Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
POLYPROPYLENE-POLYETHYLENE COMPOSITION WITH IMPROVED TOUGHNESS
Document Type and Number:
WIPO Patent Application WO/2020/221739
Kind Code:
A1
Abstract:
The present invention relates to a polymer composition comprising at least the following components A) 40 to 94 wt.-% based on the overall weight of the polymer composition of a polymer blend, comprising a1) 50 to 95 wt.-% of polypropylene; a2) 5 to 50 wt.-% of polyethylene; C) 3 to 30 wt.-% based on the overall weight of the polymer composition of a compatibilizer being a copolymer of propylene and 1-hexene, comprising b1) 30 to 70 wt.-% of a first random copolymer of propylene and 1-hexene; and b2) 30 to 70 wt.-% of a second random copolymer of propylene and 1-hexene having a higher 1-hexene content than the first random propylene copolymer b1); 3 to 30 wt.-% of a modifier selected from the group consisting of plastomers, heterophasic polypropylene copolymers different from component B) and mixtures thereof; with the provisos that the weight proportions of components a1) and a2) add up to 100 wt.-%; the weight proportions of components b1) and b2) add up to 100 wt.-%; the weight proportions of components A), B) and C) add up to 100 wt.-%; component A) has a MFR2 (230°C, 2.16 kg) determined according to ISO 1133 in the range from 1.0 to 0.0 g/10 min;and component B) has a 1-hexenecontentin the range from 2.0 to 8.0wt.-%. The present invention further relates to a process for manufacturing the polymer composition, to the use of components B) and C) as a compatibilizer for polymer blends A) and to articles comprising the polymer composition according to the invention.

Inventors:
WANG JINGBO (AT)
GAHLEITNER MARKUS (AT)
BERNREITNER KLAUS (AT)
BRAUN HERMANN (AT)
Application Number:
PCT/EP2020/061750
Publication Date:
November 05, 2020
Filing Date:
April 28, 2020
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
BOREALIS AG (AT)
International Classes:
C08L23/12; C08F2/00
Domestic Patent References:
WO2018206353A12018-11-15
WO2015169690A12015-11-12
WO2015011135A12015-01-29
WO2013007650A12013-01-17
Foreign References:
US20100125118A12010-05-20
US20190048176A12019-02-14
EP3456776A12019-03-20
EP3165473A12017-05-10
Other References:
KLIMKE, K.PARKINSON, M.PIEL, C.KAMINSKY, W.SPIESS, H.W.WILHELM, M., MACROMOL. CHEM. PHYS., vol. 207, 2006, pages 382
PARKINSON, M.KLIMKE, K.SPIESS, H.W.WILHELM, M., MACROMOL. CHEM. PHYS., vol. 208, 2007, pages 2128
CASTIGNOLLES, P.GRAF, R.PARKINSON, M.WILHELM, M.GABORIEAU, M., POLYMER, vol. 50, 2009, pages 2373
POLLARD, M.KLIMKE, K.GRAF, R.SPIESS, H.W.WILHELM, M.SPERBER, O.PIEL, C.KAMINSKY, W., MACROMOLECULES, vol. 37, 2004, pages 813
FILIP, X.TRIPON, C.FILIP, C., J. MAG. RESN., vol. 176, 2005, pages 239
GRIFFIN, J.M.TRIPON, C.SAMOSON, A.FILIP, C.BROWN, S.P., MAG. RES. IN CHEM., vol. 45, 2007
RESCONI, L.CAVALLO, L.FAIT, A.PIEMONTESI, F., CHEM. REV., vol. 100, 2000, pages 1253
Attorney, Agent or Firm:
MAIKOWSKI & NINNEMANN (DE)
Download PDF:
Claims:
Claims

1. A polymer composition comprising at least the following components

A) 40 to 94 wt.-% based on the overall weight of the polymer composition of a

polymer blend, comprising

a1) 50 to 95 wt.-% of polypropylene;

a2) 5 to 50 wt.-% of polyethylene;

B) 3 to 30 wt.-% based on the overall weight of the polymer composition of a

compatibilizer being a copolymer of propylene and 1 -hexene, comprising b1) 30 to 70 wt.-% of a first random copolymer of propylene and 1 -hexene; and b2) 30 to 70 wt.-% of a second random copolymer of propylene and 1 -hexene having a higher 1 -hexene content than the first random propylene copolymer b1);

C) 3 to 30 wt.-% of a modifier selected from the group consisting of plastomers, heterophasic polypropylene copolymers different from component B) and mixtures thereof;

with the provisos that

• the weight proportions of components a1) and a2) add up to 100 wt.-%;

• the weight proportions of components b1) and b2) add up to 100 wt.-%;

• the weight proportions of components A), B) and C) add up to 100 wt.-%;

• component A) has a MFR2 (230°C, 2.16 kg) determined according to ISO 1133 in the range from 1.0 to 50.0 g/10 min; and

• component B) has a 1 -hexene content in the range from 2.0 to 8.0 wt.-%.

2. The polymer composition according to claim 1 , characterized in that, component C) is a plastomer comprising ethylene, preferably a copolymer of ethylene and 1-octene, more preferably having a density in the range from 0.860 to 0.930 g/cm3, even more preferably having a MFR2 (190°C, 2.16 kg) determined according to ISO 1133 in the range from 0.1 to 40.0 g/10 min and most preferably is a copolymer of ethylene and 1-octene having a density in the range from 0.865 to 0.920 g/cm3 and a MFR2 (190°C, 2.16 kg) determined according to ISO 1133 in the range from 0.3 to 35 g/10 min; and/or component C) is a heterophasic polypropylene copolymer comprising

c1) 70.0 to 90.0 wt% of a crystalline polypropylene matrix; and c2) 10.0 to 30.0 wt% of an amorphous propylene-ethylene copolymer comprising 35.0 to 70.0 wt% of ethylene;

wherein the weight proportions of components d) and c2) add up to 100 wt.-%;

preferably the heterophasic polypropylene copolymer C) has a MFR2 (230°C, 2.16 kg) determined according to ISO 1133 in the range from 1.0 to 10.0 g/10 min.

3. The polymer composition according to claim 1 or 2, characterized in that, the content of component A) in the polymer composition is in the range from 50 to 91 wt.-%, preferably in the range from 58 to 87 wt.-% and more preferably in the range from 83 to 87 wt.-% when component C) is a plastomer or in the range from 73 to 81 when component C) is a heterophasic polypropylene copolymer based on the overall weight of the polymer composition; and/or the content of component B) in the polymer composition is in the range from 5 to 25 wt.-%, preferably in the range from 8 to 22 wt.-% and more preferably in the range from 9 to 11 wt.-% based on the overall weight of the polymer composition; and/or the content of component C) in the polymer composition is in the range from 4 to 25 wt.-%, preferably in the range from 5 to 20 wt.-% and more preferably in the range from 4 to 6 wt.-% for plastomers or from 10 to 16 wt.-% based on the overall weight of the polymer composition for heterophasic polypropylene copolymers; and/or the content of polypropylene a1) in component A) is in the range from 53 to 92 wt.-%, preferably in the range from 55 to 90 wt.-% and more preferably in the range from 58 to 87 wt.-%; and/or the content of polyethylene a2) in component A) is in the range from 8 to 47 wt.-%, preferably in the range from 10 to 45 wt.-% and more preferably in the range from 13 to 42 wt.-%.

4. The polymer composition according to one of the preceding claims, characterized in that, component A) has a MFR2 (230°C, 2.16 kg) determined according to ISO 1133 in the range from 1.5 to 35.0 g/10 min, preferably in the range from 2.0 to 25.0 g/10 min and more preferably in the range from 5.0 to 10.0 g/10 min; and/or component B) has a MFR2 (230°C, 2.16 kg) determined according to ISO 1133 in the range from 0.4 to 12.0 g/10 min, preferably in the range from 0.6 to 9.0 g/10 min, more preferably in the range from 0.8 to 6.0 g/10 min and most preferably in the range from 1.0 to 4.0 g/10 min; and/or component B) has a xylene soluble content (XCS) based on the overall weight of component B) of ³ 8, preferably in the range from 8 to 30 wt.-%, more preferably in the range from 10.0 to 28.0 wt.-% and most preferably in the range from 15 to 28 wt- %; and/or the 1 -hexene content in component B) is in the range from 3.0 to 7.5 wt.-%, preferably in the range from 3.5 to 7.2 wt.-% and more preferably in the range from 4.0 to 6.0 wt.-%; and/or component B) has a 1 -hexene content of the xylene soluble fraction C6 (XCS) based on the overall weight of component B) in the range from 2.0 to 15.0 wt.-%, preferably from 2.5 to 12.0 wt.-%, more preferably in the range from 3.0 to 10.0 wt.-% and most preferably in the range from 5.0 to 8.0 wt.-%; and/or the melting point of component B) is >120°C, preferably in the range from 125 to 145°C and more preferably in the range from 130 to 140°C; and/or the melt enthalpy of component a2) / melt enthalpy of a1) in the polymer composition is in the range from 0.2 to 2.0 and preferably in the range from 0.25 to 1.75.

