Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
A PROCESS FOR THE DEHYDRATION OF AQUEOUS BIO-DERIVED TERMINAL ALCOHOLS TO TERMINAL ALKENES
Document Type and Number:
WIPO Patent Application WO/2013/032550
Kind Code:
A1
Abstract:
A method and apparatus for dehydrating bio-1-alcohols to bio-1-alkenes with high selectivity are disclosed. A dehydration catalyst for dehydrating bio-1-alcohols and method of forming the dehydration catalyst are also disclosed. The bio-1-alkenes are useful in preparing high flashpoint diesel and jet biofuels which are useful to civilian and military applications. Furthermore, the bio-1-alkenes may be converted to biolubricants useful in the transportation sector and other areas requiring high purity/thermally stable lubricants.

Inventors:
WRIGHT MICHAEL E (US)
Application Number:
PCT/US2012/041200
Publication Date:
March 07, 2013
Filing Date:
June 07, 2012
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
US GOV SEC NAVY (US)
WRIGHT MICHAEL E (US)
International Classes:
B01J21/00; B01J23/00; B01J25/00
Foreign References:
US4260845A1981-04-07
US6929705B22005-08-16
EP0173471B11989-06-14
US20100330633A12010-12-30
US20090139134A12009-06-04
US20100069589A12010-03-18
Attorney, Agent or Firm:
HALEY, Charlene, A. et al. (Weapons Division1 Administration Circl, China Lake CA, US)
Download PDF:
Claims:
PATENT APPLICATION NAVY CASE NO. 101364 PCT

CLAIMS

What is Claimed is:

1. A method for making bio- 1 -alcohol dehydration catalyst, comprising:

providing at least one inorganic solid support;

subjecting said inorganic solid support to a first treatment with a basic aqueous solution to form a base-treated inorganic solid support;

drying said base-treated inorganic solid support under a first gas; treating said base-treated inorganic solid support with at least one organosilane to form an organosilane-treated inorganic solid support; and

drying said organosilane-treated inorganic solid support under a second gas.

2. The method according to claim 1, further characterized by diluting the at least one organosilane in at least one hydrocarbon solvent.

3. The method according to claim 1, further characterized by the first gas comprising at least one of air and an inert gas.

4. The method according to any one of claims 1-3, further characterized by the second gas comprising at least one of air and an inert gas.

5. The method according to claim 1, further characterized by said solid support comprising γ-alumina.

6. The method according to claim 1, further characterized by said solid support comprising zinc aluminate (ZnAl204).

7. The method according to claim 1, further characterized by said solid PATENT APPLICATION NAVY CASE NO. 101364 PCT support being prepared by heating a mixture of zinc oxide and γ-alumina at a temperature of 800°C to 1100°C.

8. The method according to claim 7, further characterized by said zinc oxide and γ-alumina being in an equal molar ratio in the mixture.

9. The method according to claim 7, further characterized by said zinc oxide and γ-alumina being in a molar ratio of 1.01.1 to 1:1.20 in the mixture.

10. The method according to claim 1, further characterized by said basic aqueous solution comprising 1-20 wt. % of at least one of sodium hydroxide and potassium hydroxide.

11. The method according to claim 1 or claim 10, further characterized by said subjecting said inorganic solid support to the first treatment comprising subjecting said inorganic solid support to the first treatment with said basic aqueous solution for a period of 1 to about 12 hours.

12. The method according to claim 1, further characterized by at least one of said drying with the first and second gases comprising heating the solid inorganic support.

13. The method according to claim 12, further characterized by drying of said base-treated inorganic solid support comprising drying at 100-150°C for about 4 to about 24 hours under an atmosphere of air or inert gas.

14. The method according to claim 1, further characterized by at least one of said first and second gases being nitrogen.

15. The method according to claim 1, further characterized by said organosilane being selected from the group consisting of R3SiCl, R2SiCl2, and RS1CI3, wherein PATENT APPLICATION NAVY CASE NO. 101364 PCT each R is independently a hydrocarbon of 1 to 26 carbons.

16. The method according to claim 15, further characterized by each R being independently selected from linear and branched alkyl chains and aromatic hydrocarbons.

17. The method according to claim 1, wherein said organosilane is selected from the group consisting of R3SiCl, R2SiCl2, and RSiCl3, wherein each R is a combination of linear or branched alkyl chain of 1 to 20 carbons and at least one phenyl ring.

18. The method according to claim 1, wherein said organosilane is selected from the group consisting of R3SiCl, R2SiCl2, and RSiCl3, wherein at least one R comprises an aromatic substituent.

