Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
POLYMERS FOR SPECIALTY APPLICATIONS
Document Type and Number:
WIPO Patent Application WO/2020/072776
Kind Code:
A1
Abstract:
The invention relates to ring-opening metathesis polymerization (ROMP) reactions of making polymers suitable for the electronic industry. Particularly, the invention relates to novel polymers with low dielectric constant (Dk) and low dielectric loss (Df) suited for smaller, lighter, higher speeds and higher frequency transmission electronic products. Such polymers can be used in a variety of materials and composites of the printed circuit board (PCB) industry.

Inventors:
BEERMAN JENNIFER (US)
DUNCAN ALEXANDRA (US)
EDGECOMBE BRIAN (US)
GOULINIAN KRISTINA (US)
HERRON JESSICA (US)
PHILLIPS JOHN (US)
Application Number:
PCT/US2019/054503
Publication Date:
April 09, 2020
Filing Date:
October 03, 2019
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
MATERIA INC (US)
International Classes:
C08F4/80; C08G61/06; C08G61/08
Foreign References:
EP1652885B12009-03-11
US8101697B22012-01-24
Other References:
ONIMISI, MY ET AL.: "Computation of Dielectric Constant and Loss Factor of Water and Dimethylsulphoxide from 0.1 to 13 GHz", SCIENTIFIC REVIEW, vol. 1, no. 4, 2015, pages 79 - 85, XP055699641
See also references of EP 3861032A4
Attorney, Agent or Firm:
RAPHAEL, Aaron, M. (US)
Download PDF:
Claims:
What is claimed is:

1. A polymer having a dielectric constant Dk < 3 at 1 to 100 GHz and a dielectric loss Df < 0.01 at 1 to 100 GHz, synthesized by ring opening metathesis reactions comprising at least one monomer of Formulae (I), (II), and (III), optionally an olefin of Formula (IV), and at least one metal carbene olefin metathesis catalyst,

Formula (I) Formula (II) Formula (III) Formula (IV) whereln·

z is 0, 1, 2, or 3;

Ra is H, optionally substituted linear or branched C1-24 alkyl, optionally substituted linear or branched C2-24 alkenyl, halogen, -C(O)Rf, -CH2-C(O)Rf, -ORg, -CH2-ORg, CN, NO2, -CF3, - P(O)(OH)2, -OP(O)(OH)2, optionally substituted heterocycle, -CH2-(optionally substituted heterocycle), optionally substituted C3-10 cycloalkyl, -CH2-(optionally substituted C3-10 cycloalkyl), optionally substituted C5-24 aryl, -CH2-(optionally substituted C5-24 aryl), optionally substituted C3-8 cycloalkenyl, or -CH2-(optionally substituted C3-8 cycloalkenyl);

Rb is H, optionally substituted linear or branched C1-24 alkyl, optionally substituted linear or branched C2-24 alkenyl, halogen, -C(O)Rf, -CH2-C(O)Rf, -ORg, -CH2-ORg, CN, NO2, -CF3, - P(O)(OH)2, -OP(O)(OH)2, optionally substituted heterocycle, -CH2-(optionally substituted heterocycle), optionally substituted C3-10 cycloalkyl, -CH2-(optionally substituted C3-10 cycloalkyl), optionally substituted C5-24 aryl, -CH2-(optionally substituted C5-24 aryl), optionally substituted C3-8 cycloalkenyl, or -CH2-(optionally substituted C3-8 cycloalkenyl);

Rc is H, optionally substituted linear or branched C1-24 alkyl, optionally substituted linear or branched C2-24 alkenyl, halogen, -C(O)Rf, -CH2-C(O)Rf, -ORg, -CH2-ORg, CN, NO2, -CF3, -

P(O)(OH)2, -OP(O)(OH)2, optionally substituted heterocycle, -CH2-(optionally substituted heterocycle), optionally substituted C3-810 cycloalkyl, -CH2-(optionally substituted C3-10 cycloalkyl), optionally substituted C5-24 aryl, -CH2-(optionally substituted C5-24 aryl), optionally substituted C3-8 cycloalkenyl, -CH2-(optionally substituted C3-8 cycloalkenyl), -C(Rh)(R1)COORi, -C(Rh)(Ri)C(O)H, -C(Rh)(Ri)C(O)Rk, -C(Rh)(R')CRl(ORm)(ORn), -C(Rh)(Ri)C(O)NR°R42, - C(Rh)(R1)C(O)NR°0Rn, or together with Rd can form a polycyclic ring;

Rd is H, optionally substituted linear or branched C1-24 alkyl, optionally substituted linear or branched C2-24 alkenyl, halogen, -C(O)Rf, -CH2-C(O)Rf, -ORg, -CH2-ORg, CN, NO2, -CF3, - P(O)(0H)2, -0P(O)(0H)2, optionally substituted heterocycle, -CH2-(optionally substituted heterocycle), optionally substituted C3-10 cycloalkyl, -CH2-(optionally substituted C3-10 cycloalkyl), optionally substituted C5-24 aryl, -CH2-(optionally substituted C5-24 aryl), optionally substituted C3-8 cycloalkenyl, -CH2-(optionally substituted C3-8 cycloalkenyl), -C(Rh)(R')COORJ, -C(Rh)(Ri)C(O)H, -C(Rh)(Ri)C(O)Rk, -C(Rh)(R')CRl(ORm)(ORn), -C(Rh)(Ri)C(O)NR°Rp, - C(Rh)(R1)C(O)NR°0Rn, or together with Rc can form a polycyclic ring;

each Rs is independently optionally substituted linear or branched C1-24 alkyl, optionally substituted linear or branched C2-24 alkenyl, halogen, -C(O)Rf, -CH2-C(O)Rf, -ORg, -CH2-ORg, CN, NO2, -CF3, -P(O)(0H)2, -0P(O)(0H)2, optionally substituted heterocycle, -CH2-(optionally substituted heterocycle), optionally substituted C3-10 cycloalkyl, -CH2-(optionally substituted C3-10 cycloalkyl), optionally substituted C5-24 aryl, -CH2-(optionally substituted C5-24 aryl), optionally substituted C3-8 cycloalkenyl, -CH2-(optionally substituted C3-8 cycloalkenyl), -C(Rh)(R')COORJ, -C(Rh)(Ri)C(O)H, -C(Rh)(Ri)C(O)Rk, -C(Rh)(R')CRl(ORm)(ORn), -C(Rh)(Ri)C(O)NR°Rp, or - C(Rh)(Ri)C(O)NR°0Rn;

t is 0, 1, 2, 3, 4, 5, or 6;

Rf is OH, ORk, NRgRh, optionally substituted linear or branched C1-24 alkyl, optionally substituted C3-10 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C3-8 cycloalkenyl;

Rg is H, optionally substituted linear or branched C1-24 alkyl, optionally substituted C3-10 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, optionally substituted linear or branched C2-6 alkenyl, -C(O)-(optionally substituted linear or branched C2-6 alkenyl), or optionally substituted C3-8 cycloalkenyl;

Rh is H, optionally substituted linear or branched C1-24 alkyl, optionally substituted C3-10 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C3-8 cycloalkenyl; R1 is H, optionally substituted linear or branched C1-24 alkyl, optionally substituted C3-10 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C3-8 cycloalkenyl;

RJ is H, optionally substituted linear or branched C1-24 alkyl, optionally substituted C3-10 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C3-8 cycloalkenyl;

Rk is optionally substituted linear or branched C1-24 alkyl, optionally substituted C3-10 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C3-8 cycloalkenyl;

R1 is H, optionally substituted linear or branched C1-24 alkyl, optionally substituted C3-10 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C3-8 cycloalkenyl;

Rm is H, optionally substituted linear or branched C1-24 alkyl, optionally substituted C3-10 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C3-8 cycloalkenyl;

Rn is H, optionally substituted linear or branched C1-24 alkyl, optionally substituted C3-10 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C3-8 cycloalkenyl;

R° is H, optionally substituted linear or branched C1-24 alkyl, optionally substituted C3-10 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C3-8 cycloalkenyl; and

Rp is H, optionally substituted linear or branched C1-24 alkyl, optionally substituted C3-10 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C3-8 cycloalkenyl.

2. The polymer according to claim 1, wherein:

Ra is H, optionally substituted linear or branched C1-6 alkyl, optionally substituted linear or branched C2-6 alkenyl, halogen, -C(O)Rf, -CH2-C(O)Rf, -ORg, -CH2-ORg, CN, NO2, -CF3, - P(O)(0H)2, -0P(O)(0H)2, optionally substituted heterocycle, -CH2-(optionally substituted heterocycle), optionally substituted C5-7 cycloalkyl, -CH2-(optionally substituted C5-7 cycloalkyl), optionally substituted C6-10 aryl, -CH2-(optionally substituted C6-10 aryl), optionally substituted C3- 8 cycloalkenyl, or -CH2-(optionally substituted C3-8 cycloalkenyl);

Rb is H, optionally substituted linear or branched C1-6 alkyl, optionally substituted linear or branched C2-6 alkenyl, halogen, -C(O)Rf, -CH2-C(O)Rf, -ORg, -CH2-ORg, CN, NO2, -CF3, - P(O)(0H)2, -0P(O)(0H)2, optionally substituted heterocycle, -CH2-(optionally substituted heterocycle), optionally substituted C5-7 cycloalkyl, -CH2-(optionally substituted C5-7 cycloalkyl), optionally substituted C6-10 aryl, -CH2-(optionally substituted C6-10 aryl), optionally substituted C3- 8 cycloalkenyl, or -CH2-(optionally substituted C3-8 cycloalkenyl);

t is 0;

Rf is OH, ORk, NRgRh, optionally substituted linear or branched C1-6 alkyl, optionally substituted C5-7 cycloalkyl, optionally substituted heterocycle, optionally substituted C6-10 aryl, or optionally substituted C3-8 cycloalkenyl;

Rg is H, optionally substituted linear or branched C1-6 alkyl, optionally substituted C5-7 cycloalkyl, optionally substituted heterocycle, optionally substituted C6-10 aryl, optionally substituted linear or branched C2-6 alkenyl, -C(O)-(optionally substituted linear or branched C2-6 alkenyl), or optionally substituted C3-8 cycloalkenyl;

Rh is H, optionally substituted linear or branched C1-6 alkyl, optionally substituted C5-7 cycloalkyl, optionally substituted heterocycle, optionally substituted C6-10 aryl, or optionally substituted C3-8 cycloalkenyl;

Rk is optionally substituted linear or branched C1-6 alkyl, optionally substituted C5-7 cycloalkyl, optionally substituted heterocycle, optionally substituted C6-10 aryl, or optionally substituted C3-8 cycloalkenyl;

z is 2;

Rcis H, optionally substituted linear or branched C1-6 alkyl, optionally substituted linear or branched C2-6 alkenyl, halogen, -C(O)Rf, -CH2-C(O)Rf, -ORg, CN, NO2, -CF3, -P(O)(0H)2, - 0P(O)(0H)2, optionally substituted heterocycle, -CH2-(optionally substituted heterocycle), optionally substituted C5-7 cycloalkyl, -CH2-(optionally substituted C5-7 cycloalkyl), optionally substituted C6-10 aryl, -CH2-(optionally substituted C6-10 aryl), optionally substituted C3-8 cycloalkenyl, or -CH2-(optionally substituted C3-8 cycloalkenyl); and

Rd is H, optionally substituted linear or branched C1-6 alkyl, optionally substituted linear or branched C2-6 alkenyl, halogen, -C(O)Rf, -CH2-C(O)Rf, -ORg, CN, NO2, -CF3, -P(O)(0H)2, - 0P(O)(0H)2, optionally substituted heterocycle, -CH2-(optionally substituted heterocycle), optionally substituted C5-7 cycloalkyl, -CH2-(optionally substituted C5-7 cycloalkyl), optionally substituted C5-24 aryl, -CH2-(optionally substituted C6-10 aryl), optionally substituted C3-8 cycloalkenyl, or -CH2-(optionally substituted C3-8 cycloalkenyl).

3. The polymer according to claim 1, wherein:

Ra is optionally substituted linear or branched C2-24 alkenyl, optionally substituted linear or branched C1-24 alkyl, or optionally substituted C5-24 aryl;

z is 2;

Rb is optionally substituted linear or branched C1-24 alkyl, -CH2-ORg, -CH2-(optionally substituted heterocycle), -C(O)Rf, optionally substituted heterocycle, spiro optionally substituted heterocycle, -CH2-(optionally substituted C5-24 aryl), or -CH2-ORg;

Rg is H, optionally substituted linear or branched C1-24 alkyl, -C(O)-(optionally substituted linear or branched C2-6 alkenyl), or optionally substituted C5-24 aryl;

Rf is OH;

Rc is H; and

Rd is optionally substituted linear or branched C1-24 alkyl, or -CH2-(optionally substituted heterocycle).

4. The polymer according to claim 1, wherein the at least one monomer of Formula (I) has

and t = 0; the at least one monomer of Formula (II) has the structure

the at least one monomer of

Formula (III) has the structure wherein z is 1 or 2; and the at least one olefin of Formula (IV) has the structure wherein:

the at least one monomer of Formula (III) is

and the at least one olefin of Formula (IV) is

6. The polymer according to claim 1, wherein: the at least one monomer of Formula (I) is the at least one monomer of Formula (II) is the at least one monomer of

7. The polymer according to any of claims 1-6, wherein the at least one metal carbene olefin metathesis catalyst has the structure of Formula (1):

Formula (1)

wherein:

M is ruthenium;

L1, L2, and L3 are independently neutral electron donor ligands;

n is 0 or 1;

m is 0, 1, or 2;

k is 0 or 1;

X1 and X2 are independently anionic ligands; and

R1 and R2 are independently hydrogen, optionally substituted hydrocarbyl, optionally substituted heteroatom-containing hydrocarbyl; or R1 and R2 are linked together to form one or more cyclic groups.

8. The polymer according to any of claims 1-6, wherein the at least one metal carbene olefin metathesis catalyst has the structure of Formula (2):

wherein:

L1 is an independently neutral electron donor ligand;

X1 and X2 are independently anionic ligands;

W is O, halogen, NR33, or S;

R19 is H, optionally substituted Ci-24 alkyl, -C(R34)(R35)COOR36, -C(R34)(R35)C(0)H, - C(R34)(R35)C(0)R37, -C(R34)(R35)CR38(OR39)(OR40), -C(R34)(R35)C(0)NR41R42,

C(R34)(R35)C(0)NR41OR40, -C(0)R25, optionally substituted heterocycle, optionally substituted C3-10 cycloalkyl, optionally substituted C5-24 aryl, optionally substituted C3-8 cycloalkenyl, or when W is NR33, then R19 together with R33 can form an optionally substituted heterocyclic ring or when W is halogen then R19 is nil;

R20 is H, optionally substituted C1-24 alkyl, halogen, -C(0)R25, -OR26, CN, -NR27R28, NO2, -CF3, -S(0)xR29, -P(O)(0H)2, -0P(O)(0H)2, -SR31, optionally substituted heterocycle, optionally substituted C3-10 cycloalkyl, optionally substituted C5-24 aryl, optionally substituted C3-8 cycloalkenyl, or together with R21 can form a polycyclic ring;

R21 is H, optionally substituted C1-24 alkyl, halogen, -C(0)R25, -OR26, CN, -NR27R28, NO2, -CF3, -S(0)xR29, -P(O)(0H)2, -0P(O)(0H)2, -SR31, optionally substituted heterocycle, optionally substituted C3-10 cycloalkyl, optionally substituted C5-24 aryl, optionally substituted C3-8 cycloalkenyl, or together with R20 or together with R22 can form a polycyclic ring;

R22 is H, optionally substituted C1-24 alkyl, halogen, -C(0)R25, -OR26, CN, -NR27R28, NO2, -CF3, -S(0)xR29, -P(O)(0H)2, -0P(O)(0H)2, -SR31, optionally substituted heterocycle, optionally substituted C3-10 cycloalkyl, optionally substituted C5-24 aryl, optionally substituted C3-8 cycloalkenyl, or together with R21 or together with R23 can form a polycyclic ring; R23 is H, optionally substituted C1-24 alkyl, halogen, -C(0)R25, -OR26, CN, -NR27R28, NO2, -CF3, -S(0)xR29, -P(O)(0H)2, -0P(O)(0H)2, -SR31, optionally substituted heterocycle, optionally substituted C3-10 cycloalkyl, optionally substituted C5-24 aryl, optionally substituted C3-8 cycloalkenyl, or together with R22 can form a polycyclic ring;

R24 is H, optionally substituted C1-24 alkyl, halogen, -C(0)R25, -OR26, CN, -NR27R28, NO2, -CF3, -S(0)xR29, -P(O)(0H)2, -0P(O)(0H)2, -SR31, optionally substituted heterocycle, optionally substituted C3-10 cycloalkyl, optionally substituted C5-24 aryl, or optionally substituted C3-8 cycloalkenyl;

R25 is OH, OR30, NR27R28, optionally substituted C1-24 alkyl, optionally substituted C3-10 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C3-8 cycloalkenyl;

R26 is H, optionally substituted C1-24 alkyl, optionally substituted C3-10 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C3-8 cycloalkenyl;

R27 is H, optionally substituted C1-24 alkyl, optionally substituted C3-10 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C3-8 cycloalkenyl;

R28 is H, optionally substituted C1-24 alkyl, optionally substituted C3-10 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C3-8 cycloalkenyl;

R29 is H, optionally substituted C1-24 alkyl, OR26, -NR27R28, optionally substituted heterocycle, optionally substituted C3-10 cycloalkyl, optionally substituted C5-24 aryl, or optionally substituted C3-8 cycloalkenyl;

R30 is optionally substituted C1-24 alkyl, optionally substituted C3-10 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C3-8 cycloalkenyl;

R31 is H, optionally substituted C1-24 alkyl, optionally substituted C3-10 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C3-8 cycloalkenyl; R33 is H, optionally substituted C1-24 alkyl, optionally substituted C3-10 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C3-8 cycloalkenyl;

R34 is H, optionally substituted C1-24 alkyl, optionally substituted C3-10 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C3-8 cycloalkenyl;

R35 is H, optionally substituted C1-24 alkyl, optionally substituted C3-10 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C3-8 cycloalkenyl;

R36 is H, optionally substituted C1-24 alkyl, optionally substituted C3-10 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C3-8 cycloalkenyl;

R37 is optionally substituted C1-24 alkyl, optionally substituted C3-10 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C3-8 cycloalkenyl;

R38 is H, optionally substituted C1-24 alkyl, optionally substituted C3-10 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C3-8 cycloalkenyl;

R39 is H, optionally substituted C1-24 alkyl, optionally substituted C3-10 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C3-8 cycloalkenyl;

R40 is H, optionally substituted C1-24 alkyl, optionally substituted C3-10 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C3-8 cycloalkenyl;

R41 is H, optionally substituted C1-24 alkyl, optionally substituted C3-10 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C3-8 cycloalkenyl;

R42 is H, optionally substituted C1-24 alkyl, optionally substituted C3-10 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C3-8 cycloalkenyl; and

x is 1 or 2.