5. The polymer composition according to any one of the preceding claims, characterized in that, the polymer composition has a MFR2 (230°C, 2.16 kg) determined according to ISO 1133 in the range from 1.0 to 50.0 g/10 min, preferably from 1.5 to 35.0 g/10 min, more preferably from 2.0 to 25.0 g/10 min and most preferably from 3.5 to 8.0 g/10 min; and/or a Tensile Modulus measured according to IS0527-2 in the range from 800 to 1500 MPa and preferably in the range from 800 to 1000 MPa; and/or an Elongation at Break measured according to ISO 527-2 of more than 300 %, preferably in the range from 350 to 1000 % and more preferably in the range from 400 to 900 %; and/or a Charpy Notched Impact Strength measured according to ISO 179-1eA at 23°C of more than 8,0 kJ/m2, preferably in the range from 8.5 to 30 kJ/m2, more preferably in the range from 9.0 to 25 kJ/m2 and more preferably in the range from 9 to 11 kJ/m2.

6. The polymer composition according to any one of the preceding claims, characterized in that, component b1) has a MFR2 (230°C, 2.16 kg) determined according to ISO 1133 in the range from 0.3 to 12.0 g/10 min, preferably in the range from 0.5 to 9.0 g/10 min and more preferably in the range from 0.7 to 6.0 g/10 min; and/or component b2) has a MFR2 (230°C, 2.16 kg) determined according to ISO 1133 in the range from 0.5 to 14.0 g/10 min, preferably in the range from 0.7 to 11.0 g/10 min and more preferably in the range from 0.9 to 8.0 g/10 min; and/or the C6-content in component b1) based on the overall weight of component b1) is in the range from 0.1 to 4.0 wt.-%, preferably in the range from 0.5 to 3.5 wt.-% and more preferably in the range from 0.8 to 3.0 wt.-%; and/or the C6-content in component b2) based on the overall weight of component b2) is in the range from 4.0 to 15.0 wt.-%, preferably in the range from 5.0 to 13.0 wt.-% and more preferably in the range from 6.0 to 12.0 wt.-%; and/or the content of component b1) in component B) is from 35 to 65 wt.-% and preferably from 40 to 60 wt.-%; and/or the content of component b2) in component B) is from 35 to 65 wt.-% and preferably from 40 to 60 wt.-%.

7. The polymer composition according to any one of the preceding claims, characterized in that, component C) is a plastomer and has

a density in the range from 0.860 to 0.930 g/cm3, preferably in the range from 0.865 to 0.920 g/cm3 and more preferably in the range from 0.868 g/cm3; and/or

a MFR2 (190°C, 2.16 kg) determined according to ISO 1133 in the range from 0.1 to 40.0 g/10 min, preferably from 0.4 to 32.0 g/10 min and more preferably in the range from 0.5 to 1.5 g/10 min; or component (C) is a heterophasic polypropylene copolymer and has

a MFR2 (230°C, 2.16 kg) determined according to ISO 1133 in the range from 1.0 to 10.0 g/10 min, preferably from 1.5 to 8.0 g/10 min and more preferably in the range from 2.0 to 7.0 g/10 min; or component C) has a xylene soluble content (XCS) based on the overall weight of component C) in the range from 10.0 to 30.0 wt.-%, preferably in the range from 12.0 to 25.0 wt.-% and more preferably in the range from 14 to 20 wt.-%; and/or component C) has an ethylene content of the xylene soluble fraction C2 (XCS) based on the overall weight of component C) in the range from 35.0 to 70.0 wt.-%, preferably from 40.0 to 65.0 wt.-% and more preferably in the range from 45.0 to 60.0 wt.-%; and/or component C) has a xylene cold soluble fraction (XCI) based on the overall weight of component C) in the range from 70.0 to 90.0 wt.-%, preferably from 75.0 to 88.0 wt.-% and more preferably in the range from 80.0 to 86.0 wt.-%.

8. The polymer composition according to any one of the preceding claims, characterized in that, component A) is a recycled material, which is preferably recovered from waste plastic material derived from post-consumer and/or post-industrial waste; and/or the polymer composition comprises at least one additive, preferably selected from the group consisting of slip agents, UV-stabiliser, pigments, antioxidants, additive carriers, nucleating agents and mixtures thereof, whereby these additives preferably are present in 0 to 5 wt.-% and more preferably in 0.1 to 4 wt.-% based on the overall weight of the polymer composition.

9. The polymer composition according to any one of the preceding claims, characterized in that, said polymer composition has a higher Charpy Notched Impact Strength measured according to ISO 179-1eA at 23°C, preferably at least 10 % higher, more preferably from 10 to 25 % higher and even more preferably at least 25 % higher than the same polymer composition without components B) and C); and has at the same time a Tensile Modulus measured according to IS0527-2 of at least 800 MPa and preferably in the range from 800 to 1000 MPa.

10. The polymer composition according to any one of the preceding claims, characterized in that, component B) is an in-reactor blend obtained by a sequential polymerization process in at least two reactors connected in series, said sequential polymerization process preferably comprises the steps of

(i) polymerizing in a first reactor being a slurry reactor, preferably a loop reactor, propylene and 1 -hexene, obtaining a first random propylene copolymer b1),

(ii) transferring said first random propylene copolymer b1) and unreacted

comonomers of the first reactor in a second reactor being a gas phase reactor,

(iii) feeding to said second reactor propylene and 1 -hexene,

(iv) polymerizing in said second reactor and in the presence of said first random propylene copolymer b1) propylene and 1 -hexene obtaining a second random propylene copolymer b2), said first random propylene copolymer b1) and said second random propylene copolymer b2) form component B), wherein further

in the first reactor and second reactor the polymerization takes place in the presence of a solid catalyst system, said solid catalyst system (SCS) comprises a single-site catalyst.

1 1. The polymer composition according to any one of the preceding claims, characterized in that, said polymer composition consists of the following components:

A) 60 to 89 wt.-% based on the overall weight of the polymer composition of a

polymer blend, comprising

a1) 55 to 90 wt.-% of polypropylene;

a2) 10 to 45 wt.-% of polyethylene;

B) 8 to 22 wt.-% based on the overall weight of the polymer composition of a

copolymer of propylene and 1-hexene, comprising

b1) 30 to 70 wt.-% of a first random copolymer of propylene and 1 -hexene; and b2) 30 to 70 wt.-% of a second random copolymer of propylene and 1 -hexene having a higher 1 -hexene content than the first random propylene copolymer b1); and

C) 3 to 7 wt.-% based on the overall weight of the polymer composition of a

plastomer made of ethylene and 1-octene having a density in the range from 0.860 to 0.930 g/cm3 and a MFR2 (190°C, 2.16 kg) determined according to ISO 1133 in the range from 0.1 to 40.0 g/10 min; or 12 to 18 wt.-% based on the overall weight of the polymer composition of a heterophasic polypropylene copolymer comprising

c1) 70.0 to 90.0 wt.-% of a crystalline polypropylene matrix; and

c2) 10.0 to 30.0 wt.-% of an amorphous propylene-ethylene copolymer comprising 35.0 to 70.0 wt.-% of ethylene;

having a MFR2 (230°C, 2.16 kg) determined according to ISO 1133 in the range from 1.0 to 10.0 g/10 min;

with the provisos that

• component A) has a MFR2 (230°C, 2.16 kg) determined according to ISO

1133 in the range from 2.0 to 25.0 g/10 min;

• component B) has a MFR2 (230°C, 2.16 kg) determined according to ISO

1133 in the range from 0.8 to 5.0 g/10 min

• component B) has a xylene soluble content (XCS) based on the overall weight of component B) in the range from 10 to 28 wt.-%;

• the 1 -hexene content in component B) is in the range from 3.5 to 7.2 wt.-%.

12. Use of component B) as described in claims 1 , 4, 6 and component C) as described in claims 1 , 2 and 7 for compatibilizing a polymer blend A) as described in claims 1 , 4 and 8.

13. Use according to claim 12, characterized in that, the ratio between component B) and the polymer blend A) is in the range from 1 : 20 to 1 : 3 and preferably in the range from 1 : 6 to 1 : 10; and/or the ratio between component C) and the polymer blend A) is in the range from 1 : 30 to 1 : 8 and preferably in the range from 1 : 12 to 1 : 22 when component C) is a plastomer; or

the ratio between component C) and the polymer blend A) is in the range from to 1 : 3 to 1 : 15 and preferably in the range from 1 : 4 to 1 : 7 when component C) is a heterophasic polypropylene copolymer; and/or the ratio between component C) and the polymer blend B) is in the range from 1 : 1.5 to 1 : 4 and preferably in the range from 1 : 1.8 to 1 : 2.5 when component C) is a plastomer; or

the ratio between component B) and the polymer blend C) is in the range from to 1 : 1 to 1 : 3 and preferably in the range from 1 : 1.3 to 1 : 1.7 when component C) is a heterophasic polypropylene copolymer.