19. The method according to any one of claims 1 and 15-18, further characterized by said organosilane comprising at least one chlorosilane.

20. The method according to claim 19, further characterized by said at least one chlorosilane being selected from the group consisting of triphenylchlorosilane, diphenyldichlorosilane, phenyltrichlorosilane, and combinations thereof.

21. The method according to claim 19, further characterized by said at least one chlorosilane being selected from the group consisting of trialkylchlorosilane, dialkyldichlorosilane, alkyltrichlorosilane, and combinations thereof.

22. A catalyst produced by the method of any one of claims 1-3, 5-10, and 12-

18.

23. A method for making bio-alkenes utilizing the catalyst formed by the method of any one of claims 1-3, 5-10, and 12-18. PATENT APPLICATION NAVY CASE NO. 101364 PCT

24. A method for forming a bio-l-alkene comprising:

providing at least one bio- 1 -alcohol feedstock comprising at least one bio-1- alcohol; and

contacting the bio- 1 -alcohol feedstock with a dehydration catalyst comprising a base-treated and organosilane-treated inorganic solid support to form a bio-l-alkene.

25. The method according to claim 24, further characterized by the dehydration catalyst being formed by the method of any one of claims 1-3, 5-10, and 12-18.

26. The method according to claim 24, further characterized by the contacting comprising controlling dwell time and temperature with at least one purge gas.

27. The method according to claim 24, further characterized by the purge gas being at a rate of about 0.01 to about 1.0 mass per mass of said catalyst/hour.

28. The method according to claim 26, further characterized by said purge gas comprising at least one of nitrogen and argon.

29. The method according to claim 24, further characterized by said bio-1- alcohol feedstock comprising bio-l-butanol.

30. The method according to claim 24, further characterized by said bio-l- alkene comprising bio-l-butene.

31. The method according to claim 24, further characterized by said catalyst being a combination of zinc oxide and alumina not in a one to one mole ratio.

32. The method according to claim 24, further characterized by said catalyst being an alumina-based catalyst specifically washed with a base solution. PATENT APPLICATION NAVY CASE NO. 101364 PCT

33. The method according to claim 24, further characterized by said catalyst being an alumina-based catalyst modified with an organosilane.

34. The method according to claim 24, further characterized by said solid inorganic support of said catalyst being ZnAl204.

35. The method according to claim 24, further characterized by there being no purge gas.

36. The method according to claim 24, further characterized by said contacting the bio- 1 -alcohol feedstock with the dehydration catalyst comprises contacting the bio-l-alcohol feedstock with the dehydration catalyst at 300 °C to 420 °C.

37. The method according to claim 24, further characterized by said bio-l- alcohol having the general form:

wherein lR and 2R can independently be hydrogen or a C1-C20 alkyl.

38. The method according to claim 37 further characterized by the reaction being represented by:

terminal bio-1-olefin Internal bio-olefin where a ratio of the bio- 1 -olefin to internal bio-olefin is at least 92:98, or at least PATENT APPLICATION NAVY CASE NO. 101364 PCT

94:6, or at least 95:5.

39. The method according to claim 24, further characterized by said bio-1- alcohol comprising at least one C1-C20 alcohol.

40. The method according to claim 24, further characterized by said bio-1- alcohol comprising at least one of 1-pentanol and 1-hexanol.

41. The method according to claim 24, further characterized by said bio-1- alcohol comprising long chain bioalcohols including 1-hexadecanol.

42. The method according to claim 24, further characterized by contacting said at least one bio-l-alkene with a Ziegler-Natta catalyst to form oligomers useful in preparing high flashpoint biodiesel fuels, which includes flashpoints in the range of 61 to 100 °C and Cetane rating of 45 to 60.

43. The method according to claim 24, further characterized by contacting said at least one bio-l-alkene with a Ziegler-Natta catalyst to form oligomers useful in preparing high flashpoint biojet fuels, these include flashpoints from 61 to 100 °C and cold flow viscosities of <8.5 cSt at -20 °C.

44. The method according to claim 24, further characterized by contacting said at least one bio-l-alkene with a Ziegler-Natta catalyst to form oligomers useful in preparing biolubricants with viscosities in the range of 1 to 10,000 cSt at 25 °C.

45. A bio-alkene fuel precursor produced by the method of claim 24.

46. A bio-alkene produced by the method of claim 24. PATENT APPLICATION NAVY CASE NO. 101364 PCT

47. A bio- 1 -alkene product, comprising:

at least one bio-1 -alcohol;

at least one desired catalyst, wherein said bio-1 -alcohol is subjected and heated to at least one desired catalyst; and

optionally, at least one purge gas which controls dwell time and temperature at a rate of about 0.01 to about 1.0 per mass of said catalyst/hour to produce bio-1 -alkene product.