9. The polymer according to claim 7 or claim 8, wherein wherein:

X and Y are independently C, CR3a, N, O, S, or P;

Q1, Q2, R3, R3a, and R4 are independently hydrogen optionally substituted hydrocarbyl, optionally substituted heteroatom-containing hydrocarbyl;

p is 0, when X is O or S, p is 1, when X is N, P, or CR3a, and p is 2, when X is C; and

q is 0, when Y is O or S, q is 1, when Y is N, P, or CR3a, and q is 2, when X is C.

10. The polymer according to claim 7 or claim 8, wherein

wherein:

Q is a two-atom linkage having the structure -[CRuR12]s-[CR13R14]t- or -[CR11=CR13]-, wherein R11, R12, R13, and R14 are independently hydrogen, optionally substituted hydrocarbyl, optionally substituted heteroatom-containing hydrocarbyl ;

s and t are independently 1 or 2; or

any two of R11, R12, R13, and R14 are optionally linked together and can form an optionally substituted, saturated or unsaturated polycyclic ring structure.

1 1. The polymer according to claim 7 or claim 8, wherein

wherein:

Z is N or CR32;

R1 is H, optionally substituted C1-24 alkyl, halogen, -C(O)R25, -OR26, CN, -NR27R28, NO2, -CF3, -S(O)xR29, -P(O)(0H)2, -0P(O)(0H)2, -SR31, optionally substituted heterocycle, optionally substituted C3-10 cycloalkyl, optionally substituted C5-24 aryl, optionally substituted C3-8 cycloalkenyl, or together with R2 can form a spiro compound, or together with R3 or together with R4 can form a polycyclic ring;

R2 is H, optionally substituted C1-24 alkyl, halogen, -C(0)R25, -OR26, CN, -NR27R28, NO2, -CF3, -S(0)xR29, -P(O)(0H)2, -0P(O)(0H)2, -SR31, optionally substituted heterocycle, optionally substituted C3-10 cycloalkyl, optionally substituted C5-24 aryl, optionally substituted C3-8 cycloalkenyl, or together with R1 can form a spiro compound, or together with R3 or together with R4 can form a polycyclic ring;

R3 is H, optionally substituted C1-24 alkyl, halogen, -C(0)R25, -OR26, CN, -NR27R28, NO2, -CF3, -S(0)xR29, -P(O)(0H)2, -0P(O)(0H)2, -SR31, optionally substituted heterocycle, optionally substituted C3-10 cycloalkyl, optionally substituted C5-24 aryl, optionally substituted C3-8 cycloalkenyl, or together with R2 or together with R1 can form a polycyclic ring or together with R4 can form a spiro compound;

R4 is H, optionally substituted C1-24 alkyl, halogen, -C(0)R25, -OR26, CN, -NR27R28, NO2, -CF3, -S(0)xR29, -P(O)(0H)2, -0P(O)(0H)2, -SR31, optionally substituted heterocycle, optionally substituted C3-10 cycloalkyl, optionally substituted C5-24 aryl, optionally substituted C3-8 cycloalkenyl, or together with R3 can form a spiro compound, or together with R2 or together with R1 can form a polycyclic ring;

R5 is H, optionally substituted C1-24 alkyl, halogen, -C(0)R25, -OR26, CN, -NR27R28, NO2, -CF3, -S(0)xR29, -P(O)(0H)2, -0P(O)(0H)2, -SR31, optionally substituted heterocycle, optionally substituted C3-10 cycloalkyl, optionally substituted C5-24 aryl, optionally substituted C3-8 cycloalkenyl, or together with R6 can form an optionally substituted polycyclic ring;

R6 is H, optionally substituted C1-24 alkyl, halogen, -C(0)R25, -OR26, CN, -NR27R28, NO2, -CF3, -S(0)xR29, -P(O)(0H)2, -0P(O)(0H)2, -SR31, optionally substituted heterocycle, optionally substituted C3-10 cycloalkyl, optionally substituted C5-24 aryl, optionally substituted C3-8 cycloalkenyl, or together with R5 or together with R7 can form an optionally substituted polycyclic ring;

R7 is H, optionally substituted C1-24 alkyl, halogen, -C(0)R25, -OR26, CN, -NR27R28, NO2, -CF3, -S(0)xR29, -P(O)(0H)2, -0P(O)(0H)2, -SR31, optionally substituted heterocycle, optionally substituted C3-10 cycloalkyl, optionally substituted C5-24 aryl optionally substituted C3-8 cycloalkenyl, or together with R6 or together with R8 can form an optionally substituted polycyclic ring; R8 is H, optionally substituted C1-24 alkyl, halogen, -C(O)R25, -OR26, CN, -NR27R28, NO2, -CF3, -S(O)xR29, -P(O)(0H)2, -0P(O)(0H)2, -SR31, optionally substituted heterocycle, optionally substituted C3-10 cycloalkyl, optionally substituted C5-24 aryl, optionally substituted C3-8 cycloalkenyl, or together with R7 or together with R9 can form an optionally substituted polycyclic ring;

R9 is H, optionally substituted C1-24 alkyl, halogen, -C(O)R25, -OR26, CN, -NR27R28, NO2, -CF3, -S(O)xR29, -P(O)(0H)2, -0P(O)(0H)2, -SR31, optionally substituted heterocycle, optionally substituted C3-10 cycloalkyl, optionally substituted C5-24 aryl, optionally substituted C3-8 cycloalkenyl, or together with R8 can form an optionally substituted polycyclic ring;

R10 is H, optionally substituted C1-24 alkyl, halogen, -C(O)R25, -OR26, CN, -NR27R28, NO2, -CF3, -S(O)xR29, -P(O)(0H)2, -0P(O)(0H)2, -SR31, optionally substituted heterocycle, optionally substituted C3-10 cycloalkyl, optionally substituted C5-24 aryl, optionally substituted C3-8 cycloalkenyl, or together with R11 can form an optionally substituted polycyclic ring;

R11 is H, optionally substituted C1-24 alkyl, halogen, -C(O)R25, -OR26, CN, -NR27R28, NO2, -CF3, -S(O)xR29, -P(O)(0H)2, -0P(O)(0H)2, -SR31, optionally substituted heterocycle, optionally substituted C3-10 cycloalkyl, optionally substituted C5-24 aryl, optionally substituted C3-8 cycloalkenyl, or together with R10 or together with R12 can form an optionally substituted polycyclic ring;

R12 is H, optionally substituted C1-24 alkyl, halogen, -C(O)R25, -OR26, CN, -NR27R28, NO2, -CF3, -S(O)xR29, -P(O)(0H)2, -0P(O)(0H)2, -SR31, optionally substituted heterocycle, optionally substituted C3-10 cycloalkyl, optionally substituted C5-24 aryl, optionally substituted C3-8 cycloalkenyl, or together with R11 or together with R13 can form an optionally substituted polycyclic ring;

R13 is H, optionally substituted C1-24 alkyl, halogen, -C(O)R25, -OR26, CN, -NR27R28, NO2, -CF3, -S(O)xR29, -P(O)(0H)2, -0P(O)(0H)2, -SR31, optionally substituted heterocycle, optionally substituted C3-10 cycloalkyl, optionally substituted C5-24 aryl, optionally substituted C3-8 cycloalkenyl, or together with R14 or together with R12 can form an optionally substituted polycyclic ring;

R14 is H, optionally substituted C1-24 alkyl, halogen, -C(O)R25, -OR26, CN, -NR27R28, NO2, -CF3, -S(O)xR29, -P(O)(0H)2, -0P(O)(0H)2, -SR31, optionally substituted heterocycle, optionally substituted C3-10 cycloalkyl, optionally substituted C5-24 aryl, optionally substituted C3-8 cycloalkenyl, or together with R13 can form a polycyclic ring;

R32 is H, optionally substituted C1-24 alkyl, optionally substituted C3-10 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C3-8 cycloalkenyl;

R25 is OH, OR30, NR27R28, optionally substituted C1-24 alkyl, optionally substituted C3-10 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C3-8 cycloalkenyl;

R26 is H, optionally substituted C1-24 alkyl, optionally substituted C3-10 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C3-8 cycloalkenyl;

R27 is H, optionally substituted C1-24 alkyl, optionally substituted C3-10 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C3-8 cycloalkenyl;

R28 is H, optionally substituted C1-24 alkyl, optionally substituted C3-10 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C3-8 cycloalkenyl;

R29 is H, optionally substituted C1-24 alkyl, OR26, -NR27R28, optionally substituted heterocycle, optionally substituted C3-10 cycloalkyl, optionally substituted C5-24 aryl, or optionally substituted C3-8 cycloalkenyl;

R30 is optionally substituted C1-24 alkyl, optionally substituted C3-10 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C3-8 cycloalkenyl;

R31 is H, optionally substituted C1-24 alkyl, optionally substituted C3-10 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C3-8 cycloalkenyl; and

x is 1 or 2.

12. The polymer according to any of claims 7-11, wherein the ring opening metathesis reactions comprise at least one monomer of Formula (I), and at least one monomer of Formula (P), and at least one metal carbene olefin metathesis catalyst of Formula (1), Formula (2), or mixtures thereof.

13. The polymer according to any of claims 7-11, wherein the ring opening metathesis reactions comprise at least one monomer of Formula (I), and at least one monomer of Formula (P), and at least one olefin of Formula (IV), and at least one metal carbene olefin metathesis catalyst of Formula (1), Formula (2), or mixtures thereof.

14. The polymer according to any of claims 7-11, wherein the ring opening metathesis reactions comprise at least one monomer of Formula (I), and at least one monomer of Formula (P), and at least one monomer of Formula (III), and at least one metal carbene olefin metathesis catalyst of Formula (1), Formula (2), or mixtures thereof.

15. The polymer according to any of claims 7-11, wherein the ring opening metathesis reactions comprise at least one monomer of Formula (II), and at least one monomer of Formula (III), and at least one olefin of Formula (IV), and at least one metal carbene olefin metathesis catalyst of Formula (1), Formula (2), or mixtures thereof.

16. The polymer according to any of claims 7-11, wherein the ring opening metathesis reactions comprise at least one monomer of Formula (I), and at least one monomer of Formula (III), and at least one metal carbene olefin metathesis catalyst of Formula (1), Formula (2), or mixtures thereof.

17. An article of manufacture, comprising the polymer according to any of claims 1-16.

18. The article of manufacture of claim 17, wherein the article of manufacture is selected from the group consisting of a prepreg, a fiber composite laminate, a solvent based coating, a melt-extruded part, a film, and a liquid compound.

19. The polymer according to any of claims 1-16, wherein the polymer is crosslinked optionally in the presence of free-radical initiators, cationic initiators, other curative agents, or mixtures thereof.

Description:
POLYMERS FOR SPECIALTY APPLICATIONS

RELATED APPLICATIONS

[0001] This application claims the benefit of U.S. Provisional Patent Application No. 62/740,443, filed October 3, 2018, the contents of which are incorporated herein by reference.

TECHNICAL FIELD

[0002] The invention relates to ring-opening metathesis polymerization (ROMP) reactions of making polymers suitable for the electronic industry. Particularly, the invention relates to novel polymers with low dielectric constant (Dk) and low dielectric loss (Df) suited for smaller, lighter, higher speeds and higher frequency transmission electronic products. Such polymers can be used in a variety of materials and composites of the printed circuit board (PCB) industry.

BACKGROUND

[0003] Olefin metathesis has emerged as a unique and powerful transformation for the interconversion of olefmic hydrocarbons, namely due to the development of well-defined catalysts. See Grubbs, R. H. Handbook of Metathesis , (Wiley-VCH: Weinheim, Germany 2003). The exceptionally wide scope of substrates and functional group tolerances makes olefin metathesis a valuable technique that quickly and efficiently produces otherwise hard to make molecules, compared to traditional synthetic organic techniques. In particular, certain ruthenium and osmium olefin metathesis catalysts, known as“Grubbs catalysts,” have been identified as effective catalysts for olefin metathesis reactions such as: cross metathesis (CM), ring-closing metathesis (RCM), ring-opening metathesis (ROM), ring-opening cross metathesis (ROCM), ring-opening metathesis polymerization (ROMP) and acyclic diene metathesis (ADMET) polymerization. The use of such catalysts has greatly expanded the scope of olefin metathesis due to increased tolerance of organic functionality to moisture and oxygen.

[0004] Polymers prepared by ROMP of cyclic olefins, particularly polymers based on norbomene, are suitable for PCB prepreg (resin-impregnated glass fabrics) and copper-clad laminate (CCL), due to their electric properties.

[0005] The two main“building blocks” of a modem multi-layered PCB are CCL and prepreg. CCL is the primary structure which provides copper on a stable electrically insulating substrate which after lithography steps yields the copper traces. Prepreg allows layers of CCL to be bonded together after processing steps such as photolithography, drilling, and copper plating have been performed to achieve a multi-layered PCB. Prepreg has a role analogous to“double-sided tape” in adhering layers of CCL together but with the added benefit of being truly conformable since it melts and flows during high temperature bonding step. In fact, CCL is produced directly from prepreg and copper foil through a heat curing step in a special press. The quality / effectiveness of the electrical insulation between copper traces on a PCB are dependent on the Dk and Df of the CCL and the prepreg. The major contributor to Dk and Df, is the polymer.

[0006] The inventors have discovered a series of readily soluble polymers of low to medium molecular weight, suitable for the PCB prepreg and CCL manufacturing processes. These polymers were prepared using ROMP of specialty monomers and metal carbene olefin metathesis catalysts. This discovery, as described and exemplified herein, was surprising and unexpected in view of the teachings in the art.

SUMMARY OF THE INVENTION

[0007] The invention provides polymers with improved dielectric constant (Dk) and dielectric loss (Df) compared to the prior art. Additional aspects and advantages of the invention include polymers with good processability, crosslink-ability, and high glass transition temperatures (Tg). The polymers may be suitably formulated in a solvent based varnish or in melt-processing step to improve other properties, such as adhesion to copper foil or coefficient of thermal expansion (CTE).

[0008] The process employed to produce the polymers is based on ring opening metathesis polymerization using at least one metal carbene olefin metathesis catalyst in the presence of at least one functionalized monomer, at least one optional olefin, and at least one optional solvent. The polymer can be separated from unreacted catalyst(s) and monomer(s).

[0009] The polymers of the invention can be synthesized according to synthetic Scheme 1:

Scheme 1

Formula (I) Formula (II) Formula (III) Formula (IV)

Polymer

wherein:

“cat” represents a metal carbene olefin metathesis catalyst;

z is 0, 1, 2, or 3;

x and y are, independently of one another, a molar fraction of between 0 and 1 or equal to

0 or 1,

R a is H, optionally substituted linear or branched C 1 -24 alkyl, optionally substituted linear or branched C2-24 alkenyl, halogen, -C(O)R f , -CH 2 -C(O)R f , -OR g , -CH 2 -OR g , -CN, -NO2, -CF3, - P(O)(0H) 2 , -0P(O)(0H) 2 , optionally substituted heterocycle, -CH 2 -(optionally substituted heterocycle), optionally substituted C3-10 cycloalkyl, -CH 2 -(optionally substituted C3-10 cycloalkyl), optionally substituted C5-24 aryl, -CH 2 -(optionally substituted C5-24 aryl), optionally substituted C3-10 cycloalkenyl, or -CH 2 -(optionally substituted C3-8 cycloalkenyl);

R b is H, optionally substituted linear or branched C 1 -24 alkyl, optionally substituted linear or branched C2-24 alkenyl, halogen, -C(O)R f , -CH 2 -C(O)R f , -OR g , -CH 2 -OR g , -CN, -NO2, -CF3, - P(O)(0H) 2 , -0P(O)(0H) 2 , optionally substituted heterocycle, -CH 2 -(optionally substituted heterocycle), optionally substituted C3-10 cycloalkyl, -CH 2 -(optionally substituted C3-10 cycloalkyl), optionally substituted C5-24 aryl, -CH 2 -(optionally substituted C5-24 aryl), optionally substituted C3-8 cycloalkenyl, or -CH 2 -(optionally substituted C3-8 cycloalkenyl); R c is H, optionally substituted linear or branched C 1 -24 alkyl, optionally substituted linear or branched C2-24 alkenyl, halogen, -C(O)R f , -CH 2 -C(O)R f , -OR g , -CH 2 -OR g , CN, NO2, -CF3, - P(O)(0H) 2 , -0P(O)(0H) 2 , optionally substituted heterocycle, -CH 2 -(optionally substituted heterocycle), optionally substituted C3-10 cycloalkyl, -CH 2 -(optionally substituted C3-10 cycloalkyl), optionally substituted C5-24 aryl, -CH 2 -(optionally substituted C5-24 aryl), optionally substituted C3-8 cycloalkenyl, -CH 2 -(optionally substituted C3-8 cycloalkenyl), -C(R h )(R 1 )COOR i , -C(R h )(R i )C(O)H, -C(R h )(R i )C(O)R k , -C(R h )(R')CR'(OR m )(OR n ), -C(R h )(R i )C(O)NR°R p , or - C(R h )(R i )C(O)NR°0R n ;

R d is H, optionally substituted linear or branched C 1 -24 alkyl, optionally substituted linear or branched C2-24 alkenyl, halogen, -C(O)R f , -CH 2 -C(O)R f , -OR g , -CH 2 -OR g , CN, NO2, -CF3, - P(O)(0H) 2 , -0P(O)(0H) 2 , optionally substituted heterocycle, -CH 2 -(optionally substituted heterocycle), optionally substituted C3-10 cycloalkyl, -CH 2 -(optionally substituted C3-10 cycloalkyl), optionally substituted C5-24 aryl, -CH 2 -(optionally substituted C5-24 aryl), optionally substituted C3-8 cycloalkenyl, -CH 2 -(optionally substituted C3-8 cycloalkenyl), -C(R h )(R')COOR J , -C(R h )(R i )C(O)H, -C(R h )(R i )C(O)R k , -C(R h )(R')CR'(OR m )(OR n ), -C(R h )(R i )C(O)NR°R p , or - C(R h )(R i )C(O)NR°0R n ;

each R s is independently optionally substituted linear or branched C 1 -24 alkyl, optionally substituted linear or branched C2-24 alkenyl, halogen, -C(O)R f , -CH 2 -C(O)R f , -OR g , -CH 2 -OR g , CN, NO2, -CF3, -P(O)(0H) 2 , -0P(O)(0H) 2 , optionally substituted heterocycle, -CH 2 -(optionally substituted heterocycle), optionally substituted C3-10 cycloalkyl, -CH 2 -(optionally substituted C3-10 cycloalkyl), optionally substituted C5-24 aryl, -CH 2 -(optionally substituted C5-24 aryl), optionally substituted C3-8 cycloalkenyl, -CFh-(optionally substituted C3-8 cycloalkenyl), -C(R h )(R')COOR J , -C(R h )(R i )C(O)H, -C(R h )(R i )C(O)R k , -C(R h )(R')CR'(OR m )(OR n ), or -C(R h )(R i )C(O)NR°R p , - C(R h )(R i )C(O)NR°0R n ;

t is 0, 1, 2, 3, 4, 5, or 6;

R f is OH, OR k , NR g R h , optionally substituted C 1 -24 alkyl, optionally substituted C3-10 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C3-8 cycloalkenyl;

R g is H, optionally substituted C 1 -24 alkyl, optionally substituted C3-10 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, optionally substituted linear or branched C 2-6 alkenyl, -C(O)-(optionally substituted linear or branched C 2-6 alkenyl), or optionally substituted C3-8 cycloalkenyl;

R h is H, optionally substituted C 1 -24 alkyl, optionally substituted C 3 -1 0 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C3-8 cycloalkenyl;

R 1 is H, optionally substituted C 1 -24 alkyl, optionally substituted C 3 -1 0 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C 3 -8 cycloalkenyl;

R J is H, optionally substituted C 1 -24 alkyl, optionally substituted C 3 -1 0 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C 3 -8 cycloalkenyl;

R k is optionally substituted C 1 -24 alkyl, optionally substituted C 3 -1 0 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C 3 -8 cycloalkenyl;

R 1 is H, optionally substituted C 1 -24 alkyl, optionally substituted C 3 -1 0 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C 3 -8 cycloalkenyl;

R m is H, optionally substituted C 1 -24 alkyl, optionally substituted C 3 -1 0 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C 3 -8 cycloalkenyl;

R n is H, optionally substituted C 1 -24 alkyl, optionally substituted C 3 -1 0 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C 3 -8 cycloalkenyl;

R° is H, optionally substituted C 1 -24 alkyl, optionally substituted C 3 -1 0 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C 3 -8 cycloalkenyl; and

R p is H, optionally substituted C 1 -24 alkyl, optionally substituted C 3 -1 0 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C 3 -8 cycloalkenyl.