14. Use according to claim 12 or 13, characterized in that, the Charpy Notched Impact Strength measured according to ISO 179-1eA at 23°C of the polymer blend A) is increased, preferably by at least 10 %, more preferably by 10 to 25 % and even more preferably by at least 25 % and maintaining at the same time the Tensile Modulus measured according to IS0527-2 of the polymer blend A) at least 800 MPa, preferably from 800 to 1000 MPa.

15. Process for compatibilizing the components of a polymer blend A) as described in claims 1 , 3 and 6 comprising the steps of

(IV) providing the polymer blend A) as described in claims 1 , 4 and 8;

(V) adding component B) as described in claims 1 , 4 and 6 and component C) as described in claims 1 , 2 and 7;

(VI) mixing components A), B) and C) to obtain a compatibilized polymer

composition.

16. Process according to claim 15, characterized in that, the polymer composition obtained after step (III) has a higher Charpy Notched Impact Strength measured according to ISO 179-1eA at 23°C, preferably at least 10 % higher, more preferably 10 to 25 % higher and more preferably at least 25 % higher than the polymer blend A) provided in step (I) composition without component B); and has at the same time a Tensile Modulus measured according to IS0527-2 of at least 800 MPa and preferably in the range from 800 to 1000 MPa.

17. Article comprising a polymer composition according to any one of claims 1 to 11.

18. Film, pipe, extrusion blow molded or injection molded article comprising more than 80 wt.-% of a polymer composition according to any one of claims 1 to 11.

Description:
Polypropylene-polyethylene composition with improved toughness

The present invention relates to a polymer composition, which besides of a blend of polypropylene and polyethylene comprises a specific copolymer of propylene and 1 -hexene as compatibilizer and a modifier selected from the group consisting of plastomers, heterophasic polypropylene copolymers and mixtures thereof. Furthermore, the present invention relates to the use of the compatibilizer and the modifier in blends of polypropylene and polyethylene, to a process for compatibilizing these blends and to articles comprising the polymer composition.

Polyolefins, like polypropylene and polyethylene are typical commodity polymers with many application areas and a remarkable growth rate. The reason is not only a favourable price/performance ratio, but also the versatility of these materials and a very broad range of possible modifications, which allows tailoring of end-use properties in a wide range.

Chemical modifications, copolymerisation, blending, drawing, thermal treatment and combination of these techniques can convert common-grade polyolefins to valuable products with special properties.

Blends of polypropylene and polyethylene have attracted much interest. It is well-known that the impact strength of polypropylene (PP) increases at low temperatures through the addition of polyethylene (PE). Unfortunately, PP and PE are highly immiscible resulting in a blend with poor adhesion between its phases, coarse morphology and consequently poor mechanical properties. The compatibility between the phases of a blend can be improved by the addition of compatibilizers, which results in a finer and more stable morphology, better adhesion between the phases of the blends and consequently better properties of the final product.

Due to the change of regulations, the recycling of plastics attracted attention again recently. Plastics bring in huge benefits to the human beings’ life, from the packaging through health care devices to automotives and infrastructure. A huge amount of waste is being created. Recycling of this waste not only saves resources, but is also a basic requirement to keep the future of human beings and other creatures on the earth.

However, in most case more than one material is involved in the value chain, even with best separation technology. The recyclates are still mixtures of different products, like

polypropylene and polyethylene. One of the key problems in polyolefin recycling, especially when dealing with material streams from post-consumer waste (PCW) is the difficulty to quantitatively separate polypropylene (PP) and polyethylene (PE). Commercial recyclates from PCW sources have been found generally to contain mixtures of PP and PE, the minor component reaching up to < 50 wt.-%.

Such recycled PP/PE-blends normally suffer from poor compatibility between the main polymer phases, resulting in deteriorated mechanical properties. Inferior performance is partly caused by PE with its lower stiffness and melting point forming the continuous phase even at PP concentrations up to 65% because of the normally higher viscosity of the PE components in PCW.

This normally excludes the application for high quality parts, and it only allows the use in low- cost and non-demanding applications. From the prior art several kinds of compatibilizers are known.

WO 2015/169690 A1 relates to polypropylene-polyethylene blends comprising A) 75 to 90wt.-% of a blend of A-l) polypropylene and A-2) polyethylene and B) 10 to 25wt.-% of a compatibilizer being a heterophasic polyolefin composition comprising B-1) a polypropylene with an MFR2 between 1.0 and 300 g/10 min (according to ISO 1133 at 230°C at a load of 2.16 kg) and B-2) a copolymer of ethylene and propylene or C4 to C10 alpha olefin with a Tg (measured with dynamic-mechanical thermal analysis, DMTA, according to ISO 6721-7) of below -25°C and an intrinsic viscosity (measured in decalin according to DIN ISO 1628/1 at 135°C) of at least 3.0 dl/g, whereby the blend has simultaneously increased Charpy Notched Impact Strength (according to ISO 179-leA, measured at 23°C), Flexural Modulus (according to ISO 178) as well as heat deflection resistance (determined with DMTA according to ISO 6721-7).

EP 3 165 473 A1 refers to a composition of polypropylene and polyethylene, which contains a specific compatibilizer and flow enhancer. The compatibilizer and flow enhancer is a heterophasic polyolefin composition comprising 55 to 90 wt.-% of a matrix being a polypropylene and 45 to 10 wt.-% of an elastomer being a copolymer of ethylene and propylene or C4 to C10 alpha olefin with a glass transition temperature Tg measured according to ISO 6721-7 of below -25°C and an intrinsic viscosity measured according to DIN ISO 1628/1 at 135 °C of at least 3.0 dl/g.

For several applications, like pipes, profiles, containers, automotive components or household articles it is of high importance that the PP/PE-blends show high toughness, e.g. expressed by the Charpy Notched Impact Strength and good stiffness, e.g. expressed by the Tensile Modulus.

It was therefore an objective of the present invention to provide polymer compositions having a very good toughness and elongation at break, while simultaneously maintaining a good stiffness. A further objective of the present invention is to provide a polymer composition based on recycled polypropylene/polyethylene blends with a limited amount of compatibilizer, which can be used for high-quality parts.

These objects have been solved by the polymer composition according to claim 1 of the present invention comprising at least the following components

A) 40 to 94 wt.-% based on the overall weight of the polymer composition of a polymer blend, comprising

a1) 50 to 95 wt.-% of polypropylene;

a2) 5 to 50 wt.-% of polyethylene;

B) 3 to 30 wt.-% based on the overall weight of the polymer composition of a compatibilizer being a copolymer of propylene and 1 -hexene, comprising

b1) 30 to 70 wt.-% of a first random copolymer of propylene and 1-hexene; and b2) 30 to 70 wt.-% of a second random copolymer of propylene and 1 -hexene having a higher 1 -hexene content than the first random propylene copolymer b1);

C) 3 to 30 wt.-% of a modifier selected from the group consisting of plastomers,

heterophasic polypropylene copolymers different from component B) and mixtures thereof;

with the provisos that

• the weight proportions of components a1) and a2) add up to 100 wt.-%;

• the weight proportions of components b1) and b2) add up to 100 wt.-%;

• the weight proportions of components A), B) and C) add up to 100 wt.-%;

• component A) has a MFR2 (230°C, 2.16 kg) determined according to ISO

1133 in the range from 1.0 to 50.0 g/10 min; and

• component B) has a 1 -hexene content in the range from 2.0 to 8.0 wt.-%.

Advantageous embodiments of the polymer composition in accordance with the present invention are specified in the dependent claims 2 to 11.

The present invention further relates in accordance with claim 12 to the use of component B) as described in claims 1 , 4 and 6 and component C) as described in claims 1 , 2 and 7 for compatibilizing a polymer blend A) as described in claims 1 , 4 and 8. Claims 13 and 14 relate to advantageous embodiments of said use.

Claim 15 of the present inventions relates to a process for compatibilizing the components of a polymer blend A) as described in claims 1 , 3 and 6 comprising the steps of

(I) providing the polymer blend A) as described in claims 1 , 4 and 8;

(II) adding component B) as described in claims 1 , 4 and 6 and component C) as described in claims 1 , 2 and 7;

(III) mixing components A), B) and C) to obtain a compatibilized polymer

composition.

Dependent claim 16 described an advantageous embodiment of said use, claim 17 refers to an article comprising the polymer composition according to the present invention and claim 18 refers to films, pipes, extrusion blow molded or injection molded articles comprising more than 95 wt.-% of said polymer composition.

Definitions

Indications of Quantity

The polymer compositions in accordance with the present invention comprise the

components A), B), C) and optionally additives. The requirement applies here that the components A), B) and C) and if present the additives add up to 100 wt.-% in sum. The fixed ranges of the indications of quantity for the individual components A), B) and C) and optionally the additives are to be understood such that an arbitrary quantity for each of the individual components can be selected within the specified ranges provided that the strict provision is satisfied that the sum of all the components A), B), C) and optionally the additives add up to 100 wt.-%.