Description:
PATENT APPLICATION NAVY CASE NO. 101364 PCT

A PROCESS FOR THE DEHYDRATION OF AQUEOUS BIO-DERTVED

TERMINAL ALCOHOLS TO TERMINAL ALKENES

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

[0001] The invention described herein may be manufactured and used by or for the government of the United States of America for governmental purposes without the payment of any royalties thereon or therefore.

FIELD OF THE INVENTION

[0002] The invention generally relates to conversion of terminal alcohols to the corresponding terminal alkenes with high selectivity and chemical yields and finds particular application in connection with a dehydration catalyst. The bio- 1 -alkenes are useful in the preparation of sustainable and alternative diesel and jet fuels and biolubricants.

BACKGROUND

[0003] α-olefins are useful intermediates in preparing diesel and jet/turbine fuels. They are also use in preparing poly-a-olefins (PAOs) and copolymers with ethylene to form low density plastics. If the α-olefins are made from petroleum resources, then there exist several well known processes for ethylene oligomerization that afford α-olefins such as 1-butene, 1-hexene, 1-octene, and so forth, and after a distillation and purification process can yield a single pure terminal olefin. The Shell SHOP process is perhaps the best known to those skilled in the art of ethylene oligomerization.

[0004] Obtaining α-olefins made from renewable and sustainable resources requires quite a different approach. Since alcohols can be produced in large scale by fermentation processes, they can be viewed as an attractive feedstock for a-olefins provided that they can be dehydrated in high yield and with high regioselectivity. Particular to a-olefins is a distinct and thermodynamically PATENT APPLICATION NAVY CASE NO. 101364 PCT driven isomerization reaction to the more stable internal-olefin. For example, dehydration of 1- butanol often produces a mixture of 1-butene and 2-butene where the latter is a result of 1-butene isomerizing to the more thermodynamically stable 2-butene. It is well known this type of double- bond isomerization is facilitated by acid catalysts; hence, to maintain 1-butene as the dominant product, a successful process must avoid interaction with acidic catalyst sites.

[0005] Bio-l-butanol in particular has a rich history of success and large scale commercial production since the discovery by Louis Pasteur in 1862 where he first revealed bacteria that could ferment sugars to a mixture of acetone, 1-butanol, and ethanol (ABE). Since Pasteur's initial discovery of the ABE process many advances have been made in the fermentation process to optimize bio-l-butanol production and reduce ethanol and acetone co-production. Most notably are the successful efforts using non-engineered bacteria that in fact have led to commercial plants operating for decades that produce bio-l-butanol.

[0006] Since fermentations are carried out in water, separation of the fermentation products from the water and bacteria "soup" is energy and time intensive. In the case of bio-l-butanol, several methods have been reported for isolating the alcohol component. One method that has found commercial success is use of a sparging gas (e.g. carbon dioxide or steam) that carries the more volatile bio-l-butanol/water azeotrope away from the fermentation broth. Other more academic approaches involve pervaporization. In this case, a selective-membrane material is used that permits bio-l-butanol pass through, thus leaving the bacteria and water behind. Regardless of the method it is evident to those skilled in the art that removing the last traces of impurities and water are costly in energy and time. The methods vary significantly in capabilities. However, water and impurities are a direct and unavoidable consequence from bioalcohol fermentation processing. Ruwet et al. (Bull. Soc. Chim. 1987, 96, 281-292) discuss the problems in using a wet ABE bio-l- butanol feed in a dehydration reaction to afford a mixture of olefins. More recently, D'amore et al. (patent appl. US 2008/0015395 Al) showed extreme difficulty in dehydrating aqueous solutions of 1-butanol using a variety of acid catalysts to afford a mixture of olefins and other oxygenated products (e.g. ethers) coupled to high amounts of unreacted 1-butanol. There is clearly no obvious and proficient method for preparing terminal bio-l-olefms efficiently from bio- 1 -alcohols that contain water as a major impurity. PATENT APPLICATION NAVY CASE NO. 101364 PCT

SUMMARY

[0007] In one embodiment, a method for making bio- 1 -alcohol dehydration catalyst, includes providing at least one inorganic solid support and subjecting the inorganic solid support to a first treatment with a basic aqueous solution to form a base-treated inorganic solid support. The base-treated inorganic solid support is dried under a first gas. The base-treated inorganic solid support is treated with at least one organosilane to form an organosilane-treated inorganic solid support. The organosilane-treated inorganic solid support is dried under a second gas.