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] Figure 1 depicts the complex viscosity as a function of temperature of polymer 26. DETAILED DESCRIPTION

Terminology and Definitions

[0011] Unless otherwise indicated, the invention is not limited to specific reactants, reaction conditions, or the like, as such may vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments and is not to be interpreted as being limiting.

[0012] As used in the specification and the appended claims, the singular forms“a,”“an,” and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to“a substituent” encompasses a single substituent as well as two or more substituents, and the like.

[0013] As used in the specification and the appended claims, the terms“for example,”“for instance,”“such as,” or“including” are meant to introduce examples that further clarify more general subject matter. Unless otherwise specified, these examples are provided only as an aid for understanding the invention and are not meant to be limiting in any fashion.

[0014] In this specification and in the claims that follow, reference will be made to a number of terms, which shall be defined to have the meanings as described herein.

[0015] The term“alkyl” refers to a linear, branched, saturated hydrocarbon group typically containing 1 to 24 carbon atoms, preferably 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms: such as methyl (Me), ethyl (Et), n-propyl (Pr or n-Pr), isopropyl (i-Pr), n-butyl (Bu or n- Bu), isobutyl (i-Bu), t-butyl (t-Bu), octyl (Oct), decyl, and the like.

[0016] The term“cycloalkyl” refers to a cyclic alkyl group, can be monocyclic, bicyclic or polycyclic, typically having 3 to 10, preferably 5 to 7, carbon atoms, generally, cycloalkyl groups are cyclopentyl (Cp), cyclohexyl (Cy), or adamantyl.

[0017] The term“substituted alkyl” refers to alkyl substituted with one or more substituent groups, and the terms“heteroatom-containing alkyl” and“heteroalkyl” refer to alkyl in which at least one carbon atom is replaced with a heteroatom.

[0018] The term“alkylene” refers to a difunctional linear, branched alkyl group, where“alkyl” is as defined above.

[0019] The term“alkenyl” refers to a linear, branched hydrocarbon group of 2 to 24 carbon atoms containing at least one double bond, such as ethenyl, n-propenyl, iso-propenyl, n-butenyl, iso-butenyl, octenyl, decenyl, tetradecenyl, hexadecenyl, and the like. Preferred alkenyl groups herein contain 2 to 12 carbon atoms, more preferred alkenyl groups herein contain 2 to 6 carbon atoms.

[0020] The term “substituted alkenyl” refers to alkenyl substituted with one or more substituent groups, and the terms“heteroatom-containing alkenyl” and“heteroalkenyl” refer to alkenyl in which at least one carbon atom is replaced with a heteroatom.

[0021] The term“cycloalkenyl” refers to a cyclic alkenyl group, preferably having 3 to 8 carbon atoms.

[0022] The term“alkenylene” refers to a difunctional linear, branched, where“alkenyl” is as defined above.

[0023] The term“alkynyl” refers to a linear or branched hydrocarbon group of 2 to 24 carbon atoms containing at least one triple bond, such as ethynyl, n-propynyl, and the like. Preferred alkynyl groups herein contain 2 to 12 carbon atoms, more preferred alkynyl groups herein contain 2 to 6 carbon atoms.

[0024] The term “substituted alkynyl” refers to alkynyl substituted with one or more substituent groups, and the terms“heteroatom-containing alkynyl” and“heteroalkynyl” refer to alkynyl in which at least one carbon atom is replaced with a heteroatom.

[0025] The term“alkynylene” refers to a difunctional alkynyl group, where“alkynyl” is as defined above.

[0026] The term“alkoxy” refers to an alkyl group bound through a single, terminal ether linkage; that is, an“alkoxy” group may be represented as -O-alkyl where“alkyl” is as defined above. Analogously,“alkenyloxy” refers to an alkenyl group bound through a single, terminal ether linkage, and“alkynyloxy” refers to an alkynyl group bound through a single, terminal ether linkage.

[0027] The term“aryl,” unless otherwise specified, refers to an aromatic substituent containing a single aromatic ring or multiple aromatic rings that are fused together, directly linked, or indirectly linked (such that the different aromatic rings are bound to a common group such as a methylene or ethylene moiety). Preferred aryl groups contain 5 to 24 carbon atoms, and particularly preferred aryl groups contain 6 to 10 carbon atoms. Exemplary aryl groups contain one aromatic ring or two fused or linked aromatic rings, e.g., phenyl (Ph), naphthyl, biphenyl, diphenylether, diphenylamine, benzophenone, phenanthryl, and the like. [0028] “Substituted aryl” refers to an aryl moiety substituted with one or more substituent groups, and the terms“heteroatom containing aryl” and“heteroaryl” refer to aryl substituents in which at least one carbon atom is replaced with a heteroatom, as will be described in further detail herein.

[0029] The term“aryloxy” refers to an aryl group bound through a single, terminal ether linkage, wherein“aryl” is as defined above. An“aryloxy” group may be represented as -O-aryl where aryl is as defined above. Preferred aryloxy groups contain 5 to 24 carbon atoms, and particularly preferred aryloxy groups contain 6 to 10 carbon atoms. Examples of aryloxy groups include, without limitation, phenoxy, o-halo-phenoxy, m-halo-phenoxy, p-halo-phenoxy, o- methoxy-phenoxy, m-methoxy-phenoxy, p-methoxy-phenoxy, 2,4-dimethoxy-phenoxy, 3,4,5- trimethoxy-phenoxy, and the like.

[0030] The term“alkaryl” refers to an aryl group with an alkyl substituent, and the term “aralkyl” refers to an alkyl group with an aryl substituent, wherein“aryl” and“alkyl” are as defined above. Preferred alkaryl and aralkyl groups contain 6 to 24 carbon atoms, and particularly preferred alkaryl and aralkyl groups contain 6 to 16 carbon atoms. Alkaryl groups include, without limitation, p-methylphenyl, 2,4-dimethylphenyl, p-cyclohexylphenyl, 2,7-dimethylnaphthyl, 7- cyclooctylnaphthyl, 3 -ethyl-cy cl openta-l, 4-diene, and the like. Examples of aralkyl groups include, without limitation, benzyl, 2-phenyl-ethyl, 3 -phenyl -propyl, 4-phenyl-butyl, 5-phenyl- pentyl, 4-phenylcyclohexyl, 4-benzylcyclohexyl, 4-phenylcyclohexylmethyl, 4- benzylcyclohexylmethyl, and the like.

[0031] The terms“alkaryloxy” and“aralkyloxy” refer to substituents of the formula -OR wherein R is alkaryl or aralkyl, respectively, as defined herein.

[0032] The term“acyl” refers to substituents having the formula -(CO)-alkyl, -(CO)-aryl, - (CO)-aralkyl, -(CO)-alkaryl, -(CO)-alkenyl, or -(CO)-alkynyl, and the term“acyloxy” refers to substituents having the formula -0(CO)-alkyl, -0(CO)-aryl, -0(CO)-aralkyl, -0(CO)-alkaryl, - 0(CO)-alkenyl, or -(CO)-alkynyl wherein“alkyl,”“aryl,”“aralkyl,”“alkaryl,” alkenyl,” and “alkynyl” are as defined above. The acetoxy group (-0(CO)CH3, often abbreviated as -OAc) is a common example of an acyloxy group.

[0033] The terms“cyclic” and“ring” refer to alicyclic or aromatic groups that may or may not be substituted and/or heteroatom containing, and that may be monocyclic, bicyclic, or polycyclic. The term“alicyclic” is used in the conventional sense to refer to an aliphatic cyclic moiety, as opposed to an aromatic cyclic moiety, and may be monocyclic, bicyclic, or polycyclic.

[0034] The term“polycyclic ring” refers to alicyclic or aromatic groups that may or may not be substituted and/or heteroatom containing, and that have at least two closed rings tethered, fused, linked via a single bond or bridged. Polycyclic rings include without limitation naphthyl, biphenyl, phenanthryl and the like.

[0035] The term“spiro compound” refers to a chemical compound, that presents a twisted structure of two or more rings (a ring system), in which 2 or 3 rings are linked together by one common atom,

[0036] The terms“halo” and“halogen” and“halide” are used in the conventional sense to refer to a fluorine (F), chlorine (Cl), bromine (Br), or iodine (I) substituent.

[0037] “Hydrocarbyl” refers to univalent hydrocarbyl moieties containing 1 to 24 carbon atoms, preferably 1 to 12 carbon atoms, including linear, branched, cyclic, saturated and unsaturated species, such as alkyl groups, alkenyl groups, alkynyl groups, aryl groups, and the like. “Substituted hydrocarbyl” refers to hydrocarbyl substituted with one or more substituent groups.

[0038] “Hydrocarbylene” refers to divalent hydrocarbyl moieties containing 1 to 24 carbon atoms, preferably 1 to 12 carbon atoms, including linear, branched, cyclic, saturated and unsaturated species, formed by removal of two hydrogens from a hydrocarbon. “Substituted hydrocarbylene” refers to hydrocarbylene substituted with one or more substituent groups.

[0039] The term“heteroatom-containing” as in a“heteroatom-containing hydrocarbyl group” refers to a hydrocarbon molecule or a hydrocarbyl molecular fragment in which one or more carbon atoms is replaced with an atom other than carbon, e.g., nitrogen, oxygen, sulfur, phosphorus or silicon, typically nitrogen, oxygen, or sulfur. The terms “heteroatom-containing hydrocarbylene” and“heterohydrocarbylene” refer to hydrocarbylene in which at least one carbon atom is replaced with a heteroatom. Similarly, the term“heteroalkyl” refers to an alkyl substituent that is heteroatom-containing, the term “heterocyclic” refers to a cyclic substituent that is heteroatom-containing, the terms“heteroaryl” and“heteroaromatic” respectively refer to“aryl” and“aromatic” substituents that are heteroatom-containing, and the like. It should be noted that a “heterocyclic” group or compound may or may not be aromatic, and further that“heterocycles” may be monocyclic, bicyclic, or polycyclic as described above with respect to the term“aryl.” Examples of heteroalkyl groups include without limitation alkoxyaryl, alkylsulfanyl-substituted alkyl, N-alkylated amino alkyl, and the like. Examples of heteroaryl substituents include without limitation pyrrolyl, pyrrolidinyl, pyridinyl, quinolinyl, indolyl, pyrimidinyl, imidazolyl, 1,2,4- triazolyl, tetrazolyl, etc., and examples of heteroatom-containing alicyclic groups include without limitation pyrrolidino, morpholino, piperazino, piperidino, etc.

[0040] In addition, the aforementioned substituent groups may, if a particular group permits, be further substituted with one or more additional substituent groups or with one or more hydrocarbyl moieties such as those specifically enumerated above. Analogously, the above mentioned hydrocarbyl moieties may be further substituted with one or more substituent groups or additional hydrocarbyl moieties such as those specifically mentioned above. Analogously, the above-mentioned hydrocarbylene moieties may be further substituted with one or more substituent groups or additional hydrocarbyl moieties as noted above.

[0041] By“substituted” as in“substituted hydrocarbyl,”“substituted alkyl,”“substituted aryl,” and the like, as alluded to in some of the aforementioned definitions, is meant that in the hydrocarbyl, alkyl, aryl, or other moiety, at least one hydrogen atom bound to a carbon (or other) atom is replaced with one or more non-hydrogen substituents. Examples of such substituents include, without limitation groups such as halo, hydroxyl, sulfhydryl, C 1 -C24 alkoxy, C2-C24 alkenyloxy, C2-C24 alkynyloxy, C5-C24 aryloxy, C 6 -C24 aralkyloxy, C 6 -C24 alkaryloxy, acyl (including C2-C24 alkylcarbonyl (-CO-alkyl) and C 6 -C24 arylcarbonyl (-CO-aryl)), acyloxy (-0- acyl, including C2-C24 alkylcarbonyloxy (-O-CO-alkyl) and C 6 -C24 arylcarbonyloxy (-O-CO- aryl)), C2-C24 alkoxycarbonyl (-(CO)-O-alkyl), C 6 -C24 aryloxycarbonyl (-(CO)-O-aryl), halocarbonyl (-CO)-X where X is halo), C2-C24 alkylcarbonato (-O-(CO)-O-alkyl), C 6 -C24 arylcarbonato (-O-(CO)-O-aryl), carboxylic acid (-COOH), carbamoyl (-(CO)-NH2), mono-(Ci- C24 alkyl)-substituted carbamoyl (-(CO)-NH(CI-C24 alkyl)), di-(Ci-C24 alkyl)-substituted carbamoyl (-(CO)-N(CI-C24 alkyl) 2 ), mono-(Ci-C24 haloalkyl)-substituted carbamoyl (-(CO)- NH(CI-C 2 4 haloalkyl)), di-(Ci-C24 haloalkyl)-substituted carbamoyl (-(CO)-N(CI-C24 haloalkyl) 2 ), mono-(Cs-C24 aryl)-substituted carbamoyl (-(CO)-NH-aryl), di-(Cs-C24 aryl)- substituted carbamoyl (-(CO)-N(Cs-C24 aryl) 2 ), N(CI-C24 alkyl)(Cs-C24 aryl)-substituted carbamoyl (-(CO)-N(CI-C24 alkyl)(Cs-C24 aryl), thiocarbamoyl (-(CS)-NH2), mono-(Ci-C24 alkyl)-substituted thiocarbamoyl (-(CS)-NH(CI-C24 alkyl)), di-(Ci-C24 alkyl)-substituted thiocarbamoyl (-(CS)-N(CI-C24 alkyl) 2 ), mono-(Cs-C24 aryl)-substituted thiocarbamoyl (-(CS)- NH-aryl), di-(Cs-C24 aryl)-substituted thiocarbamoyl (-(CS)-N(C 5 -C24 aryl) 2 ), N(CI-C24 alkyl)(Cs- C24 aryl)-substituted thiocarbamoyl (-(CS)-N(CI-C24 alkyl)(Cs-C24 aryl), carbamido (-NH-(CO)- NH2), cyano (-CºN), cyanato (-0-CºN), thiocyanato (-S-CºN), isocyanate (-NCO), thioisocyanate (-NCS), formyl (-(CO)-H), thioformyl (-(CS)-H), amino (-NH2), mono-(Ci-C24 alkyl)-substituted amino (-NH(CI-C24 alkyl), di-(Ci-C24 alkyl)-substituted amino ((-N(CI-C24 alkyl) 2 ), mono-(Cs-C24 aryl)-substituted amino (-NH(Cs-C24 aryl), di-(Cs-C24 aryl)-substituted amino (-N(Cs-C24 aryl) 2 ), C2-C24 alkylamido (-NH-(CO)-alkyl), C 6 -C24 arylamido (-NH-(CO)- aryl), imino (-CRNH where, R includes without limitation H, C 1 -C24 alkyl, C5-C24 aryl, C 6 -C24 alkaryl, C 6 -C24 aralkyl, etc.), C2-C2 0 alkylimino (-CRN(alkyl), where R includes without limitation H, C 1 -C24 alkyl, C5-C24 aryl, C 6 -C24 alkaryl, C 6 -C24 aralkyl, etc.), arylimino (-CRN(aryl), where R includes without limitation H, C 1 -C2 0 alkyl, C5-C24 aryl, C 6 -C24 alkaryl, C 6 -C24 aralkyl, etc.), nitro (-NO2), nitroso (-NO), sulfo (-S(O) 2 0H), C 1 -C24 alkylsulfanyl (-S-alkyl; also termed“alkylthio”), C5-C24 arylsulfanyl (-S-aryl; also termed“arylthio”), C 1 -C24 alkylsulfmyl (-(SO)-alkyl), C5-C24 arylsulfmyl (-(SO)-aryl), C 1 -C24 alkylsulfonyl (-S02-alkyl), C 1 -C24 monoalkylaminosulfonyl (- S02-N(H) alkyl), C 1 -C24 dialkylaminosulfonyl (-S02-N(alkyl) 2 ), C5-C24 arylsulfonyl (-S02-aryl), boryl (-BH2), borono (-B(OH) 2 ), boronato (-B(OR) 2 where R includes without limitation alkyl or other hydrocarbyl), phosphono (-P(O)(0H) 2 ), phospho (-PO2), phosphino (-PH2), silyl (-S1R3 wherein R is H or hydrocarbyl), and silyloxy (-O-silyl); hydrocarbyl moieties C 1 -C24 alkyl (preferably C 1 -C 1 2 alkyl, more preferably C 1 -C 6 alkyl), C2-C24 alkenyl (preferably C2-C 1 2 alkenyl, more preferably C2-C 6 alkenyl), C2-C24 alkynyl (preferably C2-C 1 2 alkynyl, more preferably C2-C 6 alkynyl), C5-C24 aryl (preferably C 6 -C 10 aryl), C 6 -C24 alkaryl (preferably C 6 -C 16 alkaryl), or C 6 - C24 aralkyl (preferably C 6 -C 16 aralkyl).