For the purposes of the present description and of the subsequent claims, the term “recycled” is used to indicate that the material is recovered from post-consumer waste and/or industrial waste. Namely, post-consumer waste refers to objects having completed at least a first use cycle (or life cycle), i.e. having already served their first purpose; while industrial waste refers to the manufacturing scrap which does normally not reach a consumer. In the gist of the present invention“recycled polymers” may also comprise up to 5 wt.-%, preferably up to 3 wt.-%, more preferably up to 1 wt.-% and even more preferably up to 0.1 wt.-% based on the overall weight of the recycled polymer of other components originating from the first use. Type and amount of these components influence the physical properties of the recycled polymer. The physical properties given below refer to the main component of the recycled polymer.

Respectively, the term“virgin” denotes the newly produced materials and/or objects prior to first use and not being recycled. In case that the origin of the polymer is not explicitly mentioned the polymer is a“virgin” polymer.

Where the term "comprising" is used in the present description and claims, it does not exclude other non-specified elements of major or minor functional importance. For the purposes of the present invention, the term "consisting of is considered to be a preferred embodiment of the term "comprising of". If hereinafter a group is defined to comprise at least a certain number of embodiments, this is also to be understood to disclose a group, which preferably consists only of these embodiments.

Whenever the terms "including" or "having" are used, these terms are meant to be equivalent to "comprising" as defined above.

Where an indefinite or definite article is used when referring to a singular noun, e.g. "a", "an" or "the", this includes a plural of that noun unless something else is specifically stated.

Component A)

The polymer composition in accordance with the present invention comprises as component A) 40 to 94 wt.-% based on the overall weight of the polymer composition of a polymer blend, comprising a1) 50 to 95 wt.-% of polypropylene and a2) 5 to 50 wt.-% of polyethylene.

Preferred embodiments of component A) will be discussed in the following.

According to one preferred embodiment of the present invention the content of component A) in the polymer composition is in the range from 50 to 91 wt.-%, preferably in the range from 58 to 87 wt.-% and more preferably in the range from 83 to 87 wt.-% when component C) is a plastomer and in the range from 73 to 81 wt.-% when component C) is a heterophasic polypropylene copolymer based on the overall weight of the polymer composition.

A further preferred embodiment of the present invention stipulates that the content of polypropylene a1) in component A) is in the range from 53 to 92 wt.-%, preferably in the range from 55 to 90 wt.-% and more preferably in the range from 58 to 87 wt.-%. In still another preferred embodiment the content of polyethylene a2) in component A) is in the range from 8 to 47 wt.-%, preferably in the range from 10 to 45 wt.-% and more preferably in the range from 13 to 42 wt.-%.

According to a further preferred embodiment component A) has a MFR2 (230°C, 2.16 kg) determined according to ISO 1 133 in the range from 1.5 to 35.0 g/10 min, preferably in the range from 2.0 to 25.0 g/10 min and more preferably in the range from 5.0 to 10.0 g/10 min.

Another preferred embodiment of the present invention stipulates that the melt enthalpy of component a2) / melt enthalpy of a1) in the polymer composition is in the range from 0.2 to 2.0 and preferably in the range from 0.25 to 1.75.

In a further preferred embodiment the polypropylene a1) comprises one or more polymer materials selected from the following:

I) isotactic or mainly isotactic propylene homopolymers;

II) isotactic random copolymers of propylene with ethylene and/or C4-C8 alpha-olefins, such as 1 -butene or 1-octene, wherein the total comonomer content ranges from 0.05 to 20 wt- %, or mixtures of said copolymers with isotactic or mainly isotactic propylene homopolymers;

III) heterophasic copolymers comprising an isotactic propylene homopolymer like (I) or random copolymers of propylene like (II), and an elastomeric fraction comprising copolymers of ethylene with propylene and/or a C4-C8 a-olefin, such as 1 -butene or 1- octene optionally containing minor amounts of a diene, such as butadiene, 1 ,4-hexadiene, 1 ,5-hexadiene, ethylidene-1-norbornene.

A further preferred embodiment of the present invention stipulates that component a1) has a density in the range from 0.895 to 0.920 g/cm 3 , preferably in the range from 0.900 to 0.915 g/cm 3 as determined in accordance with ISO 1183.

According to still a further embodiment of the present invention the melt flow rate (MFR) of component a1) is in the range from 0.5 to 300 g/10 min, preferably in the range from 1.0 to 150 g/10 min and alternatively in the range from 1.5 to 50 g/10min as determined in accordance with ISO 1133 (at 230°C; 2.16 kg load). In another preferred embodiment of the present invention the melting temperature of component a1) is within the range from 130 to 170°C, preferably in the range from 140 to 168°C and more preferably in the range from 142 to 166°C. In case it is a propylene homopolymer like item (I) above it will have a melting temperature in the range from 150 to 170°C, preferably in the range from 155 to 168°C and more preferably in the range from 160 to 166°C as determined by differential scanning calorimetry (DSC) according to ISO 11357-3. In case it is a random copolymer of propylene like item (II) above it will have a melting temperature in the range from 130 to 162°C, preferably in the range from 135 to 160°C and more preferably in the range from 140 to 158°C as determined by DSC according to ISO 11357-3.

Preferably, component a1) does not comprise 1-hexene as comonomer.

The polyethylene a2) is preferably a high density polyethylene (HDPE) or a linear low density polyethylene (LLDPE) or a long-chain branched low density polyethylene (LDPE). The comonomer content of component a2) is usually below 50 wt.-% preferably below 25 wt.-%, and most preferably below 15 wt.-%.

Herein a HDPE suitable for use as component a2) has a density as determined according to ISO 1 183 of equal to or greater than 0.941 g/cm 3 , preferably in the range from 0.941 to 0.965 g/cm 3 and more preferably in the range from 0.945 to 0.960 g/cm 3 .

According to another preferred embodiment, the HDPE is an ethylene homopolymer. A HDPE suitable for use as component a2) in this disclosure generally has a MFR determined by ISO 1 133 (at 190°C; 2.16kg load), in the range from 0.01 g/10min to 50 g/10min, preferably in the range from 0.1 to 30 g/10min, like in the range from 0.5 to 20 g/10min.

The HDPE may also be a copolymer, for example a copolymer of ethylene with one or more alpha-olefin monomers such as propylene, butene, hexene, etc.

A LLDPE suitable for use as component a2) in this disclosure generally has a density as determined with ISO 1183, in the range from 0.900 to 0.920 g/cm 3 , or in the range from 0.905 to 0.918 g/cm 3 , or in the range from 0.910 to 0.918 g/cm 3 and an MFR determined by ISO 1 133 (at 190°C; 2.16 kg load), in the range from 0.01 to 50 g/min, or in the range from 0.1 to 30 g/10 min, like in the range from 0.5 to 20 g/10 min. The LLDPE is a copolymer, for example a copolymer of ethylene with one or more alpha-olefin monomers such as propylene, butene, hexene, etc. A LDPE suitable for use as component a2) in this disclosure generally has a density as determined with ISO 1 183, in the range from 0.915 to 0.935 g/cm 3 , and an MFR determined by ISO 1133 (190°C; 2.16kg), in the range from 0.01 to 20 g/min. The LDPE is an ethylene homopolymer.

According to a further preferred embodiment the melting temperature of component A-2) is in the range from 100 to 135°C and preferably in the range from 105 to 132°C.

In still another preferred embodiment of the present invention component A) is a recycled material, which is preferably recovered from waste plastic material derived from post consumer and/or post-industrial waste. Furthermore, component A) can also be a mixture of recycled and virgin materials.

Such post-consumer and/or post-industrial waste can be derived from inter alia waste electrical and electronic equipment (WEEE) or end-of-life vehicles (ELV) or from differentiated waste collection schemes like the German DSD system, the Austrian ARA system or the Italian “Raccolta Differenziata” system.

Recycled materials are commercially available, e.g. from Corpela (Italian Consortium for the collection, recovery, recycling of packaging plastic wastes), Resource Plastics Corp.

(Brampton, ON), Kruschitz GmbH, Plastics and Recycling (AT), Ecoplast (AT), Vogt Plastik GmbH (DE), mtm plastics GmbH (DE) etc.

Component B)

The polymer composition in accordance with the present invention comprises as component B) 3 to 30 wt.-% based on the overall weight of the polymer composition of a copolymer of propylene and 1-hexene, comprising b1) 30 to 70 wt.-% of a first random copolymer of propylene and 1 -hexene; and b2) 30 to 70 wt.-% of a second random copolymer of propylene and 1 -hexene having a higher 1 -hexene content than the first random propylene copolymer b1).

Component B) is different from component a1).

Preferred embodiments of component B) will be discussed in the following. According to one preferred embodiment of the present invention the content of component B) in the polymer composition is in the range from 5 to 25 wt.-%, preferably in the range from 8 to 22 wt.-% and more preferably in the range from 9 to 15 wt.-% based on the overall weight of the polymer composition.

Another preferred embodiment stipulates that the content of component b1) in component B) is from 35 to 65 wt.-% and preferably from 40 to 60 wt.-%.