[0008] In another embodiment, a method for forming a bio-l-alkene includes providing at least one bio- 1 -alcohol feedstock comprising at least one bio- 1 -alcohol, and contacting the bio-1- alcohol feedstock with a dehydration catalyst comprising a base-treated and organosilane-treated inorganic solid support to form a bio-l-alkene.

[0009] Embodiments of the invention give instant access to a catalyst system and process that can take in a feed of terminal bioalcohol feedstock to produce the respective a-olefin with 92- 99 % regiochemical selectivity, and in a single pass over the catalyst system, this can afford a chemical conversion of greater than 95%. In various aspects, at least one solid phase catalyst is maintained at a temperature of 200 °C to 400 °C, which is fed with the bioalcohol feedstock at a pressure of 1 to 1000 psig (about 108-6996 kpa) to produce at least one bio-l-alkene in high selectivity. In one embodiment, the bioalcohol feedstock is obtained from a fermentation broth after removal of minor acidic contaminants and may include 0.1 or about 0.1 to about 90 wt. % water.

[0010] Embodiments of the invention also generally relate to alternative fuels and the making of bio-l-alkenes that can be utilized to prepare drop-in and full performance diesel biofuel, jet biofuel, and biolubricants.

[0011] As used herein, a bio-alcohol (such as a bio-l-alcohol or bio-2-alcohol) generally refers to an alcohol derived, directly or indirectly, from fermentation of biomass.

BRIEF DESCRIPTION OF THE DRAWINGS

[0012] FIG. 1 illustrates a general overview for creating renewable and sustainable biodiesel, biojet, and biolubricants based on a feed stream of bio- 1 -alcohols, according to embodiments of the PATENT APPLICATION NAVY CASE NO. 101364 PCT invention.

[0013] FIG. 2 illustrates a process for producing a bio- 1 -alcohol free of acidic components and used as a feed stream, according to embodiments of the invention.

[0014] FIG. 3 illustrates a process for making bio-1 -olefins, according to embodiments of the invention.

[0015] FIG. 4 illustrates a process for converting a bioolefln mixture that is highly enriched in bio-1 -olefin to diesel and jet biofuels and biolubricants, according to embodiments of the invention.

[0016] FIG 5 illustrates a method for making an exemplary dehydration catalyst.

[0017] FIG. 6 shows a proton nuclear magnetic resonance (NMR) spectrum of biobutenes produced as a result of contacting bio-l-butanol (15 wt -% water content) with a silane-modified γ- alumina dehydration catalyst, according to embodiments of the invention.

[0018] It is to be understood that the foregoing general description and the following detailed description are exemplary and explanatory only and are not to be viewed as being restrictive of the invention, as claimed. Further advantages of this invention will be apparent after a review of the following detailed description of the disclosed embodiments, which are illustrated schematically in the accompanying drawings and in the appended claims.

DETAILED DESCRIPTION

[0019] Embodiments of this invention include placing at least one bio-1 -alcohol feedstock in contact with a solid phase catalyst to produce and isolate at least one bio-1 -olefin:

H 2 0

terminal bio-1 -olefin Internal bio-olefin

[0020] The reaction can proceed with high selectivity, e.g., a molar ratio of the bio-1 -olefin to internal bio-olefin is at least 92:8 (i.e., a selectivity of at least 92%), or at least 94:6, or at least PATENT APPLICATION NAVY CASE NO. 101364 PCT

95:5.

[0021] ! R and 2 R can independently be selected from hydrogen, a CI- C20 alkyl radical, or any combination thereof. The bio- 1 -alcohol feedstock can include alcohol at a total concentration of at least 10 wt. %, or at least 20 wt. %, or at least 30 wt. %, or at least 50 wt. %, or at least 90 wt. % or at least 95 wt. %, or at least 99 wt. %. The feedstock may include water. The feedstock, in at least a first pass, can contain less than 5 wt. %, or less than 1 wt. % of components other than water and the bio-alcohol.

[0022] An aspect of the invention relates to a method for dehydrating bio- 1 -alcohol. The method includes providing at least one bio- 1 -alcohol feedstock (composition). The bio- 1 -alcohol feedstock can include from 1 ppm to 90% water. The method includes subjecting and heating the bio- 1 -alcohol feedstock with at least one catalyst. Dwell time and temperature may be controlled with at least one purge gas at a rate of about 0.01 to about 1.0 mass per mass of said catalyst/hour to produce bio-l-alkene with high selectivity (e.g., >95% bio- 1 -olefin).

