organic layer was dried over anhydrous a2S0 4 and concentrated using rotary evaporator. The resulting crude was purified by column chromatography using MeOH\CHCl 3 (0.5 : 9.5) as eluent to afford l-(4-methoxy-7-(3-methyl-lH-l,2,4-triazol-l-yl)-lH-pyrrolo[2 ,3- c]pyridin-3-yl)-2-(4-((l -methyl- lH-imidazol-2-yl)(phenyl)methyl)piperi din- l-yl)ethane- 1,2-dione 2007 (15 mg) as off white solid. ¾ NMR (400 MHz, DMSO - d 6 ): δ 1.20- 1.33 (m, 4H), 1.6-1.8 (m, 1H), 1.93-2.07 (m, 1H), 2.17-2.26 (m, 1H), 2.50 (s, 3H), 2.66-

2.75 (m, 2H), 2.85 - 3.02 (m, 1H), 3.13-3.21 (m, 1H), 3.45 (s, 3H), 3.62-3.85 (m, 3H), 4.02 (s, 3H), 4.63-4.67 (m, 1H), 6.74-6.77 ( m, 1H), 7.04-7.14 (m, 1H), 7.22-7.34 (m, 6H), 7.74 (s, 1H), 8.18 (s, 1H), 9.10 (s, 1H), 10.96 (bs, 1H). LCMS: 539.4 (M + H) + .

Biology Data for the Examples μΜ" means micromolar;

• "mL" means milliliter;

• "μΐ" means microliter;

means milligram;

The materials and experimental procedures used to obtain the results reported in Table 1 are described below. Cells:

• Virus production - Human embryonic Kidney cell line, 293T (HEK 293T), was

propagated in Dulbecco's Modified Eagle Medium (Invitrogen, Carlsbad, CA) containing 10% fetal bovine serum (FBS, Sigma, St. Louis, MO). The human T-cell leukemia cell MT2 (AIDS Research and Reference Reagent Program, Cat. 237) was propagated in RPMI 1640 (Invitrogen, Carlsbad, CA) containing 10% fetal bovine serum (FBS, Hyclone, Logan , UT)

• Virus infection - Single-round infectious reporter virus was produced by co- transfecting HEK 293T cells with plasmide expressing the HIV-1 LAI envelope along with a plasmid containing an HIV- 1 LAI proviral cDNA with the envelope gene replaced by a firefly luciferase reporter gene (Chen et ah, Ref. 41). Transfections were performed using lipofectAMTNE PLUS reagent as described by the

manufacturer (Invitrogen, Carlsbad, CA).

Experimental Procedure

1. MT2 cells were plated in black, 384 well plates at a cell density of 5 x 10 3 cells per well in 25 μΐ RPMI 1640 containing 10% FBS. 2. Compound (diluted in dimethylsulfoxide and growth medium) was added to cells at 12.5 μΐ/well, so that the final assay concentration would be <50 nM.

3. 12.5 μΐ of single-round infectious reporter virus in Dulbecco's Modified Eagle

Medium was added to the plated cells and compound at an approximate multiplicity of infection (MOI) of 0.01, resulting in a final volume of 50 μΐ per well.

4. Virus-infected cells were incubated at 37 degrees Celsius in a CO 2 incubator and harvested 72 h after infection. 5. Viral infection was monitored by measuring luciferase expression in the infected cells using a luciferase reporter gene assay kit (Steady-Glo, Promega, Madison, WI) as described by the manufacturer. Luciferase activity was then quantified by measuring luminescence using an EnVision Multilabel Plate Readers (PerkinElmer, Waltham, MA).

6. The percent inhibition for each compound was calculated by quantifying the level of luciferase expression in cells infected in the presence of each compound as a percentage of that observed for cells infected in the absence of compound and subtracting such a determined value from 100.

7. An EC50 provides a method for comparing the antiviral potency of the compounds of this invention. The effective concentration for fifty percent inhibition (EC5 0 ) was calculated with the Microsoft Excel Xlfit curve fitting software. For each compound, curves were generated from percent inhibition calculated at 10 different

concentrations by using a four parameter logistic model (model 205). The EC5 0 data for the compounds is shown in Table 2. Table 1 is the key for the data in Table 2.

Table 1. Biological Data Key for EC 50

Table 2

Compd. Structure EG* Number Group from Table 1

1001

B

H 3490 nM

The foregoing description is merely illustrative and should not be understood to limit the scope or underlying principles of the invention in any way. Indeed, various modifications of the invention, in addition to those shown and described herein, will become apparent to those skilled in the art from the following examples and the foregoing description. Such modifications are also intended to fall within the scope of the appended claims.