In another preferred embodiment of the present invention the content of component b2) in component B) is from 35 to 65 wt.-% and preferably from 40 to 60 wt.-%.

Another preferred embodiment of the present invention stipulates that component B) has a MFR2 (230°C, 2.16 kg) determined according to ISO 1133 in the range from 0.4 to 12.0 g/10 min, preferably in the range from 0.6 to 9.0 g/10 min, more preferably in the range from 0.8 to 6.0 g/10 min and most preferably in the range from 1.0 to 4.0 g/10 min.

In a further preferred embodiment of the present invention component B) has a xylene soluble content (XCS) based on the overall weight of component B) of ³ 8, preferably in the range from 8 to 30 wt.-%, more preferably in the range from 10.0 to 28.0 wt.-% and most preferably in the range from 15 to 28 wt.-%.

According to another preferred embodiment of the present invention the 1-hexene content in component B) is in the range from 3.0 to 7.5 wt.-%, preferably in the range from 3.5 to 7.2 wt.-% and more preferably in the range from 4.0 to 6.0 wt.-%.

Still a further preferred embodiment stipulates that component B) has a 1 -hexene content of the xylene soluble fraction C6 (XCS) based on the overall weight of component B) in the range from 2.0 to 15.0 wt.-%, preferably from 2.5 to 12.0 wt.-%, more preferably in the range from 3.0 to 10.0 wt.-% and most preferably in the range from 5.0 to 8.0 wt.-%.

According to another preferred embodiment of the present invention the melting point of component B) is >120°C, preferably in the range from 125 to 145°C and more preferably in the range from 130 to 140°C.

Still another preferred embodiment of the present invention stipulates that component b1) has a MFR2 (230°C, 2.16 kg) determined according to ISO 1133 in the range from 0.3 to 12.0 g/10 min, preferably in the range from 0.5 to 9.0 g/10 min and more preferably in the range from 0.7 to 6.0 g/10 min.

According to a further preferred embodiment of the present invention component b2) has a MFR2 (230°C, 2.16 kg) determined according to ISO 1133 in the range from 0.5 to 14.0 g/10 min, preferably in the range from 0.7 to 11.0 g/10 min and more preferably in the range from 0.9 to 8.0 g/10 min.

In a further preferred embodiment of the present invention the C6-content in component b1) based on the overall weight of component b1) is in the range from 0.1 to 4.0 wt.-%, preferably in the range from 0.5 to 3.5 wt.-% and more preferably in the range from 0.8 to 3.0 wt.-%.

According to still a further preferred embodiment of the present invention the C6-content in component b2) based on the overall weight of component b2) is in the range from 4.0 to 15.0 wt.-%, preferably in the range from 5.0 to 13.0 wt.-% and more preferably in the range from 6.0 to 12.0 wt.-%.

A further preferred embodiment of the present invention stipulates that component B) is an in-reactor blend obtained by a sequential polymerization process in at least two reactors connected in series, said sequential polymerization process preferably comprises the steps of

(i) polymerizing in a first reactor being a slurry reactor, preferably a loop reactor, propylene and 1 -hexene, obtaining a first random propylene copolymer b1),

(ii) transferring said first random propylene copolymer b1) and unreacted

comonomers of the first reactor in a second reactor being a gas phase reactor,

(iii) feeding to said second reactor propylene and 1 -hexene,

(iv) polymerizing in said second reactor and in the presence of said first random propylene copolymer b1) propylene and 1 -hexene obtaining a second random propylene copolymer b2), said first random propylene copolymer b1) and said second random propylene copolymer b2) form component B), wherein further in the first reactor and second reactor the polymerization takes place in the presence of a solid catalyst system, said solid catalyst system (SCS) comprises a single-site catalyst.

A suited solid catalyst system (SCS) comprises

a transition metal compound of formula (I)

R n (Cp) 2 MX 2 (I) wherein

each Cp independently is an unsubstituted or substituted and/or fused cyclopentadienyl ligand, substituted or unsubstituted indenyl or substituted or unsubstituted fluorenyl ligand; the optional one or more substituent(s) being independently selected preferably from halogen, hydrocarbyl (e.g. C1-C20-alkyl, C2-C20-alkenyl, C2- C20-alkynyl, C3-C12- cycloalkyl, C6-C20-aryl or C7-C20-arylalkyl), C3-C12-cycloalkyl which contains 1 , 2, 3 or 4 heteroatom(s) in the ring moiety, C6-C20-heteroaryl, C1-C20-haloalkyl, -SiR" 3 , -OSiR" 3 , - SR", -PR" 2 , OR" or -NR" 2 , each R" is independently a hydrogen or hydrocarbyl selected from CI-C20-alkyl, C2- C20- alkenyl, C2-C20-alkynyl, C3-C12-cycloalkyl or C6-C20-aryl; or in case of -NR M 2, the two substituents R" can form a five- or six-membered ring, together with the nitrogen atom to which they are attached;

R is a bridge of 1-2 C-atoms and 0-2 heteroatoms, wherein the heteroatom(s) can be Si, Ge and/or O atom(s), wherein each of the bridge atoms may bear independently substituents selected from C1-C20-alkyl, tri(C1-C20-alkyl)silyl, tri(C1-C20-alkyl)siloxy or C6-C20-aryl substituents); or a bridge of one or two heteroatoms selected from silicon, germanium and/or oxygen atom(s),

M is a transition metal of Group 4 selected from Zr or Hf, especially Zr; each X is independently a sigma-ligand selected from H, halogen, C1-C20-alkyl, C1-C20- alkoxy, C2-C20-alkenyl, C2-C20-alkynyl, C3-C12-cycloalkyl, C6-C20-aryl, C6-C20-aryloxy, C7-C20-arylalkyl, C7-C20-arylalkenyl, -SR", -PR" 3 , -SiR" 3 , -OSiR" 3 , -NR" 2 or -CH 2 -Y, wherein Y is C6-C20-aryl, C6-C20-heteroaryl, C1-C20-alkoxy, C6-C20-aryloxy, NR" 2 ,-SR", -PR" 3 , - SiR" 3 , or -OSiR" 3 ; each of the above mentioned ring moieties alone or as a part of another moiety as the substituent for Cp, X, R" or R can further be substituted with C1-C20-alkyl which may contain Si and/or O atoms; and n is 1 or 2.

It is especially preferred that the transition metal compound of formula (I) is an organo- zirconium compound of formula (II) or (ll’)

wherein

M is Zr; each X is a sigma ligand, preferably each X is independently a hydrogen atom, a halogen atom, a C1-C6 alkoxy group, C1-C6 alkyl, a phenyl or a benzyl group;

L is a divalent bridge selected from -R 2C-, -R'2C-CR'2, -R'2Si-, -R^Si-SiRV, -R'2Ge-, wherein each R' is independently a hydrogen atom, C1-C20 alkyl, C3-C10 cycloalkyl, tri(C1-C20- alkyl)silyl, C6-C20-aryl or C7-C20 arylalkyl; each R 2 or R 2 ' is a C1-C10 alkyl group;

R 5 ' is a C1-C10 alkyl group or a Z'R 3 ' group;

R 6 is hydrogen or a C1-C10 alkyl group;

R 6 ' is a C1-C10 alkyl group or a C6-C10 aryl group;

R 7 is hydrogen, a C1-C6 alkyl group or a ZR 3 group;

R 7 ' is hydrogen or a C1-C10 alkyl group; Z and Z ' are independently O or S;

R 3 ' is a C1-C10 alkyl group or a C6-C10 aryl group optionally substituted by one or more halogen groups;

R 3 is a C1-C10 alkyl group; each n is independently 0 to 4; and each R 1 is independently a C1-C20 hydrocarbyl group.

According to a further preferred embodiment component B) has an has an amount of 2,1 erythro regio-defects of at least 0.4 mol.-%.

Still another preferred embodiment of the present invention stipulates that component B) fulfils in-equation (1)

MFR (B)/MFR (b1) £ 1.0 (1), wherein MFR (b1) is the melt flow rate MFR2 (230 °C, 2.16 kg) determined according to ISO 1 133 in [g/10 min] of the first random propylene copolymer b1) and MFR (B) is the melt flow rate MFR2 (230 °C, 2.16 kg) determined according to ISO 1133 in [g/10 min] of component B).

According to a further preferred embodiment of the present invention component B) fulfills in equation (2)

4.5 9.0 (2)

wherein

C6(b1) is the 1-hexene content of the first random propylene copolymer b1) based on the total weight of the first random propylene copolymer b1) [in wt.-%];

C6(B) is the 1 -hexene content of component B) based on the total weight of the component B) [in wt.-%]; and

[b1]/[B] is the weight ratio between the first random propylene copolymer b1) and component B) [in g/g]. Component C)

The polymer composition in accordance with the present invention comprises as component C) 3 to 30 wt.-% based on the overall weight of the polymer composition of a modifier selected from the group consisting of plastomers, heterophasic copolymers different from component B) and mixtures thereof.

Preferred embodiments of component C) will be discussed in the following.