[0023] Another aspect of the invention relates to a bio-l-alkene product including at least one bio- 1 -alcohol, at least one desired catalyst, where the bio- 1 -alcohol is subjected and heated to at least one desired catalyst, and at least one purge gas which controls dwell time and temperature at a rate of about 0.01 to about 1.0 per mass of said catalyst/hour to produce bio-l-alkene product.

[0024] Another aspect of the invention relates to a bio- 1 -alcohol dehydration catalyst prepared from at least one inorganic solid support. The inorganic solid support is subjected to a first treatment with a basic aqueous solution. The base-treated inorganic solid support is dried under a heated stream of gas (e.g., air or inert gas). The base-treated inorganic solid support is treated with at least one organosilane which may be diluted in at least one hydrocarbon solvent. At least one second gas (e.g., air or inert gas) is provided. The organosilane-treated inorganic solid support is heated and dried under the second gas.

[0025] In embodiments, the solid support includes γ-alumina. In other embodiments, the solid support includes zinc alurninate (ZnAl 2 0 4 ).

[0026] In embodiments, the solid support is prepared by heating zinc oxide and γ-alumina at temperatures of 800°C to 1100°C. In one embodiment, the zinc oxide and γ-alumina are in an equimolar ratio. In other embodiments, the zinc oxide is utilized is in the amount of 1 to about 20 PATENT APPLICATION NAVY CASE NO. 101364 PCT mol-% excess.

[0027] In embodiments, the catalyst is treated with an aqueous base solution that includes 1-

20 wt-% sodium or potassium hydroxide for a period of 1 to about 12 hours.

[0028] In embodiments, the catalyst is treated with an aqueous base solution and then dried at 100-150°C for about 4 to about 24 hours under an atmosphere of the first gas, the first gas being nitrogen.

[0029] In embodiments, the organosilane selected from the group consisting of R3S1CI,

R2S1CI2, and RS1CI3, and combinations thereof, wherein each R is a hydrocarbon, such as a linear or branched alkyl chain and/or aromatic group of 1 to 26 carbons. In one embodiment, the organosilane is selected from the group consisting of R3S1CI, R2S1CI2, and RS1CI3, and combinations thereof, wherein at least one R is a combination of linear or branched alkyl chain of 1 to 20 carbons and at least one phenyl ring. In yet other embodiments, the organosilane is selected from the group consisting of R3S1CI, R 2 SiCl 2 , and RS1CI3, and combinations thereof, wherein at least one R is an aromatic substituent. Another aspect of the invention includes methods for making bio-alkenes utilizing the catalyst manufactured by the method described above.

[0030] In embodiments of the invention the bio- 1 -alcohol includes at least one C 1 -C3 0 or Q-

C 20 or C3-C 1 or C3-C 10 alcohol. In embodiments, the bio-1 -alcohol is/includes bio-l-butanol. In embodiments the bio-l-alkene is/includes bio-1 -butene.

[0031] In embodiments, the catalyst formed from a combination of zinc oxide and alumina

(equimolar or with zinc oxide in excess) that has been treated at a temperature of 800 to 1000 °C for periods of 24 to 48 h, then treated with base, washed, air dried, and then treated with 0.1-20 wt. % of an organosilane, such as a chlorosilane, optionally diluted in or washed with a hydrocarbon solvent. In embodiments, the at least one chlorosilane is selected from the group consisting of triphenylchlorosilane, diphenyldichlorosilane, phenyltrichlorosilane, and combinations thereof. In other embodiments, the chlorosilane is at least one trialkylchlorosilane which is selected from the group consisting of dialkyldichlorosilane, alkyltrichlorosilane, and combinations thereof. In embodiments, the alkyl is selected from the group consisting of methyl, ethyl, propyl, butyl, iso- butyl, and up to C20 alkyl chains as a pure linear or branched, or a mixture thereof.