[0042] By “functionalized” as in “functionalized hydrocarbyl,” “functionalized alkyl,” “functionalized olefin,” “functionalized cyclic olefin,” and the like, is meant that in the hydrocarbyl, alkyl, olefin, cyclic olefin, or other moiety, at least one H atom bound to a carbon (or other) atom is replaced with one or more functional group(s) such as those described hereinabove. The term“functional group” is meant to include any functional species that is suitable for the uses described herein. In some cases, the terms“substituent” and“functional group” are used interchangeably.

[0043] “Optional” or“optionally” means that the subsequently described circumstance may or may not occur, so that the description includes instances where the circumstance occurs and instances where it does not. For example, the phrase“optionally substituted” means that a non hydrogen substituent may or may not be present on a given atom, and, thus, the description includes structures wherein a non-hydrogen substituent is present and structures wherein a non hydrogen substituent is not present.

[0044] The term“nil” means absent or nonexistent.

[0045] The term“sulfhydryl” represents a group of formula“-SH”

[0046] The term“hydroxyl” represents a group of formula“-OH”

[0047] The term“carbonyl” represents a group of formula“-C(O)-.”

[0048] The term“ketone” represents an organic compound having a carbonyl group linked to a carbon atom such as -C(O)R x , wherein R x can be alkyl, aryl, cycloalkyl, cycloalkenyl, or heterocycle as defined above.

[0049] The term“ester” represents an organic compound having a carbonyl group linked to a carbon atom such as -C(O)OR x wherein R x can be alkyl, aryl, cycloalkyl, cycloalkenyl, or heterocycle as defined above.

[0050] The term“amine” represents a group of formula“-NR x R y ,” wherein R x and R y can be the same or independently H, alkyl, aryl, cycloalkyl, cycloalkenyl, or heterocycle as defined above.

[0051] The term“carboxyl” represents a group of formula“-C(O)0-”

[0052] The term“sulfonyl” represents a group of formula“-SO2 .”

[0053] The term“sulfate” represents a group of formula“-0-S(O) 2 -0-”

[0054] The term“sulfonate” represents a group of the formula“-S(O) 2 -0-.”

[0055] The term“amide” represents a group of formula“-C(O)NR x R y ,” wherein R x and R y can be the same or independently H, alkyl, aryl, cycloalkyl, cycloalkenyl, or heterocycle as defined above.

[0056] The term“sulfonamide” represents a group of formula“-S(O) 2 NR x R y ” wherein R x and R y can be the same or independently H, alkyl, aryl, cycloalkyl, cycloalkenyl, or heterocycle as defined above.

[0057] The term“sulfoxide” represents a group of formula“-S(O)-.”

[0058] The term“phosphonic acid” represents a group of formula“-P(O)(OH) 2

[0059] The term“phosphoric acid” represents a group of formula“-OP(O)(OH) 2 .”

[0060] The term“sulphonic acid” represents a group of formula“-S(O) 2 0H.”

[0061] The formula“H” represents a hydrogen atom. [0062] The formula“O” represents an oxygen atom.

[0063] The formula“N” represents a nitrogen atom.

[0064] The formula“S” represents a sulfur atom.

[0065] Functional groups may be protected in cases where the functional group interferes with the metal carbene olefin metathesis catalyst, and any of the protecting groups commonly used in the art may be employed. Acceptable protecting groups may be found, for example, in Greene et al., Protective Groups in Organic Synthesis , 5th Ed. (New York: Wiley, 2014). Examples of protecting groups include acetals, cyclic acetals, boronate esters (boronates), cyclic boronate esters (cyclic boronates), carbonates, or the like. Examples of protecting groups include cyclic acetals or cyclic boronate esters.

MONOMERS OF THE INVENTION

[0066] In one embodiment, the monomers of the invention have the structure of Formula (I):

Formula (I)

wherein:

R a is H, optionally substituted linear or branched C 1 -24 alkyl, optionally substituted linear or branched C2-24 alkenyl, halogen, -C(O)R f , -CH 2 -C(O)R f , -OR g , -CH 2 -OR g , -CN, -NO2, -CF3, - P(O)(OH) 2 , -OP(O)(OH) 2 , optionally substituted heterocycle, -CH 2 -(optionally substituted heterocycle), optionally substituted C3-10 cycloalkyl, -CH 2 -(optionally substituted C3-10 cycloalkyl), optionally substituted C5-24 aryl, -CH 2 -(optionally substituted C5-24 aryl), optionally substituted C3-8 cycloalkenyl, -CH 2 -(optionally substituted C3-8 cycloalkenyl), -C(R h )(R')COOR l , -C(R h )(R i )C(O)H, -C(R h )(R i )C(O)R k , -C(R h )(R i )CR 1 (OR m )(OR n ), -C(R h )(R i )C(O)NR°R p , or - C(R h )(R i )C(O)NR°OR n ;

each R s is independently optionally substituted linear or branched C 1 -24 alkyl, optionally substituted linear or branched C2-24 alkenyl, halogen, -C(O)R f , -CH 2 -C(O)R f , -OR g , -CH 2 -OR g , - CN, NO2, -CF3, -P(O)(OH) 2 , -OP(O)(OH) 2 , optionally substituted heterocycle, -CH 2 -(optionally substituted heterocycle), optionally substituted C3-10 cycloalkyl, -CH 2 -(optionally substituted C3-10 cycloalkyl), optionally substituted C5-24 aryl, -CH 2 -(optionally substituted C5-24 aryl), optionally substituted C3-8 cycloalkenyl, -CH 2 -(optionally substituted C3-8 cycloalkenyl), -C(R h )(R')COOR J , -C(R h )(R i )C(O)H, -C(R h )(R i )C(O)R k , -C(R h )(R')CR l (OR m )(OR n ), -C(R h )(R i )C(O)NR°R p , or - C(R h )(R i )C(O)NR°0R n ;

t is 0, 1, 2, 3, 4, 5, or 6;

R f is OH, OR k , NR g R h , optionally substituted linear or branched C 1 -24 alkyl, optionally substituted C3-10 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C3-8 cycloalkenyl;

R g is H, optionally substituted linear or branched C 1 -24 alkyl, optionally substituted C3-10 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, optionally substituted linear or branched C2-6 alkenyl, -C(O)-(optionally substituted C5-24 aryl), -C(O)- (optionally substituted linear or branched C2-6 alkenyl), or optionally substituted C3-8 cycloalkenyl;

R h is H, optionally substituted linear or branched C 1 -24 alkyl, optionally substituted C3-10 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C3-8 cycloalkenyl;

R 1 is H, optionally substituted linear or branched C 1 -24 alkyl, optionally substituted C3-10 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C3-8 cycloalkenyl;

R J is H, optionally substituted linear or branched C 1 -24 alkyl, optionally substituted C3-10 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C3-8 cycloalkenyl;

R k is optionally substituted linear or branched C 1 -24 alkyl, optionally substituted C3-10 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C3-8 cycloalkenyl;

R 1 is H, optionally substituted linear or branched C 1 -24 alkyl, optionally substituted C3-10 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C3-8 cycloalkenyl;

R m is H, optionally substituted linear or branched C 1 -24 alkyl, optionally substituted C3-10 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C3-8 cycloalkenyl; R n is H, optionally substituted linear or branched C 1 -24 alkyl, optionally substituted C3-1 0 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C3-8 cycloalkenyl;

R° is H, optionally substituted linear or branched C 1 -24 alkyl, optionally substituted C 3 -1 0 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C3-8 cycloalkenyl; and

R p is H, optionally substituted linear or branched C 1 -24 alkyl, optionally substituted C 3 -1 0 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C 3 -8 cycloalkenyl.

[0065] In one embodiment, the monomers of the invention have the structure of Formula (I) wherein:

R a is H, optionally substituted linear or branched C 1 -12 alkyl, optionally substituted linear or branched C2-12 alkenyl, halogen, -C(O)R f , -CH 2 -C(O)R f , -OR g , -CH 2 -OR g , CN, NO2, -CF 3 , - P(O)(OH) 2 , -OP(O)(OH) 2 , optionally substituted heterocycle, -CH 2 -(optionally substituted heterocycle), optionally substituted C5-7 cycloalkyl, -CH 2 -(optionally substituted C5-7 cycloalkyl), optionally substituted C 6-10 aryl, -CH 2 -(optionally substituted C 6-10 aryl), optionally substituted C5-7 cycloalkenyl, -CH 2 -(optionally substituted C5-7 cycloalkenyl), -C(R h )(R 1 )COOR i , - C(R h )(R i )C(O)H, -C(R h )(R i )C(O)R k , -C(R h )(R')CR l (OR m )(OR n ), -C(R h )(R i )C(O)NR°R p , or - C(R h )(R i )C(O)NR°OR n ;

each R s is independently optionally substituted linear or branched C 1 -12 alkyl, optionally substituted linear or branched C2-12 alkenyl, halogen, -C(O)R f , -CH 2 -C(O)R f , -OR g , -CH 2 -OR g , CN, NO2, -CF 3 , -P(O)(OH) 2 , -OP(O)(OH) 2 , optionally substituted heterocycle, -CH 2 -(optionally substituted heterocycle), optionally substituted C5-7 cycloalkyl, -CH 2 -(optionally substituted C5-7 cycloalkyl), optionally substituted C 6-10 aryl, -CH 2 -(optionally substituted C 6-10 aryl), optionally substituted C5-7 cycloalkenyl, -CH 2 -(optionally substituted C5-7 cycloalkenyl), -C(R h )(R 1 )COOR i , - C(R h )(R i )C(O)H, -C(R h )(R i )C(O)R k , -C(R h )(R')CR l (OR m )(OR n ), -C(R h )(R i )C(O)NR°R p , or - C(R h )(R i )C(O)NR°OR n ;

t is 0, 1, 2, 3, or 4;

R f is OH, OR k , NR g R h , optionally substituted linear or branched C 1 -12 alkyl, optionally substituted C5-7 cycloalkyl, optionally substituted heterocycle, optionally substituted C 6-10 aryl, or optionally substituted C5-7 cycloalkenyl; R g is H, optionally substituted linear or branched C 1 -12 alkyl, optionally substituted C5-7 cycloalkyl, optionally substituted heterocycle, optionally substituted C6-10 aryl, optionally substituted linear or branched C2-6 alkenyl, -C(O)-(optionally substituted C6-10 aryl), -C(O)- (optionally substituted linear or branched C2-6 alkenyl), or optionally substituted C5-7 cycloalkenyl;

R h is H, optionally substituted linear or branched C 1 -12 alkyl, optionally substituted C5-7 cycloalkyl, optionally substituted heterocycle, optionally substituted C6-10 aryl, or optionally substituted C5-7 cycloalkenyl;

R 1 is H, optionally substituted linear or branched C 1 -12 alkyl, optionally substituted C5-7 cycloalkyl, optionally substituted heterocycle, optionally substituted C6-10 aryl, or optionally substituted C5-7 cycloalkenyl;

R j is H, optionally substituted linear or branched C 1 -12 alkyl, optionally substituted C5-7 cycloalkyl, optionally substituted heterocycle, optionally substituted C6-10 aryl, or optionally substituted C5-7 cycloalkenyl;

R k is optionally substituted linear or branched C 1 -12 alkyl, optionally substituted C5-7 cycloalkyl, optionally substituted heterocycle, optionally substituted C6-10 aryl, or optionally substituted C5-7 cycloalkenyl;

R 1 is H, optionally substituted linear or branched C 1 -12 alkyl, optionally substituted C5-7 cycloalkyl, optionally substituted heterocycle, optionally substituted C6-10 aryl, or optionally substituted C5-7 cycloalkenyl;

R m is H, optionally substituted linear or branched C 1 -12 alkyl, optionally substituted C5-7 cycloalkyl, optionally substituted heterocycle, optionally substituted C6-10 aryl, or optionally substituted C5-7 cycloalkenyl;

R n is H, optionally substituted linear or branched C 1 -12 alkyl, optionally substituted C5-7 cycloalkyl, optionally substituted heterocycle, optionally substituted C6-10 aryl, or optionally substituted C5-7 cycloalkenyl;

R° is H, optionally substituted linear or branched C 1 -12 alkyl, optionally substituted C5-7 cycloalkyl, optionally substituted heterocycle, optionally substituted C6-10 aryl, or optionally substituted C5-7 cycloalkenyl; and

R p is H, optionally substituted linear or branched C 1 -12 alkyl, optionally substituted C5-7 cycloalkyl, optionally substituted heterocycle, optionally substituted C6-10 aryl, or optionally substituted C5-7 cycloalkenyl. [0066] In one embodiment, the monomers of the invention have the structure of Formula (I) wherein:

R a is H, optionally substituted linear or branched Ci- 6 alkyl, optionally substituted linear or branched C2-6 alkenyl, halogen, -C(O)R f , -CH 2 -C(O)R f , -OR g , -CH 2 -OR g , CN, N0 2 , -CF 3 , - P(O)(OH) 2 , -OP(O)(OH) 2 , optionally substituted heterocycle, -CH 2 -(optionally substituted heterocycle), optionally substituted C5-7 cycloalkyl, -CH 2 -(optionally substituted C5-7 cycloalkyl), optionally substituted C6-10 aryl, -CH 2 -(optionally substituted C6-10 aryl), optionally substituted C5-7 cycloalkenyl, or -CH 2 -(optionally substituted C5-7 cycloalkenyl);

t is 0;

R f is OH, OR k , NR g R h , optionally substituted linear or branched C 1 -6 alkyl, optionally substituted C5-7 cycloalkyl, optionally substituted heterocycle, optionally substituted C6-10 aryl, or optionally substituted C5-7 cycloalkenyl;

R g is H, optionally substituted linear or branched C 1 -6 alkyl, optionally substituted C5-7 cycloalkyl, optionally substituted heterocycle, optionally substituted C6-10 aryl, optionally substituted linear or branched C 2 - 6 alkenyl, -C(O)-(optionally substituted C6-10 aryl), -C(O)- (optionally substituted linear or branched C 2 - 6 alkenyl), or optionally substituted C5-7 cycloalkenyl; and

R h is H, optionally substituted linear or branched C 1 -6 alkyl, optionally substituted C5-7 cycloalkyl, optionally substituted heterocycle, optionally substituted C6-10 aryl, or optionally substituted C5-7 cycloalkenyl; and

R k is optionally substituted linear or branched C 1 -6 alkyl, optionally substituted C5-7 cycloalkyl, optionally substituted heterocycle, optionally substituted C6-10 aryl, or optionally substituted C5-7 cycloalkenyl.

[0067] In one embodiment, the monomers of the invention have the structure of Formula (I)

wherein:

[0067] Non-limiting examples of monomers of Formula (I) include

[0068] In one embodiment, the monomers of the invention have the structure of Formula (II):

wherein:

R b is H, optionally substituted linear or branched C 1 -24 alkyl, optionally substituted linear or branched C2-24 alkenyl, halogen, -C(O)R f , -CH 2 -C(O)R f , -OR g , -CH 2 -OR g , CN, NO2, -CF3, - P(O)(0H) 2 , -0P(O)(0H) 2 , optionally substituted heterocycle, spiro optionally substituted heterocycle, -CH 2 -(optionally substituted heterocycle), optionally substituted C3-10 cycloalkyl, - CH 2 -(optionally substituted C3-10 cycloalkyl), optionally substituted C5-24 aryl, -CH 2 -(optionally substituted C5-24 aryl), optionally substituted C3-10 cycloalkenyl, -CH 2 -(optionally substituted C3-8 cycloalkenyl),

each R s is independently optionally substituted linear or branched C 1 -24 alkyl, optionally substituted linear or branched C2-24 alkenyl, halogen, -C(O)R f , -CH 2 -C(O)R f , -OR g , -CH 2 -OR g , CN, NO2, -CF3, -P(O)(0H) 2 , -0P(O)(0H) 2 , optionally substituted heterocycle, -CH 2 -(optionally substituted heterocycle), optionally substituted C3-10 cycloalkyl, -CH 2 -(optionally substituted C3-10 cycloalkyl), optionally substituted C5-24 aryl, -CFh-Rptionally substituted C5-24 aryl), optionally substituted C3-8 cycloalkenyl, -CH 2 -(optionally substituted C3-8 cycloalkenyl), -C(R h )(R')COOR J , -C(R h )(R i )C(O)H, -C(R h )(R i )C(O)R k , -C(R h )(R')CR l (OR m )(OR n ), -C(R h )(R i )C(O)NR°R p , or - C(R h )(R i )C(O)NR°0R n ; t is 0, 1, 2, 3, 4, 5, or 6;

R f is OH, OR k , NR g R h , optionally substituted linear or branched C 1 -24 alkyl, optionally substituted C3-10 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C3-8 cycloalkenyl;

R g is H, optionally substituted linear or branched C 1 -24 alkyl, optionally substituted C3-10 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, optionally substituted linear or branched C2-6 alkenyl, -C(O)-(optionally substituted C5-24 aryl), -C(O)- (optionally substituted linear or branched C2-6 alkenyl), or optionally substituted C3-8 cycloalkenyl;

R h is H, optionally substituted linear or branched C 1 -24 alkyl, optionally substituted C3-10 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C3-8 cycloalkenyl;

R 1 is H, optionally substituted linear or branched C 1 -24 alkyl, optionally substituted C3-10 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C3-8 cycloalkenyl;

R J is H, optionally substituted linear or branched C 1 -24 alkyl, optionally substituted C3-10 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C3-8 cycloalkenyl;

R k is optionally substituted linear or branched C 1 -24 alkyl, optionally substituted C3-10 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C3-8 cycloalkenyl;

R 1 is H, optionally substituted linear or branched C 1 -24 alkyl, optionally substituted C3-10 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C3-8 cycloalkenyl;

R m is H, optionally substituted linear or branched C 1 -24 alkyl, optionally substituted C3-10 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C3-8 cycloalkenyl;

R n is H, optionally substituted linear or branched C 1 -24 alkyl, optionally substituted C3-10 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C3-8 cycloalkenyl; R° is H, optionally substituted linear or branched C 1 -24 alkyl, optionally substituted C3-10 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C3-8 cycloalkenyl; and

R p is H, optionally substituted linear or branched C 1 -24 alkyl, optionally substituted C3-10 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C3-8 cycloalkenyl.

[0069] In one embodiment, the monomers of the invention have the structure of Formula (II):

wherein: t =1 and R s and R b can form together an optionally substituted polycyclic structure.