According to one preferred embodiment of the present invention component C) is a plastomer and the content of component C) in the polymer composition is in the range from 4 to 25 wt.-%, preferably in the range from 5 to 20 wt.-% and more preferably in the range from 10 to 16 wt.-% based on the overall weight of the polymer composition.

Still a further preferred embodiment of the present invention stipulates that component C) is an plastomer comprising ethylene, preferably a copolymer of ethylene and 1-octene, more preferably having a density in the range from 0.860 to 0.930 g/cm 3 , even more preferably having a MFR2 (190°C, 2.16 kg) determined according to ISO 1133 in the range from 0.1 to 40.0 g/10 min and most preferably is a copolymer of ethylene and 1-octene having a density in the range from 0.865 to 0.920 g/cm 3 and a MFR2 (190°C, 2.16 kg) determined according to ISO 1133 in the range from 0.3 to 35 g/10 min.

According to still another preferred embodiment of the present invention component C) is a plastomer and has a density in the range from 0.860 to 0.930 g/cm 3 , preferably in the range from 0.865 to 0.920 g/cm 3 and more preferably in the range from 0.868 g/cm 3 .

Another preferred embodiment of the present invention stipulates that component C) is a plastomer having a MFR2 (190°C, 2.16 kg) determined according to ISO 1133 in the range from 0.1 to 40.0 g/10 min, preferably from 0.4 to 32.0 g/10 min and more preferably in the range from 0.5 to 1.5 g/10 min.

According to a further preferred embodiment of the present invention component C) is a heterophasic polypropylene copolymer and the content of component C) in the polymer composition is in the range from 4 to 25 wt.-%, preferably in the range from 5 to 20 wt.-% and more preferably in the range from 10 to 16 wt.-% based on the overall weight of the polymer composition. In a further preferred embodiment of the present invention component C) is a heterophasic polypropylene copolymer comprising c1) 70.0 to 90.0 wt.-% of a crystalline polypropylene matrix; and

c2) 10.0 to 30.0 wt.-% of an amorphous propylene-ethylene copolymer comprising 35.0 to

70.0 wt.-% of ethylene;

wherein the weight proportions of components d) and c2) add up to 100 wt.-%;

preferably the heterophasic polypropylene copolymer C) has a MFR2 (230°C, 2.16 kg) determined according to ISO 1133 in the range from 1.0 to 10.0 g/10 min.

Still a further preferred embodiment of the present invention stipulates that component (C) is a heterophasic polypropylene copolymer and has a MFR2 (230°C, 2.16 kg) determined according to ISO 1 133 in the range from 1.0 to 10.0 g/10 min, preferably from 1.5 to 8.0 g/10 min and more preferably in the range from 2.0 to 7.0 g/10 min.

According to another preferred embodiment of the present invention component C) is a heterophasic polypropylene copolymer having a xylene soluble content (XCS) based on the overall weight of component C) in the range from 10.0 to 30.0 wt.-%, preferably in the range from 12.0 to 25.0 wt.-% and more preferably in the range from 14 to 20 wt.-%.

In a further preferred embodiment of the present invention component C) is a heterophasic polypropylene copolymer having an ethylene content of the xylene soluble fraction C2 (XCS) based on the overall weight of component C) in the range from 35.0 to 70.0 wt.-%, preferably from 40.0 to 65.0 wt.-% and more preferably in the range from 45.0 to 60.0 wt.-%.

Another preferred embodiment of the present invention stipulates that component C) is a heterophasic copolymer having a xylene cold soluble fraction (XCI) based on the overall weight of component C) in the range from 70.0 to 90.0 wt.-%, preferably from 75.0 to 88.0 wt.-% and more preferably in the range from 80.0 to 86.0 wt.-%.

Polymer composition

According to still another preferred embodiment of the present invention the polymer composition comprises at least one additive, preferably selected from the group consisting of slip agents, UV-stabiliser, pigments, antioxidants, additive carriers, nucleating agents and mixtures thereof, whereby these additives preferably are present in 0 to 5 wt.-% and more preferably in 0.1 to 4 wt.-% based on the overall weight of the polymer composition. According to another preferred embodiment of the present invention the polymer composition has a MFR2 (230°C, 2.16 kg) determined according to ISO 1133 in the range from 1.0 to 50.0 g/10 min, preferably from 1.5 to 35.0 g/10 min, more preferably from 2.0 to 25.0 g/10 min and most preferably from 3.5 to 8.0 g/10 min.

Still another preferred embodiment of the present invention stipulates that the polymer composition has a Tensile Modulus measured according to IS0527-2 in the range from 800 to 1500 MPa and preferably in the range from 800 to 1000 MPa.

In a further preferred embodiment of the present invention the polymer composition has an Elongation at Break measured according to IS0527-2 of more than 300 %, preferably in the range from 350 to 1000 % and more preferably in the range from 400 to 900 %.

According to still a further preferred embodiment of the present invention the polymer composition has a Charpy Notched Impact Strength measured according to ISO 179-1eA at 23°C of more than 8.0 kJ/m 2 , preferably in the range from 8.5 to 30 kJ/m 2 , more preferably in the range from 9.0 to 25 kJ/m 2 .

In another preferred embodiment of the present invention the polymer composition has a higher Charpy Notched Impact Strength measured according to ISO 179-1eA at 23°C, preferably at least 10 % higher, more preferably 10 to 25 % higher and even more preferably at least 25 % higher than the same polymer composition without components B) and C) and has at the same time a Tensile Modulus measured according to IS0527-2 of at least 800 MPa and preferably in the range from 800 to 1000 MPa.

A preferred polymer composition according to the present invention comprises the following components:

A) 60 to 89 wt.-% based on the overall weight of the polymer composition of a

polymer blend, comprising

a1) 55 to 90 wt.-% of polypropylene;

a2) 10 to 45 wt.-% of polyethylene;

B) 8 to 22 wt.-% based on the overall weight of the polymer composition of a

copolymer of propylene and 1-hexene, comprising

b1) 30 to 70 wt.-% of a first random copolymer of propylene and 1 -hexene; and b2) 30 to 70 wt.-% of a second random copolymer of propylene and 1 -hexene having a higher 1 -hexene content than the first random propylene copolymer b1); and C) 3 to 7 wt.-% based on the overall weight of the polymer composition of a plastomer, preferably made of ethylene and 1-octene having a density in the range from 0.860 to 0.930 g/cm 3 and a MFR2 (190°C, 2.16 kg) determined according to ISO 1133 in the range from 0.1 to 40.0 g/10 min; or

12 to 18 wt.-% based on the overall weight of the polymer composition of a heterophasic polypropylene copolymer comprising

c1) 70.0 to 90.0 wt.-% of a crystalline polypropylene matrix; and

c2) 10.0 to 30.0 wt.-% of an amorphous propylene-ethylene copolymer comprising 35.0 to 70.0 wt.-% of ethylene;

having a MFR2 (230°C, 2.16 kg) determined according to ISO 1133 in the range from 1.0 to 10.0 g/10 min;

with the provisos that

• component A) has a MFR2 (230°C, 2.16 kg) determined according to ISO

1133 in the range from 2.0 to 25.0 g/10 min;

• component B) has a MFR2 (230°C, 2.16 kg) determined according to ISO

1133 in the range from 0.8 to 5.0 g/10 min

• component B) has a xylene soluble content (XCS) based on the overall weight of component B) in the range from 10 to 28 wt.-%;

• the 1 -hexene content in component B) is in the range from 3.5 to 7.2 wt.-%.

Another preferred polymer composition consists of the following components:

A) 60 to 89 wt.-% based on the overall weight of the polymer composition of a

polymer blend, comprising

a1) 55 to 90 wt.-% of polypropylene;

a2) 10 to 45 wt.-% of polyethylene;

B) 8 to 22 wt.-% based on the overall weight of the polymer composition of a

copolymer of propylene and 1 -hexene, comprising

b1) 30 to 70 wt.-% of a first random copolymer of propylene and 1 -hexene; and b2) 30 to 70 wt.-% of a second random copolymer of propylene and 1 -hexene having a higher 1 -hexene content than the first random propylene copolymer b1); and

C) 3 to 7 wt.-% based on the overall weight of the polymer composition of a

plastomer, preferably made of ethylene and 1-octene having a density in the range from 0.860 to 0.930 g/cm 3 and a MFR2 (190°C, 2.16 kg) determined according to ISO 1133 in the range from 0.1 to 40.0 g/10 min; or 12 to 18 wt.-% based on the overall weight of the polymer composition of a heterophasic polypropylene copolymer comprising

c1) 70.0 to 90.0 wt.-% of a crystalline polypropylene matrix; and

c2) 10.0 to 30.0 wt.-% of an amorphous propylene-ethylene copolymer comprising 35.0 to 70.0 wt.-% of ethylene;

having a MFR2 (230°C, 2.16 kg) determined according to ISO 1133 in the range from 1.0 to 10.0 g/10 min;

with the provisos that

• component A) has a MFR2 (230°C, 2.16 kg) determined according to ISO

1133 in the range from 2.0 to 25.0 g/10 min;

• component B) has a MFR2 (230°C, 2.16 kg) determined according to ISO

1133 in the range from 0.8 to 5.0 g/10 min

• component B) has a xylene soluble content (XCS) based on the overall weight of component B) in the range from 10 to 28 wt.-%;

• the 1 -hexene content in component B) is in the range from 3.5 to 7.2 wt.-%.