[0032] In embodiments, the dehydration catalyst is an alumina-based catalyst that has been PATENT APPLICATION NAVY CASE NO. 101364 PCT treated with an aqueous base solution, washed with water, dried, reacted with at least one chlorosilane in the amount of 0.1-20 wt. %, washed with a hydrocarbon solvent, and air dried. In other embodiments, the base is selected from sodium or potassium hydroxide at concentrations in water of 1 to 20 wt. % e.g., 5 wt. % and contact time with the γ-alumina is from 1-8 h or 2 h. In other embodiments, the catalyst is ZnAl 2 0 4 . In yet other embodiments, the catalyst is a γ-alumina catalyst that has been modified by reaction with base and then modified with an organosilane. In some embodiments, the organosilane includes at least one chlorosilane which can be selected from the group consisting of triphenylchlorosilane, diphenyldichlorosilane, and phenyltrichlorosilane, and combinations thereof. In some embodiments, the at least one chlorosilane can be selected from the group consisting of trialkylchlorosilane, dialkyldichlorosilane, alkyltrichlorosilane, and combinations thereof. In some of these embodiments, the alkyl in the trialkylchlorosilane, dialkyldichlorosilane, or alkyltrichlorosilane is a C1-C30 alkyl and can be selected from the group consisting of methyl, ethyl, propyl, butyl, iso-butyl, and up to C20 alkyl chains as a pure linear or branched alkyl or a mixture thereof.

[0033] In embodiments, the purge gas is nitrogen, argon, or a mixture of the two gases. In embodiments, the ZnAl 2 0 4 is obtained by recycling of spent catalyst through heating first to 800- 1100 °C, with 900-1000 °C for a period of 4 to 24 h or 16 h of heating, all in the presence of nitrogen or air. In embodiments, the heating ranges for the dehydration range from about 300 °C to about 420 °C or about 360 to about 385 °C.

[0034] In embodiments, the catalyst is a combination of zinc oxide and alumina that are not in a one to one mole ratio. In embodiments, the catalyst is an alumina-based catalyst specifically washed with base solutions. In other embodiments, the catalyst is an alumina-based catalyst modified with an organosilane. In alternative embodiments, there is no purge gas. In other embodiments, the purge gas is nitrogen and/or argon. In embodiments, the heating step ranges from temperatures of about 300 °C to 420 °C. In embodiments, the bio-1 -alcohol is 1-pentanol and/or 1- hexanol. In other embodiments, the bio-1 -alcohol comprises one or more long chain bioalcohols (including 1-hexadecanol).

[0035] Embodiments of the invention include the at least one bio-l-alkene produced by the dehydration being contacted with a Ziegler-Natta catalyst to form oligomers useful in preparing PATENT APPLICATION NAVY CASE NO. 101364 PCT high flashpoint biodiesel fuels, which includes flashpoints in the range of 61 to 100 °C and Cetane rating of 45 to 60. In other embodiments, the at least one bio-l-alkene is contacted with a Ziegler- Natta catalyst to form oligomers useful in preparing high flashpoint biojet fuels, these include flashpoints from 61 to 100 °C and cold flow viscosities of <8.5 cSt at -20 °C. In embodiments, the at least one bio-l-alkene is contacted with a Ziegler-Natta catalyst to form oligomers useful in preparing biolubricants with viscosities in the range of 1 to 10,000 cSt at 25 °C. In embodiments, the fuels are a bio-alkene fuel precursor produced by the methods disclosed. A bio-alkene produced by the method described above.

[0036] For an embodiment in this invention the bio- 1 -alcohol can include water at levels as low as 1 to 1000 ppm where equal performance of catalyst to afford bio-l-alkene is seen throughout the entire range of low water content and maintains high selectivity for extended periods of time on stream, typically 6-12 months.

[0037] Possible alternatives would be silica and alumina solid phase catalysts as well as standard mineral acid catalysts. These all give complicated mixtures of products. There are patents in the 1980's that describe the catalytic dehydration of terminal alcohols over solid phase catalysts, however the process described does not relate to bio- 1 -alcohols and does not handle the impurities (e.g. water) commonly found in bio- 1 -alcohols produced by fermentation processes and potentially other biotic procedures. The art had water contained in the alcohol feed which would deactivate the catalyst. Since water is a common co-product in making bioalcohols, there exists a significant limitation in the art. Work in 2005 specifically pointed out the shortcomings of using γ-alumina to dehydrate 1-alcohols. The study (Makgoba et al. Applied Catalysis A: General 2005, 297(2), 145- 150) showed γ-alumina showed significant loss in selectivity for conversion of 1-alcohols to 1- alkenes (a-olefins) with time on stream (TOS) leading to production of internal olefins although conversion rate of alcohol to alkenes remained steady.