[0070] In one embodiment, monomers of the invention have the structure of Formula (II) wherein:

R b is H, optionally substituted linear or branched C 1 -12 alkyl, optionally substituted linear or branched C2-12 alkenyl, halogen, -C(O)R f , -CH 2 -C(O)R f , -OR g , -CH 2 -OR g , CN, NO2, -CF3, - P(O)(OH) 2 , -OP(O)(OH) 2 , optionally substituted heterocycle, spiro optionally substituted heterocycle, -CH 2 -(optionally substituted heterocycle), optionally substituted C5-7 cycloalkyl, - CH 2 -(optionally substituted C5-7 cycloalkyl), optionally substituted C6-10 aryl, -CH 2 -(optionally substituted C6-10 aryl), optionally substituted C5-7 cycloalkenyl, -CH 2 -(optionally substituted C5-7 cycloalkenyl), -C^XR^COOR j , -C(R h )(R i )C(O)H, -C(R h )(R i )C(O)R k ,

C(R h )(R')CR l (OR m )(OR n ), -C(R h )(R i )C(O)NR°R p , or -C(R h )(R i )C(O)NR°OR n ;

each R s is independently optionally substituted linear or branched C 1 -12 alkyl, optionally substituted linear or branched C2-12 alkenyl, halogen, -C(O)R f , -CH 2 -C(O)R f , -OR g , -CH 2 -OR g , CN, NO2, -CF3, -P(O)(OH) 2 , -OP(O)(OH) 2 , optionally substituted heterocycle, -CH 2 -(optionally substituted heterocycle), optionally substituted C5-7 cycloalkyl, -CH 2 -(optionally substituted C5-7 cycloalkyl), optionally substituted C6-10 aryl, -CH 2 -(optionally substituted C6-10 aryl), optionally substituted C5-7 cycloalkenyl, -CH 2 -(optionally substituted C5-7 cycloalkenyl), -C(R h )(R 1 )COOR i , - C(R h )(R i )C(O)H, -C(R h )(R i )C(O)R k , -C(R h )(R i )CR 1 (OR m )(OR n ), -C(R h )(R i )C(O)NR°R p , or - C(R h )(R i )C(O)NR°OR n ;

t is 0, 1, 2, 3, or 4; R f is OH, OR k , NR g R h , optionally substituted linear or branched C 1 -12 alkyl, optionally substituted C5-7 cycloalkyl, optionally substituted heterocycle, optionally substituted C6-10 aryl, or optionally substituted C5-7 cycloalkenyl;

R g is H, optionally substituted linear or branched C 1 -12 alkyl, optionally substituted C5-7 cycloalkyl, optionally substituted heterocycle, optionally substituted C6-10 aryl, optionally substituted linear or branched C2-12 alkenyl, -C(O)-(optionally substituted C6-10 aryl), -C(O)- (optionally substituted linear or branched C2-12 alkenyl), or optionally substituted C5-7 cycloalkenyl;

R h is H, optionally substituted linear or branched C 1 -12 alkyl, optionally substituted C5-7 cycloalkyl, optionally substituted heterocycle, optionally substituted C6-10 aryl, or optionally substituted C5-7 cycloalkenyl;

R 1 is H, optionally substituted linear or branched C 1 -12 alkyl, optionally substituted C5-7 cycloalkyl, optionally substituted heterocycle, optionally substituted C6-10 aryl, or optionally substituted C5-7 cycloalkenyl;

R J is H, optionally substituted linear or branched C 1 -12 alkyl, optionally substituted C5-7 cycloalkyl, optionally substituted heterocycle, optionally substituted C6-10 aryl, or optionally substituted C5-7 cycloalkenyl;

R k is optionally substituted linear or branched C 1 -12 alkyl, optionally substituted C5-7 cycloalkyl, optionally substituted heterocycle, optionally substituted C6-10 aryl, or optionally substituted C5-7 cycloalkenyl;

R 1 is H, optionally substituted linear or branched C 1 -12 alkyl, optionally substituted C5-7 cycloalkyl, optionally substituted heterocycle, optionally substituted C6-10 aryl, or optionally substituted C5-7 cycloalkenyl;

R m is H, optionally substituted linear or branched C 1 -12 alkyl, optionally substituted C5-7 cycloalkyl, optionally substituted heterocycle, optionally substituted C6-10 aryl, or optionally substituted C5-7 cycloalkenyl;

R n is H, optionally substituted linear or branched C 1 -12 alkyl, optionally substituted C5-7 cycloalkyl, optionally substituted heterocycle, optionally substituted C6-10 aryl, or optionally substituted C5-7 cycloalkenyl; R° is H, optionally substituted linear or branched C 1 -12 alkyl, optionally substituted C5-7 cycloalkyl, optionally substituted heterocycle, optionally substituted C 6-10 aryl, or optionally substituted C5-7 cycloalkenyl; and

R p is H, optionally substituted linear or branched C 1 -12 alkyl, optionally substituted C5-7 cycloalkyl, optionally substituted heterocycle, optionally substituted C 6-10 aryl, or optionally substituted C5-7 cycloalkenyl.

[0071] In one embodiment, the monomers of the invention have the structure of Formula (II) wherein:

R b is H, optionally substituted linear or branched C 1-6 alkyl, optionally substituted linear or branched C 2-6 alkenyl, halogen, -C(O)R f , -CH 2 -C(O)R f , -OR g , -CH 2 -OR g , CN, NO2, -CF 3 , - P(O)(OH) 2 , -OP(O)(OH) 2 , optionally substituted heterocycle, spiro optionally substituted heterocycle, -CH 2 -(optionally substituted heterocycle), optionally substituted C5-7 cycloalkyl, - CH 2 -(optionally substituted C5-7 cycloalkyl), optionally substituted C 6-10 aryl, -CH 2 -(optionally substituted C 6-10 aryl), optionally substituted C5-7 cycloalkenyl, or -CH 2 -(optionally substituted C5- 7 cycloalkenyl);

t is 0;

R f is OH, OR k , NR g R h , optionally substituted linear or branched C- 116 alkyl, optionally substituted C5-7 cycloalkyl, optionally substituted heterocycle, optionally substituted C 6-10 aryl, or optionally substituted C5-7 cycloalkenyl;

R g is H, optionally substituted linear or branched C 1-6 alkyl, optionally substituted C5-7 cycloalkyl, optionally substituted heterocycle, optionally substituted C 6-10 aryl, optionally substituted linear or branched C 2-6 alkenyl, -C(O)-(optionally substituted C 6-10 aryl), -C(O)- (optionally substituted linear or branched C 2-6 alkenyl), or optionally substituted C5-7 cycloalkenyl;

R h is H, optionally substituted linear or branched C 1-6 alkyl, optionally substituted C5-7 cycloalkyl, optionally substituted heterocycle, optionally substituted C 6-10 aryl, or optionally substituted C5-7 cycloalkenyl; and

R k is optionally substituted linear or branched C 1-6 alkyl, optionally substituted C5-7 cycloalkyl, optionally substituted heterocycle, optionally substituted C 6-10 aryl, or optionally substituted C5-7 cycloalkenyl.

[0072] In one embodiment, the monomers of the invention have the structure of Formula (II) wherein:

[0073] Non-limiting examples of monomers of Formula (II) include

[0074] In one embodiment, monomers of the invention have the structure of Formula (III):

Formula (III)

wherein z is 0, 1, 2, or 3.

[0075] In one embodiment, monomers of the invention have the structure of Formula (III), wherein z is 1 or 2.

[0076] In one embodiment, monomers of the invention have the structure of Formula (III), wherein z is 2.

[0077] Non-limiting examples of monomers of Formula (III) include: [0078] In one embodiment, the olefins of the invention have the structure of Formula (IV):

wherein:

R c is H, optionally substituted linear or branched C 1 -24 alkyl, optionally substituted linear or branched C2-24 alkenyl, halogen, -C(O)R f , -CH 2 -C(O)R f , -OR g , -CH 2 -OR g , CN, NO2, -CF3, - P(O)(OH) 2 , -OP(O)(OH) 2 , optionally substituted heterocycle, -CH 2 -(optionally substituted heterocycle), optionally substituted C3-10 cycloalkyl, -CH 2 -(optionally substituted C3-10 cycloalkyl), optionally substituted C5-24 aryl, -CH 2 -(optionally substituted C5-24 aryl), optionally substituted C3-8 cycloalkenyl, -CH 2 -(optionally substituted C3-8 cycloalkenyl), -C(R h )(R 1 )COOR i , -C(R h )(R i )C(O)H, -C(R h )(R i )C(O)R k , -C(R h )(R i )CR 1 (OR m )(OR n ), -C(R h )(R i )C(O)NR°R p , or - C(R h )(R i )C(O)NR°OR n ;

R d is H, optionally substituted linear or branched C 1 -24 alkyl, optionally substituted linear or branched C2-24 alkenyl, halogen, -C(O)R f , -CH 2 -C(O)R f , -OR g , -CH 2 -OR g , CN, NO2, -CF3, - P(O)(OH) 2 , -OP(O)(OH) 2 , optionally substituted heterocycle, -CH 2 -(optionally substituted heterocycle), optionally substituted C3-10 cycloalkyl, -CH 2 -(optionally substituted C3-10 cycloalkyl), optionally substituted C5-24 aryl, -CH 2 -(optionally substituted C5-24 aryl), optionally substituted C3-8 cycloalkenyl, -CH 2 -(optionally substituted C3-8 cycloalkenyl), -C(R h )(R 1 )COOR i , -C(R h )(R i )C(O)H, -C(R h )(R i )C(O)R k , -C(R h )(R i )CR 1 (OR m )(OR n ), -C(R h )(R i )C(O)NR°R p , or - C(R h )(R i )C(O)NR°OR n ;

R f is OH, OR k , NR g R h , optionally substituted linear or branched C 1 -24 alkyl, optionally substituted C3-10 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C3-8 cycloalkenyl;

R g is H, optionally substituted linear or branched C 1 -24 alkyl, optionally substituted C3-10 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, optionally substituted linear or branched C2-6 alkenyl, -C(O)-(optionally substituted C5-24 aryl), -C(O)- (optionally substituted linear or branched C2-6 alkenyl), or optionally substituted C3-8 cycloalkenyl; R h is H, optionally substituted linear or branched C 1 -24 alkyl, optionally substituted C3-1 0 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C3-8 cycloalkenyl;

R 1 is H, optionally substituted linear or branched C 1 -24 alkyl, optionally substituted C 3 -1 0 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C3-8 cycloalkenyl;

R J is H, optionally substituted linear or branched C 1 -24 alkyl, optionally substituted C 3 -1 0 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C 3 -8 cycloalkenyl;

R k is optionally substituted linear or branched C 1 -24 alkyl, optionally substituted C 3 -1 0 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C 3 -8 cycloalkenyl;

R 1 is H, optionally substituted linear or branched C 1 -24 alkyl, optionally substituted C 3 -1 0 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C 3 -8 cycloalkenyl;

R m is H, optionally substituted linear or branched C 1 -24 alkyl, optionally substituted C 3 -1 0 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C 3 -8 cycloalkenyl;

R n is H, optionally substituted linear or branched C 1 -24 alkyl, optionally substituted C 3 -1 0 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C 3 -8 cycloalkenyl;

R° is H, optionally substituted linear or branched C 1 -24 alkyl, optionally substituted C 3 -1 0 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C 3 -8 cycloalkenyl; and

R p is H, optionally substituted linear or branched C 1 -24 alkyl, optionally substituted C 3 -1 0 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C 3 -8 cycloalkenyl.

[0079] In one embodiment, the olefins of the invention have the structure of Formula (IV) wherein:

R c is H, optionally substituted linear or branched C 1 -12 alkyl, optionally substituted linear or branched C2-12 alkenyl, halogen, -C(O)R f , -CH 2 -C(O)R f , -OR g , -CH 2 -OR g , CN, NO2, -CF 3 , - P(0)(0H) 2 , -0P(0)(0H) 2 , optionally substituted heterocycle, -CH 2 -(optionally substituted heterocycle), optionally substituted C5-7 cycloalkyl, -CH 2 -(optionally substituted C5-7 cycloalkyl), optionally substituted C6-10 aryl, -CH 2 -(optionally substituted C6-10 aryl), optionally substituted C5-7 cycloalkenyl, -CH 2 -(optionally substituted C5-7 cycloalkenyl), -C(R h )(R')COOR J , -

C(R h )(R i )C(O)H, -C(R h )(R i )C(O)R k , -C(R h )(R')CR l (OR m )(OR n ), -C(R h )(R i )C(O)NR°R p , or - C(R h )(R i )C(O)NR°0R n ;

R d is H, optionally substituted linear or branched C 1 -12 alkyl, optionally substituted linear or branched C2-12 alkenyl, halogen, -C(O)R f , -CH 2 -C(O)R f , -OR g , -CH 2 -OR g , CN, NO2, -CF3, - P(O)(0H) 2 , -0P(O)(0H) 2 , optionally substituted heterocycle, -CH 2 -(optionally substituted heterocycle), optionally substituted C5-7 cycloalkyl, -CH 2 -(optionally substituted C5-7 cycloalkyl), optionally substituted C6-10 aryl, -CH 2 -(optionally substituted C6-10 aryl), optionally substituted C5-7 cycloalkenyl, -CH 2 -(optionally substituted C5-7 cycloalkenyl), -C(R h )(R')COOR J , -

C(R h )(R i )C(O)H, -C(R h )(R i )C(O)R k , -C(R h )(R')CR l (OR m )(OR n ), -C(R h )(R i )C(O)NR°R p , or - C(R h )(R i )C(O)NR°0R n ;

R f is OH, OR k , NR g R h , optionally substituted linear or branched C 1 -12 alkyl, optionally substituted C5-7 cycloalkyl, optionally substituted heterocycle, optionally substituted C6-10 aryl, or optionally substituted C5-7 cycloalkenyl;

R g is H, optionally substituted linear or branched C 1 -12 alkyl, optionally substituted C5-7 cycloalkyl, optionally substituted heterocycle, optionally substituted C6-10 aryl, optionally substituted linear or branched C2-6 alkenyl, -C(O)-(optionally substituted C6-10 aryl), -C(O)- (optionally substituted linear or branched C2-6 alkenyl), or optionally substituted C5-7 cycloalkenyl;

R h is H, optionally substituted linear or branched C 1 -12 alkyl, optionally substituted C5-7 cycloalkyl, optionally substituted heterocycle, optionally substituted C6-10 aryl, or optionally substituted C5-7 cycloalkenyl;

R 1 is H, optionally substituted linear or branched C 1 -12 alkyl, optionally substituted C5-7 cycloalkyl, optionally substituted heterocycle, optionally substituted C6-10 aryl, or optionally substituted C5-7 cycloalkenyl;

R J is H, optionally substituted linear or branched C 1 -12 alkyl, optionally substituted C5-7 cycloalkyl, optionally substituted heterocycle, optionally substituted C6-10 aryl, or optionally substituted C5-7 cycloalkenyl; R k is optionally substituted linear or branched C 1 -12 alkyl, optionally substituted C5-7 cycloalkyl, optionally substituted heterocycle, optionally substituted C 6-10 aryl, or optionally substituted C5-7 cycloalkenyl;

R 1 is H, optionally substituted linear or branched C 1 -12 alkyl, optionally substituted C5-7 cycloalkyl, optionally substituted heterocycle, optionally substituted C 6-10 aryl, or optionally substituted C5-7 cycloalkenyl;

R m is H, optionally substituted linear or branched C 1 -12 alkyl, optionally substituted C5-7 cycloalkyl, optionally substituted heterocycle, optionally substituted C 6-10 aryl, or optionally substituted C5-7 cycloalkenyl;

R n is H, optionally substituted linear or branched C 1 -12 alkyl, optionally substituted C5-7 cycloalkyl, optionally substituted heterocycle, optionally substituted C 6-10 aryl, or optionally substituted C5-7 cycloalkenyl;

R° is H, optionally substituted linear or branched C 1 -12 alkyl, optionally substituted C5-7 cycloalkyl, optionally substituted heterocycle, optionally substituted C 6-10 aryl, or optionally substituted C5-7 cycloalkenyl; and

R p is H, optionally substituted linear or branched C 1 -12 alkyl, optionally substituted C5-7 cycloalkyl, optionally substituted heterocycle, optionally substituted C 6-10 aryl, or optionally substituted C5-7 cycloalkenyl.

[0080] In one embodiment, the olefins of the invention have the structure of Formula (IV) wherein:

R c is H, optionally substituted linear or branched C 1-6 alkyl, optionally substituted linear or branched C 2-6 alkenyl, halogen, -C(O)R f , -CH 2 -C(O)R f , -OR g , -CH 2 -OR g , CN, NO2, -CF 3 , - P(O)(OH) 2 , -OP(O)(OH) 2 , optionally substituted heterocycle, -CH 2 -(optionally substituted heterocycle), optionally substituted C5-7 cycloalkyl, -CH 2 -(optionally substituted C5-7 cycloalkyl), optionally substituted C 6-10 aryl, -CH 2 -(optionally substituted C 6-10 aryl), optionally substituted C5-7 cycloalkenyl, or -CH 2 -(optionally substituted C5-7 cycloalkenyl);

R d is H, optionally substituted linear or branched C 1-6 alkyl, optionally substituted linear or branched C 2-6 alkenyl, halogen, -C(O)R f , -CH 2 -C(O)R f , -OR g , -CH 2 -OR g , CN, NO2, -CF 3 , - P(O)(OH) 2 , -OP(O)(OH) 2 , optionally substituted heterocycle, -CH 2 -(optionally substituted heterocycle), optionally substituted C5-7 cycloalkyl, -CH 2 -(optionally substituted C5-7 cycloalkyl), optionally substituted C 6-10 aryl, -CH 2 -(optionally substituted C 6-10 aryl), optionally substituted C5-7 cycloalkenyl, or -CH 2 -(optionally substituted C5-7 cycloalkenyl);

R f is OH, OR k , NR g R h , optionally substituted linear or branched C 1-6 alkyl, optionally substituted C5-7 cycloalkyl, optionally substituted heterocycle, optionally substituted C 6-10 aryl, or optionally substituted C5-7 cycloalkenyl;

R g is H, optionally substituted linear or branched C 1-6 alkyl, optionally substituted C5-7 cycloalkyl, optionally substituted heterocycle, optionally substituted C 6-10 aryl, optionally substituted linear or branched C 2-6 alkenyl, -C(O)-(optionally substituted C 6-10 aryl), -C(O)- (optionally substituted linear or branched C 2-6 alkenyl), or optionally substituted C5-7 cycloalkenyl;

R h is H, optionally substituted linear or branched C 1-6 alkyl, optionally substituted C5-7 cycloalkyl, optionally substituted heterocycle, optionally substituted C 6-10 aryl, or optionally substituted C5-7 cycloalkenyl; and

R k is optionally substituted linear or branched C 1-6 alkyl, optionally substituted C5-7 cycloalkyl, optionally substituted heterocycle, optionally substituted C 6-10 aryl, or optionally substituted C5-7 cycloalkenyl.

[0081] In one embodiment, the olefins of the invention have the structure of Formula (IV) wherein:

[0083] It is well understood by one of skill in the art that bicyclic and polycyclic olefins as disclosed herein may consist of a variety of structural isomers and/or stereoisomers, any and all of which are suitable for use in the invention. Any reference herein to such bicyclic and polycyclic olefins unless specifically stated includes mixtures of any and all such structural isomers and/or stereoisomers.