Use of components B) and C) for compatibilizing a polymer blend

The present invention further relates to the use of components B) and C) as described above for compatibilizing a polymer blend A) as described above. The use according to the present invention is applicable to all embodiments of components A), B) and C) described above.

In one preferred embodiment of the present invention the ratio between component B) and the polymer blend A) is in the range from 1 : 20 to 1 : 3 and preferably in the range from 1 : 6 to 1 : 10.

Still a further preferred embodiment of the present invention stipulates that the ratio between component C) is a plastomer and the polymer blend A) is in the range from 1 : 30 to 1 : 8 and preferably in the range from 1 : 12 to 1 : 22 when component C).

According to a further preferred embodiment of the present invention component C) is a heterophasic copolymer and the ratio between component C) and the polymer blend A) is in the range from to 1 : 3 to 1 : 15 and preferably in the range from 1 : 4 to 1 : 7.

In another preferred embodiment of the present invention component C) is a plastomer and the ratio between component C) and the polymer blend B) is in the range from 1 : 1.5 to 1 : 4 and preferably in the range from 1 : 1.8 to 1 : 2.5 when component C). A further preferred embodiment of the present invention stipulates that component C) is a heterophasic copolymer and the ratio between component B) and the polymer blend C) is in the range from to 1 : 1 to 1 : 3 and preferably in the range from 1 : 1.3 to 1 : 1.7 when component C) is a heterophasic copolymer.

According to a preferred embodiment of the use according to the present invention the Charpy Notched Impact Strength measured according to ISO 179-1eA at 23°C of the polymer blend A) is increased, preferably by at least 15 %, more preferably from 10 to 25 % and even more preferably by at least 25 % and at the same time the Tensile Modulus measured according to IS0527-2 of the polymer blend A) is maintained at at least 800 MPa, more preferably in the range from 800 to 1000 MPa.

Process for compatibilizing a polymer blend

The present invention further relates to a process for compatibilizing the components of a polymer blend A) as described above comprising the steps of

(I) providing the polymer blend A) as described above;

(II) adding component B) and component C) as described above;

(III) mixing both components to obtain a compatibilized polymer composition.

The process according to the present invention works for all embodiments of components A), B) and C) described above.

A preferred embodiment of the process in accordance with the present invention stipulates that the polymer composition obtained after step (III) has a higher Charpy Notched Impact Strength measured according to ISO 179-1eA at 23°C, preferably at least 10 % higher, more preferably 10 to 25 % higher and more preferably at least 25 % higher than the polymer blend A) provided in step (I) without components B) and C); and has at the same time a Tensile Modulus measured according to ISO 527-2 of at least 800 MPa and preferably in the range from 800 to 1000 MPa.

According to a preferred embodiment the process consists of the following steps:

(I) providing 40 to 94 wt.-% of a polymer blend A) comprising a1) 55 to 90 wt.-% of

polypropylene and a2) 10 to 45 wt.-% of polyethylene;

(II) adding 3 to 30 wt.-% based on the overall weight of the polymer composition of a

copolymer of propylene and 1-hexene B), comprising b1) 30 to 70 wt.-% of a first random copolymer of propylene and 1 -hexene; and b2) 30 to 70 wt.-% of a second random copolymer of propylene and 1 -hexene having a higher 1 -hexene content than the first random propylene copolymer b1) to component B) and 3 to 30 wt.-% of a modifier C) selected from the group consisting of plastomers, heterophasic copolymers different from component B) and mixtures thereof;

(III) mixing the components provided in steps (I) and (II) to obtain a compatibilized polymer composition.

According to another preferred embodiment of the present invention the process consists of the following steps:

(I) providing 60 to 89 wt.-% of a polymer blend A) comprising a1) 55 to 90 wt.-% of

polypropylene and a2) 10 to 45 wt.-% of polyethylene, whereby component A) is recovered from waste plastic material derived from post-consumer and/or post industrial waste having a MFR2 (230°C, 2.16 kg) in the range from 2.0 to 25.0 g/10 min;

(II) adding 8 to 22 wt.-% based on the overall weight of the polymer composition of a

copolymer of propylene and 1-hexene B), comprising b1) 30 to 70 wt.-% of a first random copolymer of propylene and 1 -hexene; and b2) 30 to 70 wt.-% of a second random copolymer of propylene and 1 -hexene having a higher 1 -hexene content than the first random propylene copolymer b1) to component B), whereby component B) has a MFR2 (230°C, 2.16 kg) in the range from 0.8 to 6.0 g/10 min and a xylene soluble content (XCS) in the range from 10.0 to 28.0 wt.-% and 3 to 7 wt.-% of a plastomer or 12 to 18 wt.-% of a heterophasic copolymer different from component B);

(III) mixing the components provided in steps (I) and (II) to to obtain a compatibilized

polymer composition.

Article

The present invention relates to an article comprising the polymer composition as defined above.

Said article preferably comprises more than 80 wt.-%, preferably more than 90 wt.-%, more preferably more than 95 wt.-%, like more than 99 wt.-% of the polymer composition and is more preferably selected from the group consisting of films, pipes, extrusion blow molded articles or injection molded articles.

Other components comprised in said articles are virgin polyethylenes or polypropylenes as well as fillers or reinforcements. Said fillers are preferably selected from the group consisting of calcium carbonate, talc, clay, mica, silicates, kaolin, carbon black, titanium dioxide, wollastonite, dolomite, zinc oxide and mixtures thereof. Said reinforcements are preferably selected from the group consisting of glass fibres, carbon fibres, aramid fibres, polyester fibers, cellulose fibers and mixtures thereof. The other components and the polymer composition according to the present invention add up to 100 wt.-%.

The invention will now be described with reference to the following non-limiting examples.

Experimental Part A. Measuring methods

The following definitions of terms and determination methods apply for the above general description of the invention as well as to the below examples unless otherwise defined.

Melt Flow Rate (MFR)

MFR was measured according to ISO 1133 at a load of 2.16 kg, at 230°C for the PP homo- and copolymers and blends and for the composition and at a load of 2.16 kg.

Melting temperature T m , melting enthalpy H m and crystallization temperature T c

The parameters are determined with a TA Instrument Q2000 differential scanning calorimetry (DSC) on 5 to 7 mg samples. DSC is run according to ISO 11357 / part 3 / method C2 in a heat / cool /heat cycle with a scan rate of 10°C/min in the temperature range of -30 to +225°C. Crystallization temperature (T c ) is determined from the cooling step, while melting temperature (T m ) and melting enthalpy (H m ) are determined from the second heating step. Melting and crystallization temperatures were taken as the peaks of endotherms and exotherms.

Tensile Modulus, Tensile Strength and Elongation at Break

Tensile modulus, tensile strength (tensile stress at yield) and elongation at break were determined according to ISO 527-2 (cross head speed = 50 mm/min; 23°C) using injection molded specimens as described in EN ISO 1873-2 (dog bone shape, 4 mm thickness).

Charpy Notched impact strength

Charpy Notched impact strength was determined according to ISO 179 1eA at 23°C using 80x10x4 mm 3 test bars injection moulded in line with EN ISO 1873-2.

Xylene cold solubles (XCS) The xylene soluble (XS) fraction as defined and described in the present invention is determined in line with ISO 16152 as follows: 2.0 g of the polymer were dissolved in 250 ml p- xylene at 135 °C under agitation. After 30 minutes, the solution was allowed to cool for 15 minutes at ambient temperature and then allowed to settle for 30 minutes at 25 +/- 0.5 °C. The solution was filtered with filter paper into two 100 ml flasks. The solution from the first 100 ml vessel was evaporated in nitrogen flow and the residue dried under vacuum at 90 °C until constant weight is reached. The xylene soluble fraction (percent) can then be determined as follows:

XS% = (100*m*Vo)/(mo*v); mo = initial polymer amount (g); m = weight of residue (g); Vo = initial volume (ml); v = volume of analysed sample (ml).