[0038] Currently dehydration methods form a mixture of alkenes, some being internal- alkenes. The latter are far less effective in certain types of Zeigler-Natta polymerization chemistry that are of particular interest in preparing high flashpoint diesel and jet fuels and for making biolubricants. Thus for utilizing a bio- 1 -alcohol (e.g. bio-l-butanol) as feedstock, it is highly desirable to have a selective dehydration process that affords rapid and high conversion to the PATENT APPLICATION NAVY CASE NO. 101364 PCT terminal-olefin (e.g. bio-l-butene) and is accompanied by no carbon skeletal rearrangement (e.g. to iso-butylene). In embodiments of the invention, bio-l-butene can be utilized to make drop-in diesel and jet biofuels as well as biolubricants in an energy manner [FIG 1]. Thus, embodiments of the invention give instant access to the conversion of bio-l-butanol including small to large amounts of water, to bio-l-butene with high selectivity and chemical conversion. The bio-l-butene in turn is useful in preparing products that are environmentally beneficial and reduce greenhouse gases compared to petroleum equivalents.

[0039] Current methods for dehydrating alcohol leads to a variety of regioisomers. For example, 1-butanol if dehydrated by typical solid phase catalysts, like γ-alumina, affords a mixture of 1-butene (-70%) and 2-butene (~30%). Other examples, like the dehydration of iso-butyl alcohol (Taylor et al. Topics Catal 2010, 53, pp 1224—1230), afford regio-isomers as well as skeletal rearrangements (e.g. to 2-butene). Embodiments of this invention describe a catalyst system and approach that lead to high regiochemical dehydration of 1-bioalcohols including water and retain selectivity with extended time on stream (TOS). Hence, dehydration of bio-l-butanol using embodiments of the invention of the process described herein leads to bio-l-butene in better than 95% chemical yield and 92-99% selectivity for bio-l-butene with at least one catalyst charge can be used continuously for 1-12 months and show no decrease in selectivity for the terminal bio- 1 -olefin.

[0040] Other organic contaminants including esters and ketones, but not limited to, can be tolerated at various levels depending upon the bio- 1 -alcohol feedstock used. Ranges from 0.0 to 5 wt. % can be tolerated, or 0.0 to 0.5 wt. % the level of organic contaminants.

[0041] With reference to FIGURE 1, bio- 1 -alcohol can be produced from biomass (SI 00).

Using the present method, the bio- 1 -alcohols are converted to bio- 1 -olefins (SI 02). SI 02 can include the flowing the bio- 1 -alcohol feedstock with a purge gas over at least one catalyst with heating. At SI 04, the bio-1 -olefins produced can be subjected to at least one of oligomerization hydrogenation, and/or hydrocracking to yield a desired product, examples of which are diesel biofuels, jet biofuels, and biolubricants.

[0042] In the case of acidic-contaminants, it is best practice to remove them by pretreatment of the bioalcohol mixture either in solution or gas phase [FIG. 2]. This can be accomplished by contacting the bioalcohol mixture with a water solution including an organic or inorganic base PATENT APPLICATION NAVY CASE NO. 101364 PCT

(SI 06). Typical examples would be aqueous sodium bicarbonate or similar inorganic bases dissolved in water. A solid phase reagent capable of absorbing protons can be utilized (SI 08). Examples of a solid support capable of removing acidic organics would include poly(vinylpyridine) or related porous polymer-bound organic bases known to those skilled in the art of functionalized organic polymers. Time on stream for catalysts including impurities greater than disclosed in embodiments of the invention can lead to a shorter catalyst lifetimes. However, catalysts can be reactivated by heating to 1000 °C for a period of 4-24 h and then modified for embodiments of the invention using a similar modification protocol as described for a new γ-alumina.

[0043] FIGURE 3 illustrates an apparatus/process flow for performing the exemplary method. A feedstock of bio- 1 -alcohol is passed through a heated vessel 301 including the dehydration catalyst (SI 02a, FIG 5). A purge gas is used to control dwell time in the reactor chamber and the temperature is modified to optimize bio-l-alkene production for a particular bioalcohol feedstock. Flow rates of bio- 1 -alcohol feedstock can be from 0.01 to 1.0 mass per mass of catalyst/hr and can fall outside this region. Water content in the bio-l-alchohol feedstock can be from 1 ppm to 90 wt. %, with 1 to 20 wt. % for optimum production of bio-l-alkene, however, other levels of water content can be used in embodiments of the invention.

[0044] Catalysts used in 301 for embodiments of the invention may left as powders in the range of 10-1000 micron, or 50-200 micron, or they can be pelletized using techniques common to those skilled in the art. The advantage of creating pellets is a decrease in vessel back pressure. This may be important where physical process requirements require long reaction tubes and/or where low head-pressures are desirable. Pellets may be any shape or size; however, a range is from 1/8" diameter to ¼" diameter with lengths 1 to times the diameter, but not limited to.