[0084] Examples of monomers thus include, without limitation, dicyclopentadiene; tricyclopentadiene, tetracyclopentadiene; norbomene; 5-methyl-2-norbomene; 5-ethyl-2- norbomene; 5-isobutyl-2-norbornene; 5,6-dimethyl-2-norbornene; 5-phenylnorbornene; 5- benzylnorbornene; 5-acetylnorbomene; 5-methoxycarbonylnorbomene; 5-ethoxy carbonyl- 1- norbomene; 5-methyl-5-methoxy-carbonylnorbornene; 5-cyanonorbomene; 5,5,6-trimethyl-2- norbomene; cyclo-hexenylnorbornene; endo, exo-5,6-dimethoxynorbornene; endo, endo-5,6- dimethoxynorbornene; endo, exo-5-6-dimethoxycarbonylnorbomene; endo, endo-5,6- dimethoxycarbonylnorbomene; 2,3-dimethoxynorbornene; norbornadiene; tricycloundecene; tetracyclododecene; 8-methyltetracyclododecene; 8-ethyl-tetracyclododecene; 8- methoxycarbonyl tetracyclododecene; 8-methyl-8-tetracyclo-dodecene; 8- cyanotetracyclododecene; C2-C 1 2 hydrocarbyl substituted norbomenes such as 5-butyl-2- norbomene; 5-hexyl-2-norbornene; 5-octyl-2-norbornene; 5-decyl-2-norbornene; 5-dodecyl-2- norbomene; 5-vinyl-2-norbomene; 5-ethylidene-2-norbornene; 5-isopropenyl-2-norbomene; 5- propenyl-2-norbomene; and 5-butenyl-2-norbomene, and the like; and C2-C 1 2 hydrocarbyl substituted tetracyclododecene, such as 5-butyl-2-tetracyclododecene, 5-hexyl-2- tetracyclododecene, 5-octyl-2-tetracyclododecene, 5-decyl-2-tetracyclododecene, 5-dodecyl-2- tetracyclododecene, 5-vinyl-2-tetracyclododecene, 5-ethylidene-2-tetracyclododecene, 5- isopropenyl-2-tetracyclododecene, 5-propenyl-2-tetracyclododecene, and 5-butenyl-2- tetracyclododecene.

METAL CARBENE OLEFIN METATHESIS CATALYSTS

[0085] The metal carbene olefin metathesis catalysts, suitable for the ring opening of the monomers of the invention, have the general structure of Formula (1):

Formula (1 )

wherein:

M is a Group 8 transition metal; generally, M is ruthenium or osmium; typically, M is ruthenium;

L 1 , L 2 , and L 3 are independently neutral electron donor ligands;

n is 0 or 1; typically, n is 0;

m is 0, 1, or 2; typically, m is 0;

k is 0 or 1; typically, k is 1; X 1 and X 2 are independently anionic ligands; generally, X 1 and X 2 are independently halogen, trifluoroacetate, per-fluorophenols or together they can form a nitrate; typically, X 1 and X 2 are independently Cl, Br, I, or F; and

R 1 and R 2 are independently hydrogen, optionally substituted hydrocarbyl, optionally substituted heteroatom-containing hydrocarbyl; typically, R 1 is hydrogen and R 2 is optionally substituted phenyl, C 1 -C6 alkyl or substituted l-propenyl; or R 1 and R 2 are linked together to form one or more cyclic groups, such as a substituted indenylidene, specifically 3-phenylindenylid-l- ene.

[0086] In one embodiment, the moiety

wherein:

X 3 and X 4 are independently O or S; typically, X 3 and X 4 are independently S; and

R x , R y , R w , and R z are independently hydrogen, halogen, optionally substituted hydrocarbyl, or optionally substituted heteroatom-containing hydrocarbyl; generally R x , R y , R w , and R z are independently hydrogen, halogen, optionally substituted C 1 -C 1 2 alkyl, optionally substituted C3-C 1 0 cycloalkyl, or optionally substituted C5-C24 aryl; typically, R x , R y , R w , and R z are independently C 1 -C6 alkyl, hydrogen, optionally substituted phenyl, or halogen; or R x and R y are linked together to form an optionally substituted bicyclic or polycyclic aryl; or R w and R z are linked together to form an optionally substituted bicyclic or polycyclic aryl; or R y and R w are linked together to form an optionally substituted bicyclic or polycyclic aryl.

[0087] In one embodiment, L 1 and L 2 are independently selected from phosphine, sulfonated phosphine, phosphite, phosphinite, phosphonite, arsine, stibine, ether, (including cyclic ethers), amine, amide, imine, sulfoxide, carboxyl, nitrosyl, pyridine, substituted pyridine, imidazole, substituted imidazole, pyrazine, substituted pyrazine and thioether. Exemplary ligands are tri substituted phosphines. Preferred tri substituted phosphines are of the formula PR H1 R H2 R H3 , where R m , R m , and R H3 are each independently optionally substituted: C6-10 aryl or C 1 -C 1 0 alkyl, or C3-10 cycloalkyl. In the most preferred, L 1 and L 2 are independently selected from the group consisting of trimethylphosphine (PMe3), triethylphosphine (PEt 3 ), tri-n-butylphosphine (PBu 3 ), tri(ortho-tolyl)phosphine (P-o-tolyb), tri-tert-butylphosphine (P-tert-Bu 3 ), tricyclopentylphosphine (PCp 3 ), tricyclohexylphosphine (PCy 3 ), triisopropylphosphine (P-i-Pr 3 ), trioctylphosphine (POct 3 ), triisobutylphosphine, (P-i-Bu 3 ), triphenylphosphine (PPh 3 ), tri(pentafluorophenyl)phosphine (P(C6F 5 ) 3 ), methyldiphenylphosphine (PMePh 2 ), dimethylphenylphosphine (PMe2Ph), and diethylphenylphosphine (PEt 2 Ph).

[0088] In one embodiment, L 1 is , wherein X and Y are independently C, CR 3a , N, O, S, or P; only one of X or Y can be C or CR 3a ; typically, X and Y are independently N; Q 1 , Q 2 , R 3 , R 3a , and R 4 are independently hydrogen optionally substituted hydrocarbyl, optionally substituted heteroatom-containing hydrocarbyl; generally, Q 1 , Q 2 , R 3 , R 3a , and R 4 are optionally linked to X or to Y via a linker such as optionally substituted hydrocarbyl ene, optionally substituted heteroatom-containing hydrocarbylene, or -(CO)-; typically Q 1 , Q 2 , R 3 , R 3a , and R 4 are directly linked to X or to Y; and p is 0, when X is O or S, p is 1, when X is N, P, or CR 3a , and p is 2, when X is C; q is 0, when Y is O or S, q is 1, when Y is N, P, or CR 3a , and q is 2, when X is C.

[0089] In one embodiment, wherein Q is a two-atom linkage having the structure -[CR u R 12 ] s -[CR 13 R 14 ]t- or -[CR 11= CR 13 ]-; typically Q is -[CR U R 12 ] S - [CR 13 R 14 ]t-, wherein R 11 , R 12 , R 13 , and R 14 are independently hydrogen, optionally substituted hydrocarbyl, optionally substituted heteroatom-containing hydrocarbyl; typically R 11 , R 12 , R 13 , and R 14 are independently hydrogen, optionally substituted Ci-Ci 2 alkyl, optionally substituted Ci- Ci 2 heteroalkyl, optionally substituted C5-C 1 4 aryl;

“s” and“t” are independently 1 or 2; typically,“s” and“t” are independently 1; or any two of R 11 , R 12 , R 13 , and R 14 are optionally linked together and can form an optionally substituted, saturated or unsaturated polycyclic ring structure. [0090] In one embodiment, , wherein Z is N or CR 32 ;

R 1 is H, optionally substituted C 1 -24 alkyl, halogen, -C(O)R 25 , -OR 26 , CN, -NR 27 R 28 , NO2, -CF3, -S(O) x R 29 , -P(O)(OH) 2 , -OP(O)(OH) 2 , -SR 31 , optionally substituted heterocycle, optionally substituted C3-1 0 cycloalkyl, optionally substituted C5-24 aryl, optionally substituted C 3 -8 cycloalkenyl, or together with R 2 can form a spiro compound, or together with R 3 or together with R 4 can form a polycyclic ring;

R 2 is H, optionally substituted C 1 -24 alkyl, halogen, -C(O)R 25 , -OR 26 , CN, -NR 27 R 28 , NO2, -CF 3 , -S(O) x R 29 , -P(O)(OH) 2 , -OP(O)(OH) 2 , -SR 31 , optionally substituted heterocycle, optionally substituted C 3 -1 0 cycloalkyl, optionally substituted C5-24 aryl, optionally substituted C 3 -8 cycloalkenyl, or together with R 1 can form a spiro compound, or together with R 3 or together with R 4 can form a polycyclic ring;

R 3 is H, optionally substituted C 1 -24 alkyl, halogen, -C(O)R 25 , -OR 26 , CN, -NR 27 R 28 , NO2, -CF 3 , -S(O) x R 29 , -P(O)(OH) 2 , -OP(O)(OH) 2 , -SR 31 , optionally substituted heterocycle, optionally substituted C 3 -1 0 cycloalkyl, optionally substituted C5-24 aryl, optionally substituted C 3 -8 cycloalkenyl, or together with R 2 or together with R 1 can form a polycyclic ring or together with R 4 can form a spiro compound;

R 4 is H, optionally substituted C 1 -24 alkyl, halogen, -C(O)R 25 , -OR 26 , CN, -NR 27 R 28 , NO2, -CF 3 , -S(O) x R 29 , -P(O)(OH) 2 , -OP(O)(OH) 2 , -SR 31 , optionally substituted heterocycle, optionally substituted C 3 -1 0 cycloalkyl, optionally substituted C5-24 aryl, optionally substituted C 3 -8 cycloalkenyl, or together with R 3 can form a spiro compound, or together with R 2 or together with R 1 can form a polycyclic ring;

R 5 is H, optionally substituted C 1 -24 alkyl, halogen, -C(0)R 25 , -OR 26 , CN, -NR 27 R 28 , NO2, -CF3, -S(0) x R 29 , -P(O)(OH) 2 , -OP(O)(OH) 2 , -SR 31 , optionally substituted heterocycle, optionally substituted C3-10 cycloalkyl, optionally substituted C5-24 aryl, optionally substituted C3-8 cycloalkenyl, or together with R 6 can form an optionally substituted polycyclic ring;

R 6 is H, optionally substituted C 1 -24 alkyl, halogen, -C(0)R 25 , -OR 26 , CN, -NR 27 R 28 , NO2, -CF3, -S(0) x R 29 , -P(O)(OH) 2 , -OP(O)(OH) 2 , -SR 31 , optionally substituted heterocycle, optionally substituted C3-10 cycloalkyl, optionally substituted C5-24 aryl, optionally substituted C3-8 cycloalkenyl, or together with R 5 or together with R 7 can form an optionally substituted polycyclic ring;

R 7 is H, optionally substituted C 1 -24 alkyl, halogen, -C(0)R 25 , -OR 26 , CN, -NR 27 R 28 , NO2, -CF3, -S(0) x R 29 , -P(O)(0H) 2 , -0P(O)(0H) 2 , -SR 31 , optionally substituted heterocycle, optionally substituted C3-10 cycloalkyl, optionally substituted C5-24 aryl optionally substituted C3-8 cycloalkenyl, or together with R 6 or together with R 8 can form an optionally substituted polycyclic ring;

R 8 is H, optionally substituted C 1 -24 alkyl, halogen, -C(0)R 25 , -OR 26 , CN, -NR 27 R 28 , NO2, -CF3, -S(0) x R 29 , -P(O)(0H) 2 , -0P(O)(0H) 2 , -SR 31 , optionally substituted heterocycle, optionally substituted C3-10 cycloalkyl, optionally substituted C5-24 aryl, optionally substituted C3-8 cycloalkenyl, or together with R 7 or together with R 9 can form an optionally substituted polycyclic ring;

R 9 is H, optionally substituted C 1 -24 alkyl, halogen, -C(0)R 25 , -OR 26 , CN, -NR 27 R 28 , NO2, -CF3, -S(0) x R 29 , -P(O)(0H) 2 , -0P(O)(0H) 2 , -SR 31 , optionally substituted heterocycle, optionally substituted C3-10 cycloalkyl, optionally substituted C5-24 aryl, optionally substituted C3-8 cycloalkenyl, or together with R 8 can form an optionally substituted polycyclic ring;

R 10 is H, optionally substituted C 1 -24 alkyl, halogen, -C(0)R 25 , -OR 26 , CN, -NR 27 R 28 , NO2, -CF3, -S(0) x R 29 , -P(O)(0H) 2 , -0P(O)(0H) 2 , -SR 31 , optionally substituted heterocycle, optionally substituted C3-10 cycloalkyl, optionally substituted C5-24 aryl, optionally substituted C3-8 cycloalkenyl, or together with R 11 can form an optionally substituted polycyclic ring;

R 11 is H, optionally substituted C 1 -24 alkyl, halogen, -C(0)R 25 , -OR 26 , CN, -NR 27 R 28 , NO2, -CF3, -S(0) x R 29 , -P(O)(0H) 2 , -0P(O)(0H) 2 , -SR 31 , optionally substituted heterocycle, optionally substituted C3-10 cycloalkyl, optionally substituted C5-24 aryl, optionally substituted C3-8 cycloalkenyl, or together with R 10 or together with R 12 can form an optionally substituted polycyclic ring;

R 12 is H, optionally substituted C 1 -24 alkyl, halogen, -C(0)R 25 , -OR 26 , CN, -NR 27 R 28 , NO2, -CF3, -S(0) x R 29 , -P(O)(0H) 2 , -0P(O)(0H) 2 , -SR 31 , optionally substituted heterocycle, optionally substituted C3-10 cycloalkyl, optionally substituted C5-24 aryl, optionally substituted C3-8 cycloalkenyl, or together with R 11 or together with R 13 can form an optionally substituted polycyclic ring; R 13 is H, optionally substituted C 1 -24 alkyl, halogen, -C(0)R 25 , -OR 26 , CN, -NR 27 R 28 , NO2, -CF3, -S(0) x R 29 , -P(O)(0H) 2 , -0P(O)(0H) 2 , -SR 31 , optionally substituted heterocycle, optionally substituted C3-10 cycloalkyl, optionally substituted C5-24 aryl, optionally substituted C3-8 cycloalkenyl, or together with R 14 or together with R 12 can form an optionally substituted polycyclic ring;

R 14 is H, optionally substituted C 1 -24 alkyl, halogen, -C(0)R 25 , -OR 26 , CN, -NR 27 R 28 , NO2, -CF3, -S(0) x R 29 , -P(O)(0H) 2 , -0P(O)(0H) 2 , -SR 31 , optionally substituted heterocycle, optionally substituted C3-10 cycloalkyl, optionally substituted C5-24 aryl, optionally substituted C3-8 cycloalkenyl, or together with R 13 can form a polycyclic ring;

R 32 is H, optionally substituted C 1 -24 alkyl, optionally substituted C3-10 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C3-8 cycloalkenyl;

R 25 is OH, OR 30 , NR 27 R 28 , optionally substituted C 1 -24 alkyl, optionally substituted C3-10 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C3-8 cycloalkenyl;

R 26 is H, optionally substituted C 1 -24 alkyl, optionally substituted C3-10 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C3-8 cycloalkenyl;

R 27 is H, optionally substituted C 1 -24 alkyl, optionally substituted C3-10 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C3-8 cycloalkenyl;

R 28 is H, optionally substituted C 1 -24 alkyl, optionally substituted C3-10 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C3-8 cycloalkenyl;

R 29 is H, optionally substituted C 1 -24 alkyl, OR 26 , -NR 27 R 28 , optionally substituted heterocycle, optionally substituted C3-10 cycloalkyl, optionally substituted C5-24 aryl, or optionally substituted C3-8 cycloalkenyl;

R 30 is optionally substituted C 1 -24 alkyl, optionally substituted C3-10 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C3-8 cycloalkenyl; R 31 is H, optionally substituted C 1 -24 alkyl, optionally substituted C3-10 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C3-8 cycloalkenyl; and x is 1 or 2.

[0091] In one embodiment, L 2 is wherein:

R a2 is hydrogen, optionally substituted hydrocarbyl, or optionally substituted heteroatom- containing hydrocarbyl; generally R 32 is optionally substituted C 1 -C 10 alkyl, optionally substituted C 3 -C 10 cycloalkyl, or optionally substituted C5-C24 aryl; typically R a2 is methyl, ethyl, «-propyl, iso -propyl, «-butyl, tert-butyl, cyclohexyl, or phenyl; and

R b2 is hydrogen, optionally substituted hydrocarbyl, or optionally substituted heteroatom- containing hydrocarbyl; generally R b2 is optionally substituted C 1 -C 10 alkyl, optionally substituted C 3 -C 10 cycloalkyl, or optionally substituted C5-C24 aryl; typically R b2 is methyl, ethyl, «-propyl, /.so -propyl, «-butyl, tert- butyl, cyclohexyl, or phenyl; or R a2 and R b2 are linked together to form a five or a six heterocyclic membered ring with the sulfoxide group [-S(O)-].

[0092] In one embodiment, L 2 is R , wherein: R is optionally substituted hydrocarbyl or optionally substituted heteroatom-containing hydrocarbyl; generally, R is optionally substituted Ci-Cio alkyl, optionally substituted C3-C 10 cycloalkyl, or optionally substituted C5-C24 aryl; typically, R is methyl, ethyl, «-propyl, zso-propyl, «-butyl, tert-butyl, or phenyl.

[0093] In one embodiment, L 2 is wherein:

R lp , R 2p , and R 3p are each independently optionally substituted C 6 -C 10 aryl, optionally substituted C 1 -C 10 alkyl, or optionally substituted C3-C 10 cycloalkyl. R 8p , R 9p , and R 10p are each independently optionally substituted C 6 -C 10 aryl, optionally substituted C 1 -C 10 alkyl, or optionally substituted C 3 - C 10 cycloalkyl. [0094] In one embodiment, wherein:

R a3 is optionally substituted hydrocarbyl or optionally substituted heteroatom-containing hydrocarbyl; generally R a3 is optionally substituted C 1 -C 1 0 alkyl, optionally substituted C3-C 1 0 cycloalkyl, or optionally substituted C5-C24 aryl; typically R a3 is methyl, ethyl, n-propyl, iso propyl, n-butyl, ieri-butyl, cyclohexyl, benzyl, or phenyl;

R b3 is optionally substituted hydrocarbyl or optionally substituted heteroatom-containing hydrocarbyl; generally, R b3 is optionally substituted C 1 -C 1 0 alkyl, optionally substituted C3-C 1 0 cycloalkyl, or optionally substituted C5-C24 aryl; typically, R b3 is methyl, ethyl, n-propyl, iso propyl, n-butyl, ieri-butyl, cyclohexyl, benzyl, or phenyl; or R a3 and R b3 can be linked to form a five-, six-, or seven-membered heterocycle ring with the nitrogen atom they are linked to;

R c3 is optionally substituted hydrocarbyl or optionally substituted heteroatom-containing hydrocarbyl; generally, R c3 is optionally substituted C 1 -C 1 0 alkyl, optionally substituted C3-C 1 0 cycloalkyl, or optionally substituted C5-C24 aryl; typically, R c3 is methyl, ethyl, n-propyl, iso propyl, n-butyl, ieri-butyl, cyclohexyl, benzyl, or phenyl;

RB is optionally substituted hydrocarbyl or optionally substituted heteroatom-containing hydrocarbyl; generally, R d3 is optionally substituted C 1 -C 1 0 alkyl, optionally substituted C3-C 1 0 cycloalkyl, optionally substituted C5-C24 aryl; typically, R d3 is methyl, ethyl, n-propyl, iso-propyl, n-butyl, ieri-butyl, cyclohexyl, benzyl, or phenyl; or R c3 and R d3 can be linked to form a five-, six-, or seven-membered heterocycle ring with the nitrogen atom they are linked to; or R b3 and R c3 can be linked to form a five-, six-, or seven-membered heterocycle ring with the nitrogen atoms they are linked to.