Comonomer content of 1 -hexene for a propylene 1 -hexene copolymer

Quantitative 13 C{ 1 H} NMR spectra recorded in the molten-state using a Bruker Avance III 500 NMR spectrometer operating at 500.13 and 125.76 MHz for 1 H and 13 C respectively. All spectra were recorded using a 13 C optimised 7 mm magic-angle spinning (MAS) probehead at 180°C using nitrogen gas for all pneumatics. Approximately 200 mg of material was packed into a 7 mm outer diameter zirconia MAS rotor and spun at 4 kHz. This setup was chosen primarily for the high sensitivity needed for rapid identification and accurate quantification. (Klimke, K., Parkinson, M., Piel, C., Kaminsky, W., Spiess, H.W., Wilhelm, M., Macromol. Chem. Phys. 2006; 207:382, Parkinson, M., Klimke, K., Spiess, H.W., Wilhelm,

M., Macromol. Chem. Phys. 2007; 208:2128, Castignolles, P., Graf, R., Parkinson, M., Wlhelm, M., Gaborieau, M., Polymer 50 (2009) 2373). Standard single-pulse excitation was employed utilising the NOE at short recycle delays of 3 s (Klimke, K., Parkinson, M., Piel, C., Kaminsky, W., Spiess, H.W., Wlhelm, M., Macromol. Chem. Phys. 2006; 207:382, Pollard,

M., Klimke, K., Graf, R., Spiess, H.W., Wlhelm, M., Sperber, O., Piel, C., Kaminsky, W., Macromolecules 2004; 37:813) and the RS-HEPT decoupling scheme (Filip, X., Tripon, C., Filip, C., J. Mag. Resn. 2005, 176, 239., Griffin, J.M., Tripon, C., Samoson, A., Filip, C., and Brown, S.P., Mag. Res. in Chem. 2007 45, S1 , S198). A total of 16384 (16k) transients were acquired per spectra.

Quantitative 13 C{ 1 H} NMR spectra were processed, integrated and relevant quantitative properties determined from the integrals. All chemical shifts are internally referenced to the methyl isotactic pentad (mmmm) at 21.85 ppm.

Characteristic signals corresponding to the incorporation of 1 -hexene were observed and the comonomer content quantified in the following way. The amount of 1-hexene incorporated in PHP isolated sequences was quantified using the integral of the aB4 sites at 44.2 ppm accounting for the number of reporting sites per comonomer:

H = lcxB4 / 2

The amount of 1 -hexene incorporated in PH HP double consecutive sequences was quantified using the integral of the aaB4 site at 41.7 ppm accounting for the number of reporting sites per comonomer:

HH = 2 * IaaB4

When double consecutive incorporation was observed the amount of 1 -hexene incorporated in PHP isolated sequences needed to be compensated due to the overlap of the signals aB4 and aB4B4 at 44.4 ppm:

H = (l<xB4 - 2 * IaaB4) / 2

The total 1 -hexene content was calculated based on the sum of isolated and consecutively incorporated 1 -hexene:

H total = H + HH

When no sites indicative of consecutive incorporation observed the total 1-hexen comonomer content was calculated solely on this quantity:

Htotal = H

Characteristic signals indicative of regio 2,1-erythro defects were observed (Resconi, L, Cavallo, L., Fait, A., Piemontesi, F., Chem. Rev. 2000, 100, 1253).

The presence of 2,1-erythro regio defects was indicated by the presence of the Rab (21e8) and Pay (21e6) methyl sites at 17.7 and 17.2 ppm and confirmed by other characteristic signals.

The total amount of secondary (2,1-erythro) inserted propene was quantified based on the aa21e9 methylene site at 42.4 ppm: P21 = Iaa21e9

The total amount of primary (1 ,2) inserted propene was quantified based on the main Saa methylene sites at 46.7 ppm and compensating for the relative amount of 2,1-erythro, aB4 and aaB4B4 methylene unit of propene not accounted for (note H and HH count number of hexene monomers per sequence not the number of sequences):

P12 = Isaa + 2*P21 + H + HH / 2

The total amount of propene was quantified as the sum of primary (1 ,2) and secondary (2,1- erythro) inserted propene:

Ptotal = P12 + P21 = l s aa + 3* Iaa21e9 + (IPB4 - 2 * laaB4) / 2 + laaB4 This simplifies to:

Ptotal = Isaa + 3* Iaa21e9 + 0.5*laB4

The total mole fraction of 1 -hexene in the polymer was then calculated as: fH = H total / ( H total + Ptotal)

The full integral equation for the mole fraction of 1-hexene in the polymer was: fH = (((loB4 - 2 * IaaB4) / 2) + (2 * IaaB4)) /((| 8 aa + 3* Iaa21e9 + 0.5ΊaB4) + ((IaB4 - 2 * IaaB4) / 2) + (2 * laaB4))

This simplifies to: fH = (laB4/2 + laaB4) / (Isaa + 3* Iaa21e9 + laB4 + laaB4)

The total comonomer incorporation of 1 -hexene in mole percent was calculated from the mole fraction in the usual manner:

H [mol%] = 100 * fH The total comonomer incorporation of 1 -hexene in weight percent was calculated from the mole fraction in the standard manner:

H [wt.-%] = 100 * ( fH * 84.16) / ( (f H * 84.16) + ((1 - fH) * 42.08) )

Calculation of comonomer content of the second random propylene copolymer (B): wherein

w(A) is the weight fraction of the first random propylene copolymer (A),

w(B) is the weight fraction of the second random propylene copolymer (B),

C(A) is the comonomer content [in wt.-%] measured by 13 C NMR spectroscopy of the first random propylene copolymer (A), i.e. of the product of the first reactor

(R1),

C(CPP) is the comonomer content [in wt.-%] measured by 13 C NMR spectroscopy of the product obtained in the second reactor (R2), i.e. the mixture of the first random propylene copolymer (A) and the second random propylene copolymer (B) [of the propylene copolymer (C-PP)],

C(B) is the calculated comonomer content [in wt.-%] of the second random

propylene copolymer (B).

B. Materials used

Component A)

Polymer blend (Dipolen S)

Dipolen S is a recycled polymer mixture comprising polyethylene and polypropylene obtained from mtm plastics GmbH, Niedergebra, Germany and has a polyethylene content of 40 wt.-% determined by DSC analysis. The melting points determined by DSC were 162°C (PP) and 128°C (PE).

Component B)

Copolymer of propylene and 1 -hexene (C3C6)

The copolymer of propylene and 1 -hexene“C3C6” was prepared in a sequential process comprising a prepolymerisation reactor, a loop reactor and a gas phase reactor. The catalyst used for manufacturing the copolymer of propylene and 1 -hexene“C3C6” was prepared as described in detail in WO 2015/011135 A1 (metallocene complex MC1 with

methylaluminoxane (MAO) and borate resulting in Catalyst 3 described in WO 2015/011135 A1) with the proviso that the surfactant is 2,3,3,3-tetrafluoro-2-(1 ,1 ,2,2,3,3,3-heptafluoro- propoxy)-1 -propanol. The metallocene complex (MC1 in WO 2015/011135 A1) is prepared as described in WO 2013/007650 A1 (metallocene E2 in WO 2013/007650 A1). The specific reaction conditions are summarized in Table 1.

Table 1 : Preparation of C3C6.

Component C)

Plastomer (Queo 8201)

Queo 8201 is an ethylene-based octene plastomer available from Borealis AG (density: 882 kg/m 3 , MFR 190°C/2.16kg = 1.1 g/10 min).

Heterophasic copolymer (ZN-HECO)

As ZN-HECO the heterophasic polypropylene copolymer BC245MO, commercially available from Borealis AG (AT), was used. This polymer has a melt flow rate MFR2 (230 °C / 2.16 kg) of 3.5 g/10 min, an elastomer content as expressed by XCS content of 16.5 wt.-% and an ethylene content of the XCS fraction of 54 wt.-%.

Further components

Antioxidant (AO)

AO is a 1 :2-mixture of Pentaerythrityl-tetrakis(3-(3’,5’-di-tert. butyl-4-hydroxyphenyl)- propionate, CAS-no. 6683-19-8, and Tris (2,4-di-t-butylphenyl) phosphite, CAS-no. 31570-04- 4), commercially available from BASF AG (DE) as Irganox B215.

Additive Carrier (PP-H)

PP-H is the commercial unimodal propylene homopolymer HC001A-B1 of Borealis AG having a melt flow rate M FR2 (230°C) of about 2 g/1 Omin and a Tm of 160°C.

C) Preparation of the polymer compositions

The polymer compositions according to the inventive examples (IE1 and IE2) and the comparative examples (CE1 to CE4) were prepared on a Coperion ZSK 25 co-rotating twin- screw extruder equipped with a mixing screw configuration with an L/D ratio of 25. A melt temperature of 200 to 220°C was used during mixing, solidifying the melt strands in a water bath followed by strand pelletization. The amounts of the different components in the polymer compositions and the properties of the polymer compositions according to the inventive examples and the comparative examples can be gathered from below Table 2.

Table 2: Composition and properties of the polymer compositions.

D) Discussion of the results As can be gathered from Table 2 the polymer compositions according to the inventive examples show a higher toughness, expressed by the Charpy Notched Impact Strength at 23°C, than the polymer compositions according to the Comparative Examples. The stiffness, expressed by the Tensile Modulus, of the polymer compositions in accordance with the present invention is on the same level than the stiffness of the polymer compositions according to the Comparative Examples. The comparison of the polymer compositions according to IE1 or IE2 respectively with CE3 makes clear that the combined use of components B) and C) is also beneficial over the use of component B) alone. The experimental results prove that there is a synergistic interaction between component B) and C). Only the specific combination of features according to claim 1 allows to obtain polymer compositions having an excellent toughness and a very good stiffness.