[0045] Water is separated from the bioalkene product stream (SI 02b) by fractionation through a distillation column 302. Physical separation of layers can be used when the bioalkene product is sufficiently high boiling, typically above 30 °C, then 302 would function as a decanter rather than distillation column. The bioalkene product will always be the top layer and it can be siphoned from the top of the vessel with the separated water continuously drained from 302.

[0046] Final removal of final traces of water and oxygenated organics can be done by passing the bioalkene stream through a fixed bed of activated alumina, molecular sieves, Celite, PATENT APPLICATION NAVY CASE NO. 101364 PCT activated charcoal, size-exclusion type of media, or a combination thereof included in vessel 303 (SI 02c). Reactivation of the fixed-bed materials is possible by heating under a purge of hydrocarbon or inert gas while heating to temperature of 50 to 200 °C or 100 °C. Vessel 302 could also be a series of membranes and/or bed of ionic-liquids that are well known for permitting selective passage of non-polar molecules and retaining more polar organics (e.g. ethers and alcohols).

[0047] The final bioalkene product may be used immediately in the process to make diesel and jet biofuels and/or biolubricants [FIG. 4] (SI 04). Alternatively, the bioalkene product may be stored for periods of 1 h to 6 months, or 1-8 h of time.

[0048] Bio-l-alkene products from embodiments of the invention can be placed in contact with a Ziegler-Natta catalyst (401) and rapidly converted to α-olefin oligomers. The reactor type used in step 401 can be a continuous flow or simple batch. Step 401 can also utilize an isomerization catalyst to fully utilize internal olefins that might be present in minor amounts. The catalysts are removed from the a-olefin oligomers mixture and the lights are removed in 403 and then subjected to a highly energy and chemically efficient dimerization reaction (404), thus doubling their molecular weight so they effectively fit into a useful range of boiling point and viscosity for use as a diesel, jet, and/or biolubricant. The bottoms from 403 are combined with product from 404 (after catalyst removal) and subjected to hydrogenation in 405 and followed by a finishing process (i.e. fractionation) that affords high flash point (61-100 °C) diesel and jet fuels as well as biolubricants with exceptional thermal stability.

[0049] FIG. 5 illustrates a method for making a bio- 1 -alcohol dehydration catalyst (S10) which can be used in SI 02(b). The method includes providing an inorganic solid support (S5102), providing a basic aqueous solution (S504), and subjecting the inorganic solid support to a first treatment with the basic aqueous solution (S506). The method includes providing at least one first gas, such as air or an inert gas (S508), and drying the base-treated inorganic solid support under a heated stream of the first gas (S510). The first base-treated inorganic solid support is treated with at least one organosilane (which may be diluted in at least one diluent such as a hydrocarbon solvent) (S512). At least one second gas is provided, which can be the same or different than the first gas (S514). The organosilane-treated inorganic solid support is dried under the second gas (S516). The PATENT APPLICATION NAVY CASE NO. 101364 PCT organosilane-treated basic inorganic support can then be used to treat an alcohol feedstock, such as a bio- 1 -alcohol feedstock to generate a bio-l-alkene with high selectivity.

EXAMPLE 1

[0050] Two runs were carried out according to the process of embodiments of the invention for the dehydration of a bio-l-butanol feedstock including 18% water by weight. The catalyst for the runs was prepared from γ-alumina powder (300 g, -185 mVg, pore volume 0.43cc/g) obtained from Strem Chemical and was modified with base wash, dried, and then modified by treatment with 2 wt. % of diphenylsilane dichlorosilane in hexanes. The modified alumina (-280 g) was air dried and loaded into the fix-bed continuous flow reactor and heated to 380 °C. All runs were performed with a feed of 0.8 mL/min at a pressure of 30 psig (about 308 kpa) created with flow restriction to maintain adequate flow stability with the HPLC pump. Table I presents the total chemical yield of biobutenes, regioselectivity for bio-l-butene, and time on stream (TOS) for the catalyst.

Table I

Run Chemical Yield of Regioselectivity for Time on Stream

Biobutenes (%) bio- 1 -butene (%) for Catalyst (days)

~ 1 96 94 3

2 98 95 20

3 96 94 123

[0051] Where a range of values is provided, it is understood that each intervening value, to the tenth of the unit of the lower limit unless the context clearly dictates otherwise, between the upper and lower limits of that range is also specifically disclosed. Each smaller range between any stated value or intervening value in a stated range and any other stated or intervening value in that stated range is encompassed within the invention. The upper and lower limits of these smaller ranges may independently be included or excluded in the range, and each range where either, PATENT APPLICATION NAVY CASE NO. 101364 PCT neither or both limits are included in the smaller ranges is also encompassed within the invention, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included in the invention.