[0095] In another embodiment, the metal carbene olefin metathesis catalysts suitable for the ring opening of the monomers of the invention have the general structure of Formula (2): wherein:

L 1 , X 1 , and X 2 are as defined herein;

W is O, halogen, NR 33 , or S;

R 19 is H, optionally substituted Ci-24 alkyl, -C(R 34 )(R 35 )COOR 36 , -C(R 34 )(R 35 )C(0)H, - C(R 34 )(R 35 )C(0)R 37 , -C(R 34 )(R 35 )CR 38 (OR 39 )(OR 40 ), -C(R 34 )(R 35 )C(0)NR 41 R 42 ,

C(R 34 )(R 35 )C(0)NR 41 OR 40 , -C(0)R 25 , optionally substituted heterocycle, optionally substituted C3-10 cycloalkyl, optionally substituted C5-24 aryl, optionally substituted C3-8 cycloalkenyl, or when W is NR 33 , then R 19 together with R 33 can form an optionally substituted heterocyclic ring or when W is halogen then R 19 is nil;

R 20 is H, optionally substituted C 1 -24 alkyl, halogen, -C(0)R 25 , -OR 26 , CN, -NR 27 R 28 , NO2, -CF3, -S(0) x R 29 , -P(O)(0H) 2 , -0P(O)(0H) 2 , -SR 31 , optionally substituted heterocycle, optionally substituted C3-10 cycloalkyl, optionally substituted C5-24 aryl, optionally substituted C3-8 cycloalkenyl, or together with R 21 can form a polycyclic ring;

R 21 is H, optionally substituted C 1 -24 alkyl, halogen, -C(0)R 25 , -OR 26 , CN, -NR 27 R 28 , NO2, -CF3, -S(0) x R 29 , -P(O)(0H) 2 , -0P(O)(0H) 2 , -SR 31 , optionally substituted heterocycle, optionally substituted C3-10 cycloalkyl, optionally substituted C5-24 aryl, optionally substituted C3-8 cycloalkenyl, or together with R 20 or together with R 22 can form a polycyclic ring;

R 22 is H, optionally substituted C 1 -24 alkyl, halogen, -C(0)R 25 , -OR 26 , CN, -NR 27 R 28 , NO2, -CF3, -S(0) x R 29 , -P(O)(0H) 2 , -0P(O)(0H) 2 , -SR 31 , optionally substituted heterocycle, optionally substituted C3-10 cycloalkyl, optionally substituted C5-24 aryl, optionally substituted C3-8 cycloalkenyl, or together with R 21 or together with R 23 can form a polycyclic ring;

R 23 is H, optionally substituted C 1 -24 alkyl, halogen, -C(O)R 25 , -OR 26 , CN, -NR 27 R 28 , NO2, -CF3, -S(O) x R 29 , -P(O)(0H) 2 , -0P(O)(0H) 2 , -SR 31 , optionally substituted heterocycle, optionally substituted C3-10 cycloalkyl, optionally substituted C5-24 aryl, optionally substituted C3-8 cycloalkenyl, or together with R 22 can form a polycyclic ring;

R 24 is H, optionally substituted C 1 -24 alkyl, halogen, -C(0)R 25 , -OR 26 , CN, -NR 27 R 28 , NO2, -CF3, -S(0) x R 29 , -P(O)(0H) 2 , -0P(O)(0H) 2 , -SR 3 1 , optionally substituted heterocycle, optionally substituted C3-10 cycloalkyl, optionally substituted C5-24 aryl, or optionally substituted C3-8 cycloalkenyl;

R 25 is OH, OR 30 , NR 27 R 28 , optionally substituted C 1 -24 alkyl, optionally substituted C3-10 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C3-8 cycloalkenyl;

R 26 is H, optionally substituted C 1 -24 alkyl, optionally substituted C3-10 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C3-8 cycloalkenyl;

R 27 is H, optionally substituted C 1 -24 alkyl, optionally substituted C3-10 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C3-8 cycloalkenyl;

R 28 is H, optionally substituted C 1 -24 alkyl, optionally substituted C3-10 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C3-8 cycloalkenyl;

R 29 is H, optionally substituted C 1 -24 alkyl, OR 26 , -NR 27 R 28 , optionally substituted heterocycle, optionally substituted C3-10 cycloalkyl, optionally substituted C5-24 aryl, or optionally substituted C3-8 cycloalkenyl;

R 30 is optionally substituted C 1 -24 alkyl, optionally substituted C3-10 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C3-8 cycloalkenyl;

R 31 is H, optionally substituted C 1 -24 alkyl, optionally substituted C3-10 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C3-8 cycloalkenyl;

R 33 is H, optionally substituted C 1 -24 alkyl, optionally substituted C3-10 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C3-8 cycloalkenyl; R 34 is H, optionally substituted C 1 -24 alkyl, optionally substituted C3-10 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C3-8 cycloalkenyl;

R 35 is H, optionally substituted C 1 -24 alkyl, optionally substituted C3-10 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C3-8 cycloalkenyl;

R 36 is H, optionally substituted C 1 -24 alkyl, optionally substituted C3-10 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C3-8 cycloalkenyl;

R 37 is optionally substituted C 1 -24 alkyl, optionally substituted C3-10 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C3-8 cycloalkenyl;

R 38 is H, optionally substituted C 1 -24 alkyl, optionally substituted C3-10 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C3-8 cycloalkenyl;

R 39 is H, optionally substituted C 1 -24 alkyl, optionally substituted C3-10 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C3-8 cycloalkenyl;

R 40 is H, optionally substituted C 1 -24 alkyl, optionally substituted C3-10 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C3-8 cycloalkenyl;

R 41 is H, optionally substituted C 1 -24 alkyl, optionally substituted C3-10 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C3-8 cycloalkenyl;

R 42 is H, optionally substituted C 1 -24 alkyl, optionally substituted C3-10 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C3-8 cycloalkenyl; and

x is 1 or 2. [0096] In some embodiments, the metal carbene olefin metathesis catalysts used in the

invention have general structures: Formula (3) Formula (4)

Formula (5) Formula (6) Formula (7)

Formula (18) Formula (19)

[0097] Preferred metal carbene olefin metathesis catalysts used in the invention are encompassed by Formulae:

Formula (24) or Formula ( '25) , wherein X 1 , X 2 , R 1 , R 2 , R 3 ,

R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 , R 14 , R 19 , R 20 , R 21 , R 22 , R 23 , R 24 , R H1 , R H2 , R H3 , and R 42 are as defined herein.

[0098] Most preferred metal carbene olefin metathesis catalysts used in the invention are encompassed by Formulae:

[0099] It will be appreciated that the amount of catalyst that is used (i.e., the“catalyst loading”) in the reaction is dependent upon a variety of factors such as the identity of the reactants and the reaction conditions that are employed. It is therefore understood that catalyst loading may be optimally and independently chosen for each reaction. In general, however, the catalyst will be present in an amount that ranges from a low of about 0.1 ppm, 1 ppm, or 5 ppm, to a high of about 10 ppm, 15 ppm, 25 ppm, 50 ppm, 100 ppm, 200 ppm, 500 ppm, or 1000 ppm relative to the amount of an olefmic substrate.

[00100] The catalyst will generally be present in an amount that ranges from a low of about 0.00001 mol%, 0.0001 mol%, or 0.0005 mol%, to a high of about 0.001 mol%, 0.0015 mol%, 0.0025 mol%, 0.005 mol%, 0.01 mol%, 0.02 mol%, 0.05 mol%, or 0.1 mol% relative to the olefmic substrate.

[00101] When expressed as the molar ratio of olefin to catalyst, the catalyst (the“olefin to catalyst ratio”), loading will generally be present in an amount that ranges from a low of about 10,000,000: 1, 1,000,000: 1, 500,000: 1 or 200,00: 1, to a high of about 100,000: 1 60,000: 1, 50,000: 1, 45,000; l, 40,000: 1, 30,000: 1, 20,000: 1, 10,000: 1, 5,000: 1, or 1,000: 1.

EMBODIMENTS OF THE INVENTION

[00102] The polymers of the invention can be synthesized according to synthetic Scheme 1, wherein at least one monomer of Formulae (I), (II), and (III), and optionally at least one olefin of Formula (IV) are submitted to ring opening metathesis reactions in the presence of at least one metal carbene olefin metathesis catalyst. The at least one metal carbene olefin metathesis catalyst can have the structure of Formula (1), Formula (2), or mixtures thereof.

[00103] In one embodiment, the invention provides a polymer having a dielectric constant Dk < 3 at 1-100 GHz, and a dielectric loss Df < 0.01 at 1-100 GHz, synthesized by ring opening metathesis reactions comprising at least one monomer of Formulae (I), (II), and (III), optionally an olefin of Formula (IV), and at least one metal carbene olefin metathesis catalyst,

Formula (I) Formula (II) Formula (III) Formula (IV) wherein: z is 0, 1, 2 or 3;

R a is H, optionally substituted linear or branched C 1 -24 alkyl, optionally substituted linear or branched C2-24 alkenyl, halogen, -C(O)R f , -CH 2 -C(O)R f , -OR g , -CH 2 -OR g , -CN, -NO2, -CF 3 , - P(O)(0H) 2 , -0P(O)(0H) 2 , optionally substituted heterocycle, -CH 2 -(optionally substituted heterocycle), optionally substituted C3-10 cycloalkyl, -CH 2 -(optionally substituted C3-10 cycloalkyl), optionally substituted C5-24 aryl, -CH 2 -(optionally substituted C5-24 aryl), optionally substituted C3-8 cycloalkenyl, or -CH 2 -(optionally substituted C3-8 cycloalkenyl);

R b is H, optionally substituted linear or branched C 1 -24 alkyl, optionally substituted linear or branched C2-24 alkenyl, halogen, -C(O)R f , -CH 2 -C(O)R f , -OR g , -CH 2 -OR g , -CN, -NO2, -CF3, - P(O)(0H) 2 , -0P(O)(0H) 2 , optionally substituted heterocycle, -CH 2 -(optionally substituted heterocycle), optionally substituted C3-10 cycloalkyl, -CH 2 -(optionally substituted C3-10 cycloalkyl), optionally substituted C5-24 aryl, -CH 2 -(optionally substituted C5-24 aryl), optionally substituted C3-8 cycloalkenyl, or -CH 2 -(optionally substituted C3-8 cycloalkenyl);

R c is H, optionally substituted linear or branched C 1 -24 alkyl, optionally substituted linear or branched C2-24 alkenyl, halogen, -C(O)R f , -CH 2 -C(O)R f , -OR g , -CH 2 -OR g , CN, NO2, -CF3, - P(O)(0H) 2 , -0P(O)(0H) 2 , optionally substituted heterocycle, -CH 2 -(optionally substituted heterocycle), optionally substituted C3-10 cycloalkyl, -CH 2 -(optionally substituted C3-10 cycloalkyl), optionally substituted C5-24 aryl, -CH 2 -(optionally substituted C5-24 aryl), optionally substituted C3-8 cycloalkenyl, -CH 2 -(optionally substituted C3-8 cycloalkenyl), -C(R h )(R 1 )COOR>, -C(R h )(R i )C(O)H, -C(R h )(R i )C(O)R k , -C(R h )(R')CR l (OR m )(OR n ), -C(R h )(R i )C(O)NR°R p , or - C(R h )(R i )C(O)NR°0R n ;

R d is H, optionally substituted linear or branched C 1 -24 alkyl, optionally substituted linear or branched C2-24 alkenyl, halogen, -C(O)R f , -CH 2 -C(O)R f , -OR g , -CH 2 -OR g , CN, NO2, -CF3, - P(O)(0H) 2 , -0P(O)(0H) 2 , optionally substituted heterocycle, -CH 2 -(optionally substituted heterocycle), optionally substituted C3-10 cycloalkyl, -CH 2 -(optionally substituted C3-10 cycloalkyl), optionally substituted C5-24 aryl, -CH 2 -(optionally substituted C5-24 aryl), optionally substituted C3-8 cycloalkenyl, -CH 2 -(optionally substituted C3-8 cycloalkenyl), -C(R h )(R 1 )COOR>, -C(R h )(R i )C(O)H, -C(R h )(R i )C(O)R k , -C(R h )(R')CR l (OR m )(OR n ), -C(R h )(R i )C(O)NR°R p , or - C(R h )(R i )C(O)NR°0R n ;

each R s is independently optionally substituted linear or branched C 1 -24 alkyl, optionally substituted linear or branched C2-24 alkenyl, halogen, -C(O)R f , -CH 2 -C(O)R f , -OR g , -CH 2 -OR g , CN, NO2, -CF3, -P(0)(0H) 2 , -0P(O)(0H) 2 , optionally substituted heterocycle, -CH 2 -(optionally substituted heterocycle), optionally substituted C3-1 0 cycloalkyl, -CH 2 -(optionally substituted C3-1 0 cycloalkyl), optionally substituted C5-24 aryl, -CH 2 -(optionally substituted C5-24 aryl), optionally substituted C 3 -8 cycloalkenyl, -CH 2 -(optionally substituted C 3 -8 cycloalkenyl), -C(R h )(R')COOR J , -C(R h )(R i )C(O)H, -C(R h )(R i )C(O)R k , -C(R h )(R')CR l (OR m )(OR n ), -C(R h )(R i )C(O)NR°R p , or - C(R h )(R i )C(O)NR°0R n ;

t is 0, 1, 2, 3, 4, 5, or 6;

R f is OH, OR k , NR g R h , optionally substituted linear or branched C 1 -24 alkyl, optionally substituted C 3 -1 0 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C 3 -8 cycloalkenyl;

R g is H, optionally substituted linear or branched C 1 -24 alkyl, optionally substituted C 3 -1 0 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, optionally substituted linear or branched C 2-6 alkenyl, -C(O)-(optionally substituted linear or branched C 2-6 alkenyl), or optionally substituted C 3 -8 cycloalkenyl;

R h is H, optionally substituted linear or branched C 1 -24 alkyl, optionally substituted C 3 -1 0 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C 3 -8 cycloalkenyl;

R 1 is H, optionally substituted linear or branched C 1 -24 alkyl, optionally substituted C 3 -1 0 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C 3 -8 cycloalkenyl;

R J is H, optionally substituted linear or branched C 1 -24 alkyl, optionally substituted C 3 -1 0 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C 3 -8 cycloalkenyl;

R k is optionally substituted linear or branched C 1 -24 alkyl, optionally substituted C 3 -1 0 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C 3 -8 cycloalkenyl;

R 1 is H, optionally substituted linear or branched C 1 -24 alkyl, optionally substituted C 3 -1 0 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C 3 -8 cycloalkenyl; R m is H, optionally substituted linear or branched C 1 -24 alkyl, optionally substituted C3-10 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C3-8 cycloalkenyl;

R n is H, optionally substituted linear or branched C 1 -24 alkyl, optionally substituted C3-10 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C3-8 cycloalkenyl;

R° is H, optionally substituted linear or branched C 1 -24 alkyl, optionally substituted C3-10 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C3-8 cycloalkenyl; and

R p is H, optionally substituted linear or branched C 1 -24 alkyl, optionally substituted C3-10 cycloalkyl, optionally substituted heterocycle, optionally substituted C5-24 aryl, or optionally substituted C3-8 cycloalkenyl.

[00104] In one embodiment, the polymers of the invention have Dk of 2.42, 2.44, 2.46, 2.47, 2.5 at 10 GHz and Df of 0.017, 0.006, 0.004, 0.0033, 0.0008, 0.0009 at 10 GHz.

[00105] In one embodiment, the invention provides a polymer having a dielectric constant Dk < 3 at 1-100 GHz, and a dielectric loss Df < 0.01 at 1-100 GHz, synthesized by ring opening metathesis reactions comprising at least one monomer of Formulae (I), (II), and (III), optionally an olefin of Formula (IV), and at least one metal carbene olefin metathesis catalyst,

Formula (I) Formula (II) Formula (III) Formula (IV) , wherein:

z is 2;

t is 0;

R a is optionally substituted linear or branched C2-24 alkenyl, optionally substituted linear or branched C 1 -24 alkyl, or optionally substituted C5-24 aryl;

R b is optionally substituted linear or branched C 1 -24 alkyl, -CH 2 -OR g , -CH 2 -(optionally substituted heterocycle), -C(O)R f , optionally substituted heterocycle, spiro optionally substituted heterocycle, -CH 2 -(optionally substituted C5-24 aryl), or -CH 2 -OR g ; R c is H;

R d is optionally substituted linear or branched C 1 -24 alkyl, or -CH 2 -(optionally substituted heterocycle);

R f is OH; and

R g is H, optionally substituted C 1 -24 alkyl, -C(O)-(optionally substituted linear or branched C2-6 alkenyl), or optionally substituted C5-24 aryl.

[00106] In one embodiment, the invention provides a polymer having a dielectric constant Dk < 3 at 1-100 GHz, and a dielectric loss Df < 0.01 at 1-100 GHz, synthesized by ring opening metathesis reactions comprising at least one monomer of Formulae (I), (II), and (III), optionally an olefin of Formula (IV), and at least one metal carbene olefin metathesis catalyst, wherein: the at least one monomer of Formula (I) is the at least one monomer of Formula

the at least one monomer of Formula (III) is ; and the at least one olefin of Formula (IV) is

[00107] The expression“ring opening metathesis reactions comprising at least one monomer of Formulae (I), (II), and (III), optionally an olefin of Formula (IV)” means the following. The ring opening metathesis reactions comprise at least one of each monomers of Formulae (I), (II), and (III), and optionally at least one olefin of Formula (IV), or it means that the ring opening metathesis reactions comprise any combination of two or three of at least one monomer of Formulae (I), (II), or (III), and optionally an olefin of Formula (IV).

[00108] The polymers of the invention can be synthesized by ring opening metathesis reactions, comprising at least one monomer of Formulae (I), (II), and (III), optionally at least one olefin of Formula (IV), and at least one metal carbene olefin metathesis catalyst.

[00109] The polymers of the invention can also be synthesized by ring opening metathesis reactions, comprising at least one monomer of Formula (I), at least one monomer of Formula (P), and at least one metal carbene olefin metathesis catalyst.

[00110] The polymers of the invention can also be synthesized by ring opening metathesis reactions, comprising at least one monomer of Formula (I), at least one monomer of Formula (P), and at least one metal carbene olefin metathesis catalyst, wherein

the at least one monomer of Formula

the at least one monomer of Formula

(II) is

[00111] The polymers of the invention can also be synthesized by ring opening metathesis reactions, comprising at least one monomer of Formula (I), at least one monomer of Formula (II), optionally at least one olefin of Formula (IV), and at least one metal carbene olefin metathesis catalyst.

[00112] The polymers of the invention can also be synthesized by ring opening metathesis reactions, comprising at least one monomer of Formula (I), at least one monomer of Formula (II), optionally at least one olefin of Formula (IV), and at least one metal carbene olefin metathesis

catalyst, wherein the at least one monomer of Formula (I) is

the at

least one monomer of Formula

[00113] The polymers of the invention can also be synthesized by ring opening metathesis reactions, comprising at least one monomer of Formula (I), at least one monomer of Formula (P), at least one monomer of Formula (III), and at least one metal carbene olefin metathesis catalyst.

[00114] The polymers of the invention can also be synthesized by ring opening metathesis reactions, comprising at least one monomer of Formula (I), at least one monomer of Formula (P), at least one monomer of Formula (III), and at least one metal carbene olefin metathesis catalyst; wherein the at least one monomer of Formula (I) is the at least one monomer of Formula

[00115] The polymers of the invention can also be synthesized by ring opening metathesis reactions, comprising at least one monomer of Formula (II), at least one monomer of Formula (III), optionally at least one olefin of Formula (IV), and at least one metal carbene olefin metathesis catalyst.

[00116] The polymers of the invention can also be synthesized by ring opening metathesis reactions, comprising at least one monomer of Formula (II), at least one monomer of Formula (III), optionally at least one olefin of Formula (IV), and at least one metal olefin metathesis

catalyst, wherein: the at least one monomer of Formula (II) is

least one monomer of Formula (III) is ; and the at least one olefin of Formula

[00117] The polymers of the invention can also be synthesized by ring opening metathesis reactions, comprising at least one monomer of Formula (I), at least one monomer of Formula (III), and at least one metal carbene olefin metathesis catalyst.

[00118] The polymers of the invention can also be synthesized by ring opening metathesis reactions, comprising at least one monomer of Formula (I), at least one monomer of Formula (III), and at least one metal carbene olefin metathesis catalyst, wherein the at least one monomer

Formula

[00119] In one embodiment, the at least one metal carbene olefin metathesis catalyst can be any of the metal carbene olefin metathesis catalysts described herein, having the structure of Formulae (1), (2), (3), (4), (5), (6), (7), (8), (9), (10), (11), (12), (13), (14), (15), (16), (17), (18), (19), (20), (21), (22), (23), (24), or (25).

[00120] In one embodiment, the at least one metal carbene olefin metathesis catalyst has the structure of Formulae (22), (23), (24), or (25).

[00121] In one embodiment, the preferred at least one metal carbene olefin metathesis catalyst is a ruthenium olefin metathesis catalyst.

[00122] Formulae (1), (2), (3), (4), (5), (6), (7), (8), (9), (10), (11), (12), (13), (14), (15), (16), (17), (18), (19), (20), (21), (22), (23), (24), (25), (I), (II), (III), and (IV) are as defined herein.

[00123] The polymers of the invention can be further reacted with additives. These additives can be: antioxidants, peroxides, silica, flame retardants, reinforcing materials, light stabilizers, dyes, elastomers, fillers. Some additives such as antioxidants can be used to prevent thermal oxidation of the polymer; Lewis or Bronsted acids can be used to help with coordinating functional groups that slow polymerization reactions.

[00124] The polymers of the invention can also be crosslinked, for example, at elevated temperatures, and optionally in the presence of free-radical initiators, such organic peroxides, or other curative agents such as diamines, triamines, polyamines, polycarboxylic acids, anhydrides and polyanhydrides, polythiols, and cationic initiators like Lewis acids

APPLICATIONS

[00125] One of skill in the art would appreciate that the polymers of the invention can be used in different types of applications such as: prepregs, fiber composite laminates, solvent based coatings, melt-extruded parts, films, and liquid compounds. Non-limiting examples of prepregs and laminates are: rigid printed circuit board, metal clad printed circuit boards, flexible printed circuit board, hybrid (e.g., rigid-flex) printed circuit board, thermal interface materials, IC substrate core, radomes, unidirectional carbon or glass fiber prepreg tapes, and electrical insulation composites. Non-limiting examples of films are: FPC adhesives, IC substrate build up layer, redistribution layer, die attach films, thermal interface materials, underfill, and encapsulation. Non-limiting examples of liquid compounds are: underfill, potting and encapsulations, die attach adhesives, photopatterning, mold compounds, wafer bonding, solder mask, thermal interface materials, conductive pastes, and inks. The polymers of the invention can be further hydrogenated to form polymer materials with low degree of unsaturated carbon-carbon bonds. EXPERIMENTAL

[00126] The following examples are for illustrative purposes only and are not intended, nor should they be construed as limiting the invention in any manner. Those skilled in the art will appreciate that variations and modifications of the following examples can be made without exceeding the spirit or scope of the invention.

[00127] Efforts have been made to ensure accuracy with respect to numbers used (e.g., amounts, temperature, etc.) but some experimental error and deviation should be accounted for. Unless indicated otherwise, temperature is in degrees Celsius (°C), and pressure is at or near atmospheric.

[00128] All glassware was oven dried and reactions were performed under ambient conditions unless otherwise noted. All solvents and reagents were purchased from commercial suppliers and used as received unless otherwise noted.

[00129] The number average molecular weight (Mn) and the weight average molecular weight (Mw) of the polymers were determined by GPC/SEC. The polydispersity index, PDI=Mw/Mn was calculated. The gel permeation chromatography (GPC)/ Size-exclusion chromatography (SEC) data were collected using two Agilent PLgel MIXED-B 300 x 7.5 mm columns with 10 pm beads, connected to an Agilent 1260 Series pump, a Wyatt 18-angle DAWN HELEOS light scattering detector, and Optilab rEX differential refractive index detector. The mobile phase was THF and the flow rate was 1 mL / min.

[00130] Any metal carbene olefin metathesis catalysts described herein can be used in these examples. Some of the monomers were synthesized according to known literature procedures.

[00131] General GC method conditions: column: Agilent 122-5032E DB-5 (30 m x 250 pm x 0.25 pm), or equivalent. (5 % Phenyl Methyl Siloxane). Injection temperature, 280 °C; detector temperature, 310 °C; oven temperature, starting temperature, 50 °C; hold time, 0.5 min. The ramp rate was 20°C/min to 210 °C, ramp time was 5 °C/min to 240 °C, ramp time was 20 °C/min to 280 °C hold time 2.5 min; Mode = Split 20.0: 1.0; Split Flow = 20.0 mL/min

Pressure = 12.05 psi; Total Flow = 23.6 mL/min; constant flow carrier Gas = Helium @ 23.5 mL/min.

[00132] The FTIR (Fourier Transform infrared) analysis was determined on a Thermoscientific NicoletiSlO FTIR equipped with an ATR crystal using the Omnic 9 software; crystal type Diamond with ZnSe lens; pH range 1-14. The background was collected for the surface of the IR Yrystal (FTIR sensor) and then 50 mg of polymer powder was added to completely cover the crystal and the data collection took 32 scans.

[00133] The following abbreviations are used in the examples:

Mn [kDa] number average molecular weight in kilo Dalton

Mw [kDa] weight average molecular weight in kilo Dalton

PDI polydispersity index

Tg (°C) glass transition temperature in degrees Celsius

IP A iso-propanol

MeOH methanol

TGA thermal gravimetric analysis

DMSO dimethylsulfoxide

NaOH sodium hydroxide

K2CO3 potassium carbonate

TBA I tetrabutylammonium iodide

TBA HSO4 tetrabutylammonium hydrogen sulfate

TPP triphenylphosphine

BHT butylated hydroxytoluene

THF tetrahydrofuran

MEK methyl ethyl ketone

CDCI 3 deuterated chloroform

C6D6 deuterated benzene

DI Water deionized water

DCPD dicyclopentadiene

DCM dichloromethane

DSC differential scanning calorimetry

[00134] Non-limiting examples of monomers and reagents used in the synthesis of the polymers of the invention are shown in Table 1: Table 1: Monomers and reagents

Example 1

5-((2-(prop-l-en-l-yl)phenoxy)methyl)bicyclo[2.2.1]hept-2-en e

[00135] A 1 L flask equipped with a magnetic stir bar was charged with bicyclo[2.2.l]hept-5- ene-2-methanol, 2-methanesulfonate [CAS 86646-41-5] (55 g, 271.91 mmol), 2-(l-propenyl) phenol [CAS 6380-21-8] (40 g, 298.12 mmol), potassium carbonate (10 g, 72.35 mmol), and DMSO (300 mL). The flask was placed under a nitrogen atmosphere and heated to 85 °C overnight. The reaction was cooled to room temperature and extracted with hexanes and washed with water (3 times, 500 mL each). The organic layer was washed with a 10% wt/wt solution of NaOH (200 mL) to remove excess phenol and then washed with water (200 mL). The organic layer was dried over sodium sulfate and filtered through a plug of silica gel. The solvent was removed by high vac resulting in 40.56 g of desired product. A mixture of endo and exo isomers was obtained.

1 H NMR (400 MHz, CDCI 3 ) d 0.60-0.65 (m, 1H), 1.24-1.37 (m, 2H), 1.47 (d, J = 8.0 Hz, 1H), 1.42 (dd, J= 1.8 Hz, J= 7.4 Hz, 3H), 1.89-1.93 (m, 1H), 2.55-2.63 (m, 1H), 2.84 (br s, 0.7H), 2.88 (br s, 0.3H), 3.05 (br s, 1H), 3.52 (t, J= 9.2 Hz, 1H), 3.75 (dd, J= 6.6 Hz, J= 9.0 Hz, 1H), 3.86 (t, J= 9.0 Hz, 0.3H), 4.05 (dd, J= 6.2 Hz, J= 9.2 Hz, 0.3H), 5.78-5.87 (m, 1H), 5.95 (dd, J= 3.0 Hz, J = 5.8 Hz, 0.7H), 6.10 (dd, J= 3.0 Hz, J = 5.8 Hz, 0.3H), 6.15 (dd, J= 3.0 Hz, J= 5.8 Hz, 1H), 6.60 (d, J= 11.6 Hz, 1H), 6.82 (t, j= 8.0 Hz, 1H), 6.91 (quint, J= 6.9 Hz, 1H), 7.18 (t, j = 8.0 Hz, 1H), 7.28 (d, J= 7.2 Hz, 1H).

Example 2

5-(((2-methylallyl)oxy)methyl)bicyclo[2.2.1]hept-2-ene

[00136] A 3 -neck round bottom flask equipped with a magnetic stir bar was charged with an aqueous solution of NaOH (564 g, 50% wt/wt) and then diluted with ice (400 g). 2-

Hydroxymethyl-5-norbomene [CAS 95-12-5] (300 g, 2.416 mol) was charged and stirring was established. TBA I (120 g, 324.88 mmol) and TBA HS0 4 (18 g, 53.01 mmol) were added and the biphasic mixture was heated to 55 °C. Methallyl chloride (350 g, 3.865 mol) was added dropwise with an addition funnel over 1 h. The reaction was stirred overnight at 55 °C. The mixture was cooled to room temperature and transferred to a separatory funnel. The aqueous layer was removed, and the organic layer was washed with DI water 3X (500 mL each). The organic layer was decanted into a container and dried over sodium sulfate. The mixture was transferred into a 1 L round bottom flask. The flask was equipped with a magnetic stir bar, a vigreux column, distillation bridge, and a condenser. The pot temperature was heated to 90 °C, high vac = 60 mTorr, and the cuts were monitored by GC. The distillation provided 320 g of desired product. A mixture of endo and exo isomers was obtained. ¾ NMR (400 MHz, CeDe) d 0.40-0.45 (m, 1H), 0.99-1.04 (m, 0.2H), 1.07 (d, j= 7.6 Hz, 0.8H), 1.14-1.22 (m, 0.4H), 1.32-1.34 (m, 0.2H), 1.42 (dd, J = 2.0 Hz, J = 8.4 Hz, 0.8H), 1.61-1.68 (m, 3H), 1.74-1.79 (m, 0.2H), 2.29-2.37 (m, 0.8H), 2.58 (br s, 0.8H), 2.62 (br s, 0.2H), 2.79 (br s, 0.2H), 2.94-2.96 (m, 1.2H), 3.03-3.06 (m, 0.8H), 3.12-3.17 (m, 0.2H), 3.25-3.29 (m, 0.2H) 3.66- 3.75 (m, 2H), 4.83 (br s, 1H), 5.02 (br s, 1H), 5.90-5.95 (m, 1H), 5.96-6.03 (m, 1H).

Example 3

2-(bicyclo[2.2.1]hept-5-en-2-ylmethyl)phenol

[00137] A 2 L, 3 -neck flask equipped with a magnetic stir bar, thermocouple well, and condenser was charged with DCPD (443 g, 3.351 mol) and 2-allylphenol [CAS 1745-81-9] (449.63 g, 3.351 mol). The flask was placed under a nitrogen atmosphere and heated to an internal temperature of 170 °C for 2 d. The reaction was cooled to room temperature and then flask was equipped with a Vigreux column, distillation bridge, and a condenser. The pot temperature was gradually heated to 170 °C, high vac = 60 mTorr, and the cuts were monitored by GC. The distillation provided 67.11 g of desired product. A mixture of endo and exo isomers was obtained. ¾ NMR (400 MHz, CDCb) d 0.63-0.67 (m, 1H), 1.19-1.37 (m, 2H), 1.55 (d, J= 8.8 Hz, 0.5H), 1.78-1.86 (m, 1H), 2.05 (quint, J= 2.1 Hz, 0.5H), 2.33-2.54 (m, 2H), 2.63-2.79 (m, 2H), 6.02 (br s, 0.5H), 6.09-6.11 (m, 0.75H), 6.17-6.20 (m, 0.75H), 6.73-6.78 (m, 1H), 6.81-6.84 (m, 1H), 6.97- 7.03 (m, 1H), 7.06-7.12 (m, 1H), 8.10 (br s, 1H).

Example 4

GENERAL PROCEDURE FOR THE SYNTHESIS OF THE POLYMERS OF THE INVENTION

[00138] A 3 -neck, 1 L round bottom flask equipped with a thermocouple well and rare earth magnetic stir bar was charged with solvent (85% of the mass) and sparged with argon for 15 minutes. Non-limiting examples of solvents are: toluene, DCM, THF, cyclohexanone, and cyclopentanone. The metal carbene olefin metathesis catalyst was added to the flask and stirring was established at room temperature (23 °C). An addition funnel was charged with a solution of monomer(s) and olefin and optional solvent, which was then sparged with argon for 15 minutes and then slowly added to the stirring solution of catalyst. The monomer solution was added with a speed of 1 mL/min. In some cases, an internal temperature increase of a few degrees °C, was observed, before returning to room temperature. The reaction was followed by GC, checking upon the consumption of the monomer. The reaction time took from a few hours to overnight.

[00139] Once the reaction was completed, the reaction mixture was diluted with a large quantity of an anti-solvent with vigorous stirring and an antioxidant was also added. The ratio solvent/anti- solvent is 1/6. Non-limiting examples of anti-solvents are: acetone, IP A, MeOH, hexanes, ethanol, heptanes, MEK, or mixtures thereof. A polymer suspension was formed which was stirred for 1 h and then filtered on a fritted funnel and washed with 500 mL of anti-solvent. The resulting polymer was dried in a vacuum oven under N2: 2 hours at 25-30 °C, 12 hours at 40-45 °C. After cooling the oven to room temperature, the polymer powder was removed. TGA were ran to determine if the polymer was dry.

[00140] Polymers made according to the general procedure described in the experimental of Example 4, are listed in Table 2. The numbers under the structures represent the ratios in moles.

Table 2: Polymers of the invention

Example 5

PREPARATION OF BULK CAST POLYMERS

[00141] Bulk cast polymers were prepared to enable the measurements of Dk/Df. Molded parts were constructed between aluminum plates with 1/8" thick cavity. Liquid monomer samples were prepared in ratios specified in reaction schemes. Additional additives such as antioxidant, inhibitor, and peroxide were added to the reaction mixture. The reaction mixture was then degassed under agitation at room temperature, catalyst was added and further degassed. The degassed catalyzed reaction mixture was poured into a room temperature mold and placed in a 40 °C pre-heated oven. After 10 minutes at 40 °C the oven temperature was increased to 225 °C and cured for 2 hours. The hardened parts were de-molded, test specimens were machined to desired geometries, and sent to CCN (Connected Community Networks, Inc.) for dielectric measurement. Thermal properties were measured internally via DSC. The data are presented in Table 3 Table 3: Bulk cast samples data

Example 6

PROCEDURE FOR THE SYNTHESIS OF POLYMER 26

[00142] A 3 -neck, 12 L round bottom flask equipped with a thermocouple well and a rare earth magnetic stir bar was charged with isopropanol (7 L) which was then sparged with argon for 15 minutes. C627 (0.11 g) and Irganox (3.0 g) were added to the flask and the solution was continued to purge with argon for 5 minutes. In a 1 L Erlenmeyer flask, PhNB (300 g), DNB (61.960 g), and NB-MMA (33.876 g) were mixed and sparged with argon. The content was transferred to a 1 L addition funnel which was then connected to the flask. The system was evacuated and refilled with argon 3 times. The mixture in addition funnel was drop-wise added to the isopropanol solution. As the addition continued, white polymer solid precipitated out of solution. The addition took 3 - 4 hours. The final temperature in the flask reached 30 °C. The solid was isolated by a fret funnel and washed with isopropanol. The solid was further dried in a vacuum oven at 30 °C for 16 hours. Yield: 328 g. The data are presented in Table 4.

Table 4: Polymer 26 of the invention

PROCEDURE FOR THE CHARACTERIZATION OF CROSSLINKING OF POLYMER 26

[00143] Polymer 26 was dissolved in toluene with Luperox 101 organic peroxide (1 weight percent versus polymer weight). The solvent was evaporated to obtain a dry solid which was molded into 25 mm discs for parallel plate rheometry. In a TA Discovery HR-3 Rheometer, the disc was heated from 60 °C to 200 °C at 5 °C per minute under oscillatory shear to measure the complex viscosity as a function of temperature. See Figure 1. Those skilled in the art would recognize the behavior in Figure 1 as typical of a B-staged linear polymer undergoing heat- induced melt flow at decreasing viscosity as temperature rises until crosslinking reactions cause a minimum in the curve and a sharp rise in viscosity leading to gelation or crosslinking.